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ABSTRACT

Modern vehicles have evolved into supporting advanced internal networks and connecting Sys-

tem Based Chips (SBC), System in a Package (SiP) solutions or traditional micro controllers to

foster an electronic ecosystem for high speed data transfers, precision and real-time control. The

use of Controller Area Networks (CAN) is widely adopted as the backbone of internal vehicle com-

munication infrastructure. Automotive applications such as ADAS, autonomous driving, battery

management systems, power train systems, telematics and infotainment, all utilize CAN transmis-

sions directly or through gateway management. The network transmissions lack robust integrity

verification mechanisms to validate authentic data payloads, making it vulnerable to packet replay,

spoofing, insertion, deletion and denial of service attacks. Additional methods exist to secure net-

work data such as traditional cryptography. Utilizing this method will increase the computational

complexity, processing latency and increase overall system cost. This thesis proposes a robust,

light and adaptive solution to validate the authenticity of automotive sensor data using CAN net-

work protocol. We propose using a two-dimensional Quantization Index Modulation (QIM) data

hiding technique, to create a means of verification. Analysis of the proposed framework will be

conducted in a sensor transmission scenario for RADAR sensors in an autonomous vehicle setting.

The detection and effects of distortion on the application are tested through the implementation of

sensor fusion algorithms and the results are observed and analyzed. The proposed framework offers

a needed capability to maintain transmission integrity without the compromise of data quality and

low design complexity. This framework could also be applied to different network architectures,

as well as its operational scope could be modified to operate with more abstract types of data.
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CHAPTER I: INTRODUCTION

Within the last three decades, the automotive industry has seen rapid growth with the utiliza-

tion of in vehicle network controllers like ECUs. This introduced capabilities that people enjoy in

modern vehicles such as dynamic vehicle control, ADAS features and infotainment controls. These

features are dependent on external sensors and integrated advanced communication networks. Au-

tonomous vehicles, in particular, rely heavily on sensory peripherals and data transmission net-

works to realize the capability of automated driving functions (Sarmento et al., 2017). Current

autonomous vehicles rely on sensory input to determine real-time decisions classified as level 2

and above (SAE J3016-201806). A typical loadout contains sensor peripherals such as RADAR,

LiDAR, ultrasonic and vision systems. Sensor data is transmitted to centralized data processing

units called Advanced Driver Assistance System (ADAS) module and flows through different net-

work topologies consisting of ECUs and gateways; bridging internal vehicle networks as well as

external wireless transmission sources. These external transmission sources, typically cell and

wireless networks, allow vehicles to be connected to one another and subsequentially introduce

additional attack surfaces for malicious actors. For vehicles designed to support SAE level 3 or

higher, the severity of cyber-attacks exploiting vulnerabilities with secure data transfer from ve-

hicle sensors to ADAS modules, gateways and associated peripherals, is greatly increased; thus,

posing a significant risk to the safety and well being of the vehicle’s occupants. Hardening sensor

data transmissions is a critical component in the secure operation of autonomous vehicles (Longx-

iang et al., 2017).

Current market ready sensors can be generalized into two categories, smart and raw sensors (Jo

et al., 2015). Devices that have high data rates such as Camera and LiDAR will transmit packet-

based data over ethernet to an ADAS module; These are considered raw sensors. Sensors that

typically support post processing infrastructure for object tracking and transmit over deterministic
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and fault tolerant networks such as CAN/CAN-FD, are classified as smart sensors. The transmitted

data is still processed by an ADAS module, which is used as input constraints for proprietary sen-

sor fusion and decision-making algorithms. Shortcomings in CAN protocol pertaining to broadcast

message formatting, in the clear data transfers and lack of native message authentication and se-

curity, exposes CAN networks to packet replay, spoofing, injection, deletion and denial of service

attacks (Lin and Sangiovanni-Vincentelli, 2012). Numerous demonstrations exploiting common

attack vectors targeting vehicles over CAN networks, has been successfully attempted within au-

tomotive security (Miller and Valasek, 2015). Currently solutions exist to mitigate known vulner-

abilities such as certificate based payloads, encryption, Message Authentication Code (MAC) and

frame ID filtering (Woo et al., 2015). A common implementation for transport layer security is

utilizing Message Authentication Code and cryptography to maintain data integrity. AUTOSAR,

which is a widely adopted software architecture used within automotive, incorporates MAC based

authentication on classic platform architectures called secure on-board communication (SecOC)

(AUTOSAR CP Release 4.3.1). Vehicle Architectures utilizing cryptography to secure data trans-

missions within vehicle networks will have to address and overcome operational constraints and

deficiencies in their design such as processing overhead, key management, authentication failures

and required dependencies for operation. Additionally, HS-CAN and MS-CAN may not be suffi-

cient to implement traditional cryptography due to bandwidth and message length limitations. A

common solution is upgrading the network architecture to CAN-FD, which offers increased band-

width and message length constraints (Woo et al., 2016).

Given current limitations of traditional data verification methods for information integrity, we

introduce a new data hiding based watermark approach. This method addresses challenges associ-

ated with resource constrained architectures and real-time applications. The proposed algorithms

are low computational complexity and bypass bandwidth limits of the systems architecture. This

can be easily achieved as the size of the original payload transmitted is not changed. This proposed

method utilizes a Quantization Index Modulation (QIM) technique to embed the generated water

mark using a lightweight software algorithm. Utilizing the data hiding concepts in an automotive
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Figure 1.1: Comparison of different methods to achieve sensor data integrity.

environment for verifying transmitted sensor data, was introduced by (Changalvala and Malik,

2019). Additionally, utilizing the techniques applied in centralized autonomous vehicle architec-

tures was introduced by (Jo et al., 2014). In this paper, we will analyze a different technique. We

will consider the application of smart sensor classes, focusing on RADAR as the primary sensor

peripheral that produces the data. The watermarking method proposed is applied to the processed

data transmitted from the RADAR sensor, evaluated and verified on the outcome of our sensor

fusion algorithm.

3



1.1 Watermarking Advantages

As we progress further into the 21st century, the adoption and utilization of social media, con-

nected devices and data acquisition, is unlocking potentials society struggled to fathom a century

prior. With large scale data transfers, opportunities needed for data security and verification is

paramount. Attacks on information infrastructure ranging from telecom network to automotive

vehicle networks can be devastating and could potentially pose risk to human life. The concept

of network information security focuses on securing data during transmission, storage and pro-

cessing against common attack vectors like Man-in-The-Middle (MiTM) attacks, side channeling

and tampering (Lu and Guo, 2017). Traditionally, cryptographic applications are used to secure

the integrity of the communication channel. Encrypting communication networks ensure privacy,

valid authentication and verification through symmetric, asymmetric and hybrid key sharing. Al-

though cryptography is used to mitigate network security issues, there are disadvantages to utilizing

this application. Encrypting a communication channel can implicitly draw attention to itself. If a

communication channel is encrypted, then something sensitive and of high importance could be

propagating through that channel. If the encryption being used is defeated, the attacker now has

unimpeded access to the information on that channel. It’s still possible for an attacker to invalidate

the data on a communication channel by modifying the payload without defeating the channels en-

cryption(Lu and Guo, 2017). Within the past two decades, data hiding techniques regained focus

as a potential mechanism to prevent unauthorized accesses to critical data while remaining hidden

by design. These methods are typically stealthed which offer unique applicability that traditional

encryption could not do. They can be used as standalone measures or in tandem with encryption

algorithms. A clear distinction between stenography and encryption is, the access to data being pro-

tected. With standard encryption algorithms, the data is obfuscated and only the intended recipient

can decode and disseminate the information. Stenography does not obfuscate the data and restrict

access. Instead, the embedded signature is hidden within the existing data and used to validate the

authenticity without being detected (Lu and Guo, 2017). In environments where computational

resources are limited, like in edge computing applications, standard cryptography applications are
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limited or unable to be implemented due to the resource constraints; especially in real-time en-

vironments. Edge computing systems are additionally burdened by the use of key management

systems, network bandwidth limits and trade export restrictions. These combined effects increase

the design complexity of the system thus increasing the overall cost of the product. Consider an

edge computing application scenario within an autonomous vehicle environment. Two external

RADAR sensors are connected to an ADAS unit on the vehicles CAN network. The ADAS mod-

ule is responsible for processing the inbound RADAR data packet as well as additional sensor data

where information will be combined in a fusion processor for increased modality. Securing this

data from unauthorized access and manipulation using cryptography requires coordination of trust

anchors and accelerators for key storage and processing. In addition, MAC based implementations

will attribute to the increased unit cost of each module. This also limits the ability to implement

MAC based devices on legacy networks, further limiting its application.

Watermarking applications are typically less computationally intensive and resource constrained.

They have the capability of embedding a traceable, reversible or non-reversible signature into ex-

isting data that can be handled natively by the end process or application. This is an advantage

for data processing in real-time application environments. Figure 1.1 shows an abstraction of three

methods, encryption, Message Authentication Code and Digital Watermarking. These security ap-

plications can be implemented to maintain data integrity. In contrast to digital watermarking, both

methods of encryption and Message Authentication Code require additional computational steps

before the data can be processed. This additional step has to be factored into the design of current

real-time applications. In MAC based implementations, the message payload increases based on

the interface bandwidth. In CAN networks this type of implementation can double bandwidth re-

quirements Woo et al. (2016) Zou et al. (2017). Data based watermarking works in parallel with

the native data through minimal perturbation, eliminating the need to augment the payload size on

the network and reducing consumption of available computational resources.

Utilizing a watermarking implementation also provides needed traceability and security for au-

tonomous driving applications as well as additional use cases. A unique advantage to watermarking
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Figure 1.2: Block-diagram of problem statement.

data, is the embedded signature remaining in the payload until the data is received and processed.

Passive applications such as bus traffic monitoring, dataloggers and upload mechanisms for cen-

tralized data analytics can utilize this characteristic for data integrity within edge computing appli-

cations.

1.2 Principal Contribution

Sensor networks designed for automotive applications could be grouped into numerous general

constraints. However, the following two will be an area of focus:

• Bandwidth limitations: The communication link between the sensor and ECU is bandwidth

limited in automotive vehicles. Most sensors use an HS-CAN interface which has a payload

size of 8 bytes(Zou et al., 2017). This is eight times smaller than CAN-FDwhich can support

a payload of up to 64 bytes. CAN-FD would allow additional security measures to be im-

plemented such as Message Authentication Code (MAC). Devices that use AUTOSAR with
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SecOC will utilize. CAN-FDs bandwidth requirements can handle this but scaling multiple

sensors on the same network will consume additional bandwidth due to increased transmis-

sion frequency, payload size or both. Legacy Networks will frequently encounter bandwidth

limitations, given increased data throughput from sensors needed to construct high resolution

fields of view for autonomous driving features.

• Real-time data verification: Operating conditions in autonomous vehicles often require

sensor data to be processed in a real-time environment. This constraint adds design chal-

lenges to data security when using cryptography, considering processing overhead.

Given the existing limitations with CAN/CAN-FD in terms of data security, vehicle networks

remain in a compromised state. Looking at figure 1.2, a range of attack vectors are available to gain

access to CAN networks as an attack surface. This thesis proposes a watermarking solution which

performs under these constraints while verifying the integrity of the sensor data before processing.

Without modifications, standard watermarking types are vulnerable to estimation based watermark

attacks. To mitigate this risk, we propose introducing variable watermark signatures based on

available data from the in-vehicle network. This could range from GPS timestamp data to IMU

metadata. This data would be used as a foundation to generate a unique watermark signature which

would be embedded in the information intended to be secured. Mirroring the generation algorithm

between the transmitter and receiver nodes, eliminates the need to share the watermarking scheme

over any secured channel. In addition, when using watermark embedding applications, the impact

embedded induced distortion has on the data you’re trying to secure. A significant portion of this

research is providing an analysis on the impact of embedded induced distortion on sensor data and

fusion processing algorithms downstream.
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CHAPTER II: RELATEDWORK

Within the scope of resource constrained systems, digital watermarking has an advantage over

traditional cryptography with respect to the impact on system bandwidth and resource consump-

tion. Current research on implementing watermarking concepts to secure information on resource

limited systems, directs you to Wireless Sensor Networks (WSN). WSN share similar bandwidth

and processing limitations that exist in legacy automotive networks. The versatility and scalability

introduced inherent vulnerabilities to a range of malicious replay, jamming, selective forwarding,

general tampering and delay to sender attacks. As a result, significant research has been performed

tomitigate these attack vectors with digital watermarking. Wireless Sensor Networks started adopt-

ing integrity verification for transmitted data back in 2003, with a publication proposing embedding

cryptographically generated signatures into an existing data payload, written by (Feng and Potkon-

jak, 2003). A fragile watermarking technique was introduced in the publication (Kamel and Juma,

2011). This technique was designed with the goal of securing transmissions from insertion, replay

and deletion attacks. Their proposal detailed a generation method by which a serial number is ap-

pended to each payload, making them uniquely identifiable mitigating the risk of insertion attacks

being performed successfully. The generation algorithm used is a simple hashing function. An

interesting publication by (Ibaida et al., 2011) introduced watermarked methods to include patient

information embedded in the EKG waveform, while maintaining the identifiable characteristics of

the waveform. A variation of Least Significant Bit (LSB) QIM was used to embed the watermark.

A single bit watermark was generated using an XOR operation for a homogeneous sensor network

in(Tiwari et al., 2013). A watermark generation algorithm was proposed in (Sun et al., 2013) and

detailed the generation of a one way hashing function. The hashed output was then grouped by

an XOR function before being embedded in the data at predetermined and redundant locations.

This was done to increase survivability. A linear interpolation watermark generation technique
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was proposed in (Lalem, 2016). Additional data to generate the watermark is not needed in this

design, instead they propose to use fixed points in the data to generate the watermark. This poses a

security risk and increases the probability of successful estimation attacks being performed on this

method. The watermark generation used in (Zhang et al., 2017) is based on known information

shared between the sender and receiver; in this case a key. To reduce computational complexity,

they assume the candidate data has header information and is time synchronized. The embedding

process takes a bitstream and randomly places bits throughout the data. That signature is then

extracted and validated against an expected signature generated from the shared key. (Alromih

et al., 2018) propose using a Randomized Watermark Filtering Scheme (RWFS) for connected

devices. The generated watermark is randomly embedded using a Pseudo Random Number Gen-

erator (PRNG). The seed value used for the PRNG is defined by the cluster from which the packet

is generated from. Using key sharing, the generated watermark is compared with the embedded

watermark after extracting it from the payload for validation. Their proposed method provided

end to end confidentiality from encrypted key sharing and protection from replay and modification

attacks. (Bahirat and Prabhakaran, 2017) discuss the concept of insider attacks on the LiDAR

point cloud. Multiple approaches that exploit the resolution and occlusion consistency between

the tampered and clean data frames are proposed. In (Changalvala and Malik, 2019), Raghu and

Hafiz introduce a watermarking based approach to secure raw LiDAR sensor data in autonomous

vehicles.
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CHAPTER III: SYSTEM & ATTACKMODEL

Within the system model, it is assumed that an ADAS processing unit is centralized within

the vehicle architecture connected to external sensors over the vehicle network as referenced in

figure 1.2. The inbound information is combined within the ADAS module and performs the ap-

plicable information extraction from the object detection lists. It’s also assumed that all applicable

peripherals and modules are clean initially. Attacks are launched during the transmission time win-

dows between from the sensor to the ADAS module, as referenced in figure 1.2. The perceived

threat model exposes numerous entry points into the vehicle’s network which makes it more entic-

ing for an attacker to potentially gain entry from. The system model in this particular case requires

a GPS receiver transmitting periodic timestamp data, all sensors as well as the ADAS module will

have access to this data. Assuming a data formatting as referenced in figure 3.2 for RADAR sen-

sor information transmitted on the intended network, each payload will begin with a header that

contains metadata.

The metadata details tracked object quantity, unique Data Identifier, etc. Following the header,

the body of the payload will consist of data elements which will vary in contents based on the ca-

pability of each RADAR smart sensor. However, for simplicity it’s assumed the baseline content

contained is the derived Cartesian Coordinates (x, y) of the tracked object. The tracked objects

position data will be used to embed the watermark. The QIM based watermarking method pro-

posed will modify the data directly, which makes the added embedded induced distortion a critical

attribute to monitor. The importance of achieving a low distortion rate cannot be expressed enough

in order to maintain the efficacy of the original data. Therefore, preserving the desired results or

behavior of the intended application that consumes this data is paramount. For the purpose of this

endeavor, an extended Kalman Filter (EKF), which is widely used in autonomous vehicle applica-

tions is utilized to analyze the effects of the embedded induced distortion.
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Figure 3.1: Block-diagram of proposed method.

Figure 3.2: Radar data stream.

3.1 Sensor Fusion Data Model

To test the proposed framework, an open sourced dataset by Mercedes Benz’s autonomous

driving utility Technologies (2018). The dataset contains pedestrian information including the pre-

dicted path of the individual, captured by the vehicle from one or more of the on-board RADAR

and LiDAR sensors shown figure 3.3. The RADAR data is broken down into position and velocity

vectors, represented in polar coordinates (ρ, φ, ρ̇). ρ is the radial measure from sensor to target, φ is

the measured lateral angle from sensor to target and ρ̇ is the rate of change ρ. To begin processing,

the polar Coordinates are converted to Cartesian coordinates.
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Figure 3.3: State vector for pedestrian motion.

x = ρ ∗ cos(φ)

y = ρ ∗ sin(φ)
(3.1)

The LiDAR measurements contained in the dataset are represented as position coordinates

(x, y). In conjunction with the LiDAR data entries, GPS timestamp is recorded at the time of

acquisition. The settling time between data acquisition is ∆t = 50 ms. At each sample interval

∆, the ground truth for pedestrian position vectors (px, py, vx, vy) are calculated based on a con-

stant velocity model. The model is a 2D bicycle model with the yaw rate assumed to be zero and

described with the equations below:

θ̇ = 0

x
′
= x+ v ·∆t · cos(θ)

y
′
= y + v ·∆t · cos(θ)

(3.2)

where v is the target velocity,∆t is the elapsed time and θ is the yaw (x, y)& (x
′
, y

′
) are respectively

initial and final positions. From the ground truth values, Gaussian white noise is added to the data

to simulate configurable variance. This is represented by the equations below:

12



mtk = gtk + ε (3.3)

where mtk , gtk , represent the ground truths at tk and ε is the measurement error represented by an

independent and identical distribution (i.i.d) Gaussian noise with zero mean and covariance matrix

R > 0, i.e. ε = N(0, R).

Figure 3.4: Proposed framework and 2D QIM embedding process.

3.2 Watermarking Data Model

In this model, the detector will be unaware of the original embedded signature. This closely fits

the blind decoding method. Although, for verification purposes, the encoding message sequence

will be regenerated and compared with the decoded signature. The host signal represented as c0

is considered a member of the set of n p-dimensional vectors c ∈ {c0, · · · , cn}, where n is signal

length. Depending on the sensor used, the dimensionality of the data can vary. For this use case, the

data is represented two dimensionally as (x, y), with p = 2. With p indicating the dimensionality of

the signal. Typically, in data embedding schemes, the host signal c0 is transformed to a new value

based on the characteristics of the watermark. Numerous values are generated within the hosts

dataspace that are virtually indistinguishable from the original data space. To render a conceptual

visualization of this process, imagine a region around the host c0 data space in which every vector

corresponds to the RADAR position vector; virtually indistinguishable from the original vector.

This region is known as the region of acceptable fidelity (Cox et al., 2008).
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Once the embedding algorithm has transformed the original data into the watermarked datam,

the detection algorithm will operate within the scope of the detection region. This region is defined

by the message m and the generated watermark represented as a key k. The message and key are

represented as a set of position vectors. The region is derived by a given correlation algorithm

to determine how similar each position vector is to the key. Linear correlation could be used to

compare the data from the detectors input and the original messagem, to derive a relationship value.

During the embedding process, an algorithm maps the message into a pattern of the same type and

dimension as the host signal. This is represented by the coefficient wr with a potential dependence

on key k. A linear correlation is derived by the detection algorithm from the input of the received

signal and the reference pattern wr. This is comparable to the orthogonal projection of the received

signal cwn into the reference pattern wr. Let, c1 and c2 be two p-dimensional vectors in the dataset.

If we create a limit of τmse on the function measuring the variance (perceived distance between the

vectors), the region of acceptable fidelity is an n-dimensional sphere centered around the host signal

c0. The radius of such a sphere is defined as
√
nτmse. The measure of success for the embedding

process is determined from the intersection of the of the detection regions and acceptable fidelity

regions. This entire process will essentially perturbate the host signal to an extent the modified

host signal is similar enough to fall within the intersection regions. This minimizes the induced

distortion while making it possible for recovery or verification. If the perturbed signal exceeds the

intersection thresholds, then the signal has been tampered with or corrupted in some way. This

will ultimately damage the watermark and provide an origin point. A fragile watermarking scheme

similar to what was just described is used with QIM to detect and localize data tampering.
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CHAPTER IV: FRAMEWORK

The proposed data integrity framework is designed on the following assumptions. First, the

sensor and ADAS module contain the same watermark generation algorithm. Second, the ADAS

module is configured to collect, process and fuse LiDAR and RADAR data into detection lists.

The framework proposed in figure 3.1 is partitioned into three parts and further conceptualized in

figure 4.1:

• Watermark generation

• Watermark embedding

• Watermark decoding

Figure 4.1: Framework Abstraction.

Generating the watermark begins with the utilization of the GPS timestamp information as a

baseline for the generation algorithm. The GPS timestamp is converted into a binary sequence
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Figure 4.2: Time-stamp conversion.

represented as me = f(tgps) and is embedded into the position data of the processed object de-

tection lists using 2D QIM. The watermarked data is then transmitted to the ADAS unit over an

in-vehicle communication network such as CAN. The ADAS module then receives watermarked

data in conjunction with the GPS timestamp information. This data is given as an input to the sensor

fusion and verification algorithm, operating in parallel with the fusion processors. The verification

algorithm will generate the embedded message sequenceme using an identical method as the sen-

sor. The embedded message sequence from the received frames is extracted from me using the

decoding algorithm and represented as md. The decoding message sequence is compared against

the embedded message sequence for anomalies as mentioned in section V. If tampering is detected

a validity flag is set, challenging the authenticity of the fused detection list. In figure 3.1, this is

identified as a fire-wall between the ADAS module and Motion Control Module. The integrity

verification mechanism can operate passively in the background, comparing embedded signatures

until an anomaly is detected; referenced in figure 3.1. In which case, the kernel on the ADAS mod-

ule will be notified of a challenge and will take the necessary action dictated by applicable failure

modes.

A core component of the integrity verification framework is our watermark generation tech-

nique. The proposed model leverages GPS timestamp data to generate a binary sequence which
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Algorithm 1:Watermark Sequence Generator.

Result: generatedSequence[ ]
generatedPair ← LSbits(b(t0));
generatedSequence[ ]← generatedPair;
randomNum← pseudorandom(MSnibble(b(t0)));
numPairs ← floor(randomNum);
while size(generatedSequence) <= numPairs do

generatedPair+ = b01;
generatedPair = generatedPair%4;
generatedSequence[]← generatedPair;

end

becomes embedded into the host data before transmitting downstream. The diagram in figure 4.2

displays a visual representation of a GPS timestamp converted into a bitstream format. Assuming

the architecture supports little endianness, the two least significant bits (LSBs) and the most sig-

nificant nibble is parsed and stored in a secured buffer. This is utilized in the sequence generator

described in Algorithm 1. The LSB pair previously stored is used to determine the starting bit pair

for the generated sequence. This adds a level of obfuscation to the generated sequence by altering

the starting bit pair of the binary sequence before embedding into the host signal. Additionally,

the most significant nibble is converted to a decimal representation and utilized as a seed value

to generate a random number; bounded by the theoretical maximum for potential data elements

generated in one payload.

4.1 Watermark Generation

The sequence generator described by Algorithm 1 will use the information derived from the

GPS timestamp explained previously to generate a deterministic sequence. The process involves

taking the range limited random number x, derived from the seed value of the most significant

nibble, where numPairs = bxc is used to determine the sequence length. A two-bit value is incre-

mented and appended to the generated sequence buffer. The proposed 2D QIM embedding method

allows for a message sequence of integer values bounded between [0 ≤ mval ≤ 4]. Therefore, the

remainder of the generated bit pairs (mval ≤ mod(4)) is used to keep the sequence bounded. By

17



design, the desired length is dependent on the seed value calculated from parsing the GPS times-

tamp. If the sequence is shorter than the number of elements in the payload, the sequence will be

reused. The added randomness is created from the dynamic start and sequence length; Both can be

created by the receiver for verification.

4.2 Watermark Embedding

We use a 2D QIM-based data hiding method for watermark embedding. Quantization Impulse

Modulation is a non-linear, data hiding, semi-fragile watermarking method that is widely used

in digital forensics and steganography (Brian and W , 2001). During the embedding process, a

host signal S = {s1, s2, · · · , sN} is quantized based on the embedded message symbols M =

{m1,m2, · · · ,mN}. If we consider a trivial implementation of a binary QIM scheme, wheremi ∈

{0, 1}, the modified or watermarked host signal Sw can be represented as:

Sw = qmi
(si,∆), where i = 1, 2, · · · , N (4.1)

where, qmi
(·) denotes a uniform quantizer. With a quantization step-size ∆ and a perturbation of

∆/2, this uniform quantizer is represented as:

qmi
(si,∆) = round

(si
∆

)
·∆±mi ·∆/2 (4.2)

Observing equation 4.1 & 4.2, the host signal is modified post embedding while the distortion

level is proportional to the perturbation level. This feature offers flexability in scaling the distortion

level to achieve a desired result for your end application. This motivated us to select QIM over other

available watermarking methods.

Within the QIM embedding process, the quantization phase uses a set of quantizers that form

a reconstruction grid for point mapping (Joachim and Bernd, 2002). The dimensionality of the

reconstruction grid depends on the message symbol size. An n-dimensional symbol will result in
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Figure 4.3: 2D QIM scheme.

a log2(n)-dimensional reconstruction grid. As an example, if a binary message m is defined by

m ∈ {0, 1}, where a one dimensional reconstruction grid is represented with n = 2. Consider,

extending the aforementioned concept using datasets with two dimensional vectors (x,y) and a four

dimensional message symbol m ∈ {0, 1, 2, 3}. The message symbol m can now be used to hide

data, requiring a 2D reconstruction grid. The corners of the generated grids can be used as recon-

struction points in recovering the embedded message. In reference to figure 4.3, a sample dataset

is shown with a variation in embedded message symbols. After initial quantization, the datapoints

within the highlighted polygons are represented by a black dot ck = {xk, yk}. Based on the embed-

ded message symbolmk = {mxk,myk} in 2D QIM, the midpoint is translated to one of eight fixed

locations along the polygon’s boundary, represented with a red dot. dmin, the minimum separation

distance between the reconstruction points, determines the robustness for the of the framework and

the channel noise. One of the advantages of QIM based watermarking is the configurability dmin

as a tunable parameter. This increases framework portability, allowing adaptation to different ap-

plication environments. Additionally, due to the non-intersecting reconstruction points, host signal

interference rejection further increases reliability in 2D QIM schemes (Chen and Wornell, 1998).

The resulting watermarked signal sw is represented by:

sw(sck ,mk) = qmk
(sck ,∆) (4.3)
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where qmk
(·), denotes 2D QIM quantizer which is expressed as:

qmk
(ck,∆) = round

(ck
∆

)
·∆± ∆

2
·mk (4.4)

Within the proposed framework, an algorithm will parse the generated message symbols, ap-

plying the quantizer values to the target data. In this case, the RADAR position data referenced

in equation 4.4. The GPS timestamp obtained by the sender is processed based on the explanation

in section 4.1; The generated watermark is embedded into the data as shown in figure 3.4 and fig-

ure 4.1. The now modified data is transmitted over the network with additional meta-data included

in the header, acting as a delimiter to the data elements. The embedded watermark will remain with

the payload regardless of the transport protocols used to transmit data to the receiver. Additionally,

since there isn’t any added data, such as a MAC, the bandwidth requirements remain the same.

4.3 Watermark Decoding

On the receiver side, the object detection lists from the RADAR sensor can be processed by

the fusion algorithm in the ADAS module, without additional modifications beforehand. The tam-

per detection and isolation algorithms can be executed in parallel, offering an advantage to using

a watermarking method over an encryption one to maintain data integrity and localize intrusions.

The decoding operation is similar to the embedding operation in section 4.1, in which the received

position values are quantized using the same process as embedding to generate the reconstruction

points. In this case, the reconstruction points will be a set of four vectors. The derived reconstruc-

tion points are then compared with the received values and the point with the least difference is

considered part of the decoded message. This is shown in equation 4.5.

md =i∈0,1 |s
′

w(si,md)− sw(si,mi)| (4.5)

In the above equation, s
′
w(si,md) represents a distorted signal, whilemi is the embedded message

andmd is the decodedmessage. During this process, it’s assumed the sensors are time-synchronized
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by a trusted universal timestamp authority, in this case a GPS sensor (AUTOSAR CP R19-11).

4.4 Attack Detection - Data Injection

This section discusses the different attack profiles, assuming amalicious actor is able to compro-

mise and gain access to the vehicles network. Additionally, we discuss in detail how the proposed

framework can detect and localize the attack profiles mentioned in this section. For each attack

profile, the attacker is assumed to have working knowledge of vehicle network protocols and a

background in automotive electrical systems. Furthermore, the attacker is assumed to have the

capability to monitor active network traffic, cherry pick and replay messages on a CAN/CAN-FD

network. Three attack profiles were identified and classified as:

• Data injection

• Data deletion

• Data modification

Figure 4.4: Data addition attack vector depiction.

Each attack profile analysis is performed on the capability of the proposed framework for detection

and localization. The attacker modifies the processed RADAR tracklets with additional arbitrary

data elements at their discretion. Figure 4.4 depicts an attack scenario where the data elements

D6 and D11 are injected into the original data payload. This ultimately increases the total element
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Algorithm 2: Find Added Indices

Result: addedIndices[ ]
addedIndices← 0;
expectedListIndex← 0;
modListIndex← 0;
whilemodListIndex < len(modList) & expectedIndex < len(expectedList) do

if expectedList[expectedListIndex] == modList[modListIndex] then
expectedListIndex+ = 1;
modListIndex+ = 1;

end

else

addedIndices[ ]← expectedListIndex;
modListIndex+ = 1;

end

end

count from n to n+2. Within the framework, the two-dimensional position vectors encoded with a

GPS timestamp derived sequence, as explained in section 4.1, uses 2D QIM embedding to encode

the color coded watermark pattern in figure 4.4. To help aid in conceptualization, the sequence

length of the watermark is limited to four elements. During an attack, additional data elements

are added, causing a disruption in the message sequence. This will happen even if the injection

attack just replicates an existing message or data elements within a CAN payload. The encoded

message sequence will be disrupted, and an inspection can localize the entry point. Assuming a

breach has occurred and an injection attack is in progress, the receiver is expecting a green color

coded sequential element D6 and a blue color coded sequential element for D11. However, in this

case a deviation is detected in the expected watermark sequence. In this example, we assume the

receiver has knowledge of the message length beforehand. Knowing this information as well as

metadata from a sensor’s modality, such as a GPS timestamp as mentioned in section 4.1, allows

the decoder to generate the modulated watermark used in the embedding process. From the length

of the encoded lencode and decoded ldecode message sequence, the type of attack performed can

be identified based on the characteristics of the manipulated message at the receiver. A simple

algorithm can determine if data was injected into the message if ldecode > lencode holds true. In

algorithm 2 the expected and decoded message sequence is compared to isolate the entry point of
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the injection attack. The algorithmic complexity in this case is O(N). The referenced algorithm

operates on the assumption that the injected elements pattern will differ from the existing adjacent

elements in the message sequence. The framework was subjected to simulated external interference

in the form of additive uniform noise, as depicted in figure 5.1. The results offer a quantitative

observation of the robustness of the tamper detection algorithm in the presence of channel noise

and indicate that QIM based schemes are able to recover the watermark signature if the below

equation holds true for the channel noise.

d2min > 4 ·N · σ2
n (4.6)

In the above equation, σ is the standard deviation of channel noise, N is the dimensionality or

encoding bits, dmin is the minimum distance between the reconstruction points(Chen and Wornell,

1998). Observing the detection algorithm in figure 5.1, the accuracy is 100% when channel noise

is within the bounds defined in equation 4.6, for a step size of ∆ = 1 cm.

4.5 Data Deletion

Figure 4.5: Data deletion attack vector depiction.

Within the attack profile shown in figure 4.5, the attacker can obstruct elements of the object

detection lists or entire payloads if they choose. A plausible attack is depicted in figure 4.5, as

elements D6 and D11 are removed from the original sequence; modifying the total element count
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from n to n− 2. Within the framework, the two-dimensional position vectors encoded with a GPS

timestamp derived sequence, as explained in section 4.1, uses 2D QIM embedding to encode the

color coded watermark pattern in figure 4.4. When elements are deleted, the embedded message

sequence is broken. Assuming an attack is in progress, the receiver is expecting Green color coded

sequential element D6 and a Blue color coded sequential element D11. The receiver detects the

received elements D7 and D12 as mismatched, indicating a potential breach. After the lengths of

the encoded lencode and decoded ldecode message sequence are calculated, this type of attack can

be determined if ldecode < lencode holds true for the incoming message. The tamper localization

algorithm in figure 3 compares the decodedmessage sequence with the expected sequence, to detect

and locate the deleted data elements. Algorithmic complexity in this case, is O(N). Observing the

results of this algorithm shown in figure 5.1, the accuracy is 100% when channel noise is within

the bounds defined in equation 4.6, for a step size of∆ = 1 cm. Additionally, as the noise variance

increases, the accuracy diminishes for the given step-size.

Algorithm 3: Find Deleted Indices

Result: missingIndices[ ]
missingIndices← 0;
expectedListIndex← 0;
modListIndex← 0;
whilemodListIndex < len(modList) & expectedIndex < len(expectedList) do

if expectedlist[expectedListIndex] 6= modList[modListIndex] then
missingIndices[ ]← expectedListIndex;
expectedListIndex+ = 1;

end

else

expectedListIndex+ = 1;
modListIndex+ = 1;

end

end
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4.6 Data Modification

The attack profile shown in figure 4.6 demonstrates a scenario where the attacker modifies

the existing data (object detection lists) to achieve a desired outcome. Within the framework, the

two-dimensional position vectors encoded with a GPS timestamp derived sequence, as explained

in section 4.1, uses 2D QIM embedding to encode the color coded watermark pattern in figure 4.4.

To help aid in conceptualization, the sequence length of the watermark is limited to four elements.

Figure 4.6: Data modification attack vector depiction.

Algorithm 4: Find Modified Indices.

Result: modifiedIndices[ ]
modifiedIndices← 0;
expectedListIndex← 0;
modListIndex← 0;
while expectedIndex < len(expectedList) do

if expectedList[expectedListIndex] 6= modList[modListIndex] then
modifiedIndices[ ]← expectedListIndex;

end

else

expectedListIndex+ = 1;
modListIndex+ = 1;

end

end

The elements D6 and D11 are modified without changing the total count of elements. At the re-

ceiver side, the verification algorithm is expecting a green color coded data elementD6 and a blue
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color coded data element D11, but the sequence is broken from the modifications and an anomaly

is detected. The data modifications can be localized by using Algorithm 4, which compares the de-

coded message sequence with the expected message sequence. This algorithm assumes the channel

noise is within the parameters specified in the two previous algorithms and the modified data form

the attackers occurs within the payload. Observing figure 5.1, as the noise variance increases, the

localization accuracy of the algorithm decreases. However, when the noise is within bounds, the

detection and localization accuracy of the modified data elements is 100%.
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CHAPTER V: PERFORMANCE EVALUATION

Frameworks utilizing data-hiding based techniques for sensor integrity is complex, opposed

to traditional cryptography. A chief concern when embedding signatures into existing data is the

unavoidable distortion added during the embedding process. As a result, the effects of the embed-

ded induced distortion have on the given applications ability to utilize the information as intended,

under normal operating conditions, is a use case that needs to be tested and analyzed. The results

will help aid industry OEMs and suppliers in adaptation of watermarking techniques for sensors and

other applications within a vehicle. In this chapter, an analysis on the effects of embedded RADAR

object data using 2D QIM embedding framework, on a fusion algorithm processor is performed.

The fusion algorithm selected is an Extended Kalman Filter (EKF). Typically, in a vehicle environ-

ment, Kalman filters are used to estimate the state of dynamic systems such as position estimation,

feature tracking, cluster tacking, data fusion and much more. Kalman filters are lightweight fusion

algorithms in the sense of requiring current and previous observations (a robust causal filter) to

make their determination(Jetto et al., 1999) (Rigatos, 2010) (Madhavan and Schlenoff , 2003). In

addition, Kalman filters are designed to mitigate sensor noise by taking inputs from at least two

sensors and predict a position vector for the object currently tracked. This process is repeated as

new data is processed by the EKF. For this experiment, as explained in 3.1, measurements utilized

from vehicle LiDAR and RADAR sensors estimate the state of pedestrian’s movements in front of

the vehicle. Both sensors will detect the same object, which an Extended Kalman Filter fuses the

data to predict the position of the pedestrian.

x = [px py vx vy]
T

(5.1)
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Figure 5.1: Tamper localization algorithm performance under varying channel noise.

Where (px, py) are (x, y) components of position and (vx, vy) are (x, y) components of his velocity

at a given time tk for the pedestrian. Internally, a Kalman filter can be categorized into two steps,

prediction and update. During prediction, the state vector x
′
at time tk is estimated, also producing

an error or uncertainty vector P
′
. The uncertainty is based on values of x and P at previous time

tk−1 and the new data is updated. P is represented as gaussian random noise, affecting the accuracy

of the prediction step. The state vector x‘ is represented as:

x
′
= f(x, µ) (5.2)

where, µ is the stochastic part, represented as N(0, Q), this can be alternatively expressed as:

x
′
= Fx+ µ

P
′
= FPF T +Q (5.3)

where the state transition matrix F , models the transitions from previous time tk−1 to current time

tk. µ is the added noise and Q is the co-variance matrix that’s modeling the stochastic part of the

state transitions. As mentioned previously, the linear motion model with constant velocity, defines
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the state transition matrix F . The next position at time tk is derived from:

p
′

tk
= ptk−1

+ vtk−1
∗ δt (5.4)

where δt = tk − tk−1 and since the model assumes constant velocity, at the next time step, the

velocity is given as

v
′

tk
= vtk−1

(5.5)

Figure 5.2: RMSE comparison at Rm = 0.4.

Figure 5.3: RMSE comparison at Rm = 0.5.

Based on the above model, the Kalman filter uses the estimated state to predict the pedestrian

position. During the update phase, sensor measurements correct the predicted states to produce
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a position estimate with greater accuracy. The equation for expressing the pedestrian’s position

within the measurement function can be expressed as:

z = [p
′
]T (5.6)

The measurement phase of the filter utilizes the measurement model, matrixH and covariance ma-

trix R to correctly estimate the measurement vector z. Transformation of the measurement vector

utilizes the matrix vector, which produces the state vector shown in equation 5.1. The measurement

function can now be expressed as:

z = Hx+ ω (5.7)

whereH , the measurement matrix, providing the objects raw position. ω is the measurement error,

encompassing uncertainties in measurements from the sensor. This is represented as a zero mean

Gaussian distribution and covariance matrixR, ω ≈ N(0, R). Assuming the measurement compo-

nents have not been cross correlated yet, the covariance matrix R becomes a diagonal matrix. The

dimensionality of R will depend on the size of the measurement vector z. This results in two for

LiDAR and three for RADAR. Hence, R becomes a 3x3 diagonal matrix for RADAR and a 2x2

diagonal matrix for LiDAR. Ultimately, the measurement matrix will vary depending on the sen-

sor data used by the fusion algorithm. For RADAR measurements, an EKF variant of the Kalman

filter is used. Consider the application of LiDAR measurements to achieve a similar result. After

post processing, LiDAR will ultimately measure the position of the target in Cartesian coordinates

(x, y). The state to measurement vector transition will be linear and the measurement calculation of

H is relatively straight forward, after discarding the velocity comment from the state vector. Due

to the linear nature of the measurement vector transitions, a standard Kalman filter can be used for

LiDAR measurements. However, in the case of RADAR, the transitions are non-linear since the

application of RADAR will obtain measurements ρ, φ, ρ̇ of the object. During the update phase

an EKF variant of the standard Kalman filter is used to handle the non-linear functions required to
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make an accurate measurement prediction. Kalman filters are linear estimators and the non-linear

variation of that design is called the Extended Kalman Filter (Madhavan and Schlenoff , 2003).

The non-linear state observed in EKF equations are linearized using Jacobian matrices. For the

case of processing the RADAR data, the Jacobian of H is evaluated to obtain the linear approxi-

mation. Once z has been determined, the correction or update phase is executed, taking the latest

measurements to update the state estimates and uncertainties. This is expressed as:

y = z −Hx
′

(5.8)

Here y is the error value or the difference between the prediction and actual measurement at a given

time step. The estimation error S is evaluated as:

S = HP
′
HT +R (5.9)

The Kalman gain K is evaluated as:

K = P
′
HTS−1 (5.10)

After the computation of the Kalman gain, the predictions are updated using the following

equations and these steps are repeated for the entire drive cycle.

x = x
′
+Ky (5.11)

P = (I −KH)P
′

(5.12)

Observing the EKF uncertainty in both the process and measurements, are taken into consideration.

In general, the measurement uncertainty or the measurement noise covariance matrix R in equa-

tion 5.7, is the inherent sensor behavior and hence provided by the sensor manufacturer. Whereas,

the process uncertainty Q in equation 5.3, is defined based on the motion model and other appli-
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cation related assumptions. If we use the EKF as the sensor fusion algorithm, three configuration

parameters can affect the algorithm outcome in the proposed framework. The first being the mea-

surement noise matrix R, second the overall process noise Q, and third, the embedding step-size

∆. In this experiment, we analyze the impact of the watermark embedding using the 2D QIM

method on the sensor fusion algorithm’s output under different configuration scenarios. Two types

of RADAR data are used as an input to the EKF algorithm, predicting the state vector of the pedes-

trian. The first type is the clean and unmodified data, and the second type is 2D QIM modified

data. The resulting predictions from EKF are compared against the ground truth position vectors

in both cases using Root Mean Square Error (RMSE) in the following equation:

RMSE =

√√√√ 1

n

n∑
t=1

(xgt
t − xpred

t )2 (5.13)

where xgt
t & xpred

t are the ground truth and predicted position vectors respectively at a given time

t and n is the length of data. The RMSE value is used to determine the accuracy of the prediction.

Low RMSE value indicates the sensor fusion algorithm predicted the tracked objects position ac-

curately throughout the tracking duration. The RMSE values of position vector (px, py) predictions

generated from clean and watermarked inputs to the EKF are shown in Fig. 5.2 & 5.3.

The measurement input into the EKF has a noise component, dependent on the intrinsic elec-

tronic characteristics of the sensor in use. This can be represented as an additive Gaussian noise

ω as shown in equation 5.7. The measurement noise covariance R represents the deviation of the

sensor measured values from the true values. This deviation is estimated during the calibration

phase by the sensor manufacturer. If sensor manufacturer data is not available, an estimation can

also be obtained using analytical methods (Park et al., 2019). In order to compensate for measure-

ment noise in an EKF, the R value for the sensors used must be estimated or known and used in

equation 5.7.

Consider ωRm ≈ N(0, Rm) as the known or calculated measurement uncertainty and ωRn ≈

N(0, Rn) as the overall measurement uncertainty used in the sensor fusion EKF algorithm in equa-
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tion 5.7. Consider, an EKF provides accurate predictions when the value of Rn ≥ Rm. Here, it’s

better to keep the Rn & Rm values close to each other. If the EKF requires an inflated Rn value to

incur correct predictions, then it could be concealing other anomalies in the measurements such as

outliers and a noise distribution that is non-Gaussian. The measurement uncertainty values used in

the EKF ωRn can be represented as a combination of two or more different noise distributions with

data satisfying the i.i.d criteria. Let’s say, ωR1
n
≈ N(0, R1

n) and ωR2
n
≈ N(0, R2

n) are two different

noise distributions that contributed to the overall noise ωRn , then the resulting distribution can be

represented as:

ωRn = N(0, R1
n +R2

n) (5.14)

The RMSE results depicted in figure 5.2 & 5.3 show the 2D QIM embedded contributes added

random noise to the overall measurement uncertainty, represented byR1
n orR

2
n in equation 5.14. In

this experiment, the RMSE values for clean and 2D QIM embedded RADAR data are calculated at

different measurement noise covariance values Rm ∈ (0.4, 0.5), Rn ∈ (0.2, 0.3, 0.4, 0.5, 0.6) and

varying embedded step sizes ∆ ∈ (0.01, 0.05, 0.25, 0.50, 0.75, 1, 2) m. Considering the Rm as the

measurement error covariance provided by the sensor manufacturer, the EKF which accepts this

RADAR sensor data should use a covariance matrix value Rn above or equal to Rm uncertainty.

Observing figure 5.2, whenRn ≥ Rm, the RMSE values of position vector for the 2D QIM embed-

ded data is less than or equal to the RMSE values from clean data for step-size ∆ < 0.75m. With

a given range of px ≈ 18.5m& py ≈ 12.5m in the data under test, the results show that the fusion

algorithm can recover from position data perturbations of up-to 6%. As the Rn value drops below

Rm, the RMSE of encoded data is less than the clean data, but only when∆ < 0.05m. This shows

the embedding induced distortion at higher step sizes is acting like additional uncompensated noise,

introducing prediction errors. Similar results are observed for the state vector predictions in case

of data with measurement covariance value Rm = 0.5, as shown in figure 5.3. It can be inferred

from the results if the measurement covariance Rn < Rm, as the embedding step-size increases,

the measurement noise value increases. Hence, the predictions of the embedded data elements are

inaccurate. However, as the Rn value is increased above Rm, the embedding induced distortion is
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gracefully handled by the fusion algorithm. This results in low RMSE values even at larger step

sizes. This behavior can be explained by equation 5.14. Here the embedded induced distortion acts

like an additive Gaussian noise component. The inherent randomness in the watermark generation

and embedding process, acting as noise, contributes to the randomness in the sensor noise. These

two sources of error are independent of each other; hence the resultant effect is additive. This

increases the RMSE value of the prediction error when the fusion algorithm fails to consider and

compensate for this additional noise. These experiments, when repeated at different permissible

values of process noise covariance values from Q > 0, showed similar results.

In addition to analysis performed on embedded induced distortion, two different performance

metrics, Bit Error Rate (BER) and False Alarm Rate were conducted to measure performance of

the detection framework.

5.1 Bit Error Rate Evaluation

The Bit Error Rate is used to analyze errors from the decoded bitstream in the presence of

channel noise. The decoder generates a binary message stream Mx,y = {m1
x,y,m

2
x,y, · · · ,mN

x,y},

from the RADAR data elements. The BER calculation is performed by comparing each bit in the

decoded messagemi
x,y ∈ {mi

x,m
i
y} with its associated embedded bit m̂i

x,y expressed as:

BER =

∑n
i=1 Imi

x,y 6= m̂i
x,y

n
(5.15)

where I is the indicator function and n is the size of the decoded message bitstream. When no

additional noise is added to the RADAR data elements, the BER is close to 8.6%, corresponding to

the noise from a probable attack. As the channel noise modeled by a uniform distribution is added

to the data, the BER stays below 9.5% for the noise variance σ < ∆/5.65, given a step-size ∆.

As the noise variance increases beyond the threshold in equation 4.6, the BER value increases as

shown in table 5.1. The robustness to the channel noise is directly proportional to the step-size ∆,

which-in turn is directly proportional to the embedded induced distortion.

34



Figure 5.4: Comparison: EKF path prediction from clean and encoded data at Rm = 0.5, Rn = 0.5

& ∆ = 0.01 m.

5.2 False Alarm Rate Evaluation

This performance metric measures the number of data elements classified by the framework as

tampered, when in fact the data was unmodified or clean. The False Alarm Rate is determined by

subjecting the framework to a predetermined amount modified and unmodified data elements. The

fAlarmRate ratio is calculated from the equation below:

fAlarmRate = NFalsePositive/NDataElements (5.16)

where, NFalsePositive is the number of data elements the framework incorrectly classified as tam-

pered and NDataElements is the total number of data elements tested. The experiment is repeated

with different levels of additive uniform noise to replicate the channel noise. The results are

shown in table 5.1. Observing the data, fAlarmRate stayed at 0% when the uniform noise vari-

ance σ < dmin/(2 ∗
√
(N)), dmin = ∆/2 and N = 2 in our framework. As the noise variance

increases beyond this threshold, the false positives increase resulting in a higher false alarm rate.
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From the results, when the channel noise is within acceptable bounds, our framework can achieve

100% detection accuracy with zero false positives.

Table 5.1: BER and False-Alarm Rate at Different Noise Levels

Noise variance σ BER % FalseAlarm %

0.0 8.6 0.0

∆/6 9.2 0.0

∆/5 9.2 0.0

∆/4 8.6 0.0

∆/3.5 18.6 61.1

∆/3 28.6 75.0

∆/2 56.4 85.2
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CHAPTER VI: FURTHER THOUGHTS

In any implementation there are always drawbacks to consider when evaluating a system like

this for practical implementation. One of the limitations we discovered during testing was in this

case the GPS timestamp. More generally speaking, the secondary data on the communication chan-

nel used to generate the watermark could be side channeled. If this happens, the attacker’s like-

lihood to penetrate the affected network increases. Adding additional obfuscation techniques or

utilizing additional information on the network to generate the watermark, will reduce the likeli-

hood of an attacker detecting the watermark.

An additional watermark design we considered was to implement a reversible watermark in

the event the distortion produced from the embedding process, would render the data unusable to

fusion processing algorithms. Ultimately, we decided to implement a fragile watermarking scheme

to limit computational complexity. However, if a design calls for a sensitive fusion algorithm, a

reversible watermark can supplant the fragile watermarking scheme while the generation technique

remains consistent.

A feedback loop could be introduced into our forward design. This could act as an adaptive

distortion compensator, calibrating the quantization step size based on the performance of the fusion

processing algorithm. This could provide a unique benefit for automotive applications in a dynamic

system environment.
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CHAPTER VII: CONCLUSION

Autonomous vehicles are inherently vulnerable to cyber-attacks, creating potential exploiting

external sensors as attack surfaces to gain access into the vehicle and their respective transmission

channels. This makes it necessary to verify the integrity of the sensor data before processing that

information into actionable tasks. Traditionally, maintaining data integrity with forms of cryp-

tography, can’t be applied in their entirety due to resource constraints of the existing architecture.

A pipeline based watermarking framework was proposed to detect and localize the tampering of

sensor data in an autonomous vehicle. This framework was tested on the impact that embedded

induced distortion has on simulated RADAR data used as an input into an EKF sensor fusion algo-

rithm. The results concluded that the 2D QIM watermarking method has virtually no effect on the

EKF predictions for small quantization step-sizes∆ ≤ 0.05m, which is a direct result to the mini-

mal distortion induced from the 2D QIM embedding process. Often times a layered architecture is

preferred in situations where an attack cannot be prevented; It can be detected to prevent the worst

outcome. We believe that watermarking the sensor data adds another layer to the security scheme

using some lightweight and efficient techniques. These implementations can be used either in a

standalone application or in conjunction with traditional cryptography methods where-ever neces-

sary, securing data transfers over any physical interface such as CAN/CAN-FD, Ethernet and other

protocols. The research and testing conducted has demonstrated that tamper localization accuracy

of our framework is virtually 100%, when the interface noise is zero. In automotive networks,

sensor data interfaces like CAN and Ethernet are wired and the channel noise is minimal. Hence,

using a 2D QIM approach with small step sizes yields effective tamper detection and localization

accuracy with minimal data distortion.
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