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ABSTRACT

Evaluation of Direct Search Algorithms to Trajectory Optimization for a
Perpetually Flying Fixed-Wing Solar UAV Providing Network Coverage

by

Jared Miller

Advisor: Suleyman Uludag

Recent advances in battery and solar-cell technology have allowed for small-scale

solar-powered fixed-wing aircraft to achieve perpetual-endurance flight, where they

harvest enough energy to fly for long periods of time without recharging. We consider

how this capability can be utilized in a networking context to enable rapid deployment

of wireless Internet coverage in areas where it has been disrupted or is otherwise

unavailable, providing a relay between portable ground-based devices such as cell

phones and the currently developing Very-Low-Earth-Orbit satellite Internet layer.

In particular, we investigate the impact of the aircraft trajectory on the level of

service provided and the energy balance of the vehicle. We develop a framework for

evaluating and optimizing these trajectories in three-dimensions and compare two

optimization methods, Particle Swarm Optimization and the Nelder-Mead method,

in optimizing the throughput of the trajectory while respecting the energy constraints

implicit to providing perpetual-endurance flight.
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CHAPTER I

Introduction

The Unmanned Aerial Vehicle (UAV) is currently emerging as a highly capable

platform for a number of applications. Also known as drones or Unmanned Aerial

Systems (UAS), these platforms are characterized by their mobility and ability to be

controlled remotely with no on-board human operator. While they have been used

for military applications for many years, decreasing prices and increasing capabilities

have allowed for many commercial and civilian applications as well, ranging from

remote surveying and monitoring to retail delivery services [1]. An application area

that has received attention in recent years, which also promises to be a future enabler

for the drone ecosystem, is that of using UAV platforms to host telecommunications

equipment to provide network coverage [2–7]. The high mobility, favorable line of

sight characteristics at higher altitudes, along with the higher speed and lower cost

of deployment are all factors that make a UAV platform an attractive alternative

to ground based infrastructure in a variety of circumstances. For instance, UAV

platforms may be used to quickly deploy network coverage to areas where ground

infrastructure is unavailable, has been disrupted by natural disaster, or to augment

existing infrastructure during periods of high demand.

Two UAV platforms are most commonly investigated for networking applications:

fixed-wing platforms such as in Figure 1.1a and rotary-wing platforms as shown in Fig-
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(a) Fixed-Wing Platform: NASA Helios [8] (b) Rotary-Wing Platform: Illustration [9]

Figure 1.1: Example UAV Platforms

ure 1.1b (a further breakdown of UAV platforms is given in section 2.1). Each platform

has distinct advantages and disadvantages over the other. Fixed-wing platforms have

a much greater energy e�ciency, and are better able to carry larger payloads, but must

maintain a minimum speed to stay airborne. Rotary-wing platforms, on the other

hand, can hover in place, but are generally less e�cient and cannot carry as heavy

of payloads. In a networking context, the ability to hover in place can improve the

quality of communication as the system is less dynamic, leading to a more consistent

signal level and less need to perform handover between di↵erent stations. However,

the lower energy e�ciency shortens the duration during which a rotary-wing plat-

form can remain airborne, requiring more frequent refueling or recharging. Another

interesting avenue that is more readily applicable to fixed-wing platforms is a synergy

with photovoltaic (PV) energy-harvesting, as the wings provide a large area on which

to place solar panels (and larger wings can also make the aircraft more e�cient).

This can allow the fixed-wing platform to fly continuously during the daytime. Given

enough battery storage, it can also fly continuously through the night, see for exam-

ple [10]. This level of persistence has clear advantages for networking applications,

as outages or degradation due to frequent landing could be largely eliminated.

Even given this greatly increased endurance from the on-board PV, the aircraft

will still operate on tight energy margins and may have to make sacrifices in net-
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work performance for increased energy e�ciency or vice versa under certain condi-

tions. Selecting a trajectory that balances the energy e�ciency of the craft against

the needed levels of service for multiple users is a challenging task. Several strate-

gies exist to increase the energy margins of a perpetual-endurance platform [11–13].

However these strategies are often detrimental to providing network service. While

there have been several approaches investigated to increase the networking perfor-

mance or the energy e�ciency of a fixed-wing aircraft trajectory [14, 15], to the

best of our knowledge there have been none which consider the conditions necessary

for perpetual-endurance flight. The remainder of this work is organized as follows.

Chapter II provides an overview of related works from the areas of aerial networking

and perpetual-endurance aircraft design. Chapter III describes our system model

and energy measurement framework. Chapter IV details the optimization methodol-

ogy, chosen trajectory representation, and presents the results of the optimizations.

Finally, Chapter V provides some concluding remarks and areas for future investi-

gation. The appendices include Appendix A, which contains the derivation of the

mathematical model used in our energy analysis, and Appendix B, which enumerates

the various modules present in our code, their roles, and their relations.
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CHAPTER II

Related Work

The areas of aerial networking and long-endurance flight have each seen much

interest in recent years [2–7, 16, 17]. Rotary-wing platforms have attracted much

of the interest in the networking arena due to their superior precision mobility and

station-keeping characteristics. Several groups are also investigating improvements

to low-altitude long-endurance fixed-wing platforms and the underlying technologies

such as solar cells and energy storage, which permits them to carry heavier payloads

and increases their overall energy robustness. With this continued improvement, the

advantage of long duration flight may eclipse the mobility advantages of rotary-wing

aircraft for many applications. To better put developments concerning these two

platforms into perspective, we give a brief taxonomy of aerial platforms, followed

by some of the recent investigations into rotary-wing networking platforms used in

conjunction with energy harvesting systems, and then look at both the engineering

and networking perspectives on the use of fixed-wing platforms. A listing of these

works and the aspects they consider is given in Table 2.1, including whether rotary-

wing or fixed-wing aircraft are considered, when trajectory is considered whether it is

in two or three dimensions, whether energy use is considered, whether network services

are considered, if and how energy-harvesting is considered, and what optimization

technique is used when optimization is discussed.
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Work Wing
Type

# Dims. Considers
Energy

Considers
Network

Energy Harvest-
ing

Optimization
Technique1

Zeng et al. [18] Rotary 2D Yes Yes - SCA2

Bozkaya et al. [19] Rotary 3D Yes Yes Station Custom Alg.
Amorosi et al. [20] Rotary - Yes Yes Station MILP, GA2

Chiaraviglio et al. [21] Rotary - Yes Yes Station+Grid BBSR (novel)2

Sun et al. [22] Rotary 3D Yes Yes On-Board Various
Sekander et al. [23] Rotary 3D Yes Yes On-Board -
Huang et al. [24] Fixed 2D Yes - On-Board -
Leutenegger et al. [25] Fixed 3D Yes - On-Board -
Meyer et al. [26] Fixed - Yes - On-Board -
Oettershagen et al. [10, 27–29] Fixed - Yes - On-Board -
Bolandhemmat et al. [11] Fixed 3D Yes - On-Board Various
Marriott et al. [12] Fixed 3D Yes - On-Board Greedy
Zeng et al. [14] Fixed 2D Yes Yes - GA2

Qiu et al. [15] Fixed 2D Yes Yes - SCA2

Anicho et al. [30] Fixed 3D Yes Yes On-Board -
Anicho et al. [31] Fixed - - Yes - -
Anicho et al. [32] Fixed - - Yes On-Board -
Anicho et al. [33] Fixed - - Yes On-Board Q-Learning
This Work Fixed 3D Yes Yes On-Board Various

Table 2.1: An Overview of Related Works

2.1 A Taxonomy of UAV Platforms

A number of di↵erent approaches for providing network access from aerial plat-

forms has been explored. Figure 2.1 gives a breakdown of the most common ap-

proaches. Platforms are largely divided into Low Altitude Platforms (LAPs) and

High Altitude Platforms (HAPs), where the dividing altitude is, as a general rule of

thumb, around 10 kilometers (though this definition varies by jurisdiction). LAPs in-

clude rotary-wing aircraft (e.g. quad-copter, hex-copter) and airships3 (e.g. Blimps,

Zeppelins), while HAPs include balloon-based platforms. Fixed-wing aircraft (e.g. a

traditional airplane with wings and forward propulsion) can fit into either category.

Both airships and balloons use a lifting gas such as hydrogen, helium, or heated air

to fly (or float, as the case may be), while fixed-wing and rotary-wing aircraft must

actively expend energy to maintain their altitude. LAPs are generally smaller and

easier to deploy but have lower endurance (measured in hours). HAPs are generally

1
[34] gives a good overview of various trajectory optimization techniques. Though it is in the

context of spacecraft trajectories, many of the approaches are still applicable here.
2
Successive Convex Approximation (SCA), Mixed-Integer Linear Programming (MILP), Genetic

Algorithm (GA), Balance energy Bought Sold and throughput Revenue (BBSR)
3
Some sources, such as [7], also classify airships as a HAP.
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larger and harder to deploy, but have greatly increased endurance (measured in days

to months for balloons and airships), either because they are passively floating or via

on-board energy harvesting4.

UAV

Low Altitude 
Platform (LAP)

High Altitude
 Platform (HAP)

BalloonsAirship BalloonsRotary-
Wing

Fixed-
Wing

Fixed-
Wing

Figure 2.1: A taxonomy of UAVs.

While rotary-wing UAVs have increased flexibility in navigating complex spaces,

as well as the ability to hover in place, they are often less energy e�cient than

a fixed-wing platform and must land more frequently to recharge. They are also

limited in their ability to support higher-massed payloads, large battery stores, or

energy-harvesting equipment5. For longer term network applications, this property

of rotary-wing UAVs exacerbates the requirement of increased redundancy to avoid

outages, as one must have a second UAV on stand-by for when the first needs to

land and recharge. The fixed-wing platform addresses to some degree the e�ciency

and mass-limit concerns of a rotary-wing UAV, at the expense of decreased flexibility

in that it must maintain a minimum flight speed. However, although though less

frequently, the fixed-wing platform would still need to land to refuel or recharge. In

recent years, several groups have attempted to eliminate the need to land to recharge

as well, with the inclusion of on-board energy harvesting, generally PV, and su�cient

battery capacity to fly through the night. Several such platforms have been designed

4
Extending beyond this, we will also point out satellite platforms, which are very hard to deploy

and adjust, but have extremely long to virtually infinite endurance compared to the usefulness of

their payloads.
5
This is not to say that PV has not been included on rotary-wing UAVs as well [22, 23], but

for the moment this can only increase their endurance during the day, and they are unable to carry

su�cient energy to fly through the night.
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and created with greatly increased endurance, to the point that they can remain

airborne continuously (we adopt their terminology of “perpetual-endurance”) during

much or all of the year [10, 11]. Some groups are currently exploring the application

of this capability to network platforms [35], although several more attempts have

been made only to be found commercially unviable at present [36, 37].

2.2 Rotary-Wing

There is an abundance of existing literature analyzing rotary-wing aircraft pro-

viding network coverage, but here we focus on just a few works that use the platform

in conjunction with an energy harvesting system. The first approach one can take

is to have remote ground charging stations with energy harvesting where the UAVs

return to between providing service. Such an approach is the context for [20] and [21]

(from related authors). In the former, the authors investigate various approaches to

maximize the energy of the system subject to providing coverage with a Mixed Inte-

ger Linear Programming (MILP) as well as a Genetic Algorithm (GA). In the latter,

the authors develop models to perform joint optimization of the energy consumption

of the system alongside the throughput revenue. In both cases, the challenge lies

in scheduling the UAVs trips to and from the charging station, while still providing

su�cient coverage to meet their goals. Another work using this approach is [19],

though here a more algorithmic approach is used to optimize placement to maxi-

mize coverage alongside flight endurance. On the other hand, in [22] the authors

investigate a rotary-wing platform with integrated PV, and investigates the tradeo↵

between maintaining a low altitude to provide network coverage and a high altitude

to harvest more energy (i.e. to be above the clouds). Their system is presented as

providing continuous flight during the day, though it cannot sustain long-term flight

7



at night6. A combination approach is considered in [23], where the rotary-wing craft

is equipped with on-board energy harvesting and a ground charging station is also

available. However, this work is largely the construction of a statistical model for har-

vested energy vs. outage time and doesn’t present any concrete examples of system

performance. Throughout, we can see that while energy harvesting has the potential

to augment rotary-wing aircraft, there is still a need for ground-based infrastructure

to provide energy at certain times.

2.3 Fixed-Wing

On the fixed-wing side of the literature, there is a division between investigations

into network optimization and long-endurance flight, with little work combining the

two. This is perhaps understandable as the current state of technology greatly limits

the payload capacity of such vehicles relative to their size, but this limit is largely

due to the battery capacity required to operate through the night. Increasing battery

energy density (energy stored per kg) has a great impact on this limit, as the amount

of energy stored can be increased without increasing the overall size of the aircraft.

As the market for electric energy storage is expected to greatly expand over the next

decade [39], especially in the transportation sector which also benefits from denser

storage, one can expect this situation to continue improving. Indeed, some groups

are already developing technology which claims to almost double the energy density

of current batteries [40]. In any case, the works on these two sides of the literature

paint an interesting picture of future capabilities.

6
This work does assume (most notably) a high solar cell e�ciency of 40% which is not physically

possible with commonly used single-junction solar cells which have a maximum theoretical e�ciency

in the low 30%s [38] and implies that the presently much more costly multi-junction solar cells are

considered.
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2.3.1 Network Performance Analysis

The optimization of a fixed-wing trajectory with respect to energy e�ciency (net-

work utility per unit of energy used) is investigated in [14]7. The authors present

simple analytical models for evaluating the energy consumption (including a deriva-

tion in their appendices) and the available throughput of a given constant-altitude

fixed-wing trajectory with a single ground user. Approaches for both unconstrained

(no limits on velocity or power use, physically impossible trajectories produced) and

constrained trajectories are given for the rate-maximization, energy-minimization,

and e�ciency-maximization problems, with corresponding statistics for each. This

gives us a simplified base upon which other features might be added to expand upon

the capabilities or realism of the setup (in our case, variable-altitude, multiple users,

and energy harvesting for perpetual-endurance flight). The trajectory formulation

used in [14], though, is extremely granular (discretized to 0.2 second time steps) and

thus may not be suitable for long-duration optimization. In [30–33] the authors in-

vestigate aspects of HAPS placement in a variety of circumstances, as well as routing

approaches and vehicle replacement scenarios.

2.3.2 Long-Endurance Flight

NASA investigated solar powered aircraft as early as the 1980’s [41]. This program

continued for several decades, though experimental flights ended when the prototype

was destroyed in flight in 2003 [42]. In more recent years (2011+), several other groups

have designed, built, and flown other prototype aircraft capable of long-endurance

flight. [25] provides an overview of some of these earlier works, as well as some of

the modelling for such platforms. This work is expanded on by a related group in a

series of papers that resulted in an 81-hour continuous flight [10, 27–29]. While the

payload mass and power capacity of their aircraft is extremely limited, the capability

7
[18] provides an analogous analysis for rotary-wing.
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for perpetual-endurance flight in a platform massing under 10 kg is impressive.

In the past couple years, a group at Facebook has been investigating various meth-

ods for the optimization of the energy balance of a solar powered HAP UAV. Various

approaches were attempted in [11] such as the Interior Point method, the Nelder-

Mead method, and a machine learning approach based on an Adaptive Neuro-Fuzzy

Inference System (ANFIS). Given the behaviors observed in that work, [12] investi-

gates the use of a greedy approach to perform similar planning with a much lower

computational cost. The work is likely in relation to Facebook’s project Aquila [43],

which for the moment has been cancelled [36]. One interesting technique exploited in

both works is to increase altitude during the day when excess solar power is readily

available and coast back down during the night when solar power is unavailable. This

technique provides an avenue for storing additional energy as gravitational potential,

which can decrease the battery mass required to fly through the night, and is also

discussed in [13].

2.4 Our Contribution

While much work has been done both in the areas of perpetual-endurance flight

and aerial networks, relatively little has been done combining these two for LAPs.

In particular, no other works were found investigating optimization of a fixed-wing

aircraft trajectory providing network coverage under perpetual-endurance flight con-

ditions. This work attempts to address this niche by developing a framework for repre-

senting and analyzing such trajectories (with the inclusion of a variable-altitude/3D

component), as well as for the optimization of such trajectories. In particular, we

investigate the Particle Swarm Optimization and Nelder-Mead methods to perform

this optimization, though the framework allows for relatively easy integration of other

optimization algorithms8.

8
An overview of the implementation is given in Appendix B, and the code is available at [44]
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CHAPTER III

System Model

3.1 System Parameter Selection

The hypothetical platform we will be analyzing will be an extension of that de-

signed in [10]: an unmanned fixed-wing aircraft with solar cells on the wings to provide

on-board energy harvesting and su�cient battery capacity to provide energy through-

out the night when no solar power is available. Such a platform, often referred to

as a Low-Altitude Long-Endurance (LALE) UAV, is capable of harvesting su�cient

energy in flight that it does not need to land to recharge. However, depending on the

configuration of the aircraft and the specific circumstances, this may only be possible

at certain latitudes or during certain times of the year, as these both have a large

impact on the amount of harvestable energy available. Furthermore, these aircrafts

have particular Size, Weight, and Power (SWAP) constraints on their payloads, and

special care must be taken with respect to these limits. For this analysis, we generate

such a configuration for our desired payload characteristics using the code [45] related

to [10]. This process is described below.

The MATLAB module AirplaneDesign from [45] can be configured with desired

system parameters such as payload mass, payload power, battery energy density,

latitude, time of year, and several others. Given these, ranges of configurations for

wingspan and battery mass can be evaluated in bulk and the resulting performance

11



plotted (see Figure 3.1) to give a sense of which parameter combinations produce good

results in terms of endurance. The following metrics are produced when perpetual-

endurance flight is achieved based on the input parameters:

• Minimum State of Charge (MSoC) of the batteries: indicates the minimum

amount of energy available in the batteries over the course of the day. For

example, the batteries might dip to 40% before su�cient sunlight is available

to charge them.

• Excess Time (Top Left of Figure 3.1): duration the airplane could fly if sunlight

was unavailable at the start of a day. E↵ectively, if there is a very cloudy day

this tells us how many hours past sunrise the plane could fly.

• Charge Margin (Top Right of Figure 3.1): the duration during which the bat-

teries are full, or how much excess “sun time” there is. This determines how

much “non-sun time” (e.g. cloudiness) the plane can experience per day before

perpetual-endurance becomes unattainable.

Figure 3.1: Output of AirplaneDesign from [45]. The lime circle in the Excess Time
plot indicates our chosen parameters.
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If perpetual-endurance is not reached then the total endurance (Bottom Left of Fig-

ure 3.1), or total time the aircraft can fly starting with a full battery, will be available.

The total mass of the aircraft (Bottom Right of Figure 3.1) is always given, which

includes the battery mass as well as the structural mass required by that particular

wingspan. With this data available we selected our configuration by maximizing the

total excess time (Lime Circle in Figure 3.1). The parameters used for this process

and the resulting aircraft configuration parameters and resulting values are shown

in Table 3.1.

Table 3.1: Aircraft Parameters and Endurance Values

Design Parameters Airplane Configuration and Values
Name Value Name Value
Ppayload 109 W Wingspan 21 m
mpayload 6 kg mbat 15.5 kg
Pprop max 600 W AR 20.5

Day of Year Dec. 1 MSoC 26.23%
Latitude 36� N Texc 5.47 h
Longitude 84� W mstruct 50.16 kg

h0 1000 m mtotal 90.16 kg
Energy density 650 Wh/kg 1 Plevel 468.29 W

In order to provide for network coverage, we consider the inclusion of the equip-

ment necessary to create an LTE cell using the specifications of [46] as a guide. We

also consider some form of satellite backhaul, which several commercial entities are

currently in the process of developing [47] or actively deploying [48]. Thus, the sys-

tem acts as a relay between easily human-portable devices such as cell-phones and the

satellite layer, which requires heavier and less portable equipment to communicate

with. This architecture is depicted in Figure 3.2. Thus, the aircraft is capable of

providing network services to ground users to augment existing infrastructure or cre-

ate coverage in areas where infrastructure is disrupted or otherwise unavailable. The

inclusion of on-board energy harvesting allows the platform to greatly exceed the en-

1
We are assuming that certain in-development battery technologies come to fruition to achieve

this density [40].
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Area of Service

UAV

Satellite

Ground 
stations

Uplink

Figure 3.2: System Model

durance of many other airborne communication platforms such as rotary-wing UAVs,

decreasing the requirement for frequent landings and multiple platforms to provide

continuous coverage. Such a platform is then evaluated in a simulated environment

with multiple ground users under simple geometric flight-area constraints.

The primary di↵erence from other works investigating similar platforms in a net-

working context [14, 15, 49] is the goal of achieving perpetual-endurance flight and the

inclusion of a variable altitude. Such perpetual-endurance flight is discussed in several

other works [10, 11] from an engineering perspective, but without the inclusion of a

networking context. The inclusion of variable altitude allows for additional energy

to be stored as gravitational potential energy, augmenting the battery stores, and is

discussed (again only from an engineering or e�ciency optimization perspective) in

works such as [11, 13]. This technique may allow the aircraft to extend its window

of perpetual-endurance viability further into the winter months with lower specifica-

tions while being unneeded in the summer months, or to increase energy reserves in

advance of poor weather conditions.
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3.2 Measurement

3.2.1 Propulsion Power

In order to perform the desired optimization trials, we first had to develop a

framework for measuring the energetic performance of a given trajectory. From a

mathematical perspective, this consisted of two parts: finding a representation for

the trajectory, and measuring the energy and network characteristics of that trajec-

tory. Initially, we created two di↵erent types of trajectory segment from which to

compose the trajectory: a linear segment that could ascend or descend and a circular

arc segment that maintained a constant altitude. Later, a more general segment rep-

resentation was developed that could represent both of these specific cases, in addition

to an ascending/descending circular arc. For each segment, we assume a constant ve-

locity. Specifically, we assume a constant Angle-of-Attack (AoA), which determines

the required velocity to maintain the course. From this we can determine the position

at any particular time as well as the required power. The relevant formulae are:

Required power2:

Pprop = |T | · v (3.1)

For a circular arc segment:

sin(�) =
m

r [tan(✓ + ↵)(L1 sin(✓) +D1 cos(✓)) + (L1 cos(✓)�D1 sin(✓)]
(3.2a)

v2 =
rg sin(�)

cos(�)
(3.2b)

T =
L1v2 sin(✓) +D1v2 cos(✓)

cos(✓ + ↵)
(3.2c)

For a linear segment (circular arc with an infinite radius):

v2 =
mg

[L1 sin(✓) +D1 cos(✓)] tan(✓ + ↵) + [L1 cos(✓)�D1 sin(✓)]
(3.3a)

2
we assume no powered deceleration, thus the thrust is never negative
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T =
L1v2 sin(✓) +D1v2 cos(✓)

cos(✓ + ↵)
(3.3b)

The full derivation for these is presented in Appendix A.

v Velocity (m/s) T Thrust (N)
m Aircraft Mass r Turn Radius (m)
� Roll Angle (to center) ✓ Angle of Ascent
↵ Angle of Attack ⇢ Air Density (kg/m3)
S Wing Surface Area (m2) g Standard Gravity (m/s2)
L1 1/2 · ⇢ · CL · S CL Coe�cient of Lift
D1 1/2 · ⇢ · CD · S CD CD,wing + CD,par + CD,ind

CD,wing Wing Drag Coe�cient CD,par Parasitic Drag Coe�cient
CD,ind Induced Drag Coe�cient Pprop Propeller power (W)

Table 3.2: Symbols and Expressions for Equation 3.2 and Equation 3.3.

3.2.2 Solar Power

Now that we can determine the power required for the propulsion system for vari-

ous trajectory segments, we must also be able to determine the solar power collected.

This is strongly dependent on the attitude of the aircraft (specifically the solar cells)

relative to the direction of the sun. As the solar panels are mounted on the wings

of the aircraft (we assume they are facing directly vertical in the rest orientation for

simplicity), power input will be highest at local solar noon when the sun is highest

in the sky. Orienting the panels towards the sun will increase the energy collected

over time, which might be accomplished either by banking towards the sun (and thus

turning), flying towards the sun and descending, flying away from the sun and as-

cending, adjusting the AoA, or some combination thereof. Thus, each segment must

compute its relative orientation over time, encoded as the azimuth (in degrees east of

north) and tilt (degrees below horizontal). Given this information we can compute

the solar power as in [10]

P nom
solar = Isolar('lat, h, �, t,~nsm) · Asm · ⌘sm · ⌘mppt (3.4)
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where Isolar is the incident solar radiation as a function of geographical latitude 'lat,

altitude h, current day-of-year �, local time t, and solar module normal vector ~nsm

(encoded as the aforementioned azimuth and tilt). Further, Asm is the area of the

solar modules, ⌘sm is the solar module e�ciency, and ⌘mppt is the e�ciency of the

maximum power point tracker module. In our implementation, the computation of

Isolar is provided by [50].

In order to determine the azimuth and tilt of the solar modules, one can take the

base orientation of the panels and apply a rotation matrix from the current attitude

(see Equation A.6) and heading to get the normal vector. The azimuth is then simply

the angle of this vector as projected on the XY plane, and the tilt is the angle of the

vector above the XY plane. In the event that the normal vector remains vertical (no

pitch or roll), the azimuth can remain undefined (use any value) and we take a tilt of

0�.

3.2.3 Battery Charge

Given the above calculations, we have a net power of

Pnet = P nom
solar � Pprop � Ppld (3.5)

When Pnet > 0 the batteries can be charged, and when Pnet < 0 energy must

be taken from the batteries. In the event the batteries are full, no more energy

may be stored. We take the battery charge and discharge coe�cients of 0.95 and

1.03 respectively from [10], which determines the e�ciency of storing energy in the

batteries. [10] also defines an exponential charge limiting above a 90% State of Charge,

but we do not consider that here for ease of computation.
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3.2.4 Network Throughput Estimation

To estimate network throughput we use the equations presented in [14] for instan-

taneous channel capacity in bits/second:

R(t) = B log2

✓
1 +

P�0
�2d2

◆
(3.6)

WhereB is the channel bandwidth in Hz, P is the transmit power, �0 is the channel

power at 1 meter, �2 is the noise power, and d is the distance between transmitter

and receiver. The noise power is calculated as

�2 = N0B (3.7)

Where N0 is the noise power spectrum density in dBm/Hz. Note that P , �0, �2,

andN0 are frequently in a logarithmic/decibel scale, and should be multiplied/divided

on a linear scale (or added/subtracted on the logarithmic scale, respectively) for these

equations. Additionally, to validate our estimation is indicative of what we might see

in a real system, we evaluate the throughput in a simulated environment, considering

the impacts of multiple users and the characteristics of our satellite backhaul. These

simulations, performed in NS3 [51], model each user as producing some level of tra�c

according to a Poisson Pareto Burst Process (PPBP) [52] such that the network link is

saturated. The parameters for the radio equipment, satellite link, user distribution,

and tra�c generation (per-user) are given in Table 3.3. All other parameters are

taken from the NS3 defaults.

3.3 Initial Results

In order to get a rough feeling for the various measures of trajectories in our

feasible space, we look at a small number of hand-selected trajectories. Depicted
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Table 3.3: Other Simulation Parameters

Description Value

Transmission power 30 dBm

Channel bandwidth 4.5 MHz

Noise power spectrum density -174 dBm/Hz

Backhaul Data Rate 1 Gbps

Backhaul Latency 20 ms

Number of Ground Users 5

User Distribution Radius 5 km

PPBP Mean Burst Arrivals 1

PPBP Mean Burst Time Length 1 second

PPBP Burst Intensity 1 Mbps

in Figure 3.3, these are called the Circle, Bowtie, and Ladder trajectories. The Circle

trajectory is simply a circular path at a constant altitude. The Bowtie trajectory

is a path around two circles, crossing in the center, also at a constant altitude3.

Finally, the Ladder trajectory has the same path as the Bowtie trajectory in the XY

(horizontal)4 plane, but ascends during the day (when excess solar power is available)

and descends at night, as is shown in figure Figure 3.3c. A perspective view of the

ladder trajectory is shown in Figure 3.3d.

We can then derive the energy and network characteristics of these trajectories

using the methods described above. The energy characteristics of the three trajecto-

ries are plotted over a 48-hour period (to better show the pattern over multiple days)

below in Figure 3.4a, Figure 3.4b, and Figure 3.4c, with the throughputs plotted in

figure Figure 3.4d over a 24-hour period. The energy plots can be rapidly gener-

ated, while the throughput5 plot represents the average over 30 runs in NS3 for each

trajectory6, with two standard deviations shaded for each curve.

3
This might also be described as a “figure-eight” or “infinity” shape.

4
Note that the X dimension represents West to East, and the Y dimension represents South to

North.
5
Note that in this instance we were investigating the upload rates, and not the download rates.

6
In our setup, the NS3 simulations ran approximately in real-time (1 second = 1 simulation
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(a) (b)

(c) (d)

Figure 3.3: Baseline Trajectories. (a) Circle Top View, (b) Bowtie and Ladder Top
View, (c) Ladder Side View, (d) Ladder Perspective View. The dashed line represents
(a, b) the flight area radius, (c) the continuation of the flight path, (d) and the vertical
centers of the trajectory. All units in meters.

We can see that an appreciable amount of energy was stored in altitude for the

ladder trajectory, around 20% of the capacity of the batteries. Additional energy

was also harvested while at higher altitude, though much of this benefit is lost as the

batteries are fully charged. Finally, take note that more power is needed at higher

altitudes due to the decreased air density. The throughput plot reveals that the circle

and Bowtie trajectories have very similar throughput rates, with a slight advantage

to the Bowtie trajectory. The Ladder trajectory begins and ends the period with a

second) and are single-threaded.
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(a) (b)

(c) (d)

Figure 3.4: Trajectory Energy Balance and Throughput. (a) Circle Energy, (b)
Bowtie Energy, (c) Ladder Energy, (d) Comparison of Throughput (upload).

throughput similar to the other two trajectories, but this diminishes throughout the

day as the aircraft approaches its highest point in the evening. This relationship is

more easily visible in Figure 3.5. Summary values for each of these plots is available

in Table 3.4.

We can see from these few examples that there is a direct tradeo↵ in using altitude

to store energy when our target application depends on distance to targets on the

ground: the higher we go the less throughput is available. However, we also see that

even at a fixed altitude there are di↵erent paths we can take that might increase

either our energetic or networking performance. In Chapter IV we will take a look

at a couple methods for finding trajectories that have improved network conditions

over predefined trajectories while considering the constraints on energy balance, as

well as other constraints on the aircraft that we did not reach here, such as thrust
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and velocity limits.

Figure 3.5: Ladder Trajectory - Throughput vs Altitude

Table 3.4: Baseline Simulation Results. Throughput figures represent the average
system throughput.

Trajectory MSoC Min. Throughput Mean Throughput Max Throughput

Circle 40.1% 8.42 Mbps 8.56 Mbps 8.63 Mbps

Bowtie 40.3% 8.91 Mbps 8.98 Mbps 9.03 Mbps

Ladder 52.8% 3.92 Mbps 6.13 Mbps 8.87 Mbps
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CHAPTER IV

Trajectory Optimization

The optimization of fixed-wing aircraft trajectories has been investigated at great

length in the general sense, as well as for optimizing energy balance in HALE sys-

tems [11, 12] and in improving the characteristics of aerial networks [2], among many

other topics. However, there is relatively little literature on optimizing a fixed-wing

trajectory of a aircraft with perpetual-endurance from a networking perspective, as

technology is only currently developing to the point where such systems are commer-

cially viable. Here we will apply a parallel1 variant of the Nelder-Mead method [53]

(sometimes called the non-linear simplex method), as well as the Particle Swarm Opti-

mization (PSO) algorithm originally described in [54]. The Nelder-Mead method was

previously used to optimize the e�ciency of the trajectory of a perpetual-endurance

flying aircraft in [11]. The end goal of the optimization here is to maximize the

mean throughput of our ground users subject to constraints on the net energy over

the course of the day and various physical and flight volume constraints, given our

aircraft specifications from section 3.1 and a particular time of year and geographic

location

1
Here “parallel” means multiple vertices are updated in each iteration, and the evaluations can

thus be spread across multiple processor cores as they are independent.
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4.1 Representation Challenges and Selection

The first item to address in all of these optimization approaches is how the trajec-

tory is represented in the solution space that the optimization algorithm is working in.

All of the optimization algorithms we use here have some encoding of the trajectory

as a series of values (i.e. a vector) as ~x = x0, x1, ..., xn, which is used to construct the

trajectory, gather relevant statistics, and produce the value of an objective function

f(~x) which is used to drive the optimization algorithm. A number of characteristics

were conjectured to be useful in the process of developing the representation, namely

• The trajectory should not be made of (exclusively) very short segments. For

example, 20-second segments would imply 4, 320 · variables/segment variables

to represent a 24-hour period. Larger numbers of dimensions led to longer

evaluation times and less improvement in our early optimization attempts.

• The trajectory should have a fixed length input. That is, we should not need

to add or remove variables during the optimization process, and all trajectories

should have the same input “shape”.

• The trajectory representation should produce implicitly “smooth” trajectories.

That is, there should be no “teleportation” or sharp corners. Mathematically,

the trajectory should be continuous and di↵erentiable.

• The trajectory representation should produce trajectories with a duration equal

to one 24-hour period, as this is the duration over which we are evaluating the

trajectory.

A number of di↵erent representations were investigated2, and two representations

were finally considered. The first, inspired by the representation in [11], consists of a

number of segments of equal time duration (e.g. every segment is 20 seconds long),

2
Many of the other candidates remain in the code, see subsubsection B.1.1.2
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with three variables for each segment: AoA, pitch, and roll. This has the advantage

of guaranteeing a particular duration for the whole trajectory, simply by dividing

that duration into fixed length segments. It is also implicitly smooth, as the variables

determining the rates of change (AoA, pitch, and roll determine velocity, altitude

change rate, and heading respectively) are directly set. However, we determined

that this approach does not scale well to long durations. Firstly, dividing the 24-hour

period up into short time spans that can still control the flight dynamics finely enough

required a large number of dimensions. For 20-second segments, it will be 3 · 24·60·6020 =

12, 960 dimensions. Secondly, and perhaps more importantly, the values near the start

of the trajectory have an impact on every position after them. Thus, a slight change

in altitude or heading early on will impact every subsequent point. This discourages

changes to the early points, as they may make the trajectory infeasible with respect to

the flight-volume constraints, or require traversing a valley in the objective function,

requiring many other points to change to return to feasibility/optimality.

The second, and the final, representation we settled on for this work somewhat

lessens these shortcomings. The representation consists primarily of a sequence of

“waypoints” consisting of a position and heading, as seen in Figure 4.1. For each

adjacent pair of waypoints, two circular arcs are constructed which are tangent to

the headings, incident to the waypoint locations, tangent to each other, and of equal

radii3. As there are multiple possible solutions to this description, we choose the

shortest path that involves no change in heading at the tangent point of the two

arcs. Thus, each segment is determined only by those two waypoints near it, and

each waypoint only impacts the segments adjacent to it. Additionally, the AoA for

each segment is stored in the representation. Thus, we eliminate the large impact-

at-a-distance of any dimension as seen in the first representation. However, you may

have noticed that this representation does not implicitly create a trajectory that is

3
This is very similar to biarc interpolation as described in [55], though we arrived at a slightly

di↵erent formulation.
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24-hours in length. To correct this, we scale the trajectory in the XY plane to reach

this 24-hour duration. This somewhat negates the first benefit of this representation,

as a particularly large segment may cause all others to shrink, but the impact is

not nearly as drastic as before. To implement this scaling, we utilized the fixed-point

iteration method4, determining the duration of a candidate trajectory proportional to

24-hours and scaling the XY coordinates by the inverse of that value. This converges

to 24 hours within a small number (less than 10) of iterations.

Figure 4.1: Examples of segments between the waypoints (0, 0) and (1, 1). The
heading of the first waypoint is 0 radians, and the heading of the second waypoint is
indicated in the legend.

Even this, however, did not create a problem that was amenable to optimiza-

tion. The primary factor determining the throughput available to ground users is the

altitude of the aircraft. As such, in order to avoid becoming infeasible due to too

rapid altitude changes, multiple components of the vector must change in parallel in

order for this metric to improve (i.e. we cannot move a single point down without

adjusting its neighbors). While this may eventually occur, it was not observed in

any of the trial runs. Instead only small improvements were made and the algorithm

4
See for example [56] section 2.2.
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Figure 4.2: Altitude Schedule Variables

appeared to remain stuck in a local optimum almost immediately. To remedy this,

we adopted an “altitude scheduling” approach, adding some additional variables into

the trajectory representation to describe the altitude pattern that should be followed

throughout the day. These variables describe the total change in altitude throughout

the day, and the proportions of the day that should be spent in each of the five phases

show in Figure 4.2: morning rest, ascend, sustain, descend, evening rest. Though this

compromise leaves much to be desired in terms of the expressiveness of the repre-

sentation (more complex altitude patterns are not representable), it does allow the

optimizer to find improvements in the trajectories.

4.2 Optimization Algorithms

The basic premise of an optimization algorithm is to take some input (in our case a

vector of real numbers), evaluate some objective function over that input (in our case

the mean throughput), and then modify the input to try and minimize or maximize

the objective function. There may also be constraints on the input variables, either

directly or indirectly. In our case, for example, a direct constraint on the inputs might

be that AoA is limited to the range of zero plus or minus 10 degrees. Indirectly, we
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might require that the position of the aircraft remain within some region, which is

the result of several input variables. The strategies for modifying the inputs when

performing the optimization are numerous (see for example the listings in [34] or [57]),

but here we will focus on just two: the Nelder-Mead (NM) method and Particle Swarm

Optimization (PSO). Brief descriptions of the variants we utilize are given below, but

many other varieties and modifications exist.

4.2.1 Nelder-Mead

The Nelder-Mead method, first proposed in [58], is an optimization algorithm that

uses the vertices of a simplex in the search space as candidate solutions, adjusting the

worst o↵ vertex in each iteration. A simplex is the interior space (i.e. convex hull)

defined by n+1 point in n dimensions, such as a line segment in R1, a triangle in R2,

a tetrahedron in R3, and so on5. Each vertex is then a candidate solution, and keeps

track of its corresponding value determined by the objective function. New vertices

are generated according to the following rules, where the centroid P̄ is the mean of

all the other points:

• Reflection: The worst point mirrored over the centroid as PR = P̄+↵(P̄�Pworst)

• Expansion: The reflected point expanded away from the centroid as PE =

P̄ + �(PR � P̄ )

• Contraction: The point contracted towards the centroid as PC = P̄ +⇢(Pworst�

P̄ )

This is represented for R2 in Figure 4.3a, where the black lines represent the

original simplex. The algorithm first checks the reflection point. If that point is better

than the best vertex so far, then the expansion point is checked. If the reflection point

5
Note that if three or more vertices are colinear (e.g. forming a line in R2

) then the simplex

is said to be degenerate. In the case of Nelder-Mead, this prevents the algorithm from searching

perpendicularly to that line and may hinder the search.
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Figure 4.3: Nelder-Mead Operations in R2. (a) Vertex Generation and (b) Shrink
Operation.

is not better than the next-worst vertex in the simplex, then the contraction point is

checked. The checked point with the best fitness replaces the worst vertex. If none

of the checked points is better that the next-worst vertex, all points in the simplex

are shrunk towards the centroid as P 0
i = Pbest + �(Pi � Pbest), as seen in Figure 4.3b.

The coe�cients ↵, �, ⇢, and � are respectively the reflection, expansion, contraction,

and shrink coe�cients. As an example, in our case we take them to be 1, 2, 0.5, and

0.5 respectively6.

Notice that this version of NM is inherently serial, and only one vertex may

be updated at a time. To allow parallel computation (specifically of the objective

function) we use the modifications described in [53] of updating the k worst vertices,

spreading these evaluations over multiple cores. The algorithm remains largely the

same, except that the “next-worst vertex” becomes the k+ 1th worst vertex, and the

centroid is that of all vertices except the k worst7.

6
These parameters are the usual default values found in the literature, though we also explored

adaptive coe�cients as described in [59].
7
In that paper it is even shown that updating vertices in parallel in this manner may decrease the

total number of updates/evaluations required during optimization for some problems. Investigating

if this is the case for our problem would be an interesting later investigation.
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4.2.2 Particle Swarm Optimization

Particle Swarm optimization is a population based optimization algorithm. A

number of particles (the “swarm”) which represent candidate solutions are placed

into the solution space. Each particles has a position, a velocity, and the coordinates

and value of the best point it has visited. The swarm itself also keeps track of the

position and value of the best position that any of the particles has visited. In each

iteration, a particle updates its velocity, and then updates it’s position according to

that velocity multiplied by some learning rate �. The updated velocity is the sum of

the following components:

• Inertia: The current velocity multiplied by some factor w

• Cognitive: The distance to the particle’s personal best, multiplied by some

factor c1

• Social: The distance to the swarms global best, multiplied by some factor c2

Additionally, the Cognitive and Social vectors are modified stochastically, where

each dimensional component is multiplied by a random uniform number in the range

[0, 1). This is represented in Figure 4.4, without the random modifications to the

cognitive and social vectors for simplicity. In our case, we use an inertia factor in the

Current
Position

Swarm
Best

Personal
Best

Current
Velocity

New Velocity
(Simplified)

Figure 4.4: Particle Swarm Optimization Velocity Update
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approximate range of [0.9, 1) (varying by attempt, sometimes decreasing over time to

encourage convergence), have c1 = c2 = 2, and use � = 0.1.

4.3 Results

Here we’ll take a look at how well these algorithms perform on the given problem,

both from the perspective of the throughput estimation as well as a closer look at

the simulated network performance of the generated trajectories for two particular

scenarios. First, we’ll discuss the specific constraints used and how they are enforced,

as well as the initial conditions for the trajectories.

4.3.1 Constraints

As a reminder, both the PSO and NM algorithms operate over a vector of real num-

bers representing the trajectory. This vector is composed of the altitude schedule (Fig-

ure 4.2), where the gain is in meters and the other values represent the proportion of

the day during which that segment occurs, as (gain, rest, ascend, sustain, descend, rest),

followed by the waypoints. Each waypoint contains five values: (x, y, heading,↵1,↵2).

The trajectory is then built, and statistics on the position, velocity, energy levels, and

throughput are generated. These statistics are then fed into our objective function,

which is the sum of one “reward” and multiple “constraint penalty” factors. The

reward value in our case is the throughput, expressed as the average Mbps/user over

the time period. The constraint factors are non-positive values which increase in

magnitude (we chose to make this increase quadratic) with respect to the amount the

constrain is violated. For example, we have a radius constraint which penalizes the

objective value for every meter the aircraft flies outside the radius. This has the ef-

fect of strongly discouraging the optimizer from exploring outside our feasible region,

while also guiding it to the feasible region if it begins outside. The specific constraint

factors and coe�cients (1 unless otherwise stated) we utilize are as follows:
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• Radius Penalty: Meters outside a 2000 meter radius, coe�cient of 10�6.

• Altitude Penalty: Meters below 1,000 meters or above 10,000 meters.

• Energy Penalty: Watt-hours below some “budget” of allowed energy (battery

and potential) loss over the time period.

• Thrust Penalty: Newtons above 100 N of thrust.

• Speed Penalty: Meters per second below 6 m/s or above 25 m/s.

The budget used for the energy penalty is varied, to examine its impact on

throughput and trajectory. Note that a positive value for the budget indicates en-

ergy may be expended over the course of the day, while a negative budget indicates

energy must be gained to meet the target. This might allow for more energy to be

expended when network resources are in higher demand, and conserved otherwise8.

A starting point is provided to the optimizer, along with a list of o↵sets, to construct

the initial populations. This point represents a circular trajectory with a radius of

1,800 meters, with four waypoints (separated by ⇡
2 radians), and an initial altitude

schedule with a gain of 3,000 meters and even periods. The o↵sets, which are each

multiplied by a random variable X ⇠ U(�1, 1) and added to the initial point, have

values of (400, 0.2, 0.2, 0.2, 0.2, 0.2) for the altitude schedule and (100, 100, 0.1, 1, 1) for

each waypoint. Due to the tendency of the PSO algorithm to attain high velocities

and potentially leave the feasible region, bounds are also placed on the values For

the full simulations, the optimizer is allowed to run for 1,000 iterations, and for 250

iterations in the budget comparisons9.

8
This might also be useful for more granular optimization scheduling, allowing more budget to

be allocated to high demand times of day, but this is not explored here.
9
As there is a diminishing return for more iterations, a more intelligent termination condition

would be desirable in the future.
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4.3.2 Optimizer Performance

In order to determine whether our throughput estimation is reasonable, and to see

how the optimizers perform with an excess of iterations allowed, we’ll first look at the

1,000 iteration runs. Both algorithms were run with energy budgets of 0 Wh and -500

Wh (the aircraft must end up with 500 more Wh than it started with), and allowed

a maximum of either 1,000 iterations or 217 ⇡ 128, 000 function evaluations. The

performance over time, plotted in Figure 4.5, displays a few interesting characteristics.

Firstly, take note that in the low iterations the objective function is outside the frame,

indicating that the trajectory is infeasible. Second, we can see that in both cases the

PSO algorithm takes an early lead, but then appears to be stuck in a local optimum.

Some iterations later, it is overtaken by Nelder-Mead. Finally, we can see a similar

feature on the Nelder-Mead curve for both budgets, though at di↵erent iteration

numbers, where it reaches a plateau and then proceeds further. This is possibly due

to the identical initial conditions of the optimizer (the starting simplex), suggesting

a similar route is taken under both energy budget constraints.

Taking the best trajectory for each optimizer/budget combination, we can examine

the di↵erences between our estimated throughput and the value determined through

simulation in Figure 4.5. Notably, the simulated throughput ends up being between

73% and 78% of the estimated value, dropping to the lower end when the craft

is further away from the ground. This confirms that the throughput estimation is

reasonably proportional to what we might expect in reality over the region of interest.

Next, we can look at the performance of the optimizers over multiple runs with

di↵erent initial points and random number generator seeds. In Figure 4.7 we dis-

play the mean objective function values over 5 runs of each optimizer (with identical

random-number-generator streams between optimizers/budgets), with the shaded re-

gions indicating the minimum/maximum value range for each iteration. We can see

that with decreasing energy budgets the objective value achieved in 250 iterations
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Figure 4.5: Optimizer Performance for 0Wh and -500Wh Budgets

decreases as well. Between the two algorithms, we observe that PSO reaches the fea-

sible region much faster than NM, but remains at a local optimum below what NM

reaches after more iterations. (This is the case for each budget except for -750 Wh,

but we’ll conjecture the same pattern would play out over more iterations). We can

also see that lower energy budgets increases the number of iterations needed to find

feasible solutions and optimize the results. It is quite possible that this is due to an

Figure 4.6: Comparison of Estimated to Simulated User Throughput
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Figure 4.7: Optimizer Performance for Various Budgets. Minimum-Maximum Range
Shaded.

increased distance from our initial guess to the feasible space, though other factors

may also be at play.

One last item of note is that the horizontal profile of the trajectory did not di↵er

much from the starting circular trajectory, and most of the optimization appears to

have occurred in the altitude schedule. More modifications did occur in the PSO

optimizer, but these appear to have been detrimental to the overall process. This

can be observed by replacing all components of the vector unrelated to the altitude

schedule with the template trajectory, returning the trajectory to a simple circle but

ascending and descending according to the determined schedule. In doing this, we

see a negligible change in throughput, a small change in energy balance for the NM

optimized trajectories, and a much larger increase in the PSO optimized trajectories,

see Table 4.1. This suggests that our optimizers were unable to find any improvements

to be made in the XY plane given our representation. In the case of PSO, the

most-likely case is that the algorithm approaches the feasible space correctly, but
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Energy Budget Optimizer Optimized Trajectory Altitude-Schedule Only
-250 Wh PSO 251.44 Wh 370.41 Wh
-500 Wh PSO 505.02 Wh 627.71 Wh
-750 Wh PSO 755.46 Wh 887.23 Wh
-250 Wh NM 262.83 Wh 267.97 Wh
-500 Wh NM 544.69 Wh 568.11 Wh
-750 Wh NM 757.43 Wh 773.93 Wh

Table 4.1: 24-hour Energy Gain: Optimized vs Altitude-Schedule Only

remains stuck in a local optimum after that point. For comparison, the optimizations

performed in [11] di↵ered from circular trajectories such that it becomes an ellipsoid

with the major axis roughly aligned to the sun.
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CHAPTER V

Conclusions and Future Work

In this work we develop a framework for evaluating trajectories for perpetual-

endurance, solar-powered fixed-wing aircraft tasked with providing network coverage,

as well as multiple methods for optimizing these trajectories to maximize the pro-

vided throughput under energy constraints. We demonstrate our measurement frame-

work on a small number of baseline trajectories, and then perform optimizations for

throughput subject to various energy constraints to compare the performance of the

two optimization algorithms. The results demonstrate that the algorithms are capa-

ble of modifying the base trajectory to meet the energy feasibility constraints, and

to increase the network performance beyond that. We also observe that given our

starting conditions, more stringent energy constraints lead to slower convergence and

lower estimated throughput.

Several avenues exist for further investigation. Firstly, given our representation,

much of the information that might be gained in one “loop” of the trajectory that

might be useful in the next has no impact on it. The optimizer has no way to re-use

this information. Alternative representations might better exploit any such patterns.

Secondly, the use of a singular altitude scheduler limits the expressiveness of the

representation. It might have been advantageous to, for example, ascend somewhat

while heading away from the sun, and descend while approaching it, while maintaining

37



an overall net increase in altitude. A potential addition to the representation would

be some manner of o↵set for each waypoint, to facilitate local deviations from the

altitude schedule while maintaining the overall pattern.

Aside from changes to the representation, there are many, many other methods

for performing this manner of optimization. [34] provides a good overview of many

of these. In addition to this, one might also perform a multi-objective search, allow-

ing operators some freedom to choose between expending more energy when more

throughput is required, or conserving more energy when network demand is not as

high.

At a lower level, the code used for evaluating these trajectories is moderately

ine�cient. A single trajectory evaluation, including constructing the segments, de-

termining the poses, and gathering energy and throughput information, took around

4-5 seconds in the final version. As the evaluation must be performed many thousands

of times during the process of optimization, this poses a large bottleneck to iterating

on approaches and gathering statistics.
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APPENDIX A

Aerodynamics

Here we will derive the equations necessary to determine the power needed by an

aircraft to maintain steady-state flight in a simplified environment. We also present

some equations to determine trajectory characteristics given control inputs.

A.1 Context

The following is based largely on the work in [14], where the authors work a similar

problem, sans the addition of solar energy or an altitude component.

A fixed wing aircraft has the following primary forces acting upon it while in

motion (see Figure A.1):

• Weight/gravity towards the Earth

• Thrust from the propeller

• Lift, modelled as 90� above the velocity vector

• Drag, modelled in the direction opposite the velocity vector

Thus, for an aircraft travelling in a straight and level trajectory, weight will be

down, thrust will be forward, lift will be up, and drag will be to the rear. In our
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case, we consider that the aircraft can have a velocity above or below horizontal,

and that the aircraft can have an attitude above or below its velocity vector. In

this case, lift is still modelled as above and perpendicular to the velocity vector, drag

parallel to the velocity vector, and thrust potentially above/below the velocity vector,

as in Figure A.1a. The angle of the velocity above horizontal will be referred to as

✓, and the angle of the aircraft (and incidentally thrust) above ✓ to be the Angle-of-

Attack ↵. Finally, to execute a turn, the aircraft rolls at angle � such that the wing

in the direction of the center moves down, as seen in Figure A.1b.

Weight

Drag

Lift

Thrust

Heading
Horizontal

(a)

Weight

Lift

Roll

To Center

(b)

Figure A.1: (a) Forces acting on the aircraft. (b) When turning, the aircraft rolls and
the angled lift contributes to the net centripetal force.

The magnitudes of these forces are given below in Equation A.1. Node that CL and

CD,wing can be determined with XFoil [60] and are functions of ↵ and the Reynolds

Number. A collection of coe�cients for di↵erent airfoils is available at [61]. The air

density ⇢ is modelled as in [62]. Equation A.1f and Equation A.1g are defined for use

in the intermediate equations.
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FL = 1/2 · ⇢ · CL · S · v2 = L1 · v2 (A.1a)

FD = 1/2 · ⇢ · CD · S · v2 = D1 · v2 (A.1b)

CD = CD,wing + CD,par + CD,ind (A.1c)

CD,par = 0.074 ·Re�0.2 (A.1d)

CD,ind =
C2

L

⇡ · e0 · AR
(A.1e)

L1 = 1/2 · ⇢ · CL · S (A.1f)

D1 = 1/2 · ⇢ · CD · S (A.1g)

We have the following variables used in the above:

• m: aircraft mass

• g: local gravitational acceleration (e.g. 9.8m/s2). Varies slightly with altitude

• CL and CD: Coe�cients of lift and drag, a function of the airfoil used and Angle

of Attack ↵

• v: aircraft velocity relative to its medium. Note that we assume that there is

no sideslip for our calculations.

• S: Wing surface area

• ⇢: Air density. Decreases with altitude [62].

• ⇡: The ratio of a circle’s area to it’s radius squared

• e0: Oswald E�ciency, a function of the shape of the wings.

• AR: Aspect ratio of the wings: wingspan
wingchord
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Given the situation of the aircraft, the resulting thrust and velocity must be

determined for a steady state condition. These values are derived in the following

sections. Once these are known, the power needed by the aircraft propulsion system

is then P = |T |·v as in [14]. It should be noted that this only works for approximately

level flight, and for extreme inputs (e.g. the aircraft oriented vertically and hovering)

the results may be invalid (e.g. the hovering aircraft has zero velocity, implying zero

power use). Constraining AoA and altitude change rate appropriately should prevent

this scenario from occurring.

A.2 Circular Arc Segment Equations

Starting with the above, we can derive the equations for the velocity, thrust, and

power required for an aircraft to traverse a path defined by a circular arc (as projected

on the XY plane) ascending at some angle ✓. We also consider the case of a straight

path as r = 1.

We begin with the following net force:

~F = ~FT + ~FL + ~FD + ~Fg (A.2)

For the following we use a forward-left-down (FLD) reference frame, where the

x+ direction is forward, y+ is left, and z+ is down. Relative to the rest orientation,

we arrive at the attitude of the aircraft by pitching (about the y axis), rolling (about

the x axis), and yawing (about the z axis), in that order. The respective rotation

matrices are then:

Ry(✓) =

0

BBBB@

cos(✓) 0 sin(✓)

0 1 0

� sin(✓) 0 cos(✓)

1

CCCCA
(A.3)
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Rx(�) =

0

BBBB@

1 0 0

0 cos(�) � sin(�)

0 sin(�) cos(�)

1

CCCCA
(A.4)

Rz( ) =

0

BBBB@

cos( ) � sin( ) 0

sin( ) cos( ) 0

0 0 1

1

CCCCA
(A.5)

Applied in reverse order, our rotation matrix is thus

R(✓,�, ) = Rz( ) ·Rx(�) ·Ry(✓) (A.6)

By applying the appropriate pitch and roll rotations to our thrust, lift, and drag

vectors, we arrive at the magnitudes of these forces along each dimension. Note that

for the thrust vector, we consider the AoA in addition to the angle of ascent/pitch,

as the aircraft (and thus the propellers) are oriented above the velocity vector (for a

positive AoA). We arrive at

~FT =

0

BBBB@

T

0

0

1

CCCCA
·R(✓ + ↵,�, 0) = T ·

0

BBBB@

cos(✓ + ↵)

sin(✓ + ↵) · sin(�)

� sin(✓ + ↵) · cos(�)

1

CCCCA
(A.7a)

~FL =

0

BBBB@

0

0

�FL

1

CCCCA
·R(✓,�, 0) = FL ·

0

BBBB@

� sin(✓)

cos(✓) · sin(�)

� cos(✓) · cos(�)

1

CCCCA
(A.7b)

~FD =

0

BBBB@

�FD

0

0

1

CCCCA
·R(✓,�, 0) = FD ·

0

BBBB@

� cos(✓)

� sin(✓) · sin(�)

sin(✓) · cos(�)

1

CCCCA
(A.7c)
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~Fg =

0

BBBB@

0

0

m · g

1

CCCCA
(A.7d)

A.2.1 Circular Arcs

In the circular arc case, our net force must be equal to the centripetal force needed

to maintain the turn. In the case of a straight path, our net force must be zero. We

begin with the case for a non-infinite radius, breaking out the above equations along

each dimension:

0 = T cos(✓ + ↵) �L sin(✓)�D cos(✓) (A.8a)

mv2

r
= T sin(✓ + ↵) sin(�) +L cos(✓) sin(�)�D sin(✓) sin(�) (A.8b)

0 = �T sin(✓ + ↵) cos(�) �L cos(✓) cos(�) +D sin(✓) cos(�) +mg (A.8c)

We then use Equation A.8b and Equation A.8c to reduce � to a function of v2.

Factoring out sin� and cos� we have:

mv2

r
= sin(�)[T sin(✓ + ↵) + L cos(✓)�D sin(✓)] (A.9a)

mg = cos(�)[T sin(✓ + ↵) + L cos(✓)�D sin(✓)] (A.9b)

Dividing the functions of � from the right-hand-side to the left-hand-side, we can
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then set the two equations equal to each other and cancel like terms:

mv2

r sin(�)
= [T sin(✓ + ↵) + L cos(✓)�D sin(✓)] =

mg

cos�
(A.10a)

mv2

r sin(�)
=

mg

cos(�)
(A.10b)

v2

r sin(�)
=

g

cos(�)
(A.10c)

Next, we will solve for v2 as a function of �, starting from Equation A.8a and

Equation A.8c. Substituting in Equation A.1a and Equation A.1b and rearranging

for T, we have

T =
L1v2 sin(✓) +D1v2 cos(✓)

cos(✓ + ↵)

(A.11a)

T =
�L1v2 cos(✓) cos(�) +D1v2 sin(✓) cos(�) +mg

sin(✓ + ↵) cos(�)

(A.11b)

L1v2 sin(✓) +D1v2 cos(✓)

cos(✓ + ↵)
=

�L1v2 cos(✓) cos(�) +D1v2 sin(✓) cos(�) +mg

sin(✓ + ↵) cos(�)
(A.11c)

Multiplying the denominators across and collecting the v2 cos(�) terms we have

L1v
2 sin(✓) sin(✓ + ↵) cos(�)

+D1v
2 cos(✓) sin(✓ + ↵) cos(�)

=

mg cos(✓ + ↵)

+D1v
2 sin(✓) cos(�) cos(✓ + ↵)

�L1v
2 cos(✓) cos(�) cos(✓ + ↵)

(A.12a)
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v2 cos(�)

 
L1 sin(✓) sin(✓ + ↵) +D1 cos(✓) sin(✓ + ↵)

+L1 cos(✓) cos(✓ + ↵)�D1 sin(✓) cos(✓ + ↵)

!
= mg cos(✓ + ↵) (A.12b)

We then divide across cos(✓ + ↵) and solve for v2

v2 cos(�)
�
L1 sin(✓) tan(✓ + ↵) +D1 cos(✓) tan(✓ + ↵) + L1 cos(✓)�D1 sin(✓)

�
= mg

(A.13a)

v2 =
mg

cos(�) [tan(✓ + ↵)(L1 sin(✓) +D1 cos(✓)) + (L1 cos(✓)�D1 sin(✓)]
(A.13b)

Combining Equation A.10c and Equation A.13b we can solve for �:

v2

r sin(�)
=

g

cos(�)
! v2 =

rg sin(�)

cos(�)
(A.14)

rg sin(�)

cos(�)
=

mg

cos(�) [tan(✓ + ↵)(L1 sin(✓) +D1 cos(✓)) + (L1 cos(✓)�D1 sin(✓)]
(A.15)

Cancelling the g and cos(�)�1 terms, and dividing by r, we thus have

sin(�) =
m

r [tan(✓ + ↵)(L1 sin(✓) +D1 cos(✓)) + (L1 cos(✓)�D1 sin(✓)]
(A.16)

We can then use Equation A.13b again to find v2. Finally, we can use our velocity
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to find the needed thrust with Equation A.11a. Our final values are thus

sin(�) =
m

r [tan(✓ + ↵)(L1 sin(✓) +D1 cos(✓)) + (L1 cos(✓)�D1 sin(✓)]
(A.17a)

v2 =
rg sin(�)

cos(�)
(A.17b)

T =
L1v2 sin(✓) +D1v2 cos(✓)

cos(✓ + ↵)
(A.17c)

A.2.2 Lines

To solve for the linear segments, we take the Y/Left component to be 0, and will

thus have a roll � = 0 as no lateral force is needed. Excluding the appropriate terms

from Equation A.8, we have the following two equations to solve for v and T :

0 = T cos(✓ + ↵) �L1v
2 sin(✓)�D1v

2 cos(✓) (A.18a)

0 = �T sin(✓ + ↵) �L1v
2 cos(✓) +D1v

2 sin(✓) +mg (A.18b)

Rearranging for T we get

T =
L1v2 sin(✓) +D1v2 cos(✓)

cos(✓ + ↵)
(A.19a)

T =
�L1v2 cos(✓) +D1v2 sin(✓) +mg

sin(✓ + ↵)
(A.19b)

We then set these two equations equal to each other, multiply across, and partially

distribute the denominators

L1v2 sin(✓) +D1v2 cos(✓)

cos(✓ + ↵)
=

�L1v2 cos(✓) +D1v2 sin(✓) +mg

sin(✓ + ↵)
(A.20a)
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[L1v
2 sin(✓) +D1v

2 cos(✓)] sin(✓ + ↵) = [�L1v
2 cos(✓) +D1v

2 sin(✓) +mg] cos(✓ + ↵)

(A.20b)

[L1v
2 sin(✓)+D1v

2 cos(✓)] sin(✓+↵) = [�L1v
2 cos(✓)+D1v

2 sin(✓)] cos(✓+↵)+mg cos(✓+↵)

(A.20c)

We can then collect the mg term and divide by cos(✓ + ↵)

mg cos(✓+↵) = [L1v
2 sin(✓)+D1v

2 cos(✓)] sin(✓+↵)+[L1v
2 cos(✓)�D1v

2 sin(✓)] cos(✓+↵)

(A.21)

mg =
[L1v2 sin(✓) +D1v2 cos(✓)] sin(✓ + ↵) + [L1v2 cos(✓)�D1v2 sin(✓)] cos(✓ + ↵)

cos(✓ + ↵)
(A.22)

mg = [L1v
2 sin(✓) +D1v

2 cos(✓)] tan(✓ + ↵) + [L1v
2 cos(✓)�D1v

2 sin(✓)] (A.23)

Finally, we collect our v2 term

mg = v2[L1 sin(✓) +D1 cos(✓)] tan(✓ + ↵) + [L1 cos(✓)�D1 sin(✓)] (A.24)

v2 =
mg

[L1 sin(✓) +D1 cos(✓)] tan(✓ + ↵) + [L1 cos(✓)�D1 sin(✓)]
(A.25)

As in the circular case we can use Equation A.11a to find our thrust. Our final

equations for a linear segment are then

v2 =
mg

[L1 sin(✓) +D1 cos(✓)] tan(✓ + ↵) + [L1 cos(✓)�D1 sin(✓)]
(A.26)

T =
L1v2 sin(✓) +D1v2 cos(✓)

cos(✓ + ↵)
(A.27)
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APPENDIX B

Code

At present, the code can be accessed at https://github.com/jarmillemich/

umf-thesis. The bulk of the evaluation and optimization code is under /jarmillemich-

ns3/python/thesis, with several notebooks in the directory above. Also in the direc-

tory above are the files runner.py, runner2.py, and optimizerunner.py, which can be

used to run the NS3 simulations for the baseline trajectories, for the optimized tra-

jectories, and to run the optimization algorithms, respectively. The code can be run

in the SageMath [63] environment (tested in 9.0), which is capable of hosting the

(Jupyter/IPython [64]) notebooks.

B.1 Modules

B.1.1 Aircraft.py

The Aircraft module contains the Aircraft class and some supporting code (most

notably the altitude model from [62]). The Aircraft class represents the various phys-

ical characteristics of the fixed wing model, as well as code related to calculating

the produced solar energy. Aircraft mass, wing configuration (span, chord, airfoil,

solar cell fill ratio) and various component e�ciencies (solar modules, propeller, oth-
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ers) may be configured in the constructor. Methods are available to determine the

velocity, thrust, and power of di↵erent classes of trajectory segment, as well as to

calculate the bank angle from the turn radius (and vice versa) in any particular set

of conditions.

B.1.1.1 ThesisCraft.py

This module contains the specifications for the reference Aircraft instance used in

our analysis.

B.1.1.2 Trajectory.py

The Trajectory class represents a collection of trajectory segments that make

up a particular aircraft trajectory. These are also present in this module as the

LineSegment, ArcSegment, and GeneralSegment classes. Each Segment class contains

methods for:

• velocityThrustPower: calculating the relevant velocity, thrust, and power values

for a particular Aircraft instance

• toPoses: calculating the pose (position and attitude, as well as velocity, thrust,

and power) of the aircraft at various time points

• render, renderTop, renderSide: Helper methods used to visualize the trajectory

The (base) Trajectory class itself contains the same named methods for rendering all of

the segments of the trajectory, as well as a method to compute the total length of all of

the segments in the trajectory. A number of other trajectory representations are cur-

rently co-located in this module. Most notably, CircleTrajectory, BowtieTrajectory,

and SimpleLadderTrajectory represent our three baseline trajectories demonstrated

in section 3.3.
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B.1.1.3 Flight.py

The Flight class represents a combination of an Aircraft and a Trajectory instance,

as well as the Angles of Attack for each of the segments of the Trajectory. Incidentally,

it also contains the configuration for the aircraft radio. Notable methods include:

• toPoses: Invokes toPoses on all the trajectory segments, and stitches together

the resulting series of data.

• toSim: Creates a PathMobilityModel for use in NS3 simulations

B.1.1.4 Scenario.py

The Scenario class represents a collection of user locations, which can be used to

estimate the available throughput with the posesToThroughput method. There are

also helper methods from creating randomly located populations of users.

B.1.1.5 EvalHelper.py

The EvalHelper.py module contains the “Judge” class, which contains several

functions for evaluating trajectories1. Methods to generate the various energy and

altitude vs. throughput plots such as Figure 3.4 are also available here.

B.1.1.6 ./optimize

The optimize directory contains the code related to running the optimization rou-

tines. BaseOptimizer.py contains the base class for the other optimizers, including

code related to distributing fitness evaluations among multiple threads. The class

used for representing our solution vectors, with methods to manipulate them, is also

located here. The functions.py module contains several functions that can be used to

build expressions over statistics gathered in the EvalHelper module. For example, one

1
There is also some legacy code related to early experiments with genetic algorithms.
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can create a fitness expression as “throughputReward() + energyPenalty(-500) * 0.5”

to create an expression that will reward a flight for providing throughput, and pe-

nalize the flight for not meeting an energy budget of -500 Wh, with a coe�cient of

0.5. These expressions can be used with the FitnessHelper and SplineyFitnessHelper

classes in the same module, which are responsible for constructing and evaluating

the trajectories. The remainder of the modules in this directory are the implementa-

tions of the various optimization algorithms. PSOv2.py and ParallelNelderMead.py

contain the code used for this work, PSO.py contains an earlier implementation of

the PSO algorithm, and GA.py and Genetics.py contain code for running a genetic

algorithm (not currently integrated with the remainder of the code).

B.2 Running the Optimizer

The first item needed to run the optimization is to define the fitness function.

In our case, this function takes the vector, constructs the trajectory representation,

computes statistics, and then produces a value based on those statistics. We have

defined the “SplineyFitnessHelper”2 class to build this function. For example, we

may construct this helper as

he lpe r = Sp l i n eyF i tne s sHe lpe r (

judge , c r a f t , t imes ,

expr = [

# === Optimize t h i s ===

# Throughput , in Mbps/ user

throughputReward ( ) / 1e6 / len ( scene . u s e r s ) ,

# === Sub j e c t to t h e s e c on s t r a i n t s ( pena l t y f unc t i on s ) ===

# F l i g h t volume con s t r a i n t s

2
“Spliney” referring to our formulation, which is similar to but distinct from splines.
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rad iusPena l ty (2000) ⇤ 1e�6,

a l t i t udePena l t y (1000 , 10000) ,

# Energy budge t c on s t r a i n t

energyPenalty ( args . energy , g r av i t yCoe f f = 1 . 0 ) ,

# Some a i r c r a f t /mode l l ing c on s t r a i n t s

thrus tPena l ty ( h i = 100) ,

speedPenalty ( l o = 6 , h i = 25)

] ,

# Sca le t r a j e c t o r y to even l y f i t i n t o a 24�hour window

des i r edDurat ion = 24⇤3600 ,

# Use our a l t i t u d e�s chedu l i n g model

zMode = ’ schedu le ’

)

The other important piece of configuration to note is how the initial population

(particles or vertices, in our case) are generated. This process is implemented as

described in subsection 4.3.1. The remaining pieces of configuration such as popu-

lation size, number of threads to use for parallel fitness evaluation, and parameters

specific to each optimizer can also be configured in the optimizer constructor. The

BaseOptimizer class provides an iterateMany method which can then be used to run

an appropriate number of iterations. This method also takes a callback function cb

that is evaluated after every iteration and can be used for reporting. A simplified

example of this can be seen below. See the script optimizerunner.py, which was used

to generate the optimization results in subsection 4.3.2, for a full example.

opt imize r = PSO(

numPartic les ,

numCodons ,

c r e a t ePa r t i c l e ,
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f i t n e s s ,

p r o c e s s e s=args . threads ,

wSchedule = wRamp,

bounds=bounds

)

opt imize r . i terateMany ( i t e r a t i o n s = 250 , cb=on I t e r a t i on )
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