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ABSTRACT

Predicting App Intrusiveness Using LSTM Networks to Analyze App Descriptions

by

Fernando Montenegro

Mobile apps are at the center of everyone’s daily lives and users give them access

to their intimate personal data. Some apps collect more information than they need

to perform their job. These apps are called intrusive, and can represent not only

a privacy issue, but a security problem for their users. Therefore, it is important

to develop methods for figuring out how much an app can detect and collect from

its users, and whether that access is in line with their privacy expectations. Several

methods have been devised to determine app intrusiveness, a measure that represents

how much an app’s data collection deviates from its basic needs. This number, called

intrusiveness or privacy score, can guide a user in the process of identifying apps that

gather too much personal information. Some of the methods to calculate intrusiveness

include analysis of app descriptions and conformity with their programmed behavior.

However, most of the existing approaches depend on static analysis that is quite

challenging and mandates access to the binaries or source code. This thesis proposes

a novel method to determine whether an app is intrusive based on its description,

which can allow users to make decisions before downloading. More specifically, we
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used a Long Short-Term Memory (LSTM) network to analyze the descriptions, along

with a Multi-Layer Perceptron (MLP) network to process metadata provided by other

app features. The results show that this combined network structure achieved 79%

accuracy in training and 74% accuracy for validation, with 840,000 samples and a

75/25 split between training and validation. Our findings indicate that not only it is

possible to use the description and other information available from the app store to

predict the intrusiveness of an app, but also that the network required to do the job

is fairly small.
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Introduction

Mobile apps are at the center of people’s everyday lives, which gives them, and the

devices in which they run, unprecedented access to every detail of their activities.

Depending on the permissions they have, apps have access to a user’s daily routine,

the places she visits and how often she does. They can also access her contacts, have

knowledge of how often and how she communicates with them; some apps record and

analyze all the sounds around their users, and they can record details about their

physical activity. Given this intimate access to users’ personal data, it is important

to develop methods for figuring out how much an app can detect from a user, and

whether that access is in line with the user’s expectations. The Google Android

app store displays the level of access, or permissions, an app is going to have once

installed. This is a good starting point, but it may not provide the complete picture.

There have been multiple efforts to provide additional information to users about

the intrusiveness of an app. Intrusiveness is a measure of the amount of personal

information collected by an app that is not essential to perform its core functions.

Some studies have compared the declared permissions to those actually seen upon

installation, like Yu et al. (2016); Qu et al. (2014), while other studies have used

reverse-engineering to determine app functionality, such as Taylor and Martinovic

(2016); Olukoya et al. (2019). This study takes a previously developed intrusiveness

score by Mohsen et al. (2018) and uses it to train a neural network to predict intru-

siveness using only data available in the app store. The goal of the study is to see if is
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possible to predict whether an app is intrusive or not by looking at readily available

information at the moment of purchase or download. This approach would help any

user to make an informed decision on the go, without the need for external tools or

databases. The results obtained support the feasibility of this concept, as it will be

shown later in this thesis.

According to the Smartphone Market Share by IDC (2020), the Android operating

system has the largest market share of all mobile operating systems in the world, at

an estimated 86.1% in 2020. This study focused on apps in the Google Play store,

which is the largest app store in the Android ecosystem, and gives a representative

sample of mobile apps. The corpus of data included information readily available

to any user before downloading an app, like number of reviews and their average

rating, approximate number of downloads, content rating, minimum Android version

required, and permissions.

This thesis is organized as follows: Chapter I gives a brief introduction to the

Android permissions, how they relate to users’ privacy, and discusses the creation

of an intrusiveness score. Chapter II provides a brief introduction to the LSTM

Networks, their architecture and implementation with TensorFlow. Chapter III talks

about the steps followed in the study, from data preprocessing to the architecture of

our neural network, followed by the results obtained, in Chapter IV. Related works

are referenced in Chapter V, and finally, some possible future work is proposed in

Chapter VI.
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CHAPTER I

Android Permissions and Privacy

This chapter provides some background information about Android permissions,

how they relate to privacy, and how an intrusiveness score can be developed. This

score is the starting point for this study, which tried to make a prediction using only

information available in the app store.

1.0.1 Android Permissions

In the context of a mobile operating system, permissions refer to the ability to

reach certain hardware sensors or services that may be available on any given device.

Newer and high-end devices tend to have more sensors of different kinds. The clas-

sic examples of sensors are the accelerometer, the front and rear cameras, and the

microphone. Examples of services are the Global Positioning System (GPS) location

services, phone, Short Message Service (SMS) or texting service, and access to the in-

ternet. Researchers like Enck et al. (2014) have shown that many apps fail to provide

adequate safeguards for their user’s information, while Yu et al. (2016) also showed

that some apps don’t even disclose the type of information they are gathering from

their users.

In recognition of the potential for privacy violations, mobile operating systems

have increased the granularity of the permissions available for users to manage. How-
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ever, the average user finds it difficult to understand and manage permissions on their

own. There have been multiple efforts, Quay-de la Vallee et al. (2016); Sarma et al.

(2012); Taylor and Martinovic (2016), to provide useful information so that users can

make informed decisions, but these efforts depend on Google’s or the developers’ abil-

ity, or willingness, to provide transparent information about each app’s permissions

and behaviors. This dependency creates a large blind spot, which malicious publishers

exploit, leaving users at the mercy of Google’s ability to identify bad actors and their

apps. Also in this blind spot are legitimate publishers who simply want to capture

more information about their users than their competitors, or who unwittingly gather

unnecessary data. In addition to all of the above, there could be biases introduced by

commercial or other interests that are not aligned with the end-user’s privacy goals.

Figure 1.1: Distribution of Downloads. Same as the 2005 Pew Research report, our
data corpus showed that most Android apps in the store have been down-
loaded a few thousand times, and only a small percentage have millions
of downloads.

The Pew Research Center (2015) published a comprehensive report on Android

permissions, their purpose, types, etc. The corpus of data used in this study mirrored

their findings. For example, only a small percentage of apps have been downloaded
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by millions of users. As shown in Figure 1.1, most apps have been downloaded less

than five thousand times. Due to this long tail distribution, all apps with downloads

of one hundred thousand or more are grouped into a single category, as discussed in

Section 3.0.1.

Similarly, few apps request lots of permissions, and most apps request few permis-

sions, or none at all. According to Pew Research, the average number of permissions

requested per app was five, however, the top requested permissions involve access to

the internet, access to protected storage, and precise location, all of which can provide

sensitive information about a user.

Before the introduction of Android 6.0 Google (2015), users had to provide per-

missions before installing an app, and the permissions were not as granular as they

became after this major release. After Android 6.0, users gained the ability to turn

individual permissions on or off on a per app basis. As usual, fine-grained access

to technical capabilities is a double-edged sword. On one hand, users can have full

control of the data each app can access, but on the other hand, many users are over-

whelmed by the array of options available to them, as noted by Alepis and Patsakis

(2019). From this perspective, it is useful to develop a simple measure that can guide

end-users through the selection of the apps that best align with their privacy goals.

This would be akin to the auto mode option on a sophisticated digital camera, which

turns the entire system into a simple point-and-shoot camera, while the user can still

set a different mode and change every setting to her needs or desires.

1.0.2 Privacy Score

Most mobile apps present users with a choice, they can choose to have complete

privacy, where none of their personal information is accessed and shared, or they can

choose usefulness, where an app can access their personal data and use it to provide

valuable information. Usually, though, apps do not handle the accessed data locally,
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but instead send it to a centralized server to be processed. The server, in turn,

returns relevant information for the user to be displayed in their device. Depending

on the company’s privacy policy and practices, they can share this information with

marketing partners or data brokers, Leetaru (2018). The choice ultimately turns into

a trade-off between usefulness and privacy.

Allowing an app to access one’s personal information also presents a security

risk. As Chebyshev (2019) reports in Kaspersky’s Mobile malware evolution report

2019, malicious actors continuously try to include their apps in the Google Play store

because it is inherently trusted by users. These actors also continuously develop tech-

niques to get around Google’s anti-virus protections, making their malware a real risk,

even for security savvy users. And there are also other, more insidious, attack vectors

like the use of adware to spread bad software. Legitimate apps that are available for

free in the store, are usually supported by ads. An app that requests permissions like

location, or the camera, is a prime target for malicious adware. After downloading

an infected ad, the app is taken over and all its information becomes available to

the attacker. This is another reason why users should install apps that request the

strictly minimum number of permissions required to perform their functions.

There have been multiple efforts to help users make informed decisions about the

apps they install, Mohsen et al. (2018); Taylor and Martinovic (2016), in which the

authors devise an intrusiveness or privacy score that takes into account the permis-

sions requested by the apps. Using these scores, a user is able to avoid intrusive apps

by comparing similar ones and choosing the app with the lowest, or an acceptable

score according to their privacy expectations. The studies showed these scores to be

useful and effective, but calculating the scores requires access to the apps’ configura-

tion files and is computationally expensive.

This study tried to use only the information available to any user at the moment

of browsing, namely the app description and a few other features, to give the user

6



an option to install an app on a mobile device based on an educated estimate of

intrusiveness.
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CHAPTER II

Long Short-Term Memory

Long Short-Term Memory (LSTM) networks have revolutionized several fields in

artificial intelligence, they have proven to be good at natural language recognition and

generation (both spoken and written), as in Sutskever et al. (2014), and they are also

good at predicting long series, which can be useful for stock market analysis, music,

and many other tasks where data is produced in streams. But before discussing

LSTM networks, it is important to show the historical steps that took us to their

introduction in 1997. This timeline is represented in figure 2.1.

2.0.1 Artificial Neural Networks ANN

ANNs are closely linked to the early history of modern computing. As the first

digital computers emerged, scientists were working together with psychologists to

Figure 2.1: A historic timeline of ANNs. Starting in the early days of modern com-
puting until the introduction of LSTM networks.
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understand the inner workings of the brain, the ways in which humans learn and

remember things, and how we make sense of different concepts. The general idea was

to create a machine that could reproduce those processes and do the things humans

do with their brains. Neural Networks get their name from their architecture. The

basis of the network is a unit that performs a relatively simple function like linear

addition, and it is called the neuron. These neurons are interconnected to other

neurons with links of adjustable weight. The network learns by adjusting the weights

of the connections, which in effect configures, or organizes the network.

In the book by Plebe and Grasso (2016), The brain in silicon, the authors describe

Alan Turing’s farsighted B-type unorganized machine, which used AND gates for

neurons. That paper was not made public, though, until 1996, so they consider the

paper by McCulloch and Pitts as an initial point for research on ANNs. Its ideas were

soon outdated, but it brought interest to the concept of a neural computer. In their

book, Yadav et al. (2015), call the 1950s and 1960s The first golden age of neural

networks, introducing Hebbian networks (1949), which became the model for early

implementations like SNARC (Stochastic Neural Analog Reinforcement Computer),

by Minsky (1951), the Mark I Perceptron, built by F. Rosenblatt (1958) for the US

Navy, and ADALINE (Adaptive Linear Neuron - 1960). ADALINE was a successful

machine that solved multiple small problems, created by B. Widrow with his graduate

students. Ted Hoff was among them, although he is better known today as one of the

inventors of the microprocessor. In spite of the early successes, Minsky tried to put a

stop to all the research on ANNs in his book The Perceptron, declaring the field dead

in 1969.

So far, all networks had been feed-forward networks, that is, networks in which

the input data follows only one direction on its way to the output. These networks,

however, cannot display dynamic behavior, don’t have a memory, and are limited

to specific applications. Research continued through the 70s and 80s, when Hopfield

9



Figure 2.2: Two neural networks are shown. The image on the right represents a
feed-forward neural network, and the one on the left is a recursive neural
network (RNN). Image from IBM (2021), What are recurrent neural
networks?

(1982) discovered a type of network that behaved as a content-addressable memory.

The Hopfield network was the first popular recurrent neural network (RNN).

2.0.2 Recurrent Neural Networks RNN

These networks emerged as an answer to the need to process inputs that changed

over time, and that required some type of short-term memory. The memory function

was accomplished by introducing a feedback loop in the cells, which allowed them

to act on data from the previous step. (ANNs are discrete systems, that is, they

process data in steps, rather than continuously). The RNN architecture required

new methods for analysis and training, which were provided by McClelland et al.

(1987) in their book Parallel Distributed Processing. This book, mostly referred in

literature as the Rumelhart book, generated interest and research on the subject of

neural networks. It introduced the backpropagation method, used for training RNNs.

RNNs, however, quickly proved difficult to master, or to use for real-world ap-

plications. One key issue was their inability to perform on inputs that had 1,000 or

more steps, as mentioned by Hochreiter and Schmidhuber (1997) in their analysis.
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The paper cites multiple solutions that were developed over the years without com-

plete success. Some solutions created other problems, or would simply not work in

a real-world scenario, where a response is needed in a reasonable amount of time.

In some cases, Hochreiter and Schmidhuber (1997) found that the proposed solutions

performed worse than simply guessing random weights for the network until a solution

was found.

Hochreiter and Schmidhuber (1997) proceed to suggest a new type of cell that

they call Long Short-Term Memory (LSTM) in their paper. This new cell solves all

the problems present in prior RNNs, and it also performs well in real-world scenarios.

Problems with more than 1,000 steps are no problem for this architecture, due to its

design because it limits the response to input error, as explained in the next section.

This thesis attempts to provide a tool that can perform natural language analysis

in order to extract underlying information that indicates the intrusiveness of a mo-

bile app. This is akin to sentiment analysis, where the networks try to extract the

writer’s intent on a published text. In human terms, we look at certain keywords that

are associated with certain emotions, or certain phrase structures or idioms that are

used to provide context in language. RNN, and specifically LSTM networks provide

a solution well-suited to the problem at hand in this thesis. In order to analyze the

text-based descriptions of Android mobile apps, the neural network must be able to

display dynamic behavior and memory. RNNs posses those abilities, as mentioned in

IBM (2021). The architecture used must also have a proven record in natural lan-

guage processing, which eliminates the possibility of getting falsely promising results.

Hochreiter and Schmidhuber (1997) demonstrated this in the initial paper and it has

been further developed and proven by others like Sutskever et al. (2014). This is why

LSTM was chosen as the best fit for the problem in this thesis.
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2.0.3 LSTM Network Architecture

As mentioned before, Long Short-Term Memory networks were introduced in 1997

by Hochreiter and Schmidhuber (1997) as a method to solve the diminishing or ex-

ploding gradients problem. When training RNNs with small coefficients, they tend

to get smaller and smaller as the error is reduced in search of an optimal solution.

Conversely, some gradients could also become very large. The very small and very

large values are referred to as diminishing and exploding (respectively) coefficients

and they can cause underflow or overflow errors during RNN training. They can also

prevent a network from converging because it could get ”stuck” on a certain state.

In addition to having issues with error coefficients, RNNs have difficulty processing

signals that require long-term memory. Many tasks need both long and short memory

capabilities for successful processing. Natural language is one of those tasks where

predicting or analyzing the current word may not only need to look at the immediately

preceding words, but may also depend on a sentence spoken much earlier. Hochreiter

et al. dubbed the cell at the center of their network long short-term memory to

express its ability to retain information for long periods of time, as well as the short-

term retention that RNNs display. We chose to use an LSTM network over other

architectures, like RNNs due to their popularity and superior performance in language

related tasks.

The LSTM cell can retain memory for extended periods of time by using a central

unit with a linear feedback loop called the Constant Error Carousel (CEC). This unit

stores a value, and it is flanked by two multiplicative units or gates, inj and outj .

The first one protects the contents of the CEC from noise or unwanted input from

preceding cells, and the latter protects succeeding cells from what could be irrelevant

contents in the unit’s CEC.

Figure 2.3 shows the architecture of the LSTM as depicted in the original paper.

In later works, Gers et al. (2000); Gers and Schmidhuber (2000); Bayer et al. (2009);

12



Figure 2.3: Architecture of the memory cell, from Hochreiter and Schmidhuber
(1997). The CEC is at the center, with its feedback loop, and the gate
units that open and close access to the CEC.

Otte and Zell (2014), the authors have made changes to the original cell, as well as

the training algorithms proposed for its use, but Greff et al. (2017;2015;) tested and

compared multiple architectures in common use and reported that

“none of the variants can improve upon the standard LSTM architecture

significantly.”

The only significant improvement made over the original LSTM network is the use of

a bidirectional LSTM, which we will describe below.

In the depicted cell we have the activations for outj and inj given by

youtj(t) = foutj(netoutj(t)); y
inj = finj

(netinj
(t))

where netoutj is the input to the multiplicative gate outj

netoutj(t) =
�

u

woutjuy
u(t− 1)

for netinj
,

netinj
(t) =

�

u

winjuy
u(t− 1)
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and similarly, netcj is the input to cell cj, and it is given by

netcj(t) =
�

u

wcjuy
u(t− 1)

The indices u can be applied to any type of units present in the network, because

their value may be relevant to the current state of the network. Thus, the topology

of the network is left to the end user.

The output of the cell is given by

ycj(t) = youtj(t)h(scj(t))

where scj is the internal state, and it is given by

scj(0) = 0, scj(t) = scj(t− 1) + yinj(t)g(netcj(t)) for t > 0

The differentiable functions g and h keep the input to and out from the cell within a

predetermined set of values.

LSTM cells can be connected with other cells in any configuration desired, how-

ever, initial tests only dealt with interconnections in sequences or single layers. Even

in their simplest configuration, LSTM networks proved very beneficial from the be-

ginning for some types of analysis. Researchers have also built on the original design

and architecture and have created networks using stacked layers of LSTM cells, such

as Sutskever et al. (2014). Even though it is not clear how this is advantageous from

a theoretical perspective, their empirical results demonstrated the power of stacked

LSTM layers. Stacked LSTM networks are now commonly used for many applica-

tions, and are supported by frameworks like Keras.

As mentioned above, the introduction of bidirectional LSTM networks by Graves

and Schmidhuber (2005) was the most significant improvement in the design of these
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networks. In this type of network, the input is fed forwards and backwards to two

separate sequences of LSTM cells connected to the same output. For the particular

task of natural language processing, bidirectional LSTM networks display a clear

advantage versus other networks, because they can find relationships between the

current word or words, and words or phrases spoken earlier that provide context

needed for classification or sentiment analysis.

2.0.3.1 Hyperparameters

LSTM networks are more complex than other competing network architectures,

which could be considered a disadvantage. It can be difficult to decide how to config-

ure them initially, and how to fine-tune them for the specific task at hand. Greff et al.

(2017;2015;) analyzed multiple variants of LSTM networks along with their learning

rate, hidden layer size, input noise, and momentum. Their paper reports that

“for practical purposes, the hyperparameters can be treated as approxi-

mately independent.”

This is a very useful finding for anyone using LSTM networks, because it allows for a

much simpler and methodical tuning process for a network. This particular knowledge

simplified the process we followed tuning our network, allowing us to change each

hyperparameter independently of the others.

In addition to the hyperparameters mentioned above, dropout rate is also impor-

tant in training. This hyperparameter is interpreted in Keras as the probability that

a given sample will be eliminated (dropped out) from the input to the next layer. In-

tuitively, dropout is useful because it gives neural networks resilience against certain

patterns, and allows the networks to correctly classify their input under noisy condi-

tions. RNNs, however, respond poorly to the introduction of dropouts and therefore

were missing a valuable tuning tool until Gal and Ghahramani (2015) introduced
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a technique called variational dropout, in which they removed one symbol out of a

group of input sequences, rather than an entire sequence.

To illustrate variational dropout, consider a series of sentences like ‘The apple

tree is tall’, ‘That is an old tree’, and ‘The forest is full of trees’. In a traditional

dropout scenario, we would remove one of the sentences and use the other two for this

particular batch. In variational dropout, we remove the word ‘tree’ or ‘trees’ from all

three sentences, and use the resulting sequences for this batch of training. Intuitively,

the result is the same as dropout for non-recurrent networks: removing a symbol

from any given sequence makes our network more resilient to noise and improves

its performance. Variational dropout is an important tool when training RNNs,

including LSTMs. Keras supports variational dropout for LSTM layers, although it

is called recurrent dropout. We found that this hyperparameter was useful in reducing

overfitting for our network.

2.0.4 Word Embeddings

One very popular concept in natural language processing is word embeddings,

Sahlgren (2015). At a high level, it is the processing of a corpus of text to produce a

vectorized representation of each unique word in the corpus. The vector representing

each word is comprised of real numbers, and the number of dimensions depends on

the type of analysis being performed. A higher number of dimensions allows for a

richer, more nuanced representation of each word, which might be required for some

tasks.

The concept of representing words with vectors of numbers, or logic relationships

has deep roots in linguistics. It is also a key concept used in computer science for

information retrieval systems, and has been used since the 60’s. The very specific

idea of using neural networks for developing embeddings and using them for language

processing that we discuss here is following on the steps of the work by Bengio et al.
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(2006).

One advantage of word embeddings over, say one-hot encoding, is that the result-

ing vector represents that word’s relationship to other words in the embedded space,

Chollet (2018;2017;). With one-hot encoding, all words are equidistant from each

other, and it is not possible to infer any relationship between them. On the other

hand, word embeddings allow us to perform calculations and determine how closely

related any two words are in the given space. Using these calculations, we can derive

relationships as in ‘woman is to man like mother is to father’, or infer that both apple

and orange are fruits.

Word embeddings are not without issues. In natural language, we often encounter

that words can have different meanings depending on context. ’Orange’, for example,

can be a fruit, the name of a company, or a color. Traditional word embeddings only

assign one vector to each word, which means these three different meanings would be

conflated and the meaning of the word could be lost in a particular sequence. Another

serious problem with word embeddings is that they tend to reflect our biases, since

they learn their relationships from large corpora of text that may have issues. Boluk-

basi et al. (2016) illustrate this problem in commonly used public word embeddings

and have worked on providing guidance on how to remove unwanted bias from the

embeddings to improve their accuracy.

2.0.5 Implementing LSTM networks in Keras with TensorFlow

We used the popular framework Keras, developed by Chollet et al. (2015), to

implement our neural networks and process the input. Keras provides a high-level,

simple to use Application Programming Interface (API) that simplifies many tasks

related to neural networks. It is possible to build a stacked LSTM network with

a few lines of code. Most of the default values are good for an initial setup, and

there is also the ability to go as deep into the details as needed for any specific task.
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Also important for us, was the support for Graphics (or recently, General) Processing

Units (GPUs), which can provide a significant speed boost to some calculations.

Keras runs on top of other frameworks that provide lower level functionality. We

chose TensorFlow, Abadi et al. (2015), which also has a very powerful API for neural

network processing. Since we wanted GPU support for our research, we used a specific

version of TensorFlow preconfigured for this purpose by NVIDIA (2020). This version

of TensorFlow runs inside a Docker container that has all the software needed to run,

essentially providing a zero-configuration environment for our project.

The LSTM models that provide full GPU acceleration have some specific restric-

tions, due to the way the calculations are done. One key item that turned out to be

important for our study was the use of variational dropout, which is not supported

by the fully optimized LSTM model. We modified other hyperparameters in our

network using a setting of zero (or full GPU acceleration) until we could not obtain

more improvements, and then started using higher variational dropout values until

we reached our final result.
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CHAPTER III

Methodology

As mentioned in Section 1.0.1, there have been multiple efforts to assess how

intrusive an app is by looking at its permissions and how they relate to the permissions

of other similar apps. This study, however, aimed at predicting the intrusiveness of

an app based on natural language processing of its description, plus additional hints

from its metadata, namely, genre, Android minimum version, download count, content

rating, review average, and price. These multiple inputs have very dissimilar forms,

which required preprocessing in order to allow neural network processing.

The data corpus for this thesis work was comprised of 1.4M apps gathered from a

prior study by Mohsen et al. (2018), as previously mentioned. The data included all

the features named above plus the package name, which we used to uniquely identify

each app. We merged the data with the intrusiveness score, precomputed as a number

from 0 to 1, indicating how intrusive an app is. As we’ll indicate below, we grouped

apps into two groups and labelled them 0 for intrusive, and 1 for non-intrusive apps.

In the dataset obtained, each application has two intrusiveness scores that are

calculated based on two different formulas proposed previously by Mohsen et al.

(2018) and Taylor and Martinovic (2016). Both scores rely mainly on the permissions

an application has declared in its AndroidManifest file and the permissions of its peers.

An application that requests common permissions relevant to all applications in the
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same genre is considered less intrusive. Similarly, an application that requests unique

permissions in comparison to its peers would have a higher intrusiveness score.

3.0.1 App Data Preprocessing

The first set of features in the data corpus are either numeric, or grouped by

categories. They were prepared as follows:

• Genre: Apps are classified as business, entertainment, etc. When an app had

more than one genre associated with it, the first one was used and the others

were discarded. The genre listing was converted into a one-hot encoded array

number using scikit-learn’s (Pedregosa et al. (2011)) preprocessing API. All

zeroes meant no genre was associated with the app.

• Android minimum version: Most apps have a required minimum version of

the operating system in order to operate correctly (like 2.2 or higher), while

some have a range of versions in which they will work (4.1 to 4.3) or allow

users to install them. In order to simplify this feature, only the major version

of the operating system listed in this field was considered. For example, if an

app required Android 2.2 or higher, 2 was used. Similarly, for an app with a

range from 4.1 to 4.3, the major version of the lowest OS required was used, in

this case 4. Apps listed as ’Varies with Device’ had their own category. This

category was also encoded as a one-hot array.

• Download count : The exact count number is not provided by Google, which

provides a category range instead. The range of downloads is very large, from

zero to over one billion, but in reality, most apps are actually downloaded a few

thousand times. Google’s lower categories are kept as separate categories, but

all apps with 100,000 downloads or more are grouped into a single category in

this study. This grouping left 11 categories, which are also encoded as a one-hot
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Feature Value
Processed
Input

pkgname com.intsig.camscanner -

Reviews Average 4.5 0.9

Free True 1

Content Rating Everyone [1 0 0 0 0 0]

Downloads 50,000,000 - 100,000,000 [0 0 0 0 0 0 0 0 0 0 1]

Minimum Android Version Varies with Device [1 0 0 0 0 0]

Genre Productivity [0 0 ... 1 ... 0 0]

Table 3.1: Example of preprocessing for an app called CamScanner, its features, and
the normalized or one-hot encoded values used for input to the neural
network. The Genre preprocessed input is a one-hot encoded array of 47
bits with 1 in the 14th position.

array.

• Content rating: Similar to other features, ratings are encoded as a one-hot

array.

• Review average: Google provides reviews as a group of measures, indicating

not only the average, but also the number of reviews received and the number

of each of the star ratings. In order to simplify this measure, we only took the

average review and passed it as a normalized number between zero and one to

the neural network. The lowest possible rating is one star, which means that

apps with an average of zero do not have any ratings.

• Price: As the mobile app markets have evolved, the vast majority of apps are

free to install and involve some type of in-app purchase. We converted this

field into a binary field, with one representing free apps (with or without in-app

purchases) and zero representing apps with any cost.

Table 3.1 shows an example of the preprocessing applied to the information of an app

called CamScanner. The Value column shows the raw values as obtained from the

app store, and the final column shows the processed values. After preprocessing, the
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values are assembled into a concatenated array, which is fed to the MLP branch of

the network, described below.

The app description is the most complex of the features we analyzed, and it

required the bulk of our attention for preprocessing. Since the descriptions are human-

readable, natural language, and almost completely free-text fields, they can have a

large amount of variations and content. Many apps have multi-lingual descriptions,

emojis, and some contain complex formatting characters. All this creates problems

when trying to analyze the content and meaning of that text.

The first step in our process was to remove formatting characters, Unicode charac-

ters that might cause problems with the scripts, and punctuation. Next, we proceeded

to identify all apps that had a description in English. We used the langid.py library,

created by Lui and Baldwin (2012), to identify the description language, which pro-

vided good accuracy. We checked the output by randomly sampling the corpus and

performing human verification. We discarded the apps with descriptions in languages

other than English. We also removed apps that had multi-lingual descriptions, to

make sure they did not cause problems later on during our analysis. This step re-

duced our data sample from 1.4M to about 840k apps.

Once we had a group of English-only apps, we used the Natural Language Toolkit

(NLTK), by Bird et al. (2009), to remove English language stop words, and to perform

stemming. In natural language processing, certain words that are spoken, or used

often, but that do not provide significant meaning to a sentence are dubbed stop

words. One can usually remove these words during preprocessing to save resources

without affecting the final outcome. We used the NLTK stop words list for our

preprocessing. Stemming refers to the practice of replacing different word inflections

with a base word that conveys the same meaning but can act as their root. As a

very simple example, the words avocado and avocados can be replaced by the word

avocado and still convey the same meaning in a processed sentence. Stemming has
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Step Output

1

2

3

4

5

"This app increases your productivity by 10 times!!!\n You will be very happy you used it! :D" 

This app increases your productivity by times You will be very happy you used it

app increases productivity times very happy used

app increase product time very happy use

[20, 4386, 10267, 2860, 50,  2048, 1873, 0, 0, 0]

Table 3.2: Simplified example of text preprocessing with a 10-word sequence output.

the effect of reducing the size of the vocabulary needed to process any given data

corpus.

For the final steps of preprocessing, we used Keras with a TensorFlow back-end.

The Keras text preprocessing API has a tokenizer module, which takes the output

of the previous steps and generates an index of all the words present in the data.

The index is sorted by frequency, with the most common words at the top, and

it has a user-selectable vocabulary size. Index 0 is reserved for sequence padding,

and index 1 is the out-of-vocabulary symbol. When an app description has fewer

words than the maximum number accepted by the neural network, the rest of the

positions in the input sequence are padded with zeroes. When the description has

words that are not in the vocabulary, they are replaced with the out-of-vocabulary

symbol. Table 3.2 illustrates the preprocessing steps taken, from the original app

description, to the sequence ready to feed our neural network. In this simplified

example of text preprocessing, step 1 shows the original text; step 2 is the text

without punctuation, formatting, numbers, or special characters. In step 3 the stop

words have been removed. Step 4 shows the effect of stemming. In step 5 we have

the final sequence after replacing words with their corresponding index numbers, and

we have added padding to form a 10 word sequence.

The vocabulary size must be as large as possible, but it is ultimately restricted

by the available resources for the analysis. We did some trial and error tuning for
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vocabulary size and settled on 32,768. Since our goal was to predict a score calculated

based on Android permissions, we intuitively wanted to make sure our vocabulary

included words referring to, or closely related to permission names. For example, one

would expect that an app that requires access to any user’s contacts has either the

word contact in it, or similar words, like friend, or family. We analyzed the output of

the tokenizer and found that the vocabulary included all of the words for the names

of the Android permissions we found.

3.0.1.1 Class imbalance

Figure 3.1: The distribution of raw intrusiveness score.

When training neural networks, it is important to maintain class balance, or

introduce hyperparameters to guide during training, Zhi-Hua Zhou and Xu-Ying Liu

(2006). As shown in Figure 3.1, we had many apps with a score of 1.0 compared to

lower scores and we wanted to make sure we did not have disproportionately many

apps labeled as intrusive or vice versa. Therefore, we arbitrarily chose to use only the

top and bottom 35th percentiles of our total data corpus. By doing this, we ensured
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that we had the same number of 0 (intrusive) and 1 (non-intrusive) labels in our

training and validation samples.

3.0.2 Network Topology

As mentioned above, our analysis included very different types of data, some bi-

nary, some categorical, and natural language sequences. Our network design reflected

the disparity of inputs and was split into two main branches: the binary and cate-

gorical data was handled by an Multi Layer Perceptron (MLP) network, while the

language sequences went into a stacked LSTM network with an embeddings input

layer. The output of these two branches was fed into two dense layers that performed

the final prediction.

3.0.2.1 LSTM branch

The LSTM was the main and largest branch. The main factors contributing

to our network size were the maximum length of sequences allowed, the number of

dimensions returned by the embedding layer, and the vocabulary size. Some apps have

very lengthy descriptions, but they tend to be multi-language descriptions. Since we

had only used the first portion of the app descriptions for our language identification

preprocessing, we knew that these descriptions started with the English section. We

looked at the word count distribution and arbitrarily chose a maximum value of 250

words for our sequences. This worked out to be approximately the 93th percentile of

our corpus. Figure 3.2 shows the word count histogram for English-only apps before

the final steps of preprocessing. We chose this number as our maximum sequence

length.

Google recommends the dimensions returned by the embedding layer be the fourth

root of the vocabulary size, TensorFlow (2015). However, we have seen multiple

implementations using arbitrary numbers higher than 50 in use, and the paper by
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Figure 3.2: Distribution of word count in descriptions. The majority of apps have
short descriptions, but some apps have more than one thousand word
descriptions.

Seshadhri et al. (2020) suggests that using too few dimensions will cause a model to

miss some details that might be important for any given analysis. We started with a

value of 16 dimensions, close to the number suggested by Google, and tried multiple

values as high as 128, and as low as 4. For our particular problem, 4 dimensions

gave the best results, with the added benefit that our computations ran orders of

magnitude faster. As we had mentioned, our vocabulary was 32,768 words. Figure

3.0.2.1 shows the final configuration of our LSTM branch.

The output of the embeddings layer was connected to a staked LSTM formed by

three layers. During all our tests we kept the second LSTM layer at one half of the

number of units of the top layer, and the next LSTM layer at one quarter of the

number of units. For our final configuration, this meant that the bottom two layers

had 2 and 1 units respectively. In multiple tests, the stacked LSTM configuration

performed better than a single layer, in accordance with initial findings by Sutskever

et al. Sutskever et al. (2014). The output of the final LSTM layer went to a dense

layer, explained after the MLP branch below.
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[76, 539, 9, ... 285, 838]

Embeddings Layer
Input 250

Output 4

Bidirectional LSTM Layer 1
Input 4

Output 2

Bidirectional LSTM Layer 2
Input 2

Output 1

Bidirectional LSTM Layer 3
Input 1

Output 1

250-word sequences

72 elements

Dense Layer 1
Input 72

Output 16

Dense Layer 2
Input 16

Output 16

Concatenated inputs

a) LSTM Branch Configuration b) MLP Branch Configuration

Figure 3.3: LSTM and MLP network configurations: a) The input is shown at the
top, entering the embeddings layer, and then flowing into the stacked
LSTM layers, b) The input is shown at the top, entering the first of two
dense layers, with 16 units each.

3.0.2.2 MLP branch

While the natural language sequences required special treatment with an embed-

dings layer, the other inputs only required basic normalization before entering our

neural network. An MLP network handled all of the other inputs with the topology

shown in Figure 3.0.2.1. The input was formed by concatenating all the features,

except app description, in an array 72 elements wide. The input went into a dense

(fully connected) layer with 16 units. The output of this layer was connected to a

second dense layer with 16 units as well. Similar to the testing we performed to

find the optimum number of embedding dimensions, we tested multiple sizes of dense

layers for our MLP branch. We tried layers as large as 128 units, but we got better

results with smaller layers, with a final size of 16. Larger sizes led to overfitting.

3.0.2.3 Combined network output

The output of the LSTM and MLP branches was concatenated and fed into the

output layers. The first layer was a dense layer of 4 units, and the final output layer
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had one unit with a single output, as shown in figure 3.4.

The entire network was trained with 214,639 samples, which were 75% of our

entire corpus, and we used 71,547 samples for validation. Our batch size was 32,768.

Dense Layer 1
Input 18

Output 4

Dense Layer 2
Input 4

Output 1

Predicted Intrusiveness Score

Concatenated Inputs

72 Elements

MLP Branch
Input 72

Output 16

250 Elements

LSTM Branch
Input 250

Output 2

Figure 3.4: Complete network architecture. Two branches are running in parallel.
Two dense layers at the bottom process the combined output to produce
a final prediction.
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CHAPTER IV

Results

We used TensorBoard to gather statistics about our training runs. The main

advantage of TensorBoard is the ability to gather and visualize multiple metrics for

a network during and after the different runs. The dashboard allowed us to make

adjustments during the initial phases of the study and easily compare the effects. It

is also possible to verify the network configuration in a visual manner, which came in

handy for our network, given its parallel branches.

Figure 4.1 shows a three-dimensional projection of the embeddings’ weights on a

sample run of the network. Once the network has been trained, it develops a model of

the relationships between the different words in the vocabulary. The constellation of

points shows the relative relation of the words in the vocabulary used by the embed-

dings layer. Intuitively, this graph shows how different words in the vocabulary tend

to group in two opposite poles, which for this problem intrusive and non-intrusive.

Some words are neutral to a larger or lesser degree, and they appear somewhere in

between the two large groups of words. These visualizations are useful during devel-

opment and fine-tuning of a network, because they allow to view at a glance how the

network is behaving during that snapshot.

Another important feature of TensorBoard is the ability to view the network graph

to confirm that the network described in code is in fact the network needed for the
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Figure 4.1: TensorBoard display of the weights in an embeddings layer after a sample
run. The two large clumps represent the two values extracted by the
network after training.

analysis. The Keras framework simplifies the task of creating and configuring neural

networks, but it also creates the possibility that a small bug in the code can change

the network architecture in a significant manner. Figure 4.2 shows a sample run of

the network. We can visually confirm that there are two parallel branches, one feed-

forward branch comprised of two dense (fully connected) layers, and one bi-directional

branch. Double-clicking on the latter branch opens up a graph showing the stacked

LSTM layers that form it.

Depending on the type of analysis, it may be a good thing to view the neural

network progress as it performs multiple epochs, or even after a given number of

steps within the epoch. TensorBoard allows to do that, plus it allows the user to

view multiple runs side-by-side to perform comparisons. Figure 4.3 shows two sample

runs in which different hyperparameters have been tweaked. One run (denoted by the

orange and grey lines) showed signs of an early convergence, but the validation loss

started a significant uptick, which is a sign of overfitting. As a result, the sample run
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Figure 4.2: Screenshot of a TensorBoard network graph display. This graph confirms
that the network used by TensorFlow matches the intended network con-
figuration entered in code.

was terminated early, saving time and computing resources. The other set of lines

(red and blue) represent a slower time to converge, but the network stabilized at a

validation rate between 73 and 74% (the best result obtained in this study). When

faced with a difficult problem, or a network that needs fine-tuning, TensorBoard

provides an excellent platform to view and compare multiple results, and potentially

generate ideas for improvements.

We tested many configurations for both branches, the LSTM and MLP, and it was

very interesting to see that we obtained the best results with the smallest networks

we tested. Intuitively, we expected our network to be larger than what we finally

used. For example, as mentioned before, Seshadhri et al. (2020) showed that it is

not a good strategy to use few dimensions for embeddings. In their findings, not

using enough dimensions to properly represent the nuances of a given problem results

in an inexact model that can produce flawed results. We also expected our LSTM
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Figure 4.3: TensorBoard screen showing the training and validation outputs for two
sample runs. One run was terminated early due to signs of overfitting.

network to use many more cells since we were dealing with a fairly large vocabulary,

plus sequences of up to 250 words. However, our objective was very specific and

used a narrow meaning of words, in a limited environment. These factors may have

contributed to make it fairly simple to determine the intrusiveness score for a given

app.

As shown in Figure 4.4, the training accuracy (blue line) was about 78% at 160

epochs. And the validation accuracy (red line) was between 73 and 74%, which

showed that the neural network was able to correctly predict the intrusiveness on

that percentage of tests. The network started stabilizing at around 40 epochs and

maintained its accuracy thereafter. Figure 4.5 shows the loss values obtained during

the same sample run. From the perspective of an end user, this result means that

they can use this network as a way to gauge how intrusive an app is. They can use

this information as part of their decision to install the app, or look for alternatives.

Our results show that it is possible to predict an app’s relative intrusiveness by us-

ing its natural language description and cues from its other readily available features.
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Figure 4.4: Epoch accuracy showing the accuracy of a sample training run for our
neural network. Validation accuracy plateaus at 73-4%
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Figure 4.5: Epoch loss of the sample training from figure 4.4
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Although more work is needed to improve accuracy, we saw that it is possible to de-

termine, only with the information available at the moment of downloading, whether

an app is potentially more intrusive than expected. The user ultimately decides if it

is OK to download and install any app, but this approach shows promise as an aid

in that choice.
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CHAPTER V

Related Work

The relationship between app descriptions and permissions has been an area of

interest for other researchers as well. For instance, in their paper, Qu et al. (2014)

introduce the term description-to-permission fidelity to indicate how closely the nat-

ural language description of an app matches its permissions. The authors create an

automated system to check apps and find that there is, in general, low fidelity in

the Google Play store. Even though this paper uses machine learning techniques to

extract semantic meaning from app descriptions, its methodology is not nearly as

powerful as the use of LSTM networks for the same purpose. Our study also used a

much larger data corpus to train and validate the network. We also sought to predict

the intrusiveness of an app, rather than look exclusively at its permissions.

Yu et al. (2016) try to improve on prior work that compared an app’s description

and its actual permissions in order to identify malicious apps. This new approach

uses bytecode and privacy policy analysis to reduce the number of false positives from

prior attempts. Although low level analysis of an app can yield very accurate results,

it is not feasible to implement for the average end-user. Part of the object of this

study was to provide a method that could be used by anyone.

In another study conducted by Mohsen et al. (2018), the authors set the stage

for our current study. Namely, the concept of Intrusivess Score is introduced and
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calculated for a large set of apps obtained from the Google app store. As mentioned

before, our study aimed to predict the intrusiveness of an app using a simplified

version of this score, which we used to train and validate our network.

Taylor and Martinovic (2016) propose Securank using contextual analysis in their

paper, which is based on the idea that similar apps, i.e. apps that try to solve the

same problem for their users, should have similar permissions. Consequently, apps

requesting more permissions than their peers are arguably more intrusive. Although

potentially very useful, SecuRank requires low-level analysis of the apps it ranks

and it cannot offer assistance for new apps that have not been analyzed yet. The

intrusiveness score developed in Mohsen et al. (2018) takes into account the concept

of peer applications. Predicting it also helps users achieve their desired level of privacy.

Similar to aforementioned work, Olukoya et al. (2019) seek to uncover malicious

apps by identifying differences between their natural language description and their

actual behavior. Their paper on the work initiated by Qu et al. (2014) and others,

and they do achieve an improved accuracy. However, their model requires access to

the actual app package (Android Package Kit (APK)), which makes it difficult to

implement, especially on mobile devices.
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CHAPTER VI

Future Work

There are several things that we would like to propose for future work in this area.

As there are always new apps and new versions of Android, it would be interesting to

perform a similar study with more recent data. In addition, we could also look into

obtaining other data points that might give additional insight into any given app’s

intrusiveness. Two additional data points that come to mind are download size and

minimum memory required. One could argue that an app that uses more information

after requesting extra permissions, needs to have a larger download size and memory

footprint than its non-intrusive counterparts. These two extra data points could help

improve the accuracy of prediction.

Another interesting possibility would be the idea of implementing this network

in a mobile device. It could analyze prospective apps and help its user make a

determination on whether to download and install a new app on their device. The

fact that our best performing networks were small, increases the feasibility of this

idea. A mobile app could also learn from its user and use that additional knowledge

to increase or decrease the level of privacy used for future predictions. Similar to a

Netflix algorithm James Bennet (2007), it could be possible to offer alternatives to

the current app based on other users’ similar privacy goals and apps’ intrusiveness.

It would also be interesting to try different network architectures, like bidirectional
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GRUs, for example.

We could also propose further enhancements to the preprocessing of the Descrip-

tion field. Some ideas would be to replace emojis with words that represent them,

run a spell check, try to infer additional meaning from the formatting that has been

removed, etc.
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APPENDIX A

Preprocessing code

The code in this section was executed in the context of a Jupyter notebook. By

splitting the code into cells, it was easy to debug, or experiment with the input data

for the neural network. The code is shown here as a single listing, but it is highly

recommended to execute in a similar environment in order to get familiar with the

code, or to work on it for future work.

Additionally, the code was executed inside a Docker container, which made it easy

to set up the environment needed for the Nvidia GPU, along with the proper drivers

and TensorFlow software. One disadvantage of the Docker container was that the

image could not be updated select software packages needed for the preprocessing.

As a result, the first portion of the code needed to be executed each time the Docker

image started. In a regular environment, these statements would be executed only

once on the target machine and would persist.

This code is available on GitHub at:

https://github.com/fmontene-umflint/lstm_intrusiveness

# Update the VM with the latest and greatest

! pip install -- upgrade pip

! pip install langid
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! pip install pandas

! pip install nltk

# all the imports

from __future__ import absolute_import , division , print_function , unicode_literals

import langid

import numpy as np

import pandas as pd

import matplotlib . pyplot as plt

import nltk

from nltk . stem import SnowballStemmer , PorterStemmer

from nltk . tokenize import word_tokenize

from nltk . corpus import stopwords

import os

import re

import string

# Need to download stop words corpus

nltk . download (’ stopwords ’)

# Need to download punkt

nltk . download (’punkt ’)

# Read the files into Pandas dataframes for processing

# data1 and data2 will contain ’ pkgname ’ and ’ Descriptions ’

data1 = pd. read_csv (’ ContextualDataDescriptionWhatsNew - part1 . csv ’)

data2 = pd. read_csv (’ ContextualDataDescriptionWhatsNew - part2 . csv ’)

# data will contain the column ’ID ’, which is the same as ’ pkgname ’ in data1 ,

# and other columns called ’Genr ’, ’ Developer ’,

# plus 4 different permission scores .

# The column called ’ permission_2 ’ has the score for our study

data = pd. read_csv (’ apks_with_scores . csv ’)

# Temporary dataframes to hold only the columns we will use later on

df1 = data1 [[ ’ pkgname ’,’ Description ’]]

df2 = data2 [[ ’ pkgname ’,’ Description ’]]

df3 = data [[ ’ID ’,’ permission_2 ’]]

# Perfoming the Merge and getting the class label

# ---
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frames =[ df1 , df2 ]

df_cat =pd. concat ( frames )

# Remove duplicates

df_cat_final = df_cat . drop_duplicates ()

# Then we perform a merge using the ’ pkgname ’ and ’ID ’ columns

df_cat_merge =pd. merge ( df_cat_final ,df3 , left_on =[ ’ pkgname ’], right_on =[ ’ID ’])

# Remove any rows containing NAs , to avoid processing problems

df_cat_merge = df_cat_merge . dropna ()

# Save file for later processing

# First , make sure that all the ’ Description ’ fields contain a string

df_cat_merge [’ Description ’] = df_cat_merge [’ Description ’]. map ( lambda x: str (x))

df_cat_merge . to_csv (’ CategoryMergeRaw . txt ’, sep =’\t’, index = False )

# We can drop the column ’ID ’, which was used for the match

# and should be a duplicate of ’ pkgname ’

df_cat_merge = df_cat_merge . drop ( columns =[ ’ID ’])

# Dataframe update

# A new column called ’ desclang ’ will contain a 2 letter ISO 639 -1 code

# For our tests we are only interested in English , represented by ’en ’

# We use langid .py to classify the apps according to the description language

##

# NOTE

##

# At this point we ran into problems with language classification due to app

# descriptions that contained multiple languages .

# We found that truncating the number of words provided to the language

# classifier provided much more accurate classification

trunc_words = 350

df_cat_merge = df_cat_merge . assign (

desclang = df_cat_merge [’ Description ’]. apply (

lambda row : langid . classify (’␣’. join ( row . split ()[: trunc_words ]))[0]

)

)
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# Once again , remove any NAs

df_cat_merge = df_cat_merge . dropna ()

# Save file for later processing

df_cat_merge . to_csv (’ CategoryMergeLanguage2 . txt ’, sep =’\t’, index = False )

# remove non - English apps

df_cat_merge = df_cat_merge . where ( df_cat_merge [’ desclang ’] == ’en ’)

# Save file for later processing

df_cat_merge . to_csv (’ CategoryMergeEnglish2 . txt ’, sep =’\t’, index = False )

# Remove special characters

# NOTE : This will need to be tweaked for any languages other than English

nospace = lambda x: re. sub (

r’[ˆa-zA -Z␣]’, # Regular expression removing non - alpha characters

’’,

re. sub (

r’[ˆa-zA -Z\‘␣]’, # Replace non - alpha characters for spaces

’␣’,

re. sub (

# Remove tabs , new line , carriage returns , form feeds ,

# and UNICODE characters

r’(\\ t |\\ n |\\ r |\\ f |\\ u[0 -9a-fA -F ]{4}) ’,

’’,

str (x)

)

)

)

# Remove stop words

sw = set ( nltk . corpus . stopwords . words (’ english ’))

nostops = lambda x: ’␣’. join (

str ( word ). lower () for word in nltk . tokenize . word_tokenize (x) if word not in sw

)

# Putting it all together and removing extra spaces

cleanup = lambda x: re. sub (r’\s+’, ’␣’, nostops ( nospace (x )))

# All descriptions

# They should be , but let ’s make sure all ’ Description ’ fields are strings
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df_cat_merge [’ Description ’] = df_cat_merge [’ Description ’]. map ( lambda x: str (x))

# Save pre - processed data for later use

df_cat_merge . to_csv (’ CategoryMergePreProcessed2 . txt ’, sep =’\t’, index = False )

# Prepare the Snowball Stemmer

stemmer = nltk . stem . SnowballStemmer (’ english ’)

df_cat_merge [’ Description ’] = df_cat_merge [’ Description ’]. map (

lambda x: ’␣’. join ( stemmer . stem ( word ) for word in x. split ())

)

# Save pre - processed data

df_cat_merge . to_csv (’ CategoryMergePreProcessedStemming2 . txt ’, sep =’\t’, index = False )

# Take Genre data from original file above

context_data = data [[ ’ID ’,’Genr ’]]

# Make sure all Genr data is a string

context_data [’Genr ’] = context_data [’Genr ’]. map ( lambda x: str (x))

# Remove blanks

context_data = context_data . dropna ()

# Remove ampersands from Genres

context_data [’Genr ’] = context_data [’Genr ’]. map ( lambda x: re. sub (r’&’, ’’, x))

# Use stemmer on the Genre field

context_data [’Genr ’] = context_data [’Genr ’]. map (

lambda x: ’␣’. join (

stemmer . stem ( word ) for word in x. split ()

)

)

df = df_cat_merge . merge ( right = context_data ,

left_on = ’ pkgname ’,

right_on = ’ID ’)

# Remove duplicates and NAs

df = df. drop_duplicates ()

df = df. dropna ()

df = df. drop ( columns =’ID ’)

# Save file for later use

df. to_csv (’ CategoryStemming2Enhanced . txt ’, sep =’\t’, index = False )
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APPENDIX B

LSTM code

This code is available on GitHub at:

https://github.com/fmontene-umflint/lstm_intrusiveness

# Prep for the Docker container

# Update all packages

! pip install -- upgrade pip

! pip install pandas

! pip install sklearn

# Load extensions and imports

# Load all external packages using pip before executing this in a Docker container

from __future__ import absolute_import , division , print_function , unicode_literals

from datetime import datetime

import numpy as np

import pandas as pd

import pickle

import os

import matplotlib . pyplot as plt

from datetime import datetime

import tensorflow as tf

from tensorflow . keras . models import Sequential

from tensorflow . keras . layers import Dense , LSTM , GRU , Dropout , Activation

from tensorflow . keras . layers import Embedding , Bidirectional , concatenate

from tensorflow . keras . optimizers import Adam

from tensorflow . keras . preprocessing . sequence import pad_sequences
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from tensorflow . keras . preprocessing . text import Tokenizer

from sklearn import preprocessing

# Retrieve preprocessed file

df_new = pd. read_csv (’Clean - ContextualDataNormalized . csv ’, sep = ’\t’)

# Read preprocessed Descriptions data and merge

df_desc = pd. read_csv (’ CategoryStemming2Enhanced . txt ’, sep = ’\t’)

# Merge the two

df = pd. merge ( df_new , df_desc , left_on =[ ’ pkgname ’], right_on =[ ’ pkgname ’])

# Free memory up and keep only one dataframe

df_new = None

df_desc = None

# Turn Genr into numbers and normalize diving by 50

numGenre = {’educ ’ : 1,

’ person ’ : 2,

’ entertain ’ : 3,

’ lifestyl ’ : 4,

’tool ’ : 5,

’busi ’ : 6,

’puzzl ’ : 7,

’arcad ’ : 8,

’ casual ’ : 9,

’music ␣ audio ’ : 10 ,

’book ␣ refer ’ : 11 ,

’ travel ␣ local ’ : 12 ,

’ photographi ’ : 13 ,

’ product ’ : 14 ,

’ health ␣ fit ’ : 15 ,

’sport ’ : 16 ,

’ action ’ : 17 ,

’news ␣ magazin ’ : 18 ,

’ communic ’ : 19 ,

’ social ’ : 20 ,

’ financ ’ : 21 ,

’simul ’ : 22 ,

’ adventur ’ : 23 ,
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’shop ’ : 24 ,

’race ’ : 25 ,

’medic ’ : 26 ,

’map ␣ navig ’ : 27 ,

’video ␣ player ␣ editor ’ : 28 ,

’ trivia ’ : 29 ,

’ casino ’ : 30 ,

’board ’ : 31 ,

’card ’ : 32 ,

’ strategi ’ : 33 ,

’food ␣ drink ’ : 34 ,

’ weather ’ : 35 ,

’word ’ : 36 ,

’art ␣ design ’ : 37 ,

’role ␣ play ’ : 38 ,

’ librari ␣ demo ’ : 39 ,

’music ’ : 40 ,

’comic ’ : 41 ,

’ beauti ’ : 42 ,

’hous ␣ home ’ : 43 ,

’auto ␣ vehicl ’ : 44 ,

’event ’ : 45 ,

’date ’ : 46 ,

’ parent ’ : 47}

df[’ n_genre ’] = df[’Genr ’]. map ( lambda x: numGenre [x ]/50)

# Data sample and hyperparameter settings

# Make choices for each run

# Change this to the VM folder where the data is stored

# and where TensorBoard logs will be created

data_folder =’/tf/’

# Number of bins for histograms

bin_num = 20

# Set timestamp for logs

log_timestamp = datetime . now (). strftime ("%Y%m%d -%H%M%S")

#

# Tokenization settings

#
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# If set to True , this paramater reads a tokenizer object from file

use_saved_tokenizer = False

# Name of the file to use to save / retrieve the tokenizer object

tokenizer_filename = ’ tokenizer_hybrid ’

# The following tokenizer parameters are only considered if

# use_saved_tokenizer is set to False

# Max number of words considered for the NN. This parameter determines the size

# of the embedings layer , along with the dimensions below

vocab_size = 32768

# According to

# https :// developers . googleblog . com /2017/11/ introducing - tensorflow - feature - columns . html

# the embedding dimensions should be vocab_size ˆ(1/4) ,

# but they say you can use anything . Most experts use a number

# between 50 and 1000. We started with 16 and went to 64.

# 64 provided good results , but showed overfitting

# Trial and error gave us 4 as the best number of dimensions for this problem

embedding_dim = 4

#

# Input sequence settings

#

# Minimum and maximum length of app descriptions fed to the NN

# Too few words may not provide enough information to make a decision

minimum_length = 70

# Notes : looking at the app data , 120 max words covers 43 percentile of apps

# 250 covers 87.5 percentile

max_length = 250

#

# Sampling settings

#

batch_size = 32768

# Percentile to use

# Only samples below this threshold will be used as 0’s and

# samples above 1 - threshold will be used as 1’s

percentile = 0.35

#

# Hyperparameters

#

# Recurrent Dropout is the Keras equivalent to Variational Dropout
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# Setting this value to > 0 will disable cuDNN architecture

rec_dropout = 0.25 # Only used for LSTM branch

dropout = 0.3 # Only used for MLP branch

# Adam optimizer settings

# Adjust this accordingly to use a customized optimizer

use_custom_adam = False

# Customize learning rate

# Default rate for Adam is 1e -3

# Only used if use_custom_adam is True

custom_adam = Adam ( learning_rate =1e -2)

# Number of epochs to run for each test

num_epochs = 160

# Percent of sample data to use for validation

val_ratio = .25

# Number of cells for MLP Dense layers

num_units = 16

# Tokenization and Sequencing

# ---

trunc_type =’post ’

oov_tok = "<OOV >"

tokenizer = Tokenizer ( num_words = vocab_size , oov_token = oov_tok )

# Obtain tokenizer object

if use_saved_tokenizer :

# Get object from previously saved file

token_file = open ( tokenizer_filename , ’rb ’)

tokenizer = pickle . load ( token_file )

token_file . close ()

else :

# Create a new tokenizer

tokenizer . fit_on_texts (df[’ Description ’])

# Save the tokenizer to a file for later use

token_file = open ( tokenizer_filename , ’wb ’)

pickle . dump ( tokenizer , token_file , protocol = pickle . HIGHEST_PROTOCOL )

token_file . close ()

# Before creating sequences , we are removing descriptions that are too short

# and could be causing problems with the NN

df = df. loc [df[’ Description ’]. map (
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lambda x: len (x. split ())) >= minimum_length ]

# Add Label column , to be used as target for training

df = df. assign ( Label = 2)

# Find the percentile values to be used

# By default , this function skips null values

p2_threshold1 = df[’ permission_2 ’]. quantile ( percentile )

p2_threshold2 = df[’ permission_2 ’]. quantile (1 - percentile )

print (’ Thresholds ␣to␣ use ␣ are ␣’ +

str ( p2_threshold1 ) +

’␣ and ␣’ +

str ( p2_threshold2 )

)

# if the score is below the threshold1 , label = 0,

# if the score is equal or higher than threshold2 , set the label = 1

# Setting the class label

column_score = ’Label ’

df. loc [df[’ permission_2 ’] <= p2_threshold1 , [’Label ’]] = 0

df. loc [df[’ permission_2 ’] >= p2_threshold2 , [’Label ’]] = 1

# Remove items that we are not going to use

df = df. loc [df[’Label ’] < 2]

# Drop any NAs

df = df. dropna ()

# Reset the index to avoid blanks

df = df. reset_index ( drop = True )

# df

# MLP Branch

# This branch analyses the other characteristics of an app

# Rank of Dimensions importance , based on training accuracy :

#

# Genre

# Android Minimum Version

# Download Count

# Age Rating

# Review Average
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# Free <- Probably unimportant because there are so many free apps

# Assign different inputs to different variables and prepare

# category inputs as one - hot matrices

lb = preprocessing . LabelBinarizer ()

# RevAvg is a normalized version of the review averages , goes in as -is

x_1 = df[’ RevAvg ’]

# free is a booloean indicator showing if the app is free , used as -is

x_2 = df[’free ’]

# AgeRating needs one - hot encoding

lb. fit (np. array ( list ( str (x) for x in df. AgeRating )))

x_3 = lb. transform (np. array ( list ( str (x) for x in df. AgeRating )))

# d_count is a categorized measure of downloads . Needs one - hot encoding

lb. fit (np. array ( list ( str (x) for x in df. d_count )))

x_4 = lb. transform (np. array ( list ( str (x) for x in df. d_count )))

# NormVer also category , also one - hot

lb. fit (np. array ( list ( str (x) for x in df. NormVer )))

x_5 = lb. transform (np. array ( list ( str (x) for x in df. NormVer )))

# n_genre needs one - hot encoding

lb. fit (np. array ( list ( str (x) for x in df. n_genre )))

x_6 = lb. transform (np. array ( list ( str (x) for x in df. n_genre )))

# Putting it all together

x = np. hstack ([ np. swapaxes (np. vstack ([ x_1 , x_2 ]) ,0 ,1) , x_3 , x_4 , x_5 , x_6 ])

# x = df [[ ’ RevAvg ’,’ free ’,’ AgeRating ’,’ d_count ’,’ NormVer ’,’ n_genre ’]]

y = np. array ( list (x for x in df. Label ))

mlp = Sequential ()

mlp . add ( Dense ( num_units , activation = ’relu ’, input_shape = (x. shape [ -1] ,)))

mlp . add ( Dense ( num_units , activation = ’relu ’))

mlp . add ( Dropout ( dropout ))

# LSTM Branch

# This branch does App description analysis

sequences = tokenizer . texts_to_sequences (df[’ Description ’])

data = pad_sequences ( sequences ,

maxlen = max_length ,

truncating = trunc_type ,

padding = ’post ’

)
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# We tokenize the data on the full dataset to make it more robust ,

# especially the word_index

lstm = Sequential ()

lstm . add (

Embedding (

vocab_size ,

embedding_dim ,

input_length = max_length ,

mask_zero = True

)

)

lstm . add (

Bidirectional (

LSTM (

embedding_dim ,

recurrent_dropout = rec_dropout ,

dropout = dropout ,

return_sequences = True

)

)

)

lstm . add (

Bidirectional (

LSTM (

int ( embedding_dim /2) ,

recurrent_dropout = rec_dropout ,

dropout = dropout ,

return_sequences = True

)

)

)

lstm . add (

Bidirectional (

LSTM (

int ( embedding_dim /4) ,

recurrent_dropout = rec_dropout ,

dropout = dropout

)

)
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)

# Merging branches

# Performing regression on the combined output of both branches

# All the metrics to use for our network

metrics = [

tf. keras . metrics . TruePositives ( name =’tp ’),

tf. keras . metrics . FalsePositives ( name =’fp ’),

tf. keras . metrics . TrueNegatives ( name =’tn ’),

tf. keras . metrics . FalseNegatives ( name =’fn ’),

tf. keras . metrics . BinaryAccuracy ( name =’ accuracy ’),

tf. keras . metrics . Precision ( name =’ precision ’),

tf. keras . metrics . Recall ( name =’ recall ’),

tf. keras . metrics . AUC ( name =’auc ’),

]

# We create a new Model which will receive its inputs from the

# concatenated outputs of our branches above

merged_inputs = concatenate ([ mlp . output , lstm . output ])

# We don ’t use the sequential model for this section

merged_output = Dense (4 , activation =" relu ")( merged_inputs )

merged_output = Dense (1 , activation =" sigmoid ")( merged_output )

model = tf. keras . Model ( inputs =[ mlp . input , lstm . input ], outputs = merged_output )

if use_custom_adam :

model . compile ( loss =’ binary_crossentropy ’, optimizer = custom_adam , metrics = metrics )

else :

model . compile ( loss =’ binary_crossentropy ’, optimizer =’adam ’, metrics = metrics )

model . summary ()

# Data features

Some histograms to see what our data looks like

df. hist ( column =’Label ’,bins = bin_num )

df. hist ( column =’ n_genre ’,bins = bin_num )
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df. hist ( column =’ NormVer ’,bins = bin_num )

df. hist ( column =’ d_count ’,bins = bin_num )

df. hist ( column =’ AgeRating ’,bins = bin_num )

df. hist ( column =’free ’,bins = bin_num )

df. hist ( column =’ RevAvg ’,bins = bin_num )

df[’Label ’]. value_counts ()

logdir = os. path . join ( data_folder + " logs ", log_timestamp )

print (’ Issuing ␣ callback ␣ for ␣ TensorBoard ␣to␣ log ␣ directory :␣’+ logdir )

tb_cbk = tf. keras . callbacks . TensorBoard ( log_dir = logdir ,

histogram_freq = 1,

update_freq = ’batch ’,

profile_batch = 0)

## Fit the model

history = model . fit ([x, data ],

y,

validation_split = val_ratio ,

epochs = num_epochs ,

callbacks = [ tb_cbk ],

verbose = 2,

batch_size = batch_size )

def plot_graphs ( history , string ):

plt . plot ( history . history [ string ])

plt . plot ( history . history [’val_ ’+ string ])

plt . xlabel (" Epochs ")

plt . ylabel ( string )

plt . legend ([ string , ’val_ ’+ string ])

plt . show ()

plot_graphs ( history , ’loss ’)
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Bengio, Y., H. Schwenk, J.-S. Senécal, F. Morin, and J.-L. Gauvain (2006), Neural
Probabilistic Language Models, vol. 194, pp. 137–186, Springer Berlin Heidelberg,
Berlin, Heidelberg.

Bird, S., E. Klein, and E. Loper (2009), Natural Language Processing with Python:
Analyzing Text with the Natural Language Toolkit, O’Reilly Media, Sebastopol.

Bolukbasi, T., K.-W. Chang, J. Zou, V. Saligrama, and A. Kalai (2016), Quantifying
and reducing stereotypes in word embeddings.

Chebyshev, V. (2019), Mobile malware evolution 2019, https://securelist.
com/mobile-malware-evolution-2019/96280/.

Chollet, F. (2018;2017;), Deep learning with Python, 1 ed., Manning Publications Co,
Shelter Island, New York.

Chollet, F., et al. (2015), Keras, https://keras.io.

Enck, W., P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung, P. Mc-
Daniel, and A. N. Sheth (2014), Taintdroid: An information-flow tracking system
for realtime privacy monitoring on smartphones, ACM Transactions on Computer
Systems (TOCS), 32 (2), 1–29.

Gal, Y., and Z. Ghahramani (2015), A theoretically grounded application of dropout
in recurrent neural networks.

Gers, F. A., and J. Schmidhuber (2000), Recurrent nets that time and count, in
Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural
Networks. IJCNN 2000., vol. 3, pp. 189–194 vol.3, IEEE.

56



Gers, F. A., J. Schmidhuber, and F. Cummins (2000), Learning to forget: Continual
prediction with lstm, Neural Computation, 12 (10), 2451–2471.

Google (2015), Android 6.0 changes, https://developer.android.com/
about/versions/marshmallow/android-6.0-changes.

Graves, A., and J. Schmidhuber (2005), Framewise phoneme classification with bidi-
rectional lstm and other neural network architectures, Neural Networks, 18 (5),
602–610.

Greff, K., R. K. Srivastava, J. Koutnik, B. R. Steunebrink, and J. Schmidhuber
(2017;2015;), Lstm: A search space odyssey, IEEE Transactions on Neural Net-
works and Learning Systems, 28 (10), 2222–2232.

Hochreiter, S., and J. Schmidhuber (1997), Long short-term memory, Neural Com-
putation, 9 (8), 1735–1780, doi:10.1162/neco.1997.9.8.1735.

Hopfield, J. J. (1982), Neural networks and physical systems with emergent collective
computational abilities, Proceedings of the National Academy of Sciences - PNAS,
79 (8), 2554–2558.

IBM (2021), What are recurrent neural networks?, https://www.ibm.com/
cloud/learn/recurrent-neural-networks.

IDC (2020), Smartphone market share, https://www.idc.com/promo/
smartphone-market-share/os.

James Bennet, S. L. (2007), Proceedings of kdd cup and workshop 2007, http://
www.netflixprize.com/assets/NetflixPrizeKDD_to_appear.pdf.

Leetaru, K. (2018), What does it mean for social media platforms to ”sell” our
data?, https://www.forbes.com/sites/kalevleetaru/2018/12/15/
what-does-it-mean-for-social-media-platforms-to-sell-our-data/
#4e2b10e62d6c.

Lui, M., and T. Baldwin (2012), langid.py: An off-the-shelf language identification
tool, in Proceedings of the ACL 2012 System Demonstrations, pp. 25–30, Associa-
tion for Computational Linguistics, Jeju Island, Korea.

McClelland, J. L., D. E. Rumelhart, S. D. P. R. G. University of California, and
I. X. O. service) (1987), Parallel distributed processing: explorations in the mi-
crostructure of cognition, MIT Press, Cambridge, Mass.

Mohsen, F., H. Abdelhaq, H. Bisgin, A. Jolly, and M. Szczepanski (2018), Countering
intrusiveness using new security-centric ranking algorithm built on top of elastic-
search, in 17th IEEE International Conference On Trust, Security And Privacy In
Computing And Communications / 12th IEEE International Conference On Big
Data Science And Engineering, TrustCom/BigDataSE 2018, New York, NY, USA,
August 1-3, 2018, pp. 1048–1057, IEEE, doi:10.1109/TrustCom/BigDataSE.2018.
00147.

57



NVIDIA (2020), Deep learning frameworks documentation,
https://docs.nvidia.com/deeplearning/frameworks/
tensorflow-release-notes/index.html.

Olukoya, O., L. Mackenzie, and I. Omoronyia (2019), Security-oriented view of app
behaviour using textual descriptions and user-granted permission requests, Com-
puters & Security, 89, 101,685, doi:10.1016/j.cose.2019.101685.

Otte, S., and A. Zell (2014), Dynamic cortex memory: Enhancing recurrent neural
networks for gradient-based sequence learning.

Pedregosa, F., et al. (2011), Scikit-learn: Machine learning in Python, Journal of
Machine Learning Research, 12, 2825–2830.

Pew Research Center (2015), Apps permissions in the google play
store, https://www.pewresearch.org/internet/2015/11/10/
apps-permissions-in-the-google-play-store/, washington, D.C.,
USA.

Plebe, A., and G. Grasso (2016), The brain in silicon: History, and skepticism, in
History and Philosophy of Computing, edited by F. Gadducci and M. Tavosanis,
pp. 273–286, Springer International Publishing, Cham.

Qu, Z., V. Rastogi, X. Zhang, Y. Chen, T. Zhu, and Z. Chen (2014), Autocog: Mea-
suring the description-to-permission fidelity in android applications, Proceedings of
the ACM Conference on Computer and Communications Security, pp. 1354–1365,
doi:10.1145/2660267.2660287.

Quay-de la Vallee, H., P. Selby, and S. Krishnamurthi (2016), On a (per)mission:
Building privacy into the app marketplace, in Proceedings of the 6th Workshop on
security and privacy in smartphones and mobile devices, pp. 63–72, ACM.

Sahlgren, M. (2015), A brief history of word em-
beddings, https://www.linkedin.com/pulse/
brief-history-word-embeddings-some-clarifications-magnus-sahlgren/.

Sarma, B., N. Li, C. Gates, R. Potharaju, C. Nita-Rotaru, and I. Molloy (2012),
Android permissions: a perspective combining risks and benefits, in Proceedings
of the 17th ACM symposium on access control models and technologies, pp. 13–22,
ACM.

Seshadhri, C., A. Sharma, A. Stolman, and A. Goel (2020), The impossibility of low-
rank representations for triangle-rich complex networks, Proceedings of the National
Academy of Sciences (PNAS), 117 (11), 5631–5637, doi:10.1073/pnas.1911030117.

Sutskever, I., O. Vinyals, and Q. V. Le (2014), Sequence to sequence learning with
neural networks.

58



Taylor, V. F., and I. Martinovic (2016), Securank: Starving permission-hungry apps
using contextual permission analysis, in Proceedings of the 6th Workshop on Secu-
rity and Privacy in Smartphones and Mobile Devices, SPSM ’16, pp. 43–52, ACM,
New York, NY, USA, doi:10.1145/2994459.2994474.

TensorFlow (2015), Embeddings, https://developers.googleblog.com/
2017/11/introducing-tensorflow-feature-columns.html.

Yadav, N., A. Yadav, and M. Kumar (2015), History of Neural Networks, pp. 13–15,
Springer Netherlands, Dordrecht, doi:10.1007/978-94-017-9816-7 2.

Yu, L., X. Luo, C. Qian, and S. Wang (2016), Revisiting the description-to-behavior
fidelity in android applications, in 2016 IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER), vol. 1, pp. 415–426.

Zhi-Hua Zhou, and Xu-Ying Liu (2006), Training cost-sensitive neural networks with
methods addressing the class imbalance problem, IEEE Transactions on Knowledge
and Data Engineering, 18 (1), 63–77.

59


		2021-04-29T13:35:58+0000
	San Francisco
	Tamper Proofing




