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Foreword 

Climate change is one of the largest challenges of our time. It is proven that excess amounts of carbon 
dioxide that humanity has added to the atmosphere plays a key role, and left unaddressed, this will 
alter ecosystems and fundamentally change life as we know it. Under the auspices of the UN 
Framework Convention on Climate Change and through the Paris Agreement, there is a commitment 
to keep global temperature increase to well below two degrees Celsius. Meeting this goal will require 
a variety of strategies including increased renewable power generation and broad scale 
electrification, increased energy efficiency, and carbon-negative technologies. Carbon-negative 
technologies serve two purposes, as a climate mitigation tool near term, and to create a new carbon 
economy that recycles carbon over the long term- balancing emissions of still essential industrial 
sectors such as cement and steel. Overall, carbon-negative technologies are a valuable strategy in an 
overall portfolio of approaches to stabilize the atmospheric carbon dioxide concentration at a level 
that supports human life on Earth. 

Increased attention is being paid to the notion that carbon dioxide can become a valuable resource 
instead of being a waste product with severe negative consequences to the earth’s climate. New 
technologies, new use cases, interest from the investment community, and growing legislative 
support poise the use of a carbon dioxide feedstock as a viable economic and societal opportunity. 

But not all that glitters is gold! Thorough assessment of the environmental and economic benefits of 
new technologies is paramount prior to deployment. Transparent and consistent life cycle 
assessments and techno-economic assessments must provide unbiased information to decision 
makers to enable sound decisions on investments, deployments, and public support for such. 

International demand from government bodies, industry, investors, non-profits, and researchers for 
harmonized approaches to conduct life cycle assessments and techno-economic assessments for 
carbon dioxide utilization led us to coordinate and fund an international effort to develop and 
disseminate Guidelines for TEA & LCA for CO2 Utilization. First published in 2018, these Guidelines 
have found widespread attention and use and have recently been updated (http://
hdl.handle.net/2027.42/162573).  A growing list of case studies, and worked examples, is made 
available to illustrate how to use these Guidelines.

We hope that this case study will be useful to you and we will be grateful for any feedback! 

April 2021, Volker Sick, Global CO2 Initiative 

http://hdl.handle.net/2027.42/162573
http://hdl.handle.net/2027.42/162573
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Part 1: Introduction to Multi-Attribute Decision Making  
 

1.1 Preface for this Worked Example 
 

This worked example has been released at an intermediate timeframe within the CO2nsistent project, 

fitting in between the release of version 1.1 and 2.0 of the ‘Techno-economic Assessment & Life Cycle 

Assessment Guidelines for CO2 Utilization’ [1]. This means the subject matter of this worked example 

(combined assessment, in particular multi-criteria approaches to decision analysis/making) remains to 

a degree uncovered by the overarching guidelines associated with this project until the release of 

version 2.0. As such this worked example will include more contextual sections than has been typical in 

previous examples, in part bridging the gap until a more detailed guidance section on combined 

assessment can be included in version 2.0. 

This does not mean that no guidance can be drawn from version 1.1 of the guidelines document in the 

intermediate timeframe. Version 1.1 contains some guidance on both combined LCA & TEA studies (see 

section A) and the individual TEA section itself also contains a brief section and guideline rules on multi-

criteria decision analysis (MCDA) for use within the field. Ultimately this guidance is useful even for 

application in a combined study, as ultimately the same concept applies with the complication of 

needing to ensure that both the LCA & TEA study are aligned with suitable precision. 

 

1.2 Scope of this Worked Example 
 

This worked example considers only the elements of the whole process relevant for the integrated 

assessment in greater detail. This worked example builds on a prior study, covering CO2 to methanol 

conversion [2], and as such a more detailed overview of the technology can be found there. A brief 

overview of the methanol technology is included for familiarization, along with details on the alignment 

approach taken to ensure that a ‘preference-based’ integration can be completed. The focus of this 

worked example is the application of multi-attribute decision making (MADM) approaches and their 

potential use within combined LCA & TEA studies. The practical part of this examples sees the 

application of one MADM method to a multi-criteria problem with relevancy in CCU that utilizes the 

outputs of both an LCA & TEA study.  

 

1.3 Combining LCA & TEA Studies: A Brief Introduction 
 

Before considering anything else, the primary question to answer is why should one consider combining 

LCA & TEA studies? The obvious answer, particularly for CCU and other emerging technology fields, is 

that combining the two allows for the development of a better understanding of performance in both 

particularly in the understanding of the potential tradeoffs in performance between the two. Tangible 

examples can be given of situations where: 

• When designing a product, process or service the designer may be interested in balancing 

economic and environmental performance through process optimization, here combined 
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enviro-economic indicators may be of use as may approaches such as multi-objective 

optimization  

• When selecting from a range of alternatives each with their own economic and environmental 

profiles, in particular where there is no ‘dominant’ best choice. Multi-attributional decision 

making approaches can be of use here which aid the decision maker in developing their 

preferences to ensure the ‘correct’ decision is made 

• Reporting on both the environmental and economic performance of a product, process or 

service. Well aligned studies in this sense allow for more detailed and reliable qualitative and 

quantitative analysis to be produced, strengthening the quality of any conclusions drawn 

The examples above require differing degrees of integration (aligning and combining) between the LCA 

& TEA elements.  

Version 1.1 offers guidance on the types of potential integration identified for combining LCA & TEA 

studies.  As stated in the guidelines, both ex-ante (conducting a singular study covering both LCA & TEA 

criteria) and ex-post (combining LCA & TEA studies have been conducted) approaches can be taken to 

integration; with the likely approach taken dependent more on circumstance than any other reasoning 

(i.e. whether an LCA and/or TEA already has been conducted suitable for the combined study goal). 

Both approaches do bring their own advantages, ex-ante studies offer a reduced risk of misalignment 

as all methodological choices are made with both the LCA & TEA aspects in mind but do require 

additional resource to complete. Meanwhile, ex-post approaches allow practitioners to utilize existing 

studies streamlining the assessment approach but with the added risk of misalignment or inconsistent 

methodological choices being made. 

Secondly, an integration type should be identified with three given in the guidelines: 

• Qualitative, discussion-based integration 

• Combined indicator-based integration 

• Preference-based integration 

It should also be noted that more than one type of integration may be used in a study should this be 

deemed beneficial 

Each of these types is summarized in more detail in the guidelines document, however it should be 

noted that little methodology guidance is provided in version 1.1. As a brief introduction a summary of 

each of the three is included here. Qualitative integration aims to compare the economic and 

environmental results through discussion, integration can focus on the whole process/service or 

specific elements/sub-processes (e.g. known ‘hotspots’ that are highly impactful of overall economic or 

environmental performance). The discussion is likely to consider such concepts as trade-offs, where a 

choice can be made to improve performance in one area at the expense of another. Qualitative 

integration is arguably the easiest to implement but the lack of additional quantitative analysis may 

limit the scope and preciseness of any additional conclusions that can be drawn. Another advantage for 

qualitative approaches is that they can be undertaken with a lower level of precision in the alignment 

between the TEA & LCA studies than those that require quantitative calculations (although care should 

be taken to make sure the alignment should be sufficient enough to ensure that any conclusions made 

are valid). 

Combined indicator-based integration sees the calculation of additional enviro-economic indicators to 

aid in process analysis, quantitatively combining both economic and environmental dimensions to give 

further insight into a particular facet of the product. Unlike qualitative approaches there is less flexibility 

in the precision required for alignment to limit errors resulting from combination. A commonly used 
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combined indicator in CCU is the GHG abatement cost – often used to identify the cost efficiency of 

abating CO2 through re-utilization. Combined indicators can be utilized on their own or combined with 

other indicators (either combined or LCA/TEA only) in further analysis to give a more balanced picture. 

For example, a fixation on GHG abatement cost alone may result in ‘burden shifting’ where other 

environmental impacts are increased in the pursuit of ever-greater performance in the one category. 

Preference-based integration ‘aims to include the decision makers preferences by following a multi-

criteria approach’ [1]. MCDA concerns the development & application of a structure to solve issues with 

multiple criteria; with these criteria typically being decided upon by the practitioner or other interested 

party. The strength of this approach is that these criteria can be diverse and independent, yet still be 

compatible for analysis – making the approach beneficial for use in combining LCA & TEA in instances 

where the goal requires the practitioner (or a third party) to make a decision. What exactly amounts to 

a solution depends on the goal and the type of problem to be assessed, with this is covered in more 

detail later in this worked example. As would be expected, the confidence one can have in a decision 

made using a MCDA approach is dependent on the relative success in aligning the LCA & TEA used. 

Guidance is also provided on how to determine the type of integration required both in the guidelines 

and in a stand-alone paper [3], however briefly the following three steps are outlined: 

1. Define the purpose of integration 

2. Identify restrictions imposed by technology maturity 

3. Identify resource limitations for the assessment  

 

1.3 Multi-Criteria Decision Analysis Overview 
 

Before considering any particular type of decision making in detail it is worthwhile considering how 

approaches are generally classified.  

Three ‘principal streams’ of research into decision making are highlighted in source [4]: 

• The descriptive stream which examines how actors actually undertake decision making in 

practice 

• The normative stream which tries to establish how rational actors should choose between 

competing options 

• The prescriptive stream which tries to utilize the findings of the descriptive stream to develop 

approaches that bring ‘intuitive unaided human decision making’ closer to the ‘normative 

ideals’ highlighted in the prior category 

The latter two streams in particular are of interest here, as they are the basis for many of the models 

used in CCU decision analysis. The identified streams are each associated with their own decision 

analysis techniques, with this reflected later on within this section when reviewing multi-attribute 

decision making approaches in detail. 
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1.3.1 Other Analytical Approaches Frequently used in Decision Making 
 

Before considering MCDA in detail, an overview is included on other types analysis or evaluation that 

could potentially be applied in decision making using LCA & TEA outputs. This is not intended to be an 

exhaustive overview, nor one of great critical depth, and is included merely to provide a broader view 

of analysis techniques. In general, this section focuses on quantitative approaches, although qualitative 

options are also viable (some of these such as decision trees are discussed below).  

A more structured overview can be found in source [5], where three broad classifications are outlined: 

multi-criteria decision making, artificial intelligence and ‘other methods’ (an umbrella term for methods 

not captured by the prior two). 

Systems such as decision trees are used elsewhere within the guidelines (given direction to practitioners 

regarding various methodological choices such as determining a function unit or a comparison case) 

and could have potential for deployment in other decision making processes, given that it allows a 

formulaic approach to be outlined to allow for a consistent application of a set of attributional 

preferences. Pairwise comparison [6] can be used also as a standalone technique, although it is often 

used in part of a larger framework such as the analytical hierarchy process (a form of MCDA) and is such 

not discussed independently here. Similar approaches such as conjoint analysis can also be used to 

determine preferences on specific attributes compared by a specified audience/stakeholders. 

Techniques such as cost-effectiveness analysis and cost-benefit analysis are tools used frequently in 

program evaluation [7], with the former being of most interest to the concept of integrating LCA & TEA 

in decision making. Cost-effectiveness analysis (CEA) is frequently used in healthcare and health 

economics, the aim of the study is to ‘identify and place dollars on the cost of a program’ whilst relating 

these to specific measures of program effectiveness [7]. CEA results in the production of a ratio: 

Cost-effectiveness ratio = Total Cost / Units of Effectiveness 

The ‘unit of effectiveness’ is any quantifiable outcome, setting this to the number of tonnes of CO2 

abated for example would result in deriving a carbon abatement cost for example. The calculated ratio 

can then be compared across the range of options available to determine the optimal solution. The 

advantage to utilizing a CEA framework is that much of the steps required for the end result are already 

covered by the conducting of the LCA & TEA studies, however there are practical limits to the 

complexity of the ‘units of effectiveness’ which may be problematic when determining across a broad 

set of criteria.  

Cost-benefit analysis (CBA) is defined as the process ‘used to measure the benefits of a decision or 

taking action minus the costs associated with taking that action’ [8]. CBA involves using measurable 

financial metrics (e.g. revenue earned, costs saved) as a result of the decision made – although 

‘intangible benefits’ (e.g. customer or employee satisfaction) can be included in the calculation. Given 

the focus on financial elements CBA is arguably better suited to TEA solely (as with net present value 

calculations).  

Linear programming (LP) is a tool used in many fields, including LCA [9][10], with the intention of 

determining a ‘best outcome’ in a mathematical model in which requirements are represented by linear 

equations. A short introduction to LP can be found in [4], with the prior mentioned sources also 

providing details on its application in LCA. LP is particularly useful for identifying optimal designs as it is 

a form of continuous multi-criteria analysis, allowing for the consideration of an infinite number of 

possible combinations – rather than a finite set of options with specified attributes. LP utilizes a set of 
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decision variables, xj, and it is these that are combined in all possible combinations with the aim of 

maximizing a given ‘linear objective function’ whilst also obeying a set of constraints which restrict the 

combinations of xj that are allowable. Like the objective function, these constraints are also represented 

by linear functions and the final constraint is that the values of xj are non-negative allowing for a 

(graphical) ‘feasible region’ to be determined with the size of this feasible region determined by the 

constraints placed on the objective function. The conventional form of the LP model is as follows [4]: 

Maximize (or minimize): ∑ 𝑎𝑗𝑥𝑗
𝑛
𝑗=1   

Subject to:   ∑ 𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖(𝑖 = 1, … , 𝑚)𝑛
𝑗=1       

              𝑥𝑗 ≥ 0 (𝑗 = 1, … , 𝑛) 

As stated xj represents the decision variables, these are the variables that the decision maker has 

control of, aj are numerical parameters that represent the relative contributions in each of the decision 

variables in achieving the overall aims. Σajxj is therefore the objective function, expressing the overall 

goal as a function of the decision variables and their contributions. The Σaijxj terms are the functional 

constraints and they express how xj is limited in the decision context. The final term xj ≥ 0 are the non-

negativity constraints limiting the contribution from any particular xj to zero, in instances where the 

value of xj can be negative (such as negative CO2 emissions due carbon sequestration in an xj that 

considers carbon emitted) this needs to be accommodated for ‘indirectly’. 

The aim of the LP analysis is to find the point within the feasible region in which the objective function 

achieves its maximum value. A visualization of a LP system is given in figure 1. 

 

Figure 1 – Graphical representation of a linear programming approach 

One potential drawback for LP approaches in integrating LCA & TEA is the need to determine the 

objective function [4]. Applying LP to LCA leads to an obvious objective function – minimize the 

environmental impact of the process/product/service (although alternatives may be of interest in some 

specific cases). For TEA this approach may be more difficult, the most obvious objective function would 

be to maximize profit or return on investment but feasible alternatives may also have appeal especially 

in a broader business sense: maximizing market share, brand identity or minimizing capital costs may 

be of more value dependent on company structure or business plan.  When considering integrating LCA 

& TEA together in a combined enviro-economic assessment this situation becomes more complex once 

again – several objectives can be identified (maximize profit, minimize environmental impact) but 

deciding upon which should be the objective function requires a choice to be made. The addition of 
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further dimensions can further complicate this, adding social impact assessment (SIA) to the combined 

LCA & TEA study would allow for a more complete sustainability assessment but with the added 

complexity of introducing further potential objective function options. Multi-objective Linear 

Programming (MOLP) is capable of dealing with the limitations of LP, enabling the practitioner to 

optimize with more than one objective function identified. Source [11] provides one such example of 

MOLP application within LCA, to combine this with life cycle costing (LCC) in an approach that has a 

similar objective to the combined LCA & TEA assessments considered as part of the CO2nsistent project. 

MOLP is a form of Multi-objective optimization (MOO) which is discussed in the next section.  

 

 

These types of problems can be addressed by multi-criteria analysis (MCA) or multi-criteria decision 

analysis (MCDA). It should be noted that the terms MCDA and MCA are often used interchangeably, 

although in some sources MCA and MCDA are reported as similar but slightly different where the 

addition of the word ‘decision’ is a differentiator (i.e. MCA doesn’t necessarily involve decision making). 

Here, the term MCDA is used throughout as the aim of this worked example is to demonstrate the 

application of MCDA approaches for decision support reasons. MCDA is said to have evolved as ‘a 

response to the observed inability of people to effectively analyze multiple streams of dissimilar 

information’ [12]. As such the intention of MCDA is to provide a framework in which these decisions 

can be structured as to best aid a decision maker to make a ‘correct’ decision determined by their 

preferences.  

 

1.3.2 Multi-Criteria Decision Analysis: MCDA, MODM, MADM and MOO 
As mentioned above the naming conventions for various aspects of MCDA (alternatively MCDM for 

Multi-Criteria Decision Making) can be confusing, particularly for those not familiar with the concepts. 

As part of this an attempt to clarify this to a degree is included here, or at least provide a consistent 

basis for the use of these terms within the context of this worked example and the TEA & LCA Guidelines 

for CO2 Utilization in general. 

In the TEA section of the guidelines document MCDA (sourced originally from [13]) is defined as follows: 

‘MCDA is a method for supporting decisions that involve multiple dimensions or criteria and thus allows 

evaluation of trade-offs. It allows economic, social, and environmental criteria, including competing 

priorities, to be systematically evaluated’ 

MCDA can be seen as a way of discovering and quantifying decision-maker and stakeholder 

‘considerations’ about various factors in order to compare alternative ‘courses of action’ [14]. A broad 

range of MCDA techniques are available, each with its own framework and methodology offering a 

range of advantages and disadvantages.  

MCDA approaches have been applied across a range of fields, including environmental science [14], 

‘sustainable’ energy provision [13][15], healthcare [16] and has been used in aiding results 

interpretation in LCA studies [17] for a significant period of time.  

Authors note: We have chosen here to not classify simple linear programming as a form of MOO (or 

multi-objective decision making) for the reasons explained above, however other publications may do 

so. 
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Here, and in the guidelines, two broad types of MCDA study are identified: Multi-Attribute Decision 

Making (MADM, sometimes referred to as Multi-Attribute Decision Analysis or MADA) and Multi-

Objective Decision Making (MODM, sometimes referred to as Multi-Objective Decision Analysis or 

MODA). Whilst both MADM and MODM can be used to identify a preferred solution it should be noted 

that the methods used in doing this differ somewhat. 

Multi-attribute approaches consider a finite set of options, where specific attributes of these options 

are assessed to determine a best set of alternatives amongst them. This assessment typically involves 

normalizing and weighting the criteria, with these weightings determined through consideration by one 

or more stakeholder groups. The outcome of the study depends on the type of problem to be assessed 

(this is covered in a later section) but ultimately leads to a preferential selection or ordering from the 

options given.  

Multi-objective approaches consider an infinite set of options bound by physical limitations with 

specific objectives used as the criteria for optimization, analysis or assessment. This approach in a sense 

is somewhat similar to that of the LP approach discussed in the previous section in that objective 

functions form a basis for the process rather than discrete attribute values. As with MADM approaches, 

MODM approaches utilize weighting in the technique to determine preference of specific criteria by 

the assessing party or other stakeholder. 

Source [18] defines three ‘motivating scenarios’ for use of MODM: 

• Scenario 1 (unknown weights scenario) sees the identification of a multi-objective decision 

problem; the problem is then processed through a chosen algorithmic approach to produce a 

coverage set. This coverage set is then weighted based on the best available data and is put 

through a ‘scalarization’ process as part of the selection phase, with this leading to a single 

solution in the execution phase. Scalarization can only be applied in this scenario as each of 

the objective functions can be determined in a quantified manner. If this is not possible, either 

because an impact is hard to quantify or because its value is unknown/uncertain than an 

alternative approach must be taken. 

• Scenario 2 (decision support scenario) sees the identification of a multi-objective decision 

problem; the problem is then processed through a chosen algorithmic approach to produce a 

coverage set. Unlike scenario 1, the selection phase here utilizes a ‘user selection’ approach, 

with this leading to a single solution in the execution phase. In this scenario scalarization isn’t 

possible due to the difficulty in specifying a value for weighting or a formulaic way of 

expressing the objective function as a quantity. This scenario is useful for instances where 

scenario 1 cannot be applied, such as instances where stakeholders have ‘fuzzy’ preferences 

that cannot be quantified meaningfully.  

• Scenario 3 (known weights scenario) is similar to scenario 1, with one meaningful difference 

in that both the multi-objective decision problem and the weights are known from the outset. 

Here only a planning (choosing of and application of an algorithm) and an execution phase 

(application of the chosen alternative) are required, as the pre-determination of weighting 

values eliminates the need for a selection phase. 

In the above scenarios a coverage set is defined as a subset of the non-dominated set – with the non-

dominated set being the set of options present at the Pareto front, with these terms being Pareto 

optimal (i.e. changes made to improve one function will result in poorer performance in another). These 

contrast with dominated solutions which can undergo what is deemed as a Pareto improvement – 

where improvements can be made to one function without loss of performance in another.  
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Source [18] explains that whilst the non-dominated set does not contain dominated solutions it does 

contain redundant ones – the coverage set removes this redundancy whilst ‘covering’ all optimal 

solutions for the objective functions and weightings. Without further intervention all solutions in the 

coverage set, and the broader non-dominated set, should be assumed to be equally as good as each 

other. It is for this reason that intervention is required to determine a singular (or set of) solution(s) 

through determining the preferences of the decision maker or other stakeholder and it is this aspect 

that varies in the scenarios above.   

The determining of the Pareto optimal/non-dominated set is a computational task and several 

approaches/algorithms are available. This general field is often referred to as Multi-objective 

optimization (MOO), with this umbrella covering a range of techniques for determining the non-

dominated set, for quantifying trade-offs in the competing objectives and for finding solutions that suit 

the preferences of a given stakeholder. As stated whilst some groups utilize the term MOO to 

incorporate the making of decisions here MODM is used to give distinction between the act of 

optimizing and decision making.  

Ultimately, the differences between MADM and MODM approaches can be seen in the method 

followed:  

• For MADM the criteria of assessment are a collection of predefined attributes of which a finite 

set of predetermined alternative options exist. The goal is to determine the most preferred 

solution from this list of alternatives 

• For MODM the criteria of assessment are a collection of predefined objectives which act as 

constraints on a function to be optimized. There are infinite solutions to this optimization 

problem, the goal is to determine the most preferred optimal solution  

The attributional approach is the equivalent of going to a car sale showroom, recording key attributes 

(e.g. safety rating, fuel efficiency, acceleration rate, price) of each car type and using this information 

and a set of determined weighting factors to identify your preferred option from the finite options. The 

objective approach is the equivalent of going to a car manufacturer with a set of objectives (‘it must 

have a high safety rating’, ‘it must be fuel efficient’, ‘it must accelerate quickly’ and ‘it must be 

affordable’) and optimizing the design to produce a car that best fits your preferences regarding the 

competing objectives.  

Regarding combined assessment of LCA & TEA in CCU both MADM and MODM approaches have uses 

in differing applications – depending on whether attributes or objectives can be determined. For 

example, process design & optimization naturally lends itself to MOO and MODM type approaches as 

one would expect. Attributional approaches on the other hand may be of more use when a defined set 

of alternatives is available, such as selecting one from a range of technologies for deployment in a given 

location/scenario.  

Throughout this section discussion has focused on both multi-attribute and multi-objective approaches 

to decision making, however the practical element of this worked example focusses on multi-attribute 

approaches and as such these methods will be considered in greater detail than MODM methods from 

this point forward. 
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1.4 Multi-Criteria Decision Analysis: An Overview of Attributional 

Approaches 
 

1.4.1 Categorizing MADM Approaches 
 

This section aims to provide a basic and relatively short general, non-CCU overview of the various 

categories of MADM typically used. Key features, strengths and weaknesses are discussed for the broad 

categorizations established by other reviewers. Little detail is given for specific methods within classes 

for brevity, details of these can be founded in several of the sources given. The intention is to provide 

an introduction to MADM methods for those not familiar with topic and as such this section can be 

skipped by those with experience or knowledge. Categorization of MCDA approaches varies across 

publications, although similar groups are consistent. 

Both sources [14][19] assess the use of MCDA in environmental science, and identify three main 

approaches: multi-attribute utility theory (MAUT), outranking and the analytical hierarchy process 

(AHP) and its associate variations. Source [14] does mention linear additive approaches as a ‘basic 

approach. 

Source [4] utilizes the same list, but expands upon this to include linear additive approaches and non-

compensatory methods as distinct categories. The latter category should be used sparingly due to its 

inability to establish overall preferences, working predominantly on a ‘process of elimination’ 

considering each attribute from most important to least to determine a solution. Source [20] considers 

two ‘schools of MCDA’ – the American school, covering normative approaches, in which ‘the view of 

the decision-maker is disaggregate in the sense that the decision-maker is assumed to have a complete 

preference system’ and the French school where ‘the existence of a well-ordered preference system is 

questioned and the view is more that of the decision-maker as a rational economic man’. The MAUT-

type approaches, the AHP-type approaches and simple linear approaches are classified as being part of 

the American school, with the outranking approaches classified as part of the French school. Source 

[21] identifies 11 different MCDM methods, many of which are attributional approaches and provides 

a brief literature overview for each. 

A more comprehensive categorization is provided by B. Roy (a key figure in the development of the 

ELECTRE outranking method) in source [22]: 

1. Approaches based on synthesizing criterion: the most traditional approach, formal rules are 

used to aggregate the performance of alternatives across n criteria into a single score, leading 

to a ‘complete preorder’ of preference. These formal rules typically consist of a mathematical 

formula to determine a, and ‘imperfect knowledge’ (i.e. incomplete data sets or known 

uncertainties) can only be included in probabilistic or fuzzy models. This classification covers 

MAUT, SMART, TOPSIS, MACBETH and AHP.  

2. Approaches based on synthesizing preference relations: these are the outranking methods 

(such as ELECTRE and PROMETHEE). As with the prior category a mathematically explicit multi-

criteria aggregation procedure is used to determine a preference order, but unlike above the 

aim is not to establish a complete preorder but to assess using pairwise comparisons to create 

a preference relational system. Data used can be crisp or fuzzy, and the methods allow for the 

inclusion of concepts such as indifference and incompatibility of comparisons.  
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3. Other operational approaches: included in this category are approaches that are 

mathematical in nature but do not fit the proceeding categories and those that are not 

mathematically explicit such as interactive approaches.  

In the classifications of B. Roy the concept of fuzziness is introduced, and as stated various models 

within the classifications are capable (or incapable) of dealing with this. The need to utilize a model 

capable of dealing with fuzzy data is problem specific, and as such this isn’t considered in detail here 

as the focus is not to discuss specific models in great detail. 

 

1.4.2 Linear Approaches 
 

Linear additive approaches are generally considered to be the simplest to use, with approaches such as 

the aptly named Simple Multi Attribute Rating Technique (SMART) based on this. An introduction to 

SMART can be found in sources [4] and [20], with the latter giving a stage by stage breakdown of 

completing the process. The key calculation steps in the SMART process are to assign values to each 

criteria, to determine the weight of each criteria and then to normalize the final score to make a 

decision. Finally, a sensitivity analysis is then performed to validate this decision or express its 

limitations. Should the assessment of value functions and weights prove to be difficult (or should the 

practitioner have little confidence in accurately assessing this) the approach can be modified as the 

SMART Exploiting Ranks (SMARTER) where the individual criterion are ordered from most to least 

important and a rank order distribution method is selected for use [20]. Criticisms of SMART (and linear 

additive approaches in general) are also reported. Source [20] states that the SMART approach tends 

to oversimplify the problem if used as a screening method, whilst also stating that there is also a high 

demand on the level of detail required on the input data. However, it should be noted that such 

restrictions on input data are not unique to linear models. Others have pointed to SMART containing 

an error in its logic, which was corrected by the development of SMARTS [23]. More damning is the 

criticism that the same simplicity that makes the models attractive may also lead to the creation of 

‘pitfalls’ that can be avoided using more complex multiplicative relationships [24], in some areas where 

decision making outcomes may involve assessing critical outcomes (such as life-critical situation in 

healthcare for example) reviewers have labelled additive MCDA approaches as ‘inadequate’ for use [25] 

when compared to alternatives. Others label SMART as ‘one of the simplest forms of MAUT’ [21] in 

place of creating a distinct category for linear approaches. 

 

1.4.3 Multi-Attribute Utility Theory 
 

Multi-attribute utility models are, as stated above, normative approaches with these being defined as 

the type of approach that ‘establish how rational individuals, groups and organizations should choose 

between competing options’ [4]. Generally the work of von Neumann & Morgenstern [26] is seen as 

the starting point for the development of normative approaches in multi-criteria applications, with the 

work of Savage [27] expanding upon this. MAUT was developed by Keeney & Raiffa [28], following the 

axioms outlined by von Neumann & Morgenstern [14], with MAUT described as ‘adding a layer of 

complexity’ to linear additive models by transforming the scores into utility functions.  

The four axioms are known as the basis of the ‘von Neumann & Morgenstern utility theorem’ [VNM] 

[29]. When these axioms (completeness, transitivity, continuity and independence) are satisfied by a 
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decision maker & their preferences the decision maker is said to have a utility function and as such the 

decision maker will always prefer options that maximize expected utility. This utility function is required 

to have a real value and a decision maker is said to be VNM rational if every preference is tailored to 

maximizing this value. It should be noted that in the VNM model the decision maker is not claimed to 

be actively (consciously) trying to maximize utility, merely that the concept of a maximum utility exists 

for the decision maker.  

There exist a range of MAUT approaches, with varying levels of complexity derived from the work of 

Keeney & Raiffa, which itself contained three key stages[4]:  the determination of a performance matrix, 

the determination of whether attributes are independent of each other or not and the estimation of 

parameters in a mathematical function designed to estimate the ‘single number index’ which expresses 

the overall valuation of an alternative in relation to its performance in each of the criteria. The final 

stage, the estimation of a single number index, can be seen to draw directly from the utility function 

derived in the VNM. The simplest MAUT models are those that have wholly independent attributes and 

no hierarchical structures [14], essentially providing a linear additive approach as discussed above. 

Weighting to assess importance (or risk) of a category is typical, as is normalizing results between 0 

(worst possible value) and 1 (best possible value).  Alongside the sources mentioned above, additional 

reading can also be found in source [30].  

 

1.4.4 Outranking Methods 
 

A commonly used alternative to MAUT approaches are the outranking approaches developed initially 

in France during the 1960s [31], with the basis of this developed by Bernard Roy & colleagues a 

summary of which can be found in source [32]. One of the drawbacks of utility approaches is the need 

to make all alternatives comparable in a transitive way (remembering that one of the axioms is 

transitivity) requires a large amount of information and a large amount of analysis to detail all trade-

offs between attributes [31] and the preferences of the stakeholder need to be precise [21]. Obviously 

this requires a significant amount of resource which may not always be of available. As such prescriptive 

approaches such as the outranking ones may offer something akin to a middle ground between 

normative approaches and purely descriptive ones.   

A second advantage that outranking methods provide is that they seek to make fewer assumptions 

about how preferences are arrived at [4]. Practically this means that there is more flexibility for the 

decision maker to finalize their choice through ‘fine-tuning’ in elements such as the pairwise 

comparison thresholds rather than being dictated to through axiomatic logic. Thus the outranking 

methods are sometimes referred to as being a ‘more interactive process between decision maker and 

model’ [4]. 

As with the prior approaches a preference relation is required – with this usually referred to as the 

‘outranking relation’ [31]. This outranking relation is arrived at through evaluating alternatives on 

several attributes selected by the decision-maker. For most outranking methods this relation is 

constructed through a series of pairwise comparisons, with many methods using the ‘concordance-

discordance principle’ for this, including the ELECTRE family of models developed by Roy et al. The 

concordance-discordance principle states an alternative x is at least as preferable to alternative y if a 

‘majority’ of the attributes support this assertion (concordance condition) provided the opposition of 

the other attributes isn’t too ‘strong’ (non-discordance condition) [33]. Thus the outranking methods 
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can be seen as approaches that involve holding a number of ‘votes’ across a range of dimensions [14], 

with this being a noticeably different approach to the function driven ones discussed above.  

Outranking approaches are generally conducted in two phases: a precise method for determining 

whether one alternative outranks another and a method for determining how all the pairwise ranking 

assignments can be combined to suggest an overall preference ranking for the set of alternatives [4].  

Many outranking models are available with the ELECTRE & PROMETHEE model families being popular 

examples used in a broad range of applications. Source [21] states the advantages and disadvantages 

of both approaches: 

• ELECTRE models take into account uncertainty and vagueness, but have the disadvantage of 

the outcomes being hard to explain in ‘layman’s terms’ (note: this criticism may be of 

particular importance should the decision need to be relayed to other parties as is often the 

case in CCU technology development) 

• PROMETHEE models are easy to use and do not require the user to assume that criteria are 

proportionate, but have the disadvantage that they do not provide a clear method by which 

weights can be assigned to criteria 

A more general criticism of outranking methods is there lack of axiomatic foundations, although this 

criticism has lessened over time as the field has developed, and as more elaborate models have been 

developed with some aspects of the process becoming more ‘axiomatized’ [31]. Given a criticism of 

MAUT approaches is their axiomatic nature it is clear to see that there exists an argument for the 

utilization of both types of approach with the final choice likely determined on the preferences & 

resource availability of the practitioner or decision maker. 

Qualitative outranking methods also exist, whilst such methods may be of limited interest for combining 

LCA & TEA, the introduction of social indicators (that are often more difficult to quantify) may warrant 

future revision.  

 

1.4.5 Analytical Hierarchy Process 
 

The next MCDA approach to be discussed is the analytical hierarchy process (AHP), a method originally 

devised by Saaty in the 1980s [34] and remains frequently used (either in its original form or through 

one of the derived similar methods) across a broad range of applications to this day. The central premise 

of the AHP is the deployment of a method for converting subjective assessments of relative importance 

into overall (weighted) scores [4]. Similar to outranking methods discussed above pairwise comparisons 

are made, however here criteria are compared, with the intention of establishing which is more 

important to the preferences of the decision maker. These preferences are scored using the preference 

index, a scale scoring from 1 to 9, so when comparing criterion A to criterion B: 

• A score of 1 would mean that both A and B are equally important 

• A score of 3 would mean that A is moderately more important than B 

• A score of 5 would mean that A is strongly more important than B 

• A score of 7 would mean that A is very strongly more important than B 

• A score of 9 would mean that A is overwhelmingly more important than B 

The even numbers act as intermediate values between the above categories which can be used if 

required. If B is adjudged to be more than A, the reciprocal score is given i.e. the relative importance of 
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A to B will be scored as 1/x where x can be any of the scores in the range of 1 to 9. Table 1 below gives 

a general example considering three criteria: A, B and C, where each is scored in the pairwise manner 

described above. For criterion A it can be seen that it is of equal importance to itself, strongly more 

important than B and moderately less important than C.  

Table 1 – Example matrix of an AHP pairwise comparison of criteria 

  In relation to… 

 Criterion A B C 

Importance 
of… 

A 1 5 1/3 

B 1/5 1 1/7 

C 3 7 1 

 

After establishing the comparison matrix the next step is to estimate weights that are ‘most consistent 

with the relativities expressed in the matrix’ [4], this becomes a challenge of finding a ‘best fit’ because 

there are no transitive guarantees in the table beyond the reciprocating pairs. The basic method of 

Saaty estimates weights using matrix algebra, calculating each weight as part of the eigenvector 

associated with the max eigenvalue for the matrix [34]. As this is a complex task it is advisable to use 

specialist AHP software to do this. A simpler alternative is detailed in [4], given as follows: 

1. Calculate the geometric mean of each row in the matrix 

2. Total the geometric means 

3. Normalize each of the geometric means by dividing by the total computed in the prior step 

This provides a result that is generally ‘very close’ to the calculated weights from the eigenvalues (often 

to 2 or 3 decimal places) without the need for the use of specialist software. A significant advantage to 

the AHP is the ability to group criteria and organize these in a hierarchical structure allowing for the 

reduction in the number of pairwise comparisons that need to be held. Each level of each branch can 

then be treated independently with a pairwise matrix developed for this. In the example structure 

shown in figure 2, 3 pairwise comparison matrices would be required with the diagram color-coded to 

demonstrate each (the criteria, the sub-criteria for criteria A and the sub-criteria for criteria C), in each 

case the total weight would be normalized to one. 

 

 

Figure 2 – Example of an AHP structure with numerous criteria and sub-criteria 
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Alongside calculating the weights, the pairwise comparison method is also used to assess the 

performance of each alternative against each criterion ‘tree’ as shown below in figure 3. As can be seen 

assessment takes place for each alternative at the lowest level of the tree, whether this be at the sub-

criteria (or below, if sub-criteria further division is required) or criteria level. Pairwise comparisons are 

calculated for each configuration of alternatives using the same scale as before.  

 

 

Figure 3 – Example of an AHP structure including alternatives options to be assessed 

Upon calculating weights and scores all that remains is a simple linear addition of these to determine a 

final weighted score. The option with the highest score is the preferred one, subject to sensitivity and/or 

uncertainty analysis of the result.  

The AHP method, and other methods derived from it, are popular due to their relative ease of use, even 

with little experience of previous MADM application, a second benefit is that not only is the hierarchy 

system useful for limiting the number of pairwise comparisons that need to be held it offers the 

advantage of being relatively easy to scale to larger problems and the method itself is not as data 

intensive as many of the other models discussed [21]. Alongside this lower data intensity, the AHP 

method can also be used in situations where judgements rather than measurements of performance 

are required for assessment [4].  

Whilst popular, it should be noted that there exists a range of criticism of the AHP method, with sources 

[4][21][30] providing more details if required. Five criticisms are common: 

1. The 1 to 9 scale can be internally inconsistent – if not well controlled. Consider two pairwise 

comparisons, of A, B and C where A is scored at 5 against B and where B is scored at 5 against 

C. Logically, A is considered more important than C, to the order of 5 x 5 = 25, however the 

scale is capped at 9 thus the importance of A over C is under-represented. In this example the 

fix is relatively simple given there are only three criteria (score A to B as 3, B to C as 3 and then 

A to C can be scored as 9) but in a more complex problem this may be difficult to do. To 

counter this problem an AHP alternative has been developed in REMBRANDT, here the 1 to 9 
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scale is replaced by a direct rating system on a log scale [35][36]. The eigenvector approach 

for establishing weights is also replaced in REMBRANDT, with an approach based on the use 

of the geometric mean used (the use of pairwise comparisons remains consistent). Another 

solution to this problem is to change from a linear scale as developed by Saaty to a number of 

alternatives (e.g. geometric, power, logarithmic) as suggested in source [37]. All alternatives 

maintain the 1 to 9 ranking but give additional flexibility not offered by the linear option 

2. The 1 to 9 scale and associated descriptions are in essence arbitrary – there is no theoretical 

foundation for the scale 

3. The AHP process involves the establishing of weights for criteria before measurement scales 

have been set. This means that the decision maker is asked to make statements about the 

relative importance of criteria without knowing what is being compared. See section 6.2.10 

source [4] for a more detailed example of this issue and ‘swing weighting and the nominal-

group technique’ in general. It may be that some categories are important on an absolute 

scale, yet the differences in the ‘shortlisted’ alternatives may mean that the relative 

importance is somewhat lower. For example, when buying a new computer price may be of 

high importance in an absolute sense, but if all the selected alternatives vary by an amount 

that is relatively inconsequential (i.e. ‘whether I buy the computer that costs $x or $x + 50 is 

not important to me’) it would be unwise to weight this heavily  

4. Introducing new options (either criteria or alternatives) can change the relative ranking of 

some of the original options. This is referred to as ‘rank reversal’ and was first discussed in 

source [38] and is deemed to be a product of ‘failing to consistently relate scales of 

performance measurement to their associated weights’ [4] 

5. There is a frequently held opinion that the axioms on which AHP is based lack sufficient clarity 

to allow for empirical testing 

As consistency is reportedly the most common criticism, an inconsistency ratio was proposed by Saaty 

in a later paper [34], a score of 0.1 or less on a scale with a maximum of 5.84  represents a tolerable 

error in measurement and provides a result that is not biased by this.  

As stated above alternatives to the AHP method that utilize a similar basic concept have been 

developed, such as REMBRANDT mentioned above. A second alternative that has been developed is 

MACBETH (Measuring Attractiveness by a Categorical-Based Evaluation Technique) [39][40], 

developed originally in 1994 by Bana e Costa, Vansnick and De Corte. The associated sources can 

provide further information on both of these models should it be required. 

 

1.4.6 TOPSIS Method 
 

The final model to be discussed in this section is the Technique for Order of Preference by Similarity to 

Ideal Solution (TOPSIS). First outlined by Hwang and Yoon in 1981 [41] and later developed further by 

a range of contributors. The fundamental concept of TOPSIS is that the best solution is the one that has 

the shortest geometric distance to the ideal solution, and the worst has the furthest distance [42]. 

These distances are calculated as part of completion of the basic five-step method for TOPSIS, 

summarized below and discussed in more detail in source [42]: 

1. The performances of the different criteria are normalized to allow for comparison across non-

comparable units (such as dollars and tonnes of CO2e emitted). A selection of normalization 
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approaches are available, common choices are distributive normalization and ideal 

normalization 

2. Weights (determined beforehand) are taken into account; a weighted normalized decision 

matrix is constructed through multiplying the normalized scores to the corresponding weight  

3. The weighted scores are compared to an ideal (known as the ‘zenith’) and an anti-ideal (the 

‘nadir’), these points can be determined using one of 3 approaches: 

a. Collecting the best and worst performance on each criterion of the normalized 

decision matrix  

b. Assuming an absolute ideal and anti-ideal point which are defined without 

considering the alternatives 

c. The ideal and anti-ideal points are defined by a third party, such as the decision maker 

or the study commissioner. It should be noted that this approach is not often used 

due to needing to elicit input from the user or another party 

4. Calculate the distance for each alternative from the ideal and the anti-ideal, using an approach 

such as the Euclidean distance (most popular) but other options are available (e.g. the 

Manhattan distance where the distance between two points is the sum of the absolute 

differences of their Cartesian coordinates)  

5. Calculate the closeness coefficient of each alternative, this is a relative figure scored between 

0 and 1, with values that approach 1 being closer to the ideal and vice versa 

Figure 4 below shows the TOPSIS method represented graphically, covering 2 criteria (1 and 2), and 2 

alternatives (A and B) showing their distance to the ideal and anti-ideal. It’s also clear to see why step 

1 is required, as without normalization such geometric approaches would not be applicable.  

 

Figure 4 – Simple graphical representation of a TOPSIS approach for a multi-criteria approach 

In terms of advantages, TOPSIS is a simple to implement process and the number of steps remain the 

same regardless of the number of attributes considered in the assessment [21]. As TOPSIS is a 

compensatory MADM approach (like MAUT and AHP) it does allow for poor results in some criteria to 

be compensated by better performance in others which may have useful applications in some 

situations. A major disadvantage however is the that the central premise (measuring the Euclidean 

distance) does not consider correlation of attributes [21], a second problem can be the difficulty in 

assigning weights and keeping judgement constant.   
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This brief introductory section demonstrates that a range of multi-attribute approaches are available 

to those wishing to apply them for CCU problems. The preferred option for use is likely to vary 

dependent on a number of factors including: resource availability, data availability, whether the 

decision maker is a group or a singular agent and personal preference. In the following section how 

MADM can be tied to LCA & TEA for CCU is considered, with the intention of identifying the types of 

problem that may be best suited to each MADM approach. 

1.5 MADM problems in LCA & TEA Studies for CCU 
 

After discussing the various types of MADM, attention can be turned to identifying the type of problems 

that can be solved using these approaches. Given the scope of this document is combined assessment 

for TEA & LCA this will form the basis for contextualizing this.  

Source [43] provides some insight on common types of problems that can be addressed using MADM 

approaches: 

• Choice problem: This selects one single alternative as the best or can reduce a group of options 

to “all good options”.  

• Ranking problem: The alternatives are ordered from best to worst, these can be scores, 

comparisons, etc. 

• Sorting problem: The alternatives are sorted into categories and decisions can be made on 

these classifications (e.g. preferred alternatives in scenario X, preferred alternatives in 

scenario Y and rejected alternatives) 

• Description problem: The goal of the study is to help describe the alternatives and the 

consequences of these 

• Elimination problem: Similar to the sorting problem, but with only two classes defined, 

accepted and rejected 

• Design problem: The goal of the study is to create a new alternative to meet the needs of the 

decision maker (essentially a link to MODM approaches) 

The research/decision question, goal and desired outcomes are likely to be driving factors in the type 

of problem identified. For example, there is significant overlap in choice and ranking problems, both in 

the type of question typically asked and in the type of approaches used to answer these. The likelihood 

is that most of the problems encountered within the application of MADM on combined LCA & TEA 

studies will fall into the first three categories and as such these will be considered in a little more detail 

below. 

In this respect the application of MADM is similar to that of LCA & TEA – in that determining a clear goal 

is a key pre-requisite to a successful study. A clear goal statement is not only beneficial for the decision 

maker, but also for any intended audience who may wish to read the report and follow the decision 

logic. This point can actually be expanded more broadly, in that clear communication is vital throughout 

the recording of the MADM given the subjective nature of determining preferences. The type of MADM 

problem to be assessed should also be easy to determine from the goal statement, if this is not the case 

it is advisable to specify the type of problem within this. 

Considering MADM for specific use in combined LCA & TEA for CCU, the range of research/decision 

goals available remains endless, but in each case it is expected that the goal carries an obvious 

requirement for considering both environmental and techno-economic performance to ensure that the 

alternatives are assessed on these. Beyond this no specific requirement is envisioned, with the degree 
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of specificity dependent on the desires of the decision-maker or other stakeholder, e.g. a goal could ask 

for consideration of ‘economic and environmental performance’ (vague, open to interpretation) or it 

could specify the inclusion of specific indicators for consideration (such as CapEx or global warming 

potential).  

After considering the types of goal attention can now be turned to determining the approaches that 

best suit meeting that goal, a summary of this is provided in table 2 below, with many of the options 

have been described in detail in an earlier part of this review. The decision on which method to apply 

is ultimately one for the practitioner or decision-maker to make. 

Table 2– Types of MADM identified for use in each problem type and selected software options for these, 

adapted from [43]  

Problem MCDA method MCDA software/tool Output 

Choice  
AHP, ANP, MAUT/UTA, 

MACBETH,PROMETHEE,ELECTRE (I, II, II), TOPSIS, 
hybrid methods 

Smart Picker Pro, 
Electre III-IV, Right 

choice, 
MakeItRational, M-

MACBETH, Win4DEAP 

Single score  

 

Ranking  
AHP, ANP, MAUT/UTA, 

MACBETH,PROMETHEE,ELECTRE (I, II, II), TOPSIS,  
DEA, Hybrid methods 

Smart Picker Pro, 
Electre III-IV, Right 

choice, 
MakeItRational, M-

MACBETH, Win4DEAP 

Rank 

 

 

 

Sorting  AHPSort, UTADIS, FlowSort, Electre-Tri 
Smart Picker Pro, Pro 

Electre Tri 
Classification  

 

 
 

 

Attention can now be turned briefly to considering the types of CCU decision problem in which the 

application of MADM may be of interest. This is quite a broad scope, as in reality any type of problem 

in which a finite number of alternatives can be identified for assessment on a chosen set of criteria is 

feasible for use with MADM. Here, the scope is narrowed to a degree in that only those concerning 

combined LCA & TEA outputs are of interest and as such the potential set of criteria is reduced to 

environmental, economic and technological indicators only. The indicators used are likely to be 

determined or influenced by the problem to addressed, i.e. some problems may require specific criteria 

whilst others may require a more generic (e.g. ‘include all typical LCA indicators’) approach. 

The scope for the alternatives is also likely to vary dependent on the problem, with MADM methods 

scalable to both the scope of application and the number of alternatives considered. In terms of 

application, MADM can be applied to problems concerning the selection of a singular element within a 

plant such as the selection of a catalyst for chemical synthesis or to larger problems such as the 

selection of a specific CCU technology for application with relative ease. MADM approaches can also 

be applied at a range of technology readiness levels, even the lower levels associated primarily with 

research and development more so than deployment. Whilst most R&D scenarios may be best served 

by MOO there are times when choosing between distinct alternatives is required and in these cases 

attributional approaches can be deployed (see the last problem listed below for ne such example).  

Common problems that may be of interest include: 

• ‘I have a limited source of highly pure CO2 (e.g. from a brewery off-gas stream, or from a SMR 

plant) which of the following CCU technologies best suits my resource?’ 
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• ‘I have a CCU technology for deployment, which location from my chosen list of alternatives 

is best suited for deployment?’ 

• ‘Which is the best CO2 capture technology for my needs?’ 

• ‘I wish to develop a catalyst for methanation – should I use nickel, rhodium or ruthenium as 

my starting point?’ 

 

 

1.6 Implementing MADM with Combined LCA & TEA Studies for CCU: 

Basic Approach Applied  
 

As discussed earlier in this worked example, the application of a ‘preference-based’ type of integration 

requires a high degree of alignment between the LCA & TEA elements of the combined study. As stated 

previously, this worked example utilizes inputs from a prior one: the conversion of CO2 to methanol [2].  

Given that much of the data required for this study was extracted from the prior one, the following 

steps were taken to ensure sufficient alignment of the constituent studies for a ‘preference-based 

integration’: 

• The goal statement of both studies is checked in order to identify any potential misalignment 

in terms of basic information such as location or time period  

• The boundaries of the original study were revisited to ensure they are consistent, for this 

example only a ‘cradle to gate’ study is required and as such only aspects of the prior studies 

within this boundary were included 

• The functional unit considered in the constituent studies should be consistent, a functional 

unit of ‘1 tonne of methanol’ is used in this study and in the contributing LCA & TEA studies. 

The selection of this functional unit and the setting of a cradle to gate boundary above is due 

to the goal of the combined study (which is discussed in a later section) fitting such decisions 

• As the LCA & TEA study were conducted in parallel initially the inventory was drawn from a 

common dataset produced for the studies. As such a consistent approach to data is held 

throughout both studies – there is no misalignment of values and technology choices are 

consistent across costings and environmental impact e.g. if ‘grid electricity’ is utilized the price 

data entry and the environmental impact factor data entries reflect reported values for one 

specific energy profile, or checking to ensure that the cost of catalyst & the environmental 

impact assigned to the catalyst reflect a singular catalyst choice 

• The constituent LCA & TEA studies were checked for inconsistencies in their methodologies 

that may make results incompatible – this was done by reviewing the studies against the 

guidelines rules and checking for any deviation in approaches to achieve the ‘shall’ 

guidelines. None were found and thus the methodological choices made were assumed to 

be compatible for integration 

Whilst this does not amount to a full methodology for aligning the constituent studies it does provide 

some details on basic steps to ensure that alignment is feasible.  
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Part 2: MADM Example Application: Using AHP to Solve 

a Multi-Criteria Decision Problem 
 

DISCLAIMER: As always the worked example published here should only be considered as 

an illustrative example of how to apply the methodologies discussed. The data used is not to 

be utilized by third parties beyond this explicit basis, although the referenced data sources 

may be of interest to said third parties. The results of the studies should not be quoted, and 

in this case the weightings applied in the MADM approach should not be used nor do they 

represent the beliefs/views of the authors or the wider CO2nsistent project – these are pure 

illustrational and are not drawn from any audited process 

 

2.1 Justification for the use of the AHP Method 
 

After discussing MCDA and particularly MADM in previous part of this worked example this part 

investigates the application of MADM to solve a specific problem. 

Here, AHP has been used for three reasons: 

1. As discussed above the AHP approach (and its associated derivatives) remains popular, 

despite its potential shortcomings. Studies for CCU [44], CCUS [45] and CCS [46] can also be 

found readily  

2. A driving force behind the popularity of the AHP approach is how accessible and easy to use 

it is: with manual implementation of the approach being feasible using programs such as Excel 

(as is done here, with eigenvalues calculating manually as described in the MADM review 

above) it is clear to see why it remains popular with actors not familiar with MCDA, something 

that is likely the case for many LCA & TEA practitioners 

3. The identified shortcomings make for an interesting discussion case to highlight how there 

may be issues with application on a complex problem such as a combined LCA & TEA study 

where a large number of indicators may be of interest  

 

The following six steps are considered as the basis of most MADM methodologies including AHP: 

1. Define problem (identifying objectives, identifying options for achieving these objectives) 

2. Define criteria 

3. Assign weights to each criterion 

4. Assess the performance of each alternative and assign scores  

5. Make the final decision  

6. Investigate the relevant sensitivities to check the strength of the decision made 
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2.2 Defining the Problem and Writing the Goal Statement 
 

As covered previously the goal statement is a key aspect to consider when defining the LCA or TEA 

study, and this is no different for a combined study that incorporates an MADM approach. In lieu of 

guideline provisions for combined studies, provisions B.1 and C.1 (Goal definition in TEA & LCA) are 

used here. 

The goal statement for the worked example is given below, and addresses each of the ‘shall’ provisions: 

This study intends to rank four distinct renewable energy sources available for use in the production of 

methanol from CO2 in the USA in the present day (2020) in a ‘first of a kind plant’. The four energy 

sources investigated are: onshore wind, offshore wind, geothermal power and solar photovoltaic (PV), 

these will be ranked in order of preference to identify which is deemed most viable for development. 

Given each resource is deemed to have a differing level of availability the resultant methanol plant is 

scaled to match this, leaving a decision to made considering environmental impact of production, 

economic feasibility and production scale. The boundary for assessment is ‘cradle to gate’ as each of the 

options produces the same product to be sold to the market. The intended audience of the study are the 

senior management team of the company who will own and operate the plant, who commissioned the 

study. The study is conducted by a third party on behalf of the company, with explicit preferences 

provided by the company.  

 

 

As shown in the goal statement the intention of this worked example is to rank four distinct renewable 

energy sources and their viability for use in methanol production. The central premise to the problem 

is to assess which of the options best fits the company’s preferences: should a focus be made on the 

‘most profitable’? Least impactful environmentally? Does the production scale matter? 

The methanol plant is to be based off the model given in the prior methanol worked example [2], but 

with this scaled to fit the four energy sources identified. Further details on the model and its initial 

derivation can be found in that document but briefly: 

The plant consists of three main process modules: H2 production, CO2 capture and separation and 

methanol production. H2 is produced through the use of a polymer electrolyte membrane (PEM) 

electrolyzer, with CO2 captured using a combination of membrane and cryogenic separation. Of these 

technologies, membranes are at the lowest technology readiness level (TRL) deemed to be at TRL 4 and 

thus the uncertainty around performance is greatest for these. The methanol plant design is based on 

Authors note: For this example, we have defined a simplified problem to allow for a focus on the 

application of the AHP approach. Whilst not of great importance here (given the nature of the 

worked example) an intended audience and commissioner is given for completeness.  

Given that it was shown in the prior worked example the methanol plant in question is not 

economically competitive when compared to existing fossil plants currently the decision was made to 

create an illustrative scenario independent of this consideration (to demonstrate AHP use in CCU). 
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earlier designs published in academic journals (see section B.6.4 of the methanol worked example for 

a list) and consists of various process units included a methanol reactor in which CO2 and H2 are fed to 

form a methanol rich product, unreacted gases are recovered and recycled, whilst the product stream 

is distilled, condensed and flashed to produce a high purity methanol product ready for storage/market.  

Having introduced the technology to be considered, a focus can now be made in outlining the particular 

case to be assessed in this worked example.  

As stated above, four different sources of renewable electricity are identified: onshore wind, offshore 

wind, geothermal and solar PV. Each is taken to have its own environmental impact profile, and each is 

taken to have its own cost variables (namely capital expenditure (CapEx) and operational expenditure 

(OpEx)) and to further complicate the picture differing amounts of each energy source are assumed to 

be available resulting in differing scales for the resultant methanol plant. As such a complex problem 

can be created in which multi-criteria approaches can be used to determine a preferred ranking for the 

options available.  

For assessment 11 environmental indicators are included (taken from the CML LCA method) and 3 

techno-economic indicators are to be assessed (overall plant CapEx, OpEx associated with electricity 

provision and the scale of production). The four distinct alternatives to be assessed are: 

1. A CO2 to methanol plant powered by geothermal energy capable of producing 100 tonnes per 

day of methanol 

2. A CO2 to methanol plant powered by solar PV energy capable of producing 250 tonnes per day 

of methanol 

3. A CO2 to methanol plant powered by onshore wind capable of producing 250 tonnes per day 

of methanol 

4. A CO2 to methanol plant powered by offshore wind capable of producing 500 tonnes per day 

of methanol 

The 14 indicators are given below in table 3, these are used here as sub-criteria organized under the 

criteria of ‘Environmental’ and ‘Techno-Economic’ with indicators for each measured in tonnes of 

methanol.  

Table 3 – Summary of criteria (bold) and associated sub-criteria 

Environmental Techno-Economic 

Global warming (GWP) Capital expenditure of methanol & electricity 
plants  

Ozone depletion (ODP) Operational expenditure of electricity plant 

Acidification (AP) Total production volume  

Eutrophication (EP)  

Marine aquatic ecotoxicity (MAET)  

Freshwater aquatic ecotoxicity (FAET)  

Terrestrial ecotoxicity (TET)  

Abiotic depletion potential (elements) (ADP)  

Abiotic depletion potential (fossil) (ADPf)  

Human toxicity (HT)  

Photochemical oxidation (POCP)   

 

The following assumptions are made: 



Part 2: Application of the AHP method on a CCU Decision Problem 
 

24 
 

• For the environmental indicators only the impact of electricity generation is considered, all 

other elements of the process are deemed to be constant and thus can be removed from the 

analysis. This is assumed to hold true even when changing the scale of production as the 

‘economies of scale’ is adjudged through analysis of the prior worked example to be relatively 

small in this case (especially when compared to the importance of electricity in the model) 

• For CapEx the economies of scale are known to be important for the methanol plant and thus 

the capital cost for plant construction is factored into the assessment, the capital cost of 

constructing the dedicated energy source is also included 

• For OpEx analysis in the prior worked example shows that OpEx (both variable and overall) is 

dominated by electricity costs with this representing 86% of the total in the prior worked 

example, given this domination all other variable and all fixed operational costs are deemed 

to be constant per tonne of product regardless of scale as electricity costs remain dominant 

In making these assumptions the problem is streamlined to only consider aspects of the process that 

are assumed to be impacted significantly by changes that arise from the four alternatives highlighted 

above. Such an approach is beneficial  

 As stated in the goal statement only the boundary of ‘cradle to gate’ is considered here, given that 

the product delivered to the market is ‘chemically identical’ regardless of the alternative chosen and a 

functional unit of 1 tonne of methanol is used. The functional unit plays a less vital role in the MADM 

model and is primarily used here to ensure an equal and logical basis of comparison. 

 

2.3 Inventory for the Multi-Criteria Decision Problem 
 

This section focuses on the inventory data used for deriving the 14 sub-criteria for each of the 4 

alternatives, in place of considering the broader inventory for the whole plant. The environmental data 

used here is taken from the following sources: 

• Data for the environmental impact of geothermal electricity (location: US) was taken from 

GaBi ts  

• Data for the environmental impact of solar PV electricity (location: US) was taken from GaBi 

ts 

• Data for the environmental impact of onshore wind (location: WECC, US) was taken from 

Ecoinvent 3.4 database 

• Data for the environmental impact of offshore wind (location: rest of world) was taken from 

Ecoinvent 3.4 database (no specific US offshore wind entry was available) 

This data (each given in units of impact per kWh) was combined with the specific electrical consumption 

of the plant per tonne of methanol produced (10.84 MWh) to give final data figures at the correct scale. 

CapEx data for the methanol plant is derived from the prior study. The previous study considered a 

plant with a capacity of 1000 t/d, with this scaled down to meet the needs of this worked example. 

Further details on the scaling method can be found in the prior example, here a summary table (Table 

4) is included to show the impact changing scale has on both total capital investment (TCI) and the 

CapEx per tonne of product when considering the same cash flow conditions as previously (50:50 debt 

to equity split, 9% WACC). 
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Table 4 – Summary of CapEx per tonne at varying production scales 

Production rate (t 
MeOH/day) 

100  250  500  1000  

TCI ($USD MM) 226.78 412.64 652.06 1049.29 

CAPEX/t MeOH 
($USD) 

725.90 528.32 417.43 335.86 

 

Data for the determining of CapEx and OpEx for each of the electricity generation sources is taken from 

source [47], with US specific data used where available. The data in table 5 below was taken from the 

IRENA source, with all figures bar the OpEx for wind onshore directly transcribed. The value for wind 

offshore is quoted to be ‘around double of that of onshore’ in the appendix and this is what is used as 

the basis for the stated OpEx figure. 

Table 5 – Cost data used in determining CapEx and OpEx of electricity plant 

Renewable Source CapEx Unit OpEx Unit Capacity Factor 

Geothermal 3976 USD/kW 115 USD/kW.year 0.84 

Solar (PV) 1210 USD/KW 15 USD/kW.year 0.18 

Wind (onshore) 1497 USD/kW 55 USD/kW.year 0.34 

Wind (offshore) 4353 USD/kW 100 USD/kW.year 0.43 

 

Final CapEx and OpEx figures were determined by:  

• Establishing the daily electrical demand for the entire plant at scale (MWh) 

• Calculating a minimum theoretical electrical plant size 

• Applying a capacity factor to adjust the size of this to reflect a more ‘realistic’ estimate. Here 

we assume that the average output of the renewable electricity plant equates to the power 

consumed by the methanol plant annually  

With all costs determined the CapEx numbers are combined to provide a single sub-criterion, with the 

OpEx and production volume used to round out the techno-economic set. Whilst it could be argued 

that the CapEx and OpEx could be combined into a single production cost it was decided that keeping 

the two figures separate allows for better decision making by allowing an actor the option to weight 

higher capital risk against greater operational costs with this being the sort of trade-off one may wish 

to consider as part of a multi-criteria decision.  

Table 6 below summarizes all the sub-criteria (‘attributes’) and the associated values for each of the 

four different alternatives to be considered. As can be seen, without any weighting each alternative can 

be seen to outperform another in at least one category, showing that no alternative is clearly 

dominated by the others and no alternative clearly dominates all others. 

 

 

 

 

 



Part 2: Application of the AHP method on a CCU Decision Problem 
 

26 
 

Table 6 – Summary of sub-criteria and associated values per tonne of methanol 
 

Sub-criteria Values per t/MeOH unless specified  
Geothermal Solar PV Wind 

onshore 
Wind 

offshore 

En
vi

ro
n

m
e

n
ta

l 

ADP  
Abiotic Depletion [kg Sb eq.] 

5.21E-05 1.37E-02 1.07E-02 4.50E-03 

ADPf 
Abiotic Depletion [MJ] 

1.88E+02 5.33E+03 2.76E+03 2.10E+03 

AP  
Acidification Potential [kg SO2 eq.] 

9.50E+01 1.96E+00 2.12E+00 9.47E-01 

EP 
Eutrophication Potential [kg Phosphate eq.] 

1.06E-02 1.47E-01 1.39E+00 4.62E-01 

FAET  
Freshwater Aquatic Ecotoxicity Pot. [kg DCB eq.] 

2.73E-01 4.36E+00 2.92E+03 3.28E+02 

GWP 
Global Warming Potential [kg CO2 eq.] 

6.84E+02 4.67E+02 2.17E+02 1.66E+02 

HT 
Human Toxicity Potential [kg DCB eq.] 

1.79E+01 3.59E+02 1.19E+03 7.71E+02 

MAET  
Marine Aquatic Ecotoxicity Pot. [kg DCB eq.] 

5.89E+03 1.75E+05 1.50E+06 4.05E+05 

ODP  
Ozone Layer Depletion Potential) [kg R11 eq.] 

1.50E-21 2.10E-09 1.36E-05 8.42E-06 

POCP  
Photochem. Ozone Creation Potential [kg Ethene eq.] 

9.04E-03 1.71E-01 1.79E-01 9.98E-02 

TET 
Terrestric Ecotoxicity Potential [kg DCB eq.] 

1.34E-02 2.66E+00 9.55E+00 1.96E+01 

Te
ch

n
o

- 
Ec

o
n

o
m

ic
 Total CapEx 1038 972 819 1085 

Electricity plant OpEx 181 110 213 307 

Production volume daily (t/MeOH) 100 250 250 500 

 

2.4 Weighting the Criteria and Sub-Criteria 
 

When applying the MADM approach to a combined LCA & TEA problem it is here that a significant 

deviation can be noted from many more ‘traditional’ applications of MADM in that the likelihood is that 

the practitioner is likely to already have inventory data collected for the alternatives to be assessed. 

This is the case for this worked example and it does lead to some advantages and disadvantages: 

• In terms of advantages the criteria and sub-criteria for assessment are likely known to the 

practitioner and as such there is less of a chance that an important (sub-)criteria is missed. A 

particular benefit for AHP is also that the range of criteria results may also be known allowing 

to counteract the impact of needing to establish weights prior to measurement scales being 

set (see point 3 in the criticisms of AHP above for more detail) 

• A disadvantage is that this knowledge can lead to the insertion of bias (either deliberately or 

inadvertently) when considering weighting of both criteria and sub-criteria should a 

preference for a particular alternative be held. Given the intent of an MADM approach is 
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identify which option best fits the preferences of the decision maker this may reduce the 

exercise to something of a triviality 

In this example, the weights for criteria and sub-criteria were decided without any acknowledgement 

of the data given in table 6 above.  

 

The weight of the goal is always given as 1, with every hierarchy below this then equaling a total of 1 

also.  

The primary set of pairwise comparisons to be made were done between the criteria, of which in this 

case there are only two identified. Three stages are considered for determining weights: the completion 

of the pairwise comparison matrix, the completion of the normalized matrix and a test of the 

consistency of the scoring. Table 7 below shows the pairwise comparison, as stated in this case the 

matrix is simple given the limited number of alternatives. Comparisons to self (e.g. environmental vs. 

environmental) will always score 1, and the reciprocating comparison is always the inverse of the 

opposite comparison – in other words if A vs. B is scored as x, B vs. A will be 1/x. 

Table 7 – Pairwise comparison matrix for criteria 

Pairwise comparison matrix for criteria 

  Environmental Techno 
economical 

Environmental  1.00 1.50 

Techno economical 0.67 1.00 

Total 1.67 2.50 

 

 

 

 

 

Authors note: Before discussing the pairwise comparisons a brief note on scoring is included. The AHP 

model holds at its center a 1 to 9 scale for pairwise comparisons as detailed above in the review section, 

scores of 1 between alternatives A and B state no preference between the alternatives and a score of 9 

suggests ‘extreme importance’ of one alternative over the other. Score definitions change with whole 

odd numbers (e.g. 1, 3, 5, 7 and 9 see differing definitions) and the even values in between represent 

intermediates within the same classification.  

In this worked example we also use decimal numbers as part of the intermediates to allow for better 

consistency between scores and to score elements (sub-criteria or alternatives) that we deem to be 

very close in importance. Such an approach also allows for the overcoming of one of the major issues 

on the AHP scoring scale in that it allows for more scope for ‘internal consistency’ when considering 

relative dominance of multiple elements (see the criticisms in the AHP review section for more 

details). This is of particular use here where a large number of sub-criteria are used under the 

environment criteria. 
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Table 8 – Normalized scoring matrix for criteria 

Normalized matrix 

Criteria  Environmental Techno 
economical 

Priority Vector % 

Environmental  0.6 0.6 0.6 60.0 

Techno economical 0.4 0.4 0.4 40.0 

Total 1 1 1 100 

 

The total for each element in the normalized matrix (table 8 above) should always equal exactly 1.00, 

any variation suggests an error somewhere in the calculation. 

As stated previously, a set of scores can be seen as consistent providing the consistency ratio (CR) is 

scored as no greater than 0.10, with the formula for CR being: 

CR = CI / RI 

Where: 

CI is the consistency index, calculated using the following formula: 

(Eigenmax – n) / (n – 1) 

Where Eigenmax is the maximum Eigenvalue and n is the number of elements for comparison. Eigenmax 

is found by multiplying the priority vector/the eigenvector (from the normalized matrix) by the pairwise 

comparison total (from the pairwise scoring matrix) and summing the values, so in this case: 

Eigenmax = (1.6667 x 0.60) + (2.500 x 0.40) = 2 

CI = (2-2) / (2 – 1) = 0 

RI is the random consistency index which is a value determined in the work of Saaty [48], with the value 

dependent on n, with the values below transcribed from [49]: 

Table 9 – Values for RI for different values of n 

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

RI 0 0 058 0.9 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.53 1.56 1.57 1.59 

 

As can be seen for an n of 2 the RI is zero and thus in this case the value of CR is undefined. This makes 

sense as it is not possible to be inconsistent when making only a single variable comparison. In this case 

the decision was made to value the environmental criteria slightly more so than the techno-economic. 

With the criteria weighted an initial hierarchy can be drawn, as shown in figure 5 below, to map out 

which sub-criteria fits under each criteria. The sub-criteria weights in this figure are still ‘neutral’ in that 

none are weighted preferentially more so than the others. 
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Figure 5 – Overview of the hierarchy process without weighting applied to the sub-criteria 

After weighting the criteria, attention can be turned to the sub-criteria. Here, it can be seen that the 

scale of the problem varies greatly: the techno-economic sub-criteria are relatively few making 

consistency relatively easy to achieve, whilst the same cannot be said for the environmental ones. 

Weighting for the individual sub-criteria hierarchies is local, with the global weights for these derived 

at a later stage. 

The pairwise comparisons for the techno-economic sub-criteria are shown in table 10 below, as can be 

seen three unique comparisons are made (CapEx vs. OpEx, CapEx vs. production volume and OpEx vs. 

production volume) as such n is significantly great enough to calculate a CR value. The subsequent 

normalization matrix is also included in table 11 and the CR value is calculated in table 12. 

Table 10 – Pairwise comparison matrix for the techno-economic sub criteria 

 

CapEx OpEx
Production 

volume

CapEx 1.00 1.50 3.00

OpEx
0.67 1.00 2.00

Production volume 0.33 0.50 1.00

Total 2.00 3.00 6.00
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Table 11 – Normalization matrix for the techno-economic sub criteria 

 

Table 12 – CR calculation for the techno-economic sub-criteria 

 

The order of priority determined is: CapEx > OpEx > production volume. This was determined by the 

decision maker – here all of the categories are relatively close in importance to the decision maker, 

with the largest score given a 3. The highest priority is handed to CapEx, which is a reasonable position 

for a decision maker to take when considering the goal statement – it may be that risking a large amount 

of capital on a first of a kind plant is undesirable, even if this leads to building a smaller plant that 

operates with a smaller production capacity. There is a clear link between the weightings defined, the 

goal of the combined LCA & TEA ‘preference based’ study and the weightings derived from the 

preferences of the decision maker. A clear goal statement may also help a reader follow the logic in the 

weighting stage for the sub-criteria, which may be of importance when the intended audience for the 

report is not the same party as the decision maker.   

 

After establishing the local weights for the more difficult task of establishing the values for the 

environmental sub-criteria can be done. A total of 55 pairwise comparisons are required to be made to 

CapEx OpEx
Production 

volume
Total

Priority 

vector

CapEx 0.50 0.50 0.50 1.50 0.50

OpEx 0.33 0.33 0.33 1.00 0.33

Production volume 0.17 0.17 0.17 0.50 0.17

Total 1.00 1.00 1.00 1.00

CapEx OpEx
Production 

volume

Eigenvector 0.50 0.33 0.17

Total (Sum) 2.00 3.00 6.00

Maximum 

eigenvalue
3

CI 0.00

RI 0.58

CR 0.00

Authors note: The techno-economic weights are shown to be highly consistent with a CR of 0.00. 

This is unsurprising given the ease of consistency when considering only 3 categories, this issue 

becomes more complex as the number of categories is increased – as can be seen in the following 

environmental section. In response to the inconsistency issue Saaty suggests that the optimal 

number of maximum categories for comparison should be 5 to 9, although it should be noted that 

this is obviously only a suggest as RI figures are given for as high as n = 15. This suggested limit can 

be seen as problematic for those of us wishing to apply AHP to combined LCA & TEA studies, as most 

LCA methods generate more than 9 environmental impact categories. Here, rather than cutting a 

category we decide to assess on 11 categories from the CML method – an alternative would be to 

cut this number down beforehand should it be possible to identify any that are not pertinent to the 

decision to be made – we would caution against such an approach in most cases. 
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complete the pairwise matrix. With the aim of improving consistency it was decided to use the following 

questions to help establish a baseline: 

1. Of the 11 sub-criteria, which is the most important? 

 

It was determined that the global warming criteria was the most important for assessing the 

alternatives 

 

2. Are there any categories that can be assessed to have equal importance? 

 

Yes. The abiotic depletion categories (ADP, ADPf) are assessed to be of equal value, as are 

the eco-toxicity categories (TET, MAET, FAET) and finally the acidification and ozone 

potential categories (AP, ODP) 

 

3. Of the 11 sub-criteria, which is the least important? 

 

The eco-toxicity categories are deemed to be the least important 

By identifying a most important and least important category (or categories in the case of this 

weighting) points could be fixed for a relative maximum variation of scoring (in this case GW is scored 

8 against TET/MAET/FAET). From this point it was determined that everything else would have to fit 

within to this scale, conceptually the can be mapped out as shown in figure 6 below. 

 

Figure 6 – Conceptual mapping of determining preference for the environmental sub-criteria 
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The remaining sub-criteria were scored as shown in table 13, with decimal scores used where required 

to ensure all sub-criteria could be weighted adequately on the 1 to 9 scale. Normalization (table 14) 

and consistency measurements (table 15) are also included to provide the full picture. The order of 

priority between the environmental sub-criteria is shown to be: 

GW > ADP = ADPf > HT > ODP = AP > POCP > EP > TET = AET = FAET 

As stated the global warming sub-criteria is determined to be the most important and is given the 

largest local priority vector, followed by the abiotic depletion categories. As before this is a reasonable 

position for a decision maker in CCU to take: a preference for the maximum reduction of global warming 

potential is often desirable and this can be coupled with an intent to reduce raw material demand (both 

fossil and rare elements) to ensure that the burden is not shifted to another material extraction process. 

Human toxicity is given the third highest priority vector, scoring slightly below ADP and ADPf, which is 

another reasonable position – human health is often considered to be of high importance. This list 

continues down to the lowest priority sub-criteria – the three eco-toxicity indicators. 

A major downside to utilizing MADM approaches (not just AHP) is that it does require an order of 

preference to be taken – essentially forcing a decision maker into determining which of the typical LCA 

indicators is of least preference/priority. This is a process that many may find challenging – here the 

determination is not of absolute importance (where all indicators may be considered important) but of 

relative importance when compared against the other indicators. As such compensatory methods, such 

as AHP/MAUT/SMART, may be seen as they don’t utilize cut-offs and allow for a broader picture to be 

drawn when compared against non-compensatory alternatives.  

The issue of data collection is one typical disadvantage to these approaches, but given that most of this 

is done here as part of the LCA & TEA studies the approach may be more streamlined (and attractive) 

when compared to many traditional use cases. 

 

 

 

Authors note: Alongside determining the most and least important categories the identification of 

any categories that are assessed to be of equal value is also of value, as this allows for these 

categories to essentially by counted as 1 grouped category. This can be beneficial in cases such as 

this where an excessive number of individual categories are used, as it reduces the potential for 

inconsistency – although equal weight should not be assigned merely as a shortcut. A question can 

then be raised regarding which value should be used for the RI in calculating the CR – naturally 

having 11 categories would lead you to using n = 11 and therefore RI = 1.51, however if setting 

equal values simplifies the problem an argument could be made for using a smaller RI. In our 

weightings we determine 7 distinct values for 11 elements, using n = 7 gives RI = 1.32. 

As can be seen in later tables for this example the change is not of importance, as the CI calculated 

is 0.035 and an RI of either 1.51 (CR = 0.035/1.51 = 0.0229) or 1.32 (CR = 0.035/1.32 = 0.0262) does 

not raise the CR even close to 0.100 – but users should be aware of this when considering elements 

(either criteria or alternatives) as of equal importance. 
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Table 13 – Pairwise comparison matrix for the environmental sub-criteria 

 

Table 14 – Normalization matrix for the environmental sub-criteria 

 

Table 15 – Consistency ratio for the environmental sub-criteria 

 

After assigning local priority vectors to the sub-criteria a global priority can also be ascertained. This is 

determined by multiplying the priority vector of the sub-criteria with the priority vector of the criteria, 

so in the case of CapEx: 

Global priority vector = Techno-economic x CapEx = 0.4 x 0.5 = 0.2 

The global priority vectors (or weightings) for all the sub-criteria are given in table 16 below. 

 

 

 

 

 

 

 

GWP AP ADP ADPf TETP MAETP FAETP EP HTP ODP POCP

GWP 1.0 4.0 2.0 2.0 8.0 8.0 8.0 7.0 3.0 4.0 5.0

AP 0.3 1.0 0.5 0.5 4.0 4.0 4.0 3.5 0.7 1.0 2.0

ADP 0.5 2.0 1.0 1.0 6.0 6.0 6.0 5.0 1.5 2.0 4.0

ADPf 0.5 2.0 1.0 1.0 6.0 6.0 6.0 5.0 1.5 2.0 4.0

TETP 0.1 0.3 0.2 0.2 1.0 1.0 1.0 0.5 0.2 0.3 0.3

MAETP 0.1 0.3 0.2 0.2 1.0 1.0 1.0 0.5 0.2 0.3 0.3

FAETP 0.1 0.3 0.2 0.2 1.0 1.0 1.0 0.5 0.2 0.3 0.3

EP 0.1 0.3 0.2 0.2 2.0 2.0 2.0 1.0 0.3 0.3 0.7

HTP 0.3 1.5 0.7 0.7 6.0 6.0 6.0 4.0 1.0 1.5 3.0

ODP 0.3 1.0 0.5 0.5 4.0 4.0 4.0 3.5 0.7 1.0 2.0

POCP 0.2 0.5 0.3 0.3 4.0 4.0 4.0 1.5 0.3 0.5 1.0

Total 3.6 13.0 6.6 6.6 43.0 43.0 43.0 32.0 9.4 13.0 22.4

GWP AP ADP ADPf TETP MAETP FAETP EP HTP ODP POCP Total Priority vector

GWP 0.28 0.31 0.30 0.30 0.19 0.19 0.19 0.22 0.32 0.31 0.22 2.82 0.26

AP 0.07 0.08 0.08 0.08 0.09 0.09 0.09 0.11 0.07 0.08 0.09 0.92 0.08

ADP 0.14 0.15 0.15 0.15 0.14 0.14 0.14 0.16 0.16 0.15 0.18 1.66 0.15

ADPf 0.14 0.15 0.15 0.15 0.14 0.14 0.14 0.16 0.16 0.15 0.18 1.66 0.15

TETP 0.04 0.02 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.24 0.02

MAETP 0.04 0.02 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.24 0.02

FAETP 0.04 0.02 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.24 0.02

EP 0.04 0.02 0.03 0.03 0.05 0.05 0.05 0.03 0.03 0.02 0.03 0.37 0.03

HTP 0.09 0.12 0.10 0.10 0.14 0.14 0.14 0.13 0.11 0.12 0.13 1.31 0.12

ODP 0.07 0.08 0.08 0.08 0.09 0.09 0.09 0.11 0.07 0.08 0.09 0.92 0.08

POCP 0.06 0.04 0.04 0.04 0.09 0.09 0.09 0.05 0.04 0.04 0.04 0.61 0.06

Total 1 1 1 1 1 1 1 1 1 1 1 1

GWP AP ADP ADPf TETP MAETP FAETP EP HTP ODP POCP

Eigenvector 0.26 0.08 0.15 0.15 0.02 0.02 0.02 0.03 0.12 0.08 0.06

Total (Sum) 3.55 13.04 6.62 6.62 43.00 43.00 43.00 32.00 9.42 13.04 22.42

Maximum 

eigenvalue
11.35

CI 0.03

RI 1.51

CR 0.02
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Table 16 – Global priority of each sub-criterion for assessment 

Sub-Criteria Global Priority 

CapEx 0.200 

GWP 0.154 

OpEx 0.133 

ADP 0.091 

ADPf 0.091 

HT 0.071 

Production volume 0.067 

AP 0.050 

ODP 0.050 

POCP 0.034 

EP 0.020 

TET 0.013 

MAET 0.013 

FAET 0.013 

TOTAL 1.000 

 

The full list of priorities show that the highest priority category is CapEx, by a relatively large difference, 

followed by global warming and the OpEx categories. As before this is a reasonable stance for a CCU 

decision maker to take: ‘I want to deliver my product for the lowest cost with the lowest carbon 

footprint’ is not an uncommon sentiment in the field of CCU.  

 

Having established global and local priorities the diagram in figure 6 can be updated to show the 

(globally) weighted criteria and sub-criteria. 

 

 

Authors note: The global priority list does throw up some interesting things to consider. Given that 

there are far fewer techno-economic categories it can be easy to overvalue their priority globally – 

we distribute 40% of the global priority to 3 sub-criteria, whilst 60% is shared amongst 11 

environmental sub-criteria. Should users find themselves with an equally lop-sided list of sub-

criteria it may be worth ‘sense checking’ the global priority list here to ensure that what is given 

aligns with the priorities of the decision maker.  

Adjusting the criteria weightings may allow for the amendment of the global priority list (a 70:30 

split in priority for example would see the techno-economic categories devalued) but this risks a 

3rd party reader interpreting your preferences as being highly biased to the environment rather 

than a compensation tactic for the global priority list. A better practice would be to readdress how 

the hierarchy is structured to ensure the global priorities and hierarchical priorities remain 

consistent with the decision maker’s beliefs. Whilst here we utilize the AHP model a similar issue 

could arise with any model that utilizes a hierarchy as part of its weight determining step. 
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Figure 7 – Globally weighted criteria and sub-criteria 

With the criteria and sub-criteria weighted attention can now be turned to making pairwise 

comparisons between the alternatives for each sub-criteria. 

 

2.5 Assessing the Performance of Each Alternative 
 

The approach taken here is the same as with the sub-criteria: scores are given on a 1 to 9 scale for each 

pairwise comparison, with these transcribed into the pairwise matrix before being normalized and 

finally a check on consistency.  

With 4 alternatives, 6 unique pairwise comparisons need to be made for each of the 14 sub-criteria – 

for a total of 84 comparisons. Obviously, increasing the number of sub-criteria or alternatives would 

make this task even more time – considering even one more alternative in this instance would see the 

need to make a total of 140 comparisons (a 66% increase), 6 alternatives would see this rise to 210 (a 

further (a 150% increase on 84). Beyond the increase in the number of comparisons to be made, 

ensuring consistency between scores becomes increasingly difficult also. As such care should be taken 

to establish whether all alternatives are worthy of assessment as the resource demand increases 

greatly. Problems with a large number of alternatives may be best assessed using other MADM 

methods.  
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Returning the focus back to the problem at hand, scoring between the alternatives was determined 

considering the relative performance of each alternative in each sub-criteria. The tables (17 to 42) on 

the following pages show the pairwise matrices and normalization matrices for each sub-criteria with 

the consistency ratio for each given in table 43. 
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Tables 17 - 42 – Summary of pairwise comparison matrices and normalization matrices for assessing the 

alternatives on each of the sub-criteria 

 

Geothermal
Wind 

onshore

Wind 

offshore
Solar pv Geothermal

Wind 

onshore

Wind 

offshore

Solar 

pv
Total

Priority 

vector

Geothermal 1.00 0.14 0.11 0.33 Geothermal 0.05 0.04 0.06 0.03 0.18 0.05

Wind onshore 7.00 1.00 0.50 4.00 Wind onshore 0.35 0.29 0.29 0.32 1.25 0.31

Wind offshore 9.00 2.00 1.00 7.00 Wind offshore 0.45 0.59 0.57 0.57 2.18 0.54

Solar pv 3.00 0.25 0.14 1.00 Solar pv 0.15 0.07 0.08 0.08 0.39 0.10

Total 20.00 3.39 1.75 12.33 Total 1.00 1.00 1.00 1.00 1.00

Geothermal
Wind 

onshore

Wind 

offshore
Solar pv Geothermal

Wind 

onshore

Wind 

offshore

Solar 

pv
Total

Priority 

vector

Geothermal 1.00 8.00 5.00 9.00 Geothermal 0.70 0.71 0.69 0.69 2.79 0.70

Wind onshore 0.13 1.00 0.67 1.28 Wind onshore 0.09 0.09 0.09 0.10 0.37 0.09

Wind offshore 0.20 1.50 1.00 1.75 Wind offshore 0.14 0.13 0.14 0.13 0.54 0.14

Solar pv 0.11 0.78 0.57 1.00 Solar pv 0.08 0.07 0.08 0.08 0.30 0.08

Total 1.44 11.28 7.24 13.03 Total 1.00 1.00 1.00 1.00 1.00

Geothermal
Wind 

onshore

Wind 

offshore
Solar pv Geothermal

Wind 

onshore

Wind 

offshore

Solar 

pv
Total

Priority 

vector

Geothermal 1.00 7.00 5.00 9.00 Geothermal 0.69 0.71 0.68 0.67 2.75 0.69

Wind onshore 0.14 1.00 0.83 1.60 Wind onshore 0.10 0.10 0.11 0.12 0.43 0.11

Wind offshore 0.20 1.20 1.00 1.90 Wind offshore 0.14 0.12 0.14 0.14 0.54 0.13

Solar pv 0.11 0.63 0.53 1.00 Solar pv 0.08 0.06 0.07 0.07 0.29 0.07

Total 1.45 9.83 7.36 13.50 Total 1.00 1.00 1.00 1.00 1.00

Geothermal
Wind 

onshore

Wind 

offshore
Solar pv Geothermal

Wind 

onshore

Wind 

offshore

Solar 

pv
Total

Priority 

vector

Geothermal 1.00 6.00 9.00 3.50 Geothermal 0.64 0.67 0.73 0.55 2.60 0.65

Wind onshore 0.17 1.00 1.10 1.00 Wind onshore 0.11 0.11 0.09 0.16 0.47 0.12

Wind offshore 0.11 0.91 1.00 0.83 Wind offshore 0.07 0.10 0.08 0.13 0.39 0.10

Solar pv 0.29 1.00 1.20 1.00 Solar pv 0.18 0.11 0.10 0.16 0.55 0.14

Total 1.56 8.91 12.30 6.33 Total 1.00 1.00 1.00 1.00 1.00

Geothermal
Wind 

onshore

Wind 

offshore
Solar pv Geothermal

Wind 

onshore

Wind 

offshore

Solar 

pv
Total

Priority 

vector

Geothermal 1.00 9.00 4.00 2.20 Geothermal 0.55 0.70 0.60 0.44 2.30 0.57

Wind onshore 0.11 1.00 0.77 0.67 Wind onshore 0.06 0.08 0.12 0.13 0.39 0.10

Wind offshore 0.25 1.30 1.00 1.10 Wind offshore 0.14 0.10 0.15 0.22 0.61 0.15

Solar pv 0.45 1.50 0.91 1.00 Solar pv 0.25 0.12 0.14 0.20 0.71 0.18

Total 1.82 12.80 6.68 4.97 Total 1.00 1.00 1.00 1.00 1.00

Geothermal
Wind 

onshore

Wind 

offshore
Solar pv Geothermal

Wind 

onshore

Wind 

offshore

Solar 

pv
Total

Priority 

vector

Geothermal 1.00 9.00 7.00 2.00 Geothermal 0.57 0.62 0.59 0.55 2.33 0.58

Wind onshore 0.11 1.00 0.91 0.29 Wind onshore 0.06 0.07 0.08 0.08 0.29 0.07

Wind offshore 0.14 1.10 1.00 0.33 Wind offshore 0.08 0.08 0.08 0.09 0.33 0.08

Solar pv 0.50 3.50 3.00 1.00 Solar pv 0.29 0.24 0.25 0.28 1.05 0.26

Total 1.75 14.60 11.91 3.62 Total 1.00 1.00 1.00 1.00 1.00

Geothermal
Wind 

onshore

Wind 

offshore
Solar pv Geothermal

Wind 

onshore

Wind 

offshore

Solar 

pv
Total

Priority 

vector

Geothermal 1.00 9.00 4.00 2.30 Geothermal 0.56 0.67 0.56 0.51 2.30 0.57

Wind onshore 0.11 1.00 0.83 0.45 Wind onshore 0.06 0.07 0.12 0.10 0.35 0.09

Wind offshore 0.25 1.20 1.00 0.77 Wind offshore 0.14 0.09 0.14 0.17 0.54 0.13

Solar pv 0.43 2.20 1.30 1.00 Solar pv 0.24 0.16 0.18 0.22 0.81 0.20

Total 1.80 13.40 7.13 4.52 Total 1.00 1.00 1.00 1.00 1.00

  Global warming pairwise comparison matrix 

Abiotic depletion (elements) pairwise comparison matrix 

Abiotic depletion (fossil) pairwise comparison matrix 

Global warming normalization

Abiotic depletion (elements) normalization

Abiotic depletion (fossil) normalization

Terrestrial eco-toxicity pairwise comparison matrix Terrestrial eco-toxicity normalization

Marine aquatic eco-toxicity pairwise comparison matrix Marine aquatic eco-toxicity normalization

Freshwater aquatic eco-toxicity pairwise comparison matrix Freshwater aquatic eco-toxicity normalization

Eutrophication pairwise comparison matrix Eutrophication normalization
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Geothermal
Wind 

onshore

Wind 

offshore
Solar pv Geothermal

Wind 

onshore

Wind 

offshore

Solar 

pv
Total

Priority 

vector

Geothermal 1.00 9.00 8.00 7.00 Geothermal 0.73 0.69 0.70 0.76 2.88 0.72

Wind onshore 0.11 1.00 1.00 0.50 Wind onshore 0.08 0.08 0.09 0.05 0.30 0.07

Wind offshore 0.13 1.00 1.00 0.67 Wind offshore 0.09 0.08 0.09 0.07 0.33 0.08

Solar pv 0.14 2.00 1.50 1.00 Solar pv 0.10 0.15 0.13 0.11 0.50 0.12

Total 1.38 13.00 11.50 9.17 Total 1.00 1.00 1.00 1.00 1.00

Geothermal
Wind 

onshore

Wind 

offshore
Solar pv Geothermal

Wind 

onshore

Wind 

offshore

Solar 

pv
Total

Priority 

vector

Geothermal 1.00 9.00 9.00 9.00 Geothermal 0.75 0.69 0.69 0.82 2.95 0.74

Wind onshore 0.11 1.00 1.00 0.50 Wind onshore 0.08 0.08 0.08 0.05 0.28 0.07

Wind offshore 0.11 1.00 1.00 0.50 Wind offshore 0.08 0.08 0.08 0.05 0.28 0.07

Solar pv 0.11 2.00 2.00 1.00 Solar pv 0.08 0.15 0.15 0.09 0.48 0.12

Total 1.33 13.00 13.00 11.00 Total 1.00 1.00 1.00 1.00 1.00

Geothermal
Wind 

onshore

Wind 

offshore
Solar pv Geothermal

Wind 

onshore

Wind 

offshore

Solar 

pv
Total

Priority 

vector

Geothermal 1.00 9.00 6.50 7.00 Geothermal 0.08 0.08 0.05 0.11 0.31 0.08

Wind onshore 0.11 1.00 0.48 1.04 Wind onshore 0.11 0.16 0.10 0.05 0.42 0.11

Wind offshore 0.15 2.10 1.00 0.50 Wind offshore 0.10 0.07 0.20 0.10 0.48 0.12

Solar pv 0.14 0.96 2.00 1.00 Solar pv 1.00 1.00 1.00 1.00 1.00

Total 1.41 13.06 9.98 9.54 Total 1.00 1.00 1.00 1.00 1.00

Geothermal
Wind 

onshore

Wind 

offshore
Solar pv Geothermal

Wind 

onshore

Wind 

offshore

Solar 

pv
Total

Priority 

vector

Geothermal 1.00 0.12 1.50 0.50 Geothermal 0.08 0.09 0.11 0.05 0.33 0.08

Wind onshore 8.50 1.00 9.00 7.50 Wind onshore 0.70 0.73 0.63 0.80 2.87 0.72

Wind offshore 0.67 0.11 1.00 0.36 Wind offshore 0.05 0.08 0.07 0.04 0.25 0.06

Solar pv 2.00 0.13 2.75 1.00 Solar pv 0.16 0.10 0.19 0.11 0.56 0.14

Total 12.17 1.36 14.25 9.36 Total 1.00 1.00 1.00 1.00 1.00

Geothermal
Wind 

onshore

Wind 

offshore
Solar pv Geothermal

Wind 

onshore

Wind 

offshore

Solar 

pv
Total

Priority 

vector

Geothermal 1.00 1.50 3.00 0.20 Geothermal 0.14 0.17 0.18 0.14 0.63 0.16

Wind onshore 0.67 1.00 4.00 0.17 Wind onshore 0.10 0.11 0.24 0.11 0.56 0.14

Wind offshore 0.33 0.25 1.00 0.11 Wind offshore 0.05 0.03 0.06 0.08 0.21 0.05

Solar pv 5.00 6.00 9.00 1.00 Solar pv 0.71 0.69 0.53 0.68 2.61 0.65

Total 7.00 8.75 17.00 1.48 Total 1.00 1.00 1.00 1.00 1.00

Geothermal
Wind 

onshore

Wind 

offshore
Solar pv Geothermal

Wind 

onshore

Wind 

offshore

Solar 

pv
Total

Priority 

vector

Geothermal 1.00 0.33 0.11 0.33 Geothermal 0.06 0.04 0.08 0.04 0.22 0.05

Wind onshore 3.00 1.00 0.17 1.00 Wind onshore 0.19 0.12 0.12 0.12 0.54 0.14

Wind offshore 9.00 6.00 1.00 6.00 Wind offshore 0.56 0.72 0.69 0.72 2.69 0.67

Solar pv 3.00 1.00 0.17 1.00 Solar pv 0.19 0.12 0.12 0.12 0.54 0.14

Total 16.00 8.33 1.44 8.33 Total 1.00 1.00 1.00 1.00 1.00

Human toxicity pairwise comparison matrix Human toxicity normalization

Ozone depletion pairwise comparison matrix Ozone depletion normalization

Production volume pairwise comparison matrix Production volume normalization

Photochemical oxidation pairwise comparison matrix Photochemical oxidation normalization

Capital expenditure pairwise comparison matrix Capital expenditure normalization

Operational expenditure pairwise comparison matrix Operational expenditure normalization



Part 2: Application of the AHP method on a CCU Decision Problem 
 

39 
 

Table 43 – Calculated consistency ratio values for the performances in the 14 sub-criteria 

 

As can be seen the determined scores are deemed to be sufficiently consistent throughout the 

categories. However, it should be noted that given that performance in all (and presumably at least 

‘most of’ in the majority of combined LCA & TEA cases) sub-criteria in this case are quantifiable care 

should be taken to not only ensure that scores are consistent but also reflect performance. Tunnel 

vision regarding the former may lead to practitioners to not account for dominance (or lack of) in 

performance by 1 or more alternative in a given sub-criterion.  

For example, consider the CapEx category in this study. From the global priorities assigned above it can 

be seen that performance in this category is likely to be important in determining the final ranking 

preference. In terms of raw performance by the alternatives ‘wind onshore’ outperforms all alternatives 

at $819 USD per tonne of methanol. The difference between wind onshore and the second best 

performing, ‘solar PV’, is $153 USD per tonne a value larger than the difference between solar PV and 

the worst performing alternative ‘wind offshore’ (a difference of $114 USD per tonne). Given this 

dominance the scores aggregated for each alternative in the total row in the pairwise column should 

also show a similar relative dominance – and not just a collection of values that achieve the required 

attribute of CR < 0.100. The scores given in this example are arguably a little too favorable to wind 

onshore – the other scores are grouped together suitably but the relative distance between the 2nd 

best (2nd lowest) score and the best score may be too large.  

As such another pitfall for users to be wary of is identified: the need to ensure that weightings and 

scores reflect accurately the perception of the decision maker when considering the relative (or 

absolute) performance of the alternatives. It should be noted that as this is preference based the 

relationship between ‘real performance’ and preference of performance (determined through the 

pairwise scoring) does not have to be directly proportional or linear. For example, in this case the scores 

were not adjusted above as the dominance of wind onshore was judged to be much more preferential 

over the performance of the other 3 alternatives. This is obviously an opinion, and as such it segues 

into a key take away for readers: 

It should be clear by now that any MCDA approach cannot fix bad decision logic, it can only highlight 

this to a third party who may wish to change, challenge or discard the decision made. MCDA is a tool 

for mapping the decision process and aids decisions through the provision of a framework. This may 

Sub-criteria
Maximum 

eigenvalue
CI RI CR

GWP 4.122 0.041 0.900 0.045

AP 4.120 0.040 0.900 0.045

ADP 4.003 0.001 0.900 0.001

ADPf 4.010 0.003 0.900 0.004

TETP 4.112 0.037 0.900 0.041

MAETP 4.181 0.060 0.900 0.067

FAETP 4.012 0.004 0.900 0.004

EP 4.094 0.031 0.900 0.035

HTP 4.043 0.014 0.900 0.016

ODP 4.147 0.049 0.900 0.054

POCP 4.200 0.067 0.900 0.074

CapEx 4.161 0.054 0.900 0.060

OpEx 4.172 0.057 0.900 0.064

Production volume 4.113 0.038 0.900 0.042
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help a decision maker address faults in their logic that had been previously unnoticed but it will not 

fundamentally change preferences of a decision maker. 

 

2.6 Making the Final Decision 
 

When scoring is both reflective of the decision maker’s preferences and sufficiently consistent the 

priority vectors from the alternatives normalization matrices can then be multiplied by the relevant 

sub-criteria global priority to give a global priority score for each alternative in each category. To give 

an example: 

Global priority score for ‘wind onshore’ in global warming =  

local priority of wind onshore x global priority of global warming sub-criterion = 

0.314 x 0.154 = 0.048 

For this example, table 44 shows the global priority scores for each alternative in each category (also 

shown are the local priority vectors for completeness). 

Table 44 – Global priority scores for the alternatives in each sub-criteria 

 

The final step is to add together the global priority scores to give a total score for each alternative, with 

this captured in table 45 below. The alternative with the highest score is the most preferred. To ensure 

consistency, checks are made to ensure that all the weighted scores across the alternatives add up to 

the correct value (0.600 for all environmental sub-criteria, 0.400 for all techno-economic criteria).  

It can be seen that the total score of the goal (1.000) is divided into the criteria (0.600 for environmental 

and 0.400 for techno-economic) before being divided further into the sub-criteria (as shown in figure 

7). The score available in each sub-criteria is then split and awarded to each of the alternatives based 

on the assessment of their performance in that category. 

 

 

Geothermal
Wind 

onshore

Wind 

offshore
Solar pv Total Geothermal

Wind 

onshore

Wind 

offshore
Solar pv Total

GWP 0.046 0.314 0.544 0.097 1.000 0.007 0.048 0.084 0.015 0.154

AP 0.055 0.263 0.358 0.324 1.000 0.003 0.013 0.018 0.016 0.050

ADP 0.697 0.092 0.136 0.076 1.000 0.063 0.008 0.012 0.007 0.091

ADPf 0.687 0.108 0.134 0.071 1.000 0.062 0.010 0.012 0.006 0.091

TETP 0.649 0.117 0.096 0.138 1.000 0.008 0.002 0.001 0.002 0.013

MAETP 0.574 0.097 0.153 0.176 1.000 0.007 0.001 0.002 0.002 0.013

FAETP 0.582 0.072 0.083 0.263 1.000 0.008 0.001 0.001 0.003 0.013

EP 0.574 0.088 0.135 0.202 1.000 0.012 0.002 0.003 0.004 0.020

HTP 0.719 0.075 0.082 0.124 1.000 0.051 0.005 0.006 0.009 0.071

ODP 0.738 0.071 0.071 0.120 1.000 0.037 0.004 0.004 0.006 0.050

POCP 0.696 0.078 0.106 0.120 1.000 0.023 0.003 0.004 0.004 0.034

CapEx 0.082 0.716 0.061 0.141 1.000 0.016 0.143 0.012 0.028 0.200

OpEx 0.157 0.139 0.053 0.652 1.000 0.021 0.019 0.007 0.087 0.133

Production volume 0.055 0.136 0.674 0.136 1.000 0.004 0.009 0.045 0.009 0.067

Local priority Global priority

Sub-criteria
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Table 45 – Final preference scores and ranking of the alternatives 

  Alternatives  

  Geothermal 
Wind 
onshore 

Wind 
offshore 

Solar 
PV Total 

En
vi

ro
n

m
e

n
ta

l 

GW 0.007 0.048 0.084 0.015 

0.600 

AP 0.003 0.013 0.018 0.016 

ADP 0.063 0.008 0.012 0.007 

ADPf 0.062 0.010 0.012 0.006 

TET 0.008 0.002 0.001 0.002 

MAET 0.007 0.001 0.002 0.002 

FAET 0.008 0.001 0.001 0.003 

EP 0.012 0.002 0.003 0.004 

HT 0.051 0.005 0.006 0.009 

ODP 0.037 0.004 0.004 0.006 

POCP 0.023 0.003 0.004 0.004 

Te
ch

n
o

-
e

co
n

o
m

ic
 

CapEx 0.016 0.143 0.012 0.028 

0.400 OpEx 0.021 0.019 0.007 0.087 

Production Vol. 0.004 0.009 0.045 0.009 

 TOTAL 0.32 0.27 0.21 0.20 1.000 

 FINAL RANK 1 2 3 4  
 

The final order of preference is:  

1. A CO2 to methanol plant powered by geothermal energy capable of producing 100 tonnes per 

day of methanol 

2. A CO2 to methanol plant powered by onshore wind capable of producing 250 tonnes per day 

of methanol 

3. A CO2 to methanol plant powered by solar PV energy capable of producing 250 tonnes per day 

of methanol 

4. A CO2 to methanol plant powered by offshore wind capable of producing 500 tonnes per day 

of methanol 

So in this example the smaller geothermal plant is preferred over the larger solar PV and wind plants. 

This is a rather surprising result in some regards – when considering the 3 sub-criteria with the largest 

global priority geothermal generally ranks rather poorly: CapEx (3rd best, scoring only 8% of the total 

score available in the category), global warming (4th best, scoring only 5% of the total) and OpEx (2nd 

best, but still only 16% of the total). However, as the table shows geothermal outperforms the other 

alternatives in most other categories allowing it to accumulate the highest total score. A closer look at 

the scores show that in the categories where geothermal scores well it tends to dominate, picking up 

more than 50% of the total score available.  

As suggested at other stages of the AHP process this would be an opportune moment to ‘sense check’ 

the results given. In this example it would be worthwhile for the decision maker to review whether 

geothermal is the best alternative: is its relatively poor performance in the ‘most important’ categories 

offset by its dominance in those of lower priority? A more formulaic approach to this would be to 

conduct a sensitivity analysis as is done in the following section 
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2.7 Checking the Decision Sensitivity  
 

A final step, and one which may help address the question posed above, can be to consider sensitivities 

within the system, with three areas identified for consideration: weights, local priorities and 

comparisons [37]. Sensitivity analysis is useful for checking what happens if the priorities change – for 

example – what happens if it is decided that the global warming is the most important and the global 

priority list alters to reflect this? Does the result stay the same? In this sense a sensitivity test, much 

like in LCA or TEA, helps to determine how ‘robust’ an outcome is. An outcome can be seen to be robust 

if the required change in sensitivity is greater than the uncertainty in the associated 

weight/priority/comparison.  

Several approaches are available for undertaking sensitivity analysis, with popular choices being to use 

specialist software such as Expert Choice. However as identified above, AHP can be implemented using 

readily accessible spreadsheet software (with this being a major reason for why it was selected here) 

and as such sensitivities can be applied manually too, as is done here.  

Source [50] provides an often cited method for conducting a sensitivity analysis on both criterion and 

on ‘performance’ (the scoring of the alternatives). The basic method for both is similar, when exploring 

the sensitivities of the criteria the performance scores are kept fixed and the weights varied, when the 

sensitivities of the performance scores are of interest the reverse is true –performance scores are 

varied and the weights are kept constant.  

When considering criteria, the first step is to determine what is referred to as the most critical criterion 

with two definitions available for this, one which considers only the ‘smallest change’ required to 

change the top preference and one which considers the ‘smallest change’ to change any position in the 

order of preference. Here the smallest change can refer to either absolute or relative change e.g. if 

criterion C1 is weighted at 0.05 and C2 at 0.10, and taking a change of weight of + 0.04 for C1 and of + 

0.05 for C2 would result in changing the order of preference the absolute change for C1 is smaller than 

C2 but the reverse is true when relative terms are considered). In this sense the approach is akin to a 

local sensitivity check which should be familiar to many LCA & TEA practitioners. 

In most cases it is advised to consider the relative ‘smallest change’ given that this is more contextually 

correct, and this is used as the focus here. Aside from this decision, the most critical criterion can also 

be defined as: 

1. The absolute-top critical criterion in which the most critical criterion is the one with the 

required smallest change to change the order at the top of the preference ranking 

2. The absolute-any critical criterion in which the most critical criterion is the one with the 

required smallest change to change the order of preference in any location 

Given the goal of this study is to determine an order of preference both of these definitions will be 

considered in this sensitivity analysis.  

Readers are encouraged to read source [50], as this example primarily applies the analysis in place of 

deriving and defining it. The naming convention outlined is also partially used here: 

• A is used here to define an alternative, with a subscript used to define its pre-sensitivity test 

preference rank – geothermal is therefore A1, wind onshore A2 and so on 



Part 2: Application of the AHP method on a CCU Decision Problem 
 

43 
 

• P refers to the overall priority calculated above, with the same subscript notion as before, 

ergo P1 is the priority vector for geothermal and is equal to 0.32 

• C refers to a criterion, here instead of numbering the criterion the name is used, for example 

CGWP would be the global warming criterion 

• ‘a’ is used to refer to a local priority vector for a given alternative and criterion these values 

can be found in table 44 above, for example a1,GWP would be the local priority for geothermal, 

global warming with the value 0.046 

• δ refers to the minimum quantity needed to reverse the current ranking, with δ’ used for the 

relative (percentage change) value 

• W refers to the current weighting of the criterion (the priority vector of the sub-criteria in this 

case), and W* refers to the new weight  

In this method it is assumed that the user wishes to alter the ranking of A1 and A2 (or any other pair of 

alternatives but here the subscripts 1 and 2 are used) by ONLY changing the weight Wi of criterion Ci, 

where currently P1 ≥ P2. For this to be true one of the following two relationships needs to be satisfied: 

δ𝑖,1,2 <  
(𝑃2 − 𝑃1)

(𝑎2,𝑖 − 𝑎1,𝑖)
, if (𝑎2,𝑖 > 𝑎1,𝑖) 

 

δ𝑖,1,2 >  
(𝑃2 − 𝑃1)

(𝑎2,𝑖 − 𝑎1,𝑖)
, if (𝑎2,𝑖 < 𝑎1,𝑖) 

A second condition is also required to be satisfied for the new weight (Wi* = Wi – δi,1,2) to be feasible: 

0 ≤ Wi* 

Implying: 

0 ≤ Wi – δi,1,2 

Implying: 

δi,1,2 ≤ Wi 

In other words, the value of the new weight must (logically) be larger than zero and the value of the 

δi,1,2 term must be equal to or less than the original weighting of Ci. The value of Wi* does not have the 

same limit of 1, as the weights need to be ‘renormalized’ before adding up to 1. From the rules above 

it should be clear that in some cases it may not be possible to flip the rankings of A1 and A2 solely 

through changing the weight of Ci, explicitly this is not possible when the ΔP/Δa term is greater than 

Wi. General forms of all of these conditions are available in the source material [50]:  

  

𝛿𝑘,𝑖,𝑗
′ <  

(𝑃𝑗 − 𝑃𝑖)

(𝑎𝑗,𝑘 − 𝑎𝑖,𝑘)
 x 

100

𝑊𝑘
, if (𝑎𝑗,𝑘 > 𝑎𝑖,𝑘) 

𝛿𝑘,𝑖,𝑗
′ >  

(𝑃𝑗 − 𝑃𝑖)

(𝑎𝑗,𝑘 − 𝑎𝑖,𝑘)
 x 

100

𝑊𝑘
, if (𝑎𝑗,𝑘 < 𝑎𝑖,𝑘) 

 

With the following condition needing to be satisfied: 
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(𝑃𝑗 − 𝑃𝑖)

(𝑎𝑗,𝑘 − 𝑎𝑖,𝑘)
 ≤  𝑊𝑘 

Thus the first step in investigating sensitivity is calculating all possible δ terms for the matrix. Below is 

the calculated δ term for A1 (geothermal) and A2 (wind onshore) for the global warming criterion: 

δ𝐺𝑊𝑃,1,2 <  
(0.267 − 0.323)

(0.314 − 0.046)
 

δ𝐺𝑊𝑃,1,2 <  −0.208 

As -0.208 is less than the value of WGW (0.154) the value is feasible, a value for Wi* (prior to 

normalization) can also be calculated: 

Wi* = 0.154 – (-0.208) = 0.361 

The value -0.208 can also be expressed in relative terms (as a percentage of change): 

(-0.208/0.154) x 100 = -135% 

A key aspect to note here from the source material is that a negative value (either in absolute or relative 

terms) means that an increase is required, so in this example the value of W needs to increase by 0.208 

or by 135%.  This process is repeated for all elements in the matrix, with all feasible values of δ included 

in table 46 and all relative (percentage change) values in table 47. 

Table 46 – All feasible (minimum) values of δ (absolute change in criteria weights) calculated as shown in [50] 

 

 

 

 

 

 

 

 

A1 - A2 A1 - A3 A1 - A4 A2 - A3 A2 - A4 A3 - A4

GWP -0.208 -0.226 -2.435 -0.247 N/F 0.025

AP -0.269 -0.372 -0.461 -0.597 -1.109 N/F

ADP N/F N/F N/F -1.278 N/F N/F

ADPf N/F N/F N/F -2.183 N/F N/F

TET N/F N/F N/F N/F -3.244 -0.275

MAET N/F N/F N/F -1.029 -0.864 -0.479

FAET N/F N/F N/F -4.988 -0.357 -0.063

EP N/F N/F N/F -1.232 -0.600 -0.167

HT N/F N/F N/F -8.075 -1.381 -0.267

ODP N/F N/F N/F N/A -1.372 -0.227

POCP N/F N/F N/F -2.073 -1.633 -0.790

CAPEX -0.088 N/F -2.112 0.087 0.119 -0.143

OPEX N/F N/F -0.251 N/F -0.133 -0.019

Production Vol. -0.688 -0.182 -1.534 -0.106 N/A 0.021

Sub-criteria

Comparison (absolute change, value of δ)
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Table 47 – All feasible (minimum) values of δ’ (percentage change in criteria weights) 

 

The term of N/F is used in the table in places where a value for δ is ‘not feasible’ and the term N/A is 

used where the term is undefined (due to the need to divide by zero). Highlighted cells are used to 

identify the most critical criterion with the ‘absolute top’ and ‘absolute any’ criterion in the absolute 

change table shown and the ‘percentage top’ and ‘percentage any’ shown in the percentage table. As 

stated above, in each case these values represent the smallest changes required to change the ranking 

for the specified definition. 

In this case we find that for both the absolute and the percentage cases the figures are the same, with 

changes to CapEx weighting given for the percentage/absolute top and changes to OpEx for the 

absolute/percentage any. To change the top ranking a 44% increase is required for the weighting of 

CapEx, to change any ranking a 14% increase is required to OpEx (which would result in A3 wind offshore 

and A4 solar PV swapping ranks). 

Finally, an ordering of the sensitivity of the sub-criteria can be arrived at by taking the modulus of the 

smallest necessary change for each category (a term labelled D’k the criticality degree of criterion Ck) 

and calculating the value for 1 over this to give the sensitivity coefficient of this: 

Sens(Ck) = 1 / D’k 

For any criteria in which D’k cannot be established the sensitivity coefficient is set to 0.00. The sensitivity 

coefficients for the 14 sub-criteria in this study are given below in table 48. 

 

 

 

 

 

 

 

 

 

A1 - A2 A1 - A3 A1 - A4 A2 - A3 A2 - A4 A3 - A4

GWP -135 -147 -1584 -161 N/F 16

AP -533 -739 -916 -1185 -2202 N/F

ADP N/F N/F N/F -1409 N/F N/F

ADPf N/F N/F N/F -2407 N/F N/F

TET N/F N/F N/F N/F -24973 -2119

MAET N/F N/F N/F -7920 -6654 -3686

FAET N/F N/F N/F -38392 -2748 -484

EP N/F N/F N/F -6078 -2960 -825

HT N/F N/F N/F -11308 -1934 -374

ODP N/F N/F N/F N/A -2724 -451

POCP N/F N/F N/F -6183 -4872 -2356

CAPEX -43.9 N/F -1056 44 59 -71

OPEX N/F N/F -188 N/F -100 -14

Production Vol. -1032 -273 -2300 -159 N/A 32

Comparison (% change needed to change rankings between alternatives)

Sub-criteria
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Table 48 – Sensitivity coefficients for the 14 sub-criteria derived as defined as described in [50] 

 

The table shows that the most sensitive criteria are OpEx, global warming and the production volume.  

Ultimately what is shown here is that the top ranking is unlikely to change unless there is a significantly 

large amount of uncertainty within the rankings. Here uncertainty is not calculated for this reason, but 

several approaches are available for calculating this including one developed by Saaty and Vargas [51]. 

After demonstrating that there is little sensitivity in the criteria attention can now be turned to the 

performance scores. As before a more detailed description of the method applied (including the 

establishing of theorems and definitions for terms)  can be found in source [50], here a focus is made 

on applying the method and defining a few key terms.  

The intention of this methodology is to determine the most critical measure of performance – defined 

in the source material as axy, the performance of alternative ‘x’ in criterion ‘y’.  

Similar to in the prior test the intention is to quantify the minimum change required in a given value 

required to change the current ranking between two alternatives, Ax and Az. This ‘threshold value’ is 

quantified as τ here, so τxyz would represent the threshold value of criterion Cy at which the rankings of 

Ax and Az would reverse (mirroring the above τ’ is used to denote the relative/percentage change). As 

a reminder, the terms A1 to A4 are used in the same way above as to denote the order of preference 

established in the AHP.  

In this example only the relative change, τ’ is of interest and as such the formula for this is given below: 

𝜏𝑥,𝑦,𝑧
′ =

(𝑃𝑥 − 𝑃𝑧)

[𝑃𝑥 − 𝑃𝑧 + 𝑊𝑦(𝑎𝑧,𝑦 − 𝑎𝑥,𝑦 + 1)]
  x  

100

𝑎𝑥,𝑦
 

 

Where the definitions for P and W remain consistent with those given above, a limiting condition is also 

required: 

𝜏𝑥,𝑦,𝑧
′  ≤   100 

 

Sub-criteria

Minimum 

change (%) D' Sens(C) Rank

GWP 16 16 0.0608 2

AP -533 533 0.0019 8

ADP -1409 1409 0.0007 10

ADPf -2407 2407 0.0004 13

TET -2119 2119 0.0005 11

MAET -3686 3686 0.0003 14

FAET -484 484 0.0021 7

EP -825 825 0.0012 9

HT -374 374 0.0027 5

ODP -451 451 0.0022 6

POCP -2356 2356 0.0004 12

CAPEX 44 44 0.0230 4

OPEX -14 14 0.0706 1

Prod Volume 32 32 0.0317 3
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This limitation is in place as it is not possible to reduce the performance by more than 100% of its value. 

With this established the values for τ’ can be established for comparing each alternative against all 

three others, as is done in the tables (49 – 52) below. As before, a negative number corresponds to an 

increase in the value of ax,y and a positive a decrease. Where a result is not feasible (as it invalidates the 

rule given above) the term N/F is given in the table.  

Table 49 – Values of τ’ for geothermal alternative compare to other alternatives (specified on the final row) 

 

The table for the geothermal (A1) alternative only offers 3 values, all of which can be found when 

compared to wind onshore (A2). All three of these values state that a significant decrease in the 

performance score would be required to switch the rankings.  

Table 50 – Values of τ’ for wind onshore alternative compare to other alternatives (specified on the final row) 

 

The table for the wind onshore table contains more values than the prior geothermal one. When 

compared to geothermal (A1) significant improvement is required in all categories to reverse the 

Alternative

GWP N/F N/F N/F

AP N/F N/F N/F

ADP 87.3 N/F N/F

ADPf 86.4 N/F N/F

TET N/F N/F N/F

MAET N/F N/F N/F

FAET N/F N/F N/F

EP N/F N/F N/F

HT 95.5 N/F N/F

ODP N/F N/F N/F

POCP N/F N/F N/F

CAPEX N/F N/F N/F

OPEX N/F N/F N/F

Production Vol. N/F N/F N/F

Compared to Wind onshore Wind offshore Solar PV

Geothermal (values of τ')

Alternative

GWP -312.1 73.9 N/F

AP N/F N/F N/F

ADP -676.3 N/F N/F

ADPf -589.3 N/F N/F

TET N/F N/F N/F

MAET N/F N/F N/F

FAET N/F N/F N/F

EP N/F N/F N/F

HT -1205.5 N/F N/F

ODP -2780.2 N/F N/F

POCP N/F N/F N/F

CAPEX -445.6 63.2 62.3

OPEX -499.4 N/F N/F

Production Vol. -7300.9 N/F N/F

Compared to Geothermal Wind offshore Solar PV

Wind onshore (values of τ')
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ranking – with global warming requiring a 312% increase being the smallest change required. As such 

it is fair to assume that at the specified weightings (those determined in the AHP study) the required 

changes on a single category basis would suggest that the ranking is robust. Comparing wind onshore 

to wind offshore and solar PV (A3 and A4 respectively) there are only 3 valid reductions identified – and 

all of these are relatively large in scale. 

Table 51 – Values of τ’ for wind offshore alternative compare to other alternatives (specified on the final row) 

 

The table shows, that as one would expect, the results required to switch the rankings of A1 and A3 are 

even more extreme than those needed for A2. The results for comparing A3 to A2 also show extreme 

changes in performance are required to change the rankings here also. The most sensitive categories 

concern the potential to swap ranks A3 and A4. When looking at the global priorities determined for 

each alternative in the AHP this is hardly surprising, the scores for wind offshore and solar PV are very 

close to each other and distant to both the score for geothermal and for solar PV. 

Table 52 – Values of τ’ for solar PV alternative compare to other alternatives specified (specified on the final 

row) 

 

Alternative

GWP N/F -171.2 21.6

AP N/F N/F 52.7

ADP -2871.3 -1415.0 86.1

ADPf -2992.2 -1360.0 87.6

TET N/F N/F N/F

MAET N/F N/F N/F

FAET N/F N/F N/F

EP N/F N/F N/F

HT -32571.9 -5026.4 N/F

ODP N/F N/F N/F

POCP N/F N/F N/F

CAPEX -2009.9 -339.4 81.2

OPEX -6215.2 -1235.0 95.9

Production Vol. N/F N/F 39.9

Compared to Geothermal Wind onshore Solar PV

Wind offshore (values of τ')

Alternative

GWP -5868.0 -596.2 -55.5

AP N/F N/F -85.7

ADP -7136.0 -3804.5 -176.5

ADPf -7734.0 -3732.9 -186.4

TET N/F N/F -7217.8

MAET N/F N/F -4698.9

FAET N/F N/F N/F

EP N/F N/F -737.8

HT N/F N/F -159.6

ODP N/F N/F -257.1

POCP N/F N/F -434.1

CAPEX -1373.7 -197.1 -46.6

OPEX N/F N/F -41.2

Production Vol. N/F N/F -91.4

Compared to Geothermal Wind onshore Wind offshore

Solar PV (values of τ')
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Finally, a brief note on the rankings for solar PV (A4) – following on from the logic outlined above the 

scores needed to change ranks with A1 and A2 are even more extreme than those for A3. The one 

exceptional category – CAPEX with this largely being down to the better performance of solar PV in this 

category when compared to wind offshore. As above the most sensitive performance scores are those 

that would see a swap of ranks A3 and A4. 

A final step included in the method of Triantaphyllou and Sánchez is to determine the criticality degree 

for each performance measure and the sensitivity coefficients for each alternative across each criterion. 

This is done by selecting the lowest change in required for each criteria across the alternatives (from 

the tables above) to determine the criticality degree, and then dividing 1 by this number. The most 

sensitive alternative is the one with the highest sensitivity coefficients, with all figures given in table 53 

below.  

Table 53 – Sensitivity coefficients for performance scores for all alternatives in all sub-criteria 

 

The table and the prior calculations shows that the highest sensitivity coefficient is for wind offshore 

in the global warming category. Many of the impact categories are shown to be highly insensitive – 

likely due to their low weightings. The general findings show that the geothermal alternative is likely 

robust, as shown in the prior sensitivity test also, with the rankings of wind offshore and solar PV 

being the most sensitive. 

It should be noted here that the sensitivity checks on both performance and sub-criteria weighting are 

undertaken on a local scale, i.e. only varying one element at a time. Global approaches to sensitivity are 

not considered here, although a few examples can be found for application with AHP, such as the 

extended Fourier amplitude sensitivity test [52].  

At this point the AHP rankings can be determined to be robust, with the rankings given a fair 

representation of the preferences decision maker.  

 

  

Indicator Geothermal Wind onshore Wind offshore Solar PV

GWP 0.0000 0.0135 0.0463 0.0180

AP 0.0000 0.0000 0.0190 0.0117

ADP 0.0114 0.0015 0.0116 0.0057

ADPf 0.0116 0.0017 0.0114 0.0054

TET 0.0000 0.0000 0.0000 0.0001

MAET 0.0000 0.0000 0.0000 0.0002

FAET 0.0000 0.0000 0.0000 0.0000

EP 0.0000 0.0000 0.0000 0.0014

HT 0.0105 0.0008 0.0002 0.0063

ODP 0.0000 0.0004 0.0000 0.0039

POCP 0.0000 0.0000 0.0000 0.0023

CAPEX 0.0000 0.0161 0.0123 0.0215

OPEX 0.0000 0.0020 0.0104 0.0243

Production Vol. 0.0000 0.0001 0.0251 0.0109
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2.8 Concluding Remarks 
 

• There are obvious benefits to aligning and combining (‘integrating’) LCA & TEA as a way of 

further supporting decisions made utilizing the outputs of these studies: the addition of a 

combined enviro-economical dimension or the clear identification of trade-offs (either for 

optimization problems or attributional problems) add an additional layer of depth and context 

to stand alone LCA & TEA studies – however, integrating studies is something that requires 

additional resources (e.g. time, and possibly data) and care should be taken to ensure that the 

benefits of this are relevant to the needs of the practitioner or other stakeholders 

• Multi-attributional approaches are useful when a number of discrete alternatives are available 

for selection, particularly when the performance measures of these alternatives lead 

themselves to trade-offs and where one option is not dominant other the others – as is the 

case for many of the scenarios commonly assessed in CCU 

• Determining the correct MADM approach to apply when considering combined LCA & TEA 

studies is a matter of a number of factors including: identifying the type of MADM problem, 

data and resource availability and personal preference 

• The AHP model used shows that even with an extensive number of (sub-)criteria the approach 

can be applied to assist in decision making utilizing combined LCA & TEA outputs. Concerns 

over the AHP model are highlighted (in both parts 1 and 2) with a particular concern being 

that of scoring consistency – however solutions to this issue are available (typically these 

involve amending the original scoring system of Saaty) and the results here show that a robust 

and consistent preference can be established. Whilst some concerns are not so easy to 

address (such as the lack of an entirely axiomatic foundation), the relative ease of application 

(even without specialist software) ensures that the approach is likely to remain popular with 

decision makers, including those concerned with CCU 
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