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Abstract

Multiple techniques are used to extract physiological signals from the human body. These
signals provide a reliable method to identify the physical and mental state of a person at any
given point in time. However, these techniques require contact and cooperation of the individ-
ual as well as human effort for connecting the devices and collecting the needed measurement.
Moreover, these methods can be invasive, time-consuming, and infeasible in many cases. Re-
cent efforts have been made in order to find alternatives to extract these measurements using
non-contact and efficient techniques. One of these alternatives is the use of thermal cameras
for health monitoring. Our work explores reliable methods for extracting respiration rate, skin
temperature and heart rate from thermal video. These methods leverage a combination of image
processing and signal processing techniques in order to extract and filter physiological signals
from the thermal domain. Finally, we review the use of thermal imaging in several applications,

such as deception detection, stress detection and emotion recognition.



Chapter 1

Introduction

In recent years there has been a growing interest in developing automated systems that
are capable of monitoring human physiological responses in order to provide a real-time as-
sessment of a person’s general health and well-being. Such measurements include heart rate,
temperature, respiration rate, among other skin responses. With the proper assessment, these
physiological measurements can identify the physical and mental state of a person. In addition,
the fact that the human body often exhibits unique physiological characteristics in response to
external stimuli, made it possible to detect and predict a person’s behavior or psychological
state, such as emotions, mood, stress level, distraction, and deceit. Hence, different studies are
exploring the feasibility of incorporating physiological monitoring into a wide array of different
applications.

However, there are limitations to the traditional methods and devices used to collect physi-
ological measurements, such as the requirement to connect the devices and sensors to the human
body. Attaching these sensors can be time consuming, uncomfortable, and impractical for cer-
tain applications. Devices, such as ECG sensors require electrodes to be attached to specific
areas of the body. These devices can cause discomfort and may require the presence of trained
personnel to set up the device. Other sensors may introduce noise if the leads do not have solid
contact with the skin. Even worse, some sensors may not provide reliable measurements outside
of a controlled environment. [24] designed a network for monitoring patients’ vital signs during
health emergencies. The authors noted that exposure to cold temperatures restricts blood flow
to the fingers which can disrupt pulse oximeter readings collected from a finger sensor. There-

fore, new approaches are proposed to avoid the usage of wearable sensors to collect such data.



In particular, thermal image processing has been proposed as a potential method for acquiring
physiological data.

Vital sign monitoring systems generally monitor blood glucose level, blood pressure, pulse
rate, electrocardiograph patterns, respiration rate, and temperature [69]. Certain vital signs are
thought to be better indicators of specific physiological abnormalities than others. Researchers
explored ways to harness physiological data for applications in a number of areas, such as
health care, sports, military, and surveillance. Moreover, physiological monitoring may be more
effective at diagnosing certain disorders that are difficult to diagnose from external symptoms
alone.

For instance, heart rate is useful in diagnosing cardiovascular disease (CVD), which is a
leading cause of death worldwide. In particular, there is evidence linking resting heart rate to
CVD risk factors, such as hypertension, obesity, family history and work stress [62]. Another
example can be seen in studies suggesting that changes in the respiratory rate may be a more
effective measure for discriminating between stable patients and those that are at risk. In fact,
evidence suggests that an adult with a respiration rate of over 20 breaths per minute (bpm) is
probably unhealthy, while an adult with a respiration rate of over 24 bpm is likely to be critically
ill [18]. Irregular increases in respiration rates have been observed in patients suffering from
panic attacks and sleep bruxism (teeth grinding) [46, 35]. Taking more than one vital sign
into account has also proven to be beneficial in diagnosing certain ailments. There is evidence
indicating that elevated heart and respiration rates observed immediately after trauma are acute
predictors of delayed post traumatic stress disorder [12].

Skin is another vital organ that receives signals from control centers in the brain to main-
tain the body’s core temperature through a process called thermoregulation [19]. Physiological
thermoregulation in humans comprises changes in heat dissipation (sweating) and heat gen-
eration (shivering) in response to various internal and external thermal stimuli [16]. Thermal
imaging utilizes this principle to detect natural thermal radiation emitted by the skin, which can
be interpreted in terms of physiological changes [32]. Skin conductance is another physiologi-
cal measurement that refers to the varying electrical properties of the skin in response to sweat

secreted from eccrine sweat glands [63]. The skin becomes more conductive as sweat accu-



mulates. This process reflects the arousal of the sympathetic autonomic nervous system which
accompanies various psychological processes [22]. While the usage of thermal images to detect
peripheral skin temperature is apparent, recent research has shown interesting potential of using

thermal images to extract multiple physiological signals from the human body.



Chapter 2

Extracting Physiological Features

This section presents different methods for extracting heart rate, respiratory rate, skin tem-
perature, and skin conductance from thermal videos. Many of these techniques use a procedure
called Eulerian Video Magnification (EVM), which can reveal hidden information by magni-
fying subtle color changes and imperceptible motions using spatio-temporal processing [67].

This process can indicate subtle variations in the blood flow through the face.

2.1 Heart Rate

Several studies have proposed methodologies to extract heart rate from thermal images by
tracking superficial blood vessels on the face. Blood flow regulates skin temperature due to
heat exchange between vessels and the surrounding tissue. These changes in skin temperature
are most prominent along superficial blood vessels. Extracting the blood vessels from the face
is often challenging due to the low contrast between the edges of the blood vessels and the
surrounding facial tissue. This is a result of heat diffusion, which creates a smooth gradient
temperature between hot and cold areas. Fortunately, there are several methods for segmenting
blood vessels from the face to create what is known as a vascular map. One of these methods is
called top hat segmentation. There are two forms of top hat segmentation: white top segmenta-
tion enhances bright objects and black top hat segmentation enhances dark objects. White top
segmentation is effective for enhancing the ridge-like structures of the blood vessels, which are
represented by hot or bright areas in the image [13].

Despite the effects of heat diffusion, edge detection methods can still prove to be effective.

We applied several well known edge detection algorithms including Canny, Prewitt, Roberts
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and Sobel. In our experiments Canny’s method proved to be the most effective. Figure 2.1
demonstrates the result of applying the Canny edge detection algorithm to a gray-scale thermal
image. The edges detected in the image clearly resemble a vascular structure in the forehead
region of interest. However, edge detection alone, may fail to capture the center of the vein
where the effect of heat transfer due to blood perfusion is most pronounced. For that reason,
we expanded the edges by a factor of one pixel in every direction to ensure that we extract the
heat radiating from the center of each vein near the surface of the skin. Figure 2.2 shows the

result after applying this technique.

Figure 2.1: Vascular map extraction using Canny edge detection

The thermal signal detected along a blood vessel presents a composite signal that includes
extraneous physiological and environmental signals in addition to the pulse [25]. [60] proposed
a method to extract the pulse by applying a Fast Fourier Transform (FFT) to several points
along the blood vessel in order to isolate the thermal propagation component. They followed
this by using an adaptive estimation function to quantify the pulse based on current and past
measurements. The authors were able to achieve an overall accuracy of 92.1% based on ground
truth measurements collected from a piezoelectric pulse transducer.

In [26], the authors introduced several improvements based on previous work [13, 17,



Figure 2.2: Canny edge detection after expansion

27, 28, 60, 59]. First, they incorporated a blood-perfusion model to more accurately create
vascular maps, segment the forehead, and enhance the raw thermal data. Second, once they
identified suitable blood vessels on the face, they applied wavelet based filtering in place of
FFT analysis. In the final step they were able to automate the entire process by presenting a
systematic approach to select appropriate vessel segments from the vascular map.

A slightly different approach was taken in [10] for extracting heart rate by applying the
Eulerian Video Magnification method to thermal videos. The goal of their research was to rem-
edy the fact that EVM may amplify indiscriminate noise in addition to the true heart rate signal.
In their experiment, the subject wore a smart shirt (a shirt containing various textile sensors) to
capture the ECG signal while a thermal camera recorded video of the subject. They applied two
passes of EVM. The first pass applied a wide band pass filter with a low amplification factor
to identify the region of interest (ROI) most likely to reveal the true heart rate. In this case, the
subject’s chest was defined as the region of interest. The second pass applied a narrow band

pass filter with a high amplification factor to the signal acquired from the ROI.



2.2 Respiration Rate

Many methods have been proposed to extract respiration rate from thermal videos using
different combinations of image processing and facial tracking techniques. Figure 2.3 depicts
the procedure we followed for extracting physiological features from thermal videos. This
begins with image correction and enhancement in order to make certain features more distin-
guishable. Examples of image enhancement techniques were briefly discussed in the previous
section. A facial detection algorithm is often employed to segment the face from the back-
ground image. Once the face has been isolated, regions of interest (ROI) are defined in order
to focus on particular areas of the face that are known to display the desired thermal character-
istics. Finally, a variety of image processing techniques are applied to the ROI in an attempt to
find a correlation between the temporal features within the thermal and physiological domains.
[11] compared temperature-based methods to motion-based methods for extracting respiration
rate from thermal videos. The temperature-based method employed segmentation-based image
processing and image tracking algorithms to capture temperature variations over time. They
presented a variety of pre-processing methods including image enhancement, noise removal,
edge-detection, and facial recognition, all of which were used to identify the subject’s nostrils
as the ROI. The respiration signal was then calculated as the mean intensity within each ROI

subjected to low pass filtering to remove noise.

Face Detection Trackin, Signal Processing . 3
& Deception Detection

Emotion Recognition )

L3
-

Stress Detection ]

Figure 2.3: Image Processing Procedure

The motion-based analysis was carried out by simply calculating the absolute differences
between the first frame and all succeeding frames, then once again applying a low pass filter to
remove noise. The temperature-based analysis worked better for detecting the volume of airflow
while the motion-based analysis provided better results for detecting irregular breathing, such as
hyperventilation and the absence of breath. Neither method outperformed the other in detecting

the respiration rate for all breathing patterns. Hence, the authors recommended the development
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of fusion algorithms that could combine multiple methods for extracting respiration rates from
thermal videos.

[9] developed a facial tracking method to monitor respiration rate in real time. One de-
parture from previous work was the use of an Otsu-based thresholding algorithm to segment
the face from the background image. Tsai’s method under-segmented areas below the neck and
even part of the face. Kapur’s method performed slightly better but still under-segmented ar-
eas below the face. The Otsu method proved to be the most effective and was even efficient
enough to allow for real time face detection and tracking. Lastly, they applied noise filtering
techniques and FFT to extract the respiration rate from the ROI. This system was able to pro-
cess each frame in 40ms, making the system feasible for deployment in real-time applications.
Other studies followed a similar procedure to extract the respiration rate using different meth-
ods to perform noise removal and signal processing. Additional methodologies for extracting
the respiration signal include clustering and harmonic analysis [68], wavelet analysis [21] and

high pass filtering [36].

2.3 Skin Temperature

Body temperature depends on core temperature and skin temperature. Generally speaking,
core temperature is the temperature of the blood in circulation, which is regulated by the brain,
whereas skin temperature is primarily influenced by blood flow and environmental conditions
[37]. Heat stress is a condition in which skin blood flow increases, followed by a rise in skin
temperature, which releases heat from the body. Cold stress describes the opposite effect in
which skin blood flow and temperature decrease, actively conserving heat in the body. Heat
stress and cold stress are also respectively referred to as vasodilation and vasoconstriction. This
is the process by which the human body is able to maintain a constant core temperature. Modern
high resolution thermal cameras have given researchers the ability to observe physiological
thermal regulatory response in real time.

A significant variation in body temperature is often an indication of illness such as fever or
hypothermia. In the interest of preventing the spread of disease, several studies have explored

the feasibility of designing fever-based detection systems for use in airports and mass transits



[58,43]. The literature also discusses the many challenges involved in designing such a system.
As of writing, the only reliable way to acquire an accurate core temperature reading is to measure
temperature from the rectum or esophagus [40]. In spite of this, several studies have reported
the inner corners of the eyes to be the most suitable area for fever detection [44].

There is also a desire to better understand the relationship between thermoregulation and
athletic performance in sports medicine. [61] recorded thermal videos of athletes running on
a treadmill as well as their resting states before and after the exercise. Surprisingly, the skin
temperature of the athletes began to decline immediately upon starting to run even at low speeds.
A continuous increase in exercise intensity caused the skin temperature to decrease even further.
On the other hand, thermal images of the athletes during motionless recovery revealed a rapid
increase in skin temperature as well as the appearance of hyper-thermal spots.

The hyper-thermal spots are most likely a sign of vasodilation caused by a reduction of
warm blood flow to active muscles. These findings are supported by the results of previous
work done by [41], in which the skin temperature of trained and untrained subjects was recorded
during exercise. Their results revealed that the minimal skin temperature of trained subjects
was significantly lower than those of untrained subjects when they stopped exercising. [14]
studied the thermal comfort of subjects during and after a 30 minute exercise. Their findings
also indicate that the skin temperature of most subjects continues to increase during motionless
recovery due to the delay of the heat transfer process.

Thermal images clearly reveal variable amounts of heat radiating from different areas of the
human body during periods of rest and physical labor. However, research shows little variation
in facial skin temperature in response to cold stimuli and corresponding changes in core temper-
ature. In [31], subject’s skin and core body temperatures were measured using thermocouples
and an ingestible thermometer pill. When the subjects were exposed to a cold environment, skin
temperatures of the hands and feet decreased substantially while the forehead remained reason-
ably constant. This poses a difficulty for applications that hope to extract body temperature

from thermal facial images alone.



Chapter 3

Applications

In this section, we review some of the applications that extracted multiple features from
thermal images in order to achieve their goal. Most of these applications are related to modeling
of human behavior. Some of them integrated these features with contact-based physiological

measurements and, hence, they can potentially benefit from the aforementioned techniques.

3.1 Deception Detection

Polygraph testing remains the standard tool used by law enforcement in the U.S. to ver-
ify whether or not a subject is telling the truth during questioning. Polygraph tests monitor
the subject’s blood volume pulse, respiratory changes, and electrodermal activity. Employing
polygraph tests was shown to be unreliable in many cases as it requires decisions from human
experts, which is subject to bias and error [20, 23]. Reports dating back three decades indicated
that polygraph results were false one third of the time [38].

Hence, research was conducted to find alternatives, including the usage of thermal imag-
ing as a mean for deception detection. Most experiments in this field begin by establishing
the baseline physiological characteristics of the subject prior to the interview. This generally
involves asking the subject a series of control questions designed to elicit a particular physio-
logical response.

However, research suggests that guilty subjects who are trained on using physical or mental
countermeasures are able to defeat polygraph tests by corrupting the initial baseline measure-
ments [30]. Hence, additional information collected from thermal images have the potential to

improve the reliability of deception detection models.
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In [47], a method was described for classifying a person’s responses as deceitful or truthful
based on changes in blood flow rate as observed from thermal images of the person’s face. In
this method, raw thermal data was transformed into blood flow rate data using a number of
different processing techniques, such as segmentation algorithms and heat transfer modeling.
Although different regions might be used, [48] found that the periorbital region (area around
the eyes) carried the most significant discriminating power. They observed that the slope of the
periorbital blood flow rate as a function of time grows steeper during a deceptive answer.

Accuracy of thermal imaging as a lie detection tool in airport screening was tested in [65].
Their results revealed that the skin temperature of liars rose significantly during the interview,
whereas, the skin temperature of truth tellers remained constant.

Baseline measurements did not reveal any significant difference between passengers who
were instructed to tell the truth and those who were instructed to lie. Therefore, the authors con-
cluded that deception detection systems based on skin temperature alone would not be suitable
for rapid screening of passengers at an airport.

[54] is another study that analyzed the periorbital region of the face to perform automated
deception detection. They tracked the eye corner regions, concatenated the ROI data across
all frames within the response time-line, and finally applied principal component analysis to
obtain thermal features. One unique aspect of their research was the fact that they compared
the predictive ability of a within-person classification to a between-person classification. A
between-person approach was shown to have poor predictive performance. The authors explain
that a leave-one-person-out cross validation method assumes that behavior and physiological
responses are common traits among people of various ages, genders, culture, etc. On the other
hand, the within-person approach trains a classifier specific to each subject using the afore-
mentioned baseline measurement as training data. Their model was able to achieve an overall
accuracy of 87% using a k-nearest neighbor classifier.

More recent studies propose the use of fusion models that incorporate features from more
than one modality [4, 15, 1, 8, 5, 6, 51, 50, 3]. The authors analyzed thermal videos, facial
expressions, and other visual features to identify areas of the face that are the most indicative

of deceptive behavior. Their approach generated feature vectors by transforming each ROI into
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a thermal map represented by the Hue Saturation Values pixel representation. In contrast with
previous work by Pavlidis, they found that thermal features extracted from the forehead region
were the most effective for discriminating between truth and deceit. This may be attributed to
the different methods that were used to extract thermal features; heat transfer modeling versus

thermal mapping.

3.2 Emotion Recognition

Many studies in the literature have explored the use of thermal imaging for classifying
human emotions. The study of affect states and arousal levels is an emerging topic of interest in
both neuroscience and affective computing. However, there are conflicting theories that attempt
to explain how nuerophysiological systems activate different emotional states. Recent studies
in affective computing have designed classification methods based on a relatively recent idea
in nueroscience known as the circumplex model. ”The circumplex model of affect proposes
that all affective states arise from cognitive interpretations of core neural sensations that are the
product of two independent neurophysiological systems™ [52]. This model is based on the idea
that emotional states are not discrete categories but rather a result of varying degrees of arousal

and valence as shown in Figure 3.1.
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Figure 3.1: Two-dimensional model of valence and arousal. Figure from [64].

[45] designed a binary classifier to distinguish baseline thermal states from affective states.

Facial thermal infrared data, blood volume pulse, and respiration rate were recorded while sub-
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jects were shown visual stimuli designed to elicit different affective states. Arousal and valence
levels during stimulus onset were measured using the International Affective Picture System.
The Periorbital, supraorbital, and nasal regions of the face were selected and tracked as re-
gions of interest. Wavelet analysis was used to extract features and remove noise from the
thermal infrared data. Finally, a genetic algorithm was used to select optimal features to be
used for training a linear discriminate analysis classifier. This classification procedure was able
to achieve accuracies of 80% and 75% in classifying high and low levels of arousal and valence
from the baseline, respectively.

Other studies took advantage of the fact that different facial expressions are generally asso-
ciated with certain emotional states. Research has demonstrated that thermal cues may provide
a more effective means for recognizing facial expressions compared to visual cues. In [66], a
thermal-based facial expression classifier outperformed a visual based classifier due to the fact
that thermal images are unaffected by variations in illumination and skin complexion.

[34], leveraged the findings of these two studies to develop a unique classification algo-
rithm. Instead of using a binary classifier, they chose to use a clustering algorithm to model
affective states as clusters in a multi-affect and multi-arousal discriminant space. The ther-
mal images were analyzed using accompanying visual images to find points along major facial
muscles that displayed the greatest thermal variation. Previous research explains this method
for acquiring Facial Thermal Feature Points [33]. Principal Component Analysis and Linear
Discriminate Analysis were used to perform dimensionality reduction and feature selection.
The resulting facial thermal vectors are used to construct a smaller feature space. The authors
used the distance between the optimal feature vectors and the centroids of arousal levels for
affect assessment. Their thermal expression recognition system was able to correctly classify

approximately 96% of happy and sad expressions.

3.3 Facial Recognition

Facial recognition technology has advanced rapidly within the last decade. In fact, many
of today’s smart phones offer features that rely on facial recognition and tracking software.

However, most of the research in the field has focused on detecting and recognizing faces in the
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visible spectrum. Visual facial recognition systems read visible light reflected off the surface of
the skin to track facial features. As a result, these systems usually do not perform well in variable
lighting conditions. Facial recognition in the thermal infrared spectrum has been proposed as an
alternative to overcome these problems. Thermal imaging is insensitive to illumination changes
and capable of detecting unique physiological characteristics beneath the skin.

The forehead region is useful for facial recognition since it is a uniform surface that over-
lays several superficial arterial branches [28]. There are a number of methods for segmenting
the thermal imprint of these supraorbital vessels [71]. The vascular mapping can be used to
classify the subject’s face and to track the subject’s movements [27]. The authors in [13] pro-
posed a method for thermal facial recognition based on the fact that the contrast between the
superficial vasculature and the surrounding tissue is a physiological characteristic that does not

change over time.

3.4 Stress Detection

“Following the perception of an acute stressful event, there is a cascade of changes in the
nervous, cardiovascular, endocrine, and immune systems” [55]. Furthermore, clinical studies
have demonstrated relationships between psycho-social stressors and diseases, such as cardio-
vascular disease, upper respiratory diseases, immunodeficiency and depression [39, 55]. Phys-
iological responses to stress may include an increase in blood pressure, redirected blood flow,
and vasoconstriction as well as dilated pupils, accelerated heart rate, paling or flushing in the
face, and an increase in perspiration [70].

Research has successfully demonstrated the use of thermal imaging to detect the onset of
stress from observing physiological changes in subjects’ faces. Different activities produce dis-
tinct facial thermal patterns. Thermal videos of anxious subjects who were exposed to stressful
situations revealed an increase in temperature around the eyes and forehead as a result of heat
dissipation caused by increased blood flow [49, 53].

Recent studies have classified these thermal physiological markers to develop automated
stress detection algorithms. [57] analyzed spatio-temporal facial patterns in videos captured

from both the thermal (TS) and visible (VS) spectrums. Subjects were recorded watching stress-
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ful and calming video clips. The authors extracted features from the videos using a technique
known as local binary patterns on three orthogonal planes (LBP-TOP). This method was specifi-
cally used to analyze the temporal dynamics of muscle movements by extracting features, which
incorporated appearance and motion. In addition, they proposed a new feature set to model ther-
mal images, which captured normalized dynamic thermal patterns in histograms (HDTP). The
goal of this method is to enhance participant-independent recognition of symptoms for stress
and to reduce individual bias. The HDTP features extracted from the thermal videos produced
better stress recognition rates compared to the LBP-TOP features used for binary classifica-
tion. A fusion of HDTP and LBP-TOP features extracted from TS and VS video, respectively,
achieved the best results with a recognition rate of 72%.

In [2], contact-based physiological measures and facial thermal images were used to train
a stress detection classifier. Ground truth measurements were based on the perceived stress of
subjects in stressful situations. Thermal features were extracted using a variety of methods to
perform face segmentation, tracking, and transformation. Facial bounding boxes were manually
defined, the Shi-Tomasai corner detection algorithm was used to identify discriminating points
within the face. A fast Kanade-Lucas-Tomasi (KLT) tracking algorithm was used to track the
points throughout the entire response. The background in the image was discarded using image
binarization and cropping. Lastly, features were extracted by creating a thermal map in which
hue saturation value (HSV) colors represented temperature values. HSV values were organized
in a histogram and normalized to form a probability distribution over all bins. Moreover, the
thermal features were integrated with the contact-based physiological features including the
heart rate, respiration rate, skin temperature, and skin conductance. They trained a decision

tree classifier using their features, which was able to detect stress with an accuracy of 75%.
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Chapter 4

Dataset Description

We used our own dataset consisting of multimodal recordings collected from 104 under-
graduate and graduate students with a gender distribution of 53 females and 51 males. The
subjects were between 20 to 45 years of age and had different ethnic backgrounds. Seven ses-
sions were recorded per subject. Two of these sessions were used as baseline measurements,
in which the subjects were instructed to silently sit still. The remaining five sessions feature
the subjects engaging in conversation. Each session consists of a thermal video recording of
the subject’s face in addition to several contact-based sensor readings. Therefore, a total of 728

thermal videos with accompanying sensor readings were analyzed.
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Chapter 5

Experimental Setup

The camera used to record the videos was a FLIR SC6700 thermal camera with a reso-
lution of 640x512 and 7.2 M electrons capacity, reaching a frame rate of approximately 100
frames/second. Physiological data was collected using Thought Technology’s FlexComp In-
finiti sensors. These four bio-sensors were used as the ground truth; a blood volume pulse sen-
sor, skin conductance sensor, skin temperature sensor and an abdominal respiration band. The
first three sensors were attached to the fingers of subject’s non-dominant hand. The abdominal
respiration band was placed around the thoracic region.

Our experimental station consists of recording devices, the physiological sensors, two
desktop computers, and a chair placed at a fixed distance from the cameras. The experimen-
tal setup and procedure were explained to the subjects and they were asked to avoid excessive

movements to keep them in the field of view of the cameras. [7]
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Chapter 6

Methodology

We perform a series of steps to extract physiological features from the thermal domain.
First, we define and track multiple regions of interest throughout the video to compensate for
any displacement caused by subject movement. Secondly, we construct a raw thermal signal by
sampling the temperature within the region of interest defined for each frame. Finally, we filter

the raw thermal signals in order to extract various physiological signals.

6.1 Region of Interest Identification & Tracking

We begin by defining regions on the face which are known to display significant temper-
ature variations based on related work in the literature. These regions are generally the max-
illary region (surrounding the nose), periorbital region (surrounding the eyes) and supraorbital
region (forehead). We manually created bounding boxes to define each region within the first
frame of every video. Tracking was performed using the point tracking feature included in the
Matlab Computer Vision System Toolbox. Good Features to Track within the ROI were iden-
tified using the Shi-Tomasi corner detection algorithm. These points are located by calculating
image derivatives based on pixel intensity values. If the change in intensity is greater than a
certain threshold in both the x and y directions then the point is labeled as a corner. These fea-
tures were then passed to the point tracker object, which uses the Kanade-Lucas-Tomasi (KLT)
feature-tracking algorithm to stabilize the region for the duration of the video.

After detecting ’interesting points’ to track we apply a geometric transformation, which
estimates the location of these points from one frame to the next using a variant of the Random

Sample Consensus (RANSAC) algorithm. Considering a frame-rate of 100fps, we do not expect
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any rapid motion between successive frames. Therefore, the distance between a point and its
projection in the next frame should be minimal. For that reason, we limit this distance to five
pixels. Secondly, if the number of mapped points between two successive frames is less than
95% we skip the current frame and resume tracking in the next frame. This is a precaution to
account for potential occlusion.

We found that the tracking algorithm was robust against most head movements. However,
a few of the subjects either turned their head 90 degrees left or right as shown in figure 6.1
or looked down as shown in figure 6.2. These types of movements would cause the bounding
box to go outside of the camera view. In many cases, the point tracker can still reliably track a
region that is partially off-screen. Nonetheless, our intention is to capture the entire region of
interest to extract the desired signal. This is especially true for the heart rate signal in which
accurate vein segmentation within the ROI is a critical part of our proposed method. For the
sake of avoiding corrupt data collection, we simply discarded videos in which tracking errors
were detected. This was only necessary for extracting heart rate signals. Two videos were
discarded when extracting heart rates from the forehead region. One video was discarded when

extracting heart rates from the inner eye corner region.

Figure 6.1: Tracking Error: Head Turn (ROI outlined in green)
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Figure 6.2: Tracking Error: Looking Down (ROI outlined in green)
6.2 Feature Extraction

The previous tracking output data defines the size and location of a bounding box within
each frame for every video. Each bounding box was masked against the raw thermal data in
the corresponding frame to extract temperature values within the region of interest. Different
segmentation methods were performed to extract the desired temperature values. A thermal
signal was then constructed by averaging these values for every frame in the video. The resulting
signal has a sampling frequency of 100Hz. A series of signal processing methods were then used

to filter the thermal signal and isolate the physiological signal of interest.

6.3 Respiration Rate

We developed a method for extracting respiration rates from the maxillary (nose) region
of a thermal image. We tested our method using a novel dataset, which includes recordings of
subjects while they are speaking and sitting silently. Thus, we were able to observe the influence
that speaking has on nasal breathing and how it affects thermal image based respiration rate
estimation. We also calculated the correlation between breathing signals extracted from the
thermal images and those measured by the abdominal chest strap sensor. The raw thermal
signal was constructed by calculating the average pixel value within the maxillary of interest

for each frame of the video.
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1) Differencing: We calculate the differences between adjacent elements of the signal S(¢)

to produce the transformed signal Sﬁt)
S(t) = S(t) — S(t—1) (6.1)

2) Normalization: We normalized the signal amplitude as follows. p and o are the mean
and standard deviation of .S; respectively. The transformed signal .S Et) has mean 1 = 0 and

standard deviation o = 1.

sty =2 =n (6.2)

3) Averaging: We down-sampled the signal to 25Hz by calculating the average across

every k = v/25 samples. .
t+
Sy Tk st

St (6.3)

4) Continuous Wavelet Transform: Mexican Hat a.k.a. Ricker Wavelet was used as the
mother wavelet ¢)(¢). Equation 6.4 describes the Ricker Wavelet in which, o is the standard
deviation and ¢ represents time. Equation 6.5 describes the continuous wavelet transform in

which S is the input signal function, ¢ is time, a is the scale value and b is the translation value.

2 2 &2
Y(t) = Weram (1 - (g) > e 27 (6.4)

Sulor) = / (t_—a>dt 6.5)

5) Breathing Waveform: Equation 6.6 was used to select the scale which best represents
the breathing component in which, WT is the wavelet transform function, i is the scale index
and 7 is time. This scale is defined as s,,,x which corresponds to a local maximum of the energy
wavelet coefficients WT,(t) [21]. Lower scales are likely to contain noise, while higher scales

contain metabolic contributions.

Simax = argmax{ > \wn<t)|2} (6.6)
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Applying the s,,,., formula to the ground truth signal consistently indicated a scale corre-
sponding to an appropriate waveform. However, applying the s,,,,, formula to the thermal signal
would sometimes indicate a scale corresponding to an under-filtered or over-filtered signal. We
attribute this to the fact that the thermal signal contains noise and metabolic contributions in
addition to breathing. In contrast, we consider the ground truth signal collected from the bio-
sensors to be an accurate representation of the breathing waveform. In order to address this,
we randomly sampled 25% of the thermal data, applied the continuous wavelet transform, per-
formed the s,,,, calculation, and plotted the resulting scale values. Based on the box plot, we
introduced a constraint which states that the scale value must lie within the interquartile range
(index 7 - 11 or scale 0.6076 - 2.3475) shown in Figures 6.3 and 6.4. If the s,,,, formula returns
a scale outside of this range we set the scale equal to the mean. The mean value was found to

be the 8th value, which corresponds to a scale of 0.8518 as shown in table 6.1.

Index Scale

1 0.0800
2 0.1122
3 0.1573
4 0.2205
5 0.3091
6 0.4334
7 0.6076
8 0.8518
9 1.1943
10 1.6744
11 2.3475
12 3.2913
13 4.6144
14 6.4695
15 9.0703
16 12.7166
17 17.8289
18 24.9963
19 35.0452
20 49.1338

Table 6.1: CWT Scale Parameter Values

6) Rate Calculation: Finally we calculate the respiration rate based on the resulting wave-

form. We begin by counting the number of peaks in the wave. However, some waveforms

22



18

16

14

12

10

Scale Index

35

30

25

20

15

Scale Value

10

contain several smaller peaks, which are not consistent with the breathing function. To address
this issue we define a constraint known as MinPeakProminence when selecting the peaks. Min-
PeakProminence measures the height of a peak relative to other nearby surrounding peaks. This
option is particularly useful for our dataset since the signal level varies across subjects as well
as between the sensor and thermal signals. We set this parameter to the standard deviation of

the signal in order to filter out noise relative to the signal level. Figure 6.5 depicts an example

25% Random Sample of Scale Indices Using Smax Formula
T
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1

Figure 6.3: Scale Indices

25% Random Sample of Scale Values Using Smax Formula
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1

Figure 6.4: Scale Values

of employing the approach on the filtered thermal respiration rate signal.

7) Cross Correlation: Cross correlation was used to find the maximum correlation between

shifted copies of the sensor and thermal signals. We then calculate the Pearson correlation coef-
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Figure 6.5: Example of Identifying Peaks in the Thermal Signal

ficient of the shifted signals. Table 6.2 provides a general guide for interpreting the correlation
coefficient in the context of medical applications [42]. In this study we consider a correlation

above 0.5 to be statistically significant.

Size of Correlation Interpretation

0.91to0 1.0 Very high correlation
0.7t0 0.9 High correlation
0.5t00.7 Moderate correlation
0.3t00.5 Low correlation

0.0t0 0.3 Negligable correlation

Table 6.2: Rule of Thumb for Interpreting the strength of a Correlation Coefficient [29]

6.4 Experimental Trials

We tested several different methods and settings before deciding to apply the solution out-
lined in the previous section. Earlier in our studies we averaged the signals to reduce the sam-
pling rate in order to remove noise and other extraneous frequency information. We analyzed
signals with sampling rates of 1Hz, SHz, 25Hz, S0Hz and 100Hz. Furthermore, we performed

several trials in which we reduced the sampling rate before and after applying the continuous
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wavelet transform.

The non-stationary nature of the breathing signal introduced challenges in calculating an
accurate respiration rate. We evaluated a number of methods to overcome this problem. The
first of which was to divide the signal into 15-second windows, calculate the rate within each
window, then calculate the average rate across all windows. Our second approach was to use
regression analysis to fit a sine wave to the breathing signal to construct a consistent respira-
tion signal from which we could extract a stable respiration rate. However, after conducting
many trials utilizing different frequencies and order of operations, we found that reducing the
frequency to 25Hz before applying the continuous wavelet transform produces better results.

We came to this conclusion based on the following findings. Reducing the sampling rate to
25Hz cleans the signals without risk of neglecting the breathing signal. The continuous wavelet
transform analyzes the signal in both the time and frequency domains. Finally we count the
number of peaks in the signal and scale that number by the duration of the signal to calculate
the respiration rate. In doing so, we also experimentally determined that we only wish to include

peaks with an amplitude greater than one standard deviation from the mean of the signal.

6.5 Skin Temperature

Our research explores the effects of thermoregulation across different parts of the body by
investigating heat exchange rates in the sensor and thermal domains. We used the ProComp
Infiniti Temp-Flex/Pro sensor to measure the skin temperature of the subjects as the ground
truth. This device converts changes in temperature to changes in an electrical current. The
temperature sensor was strapped to the little finger. Studies in the literature suggest that changes
in the core and overall skin temperature occur very gradually over a period of minutes or even
hours. For that reason, we employed multiple linear regression to capture the long term trend of
the thermal signal extracted from the forehead region. Our regression routine performs several
iterations to find the best fit. We begin with a linear model consisting of one intercept and one
predictor variable. Upon each iteration we add an additional predictor variable which becomes
the leading order term. Thus, the model goes from being linear to quadratic to cubic etc...

We used the coefficient of determination (R-squared value) to determine the ’goodness of fit’.
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Equation 6.7 is the proportion of the total sum of squares explained by the model, in which SSE

is the sum of squared error and SST is the sum of squared total.

SSE

2
—1-=22=
R SST

(6.7)
We evaluate the rate of change in the R-squared value as leading order terms are added to
the model. The ’adjusted R-squared’” metric is often used to determine the optimal number of
predictor variables to include in a model. However, using the adjusted R-squared metric led to
over-fitting for our purposes. To solve this problem, we experimentally determined a threshold
of 25% to prevent over-fitting. Therefore, we stop adding additional terms when the R-squared

value increases by less than 25% from the previous iteration.

6.6 Heart Rate

We developed our own method for estimating the resting heart rates of subjects using ther-
mal data collected from the inner corner of the eyes. The blood volume pulse measured from
the index finger was used as the ground truth. We used the Procomp Infiniti BVP-Flex/Pro to
measure the blood volume pulse of the subjects. Blood volume pulse is also known as photo-
plethysmography in the literature. This type of sensor measures the amount of blood present in
the skin by emitting an infra-red light against the surface of the skin. Blood reflects red light
but absorbs other colors. It is therefore possible to acquire the blood volume pulse by observing
the amount of light that is reflected over time. The Procomp Infiniti device provides the raw
blood volume pulse signal, which we then use to calculate the heart rate. Our heart rate extrac-
tion method follows the same principles used by the respiration rate method outlined in section
6.3. We performed some additional steps and modified some of the signal transformations to
account for attributes specific to the heart rate signal.

1) Segmentation: The Periorbital region was used as the region of interest. This is a de-
parture from previous works, which often use other regions of either the face or neck to extract
heart rate measurements. Image binarization was used to segment areas within the ROI, which

exhibit thermal characteristics related to blood flow. For each video we define a threshold based
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on the 25% hottest pixels in the image. This threshold is required to ignore temperature fluctu-
ations which result from the effects of heat diffusion explained in section 2.1. Figure 6.6 shows
an example in which white pixels within the bounding box are used to construct the thermal

signal. Black pixels indicate temperature values below the threshold, which are ignored.

Figure 6.6: Image Binarization Applied to the Periorbital Region

2) Averaging: We down-sampled the signal to 100Hz by calculating the average across

every k = /100 samples.

t+k
S(t) = —Z%S ) (6.8)

3) Sensor Signal Maximal Overlap Discrete Wavelet Transform: We applied a discrete
wavelet transform to the sensor signal as a precaution to remove noise due to sensor error. This
step may not be required if the sensor is securely attached to the finger under normal conditions.
Daubechies 10 (db10) wavelet was used as the mother wavelet. We selected the DB10 wavelet
because in most cases it closely resembled the characteristics of the raw BVP signals. Figure
6.7 provides a visual representation of the DB10 wavelet with corresponding scaling function.

4) Thermal Signal Continuous Wavelet Transform: Morse Wavelet was used as the mother

wavelet ¢(t), where U(w) is the unit step, a3, is a normalizing constant, y characterizes the
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Figure 6.7: DB10 Wavelet & Scaling Functions
symmetry of the Morse wavelet and 3 is the decay parameter.
Vp5(w) = U(w)agw’e” (6.9)

5) Wavelet Scale Selection: We experimentally found that discrete wavelet scale 32 pro-
vided the best set of coefficients to use for calculating an accurate heart rate from the sensor
signal. For the thermal signal we select scales which correspond to frequencies in the range of
1-1.67 Hz, which approximately corresponds to 60-100 beats per minute. We then reconstruct
the signal from this frequency band using the inverse continuous wavelet transform function.

In equation 6.10, <> denotes the inner product and Re{ } denotes the real part of the function.

1 o da
ft) = 236{%/0 < f(t), Yap(t) > 7} (6.10)

6) Rate Calculation: We count the number of peaks in the wave then scale that value by the
length of the recording to calculate the heart rate in units of beats per minute. This calculation

1s identical to the rate calculation outlined in section 6.3.
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Chapter 7

Results

7.1 Respiration Rate

We use the ground truth measurement as a baseline to evaluate the respiration rate which we
extract from the thermal domain. Consequently, an accurate baseline measurement is critical
for assessing the accuracy of our results. The data set was divided into two sets, which we
will refer to as ’Norm’ and ’Talking’. In the Norm videos, subjects are silently sitting still
without being exposed to any stimuli. In this case, the subjects are likely breathing through their
noses. However, in the Talking videos, the subjects are speaking most of the time. Speaking
disrupts nasal breathing in order to blow air against the vocal chords. This will affect the thermal
respiration rate we extract from the maxillary region of interest.

The literature reports a valid respiration rate to be between 12 and 24 breaths per minute
(bpm). We assume the respiration rates of all subjects to fall within this range since they were
all relatively young and healthy college students. We consider respiration rates outside of this
range to be outliers. Samples containing invalid ground truth respiration rates were therefore
eliminated. We analyzed the Norm set first since we expect subjects to exhibit natural breathing
patterns while they are in a relaxed state. Eight videos produced respiration rates below 12bpm,
while 43 videos produced respiration rates above 24bpm. A total of 51 videos were eliminated
from a total of 209, which accounts for 24% of the total videos.

Comparison of the ground truth and thermal respiration rates extracted from the Talking
set reveal a higher variation and a lower correlation between the two signals as seen in Table

7.2. 113 videos produced respiration rates less than 12bpm, while 34 produced respiration rates
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above 24bpm. A total of 147 videos were eliminated from a total of 519, which accounts for
28% of the total videos.

Table 7.1 shows that the majority of the eliminated videos had respiration rates which
are considered to be too low. This supports our assumption that invalid measurements are most
likely the result of an ill fitted respiration sensor. Examples of this could include excess clothing
worn underneath the sensor or the chest strap not fitting snug against the patient’s chest. Either
of which, could explain a lower reported respiration rate. Furthermore, the Institutional Review
Board (IRB) for Protection of Human Subjects in Research defines guidelines which limit the
constraints we can impose on the subjects. For that reason, subjects were left to their discretion

in deciding what clothes they wore during the study or how tight they chose to adjust the chest

strap.
Category
Respiration Rate (bpm) | Norm Talking
<12 8 113
> 24 43 34
[12 24] 158 372
Total 209 519

Table 7.1: Video Categorical Breakdown

Table 7.2 displays the average correlation rates before and after removing outliers. Re-

moving outliers resulted in a three percent increase for both sets of videos.

Correlation Correlation
Category Before After
Norm 0.58 0.61
Talking 0.40 0.43

Table 7.2: Average Correlation Rates Before & After Removing Outliers
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Signal Level

Ground Truth Thermal
Video Respiration Rate | Respiration Rate | Cross Correlation
050 Norm?2 15.70 16.39 0.98
025 Norm1 19.48 19.48 0.98
096 Norm1 18.39 18.39 0.97
048 Norm?2 15.67 15.67 0.97
039 Norm1 22.70 22.03 0.97
040 Norm1 18.25 18.25 0.97
034 Norm?2 19.36 18.70 0.97
031 Norm1 21.50 21.50 0.96
097 Norm1 15.85 15.18 0.96
047 Norm1 16.62 15.98 0.96

Table 7.3: Ten Highest Correlated Respiration Rates

108 Raw Sensor Respiration Signal (Subject 25 Norm1)
. l l I

10.6 -

10.4

10.2

10 -

9.6

9.4 | | | | |

0 0.5 1 1.5 2 2.5
Samples (2048 Hz) «10°

Figure 7.1: Subject 25 Raw Sensor Signal

Schuirmann’s Two One Sided Tests (TOST) Procedure was used to assess equivalence
between the ground truth and thermal respiration rates [56]. The TOST procedure is based on

the following assumptions:
* The data is normally distributed

» The within-subject variances of the test and reference populations are the same (not a

critical assumption)

* The study is a balanced crossover study; there is an equal number of subjects in each
sample and there are no missing observations from any subject
* The equivalence interval is symmetric about zero (not a critical assumption)

Our data meets these assumptions since the respiration rates of humans are expected to be nor-
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Figure 7.2: Subject 25 Raw Thermal Signal
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mally distributed according to medical studies in the literature. Our results show that the within-

subject variances for the sensor and thermal domains are the same within one standard deviation,

though this is not a critical assumption. Our study is balanced since we extracted a ground truth

signal and thermal signal from every subject in each video. For the sake of simplicity we chose

a symmetric interval of -1 breath per minute.

The interval [0y, 0] is the “interval hypothesis.” Let p be the mean of the test population

and p i be the mean of the reference population. The null hypothesis, H states that 17 and pg

are not equivalent. The alternative hypothesis, H; states that they are equivalent.

Hy: pr—pr<0; or pur—pr=>0;

Hy: 60y <pp—pup<0b

The two sets of one sided hypothesis can be tested using ordinary one-sided t-tests. Equiv-

alency can be concluded if and only if both conditions of the null hypothesis are rejected at a

chosen level of significance «. s is the estimated within-subject standard deviation defined as
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Figure 7.3: Subject 25 Normalized Signals

the square root of the mean squared error. The quantity s+/2/n is the standard error of X7 — X
based on v degrees of freedom.
Xy — Xg) -0 0y — (Xr — X

g = K= Xp) =61 >t @ and ty = — (Xr — Xr)

>t a@
! sv/2/n s\/2/n = e

We defined our hypothesis interval to be [-1, 1] bpm. Using this interval, we were able

(7.1)

to conclude that the average Norm ground truth and thermal respiration rates are equal within
+1 bpm and a 99% confidence interval. Furthermore, the Talking ground truth and thermal
respiration rates are equal within a &1 bpm and an 80% confidence interval. A comparison
of Figures 7.9 and 7.10 show that the confidence interval for the Talking videos is noticeably
smaller than that of the Norm videos. This makes sense considering the higher variation in the
thermal signal as well as the higher difference between the sample means. The higher number of
talking videos also results in 371 degrees of freedom compared to only 157 for the Norm videos.
This will effectively exaggerate the differences between the two populations thus reducing the
confidence interval.

The results of the two one sided T-test are listed below. ¢ is the point that isolates prob-

ability « in the upper tail of the Student’s t distribution with df” degrees of freedom and p is
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Figure 7.4: Subject 25 Transformed Signals (Correlation = 0.98)

the associated p-value. The confidence intervals are listed in the Equivalence Bounds table, in
which Low/High show the user defined interval and Lower/Higher show the TOST confidence
interval centered around the difference of the sample means. Cohen's d is the standardized
difference between the means while Raw is simply the mean difference. The results strongly
suggest that a relationship exists between the sensor and thermal domains and that this relation
is not simply due to chance. The test also reveals that the rates extracted from the normal videos
are more consistent than those extracted from the talking videos. This supports our assertion
that our respiration rate estimation is more accurate when subjects are breathing through their

noses without speaking.
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Figure 7.6: Subject 101 Raw Thermal Signal
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Figure 7.8: Subject 101 Transformed Signals (Correlation = 0.60)
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NORM TOST PAIRED SAMPLES T-TEST Results

t df P
sensor thermal t-test 0.665 157 0.507
TOST Upper -2.91 157 0.002
TOST Lower 4.24 157 < .001
Equivalence Bounds
Low High Lower Upper

sensor thermal Cohen's d -0.285 0.285

Raw -1.00 1.00 -0.471 0.842
Descriptives
N Mean Median SD SE
sensor 158 17.3 17.0 2.85 0.227
thermal 158 17.1 17.0 3.84 0.305
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Figure 7.9: NORM Two One Sided T-Test: Confidence Interval
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TALKING TOST PAIRED SAMPLES T-TEST Results

t df P
sensor thermal t-test 3.35 371 < .001
TOST Upper -0.828 371 0.204
TOST Lower 7.53 371 < .001
Equivalence Bounds
Low High Lower Upper

sensor thermal Cohen's d -0.217 0.217

Raw -1.00 1.00 0.600 1.00
Descriptives
N Mean Median SD SE
sensor 372 16.9 16.3 3.29 0.171
thermal 372 16.1 16.2 3.44 0.178
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Figure 7.10: TALKING Two One Sided T-Test: Confidence Interval
7.2 Skin Temperature

We applied multiple linear regression to the entire dataset consisting of 104 subjects and
a total of 728 videos. We calculated the average temperature within the forehead region of
interest to measure the skin temperature. This measurement is less prone to tracking errors
since we can still measure the average temperature of the ROI even if the bounding box is
partially obscured. For that reason, we were able to extract the skin temperature from all videos
without excluding any of them. The average cross correlation between the regression line and
the sensor signal is -0.17, which is statistically insignificant. However, the average absolute
cross correlation is +0.81. This implies that some relationship exists between the thermal signal
extracted from the forehead and the sensor signal measured from the finger. Figures 7.11, 7.12,
7.13 and 7.14 depict examples of strongly correlated skin temperature signals. The fact that
the correlation is strong in both positive and negative directions suggests that the rate of heat
exchange varies between both subjects and body parts. Related Work previously mentioned in

the skin temperature section support this finding. In particular, [41]’s results “show for trained
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subjects a better capability of losing heat, thus of shifting through the blood the heat from the

muscle to the skin.”

Skin Temperature (Subject 07 Norm1)
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Figure 7.11: Example 1: Strong Positive Correlation

Secondly, we wish to quantify the relationship between the skin temperature of the fore-
head and the finger, which were collected from the thermal camera and contact based sensor
respectively. We use equation 7.2 to derive a factor to translate between forehead and finger
temperatures in degrees Fahrenheit. For each video i, j17 is the mean of the thermal signal, g is
the mean of the sensor signal and n is the number of videos. Equation 7.2 is simply the average

of the ratio of the signal means.

1 o pg;
Sy (7.2)
n = Kri

The result of equation 7.2 is 0.895. Therefore, equation 7.3 can be used to calculate the sen-
sor based temperature from the thermal temperature. Sg and Sp are the sensor and thermal

temperatures respectively.

Sg = 0.8955 (7.3)

The margin of error was calculated using equation 7.4, in which ¢ is the inverse t-distribution,

« s the confidence interval, n is the sample size, and o4, is the standard deviation of the ratio
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Figure 7.12: Example 2: Strong Positive Correlation

of the signal means. Given o = 95, 0,40 = 0.07 and n = 728, the margin of error for a 95%
confidence interval is only 0.5%. This suggests that the amount of sampling error is negligible
due to our rather large sample size. Therefore, the average ratio between forehead and finger

skin temperatures is likely valid for a larger population and not merely a result of chance.

1 —a,n — 1) x 2 (7.4)

vn

For the sake of comparison we also applied a linear regression to evaluate equation 7.3 as
well as to visualize the temperature samples collected from both the sensor and thermal domains.
In this regression model, the predictor variable is defined by the mean thermal temperature
values and the response variable is defined by the mean sensor values. The least squares fit is

given by equation 7.5. Sg and S are the sensor and thermal temperatures respectively.

Ss = 0.007 x Sy -+ 83.734 (7.5)

Figure 7.15 reveals that the temperature samples do not appear to follow a linear trend. On

the other hand, it shows that the samples are clustered around a point with sensor mean equal
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Figure 7.13: Example 3: Strong Negative Correlation

to 84.4°F and thermal mean equal to 94.3°F. This observation also supports the validity of
equation 7.2. However, equation 7.2 is based on the skin temperature of subjects who were
sitting comfortably at room temperature. An additional study would be required to determine if
a similar relationship holds for subjects with skin temperatures outside of the ranges observed

in our study.

7.3 Heart Rate

We analyzed a total of 727 videos of 104 subjects. The inner corners of the eyes were
used as the region of interest for extracting the thermal heart rate signal. In this section we no
longer make a distinction between the "Normal” and *Talking’ videos as we did in section 7.1
for calculating respiration rates. The reason for this is that measurements extracted from the
eye region should not be affected by talking in the same way the nose region was. Table 7.4
shows that the sensor rates are more spread out compared to the thermal heart rates. The small
standard deviation of the thermal rates is likely a result of the narrow pass-band we selected
when computing the inverse continuous wavelet transform. Widening the pass-band led to

results which were less consistent with the ground truth sensor rates. Therefore, we experienced
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Figure 7.14: Example 4: Strong Negative Correlation

a trade-off between the scope of the frequency pass-band and heart rate accuracy. Normal resting
heart rates are generally considered to be in the range of 60-100 beats per minute. For that
reason, we consider heart rates above 100bpm to be outliers. Removing outliers reduced the
standard deviation of the sensor rates from 12bpm to 10bpm.

Table 7.5 also shows a decrease in the average difference between the sensor rate and the
thermal rate from 11bpm to 9bpm. A future study could explore methods to successfully detect

heart rates outside of the normal range.

Domain Min Max Average St. Dev.
Sensor 54 128 84 12
Thermal 67 88 78 3

Table 7.4: Heart Rate Statistical Measures in beats per minute

Outlier Removal | Difference (bpm)
Before 11
After 9

Table 7.5: Average Heart Rate Difference Between Sensor & Thermal Rates Before & After
Removing Outliers

Figures 7.16, 7.17, 7.18 and 7.19 display examples of the sensor and thermal heart rate
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Figure 7.15: Skin Temperature Linear Regression Plot

signals during various stages of processing.

Finally, we perform a two one sided T-test on the heart rates to test the equivalency between
the sensor and thermal rates. 657 samples out of the total 727 were used after eliminating
outliers. The test reveals that the two sets are equivalent in the interval [-5,+5] for a 99%
confidence interval. Figure 7.20 shows that the TOST interval is within the user defined interval
[-5,5]. These results suggest that the true mean difference between the heart rates is less than
5 beats per minute. Assuming a normal distribution, this statistic should remain true for larger

sample sizes and/or different samples from the same population, in this case university students.

45

97



40

MilliVolts (mV)

32

30

95.8

95.7

© ©
o o
o e}

Temperature (°F)

(o]

o

N
I

95.3

w
»

w
~
T

Raw Blood Volume Pulse Signal (Subject 67)
I I

0.5 1 1.5 2
Samples (2048 Hz)

Figure 7.16: Subject 67 Raw Sensor Heart Rate Signal

Raw Thermal Heart Rate Signal (Subject 67)
l l l l l

x10°

95.2

|
500 1000 1500 2000 2500 3000 3500
Samples (100 Hz)

Figure 7.17: Subject 67 Raw Thermal Heart Rate Signal
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Figure 7.19: Subject 67 Processed Heart Rate Signals
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HEART RATE TOST PAIRED SAMPLES T-TEST

TOST Results

sensor thermal t-test 8.21 656 < .001
TOST Upper -3.91 656 < .001

TOST Lower 20.3 656 < .001

sensor thermal Cohen's d -0.473 0.473

Raw -5.00 5.00 2.42 4.35
Descriptives
N Mean Median SD SE
sensor 657 81.6 81.4 10.3 0.403
thermal 657 78.2 78.3 2.61 0.102
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Chapter 8

Conclusion

There are numerous benefits associated with the use of thermal imaging for health monitor-
ing and modeling of human behavior. Recording thermal video is far more convenient compared
to attaching multiple sensors to the body. Contact-based sensors and electrodes attached to the
body may cause discomfort, which can alter the subject’s physiological state. Thermal cam-
eras, on the the other hand, are unobtrusive and therefore less likely to influence the subject or
introduce bias. Moreover, thermal cameras can potentially screen people in seconds compared
to the time-consuming task of outfitting someone with an array of sensors. Modern technology
is facilitating the development of real-time thermal imaging systems that are sensitive to minute
variations in skin temperature.

We have developed a solution which integrates image and signal processing techniques to
extract various physiological signals from thermal images. Specifically, we proposed different
methods for capturing temporal features in the face and for filtering thermal signals. Our re-
sults show a significant relation between the respiration rates extracted from thermal imaging
and those recorded by contact-based sensors. Mean respiration rates extracted from the thermal
domain were within a range of one breath per minute from the mean of the sensor-based mea-
surements. We were also able to establish an average correlation of 0.6 between the thermal and
sensor breathing signals. Secondly, we found that heat exchange rate varies between the finger
and the forehead. We also derived an equation to estimate the skin temperature of the finger
based on the thermal skin temperature signal extracted from the forehead. Finally, we extracted
heart rates from the thermal domain. The mean difference between the sensor and thermal

heart rates was five beats per minute. This research has shown that non-contact approaches
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using thermal imaging represent a reliable alternative to using contact-based sensors.
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