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Robot Sensing Today
Robots now have access to increasingly detailed sensor data
● High resolution images
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Robot Sensing Today
Robots now have access to increasingly detailed sensor data
● High resolution images
● Dense point clouds
● Motion capture data
● Tactile information

IMAGE: MathWorks IMAGE: 3D motion capture by computer vision 
and virtual rendering (D Jáuregui) IMAGE: Learning the signatures of the human 

grasp using a scalable tactile glove (S 
Sundaram et al)
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The Challenges of High Dimensional Data
● Some problems and algorithms quickly become intractable

○ Partially Observable Markov Decision Processes (POMDPs)
○ Particle Filters
○ Reinforcement Learning
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The Challenges of High Dimensional Data
● Some problems and algorithms quickly become intractable

○ Partially Observable Markov Decision Processes (POMDPs)
○ Particle Filters
○ Reinforcement Learning

● Interfacing with humans
○ Data visualization
○ Robot teleoperation

● Data sparsity grows exponentially with dimension
● Hughes Phenomenon: more features can harm accuracy
● Handling bias-variance tradeoff
● Outlier detection
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Dimensionality Reduction to the Rescue
Reduce the dimension of the data while preserving latent information
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2. Grasp Trajectory

Dimensionality Reduction to the Rescue
Reduce the dimension of the data while preserving latent information

1. A Spatio-temporal Extension to Isomap Nonlinear Dimension Reduction (OC Jenkins et al)
2. Extracting Postural Synergies for Robotic Grasping (J Romero et al)
3. Detecting the Functional Similarities Between Tools Using a Hierarchical Representation of Outcomes (J Sinapov et al)
4. Learning Kinematic Models for Articulated Objects (J Sturm et al)

1. Human Motion 
Capture Data

3. Tool Shape 
Similarities

4. Learned 
Kinematic Model 13



● Transform data to a lower-dimensional space
● Preserve data similarities/dissimilarities

Dimensionality Reduction
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● Transform data to a lower-dimensional space
● Preserve data similarities/dissimilarities

Dimensionality Reduction

● Model data as lying along a manifold
● Learn a low-dimensional embedding

Manifold Learning

PCA

IMAGE: Pathmind

IMAGE: scikit-learn
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Nearest-Neighbors
● Common tool to discover local structure
● Used as a starting point by many manifold learning algorithms

○ Isometric Mapping (ISOMAP)
○ Locally Linear Embedding (LLE)
○ Laplacian Eigenmaps (LE)
○ Local Tangent Space Alignment (LTSA)
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● Can be "short-circuited" by 
false edges, caused by

○ Noisy or sparse data
○ Distinct regions of the manifold 

passing close to one another

● Makes points falsely appear 
highly similar

Nearest-neighbors
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Nearest-neighbors
● Can be "short-circuited" by 

false edges, caused by
○ Noisy or sparse data
○ Distinct regions of the manifold 

passing close to one another

● Makes points falsely appear 
highly similar

● Want to remove false edges
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Key Observations from Manifold Geometry
● Red and blue points are from different regions of 

the manifold
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Key Observations from Manifold Geometry
● Red and blue points are from different regions of 

the manifold
● False edges disagree with the tangent spaces

○ Tangent spaces (thick, black lines) tell us which edges to 
remove

● Problem: poor local neighborhoods skew 
tangent space estimates

● Nearby points have similar tangent spaces
○ Can we use this to obtain a better estimate?
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Tangent Space Estimation via Belief Propagation
● Formulate as inference on a Markov Random Field (MRF)
● For each point

○ Latent variable represents its
tangent space

○ Observation from PCA on
local neighborhood

Neighborhood Graph MRF 28



Spiral Experiment

Dataset k-Nearest Neighbors
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Spiral Experiment Tangent Estimation

Ground Truth PCA
30



Ground Truth TSBP

Spiral Experiment Tangent Estimation
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Spiral Experiment Nearest Neighbors

k-Nearest Neighbors TSBP
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Spiral Experiment Belief Propagation
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Spiral Experiment Error
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Embedding Evaluation
● Plot the original data parameters versus the embedding
● Compare nearest-neighbors and TSBP
● Expect a continuous, monotonic relationship
● Ideal embedding:
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Nearest Neighbors

TSBP

Embedding Evaluation

ISOMAP
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"Swiss Roll" Experiment
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"Swiss Roll" Experiment Neighbors

k-Nearest Neighbors TSBP
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Embedding Evaluation
● Directly plot the 2D embedding
● Compare nearest-neighbors and TSBP
● Expect a rectangular embedding, with no data overlaps
● Ideal embedding:
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Nearest Neighbors Multidimensional 
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High-Dimensional Tactile Data
● Tactile sensing can be useful for intricate 

grasping and manipulation
● Scalable Tactile Glove (STAG) gathers 

detailed information from human grasp
● 548 force sensors (high dimensional data)
● Perform object classification with a Deep 

Convolutional Neural Network (Deep CNN)

IMAGE: Learning the signatures of the human 
grasp using a scalable tactile glove (S 

Sundaram et al) 72



Dimensionality Reduction and Classification
● Want to perform object classification without large amounts of training data

○ 26 objects (plus empty hand)
○ 24 samples per class
○ 50/50 train-test split

● Use a Gaussian Process Classifier (GPC) with RBF Kernel
○ Kernel relies on Euclidean metric, which performs poorly in high dimensional spaces

● Perform dimensionality reduction with t-SNE
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Tactile Data Classification Results
Random 
Chance

GPC with 
Original Data

GPC with 
Ordinary t-SNE

GPC with 
Nearest-Neighbors 

t-SNE

GPC with 
Autoencoder 
Embedding

Deep CNN GPC with 
TSBP t-SNE

Top-1 Accuracy 0.0370

Top-3 Accuracy 0.1111
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Tactile Data Classification Results
Random 
Chance

GPC with 
Original Data

GPC with 
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t-SNE

GPC with 
Autoencoder 
Embedding

Deep CNN GPC with 
TSBP t-SNE

Top-1 Accuracy 0.0370 0.0402 0.0421 0.0380 0.0612 0.0897 0.1874

Top-3 Accuracy 0.1111 0.1140 0.1156 0.1120 0.1551 0.1888 0.2972
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Tactile Data Classification Results
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Tactile Data Classification Results
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Conclusion
● High dimensional data is inherently difficult to work with
● Manifold learning is one solution to this "Curse of Dimensionality"
● Sparse and noisy data can cause manifold learning to fail
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Conclusion
● High dimensional data is inherently difficult to work with
● Manifold learning is one solution to this "Curse of Dimensionality"
● Sparse and noisy data can cause manifold learning to fail
● TSBP makes manifold learning more robust

○ Accurate tangent space estimates are obtained with belief propagation
○ False edges can be identified by comparing with manifold tangents
○ These edges are removed to produce a denoised neighborhood graph
○ This allows existing manifold learning algorithms to produce a more accurate embedding
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Potential Functions

Given bases:

Vector subspace dissimilarity:

Unary Potential:

Pairwise Potential:
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Outliers

k-Nearest Neighbors TSBP
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L2-L1 PCA Comparison

L2-PCA L1-PCA
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