
Multi-task Learning for Visual Perception in Automated
Driving

by

Sumanth Chennupati

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Electrical, Electronics, and Computer Engineering)

in the University of Michigan-Dearborn
2021

Doctoral Committee:

Associate Professor Samir Rawashdeh, Chair
Assistant Professor Abdallah Chehade
Assistant Professor Alireza Mohammadi
Associate Professor Paul Watta

Sumanth Chennupati

schenn@umich.edu

ORCID iD: 0000-0002-3382-540X

c© Sumanth Chennupati 2021

DEDICATION

I want to dedicate this dissertation

to my wife, who somehow managed to be nothing but supportive,

to my daughter,

to my parents,

to my in-laws,

to my family,

to my teachers,

to my friends,

to my colleagues,

and finally to whoever that might find this dissertation exciting and useful.

ii

ACKNOWLEDGEMENTS

I feel fortunate enough to have an opportunity to pursue research while working as a

full-time employee. I want to thank everyone for their help, support, and encouragement in

making this journey possible, challenging, and fun.

Firstly, I would like to thank Dr. Raymond Ptucha, who inspired me to achieve what

seemed impossible. I am indebted to Davian Larente for his trust and encouragement.

Without your support and initiatives, this journey would not have been possible. I would

also like to thank Vira Mourovapin, Dr. Mark Beeler, Roland Richardson, and Dr. Lin

Chen for being flexible and supportive. I sincerely thank Mo Poorsartep, who introduced

me to my advisor Dr. Samir Rawashdeh.

I want to thank Dr. Samir Rawashdeh for his excellent guidance and support. Your

substantial advising and feedback have helped me in improving the quality of my research.

I sincerely thank my dissertation committee, In alphabetical order: Dr. Abdallah Chehade,

Dr. Alireza Mohammadi, and Dr. Paul Watta, for their valuable time and advice. Thank

you, Amanda Donovan, Debi Butler, for your administrative support.

I want to thank Senthil Yogamani for his extraordinary mentorship. His enthusiasm for

new ideas is never-ending. Thank you for the wonderful opportunities you opened for me.

I want to thank several colleagues I was fortunate to learn from: Dr. Philip Chen, Ganesh

Sistu, Dr. Kalyani Chaganti, Gireesh Suresh, and Venkatraman Narayanan.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . ix

LIST OF TABLES . xiii

ABSTRACT . xvi

CHAPTER

I. Introduction . 1

1.1 Motivation . 1

1.2 Approach . 2

1.3 Visual Perception . 3

1.3.1 Semantic Segmentation . 3

1.3.2 Object Detection . 5

1.3.3 Instance Segmentation . 5

1.3.4 Panoptic Segmentation . 6

1.3.5 General Object Detection . 7

1.3.6 Monocular Depth Estimation . 9

1.3.7 Motion Segmentation . 11

1.3.8 Soiling Detection . 12

iv

1.4 Multi-task Learning . 13

1.5 Contributions . 14

II. Panoptic Segmentation . 20

2.1 Introduction . 20

2.1.1 Instance Contour Segmentation 22

2.1.2 Challenges . 22

2.2 Method . 23

2.2.1 Model Architecture . 24

2.2.2 Loss Functions . 25

2.2.3 Instance Segmentation . 26

2.2.4 Refining Instance Segmentation 27

2.2.5 Panoptic Segmentation . 28

2.3 Experiments and Results . 28

2.3.1 Experimental Setup . 28

2.3.2 Ablation Studies . 30

2.3.2.1 Instance Contour Segmentation Loss Function 30

2.3.2.2 Instance Contour Ground Truth Dilation Rate 31

2.3.2.3 Refining Instance Segmentation 32

2.3.2.4 Network Ablation . 33

2.3.3 State of the Art Comparison . 33

2.3.3.1 Comparison with Two-stage Methods 33

2.3.3.2 Comparison with Instance Clustering 35

2.3.3.3 Comparison with Single-stage Object Detection and Others 35

2.4 Discussions . 35

2.5 Conclusion . 36

v

III. Multi-stream Learning . 37

3.1 Introduction . 37

3.2 Extending Semantic Segmentation to Videos 38

3.2.1 Single Frame Baseline . 40

3.2.2 Detect and Track Approach . 40

3.2.3 Temporal Post Processing . 40

3.2.4 Recurrent Encoder Model . 41

3.2.5 Fused Multi-stream Encoder Model 41

3.3 Method . 41

3.3.1 Single Stream Architecture . 42

3.3.2 Multi-stream Fused Architectures 42

3.3.3 Multi-stream Recurrent Architecture 43

3.4 Experiments and Results . 44

3.4.1 Experimental Setup . 44

3.4.2 Ablation Studies . 45

3.4.2.1 Temporal Depth . 46

3.4.2.2 Shared Weights . 49

3.4.2.3 Non Automotive Datasets 51

3.5 Discussions . 51

3.5.1 MSFCN vs FCN . 52

3.5.2 MSFCN-2 vs MSFCN-3 . 53

3.5.3 MSFCN-2 vs RFCN . 53

3.5.4 Weight Sharing . 53

3.6 Conclusion . 53

IV. Multi-task Learning . 55

vi

4.1 Introduction . 55

4.2 Universality of CNN Features . 56

4.2.1 Adaptation . 57

4.3 Pros and Cons of Multi-task Learning 58

4.3.1 Pros . 58

4.3.2 Cons . 59

4.4 Unified Visual Perception Model . 59

4.4.1 Two Task Model . 60

4.4.2 Three Task Model . 64

4.5 Conclusion . 66

V. Auxiliary Learning . 67

5.1 Introduction . 67

5.2 Motivation . 68

5.3 Methods . 69

5.3.1 Architecture Design . 69

5.3.2 Loss Function . 70

5.4 Experiments and Results . 72

5.4.1 Experimental Setup . 72

5.4.2 Results and Discussion . 73

5.5 Conclusion . 76

VI. Multi-stream Multi-task Learning . 77

6.1 Introduction . 77

6.1.1 Feature Aggregation . 79

6.1.2 Multi-task Loss . 80

6.2 Methods . 81

vii

6.2.1 Multi-stream Multi-task Architecture 82

6.2.2 Geometric Loss Strategy . 83

6.3 Experiments and Results . 84

6.3.1 Datasets . 84

6.3.2 Model Analysis . 85

6.3.3 Optimization . 88

6.3.4 Results . 89

6.4 Conclusion . 96

VII.Conclusions . 97

7.1 Findings, Limitations and Future Work 98

7.2 Broader Impacts . 100

BIBLIOGRAPHY . 101

viii

LIST OF FIGURES

Figure

1.1 Top: RGB input image, Bottom: Semantic segmentation. 4

1.2 Illustration of a fully convolutional neural network for semantic segmentation. 4

1.3 Top: RGB input image, Bottom: Object detection. 6

1.4 Top: RGB input image, Bottom: Instance segmentation. 7

1.5 Top: RGB input image, Bottom: Instance offset regression. 8

1.6 Top: RGB input image, Bottom: Panoptic segmentation. 9

1.7 Example of general object detection. 10

1.8 Top: RGB input image, Bottom: Ground truth depth from a velodyne. . . . 10

1.9 Example of motion segmentation. Moving objects are marked in green. . . 11

1.10 Illustration of a soiling on an automotive camera. 12

1.11 Illustration of a multi-task learning network for joint semantic segmenta-

tion and object detection. 13

2.1 Illustration of (a) Semantic segmentation, (b) Instance contour segmenta-

tion, (c) Instance center regression and (d) Instance segmentation. 21

2.2 Illustration of our method that learns panoptic segmentation from instance

contours. 23

2.3 Our panoptic segmentation model architecture with CNN backbone. 24

2.4 Illustrative flow diagram of our algorithm that learns panoptic segmentation

from semantic segmentation and instance contours. 27

ix

2.5 Qualitative results on Cityscapes val dataset obtained with ResNet-50 en-

coder using separate necks, wBCE + Huber loss combination, split and

merge refinement with min Instance area = 300 pixels. Instance contours

ground truth are generated with dilation rate = 2. From left to right: Se-

mantic segmentation, instance contour segmentation, center regression, in-

stance segmentation. Top: ground truth, Bottom: prediction. Predicted

contours are thicker than ground truth. 29

2.6 Panoptic segmentation results on Cityscapes val dataset. Results obtained

with ResNet-50 encoder using a separate neck architecture, wBCE + Huber

loss combination, split and merge refinement with min Instance area = 300

pixels. Instance contours ground truth are generated with dilation rate = 2. . 30

3.1 Top: Recurrent FCN, Bottom: Multi-stream FCN. 38

3.2 Comparison of different approaches to extend semantic segmentation to

videos - a) Frame-level output b) Detect and track c) Temporal post pro-

cessing d) Recurrent encoder model and e) Fused multi-stream encoder

model. 39

3.3 FCN: Single encoder baseline. 41

3.4 MSFCN-2: Two stream fusion architecture. 42

3.5 MSFCN-3: Three stream fusion architecture. 43

3.6 RFCN-2: Two stream LSTM architecture. 44

3.7 Accuracy over epochs for SYNTHIA dataset. 45

3.8 Qualitative results of experiments with SYNTHIA dataset. Left to right:

RGB image, single encoder (FCN), two stream encoder (MSFCN-2), ground

truth, two stream encoder + LSTM (RFCN-2) and three stream encoder

(MSFCN-3). 47

x

3.9 Results on KITTI dataset. 49

3.10 Results over DAVIS dataset. Left to right: RGB image, ground truth, single

encoder (FCN), two stream encoder (MSFCN-2), two stream encoder +

LSTM (RFCN-2), three stream encoder (MSFCN-3). 51

4.1 Unified model for the important visual perception tasks in automated driving. 60

4.2 Qualitative results of two-task model performing segmentation and detection. 63

4.3 Illustration of three-task model architecture comprising of object detection,

semantic segmentation and soiling detection tasks. 64

5.1 Illustration of several auxiliary visual perception tasks in an automated

driving dataset KITTI. First row shows RGB and semantic segmentation,

second row shows dense optical flow and depth, third row shows visual

SLAM and meta-data for steering angle, location and condition. 68

5.2 AuxNet: Auxiliary learning network with segmentation as main task and

depth estimation as auxiliary task. 70

5.3 Results on KITTI (Top) and SYNTHIA (Bottom) datasets. 75

6.1 Illustration of MultiNet++ where feature aggregation is performed to com-

bine intermediate output data obtained from a shared encoder that operates

on multiple input streams (frames ‘t’ and ‘t-1’). The aggregated features

are later processed by task specific decoders. 78

6.2 Illustration of the MultiNet++ network operating on consecutive frames

of input video sequence. Consecutive frames are processed by a shared

siamese-style encoder and extracted features are concatenated and pro-

cessed by task specific segmentation, depth estimation and moving object

detection decoders. 81

xi

6.3 Change of validation loss (X-axis) over several epochs (Y-axis) during

training phase for 1-Task model vs 3-Task models for segmentation, depth

and motion tasks on KITTI dataset. 91

6.4 Change of validation loss (X-axis) over several epochs (Y-axis) during

training phase for 1-Task model vs 3-Task models for segmentation, depth

and motion tasks on Cityscapes dataset. 92

6.5 Change of validation loss (X-axis) over several epochs (Y-axis) during

training phase for 1-Task model vs 2-Task models for segmentation and

depth on SYNTHIA dataset. 93

6.6 Left to right: Input image, single task network outputs, MultiNet++ out-

put, ground truth. More qualitative results of MultiNet++ model can be

accessed via this link https://youtu.be/E378PzLq7lQ. 94

6.7 Left to right: Input image, semantic segmentation output from single task,

3-Task with equal weights, 3-Task GLS, 3-Task MultiNet++ networks,

ground truth. 95

xii

https://youtu.be/E378PzLq7lQ

LIST OF TABLES

Table

2.1 Instance and Panoptic Segmentation results on Cityscapes val dataset for

different loss functions used to represent instance contour loss. wBCE

= weighted binary cross entropy, AP = average precision, PQ = panop-

tic quality. PQTh, SQTh, and RQTh represent panoptic, segmentation and

recognition qualities of instance objects. 31

2.2 Performance of instance and panoptic segmentation on Cityscapes val dataset

when different dilation rates were used to generate ground truth instance

contours. Increasing the dilation rate, increases the thickness of the ground

truth instance contours. 31

2.3 Evaluation of instance and panoptic segmentation on Cityscapes val dataset

before and after refinement using offsets predicted by center regression re-

sults. 32

2.4 Impact of minimum instance area threshold during instance refinement on

Cityscapes val dataset. 32

2.5 Performance of semantic, instance and panoptic segmentation using differ-

ent network architecture choices on Cityscapes val dataset. 33

2.6 Comparison with other state-of-the art methods on Cityscapes dataset (val

split). † Performance reported on test split. *Evaluated on image of size

416×832. 34

xiii

3.1 Semantic segmentation results on SYNTHIA sequences. We split the test

sequences into two parts, one is Highway for high speeds and the other is

City for medium speeds. 48

3.2 Semantic segmentation Results on KITTI video sequence. 50

3.3 Semantic segmentation Results on SYNTHIA video sequence. 50

3.4 Comparison of multi-stream network with its baseline counterpart on Seg-

Track and DAVIS. 52

4.1 Comparison study: Single-task vs two-task, JI: Jaccard index, AP: Average

precision. IOU: Intersection over union. 62

4.2 Comparison study: Single-task vs. three-task models. 65

5.1 Comparison study : Single task vs auxiliary learning. AuxNet400 and

AuxNet1000 weighs segmentation loss 400 and 1000 times compared to

depth loss. AuxNetTWB is constructed by expressing total loss as product

of task losses. 74

5.2 Comparison between SegNet, FuseNet and AuxNet in terms of perfor-

mance and parameters. 76

6.1 Summary of the automotive datasets used in our experiments. 85

6.2 Comparative study: Parameters needed to construct 1-task segmentation,

depth and motion, 2-task segmentation and depth, 2-task segmentation and

motion and 3-task segmentation, depth and motion models. We compare

2-task and 3-task models that operate on 1-frame and 2-frames. 2-frame

models required relatively minimal additional computational complexity

compared to 1-frame models. 87

xiv

6.3 Comparative Study: Performance of 1-Task, equal weights, 3-task uncer-

tainty, Dynamic Weight Average (DWA) and geometric loss strategy (GLS)

on KITTI and Cityscapes datasets. 89

6.4 Improvements in learning segmentation, depth estimation and motion de-

tection as multiple tasks using equal weights, geometric loss strategy (GLS)

and 2 stream feature aggregation with GLS (MultiNet++) vs independent

networks (1-Task) on KITTI, Cityscapes and SYNTHIA datasets. 90

xv

ABSTRACT

Every year, 1.2 million people die, and up to 50 million people are injured in accidents

worldwide. Automated driving can significantly reduce that number. Automated driving

also has several economic and societal benefits that include convenient and efficient trans-

portation, enhanced mobility for the disabled and elderly population, etc.

Visual perception is the ability to perceive the environment, which is a critical compo-

nent in decision-making that builds safer automated driving. Recent progress in computer

vision and deep learning paired with high-quality sensors like cameras and LiDARs fueled

mature visual perception solutions. The main bottleneck for these solutions is the limited

processing power available to build real-time applications. This bottleneck often leads to a

trade-off between performance and run-time efficiency.

To address these bottlenecks, we focus on: 1) building optimized architectures for

different visual perception tasks like semantic segmentation, panoptic segmentation, etc.

using convolutional neural networks that have high performance and low computational

complexity, 2) using multi-task learning to overcome computational bottlenecks by sharing

the initial convolutional layers between different tasks while developing advanced learning

strategies that achieve balanced learning between tasks.

xvi

CHAPTER I

Introduction

1.1 Motivation

Automated driving comprises key components like perception, localization & mapping,

sensor fusion, path planning, and decision control. Perception involves geometric and se-

mantic understanding of the environment. For perception, cameras are a dominant sensor

as the roadway infrastructure is typically created for human visual perception. Semantic

tasks such as object detection [1, 2, 3, 4] (detecting cars, pedestrians etc with bounding

boxes), semantic segmentation [5, 6, 7] (pixel-wise labeling of road, lane markings etc)

and geometric tasks like depth estimation [8, 9, 10, 11, 12] (distance in real-world from

ego vehicle), motion estimation [13, 14, 15, 16, 17, 18] (detect motion and estimate ve-

locities of moving objects) etc are some major tasks that help build a visual perception

system.

Before the success of deep learning, traditional computer vision-based engineered fea-

ture descriptors coupled with lightweight machine learning classifiers were used to solve

several visual perception tasks. Convolutional Neural Networks (CNNs) [19, 20, 21] dom-

inate state of the art in visual perception and are the standard models used in the latest

generation of vehicles for automated driving and advanced driver assistance applications.

Deep Neural Networks require dedicated hardware often equipped with GPUs or specific

hardware accelerators to meet automated driving’s real-time requirements. Such expen-

sive hardware limits the amount of processing power available. Thus, there is significant

1

importance in optimizing deep neural network architectures.

1.2 Approach

Optimization of deep neural network architectures can be addressed in two methods:

1) developing lightweight models that reduce computational complexity, memory foot-

print while maintaining the performance compared to a large model, 2) developing a sin-

gle model that can perform multiple tasks by reusing the parameters that posses common

knowledge across different tasks. In the first method, we try to build a smaller model

with reduced complexity, whereas in the second method, we may build a single complex

model to solve multiple tasks. Still, we reduce the complexity when compared to the total

complexity of multiple tasks. The latter is referred to as Multi-task Learning (MTL).

This dissertation shows how to formulate deep learning models for visual perception

applications in automated driving using the above two methods. The main applications that

are addressed in this dissertation include:

1. Semantic Segmentation (What type of an object at a pixel level in an image)

2. Object Detection (Where is or what type of an object in an image)

3. Monocular Depth Estimation (How far is an object at a pixel level in an image)

4. Motion Segmentation (Is the object moving)

5. Instance Segmentation (What type of an object at a pixel level along with an id)

6. Panoptic Segmentation (Joint semantic (uncountable) and instance (countable) seg-

mentation)

7. Video Semantic Segmentation (What type of an object at a pixel level in a video)

2

8. Multi-task task learning (Learn multiple tasks using a single input)

9. Auxiliary Learning (Learn multiple tasks with more focus on a single task)

10. Multi-stream Multi-task Learning (Learn multiple tasks using multiple inputs)

1.3 Visual Perception

Visual Perception in automated driving has witnessed tremendous progress over the

past decade with the introduction of Convolution Neural Networks that aided in develop-

ing the scene and geometric understanding. Panoptic segmentation [22, 23, 24, 25], a joint

semantic [5, 6, 7] and instance segmentation [26, 27, 28, 29, 30] has provided complete

scene understanding by categorizing a pixel into distinct categories and instances. Monoc-

ular depth [8, 9, 10, 11, 12] and motion estimation [13, 14, 15, 16, 17, 18] provide the

understanding of geometry in the scene. In the following subsections, we introduce several

visual perception tasks.

1.3.1 Semantic Segmentation

Semantic segmentation refers to a pixel-wise classification of a scene as shown in Fig-

ure 1.1. It provides dense pixel-wise labeling of the image, which leads to scene under-

standing. A few years ago, semantic segmentation was considered a challenging problem.

With the help of fully convolutional neural networks (FCNs), [6], the development of ac-

curate and efficient solutions were made possible. The level of maturity of semantic seg-

mentation has rapidly grown recently, and the computational power of embedded systems

has increased to enable commercial deployment.

A Fully convolutional neural network is a CNN based encoder-decoder network (shown

in Figure 1.2), where the encoder performs feature extraction of input image, which is

3

Figure 1.1: Top: RGB input image, Bottom: Semantic segmentation.

decoded by an up-sampling network to generate pixel-wise classification result.

Figure 1.2: Illustration of a fully convolutional neural network for semantic segmentation.

A detailed survey of semantic segmentation for automated driving is presented in [31].

Several enhancements were made to push the performance of semantic segmentation higher

by making improvements to encoder and decoder in FCNs [7]. Dilated residual convolu-

tions [32, 33], Feature pyramid networks [4, 24], Spatial pyramid pooling [34] etc. are

4

examples of improvements made to encoder while U-Net [35], Densely connected CRFs

[36] are examples of improvements made to decoder.

1.3.2 Object Detection

Object detection (Figure 1.3) involves recognizing category and localizing by position

different objects in an input image. Fully convolution neural networks are successfully used

to solve object detection task. The CNN based bounding box detection can be broadly cat-

egorized into two groups, single-stage and two-stage approaches. Single-stage approaches

regress for box co-ordinates and class categories in one shot. YOLO [3] and SSD [37]

are pioneering works in single-stage methods. On the other hand, two-stage networks in-

volve explicit loss functions for class agnostic region proposals followed by accurate box

co-ordinates regression. The R-CNN family of algorithms [38] fall into this category.

1.3.3 Instance Segmentation

In instance segmentation (shown in Figure 1.4), an object instance(id) is assigned to

every pixel for every known object within an image.

The majority of instance segmentation networks are two-stage methods. Two-stage

methods like MaskR-CNN [39] involves proposal generation from object detection fol-

lowed by mask generation using a foreground/background binary segmentation network.

These methods dominate state of the art in instance segmentation but incur a relatively

higher computational cost. Using YOLO [3], SSD [37] and other lightweight object de-

tector compared to Faster R-CNN [38] may seem promising. However, they still possess

inevitable additional compute in generating object proposals followed by mask generation.

Other approaches in instance segmentation range from clustering of instance embed-

ding [29] to prediction of instance centers using offset regression (shown in Figure 1.5)

5

Figure 1.3: Top: RGB input image, Bottom: Object detection.

[40, 23]. These methods appear logically straightforward but are lagging in terms of ac-

curacy and computational efficiency. The major drawback with these methods is usage of

compute-intensive clustering methods like OPTICS [41], DBSCAN [42] etc.

1.3.4 Panoptic Segmentation

Panoptic segmentation [22] shown in Figure 1.6 combines semantic segmentation and

instance segmentation to provide the class category and instance id for every pixel within an

image. Recent works [24, 23, 43] use a shared backbone and predict panoptic segmentation

by fusing output from semantic and instance segmentation branches. Almost every work

so far uses an FCN based semantic segmentation branch with variations including usage of

dilated convolutions [23] or feature pyramid networks [24]. However, choices of instance

6

Figure 1.4: Top: RGB input image, Bottom: Instance segmentation.

segmentation branches can vary, as discussed earlier.

1.3.5 General Object Detection

It is impossible to list the entire set of objects in an automotive scenario as this set can be

considered infinite cardinality for all practical purposes. Thus, there will always be objects

that are not trained to use CNN-based object detection discussed earlier (e.g., kangaroos,

moose, or obscure construction vehicles with distinctly unfamiliar visual appearances).

In some cases, trucks or buses with ads can confuse the object detection model. Thus

appearance agnostic object detection is critical for automated driving systems, and alternate

geometric cues of motion and depth are required. Even in standard objects like pedestrians

and vehicles, such cues will aid the robustness of detection.

7

Figure 1.5: Top: RGB input image, Bottom: Instance offset regression.

In classical computer vision, motion is computed using optical flow, and depth is com-

puted using structure from motion. Then post-processing algorithms, such as clustering, are

performed to extract generic static and moving objects. CNN’s can also be used to extract

moving objects and static objects directly instead of the intermediate pixel-level flow or

more complex depth estimation. Moving Object Detection Network (MODNet) [44] poses

moving object detection as a binary segmentation problem and directly estimated. Stixel-

Net [45] poses generic static obstacles represented as stixels and learned using a CNN as

shown in Figure 1.7.

8

Figure 1.6: Top: RGB input image, Bottom: Panoptic segmentation.

1.3.6 Monocular Depth Estimation

Monocular Depth estimation involves estimating the distance two an object (or any

plane) at a pixel level as shown in Figure 1.8. It is an essential task for detecting generic ob-

stacles and also enables tasks such as localization, obstacle avoidance, safe interaction, and

manipulation with objects in the environment, among many others. Traditionally, special-

ized vision sensors are used to obtain depth information along with color images. Stereo

cameras, which apply binocular vision principles, are the first vision sensors used to get

depth information. The literature on stereo vision is rich, and well-developed [46]. Stereo

cameras have been used successfully to solve many robotics perception tasks such as vi-

sual odometry [47]. Other specialized vision sensors are ones based on structured light

9

Figure 1.7: Example of general object detection.

(RGB-D) that can measure depth directly. This type of sensor has been used successfully

in mapping, reconstruction, and tracking applications [48].

Figure 1.8: Top: RGB input image, Bottom: Ground truth depth from a velodyne.

Convolutional Neural Networks (CNNs) have been used successfully to perform monoc-

10

ular depth prediction or estimating depth from a single image [8, 9, 10, 11, 12, 49]. More-

over, recent works attempt to combine depth prediction in a unified visual perception frame-

work where a single network can perform other tasks such as semantic segmentation and

object detection as well [50, 51].

1.3.7 Motion Segmentation

In automotive driving, motion is a strong cue due to the cameras’ ego-motion on the

moving vehicle, and dynamic objects around the car are the critical interacting agents.

Additionally, it helps detect generic objects based on motion cues rather than appearance

cues as there will always be rare objects like kangaroos or construction trucks. Moving

Object detection has been explored in [18, 44]. Motion segmentation is treated as a binary

segmentation problem as shown in Figure 1.9, and IoU is used as the metric.

Figure 1.9: Example of motion segmentation. Moving objects are marked in green.

11

1.3.8 Soiling Detection

Cameras embedded within the vehicles are directly exposed to an external environment,

and there is a good chance that they get soiled due to bad weather conditions such as rain,

fog, snow, etc. [52, 53]. Moreover, dust and mud have a substantial effect on degraded

computer vision performance. Compared to other types of sensors, cameras have much

higher degradation in performance due to soiling. Thus, it is critical to robustly detect soil-

ing on the cameras, especially for higher autonomous driving levels. In Figure 1.10, we

show exemplary images with the corresponding annotations for the camera soiling detec-

tion task.

Figure 1.10: Illustration of a soiling on an automotive camera.

Soiling detection was first implemented to alarm the driver that there will be degraded

performance in the environment perception system. There could be fatal consequences if

information from soiled cameras is relied on in a high-level autonomous system, without

having prior information that it is not correct. According to the SAE autonomous levels

definition [54], adverse weather detection is a necessary functionality for achieving Level 5

autonomy.

12

1.4 Multi-task Learning

Multi-task learning [55] (shown in Figure 1.11) refers to joint training of multiple tasks

or networks. In general, Multi-task Learning (MTL) aims to overcome the computational

bottlenecks in Convolutional Neural Networks and improve computational efficiency by

sharing the expensive layers between all tasks. This allowed deployment of MTL networks

in various applications in computer vision (especially scene understanding) [56, 57, 50],

natural language processing [58, 59], speech recognition [60, 61], reinforcement learning

[62, 63], drug discovery [64, 65], etc.

Figure 1.11: Illustration of a multi-task learning network for joint semantic segmentation and object
detection.

Multi-task learning typically consists of two blocks, shared parameters and task-specific

parameters. Shared parameters are learned to represent commonalities between several

tasks, while task-specific parameters are learned to perform independent processing. In

MTL networks built using CNNs, shared parameters are called encoders as they perform

the key feature extraction, and the task-specific parameters are called decoders as they

decode the information from encoders. MTL networks are classified into hard parameter

13

sharing or soft parameter sharing categories based on how they share their parameters. In

hard parameter sharing, initial layers or parameters are shared between different tasks such

that these parameters are common for all tasks. In soft parameter sharing, different tasks

are allowed to have different initial layers with some extent of sharing between them. Cross

stitch [66] and sluice networks [67] are examples of soft parameter sharing. The majority

of the works in MTL use hard parameter sharing as it is easier to build and computationally

less complex.

The performance of the MTL network is highly dependent on their shared parameters

as they contain the knowledge learned from different tasks [55, 68]. Inappropriate learning

of these parameters can induce biased representations for a particular task, which can hurt

the performance of MTL networks. This phenomenon is referred to as negative transfer

learning. In order to prevent it, balanced learning methods are required. An ideal loss

function should enable the learning of multiple tasks with equal importance irrespective of

loss magnitude, task complexity, etc. Manual tuning of task weights in a loss function is

a tedious process, and it is prone to errors. Most of the work in multi-task learning uses

a linear combination of multiple task losses. Recent works [40, 69, 70] have attempted to

learn/assign the task weights based on task heuristics like uncertainty, change of loss rate

etc. Modelling multi-task loss as a multi-objective function was proposed in [71], [72] and

[73].

1.5 Contributions

In my dissertation, I will focus on building optimized deep learning architectures that

improve individual perception tasks and develop a joint model that shares the available

compute power to process multiple tasks. In the following subsection, we introduce each

14

chapter in this dissertation and then present the key contributions.

Chapter 2: Panoptic Segmentation

Panoptic segmentation aims to understand background (stuff) and instances of objects

(things) at a pixel level. It combines the separate semantic segmentation (pixel-level clas-

sification) and instance segmentation tasks to build a single unified scene understanding

task. Typically, panoptic segmentation is derived by combining semantic and instance seg-

mentation tasks learned separately or jointly (multi-task networks). In general, instance

segmentation networks are built by adding a foreground mask estimation layer on top of

object detectors or using instance clustering methods that assign a pixel to an instance cen-

ter. This chapter presents a fully convolution neural network that learns instance segmen-

tation from semantic segmentation and instance contours (boundaries of things). Instance

contours along with semantic segmentation yield a boundary aware semantic segmentation

of things. Connected component labeling on these results produces instance segmentation.

We merge semantic and instance segmentation results to output panoptic segmentation.

We evaluate our proposed method on the CityScapes dataset to demonstrate qualitative and

quantitative performances along with several ablation studies.

We hope that our idea encourages a new direction in panoptic segmentation research,

which ultimately leads to the learning of instance separating contours within the segmen-

tation task. The main contributions of this chapter include:

1. A novel method to learn panoptic segmentation and instance segmentation from se-

mantic segmentation and instance contours.

2. An instance contour segmentation network that learns boundaries between objects of

the same semantic category.

15

Chapter 3: Multi-stream Learning

The majority of visual perception algorithms like semantic segmentation operate on a

single frame, even in videos. This chapter aims to exploit temporal information within the

algorithm model for leveraging motion cues and temporal consistency. We propose two

simple high-level architectures based on Recurrent FCN (RFCN) and Multi-Stream FCN

(MSFCN) networks. In RFCN, a recurrent network, namely Long Short Term Memory

network (LSTM), is inserted between the encoder and decoder. MSFCN combines the en-

coders of different frames into a fused encoder via 1x1 channel-wise convolution. We use

a ResNet50 [21] network as the baseline encoder and construct three networks, namely

MSFCN of order 2 & 3 and RFCN of order 2. MSFCN-3 produces the best results with

an accuracy improvement of 9% and 15% for Highway and New York-like city scenarios

in the SYNTHIA-CVPR’16 [74] dataset using the mean IoU metric. MSFCN-3 also pro-

duced 11% and 6% for SegTrack V2 [75] and DAVIS [76] datasets over the baseline FCN

network. We also designed an efficient version of MSFCN-2 and RFCN-2 using weight

sharing among the two encoders. The efficient MSFCN-2 provided an improvement of

11% and 5% for KITTI and SYNTHIA with a negligible increase in computational com-

plexity compared to the baseline version.

The list of contributions include:

1. Design of Recurrent FCN (RFCN) and Multi-Stream FCN (MSFCN) architectures

that extends semantic segmentation models for videos.

2. Implementation of a network for spatio-temporal video semantic segmentation.

3. Detailed experimental analysis of multi-class video semantic segmentation with auto-

mated driving dataset SYNTHIA [74] and binary video segmentation with SegTrack

V2 [75] and DAVIS [76] datasets.

16

Chapter 4: Multi-task Learning

Convolutional Neural Networks (CNN) are successfully used for various visual percep-

tion tasks, including bounding box object detection, semantic segmentation, optical flow,

depth estimation, visual SLAM, etc. Generally, these tasks are independently explored and

modeled. In this chapter, we propose a joint multi-task network design for learning multi-

ple tasks simultaneously. The goal is to use the CNN encoder as a generic feature extractor

for all tasks to be computationally efficient, improve accuracy, and ease development effort.

The main advantages are increased run time efficiency through shared network parameters

across tasks, scalability to add more tasks leveraging previous features, and better general-

ization.

The major contributions of this chapter include:

1. Design of a two task network for joint semantic segmentation and objection and

experimentation on various datasets to demonstrate that joint network provides the

same accuracy as separate networks.

2. Design a three task network for object detection, semantic segmentation, and soiling

detection.

3. Comparison of computational complexities between multi-task models vs. indepen-

dent single-task models.

Chapter 5: Auxiliary Learning

Pixel level classification was once considered a challenging task, becoming mature to

be productized in a car. However, semantic annotation is time-consuming and quite expen-

sive. Synthetic datasets with domain adaptation techniques have been used to alleviate the

lack of large annotated datasets. In this chapter, we explore an alternate approach to lever-

aging other tasks’ annotations to improve semantic segmentation. Motivated by multi-task

17

learning, we use auxiliary tasks like depth estimation to improve semantic segmentation

task performance. We propose adaptive task loss weighting techniques to address scale

issues in multi-task loss functions, which become more crucial in auxiliary tasks. We ex-

perimented on automotive datasets including SYNTHIA [74], and KITTI [77] and obtained

3% and 5% improvement in accuracy, respectively.

The contributions of this chapter include:

1. Construction of auxiliary task learning architecture for semantic segmentation.

2. Novel loss function weighting strategy for one main task and one auxiliary task.

3. Experimentation on automotive datasets namely SYNTHIA [74] and KITTI [77].

Chapter 6: Multi-stream Multi-task Learning

Current work on multi-task learning networks focuses on processing a single input im-

age, and there is no known implementation of multi-task learning handling a sequence of

images. In this chapter, we propose a multi-stream multi-task network to take advantage of

using feature representations from preceding frames in a video sequence for joint learning

of segmentation, depth, and motion. The weights of the current and previous encoder are

shared so that features computed in the previous frame can be leveraged without additional

computation. We also propose using the geometric mean of task losses as a better alter-

native to the weighted average of task losses. The proposed loss function facilitates better

handling of the difference in convergence rates of different tasks. Experimental results on

KITTI [77], Cityscapes [78] and SYNTHIA [74] datasets demonstrate that the proposed

strategies outperform various existing multi-task learning solutions

The contributions of this chapter include:

1. A multi-stream multi-task network to take advantage of temporal features from pre-

ceding frames in a video sequence.

18

2. Geometric mean of task losses as a better alternative to the weighted average of task

losses.

3. Experimentation on three automotive datasets namely KITTI [77], Cityscapes [78]

and SYNTHIA [74].

19

CHAPTER II

Panoptic Segmentation

2.1 Introduction

Panoptic segmentation [22, 24] offers the ultimate understanding of a scene by pro-

viding joint semantic and instance-level predictions of background and objects at a pixel

level. Panoptic segmentation is usually achieved by combining outputs from semantic seg-

mentation and instance segmentation. Examples where panoptic segmentation offers an

unprecedented advantage over standalone semantic or instance segmentation solutions, in-

clude collective knowledge of distinct objects and the drivable area around a self-driving

car [43, 79], semantic and instance-level details of cancerous cells in digital pathology [80],

understanding of the background and different individuals in a frame to enhance smart-

phone photography. Multi-task learning networks [55] that jointly perform semantic, and

instance segmentation [24, 43] accelerated progress of panoptic segmentation in terms of

accuracy and computational efficiency compared to traditional methods that use a naive

fusion of predictions from independent semantic and instance segmentation networks to

derive panoptic segmentation output [22].

Instance segmentation is typically achieved in two major ways, 1) Foreground mask

estimation of objects detected by an object detection model [24, 81, 39] or 2) Clustering-

based instance assignment methods [23, 40]. Recently, single-stage instance segmentation

methods have been developed [82, 27]. These major approaches use fully convolution

networks so that they can be trained in an end-to-end fashion. Clustering-based instance

20

assignments appear logically straight forward but are lagging in terms of accuracy and

computational efficiency. The major drawback with these methods is usage of compute-

intensive clustering methods like OPTICS [41], DBSCAN [42] etc. In contrast to these

methods, we derive instance segmentation from semantic segmentation using instance con-

tours (boundaries of things).

(a) (b)

(c) (d)

Figure 2.1: Illustration of (a) Semantic segmentation, (b) Instance contour segmentation, (c) In-
stance center regression and (d) Instance segmentation.

On the other hand, Semantic segmentation is a mature task that is well explored in

the literature relative to panoptic segmentation. We observe that panoptic segmentation

can be obtained from semantic segmentation by additionally estimating instance separat-

ing contours. Naively, the instance separating contours can be an additional class in the

segmentation task. In practice, it isn’t easy to get good performance for this class. It

is illustrated in Figure 2.1 where segmentation (a) and instance contour segmentation (b)

contains all the information to obtain panoptic segmentation. The minimal contours needed

are contours that separate two instances of the same object. However, these contours do not

21

have sufficient information to be learned on their own, and thus, we use the entire instance

contours.

2.1.1 Instance Contour Segmentation

Semantic edge detection (SED) [83, 84] differs from edge detection [85] by predicting

edges that belong to semantic class boundaries. In SED, edges/boundaries that separate

segments of one category from another are predicted, whereas, in edge detection, every

edge is detected based on image gradients. The main idea in CNN based edge models is

combining intermediate feature maps across different layers of network that contain edge

information to form semantic boundaries that separate one class from another. Holistically-

nested edge detection (HED) [86] is one of the first CNN based edge detection methods

that proposed the usage of the above idea. Later, several methods were proposed to address

different edge detection challenges that include prediction of crisp boundaries [87, 88],

selection of intermediate feature maps, and choices of supervision on these feature maps

[89, 90]. It is important to note that these methods ignore the boundaries between objects

belonging to the same semantic category. Instance contour estimation as shown in Figure

2.1 (b) can overcome this challenge.

Deep contour [91] are used instance contours generate instance segmentation. Deep

Snake [30] recently proposed to predict instance contours by learning contours from object

detection. They replace foreground mask estimation for objects with contours to derive

instance segmentation.

2.1.2 Challenges

The major challenge in generating panoptic segmentation output is merging conflict-

ing outputs from semantic segmentation and instance branches. For example, semantic

22

segmentation can predict that a pixel might belong to the car class, while the instance seg-

mentation branch may predict the same pixel as the person class. A naive way to resolve

conflicts is by considering the semantic segmentation as the basis and using instance seg-

mentation for instance identification only. Several methods [43] were proposed to handle

the conflicts better and learned fashion. Our methods propose to derive instance segmenta-

tion from semantic segmentation using instance contours. Therefore, our method does not

require a conflict resolution policy like other existing methods.

2.2 Method

Our method (shown in Figure 2.2) is a multi-task neural network with several shared

convolution layers and multiple output heads that predict semantic segmentation, instance

contours (boundaries of things), and center regression. Instance contours along with seman-

tic segmentation yield a boundary aware semantic segmentation of things. Connected com-

ponent labeling on these results produces instance segmentation and, eventually, panoptic

segmentation. We also estimate a confidence score for each instance.

Figure 2.2: Illustration of our method that learns panoptic segmentation from instance contours.

Our instance contour segmentation network is a binary segmentation network that pre-

23

dicts instance boundaries between objects that belong to the same category. Compared to

semantic edge detection networks [83, 87] our instance contour estimation does not ignore

boundaries between instances of the same category.

2.2.1 Model Architecture

As shown in Figure 2.3, a common ResNet [21] backbone outputs multi-scale feature

maps {1/4, 1/8, 1/16, 1/32}w.r.t to input image. Our pyramid is built using Feature pyramid

network (FPN) [4] which consumes feature maps (scales 1/4 to 1/32) from backbone in a

top-down fashion and outputs feature maps with 256 channels maintaining their input scale.

Feature maps from the pyramid are then passed through a series of 1x1 convolutions and

are upsampled to 1/4 scale using 2-d bi-linear interpolation in the neck layers as proposed

in [24]. These layers have 128 dims at each level. We add these feature maps from different

levels and pass them to prediction heads. Our semantic segmentation head contains 1×1

convolution layer with k filters (k output maps for k classes) followed by a 4x upsampling.

Figure 2.3: Our panoptic segmentation model architecture with CNN backbone.

We perform softmax activation followed by an argmax function on the k output maps

to derive full resolution semantic segmentation output. Our instance contour estimation

head is similar to the semantic segmentation head, except it has one output feature map

24

and a sigmoid activation instead of a softmax. Our center regression head has two output

channels that predict offsets from the instance center in the x and y-axis and does not have

any particular activation function.

2.2.2 Loss Functions

We discuss the explicit loss functions defined for semantic segmentation and instance

contour branches. We chose cross-entropy loss for semantic segmentation. In Equation

2.1, Lsemantic is segmentation loss over k classes for all pixels in the image, where pi is the

prediction probability and ŷi is ground truth that indicates whether pixel belongs to class i.

Lsemantic =−
k

∑
i

ŷi · log(pi) (2.1)

For instance contours, we chose weighted binary cross entropy loss [83] as shown in

Equation 2.2, where β is the ratio of non edge pixels to total pixels n in the image. pi is the

probability that the current pixel is an edge and ŷi is ground truth, indicating whether pixel

i is an edge.

LwBCE =−
n

∑
i

〈
β · ŷi · log(pi)+(1−β) · (1− ŷi) · log(1− pi)

〉
(2.2)

We add Huber loss (δ = 0.3):

LHuber =


0.5 · (pi− ŷi)

2, |pi− ŷi| ≤ δ

δ · (pi− ŷi)−0.5 ·δ 2, otherwise
(2.3)

and NMS Loss {LNMS = −∑c log(h)} [87] terms to contour loss to predict thin and crisp

boundaries. We compute softmax response h along the normal direction of boundary pixels

25

c as described in [87]. For center regression, we use Huber loss to compute error between

y, predicted offsets and ŷ, ground truth offsets with δ = 1.

Our total loss function is a weight combination of semantic loss, contour losses, and

center regression loss. We chose λ1, λ2, and λ3 as 1, 50 and 0.1 for our experiments.

Ltotal = λ1 ·Lsemantic +λ2 ·Lcontour +λ3 ·Lcenter (2.4)

where Lcontour is defined as:

Lcontour = LwBCE +LHuber +LNMS (2.5)

2.2.3 Instance Segmentation

Our instance segmentation is derived from semantic segmentation, unlike any other

instance segmentation methods as shown in Figure 2.4. As a first step, we generate a

binary mask by searching for instance classes in semantic segmentation, which we refer

to as instance class mask. We subtract instance contours (generated from instance con-

tour segmentation head) from instance class mask to derive boundary aware instance class

mask. Using connected component labeling [92], we derive unique instances from bound-

ary aware instance class mask. We map the semantic segmentation output to the instance

generated. We assign the most frequent label found inside an instance as its category and

average the softmax predictions over the area of an instance to generate confidence for an

instance.

26

Figure 2.4: Illustrative flow diagram of our algorithm that learns panoptic segmentation from se-
mantic segmentation and instance contours.

2.2.4 Refining Instance Segmentation

We refine instance segmentation output using center regression results. Our refinement

consists of mainly two stages: Split and Merge. We estimate centroids predicted by the

center regression head. We cluster the centroid predictions using DBSCAN in an instance

and split them if distinct centroids are found. DBSCAN requires a fixed ’eps’ parameter,

which is the maximum distance between two samples for one to be considered in the other’s

neighborhood. Beyond this distance, two predicted centers will belong to two different in-

stances. If the distance between two centroids is at least 20 pixels (eps), we declare them

distinct. For a 1024×2048 image, we believed that 20 pixels are relatively enough to distin-

guish smaller instances. Our clustering stage does not require considerable computational

complexity like other methods [23, 29, 40] since we perform clustering within instances

that are much smaller compared to performing clustering on the entire image.

After the instances are split, we estimate mean centroids for every instance using offsets

predicted by the center regression head. If the mean centroids are closer than 20 pixels in

the euclidean distance, we merge those instances. Later, we remove all instances that have

an area lower than a minimum area threshold. We assign these pixels to instances whose

27

centroids are closest to the centroids derived from offsets predicted by the center regression

head.

2.2.5 Panoptic Segmentation

Panoptic segmentation is now obtained by simply merging output from semantic seg-

mentation and instance segmentation. Our methods attempt to derive instance segmenta-

tion from semantic segmentation using instance contours. Therefore, our method does not

require a conflict resolution policy like other existing methods.

2.3 Experiments and Results

In this section, we demonstrate the performance of our methods for panoptic segmen-

tation on Cityscapes [78] dataset specifically on the validation split. We also present the

performance of our semantic segmentation and instance segmentation results.

2.3.1 Experimental Setup

Cityscapes [78] is an automotive scene understanding dataset with 2975/500 train/val

images at 1024×2048 resolution. This dataset contains labels for semantic, instance, and

panoptic segmentation tasks. We derive labels for our instance contour task by applying

a contour detection algorithm on instance ground truth masks. We dilate the resulting

contours to derive thick contours and serve them as ground truth for our instance contour

segmentation task. Cityscapes dataset has 19 semantic object categories, out of which eight

categories are provided with instance masks.

We train our network on full resolution images with a batch size of 4 images. We

use Group Normalization [93] which is effective for smaller batch sizes. We use an SGD

28

optimizer with learning rate = 0.005, momentum = 0.9, weight decay = 10−4. We initialize

our ResNet encoders with pre-trained ImageNet [94] weights and train our networks for

48000 iterations.

We measure the performance of semantic segmentation using mean intersection over

union (mIoU), instance segmentation using mean average precision (mAP) and panoptic

segmentation using panoptic quality (PQ) [22], segmentation quality (SQ), and recognition

quality (RQ) metrics. Qualitative results in Figure 2.5 demonstrate that the contours gener-

ated are thin and crisp when the above combination is used. Figure 2.6 demonstrates more

qualitative results of the panoptic segmentation.

Figure 2.5: Qualitative results on Cityscapes val dataset obtained with ResNet-50 encoder using
separate necks, wBCE + Huber loss combination, split and merge refinement with min Instance area
= 300 pixels. Instance contours ground truth are generated with dilation rate = 2. From left to right:
Semantic segmentation, instance contour segmentation, center regression, instance segmentation.
Top: ground truth, Bottom: prediction. Predicted contours are thicker than ground truth.

29

Figure 2.6: Panoptic segmentation results on Cityscapes val dataset. Results obtained with ResNet-
50 encoder using a separate neck architecture, wBCE + Huber loss combination, split and merge
refinement with min Instance area = 300 pixels. Instance contours ground truth are generated with
dilation rate = 2.

2.3.2 Ablation Studies

2.3.2.1 Instance Contour Segmentation Loss Function

As mentioned before, we aim to predict thin and crisp instance contours. We study

different loss functions discussed in Section 2.2.2 by evaluating the performance of instance

and panoptic segmentation as shown in Table 2.1. We used ResNet-50 encoder as our

backbone and separate heads with a common neck.

We observed that Huber and NMS loss function had improved the performance of in-

stance and panoptic segmentation results. The weighted binary cross-entropy combined

with the Huber loss is the best combination we found.

30

Contour Loss Performance
wBCE Huber NMS AP PQ PQTh SQTh RQTh

X 16.0 43.9 25.0 72.6 33.3
X X 24.3 47.8 33.2 76.3 42.9
X X 18.9 44.6 26.1 74.3 35.3
X X X 23.3 46.7 32.4 76.1 42.1

Table 2.1: Instance and Panoptic Segmentation results on Cityscapes val dataset for different loss
functions used to represent instance contour loss. wBCE = weighted binary cross entropy, AP =
average precision, PQ = panoptic quality. PQTh, SQTh, and RQTh represent panoptic, segmentation
and recognition qualities of instance objects.

2.3.2.2 Instance Contour Ground Truth Dilation Rate

We generate our ground truth instance contours by applying a contour detection al-

gorithm on instance masks provided for different objects in the cityscapes dataset. The

number of edge pixels is comparatively lower than non-edge pixels in our contour segmen-

tation problem. We can alleviate this class imbalance using appropriate loss functions as

discussed in Section 2.2.2 or by dilating the contours and increasing their thickness. In

Table 2.2, we evaluate the performance of instance and panoptic segmentation for different

dilation rates.

Dilation Rate AP PQ PQTh SQTh RQTh

1 24.1 46.0 30.5 73.1 40.6
2 24.3 47.8 33.2 76.3 42.9
3 22.6 46.6 32.0 75.6 41.7

Table 2.2: Performance of instance and panoptic segmentation on Cityscapes val dataset when
different dilation rates were used to generate ground truth instance contours. Increasing the dilation
rate, increases the thickness of the ground truth instance contours.

We observed that when an appropriate loss combination is used, the dilation rate does

not significantly impact the performance. However, increasing the dilation rate from 2 to 3

decreases the performance. We use a dilation rate of 2 to generate our ground truth contours

for all other experiments.

31

2.3.2.3 Refining Instance Segmentation

As discussed in Section 2.2.4, we refine our instance segmentation output using center

regression results. We evaluate the effects of split and merge components in our refinement

process in Table 2.3 and evaluate the effect of min instance area in Table 2.4.

Refine Performance
Split Merge AP PQ PQTh SQTh RQTh

24.0 47.1 33.0 75.6 42.7
X 24.2 47.7 33.1 76.1 42.9
X X 24.3 47.8 33.2 76.3 42.9

Table 2.3: Evaluation of instance and panoptic segmentation on Cityscapes val dataset before and
after refinement using offsets predicted by center regression results.

We observed that refining the instance segmentation using offsets predicted by center

regression marginally improves instance segmentation performance. However, the refine-

ment is critical when a broken contour can miss the boundary between two instances that

can wrongly be predicted as a single instance. Similarly, an occlusion by a pole or low

width object can mislead connected component labeling to interpret resulting contours as

separate instances.

min Instance Area AP PQ PQTh SQTh RQTh

1 10.0 40.6 17.6 75.5 23.1
100 21.3 46.4 31.4 75.7 40.8
300 24.3 47.8 33.2 76.3 42.9
500 23.6 47.0 32.7 75.5 42.4

Table 2.4: Impact of minimum instance area threshold during instance refinement on Cityscapes val
dataset.

We observed that choosing an appropriate minimum instance area threshold is critical

in determining our method’s performance. The lower instance area allows the removal of

unwanted instances generated due to artifacts in contour estimation. Such artifacts could

32

result from false contours around mirrors of cars, convex hulls, occlusion, etc.

2.3.2.4 Network Ablation

We experimented with different network architecture choices. We studied the impact

of using a shared neck vs. separate neck layer to upsample and add features from a com-

mon feature pyramid network. We also studied how the depth of ResNet encoder impacts

our performance by using ResNet-50 and ResNet-101 encoders in Table 2.5. We report

the performance of semantic, instance, and panoptic segmentation networks as the change

in network architecture impacts the learning of different heads. We observed that higher

ResNet depth and separate necks yield better performance.

Neck Backbone mIoU PQSt AP PQTh PQ
Shared ResNet-50 67.5 57.4 24.3 33.2 47.8
Separate ResNet-50 69.6 58.6 25.0 34.0 48.3
Shared ResNet-101 68.4 58.5 24.7 33.4 48.1
Separate ResNet-101 68.7 59.3 24.9 33.2 48.4

Table 2.5: Performance of semantic, instance and panoptic segmentation using different network
architecture choices on Cityscapes val dataset.

2.3.3 State of the Art Comparison

In Table 2.6, we compare our methods against other semantic, instance and panoptic

segmentation methods.

2.3.3.1 Comparison with Two-stage Methods

Two-stage object detection methods [24, 39, 81] dominate state of the art in the instance

and panoptic segmentation. However, they have incurred additional compute costs in gen-

erating object detection followed by foreground mask generation. Mask R-CNN [39] for

33

Method mIoU PQSt AP PQTh PQ
Two-stage Object detection

Mask R-CNN [39] - - 31.5 - -
Weakly Supervised [81] 71.6 52.9 24.3 39.6 47.3
Panoptic-FPN [24] 74.5 62.4 32.2 51.3 57.7
UPSNet [25] 75.2 62.7 33.3 54.6 59.3
DeepSnake [30] - - 37.4 - -

Instance Clustering
Kendall et al [40] † 78.5 - 21.6 - -
Panoptic-DeepLab [23] 78.2 - 32.7 - 60.3

Single-stage Object detection
Poly YOLO [27]* - - 8.7 - -

Others
Deep Contour [91] † - - 2.3 - -
Uhrig et al. [95] - - 9.9 - -
Deep Watershed [96] - - 21.2 - -
SGN [97] - - 29.2 - -
Ours [ResNet-50] 69.6 58.6 25.0 34.0 48.3
Ours [ResNet-101] 68.7 59.3 24.9 33.2 48.4

Table 2.6: Comparison with other state-of-the art methods on Cityscapes dataset (val split).
† Performance reported on test split. *Evaluated on image of size 416×832.

instance segmentation on a high end GPU like Nvidia Titan X runs at ∼5 and ∼2 fps on

1024×1024 and 1024×2048 images respectively. Other two-stage methods UPSNet [25],

and DeepSnake [30] are lighter compared to Mask R-CNN and operate at ∼4 fps, for in-

stance segmentation task. When semantic segmentation task is executed in parallel with

instance segmentation to compute panoptic segmentation, these methods’ run time speed

will further decline. These increased latencies make the two-stage object detection based

methods not suitable for real-time applications. Our method with ResNet-50 encoder out-

puts panoptic segmentation at ∼3 fps and ∼5 fps on a mid-grade Nvidia GTX 1080 GPU

(∼8.8 Tflops) on a 1024×2048 image with and without instance refinement function. We

expect higher frame rates when our connected component labeling and instance refinement

34

functions are optimized for GPU operation instead of its current CPU based implementa-

tion.

2.3.3.2 Comparison with Instance Clustering

Kendall et al. [40] was one of the early works that used multi-task learning to simultane-

ously learn semantic and instance segmentation. Panoptic-DeepLab [23] recently proposed

a strong baseline for center regression-based methods by exploiting the effectiveness of

Atrous Spatial Pyramid Pooling (ASPP) modules. We believe that using ASPP module in

our network will improve our semantic segmentation performance and eventually lead us to

a better instance and panoptic segmentation results. However, ASPP modules are compu-

tationally very expensive compared to Feature pyramid networks [24]. Panoptic-DeepLab

with ResNet50 achieves ∼5fps on Tesla V-100 SMX2 GPU (∼14 Tflops).

2.3.3.3 Comparison with Single-stage Object Detection and Others

Poly YOLO [27] reported ∼22 fps on a 416×832 image with an AP score of 8.7 while

Deep Contour [91] reported∼5fps on a mid grade GTX 1070 with AP score of 2.3†. Other

methods like Deep Watershed [96] and SGN [97] (∼0.6 fps) incur a huge computation

complexity. Our methods are outperform faster methods like [27] and [91] while improving

run-time efficiency compared to [96, 97].

2.4 Discussions

Two-stage methods are dominating state of the art due to the main reason that segmenta-

tion is performed on objects detected in the first stage. These objects serve as a great prior

(while reducing False positives) and reduce foreground-background segmentation into a

35

very small subproblem. In contrast, one-stage methods aim to predict instance segmenta-

tion in a single step where no object proposal is used. Our method is a single-stage method

that relies on processing the entire image to generate instance segmentation results. Rele-

vant single-stage methods were compared against our method in Table 2.6, both in terms

of computational complexity and quantitative performance. In section 2.3.3, we briefly

discussed the method’s significant shortcomings and how we tried to tackle them.

On the other hand, If one wants to pay more attention to larger instances over smaller

instances, PQ may not be an ideal metric. During the estimation of PQ, the size of instances

is not considered. For example, instances with 10 × 10 pixels contribute equally to the

metric as instances with 1000 × 1000 pixels. Therefore, PQ is sensitive to false positives.

Such Examples include applications in automotive driving, where nearby objects are more

important than farther objects. Our method qualitatively demonstrated better performance

on near-range objects compared to farther objects. In the future, we would like to compare

our methods against others at different distances.

2.5 Conclusion

In this chapter, we presented a new approach to panoptic segmentation using instance

contours. Our method is one of the first approaches where instance segmentation is gen-

erated as a byproduct in a semantic segmentation network. We evaluated the performance

of our semantic, instance, and panoptic segmentation results on the Cityscapes dataset. We

presented several ablation studies that help understand the impact of architecture and train-

ing choices that we made. We believe that our methods open a new direction in the research

of instance and panoptic segmentation and serve as a baseline for contour-based methods.

36

CHAPTER III

Multi-stream Learning

3.1 Introduction

Semantic segmentation provides complete semantic scene understanding wherein each

pixel in an image is assigned a class label. It has applications in various fields, including

automated driving [98, 99], augmented reality, and medical image processing. This algo-

rithm has recently matured in terms of accuracy, sufficient for commercial deployment due

to advancements in deep learning. Most of the standard architectures use a single frame

even when the algorithm is run on a video sequence. There are a strong temporal conti-

nuity and constant ego-motion of the camera for automated driving videos, which can be

exploited within the semantic segmentation model. This inspired us to explore temporal

based video semantic segmentation.

In this chapter, we present two types of architectures, namely Recurrent FCN (RFCN)

and Multi-stream FCN (MSFCN) (as shown in Figure 3.1) inspired by FCN and Long

short-term memory (LSTM) networks. Multi-stream Architectures were first introduced in

[100] in which a two-stream CNN was proposed for action recognition. They were also

successfully used for other applications like Optical Flow [17], moving object detection

[44] and depth estimation [101]. The main motivation is to leverage temporal continuity in

video streams. In RFCN, we temporally processed FCN encoders using the LSTM network.

In MSFCN architecture, we combine the current and previous frames’ encoder to produce

a new fused encoder of the same feature map dimension. This would enable keeping the

37

same decoder.

Figure 3.1: Top: Recurrent FCN, Bottom: Multi-stream FCN.

3.2 Extending Semantic Segmentation to Videos

In this section, we motivate incorporating temporal models in automated driving and

explain different high-level methods to accomplish the same. Motion is a dominant cue in

automated driving due to the vehicle’s continuous motion on which the camera is mounted.

38

The objects of interest in automotive are split into static infrastructures like roads, traffic

signs, etc., and dynamic objects, which are interacting like vehicles and pedestrians. The

main challenges are posed due to the uncertain behavior of dynamic objects. Dense optical

flow is commonly used to detect moving objects purely based on motion cues. Recently,

HD maps are becoming a widely used cue that enables detecting static infrastructure, which

is previously mapped and encoded. In this work, we explore temporal continuity usage to

improve accuracy by implicitly learning motion cues and tracking. We discuss the various

types of temporal models in Figure 3.2 which illustrates the different ways to extend image-

based segmentation algorithm to videos.

Figure 3.2: Comparison of different approaches to extend semantic segmentation to videos - a)
Frame-level output b) Detect and track c) Temporal post processing d) Recurrent encoder model
and e) Fused multi-stream encoder model.

39

3.2.1 Single Frame Baseline

Figure 3.2 (a) illustrates the typical way the detector is run every frame independently.

This would be the reference baseline for comparing the accuracy of improvements by other

methods.

3.2.2 Detect and Track Approach

This approach’s premise is to leverage the previously obtained estimate of semantic

segmentation as the next frame has only incrementally changed. This approach can sig-

nificantly reduce the computational complexity as a lighter model can refine the previous

semantic segmentation output for the current frame. The high level block diagram is il-

lustrated in Figure 3.2 (b). This approach has been successfully used to detect bounding

box objects where tracking could even help when the detector fails in certain frames. How-

ever, it isn’t easy to model it for semantic segmentation as the output representation is quite

complex. It is challenging to handle the appearance of new regions in the next frame.

3.2.3 Temporal Post Processing

The third approach is to use a post-processing filter on output estimates to smooth out

the noise. Probabilistic Graphical Models (PGM) like Conditional Random Fields (CRF)

are commonly used to accomplish this. The block diagram of this method is shown in Fig-

ure 3.2 (c), where recurrence is built on the output. This step is computationally complex

because the recurrence operation is on the image dimension, which is large.

40

3.2.4 Recurrent Encoder Model

In this approach, the intermediate feature maps from the encoders are fed into a recur-

rent unit. The recurrent unit in the network can be an RNN, LSTM, or a GRU. Then the

resulting features are fed to a decoder, which outputs semantic labels. For instance, In a

ResNet50 encoder, conv5 layer features from consecutive image streams can be passed as

temporal features for the LSTM network.

3.2.5 Fused Multi-stream Encoder Model

This method can be seen as a special case of the Recurrent model in some sense. But

the perspective of multi-stream encoder will enable the design of new architectures. As this

is the main contribution of this work, we will describe it in more detail in the next section.

3.3 Method

In this section, we discuss the details of our multi-stream networks. Multi-stream fused

architectures (MSFCN-2 & MSFCN-3) concatenate the output from each encoder and fuse

them via 1×1 channel-wise convolutions to obtain a fused encoder, which is then fed to the

decoder. Recurrent based architecture (RFCN) uses an LSTM unit to feed the decoder.

Figure 3.3: FCN: Single encoder baseline.

41

3.3.1 Single Stream Architecture

A fully convolution network (FCN) shown in Figure 3.3 is inspired from [5] is used

as the baseline architecture. We used ResNet50 [21] as the encoder and conventional up-

sampling with skip-connections to predict pixel-wise labels. Initializing model weights by

pre-trained ResNet50 weights alleviates over-fitting problems as these weights result from

training on a much larger dataset, namely ImageNet.

Figure 3.4: MSFCN-2: Two stream fusion architecture.

3.3.2 Multi-stream Fused Architectures

Multi-stream FCN architecture is illustrated in Fig 3.4 & 3.5. We used multiple ResNet50

encoders to construct the multi-stream architectures. Consecutive input frames are pro-

cessed by multiple ResNet50 encoders independently. The intermediate feature maps ob-

tained at three different stages (conv3, conv4, and conv5) of the encoder are concatenated

and added to the decoder’s up-sampling layers. MSFCN-2 is constructed using 2 encoders

while MSFCN-3 uses 3 encoders. A channel-wise 1x1 convolution is applied to fuse the

42

Figure 3.5: MSFCN-3: Three stream fusion architecture.

multiple encoder streams into a single one of the same dimension. This strategy will enable

the usage of the same decoder.

3.3.3 Multi-stream Recurrent Architecture

A recurrent fully convolutional network (RFCN) is designed to incorporate a recurrent

network into a convolutional encoder-decoder architecture. It is illustrated in Figure 3.6.

We use the generic recurrent unit LSTM, which can specialize to simpler RNNs and GRUs.

LSTM operates over the previous N frames’ encoder and produces a filtered encoder of the

same dimension, which is then fed to the decoder.

The generic form of multi-stream architectures has different weights for the different

encoders. In Figure 3.2 (e), the three encoders can be different, and they have to be re-

computed each frame. Thus the computational complexity of the encoder increases by a

factor of three. However, if the weights are shared between the encoders, there is no need

to recompute each frame. One encoder feature extraction per frame suffices, and a combi-

nation of previously computed encoders computes the fused encoder. This weight sharing

43

Figure 3.6: RFCN-2: Two stream LSTM architecture.

approach drastically brings down the complexity with negligible additional computation

relative to the single-stream encoder.

3.4 Experiments and Results

This section explains the experimental setting, including the datasets used, training

algorithm details, etc., and discusses the results.

3.4.1 Experimental Setup

In most datasets, the frames in a video sequence are sparsely sampled temporally to

have better diversity of objects. Thus consecutive video frames are not provided for train-

ing our multi-stream algorithm. Synthetic datasets have no cost for annotation, and ground

truth annotation is available for all consecutive frames. Hence, we used the synthetic

autonomous driving dataset SYNTHIA [74] for our experiments. We also used DAVIS

[76], and SegTrack V2 [75] which provides consecutive frames. They are not automotive

44

datasets but realistic.

We implemented the different multi-stream architectures using Keras [102]. We used

ADAM optimizer as it provided faster convergence. The maximum order (number of con-

secutive frames) used in training is three (MSFCN-3) because of the limitation of memory

needed for training. Categorical cross-entropy is used as a loss function for the optimizer.

The maximum number of training epochs is set to 30, and early stopping with patience of

10 epochs monitoring the gains is added. Mean class IoU and per-class IoU were used

as accuracy metrics. All input images were resized to 224x384 because of the memory

requirements needed for multiple streams.

3.4.2 Ablation Studies

We performed four sets of experiments summarized in four tables. Qualitative results

are provided in Figure 3.9 for KITTI, Figure 3.10 for DAVIS and Figure 3.8 for SYNTHIA.

Figure 3.7: Accuracy over epochs for SYNTHIA dataset.

45

3.4.2.1 Temporal Depth

Firstly, we wanted to evaluate different orders on multi-stream and understand the im-

pact. We also wanted to understand the implications for high speed and medium speed

scenarios. SYNTHIA dataset was used for this experiment as it had separation of various

speed sequences, and it was also a relatively larger dataset. Table 3.1, Two-stream net-

works provided a considerable increase in accuracy compared to the baseline. MSFCN-2

provided an accuracy improvement of 8% for Highway and 14% for City sequence. RFCN-

2 provided a slightly better accuracy relative to MSFCN-2. MSFCN-3 provided a marginal

improvement over MSFCN-2, and thus we did not explore higher orders. We show the

performance of methods over different training epochs on the SYNTHIA dataset in Figure

3.7. We also present qualitative results in Figure 3.8.

46

Figure 3.8: Qualitative results of experiments with SYNTHIA dataset. Left to right: RGB image,
single encoder (FCN), two stream encoder (MSFCN-2), ground truth, two stream encoder + LSTM
(RFCN-2) and three stream encoder (MSFCN-3).

47

Highway
Architecture Mean IoU Sky Building Road Sidewalk Fence Vegetation Pole Car Lane
FCN 85.42 0.91 0.67 0.89 0.02 0.71 0.79 0.01 0.81 0.72
MSFCN-2 93.44 0.92 0.66 0.94 0.28 0.85 0.78 0.11 0.82 0.71
RFCN-2 94.17 0.93 0.71 0.95 0.31 0.82 0.83 0.13 0.87 0.7
MSFCN-3 94.38 0.93 0.69 0.96 0.31 0.87 0.81 0.12 0.87 0.72

City
Architecture Mean IoU Sky Building Road Sidewalk Fence Vegetation Pole Car Lane
FCN 73.88 0.94 0.94 0.72 0.78 0.34 0.54 0 0.69 0.56
MSFCN-2 87.77 0.87 0.94 0.84 0.83 0.68 0.64 0 0.8 0.8
RFCN-2 88.24 0.91 0.92 0.87 0.78 0.56 0.67 0 0.8 0.74
MSFCN-3 88.89 0.88 0.89 0.86 0.74 0.64 0.53 0 0.71 0.72

Table 3.1: Semantic segmentation results on SYNTHIA sequences. We split the test sequences into two parts, one is Highway for high
speeds and the other is City for medium speeds.

48

3.4.2.2 Shared Weights

We reduced our experiments to MSFCN-2 and RFCN-2, but we added shared weight

versions of the same. In Table 3.2 MSFCN-2 provided an accuracy improvement of 11%

on KITTI dataset[77], and the shared weight version only lagged slightly. We demonstrate

qualitative results of our methods on the KITTI dataset in Figure 3.9.

Figure 3.9: Results on KITTI dataset.

We repeated the experiments of the same networks used in Table 3.2 on a more ex-

tensive SYNTHIA sequence and present in Table 3.3. MSFCN-2 provided an accuracy

improvement of 6% in Mean IoU. MSFCN-2 with shared weights lagged by 1%. RFCN-2

versions had slightly lesser accuracy compared to their MSFCN-2 counterparts with and

without weight sharing.

49

Architecture NumParams Mean IoU Sky Building Road Sidewalk Fence Vegetation Car Sign
FCN 23,668,680 74.00 46.18 86.50 80.60 69.10 37.25 81.94 74.35 35.11
MSFCN-2 (shared) 23,715,272 85.31 47.89 91.08 97.58 88.02 62.60 92.01 90.26 58.11
RFCN-2 (shared) 31,847,828 84.19 50.20 93.74 94.90 88.17 59.73 87.73 87.66 55.55
MSFCN-2 47,302,984 85.47 48.72 92.29 96.36 90.21 59.60 92.43 89.27 70.47
RFCN-2 55,435,540 83.38 44.80 92.84 91.77 91.67 58.53 86.01 87.25 52.87

Table 3.2: Semantic segmentation Results on KITTI video sequence.

Architecture Mean IoU Sky Building Road Sidewalk Fence Vegetation Pole Car Sign Pedestrian Cyclist Lane
FCN 84.08 97.2 92.97 87.74 81.58 34.44 62 1.87 72.75 0.21 0.01 0.33 93.08
MSFCN-2 (shared) 88.88 97.08 93.14 93.58 86.81 47.47 75.11 46.78 88.22 0.27 32.12 2.27 95.26
RFCN-2 (shared) 88.16 96.85 91.07 94.17 85.62 28.29 83.2 47.28 87.6 19.12 16.89 3.01 93.97
MSFCN-2 90.01 97.34 95.97 93.14 86.76 73.52 73.63 35.02 87.86 3.62 27.57 1.11 95.35
RFCN-2 89.48 97.15 94.01 93.76 85.88 76.26 70.35 39.86 87.5 8.16 28.05 1.28 94.67

Table 3.3: Semantic segmentation Results on SYNTHIA video sequence.

50

3.4.2.3 Non Automotive Datasets

As most automotive semantic segmentation datasets do not provide consecutive frames

for temporal models, we tested in real non-auomotive datasets namely SegTrack [75] and

DAVIS [76] in Table 3.4. MSFCN-3 provided an accuracy improvement of 11% in Seg-

Track [75] and 6% in DAVIS [76]. This demonstrates that the constructed networks provide

consistent improvements in various datasets.

Figure 3.10: Results over DAVIS dataset. Left to right: RGB image, ground truth, single encoder
(FCN), two stream encoder (MSFCN-2), two stream encoder + LSTM (RFCN-2), three stream
encoder (MSFCN-3).

3.5 Discussions

We have chosen a moderately sized-based encoder, namely ResNet50, and we will

be experimenting with various sizes like ResNet10, ResNet101, etc., for future work. In

general, multi-stream provides a significant improvement in accuracy for this moderately

51

SegTrack v2
Architecture Mean IoU
FCN 83.82
MSFCN-3 94.61

DAVIS
FCN 77.64
MSFCN-3 83.42
BVS[103] 66.52
FCP[104] 63.14

Table 3.4: Comparison of multi-stream network with its baseline counterpart on SegTrack and
DAVIS.

sized encoder. The improvements might be more extensive for smaller networks, which are

less accurate. With a shared weights encoder, an increase in computational complexity is

minimal. However, it increases memory usage and memory bandwidth significantly due to

additional encoder feature maps’ maintenance. It also increases the latency of output by 33

ms for a 30 fps video sequence. From visual inspection, the improvements are seen mainly

in refining the boundaries and detecting smaller regions. It is likely due to the temporal

aggregation of feature maps for each pixel from past frames.

3.5.1 MSFCN vs FCN

The single-frame based FCN suffers to segment weaker classes like poles and objects

at further distances. Table 3.3 shows IoU metrics for weaker classes like Pole, Fence, and

Sidewalk have significantly improved in the case of multi-stream networks compared to

single-stream FCN. Fig 4 visually demonstrates that the temporal encoder modules help

preserve the small structures and boundaries in segmentation.

52

3.5.2 MSFCN-2 vs MSFCN-3

The increase in the temporal information has increased the performance of the semantic

segmentation. But this brings an extra latency for real-time applications.

3.5.3 MSFCN-2 vs RFCN

The recurrent encoder feature fusion has shown quite a decent improvement for a multi-

stream network compared to the feature concatenation technique. It is also observed that

the recurrent networks helped in preserving the boundaries of the weaker classes like poles

and lane markings. However, RFCN demands more parameters and takes longer training

time for convergence, as shown in Figure 3.7.

3.5.4 Weight Sharing

In most of the experiments, MSFCN-2 with shared weights provided an excellent im-

provement over the baseline, and its performance deficit relative to the generic MSFCN-2

is usually small, around 1%. However, the shared weights version provides a drastic im-

provement in computational complexity, as shown by the number of parameters in Table

3.2. Shared weights MSFCN-2 has a negligible increase in the number of parameters and

computational complexity, whereas the generic MSFCN-2 has double the parameters. Thus

it is vital to make use of weight sharing.

3.6 Conclusion

In this chapter, we designed and evaluated two video semantic segmentation architec-

tures, namely Recurrent FCN (RFCN) and Multi-stream FCN (MSFCN) networks, to ex-

ploit temporal information. We implemented three architectures, namely RFCN-2, MSFCN-

53

2, and MSFCN-3, using ResNet50 as a base encoder and evaluated on SYNTHIA se-

quences. We obtain promising improvements of 9% and 15% for Highway and New York-

like city scenarios over the baseline network. We also tested MSFCN-3 on real datasets like

SegTrack V2 and DAVIS datasets where 11% and 6% accuracy improvement was achieved,

respectively. We also explored weight sharing among encoders for better efficiency and

produced an improvement of 11% and 5% for KITTI and SYNTHIA using MSFCN-2 with

roughly the same complexity as the baseline encoder. In future work, we plan to explore

more sophisticated encoder fusion techniques.

54

CHAPTER IV

Multi-task Learning

4.1 Introduction

Convolutional Neural Networks (CNNs) are successfully used for important automo-

tive visual perception tasks, including object recognition, motion, depth estimation, visual

SLAM, etc. However, these tasks are typically independently explored and modeled. In

this chapter, we present a joint multi-task network design for learning several tasks simul-

taneously. Our primary motivation is the computational efficiency achieved by sharing the

expensive initial convolutional layers between all tasks. Indeed, the main bottleneck in au-

tomated driving systems is the limited processing power available on deployment hardware.

There is also some evidence for other benefits in improving accuracy for some tasks and

easing development effort. It also offers scalability to add more tasks leveraging existing

features and achieving better generalization.

Multi-task learning [56, 105, 106] has been gaining significant popularity over the past

few years as it has proven to be very efficient for embedded deployment. Multiple tasks

like object detection, semantic segmentation, depth estimation, etc., can be solved simulta-

neously using a single model. A typical multi-task learning framework consists of a shared

encoder coupled with multiple task-dependent decoders. An encoder extracts feature vec-

tors from an input image after series of convolution and pooling operations. Individual

decoders then process these feature vectors to solve different problems. [57] is an ex-

ample of three task-specific decoders used for scene classification, object detection, and

55

road segmentation of an automotive scene. The main advantages of multi-task learning are

improved computational efficiency, regularization, and scalability. [107] discusses other

benefits and applications of multi-task learning in various domains.

4.2 Universality of CNN Features

The universality of CNN features allows them to transfer to other tasks when previously

learned for a different task, a widespread practice known as Transfer Learning. For exam-

ple, weights obtained from a pre-trained network on the Imagenet [94] classification task

is usually used as an initialization step for fine-tuning more complex vision tasks. Transfer

learning allows knowledge transfer from one task to another, mostly when the data lacks the

targeted task. Indeed, the low-level features are mostly task agnostic to be reused by other

vision tasks. But how far can this practice be applied? To better understand this concept of

transfer learning, Zamir et al. [108] characterized the relationship between several visual

tasks and found an order of dependency for task transfer learning. Other papers [68, 109]

demonstrated that universality applies to different domains and different modalities. Kaiser

et al. [110] jointly learned tasks in other modalities (speech recognition, image classifica-

tion, and text translation) using a single model. Therefore, feature sharing is possible for

very different tasks across a shared network.

Learning a universal representation to solve multiple tasks is crucial in developing ef-

ficient algorithms in terms of performance, generalization, and computational complexity

instead of having several separate networks for different tasks. Recently, several works

[56, 57, 106] proposed a joint multi-task network to solve several tasks simultaneously.

However, the universality of CNN features is only possible up to a certain extent. One

limitation of the CNN is their ease of specialization to a domain or task, preventing their

56

generalization to other domains or tasks. To overcome this limitation, Bilen et al. [109]

normalized the network’s information using domain-specific scaling factors or normaliza-

tion layers. Rebuffi et al. [68] built universal parametric families of networks for efficient

sharing of parameters across domains. Tamaazousti et al. [111] proposed universalizing

methods to force a network to learn a representation capable of handling various tasks.

These signs of progress suggest CNN features offer a strong possibility to represent multi-

ple tasks through a unified model.

4.2.1 Adaptation

Universal feature representation can fail for several reasons. For example, the model’s

representation capacity for tasks with different complexities can be insufficient or over-

sized. In some cases, too generic representations might prevent the specialization to a

certain task or domain. The complexity of automotive tasks can have large variability in

practice, and thus it is necessary to have adaptation mechanisms to obtain optimal feature

representation. Designing a balanced dataset satisfying the complexities of different tasks

is challenging. In general, complex tasks require bigger models, while simple tasks need

smaller models. An undersized representation for a complex task can be compensated by

augmenting specialized feature maps for more complex tasks. In this case, these augmented

features are used only for complex tasks. On the other hand, an oversized representation

for a simpler task can be avoided by pruning to simplify the model. Pruning methods com-

press the model by removing redundant filters and keeping only the most relevant ones

[112, 113]. Here we propose to perform task-specific feature pruning for simpler tasks.

Thus a shared model constructed with these adaptations can then be effectively utilized by

tasks with varying complexities.

57

4.3 Pros and Cons of Multi-task Learning

4.3.1 Pros

The main advantage of a unified model is improving computational efficiency. Say

there are two problems with two equivalent independent networks utilizing 50% of avail-

able processing power. A unified model with 30% sharing across the two networks can

offer 15% of additional resources to each network for computing a slightly larger problem.

This approach allows unified models to offer scalability for adding new tasks at a minimal

computation complexity. On the other hand, these models reduce development effort and

training time as shared layers minimize the need to learn multiple sets of parameters in

different models. Unified models learn features jointly for all tasks, making them robust

to over-fitting by acting as a regularizer, as demonstrated in various multi-task networks

[56, 57, 106].

Computational power in embedded systems for deploying automated driving solutions

is rapidly growing. In particular, there are specialized accelerators available for CNNs.

Convolution is the main compute-intensive operation in a CNN, offering heavy parallelism

suitable for specialized hardware. The majority of the hardware vendors for automated

driving have custom hardware accelerators for CNNs. For example, Nvidia Xavier [114]

provides ∼30 TOPS (Tera Operations per second) for CNNs. Relatively, compute power

available for general-purpose processing is much lower, and the trend shows that it will

reduce even further. Thus, even if a classical algorithm is more optimal for calibration

tasks, a CNN-based approach will be a more efficient mapping to specialized hardware.

58

4.3.2 Cons

In the case of separate models, the algorithms are entirely independent. This could

make the dataset design, architecture design, tuning, hard negative mining, etc., simpler

and easier to manage. Debugging a unified model can be quite challenging. These models

are often less fault-tolerant since features are shared for all tasks leading to a single point of

failure. Such failures in learning features for a particular scenario might negatively impact

other tasks. This is often called negative transfer in multi-task learning. Another practical

disadvantage is that unified models assume a fixed input format for all tasks. Some tasks

might need a different setting like camera field-of-view, color format, or pixel resolution.

4.4 Unified Visual Perception Model

Figure 4.1 illustrates a simple unified model architecture for five main automated driv-

ing tasks. We refer to the unified model’s shared layers as CNN encoder and task-dependent

layers as decoders throughout this paper. It is straight forward to add other tasks like cal-

ibration or depth estimation via additional task-specific decoders. This architecture has a

shared CNN encoder and multiple parallel task-dependent decoders.

In this unified model, object detection decoders like YOLO [115], SSD [37] can be used

to predict bounding boxes and categories of objects, while segmentation decoder like FCN8

[5] can be used to perform pixel-wise semantic segmentation. Motion and depth decoders

can be constructed to learn simpler representations for generic object detection. A motion

decoder can perform binary segmentation of moving objects and depth decoder to estimate

variable height stixels of static objects. Finally, a localization decoder can predict the pose

of a camera similar to PoseNet [116]. Multinet by Teichmann et al. [57], and fast scene

understanding by Neven et al. [106] share similar design but for fewer tasks.

59

Figure 4.1: Unified model for the important visual perception tasks in automated driving.

To facilitate joint training of the unified model, tasks of varying complexities and

datasets must be balanced. It is challenging to collect annotated data for all tasks. To

alleviate this problem in a heterogeneous dataset, UberNet [56] proposes an asynchronous

variant of backpropagation where training data are sequentially read and task-specific pa-

rameters are updated only after accumulating sufficient training examples for this particular

task.

4.4.1 Two Task Model

There are many challenges in getting the full multi-task learning network presented in

Section 4.4 implemented. Firstly, no datasets provide simultaneous annotation for all the

60

five tasks proposed in Fig. 4.1. Secondly, there are practical limitations with GPU memory

for training a complex model. Thus we implement a two-task model as a first step towards

building a unified visual perception model.

We implemented a two task model with three segmentation classes (background, road,

sidewalk) and three object classes (car, person, cyclist). We built a small encoder with ten

layers and residual connections to enable feasible deployment on a low power embedded

system. This encoder is fully shared between the two tasks. FCN8 [5] and YOLO [115] are

used as the decoders for semantic segmentation and object detection. The weight parame-

ters are randomly initialized. Semantic segmentation loss (Lseg) is defined by the average

of pixel-wise cross-entropy for each predicted label and ground-truth label. Object detec-

tion loss (Ldet) is defined as the sum of categorical cross-entropy (between object label and

prediction) and squared loss of average precision for object localization. We used ADAM

optimizer as it provided faster convergence, with a learning rate of 0.0005. The maximum

number of training epochs is set to 30, and early stopping with the patience of 3 epochs

monitoring the gains is added. Input images were resized to 1280x384 to minimize the

memory requirements needed for multiple tasks.

The total loss for the two-task unified model is a weighted sum of the task losses:

Ltotal = wseg ∗Lseg +wdet ∗Ldet (4.1)

We trained and evaluated the two-task unified model (TTM) and the two single-task

models (STM) on different driving datasets: two publicly available datasets KITTI [77],

and Cityscapes [78]. In our experiments, we refer:

• STMseg is the single-task model for segmentation

• STMdet the single-task model for detection.

61

• TTM the two-task model with wdet = 1 and wseg = 1

• TTM10 the two-task model with wdet = 1 and wseg = 10

• TTM100 the two-task model with wdet = 1 and wseg = 100

Mean class IoU (Intersection over Union) and per-class IoU were used as accuracy

metrics for semantic segmentation, mean average precision (mAP), and per-class average

precision for object detection.

Datasets Metrics STMseg STMdet TTM TTM10 TTM100

KITTI

JI background 0.9706 0.9621 0.9663 0.9673
JI road 0.8603 0.8046 0.8418 0.8565
JI sidewalk 0.6387 0.5045 0.5736 0.6277
mean IOU 0.8232 0.757 0.7939 0.8172
AP car 0.801 0.7932 0.7746 0.7814
AP person 0.469 0.5337 0.518 0.468
AP cyclist 0.5398 0.4928 0.5107 0.5844
mean AP 0.6033 0.6066 0.6011 0.6112

Cityscapes

JI road 0.9045 0.8273 0.8497 0.8815
JI sidewalk 0.5434 0.3658 0.4223 0.4335
JI building 0.7408 0.6363 0.6737 0.6947
JI vegetation 0.8085 0.6949 0.7417 0.7363
JI sky 0.7544 0.6228 0.652 0.6873
JI person+rider 0.3916 0.3225 0.3218 0.3613
JI car 0.695 0.5237 0.5918 0.6579
JI bicycle 0.3906 0.2911 0.4123 0.3506
mean IOU 0.5971 0.4918 0.5213 0.5555
AP car 0.3691 0.411 0.398 0.3711
AP person 0.1623 0.1931 0.1694 0.1845
AP bicycle 0.1279 0.1898 0.1422 0.1509
mean AP 0.2198 0.2647 0.2365 0.2355
Params (Million) 4.91 4.92 4.93 4.93 4.93

Table 4.1: Comparison study: Single-task vs two-task, JI: Jaccard index, AP: Average precision.
IOU: Intersection over union.

Table 4.1 summarizes the obtained results for STM networks and TTM networks on

62

KITTI and Cityscapes datasets. This is intended to provide a baseline accuracy for in-

corporating more complex multi-task learning techniques. We compare a segmentation

network (STMseg) and a detection network (STMdet) to a two task network performing

segmentation and detection (TTM, TTM10 and TTM100). We tested three configurations

of the multi-task loss, the first one (TTM) uses a simple sum of the segmentation loss and

detection loss (wseg = wdet = 1). The two other configurations TTM10 and TTM100, use

a weighted sum of the task losses where the segmentation loss is weighted with a weight

wseg = 10 and wseg = 100 respectively. This compensates for task loss scaling: the segmen-

tation loss is 10-100 times higher than the detection loss during the training.

Figure 4.2: Qualitative results of two-task model performing segmentation and detection.

Figure 4.2 illustrates the qualitative output of the two-task network. TTM outperforms

STM in object detection but has a slight degradation in segmentation accuracy on both

63

KITTI and Cityscapes datasets. This experiment shows the capacity of the unified model

TTM to learn multiple tasks with similar accuracies compared to STM having two times

fewer parameters but only by choosing the appropriate task loss weighting. STMseg and

STMdet would require 4.91M and 4.92M parameters (9.83M together) while TTM would

only require 4.93M parameters. This shows that we have a drastic gain in terms of memory

and computational efficiency.

Figure 4.3: Illustration of three-task model architecture comprising of object detection, semantic
segmentation and soiling detection tasks.

4.4.2 Three Task Model

We implemented a three-task model, having a shared encoder and three independent

decoders that perform joint semantic segmentation, object detection, and soiling detection

as shown in Figure 4.3. Semantic segmentation decoder and object detection decoder are

designed similar to the two-task model. The soiling detection decoder outputs the presence

64

of external contamination on the camera lens, providing classification per tile for obtaining

the localization of soiling in the image.

Datasets Metrics STMseg STMdet STMsoil TTM3task

Segmentation [53]

JI road 0.9574 0.9514
JI lane 0.6517 0.6424
JI curb 0.5960 0.5850
mean IOU 0.7350 0.7263

Object Detection [53]

AP Vehicle 0.6910 0.7016
AP person 0.3620 0.3609
AP cyclist 0.3682 0.3817
mean AP 0.4737 0.4814

Soiling Detection [53]
TPR 0.5581 0.5532
FPR 0.1432 0.1443

Table 4.2: Comparison study: Single-task vs. three-task models.

We treat the camera soiling detection task as a mixed multilabel-categorical classifica-

tion problem focusing on a classifier, which jointly classifies a single image with a binary

indicator array, where each 0 or 1 corresponds to a missing or present class respectively and

simultaneously assigns a categorical label. The classes to detect are {opaque, transparent}.

Typically, opaque soiling arises from mud and dust, and transparent soiling arises from

water and ice.

We evaluate the performance of the our three-task model on the WoodScape dataset

[53] comprising 10,000 images. All input images were resized to 1280× 384 because

of memory requirements needed for multiple tasks. Table 4.2 summarizes the obtained

results for the single-task (STM) independent networks and three-task (TTM) networks on

the WoodScape dataset.

65

4.5 Conclusion

CNN’s have become the standard model for semantic tasks like object detection and se-

mantic segmentation, geometric tasks like depth estimation and visual SLAM. This brings

an opportunity for CNNs to become a unifying model for all visual perception tasks for

automated driving. In this chapter, we argue for moving towards a unified model and use

current literature to propose how to achieve it. We also discuss the pros and cons of having

a unified model. Finally, we perform experiments on a simpler scenario with two, three

tasks and demonstrate results to support our argument.

66

CHAPTER V

Auxiliary Learning

5.1 Introduction

Learning a side or auxiliary task jointly during the training phase to enhance the main

task’s performance is usually referred to as auxiliary learning. Auxiliary learning is similar

to multi-task learning, except the auxiliary task is nonoperational during inference. This

auxiliary task is typically selected to have much larger annotated data to act as a regular-

izer for the main task. In [117] semantic segmentation is performed using auxiliary tasks

like time, weather, etc. In [118], end2end speech recognition training uses auxiliary task

phoneme recognition for the initial stages. [119] uses unsupervised aux tasks for audio-

based emotion recognition. It is often believed that auxiliary tasks can help focus attention

on specific parts of the input. Predictions of road characteristics like markings as an aux-

iliary task in [55] to improve the main task for steering prediction is one instance of such

behavior.

Figure 5.1 illustrates auxiliary tasks in a popular automated driving dataset KITTI. It

contains various output tasks like dense optical flow, depth estimation, and visual SLAM.

It also contains meta-data like steering angle, location, and external condition. These meta-

data comes for free without any annotation task. Depth could be obtained for free using a

Velodyne depth map or disparity from a stereo pair of cameras.

This chapter explores an alternate approach of leveraging the annotations of monocular

depth estimation to improve semantic segmentation. We present adaptive task loss weight-

67

Figure 5.1: Illustration of several auxiliary visual perception tasks in an automated driving dataset
KITTI. First row shows RGB and semantic segmentation, second row shows dense optical flow and
depth, third row shows visual SLAM and meta-data for steering angle, location and condition.

ing techniques to address scale issues in multi-task loss functions, which become more

crucial in auxiliary tasks.

5.2 Motivation

The main challenge for constructing large datasets for semantic segmentation is that

the pixel-wise annotation is very labor-intensive. Annotation for semantic segmentation

is a tedious and expensive process. An average experienced annotator takes anywhere

around 10 to 20 minutes for one image, and it takes three iterations for correct annotations.

This process limits the availability of large scale accurately annotated datasets. Popular

semantic segmentation automotive datasets like CamVid [120], Cityscapes [78], KITTI

68

[77] are relatively smaller when compared to classification datasets like ImageNet [94].

Synthetic datasets like Synthia [74], Virtual KITTI [121], Synscapes [122] offer larger

annotated synthetic data for semantic segmentation. Efforts like Berkley Deep Drive [123],

Mapillary Vistas [124] and Toronto City [125] have provided larger datasets to facilitate

training a deep learning model for segmentation but are expensive to construct.

There is a lot of research to reduce the sample complexity of segmentation networks by

incorporating domain knowledge and other cues wherever possible. One way to overcome

this is via using synthetic datasets and domain adaptation techniques [126]. Another way

is to use multiple clues or annotations to learn efficient representations for the task with

limited or expensive annotations [117].

5.3 Methods

Semantic segmentation and depth estimation have common feature representations.

Joint learning of these tasks have shown significant performance gains in [127], [8], [128],

[129] and [130]. Learning underlying representations between these tasks help the multi-

task network alleviate the confusion in predicting semantic boundaries of depth estimation.

Inspired by these papers, we present a multi-task network with semantic segmentation as

the main task and depth estimation as an auxiliary task. As the accuracy of the auxiliary

task is not important, weighting its loss function appropriately is important.

5.3.1 Architecture Design

Our network takes input RGB image and outputs semantic, and depth maps together.

Figure 5.2 shows two task-specific decoders coupled to a shared encoder to perform se-

mantic segmentation and depth estimation. The shared encoder is built using ResNet-50

69

[21] by removing the fully connected layers from the end. The encoded feature vectors are

now passed to two parallel stages for independent task decoding. Semantic segmentation

decoder is constructed similar to FCN8 [5] architecture with transposed convolutions, up-

sampling, and skip connections. The final output is made up of a softmax layer to output

probabilistic scores for each semantic class. Depth estimation decoder is also constructed

similar to segmentation decoder, except the final output is replaced with a regression layer

to estimate scalar depth.

Figure 5.2: AuxNet: Auxiliary learning network with segmentation as main task and depth estima-
tion as auxiliary task.

5.3.2 Loss Function

In general, a multi-task loss function is expressed as weighted combination of multiple

task losses where Li is loss and λi is associated weight for task i.

LTotal =
t

∑
i=1

λiLi (5.1)

70

For the 2-task architecture we express loss as:

LTotal = λSegLSeg +λDepthLDepth (5.2)

LSeg is semantic segmentation loss expressed as an average pixel-wise cross-entropy for

each predicted label and ground-truth label. LDepth is depth estimation loss described as the

mean absolute error between estimated depth and real depth for all pixels. To overcome the

significant scale difference between semantic segmentation and depth estimation losses, we

perform task weight balancing as shown in Algorithm 1.

for epoch← 1 to n do
for batch← 1 to s do

λSeg = LDepth
λDepth = LSeg
LTotal = LDepthLSeg +LSegLDepth
LTotal = 2×LSegLDepth

end
end

Algorithm 1: Weight balancing for 2-task semantic segmentation and depth estimation.

Expressing the multi-task loss function as a product of task losses forces each task to

optimize so that the total loss reaches a minimal value. This expression ensures no task is

left in a stale mode while other tasks are making progress. By making an update after every

batch in an epoch, we dynamically change the loss weights. We also add a moving average

to the loss weights to smoothen the rapid changes in loss values at the end of every batch.

In Algorithm 2, we introduced focused task weight balancing to prioritize the main

task’s loss in auxiliary learning networks. We introduce an additional term to increase the

importance of the main task. This term could be a fixed value to scale up the main task

weight or the magnitude of task loss.

71

for epoch← 1 to n do
for batch← 1 to s do

λSeg = LSeg×LDepth
λDepth = LSeg
LTotal = L2

SegLDepth +LSegLDepth
LTotal = (LSeg +1)×LSegLDepth

end
end

Algorithm 2: Focused task weight balancing for auxiliary learning.

5.4 Experiments and Results

This section presents details about the experimental setup used and discusses the obser-

vations on the results obtained.

5.4.1 Experimental Setup

We implemented the auxiliary learning network as discussed in section 5.3.1 to perform

semantic segmentation and depth estimation. We chose ResNet-50 [21] as the shared en-

coder which is pre-trained on ImageNet [94]. We used segmentation and depth estimation

decoders with random weight initialization. Semantic segmentation decoder is built using

FCN8 [5]. Depth regression decoder is also constructed similar to segmentation decoder,

except the final layer is replaced with regression units instead of softmax to estimate depth.

We refer to our baseline semantic segmentation network as SegNet and auxiliary learn-

ing network with depth estimation auxiliary task as AuxNet. We performed all our experi-

ments on KITTI [77] semantic segmentation and SYNTHIA [74] datasets. These datasets

contain RGB image data, ground truth semantic labels, and depth data represented as dis-

parity values in 16-bit png format. We re-sized all the input images to a size 224x384.

The loss function is expressed as detailed in section 5.3.2. Categorical cross-entropy

was used to compute semantic segmentation loss, and the mean absolute error is used to

72

calculate depth estimation loss.

5.4.2 Results and Discussion

In Table 5.1, we compare our auxiliary learning networks (AuxNet) against a simple

semantic segmentation network (SegNet) constructed using an encoder-decoder combina-

tion. It is observed that auxiliary networks perform better than the baseline semantic seg-

mentation in Figure 5.3. It is evident that incorporating depth information improves the

performance of segmentation task. It is also observed that depth-dependent categories like

sky, sidewalk, pole, and car have shown better improvements than other categories due to

depth cues’ availability.

We experimented with different hand-weighted and adaptive weighted task loss net-

works to understand the behavior of auxiliary learning. We expressed total loss for adap-

tive weighted task loss as a geometric mean of individual task losses. This expression adds

a constraint for join minimization. We implemented four different auxiliary learning net-

works by changing the expression of the loss function. AuxNet400 and AuxNet1000 weighs

segmentation loss 400 and 1000 times compared to depth estimation loss. AuxNetTWB

and AuxNetFTWB are built based on Algorithms 1 and 2 respectively. These networks are

trained with ADAM [131] optimizer for 200 epochs. The best model for each network was

saved by monitoring the validation loss of the semantic segmentation task. Mean IoU and

categorical IoU were used for comparing the performance. Auxiliary network achieved 4%

and 3% IoU improvement on KITTI [77] and SYNTHIA [74] validation sets.

73

KITTI
Model Sky Building Road Sidewalk Fence Vegetation Pole Car Lane IoU
SegNet 46.79 87.32 89.05 60.69 22.96 85.99 - 74.04 - 74.52
AuxNet400 49.11 88.55 93.17 69.65 22.93 87.12 - 74.63 - 78.32
AuxNet1000 49.17 89.81 90.77 64.16 14.77 86.52 - 71.40 - 76.58
AuxNetTWB 49.73 91.10 92.30 70.55 18.64 86.01 - 77.32 - 78.64
AuxNetFTWB 48.43 89.50 92.71 71.58 15.37 88.31 - 79.55 - 79.24

SYNTHIA
Model Sky Building Road Sidewalk Fence Vegetation Pole Car Lane IoU
SegNet 95.41 58.18 93.46 09.82 76.04 80.95 08.79 85.73 90.28 89.70
AuxNet400 95.12 69.82 92.95 21.38 77.61 84.23 51.31 90.42 91.20 91.44
AuxNet1000 95.41 59.57 96.83 28.65 81.23 82.48 56.43 88.93 94.19 92.60
AuxNetTWB 94.88 66.41 94.81 31.24 77.01 86.04 21.83 90.16 94.47 91.67
AuxNetFTWB 95.82 56.19 96.68 21.09 81.19 83.26 55.86 89.01 92.11 92.05

Table 5.1: Comparison study : Single task vs auxiliary learning. AuxNet400 and AuxNet1000 weighs segmentation loss 400 and 1000
times compared to depth loss. AuxNetTWB is constructed by expressing total loss as product of task losses.

74

Figure 5.3: Results on KITTI (Top) and SYNTHIA (Bottom) datasets.

We compare the performances of SegNet, AuxNet with FuseNet [132] in Table 5.2.

FuseNet is another semantic segmentation network (FuseNet) that takes RGB images and

a depth map. We compare the mean IoU of each network and the number of parameters

needed to construct the network. AuxNet requires a negligible increase in parameters,

while FuseNet almost needs twice the parameters compared to SegNet. It is observed that

AuxNet can be chosen as a suitable low-cost replacement to FuseNet as the shared encoder

learns the needed depth information.

75

KITTI
Model IoU Params
SegNet 74.52 23,672,264
FuseNet 80.99 47,259,976
AuxNet 79.24 23,676,142

SYNTHIA
Model IoU Params
SegNet 89.70 23,683,054
FuseNet [132] 92.52 47,270,766
AuxNet 92.60 23,686,932

Table 5.2: Comparison between SegNet, FuseNet and AuxNet in terms of performance and param-
eters.

5.5 Conclusion

Semantic segmentation is a critical task to enable fully automated driving. It is also a

complicated task and requires large amounts of annotated data, which is expensive. Large

annotated datasets are currently the bottleneck for achieving high accuracy for deployment.

In this chapter, we looked into an alternate mechanism of using auxiliary tasks to alleviate

the lack of large datasets. We discussed how there are many auxiliary tasks in automated

driving that can be used to improve accuracy. We implement a prototype and used depth

estimation as an auxiliary task and show 5% improvement on KITTI and 3% improvement

on SYNTHIA datasets. We also experimented with various weight balancing strategies,

which are critical to solving for enabling more auxiliary tasks.

76

CHAPTER VI

Multi-stream Multi-task Learning

6.1 Introduction

Multi-task learning (MTL) [55] networks built using Convolution Neural Networks

(CNNs) were usually limited to operate on a single stream of input data. Numerous works

demonstrated using multiple streams of data as input to CNNs can improve performance

drastically compared to using a single stream of input data. Recent attempts that use con-

secutive frames in a video sequence for semantic segmentation [133, 134], activity recog-

nition [135, 100], optical flow estimation [136], moving object detection [44, 18] are ex-

amples demonstrating the benefits of using multiple streams of input data. Similarly, a pair

of images from stereo vision cameras [137], or multiple images from different cameras of

a car’s surround-view system can also be processed as multiple streams of input to CNNs.

Some works considered processing input data from different domains [138] to solve certain

tasks that require multi-modal data representations.

These significant benefits demand the construction of a multi-task learning network

that can operate on multiple streams of input data. Thus, we present MultiNet++, a novel

multi-task network using simple feature aggregation methods as shown in Figure 6.1 to

combine multiple streams of input data, which task-specific decoders can further process.

Figure 6.1 illustrates a generic way to aggregate features temporally, and we make use of a

simple summation junction to combine temporal features in our experiments. MultiNet++

would be ideal for processing video sequences for semantic segmentation, depth estima-

77

Figure 6.1: Illustration of MultiNet++ where feature aggregation is performed to combine interme-
diate output data obtained from a shared encoder that operates on multiple input streams (frames ‘t’
and ‘t-1’). The aggregated features are later processed by task specific decoders.

tion, optical flow estimation, object detection, and tracking, etc., with improved efficiency.

We also introduce a novel loss strategy for multi-task learning based on geometric mean

representation to prioritize the learning of all tasks equally. We suggest using three diverse

tasks: segmentation, depth estimation, and motion segmentation, which use appearance,

geometry, and motion cues, respectively.

The rest of the contents in this chapter are structured as follows. Section 6.1.1 reviews

related work using feature aggregation for multiple streams of inputs to CNNs. Section 6.2

discusses in detail the MultiNet++ network along with the geometric loss strategy intro-

duced in this paper. Section 6.3 presents the experimental results on automotive datasets

mainly KITTI [77], Cityscapes [78] and SYNTHIA [74]. Finally, Section 6.4 summarizes

the chapter with key observations and concluding remarks.

78

6.1.1 Feature Aggregation

Different outputs from initial or mid-level convolution layers from CNNs (referred to

as extracted features) are forwarded to the next processing stage using feature aggregation.

Feature aggregation is a meaningful way to combine these extracted features. These fea-

tures can be extracted from different CNNs operating on different input data [139, 140] or

from a CNN operating on different resolutions of input [141]. Ranjan et al. [142] combines

intermediate outputs from a CNN and passes them to the next processing stages. Yu et al.

[143] proposed several possibilities of feature aggregation.

There are plenty of choices to perform feature aggregation. These choices range from

using simple concatenation techniques to complex Long Short Term Memory Units (LSTMs)

[144] or recurrent units. Simple concatenation or addition layers can capture short term

temporal cues from a video sequence. Sun et al. [145] combine spatial and temporal

features from video sequences for human activity recognition, and Karpathy et al. [135]

combine features from inputs separated by 15 frames in a video for classification. Hei Ng

et al. [146] proposed several convolution and pooling operations to combine features for

video classification while Sistu et al. [134] used simple 1×1 bottleneck convolutions to

combine features from consecutive frames for video segmentation.

In automotive or indoor robotic visual perception problems, simple concatenation tech-

niques perform well. Still, they fall short in some applications like video captioning

[147, 148] or summarization [149] where long term dependencies are required. LSTMs

in such cases offer a better alternative [150, 151]. Convolution-LSTMs (Conv-LSTMs)

[152, 153] and 3D convolutions [154] are other options. However, these options incur

additional computational complexity, and they are needed mainly for the aggregation of

features that are significant for long term dependencies.

79

6.1.2 Multi-task Loss

With the growing popularity of MTL, it is worth considering the possibility of imbal-

ances in training an MTL network. It is often observed that some tasks dominate others dur-

ing the training phase [70]. This dominance can be attributed to variations in task heuristics

like complexities, uncertainties, magnitudes of losses, etc. Therefore an appropriate loss or

prioritization strategy for all tasks in an MTL is a necessity.

Early works in MTL [56, 57, 106], use a weighted arithmetic sum of individual task

losses. Later, several works attempted to balance the task weights using specific task

heuristics discussed earlier. Kendall et al. [40] proposed to use homoscedastic uncer-

tainty of tasks to weigh them. This work presents a multi-task learning problem as a joint

probabilistic model with zero mean and variance expressed as task uncertainty. Minimizing

the negative log-likelihood of this joint probabilistic model yields an optimal set of uncer-

tainties that are used to weigh the task losses. This approach requires explicit modeling of

uncertainty, and more importantly, the task weights remain constant.

GradNorm [69] is another notable work in which Chen et al. propose to normalize gra-

dients from all tasks to a standard scale during backpropagation. Lui et al. [127] proposed

Dynamic Weight Average (DWA), which uses an average of task losses overtime to weigh

the task losses. Guo et al. [70] on the other hand, proposed dynamic task prioritization

(DTP), where the changes in the difficulty of tasks adjust the task weights. DTP allows

distributing focus on harder problems first and then on less challenging tasks. On the other

hand, Liu et al. devised a different strategy to use a reinforcement learning-based approach

to learn optimal task weights. However, this method isn’t simple, and it brings additional

complexity to the training phase.

In contrast to modeling multi-task problem as a single objective problem, Sener and

Koltun [72] proposed to model it as a multi-optimization problem. Zhang and Yeung

80

[71] proposed a convex formulation for multi-task learning, and Desideri [73] proposed

a multiple-gradient descent algorithm. In summary, these strategies either involve an ex-

plicit definition of loss function using task heuristics or require complex optimization tech-

niques. Therefore, a loss strategy with minimal design complexities will be well suited for

multi-task learning to accommodate a virtually unlimited number of joint tasks.

6.2 Methods

We introduce our novel multi-task network, MultiNet++, capable of processing multi-

ple streams of input data. The proposed architecture is scalable and can be readily applied

in any multi-task problem. In the following subsection, we discuss how we built our Multi-

Net++ network shown in Figure 6.2.

Figure 6.2: Illustration of the MultiNet++ network operating on consecutive frames of input video
sequence. Consecutive frames are processed by a shared siamese-style encoder and extracted fea-
tures are concatenated and processed by task specific segmentation, depth estimation and moving
object detection decoders.

81

6.2.1 Multi-stream Multi-task Architecture

MultiNet++ is a simple multi-task network with the ability to process multiple streams

of input data. It is built using three main components, 1) Encoders that feed multiple

streams of input into the network, 2) Feature aggregation layers that concatenate the en-

coded feature vectors from multiple streams, and 3) Task-specific decoders that operate on

aggregated feature space to perform task-specific operations. This chapter uses MultiNet++

for joint semantic segmentation, depth estimation, and moving object detection (or simply

motion) on video sequences. We share the encoder between two consecutive frames from

a given video sequence as shown in Figure 6.2. This network can significantly reduce the

computational load as the encoders require a daunting number of parameters. These input

frames can be selected sparsely or densely from a video sequence by observing its motion

histogram. One can also choose to pass keyframes as proposed by Kulhare et al. [155].

Our encoders are selected by removing fully connected layers from ResNet-50 [21].

Outputs from ReLU [156] activation at layers 23, 39 and 46 from ResNet-50 [21] encoder

are extracted and sent to feature aggregation layers. These feature maps extracted from

different streams of inputs are concatenated and sent to task-specific decoders as shown in

Figure 6.1. Segmentation decoder is built using FCN8 [5] architecture that comprises three

upsampling layers and skip connections from aggregated feature maps as shown in Figure

6.2. The final layer consists of softmax [157] units to predict pixel-wise classification

labels. Similarly, we construct a motion decoder by changing the number of output classes

in softmax units. Depth decoder is built by replacing softmax with regression units.

82

6.2.2 Geometric Loss Strategy

We discussed the importance of a loss strategy that requires minimal effort during the

design phase in Section 6.1.2. The commonly used loss combination function is an arith-

metic mean, and it suffers from differences in the scale of the individual losses. A weighted

average of the losses partially alleviates this, but it isn’t easy to tune manually. We were

motivated to explore the geometric loss combination, which is invariant to the scale of the

individual losses. Thus we express the total loss of a multi-task learning problem as the ge-

ometric mean of individual task losses. We refer to this as Geometric Loss Strategy (GLS).

For an n-task problem with task losses ‘L1’,‘L2’ . . . ‘Ln’, we express total loss as:

LTotal =
n

∏
i=1

n
√

Li (6.1)

For example, in a 3-task problem with losses ‘L1’,‘L2’ and ‘L3’, we express total loss:

LTotal =
3
√

L1L2L3 (6.2)

Equations 6.1 and 6.2 are quite popular in geometric programming. This loss function is

differentiable and can be optimized using an optimizer like Stochastic Gradient Descent

(SGD). This definition makes sure that all tasks are making progress. We adapt our loss

function to focus or give more attention to certain tasks by introducing Focused Loss Strat-

egy (FLS) where we multiply geometric mean of losses of focused tasks to existing loss

function. In this case, we define loss function with focus on m (m≤ n) important tasks as:

LTotal =
n

∏
i=1

n
√

Li×
m

∏
j=1

m
√

L j (6.3)

In a 3-task problem with focus on 2-tasks, we can express loss function as:

83

Ltotal =
3
√

L1L2L3× 2
√

L1L2 (6.4)

Equation 6.3 and 6.4 provides an opportunity to focus on important tasks in a multi-task

learning problem. Here we assume that the tasks are ordered in terms of priority so that

the first m tasks out of the total n tasks get higher weightage. This expression is a simple

extension that can be generalized to weighted-geometric mean, which would have more

hyper-parameters to be learned.

Application of log function converts the product of losses to the sum of log of individual

losses and can thus be interpreted as equivalent to normalizing individual losses and then

adding them. However, it is computationally complex to make use of the log function.

6.3 Experiments and Results

In this section, we discuss the datasets used for evaluating the efficacy of our models.

Later, we discuss how we constructed the proposed models and provide a complexity anal-

ysis of each. We also discuss the optimization strategies used during the training phase.

Finally, we present the results obtained along with a discussion.

6.3.1 Datasets

KITTI [77], Cityscapes [78] and SYNTHIA [74] are popular automotive datasets. KITTI

has annotations for several tasks, including semantic segmentation, depth estimation, ob-

ject detection, etc. However, these annotations were done separately for each task, and

the input is not always common across the tasks. KITTI Stereo 2015 [158, 159] dataset

provides stereo images for depth estimation. A subset of these images is labeled for KITTI

semantic segmentation [77]. This dataset consists of 200 train images and 200 test images.

84

Cityscapes [78] dataset provides both segmentation and depth estimation annotations for

≈ 3500 images. Motion labels for these datasets are provided by Vertens et al. [18]. SYN-

THIA [74] is a synthetic dataset that provides segmentation and depth annotations for raw

video sequences simulated in different weather, light conditions and road types. KITTI

[77] and Cityscapes [78] provide segmentation labels for 20 categories while SYNTHIA

[74] dataset provides segmentation labels for 13 categories.

In KITTI [77], and Cityscapes [78] datasets, images are sampled and annotated sparsely

from raw videos. This poses a challenge to approaches that use temporal methods for seg-

mentation or motion detection tasks in videos. In addition to KITTI [77], and Cityscapes

[78] datasets, we use SEQS-02 (New York-like city) and SEQS-05 (New York-like city)

from the SYNTHIA dataset for training and validation respectively in our experiments.

These sequences provide segmentation and depth annotations for consecutive images in a

video sequence. Thus they are more suitable for evaluating our multi-task model, which op-

erates on multiple input data streams. Table 6.1 provides a summary of different properties

of the three datasets discussed so far.

Annotations KITTI[77] Cityscapes[78] SYNTHIA[74]
Segmentation X X X
Depth X X X
Motion X X ×
Train 200 2,975 888
Validation 200 500 787
Type Real Real Synthetic

Table 6.1: Summary of the automotive datasets used in our experiments.

6.3.2 Model Analysis

We constructed several models to evaluate the benefits of the MultiNet++. We build 3

single-task baseline models for segmentation, depth and motion tasks using ResNet-50 [21]

85

as an encoder and different task-specific decoders as discussed in Section 6.2.1. Segmen-

tation decoder predicts pixel-wise labels from 20 different categories for input in KITTI

[77] & Cityscapes [78] datasets, while the decoder predicts from 13 categories in SYN-

THIA [74] dataset. Depth decoder outputs a 16-bit integer at every pixel location to predict

depth. The motion decoder predicts a binary classification label for every pixel to classify

as a moving or static object. These models process one frame of input data. We also con-

structed 2-task and 3-task models that operate on a single frame and two consecutive frames

of an input video sequence. MultiNet++ refers to models that operate on two consecutive

frames built using feature aggregation as discussed in Section 6.2.1. Table 6.2 provides

details about number parameters required to construct different models.

Majority of computational load arises from ResNet-50 [21] encoder. Due to this prop-

erty, 2-task and 3-task models required the almost same number of parameters as the 1-

task model. This is one of the main reasons why multi-task networks are computationally

efficient and favor embedded deployment. We build our 2-frame models with relatively

very little increase in complexity (≈ 100K parameters) by reusing the encoder between

2-frames. In the 2-frames model, the aggregated features are larger when compared to the

1-frame model. It increased the parameters needed for our 2-frame model.

86

Method
KITTI & Cityscapes SYNTHIA

Encoder Segmentation Depth Motion Total Encoder Segmentation Depth Total
1-Task Segmentation, Depth or Motion

1-Task 23.58M 0.18M - - 23.77M 23.58M 0.14M - 23.68M
1-Task 23.58M - 3.88K - 23.59M 23.58M - 3.87K 23.59M
1-Task 23.58M - - 8.33K 23.60M - - - -

2-Task Segmentation and Depth
1-Frame 23.58M 0.18M 3.88K - 23.77M 23.58M 95.34K 3.88K 23.69M
2-Frames 23.58M 0.26M 7.46K - 23.86M 23.58M 0.14M 7.46K 23.74M

2-Task Segmentation and Motion
1-Frame 23.58M 0.18M - 8.33K 23.78M - - - -
2-Frames 23.58M 0.26M - 15.50K 23.86M - - - -

3-Task Segmentation, Depth and Motion
1-Frame 23.58M 0.18M 3.88K 8.33K 23.79M - - - -
2-Frames 23.58M 0.26M 7.46K 15.50K 23.87M - - - -

Table 6.2: Comparative study: Parameters needed to construct 1-task segmentation, depth and motion, 2-task segmentation and depth,
2-task segmentation and motion and 3-task segmentation, depth and motion models. We compare 2-task and 3-task models that operate
on 1-frame and 2-frames. 2-frame models required relatively minimal additional computational complexity compared to 1-frame models.

87

6.3.3 Optimization

We implemented our models using Keras [102]. In all our experiments, we re-size

the input images to 224×384. We used only 2-frames for feature aggregation because

adding more frames would increase computational complexity with insignificant perfor-

mance gains, as demonstrated by Sistu et al. [134] In our multi-task learning networks, we

define each task’s loss functions separately and feed them to our geometric loss strategy

(GLS) introduced in Section 6.1.2. For semantic segmentation and motion, we use pixel-

wise cross-entropy loss for C classes averaged over a mini-batch with N samples as shown

in Equation 6.5.

LSeg or LMotion =−
N

∑
j=1

C

∑
i=1

yi, jlog(pi, j) (6.5)

For depth estimation, we use Huber loss as defined in Equation 6.6 with δ =250.

LDepth =


1
2 [y− ŷ]2 : |y− ŷ| ≤ δ

δ (|y− ŷ|−δ/2) : otherwise
(6.6)

The total loss LTotal is defined as:

LTotal =
3
√

LSegLDepthLMotion (6.7)

We optimize this loss function in our training phase using Adam optimizer [131]. Ac-

curacy is used as an evaluation metric for segmentation and motion tasks, while regression

accuracy is used for depth estimation.

88

6.3.4 Results

In Table 6.4, we compare the results of 2-task models and 3-task models using our

geometric loss strategy (GLS) against naive equal task weight method. We also compare

their performances with 1-task segmentation, depth, and motion models. Our GLS method

shows significant improvements in performance over equal weights method in both 2-task

and 3-task models. In Table 6.3, we compare the results of 3-task models using our ge-

ometric loss strategy (GLS) against naive equal task weights, uncertainty weight method

proposed by Kendal et al. [40] and Dynamic Weight Average (DWA) proposed by Liu et al.

[127]. In Figures 6.3 and 6.4, we show how validation loss for these models change over

time during training phase on KITTI [77] and Cityscapes [78] datasets. In Figure 6.5, we

show the same for segmentation and depth tasks on SYNTHIA [74] dataset. Our models

using GLS demonstrated faster convergence on all tasks.

Method Segmentation Depth Motion
KITTI

1-Task 81.74% 75.91% 98.49%
Equal weights 77.14% 76.15% 97.83%
Uncertainty [40] 78.93% 75.73% 98.00%
DWA [127] 80.05% 74.48% 97.78%
GLS (ours) 82.20% 76.54% 97.92%
MultiNet++ (ours) 80.06% 73.94% 97.94%

Cityscapes
1-Task 78.95% 60.13% 98.72%
Equal weights 72.71% 60.97% 98.20%
Uncertainty [40] 77.32% 60.44% 98.63%
DWA [127] 78.05% 59.34% 98.45%
GLS (ours) 77.38% 61.56% 98.72%
MultiNet++ (ours) 82.36% 62.74% 98.21%

Table 6.3: Comparative Study: Performance of 1-Task, equal weights, 3-task uncertainty, Dynamic
Weight Average (DWA) and geometric loss strategy (GLS) on KITTI and Cityscapes datasets.

89

Method
KITTI Cityscapes SYNTHIA

Segmentation Depth Motion Segmentation Depth Motion Segmentation Depth
1-Task Segmentation, Depth or Motion

1-Task 81.74% - - 78.95% - - 84.08% -
1-Task - 75.91% - - 60.13% - - 73.19%
1-Task - - 98.49% - - 98.72% - -

2-Task Segmentation and Depth
Equal weights 74.30% 74.47% - 73.76% 59.38% - 63.45% 71.84%
GLS (ours) 81.50% 74.92% - 79.14% 60.15% - 86.87% 73.60%
MultiNet++ 81.01% 73.95% - 83.07% 60.15% - 88.15% 78.39%

2-Task Segmentation and Motion
Equal weights 80.14% - 97.88% 78.46% - 98.25% - -
GLS (ours) 81.52% - 97.93% 77.63% - 98.83% - -
MultiNet++ 81.75% - 98.15% 78.86% - 98.65% - -

3-Task Segmentation, Depth and Motion
Equal weights 77.14% 76.15% 97.83% 72.71% 60.97% 98.20% - -
GLS (ours) 82.20% 76.54% 97.92% 77.38% 61.56% 98.72% - -
MultiNet++ 80.06% 73.94% 97.94% 82.36% 62.74% 98.21% - -

Table 6.4: Improvements in learning segmentation, depth estimation and motion detection as multiple tasks using equal weights, geomet-
ric loss strategy (GLS) and 2 stream feature aggregation with GLS (MultiNet++) vs independent networks (1-Task) on KITTI, Cityscapes
and SYNTHIA datasets.

90

(a) KITTI Segmentation (b) KITTI Depth

(c) KITTI Motion

Figure 6.3: Change of validation loss (X-axis) over several epochs (Y-axis) during training phase for 1-Task model vs 3-Task models for
segmentation, depth and motion tasks on KITTI dataset.

91

(a) Cityscapes Segmentation (b) Cityscapes Depth

(c) Cityscapes Motion

Figure 6.4: Change of validation loss (X-axis) over several epochs (Y-axis) during training phase for 1-Task model vs 3-Task models for
segmentation, depth and motion tasks on Cityscapes dataset.

92

(a) SYNTHIA Segmentation (b) SYNTHIA Depth

Figure 6.5: Change of validation loss (X-axis) over several epochs (Y-axis) during training phase for 1-Task model vs 2-Task models for
segmentation and depth on SYNTHIA dataset.

93

Figure 6.6: Left to right: Input image, single task network outputs, MultiNet++ output, ground
truth. More qualitative results of MultiNet++ model can be accessed via this link https://youtu.be/
E378PzLq7lQ.

In 3-task models solving for segmentation, depth, and motion, depth is usually the

most complex task. Figures 6.3.(b) and 6.5.(b) and show that depth estimation on KITTI

[77] and Synthia [74] requires longer convergence time compared to segmentation (Figure

6.3.(a) and 6.5.(a) and motion tasks (Figures 6.3.(c)). In these cases, our GLS method has

shown faster convergence compared to uncertainty [40], and DWA [127] methods. While

solving for multiple tasks, uncertainty [40] and DWA [127] weigh the tasks that converge

quickly higher than the others. This led to faster convergence in segmentation and motion

tasks but late convergence in depth tasks. In such circumstances, the encoder parameters

might be biased towards segmentation and motion tasks. This can result in imbalanced

94

https://youtu.be/E378PzLq7lQ
https://youtu.be/E378PzLq7lQ

Figure 6.7: Left to right: Input image, semantic segmentation output from single task, 3-Task with
equal weights, 3-Task GLS, 3-Task MultiNet++ networks, ground truth.

learning of depth tasks. Our GLS method expresses the total loss as the geometric mean of

individual losses, so it doesn’t prioritize one task higher than others.

In Table 6.4, we also compare 2-task and 3-task models with our novel MultiNet++

which uses both feature aggregation (for 2-frame input) and GLS. In KITTI [77] dataset,

input images are sparsely sampled from raw video sequences, which hinder the perfor-

mance gains of MultiNet++. In Cityscapes [78] dataset, MultiNet++ outperforms single-

task models by 4% and 3% for segmentation and depth tasks, respectively, as they provide

images sampled closely compared to the KITTI dataset. These improvements are much

better in SYNTHIA [74] dataset (4% and 5% for segmentation and depth estimation tasks,

respectively) as they provide continuous video frames sequences. We achieve similar per-

95

formances for motion task compared to 1-task models.

We compare qualitative results of MultiNet++ with 1-task segmentation model on Cityscapes

[78] dataset in Figure 6.6. The main difference between 1-task models and 3-task models

is that the latter have learned representations from other tasks using a common encoder.

Knowledge acquired through these representations helps the 3-task model identify seman-

tic boundaries better than the 1-task model. MultiNet++ model has improved performance.

Our models detect traffic signs, lights, and other near-range objects better compared to

other models on KITTI dataset [77] as shown in Figure 6.7.

6.4 Conclusion

We introduced an efficient way of constructing MultiNet++, a multi-task learning net-

work that operates on multiple input data streams. We demonstrated that our geometric loss

strategy (GLS) is robust to different task heuristics like complexity, magnitude, etc. We

achieved balanced training and improved performances for a multi-task learning network

solving different tasks, namely segmentation, depth estimation, and motion on automotive

datasets KITTI, Cityscapes, and SYNTHIA. Our GLS strategy is easy to implement. Most

importantly, it allows for balanced learning of a large number of tasks in multi-task learning

without requiring explicit loss modeling compared to other multi-task learning loss strate-

gies. In the future, we would like to explore the benefits of multi-task learning networks

using our efficient feature aggregation and loss strategies for multi-modal data.

96

CHAPTER VII

Conclusions

This dissertation introduces novel approaches and methodologies to advance the state-

of-the-art visual perception for automated driving.

End-to-end deep learning networks dominate the literature in computer vision and are

widely used in consumer intelligent systems. First, we explored how to optimize these

end-to-end deep learning network architectures to improve individual perception tasks’

performance. We proposed to learn complete scene understanding in the form of panoptic

segmentation using instance contour representation. We also introduced novel architec-

tures that help fuse multiple input streams from a temporal input to learn video semantic

segmentation in a computes efficient manner.

Later, we developed strategies to build a joint model that shares the available compute

power to process multiple tasks primarily built using end-to-end deep learning networks.

We argued that adaptation of end-to-end models for conventional tasks like calibration etc.

benefit from multi-task learning as it is easier to incorporate these models into a joint net-

work with minimal additional computational complexity. We later introduced auxiliary

learning methods that learn better representations of given tasks with limited data when

trained alongside an auxiliary/relevant task with surplus amounts of data. We also pre-

sented better replacements for total loss in a multi-task learning network like geometric

representation instead of arithmetic counterparts. Finally, we combined our novel multi-

stream fusion, multi-task network, and geometric loss strategies to build a multi-stream

multi-task learning network that outperforms existing methods.

97

7.1 Findings, Limitations and Future Work

We briefly summarise the findings, limitations, and future work of each chapter in this

dissertation.

• Panoptic Segmentation: Our methods provide a baseline for a single-stage panop-

tic segmentation network. These methods are lightweight compared to state-of-the-

art two-stage object detection, instance clustering-based methods. They are better

in terms of performance compared to single-stage instance segmentation methods.

However, the performance of two-stage methods are superior compared to our meth-

ods and also single-stage methods in general. In future, we would like to update

our instance segmentation refinement with dynamic clustering techniques instead of

current DSBCAN method. Also, we would like to try different encoders with better

performances to improve current results.

• Multi-stream Learning: An automated driving scene doesn’t change rapidly; thus,

Recurrent Neural networks like LSTM’s or GRU’s are not required as they are built

to handle long term dependencies in temporal sequences. Our multi-stream CNN-

based semantic segmentation provides an efficient alternative to Recurrent Neural

networks while improving various datasets’ quantitative performances. In future we

would like to fuse the temporal features using optical flow or similar motion related

cues. Also, we would like to learn how to fuse, what to fuse by adding a learnable

block instead of feature concatenation.

• Multi-task learning: CNN’s have become the standard model for semantic tasks like

object detection and semantic segmentation, geometric tasks like depth estimation

and visual SLAM. This brings an opportunity for CNNs to become a unifying model

98

for all visual perception tasks for automated driving. In this chapter, we argue for

moving towards a unified model and use current literature to propose how to achieve

it. We also discuss the pros and cons of having a unified model. Finally, we perform

experiments on a simpler scenario with two, three tasks and demonstrate results to

support our argument.

• Auxiliary learning: Large annotated datasets are currently the bottleneck for achiev-

ing high accuracy for deployment. An alternate mechanism of using auxiliary tasks

to alleviate the lack of large datasets is presented in this work. A prototype that

uses depth estimation as an auxiliary task to semantic segmentation is implemented

to show 5% improvement on KITTI and 3% improvement in semantic segmentation

performance on SYNTHIA datasets. Auxiliary learning may fail when the auxiliary

task has very little similarity with main task. In future, we would like to learn how

different task relate to each other and determine if they are suitable to be trained in

an auxiliary learning setup. Another shortcoming of auxiliary learning is it requires

to find right parameters for task weight balancing.

• Multi-stream multi-task learning: An efficient way of constructing a multi-task

learning network that operates on multiple streams of input data is presented along

with a geometric loss strategy (GLS) robust to different task heuristics like complex-

ity, magnitude, etc. GLS strategy is easy to implement. Most importantly, it allows

for balanced learning of many tasks in multi-task learning without requiring explicit

loss modeling compared to other multi-task learning loss strategies. In future, we

would like to extend the multi-stream multi-task learning to multiple modalities.

99

7.2 Broader Impacts

The presented research can improve perception tasks in other domains like medical

imaging, smartphone photography, video surveillance, etc., where performance and effi-

ciency are essential. Further, the presented multi-task learning strategies help in learning

current perception solutions jointly. Applications in augmented reality, virtual 3d tours

of real estate properties, etc., where recognition and reconstruction of the environment are

essential, can significantly benefit from unified visual perception networks that learn recog-

nition and reconstruction tasks using deep learning.

100

BIBLIOGRAPHY

[1] P. Viola and M. J. Jones, “Robust real-time face detection,” International Journal
of Computer Vision, vol. 57, no. 2, pp. 137–154, May 2004. [Online]. Available:
https://doi.org/10.1023/B:VISI.0000013087.49260.fb

[2] R. Girshick, “Fast r-cnn,” in 2015 IEEE International Conference on Computer Vi-
sion (ICCV), 2015, pp. 1440–1448.

[3] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified,
real-time object detection,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 779–788.

[4] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature
pyramid networks for object detection,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017, pp. 2117–2125.

[5] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for seman-
tic segmentation,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2015, pp. 3431–3440.

[6] H. Noh, S. Hong, and B. Han, “Learning deconvolution network for semantic seg-
mentation,” in Proceedings of the IEEE International Conference on Computer Vi-
sion, 2015, pp. 1520–1528.

[7] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolutional
encoder-decoder architecture for image segmentation,” IEEE transactions on pat-
tern analysis and machine intelligence, vol. 39, no. 12, pp. 2481–2495, 2017.

[8] D. Eigen and R. Fergus, “Predicting depth, surface normals and semantic labels
with a common multi-scale convolutional architecture,” in Proceedings of the IEEE
international Conference on Computer Vision, 2015, pp. 2650–2658.

[9] F. Liu, C. Shen, and G. Lin, “Deep convolutional neural fields for depth estimation
from a single image,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2015, pp. 5162–5170.

[10] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab, “Deeper depth
prediction with fully convolutional residual networks,” in 2016 Fourth International
Conference on 3D Vision (3DV), 2016, pp. 239–248.

101

https://doi.org/10.1023/B:VISI.0000013087.49260.fb

[11] C. Godard, O. Mac Aodha, and G. J. Brostow, “Unsupervised monocular depth esti-
mation with left-right consistency,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2017, pp. 270–279.

[12] H. Fu, M. Gong, C. Wang, K. Batmanghelich, and D. Tao, “Deep ordinal regression
network for monocular depth estimation,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018, pp. 2002–2011.

[13] G. Farnebäck, “Two-frame motion estimation based on polynomial expansion,” in
Scandinavian conference on Image analysis, 2003, pp. 363–370.

[14] A. Kundu, K. M. Krishna, and J. Sivaswamy, “Moving object detection by multi-
view geometric techniques from a single camera mounted robot,” in 2009 IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2009, pp. 4306–4312.

[15] T.-H. Lin and C.-C. Wang, “Deep learning of spatio-temporal features with
geometric-based moving point detection for motion segmentation,” in 2014 IEEE In-
ternational Conference on Robotics and Automation (ICRA), 2014, pp. 3058–3065.

[16] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov, P. Van
Der Smagt, D. Cremers, and T. Brox, “Flownet: Learning optical flow with convolu-
tional networks,” in Proceedings of the IEEE international Conference on Computer
Vision, 2015, pp. 2758–2766.

[17] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox, “Flownet 2.0:
Evolution of optical flow estimation with deep networks,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), vol. 2, 2017, p. 6.

[18] J. Vertens, A. Valada, and W. Burgard, “Smsnet: Semantic motion segmentation
using deep convolutional neural networks,” in 2017 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), 2017, pp. 582–589.

[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in neural information processing sys-
tems, 2012, pp. 1097–1105.

[20] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1–9.

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2016, pp. 770–778.

102

[22] A. Kirillov, K. He, R. Girshick, C. Rother, and P. Dollár, “Panoptic segmentation,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2019, pp. 9404–9413.

[23] B. Cheng, M. D. Collins, Y. Zhu, T. Liu, T. S. Huang, H. Adam, and L.-C. Chen,
“Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic seg-
mentation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020, pp. 12 475–12 485.

[24] A. Kirillov, R. Girshick, K. He, and P. Dollár, “Panoptic feature pyramid networks,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2019, pp. 6399–6408.

[25] Y. Xiong, R. Liao, H. Zhao, R. Hu, M. Bai, E. Yumer, and R. Urtasun, “Upsnet:
A unified panoptic segmentation network,” in 2019 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2019, pp. 8810–8818.

[26] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” IEEE transactions on
pattern analysis and machine intelligence, 2018.

[27] P. Hurtik, V. Molek, J. Hula, M. Vajgl, P. Vlasanek, and T. Nejezchleba, “Poly-yolo:
higher speed, more precise detection and instance segmentation for yolov3,” arXiv
preprint arXiv:2005.13243, 2020.

[28] Y. Li, H. Qi, J. Dai, X. Ji, and Y. Wei, “Fully convolutional instance-aware semantic
segmentation,” arXiv preprint arXiv:1611.07709, 2016.

[29] X. Liang, L. Lin, Y. Wei, X. Shen, J. Yang, and S. Yan, “Proposal-free network
for instance-level object segmentation,” IEEE transactions on pattern analysis and
machine intelligence, vol. 40, no. 12, pp. 2978–2991, 2017.

[30] S. Peng, W. Jiang, H. Pi, X. Li, H. Bao, and X. Zhou, “Deep snake for real-time
instance segmentation,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2020.

[31] M. Siam, S. Elkerdawy, M. Jagersand, and S. Yogamani, “Deep semantic segmen-
tation for automated driving: Taxonomy, roadmap and challenges,” in 2017 IEEE
20th International Conference on Intelligent Transportation Systems (ITSC), 2017,
pp. 1–8.

[32] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Deeplab:
Semantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs,” IEEE transactions on pattern analysis and machine intelli-
gence, vol. 40, no. 4, pp. 834–848, 2017.

103

[33] I. Freeman, L. Roese-Koerner, and A. Kummert, “Effnet: An efficient structure for
convolutional neural networks,” in 2018 25th IEEE International Conference on Im-
age Processing (ICIP), 2018, pp. 6–10.

[34] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convolutional
networks for visual recognition,” IEEE transactions on pattern analysis and machine
intelligence, vol. 37, no. 9, pp. 1904–1916, 2015.

[35] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, “3d u-net:
learning dense volumetric segmentation from sparse annotation,” in International
conference on medical image computing and computer-assisted intervention, 2016,
pp. 424–432.

[36] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang,
and P. H. Torr, “Conditional random fields as recurrent neural networks,” in Pro-
ceedings of the IEEE International Conference on Computer Vision, 2015, pp. 1529–
1537.

[37] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg, “Ssd:
Single shot multibox detector,” in European Conference on Computer Vision, 2016,
pp. 21–37.

[38] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object
detection with region proposal networks,” in Advances in neural information pro-
cessing systems, 2015, pp. 91–99.

[39] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Proceedings of the
IEEE international Conference on Computer Vision, 2017, pp. 2961–2969.

[40] A. Kendall, Y. Gal, and R. Cipolla, “Multi-task learning using uncertainty to weigh
losses for scene geometry and semantics,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018, pp. 7482–7491.

[41] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “Optics: ordering points
to identify the clustering structure,” ACM Sigmod record, vol. 28, no. 2, pp. 49–60,
1999.

[42] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for dis-
covering clusters in large spatial databases with noise,” in Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining, ser. KDD’96.
AAAI Press, 1996, p. 226231.

[43] A. Petrovai and S. Nedevschi, “Multi-task network for panoptic segmentation in
automated driving,” in 2019 IEEE Intelligent Transportation Systems Conference
(ITSC), 2019, pp. 2394–2401.

104

[44] M. Siam, H. Mahgoub, M. Zahran, S. Yogamani, M. Jagersand, and A. El-Sallab,
“Modnet: Motion and appearance based moving object detection network for au-
tonomous driving,” in 2018 21st International Conference on Intelligent Transporta-
tion Systems (ITSC), 2018, pp. 2859–2864.

[45] N. Garnett, S. Silberstein, S. Oron, E. Fetaya, U. Verner, A. Ayash, V. Goldner,
R. Cohen, K. Horn, and D. Levi, “Real-time category-based and general obstacle
detection for autonomous driving,” in Proc. IEEE Int. Conf. Comput. Vis. Workshop,
2017, pp. 198–205.

[46] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd ed.
Cambridge University Press, ISBN: 0521540518, 2004.

[47] M. Aladem and S. A. Rawashdeh, “Lightweight visual odometry for autonomous
mobile robots,” Sensors, vol. 18, no. 9, 2018. [Online]. Available: https:
//www.mdpi.com/1424-8220/18/9/2837

[48] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison,
P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon, “Kinectfusion: Real-time dense
surface mapping and tracking,” in 2011 10th IEEE international symposium on
mixed and augmented reality, 2011, pp. 127–136.

[49] M. Aladem, S. Chennupati, Z. El-Shair, and S. A. Rawashdeh, “A comparative study
of different cnn encoders for monocular depth prediction,” in 2019 IEEE National
Aerospace and Electronics Conference (NAECON), 2019, pp. 328–331.

[50] S. Chennupati, G. Sistu., S. Yogamani., and S. Rawashdeh., “Auxnet: Auxiliary
tasks enhanced semantic segmentation for automated driving,” in Proceedings of the
14th International Joint Conference on Computer Vision, Imaging and Computer
Graphics Theory and Applications - Volume 5: VISAPP,. SciTePress, 2019, pp.
645–652.

[51] S. Chennupati, G. Sistu, S. Yogamani, and S. A Rawashdeh, “Multinet++: Multi-
stream feature aggregation and geometric loss strategy for multi-task learning,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR) Workshops, June 2019.

[52] M. Uřičář, P. Křı́žek, G. Sistu, and S. Yogamani, “Soilingnet: Soiling detection
on automotive surround-view cameras,” in 2019 22nd International Conference on
Intelligent Transportation Systems (ITSC), 2019, to appear.

[53] S. Yogamani, C. Hughes, J. Horgan, G. Sistu, P. Varley, D. O’Dea, M. Uricár,
S. Milz, M. Simon, K. Amende et al., “Woodscape: A multi-task, multi-camera fish-
eye dataset for autonomous driving,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2019, pp. 9308–9318.

105

https://www.mdpi.com/1424-8220/18/9/2837
https://www.mdpi.com/1424-8220/18/9/2837

[54] S. A. E. International, “Taxonomy and definitions for terms related to on-road motor
vehicle automated driving systems J3016,” 2018.

[55] R. Caruana, “Multitask learning,” Machine learning, vol. 28, no. 1, pp. 41–75, 1997.

[56] I. Kokkinos, “Ubernet: Training a universal convolutional neural network for low-
, mid-, and high-level vision using diverse datasets and limited memory,” in 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017,
pp. 5454–5463.

[57] M. Teichmann, M. Weber, M. Zllner, R. Cipolla, and R. Urtasun, “Multinet: Real-
time joint semantic reasoning for autonomous driving,” in 2018 IEEE Intelligent
Vehicles Symposium (IV), June 2018, pp. 1013–1020.

[58] V. Sanh, T. Wolf, and S. Ruder, “A hierarchical multi-task approach for learning
embeddings from semantic tasks,” 2018.

[59] D. Dong, H. Wu, W. He, D. Yu, and H. Wang, “Multi-task learning for multiple
language translation,” in ACL, 2015.

[60] Z. Wu, C. Valentini-Botinhao, O. Watts, and S. King, “Deep neural networks em-
ploying multi-task learning and stacked bottleneck features for speech synthesis,” in
2015 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), April 2015, pp. 4460–4464.

[61] O. Siohan and D. Rybach, “Multitask learning and system combination for automatic
speech recognition,” in 2015 IEEE Workshop on Automatic Speech Recognition and
Understanding (ASRU), Dec 2015, pp. 589–595.

[62] P. Dewangan, S. P. Teja, K. M. Krishna, A. Sarkar, and B. Ravindran, “Digrad:
Multi-task reinforcement learning with shared actions,” CoRR, vol. abs/1802.10463,
2018.

[63] C. Devin, A. Gupta, T. Darrell, P. Abbeel, and S. Levine, “Learning modular neural
network policies for multi-task and multi-robot transfer,” in 2017 IEEE International
Conference on Robotics and Automation (ICRA), May 2017, pp. 2169–2176.

[64] B. Ramsundar, S. Kearnes, P. Riley, D. Webster, D. Konerding, and V. Pande,
“Massively multitask networks for drug discovery. 2015,” arXiv preprint
arXiv:1502.02072, 2015.

[65] S. Liu, “Exploration on deep drug discovery: Representation and learning,” Ph.D.
dissertation, University of WisconsinMadison, 2018.

106

[66] I. Misra, A. Shrivastava, A. Gupta, and M. Hebert, “Cross-stitch networks for multi-
task learning,” 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Jun 2016. [Online]. Available: http://dx.doi.org/10.1109/CVPR.2016.433

[67] S. Ruder, J. Bingel, I. Augenstein, and A. Søgaard, “Learning what to share between
loosely related tasks,” arXiv preprint arXiv:1705.08142, 2017.

[68] S.-A. Rebuffi, H. Bilen, and A. Vedaldi, “Efficient parametrization of multi-domain
deep neural networks,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 8119–8127.

[69] Z. Chen, V. Badrinarayanan, C.-Y. Lee, and A. Rabinovich, “Gradnorm: Gradient
normalization for adaptive loss balancing in deep multitask networks,” in Interna-
tional Conference on Machine Learning, 2018, pp. 794–803.

[70] M. Guo, A. Haque, D.-A. Huang, S. Yeung, and L. Fei-Fei, “Dynamic task prioriti-
zation for multitask learning,” in European Conference on Computer Vision, 2018,
pp. 282–299.

[71] Y. Zhang and D.-Y. Yeung, “A convex formulation for learning task relationships in
multi-task learning,” in UAI, 2010.

[72] O. Sener and V. Koltun, “Multi-task learning as multi-objective optimization,” in
Advances in Neural Information Processing Systems, 2018, pp. 525–536.

[73] J.-A. Désidéri, “Multiple-gradient descent algorithm (mgda) for multiobjective op-
timization,” Comptes Rendus Mathematique, vol. 350, no. 5-6, pp. 313–318, 2012.

[74] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. M. Lopez, “The synthia
dataset: A large collection of synthetic images for semantic segmentation of urban
scenes,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 3234–3243.

[75] F. Li, T. Kim, A. Humayun, D. Tsai, and J. M. Rehg, “Video segmentation by track-
ing many figure-ground segments,” in Proceedings of the IEEE International Con-
ference on Computer Vision, 2013, pp. 2192–2199.

[76] J. Pont-Tuset, F. Perazzi, S. Caelles, P. Arbeláez, A. Sorkine-Hornung, and L. Van
Gool, “The 2017 davis challenge on video object segmentation,” The 2017 DAVIS
Challenge on Video Object Segmentation - CVPR Workshops, 2017.

[77] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The kitti
dataset,” The International Journal of Robotics Research, vol. 32, no. 11, pp. 1231–
1237, 2013.

107

http://dx.doi.org/10.1109/CVPR.2016.433

[78] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke,
S. Roth, and B. Schiele, “The cityscapes dataset for semantic urban scene under-
standing,” in The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016, pp. 3213–3223.

[79] D. de Geus, P. Meletis, and G. Dubbelman, “Single network panoptic segmentation
for street scene understanding,” in IEEE Intelligent Vehicles Symposium (IV), 2019,
pp. 709–715.

[80] D. Zhang, Y. Song, D. Liu, H. Jia, S. Liu, Y. Xia, H. Huang, and W. Cai, “Panop-
tic segmentation with an end-to-end cell r-cnn for pathology image analysis,” in
International Conference on Medical Image Computing and Computer-Assisted In-
tervention, 2018, pp. 237–244.

[81] Q. Li, A. Arnab, and P. H. Torr, “Weakly-and semi-supervised panoptic segmen-
tation,” in Proceedings of the European Conference on Computer Vision (ECCV),
2018, pp. 102–118.

[82] E. Xie, P. Sun, X. Song, W. Wang, X. Liu, D. Liang, C. Shen, and P. Luo, “Polar-
mask: Single shot instance segmentation with polar representation,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
June 2020.

[83] Z. Yu, C. Feng, M.-Y. Liu, and S. Ramalingam, “Casenet: Deep category-aware se-
mantic edge detection,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2017, pp. 5964–5973.

[84] J. Yang, B. Price, S. Cohen, H. Lee, and M.-H. Yang, “Object contour detection
with a fully convolutional encoder-decoder network,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp. 193–202.

[85] L. J. Van Vliet, I. T. Young, and G. L. Beckers, “A nonlinear laplace operator as
edge detector in noisy images,” Computer vision, graphics, and image processing,
vol. 45, no. 2, pp. 167–195, 1989.

[86] S. Xie and Z. Tu, “Holistically-nested edge detection,” in Proceedings of the IEEE
international Conference on Computer Vision, 2015, pp. 1395–1403.

[87] D. Acuna, A. Kar, and S. Fidler, “Devil is in the edges: Learning semantic bound-
aries from noisy annotations,” in The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2019.

[88] R. Deng, C. Shen, S. Liu, H. Wang, and X. Liu, “Learning to predict crisp bound-
aries,” in The European Conference on Computer Vision (ECCV), September 2018.

108

[89] Y. Liu, M.-M. Cheng, X. Hu, K. Wang, and X. Bai, “Richer convolutional features
for edge detection,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2017, pp. 3000–3009.

[90] G. Bertasius, J. Shi, and L. Torresani, “Deepedge: A multi-scale bifurcated deep
network for top-down contour detection,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2015, pp. 4380–4389.

[91] J. van den Brand, M. Ochs, and R. Mester, “Instance-level segmentation of vehicles
by deep contours,” in Computer Vision – ACCV 2016 Workshops, C.-S. Chen, J. Lu,
and K.-K. Ma, Eds., Cham, 2017, pp. 477–492.

[92] H. Samet and M. Tamminen, “Efficient component labeling of images of arbitrary
dimension represented by linear bintrees,” IEEE transactions on pattern analysis
and machine intelligence, vol. 10, no. 4, pp. 579–586, 1988.

[93] Y. Wu and K. He, “Group normalization,” in Proceedings of the European Confer-
ence on Computer Vision (ECCV), 2018, pp. 3–19.

[94] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-
scale hierarchical image database,” in 2009 IEEE Conference on Computer Vision
and Pattern Recognition, 2009, pp. 248–255.

[95] J. Uhrig, M. Cordts, U. Franke, and T. Brox, “Pixel-level encoding and depth layer-
ing for instance-level semantic labeling,” in German Conference on Pattern Recog-
nition, 2016, pp. 14–25.

[96] M. Bai and R. Urtasun, “Deep watershed transform for instance segmentation,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 5221–5229.

[97] S. Liu, J. Jia, S. Fidler, and R. Urtasun, “Sgn: Sequential grouping networks for
instance segmentation,” in Proceedings of the IEEE International Conference on
Computer Vision, 2017, pp. 3496–3504.

[98] J. Horgan, C. Hughes, J. McDonald, and S. Yogamani, “Vision-based driver assis-
tance systems: Survey, taxonomy and advances,” in Intelligent Transportation Sys-
tems (ITSC), 2015 IEEE 18th International Conference on, 2015, pp. 2032–2039.

[99] M. Heimberger, J. Horgan, C. Hughes, J. McDonald, and S. Yogamani, “Computer
vision in automated parking systems: Design, implementation and challenges,” Im-
age and Vision Computing, vol. 68, pp. 88–101, 2017.

109

[100] K. Simonyan and A. Zisserman, “Two-stream convolutional networks for action
recognition in videos,” in Advances in neural information processing systems, 2014,
pp. 568–576.

[101] B. Ummenhofer, H. Zhou, J. Uhrig, N. Mayer, E. Ilg, A. Dosovitskiy, and T. Brox,
“Demon: Depth and motion network for learning monocular stereo,” arXiv preprint
arXiv:1612.02401, 2016.

[102] F. Chollet et al., “Keras,” https://keras.io, 2015.

[103] N. Märki, F. Perazzi, O. Wang, and A. Sorkine-Hornung, “Bilateral space video seg-
mentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 743–751.

[104] F. Perazzi, O. Wang, M. Gross, and A. Sorkine-Hornung, “Fully connected object
proposals for video segmentation,” in Proceedings of the IEEE International Con-
ference on Computer Vision, 2015, pp. 3227–3234.

[105] L. Chen, Z. Yang, J. Ma, and Z. Luo, “Driving scene perception network: Real-time
joint detection, depth estimation and semantic segmentation,” in 2018 IEEE Winter
Conference on Applications of Computer Vision (WACV), 2018, pp. 1283–1291.

[106] D. Neven, B. D. Brabandere, S. Georgoulis, M. Proesmans, and L. V. Gool, “Fast
scene understanding for autonomous driving,” 2017.

[107] S. Ruder, “An overview of multi-task learning in deep neural networks,” 2017.

[108] A. R. Zamir, A. Sax, W. Shen, L. Guibas, J. Malik, and S. Savarese, “Taskonomy:
Disentangling task transfer learning,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 3712–3722.

[109] H. Bilen and A. Vedaldi, “Universal representations: The missing link between
faces, text, planktons, and cat breeds,” arXiv preprint arXiv:1701.07275, 2017.

[110] L. Kaiser, A. N. Gomez, N. Shazeer, A. Vaswani, N. Parmar, L. Jones, and J. Uszko-
reit, “One model to learn them all,” arXiv preprint arXiv:1706.05137, 2017.

[111] Y. Tamaazousti, “On the universality of visual and multimodal representations,”
Ph.D. dissertation, University College London, 2018.

[112] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning efficient convolu-
tional networks through network slimming,” in Computer Vision (ICCV), 2017 IEEE
International Conference on, 2017, pp. 2755–2763.

110

https://keras.io

[113] G. Huang, S. Liu, L. Van der Maaten, and K. Q. Weinberger, “Condensenet: An
efficient densenet using learned group convolutions,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp. 2752–2761.

[114] “Nvidia xavier soc specification,” https://en.wikichip.org/wiki/nvidia/tegra/xavier,
2018 (accessed Nov 22, 2018).

[115] J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger,” 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Jul 2017.
[Online]. Available: http://dx.doi.org/10.1109/CVPR.2017.690

[116] A. Kendall, M. Grimes, and R. Cipolla, “Posenet: A convolutional network for real-
time 6-dof camera relocalization,” in Proceedings of the IEEE international Confer-
ence on Computer Vision, 2015, pp. 2938–2946.

[117] L. Liebel and M. Körner, “Auxiliary tasks in multi-task learning,” arXiv preprint
arXiv:1805.06334, 2018.

[118] S. Toshniwal, H. Tang, L. Lu, and K. Livescu, “Multitask learning with low-level
auxiliary tasks for encoder-decoder based speech recognition,” in INTERSPEECH,
2017.

[119] S. Parthasarathy and C. Busso, “Ladder networks for emotion recognition: Using
unsupervised auxiliary tasks to improve predictions of emotional attributes,” in In-
terspeech, 2018.

[120] G. J. Brostow, J. Fauqueur, and R. Cipolla, “Semantic object classes in video: A
high-definition ground truth database,” Pattern Recognition Letters, vol. 30, no. 2,
pp. 88–97, 2009.

[121] A. Gaidon, Q. Wang, Y. Cabon, and E. Vig, “Virtual worlds as proxy for multi-object
tracking analysis,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2016, pp. 4340–4349.

[122] M. Wrenninge and J. Unger, “Synscapes: A photorealistic synthetic dataset for street
scene parsing,” CoRR, vol. abs/1810.08705, 2018.

[123] H. Xu, Y. Gao, F. Yu, and T. Darrell, “End-to-end learning of driving models from
large-scale video datasets,” 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 3530–3538, 2017.

[124] G. Neuhold, T. Ollmann, S. R. Bulo, and P. Kontschieder, “The mapillary vistas
dataset for semantic understanding of street scenes.” in ICCV, 2017, pp. 5000–5009.

111

https://en.wikichip.org/wiki/nvidia/tegra/xavier
http://dx.doi.org/10.1109/CVPR.2017.690

[125] S. Wang, M. Bai, G. Máttyus, H. Chu, W. Luo, B. Yang, J. Liang, J. Cheverie,
S. Fidler, and R. Urtasun, “Torontocity: Seeing the world with a million eyes,” 2017
IEEE International Conference on Computer Vision (ICCV), pp. 3028–3036, 2017.

[126] S. Sankaranarayanan, Y. Balaji, A. Jain, S. N. Lim, and R. Chellappa, “Learning
from synthetic data: Addressing domain shift for semantic segmentation,” in CVPR,
2018.

[127] S. Liu, E. Johns, and A. J. Davison, “End-to-end multi-task learning with atten-
tion,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2019, pp. 1871–1880.

[128] A. Mousavian, H. Pirsiavash, and J. Kosecka, “Joint semantic segmentation and
depth estimation with deep convolutional networks,” 2016 Fourth International
Conference on 3D Vision (3DV), Oct 2016. [Online]. Available: http:
//dx.doi.org/10.1109/3DV.2016.69

[129] O. H. Jafari, O. Groth, A. Kirillov, M. Y. Yang, and C. Rother, “Analyzing modular
cnn architectures for joint depth prediction and semantic segmentation,” 2017 IEEE
International Conference on Robotics and Automation (ICRA), May 2017. [Online].
Available: http://dx.doi.org/10.1109/ICRA.2017.7989537

[130] A. Gurram, O. Urfalioglu, I. Halfaoui, F. Bouzaraa, and A. M. Lopez,
“Monocular depth estimation by learning from heterogeneous datasets,” 2018
IEEE Intelligent Vehicles Symposium (IV), Jun 2018. [Online]. Available:
http://dx.doi.org/10.1109/IVS.2018.8500683

[131] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2014.

[132] C. Hazirbas, L. Ma, C. Domokos, and D. Cremers, “Fusenet: Incorporating depth
into semantic segmentation via fusion-based cnn architecture,” in Asian Conference
on Computer Vision, 2016, pp. 213–228.

[133] M. Siam, S. Valipour, M. Jägersand, N. Ray, and S. Yogamani, “Convolutional gated
recurrent networks for video semantic segmentation in automated driving,” 2017
IEEE 20th International Conference on Intelligent Transportation Systems (ITSC),
pp. 1–7, 2017.

[134] G. Sistu., S. Chennupati, and S. Yogamani., “Multi-stream cnn based video seman-
tic segmentation for automated driving,” in Proceedings of the 14th International
Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and
Applications - Volume 5: VISAPP,. SciTePress, 2019, pp. 173–180.

[135] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei, “Large-
scale video classification with convolutional neural networks,” in CVPR, 2014.

112

http://dx.doi.org/10.1109/3DV.2016.69
http://dx.doi.org/10.1109/3DV.2016.69
http://dx.doi.org/10.1109/ICRA.2017.7989537
http://dx.doi.org/10.1109/IVS.2018.8500683

[136] A. Ranjan and M. J. Black, “Optical flow estimation using a spatial pyramid net-
work,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 4161–4170.

[137] L. Ma, J. Stückler, C. Kerl, and D. Cremers, “Multi-view deep learning for consistent
semantic mapping with rgb-d cameras,” in 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2017, pp. 598–605.

[138] S. Sah, “Multi-modal deep learning to understand vision and language,” Ph.D. dis-
sertation, Rochester Institute of Technology., 2018.

[139] X. Zhu, Y. Wang, J. Dai, L. Yuan, and Y. Wei, “Flow-guided feature aggregation for
video object detection,” in The IEEE International Conference on Computer Vision
(ICCV), Oct 2017.

[140] H. Rashed, A. El Sallab, S. Yogamani, and M. ElHelw, “Motion and depth aug-
mented semantic segmentation for autonomous navigation,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops,
2019, pp. 0–0.

[141] J. Lee and J. Nam, “Multi-level and multi-scale feature aggregation using pretrained
convolutional neural networks for music auto-tagging,” IEEE signal processing let-
ters, vol. 24, no. 8, pp. 1208–1212, 2017.

[142] R. Ranjan, V. M. Patel, and R. Chellappa, “Hyperface: A deep multi-task
learning framework for face detection, landmark localization, pose estimation,
and gender recognition,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 41, no. 1, p. 121135, Jan 2019. [Online]. Available:
http://dx.doi.org/10.1109/TPAMI.2017.2781233

[143] F. Yu, D. Wang, E. Shelhamer, and T. Darrell, “Deep layer aggregation,” in The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.

[144] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput.,
vol. 9, no. 8, pp. 1735–1780, Nov. 1997. [Online]. Available: http:
//dx.doi.org/10.1162/neco.1997.9.8.1735

[145] L. Sun, K. Jia, D.-Y. Yeung, and B. E. Shi, “Human action recognition
using factorized spatio-temporal convolutional networks,” 2015 IEEE International
Conference on Computer Vision (ICCV), Dec 2015. [Online]. Available:
http://dx.doi.org/10.1109/ICCV.2015.522

[146] J. Y.-H. Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga, and
G. Toderici, “Beyond short snippets: Deep networks for video classification,” 2015

113

http://dx.doi.org/10.1109/TPAMI.2017.2781233
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1109/ICCV.2015.522

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun 2015.
[Online]. Available: http://dx.doi.org/10.1109/CVPR.2015.7299101

[147] J. Donahue, L. A. Hendricks, M. Rohrbach, S. Venugopalan, S. Guadarrama,
K. Saenko, and T. Darrell, “Long-term recurrent convolutional networks for
visual recognition and description,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 39, no. 4, p. 677691, Apr 2017. [Online]. Available:
http://dx.doi.org/10.1109/TPAMI.2016.2599174

[148] R. M. Oruganti, S. Sah, S. Pillai, and R. Ptucha, “Image description through fusion
based recurrent multi-modal learning,” in 2016 IEEE International Conference on
Image Processing (ICIP), 2016, pp. 3613–3617.

[149] S. Sah, S. Kulhare, A. Gray, S. Venugopalan, E. Prud’Hommeaux, and R. Ptucha,
“Semantic text summarization of long videos,” in 2017 IEEE Winter Conference on
Applications of Computer Vision (WACV), 2017, pp. 989–997.

[150] L. Yao, A. Torabi, K. Cho, N. Ballas, C. Pal, H. Larochelle, and A. Courville, “De-
scribing videos by exploiting temporal structure,” in Advances in Neural Information
Processing Systems, 2015.

[151] S. Sharma, R. Kiros, and R. Salakhutdinov, “Action recognition using visual atten-
tion,” in Proceedings of the IEEE international Conference on Computer Vision,
2015, pp. 4507–4515.

[152] S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c. Woo, “Convo-
lutional lstm network: A machine learning approach for precipitation nowcasting,”
in Advances in neural information processing systems, 2015, pp. 802–810.

[153] H. Song, W. Wang, S. Zhao, J. Shen, and K.-M. Lam, “Pyramid dilated deeper con-
vlstm for video salient object detection,” in The European Conference on Computer
Vision (ECCV), September 2018.

[154] S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural networks for human
action recognition,” IEEE transactions on pattern analysis and machine intelligence,
vol. 35, no. 1, pp. 221–231, 2013.

[155] S. Kulhare, S. Sah, S. Pillai, and R. Ptucha, “Key frame extraction for salient activity
recognition,” in 2016 23rd International Conference on Pattern Recognition (ICPR),
Dec 2016, pp. 835–840.

[156] R. H. Hahnloser and H. S. Seung, “Permitted and forbidden sets in symmetric
threshold-linear networks,” in Advances in Neural Information Processing Systems,
2001, pp. 217–223.

114

http://dx.doi.org/10.1109/CVPR.2015.7299101
http://dx.doi.org/10.1109/TPAMI.2016.2599174

[157] I. Goodfellow, Y. Bengio, and A. Courville, “Deep learning,” MIT Press, pp. 189–
191, 2016, http://www.deeplearningbook.org.

[158] M. Menze, C. Heipke, and A. Geiger, “Joint 3d estimation of vehicles and scene
flow,” in ISPRS Workshop on Image Sequence Analysis (ISA), 2015.

[159] M. Menze and A. Geiger, “Object scene flow for autonomous vehicles,” pp. 3061–
3070, 2015.

115

http://www.deeplearningbook.org

	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	Introduction
	Motivation
	Approach
	Visual Perception
	Semantic Segmentation
	Object Detection
	Instance Segmentation
	Panoptic Segmentation
	General Object Detection
	Monocular Depth Estimation
	Motion Segmentation
	Soiling Detection

	Multi-task Learning
	Contributions

	Panoptic Segmentation
	Introduction
	Instance Contour Segmentation
	Challenges

	Method
	Model Architecture
	Loss Functions
	Instance Segmentation
	Refining Instance Segmentation
	Panoptic Segmentation

	Experiments and Results
	Experimental Setup
	Ablation Studies
	Instance Contour Segmentation Loss Function
	Instance Contour Ground Truth Dilation Rate
	Refining Instance Segmentation
	Network Ablation

	State of the Art Comparison
	Comparison with Two-stage Methods
	Comparison with Instance Clustering
	Comparison with Single-stage Object Detection and Others

	Discussions
	Conclusion

	Multi-stream Learning
	Introduction
	Extending Semantic Segmentation to Videos
	Single Frame Baseline
	Detect and Track Approach
	Temporal Post Processing
	Recurrent Encoder Model
	Fused Multi-stream Encoder Model

	Method
	Single Stream Architecture
	Multi-stream Fused Architectures
	Multi-stream Recurrent Architecture

	Experiments and Results
	Experimental Setup
	Ablation Studies
	Temporal Depth
	Shared Weights
	Non Automotive Datasets

	Discussions
	MSFCN vs FCN
	MSFCN-2 vs MSFCN-3
	MSFCN-2 vs RFCN
	Weight Sharing

	Conclusion

	Multi-task Learning
	Introduction
	Universality of CNN Features
	Adaptation

	Pros and Cons of Multi-task Learning
	Pros
	Cons

	Unified Visual Perception Model
	Two Task Model
	Three Task Model

	Conclusion

	Auxiliary Learning
	Introduction
	Motivation
	Methods
	Architecture Design
	Loss Function

	Experiments and Results
	Experimental Setup
	Results and Discussion

	Conclusion

	Multi-stream Multi-task Learning
	Introduction
	Feature Aggregation
	Multi-task Loss

	Methods
	Multi-stream Multi-task Architecture
	Geometric Loss Strategy

	Experiments and Results
	Datasets
	Model Analysis
	Optimization
	Results

	Conclusion

	Conclusions
	Findings, Limitations and Future Work
	Broader Impacts

	BIBLIOGRAPHY

