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Executive Summary

The Open Space and Parkland Preservation Millage was approved by the residents of
Ann Arbor in November 2003 as a way to protect productive farmland, prevent the destruction of
natural landscapes, and preserve the rural character surrounding Ann Arbor. Commonly known
as the Greenbelt Program, the millage provides funds to preserve and protect open space,
farmland, natural habitats, and the City’s source waters inside and outside the city limits. More
than halfway through the 30-year millage in 2021, the Greenbelt Program consists of over 6,200
acres of protected land on more than 70 parcels. While successful, the program lacks adequate
ways to report impact and motivate support beyond acres preserved and funds leveraged. Like
many organizations working to protect land, they are in need of additional ways to assess and
communicate more meaningful measures of conservation value, such as quantifying ecosystem
services.

Our goal was to develop a series of dynamic geoprocessing tools to quantify specific
ecosystem service value of the Greenbelt’s current portfolio of properties and any new
properties added in the future. This will allow the City staff and residents of Ann Arbor to have
an ongoing understanding of and ability to communicate the value of individual properties and
entire land conservation programs. We focused on two categories of ecosystem services: (1)
above and belowground carbon storage and (2) water quality.

Aboveground Carbon Storage
We used a combination of field-collected and available remote sensing data to develop a

model for measuring the amount of carbon stored in trees within forested areas of the
Greenbelt. We acquired LiDAR (light detection and ranging) data of Washtenaw County from
2017 to estimate tree height and volume, and we measured tree species and diameter at three
sites located in Washtenaw County to estimate tree biomass using allometric equations from the
literature. Using these data sources, we compared the effectiveness of various modeling
methods to predict biomass across sites. We found that a Power Law model allowed us to best
estimate aboveground carbon storage. We were able to estimate both per-parcel and total
aboveground carbon stored in the Ann Arbor Greenbelt, which as of April 2021 totals
32,595,817 kg C, or 119,519 metric tons of CO,. This is equivalent to the annual CO, emissions
of 2,716 average Ann Arbor households, 80,682,715 passenger vehicle miles, or 1,348,245
airline miles. This equates to a value of $6,095,473.15 when using the 2021 EPA social cost of
carbon value of $51 per metric ton of CO,.

Belowground Carbon Storage

To estimate the amount of carbon stored in the soil of Greenbelt properties we used
available spatial data on soil type together with standards from the literature for calculating
carbon stored in the organic matter of soils. We used the National Resources Conservation
Service (NRCS) Web Soil Survey to determine which soil types are present in the forested and
wetland areas of the Greenbelt District and which characteristics, including horizon depth, bulk
density, and organic matter content, are known to be associated with these soil types.
Transferring these values into ArcGIS Pro allowed us to provide low, medium, and high
estimates of carbon storage for each soil type and develop a model to calculate soil carbon



stored at an individual property level. We found that the estimated carbon contained in the
uppermost horizon of forested and wetland soils of the Greenbelt properties as of April 2021
totals 50,005,732 kg C, or 183,356 metric tons of CO,. This is equivalent to the annual CO,
emissions of 4,167 average Ann Arbor households, 123,776,564 passenger vehicle miles, or
2,068,363 airline miles. Using the EPA’'s 2021 social cost of carbon value, we found that the
Greenbelt properties have a value of $9,351,156.96. Agricultural soils were not included in
estimates given that soil carbon would depend highly on specific cultivation practices, which are
neither constant nor easy to assess.

Water Quality

To evaluate how land protection under the Greenbelt program contributes to water
ecosystem services, we compared tools that assess the impact of land conversion on water
quality. Based on this review we recommended amendments to existing tools that would
improve their applicability to the Greenbelt Program and accessibility for other land
conservancies in Southeast Michigan. Specifically, we provided an updated web-based version
of the EPA Region 5 Conservation Easement Load Reduction Worksheet and identified the
Michigan State University Institute of Water Research’s Great Lakes Watershed Management
System (GLWMS) as the optimal tool for future water quality analyses within Washtenaw
County. We recommend further collaboration with the Institute of Water Research to expand the
spatial scope of its tool to include the Huron River Watershed.
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While we achieved our project goals of providing tools that can allow the Greenbelt
Program to assess certain ecosystem services, the accuracy and broader applicability of our
assessment methods can be improved with future work. Aboveground carbon storage
evaluations could incorporate more diverse field data, including both coniferous and deciduous
trees across the county, to allow our approach to be applied on a broader variety of forest types.
As tree heights change over time, the model we developed may also need to be updated with
current LiDAR and field data. To expand the soil carbon storage model to include agricultural
soils, it would be necessary to know what agricultural practices are being used and the
differential impacts of these practices on soil carbon storage. Other potential projects can
consider drone-based biomass estimation, community engagement, and interactive maps of
public lands to educate Ann Arbor residents on the value of ecosystem services. Assessing
ecosystem services in feasible and meaningful ways as we did in this project has broad
application to global land conservation efforts and should continue to be tailored for specific
ecosystems.
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Chapter 1:

Ecosystem Services and the Greenbelt Program

Introduction to the Problem

Ecosystem services are defined as the collection of biological processes required to
sustain human life and provide a good quality of living (Cardinale et al., 2019). These services
are grouped into four categories: (1) Provisioning: products obtained from ecosystems, such as
food, water, and raw materials; (2) Regulating: benefits from the regulation of ecosystem
processes, such as air and water purification, climate regulation, and erosion control; (3)
Supporting: ecological processes that control the functioning of ecosystems, including biomass
production, decomposition, and nutrient cycling; and (4) Cultural: nonmaterial benefits obtained
from ecosystems, including recreation, ecotourism, health, and well-being (Leeans & De Groot,
2003).

Regulating and supporting services are both ecological processes that may go
unnoticed, but are critical for human life on earth. Carbon regulating services are often the most
frequently studied regulating ecosystem service studied at present, due to carbon’s connection
with climate change mitigation. Water-related services have also received increased attention,
as water is vital to life on Earth and its value is easily appreciated by humans (Karabulut et al.,
2016). For example, water ecosystem services could consist of water purification and water
supply provided to agriculture (Brander et al., 2006).

Ecosystem services can be quantified with an ecological production function, and this
can then be translated to some form of human value, which include monetary value or human
well-being (Summers et al., 2012). For example, carbon storage can be measured directly as
gigatons of carbon stored per hectare. This carbon amount can also be quantified in terms of
how much carbon dioxide is prevented from entering the atmosphere. These avoided emissions
can be assigned a monetary value where carbon-valuation mechanisms exist, such as
emissions trading schemes, carbon taxes, and voluntary markets (Hungate et al., 2017). For
example, Costanza et al. (1997) estimated the value of the world’s ecosystem services to be in
the range of US $16-54 trillion per year, with an average of US $33 trillion.

There have been significant advances in the development of the ecosystem service
concept, but quantifying and valuing ecosystem services in ways that are useful for
communication and decision-making remains challenging, especially at a local scale and in
data-scarce regions (Pandeya et al., 2016). Great interest currently exists for developing
ecosystem models that allow the user to forecast how ecosystem services may change under
alternative land use and climate futures (Feng et al., 2011). Geoprocessing models such as
ARIES, InVEST, and Marxan have aimed to quantify ecosystem services in a way that
acknowledges complexity and its consequences, while making sure that models are sufficiently
simple to remain tractable and scalable to varying levels of detail and data availability (Villa et
al., 2014).



Despite increased research and interest in development of tools to actually measure
ecosystem services, they can be difficult for practitioners to apply in land use planning. In part
this is simply because the literature outlining methodologies is often not accessible to
practitioners (Knight et al., 2008). Even if that information is accessible, most assessments
require significant field data collection time, for which organizations may have limited capacity.
For example, carbon storage and sequestration are of particular interest to decision makers,
because of their direct impact on climate regulation. However, carbon stocks in forest soils and
forest floors are highly variable annually, seasonally and spatially, because they depend on
physical conditions and tree species. For example, Schulp et al. (2008) found that in the
Netherlands, forest floor carbon stocks ranged from 11.1 Mg C ha™ for beech trees to 29.6 Mg C
ha™ for larch trees.

The need for more accessible and feasible ecosystem service assessments is critical to
the future of land protection efforts. Uncoordinated development around urban areas is
associated with the loss and fragmentation of rural open space, wildlife habitat, and wetlands,
and the consequential decline in biodiversity. If protected from development, land has the
potential to provide numerous ecosystem services, such as water purification, climate change
mitigation, food production, and opportunities for recreational and aesthetic enjoyment.
However, organizations that are working to protect land often lack the capacity to communicate
the incremental and overall meaningful value of that land to potential supporters and
decision-makers. They require feasible ecosystem service assessment methods.

Client & Site Bacl |

The Greenbelt Program is an example of the City of Ann Arbor’s efforts to protect land.
They, like other organizations, require ecosystem service assessment methods that would assist
in project selection and in reporting within the Greenbelt Program, as well as progress reporting
of the City’s sustainability efforts. Due to the fact that Washtenaw County has lost 223,785 acres
of farmland since 1935, conservation easements of remaining land are necessary to maintain
vital ecosystem services. Concurrently, in the state of Michigan, the equivalent of 2 acres of
farmland have been lost every hour since 2007, which is the equivalent of 2 farms each day
(The Conservation Fund, 2019).

The creation of the City of Ann Arbor Greenbelt Program was predicated on the passage
of the Open Space and Parkland Preservation Millage. The millage started in 2003 when 67% of
Ann Arbor voters approved a 30-year, 0.5 million tax levy, which funds new parkland
acquisitions within the City limits and the purchase of development rights outside the City but
within the Greenbelt District. The purpose of this initiative is to provide funds to preserve and
protect open space, farmland, natural habitats, and the city’s source waters inside and outside
the City limits. A breakdown of the millage revenue is shown in Figure 1.1 below.
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Figure 1.1. Open Space and Parkland Preservation Millage revenue, from 2019 Strategic Plan (The
Conservation Fund, 2019)

Chapter 42 of the City Code of Ann Arbor outlines the use of the millage funds. It also
establishes the Greenbelt Advisory Commission (GAC). GAC is appointed by the City Council of
Ann Arbor and is composed of nine members: one City Council representative, one farmer, one
developer, two environmentalists, one biologist, and three community members. GAC reviews
applications for the purchase of Greenbelt District properties, advises City Council on monitoring
and enforcement of development rights and conservation easements acquired by the Greenbelt
District, and prepares an annual budget for land rights acquisition, preservation, and
management (Open Space and Parkland Preservation Ordinance, 2004).

Land preservation for the Greenbelt program occurs in two primary forms:
1. Fee Simple Ownership, where an entity such as the City or County owns land
outright, usually for the purpose of public recreation
2. Purchase of Development Rights, where an entity secures a voluntary and
perpetual contract with a private landowner to restrict the current and future
potential for development, providing public benefits without requiring public
ownership

Purchasing development rights helps keep land in private ownership and also ensures
that the land is preserved in perpetuity. This is a cost effective approach for the City to achieve
land preservation at a fraction of the market cost. For a property to be accepted into the
Greenbelt, it typically takes about 18-36 months for the process to be completed after the
property owner first submits their application to the Greenbelt Program. During that time, the
application is evaluated, matching funds are secured, and the project is reviewed and approved
by GAC and the Ann Arbor City Council (City of Ann Arbor, 2021a).

The City of Ann Arbor employs an external consultant to manage all acquisitions and
administration of the Open Space and Parkland Preservation Program. The current external
consultant retained by the City is The Conservation Fund, a national non-profit organization that
protects land and water resources through land acquisition, sustainable community and



economic development, and leadership training. The Conservation Fund is responsible for
overseeing the logistics of each land or easement acquisition, from reviewing applications and
securing funds for the purchases to navigating the review process using advice and oversight
provided by the City.

To assess each prospective acquisition, GAC uses scoring criteria as a way to review
and identify high-quality parcels that should be prioritized for protection. The scoring criteria
assesses the characteristics and context of the land, as well as potential acquisition
considerations. Typically, aerial imagery and GIS are used to conduct these assessments. After
an application report is prepared, the prospective project is presented to GAC, and GAC then
chooses whether or not to proceed by authorizing an appraisal of the property. If approved, an
appraisal is commissioned. If both the applicant and GAC agree that the valuation is an
accurate reflection of the Fair Market Value, the project proceeds. Next, project partners and
matching funds are sought for each acquisition. These partners often include Washtenaw
County, townships within the Greenbelt District, local nonprofit land conservancies, and federal
agencies. After the project package is prepared, it is presented to GAC for review. If GAC
approves of the project’s structure and partnerships, a final recommendation is made to City
Council for approving the acquisition. A final resolution to approve the acquisition is then
presented to City Council for their consideration.

Once approved, the necessary due diligence is completed and, in accordance with the
City’s Conservation Easement Deed, each Greenbelt property is placed under several
restrictions, encumbering the property’s development rights (City of Ann Arbor, 2021a). For
instance, the conservation easement may include some or all of the following provisions (Open
Space and Parkland Preservation Ordinance, 2004), among many others:

e The property will be subject to a Conservation Plan which is approved by the Natural
Resources Conservation Service (NRCS), to promote the long term viability of the land
to meet the conservation easement and Conservation Plan purposes.

e No more than 2% of the protected property may be improved or altered with impervious
surfaces that limit rainfall infiltration, excluding NRCS-approved conservation practices.
Oil, gas, or mineral exploration and extraction are prohibited.

Timber harvest must follow specific rules that include if the protected property contains

40 contiguous acres of forest or 20 percent of the protected property is forestland, then

forest management and timber harvesting must be performed in accordance with a

written forest management plan. The goals of commercial timber harvest must also

include the preservation of scenic characteristics and assure sustainable forest
productivity.
Generally these provisions ensure that the conservation value of the property - its wetlands,
forests, agricultural soil, etc. - will remain protected from development or over-exploitation in
perpetuity.

Excluding the city, the Ann Arbor Greenbelt District encompasses approximately 87,500
acres, 25,000 of which are currently in active agricultural production (The Conservation Fund,
2019). Now in its 18th year (over halfway through the 30-year millage), the Greenbelt Program
has protected over 6,200 acres of open space surrounding the city and has leveraged over
$24M in Greenbelt funds by securing matching grants, landowner donations, and contributions
from other locally funded programs totalling over $29M. As of April 2021, there are 70 parcels



ranging from 7 to 286 acres in size. The properties protected by the Greenbelt Program
collectively account for 3,737 acres of active farmland and 2,817 acres of natural areas,
including forests, prairies, and wetlands. A map of the Ann Arbor Greenbelt District boundary is
shown below in Figure 1.2.
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Figure 1.2. Map of Ann Arbor Greenbelt District (City of Ann Arbor, 2021b)

A variety of aquatic and terrestrial ecosystems, and therefore ecosystem services, are
protected by the Greenbelt Program. The Greenbelt Program has protected over 28 miles of
river, stream and water frontage, and 60% of these waterways are within the Huron River
Watershed, contributing to the filtration and protection of the City’s drinking water (The
Conservation Fund, 2019). Wetlands protected by the Greenbelt provide flood protection,
pollution control, and essential breeding and feeding grounds for many species of fish and
wildlife (Federal Geographic Data Committee, 2013). Forested areas that can store carbon in
trees within the Greenbelt District include species such as white oak (Quercus alba), northern
red oak (Quercus rubra), sugar maple (Acer saccharum), and American basswood ( Tilia
americana). Forest vegetation can also be dominated by invasive shrubs such as common
buckthorn (Rhamnus cathartica), autumn-olive (Elaeagnus umbellata), and Oriental bittersweet
(Celastrus orbiculatus) (Barnes & Wagner, 2004). As a temperate system, the area experiences



high seasonality in temperature and precipitation. A summary of total acreage of various land
cover types is shown in Table 1.1.

Table 1.1. Summary of Land Cover Types within Greenbelt District. Soils refer to prime, local importance,
and prime if drained only soils. Total acreage is from May 2020. These numbers were provided by the City

of Ann Arbor.

Land Cover Type Acres within Acres within % of Total Area of

Greenbelt District Greenbelt Greenbelt
Properties Properties

Woodland 33,524 1,341 5.0%

Wetlands 24,611 1,476 6.6%

Soils 96,985 5,575 6.9%

Agriculture 24,469 3,737 15.3%

Total 105,675 5,923

Project Goals

While the Greenbelt Program has been successful at preserving land with conservation
easements, it currently faces two major limitations:

1) Alack of capacity to report success in terms beyond acres and money leveraged to
values that are important to a larger audience of decision-makers and funders, including
being able to communicate contributions to carbon neutrality and watershed protection
initiatives in the area, and

2) Inadequate information to make parcel-level decisions based on actual information about
key criteria deemed in a recent strategic review as especially important goals of the
program: climate mitigation and water quality protection.

The goal of this project is to provide the City of Ann Arbor Greenbelt Program with the
ability to assess and report on the ecosystem services of individual parcels and over the total
acreage already protected, as well as each new or potential parcel acquisition, especially in
terms of 1) climate regulation services through carbon storage, and 2) water quality. This
information will be used to assist in reviewing potential parcel acquisitions and in reporting and
leveraging support for the Greenbelt program.

Project Significance

With this project, the Greenbelt Program Manager will be able to communicate to various
entities, including landowners in the Greenbelt area, Ann Arbor City Council, and Ann Arbor
residents, the return on investment provided by continued land purchases for protection.



Additionally, because the Greenbelt Program is funded by the 30-year millage, our project will
help provide Ann Arbor residents with adequate information to consider renewal of the millage in
2034.

Between 2004 and 2018, all applications for private land to be added as Greenbelt
properties were approved by the Ann Arbor City Council. However, in 2019, Council concerns
with a particular Greenbelt acquisition brought to light a critical lack of understanding of the
conservation values of each potential Greenbelt acquisition. Communicating this value requires
having compelling data to share. The Greenbelt Program Manager aims to build understanding
among residents and City Council of the value and benefits of the existing portfolio of Greenbelt
acquisitions, and offer them more crucial information regarding each future project so they can
make informed decisions and utilize the voter’s tax dollars efficiently and effectively. Additionally,
Ann Arbor residents have expressed interest in carbon storage and water quality. Water quality
is an integral part of the Greenbelt mission, and carbon is a common subject in public
commentary and connects with the City’s carbon neutrality goals.

City Council has already placed an emphasis on the Greenbelt Program to leverage the
City’s funds to the best of its ability. The processing tool we create provides City staff with data
to inform the City Council about a parcel’'s ecosystem services so that they can weigh these
benefits with the acquisition costs.

Broader Theory and Practice

As discussed above, the need for more accessible and feasible ecosystem service
assessments is critical to the future of land protection efforts. Beyond the Ann Arbor Greenbelt,
our project deliverables can be adapted to serve as an invaluable resource for regional land
trusts to improve the way they assess and report the value of land protection. Similar
greenbelts, greenways, or other land use planning efforts to curb suburban sprawl or maintain
natural areas close to cities have been implemented throughout the world with varying degrees
of support and success. According to the 2015 National Land Trust Census Report, 56 million
acres were conserved by state, local and national land trusts by the end of 2015 (Land Trust
Alliance, 2015).

Approach h r Overview

We developed ecosystem service assessment methods specific to above- and
below-ground carbon and the impact of land conversion on water quality by using a variety of
available data sources and tools to generate new models. To measure carbon storage with
minimal field work, we developed separate geoprocessing tools for the aboveground (trees and
shrubs) and belowground (soil) components to estimate the carbon storage of Greenbelt
properties remotely. In Chapter 2, we lay out our method to measure aboveground carbon
storage using a combination of field data and LiDAR remote sensing data. We test the statistical
significance of various modeling techniques to determine which model best predicts biomass,
and calculate aboveground carbon of Greenbelt properties using this model. In Chapter 3, we
use existing research and data on soil properties and land use/land cover to estimate carbon
storage in soils of forested and wetland segments of Greenbelt properties. For both above and
belowground carbon we demonstrate how to convert the amount of carbon stored into more



easily understood values, such as average household annual emissions, airline mile, and
passenger vehicle mile equivalents. Finally, in Chapter 4, we consider which aspects of water
quality can be quantified and recommend amendments to currently-used tools and the adoption
of outside tools for future analysis. Our key research questions are summarized in Figure 1.3.
Together, these approaches provide the Greenbelt Program with a way to continue to assess
specific ecosystem services without further field data collection while also providing a landmark
example of how ecosystem service assessment can be made feasible. Ultimately, this project
meets the Greenbelt Program’s need to report the value of land protection beyond acreage.

Chapter 2: Aboveground Carbon Storage

+ How can we measure aboveground biomass, and in turn carbon
storage, in trees using existing GIS and remotely sensed data?

+ How can we use existing spatial data on soil type to estimate
carbon stored belowground in soils for various land cover types?

Chapter 4: Water Ecosystem Services

* Which aspects of water quality are quantifiable and which available
assessment tool is most applicable to the Greenbelt Program?

Figure 1.3. Chapter Overview and Key Research Questions
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Chapter 2:

Aboveground Carbon Storage: Alternative Methods for Measuring
Biomass in Practice

Relevant Appendices

Appendix A: Maps of Field Sample Plot Locations

Appendix B: Field Data

Appendix C: Summary of Aboveground Carbon Storage by Property

Intr ion

Well informed and sustainable land use planning and prioritization require knowledge of
ecosystem services and how they are affected by different land use decisions. The need for
more accessible and feasible ecosystem service assessments is critical to the future of land
protection efforts, especially when conservation funds are limited. Capacity-limited
organizations, including non-profits, city governments, and even private landowners, lack the
resources to accurately assess carbon storage and other ecosystem service metrics necessary
for financing conservation efforts.

Here, we use the City of Ann Arbor Greenbelt Program as a case study to develop a
model for estimating aboveground carbon storage with minimal fieldwork. The Greenbelt
Program was developed in 2003 to preserve and protect open space, farmland, and natural
habitats. The Greenbelt District contains 33,524 acres of forested land, and over 1,000 acres of
this have been protected with conservation easements. As the Greenbelt Program continues to
expand, there is a growing desire to improve the City’s ability to assess and communicate the
value of the Greenbelt Program. Quantifying the carbon stored via conservation easements
would allow the City of Ann Arbor Greenbelt Program to meet their goals laid out in the City’s
A2Zero Carbon Neutrality Plan, which aims to divert 2.1 million metric tons of CO, equivalent
annually (A2Zero, 2020).

The purpose of this chapter is to determine the best model for predicting aboveground
biomass and, in turn, carbon storage using a limited amount of field data together with existing
remote sensing data. In this study, we compare four modeling techniques - Ordinary Least
Squares (OLS) Regression, Power Law, Random Forest (RF), and Support Vector Regression
(SVR) - for estimating biomass at the plot level. We assess each of these models’ statistical
significance to determine which model type is best suited for estimating biomass and which set
of predictor variables is best for predicting biomass at three study sites. Finally, we use the best
model to estimate the total amount of biomass for all Greenbelt properties and thus the carbon
stored. Figure 2.1 provides an overview of the process we used to build a model that would
allow for this large-scale aboveground carbon estimation using minimal field data combined with
LiDAR data.
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Figure 2.1. Process of using a combination of field and LiDAR data to inform a model to estimate above
ground carbon on a large scale. AGB = Aboveground biomass.

I, Traditional Methods of Measuring Aboveground Carbon Storage

Aboveground carbon storage can be calculated from field-based measures of biomass.
The aboveground biomass of a tree is defined as the weight of the portion of the tree found
above the ground surface when oven-dried (Jenkins et al., 2003). It is also equal to the amount
of tree volume multiplied by wood density specific to the tree species type (Ali et al., 2015).
Plot-level biomass measures are usually expressed on a per-unit-area basis, such as kg/m?,
and calculated as the sum of biomass values for individual trees in a plot (Jenkins et al., 2003).
It is widely assumed that the carbon content of a tree is 50% of its biomass. Once the biomass
is known, carbon content can easily be calculated by multiplying by a factor of 0.5 (Fang et al.,
2001).

Biomass can be measured by taking measurements of individual tree diameters in the
field and applying allometric regression equations based on tree species. “Allometric” refers to
size-correlated variations in organic form and metabolism (Niklas, 1994). There is an allometric
relationship between plant dimensions, such as diameter and height, and biomass for groups of
similar species (Jenkins et al., 2003), thus making it possible to estimate the biomass of a tree
given its species and diameter. Historically, allometric equations were site-specific and
inconsistent, making them unsuitable for large-scale forest carbon estimation. Jenkins et al.
(2003) reviewed existing diameter-based allometric equations and developed a new series of
equations that could be applied across regional boundaries. They developed ten sets of
parameters and equations for estimating total aboveground biomass of hardwood and softwood
species in the United States, of which at least four can be found across the Greenbelt.

Although field-based estimates of biomass using allometric equations have a long history
in forestry operations worldwide (Goetz et al., 2009), measuring tree species and diameter on
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the ground is time-consuming and labor-intensive. Estimating biomass over large areas requires
a dense network of inventory plots, which is infeasible in many regions due to high costs and
required labor (Fassnacht et al., 2014). For this reason, there is growing interest in estimating
forest biomass using novel remote sensing approaches.

Il.  Remote Sensing Approaches to Measuring Biomass

Although aboveground biomass is traditionally estimated based on measurements
collected on the ground, more recent studies have incorporated remotely sensed data into
biomass estimations. Advantages of using remotely sensed data as opposed to data collected
on the ground include the ability to measure all areas within the forest of interest, the speed of
collecting and processing data, and the ability to collect data in areas that are difficult to access
on the ground (Bortolot & Wynne, 2005).

Remote sensing methods vary by platform type (airborne or spaceborne) and sensor
type (optical, radar, and LIiDAR) (Zolkos et al., 2013). Remote sensors generally fit into two
categories, passive and active, which have both been used in biomass estimation. Passive
optical sensors measure the reflected or emitted electromagnetic radiation from the Sun.
Alternatively, active sensors detect reflected responses from artificially generated energy
sources, such as photons in LiDAR (light detection and ranging) and microwave energy in radar
(radio detection and ranging) (Shugart et al., 2010).

Passive remote sensors are helpful in the acquisition of imagery at high spatial and
temporal resolution, but only active remote sensors can provide three-dimensional data that is
necessary for estimating biomass. Landsat Thematic Mapper (TM) is one type of passive
remote sensing data type that can provide reasonable estimations of secondary forest biomass,
but it results in large uncertainty for mature forests with high biomass density (Lu et al., 2012).
The reflectance of forested land cover mostly originates from reflections of sunlight in the
topmost part of the canopy (Fassnacht et al., 2014). In dense forest canopies, spectral
signatures become insensitive due to the complexity of stand structure. Lu et al. (2012) found
that biomass density of greater than 150 T/ha, such as that found in the Brazilian Amazon,
could not be accurately predicted by optical/passive remote sensing alone. In other words,
passive sensors cannot provide information about the vertical structure of a forest because only
the upper canopy is represented. Because active sensors penetrate into vegetation canopies,
they are more sensitive to forest structure than passive sensors (Koch, 2010). Since vertical
structure relates to tree heights, and height directly relates to biomass and therefore carbon
stored, remote sensing that captures structure information can provide a better assessment of
carbon storage.

1. Use of LiDAR Data to Measure Biomass

Zolkos et al. (2013) found that LiDAR-based models are significantly better at predicting
biomass than models that use passive optical metrics alone. One of the earliest attempts at
using LiDAR to predict forest stand structure was completed by Maclean and Krabill (1986).
They were able to explain 92% of the variation in timber volume using LiDAR data in addition to
tree species composition for a pine forest in the southeastern United States (Lefsky et al.,
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2005). In a LiDAR system, a short pulse of laser light is emitted from an aircraft. When the laser
pulse reaches the forest canopy, a portion of the pulse is reflected back to the aircraft. The
remaining energy proceeds through the canopy and is reflected off the forest floor. The time
interval between the initial return from the tree canopy and the secondary return from the forest
floor can be converted to a height measurement using the speed of light (Maclean & Krabill,
1986). It is important to note that no sensor can directly measure biomass (Fassnacht et al.,
2014). Moreover, no single sensor, regardless of whether it is passive or active, can be
expected to provide consistently infallible estimates of biomass (Goetz et al., 2009). Recent
research has aimed to extract descriptive variables from LiDAR and apply machine learning
approaches to estimate biomass (Garcia-Gutiérrez et al., 2015). LiDAR-derived height
percentiles have been shown to be effective at estimating biomass, however, for the majority of
studies commonalities between reported predictor variables are rare, suggesting that predictor
variables are likely to be study- and site-specific (Lim & Treitz, 2004).

Overview of Model Types

Methods to predict biomass from LiDAR data have evolved rapidly due to improvements
in LIDAR technology and the development of statistical models that use automated tree crown
delineation and machine learning (Koch, 2010; Gleason & Im, 2012; Fassnacht et al., 2014).
Regression approaches for forest attribute estimations using LiDAR data can generally be
divided into two groups: parametric and non-parametric. Linear regression models are
parametric approaches that define linear relationships between forest variables such as tree
height and volume (Shataee, 2013). Though linear regressions are by far the most common
prediction method (Fassnacht et al., 2014), they often do not have the ability to characterize
forest complexity at fine spatial scales or in mixed forest types (Shataee, 2013). Non-parametric
machine learning techniques include decision tree algorithms such as Random Forest (RF) and
statistical learning theory-based algorithms, such as Support Vector Regression (SVR). Each
parametric and non-parametric approach has advantages and disadvantages and model
effectiveness can vary by site and spatial scale. Here we first review these approaches and then
test their effectiveness specifically using the field and LIDAR data we acquired to be able to
estimate carbon on Greenbelt properties.

1. Ordinary Least Squares (OLS) Regression

Ordinary Least Squares (OLS) Regression has been widely used for LIDAR biomass
estimation due to its simplicity (Garcia-Gutiérrez et al., 2015). Linear models have several
disadvantages, however. They are less flexible than non-parametric models, are affected by
multicollinearity, are less versatile in identifying complex nonlinear relationships, and struggle to
deal with high data dimensionality (Almeida et al., 2019). In addition, OLS cannot produce
robust predictions if the assumptions of linearity, independence, homoscedasticity, and normality
are not met (Osborne & Waters, 2002).

Despite the limitations of linear regression models, several studies have found success
in estimating carbon storage using this method. For instance, Means et al. (1999) used a linear
regression model that explained 96% of the variation in aboveground biomass from mean
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canopy height derived from LiDAR returns in coniferous forests in the Pacific Northwest.
Popescu (2007) developed a model for loblolly pine stands in the southeastern United States
that explained 88% of the variation in biomass calculated with LiDAR-estimated diameter at
breast height (DBH). Almeida et al. (2019) compared different linear models for estimating
biomass in the Brazilian Amazon and found that a linear model with regularization (a way of
shrinking the coefficients of redundant predictor variables) could solve the issue of
multicollinearity.

There are a myriad of different variations of linear models that have been used to
estimate above-ground biomass. Salas et al. (2010) compared the effectiveness of ordinary
least squares (OLS), generalized least squares (GLS) with a non-null correlation structure,
linear mixed-effects (LME), and geographically weighted regression (GWR). They found that
root mean square prediction errors with LME were the lowest, followed by GWR, then by OLS
and GLS. The advantages of mixed-effects models are their flexibility in modeling when
modeling covariates are grouped by one or more classification factors. Pinheiro and Bates
(2006) discuss their advantages and applications in great detail. However, mixed-effects models
are not applicable at the plot level as there are no well-defined groups within which the random
effects structure can vary (Gleason & Im, 2012).

A common problem with linear models is that the relationship between predicted and
measured biomass differs strongly between sites (Foody et al., 2003). Furthermore, linear
regression rarely fully captures the complex relationships between forest variables (Chen & Hay,
2011). Linear models are also less flexible than nonparametric techniques because they
demand large sample sizes and are affected by multicollinearity (Li et al., 2014). Nonparametric
machine learning techniques, such as Support Vector Regression (SVR), Random Forest (RF),
and Cubist, are more versatile than linear regression models in identifying complex nonlinear
relationships (Almeida et al., 2019).

2. Power Law (PL)

Power Law, or log linear, models in the form of y = ax® are one of the most common
patterns in biology (Xiao et al., 2011). Because in situ field biomass estimations through
allometric models are based on a Power Law relationship between tree diameter and biomass,
it should be expected that tree diameter and biomass are nonlinearly related to tree height (Lu
et al., 2016). While Power Law models have been found to successfully predict biomass in
predominantly coniferous Scandinavian forests (Naesset, 1997; Naesset et al., 2011), they have
been shown to produce inaccurate biomass estimations in the United States and Canada. For
example, Nelson et al. (2017) found that, compared to existing national forest inventory plots,
linear models overestimated in situ biomass by 7.5%, whereas a Power model overestimated
ground results by 261%.

Power Law models however have shown to be more effective than simple ordinary least
squares regression models, in some cases yielding R? values between 0.76 and 0.89 compared
to OLS R? values ranging from 0.03 to 0.28 (Naesset et al., 2011). Other studies have also
explained the majority of the variance between LiDAR-derived covariates and predicted
biomass with Power Law models with R? values equal to 0.63 (Ws et al., 2017) and 0.64 (Vaglio
Laurin et al., 2014).
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3. Random Forest (RF)

Random Forest (RF) is a non-parametric modeling approach that is relatively robust to
outliers and noise (Breiman, 2001). RF models randomly and iteratively sample the data to
generate a large group of classification and regression trees (Hudak et al., 2008). A random
forest is made up of decision trees, which perform the task of aggregation or regression by
recursively asking true or false questions that split the data into subgroups. Instead of building
only one decision tree for prediction, the idea behind RF is to combine many trees into a robust
ensemble, or “forest” (Kern et al., 2019). To make a prediction, each decision tree “votes” by
making its own prediction and the average over all trees becomes the output of the RF. The
prediction of many models is more likely to be correct than the prediction of any single model.
Because decision trees “disagree” on what the predictions are, the forest is shielded from the
errors of individual trees. An example of what decision trees look like is shown below in Figure
2.2.

Single Decision Tree X Random Forest
a Class 2
Class 1
'i‘f"\‘ © O © © 0O Class 1
)
\‘\ /‘;

Class 1

Class 2

Class 2 Class 1

Figure 2.2. Decision Trees in a Random Forest algorithm. Sourced from Silipo (2019).

RF models have been shown to reduce bias and overfitting. Random forests do not
overfit as more trees are added, because the average will always converge according to the
mathematical law of large numbers (Breiman, 2001). Different LIDAR metrics can be objectively
selected for predicting the response variables, helping to prevent arbitrary decisions in which
predictor variables to use. Hudak et al. (2012) ran a Model Improvement Ratio (MIR) function to
objectively choose the most important LIDAR metrics. Their function selected from 62 LiDAR
metrics including mean height, maximum height, various percentiles of height, intensity, and
slope, excluding highly correlated predictor variables (Pearson’s r > 0.9). This model was used
to observe changes in biomass due to forest growth over a six-year period.
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Many studies have found RF models to be the best at capturing non-linear relationships
between remote sensing data and biomass density. Powell et al. (2010) found RF to be the most
accurate model for predicting biomass change using Landsat data at locations in Arizona and
Minnesota, in comparison to other non-parametric model types. Avitabile et al. (2012) compared
a RF model with a single regression tree model and a multilinear regression model for a
low-biomass density forest in Uganda and found that the variance explained by RF was 14-17%
higher than that explained by a single tree model. Mascaro et al. (2014) tested the effect of
incorporating spatial context into a RF model for a heterogeneous region of Northern Peru. The
RF model with spatial context explained 59% of LiDAR-based carbon estimates, compared to
37% for a traditional stratified sampling and upscaling (non-machine learning) model and 43%
for a RF model without spatial context.

RF has both advantages and disadvantages over other models. RF has also been
shown to produce more stable predictions than the other model types (Gleason & Im, 2012).
However, at small sample sizes, RF explains a smaller proportion of the variation at both plot
and individual tree levels than other model types, including SVR, linear regression, and Cubist.
Additionally, RF models are known to increase spatial autocorrelation among the model
residuals and, in some cases, actually overfit to spatial data, even though they are theoretically
less prone to overfitting (Mascaro et al., 2014).

4. Support Vector Regression (SVR)

Support vector machines (SVM) are not as well-known as other classifiers in the remote
sensing community, but are becoming more popular due to their ability to match or even exceed
the performance of more established methods (Mountrakis et al., 2011). Support vector
regression (SVR) is a regression technique that uses a SVM algorithm. This method solves
binary classification problems by transforming a nonlinear regression problem into a linear one
by using kernel functions that map the original input space into a new, multidimensional feature
space (Chen & Hay, 2011). SVR assumes that each set of input parameters (canopy volume,
maximum height, crown geometric volume, etc.) will have a unique relation to its response
variable (biomass). The groupings and relations of these predictors to one another is sufficient
to identify rules for predicting biomass (Gleason & Im, 2012).

A SVR algorithm aims to find a hyperplane that separates the data into a discrete
number of classes. Support vector refers to the points that lie on the margin, which are used to
define the hyperplane. The optimal hyperplane will have a decision boundary that minimizes
misclassifications (Mountrakis et al., 2011). To achieve this, the algorithm finds the maximum
margin separating the hyperplane while correctly classifying as any training points as possible
(Awad & Khanna, 2015). Each response variable is plotted in a multidimensional feature space
with axes that represent each input variable, as shown in Figure 2.3. As a supervised learning
technique, SVR iteratively assigns hyperplanes in the data and adjusts them to minimize errors
(Gleason & Im, 2012).
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Figure 2.3. Linear support vector machine example. Sourced from Mountrakis et al. (2011)

SVR is among the most common machine learning regression techniques recently
published in the literature (Garcia-Gutiérrez et al., 2015). Chen and Hay (2011) used SVR to
estimate canopy height, aboveground biomass, and volume from LiDAR data and multispectral
QuickBird imagery for a predominantly coniferous forest in British Columbia, Canada. The use
of SVR dramatically improved height estimation performance for both coniferous and deciduous
trees in comparison to multilinear regression. They found a strong relationship between
predicted and field-estimated canopy height, and were able to explain 81% of the variation.
Gleason and Im (2012) also found that SVR explained the largest fraction of the variation when
estimating biomass at the plot level, when compared to linear mixed-effects (LME) regression,
RF, and Cubist.

A major advantage of SVR is its ability to generalize well, even with limited training
samples (Mountrakis et al., 2011). Despite having only 18 plots available for plot level
estimation, Gleason and Im (2012) produced a SVR model with an R? value of 0.93, in
comparison to their RF model with an R? value of 0.22. They also compared RF and SVR at the
individual tree level and found better results with a SVR model. An underlying principle of SVR
is structural risk minimization, in which the algorithm minimizes classification error on unseen
data without making prior assumptions on the data’s probability distribution (Mountrakis et al.,
2011). Li et al. (2014) and Garcia-Gutiérrez et al. (2015) also found that SVMs statistically
outperformed all other models they tested.

A potential disadvantage of SVR is that it can lead to less stable predictions of biomass
than RF. Both RF and SVR models contain some degree of randomness, resulting in a different
biomass model each time they are applied to the same data. Gleason and Im (2012) found the
standard deviation of root mean square errors (RMSEs) were smaller for RF (up to 16.64 kg)
than for SVR (up to 109 kg). Out of the 17 models tested by Garcia-Gutiérrez et al. (2015), SVR
had the highest maximum RMSE (91.224%) and the highest mean RMSE (91.981%).
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Methods

We compared the ability of the four modeling techniques reviewed above to estimate
biomass at the plot level using limited field data together with existing remote sensing data.

I, Study sites

Three sites in Washtenaw County, Michigan, were selected for field data collection: Scio
Woods Preserve, Brauer Preserve, and Creekshead Preserve. Scio Woods Preserve is a
91-acre property owned and operated by the Washtenaw County Parks and Recreation
Commission and was purchased with financial support from the Greenbelt Program in 2008. It
contains oak-hickory forest in areas with drier soils and beech-sugar maple forest in areas with
wetter soils. Brauer Preserve is an 85-acre property operated by Washtenaw County. Upland
forest types include dry-mesic and dry Southern forest and wetland types include Southern
swamp, marsh, and open water. Creekshead Nature Preserve is a 27-acre property located 12
miles north of Ann Arbor, owned and managed by Legacy Land Conservancy, a nonprofit land
conservation organization in Southern Michigan. Creekshead Preserve consists of mature
beech-maple-basswood forest. A summary of the three sampling locations can be found below
in Table 2.1.

Table 2.1. Summary of sample plots

Scio Woods Preserve Brauer Preserve Creekshead Preserve
Location 42.2559°N, 83.8081°W | 42.2374°N, 83.8964°W | 42.3816°N, 83.6072°W
Number of plots 33 24 12
Number of trees 138 77 66
measured
Mean DBH (cm) 26.4 33.3 25.7
Std dev DBH (cm) 13.8 19.1 14.4
*Basal area (m?/ha) 29.07 36.93 37.38
Mean plot biomass (kg) 2524.39 3565.98 2846.70
Std dev plot biomass (kg) 1736.07 3206.99 1705.95
Species Sugar maple, American | Silver maple, red maple, | Sugar maple, American
basswood, white oak, American elm, black basswood, American
pignut hickory, cherry, black oak, bur beech, bur oak, red
hop-hornbeam, bitternut oak, sugar maple, maple, Northern red oak,
hickory, black cherry, Northern red oak, bitternut hickory, black
shagbark hickory, bigtooth aspen, black maple, silver maple
American beech, black walnut, American ash
walnut, tuliptree, Northern
red oak, Eastern
cottonwood, white willow,
Ailanthus

* Basal area was calculated including the three plots at Scio Woods and three plots at Brauer which had no trees
greater than 10cm DBH, resulting in lower values of basal area than if these plots were removed
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1. Field Data Collection

A total of 69 field plots of 10 m x 10 m were established at the three sites (33 at Scio, 24
at Brauer, and 12 at Creekshead) between September and November 2020. For each site,
random plot locations were generated and then superimposed on leaf-on NearMap imagery.
Plot locations were randomly placed using the Create Random Points tool in ArcGIS Pro. Maps
of the field sites were exported as PDFs and uploaded to the Avenza Maps app and used along
with a handheld compass and Trimble R1 unit to navigate to plot locations in the field. Each
random point was marked as the southwest corner of the plot, and the square plot extended 10
meters True North and 10 meters East. These maps can be found in Appendix A.

Data collected included tree species, tree stem diameter at breast height (DBH)
measured at 4.5 feet above the ground, and relative crown position (understory vs. overstory).
Standard DBH measuring protocols were followed according to standards described by West
(2015). Over the 69 plots, measurements of a total of 281 live trees with a minimum DBH of 10
c.m. from 23 species (Table 2.2). Three out of 33 plots at Scio Woods and three out of 24 plots
at Brauer Preserve contained no live trees greater than 10 c.m. in DBH and were excluded from
biomass calculations due to concerns that plots containing 0 kg of tree biomass would lead to
arbitrary underestimates of biomass. An additional plot located in Scio Woods was also thrown
out due to questionable GPS accuracy. Field-collected tree data are listed in Appendix B.

Table 2.2. Tree species of field plots

Scientific Name Common Name *Species  **Tree Count Total Tree Count
Group by Site
Acer nigrum Black maple MO 0,0,1 1
Acer rubrum Red maple MB 0,12,7 19
Acer saccharinum Silver maple MB 0, 36, 1 37
Acer saccharum Sugar maple MO 63, 2, 20 85
Ailanthus altissima Ailanthus MH 1,0,0 1
Carya cordiformis Bitternut hickory MO 50,2 7
Carya glabra Pignut hickory MO 7,0,0 7
Carya ovata Shagbark hickory MO 4,0,0 4
Fagus grandifolia American beech MO 3,0,10 13
Fraxinus americana White ash MH 0,1,0 1
Juglans nigra Black walnut MH 3,1,0 4
Liriodendron tulipifera Tuliptree MH 3,0,0 3
Ostrya virginiana Hop-hornbeam MH 7,0,0 7
Populus deltoides Eastern cottonwood AA 2,0,0 2
Populus grandidentata Bigtooth aspen AA 0,1,0 1
Prunus serotina Black cherry MH 56,0 1"
Quercus alba White oak MO 14,0,0 14
Quercus macrocarpa Bur oak MO 0,27 9
Quercus rubra Northern red oak MO 3,1,4 8
Quercus velutina Black oak MO 0,4,0 4
Salix alba White willow AA 2,0,0 2
Tilia americana American basswood MH 16, 0, 14 30
Ulmus americana American elm MH 0,11,0 1"

*Species groups include aspen/cottonwood/willow (AA), soft maple/birch (MB), mixed hardwood (MH), and hard
maple/oak/hickory/beech (MO) (Jenkins et al., 2003)
**Tree count in order of Scio Woods Preserve, Brauer Preserve, Creekshead Preserve
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The aboveground biomass of individual trees based on species group and DBH was
estimated using the following equation (Jenkins et al., 2003):

biomass = Exp(B0 + [31 In DBH)

where
biomass = total aboveground biomass (kg) for trees 10 c.m. DBH and larger
DBH = diameter at breast height (c.m.)
Exp = exponential function
In = natural log base “e” (2.718282)

The B coefficients from the above equation are found in Table 2.3.

Table 2.3. Parameters for biomass equations

Species Group B Parameter p,Parameter
Aspen/alder/cottonwood/willow (AA) -2.2094 2.3867
Soft maple/birch (MB) -1.9123 2.3651
Mixed hardwood (MH) -2.4800 2.4835
Hard maple/oak/hickory/beach (MO) -2.0127 2.4342

Species groups and parameters found in Jenkins et al. (2003)
Ill.  LiDAR Data Acquisition

LiDAR data was acquired from the University of Michigan Biological Station which was
acquired from the Southeast Michigan Council of Governments (SEMCOG) flight of Washtenaw
County in 2017. Each LAS tile used covers an area measuring 2,500 feet by 2,500 feet and
contains the point clouds for each laser pulse that is returned to the LiDAR sensor. The density
of LiDAR returns varies depending on forest density. For example, an area that is mostly
cropland and forest has 2,220,767 total LiDAR returns per tile and a point density of 3.82
points/m2. Meanwhile, an area of the same size at Stinchfield Woods, which is more densely
forested, has a total of 5,016,515 LiDAR returns and a point density of 8.64 points/mZ.

IV.  Canopy Height Model Creation

Canopy height models were created in R version 4.0.3. LiDAR returns were processed
into canopy height models with the lidR package using the pit-free canopy height algorithm
proposed by Khosravipour et al. (2014). Inverse distance weighting was used to normalize all
canopy height models and a Gaussian filter was applied to remove spurious points, using a
moving window with a radius of 2 feet. All resulting canopy height models had a spatial
resolution of 0.25 feet (0.075 meters) and all subsequent analysis was conducted in the
Michigan State Plane projected coordinate system.

V. Model and Predictor Variable Selection
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Choosing appropriate predictor variables from LiDAR-derived forest measurements that
are correlated with aboveground forest biomass is necessary to create a parsimonious model
for biomass estimation (Gleason & Im, 2012). In this study, several LiDAR-derived predictor
variables were explored that were assumed to be correlated with biomass. Predictor variables
were obtained from Gleason and Im and expanded upon, resulting in a list of predictor variables
that included the maximum and minimum pixel height values within each plot, as well as the
LiDAR-derived height percentiles (10th, 20th, 30th, 40th, 50th, 60th, 70th, 80th, and 90th) for
each plot.

We considered four models including Ordinary Least Squares Regression (OLS), Power
Law (PL), Random Forest (RF), and Support Vector Regression (SVR). For the parametric
models, the optimal model was chosen by which combination of predictor variables yielded the
model with the lowest Akaike information criterion (AIC) value. For the PL model, only height
percentiles above the 40th percentile were considered to avoid log transforming height
percentiles that were equal to zero. Because AIC values are not applicable for non-parametric
machine learning models, predictor variables for RF and SVR were selected using a RF
classifier which has been found in other studies to provide valuable insight regarding the
discriminative ability of individual predictor variables (Archer & Kimes, 2008). Ranked predictor
variable importance were, in descending order, Maximum Height, Minimum Height, 90th
percentile, 10th percentile, 20th percentile, 50th percentile, 30th percentile, 80th percentile, 40th
percentile, 60th percentile, and lastly the 70th percentile. Predictor variables were then added in
order of ranked importance to the model until the addition of additional predictor variables
resulted in a model with poorer model performance (lower cross validated R>and Root Mean
Squared Error (RMSE)). All resulting predictor variables are shown in Table 2.4.

To measure the accuracy of each model type, a 10-fold cross-validation scheme was
used due to the limited available training data. R? values and RMSE were calculated for each
model type along with the standard error for each model metric. Adjusted R?and p-values were
also calculated on the entire dataset for each model.

Table 2.4. Displays the predictor variables used in each of the four models. “Maximum Height” refers to
the maximum height pixel value of a given plot. “Minimum Height” refers to the minimum height pixel
value of a given plot. “Height xth” refers to the xth height percentile for a given plot. For example, “Height
30th” is the 30th height percentile of the pixel distribution of a given plot.

Ordinary Least Squares | Maximum Height, Height 80th, Height 60th, Height 40th, Height

(OLS) Regression 30th 1114.438

Power Law (PL) Maximum Height, Height 80th, Height 60th, Height 50th 163.4564
Maximum Height, Height 90th, Height 20th, Height 10th,

Random Forest (RF) Minimum Height NA

Support Vector

Regression (SVR) Maximum Height, Height 10th, Minimum Height NA
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The R code for extracting LIDAR predictor variables and comparing model types can be
found at this link: https://github.com/UMGreenbelt/Greenbeli21

VI.  Estimating Carbon Storage on Greenbelt Properties

To estimate the biomass of individual properties, a PL model was used to predict the
biomass of a given property by creating a biomass raster with a 10-meter by 10-meter pixel size
(the same size as our sampled plots). To develop a biomass raster for the entire Greenbelt
District, multiple computing machines were necessary. We used Open Storage Research
Infrastructure (OSiRIS) to process large amounts of LiDAR data in the form of LAS files. First,
we copied LiDAR files covering the entirety of the Greenbelt District over to OSiRIS. Next, we
set up jobs to run on the Open Science Grid (OSG). Each tile was analyzed using R version
4.0.4 and the lidR package in R, with one tile per job. Then, each output file was copied back
from OSIRIS. Output TIF images were then mosaiced into a single raster in ArcGIS Pro. Any
cells of the mosaiced raster that fell outside of a manually digitized forest land cover feature
class provided by the City of Ann Arbor were set to equal zero in order to prevent buildings from
erroneously contributing to the final biomass calculations. The total biomass of a single property
was considered to be the summation of all pixel values that fell within or intersected the digitized
property boundary. This was calculated by using the Zonal Statistics as Table tool in ArcGIS
Pro. The total carbon storage of a given property was then assumed to be 50% of the total
biomass at that property. All biomass estimations for Greenbelt properties can be found in
Appendix C.

Results & Discussion

Ordinary Least Squares (OLS) Regression

Of the various model types used in this study, OLS explained the least amount of
variation within the dataset and within cross-validated testing datasets, as shown in Table 2.5.
Given the clustered nature of the training data, it is expected that OLS would explain a small
fraction of the variation as with limited data the assumptions of linear regression, such as
independence of observations, are difficult to meet. These results are consistent with several
studies such as Baccini et al. (2008) who found that RF explained 11% more of the variation in
the data set than OLS. However, many studies have used OLS models to effectively predict
biomass (Means et al., 1999; Popescu, 2007; Almeida et al., 2019), and given the simplicity of
OLS, it is an attractive option for practitioners to consider. However, in order for OLS to be
effective, it is necessary to have independence among observations to produce accurate
predictions of biomass, which may be difficult to achieve with clustered field data.

Power Law (PL)
The PL model proved to arguably be the most appropriate model for estimating biomass

from the LiDAR-derived predictor variables. It had by far the highest adjusted R? and
cross-validated R? values. The PL model outperformed OLS in almost every metric, proving to
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be consistent with the findings of Neesset et al. (2011). However, though the PL model had the
highest RMSE of all models, all of the models had relatively the same RMSE and the PL model
had the second smallest RMSE standard error between folds. This is an interesting result
because studies such as Naesset et al. (2011) created effective PL models in coniferous forests
whereas our study took place in primarily deciduous forests. Future research should explore the
overall effectiveness of PL models on biomass estimation in forests with varying heterogeneity.
Overall, the PL model is a relatively simple model and a very useful tool for practitioners to
consider when estimating biomass in similar conditions.

Random Forest (RF)

RF was arguably the second most appropriate model for estimating biomass of the
models tested. The RF model was likely affected by the relatively small sample size, and with
larger sample size, it could potentially be more suitable than the PL model because even with
limited data the RF model yielded the second-lowest RMSE. Our results are consistent with the
findings of Gleason and Im (2012) who yielded a slightly lower R? of 0.22, though their sample
size was even smaller (n=18). Practitioners interested in using RF or other machine learning
models would require access to large datasets in order to expect accurate results. While
designed to prevent overfitting, as noted by Mascaro et al. (2014), RF models can increase
spatial autocorrelation among the model residuals and overfit spatial data. Given our small
sample size, this is likely a large contributing factor to the performance of the model.

Support Vector Regression (SVR)

SVR performed similarly to RF, which was surprising given SVR’s ability to generalize
well with limited training samples (Mountrakis et al., 2011). SVR was arguably the least stable of
all model types explored, as it had the highest standard error between folds. SVR is an
important model to consider given its success at predicting biomass in other studies such as
Garcia-Gutiérrez et al. (2015). Given the results of our study, however, RF is a comparable and
arguably better machine learning algorithm to estimate biomass with limited training data in
densely forested conditions in Southeast Michigan. It is also important to consider the steep
learning curve and the necessity to parameterize the model properly. This alone may make SVR
a less appealing choice compared to RF or PL models for practitioners to estimate biomass.

24



Table 2.5. Displays the Adjusted R?values, p-values, 10-fold cross-validated R?values (CV R?), 10-fold
cross-validated RMSE (CV RMSE kg of biomass), and the standard error for all cross-validated model
metrics for each model type.

Adj. R? 0.21 0.43 NA NA
p-value 0.00 0.00 NA NA
CV RMSE kg of biomass 2060.99 2452.93 2074.94 2101.89
CV R? 0.27 0.37 0.28 0.28
CV RMSE Standard

Error 50.07 56.33 58.60 61.73
CV R? Standard Error 0.02 0.02 0.02 0.02

Conclusion

Overall Model Effectiveness Comparison

As shown in Table 2.5, overall a moderate to low amount of variation was explained from
the LiDAR-derived predictor variables and the plot-level forest inventory data that were
collected. This is perhaps due to several factors, including but not limited to the fact that three
years had passed between the LiDAR flight and when the training data were collected and the
limited diversity of the forested properties sampled. Future studies should seek to obtain the
most recent and robust airborne LIDAR and field data that was collected at approximately the
same time period. Unfortunately, that might not be practical for small land conservancies and
poorly funded government agencies. Therefore, these results are within the range of estimation
accuracy one should expect if a similar study design is conducted on dense deciduous forests
with limited training data in Southeast Michigan. Given these conditions, however, a major
conclusion that can be drawn is that the Power Law model arguably proved to be the most
appropriate for explaining the relationship between tree height and biomass. All model types
produced similar RMSE values and fairly stable predictions of biomass, only varying a few
kilograms of biomass between folds. Furthermore, given that the R? values standard error
between folds varied on average only around 0.02, this suggests that any of the models
explored would be able to consistently explain relatively the same amount of variation when
presented with plots with similar forest composition to the training data. Overall, our study
demonstrates that LIDAR biomass estimation models are worth further exploration to estimate
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carbon storage even with suboptimal access to robust LIDAR and field data collection
capabilities by practitioners.

Future Recommendations

Our study demonstrates the relative effectiveness of LIDAR biomass estimation in
Southeast Michigan and serves as a template for future studies in the region. However, there
are several attributes of our experimental design that can be improved upon. First, we only
sampled forests that were predominantly composed of maples, oaks, and other hardwoods
clustered in three locations. The separation in time from when the LiDAR flight was conducted
to when the training data was collected will likely affect the accuracy of our analysis as well.
Therefore, it is recommended that future studies collect a more diverse set of training data from
various forest types and spatial locations in the area of interest.

Our approach produces estimates that are not as exact as direct field measures and
could still be improved upon with additional sampling data to train the model. However, our
feasible approach does at the very least provide a reasonable estimate of overall aboveground
carbon that can be used for communication purposes of overall carbon storage. We would
caution against using this approach being used for the carbon market or for fine scale
comparison of properties with very similar values, but as data availability and methods evolve,
perhaps that would be feasible in the future.
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Chapter 3:

Belowground Carbon Storage: Measuring Organic Carbon Content in
Soils

Relevant Appendices
Appendix D: Map of Soil Types Found in the Greenbelt District
Appendix E: Summary of Aboveground Carbon Storage by Property

Introduction

Terrestrial ecosystems consist of two distinct compartments: aboveground and
belowground (Kardol & Wardle, 2010), and the ecosystem service value of carbon storage is
relevant to both. The Ann Arbor Greenbelt Program, which protects open space, farmland, and
natural habitats, can benefit from measures of carbon storage that communicate its value to
carbon neutrality and climate mitigation efforts. In Chapter 2, we looked at the amount of carbon
stored in part of the aboveground compartment (i.e. trees and shrubs). As shown in Figure 3.1,
approximately 40% of carbon stored in a Great Lakes forest is contained in aboveground tree
trunks and branches. In this chapter, we address the carbon in the belowground component.
Specifically, we focus on carbon in soil organic matter. Other aspects of belowground carbon,
such as tree roots, are not considered here because they are not as easily quantifiable. It is also
not possible to measure tree roots using remote sensing and they are not included in publicly
available GIS datasets. Our estimates of aboveground and belowground soil carbon storage
together make up 85% of total carbon storage in a forested ecosystem.

WHERE DOES CARBON GO?

SOILRESPIRATION
2.2 7l
.

TREEROOTS

13%
TOTALECOSYSTEM CARBON

80 tons/acre () SOIL DRGANIC MATTER
45%

Figure 3.1. Carbon Storage Distribution Aboveground and Belowground in a typical Great Lakes forest.
Sourced from Dierkes (2011).
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In this chapter, we produce a method and calculate estimates of soil carbon for
Greenbelt properties by first reviewing what is known about the importance of measuring soil
carbon storage, the amount of soil carbon in different land cover types (forest, wetland, and
agricultural), and appropriate methods for estimating soil carbon. Our guiding research
questions are summarized in Box 3.1:

Box 3.1. Research questions to understand belowground carbon storage in the Ann Arbor
Greenbelt

I.  Importance of Carbon in Soils: What is soil organic carbon and why measure it?
1. Carbon in Forest and Wetland Soils: How much carbon is contained in relatively
undisturbed land cover types?
1l Carbon in Agricultural Seils: What impact does agriculture have on soil carbon?
IV.  Soil Carbon Estimation: What existing methods can be used to estimate soil carbon?

I, Importance of Carbon Storage in Soils

A significant proportion of the world’s carbon is stored in soils. The amount of carbon
stored in soils is nearly three times that in aboveground biomass and double that in the
atmosphere (Schlesinger, 1986; Eswaran et al., 1993). Soil organic carbon (SOC) represents
the amount of carbon found in soil organic matter (Figure 3.1), and is usually expressed in
kilograms or kilograms per unit area. Soil organic matter consists of litter and decomposing
organic matter on the soil surface and decomposing leaves and other plant material in the soil
horizons (Schlesinger, 1986). SOC is estimated to be 47% of the mass of soil organic matter
(Don Zak, pers. comm., 18 June 2020), though some researchers have shown it is closer to
58% (Burt, 2014), the rest being inorganic material.

Attempts to estimate global and regional soil carbon reveal how significant the quantity
of carbon stored in the soil is. Lal (2007) estimated that 1550 petagrams (Pg) of carbon (C) is
stored as SOC in soils worldwide. A more recent estimate is 1460.5 Pg C, representing the
median of SOC estimates from 27 different studies (Scharlemann et al., 2014). These estimates
only include carbon in the top 1 meter of soil. Global SOC storage in the top 3 meters is
estimated at 2344 Pg C, which is over 50% more than the amount contained in the top 1 m
(Jobbagy & Jackson, 2000). However, it is important to note that methods to measure soil
carbon vary by region and there is no consensus on the amount of carbon stored in terrestrial
ecosystems (Scharlemann et al., 2014). In the United States, the estimated total SOC storage is
73 Pg C, according to a study by the U.S. Geological Survey. Of this, 25 Pg C are contained in
forest and woodland soils (Sundquist et al., 2009).

Though land use change can have substantial impacts on SOC (Scharlemann et al.,
2014), there is still a significant amount of carbon stored in urban areas and urban soil.
Churkina et al. (2010) estimated that in the year 2000, 18 Pg of carbon was stored in human
settlements of the contiguous United States. This is 10% of the U.S. total land carbon storage,
and the majority of that 18 Pg (64%) was in the soil.
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Clearly carbon stored in soils is a significant portion of total carbon storage across
different regions and habitat types, so current estimates of soil carbon are necessary to serve as
a baseline for assessing potential future carbon storage gains or losses (Sundquist et al., 2009).
Not only is estimating soil carbon important for climate regulation, but soil carbon management
can also have effects on other ecosystem services. Soils with higher carbon content have
increased water and nutrient storage and greater resistance to erosion (Scharlemann et al.,
2014). Although these other ecosystem services of soil carbon can be difficult to quantify, they
support the Greenbelt’'s mission to protect natural areas and water quality.

1. Carbon in Forest and Wetland Soils

The Ann Arbor Greenbelt contains a variety of land cover types, including 1,341 acres of
woodlands and 1,476 acres of wetlands. Soil carbon content varies by land cover type, with the
highest density of soil organic carbon occurring in forest land cover types, followed by
grassland, shrubs, and desert (Wang et al., 2010). Bae and Ryu (2015) estimated SOC stocks
up to a depth of 1 min an urban park in South Korea and found a tenfold difference in SOC
stocks across different land cover types, with the highest stocks of SOC occurring in wetlands
(~14 kg/m?) followed by forest, lawn, and bare soils. To accurately assess soil carbon on
Greenbelt properties, it is thus essential to understand the nature of soil carbon in forest and
wetland land use types specifically.

While forest management has a significant effect on aboveground carbon storage (in the
form of tree biomass), it has surprisingly little effect on belowground soil carbon storage.
Johnson (1992) examined existing literature on soil carbon change with forest harvesting and
found no general trend toward lower soil carbon. More recently, Powers et al. (2011) found that
different harvesting treatments, such as individual tree selection and shelterwood treatments,
resulted in no significant differences in understory carbon, forest floor carbon, or mineral soil
carbon pools. On the other hand, clearing the land for agriculture results in up to 50% loss in
soil carbon in most cases (Johnson, 1992). The fact that soil carbon storage does not vary by
forest management type is significant for the Greenbelt and other conservation easement
programs because soil carbon estimates will be more stable regardless of how forested land is
managed. A huge amount of carbon will remain stored in forest soils simply by preventing that
land from being developed.

Wetlands contain a disproportionate amount of total soil carbon in comparison to other
land cover types. Wetlands occupy 5-8% of the world’s land surface (Mitsch et al., 2009) but
contain 20-30% of global soil carbon (Nahlik & Fennessy, 2016). A study conducted in a British
moorland, a type of wetland in England, found that the soil contained at least 200 times more
carbon than the aboveground vegetation (Garnett et al., 2001). The Greenbelt District, or the
potential area of the land protection program, contains 24,611 acres of wetlands, making up
nearly 25% of the total acreage. Though only 1,476 acres of wetlands were protected by the
Greenbelt as of April 2021, the high potential for belowground carbon storage of wetlands
indicates the importance of prioritizing wetlands in the Greenbelt Program for their climate
mitigation service value.
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Ill.  Carbon in Agricultural Soils

The conversion of land to agriculture is generally found to have negative effects on soil
carbon storage. Changes in land uses, including agriculture, deforestation, and grazing increase
the net transfer of carbon from terrestrial ecosystems to the atmosphere (Davidson & Ackerman,
1993). Many studies have estimated the amount of carbon lost as a result of cultivation.
According to a review by Guo and Gifford (2002), converting forest land to cropland decreased
soil carbon by an average of 42%. In some cases, 25-50% of SOC in the top 1 meter has been
lost as a result of converting native vegetation to cropland (Scharlemann et al., 2014). This
depletion occurs over a period of 20 to 50 years in temperate climates (Lal, 2007). Furthermore,
the rate of soil carbon loss is highest in the first two or three years following cultivation
(Davidson & Ackerman, 1993).

Agriculture decreases SOC for a myriad of reasons. It can cause increases in soll
temperature, aeration, and moisture, leading to an increase in decomposition and a decrease in
the annual production of plant residues. As a result, there is a decline in the amount of organic
matter in the soil surface layers (Schlesinger, 1986). In addition, agriculture decreases the
amount of biomass returned to the soil, alters the carbon to nitrogen ratio, and increases soil
erosion (Lal, 2005). Though the effects of different agricultural practices, such as no-till farming,
on SOC have been a subject of debate in recent years (VandenBygaart, 2016), scientists have
concluded that most conventional agricultural practices have a net negative effect on soil carbon
(Scharlemann et al., 2014). This is especially true of annually tilled crops, which, at least
currently, make up the majority of acres in farmland in the Greenbelt area.

On the other hand, there are certain agricultural practices that are more definitively
known to increase soil carbon, including the addition of biochar and compost. Biochar is a
carbon-rich product created by pyrolyzing biomass in an environment with little or no oxygen
(Sanchez-Reinoso et al., 2020). Once biomass has been burned and turned into biochar it can
be mixed into agricultural soils. When mixed, the long residence time and stability of the carbon
in biochar from the pyrolysis process helps to increase the amount of carbon that can be stored
in agricultural soils (Jha et al., 2010). Lehmann et al. (2006) estimated that by the year 2100, it
could be possible to globally store 9.5 billion metric tons of carbon per year in soil with the
application of biochar. Similarly, composting incorporates microbial and biochemical processes
to create a more controlled and quicker substitute to the decomposition that occurs naturally in
soil (Mekki et al., 2019). The effects of compost addition to soil depend on the climate, soil type,
and farming practices used at a location, as well as the characteristics of the organic material
itself, but adding compost has generally been found to increase soil organic matter across
ecosystem types (Canali et al., 2004; Jaiarree et al., 2014; Mekki et al.; 2019).

While assessing carbon in the agricultural soils of the Greenbelt Program is a promising
future direction, we chose to limit our evaluation of carbon in soils to only forested and wetland
land areas within the Greenbelt properties. The Greenbelt Program by design is aimed at
conservation in perpetuity and not in influencing practices, beyond easement restrictions, on
that land. Carbon in agricultural soils will vary depending on cultivation, tilling, and composting
practices, and can be more labile than carbon in the soil of protected forest or wetland systems.
Thus, in assessing soil carbon for Greenbelt properties we exclude agricultural soils and focus
instead on assessing carbon in the soil of forests and wetlands.
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V. Soil Carbon Estimation

Estimates of soil carbon storage are calculated based on numerous features of the soil.
The most important of these are bulk density, horizon thickness, and carbon concentration
(Kimble et al., 2000). Box 3.2 below defines key physical properties of soils.

Box 3.2. Key terms for physical soil properties

Horizon depth - the upper and lower boundaries of each soil layer
Bulk density - the weight of soil {(ovendry) per unit volume
. Organic matter - the plant and animal residue in the soil at various stages of
decomposition, from which carbon concentration can be derived
Source: USDA Natural Resources Conservation Service (Soil Survey Staff)

SOC estimates also depend on other features such as profile characteristics (the layers
of soil), position on the landscape, characteristics of the terrain, temperature, and rainfall (Lal,
2007). Concentrations of organic carbon are highest in the uppermost horizons, or layers,
because plant residues are located at the surface of the soil. Soil carbon also varies with
management (as discussed above), moisture content, and other properties (Kimble et al., 2000),
all of which vary too much to be a part of feasible soil carbon estimation for the Greenbelt
program.

Unlike some of the less tractable soil features, soil type is an easily assessed and stable
feature of soil that can be used to identify key variables needed for soil carbon estimation. The
Greenbelt District is known to contain over 80 different soil types, which can be categorized into
three main types by particle size (Box 3.3). See Appendix D for a map of Greenbelt soil types.
Each soil type is associated with a different known bulk density and organic concentration that
varies by soil horizon. Thus, having soil type information also provides information on the other
key variables needed to estimate soil carbon.

Box 3.3. Definitions of Soil Types

. Sand - consists of soil particles that are 0.05 to 2 millimetars in diameter

. Silt - consists of mineral soil particles that are 0.002 to 0.05 millimeter in diameter

. Clay - consists of mineral soil particles that are less than 0.002 millimeter in diameter
Source: USDA Natural Resources Conservation Service (Soil Science Division Staff)

Given the valuable information soil type provides for carbon estimation, we determined it
was the most feasible and accurate way to approach soil carbon estimation of the Greenbelt
properties using already available site-specific soil type data. Measuring bulk density and
organic matter content in the field is a labor and time-intensive process, so using soil type as a
proxy for these features enabled us to get a rough estimate of soil organic carbon across the
Greenbelt district without the need to do field work.
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Methods

In order to calculate soil carbon for Ann Arbor Greenbelt properties, as well as create a
tool to continue assessment of future properties, we used publicly available spatial data from the
National Cooperative Soil Survey, which is operated by the USDA Natural Resources
Conservation Service (NRCS). The NRCS Web Soil Survey provides access to soil maps and
data for more than 95% of the nation’s counties (Soil Survey Staff). The Soil Survey Geographic
Database (SSURGO) includes, for each soil horizon, measures of horizon depth, bulk density,
and organic matter. From these data, we calculated the mass of organic carbon per unit surface
area for the top soil horizon.

We filtered GIS data from the NRCS Web Soil Survey to access soil properties specific
to the Greenbelt. First, we used the Area of Interest (AOI) tab to input shapefiles for the
Greenbelt (Figure 3.2). Because the total area of the Greenbelt District boundary shapefile
(105,675 acres, including the City of Ann Arbor), exceeds the AOI limit of 100,000 acres, the
shapefile was split in ArcGIS Pro into a North and South section.

Area of Interest

Import AOI

Create AOI from Shapefile

Multipart AQI? Click the question mark.  Set AOI|

O ©

S

=he file " Choose File | North.shp
.shx file ‘@‘ North.shx

Prifile [ Ghoose File | North.prj

-dbf file (optional) - ["chaosg File | North.dbf

Figure 3.2. Step 1: Define Area of Interest (AOI) for North section of Greenbelt.

Next, we generated a Soil Report for Soil Physical Properties for both the North and
South sections (Figure 3.3).

Report — Physical Soil Properties

Three values are provided to identify the expected Low (L), Representative Value (R), and High (H).
Washtenaw County, Michigan @
Map symbol Depth Sand Silt Clay Moist Saturated Available Linear Organic Erosion Wind Wind
and soil bulk hydraulic water extensibility matter factors erodibility erodibility
name density conductivity capacity Kw Kf T 9roup index
In Pct  Pct Pct g/cc  micro m/sec In/In Pct Pct
Ad—Adrian
muck
Adrian 0-26 -10- -50- -40- 0.30- 1.40-21.70- 0.35- = 75.0- 1 2 134
0.43- 42.00 0.40-0.45 82.5-
0.55 90.0
26-60 -92- -2- 2- 1.40- 42.00-92.00- 0.03- 0.0-1.5-2.9 0.0- .02 .02
6- 1.58- 141.00 0.06-0.08 0.3- 0.5
10 1.75

Figure 3.3. Step 2: Generate Soil Report for Physical Soil Properties. Here one soil type, Ad-Adrian
muck, is shown.
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The soil reports were downloaded and values for physical soil properties were entered
into an Excel spreadsheet set up to calculate soil carbon estimates (Figure 3.4). The NRCS
Web Soil Survey provides low, medium, and high values for bulk density and organic matter
content, as shown above in Figure 3.3. We calculated low, medium, and high estimates of soil
carbon using a combination of low-low, medium-medium, and high-high moist bulk density and
organic matter values.

A B C D E [F G H J K L M
Horizon Horizon low-bulk med-bulk high-bulk low- med- high-
depth depth density density density low-OC med-OC high-OC Carbon Carbon Carbon

1 |Soil Code Soil Name (in) (em) (g/fem3) (g/em3) (g/ecm3) (%) (%) (%) (kg/m#2) (kg/mA2) (kg/mh2)
2 Ad Adrian muck 26 66.04 0.3 0.43 0.55 75 82.5 90 69.8373 110.1101 153.6421
3 |BbA Blount loam 9 22.86 1.3 1.45 1.6 2 2.5 3 2.793492 3.894773 5.157216
4 BnB Boyer loamy sand 9 22.86 1.45 1.55 1.65 1 1.8 2.5 1.557909 2.997632 4.431983
5 |Br Brookston loam 11 27.94 1.35 1.43 1.5 3 4 5 5.318379 7.51139 9.84885
6 |Cc Cohoctah fine sandy loam 10 25.4 1.2 1.35 1.5 3 9 15 4.29768 14.50467 26.8605
7 |CoB Conover loam 11 27.94 1.4 1.48 1.55 2 2.5 3 3.676904 4.858766 6.106287
8 |CpA Conover-Brookston loams 11 27.94 1.4 1.48 1.55 2 2.5 3 3.676904 4.858766 6.106287
9 |Ed Edwards muck 32 81.28 0.3 0.43 0.55 75 82.5 90 85.9536 135.5202 189.0979
10 [FoA Fox sandy loam 9 22.86 1.3 1.45 1.6 1 2 3 1.396746 3.115818 5.157216

Figure 3.4. Partial list of soils found in Greenbelt District with values taken from Web Soil Survey report.

Soil carbon storage was calculated using the following formula:

Carbon storage (k—gz) =
m

Horizon depth (cm) X Bulk Density (ﬂgL;l) X Organic Matter Concentration (%) X 0.47 (% Carbon)
cm

The formula above was given to us by Dr. Don Zak, a soil scientist and SEAS faculty
member. The values for organic matter content were converted to soil organic carbon by
multiplying by 0.47 because 47% is an accepted and conservative estimate of the amount of
carbon contained in organic matter (Don Zak, pers. comm., 18 June 2020) This formula was
entered into columns K, L, and M (Figure 3.4) to calculate low, medium, and high carbon
estimates. Centimeters were converted into meters and grams into kilograms to produce
estimates of carbon in kilograms per square meter.

As an example, the low, medium, and high carbon storage values for Blount loam (row 3)
were calculated as follows. For low carbon storage, the horizon depth value from column D in
Figure 3.4, the low-bulk density value from column E, and the low-OC value from column H
were substituted into the equation above. When these values were plugged in, the equation
became, 22.86 (cm) x 1.3 (g/cm®) x 0.02 x 0.47 (% C) = 2.793492 kg/m? (in column K in Figure
3.4). The medium carbon storage calculation was done using horizon depth from column D,
med-bulk density from column F, and med-OC from column | in Figure 3.4 above. The
calculations were done in the same manner as for the low carbon storage value and the output
can be seen in column L of Figure 3.4. Finally, horizon depth, high-bulk density and high-OC
from columns D, G, and J, respectively, were input into the equation above to determine the
high value of carbon storage. The output was recorded in column M.
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To assess carbon specifically for forest and wetland land cover types, we used a 30-m
spatial resolution National Land Cover Database (NLCD) from 2016 to determine land-use and
land-cover in the Greenbelt District. As shown in Figure 3.5, this layer was clipped to the extent
of Washtenaw County (as some properties are located just outside the district boundary) and
converted from raster to vector format without simplified polygons. Forest and wetland cover
types were selected and joined with the CitySoils layer containing soil types of the county.
Irrelevant fields were deleted and the Soil Carbon csv (a simplified version of Figure 3.4 with
unnecessary fields removed) was joined to the forest and wetland soils layer. The output is
stored as a shapefile, labeled as “soil_carbon” at the bottom of Figure 3.5. This shapefile
contains soil carbon amount per unit area (kg/m?).

nlcd_mi_utm16.tif

2
T
T
_ Raster to
ClipRaster ~ —*nled_washtenaw ————> ‘500,
.-"‘J' S
-“"/ H‘““’“m.
2015_Washtenaw.sid =
_ nlcd_washtenaw_vec
Select o
.
forest wetland
e
Spatial Join
> _
_— T
- forest_wetland
CitySoils 1)
-
_ Delete Field

forest_wetland.. %
(2)

Add Join

soil carbon

Figure 3.5. Soil Model 1 (static)

Required input data: NLCD land cover types (nlcd_mi_utm16), aerial image of Washtenaw county
(2015_Washtenaw.sid), City Soils data obtained from the City of Ann Arbor (CitySoils), Soil Carbon
spreadsheet converted into a CSV (Soil Carbon.csv).
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The output of Model 1 was used as input to Model 2 (Figure 3.6) to calculate soil carbon
storage for a single Greenbelt Property. Model 1 is a one-time process; assuming land cover
types do not change, this model does not need to be run as additional properties are added to
the Greenbelt.

soil_carbon
T Add Fields
_ . - .
Clip Layer —> Scio.shp (multiple) Sciol.shp
Open_Roads Calculate
Geometry
Attributes
~
‘/
Calmle(i;f): Field —  Sciodshp - Calculz(ig Field Scio3.shp . Calcul;?:e): Field Scio2:shp
Scio5.shp — SSlg?lr;TgSY —» ScioSlafistics ———» Table To Excel —» ScioSoilCarbon

Figure 3.6. Soil Model 2 (dynamic)
Required input data: soil_carbon (output of Model 1) and a shapefile of a single Greenbelt property

Model 2 uses Open_Roads (otherwise known as Scio Woods) as a sample property. The
model clips soil_carbon to the property boundary, calculates area in square meters, and
calculates total soil carbon storage in kilograms, separated by cover type (forest or wetland) at
that property. The result is exported as an Excel spreadsheet containing low, medium, and high
carbon storage estimates. Model 2 was exported as a Python file and modified to run a list of all
existing Greenbelt properties as of April 2021. This code can be found as “SoilModelTutorial.py”
at the following link: https://github.com/UMGreenbelt/Greenbeli21.

Storing carbon in aboveground biomass or as soil organic matter keeps it out of the
atmosphere as carbon dioxide, which is a global externality associated with a plethora of
economic and social costs (Cai & Lontzek, 2019). In order to connect carbon storage on
Greenbelt properties to dollar values, we applied the pricing model used by the EPA where
values represent the total long-term damage derived from emitting one ton of carbon as well as
the value of the avoided damages due to emission reductions (U.S. EPA, 2016). The EPA model
estimates the social cost of emitting one metric ton of carbon at $51 (Interagency Working
Group on Social Cost of Greenhouse Gases, 2021), which is currently the official baseline for
the EPA and the City of Ann Arbor.

Results
Table 3.1 shows the carbon stored in forested and wetland soils at three sample

Greenbelt properties and the total stored in all properties currently protected in the Greenbelt.
Forest soils make up 20.6% of the Greenbelt district and wetland soils make up 8.7%. Carbon

40


https://github.com/UMGreenbelt/Greenbelt21

stored in forest and wetland soils in various Greenbelt properties, based on NRCS Web Soil
Survey results for medium bulk density and organic content. The complete list of properties can
be found in Appendix E.

Table 3.1. Soil Carbon Storage in three sample Greenbelt Properties and across all Greenbelt properties

(as of April 2021)

Forest Soil Carbon
(kg)

Wetland Soil Carbon

(kg)

Total Soil Carbon (kg)

Sample properties

Whitney 2,510,091 5,988,566 8,498,657

Botero 262,790 4,212,790 4,475,580

Scio Woods 1,641,390 94,994 1,736,384
Total Greenbelt 23,605,839 26,399,893 50,005,732
Properties

To convert mass of carbon stored in kilograms to other metrics that communicate their
value, we used a variety of available sources and conversion standards. Table 3.2 shows the
social cost and carbon emission equivalents for selected Greenbelt properties as well as for all
current Greenbelt properties. The social cost of carbon represents the societal costs, in terms of
the long-term damage done to both the environment and human health, that are associated with
the emission of one extra ton of CO, (U.S. EPA, 2016). Social cost and passenger vehicle mile
emission estimates came from the EPA’'s Greenhouse Gases Equivalencies Calculator, airline
mile emission estimates were sourced from BlueSkyModel, and yearly average household
emission data was gathered using the CoolClimate Household Calculator (U.S. EPA, 2021;
BlueSkyModel; CoolClimate Network).

Table 3.2. Social Cost and Carbon Emission Equivalents

Social Cost ($) [Passenger
Vehicle Miles

Equivalent (mi)

Airline Miles Avg. Annual Ann
Equivalent (mi) | Arbor Household
Emission
Equivalent (# of
households)

Sample properties

Whitney $1,589,263.37 21,036,280 351,526 708
Botero $836,941.06 11,078,168 185,121 373
Scio $324,706.75 4,297,980 71,821 145
Woods
Total Greenbelt $9,351,156.96 123,776,564 2,068,363 4,167
Properties
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A different valuation model from Hungate et al. (2017) estimates the social cost of
carbon at $42 to $400 per metric ton of C, with a median value of $137. The estimates from this
model are lower than those calculated using the EPA social cost of carbon because the units of
this model are metric tons of C while the units for the EPA model are metric tons of CO,. Using
the median value from the Hungate et al. (2017) model, we calculated the social cost of the soil
carbon for the three sample properties from Table 3.2. We found that Whitney had a value of
$1,164,316.05, Botero had a value of $613,154.46, and Scio Woods had a value of
$237,884.60. In total, using this model, we calculated the social cost of belowground soil carbon
storage for all Greenbelt properties to be $6,850,785.33.

Di ion
Major Findings

Overall, we have demonstrated that it is feasible to calculate soil carbon storage using a
combination of existing GIS data, the NRCS Web Soil Survey, and formulas to calculate total
soil carbon for different land cover types. To our knowledge this is the first use of this practical
method to assess soil carbon using only available spatial data on soil type and known
conversion, without the need for any field data collection. Unlike our assessment of
aboveground carbon storage, no field work was necessary to achieve these results. Using the
estimates for soil carbon storage at the individual property and Greenbelt-wide levels derived
from this method we converted the values into common equivalents, such as average annual
Ann Arbor household emissions and passenger vehicle and airline miles. These equivalents
allow the value of soil carbon storage to be communicated in a manner beyond kilograms of
carbon so the impact of the Greenbelt Program can more easily be understood.

Limitations and Caveats

We believe our estimates of soil carbon are conservative. First, we conservatively
calculated soil carbon as 47% of organic matter, but other literature indicates that soil carbon
may constitute 58% of organic matter (Burt, 2014). Using a higher percentage of carbon would
have increased the carbon estimates for the Greenbelt. In addition, we used the NRCS Web
Soil Survey results for medium estimates of bulk density and organic content as opposed to the
high estimates. Furthermore, we only calculated soil carbon in the top horizon of soil. Soil
carbon exists at other depths of the soil, but in decreasing amounts (Wang et al., 2010). Lastly,
we only calculated soil carbon in forested and wetland parts of the Greenbelt, even though
agricultural land currently makes up about one quarter of the land cover in the Greenbelt District
(not including the City of Ann Arbor). This exclusion of agricultural land makes sense, however,
given the likely low carbon storage value of most annual crop fields and the complexities of
applying a model based on soil type to agricultural land with variable practices. Future
adaptations of the model are presented in the subsequent section.

The dollar values we have calculated and presented above for the social cost of soll
carbon represent the value of having the soil protected and kept in place. They are different
from the dollar values we calculated in Chapter 2 because the value of soil carbon does not
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come from its salable value like aboveground biomass from trees. Instead, the value of soil
carbon is derived from it remaining in place and being protected from disturbance in perpetuity.

Uses and Future Applications of Soil Carbon Model

Our soil carbon model is intended to be used for future Greenbelt property acquisitions.
The output of Model 1 can be used repeatedly as input to Model 2 for each individual property to
calculate forest and wetland soil carbon. That said, if there is a change in land cover type,
Model 1 would need to be updated with a more recent NLCD layer. For example, if land that is
currently forested is converted to farmland before being added to the Greenbelt, the existing
model would erroneously calculate forest soil carbon storage for that land under the 2016 NLCD
cover type.

The model is not designed to be used for farmland of any kind, but could be adapted for
certain situations. If in the future there is interest in applying the model to agricultural land,
Model 1 would need to be modified to select agriculture in addition to forest and wetland land
cover types. Roughly 50% of the carbon reported by the model based on soil type can be
considered intact, as the rest was depleted due to cultivation (Scharlemann et al., 2014). We
caution against using the model for this purpose because our methodology for estimating soil
carbon in forests and wetlands is heavily grounded in primary literature, and loosely adapting it
for agricultural soils would simply add uncertainty and detract from its overall robustness.

It is possible to increase both the soil organic content and soil quality of agricultural soils.
Aticho (2013) recommend that stakeholders focus on management activities that improve SOC
and bulk density to increase carbon storage capacity of the soil. As discussed above, biochar
and compost amendments can increase soil carbon storage. Increasing soil carbon has
implications not only for climate mitigation goals but also, in some cases, for increasing crop
yields. The Greenbelt Program, or similar initiatives, could consider incentivizing certain farming
practices to increase the amount of carbon stored in agricultural soils as a way to further
increase the ecosystem service value of land protected from development.
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Chapter 4:

Water Ecosystem Services

Relevant Appendices
Appendix F: Soil & Water Assessment Tool (SWAT) Input Files

Introduction

Water ecosystem services are ecological processes and outcomes linked directly or
indirectly to the hydrological cycle. These services provide us tangible benefits such as water
purification, water retention, and climate regulation (Grizzetti et al., 2016). Whereas Chapters 2
and 3 focused on carbon storage as it relates to climate ecosystem services, this chapter serves
as a review of the potential impacts of land conversion on water ecosystem services and
existing approaches used to measure them. In particular, this chapter will focus on nutrient and
heavy metal loading as proxies for water quality, due to their influence on both ecosystem and
human health. Our primary research questions are summarized in Box 4.1:

Box 4.1. Key research questions to understand water ecosystem services in the Ann Arbor
Greenbelt

l. Background: \What are the key factors or variables to consider when assessing
water-related ecosystem services?
Il.  Existing Approaches: What tools/approaches exist for quantifying water ecosystem
services?
1. Recommendations: How can the City of Ann Arbor assess water ecosystem services in
the Greenbelt district while ensuring broader access to such data?

I.  Background

Water ecosystem services are important to measure because they are integral to human
life and environmental health, and are also impacted by a vast array of stressors imposed by
humans. Streams, lakes, surface water, and groundwater together make up the hydrology of a
given landscape. This hydrology affects all types of ecosystem services in different and related
ways, including provisioning (clean drinking water), regulating (climate regulation and water
purification), supporting (hydrological cycling), and cultural (recreation and aesthetic) services
(Leemans & De Groot, 2003). Ensuring the security of these ecosystem services relies on our
ability to recognize both the natural resources and associated landscapes that provide us with
these benefits and the stressors that threaten them (see Figure 4.1). Water supply and quality
are especially impacted by stressors such as groundwater abstractions, point and nonpoint
source pollution, and groundwater salinization, just to name a few (Grizzetti et al., 2016).
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Figure 4.1. The graphic above depicts the relationship between natural resources, water quality benefits,
and the drivers of change that threaten them. Sourced from the EPA EnviroAtlas (Jahre, 2020).

Land conservation efforts, such as the Ann Arbor Greenbelt Program, can be an

essential tool to protect water ecosystem services from the stressors known to impact water
supply and quality. As outlined in the 2019 Greenbelt Strategic Plan, the program’s vision for the
future highlights the need for conserving parcels that protect Ann Arbor’s water resources and
support pollution breakdown and absorption (The Conservation Fund, 2019). To assess the
progress of the Greenbelt program toward this goal, the impact of different land use on water
supply and quality can be quantified on a parcel-by-parcel basis. We focus in particular on
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assessing the value of protected land for water quality, because nonpoint source pollution is
highly quantifiable and can be modeled to estimate both the impacts of development and the
value of conservation easements in preventing it. It is especially important for the Greenbelt
Program to assess the impact of protected land on water quality because the Greenbelt District
overlaps with the Huron River watershed, a key source of City of Ann Arbor drinking water and a
favorite recreational area.

Nonpoint source pollution is defined as pollution that comes from many diffuse sources,
generally resulting from land runoff, precipitation, atmospheric deposition, drainage, seepage or
hydrologic modification. Nonpoint source pollutants include substances such as oil, toxic
chemicals, fertilizers, sediments, bacteria, and nutrients such as nitrogen and phosphorus
(United States EPA, 2020). Models are useful for understanding water quality and
corresponding pollutants because they allow for accurate forecasting and simulation, while
simultaneously avoiding the time and labor costs involved in gathering field measurements. In
tools designed to assess water quality, nonpoint source pollution is typically modeled as nutrient
or heavy metal loading. Nutrient or heavy metal loads represent the rate at which these
substances enter the environment from nonpoint sources, and estimated reductions in these
loads are often used to justify activities such as environmental stewardship and land
conservation. Nutrient and heavy metal loading are important to measure because they can
have harmful effects on both environmental and human health. Aquatic ecosystems
experiencing heavy nonpoint source pollution may undergo eutrophication, where the influx of
excess organic matter and nutrients can result in toxic algal blooms, accelerated succession,
and other ecological harms (Khan & Ansari, 2005). Similarly, the introduction of heavy metals
into the environment can result in human exposure through biomagnification, where toxicants
concentrate along the food chain, or the consumption of contaminated water (Singare et al.,
2011).

Il.  Existing Approaches

The purpose of this section is to compare current approaches used to estimate water
quality parameters and how they vary with land cover and land use changes. More specifically,
we focused on tools that were capable of modeling nonpoint source pollution through nutrient
and heavy metal loading with minimal input data required, noting the additional capabilities of
each. The EPA Region 5 Model, Great Lakes Watershed Management System, and Soil &
Water Assessment Tool were chosen for evaluation due to their relevance, accessibility, and
current use in land conservation efforts.

A. EPA Region 5 Model

The Environmental Protection Agency’s Region 5 division is one of ten federal regions
created to facilitate easier operations with state and local governments, and represents six
states: Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin (Williams, 1993). The EPA
Region 5 Model is an Excel workbook that uses data from this geographical region to estimate
nutrient and sediment load reductions based on varying land cover and land management
practices. The model contains seven distinct worksheets, with focuses ranging from Gully

49



Stabilization to Urban Runoff. The most relevant of these worksheets to the Greenbelt Program
is the Conservation Easement Load Reduction Worksheet, because it allows the user to
quantify the water quality benefits of placing conservation easements on land parcels. More
specifically, based on data from the lllinois EPA, the Conservation Easement Load Reduction
Worksheet allows users to calculate changes in nutrient and heavy metal loading based on the
following formula:

Load Reduction = (Unit Load of Proposed Use X Area) — (Unit Load with Easement X Area)

The Region 5 Model requires only two primary inputs to complete a calculation, namely
the area of the land parcel in acres (stipulating whether it is sewered or unsewered) and the
most probable developed use of the easement area. For the latter input, the user can select
Commercial, Industrial, Institutional, Transportation, Multi-Family, Residential, or Agriculture.
The nutrient and heavy metal loading calculations are based on a table embedded in the
worksheet that contains the average pollutant load by land use type in pounds per acre per
year, based on an inventory conducted by the Northeast lllinois Planning Commission in 1993
that was subsequently adopted by the lllinois EPA. In addition to the aforementioned types of
developed land use, this table contains average pollutant load data for Open Space and Vacant
land use types. In its standard form, the worksheet uses the input data to produce a “Load
Reduction with Easement” estimate using the difference between the proposed land use and
Open Space loading values, where Open Space refers to undeveloped natural areas.

For the purposes of the Greenbelt Program, The Conservation Fund produced an edited
version of this worksheet in 2020 that automatically calculates the proposed difference in
loading values for agricultural easements when compared to other developed land uses. The
output of the tool shows the predicted change in load values for the following water quality
parameters: Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total
Suspended Solids (TSS), Total Dissolved Solids (TDS), Total Nitrogen (TN), Total Kjeldahl
Nitrogen (TKN), Dissolved Phosphorus (DP), Total Phosphorus (TP), Lead, Copper, Zinc, and
Cadmium. Table 4.1 provides an example of this output for a sample area, the entirety of which
resides in the River Raisin watershed.

While the EPA Region 5 Model provides its users with a simple method of inputting basic
data in order to obtain water pollution estimates, it is entirely based on loading averages that are
neither tailored to the study sites in question nor recent literature. The simplicity of the tool
hinders the user from accounting for a plethora of variables that could influence nutrient and
heavy metal loading, such as soil type, elevation, proximity to waterways, and location within the
watershed. Additionally, the lllinois EPA data embedded in the tool has not been updated since
1993, despite the fact that the tool was most recently updated in 2010.
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Table 4.1. EPA Region 5 Model output for a sample area (102 acres) in the River Raisin watershed, with
most probable developed land use set to ‘Residential.” Average pollutant load data sourced from lllinois
EPA, representing unit area pollutant load estimates for Lake County, lllinois Lake Michigan Watersheds
(August 1993).

Substance Residential Agricultural Load Reduction
Loading (Ibs/yr.) Loading (Ibs/yr.) with Agricultural

Easement (Ibs/yr.)

Biochemical Oxygen Demand 1,122 306 816

(BOD)

Chemical Oxygen Demand 7,242 2,856 4,386

(COD)

Total Suspended Solids (TSS) 15,708 15,606 102

Total Dissolved Solids (TDS) 22,236 9,098.4 13,137.6

Total Nitrogen (TN) 316.2 2448 714

Total Kjeldahl Nitrogen (TKN) 163 92.62 70.38

Dissolved Phosphorus (DP) 13.26 8.16 5.1

Total Phosphorus (TP) 40.8 18.36 22.44

Lead 11.93 0.2 11.73

Copper 2.45 0.45 2

Zinc 45.9 7.04 38.86

Cadmium 0.1 0.02 0.08

B. Great Lakes Watershed Management System

The Great Lakes Watershed Management System (GLWMS) is an online tool developed
by the Institute of Water Research at Michigan State University. Free to use, it allows users to
track and predict a variety of water quality metrics at both coarse and fine scales. These metrics
can be aggregated into customized reports and saved as individual projects for future reference.
There are five primary modules for assessment in GLWMS: Water Erosion, Groundwater
Recharge, Nutrient Loading, Nutrient Loading (enhanced), and Wind Erosion. Using these
modules, the tool can be used to estimate the impacts of land-use changes and land
management practices for any given area on the virtual map interface. This area can be defined
by the user by manually drawing a polygon or by uploading a shapefile, provided it lies within
the boundaries of the watersheds available in the tool.

Where the EPA Region 5 tool struggles to combine multiple data sources into one
analysis, the GLWMS thrives. All modules can be run simultaneously over an area of interest,
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and the parameters of each module can be adjusted to account for different landscape features
or management practices. Furthermore, nutrient loading is broken down into two separate
modules, standard and enhanced. The standard module uses the Long-Term Hydrological
Impact Analysis (L-THIA) framework developed by Purdue University, which estimates changes
in recharge, runoff, and nonpoint source pollution using historical land use, soil, and climate
data. The enhanced module uses a web-based version of the Spreadsheet Tool for Estimating
Pollutant Load (STEPL) framework developed by the EPA, which estimates changes in nonpoint
source pollution using soil, wastewater, climate, land use, nutrient concentration, and other data.
While both have similar functionality, the L-THIA model focuses more on historical climate data
while STEPL focuses more on land management practices (Nejadhashemi et al., 2011). Table
4.2 provides an example of the output of the enhanced Nutrient Loading module for the same
sample area in Table 4.1.

Powerful and simple to use, the GLWMS is an ideally designed tool for assessing water
ecosystem services on a parcel-by-parcel basis. Its applicability in practice is, however, limited
by the number of watersheds included in the interface. Only land parcels within the River Raisin,
Shiawassee, and a handful of other watersheds in the Upper Midwest can be modeled, while
parcels outside of these boundaries cannot, because the tool does not contain the necessary
data for these geographical areas. Currently, the GLWMS does not contain modeling capabilities
for the Huron River Watershed, within which a vast majority of Greenbelt properties reside.
Moreover, the GLWMS only estimates two pollutants in the STEPL Nutrient Loading module
(nitrogen and phosphorus) and four pollutants in the L-THIA Nutrient Loading module
(phosphorus, copper, lead, and zinc), whereas the EPA Region 5 model estimates twelve (see
Table 4.3 for model comparisons).

Table 4.2. Great Lakes Watershed Management System (GLWMS) enhanced Nutrient Loading module
output for the sample area, with proposed land use change set to low density residential. Pollutant load
data calculated using the EPA Spreadsheet Tool for Estimating Pollutant Load (STEPL) framework.

Substance Current Annual Loading (Ibs/yr.) Change in Annual Loading (lbs/yr.)
Phosphorus 399.98 -187.27
Nitrogen 1504.83 -1078.35

C. Soil & Water Assessment Tool

The Soil & Water Assessment Tool (SWAT) is a GIS tool developed by the USDA
Agricultural Research Service (ARS). The SWAT model simulates the quality and quantity of
surface and ground water at the small watershed to river basin scale using primarily local
climate, land cover, and land management information. It is used to predict the environmental
impact of land use, land management practices, and climate change on outputs such as
sediment yield, nutrient loading, crop yield, surface runoff, stream flow, groundwater flow, and
water yield.

SWAT can be used to quantify water ecosystem services that are also related to climate
mitigation. For example, Gathenya et al. (2011) applied SWAT to water conservation to simulate
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hydrological processes and crop growth based on daily temperature, water availability, and
other variables in Tibet. Immerzeel et al. (2008) used SWAT to consider how different climate
change scenarios would affect streamflow and sediment yield. Determining the effects of
rainfall, temperature, and infiltration capacity of land surface could serve as justification for
modifying hydrology or adapting to climate change.

SWAT can run as a GIS extension tool on either ArcGIS or QGIS, but a potential
downside to SWAT is the vast number of inputs required to run the tool. The first step in setting
up a watershed simulation is to partition the watershed into subunits. Subbasins are the first
level of subdivision in a watershed and are spatially related to one another, so outflow from one
subbasin enters the adjacent one. This step requires information such as subbasins, channel
segments, impoundments, and point sources. After subbasins are delineated, many individual
files are required as inputs, including precipitation, temperature, solar radiation, wind speed,
relative humidity, weather forecast, land cover, water use, and fertilizer. A full list of all the
required and optional input files can be found in Appendix F.

In comparison to the EPA Region 5 Model and GLWMS, SWAT is a much more
computationally intensive tool that requires substantial input, which is why it is typically only
used by experienced hydrologists (Muleta & Nicklow, 2005). Unlike the other two models, we
were unable to produce any results for the Greenbelt using SWAT due to lack of access to
detailed input data pertaining to climate, sediment, pesticide use, bacteria, channel and
impoundment processes, and land management practices. SWAT does go beyond the other
models in terms of assessing not just quality, but also water quantity measures (e.g. stream and
groundwater flow), but if the desired focus is water quality (nonpoint source pollution) and soil
erosion, the other models are capable of calculating these outputs with greater ease (see Table
4.3).
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Table 4.3. Comparison of three tools commonly used to assess land use impact on water ecosystem
services: EPA Region 5 Model, Great Lakes Watershed Management System, and Soil & Water
Assessment Tool. Data sourced from lllinois EPA, Michigan State University, USDA, and Bukhari et al.

(2015).
EPA Region 5 Model Great Lakes Watershed Soil & Water
Management System Assessment Tool
Inputs Acreage, proposed land Acreage (via shapefile or Watershed dimensions,
use change drawn polygon), proposed | climate, hydrologic cycle,
land use change, land sediment, nutrients,
management practices pesticides, bacteria, water
quality, plants, channel
and impoundment
processes, land
management practices
Outputs Nutrient and heavy metal Nutrient and heavy metal Nutrient and heavy metal
loads loads (L-THIA, STEPL), loads, sediment yield, crop
groundwater recharge, yield, surface runoff,
water erosion, wind stream flow, groundwater
erosion flow, water yield
Format Excel spreadsheet Website ArcGIS and QGIS
extension
Accessibility Free download from EPA Web tool with free user Free download but
website account activation requires GIS software
Ease of Use Simple spreadsheet Simple web interface, Complex GIS interface,
interface, minimal data several modules and data | difficult to calibrate, many
inputs inputs detailed data inputs

1. Recommendations

Based on the information provided in this chapter, we have two primary
recommendations for the Greenbelt program to improve and expand its analysis of water
ecosystem services:

1. Provide a more accessible web-based version of the EPA Region 5 Model
Conservation Easement worksheet; and

2. Work with the Institute of Water Research at Michigan State University to update
the Great Lakes Management System to include other watersheds (namely the
Huron River watershed) within the Greenbelt District.

To facilitate our first recommendation, we have reformatted the EPA Region 5
Conservation Load Reduction Calculator into a web page and shared it with the City. In addition
to internal use, this file will ideally be hosted by the City and become available to all
conservation practitioners looking to quickly analyze the potential water quality benefits of
implementing conservation easements in the Great Lakes region. A Google Sites-hosted
version of this website can be accessed at the following link, a preview of which is shown in
Figure 4.2. https://sites.google.com/umich.edu/epa-r5-model/home?authuser=0
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EPA Region 5 Load Reduction Calculator

Input information regarding proposed land use change_ acreage, and easement type below

Proposed Land Use Change:

Acres of Sewered Land:

b ]

Acres of Unsewered Land

[suBmIT]

Results
Substance: Load (Thsiyr): Load Reduction with Agricultural Easement (Ibs/yr): Load Reduction with Open Space Easement (lbs/yr):
Biochemical Oxygen Demand (BOD) 1100 800 1060
Chemical Oxygen Demand (COD) 7100 4300 5600
Total Suspended Solids (TSS) 15400 100 13400
Total Dissolved Solids (TDS) 21800 12880 -2300
Total Nitrogen (TN) 310 70 200
Total Kjeldahl Nitrogen {TEKIN) 160 69 116
Dissolved Phosphorus (DP) 13 5 10
Total Phosphorus (TP) 40 22 27
Lead 11.79 115 11.16
Copper 24 1.96 22
Zinc 45 381 42
Cadmivm 0.1 0.08 0.00

Figure 4.2. Web-based version EPA Region 5 Model Conservation Easement Load Reduction Calculator.
All data sourced from the lllinois EPA.

To facilitate our second recommendation, we have worked with representatives of the
Institute of Water Research to determine the best course of action to provide the City, as well as
other local land conservancies, with an updated version of the Great Lakes Watershed
Management System. This updated version would permit analysis within the Greenbelt District
and be more finely tuned to the geography, geology, and hydrology of the area. More
specifically, we recommend that the Greenbelt Program attempt to fund this project via the
Technical Enhancement Funds available through the United States Department of Agriculture’s
Regional Conservation Partners Program (RCPP). These funds are designed to facilitate
innovation that would otherwise not be available to a group of conservation practitioners,
making it an ideal choice for the Greenbelt Program.

By utilizing the aforementioned tools and recommendations in this chapter, the
Greenbelt Program can assess key ecosystem services related to water such as nonpoint
source pollution mitigation. Further adaptation of these tools could facilitate reporting on other
ecosystem services that were not included in this analysis but are largely impacted by changes
in land use, including flooding, soil erosion, and climate regulation. Such information can be
crucial to communicate to the public in order to garner further support for conservation efforts
and raise awareness for the further protection of the ecosystem services provided by the parks
and easements throughout the Greenbelt District.
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Appendix A: Maps of Field Sample Plot Locations

Field Sample Plot Locations for Scio Woods Preserve
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Field Sample Plot Locations for Brauer Preserve
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Field Sample Plot Locations for Creekshead Preserve
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Appendix B: Field Data

ite 1: Scio W Preserv
Collection Date: 9/27/2020
Plot # |Tree # |Species Code |Species DBH (cm){Notes
1 1[ACSA Acer saccharum 14.0
2|ACSA Acer saccharum 17:3
3(TIAM Tilia americana 41.7
4| TIAM Tilia americana 47.4
5|TIAM Tilia americana 514
B6(TIAM Tilia americana 31.0
2 1[CAQV Carya ovata 36.9
3 1[ACSA Acer saccharum 21.7
2|ACSA Acer saccharum 19.2
3|ACSA Acer saccharum 15.6
4[QUAL Quercus alba 46.5
5|QUAL Quercus alba 26.2
6|QUAL Quercus alba 212
4 0|N/A N/A N/A no trees in this plot
5 1[AIAL Ailanthus altissima 16.9
6 1[QURU Quercus rubra 43.8
2|CACO Carya cordiformis 36.7
7 1[ACSA Acer saccharum 12.4
2|ACSA Acer saccharum 20.5
3|ACSA Acer saccharum 15.1
4|ACSA Acer saccharum 58.2|tag #1020
5(0sVI Ostrya virginiana 21.5|tag #1021
B6|FAGR Fagus grandifolia 17.4
7|TIAM Tilia americana 28.0|tag #1015
8|PRSE Prunus serotina 30.0
9|PRSE Prunus serofina 29.9
8 1[ACSA Acer saccharum 16.2
2(CACO Carya cordiformis 295
3|ACSA Acer saccharum 12:3
4|TIAM Tilia americana 44.3
5|ACSA Acer saccharum 19.8
9 1[ACSA Acer saccharum 36.1
2|QUAL Quercus alba 48.6
3|ACSA Acer saccharum 16.1
4|ACSA Acer saccharum 13.7
10 1[{CACO Carya cordiformis 40.4
2(TIAM Tilia americana 23.2
3|ACSA Acer saccharum 20.7
4|ACSA Acer saccharum 19.5
5|ACSA Acer saccharum 13.3
B6|CACO Carya cordiformis 18.8
Collection Date: 10/5/2020
Plot # Tree # |Species Code |Species DBH (cm){Notes
1 1[OSVI Ostrya virginiana 15.9
2|0svI Ostrya virginiana 16.1
3|0OsvI Ostrya virginiana 13.3
4|ACSA Acer saccharum 171
5[JUNI Juglans nigra 374
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Site 1: Scio Woods Preserve (cont’d

12 1[ACSA Acer saccharum 14.7
2[QUAL Quercus alba 28.4
3[QURU Quercus rubra 13.4
4|ACSA Acer saccharum 16.9
5(TIAM Tilia americana 253
6|CAQV Carya ovata 357
7|QUAL Quercus alba 49.0
8|CAGL Carya glabra 19.7
13 O|N/A N/A N/A no trees in this plot
14 1[QUAL Quercus alba 47.5
2|CAQV Carya ovata 36.5
3[QUAL Quercus alba 32.8
4|ACSA Acer saccharum 16.0
5|CAGL Carya glabra 36.9
15 0[N/A N/A N/A no trees in this plot
16 1[FAGR Fagus grandifolia 33.2
2|CAGL Carya glabra 259
3|ACSA Acer saccharum 19.2
17 1[QUAL Quercus alba 251
2[QUAL Quercus alba 21.8
3(TIAM Tilia americana 14.3
4|TIAM Tilia americana 11.0
5[QURU Quercus rubra 359
6|CAGL Carya glabra 2102
T|CAGL Carya glabra 14.5
8[QUAL Quercus alba 15.7
9(TIAM Tilia americana 16.8
10|ACSA Acer saccharum 11.9
11]0OSVI Ostrya virginiana 11.0
18 1[TIAM Tilia americana 26.4|"near big trees! 82cm dbh!!
2|ACSA Acer saccharum 49.9
3|ACSA Acer saccharum 15.4
19 1[QUAL Quercus alba 58.5
2|ACSA Acer saccharum 258
3|QUAL Quercus alba 57.4
4|ACSA Acer saccharum 30.6
5|ACSA Acer saccharum 44 .2
20 1[ACSA Acer saccharum 46.7 |frog and pawpaw
2|ACSA Acer saccharum 42.2
21 1[FAGR Fagus grandifolia 11.2
Collection Date: 10/6/2020
Plot # |Tree # |Species Code |Species DBH (cm)|Notes
22 1[JUNI Juglans nigra 10.8
2|SAAL Salix alba 15.1
3|SAAL Salix alba 21.9
4|LITU Liriodendron tulipifera 18.0
5(LITU Liriodendron tulipifera 12:3
B6(LITU Liriodendron tulipifera 17.3
23 1(PODE Populus delfoides 52.0|plot from 9/27 points
2|CAQV Carya ovata 32.7
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Site 1: Scio Woods Preserve (cont’d

24 1[TIAM Tilia americana 58.3
2(CAGL Carya glabra 38.0
3|ACSA Acer saccharum 14.6
4|ACSA Acer saccharum 16.6
25 1|ACSA Acer saccharum 12.3|plot from 9/27 points
2|QUAL Quercus alba 63.1
26 1[ACSA Acer saccharum 15.4
2(JUNI Juglans nigra 31.4
3|PRSE Prunus serofina 18.3
4|ACSA Acer saccharum 228
27 1[ACSA Acer saccharum 10.9
2|CACO Carya cordiformis 44 4
3|ACSA Acer saccharum 14.2
4|ACSA Acer saccharum 19.8
5|ACSA Acer saccharum 23.4
B|ACSA Acer saccharum 16.5
T|ACSA Acer saccharum 13.5
8|ACSA Acer saccharum 14.9
9|ACSA Acer saccharum 21.4
28 1[ACSA Acer saccharum 63.2
2|PODE Populus delfoides 39.0
3|ACSA Acer saccharum 50.1
29 1[ACSA Acer saccharum 18.8
2|ACSA Acer saccharum 18.7
3|ACSA Acer saccharum 20.2
4|ACSA Acer saccharum 17.5
5|ACSA Acer saccharum 46.7
6|ACSA Acer saccharum 19.4
7|ACSA Acer saccharum 19.7
30 1[TIAM Tilia americana 50.3
2|ACSA Acer saccharum 21.9
3|ACSA Acer saccharum 52.1
4|ACSA Acer saccharum 13.0
5|ACSA Acer saccharum 13.1
31 1[OSVI Ostrya virginiana 11.0(plot from 9/27 points
2|PRSE Prunus serofina 27.0
3|ACSA Acer saccharum 12.9
4|PRSE Prunus serofina 19.3
5|0sVI Ostrya virginiana 12.4
32 1[ACSA Acer saccharum 10.9(plot from 9/27 points
2|ACSA Acer saccharum 13.9
3|ACSA Acer saccharum 18.3
33 1|ACSA Acer saccharum 33.1|plot from 9/27 points
2|ACSA Acer saccharum 16.6
3|CAGL Carya glabra 20.6
4|TIAM Tilia americana 17.7
5(TIAM Tilia americana 28.6
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Site 2: Brauer Preserve

Collection Date: 10/10/2020
Plot # |Tree # [Species Code |Species DBH (cm)|Notes
1 1|ACRU Acer rubrum 28.5
2|ACRU Acer rubrum 43.1
3|ACRU Acer rubrum 234
4]1QUMA Quercus macrocarpa 47.0
5(QUMA Quercus macrocarpa 27.0
6|ACRU Acer rubrum 37.1
2 1|PRSE Prunus serotina 30.2]plot is in poison ivy patch
2|QURU Quercus rubra 34.4
3|ACRU/ACSA |Acer — 100.2|weird monster tree
3 1|ACRU Acer rubrum 67.9
2|ACRU Acer rubrum 36.5
3|ACRU Acer rubrum 34.2
4|ACRU Acer rubrum 29.9
4 1|ACSA* Acer saccharinum 19.9
2|ACSA* Acer saccharinum 20.4
5 1|ACSA* Acer saccharinum 247
2|ACSA* Acer saccharinum 349
3|ACSA* Acer saccharinum 42.0
6 1|ACSA” Acer saccharinum 62.1
2|ACSA* Acer saccharinum 51.6
3|ACSA* Acer saccharinum 50.4
4|ULAM Ulmus americana 14.8
7 O|N/A N/A N/A no trees in this plot
8 1|POGR Populus grandidentata 26.6
2|ULAM Ulmus americana 21.5
9 1|ACSA Acer saccharum 67.5
10 1]ACSA Acer saccharum 80.9
2|ULAM Ulmus americana 228
3|ULAM Ulmus americana 26.1
4|ULAM Ulmus americana 22.0
11 1|ACSA* Acer saccharinum 52.7
2|ULAM Ulmus americana 11.8
3|ACSA* Acer saccharinum 28.6
4|ACSA” Acer saccharinum 37.4
12 1|ACRU Acer rubrum 36.6
2|ACRU Acer rubrum 44.4
13 1|ACSA* Acer saccharinum 20.5
2|ACSA* Acer saccharinum 36.4
3|ACSA* Acer saccharinum 41.3
14 O|N/A N/A N/A no trees in this plot
15 1|JUNI Juglans nigra 26.5
2|ULAM Ulmus americana 20.8
3|ULAM Ulmus americana 14.5
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Site 2: Brauer Preserve (cont’d

Collection Date: 10/24/2020
Plot # Tree # |Species Code |Species DBH (cm)|Notes
16 1|ACSA* Acer saccharinum 54.3|6 ft. buttonbush!
2|ACSA* Acer saccharinum 17.6
3|ACSA* Acer saccharinum 17.4
4|ACSA” Acer saccharinum 24 6|connected at base
5|ACSA* Acer saccharinum 18.7
B6|ACSA* Acer saccharinum 38.6
17 1|ACSA* Acer saccharinum 42.6
2|ACSA* Acer saccharinum 18.2
3|ACSA* Acer saccharinum 25.6
4|ACSA* Acer saccharinum 34.4 Sonnsctad al bees
5|ACSA* Acer saccharinum 10.0
6|ACSA* Acer saccharinum 23.6
7|ACSA* Acer saccharinum 28.2
8(ACSA™ Acer saccharinum 65.7
9(|ACSA* Acer saccharinum 973
18 1[PRSE Prunus serofina 17.7
2|ACSA* Acer saccharinum 12:5
3|ACSA* Acer saccharinum 24.5
4|ACSA* Acer saccharinum 15.4
19 1|ACSA* Acer saccharinum 23.4
2|ACSA* Acer saccharinum 12:3
3|ULAM Ulmus americana 22.0
20 O|N/A N/A N/A *Northern hackberry and common elder
21 1|ACSA* Acer saccharinum 34.6
2|ACSA* Acer saccharinum 27.8
22 1[FRAM Fraxinus americana 15.2|*bittersweet nightshade in plot
23 1|PRSE Prunus serofina 12.7
2|QUVE Quercus velutina 88.6|connected at base
i gﬂgg gz::zz: ;::3::: ggg measured above split at height of 1.5m
24 1|PRSE Prunus serotina 19:3
2|ULAM Ulmus americana 24.9
3|PRSE Prunus serofina 221
4|ACRU Acer rubrum 171
5|ULAM Ulmus americana 11.0
6|PRSE Prunus serofina 18.6
7|QUVE Quercus velutina 722

*all ACSA in Brauer Preserve are silver maples, except in Plots 9 & 10 which are sugar maples
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Site 3: Creekshead Preserve

Collection Date: 10/25/2020
Plot # [Tree # |Species Code |Species DBH (cm)|Notes
1 1|ACSA Acer saccharum 219
2|CACO Carya cordiformis 34.0
3|ACSA Acer saccharum 12.0
4|TIAM Tilia americana 44.8
5|ACSA Acer saccharum 12.9
B6|CACO Carya cordiformis 30.6
7|ACSA Acer saccharum 22.4
2 1]QUMA Quercus macrocarpa 19.3
2|QUMA Quercus macrocarpa 13.7
3|QURU Quercus rubra 34.1
4]QUMA Quercus macrocarpa 171
5|QUMA Quercus macrocarpa 321
6|QUMA Quercus macrocarpa 19.5
7|QUMA Quercus macrocarpa 19.2
8|QUMA Quercus macrocarpa 13.5
9|ACSA Acer saccharum 23.6
10|ACNI Acer nigrum 15.0
3 1]ACSA Acer saccharum 11.7
2|TIAM Tilia americana 18.2
3|TIAM Tilia americana 48.9
4|ACSA Acer saccharum 10.3
5(TIAM Tilia americana 53.2 SoimEctsd b haen
6[TIAM Tilia americana 21.5
7|ACSA Acer saccharum 30.6
4 1|QURU Quercus rubra 79.9
2|ACSA Acer saccharum 41.6 cohreckad ot bass
3|ACSA Acer saccharum 14.2
5 1[TIAM Tilia americana 22.9
2|FAGR Fagus grandifolia 13.5
3|TIAM Tilia americana 14.5
4|FAGR Fagus grandifolia 27.6
5(TIAM Tilia americana 45.9
6|FAGR Fagus grandifolia 27.8
6 1|FAGR Fagus grandifolia 322
2|FAGR Fagus grandifolia 36.0
3|ACSA Acer saccharum 14.2
4|FAGR Fagus grandifolia 14.0
7 1|TIAM Tilia americana 29.0
2|ACSA Acer saccharum 10.2
3|ACSA Acer saccharum 18.9
4|FAGR Fagus grandifolia 11.2
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Site 3: Creekshead Preserve (cont’d)

8 1|ACSA Acer saccharum 12.8

2|ACSA Acer saccharum 48.7

3|FAGR Fagus grandifolia 47.7

9 1|QURU Quercus rubra 26.0

2[|ACSA Acer saccharum 4.7

3[ACSA Acer saccharum 16.0

4|FAGR Fagus grandifolia 11.3

5|FAGR Fagus grandifolia 12.5

10 1| TIAM Tilia americana 64.3
2|TIAM Tilia americana 24 .5(connected at base

3[TIAM Tilia americana 11.2

4|QURU Quercus rubra 16.7

11 1|ACRU Acer rubrum 16.5

2|ACRU Acer rubrum 41.3

3|ACRU Acer rubrum 42.2

4|ACRU Acer rubrum 15.5

5[ACRU Acer rubrum 39.3
connected at base

6[ACRU Acer rubrum 27.0

7|ACRU Acer rubrum 21.7

8|ACSA* Acer saccharinum 32.0

12 1| TIAM Tilia americana 17.0

2|ACSA Acer saccharum 14.2

3|ACSA Acer saccharum 13.1

4|TIAM Tilia americana 329

5[ACSA Acer saccharum 18.0

* all ACSA at Creekshead Preserve are sugar maples, except for Plot 8 which is a silver maple
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Appendix C: Summary of Aboveground Carbon Storage by Property

CO, Equivalent

EPA $ Conversion

Project Name B Aboveground] Aboveground (metric tons | for Aboveground
(ka) Carbon (kg) | Carbon (Mg) co,) Cabon

Alexander, Robbin 732,829 366,414 366 1,344 S 68,520.11
Bloomer, Tom & Rosanne 397,548 198,774 199 729| S 37,171.03
Fishbeck, William & Betty
(41 acres) 0 0 0 ol $ -
Fishbeck, William & Betty
(116 acres) 598,717 299,358 299 1,008( S 55,980.51
Kapp, Dale 1,425,764 712,882 713 2614| S 133,310.17
Cares, John & Jean 2,437,645 1,218,822 1,219 4.469| S 227,921.86
Alexander, John and
Beverly 238,957 119,478 119 438| S 22,342.68
Honke (Cavanaugh) 744,698 372,349 372 1,365| S 69,629.90
Maulbetsch 422 278 211,139 211 774| S 39,483.32
Botero 749,387 374,693 375 1,374| $ 70,068.31
Fox 1,024,635 512,318 512 1,879( S 95,804.28
Pellerito aka Lakeside
Development LLC aka
Mitigation Solutions aka
Oakland 505,066 252,533 253 926| S 47,224.10
Clark, Brad and Mary 1,123,255 561,628 562 2,059 § 105,025.33
Landsberg, Carol P. Trust 1,172,774 586,387 586 2,150 $ 109,655.32
Merkel / Heller 856,602 428,301 428 1570| S 80,092.97
Smyth 1,124,307 562,154 562 2,061 S 105,123.68
Whitney 1,743,716 871,858 872 3,197| § 163,038.89
Webster Church 2,345,888 1,172,944 1,173 4301 S 219,342.49
Bloch (23 acres) 91,539 45,770 46 168 § 8,558.98
Newton (Green Things) 688,270 344,135 344 1,262 S 64,353.79
Gould 35,665 17,833 18 65| S 3,334.73
Braun, Charles and
Catherine 1,309,479 654,739 655 2401 $ 122,437.39
Dudley, Open Roads
Development 5,666,318 2,833,159 2,833 10,388| S 529,805.59
Biltmore / Superior /
Geddes aka DBN
Investors LLC 789,742 394,871 395 1,448| § 73,841.56
Pardon 133,329 66,665 67 244| S 12,466.40
Nixon, William and Cherie 665,135 332,568 333 1,219 S 62,190.71
Hilton, Walter Trust
{Mason) 115,674 57,837 58 212| S 10,815.63
Zeeb, Kenny 323,860 161,930 162 594| S 30,281.18
Girbach (Vestergaard) 421,195 210,597 211 772| S 39,382.06
Braun, Thomas &
Theodore 889,909 444 955 445 1632| S 83,207.28
Ledwidge 574,748 287,374 287 1,054| S 53,739.41
Geiger (213 acres) 67,556 33,778 34 124 § 6,316.58
Geiger (116 acres) 943,418 471,709 472 1,730| S 88,210.37
Lindemann and
Weidmayer 534,028 267,014 267 979| S 49,932.11
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Thomas and Lobato 158,643 79,322 79 291 S 14,833.28
VanNatter 52,430 26,215 26 96| § 4,902.25
Bloch (33 acres) 778,365 389,183 389 1427 S 72,777.80
Ford-Goldsmith 308,685 154,342 154 566 S 28,862.29
Boike (Maulbetsch) 23 12 0 0| S 2.16
Drake - South 3,170,849 1,585,425 1,585 5813| § 296,477.08
Schultz, Robert 735,373 367,686 368 1,348 S 68,757.99
Schumacher, Carol 504,207 252,103 252 924 S 47,143.74
Hornback, Dan and Amy
(Kadykowski) 2,076,656 1,038,328 1,038 3,807| S 194,169.10
Wolf and Sheldon 5,512 2,756 3 10| S 515.41
Novick, Jack and Kerry
Kelly 453 226 0 1 S 42.34
Drake - North 18,900 9,450 9 35| S 1,767.17
Domino Farms aka DF
Land Development (12
acres) 573,514 286,757 287 1,051| S 53,624.03
Moore 106,534 53,267 53 195| § 9,961.04
Polliey 49,196 24,598 25 90| S 4,599.84
White aka McCleery 37,450 18,725 19 69| S 3,501.60
VanCurler 5,372,843 2,686,421 2,686 9,850| S 502,365.38
DF Land Development
LLC (81 acres) 904,060 452,030 452 1,657| S 84,530.34
Guenther - West 331,566 165,783 166 608| S 31,001.74
Guenther - East 856,469 428,235 428 1,570| S 80,080.59
Hall, James S. Revocable
Trust 2,475,211 1,237,606 1,238 4538 S 231,434.34
Smith, Carol Trust 2,906,246 1,453,123 1,453 5,328| S 271,736.45
Pringle, John and Beverly
Mitchell (shared with LAC) 760,298 380,149 380 1,394| $ 71,088.53
Rogers 84,221 42,110 42 154| S 7,874.72
Lada Rolling Acres, LLC 995,213 497 606 498 1,825 $ 93,053.25
DeVine-Koselka 3,359,476 1,679,738 1,680 6,159| S 314,113.91
Seeley Farm 770,421 385,210 385 1412 § 72,034.98
Shatter Family Trust 688,310 344,155 344 1,262| S 64,357.53
Stiles-Kaldjian 1,054,217 527,109 527 1,933| S 98,570.20
Lepkowski 1,235,910 617,955 618 2,266| S 115,558.65
Koch 50,631 25,315 25 93| S 4,734.04
Stepien 546,459 273,229 273 1,002| S 51,094.34
Haas 1,208,086 604,043 604 2,215) S 112,957.10
Lambarth 1,497,117 748,558 749 2745| § 139,981.67
Boss & Bull Holdings, LLC 74,787 37,394 37 137| S 6,992.67
Moehrle 549,374 274,687 275 1,007| S 51,366.89
Biomass |Aboveground|Aboveground co, Eq_uwalent ERA & Conversion
Totals (kg) Eatai | carbon (Mg) (metric tons | for Aboveground
CO,) Carbon
65,191,634 32,595,817 32,596 119,519 $ 6,095,473.15
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To convert mass of aboveground carbon stored in kilograms to other metrics that
communicate their value, we used a variety of available sources and conversion standards. The
table below shows the social cost and carbon emission equivalents for all current Greenbelt
properties. The social cost of carbon represents the societal costs, in terms of the long-term
damage done to both the environment and human health, that are associated with the emission
of one extra ton of CO, (U.S. EPA, 2016). Social cost and passenger vehicle mile emission
estimates came from the EPA’'s Greenhouse Gases Equivalencies Calculator, airline mile
emission estimates were sourced from BlueSkyModel, and yearly average household emission
data was gathered using the CoolClimate Household Calculator (U.S. EPA, 2021;
BlueSkyModel; CoolClimate Network). A different valuation model from Hungate et al. (2017)
estimates the social cost of carbon at $42 to $400 per metric ton of C, with a median value of
$137. The estimates from this model are lower than those calculated using the EPA social cost
of carbon because the units of this model are metric tons of C while the units for the EPA model
are metric tons of CO,. Using the median value from the Hungate et al. (2017) model, we
calculated the social cost of aboveground carbon storage for all Greenbelt properties to be
$4,465,626.90.

Total Social Cost ($)* | Hungate et al. | Passenger Airline Avg. Annual
Aboveground (2017)** Vehicle Miles Ann Arbor
Carbon (kg) Miles Equivalent Household
Equivalent (mi) Emissions
(mi) Equivalent (#
of

households)

32,595,817 $6,095,473.15 | $4,465,626.90 | 80,682,715 | 1,348,245 | 2,716

* These calculations used the 2021 social cost of carbon value of $51/metric ton CO,
** This is described by Hungate et al. (2017) as the median estimate of carbon reduction benefit with a value of
$137/metric ton C
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Appendix D: Map of Soil Types Found in the Greenbelt District

Soil Types of the Ann Arbor Greenbelt
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Appendix E: Summary of Belowground Carbon Storage by Property

. . Total Total CO; Equivalent EPA §
- Forest Soil |Wetland Soil i -
Project Name e bo k)] cabon (ko) Belowground|Belowground| (metric tons | Conversion for
9 9| carbon (kg) | Carbon (Mg) co,) Soil Carbon
Alexander, Robbin 53,880 247,218 301,098 301 1,104 §  56,305.79
Bloomer, Tom &
Rosanne 166,044 1,569,516 1,735,559 1,736 6,364| S 324,552.53
Fishbeck, William
& Betty (41 acres) 0 0 0 0 o ¢ |
Fishbeck, William
& Betty (116
acres) 498,922 58,069 556,991 557 2,042| S 104,158.19
Kapp, Dale 340,861 104,315 445 175 445 1632| $  83,248.56
Cares, John &
Jean 719,254 241,116 960,370 960 3,521| S 179,590.88
Alexander, John
and Beverly 111,275 47,513 158,788 159 582 S  29,693.68
Honke
(Cavanaugh) 253,124 1,359,905 1,613,029 1,613 5914| S 301,639.19
Maulbetsch 172,213 1,601,561 1,773,774 1,774 6,504| S 331,698.77
Botero 262,790 4,212,790 4,475,580 4476 16,411| S 836,941.06
Fox 734,321 80,059 814,380 814 2,986| S 152,290.39
Pellerito aka
Lakeside
Development LLC
aka Mitigation
Solutions aka
Oakland 197,595 369,054 566,648 567 2,078/ § 105,964.23
Clark, Brad and
Mary 8,742 1,019,168 1,027,910 1,028 3,769| S 192,220.91
Landsberg, Carol
P. Trust 588,876 1,414,184 2,003,060 2,003 7,345| S 374,575.72
Merkel / Heller 251,221 25,819 277,040 277 1,016/ § 51,807.01
Smyth 208,129 0 208,129 208 763( S 38,920.40
Whitney 2,510,091 5,988,566 8,498,657 8,499 31,162| $1,589,263.37
Webster Church 44,484 1,298,287 1,342,772 1,343 4,924\ S 251,100.56
Bloch (23 acres) 4,980 86,829 91,808 92 337§ 17,168.31
Newton (Green
Things) 330,965 134,056 465,020 465 1,705 S  86,959.62
Gould 0 0 0 0 0| S -
Braun, Charles
and Catherine 921,222 390,070 1,311,292 1,311 4,808| S 245,213.77
Dudley, Open
Roads
Development 1,641,390 94,994 1,736,384 1,736 6,367| S 324,706.75
Biltmore / Superior
/ Geddes aka
DBN Investors
LLC 349,643 74,128 423,772 424 1554 S  79,246.06
Pardon 89,513 47,621 137,134 137 503| S  25,644.36
Nixon, William and
Cherie 276,189 58,779 334,968 335 1,228( S  62,639.54
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Hilton, Walter

Trust (Mason) 48,425 7,673 56,098 56 206/ S  10,490.46
Zeeb, Kenny 284,012 0 284,012 284 1,041 S 53,110.78
Girbach

(Vestergaard) 62,286 27,930 90,216 a0 331 S  16,870.53
Braun, Thomas &

Theodore 690,653 4,264 694,917 695 2,548| S 129,950.75
Ledwidge 85,991 0 85,991 86 315/ S 16,080.41
Geiger (213

acres) 277,975 24,109 302,084 302 1,108| S  56,490.23
Geiger (116

acres) 77,575 300,547 378,122 378 1,386/ S  70,709.48
Lindemann and

Weidmayer 255,741 80,366 336,107 336 1232| S 62,852.53
Thomas and

Lobato 10,850 0 10,850 11 40| § 2,029.02
VanNatter 23,918 0 23,918 24 88| S 4,472.74
Bloch (33 acres) 171,888 28,773 200,661 201 736| S 37,524.01
Ford-Goldsmith 36,197 0 36,197 36 133] § 6,768.88
Boike

(Maulbetsch) 2,151 0 2,151 2 8| s 402.30
Drake - South 282,368 488,402 770,770 771 2,826 S 144,135.36
Schultz, Robert 219,998 55,408 275,406 275 1,010 § 51,501.33
Schumacher,

Carol 591,787 215,209 806,995 807 2,959| S 150,909.48
Hornback, Dan

and Amy

(Kadykowski) 1,514,977 280,553 1,795,530 1,796 6,584 § 335,767.21
Wolf and Sheldon 0 0 0 0 o| § -
Novick, Jack and

Kermry Kelly 34,193 0 34,193 34 125 S 6,394.24
Drake - North 0 0 0 0 0| s -
Domino Farms

aka DF Land

Development (12

acres) 217,793 13,701 231,494 231 849 S  43,289.75
Moore 47,108 0 47,108 47 173 $ 8,809.23
Polliey 0 16,645 16,645 17 61| S 3,112.62
White aka

McCleery 14,323 0 14,323 14 53| $ 2,678.48
VanCurler 784,057 257,796 1,041,853 1,042 3,820| S 194,828.34
DF Land

Development LLC

(81 acres) 377,239 501,359 878,598 879 3.222| S 164,299.29
Guenther - West 18,867 38,404 57,271 5T 210 S  10,709.78
Guenther - East 460,284 0 460,284 460 1,688/ S 86,073.98
Hall, James S.

Revocable Trust 618,644 579,314 1,197,958 1,198 4,393 S 224,020.26
Smith, Carol Trust 546,760 964,729 1,511,489 1,511 5542| S 282,651.09
Pringle, John and

Beverly Mitchell

(shared with LAC) 386,462 134,047 520,509 521 1,909 S 97,336.15
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Rogers 17,078 0 17,078 17 63| $ 3,193.59
Lada Rolling
Acres, LLC 175,632 226,655 402,287 402 1475/ S  75,228.28
DeVine-Koselka 1,399,421 187,782 1,587,203 1,587 5,820/ S 296,809.60
Seeley Farm 278,233 23,383 301,616 302 1,106 §  56,402.70
Shatter Family
Trust 203,291 111,562 314,852 315 1,154 &  58,877.94
Stiles-Kaldjian 1,334,490 540,049 1,874,539 1,875 6,873[ S 350,541.93
Lepkowski 181,391 381,207 562,598 563 2,063[ S 105,206.78
Koch 8,438 0 8,438 8 31| § 1,577.84
Stepien 82,812 40,364 123,177 123 452( S 23,034.22
Haas 774,854 0 774,854 775 2,841| S 144,899.08
Lambarth 147,046 180,256 327,302 327 1,200/ S  61,206.08
Boss & Bull
Holdings, LLC 17,405 38,938 56,343 56 207| S 10,536.20
Moehrle 107,501 126,852 234,353 234 859 §  43,824.39
Forest Soil |Wetland Soil| . 101! Total  [EEEEHENE
Totals Eamon k)| Carbon (kg) Belowground [Belowground| (metric tons Con\_fersmn for
Carbon (kg) | Carbon (Mg) CO,) Soil Carbon
23,605,839 | 26,399,893 | 50,005,732 50,006 183,356 $9,351,156.96
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Appendix F: Soil & Water Assessment Tool (SWAT) Input Files

Below is a table of all required and optional input files for the Soil & Water Assessment Tool
(SWAT). Retrieved from SWAT 2012 Documentation (Arnold et al., 2012).

Input files for SWAT include:

file.cio
(watershed level file)

Master watershed file. This required file contains the
names of watershed level files and parameters
related to printing.

fig
(watershed level file)

Watershed configuration file. This required file
defines the routing network in the watershed and
lists input file names for the different objects in the
watershed.

Jbsn
(watershed level file)

Basin input file. This required file defines values or
options used to model physical processes uniformly
over the entire watershed.

-Pcp
(watershed level file)

Precipitation input file. This optional file contains
daily measured precipitation for a measuring
gage(s). Up to 18 precipitation files may be used in
each simulation and each file can hold data for up to
300 stations. The data for a particular station is
assigned to a subbasin in the subbasin put file
(.sub).

tmp
(watershed level file)

Temperature input file. This optional file contains
daily measured maximum and ~minimum
temperatures for a measuring gage(s). Up to 18
temperature files may be used in each simulation and
each file can hold data for up to 150 stations. The
data for a particular station is assigned to a subbasin
in the subbasin input file (.sub).

slr
(watershed level file)

Solar radiation input file. This optional file contains
daily solar radiation for a measuring gage(s). The
solar radiation file can hold data for up to 300
stations. The data for a particular station is assigned
to a subbasin in the subbasin input file (.sub).

wnd
(watershed level file)

Wind speed input file. This optional file contains
daily average wind speed for a measuring gage(s).
The wind speed file can hold data for up to 300
stations. The data for a particular station is assigned
to a subbasin in the subbasin input file (.sub).

hmd
(watershed level file)

Relative humidity input file. This optional file
contains daily relative humidity values for a
measuring gage(s). The relative humidity file can
hold data for up to 300 stations. The data for a
particular station is assigned to a subbasin in the
subbasin input file (.sub).

pet
(watershed level file)

Potential evapotranspiration input file. This optional
file contains daily PET values for the watershed.
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.cst
(watershed level file)

Weather forecast input file. This optional file
contains the statistical data needed to generate
representative daily climatic data for the subbasins
during the forecast period.

.cal
(watershed level file)

Auto-calibration input file. This optional file
contains the data needed to operate the auto-
calibration algorithms.

crop.dat
(watershed level file)

Land cover/plant growth database file. This required
file contains plant growth parameters for all land
covers simulated in the watershed.

till.dat
(watershed level file)

Tillage database file. This required file contains
information on the amount and depth of mixing
caused by ftillage operations simulated in the
watershed.

pest.dat
(watershed level file)

Pesticide database file. This required file contains
information on mobility and degradation for all
pesticides simulated in the watershed.

fert.dat
(watershed level file)

Fertilizer database file. This required file contains
information on the nutrient content of all fertilizers
and manures simulated in the watershed.

urban.dat
(watershed level file)

septic.dat
(watershed level file)

Urban database file. This required file contains
information on the build-up/wash-off of solids in
urban areas simulated in the watershed.

Septic database file. This file contains information
on septic systems.

.sub
(subbasin level file)

Subbasin input file. This required file for each
subbasin defines climatic inputs, tributary channel
attributes, and the number and types of HRUs in the
subbasin.

wen
(subbasin level file)

Weather generator input file. This required file
contains the statistical data needed to generate
representative daily climatic data for a subbasin.

pnd
(subbasin level file)

Pond/wetland input file. This optional file contains
information for impoundments located within a
subbasin.

wWus
(subbasin level file)

Water use input file. This optional file contains
information for consumptive water use in a subbasin.

1te
(subbasin level file)

Main channel input file. This required file contains
parameters governing water and sediment movement
in the main channel of a subbasin.

sep
(subbasin level file)

Septic input file.  This optional file contains
information for septic systems.
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WW(Q Watershed water quality input file. This optional file

(watershed level file)  contains parameters used to model QUAL2E
transformations in the main channels.

SWQ Stream water quality input file. This optional file

(subbasin level file)  contains parameters used to model pesticide and
QUAIL2E nutrient transformations in the main
channel of the subbasin.

.hru HRU input file. Required file for HRU level

(HRU level file) parameters. Catch-all file.

.mgt Management input file. This required file contains

(HRU level file) management scenarios and specifies the land cover
simulated in the HRU.

.sol Soil input file. This required file contains

(HRU level file) information about the physical characteristics of the
soil in the HRU.

.chm Soil chemical input file. This optional file contains

(HRU level file) information about initial nutrient and pesticide levels
of the soil in the HRU.

. Groundwater input file. This required file contains

(HRU level file) information about the shallow and deep aquifer in

the subbasin. Because land covers differ in their
interaction with the shallow aquifer, information in
this input file is allowed to be varied at the HRU

level.

Ies Reservoir input file. This optional file contains
(reservoir file) parameters used to model the movement of water
and sediment through a reservoir.

Iwq Lake water quality input file. This optional file
(reservoir file) contains parameters used to model the movement of

nutrients and pesticides through a reservoir.
rechour.dat Point source input files. These optional files contain
recday.dat information about loadings to the channel network
recmon.dat from a point source. The type of file used to store the
recyear.dat data depends on how the data is summarized (hourly.
reccnst.dat daily, monthly, yearly. or average annual).

(point source file)
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