
Sensor Data Integrity Verification for Real-time and Resource

Constrained Systems

by

Raghavendar Changalvala

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Electrical and Computer Engineering)
in the University of Michigan-Dearborn

2021

Doctoral Committee:

Professor Hafiz Malik, Chair
Assistant Professor Anys Bacha
Ashok Prajapati, General Dynamics Land Systems
Associate Professor Samir Rawashdeh
Professor Weidong Xiang

Raghavendar Changalvala

rchangal@umich.edu

ORCID iD: 0000-0001-5665-2401

c© Raghavendar Changalvala 2021

DEDICATION

This dissertation is dedicated to my parents, family, and all the mentors that

served as my source of wisdom.

ii

ACKNOWLEDGEMENTS

First of all, I would like to express my sincere gratitude towards my advisor, Dr.

Hafiz Malik for his continuous support to my research and his endless motivation. The

meetings and conversations I had with you were vital in inspiring me to think outside

the box and from multiple perspectives. Further, I would like to thank each one of my

dissertation committee members for their thoughtful comments and recommendations

on this dissertation. To conclude, I cannot forget to thank my family, friends and

work life managers and colleagues for all the unconditional support they provided in

this very intense academic journey.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . viii

LIST OF TABLES . xii

LIST OF APPENDICES . xiii

LIST OF ABBREVIATIONS . xiv

ABSTRACT . xvi

CHAPTER

I. Introduction . 1

1.1 Introduction . 1
1.2 Attacks on Sensors . 4

1.2.1 Automotive Sensors Vulnerability 5
1.2.2 Automotive Sensor Categories 7

1.3 Problem Statement . 9
1.4 Watermarking Advantages . 13
1.5 Thesis Outline . 16

1.5.1 Document Road Map 17

II. Data Security Using Digital Watermarking 19

2.1 Watermarking Background 19
2.2 Applications of Watermarking 20

2.2.1 Content Identification and Protection 22
2.2.2 Digital Forensics and Piracy Detection 22
2.2.3 Ownership and Copyright Protection 22
2.2.4 Content Security and Authentication 23

iv

2.2.5 Location of Content Online 23
2.2.6 Broadcast Monitoring 23
2.2.7 Auditing . 24
2.2.8 Access Control . 24
2.2.9 Medical Applications 24
2.2.10 Clandestine Communication or Steganography . . . 24

2.3 Watermark Security . 25
2.3.1 Threat Models . 26

2.3.1.1 Removal Attack 27
2.3.1.2 Interference Attack 27
2.3.1.3 Geometric Attack 27
2.3.1.4 Filtering Attack 27
2.3.1.5 Active Attack 27
2.3.1.6 Passive Attacks 28
2.3.1.7 Data Degradation 28

2.3.2 Watermarking & Cryptography Analogy 29
2.4 Watermark Design Requirements 31

2.4.1 Imperceptibility . 32
2.4.1.1 Hausdorff Distance 32
2.4.1.2 Signal-to-Noise Ratio (SNR) 33
2.4.1.3 Root Mean Square Error (RMSE) 33

2.4.2 Tamper Resistance 34
2.4.3 Robustness . 34
2.4.4 Security . 35
2.4.5 Capacity . 36
2.4.6 Computational Cost 36
2.4.7 False Positive & False Negative 37
2.4.8 Watermark Keys . 38
2.4.9 Watermark Reversibility 38

2.5 Watermarking Techniques . 38
2.5.0.1 Spatial Domain Watermarking 39
2.5.0.2 LSB . 41
2.5.0.3 1D QIM 42

2.5.1 Frequency Domain Watermarking 43
2.5.2 Perception Based Watermarking 43

2.5.2.1 Fragile Watermarking 44
2.5.2.2 Semi-fragile Watermarking 44
2.5.2.3 Robust Watermarking 45

III. Watermarking & Data Models 46

3.1 Watermarking Model . 46
3.1.1 Data Model . 46

3.2 Geometric and Statistical Models 49
3.3 Communication Model . 53

v

3.4 Scalar Watermarking . 59
3.4.1 Binning Schemes - LSB 60
3.4.2 Quantization Index Modulation - QIM 61

3.5 Lattice Codes . 65
3.5.1 Lattice QIM . 67

IV. RADAR Data Integrity Verification-2D QIM 72

4.1 Introduction . 73
4.2 System & Attack Model . 76

4.2.1 Sensor Fusion Data Model 77
4.3 Proposed Framework . 79

4.3.1 Watermark Generation 81
4.3.2 Watermark Embedding 82
4.3.3 Watermark Decoding 84

4.4 Security Analysis & Performance Evaluation 85
4.4.1 Data Addition . 86
4.4.2 Data Deletion . 87
4.4.3 Data Modification 88

4.5 Experiments & Results . 89
4.5.1 Impact of Embedding Distortion on Object Detection 89
4.5.2 Bit Error Rate . 98
4.5.3 False-alarm Rate Analysis 99

V. LiDAR Data Integrity Verification-3D QIM 102

5.1 Introduction . 103
5.2 LiDAR Point Cloud: Applications 104

5.2.1 QIM-based Data Hiding on LiDAR Point Cloud . . 105
5.3 Attack Modeling . 108

5.3.1 Attack Vectors . 110
5.4 Countermeasures to Transmission Channel Attacks 111

5.4.1 Implementation Details 111
5.4.2 Performance Evaluation 112

5.5 Experimental Results . 113
5.5.1 Impact of Embedding Distortion on ADAS Perfor-

mance . 115
5.5.2 Embedding Distortion Analysis 119
5.5.3 Robustness Analysis 120

5.5.3.1 Bit Error Rate 123
5.5.3.2 Tamper Detection and Localization . . . 124
5.5.3.3 False-alarm Rate Analysis 127

5.6 Vulnerability Analysis of QIM 130
5.6.1 Countermeasure Framework 132

5.6.1.1 Dither Modulation 132

vi

5.6.1.2 Watermark Generation 134
5.6.1.3 Watermark Embedding 135

5.6.2 Experiments & Results 136
5.6.2.1 Dataset 136
5.6.2.2 Bit Error Rate 137
5.6.2.3 Localization Accuracy 137
5.6.2.4 False Negatives 139

VI. Future Work & Conclusion . 143

6.1 Need for Data Security in Autonomous Vehicles 143
6.1.1 Data Sources . 145
6.1.2 Framework Proposal 146

6.2 Sensor Fingerprints . 151
6.2.1 Methodology . 153
6.2.2 System Model . 153
6.2.3 Data Model . 155
6.2.4 Threat Model . 156
6.2.5 Fingerprint Extraction 157
6.2.6 Experiments & Results 160

6.3 Conclusion . 162

APPENDICES . 165

BIBLIOGRAPHY . 170

vii

LIST OF FIGURES

FIGURE

1.1 Autonomous vehicle sensor suite (Snehaprabha and Ram, 2019) . . 3

1.2 Autonomous vehicle sensor suite - Raw sensor 8

1.3 Autonomous vehicle sensor suite - Smart sensor 9

1.4 Comparison of different methods to achieve sensor data integrity . . 12

2.1 Watermarking requirements . 31

2.2 Watermarking techniques classification 39

2.3 Amplitude plots of a raw and LSB modified audio sample 40

2.4 Representation of raw and LSB modified camera image 41

2.5 Representation of raw and QIM modified LiDAR image 42

3.1 Digital content representation . 49

3.2 Geometrical model representation 51

3.3 Watermarking as communication model 54

3.4 1D QIM scheme . 62

3.5 Simple 1D and 2D lattices . 66

3.6 Quincunx lattice . 67

3.7 Hexagonal lattice QIM scheme . 69

viii

4.1 Radar data stream . 74

4.2 Block-diagram of problem statement 75

4.3 State vector for pedestrian motion 77

4.4 Proposed framework and 2D QIM embedding process 78

4.5 Block-diagram of proposed method 79

4.6 Time-stamp conversion . 80

4.7 2D QIM scheme . 82

4.8 Data addition attack vector depiction 85

4.9 Data deletion attack vector depiction 88

4.10 Data modification attack vector depiction 89

4.11 Tamper localization algorithm performance under varying channel noise 91

4.12 RMSE comparison at Rm = 0.4 . 92

4.13 RMSE comparison at Rm = 0.5 . 93

4.14 Comparison: EKF path prediction from clean and encoded data at
Rm = 0.5, Rn = 0.5 & ∆ = 0.01 m 100

5.1 Illustration of 3D QIM-based data hiding, here axis representation is
in LiDAR frame . 107

5.2 Block diagram of the proposed QIM-based framework 109

5.3 Attack models and tamper detection and localization results 114

5.4 Bounding box estimation of a ground truth label at different QIM-
embedding step sizes . 117

5.5 Bounding box distortion analysis for different bit-embedding schemes
under Uniform additive noise attack 121

5.6 Bounding box distortion analysis for different bit-embedding schemes
under Gaussian additive noise attack 122

ix

5.7 Bit error rate of decoded code book for different step sizes and added
uniform noise . 125

5.8 Bit error rate of decoded code book for different step sizes and added
Gaussian noise . 126

5.9 Bounding box distortion in meters for different step sizes and added
uniform noise . 128

5.10 Bounding box distortion in meters for different step sizes and added
Gaussian noise . 129

5.11 Illustration of quantization noise . 131

5.12 Sequence diagram of proposed method 133

5.13 Voxel centeroid movement due to dither modulation 134

5.14 Message embedding example with three bits and L= 6 135

5.15 Bit Error Rate at ∆ = 5cm, σ = 0.0 138

5.16 Bit Error Rate at ∆ = 5cm, σ = 0.0072 138

5.17 Bit Error Rate at ∆ = 5cm, σ = 0.0144 139

5.18 Localization distortion at ∆ = 5cm, σ = 0.0 140

5.19 Localization distortion at ∆ = 5cm, σ = 0.0072 140

5.20 Localization distortion at ∆ = 5cm, σ = 0.0144 140

5.21 Detection False Negatives at ∆ = 5cm, σ = 0.0 141

5.22 Detection False Negatives at ∆ = 5cm, σ = 0.0072 141

5.23 Detection False Negatives at ∆ = 5cm, σ = 0.0144 142

6.1 Data-transactions in modern-vehicles and watermarking framework
proposal . 147

6.2 OSI model of an Ethernet frame 150

6.3 Block-diagram of the system model 152

x

6.4 Spectrograms of sensor transmissions generated using 8 ms window
size, 25% overlap, and Hanning weight window 154

6.5 Power spectrum of sensors under test at 25 cm distance measurement 156

6.6 Power spectrum of all sensors under test at different distances . . . 159

6.7 Data collection set-up for fingerprint extraction 160

6.8 Saturation of received signal - Spectrogram visual 161

xi

LIST OF TABLES

TABLE

4.1 BER and False-Alarm rate at different noise levels 99

5.1 QIM-induced distortion at different step-sizes 116

5.2 VoxelNet: Car detection average precision scores 118

5.3 False alarm rates at different step-sizes for added noise 130

6.1 Accuracy: Gaussian NaiveBayes Method 161

6.2 Accuracy: Saturated Gaussian NaiveBayes Method 162

xii

LIST OF APPENDICES

APPENDIX

A. Algorithms . 166
1 Find Modified Indices . 166
2 Find Deleted Indices . 167
3 Find Added Indices . 167
4 Watermark Sequence Generator 168

B. Source Code . 169

xiii

LIST OF ABBREVIATIONS

ADAS Advanced Driver Assistance Systems

AD Automated Driving

AV Autonomous Vehicle

BER Bit Error Rate

CAN Control Area Network

CAN-FD Control Area Network - Flexible Datarate

CPS Cyber Physical System

DCT Discrete Cosine Transform

DFT Discrete Fourier Transform

DWT Discrete Wavelet Transform

ECU Electronic Control Unit

ECC Error Correction Code

EKF Extended Kalman Filter

GPS Global Positioning System

LiDAR Light Detection and Ranging

LSB Least Significant Bit

MAC Message Authentication Code

QIM Quantization Index Modulation

RADAR Radio Detection and Ranging

SecOC Secure Onboard Communication

xiv

SVD Singular Value Decomposition

V2X Vehicle to Anything Communication

WSN Wireless Sensor Networks

xv

ABSTRACT

Sensors are used in multiple applications that touch our lives and have become

an integral part of modern life. They are used in building intelligent control systems

in various industries like healthcare, transportation, consumer electronics, military,

etc. Many mission-critical applications require sensor data to be secure and authen-

tic. Sensor data security can be achieved using traditional solutions like cryptography

and digital signatures, but these techniques are computationally intensive and cannot

be easily applied to resource constrained systems. Low complexity data hiding tech-

niques, on the contrary, are easy to implement and do not need substantial processing

power or memory. In this applied research, we use and configure the established low

complexity data hiding techniques from the multimedia forensics domain. These

techniques are used to secure the sensor data transmissions in resource constrained

and real-time environments such as an autonomous vehicle. We identify the areas in

an autonomous vehicle that require sensor data integrity and propose suitable water-

marking techniques to verify the integrity of the data and evaluate the performance of

the proposed method against different attack vectors. In our proposed method, sen-

sor data is embedded with application specific metadata and this process introduces

some distortion. We analyze this embedding induced distortion and its impact on the

overall sensor data quality to conclude that watermarking techniques, when properly

configured, can solve sensor data integrity verification problems in an autonomous

vehicle.

xvi

CHAPTER I

Introduction

1.1 Introduction

In the modern world, sensors and sensor networks are used in many mission-critical

applications. Different applications such as industrial control systems, healthcare,

military, intelligent transportation, IoT (smart homes, smart infrastructure), etc. use

sensors and rely on their data. Sensors measure the physical quantities from their

environment and often convert them into measurable electric signals (Shin et al.,

2016).

Industrial and infrastructure control systems rely on sensors and computer-based

systems to monitor the physical processes. These systems, also known as process

control systems, are used to connect the networked IT infrastructure to the physical

world through sensors. These Supervisory Control and Data Acquisition (SCADA)

systems or the Cyber-physical Systems (CPS) with the embedded sensor and actuator

networks control several safety-critical applications. SCADA systems, in particular,

perform vital functions in national critical infrastructures, such as electric power

distribution, oil, and natural gas distribution, water and waste-water treatment, and

transportation systems. These control applications can be considered safety-critical

since their failure can cause harm to the physical system and even to the people who

depend on those services (Cárdenas et al., 2011). The security of these safety-critical

1

systems depends on the integrity of the data sensed and transmitted by the sensors.

These industrial control systems have to deal with many legacy components and

interfaces where it becomes challenging to secure all the weak links. Many lightweight

cryptographic mechanisms like IEEE P1711 standard to secure legacy serial links were

developed to ensure data integrity and confidentiality in these systems, yet, studies

show that to secure the critical control systems properly, the underlying technology

must satisfy some minimum performance requirements to allow the implementation of

well-tested security mechanisms and standards. In the absence of such infrastructure,

alternate technologies like watermarking- based sensor security methods need to be

researched. With the recent advances in IoT, wireless sensor networks, and their

penetration into industrial applications, the problem to check for sensor data integrity

becomes more crucial and challenging.

In the recent episode of the theft of RQ-170 Sentinel UAV (unmanned aerial

vehicle), one of the popular theories on the technology behind this controversial theft

emphasizes the importance of checking for sensor data integrity. As per this theory,

the UAV was spoofed to land into an enemy airfield through a GPS spoof attack,

where-in a GPS satellite signal is overlaid by a spoofed GPS signal from a local

transmitter, which lead to the errors in position estimation of the UAV (Hartmann

and Steup, 2013).

Body sensor networks (BSN) is a recent advancement in healthcare management

that relies on the power of the internet of things (IoT) to bring the patients closer

to physicians. BSN lets physicians collect data round the clock from the patient

using low-power and lightweight wireless sensors that monitor the patient and his

environment. These networks are widely used in senior citizen healthcare, where

many sensors wearable, implanted, and environment are used to enable aged people

to enjoy new medical healthcare services ubiquitously. The data collected over these

networks is sensitive both from the privacy and integrity perspectives. Since this data

2

collection does not take place in a controlled environment, the process needs strict

security mechanisms to prevent any malicious attacks in the form of data tampering.

Data integrity is one of the key elements along with the privacy, authentication, and

anonymity of BSNs. Data integrity can be defined as protecting data from external

modifications. In the case of a BSN or any sensor network, an adversary can always

alter the data by adding some fragments or by manipulating the data within a packet.

In the case of life-critical applications, the lack of a mechanism to detect this data

manipulation could become dangerous (Gope and Hwang, 2016).

Figure 1.1: Autonomous vehicle sensor suite (Snehaprabha and Ram, 2019)

An autonomous vehicle or a self-driving car is a disruptive technology altering

the future of ground transportation. As per the European Commission report in

2017, the revenues from autonomous driving are expected to increase from 7.6 bn in

2015 to 50 bn EUR in 2022 (European Commission, 2017). Modern car as a cyber-

physical system heavily relies on sensors. Starting from the biometric sensors like

fingerprints scanners, voice recognition sensors (microphones) that give the user access

to a vehicle to the sensors which help autonomous vehicles drive by themselves like

3

LiDARS, RADARs, cameras, and ultrasonic sensors, etc. a modern car relies heavily

on the sensor data. There are five essential functions that an autonomous car needs:

perception, localization, planning, control, and system management. Perception is

the process of sensing the surrounding environment of a vehicle(Jo et al., 2014). The

typical sensor suite used to build the perception layer in an autonomous vehicle is

depicted in Figure 1.1. The most commonly used sensors are cameras, RADAR,

ultrasonic sensors, and LiDAR. The main challenge with the current sensor suite of

an autonomous car is that every sensor has its own deficiency. Some work better in

different weather conditions like rain and snow, and others work better in different

lighting conditions. If each sensor is considered individually, it cannot cover the wide

spectrum of vehicle operating conditions and environments. For example, cameras

can be spoofed by glare, RADARs have a very narrow field of view, ultrasonic sensors

can be only used for near field detections, and LiDARs cannot work well in rainy

conditions. Hence, the concept of sensor fusion is developed where the perception layer

is generated after combining multiple sensor outputs. As the concept of autonomous

vehicles is getting close to reality, engineers are in a quest to make their systems more

safe and secure and in search of new sensors like infrared cameras, ground-penetrating

RADARs (Quain, 2019). This dependency of an autonomous vehicle on sensors and

their data puts forward the challenge of data integrity and brings us to the question of

whether this sensor data is intact while passing through a vehicle network. Given any

application domain discussed above, to ensure the correct operation of the actuation

and control systems that depend on the sensors their data must be authentic and

robust to spoofing.

1.2 Attacks on Sensors

Sensor data spoofing can be broadly classified into three categories (Shin et al.,

2016)

4

1. Regular channel: Direct attacks on the physical sensing structure, such as

spoofing a microphone using a sound wave (Shin et al., 2016). Jamming attack on

an ultrasonic sensor using an ultrasound generator operating in the same

frequency as the sensor (Chen et al., 2016).

2. Transmission channel: Attacks on the sensor output transmission channels

(wired/wireless), such as frame tampering of LiDAR sensor data (Changalvala

and Malik, 2019b).

3. Side channel: Attacks on the sensing structure by using a different physical

system, such as using light to inject malicious attacks on the voice-controlled

devices (Sugawara et al., 2020).

In many modern and legacy systems, having end-to-end security of sensor data from

these three kinds of attacks is very crucial. In an era where smart devices powered by

sensor data are driving our cars, influencing our purchase decisions, automating our

homes, and providing us with continuous connectivity, the need to secure the sensor

data takes higher priority. This need of the day has been a major motivation factor in

our research. In this research, we focus on securing sensor data from the transmission

and regular channel attacks in resource-constrained systems such as an autonomous

vehicle. In the future, it can be extended to a broader scope of end-to-end data

transaction security in autonomous vehicles and other domains.

1.2.1 Automotive Sensors Vulnerability

In the last 20 years, the automotive industry has seen rapid growth in the usage of

electronic control units (ECUs) to implement various technology features such as dy-

namic vehicle controls, infotainment, and ADAS. These technologically enhanced user

experience and safety features are heavily dependent on the sensors, and advanced

communication networks integrated into the vehicles. An autonomous vehicle (AV),

5

in particular, depends heavily on sensors and data transmission networks to imple-

ment the highly automated driving functions (Sarmento et al., 2017). Autonomous

vehicles rely entirely on sensors to estimate their surroundings, to detect and react

to obstacles. To achieve a sustainable Society of Automotive Engineers (SAE) level 2

automation and above (SAE Ground Vehicle Standard), a typical vehicle is equipped

with multiple sets of sensors, like cameras, LiDARs, and RADARs, etc. To get a per-

spective, the GM Cruise AV is equipped with 5 LiDARs, 16 cameras, and 21 RADAR

sensors (Baxter et al., 2018). An autonomous vehicle internal communication net-

work is widespread and relies on multiple physical interfaces such as Controller Area

Network (CAN), CAN-Flexible Data rate (CAN-FD), Ethernet, Local Interconnect

Network (LIN), FlexRay, etc. These in-vehicle networks are interconnected over gate-

way modules transmitting data and control commands. The sensor data flows through

the vehicle network to the centralized data processing unit called the Advanced Driver

Assistance System (ADAS) module or the vehicle’s brain from the sensors mounted

on the vehicle.

The vehicle internal network topology, which consists of ECUs, gateways that for-

ward data from one interface to other, and the connectivity to the external world over

cellular and other wireless interfaces make a modern vehicle a cyber-physical system

vulnerable to cyber attacks (Cui et al., 2018). In this distributed architecture, it is

possible to inject code through available attack surfaces like the onboard diagnostics

port (OBD-II) and CAN bus into the core ECU and bridge across multiple networks,

thus exposing attack surfaces on different networks.

Numerous attack vectors have been proposed in detail for the CAN and the OBD-

II port over the past decade. It was demonstrated that attackers can infiltrate any

ECU and circumvent safety measures to modify the outcome of safety-critical systems,

disable brakes, perform steering control, or cause faulty cluster displays and even a

complete engine shutdown (Checkoway et al., 2011). The shortcomings in the CAN

6

protocol such as the broadcast message format, clear data transfers, and lack of

mechanisms to establish data authentication and confidentiality, expose the CAN

network and the nodes connected, such as sensors to masquerade attacks, replay

attacks, and other exploits (Lin and Sangiovanni-Vincentelli, 2012).

In a connected vehicle, attacks could be launched over wireless channels without

physical access to the vehicle (Wyglinski et al., 2013). In-vehicle sensor data commu-

nication is unencrypted, and therefore an attacker just needs access to the in-vehicle

network for sensor data manipulation, which can be realized through available attack

surfaces. Hackers can exploit these attack surfaces for sensor data manipulation. In a

given vehicle with autonomy levels higher than SAE level 2 (semi-autonomous mode),

a cyber-attack on the sensor data could lead to life-threatening accidents as the driver

would be disengaged partially or completely trusting the system (Liu et al., 2017).

Consider the example of an Ultrasonic sensor. These sensors are most commonly used

in modern vehicles for close-range object detections and park assist features. Tesla

Model S relies on ultrasonic sensors to achieve its “Smart Summon” feature. When

an ultrasonic sensor is attacked employing jamming and spoofing, it can perceive an

object that is not truly there (false positive), or cause the sensor not to perceive

an object that truly is there (false negative) as shown in (Xu et al., 2018). These

incorrect readings can cause damage to a vehicle, building, or even human life. It

has been successfully demonstrated in (Chen et al., 2016) that these sensors

are vulnerable to attack and can have fatal outcomes. Hence, securing sensor

data transmissions becomes a very critical component for the safe functioning

of an autonomous vehicle (Longxiang et al., 2017).

1.2.2 Automotive Sensor Categories

Autonomous vehicle sensors are broadly divided into two categories as smart and

raw sensors based on their data processing capacity. Raw sensors are the ones that

7

Figure 1.2: Autonomous vehicle sensor suite - Raw sensor

transmit the raw or unprocessed data to the processing unit inside the vehicle. Shown

in Figure 1.2 is a high-level illustration of (a) data flow from various raw sensors to

the sensor fusion core residing in a vehicle, also known as ADAS (advanced driver

assistance system), and (b) available attack surfaces. For instance, a LiDAR sensor

mounted on the vehicle sends a raw point cloud of the tracked environment over an

Ethernet/LVDS link to the sensor fusion ADAS core ECU placed in the vehicle. Inside

the sensor fusion core, the object information from the raw sensor data is extracted

and a list of tracked-objects called tracklets is computed and provided as an input

to the perception estimator and other applications like the vehicle localizer. The raw

sensors, specifically the ones that have high data rates such as the camera and LiDAR

use the Ethernet interface for their data transmissions to the ADAS unit. Smart

sensors are the ones that can detect and track objects internally, send the tracked

object list to the vehicle over limited bandwidth interfaces such as CAN/CAN-FD.

Figure 1.3 shows data flow from smart sensors to the sensor fusion core residing in

a vehicle and the available attack surfaces. For instance, a RADAR smart sensor

mounted on the vehicle tracks the targets and extracts the object information from

the raw sensor data to build a list of tracklets. This information is provided over the

low bandwidth interfaces like CAN/ CAN-FD to a perception estimator and other

applications running inside the ADAS unit. The majority of RADAR and Camera

8

sensor sets used in autonomous vehicles are smart sensors. The data from these

smart sensors is fused inside the vehicle ADAS unit to determine the final list of

surrounding objects (Jo et al., 2015). The decision to select a smart sensor over a

raw sensor is driven by the autonomous vehicle architecture, functional safety and

redundancy requirements. In most architectures, a combination of both types of

sensors is considered.

Figure 1.3: Autonomous vehicle sensor suite - Smart sensor

1.3 Problem Statement

Like any other cyber-physical system, an autonomous vehicle is vulnerable to inter-

nal attacks on the sensor networks. The 2015 Jeep hack by Miller and Valasek where

they could bring the vehicle to ditch through a remote connection highlights the risk

of cyber attacks on modern connected vehicles. The impact of such attacks is more

in vehicles supporting driver assistance and automated driving features. Hackers can

take advantage of the feature implementation flaws, code bugs, etc. to launch remote

or insider attacks. Imagine a typical ride-share application use case of an autonomous

9

car, hackers have a direct access to the vehicle during the ride without any human

supervision, giving them ample time to meddle with the system and sensors. It is a

need of the hour to double-check the integrity of the sensor data in autonomous ve-

hicles before processing and acting on it. But, before searching for options to protect

the sensor data, let us first take a look at some of the constraints of the automo-

tive sensor networks. This will help us to come up with practically implementable

solutions. Sensor networks in autonomous vehicles have two constraints.

1. Limited bandwidth: The communication interface from the sensor to the

data processing unit is bandwidth limited in automotive applications. Most

sensors use a traditional CAN interface with an 8-byte payload, which restricts

the usage of traditional cryptographic methods to secure the sensor data (Zou

et al., 2017). An enhanced version of CAN called CANFD is introduced to

increase bandwidth and payload to up to 64 bytes. CANFD allows AUTOSAR

secure onboard communication protocol (SecOC) implementation on the net-

work. Apart from issues like key management, time synchronization, the SecOC

requires the transmission of a message authentication code (MAC), which can

take up to 8 bytes of the payload space. Given a scenario where multiple sen-

sors are connected to the same network and increasing demand on the sensors to

publish more data to build a high-resolution perception, bandwidth can become

a constraint even in high throughput interfaces like CANFD.

2. Real-time data inference: Autonomous vehicle applications often require the

sensor data to be processed in real-time. This constraint makes it difficult to

use traditional data security methods based on cryptography as they require an

additional step of decryption before data becomes useful.

With these two constraints in mind, to design a framework that can work better under

these conditions, we researched the state-of-the-art in sensor data integrity verification

10

methods. In our study, we identified that wireless sensor networks (WSN) share

similar constraints as autonomous vehicle sensor networks preventing them from using

any traditional cryptography methods and significant research was done on securing

the data transfers in WSN using watermarking methods. Hence, in our literature

review, we focused on understanding the state-of-the-art watermarking techniques

implemented in wireless sensor networks.

WSNs are extensively used in many fields like environmental monitoring, military

surveillance, traffic monitoring, patient monitoring, etc. In WSNs, the underlying

assumption is that the sensor nodes collect information and send it to a central node

for processing over a wireless interface. WSNs have some typical characteristics when

compared to other traditional networks. They do not care about the origin of the

data. Their primary focus is to collect perception data and to transmit it to the

destination. The sensor leaf nodes are typically low capacity lightweight processing

units, and the networks reconfigure dynamically based on the sensing environmental

conditions. This limitation creates a challenge to design a security mechanism that

is both secure and energy-efficient. The dynamic nature of these networks makes

them susceptible to adversary attacks such as data tampering, forgery, selective for-

warding, replay, and transfer delay attacks (Zhang et al., 2017). The biggest problem

these networks face is how to secure the data without increasing the burden on the

leaf nodes as they are usually resource-constrained. Traditional data integrity au-

thentication methods such as cryptography and message authentication code (MAC)

cannot be applied to these networks. Encryption algorithms require additional key

storage space and computation power which in-turn increase the energy consumption

and storage requirements of the sensor leaf node. Also, though the encrypted data is

safe, the data can only be used after decryption, and the decrypted data could again

become a target of attackers. To solve these issues with traditional methods, several

watermarking techniques were researched for WSN applications. Using watermarking

11

for sensor integrity checks started in 2003 with the Feng et al. (Feng and Potkonjak,

2003) proposal of embedding cryptographically encoded signatures into the data pay-

load. From the literature review, it is evident that the watermarking techniques were

applied to wireless sensor networks with applications in IoT and healthcare, etc. To

the best of our knowledge, watermark generation based on the sensor data character-

istics and applying it to check the data integrity in resource-constrained and real-time

sensor networks of an autonomous vehicle is the first of its kind effort. This is the

primary focus area of our research. We want to identify and analyze applications

where the data hiding techniques could be of help in the autonomous vehicle domain.

Figure 1.4: Comparison of different methods to achieve sensor data integrity

12

1.4 Watermarking Advantages

In this digital age, with the growing trend of multimedia information exchange,

the need to ensure data confidentiality and integrity is increasing. Data transfers over

different networks are vulnerable to various attacks such as privacy infringement, con-

tent stealing, and tampering. The concept of network information security deals with

securing the data transmissions, storage, and processing from data leakage, theft,

tampering, and deletion. To ensure the network information security, traditionally

cryptography based methods were used. Cryptography ensures communication pri-

vacy, data confidentiality, and authentication by encrypting the data using different

key sharing mechanisms. Though cryptography can be used to solve information se-

curity issue, there are some shortcomings to that approach. Encryption can draw

the attacker’s attention towards sensitive information and motivate them to crack it.

Once the attackers break the encryption, they have complete access to the data. Even

if the attacker fails to crack the encryption, he can slightly modify the data to make

the entire transaction invalid. Data-hiding-based watermarking techniques started

gaining attention over the past two decades particularly in the areas that require the

prevention of unauthorized access to confidential information. These methods do not

reveal their existence in the data, thus providing more protection than cryptography

in some applications. Data hiding methods also differ from traditional cryptography

in their purpose. The main objective of data hiding is not to restrict normal access

to the data but to ensure that the embedded secret information is not violated or dis-

covered (Lu and Guo, 2017). This embedded message can be used to track the data

forgery through different data transactions and also to localize it. The cryptography

methods are usually complex and computation resource-hungry, hence they cannot

be applied every-where. In the edge computing devices such as an autonomous ve-

hicle, where the computation resources are a big constrain, cryptography methods

cannot be applied. There are also other significant drawbacks of using cryptography

13

methods in edge systems, like key management burden, network bandwidth issues,

and export restrictions on the products using specific cryptography methods. These

complexities increase both the production and maintenance costs of the features and

products. In an autonomous vehicle, consider a scenario where a couple of satellite

RADARs are connected over a CAN network to a decision-making unit that does

the sensor data fusion to implement an ADAS feature. To implement sensor data in-

tegrity verification using traditional cryptography techniques requires modifying each

smart RADAR sensor to include a hardware trust anchor to store the keys and ac-

celerators to verify the signatures. This increases the RADAR product cost and any

MAC-based security mechanism will also increase the payload overhead, therefore re-

quiring a different interface other than CAN that supports higher bandwidth, which

again is not feasible in legacy systems.

In comparison to conventional cryptography, watermarking methods are compu-

tationally less complex and less resource hungry. Data modified by the watermarking

algorithms can be directly used by the end application without having to modify

or to clean it before usage. This comes as an advantage for applications that rely

on real-time data processing. In Figure 1.4, different methods that can be used to

protect and verify the data integrity in an AV are compared. In a sender-receiver sce-

nario, to protect the data integrity, one can use either encryption, MAC embedding,

or watermarking. In both encryption and MAC-based methods on the receiver end,

applications cannot use data until it is decrypted or the MAC is removed. This ad-

ditional computational step can become a bottleneck in the applications that require

real-time data processing (Changalvala and Malik, 2019b). In such applications, a

cryptographic encryption step would make the data useless until the data gets de-

crypted, adding to the processing delays.

In MAC-based methods, the data payload increases dramatically based on the

interface bandwidth. In most of the legacy systems discussed in section 1.1, the

14

bandwidth of the interface between the sensor system and the data processing unit

is a severe bottleneck. This is one of the reasons why the automotive industry was

not able to implement any cryptography over the controller area network (CAN)

interface (Zou et al., 2017). For CAN interface in particular, this method is not

recommended as it could double bandwidth requirements (Woo et al., 2016), (Zou

et al., 2017). Data hiding based watermarking works directly on the host data by

perturbing the data by a negligible amount, thus eliminating the need to increase

the data payload and network bandwidth. As shown in Figure 1.4, all the three

methods have a data integrity verification step in common that can be separated as

an independent process and run in parallel to the algorithms that process the data.

Again, in the case of watermarking, this data verification step does not require much

computation resources, unlike cryptography.

Watermarking also provides much-needed data traceability. The security offered

by watermarking does not stop at the application level. Watermarked data provides

security beyond the autonomous driving application since the data cannot be stripped

of any additional payload. The embedded watermark stays with the data until the

information is used by the consumer application and beyond. Applications acting as a

pass-through to the data such as an on-board data recorder as-well-as secure logging

mechanisms that push the sensor data to the cloud for analytics can benefit from

the watermarking of the data, this concept is discussed further in chapter 6. When

data gets exchanged from one entity to another and security keys are shared, end to

end encryption does not help in identifying the leakage points whereas watermarking

can. These advantages make data-hiding based watermarking techniques a better

choice over cryptography in many edge computing applications such as sensor data

integrity verification in autonomous vehicles. One aspect to consider while using the

data hiding or watermarking techniques is the embedding induced distortion. These

techniques cannot be blindly applied to applications where the accuracy of the data

15

is critical over integrity. The embedding included distortion and its impact on the

application need to be studied and watermarking intensity need to be adjusted to fit

a specific application.

1.5 Thesis Outline

In this research, we propose a framework to implement data integrity verification

in autonomous vehicle networks using watermarking techniques. Our research aims

to

1. Identify the applications that are vulnerable to cyber attacks due

to lack of sensor data integrity checks: Analyze the security risks in au-

tonomous vehicle applications in particular. Here, two types of applications are

targeted

• Resource constrained applications: Bandwidth and power-constrained

Autonomous vehicle use case: Securing RADAR tracklet data trans-

mitted over CAN network (Nabati and Qi, 2019), (Changalvala et al.,

2020),

• Time constrainted applications: Real-time data processing

Autonomous vehicle use case: LiDAR sensor raw data object detection

and recognition (Changalvala and Malik, 2019b), (Changalvala and Malik,

2019a)

2. Propose a watermarking or data hiding based solution: Identify data

hiding based watermarking solution to the problem at hand. Suggest low com-

plexity watermarking based methods to secure sensor data, independent of the

transmission interface.

3. Test the solution with real-world data: Our approach is to test the pro-

16

posed framework on publicly available industry-standard datasets. In the case of

self-driving car applications, datasets such as the KITTI vision benchmark suite,

Mercedes Benz autonomous driving utility are used to evaluate the performance

of the proposed method. The evaluation criteria includes computational com-

plexity, robustness, accuracy in detecting the tamper and embedding induced

distortion estimation, etc. The distortion estimation is done on the vehicle

dynamics models and deep learning algorithms used extensively in developing

autonomous driving algorithms.

1.5.1 Document Road Map

• Chapter 2 ”Data Security Using Digital Watermarking”. In this chapter, we

provide a brief overview of watermarking techniques starting with their origin

and history. Discuss various applications of watermarking. Give a perspective

of watermark security aspects like securing the watermark vs securing the data

and outline different attacks on watermarks. Provide key differences between

watermarking and cryptography. Discuss various design requirements of water-

marking techniques and their mathematical representations. We conclude the

chapter by discussing the state-of-the-art watermarking techniques and provide

some examples of the techniques used in this research.

• Chapter 3 ”Watermarking & Data Models”. In this chapter, we define mod-

els that represent sensor data and demonstrate how the sensor data can be

viewed as n− dimensional vectors in Rn. Explain the watermarking concepts

using geometrical and communication model analogies. Transition into scalar

watermarking techniques like the Quantization Index Modulation (QIM) water-

marking method and explain the need for high dimensional lattice QIM codes.

• Chapter 4 ”RADAR Data Integrity Verification-2D QIM”. In this chapter, we

17

discuss the implementation of a smart sensor data integrity verification method.

We propose a 2D QIM method to embed the watermark into the position infor-

mation of a RADAR sensor. We propose algorithms to detect and localize the

attacks on the integrity of the RADAR sensor data. The embedding-induced

distortion and its effects on sensor fusion algorithms are tested using an Ex-

tended Kalman Filter-based motion model and the results are discussed.

• Chapter 5 ”LiDAR Data Integrity Verification-3D QIM”. In this chapter, we

discuss the details of securing the raw sensor data using a LiDAR sensor. We

propose a 3D QIM technique to secure the raw point cloud obtained from the

LiDAR sensor and analyze the effects of embedding induced distortion on the

deep learning models performing object detection on the LiDAR data. We

also discuss the need to extend the plain QIM to a more random spread spec-

trum dither QIM method and identify the optimal configuration values for this

method.

• Chapter 6 ”Future Work & Conclusion ”. In this chapter, we propose future

directions to the research. We discuss how sensor fingerprints are used to build

countermeasures to regular channel attacks. We propose ideas to develop an

universal data transaction traceability and integrity verification mechanism for

various data transactions in autonomous vehicles.

18

CHAPTER II

Data Security Using Digital Watermarking

2.1 Watermarking Background

The reference to the use of watermarks dates back to 480 B.C in Greek mythology.

In a popular tale of Herodotus, Histiaeus uses an ingenious watermark technique of

engraving a tattoo of the secret message on a slave’s shaved head and conceals it by

regrowing the hair. The slave reveals the secret message to Miletus after shaving the

head again. This explains the core of the watermarking where the secret message can

be communicated in plain sight. Along with the history of humankind, many tech-

niques of watermarking were portrayed especially for wartime communications. The

commercial applications of watermarking such as copyright protection can be seen

in 17th and 18th-century logarithmic tables. In these tables, errors were introduced

into the least significant bits to protect the intellectual property (Moulin and Koet-

ter, 2005). In the modern era, with the advent of the internet and communication

networks, many applications started falling prey to data leaks and copyright infringe-

ments thus increasing the need to develop techniques to counter such attacks. Digital

communications are increasingly getting susceptible to adversary attacks with the

development in computer technology and internet connectivity and so is the need to

ensure data confidentiality and integrity. People can now use the internet to exchange

data making it easy to both infringe the digital rights and also launch malicious at-

19

tacks on confidential data. With the pervasive usage of the internet came the concept

of network information security. It deals with securing the data transmissions, stor-

age, and processing from data leakage, theft, tampering, and deleting (Lu and Guo,

2017). The increase in digital content in the form of digitized books, music, and

videos brings forward the challenge of copyright protection where the content pro-

ducer rights need to be protected as this digitized content is transmitted over the

network and shared by end-users. This openness in resource sharing needs efficient

methods to detect and prevent the tampering, plagiarism, and embezzlement of the

data. Several data protection mechanisms were developed over the last few decades

to solve this problem. These methods can be used independently or in combination

based on the problem they are solving. Encryption methods that are based on the

symmetric, asymmetric keys and hash functions are traditionally used to solve data

integrity issues. Message authentication can be performed using a digital signature

encryption scheme. These cryptography methods have some disadvantages such as

indicating attackers that the encrypted message is important, loss of security once

the attacker figures out the encryption method, giving the attacker a chance to make

the information fail authentication and make it useless with a slight change in the

data (Lu and Guo, 2017). In the late 90s, researchers started investigating alternate

methods to address some of the shortcomings of the cryptography methods and there

has been a revived interest in watermarking and data hiding-based methods. In the

following sections, we try to cover multiple concepts of watermarking starting with

the most common applications.

2.2 Applications of Watermarking

Digital watermarking is the art of embedding digital data into various forms of

digital media such as images, audio, video, and other digital object data. Tradition-

ally digital watermarking applications have been in the digital media domain but

20

lately, these techniques are extended to other fields such as medicine and sensor net-

works. Based on the properties of the watermark various applications can make use of

them. Discussing the watermarking properties further would help us understand the

requirements of the watermarking better. Watermarking the digital data or object

data, in general, provides a way to measure the data

1. Authentication

2. Confidentiality

3. Integrity

4. Access control

These properties make watermarking techniques apt for many applications such

as

1. Content Identification & Protection

2. Digital forensics

3. Ownership and copyright protection

4. Content security and authentication

5. Broadcast monitoring

6. Online content location

7. Improved auditing

8. Access control

9. Clandestine communications

21

2.2.1 Content Identification and Protection

Content identification helps the digital media copyright owners, brands, and dis-

tributors to understand when and where their digital content is being consumed.

It can deter unauthorized use and help with an audit by reporting the distribution

paths of the content with accuracy. At the same time for the consumers, it gives an

ability to seamlessly stream content across multiple devices, makes the content easy

to search, and enables parental controls. Digital watermarking provides methods to

implement content identification management by providing a unique digital identity

to the media content that can persist even when the content gets transformed. Dig-

ital watermarks can be easily embedded into the content without interfering with

consumer enjoyment. The embedded watermark is imperceptible by humans but can

be easily identified by digital devices (Digital Watermarking Alliance, 2020).

2.2.2 Digital Forensics and Piracy Detection

In this application the watermarking gives an ability to the content owner to detect

and respond to the misuse of the assets, to gather evidence in criminal proceedings,

and also to enforce the contractual user agreements. Watermarking will supplement

digital rights management by combining the content owner copyrights with consumer

fair allowances. The way it works is, a forensic application embeds the identity of a

recipient into an asset copy at the time of production or transmission. The identity

could be situational metadata such as time, receiving format, and receiver details

such as an IP address. The forensic watermark retrieved from the leaked copy helps

identify the intended recipient.

2.2.3 Ownership and Copyright Protection

Copyright protection deals with proving the origin of the digital content. This is

the most common application of watermarking. The basic idea is of being able to

22

identify the owner of the product by embedding some information. If the product’s

origin generates a controversy the embedded watermark can be extracted to determine

the owner if it.

2.2.4 Content Security and Authentication

The impact of counterfeiting digital content is widespread in terms of lost revenues

to the producer and fraud to the consumer. With digital watermarking, the content

can be authenticated through imperceptible watermarks embedded into the digital

content. The watermark can be encrypted and secured to further fortify the security

and only let the authorized devices to detect and access the data.

2.2.5 Location of Content Online

For the content producers, the need to protect their digital assets arises in today’s

growing content sharing platforms. In the corporate world as well the documents

and videos are transmitted through emails and across the internet. In these scenarios

the content producers should be aware of how the consumer is making use of their

content and if it is up to date. Digital watermarking can help through imperceptible

E- digital IDs. These IDs which are identified through unique search engines can be

used to generate reports and notify the owner of the location of the content.

2.2.6 Broadcast Monitoring

This application of watermarking, checks if a particular content is airing or not.

With the increase in the number of broadcast stations this ability to monitor content

broadcasting becomes important. Watermarking the content at the time of content

production or broadcast allows the broadcasters with great precision when and where

the content has been broadcasted and for how long. Digital watermarking works by

making subtle modifications to the original data and by adding some bits of data

23

disseminated through the content.

2.2.7 Auditing

In a simple application of watermark usage in auditing, content owners and dis-

tributors may embed unique digital watermarks which serve as an identifier for each

licensed asset in their content. The identifier remains embedded in the asset and

is transmitted to every composition of the licensee that comprises all or part of the

original asset. This can enable an auditing application to evaluate the use of the

owner’s assets from every composition easily and automatically.

2.2.8 Access Control

Access control can be ensured by introducing client-side software that blocks rel-

evant media content based on the presence or non-presence of a watermark. TV

broadcasting, access to medical records, and network architecture, etc. are some

applications of access control.

2.2.9 Medical Applications

Medical records contain sensitive user information. Privacy, and integrity of which

are of utmost importance. Watermarking the medical records helps in maintaining

the access control, secured transmission, and prevents mismatch of the records.

2.2.10 Clandestine Communication or Steganography

Steganography is a form of conducting covert or stealth communications using

watermarks. Steganography can be considered as a subgroup of watermarking since

its goal is to embed a secret message into a medium. Steganography differs from

traditional watermarking in the fact that it does not care about the medium of

data exchange as long as the secrecy of the embedded message is maintained. In

24

watermarking the signal that gets watermarked is referred to as original work or a

host signal and in Steganography, it is called cover work, these three notations are

used interchangeably in this document. The three most desired characteristics of a

steganographic system are undetectability, low watermark embedded distortion, and

high capacity. Steganography finds many applications such as wartime communica-

tions, clandestine communications by journalists or whistleblowers to avoid censorship

control, etc.

Data hiding techniques form a subset of watermarking methods that are exten-

sively used in steganography. In data hiding, a message is embedded in digital media

that can be retrieved later for establishing copyright or identification. Making the

data hiding technique robust to the compression algorithms or other distortions is a

prime priority in these applications. The embedded data need to be recovered and

reconstructed if needed by the application even when the host signal gets distorted.

The other main constraint of the data hiding technique is that the embedded data

need to be directly encoded into the media than into any header or wrapper, and this

embedding should not introduce a perceivable distortion to the host signal.

2.3 Watermark Security

Security requirements for the watermark can be viewed from two different perspec-

tives. One accounts for the watermark itself when the attacker tampers the watermark

and tries to defeat its purpose. The other accounts for the integrity verification of the

original data into which the watermark is embedded. These security requirements of

the watermark and the nature of the security are application dependent. In the ap-

plications that do not require securing the watermark the watermark is embedded to

add value to the content and customer convenience rather than to restrict the content

usage. In these cases, watermark security is insignificant since there is no motivation

to tamper with the watermark (Cox et al., 2008). On the other hand, applications like

25

digital rights management might require the prevention of unauthorized embedding,

detection, and removal of watermark along with the protection from various system

attacks. These attacks that defeat the purpose of watermark embedding can be dealt

with by combining cryptography with the watermarking schemes. For example, in

the case of unauthorized detection, watermarking needs a large keyspace to secure

against this attack where-as by adding straightforward cryptography to the solution

this issue can be solved. The watermark message can be encrypted before embedding

and can be decrypted after the detection. Also, to prevent unauthorized embedding,

asymmetric key cryptography can be used to verify the source of the watermark em-

bedding. Cryptography can also be used to verify if the watermark recovered belongs

to the original work.

2.3.1 Threat Models

The watermarked signal can undergo several degradations in its lifecycle. Some of

these degradations can be natural such as the additive white Gaussian noise added to

the signal when it gets transmitted over a noisy channel or noise due to interference

of signal attenuation specifically in wireless transmissions. In the case of transmis-

sions over wired or wireless networks as the data passes through multiples nodes and

gateways there are chances of network-induced data attenuation like packet loss. In

some applications, the host signal has to go through certain required or legitimate

manipulations like data compression, transcoding, and signal processing, or any other

geometric manipulations. These changes to the data signal elements also affect the

watermark embedded into the data. The other type of degradations that could affect

the watermark are malicious attacks launched on the data either to compromise the

data integrity or to erase the watermark. When it comes to watermark security and

the host data security here are some of the common attack vectors that a typical

watermarking model has to deal with (Artru et al., 2019). Also, even adversaries can

26

be active or passive. A passive adversary passively monitors the transmission channel

and illicitly reads the messages whereas the active adversary tries to either disrupt

the communication or modifies the data to transmit unauthorized data.

2.3.1.1 Removal Attack

In this attack the unauthorized user tries to remove the watermark or certain

targeted content from the host data signal (Begum and Uddin, 2020).

2.3.1.2 Interference Attack

In these types of attacks, the watermarked signal is embedded with noise through

signal processing functions like averaging, quantization, compression, etc. Here noise

can also be considered as an unwanted modification of data.

2.3.1.3 Geometric Attack

In these attacks, the host signal is subjected to geometrical transformations such

as translation, rotation of data points. In the case of images, this can also include

operations like cropping, image rotations, etc.

2.3.1.4 Filtering Attack

In these types of attacks, the signal data is passed through filters to remove low

or high-frequency components.

2.3.1.5 Active Attack

In the case of active attacks, the attacker tries to manipulate the watermark to

make it undetectable or completely removes it by directly manipulating the host signal

carrying the watermark at certain locations.

27

2.3.1.6 Passive Attacks

In these attacks, the attacker stays dormant sensing and observing the data for

the presence of any watermarks

2.3.1.7 Data Degradation

In these types of attacks, parts of the host signal are removed that could not only

affect the integrity of the signal itself but also the embedded watermarks. When it

comes to protecting the original work, we need to answer several questions about

its authenticity such as, if it has been altered mildly or significantly, what parts of

the work have been altered, and can the work be restored. Although we might use

cryptography-based approaches to get answers to these questions about the tamper-

ing, watermarking methods are still useful as they do not require auxiliary data and

they undergo the same transformations as the host signal. To verify if the original

work has been changed at all or slightly modified, the exact authentication method

is used. This can be achieved by using fragile watermarking methods that are de-

signed to become undetectable with the slightest change in the original work. Another

approach could be embedding the cryptographic signatures as the watermarks. To

verify if the original work is modified by a limited set of illegitimate distortions while

allowing a predefined set of legitimate distortions is called selective authentication.

This can be achieved by using semi-fragile watermarking schemes. These methods

are built to survive a predefined set of distortions but they get destroyed by any

distortions beyond that set and hence deemed illegitimate. Tamper localization or

the ability to identify the time or the area where the original work got tampered with

is useful to verify the motive, source, legitimacy of tampering as-well-as to retrieve the

unaltered data for the application to use. Many techniques are available to localize

tampering, one of the main methods is the block-wise content authentication where

the cover work is divided into disjoint temporal or spatial regions, and each of which

28

is authenticated separately. The accuracy of block-based localization depends on the

size of the block and the smaller the block size the more accurately we can localize the

tampering, this leads to another concept of sample wise authentication (Cox et al.,

2008).

Even when the host signal gets degraded, restoration of portions of work that have

been corrupted can be achieved through redundancy. One of the ways to introduce

redundancy is to use the error correction bits in a cover work as a watermark. Con-

sidering the host signal as a collection of bits, the error correction codes (ECC) such

as hamming, turbo, or Trellis codes are embedded as watermarks in this process. The

size of the ECC determines the maximum number of bits that can be corrected in

the host signal. Another technique to add redundancy is to self-embed a low-quality

copy of the cover work as a robust watermark which can be extracted even when the

original work gets tampered with.

2.3.2 Watermarking & Cryptography Analogy

Watermark embedding and cryptography can be considered analogous to each

other. The watermark embedding and detection are similar to the encryption and

decryption in cryptography. In the case of a simple symmetric cryptography we have

an encryption function Ek(.) that takes a clear text m and a key k to generate a

cipher text, mc, as

mc = Ek(m) (2.1)

The encryption protects the contents of the clear text during transmission. The

receiver of the cipher text need to decrypt to get to the original message. After the

decryption the text is clear again and is no longer protected. The decryption function

Dk() can be defined as

m = Dk(mc) (2.2)

29

similarly, in watermarking we have an embedding function, ε(.), that embeds a mes-

sage m into original signal, Co and generates a watermarked signal, Cw. This can be

represented as

Cw = εk(Co,m) (2.3)

The message is extracted out of the watermarked signal using a detection function

D(). Many watermarking schemes use a key k to control the mapping between the

message and the watermarked signal. In the case of an informed watermarking where

the detector gets to know some aspects of the original signal, k can be assumed as a

function of the original work, hence it can be assumed that in the case of an informed

watermarking the detection can be as simple as associating a unique key with each

work. Thus the detector of any watermark can be generalized as

m = Dk(Cw) (2.4)

Though cryptography and watermarking share the same process steps, cryptography

focuses on data disguise. It is a study of different methods to transmit data as a

cipher or encrypted text so that the secrecy of the data is maintained until it reaches

the recipient. Encryption can protect data during the transmission but once the data

gets decrypted it loses protection. Watermarking, on the other hand, hides a message

in plain text data. The message is embedded in the data and carried by the data

that needs protection. In this process, a watermark or a tag/label is inserted into the

data and it is extracted at a later stage to establish the source of the data (Mohanty,

2003). Watermarking embeds a message in a host signal in a way that its presence

is not noticeable or in other words the secret message to be transmitted is hidden in

the original signal. The branch of watermarking that deals with information hiding

is called steganography.

30

The difference between steganography and cryptography is that though both are

used to protect the information exchange, steganography does not give a clue that the

data has been embedded with the watermark hence leaves attackers clueless as they

do not see the need to decrypt the information. This makes steganography suitable for

tasks where the encryption cannot be used. One such use case is copyright protection,

where an additional hash appended to the message can be removed by the attacker

where-as if a message is embedded using the steganography makes it hard to detect

it and also remove it.

2.4 Watermark Design Requirements

Major applications of digital watermarking are the copyright protection of the

data source, protecting the authenticity of data, and the unauthorized manipulation

of the data. Based on the target application, requirements are set on the design of

the watermark. Figure 2.1 depicts some major requirements of the watermarking

Figure 2.1: Watermarking requirements

31

techniques. The efficiency of the watermarking method applied in any application is

measured based on these requirements. It is desired that any watermarking system

provides a high data rate, low perceptibility or distortion, and yet high robustness.

These three goals are mutually exclusive hence usually the performance of a water-

mark embedding system is characterized by the achievable trade-offs between these

three goals (Brian and W, 2001). Here we discuss some of the general design require-

ments of the watermarking techniques

2.4.1 Imperceptibility

Imperceptibility or fidelity is an important feature of watermarking which is eval-

uated through the watermark induced distortion. Watermark-induced distortion

should be so small that it should be extremely difficult to perceive it. For instance, in

the case of the image watermarking, the watermarked image should appear the same

as the original image. Both of them should be perceptually indistinguishable. To

increase the imperceptibility of the watermarking process in images, some domain-

specific steps like large singular values selection for watermark insertion are used.

There are multiple ways in which the watermarked induced distortion is estimated.

In the case of a mesh or 3D watermarking the change in the geometry is used as a

method to evaluate imperceptibility. The most common methods to estimate geo-

metric distortion being Hausdorff distance and signal to noise ratio.

2.4.1.1 Hausdorff Distance

Considering a geometric model in 3-dimensional Euclidean space represented by

the 3-D point cloud. The non-watermarked data is, say M and the watermarked data

is, say M
′
and v, v

′
where v = (vx, vy, vz) are the vertices of a mesh in the 3D geometric

32

representation of each model respectively, the Hausdorff distance is calculated as

D(M,M
′
) = max(dH(M,M

′
), dH(M

′
,M) (2.5)

dH(M,M
′
) = maxv∈M(d(v,M

′
)) (2.6)

where, the d(v,M
′
) is the minimum Euclidean distance between two geometric figures

defined as

d(v,M
′
) = minv′∈M ′ |v − v

′ | (2.7)

2.4.1.2 Signal-to-Noise Ratio (SNR)

High signal to noise ration means better imperceptibility. The SNR between a

watermarked signal model M
′

with vertices x
′
i, y

′

i′ , z
′
i; i ∈ {1, · · · , n} and an original

model M is computed as

SNR = 10 log 10

∑n
i=1(x2

i , y
2
i , z

2
i)∑n

i ((x
′
i − xi)2, (y

′
i − yi)2, (z

′
i − zi)2)

(2.8)

2.4.1.3 Root Mean Square Error (RMSE)

Another measure to evaluate the imperceptibility is RMSE. Lower RMSE between

the watermarked and original models account for higher imperceptibility. The RMSE

between the watermarked and non-watermarked models is calculated as

drmse(M,M
′
) =

√√√√ 1

n

n∑
i=1

|vMi − vM
′

i |2 (2.9)

While the RMSE measures the geometric distance between the corresponding ver-

tices in the watermarked and original models, it does not capture the subtle visual

properties that human eye appreciates such as smoothness. These features are cap-

33

tured by more advanced Laplacian operators that take both topology and geometry

into account. The geometric Laplacian of a vertex is given by

GL(vi) = vi −

∑
j∈n(i)

l−1
ij vj∑

j∈n(i)

l−1
ij

(2.10)

where, n(i) is the set of indices of the neighbors of the vertex i, and lij is the geometric

distance between vertices i and j

2.4.2 Tamper Resistance

Detection of tampering in the watermark can be used to check the authenticity

of the original work. Any change to the watermark message can be considered as

tampering with the original work. Hence the integrity of the data can be determined

by checking the watermark. At the same time integrity of the data also determines

the integrity of the embedded watermark. Again, it depends on what needs to be

protected, the watermark, or the original data, and this decision is made based on the

application. Based on the resistance to the tamper, the watermarks are categorized

as fragile, semi-fragile, and robust. Bit Error Rate (BER) is used as a generic tamper

resistance measure and it is used to measure the correctness of the method. A simple

implementation of BER between watermarked model M
′

and the original model M

is calculated as

BER(M,M
′
) = 1− 1

nb

nb∑
n=1

δ(mi,m
′

i) (2.11)

2.4.3 Robustness

A watermark is said to be robust in digital media if it can sustain any common

signal processing manipulation operations implemented in the original work. For ex-

ample, signal processing operations such as spatial filtering, lossy compression, image

enhancements, cropping, and geometric transformations can eliminate the watermark

34

from the original image or a digital video and they could be used as attacks to beat

the purpose of the watermark. Often the robustness cannot be seen as a single-

dimensional value. A watermark that is robust against one process may be fragile

against another. Designing a watermark that is robust against all the attacks can

make it more complex to implement. Careful analysis of the application is neces-

sary to understand the role of the watermark and then the robustness can be crafted

based on the application needs. For example, in the case of broadcast monitoring

applications, the watermark only needs to survive the transmission process. For a

television broadcast, this means lossy compression, possibly analog to digital con-

version. It need not be robust against rotation, spatial transformations, high pass

filtering, or a variety of distortions that occur during the transmission and broadcast.

Similarly, in other applications like clandestine communications where the cover me-

dia is transmitted digitally without compression the watermark need not be robust

against spatial transformations. Also for applications such as sensor data integrity

verification where the watermark is used for data integrity verification or to check

whether the host data has been altered or not, the watermark need not be robust,

in-fact it should be fragile or semi-fragile. Applications such as ownership verifica-

tion, fingerprinting, copy control, etc need robustness since there is a high chance

that hackers target the watermark and try to remove it. To measure the robustness,

the most widely used approach is to extract the watermark from the distorted signal

and evaluate the difference between the originally embedded watermark with the ex-

tracted one. The common method is to calculate the correlation coefficient as shown

in the Equation (3.3).

2.4.4 Security

Security of a watermark becomes a key aspect in certain applications like copyright

protection, data authentication, digital content tractability, and fingerprinting. To

35

ensure the security of the watermark several techniques such as logistic map based

encryption, key-based encryption are used.

2.4.5 Capacity

Watermarking capacity is defined as the amount of information that can be in-

serted into the original work while satisfying the robustness and imperceptibility

conditions for any given application. In other words, the capacity determines the

information holding limitations of the watermarking scheme while maintaining other

constraints such as imperceptibility and robustness. The watermark extraction de-

pends on the density of the watermark embedding or the watermark packing capacity.

For example, in the case of image watermarking, the extraction process is more suc-

cessful when the number of bits embedded in the host image is high. High channel

capacity increases the watermark detection probability and reduces the probability

of false alarms but at the same time increases the image distortion. Depending on

the application and its tolerance to the image distortion the embedding capacity

needs to be defined. Methods such as Gaussian channel approximations and game

theory-based approaches can be used to determine the capacity of a watermarking

algorithm.

2.4.6 Computational Cost

The computational cost for embedding a watermark into a cover work and extract-

ing it should minimal. The main criteria for estimating the computational cost is the

time it takes to embed and extract the watermark, the complexity of the embedding

and extracting algorithms, and their memory requirements. Usually, the more robust

the watermark is the higher is the computational cost. Based on the application

a good trade-off between the robustness and computational complexity needs to be

maintained. The computational cost can also be viewed as time complexity of the

36

embedding or decoding algorithm. A common way to measure the time complexity is

to use the rate of increase in data rate due to watermarking. For example, in a video

frame if the original video stream has a bit rate Rx and the watermarked frame has

a bit rate R̂x, assuming a constant time process to embed bits per fame the increase

in bit rate can be computed as R̂x−Rx

Rx
× 100. This can be used as one of the measures

to estimate the computational cost.

2.4.7 False Positive & False Negative

The false-positive rate is the characteristic used to identify watermarks in a work

where there is no watermark embedded. This problem occurs when the embedded

watermark is different from the extracted watermark. This measure also checks the

efficacy of the watermark detector, especially when dealing with data integrity checks,

the false positives should be minimal. The false positive rate can be computed as a

ratio of the number of messages incorrectly identified as tampered to the total number

of clean frames provided to the decoder

FP =
NfalsePositives

Nclean

(2.12)

Similarly, the false-negative characteristic is used to identify if the watermark

detector can properly detect the embedded watermark in the cover work. Again this

measure brings some confidence in the watermarking system. In an ideal scenario

this criteria should be again minimal or close to zero. This can be computed as the

ratio of the number of cover work samples that are falsely identified as clean by the

detector to the total number of tampered samples

FN =
NfalseNegatives

Ntampered

(2.13)

37

2.4.8 Watermark Keys

Watermark keys constitute the generic term for secret information that determines

the parameters of an embedding function. For example, in the case of image water-

marking, the key could include host signal information like image coefficients or the

embedding domain like spatial domain, or the transformations like DCT. Often, to

ensure additional security in the embedding and extraction process of a watermark,

a secret key is used. The accurate estimation of the watermark key by the receiver

is important as it determines the degree of security of the watermarking system (Be-

gum and Uddin, 2020). Like in cryptography, this key generation can be symmetric

or asymmetric. In (Chopra et al., 2018) a method of using the XOR operation as

a key to insert the watermark at a predefined location in a biometric signature is

demonstrated. The side information used in informed watermarking can also be con-

sidered a type of key and in Chapter 4, a unique way to generate the side information

for RADAR data integrity checks is discussed.

2.4.9 Watermark Reversibility

A watermark is considered reversible if the host signal can be reconstructed after

the removal of the watermark. If a watermark is reversible, the extraction algorithm

should be able to completely remove the watermark and reconstruct the host signal.

This kind of watermarking could use side information or secret key in the process to

generate the host signal or the original work and to extract the watermark.

2.5 Watermarking Techniques

There are three main characteristics of a watermark, stealth, robustness, and se-

curity. The embedded watermark should not be visible to the attacker, the data

tampering should not affect the watermark and the legal owners of the data should

38

only be able to retrieve the embedded watermark. Giving more emphasis on any one

of the attributes makes the other two weak, hence there is always a trade-off between

these three important characteristics in any watermarking method (Sin-Joo Lee and

Sung-Hwan Jung, 2001). Several watermarking techniques emphasize one characteris-

tic vs another based on the end application needs. Watermarking can be divided into

multiple categories in multiple ways. At a higher level, the classification can be done

based on the working domain, document type, algorithm type, human perception-

based, and application-based. Classification of the watermarking techniques based

on these criteria is shown in Figure 2.2. Here we discuss the classification relevant to

Figure 2.2: Watermarking techniques classification

our research. Based on the working domain, in particular to the digital media, the

watermarking can be divided into spatial and frequency domain or a hybrid approach.

2.5.0.1 Spatial Domain Watermarking

When it comes to the spatial domain the host signal or data is embedded with a

watermark in the spatial or time domain. The most common methods used in this

39

category are the Least Significant Bit (LSB), Intermediate Significant Bit (ISB), and

QIM. These techniques are directly applied to the host data like the pixels in the

case of images. The spatial domain watermarking techniques maintain an optimal

balance between robustness, embedding induced distortion, and capacity. They are

also easy to implement, computationally less complex, and have faster execution

times. Because of their simplicity, any geometric manipulations to the host data

can result in watermark removal. Another advantage of these methods is that they

provide high data hiding capacity. Some of the most commonly used spatial domain

watermarking techniques are

1. LSB

2. QIM

Figure 2.3: Amplitude plots of a raw and LSB modified audio sample

40

2.5.0.2 LSB

One of the simple data hiding techniques called the Least Significant Bit (LSB)

encoding is explained here to provide a perspective on the ability of the data hiding

techniques. In LSB or low-bit encoding, the least significant bit of each data sample

is replaced by a binary value representing the hidden message. Thus for a signal of

sampling rate 16 kHz, like an audio signal, the amount of data that can be hidden

using this method is 16 Kbps. The embedded watermark can be easily extracted

by reading the LSB of the received signal. The LSB in any data usually carries less

critical information, hence, this method provides high imperceptibility. In Figure 2.3,

(a) Raw camera image

(b) LSB modified camera image

Figure 2.4: Representation of raw and LSB modified camera image

a time series plot of a single channel audio file is displayed. The audio file is a single-

channel recording sampled at 16 kHz. It can be observed that there is no perceivable

difference between the raw samples and the LSB embedded samples. With this simple

LSB technique, another audio file is created in the region of acceptable fidelity in such

a way that the overall quality of the host signal is not compromised, but at

41

the same time, a significant amount of hidden data i s transmitted over the channel. I n

Figure 2.4, a 1242 × 375 × 3 i mage i s encoded by embedding i nverse of the least

significant bit in each pixel. Again, it can be seen that there is no perceivable

distortion, and yet a hidden message of size 1242 × 375 × 3 bits are stored in the

embedded image.

Figure 2.5: Representation of raw and QIM modified LiDAR image

2.5.0.3 1D QIM

Similarly, Figure 2.5 shows two frames of a 64-bit LiDAR from the KITTI vi-

sion benchmark dataset (Chen et al., 2017). One of the frames is embedded with a

1D-QIM data hiding method. The implementation is similar to the LSB embedding

with a uniform scalar quantizer (Chen and Wornell, 2001). Further details on the

Quantization Index Modulation are presented in chapter 3, section 3.4. The pertur-

bation size chosen in this case is ∆ = 3 cm, which means, each data sample is moved

linearly by 3 cm after the quantization step. Again, we do not see any perceivable

distortion in the frame quality after the data embedding. From these examples, it can

be observed that irrespective of data dimensions, the data hiding techniques can be

used to embed a watermark into the data and yet not distort the data to the extent

42

that it becomes useless. This embedded watermark can then be used to verify the

integrity of the data when transmitted over a channel or a network.

2.5.1 Frequency Domain Watermarking

Spatial domain watermarking algorithms are applied directly to the host signal

data and hence most of them are fragile. They can be easily manipulated which

leads to the need to apply the watermark in the transformed domain or space such as

frequency domain instead of the time or space domain. In these techniques, the host

signal is transformed into a pre-defined space and the watermark is embedded into the

transformed domain coefficients. At the receiving end, the inverse transform is applied

to retrieve the watermark. These transform domain watermarking techniques are

robust to different types of attacks like lossy compression and domain-specific signal

processing like image sharpening, cropping, filtering, noise addition, etc. Some of

the common domain transforming techniques are Discrete Cosine Transforms (DCT),

Discrete Wavelet Transform (DWT), Discrete Fourier Transform(DFT), and Singular

Value Decomposition (SVD).

2.5.2 Perception Based Watermarking

Human perception-based watermarking can be divided into visible and invisible

watermark techniques. Visible watermarks are translucent whereas, invisible water-

marks are highly imperceptible. They come under the steganography or data hiding

techniques category and are more prevalent. The invisible watermarks can be further

classified into three types

1. Fragile

2. Semi-fragile

3. Robust

43

Again, the choice of the watermarking stream depends on the end application goals

and computational resources. For example, robust and semi-fragile watermarking

techniques are generally used in copyright protection applications as those methods

try to make watermark robust to any data changes. On the other hand, fragile

watermarking gets distorted as the data gets tampered with and can be used to

detect the check the integrity of data. Fragile watermarking is typically the choice of

method in low power and low computational resource applications like Wireless Sensor

Networks to implement data integrity checks on the data transfers from one node to

another. Researchers proposed many fragile watermarking methods for resource-

constrained WSNs.

2.5.2.1 Fragile Watermarking

In this form of watermarking the level of a watermark, security is at the lowest

which means the embedded information can be easily removed. Any transformation

the original work goes through will destroy the watermark. Most of the basic spatial

domain watermarking techniques such as the Least-Significant-Bit fall under this

category. LSB watermarking can be easily detected, extracted, and removed if the

attacker knows the embedding technique. A similar technique to detect the location

of the tampered image has been proposed in (Qin et al., 2017). The end goal of this

watermarking is to make sure to detect the attacks on the integrity of the host signal

or the original data.

2.5.2.2 Semi-fragile Watermarking

Semi-fragile watermarking techniques ensure that the watermarking endures the

common application-specific modifications but they break if the host signal undergoes

significant changes such as geometric transformations or forgery, etc. This watermark-

ing technique is useful in applications such as media content transmissions where it is

44

possible to know the kind of transformations that are applied to the host signal while

getting transmitted. The semi-fragile watermarking technique mentioned in (Kaur

et al., 2019) demonstrates that for the digital media signals that need to undergo

compression to save on bandwidth the semi-fragile watermarking protects against

channel noise and frame drop attacks while providing detection and localization of

more malicious attacks. Due to these characteristics, the semi-fragile spatial data

hiding scheme QIM is used to address the sensor data integrity verification problem

in our research.

2.5.2.3 Robust Watermarking

In the robust watermarking scheme, the watermark messages are securely embed-

ded into the host signal with redundancy to make it difficult to erase the watermark.

Copyright security is one of the primary applications of robust watermarks, as they

allow the watermark embedded by the owner to remain intact. There are multiple

ways to achieve robustness like redundancy or having multiple embeddings of the

same watermark, self-referenced watermarks, and embedding at a low-bitrate. In

(Parah et al., 2016), such a robust watermarking method for images that offers good

protection against common data manipulation attacks like scaling, cropping, image

rotation, and any combination of these attacks is discussed.

To conclude the introduction to watermarking, this brief overview of watermarking

tells us that it is a multidisciplinary field (Moulin and Koetter, 2005). It consists of

concepts and techniques from different areas such as signal processing, cryptography,

coding theory, information theory, and computer science. For the problem we attempt

to solve, which is sensor data integrity checks within the automotive domain, we chose

to go with the fragile watermarking techniques and QIM method in particular. In

the next chapter, we describe the generic watermarking models and explain how it

transcends into scalar watermarking and lattice codes.

45

CHAPTER III

Watermarking & Data Models

3.1 Watermarking Model

In this chapter, we provide a generic overview of the watermarking process starting

with the sensor data modeling. The three basic components of any watermarking

scheme are watermark embedding, detection, and extraction. These three major

processes are implemented as functions that act on the corresponding input data.

Here we try to understand the geometrical meaning of these watermarking steps as-

well-as their analogy to the traditional communication models by getting into the

details of each step.

3.1.1 Data Model

To define the data model for multi-dimensional data, we use the notation of an

object and its features (Dzemyda et al., 2013). The object can be an instance or a

sample of the data and the features are the properties or the attributes that determine

the dimensions. Data samples that can be described by a set of features can be

considered as a data-set X = {x1, x2, · · · , xm} where, m is the length of the data-set.

If we use this notation, a particular sample xi of the data-set contains a combination

of values of all the features, represented as xi = {xi1, xi2, · · · , xin}, where n is the

number of features. The length of the feature set representing a sample can be

46

considered as the number of dimensions and the data-set samples are represented as

points in n-dimensional feature space ∈ Rn.

The inputs to a watermark embedding function are the original unwatermarked

data Co, a message to be embedded m, and an optional key k. The embedder is a

deterministic function that maps these inputs to produce a watermarked work Cw

as an output. In watermarking terminology, the cover work/original work/the host

signal Co is the media content into which the watermark is embedded. Without the

loss of generality, Co can be considered as a set of points in n-dimensional media space.

If we use the notation of sample and feature set explained above, the cover work with

n different features can be represented as a set of m vectors, Co ∈ {c0, · · · , cm} in an

n-dimensional media space. Here, the media space can be considered as a subset of

Rn similar to the Euclidean space. The dimensionality of the signal depends on the

application and the selected sample space.

Let us take a look at the notations used to represent different digital media content

such as grayscale and color images, digital audio, video, and 3D point cloud geometry.

In the case of digital images, the dimensionality or the feature set depends on the

notation of the sample space. An image can be represented in a pixel or a frame

sample space. In a pixel sample space, for a grayscale image, the set of pixels can

assume a flat structure. This can be represented by a 1-dimensional tuple ofm number

of pixels per image. An example of such representation is a lexicographic scan image.

In a frame sample space the position of pixels in (x, y) plane can be considered as two

features, hence they are represented in a two-dimensional Euclidean space E2, hence n

becomes two. Similarly, a color image with three color planes (RGB) and m pixels per

plane can be represented in three-dimensional feature space as [x, y, channel], hence

n = 3. These sample space notations for grayscale and color images are depicted

in Figure 3.1. Also, in the digital media space, the content value is quantized and

bounded. This leads to a finite set of possible works in the media space that can be

47

arranged in rectilinear lattices. If we consider the example of a grayscale image the

pixel values can be quantized within the integer range of values 0 to 255. Since the

data points are quantized with a specific step size form a lattice, the values between

the lattice points or that fall outside the bounds cannot be considered as part of

the original work. However, by adjusting the quantization step-size and making the

bounds large enough the media space can be considered continuous.

The above notation can also be extended to continuous or temporal content such

as audio & video. A digitized audio signal is a set of samples collected over time.

These samples can be divided into fixed-length segments that decide the length of the

signal m. The dimensionality of each segment is the time at which it is collected hence,

for an audio signal, n = 1. In the case of video, n would be the product of several

frames in a fixed segment, the number of pixels per frame, and three channels (RGB

planes in the color video). In the case of spatial point clouds such as the LiDAR point

cloud, each data point in the point cloud can be visualized by its position coordinates

[x, y, z], hence here n = 3. In each dimension the data points are represented as p, q, r-

dimensional vectors, and the quantized data is represented as linear, square, and cubic

lattices respectively. In Figure 3.1, the media space representation of LiDAR data in

an orthogonal coordinate system is shown. There are a lot of n-dimensional spaces

but in the context of this research, for the most part, we restrict it to spaces similar

to Euclidean space of n-dimensions with orthogonal global coordinates. Under this

assumption, a point in this n-dimensional plane can be considered as a vector from

the origin to the designated set of coordinate values. In Euclidean space, any n-

dimensional vector can be represented as a tuple of points in an n-dimensional space

Rn as x = (x1, x2, x3, · · · , xn), where xi ∈ R. With this notation, a line, plane, and

three-dimensional space can be represented by setting n = 1,2, or 3 respectively. A

point in the three-dimensional Euclidean space can be considered as a set of triples

(x, y, z) ∈ E3 (Hanson, 1994). When we are dealing with spatial data such as the

48

point sampled geometry of a 3D model or LiDAR point cloud with spatial position

information, etc. the Euclidean space and media space can be used interchangeably.

Figure 3.1: Digital content representation

3.2 Geometric and Statistical Models

To view the watermarking process in a geometrical representation we consider a

high-dimensional space in which each point corresponds to one watermarked work.

Here the watermarked work is a type of watermark applied to the data in the media

space. This high dimensional space is called media space during the the embedding

phase. In the detection phase, it is referred to as marking space and represents

the watermarked works. The marking space can be considered as the projection or

transformation applied on the original work. These transformations such as frequency

transform, filtering, block averaging, geometric or temporal registration, etc. are

applied as a part of the watermark embedding and extraction processes.

49

Geometrically, the watermarking system can be viewed as various regions of prob-

ability distributions in the media and marking space such as the distribution of un-

watermarked works, detection region, embedding region, and the region of acceptable

fidelity. In the watermarking process, though the embedded function itself is de-

terministic the randomness in the embedder’s output comes from the fact that the

original works are drawn randomly from the distribution of unwatermarked data. If

multiple unwatermarked data distributions are mapped into the watermarked work

Cw, the probability of Cw which is known as the embedding distribution is just the

sum of the probabilities of all the input distributions.

Distribution of un-watermarked works becomes useful in estimating the false pos-

itives in watermark detection. It estimates the likelihood of watermark embedding in

a media space. It is important to have a priori distribution of the content we want

the system to process since the watermarks are embedded in certain regions of the

media space. Like in an audio file the probability of embedding a watermark in the

music is higher than in the static. To represent this probability distribution over the

media space (lattice of points that represent digital work) or the probability density

function over all the points in the media space an elliptical Gaussian is considered

as a simple statistical model that fits this distribution. To understand the region of

acceptable fidelity consider an original work or the host signal in media space Co such

as an image. Just by altering a single pixel unit of brightness a new image can be

created which represents a new vector in the media space and yet perceptually in-

distinguishable from the original image. If we can imagine a region around Co which

constitutes the set of perceptually indistinguishable images from Co, this region in

the media space is called the region of acceptable fidelity. As explained in chapter

2, there are multiple ways to estimate the perceptual distance but the most common

method used to measure the perceptual distance metric is Mean Square Error (MSE)

50

Figure 3.2: Geometrical model representation

given as

Dmse(C1, C2) =
1

N

N∑
i=1

(c1[i]− c2[i])2 (3.1)

where C1 and C2 are N -dimensional vectors in the media space. If we set a limit

of τmse on this function, the region of acceptable fidelity becomes an N -dimensional

ball of radius
√
Nτmse . In some practical cases, the asymmetric distance between

an original work and its modified version is calculated based on the reciprocal of the

signal to noise ratio (SNR)

Dmse(C1, C2) =

N∑
i=1

(c1[i]− c2[i])2

N∑
i=1

c1[i]2
(3.2)

The distortion distribution tells us how likely the watermarked signal Cw is to be

distorted during normal usage or it gives the likelihood of obtaining a distorted work

Cwn, given the watermarked work Cw. For example, in normal digital media oper-

ations, the content distortion is caused by signal processing functions like filtering,

noise reduction, temporal or geometric distortion and lossy compressions. This distor-

51

tion can be modeled as an additive Gaussian noise channel thus making it dependent

on the content itself.

The detection region for a given message, m and a watermark key k is the set of

works in the marked space that will be decoded by the detector as containing the

message. The linear correlation measure between two vectors is the average of the

inner product between vectors. This method is used in communications to check

the presence of a transmitted signal in the received signal. The linear correlation

coefficient is computed and checked against a threshold value to check the presence

of the transmit signal.

Similarly, in watermarking, linear correlation may be used as a measure to check

the presence of a watermark. This can be computed as the inner dot product or the

product of the received watermark signal Cw and the reference watermark Wr divided

by the length of the signal N

zlc(Cw,Wr) = Cw ·Wr/N (3.3)

If we want to use the correlation coefficient, we need to subtract the mean values

from the original vectors before performing the normalized correlation.

Geometrically, Equation (3.3) can be viewed as an orthogonal projection of Cw

into the constant length vector Wr. The values of Cw that are greater than a pre-

defined threshold τlc fall on one side of the plane perpendicular to Wr. This results in

a detection region comprising of the points belonging to one message and that leads

to the embedded message recovery. If we look at a simple case of binary message m ∈

{0, 1}, one side of the plane perpendicular to Wr as shown in Figure 3.2, corresponds

to points represented by m = 1 or τlc and the other represent m = 0 or − τlc.

A watermark embedding process is considered successful if the embedding results

in a work that falls in the intersection of the regions of acceptable fidelity and the

52

detection as shown in Figure 3.2. Here a 2D media space is represented by the co and

reference watermark by wr vector. The circular area of acceptable fidelity intersects

the detection region to the right. The distance of the detection region from the origin

is determined by τlc. This concept can be extended to higher dimensions where the

detection region becomes a hyperplane orthogonal to the reference watermark plane

wr. If we pick high dimension vectors from Gaussian distribution, they tend to be

perpendicular to a given reference watermark plane. Thus, if we add Gaussian white

noise to the host signal vectors, the corrupted vectors tend to be parallel to the

detection region plane and hence easily distinguishable.

3.3 Communication Model

In this section, we look at watermarking as a communications problem. Thinking

of the watermarking method in terms of a digital communication channel enhances

our understanding. A generic watermarking system consists of two primary stages,

the embedder, and the decoder. The embedder combines a message m with the host

signal and generates a watermarked signal. As this watermarked signal gets to the

decoder additional distortion that could be both natural and malicious may get added

to the signal. The decoder extracts the embedded message from the resulting signal

using the auxiliary information. In a typical communication problem, there exists a

sender and receiver pair and a medium of communication between them known as a

transmission channel. If we look at the analogy between a watermarking process and

the communications systems, the sender in a communication system is analogous to

the embedder and the decoder is analogous to the receiver and the distortion can be

represented by the channel noise.

The sender has the signal to send to the receiver called as host signal in the media

space Co ∈ Rn. This signal is allowed to be modified within a certain limit and

the resulting signal is the watermarked signal Cw[m], where m ∈ M is the message

53

Figure 3.3: Watermarking as communication model

to be embedded. In informed watermarking the embedded watermark depends on

a message mask based on the key k, the decoder has access to or the watermark is

derived out of the original work itself and the decoder is aware of the watermark

generation algorithm. The embedding process can be represented as

Cw[m] = f(Co,m, k) (3.4)

a function of the original work Co, message to be embeddedm and the side information

key k.

The category of a watermarking model that fits the sensor data integrity verifi-

cation problem we are trying to solve in this research is the side information based

blind decoding. In this model, the detector is not aware of the original signal, but

the auxiliary information such as the encoding message sequence or the key can be

used to make integrity verification more accurate (Cox et al., 2008). The applica-

tions presented in the subsequent chapters are based on this model. In Figure 3.3,

blind watermark detection is depicted as communication of message m and the host

signal Co over a communication channel. This embedding process induces distortion

that is constrained by the enforced distortion limits based on the end application.

This embedding induced distortion metric, de, between the original work and the

54

watermarked work, represented as de(Co, Cw[m]), should be less than a threshold pe.

The watermarked message undergoes distortion and degradation in the transmission

channel tc that degrades the watermarked signal Cw[m] to Cwn[m] that is received

at the receiver end. The channel degradation considered here can include both the

required signal modifications such as a lossy compression as well as the malicious

attacks on the signal such as unwanted modifications. A completely distorted signal

will be of no value to the receiver, hence we can put some constraints on the channel

distortion. The channel tc is constrained such that the channel induced distortion

dc(Cw[m], Cwn[m]) < pc. The decoder receives cwn[m] along with the side information

k. With this information, the decoder estimates the embedded message mn, of the

original embedded message m.

In communication systems, the channel efficiency is assessed by measuring how

intact the received signal is. Similarly, in watermarking, the decoder’s ability to

estimate the embedded message accurately is used to measure the performance of the

watermarking scheme. One of the metrics to measure this performance is transmission

error rate. This metric is defined as the probability that the embedded message m

is different from the decoded message mn. Also, the rate R of the watermarking

algorithm is another metric used to measure the performance and it is defined as

R = log2 |M |
N

where |M | is the length of the message symbols and N is the number of

samples in the cover work Co. In other words, the rate defines the number of message

bits per symbol in the cover work.

If we model the original work Co as a random sequence of real i.i.d values s =

{s1, s2, s3, · · · , sn} over a media space S. Given a message m, uniformly drawn from

a message set M , the sender produces a watermark x = {x1, x2, · · · , xn}, such that

the embedding induced distortion d(s,x) < pe. The distortion between s and x can

55

be measured using the common MSE function represented as

d(s,x) =
1

n

n∑
i=0

(si − xi)2 (3.5)

The transmission channel can be defined based on the choice of noise function applied.

In this study, we consider an additive noise channel where the signals are modified by

the addition of the noise. The noise can be drawn from a distribution independent

of the host signal distribution. In the simplest form, this noise can be modeled as a

Gaussian channel where the noise elements are drawn independently from a normal

distribution with zero mean and σ2
n variance. The transmission channel tc, can be

modeled as a AWGN that modifies the watermarked work x, with noise samples in

n = {v1, v2, · · · , vn}. The resulting signal y can be represented as

y = x + n (3.6)

Decoder receives this signal and estimates the embedded message m. We assume

that the sender and receiver are aware of the channel power pc and not unaware of

the noise values vi. In this side information model, the sender and receiver share

the knowledge of the signal power Q, the embedding power pe and the message set

M along with any auxiliary information but the receiver is not aware of the original

work, S.

With these assumptions, if we consider the case of single cover work, the formula-

tion is equivalent to the classical problem of communication over an AWGN Gaussian

channel and the transmission rate R of such system can be given by Equation (3.7)

based on Shannon’s theorem of the capacity of an AWGN channel

R =
1

2
log (1 +

Pe

Pc

) (3.7)

56

If we consider multi-message works, in a more general case, the encoder needs to

transmit a separate watermark signal sw within the embedding power constraint pe,

for every host signal s and each message m. Here, different sets of messages are

grouped by code words. The receiver needs to retrieve the message from the signal

degraded during transmission. For the receiver to be able to unambiguously decide the

received message, the code words for each message needs to be at a sufficient distance

from each other, and at the same time to achieve the embedding power constraint they

need to be densely packed. To fulfill this trade-off the codewords need to be optimally

selected and cannot be randomly picked from a set of uncorrelated Gaussian random

variables. To achieve this we need to part away from the one to one correspondence

between a message and a code word and get to a notion where one to many mappings

between a message and a code word exist such that there is a choice to pick the

codeword that better fits the host signal for any given message m. This notation is

called a dirty paper code.

In a dirty paper code technique, the code words that represent a message are

picked from the host signal to reduce the embedding distortion. The dirty paper code

scheme can be explained as, for each message m a code Cm is selected such that the

watermarked output x ∈ Cm is pretty close to the original signal s. At the receiver

end from the degraded signal y as shown in Equation (3.6), the receiver finds the

code word x
′

in the set C = ∪mCm which is an union of all the sub code books and

finds the index of the sub-code book to which x
′

belongs to.

If we think that each codeword is generated by a high-dimensional quantizer for

a given message m, all signals in s that are close to x ∈ Cm are represented by

x. This can be further explained using a simple example. Consider C = {C0, C1}

correspond to the union of the even and odd integer codebooks and a binary message

set M = {0, 1}. When the sender wants to send a message embedding 0 or 1, an even

or odd integer nearest in value to the unwatermarked signal s is transmitted and the

57

receiver decodes the embedded message by picking the closest integer in C. If this

integer is even then the embedded message should be 0 and 1 otherwise.

Now that we looked at the watermarking process as a communication problem and

estimated the core features such as data hiding rate and the information embedding

capacity, we can take a closer look at the concept of generating the watermark. In the

case of blind watermarking, the generated watermark is assumed to be independent of

the original work or in other words, the correlation between the original work and the

watermark is very minimal. In the majority of practical watermarking applications

like the sensor data integrity verification, the unwatermarked data is known to the

embedder, this is called informed encoding. So the watermark wa, in this kind of em-

bedding is dependent on the original data Co or the data is provided as an additional

input to the encoder. Given this scenario, the watermark generators take advantage of

this knowledge and generate watermarks that have a low correlation with the original

data. Usually, to make sure that the linear correlation between the original data and

the message pattern is minimal, the watermark generator first computes the linear

correlation between the original data and the watermark and adjusts the amplitude of

the added pattern to compensate or reduce the correlation. In the data fidelity check

applications, where the watermark is considered as a noise, the document to noise

ratio is kept high. In the case of applications that require watermark effectiveness or

robustness, where the original data is considered as the noise, the watermark to noise

ratio is kept high. These adjustments are done while generating a watermark and the

optimum watermark is picked for a given application.

Also, the host-signal interference occurs from the systems that do not necessarily

let the embedder exploit the know-how of the host signal. In these cases, the host

signal itself acts as a noise and makes it difficult to decode the watermark and extract

the embedded message. One of the reasons for selecting the Quantization Index

Modulation (QIM) for our research is because it offers host signal interference rejection

58

as it can exploit the knowledge of the host signal at the encoding phase. In QIM,

even in the absence of any perturbations, there will be quantizers that will let us

uniquely determine the embedded message m, this non-intersection property of the

quantizers is the reason behind the host-signal interference rejection property of the

QIM method (Brian and W, 2001). The watermark interference with cover work can

be examined using the perceptual models and the watermark magnitude wa can be

adjusted to reduce the interference.

Another way to look at the watermarking process is as a multiplexed commu-

nication. The embedder combines the watermark and data into a single signal Cw.

Original data is considered as a second message to be transmitted along with the

watermark message in the same signal. After the signal passes through the trans-

mission channel the watermark detector and the system that perceives or processes

the original data both receive the same data Cwn. Here, two different receivers de-

code two different messages Co and m. The system that does data processing on

the watermarked data should perceive or get data that is close to the original data.

Hence, the watermark induced distortion should be minimal for this system. On the

other hand, the watermark detection system should be able to obtain the watermark

without interference from the original data, hence, in this case the watermark fidelity

is an important criteria. The applications listed in upcoming chapters use this kind

of strategy to parallelize the watermark extraction and the signal decoding processes.

3.4 Scalar Watermarking

Watermarking methods that require each sample of the host signal to be sepa-

rately quantized or the methods that put restrictions on the codebook separation

are known as scalar watermarking methods. The capacity of an AWGN channel rep-

resented by 3.7 can be ideally achieved by watermarking schemes like ideal Costa

schemes (ICS). Without going into details, we can assume that the ICS achieves the

59

maximum possible transmission rate because of the inclusion of codebooks that are

spread across high dimensional space and due to distortion compensation. The com-

parison between ICS and other practical scalar schemes such as the spread spectrum,

scalar costa scheme which can also be considered as distortion compensated QIM,

and the Dither modulation shows that the ICS outperforms all the scalar methods

as long as they are one dimensional but still these methods are effective ways to hide

information if data rate and capacity are not primary constraints of the application,

scalar watermarking methods are easy to implement or computationally less intensive

(Cox et al., 2008). The most popular scalar watermarking methods are LSB, QIM,

distortion compensated QIM, and scalar Costa scheme.

3.4.1 Binning Schemes - LSB

The basic scalar watermarking method is the LSB watermarking. As mentioned

in chapter 2, this method modifies the least significant bit in the host signal to

embed a watermark. If we take an example of an image as the host signal, where

each pixel is represented by a byte or 8-bit value the pixels are modified to carry

1 bit of information by changing the least significant bit (LSB) of the value. In a

more generic case, the LSB can be viewed as a type of binning scheme. Consider a

sequence S = {0, 1, · · · , 2b−1} partitioned into two bins such as even and odd integers.

Se = {0, 2, · · · , 2b− 2} and So = {1, 3, · · · , 2b− 1} , here Se and So can be considered

as two bins. Let S be a binary sequence of length N . Let X be the marked new

sequence generated by embedding the binary message m = {m1,m2, · · · ,mn} into S

and the embedding distortion constraint that X should satisfy is |X − si ≤ 1| for

1 < i < N . The LSB function can be implemented as

xi = mi + 2bsi/2c, 1 ≤ i ≤ N (3.8)

60

we choose value of x based on the input message m

xi =

 xi ∈ Se : if mi = 0

xi ∈ So : if mi = 1
(3.9)

We can interpret the LSB as a binning scheme in this regard where the Se or So are

the two bins from which the value of xi can be chosen based on the value of mi.

3.4.2 Quantization Index Modulation - QIM

The QIM and its variants of scalar watermarking methods were introduced by

Chen & Wornell in 1999. These methods embed signal-dependent watermarks using

the quantization technique and fall under the semi-fragile spatial watermarking tech-

niques category (Brian and W, 2001), (Chen and Wornell, 1998), (Chen and Wornell,

2001). QIM can be viewed as an extension of the binning scheme explained above.

Let’s say we have a set of L messages to be embedded into a host signal of length

L in L-dimensional space, QIM defines a unique set of L reconstruction points each

mapped to a quantizer in a set Q = {Q1, Q2, · · · , QL} (Joachim and Bernd, 2002).

The watermark embedding and decoding mechanism using the QIM method is fairly

simple. To embed a watermark message m, the host signal x is quantized using

the quantizer Qm to obtain a watermarked signal sw that is within a distortion con-

straint de. The watermark Qm is chosen by modulating the index of the quantizer

Q with the message to pick a quantizer from the set. While decoding, the receiver

quantizes the signal received sr by the union of all the quantizers used in embedding

Q = {Q1, Q2, · · · , QL} and the index of the reconstruction point with the quantized

value nearest to the received signal is identified and the corresponding watermark

information m̂ is extracted.

The basic idea can be explained by looking at a simple problem of embedding

one bit in a real-valued sample. Consider a binary message m ∈ {0, 1} is a one-bit

61

Figure 3.4: 1D QIM scheme

message, and s ∈ R is one sample without any key k. A scalar uniform quantizer

with step size ∆ is defined as

Q∆(s) = bs/∆c∆ (3.10)

Figure 3.4 depicts the 1D QIM where two uniform quantizer sets represented by

circles and squares are shown on a real line. The quantizer set Q0 is defined by

uniform quantizer as shown in Equation (3.10), with a step-size ∆. The second set

of quantizers Q1 is represented by squares with an offset of ∆/2. Thus any point

falling in between the two quantizers is assigned a circle or a square based on the

embedded message value m ∈ {0, 1}. At the receiver end the value is error-free as

long as the distortion added is ≤ ∆/4. The scalar quantizatizer in Equation (3.10)

can be extended to a dither quantizer in Equation (3.11) by adding dither di values

Qi(s) = Qi(s− di) + di, i = 0, 1 (3.11)

for a simple dither quantizer, we can select fixed dither values like

di =

−∆
2
, i = 0

∆
2
, i = 1

(3.12)

To increase the randomness in the quantized values, the dither values can also be

chosen from a pseudo-random uniform distribution over a given range. Given the

62

above example, if d0 is chosen randomly over a distribution [−∆/2,∆/2] then the

dither d1 can be chosen based on the d0 value as follows.

d1 =

 d0 + ∆
2

; if, d0 < 0

d0 − ∆
2

; if, d0 > 0
(3.13)

where the dithers d0 and d1 embed bits 0 and 1 respectively. The watermarked signal

for a signal of length L is given by

yn = Q∆(xn, dm) = Q∆(xn − dm) + dm, where, m ∈ [0, 1], n = 1, 2, · · · , L (3.14)

If the quantization errors are uniformly distributed over [−∆/2,∆/2], and the quanti-

zation cells are sufficiently small, then the mean squared distortion due to embedding

is given by

de = ∆2/12. (3.15)

This watermarked signal when transmitted over a noisy channel or gets corrupted

by attacker results in a noisy signal as per Equation (3.6). In the QIM process, at

the receiving end, the decoder used is a minimum distance decoder. It finds the

quantizer point closest to the y and outputs the estimated message. In our binary

message m ∈ {0, 1} example, the decoder can be represented using the following

equation.

m̂ = argmin
m∈{0,1}

||y −Q∆(y, dm)|| (3.16)

In the case where the message is spread over N samples {x1, x2, · · · , xN}, which is

usually the case in dither modulation, to improve the robustness, the delta between

the received signal and the quantized value can be summed across N samples as

63

m̂ = argmin
m∈{0,1}

N∑
i=1

||yi −Q∆(yi, dm)|| (3.17)

Scalar watermarking schemes discussed above are one-dimensional. Optimal wa-

termarking rates for these schemes can be achieved if the size of the signal is suffi-

ciently large. To increase the watermarking capacity, for a given watermark to noise

ratio, we need to increase the message set M in an M -ary scalar watermarking scheme

to a larger value and resort to higher dimension vector quantizers. In high dimensions,

an M-ary scalar watermarking can be generalized by defining the super-set codebook

C consisting of all the multiples of step-size ∆ as

C = {k∆|k ∈ Z} (3.18)

which is the union of the sub-code books, Cm defined as

Cm = {(m+ kM)∆|k ∈ Z}; m = {0, · · · ,M} (3.19)

The closest value xm in the sub-codebook Cm is computed as

xm = QM∆,m/M(s) (3.20)

where the quantizer Q∆ is defined by Equation (3.10). The embedding induced dis-

tortion of Equation (3.15) becomes Pe = M2∆2/12, for a uniform distribution of ∆

values over a small quantization interval. Again, the embedded message is decoded

from the received symbol by searching the point in the set C, with value closest to y,

and determining the sub-code book to which this point belongs to.

m = by/∆c mod (M) (3.21)

64

In the case of the distortion compensated QIM, we bring a scaling factor α to

control the step-size and the host signal values are quantized using a step-size ∆/α.

By controlling the α we can control the embedding distortion hence it’s also called

the distortion compensation parameter.

sm = QM∆,m/M(αs) + (1− α)s (3.22)

To implement the higher dimension vector quantizers, we need to generate codebooks

in high dimensions, and doing this randomly is computationally intensive as it involves

searching for the best match code words in unstructured codebooks. For most of

the practical applications where the signal lengths are constrained and where the

generalized multidimensional codebooks are not available, we still want our codebooks

to be separable or need each sample of the host signal to be separately quantized with

an optimal transmission rate. A rather simple approach to achieve this would be to

go with structured codebooks in higher dimensions such as, lattice codes, which are

proved to provide better performance than 1D scalar codes.

3.5 Lattice Codes

A lattice is defined as an infinite set of points arranged in a repeated structure

filling the space and the geometry that can be generated by repeated translations of

the single starting point (Hanson, 1994). A space lattice is defined by a set of repeated

points in m-dimensional real Euclidean space R m that fill the space. The set can be

generated from k linearly independent vectors {a1, · · · , ak} called generating vectors

of the lattice. The lattice points are formed by the linear combinations of these

generating vectors

R = n1a1 + n2a2 · · ·nkak (3.23)

65

where ni ∈ {Z} and k represents the lattice Λ dimensions. The core basis unit of

a lattice that gets repeated is called a unit cell. In two dimensional lattice the unit

cell is an area and in three dimensions its a volume. Example of a two dimensional

lattice, is a Bravais lattice represented as R = (n1d, n2d). It is a simple cubic lattice

with lattice spacing d. The generator vectors for simple cubic lattice are a1 = (d1, 0)

and a2 = (0, d2). There are also different other forms of 2D Bravais lattices like

rectangular lattice and hexagonal lattice with generator vectors a1 = (d, 0) and a2 =

(d/2,
√

3d/2) as shown in Figure 3.5 (Cleland, 2003). In three dimensions, again,

Figure 3.5: Simple 1D and 2D lattices

a simple representation of a 3D lattice is a simple cubic. The simple cubic lattice

consists of points spaced along the three coordinate axes R = (ld,md, nd) for l,m, n ∈

{Z} and d being the lattice spacing. This geometry can be further extended to face-

centered and body-centered lattices as shown in Figure 3.5.

The root lattices are the n-dimensional latices denoted by An(n ≥ 1), Dn(n ≥ 2),

and En(n = 6, 7, 8), they give dense sphere packing if n ≤ 8. They can be used as

a basis for the efficient block quantizers for uniformly distributed inputs. Since a

lattice is a repetition of a structure, every lattice point is surrounded by its Voronoi

66

region. This region is defined as a space consisting of the nearest neighbors to any

given point. Voronoi regions are also called nearest neighbor regions, Wigner-Seitz

cells, or Dirichlet regions. If a lattice x is used as a quantizer all the points in the

Voronoi region around the lattice point are represented by x (Conway and Sloane,

1982).

3.5.1 Lattice QIM

Figure 3.6: Quincunx lattice

We can extend the scalar QIM to L dimensional vector quantizers to form lattice

quantizers. Here, for a given lattice Λc the quantization function Q can be viewed

as a mapping between each point x ∈ RN to the nearest lattice point in Λc. The

Voronoi cell v of the lattice Λc, can be defined as {x in R; Q(x) = 0}. A more

formal definition of a lattice would be an integral combination of the basis vectors

Λ = {x = vG, v ∈ ZN}, where, G is the generator matrix or the N × N stack of

the lattice basis vectors. The coarse lattice Λc can be considered as a sub-lattice or

the shifts of partition of Λ. A fine lattice Λf is defined as the N-dimensional lattice

partition Λf/Λc, of a nested lattice, where Λf ,Λc ⊂ Λ. If we define a coarse lattice

Λc = ∆ZN and a fine lattice as Λf = ∆ZN ∪(∆/2, · · · ,∆/2)+∆ZN then the Voronoi

67

cell v becomes an N-dimensional cube [−∆/2,∆/2]N whose normalized second order

moment is equal to ∆2/12. Lattice quantizers are superior to scalar quantizers though

scalar quantizers are more prevalent due to their simplicity. To explain the way lattice

quantization works we can take a look at the two-dimensional Quincunx quantization.

If we consider a host signal component X ∈ R2 such as the target position information

generated by an automotive RADAR sensor. The target location is represented by

a pair of position co-ordinates in the two-dimensional Euclidean plane x1, x2 ∈ X.

In general, we can model this data under the assumption that the variables (x1, x2)

are drawn from an i.i.d Gaussian distribution. In Quincunx quantization, one bit

is embedded by modifying the position of a pair of samples (x1, x2) as shown in

Figure 3.6. In this method, for embedding either ’0’ or ’1’ two separate coarse lattices

Λc,0 and Λc,1 are used and they are then obtained by using two different quantizers

Q0 & Q1. We consider a square Voronoi cell to represent each element of the lattice.

The size of Voronoi cell is regulated by the quantization step-size ∆ (Zolotavkin and

Juhola, 2015).

If we extend this concept to a hexagonal lattice as shown in Figure 3.7, the quan-

tizers associated with the lattice structure can be used to embed two bits into the

samples taken from R2. The quantizers Q1, Q2, Q3 are obtained by perturbing the

quantizer Q0. This can also be viewed as the center of the solid hexagonal lattice

(0, 0) shifted over to the coset headers represented by (01, 10, 11) respectively, which

can be considered as a set of reconstruction points. It can be observed that in hexag-

onal lattice QIM or any QIM structure in general, the robustness depends on the

distance between the coarse lattice or the center of the solid hexagon in Figure 3.7

and the coset points. Robustness requires the distance to be higher but this will

also increase the perceptibility of the watermark. The sphere packing capacity of

the lattices provides some ways to find a trade-off between these two parameters. It

is proved that the QIM system has high robustness at the cost of a low perceptual

68

impact together with flexible payload possibilities (Bohó et al., 2013). Now let us

Figure 3.7: Hexagonal lattice QIM scheme

take a look at the QIM properties of lattice quantization. To understand this we

take a look at the vector QIM as explained by Chen & Wornell. This scalar QIM

concept from Equation (3.11) can be viewed from a lattice point of view where the

reproduction levels of quantizers Q0 and Q1 show in Figure 3.4 form two cosets of

lattices Λi, i ∈ [0, 1].

Λ0 =
−∆

2
+ ∆Z, Λ1 =

∆

2
+ ∆Z (3.24)

If we replace the scalar quantizer in Equation (3.11) with an L-dimensional Vector

Quantizer (VQ) we get L-dimensional lattice quantizer equation. Let’s take a look

at the simple case of L=2, the VQ is obtained by independently quantizing each co-

ordinate shown in Figure 3.6. The lattice into which each co-ordinate gets quantized

for a dither size of ∆/2 can be defined as

Λ0 = (−∆

2
, · · · ,−∆

2
) + ∆ZL,Λ1 = (

∆

2
, · · · , ∆

2
) + ∆ZL (3.25)

The embedding induced distortion for this VQ is given by D1 = ∆2/12 and the rate

69

of coding is computed as R = 1/L. The rate R ranges from 1/L to 1 based on the

number of bits embedded per dimension. The minimum distance between the cosets

of lattices Λ0 and Λ1 is given by

dmin =
1

2
∆
√
L =

√
3LD1 (3.26)

and the output of the decoder is given by,

m̂ = argmin
m∈{0,1}

(min
p∈Λm

|αy − p|) (3.27)

If the regular quantization function Q : RN → Λc is replaced with a dithered quanti-

zation function for any given x ∈ RN and dither d ∈ ν the dither quantization output

can be represented as

x̂ = Q(x− d) + d Λc + d (3.28)

if the external dither is independent of x, and uniformly distributed over ν then the

quantization error x̂−x is also uniformly distributed over ν. If the dither d is shared

with the decoder it can be used to randomize the lattice QIM code and provide some

level of protection against attacks on the code. Thus, for a given message m and host

signal s the dithered lattice QIM equations can be written as

u(m) = Q(αs− dm − d) + dm + d ∈ Λm (3.29)

and the marked sequence can be shown as

x = (1− α)s+ u(m) = (1− α)s+Q(αs) (3.30)

70

the decoders output is given by

m̂ = argmin
m∈M

dist(αy− d,Λm) (3.31)

The lattice quantizer results in an M-ary code book, C = {(0, · · · , 0), (∆/2, · · · ,∆/2)}.

If length of M grows exponentially with the length of the signal N , the lattice parti-

tion Λf/Λc must satisfy the following properties for better watermarking performance

1. Q must have a bounded mean square distortion D1 and ν should be a nearly

spherical

2. C should be largely spaced

To satisfy the properties listed above, we need Λf and Λc, to be high dimensional.

For all the practical purposes arbitrary high dimensional lattices cannot be built with

low computational complexity. To simplify the code generation in higher dimensions,

often, the lattices with special structures such as a product of a low-dimensional lattice

(cube or cuboid), trellis-coded scalar quantization, or the classical error correction

codes like Hamming code are used to define the fine lattice Λf .

In the following chapters, we explore the practical applications of the basic 2D

and 3D lattice quantizers and how they can be applied to solve the sensor integrity

verification problem in the automotive domain.

71

CHAPTER IV

RADAR Data Integrity Verification-2D QIM

A modern-day vehicle evolved into a cyber-physical system with internal net-

works (Controller Area Network (CAN), Ethernet, etc.) connecting hundreds of

micro-controllers. Starting from the traditional core vehicle functions such as vehicle

controls, infotainment, power-train management to the latest developments such as

Advanced Driver Assistance Systems (ADAS) and automated driving features, each

one of them uses CAN as their communication network backbone. Automated driv-

ing and ADAS features rely on data transferred over the CAN network from multiple

sensors mounted on the vehicle. Verifying the integrity of the sensor data is essential

for the safety and security of occupants and the proper functionality of these applica-

tions. Though the CAN interface ensures reliable data transfer, it lacks basic security

features, including message authentication, which makes it vulnerable to a wide array

of attacks, including spoofing, replay, DoS, etc. Using traditional cryptography-based

methods to verify the integrity of data transmitted over CAN interfaces is expected

to increase the computational complexity, latency, and overall cost of the system. In

this chapter, we propose a light-weight alternative to verify the sensor data integrity

for vehicle applications that use the CAN network for data transfers. To this end, a

framework for 2-Dimensional Quantization Index Modulation (2D QIM)-based data

hiding is proposed to achieve this goal. Using a typical RADAR sensor data transmis-

72

sion scenario in an autonomous vehicle application, we analyze the performance of the

proposed framework to detect and localize the sensor data tampering. The effects of

embedding induced distortion on the applications using the RADAR data are studied

through a sensor fusion algorithm. It is observed that the proposed framework of-

fers the much-needed data integrity verification without compromising on the quality

of sensor fusion data and is implemented with low overall design complexity. This

proposed framework can also be used on any physical network interface other than

CAN, and it offers traceability to in-vehicle data beyond the scope of the in-vehicle

applications.

4.1 Introduction

Since most of the smart sensors as explained in chapter 1, section 1.2.2 use CAN

or CAN-FD interfaces for data communication, a vulnerability assessment to cyber-

attacks is prudent for these network types. The CAN interface is widely used in

the automotive industry due to its robust and fault-tolerant design, however, CAN

lacks inherent security to protect against different network attacks. The shortcom-

ings in CAN protocol such as the broadcast message format, clear data transfers,

and lack of mechanisms to establish data authentication and confidentiality, expose

the CAN network to masquerade attacks, replay attacks, and additional exploits

(Lin and Sangiovanni-Vincentelli, 2012). The amount of viable attack vectors on

the CAN network has been demonstrated on numerous occasions within automotive

security research (Miller and Valasek, 2015). To mitigate known vulnerabilities in

CAN, several methods like payload encryption, frame ID-based filtering (Woo et al.,

2015), and message authentication code (MAC) calculated based on the payload data

are developed. A transport layer security architecture can be built over CAN that

can combine both cryptography and MAC to ensure data integrity and authenticity.

As more vehicle manufacturers adopt Automotive Open System Architecture (AU-

73

TOSAR) based platforms for vehicle development, the secure onboard communication

(SecOC) is gaining traction, which is again another MAC-based authentication pro-

tocol for individual protocol data units (PDU) (AUTOSAR CP Release 4.3.1). When

it comes to adopting this traditional cryptography and MAC-based security mecha-

nisms in autonomous vehicles, many practical issues like key management, freshness

value handling, and the recovery strategy or how to deal with the failed authentica-

tions need to be taken into consideration. Also, the bandwidth and payload length

restrictions of the CAN network make it impossible to implement these methods.

The legacy systems need to upgrade to CAN-FD that shares the same architecture

as CAN but provides more bandwidth due to flexible data rates (Woo et al., 2016).

Resolving such practical issues increase the development and maintenance cost of the

product as-well-as the overall complexity. To deal with such implementation level

Figure 4.1: Radar data stream

and practical shortcomings of the traditional data integrity verification methods, we

introduce a new data hiding based watermarking approach. This approach solves the

problem of the data integrity verification in resource-constrained and real-time appli-

cations with simple algorithms that do not tax the system with high computational

complexity at the same time do not increase the bandwidth requirements of the in-

terface as no additional data is added to the payload. In this method, the watermark

is embedded into the sensor using a light-weight software algorithm, which is easy

to implement. The concept of using data hiding techniques for sensor data verifi-

cation was introduced in (Changalvala and Malik, 2019b) for raw sensor data used

74

in a centralized autonomous driving architecture (Jo et al., 2014). In this chapter,

we analyze a different modality; we consider a smart RADAR sensor that produces

the processed data. The proposed watermarking method is implemented on the pro-

cessed RADAR data and its effects on the outcome of a sensor fusion algorithm are

verified. With the constraints in the automotive networks as mentioned in the sec-

tion 1.3 in mind, here we propose a watermarking solution that can work well under

these constraints and yet help verify the integrity of the sensor data. The traditional

watermarking methods are vulnerable to watermark estimation attacks. To address

it, we propose to introduce freshness in the watermark generation process based on

the data available on the in-vehicle network such as the GPS timestamp to generate

a watermark to be embedded into the sensor data that need to be secured. Sharing

the watermark generation algorithm between the sensor and the receiver eliminates

the need to exchange the watermarking scheme over any secure channel. Another

Figure 4.2: Block-diagram of problem statement

aspect to consider while using the data hiding based watermarking techniques is the

embedding induced distortion. Through experiments, we provide an analysis on the

embedding induced distortion of the 2D QIM method and its impacts on sensor data

75

and downstream fusion algorithms.

4.2 System & Attack Model

In the system model, we assume that a centralized ADAS unit makes autonomous

driving decisions using the data fed by satellite sensors over the vehicle network, as

shown in Figure 4.2. The ADAS unit fuses incoming data and performs the necessary

information extraction from the object detection lists. This processed information

is further used to build autonomous vehicle features like perception and localization

(Changalvala and Malik, 2019b). We assume that both the sensors or data origin,

and the sink or the central data processing ADAS module are clean. The data input

into the system via sensors is authentic. The attacks are launched during the data

transmission from the sensor to the ADAS module over the vehicle network, as shown

in Figure 4.2. This threat model is more attractive to attackers as the impact factor

is high. The damage that can be done by continuously faking or deleting the sensor

information as an insider attack is high for autonomous vehicle applications. The

system requires a GPS receiver on the vehicle network transmitting timestamp data

periodically, and the sensors, along with the ADAS unit have access to this GPS

data. The data structure is shown in Figure 4.1 is assumed for the RADAR sensor

data. Each data-set starts with a header delimiter that contains information such as

the number of tracked objects, unique data identifiers, etc. The header is followed

by the stream of data elements themselves that can contain multiple fields based on

the capability of each RADAR sensor unit, but for simplicity, we assume the mini-

mum content such as the tracked object Cartesian coordinates (x, y). This position

information is used to embed the watermark. The proposed QIM based watermark

embedding method works directly on the data; hence it is important to verify that for

a given application, the embedding induced distortion does not affect the output of

the application consuming the data. In this chapter, we use a sensor fusion algorithm

76

called Extended Kalman Filter (EKF) that is widely used in autonomous vehicle ap-

plications to analyze the embedding induced distortion. The sensor fusion algorithm

takes in the RADAR and LiDAR sensor data and outputs the predicted position of

the tracked object.

Figure 4.3: State vector for pedestrian motion

4.2.1 Sensor Fusion Data Model

The data-set used to test the proposed framework is generated using the reference

code provided by Mercedes Benz autonomous driving utility (Mercedes Benz T., 2018).

The data generation scenario is to predict the path taken by a pedestrian walking in

front of the vehicle using the on-board sensors, LiDAR, and RADAR, as shown in

Figure 4.3. The data-set contains sensor measurements of the location and velocity of

the pedestrian. The RADAR sensor measurements are represented in polar coor-

dinates as ρ, φ, ρ̇, where ρ is the radial measured distance to the target, φ is the

measured lateral angle to the target, and ρ̇ is the rate of change of ρ that results in

radial velocity. The Radar measurements are converted from polar to Cartesian

77

coordinates using the following equations.

x = ρ ∗ cos(φ)

y = ρ ∗ sin(φ)

(4.1)

The LiDAR measurements are represented as position coordinates (x, y). Along with

these measurements, the data-set also contains the GPS timestamp at which the data

is collected. The time delta between sensor measurements is set to δt = 50 ms. At

each time sample δt, the ground truth values for the pedestrian position and velocity

for each sensor (px, py, vx, vy) are calculated based on a constant velocity motion

model. The motion model considered for data generation is a 2D bicycle model, and

yaw-rate is assumed to be zero, represented by following equations:

θ̇ = 0

x
′
= x+ v · δt · cos(θ)

y
′
= y + v · δt · cos(θ)

(4.2)

where, v is the target velocity, δt is the elapsed time, and θ is the yaw, (x, y) & (x
′
, y
′
)

are the initial and final position values respectively. From these ground truth values,

Figure 4.4: Proposed framework and 2D QIM embedding process

the measurement values at each time step are obtained by adding uncertainty in the

78

form of Gaussian noise of configurable variance. The measured values are represented

as the following

mtk = gtk + ε (4.3)

where mtk , gtk , represent the measurement and ground truth values respectively at

time tk and ε is the measurement error represented by an independent and identical

distribution (i.i.d) Gaussian noise with zero mean and covariance matrix R > 0, i.e.

ε = N(0, R).

4.3 Proposed Framework

Figure 4.5: Block-diagram of proposed method

In our proposed sensor data integrity verification framework, we assume the follow-

ing. First, the sensor and the ADAS processing unit share the watermark generation

algorithm. Second, the ADAS processing unit collects detection lists from different

sensors, in this case, LiDAR and RADAR, and generates a fused list of detection.

The proposed framework, as shown in Figure 4.5 is divided into three parts.

• Watermark generation

• Watermark embedding

79

• Watermark decoding

The watermark generation is done in the sensor using the GPS timestamp infor-

mation. This binary sequence of message me = f(tgps) is embedded into the position

data of the object detection list from the sensor using 2D QIM data hiding method.

This watermarked data is transmitted to the ADAS unit over an in-vehicle communi-

cation network, such as CAN. The ADAS unit receives the watermarked data along

with the timestamp from the GPS sensor. This data is given as an input to the sen-

sor fusion algorithm as-well-as to the integrity verification algorithm. The integrity

verification algorithm that runs in parallel to sensor fusion generates the embedded

message sequence me using the same method as the sensor. Also, the embedded mes-

sage sequence from the received frames md is extracted using the decoding process.

The decoded message sequence is compared against the embedded message sequence

to detect and localize the modified data across different attack vectors, as explained

in section 4.4. data tampering is detected, a validity flag is set to qualify the fused

Figure 4.6: Time-stamp conversion

object list. This is represented as a fire-wall between the ADAS unit and the motion

control unit in Figure 4.5, which prevents the tampered data from controlling the

80

vehicle. The data integrity verification mechanism is portrayed as a silent spy in Fig-

ure 4.5. It acts in the background unnoticed by the attacker to detect and localize the

tampering and alerts the vehicle control algorithm about the integrity of the data.

4.3.1 Watermark Generation

A core component of our integrity verification network is our watermark gener-

ation technique. Our proposed model leverages timestamp from GPS sensor data

to generate a binary sequence that will be embedded into subsequent RADAR data

frames downstream. The diagram in Figure 4.6 represents a visual depiction of a

GPS sensor timestamp converted into a bitstream. Assuming an architecture sup-

porting little endianness, the two least significant bits (LSB) and the most significant

bit (MSB) nibble are parsed and stored in a secured buffer, to be utilized by the se-

quence generator described in Algorithm 4. The LSB pair stored is used to determine

the starting bit pair for the generated sequence. This adds a level of obfuscation to

the generated sequence by changing the starting bit pair of the binary sequence to be

embedded in the available data elements. In addition, the MSB nibble is converted to

its decimal representation and utilized as a seed value to generate a random number

to fall within the theoretical maximum for potential data elements generated in one

message payload.

The sequence generator represented by Algorithm 4 will utilize the previously

gathered information from the GPS time stamp to generate a deterministic sequence.

This process involves taking the range limited random number x, generated from the

seed value of the MSB nibble, where: numPairs = bxc to determine the length of

the sequence. A two-bit value is then incremented and appended to the generated

sequence buffer. The proposed 2D QIM embedding method allows for a message

sequence of integer values in range (0 ≤ mval < 4), hence the generated two-bit

value is modulated by 4, to keep it within the allowed range. The desired length

81

of the sequence is, by design, dependent on the seed value calculated from parsing

the GPS timestamp. If the sequence is shorter than the amount of data elements in

the message payload, the generated sequence will be reused. The randomness in this

generated message sequence comes in the form of the start pattern and the length of

the message sequence both of which can be recreated by the receiver using the same

GPS timestamp message.

4.3.2 Watermark Embedding

Figure 4.7: 2D QIM scheme

We use a 2D QIM-based data hiding method for watermark embedding. Here we

use simple cubic lattice QIM approach mentioned in section 3.5. If we use regular

quantization function in Equation (3.28), the resulting watermarked signal sw for a

2D QIM can be represented as:

sw(sck ,mk) = qmk
(sck ,∆) (4.4)

where qmk
(·), denotes 2D QIM quantizer which is expressed as:

qmk
(ck,∆) = round

(ck
∆

)
·∆± ∆

2
·mk (4.5)

82

It can be observed from Equation (4.5) that the host signal gets modified after the

data embedding and the distortion level is proportional to the perturbation. This

feature provides the flexibility to select a distortion level that works for a particular

end application. This motivated us to select QIM over other available watermarking

methods. In QIM, the quantization operation uses a unique set of quantizers that

result in a reconstruction grid (Joachim and Bernd, 2002). The dimensionality of

the reconstruction grid depends on the message symbol size. If a message has an

n-dimensional symbol, it results in a log2(n)-dimensional reconstruction grid. For

example, a binary message m ∈ {0, 1}, where n = 2 results in a 1D reconstruction

grid. If we extend this concept to a two-dimensional data-set like RADAR data-

position vector (x, y), a four-dimensional message symbol m ∈ {0, 1, 2, 3} can be

used to hide data resulting in a 2D reconstruction grid. Each corner of this grid

can be considered as a reconstruction point in recovering the embedded message. In

Figure 4.7 a sample data set is depicted with different embedded message symbols.

After the initial quantization, the position data points that fall within the highlighted

polygons are represented by the center of the regular polygon or the black dot ck =

{xk, yk}. In 2D QIM, based on the embedded message symbol mk = {mxk,myk},

this center point is moved to one of the eight fixed locations on the boundary of the

polygon as represented by the red dot. The minimum value of the separation distance

between the reconstruction points dmin, determines the resilience of the framework

to the channel noise. This is a configurable parameter in QIM based watermarking

that comes as an advantage when trying to adapt this framework to different end

applications. Another advantage being the host-signal interference rejection because

of the non-intersecting reconstruction points (Chen and Wornell, 1998).

In the proposed framework, a simple algorithm parses through the generated mes-

sage symbols and applies the corresponding quantizer to the RADAR position data

as per Equation (4.5). The sender uses the GPS timestamp from a pre-defined in-

83

terval and is based on the procedure explained in section 4.3.1; the watermark is

generated and embedded into the data elements of the RADAR data as shown in

Figure 4.4. The modified data is transmitted over the selected data transfer interface

like CAN/CAN-FD with additional meta-data included in the header that acts as

a delimiter to the data-elements. The watermark stays with the data irrespective

of the data-link or transport protocols used to send the data to the receiver. Also,

since there is no additional data added in the form of MAC, the interface bandwidth

requirements remain the same.

4.3.3 Watermark Decoding

The RADAR detection object list data received by the ADAS unit can be directly

used by the sensor fusion algorithm. Tamper detection and localization algorithms

can run in parallel. This is a significant advantage of the watermarking method over

any other encryption-based methods. The decoding algorithm works similarly to the

embedding. Each received position value is quantized using all the different quantizers

used for embedding to generate different reconstruction points, which is a set of four

in our case. These four reconstruction point values are compared with the received

value, and the reconstruction point that returns the least difference value, as shown

in Equation (4.6) is considered the decoded message.

md = argmin
m∈{0,1}

|s′w(si,md)− sw(si,mi)| (4.6)

where, s
′
w(si,md) represents a distorted received signal, mi is the embedded message

and md is the decoded message. The decoding step also regenerates the embedded se-

quence following the same procedure explained in section 4.3.1 as it receives the same

GPS timestamp over CAN. Here it is assumed that the sensors are time-synchronized

by the universal timestamp provider such as a GPS sensor (AUTOSAR CP R19-11).

84

4.4 Security Analysis & Performance Evaluation

Successful attacks are the ones that go undetected by the detection framework.

In this section, we discuss various attack scenarios possible if an attacker gets access

Figure 4.8: Data addition attack vector depiction

to the vehicle network and how the proposed framework can detect and localize these

attacks. As a part of the attack model, we assume that the attacker has a good knowl-

edge of the vehicle network protocols and automotive electrical system architecture.

He has tools available to sniff the vehicle network and replay the modified messages

on CAN/CAN-FD. With this knowledge, we identified three ways the attacker can

modify the sensor data once he sniffs it from within the network. The attacks are

broadly classified as

• Data addition

• Data deletion

• Data modification

for each of these attack scenarios in the following sections, we analyze how the pro-

posed framework performs.

85

4.4.1 Data Addition

Data addition is an attack scenario where the attacker modifies the RADAR reflec-

tions or tracklets with additional fake data elements either by copying the existing

elements or by adding completely random data. A typical add attack scenario is

represented in Figure 4.8, the data elements D6 and D11 are added to the origi-

nal sequence of the RADAR data, increasing the total count of elements from n to

n+ 2. With the proposed framework, position information (x, y) is 2D QIM encoded

by the sender with a message pattern generated based on the GPS timestamp, as

explained in section 4.3.1. This message pattern is represented by color-code (Red,

Green, Blue, and White) in Figure 4.8. Here, for simplicity, we assume a fixed pattern

length of four but the framework can accommodate variable length patterns. With

the additional data elements added during an attack, even if they are a copy of the

existing data elements, the encoded sequence gets disrupted. The receiver expects a

message sequence of Green for data element D6 and Blue for data element D11, but

the algorithm detects the subsequently received elements do not have the expected

message sequence. Here, we assume that the receiver knows the length of expected

data elements. The sender and receiver can agree on a pre-defined range of values

for the length or have an increment counter in each data-element, etc. to get the

length. Knowing the encoded data element length along with the side information

received from a different sensor modality like the GPS timestamp, as mentioned in

section 4.3.1, will help the decoder to generate the encoded message pattern. Based

on the lengths of the encoded message sequence lencode and the decoded message se-

quence ldecode, the type of attack can be determined, i,e it can be determined that

the elements are added if ldecode > lencode. As shown in Algorithm 3, the decoded

message sequence is compared with the expected message sequence in an O(N) loop

to find out the location of newly added data elements. This algorithm assumes that

the added element’s pattern is different from its adjacent element. Figure 4.11 de-

86

picts the performance of the algorithm in the presence of additive uniform noise.

The results show the robustness of the tamper detection algorithm and the proposed

data-hiding based framework performance in the presence of channel noise. The QIM

based methods can recover the watermark as long as the channel noise is confined to

the below equation.

d2
min > 4 ·N · σ2

n (4.7)

where σ is the standard deviation of channel noise, and N represents the number of

encoding bits or dimensions, and dmin represents the minimum distance between the

reconstruction points (Chen and Wornell, 1998). It can be observed from Figure 4.11

that the proposed framework can detect and localize the tampered data elements with

100% accuracy when the noise is within bounds as per Equation (4.7), for a given

step-size of ∆ = 1 cm.

4.4.2 Data Deletion

In this scenario, as shown in Figure 4.9, the attacker modifies the RADAR detec-

tions either by carefully eliminating chosen targets or by deleting random elements.

A typical delete attack scenario is represented in Figure 4.9, the data elements D6 and

D11 are deleted from the original sequence of the RADAR data. This decreases the

total count of elements from n to n− 2. In the proposed method, the sender embeds

the message pattern generated from the GPS timestamp in the position information

(x, y) of the data elements. The message pattern is represented by color-code (Red,

Green, Blue, and White) in Figure 4.9. When the data elements get deleted, the mes-

sage embedding sequence gets disrupted. The receiver expects a message sequence of

Green for data element D6 and Blue for data element D11, but it can detect that the

received elements D7 and D12 respectively do not have the expected pattern. Based

on the lengths of the encoded message sequence lencode and the decoded message se-

quence ldecode, the type of attack can be determined, i,e it can be determined that the

87

elements are deleted if ldecode < lencode.

The tamper localization algorithm is shown in Algorithm 2. The decoded mes-

sage sequence is compared with the expected message sequence in an O(N) loop to

determine the location of the deleted data elements. The results of the algorithm are

shown in Figure 4.11. The algorithm detects and localizes the delete attack vector

with 100% accuracy as long as the noise is bounded by Equation (4.7). It can be

observed from Figure 4.11 that as the noise variance increases, the accuracy falls for

a given step-size.

Figure 4.9: Data deletion attack vector depiction

4.4.3 Data Modification

During a data modification attack, as shown in Figure 4.10, the attacker modifies

the RADAR detections by altering the existing data element content. Figure 4.10

represents a typical data modification attack. The data elements D6 and D11 are

modified in the original sequence of the RADAR data. This type of attack does not

change the total count of elements. In the proposed method, the sender embeds a

message pattern generated from GPS timestamp, as explained in section 4.3.1, into the

position information (x, y) of the data elements. The message pattern is represented

by color-code (Red, Green, Blue, and White) in Figure 4.10. When the data elements

88

get modified, the embedded message sequence gets disrupted. The receiver expects a

message sequence of Green for data element D6 and Blue for data element D11 and

detects that the received data elements do not have the expected pattern. To get the

location of the modified data elements, as shown in Algorithm 1, the decoded message

sequence is compared with the expected message sequence in an O(N) loop. The

accuracy of the algorithm is represented in Figure 4.11. This algorithm assumes that

random elements are modified within a given message pattern, and the channel noise

is less than the step size. It is observed from Figure 4.11 that as the noise variance

increases, the localization accuracy of the algorithm decreases. However, when the

noise is within bounds, the detection and localization accuracy of the modified data

elements is 100%. Similar to the trend observed in the other two algorithms.

Figure 4.10: Data modification attack vector depiction

4.5 Experiments & Results

4.5.1 Impact of Embedding Distortion on Object Detection

Though the data-hiding based sensor integrity framework is computationally less

complex than the traditional cryptography, one of the major concerns with the

method is the embedding induced distortion as the watermark is embedded directly

89

into the data by altering it. A question arises whether the end application or the

consumer of this data can handle this distortion. An answer to this question would

help the automotive industry adopt the watermarking techniques for sensor data or

other data integrity verification applications. In this study, we analyze the effects of

embedding RADAR data using the proposed 2D QIM data hiding framework on a

sensor fusion algorithm. The sensor fusion method we use for this study is EKF. In

autonomous vehicles, Kalman filters are used to estimate the state of any dynamic

system, such as position estimation of moving objects on the road. In doing so,

the Kalman filter only needs current observations and previous predictions, hence

Kalman filter is a light-weight fusion algorithm (Jetto et al., 1999), (Rigatos, 2010),

(Madhavan and Schlenoff, 2003). They are also good at handling the measurement

inaccuracies in the sensors, i.e., sensor noise. The EKF based sensor fusion algorithm

takes inputs from two or more sensors and generates a combined prediction of the

tracked object at every time step. The impact of the proposed 2D QIM method for

sensor data integrity verification is estimated based on the output of the EKF. As

explained in section 4.2.1, in this experiment, we use measurements from two onboard

vehicle sensors LiDAR and RADAR to estimate the state of a pedestrian moving in-

front of the car. The same object, in this case, a pedestrian, will be detected by the

two sensors, and a Kalman filter fuses the data and predicts the accurate position of

the pedestrian.

To predict the position of a target, a Kalman filter uses a motion or process model

that estimates the future location of the target or object of interest. In this chapter,

we use a constant velocity motion model as a baseline for target motion estimation.

The motion model, as depicted in Figure 4.3, predicts the position and velocity of the

pedestrian at a future time tk+1, based on the values at time-step tk. This position

information is provided as a 2D position and velocity vector called the state vector.

In the context of this chapter, the state vector consists of the predicted position and

90

velocity of the pedestrian represented as

Figure 4.11: Tamper localization algorithm performance under varying channel noise

x = [px py vx vy]
T (4.8)

where (px, py) are (x, y) components of pedestrian position and (vx, vy) are (x, y)

components of his velocity at a given time step tk. The Kalman filter consists of

prediction and update steps. In the prediction step, the state vector x
′

at next time

step tk is estimated along with the uncertainty P
′

based on values of x and P at

previous time step tk−1 and the motion model. During the update step, for every new

measurement at time tk, the estimation function performs the measurement update.

The deterministic part of the prediction step F is the state transition matrix. The

uncertainty measure P is a stochastic process modeled as random noise that affects

the prediction step. The state vector x
′

can be estimated as

x
′
= f(x, µ) (4.9)

91

where, µ is the stochastic part, represented as N(0, Q), this can be re-written as

x
′
= Fx+ µ

P
′
= FPF T +Q (4.10)

where F is the state transition matrix that models state transitions from previous

Figure 4.12: RMSE comparison at Rm = 0.4

time step tk−1 to current time tk, µ is the added noise, Q is the process co-variance

matrix that models the stochastic part of the state transition function. A linear

motion model with constant velocity is used to define the state transition matrix F .

The position at next time step tk is given by

p
′

tk
= ptk−1

+ vtk−1
∗ δt (4.11)

where δt = tk − tk−1 and since the model assumes constant velocity, the velocity at

next time step is given as

v
′

tk
= vtk−1

(4.12)

based on the above model, the Kalman filter uses the estimated state to predict the

92

pedestrian position. In the update step, the sensor measurements are used to correct

Figure 4.13: RMSE comparison at Rm = 0.5

the predicted states and to obtain more accurate estimates. In the measurement

function, the vehicle only senses the pedestrian position and can be expressed as

z = [p
′
]T (4.13)

The measurement step that precedes the update step relies on the measurement

model, measurement matrix H, and covariance matrix R to correctly estimate the

measurement vector z. The measurement matrix is required to transform the mea-

surement vector z to the state vector as shown in Equation (4.8). The measurement

function can be represented as

z = Hx+ ω (4.14)

where H is the measurement matrix that projects object position belief into the

measurement space of the sensor and ω is the measurement error that encompasses

all the uncertainties in measurements from the sensor represented as a Gaussian

with zero mean and covariance matrix R, ω ≈ N(0, R). Assuming the measurement

components are not cross-correlated, the covariance matrix R becomes a diagonal

93

matrix. The dimensionality of R depends on the size of the measurement vector

z, which is two for LiDAR and three for RADAR in our case. Hence, R becomes

a 3X3 diagonal matrix for RADAR and a 2X2 diagonal matrix for LiDAR. The

measurement matrix H also differs based on the sensors used by the fusion algorithm.

Since LiDAR measures the position of the target in the Cartesian coordinates (x, y),

the state vector to measurement vector transition is linear, and calculation of the

measurement matrix H is straightforward. It just needs to discard the velocity from

the state vector. Hence during the update step, standard Kalman filter transitions are

applied for LiDAR measurements. In the case of RADAR, the transition is non-linear

as RADAR measures ρ, φ, ρ̇ of the target. During the update step, to handle the non-

linear measurement functions for RADAR measurements, we use the EKF concept.

Kalman filters are linear estimators, the extension of this idea to non-linear systems

is called extended Kalman filter (EKF) (Madhavan and Schlenoff, 2003). In EKF,

the non-linear state and observation equations are linearized using Jacobian matrices.

Hence for RADAR sensor Jacobian of H is computed to get the linear approximation.

Once the z is computed, the update step or correction step is performed where the

latest measurements are used to update the state estimates and their uncertainties

as following:

y = z −Hx′ (4.15)

Here y is the error value or the difference between the prediction and actual measure-

ment at a given time step. The estimation error S is computed as

S = HP
′
HT +R (4.16)

94

The Kalman gain K is computed as

K = P
′
HTS−1 (4.17)

After the computation of the Kalman gain, the predictions are updated using the

following equations and these steps are repeated for the entire drive cycle.

x = x
′
+Ky (4.18)

P = (I −KH)P
′

(4.19)

It can be observed that in an EKF, the uncertainty in both the process and

measurements are taken into consideration. In general, the measurement uncertainty

or the measurement noise covariance matrix R in Equation (4.14), is the inherent

sensor behavior and hence provided by the sensor manufacturer. Whereas, the process

uncertainty Q in Equation (4.10), is defined based on the motion model and other

application related assumptions. If we use the EKF as the sensor fusion algorithm,

three configuration parameters can affect the algorithm outcome in the proposed

framework. The first being the measurement noise matrix R, the second the overall

process noise Q, and the third, the embedding step-size ∆. In this experiment, we

analyze the impact of the watermark embedding using the 2D QIM method on the

sensor fusion algorithm’s output under different configuration scenarios. We use two

types of RADAR data as an input to the EKF algorithm that predicts the state vector

of the pedestrian. The first type is the clean and unmodified data, and the second

type is 2D QIM modified data. The resulting predictions from EKF are compared

against the ground truth position vectors in both the cases using the Root Mean

95

Square Error (RMSE) metric calculated as following

RMSE =

√√√√ 1

n

n∑
t=1

(xgtt − x
pred
t)2 (4.20)

where xgtt & xpredt are the ground truth and predicted position vectors respectively at

a given time t and n is the length of data. The RMSE value is used to determine

the accuracy of the prediction. Low RMSE value indicates that the sensor fusion

algorithm predicted the tracked object position accurately throughout the track path.

The RMSE values of position vector (px, py) predictions generated from clean and

watermarked inputs to the EKF are shown in Figure 4.12 & 4.13.

The measurement input to EKF has a measurement noise component which is

dependent on the intrinsic electronic characteristics of the sensor. This can be repre-

sented as an additive Gaussian noise ω as shown in Equation (4.14). The measurement

noise covariance R represents the deviation of the sensor measured values from the

true values. This deviation is estimated during the calibration phase by the sensor

manufacturer. In the absence of the sensor manufacturer data, it can also be esti-

mated using analytical methods (Park et al., 2019). To accurately compensate for

the measurement noise in an EKF the R value for a given sensor must be known or

estimated to be used in Equation (4.14).

If we consider ωRm ≈ N(0, Rm) as the known or measured measurement un-

certainty and ωRn ≈ N(0, Rn) as the overall measurement uncertainty used in the

sensor fusion EKF algorithm in Equation (4.14), an EKF provides accurate predic-

tions when the value of Rn ≥ Rm. Here, it is always better to keep the Rn & Rm

values close to each other. If the EKF requires an inflated Rn value to incur cor-

rect predictions then it could be concealing other issues in the measurements like

measurement outliers and non-Gaussian nature of the noise. The measurement un-

certainty values used in the EKF ωRn can be represented as a combination of two

96

or more different noise distributions with data satisfying the i.i.d criteria. Let’s say,

ωR1
n
≈ N(0, R1

n) and ωR2
n
≈ N(0, R2

n) are two different noise distributions that con-

tributed to the overall noise ωRn , then the resulting distribution can be represented

as:

ωRn = N(0, R1
n +R2

n) (4.21)

The RMSE results depicted in Figure 4.12 & 4.13 show that the 2D QIM embed-

ded RADAR data can be considered as an added random noise contributor to the

overall measurement uncertainty and it can be represented by R1
n or R2

n in Equa-

tion (4.21). In this experiment, the RMSE values for clean and 2D QIM embedded

RADAR data are calculated at different measurement noise covariance matrix val-

ues Rm ∈ (0.4, 0.5), Rn ∈ (0.2, 0.3, 0.4, 0.5, 0.6) and varying embedded step sizes

∆ ∈ (0.01, 0.05, 0.25, 0.50, 0.75, 1, 2) m. Considering the Rm as the measurement

error covariance provided by the sensor manufacturer, the EKF which accepts this

RADAR sensor data should use a covariance matrix value Rn above or equal to the

Rm uncertainty. It can be observed from Figure 4.12, when Rn ≥ Rm, the RMSE

values of position vector for the 2D QIM embedded data is less than or equal to

the RMSE values from clean data for step-size ∆ < 0.75 m. With a given range

of px ≈ 18.5 m & py ≈ 12.5 m in the data under test, the results show that the

fusion algorithm can recover from position data perturbations of up-to 6%. As the

Rn value goes below the Rm, the RMSE of encoded data is less than the clean data

only when ∆ < 0.05 m. This shows that the embedding induced distortion at higher

step sizes is acting like additional uncompensated noise and introduces prediction

errors. Similar results are observed for the state vector predictions in case of data

with measurement covariance matrix value Rm = 0.5, as shown in Figure 4.13. It

can be inferred from the results that in the case where the measurement covariance

Rn < Rm, as the embedding step-size increases, the measurement noise value in-

creases, and hence the predictions of the embedded data elements are off. But as the

97

Rn value is increased above the Rm, the embedding induced distortion is gracefully

handled by the fusion algorithm, and we observe low RMSE values even at larger

step sizes. This phenomenon can be explained by Equation (4.21). Here the embed-

ded induced distortion acts like an additive Gaussian noise component. The inherent

randomness in the watermark generation and embedding, which acts as noise, adds

up to the randomness in the sensor noise. These two noises are independent of each

other; hence the resultant effect is additive. This increases the RMSE value of the

prediction error when the fusion algorithm does not consider and compensate for this

additional noise. These experiments, when repeated at different permissible values of

process noise covariance matrix Q > 0, showed similar results.

Apart from the embedding induced distortion analysis, two different experiments

are conducted to measure the other performance parameters of the detection frame-

work, such as the bit error rate and the false alarm rate.

4.5.2 Bit Error Rate

In this experiment we analyze the errors in the decoded bit stream in the presence

of channel noise. The decoder step in the proposed framework generates a binary

message stream Mx,y = {m1
x,y,m

2
x,y, · · · ,mN

x,y}, from the RADAR data elements.

The bit error rate BER is calculated by comparing each bit in the decoded message

mi
x,y ∈ {mi

x,m
i
y} with the embedded bit m̂i

x,y as follows:

BER =

∑n
i=1 Imi

x,y 6= m̂i
x,y

n
(4.22)

where I is the indicator function, and n is the size of the decoded message bitstream.

When no additional noise is added to the RADAR data elements, the BER is close

to 8.6%, which corresponds to the noise due to the attack vectors. As the channel

noise modeled by an uniform distribution is added to the data, the BER stays below

9.5% for the noise variance σ < ∆/5.65, for a given step-size ∆. As the noise vari-

98

ance increases beyond the threshold in Equation (4.7), the BER value increases as

shown in Table. 4.1. It can be observed that the robustness to the channel noise is

directly proportional to the step-size ∆, which-in turn is directly proportional to the

embedding induced distortion.

Noise variance σ BER % FalseAlarm %
0.0 8.6 0.0
∆/6 9.2 0.0
∆/5 9.2 0.0
∆/4 8.6 0.0
∆/3.5 18.6 61.1
∆/3 28.6 75.0
∆/2 56.4 85.2

Table 4.1: BER and False-Alarm rate at different noise levels

4.5.3 False-alarm Rate Analysis

The false alarm rate analysis is another important performance indicator of the

proposed framework. It measures the number of data-elements the framework de-

termines as tampered when it is provided with clean or unmodified data. In this

experiment, the framework is tested with a combination of clean and modified data

elements, and the false alarm rate fAlarmRate is calculated as follows:

fAlarmRate = NFalsePositive/NDataElements (4.23)

where, NFalsePositive is the number of data elements the framework falsely classified

as tampered with and NDataElements is the total number of data elements tested. The

experiment is repeated at different levels of the additive uniform noise to replicate

the channel noise. The results are shown in Table 4.1. It can be observed that

the fAlarmRate stayed at 0% when the uniform noise variance σ < dmin/(2 ∗
√

(N)),

where dmin = ∆/2, N = 2 in our framework. As the noise variance increases beyond

this threshold the false positives increase resulting in a higher false alarm rate. It

99

can be concluded from these results that when the channel noise is within acceptable

bounds, our framework can achieve 100% detection accuracy with zero false positives.

To summarize the findings, the proposed 2D QIM based integrity verification pipeline

Figure 4.14: Comparison: EKF path prediction from clean and encoded data at Rm

= 0.5, Rn = 0.5 & ∆ = 0.01 m

is tested for the affects of embedding induced distortion using simulated RADAR data

on an EKF based sensor fusion algorithm. The experimental results conclude that

the 2D QIM method for watermarking has a little or no effect on the EKF predictions

for small values of quantization step-size ∆ ≤ 0.05 m, which can be attributed to the

minimal distortion induced by the 2D QIM process. A visual representation of the

tracked path by sensor fusion EKF algorithm for both plain and encoded inputs at a

small step-size ∆ = 0.01 m is displayed in Figure. 4.14. It can be observed that the

predicted state-vectors for both the plain and 2D QIM embedded inputs are similar

even when the actual measurement noise covariance Rm and the EKF considered

noise covariance Rn are same. As the step size increases, the overall measurement

100

noise covariance used in the EKF, Rn need to take into account the noise generated

by the 2D QIM embedding to get accurate results, this phenomenon is shown in

Figure. 4.12, 4.13. Other experiments to measure the tamper localization accuracy

and noise resilience of the proposed framework show that the proposed framework

works well if the channel noise of the interface is within theoretical bounds presented

in Equation. 4.7. The tamper localization accuracy of our framework is close to 100%

when the interface noise is zero.

101

CHAPTER V

LiDAR Data Integrity Verification-3D QIM

Deterministic perception of the surrounding environment is both crucial and a

challenging task for autonomous vehicles. A wide range of sensors, including LiDAR,

RADAR, cameras, and so on, are used to build the perception layer of an autonomous

vehicle. Many interfaces, such as OBD-II, Wi-Fi, Bluetooth, cellular networks, etc.,

have been introduced in autonomous vehicles to control various functionalities, in-

cluding V2X communications, over-the-air updates, security, remote vehicle-health

monitoring, and so on. These interfaces are introducing new attack surfaces that

can be exploited via external as well as internal attacks. Attackers have successfully

demonstrated how to exploit these attack surfaces by crafting attack vectors to launch

both insider and external attacks. The sensor and sensor data are also vulnerable to

both external and insider attacks. Developing safeguards against these attacks is a

steppingstone toward the design and development of reliable autonomous vehicles.

For instance, failure to detect and localize sensor data tampering can result in an er-

roneous perception of the environment and lead to wrong path-planning and control

decisions. We propose a novel semi-fragile data hiding-based technique for real-time

sensor data integrity verification and tamper detection and localization. Specifically,

the proposed data hiding-based method relies on 3-dimensional quantization index

modulation (QIM)-based data hiding to insert a binary watermark into the LiDAR

102

data at the sensing layer, which is used for integrity verification and tamper detec-

tion and localization at the decision-making unit, e.g., the advanced driver assistance

system (ADAS). The performance of the proposed scheme is evaluated on a bench-

marking LiDAR dataset. The impact of information hiding on the object-recognition

algorithm is also evaluated. Experimental results indicate that the proposed method

can successfully detect and localize data tampering attacks, such as fake object inser-

tion (FOI) and target object deletion (TOD). Robustness to noise-addition attacks is

also evaluated.

5.1 Introduction

Sensors feed the sensor fusion core in an autonomous vehicle with environment

data. If the input to the sensor fusion core is compromised, the resulting decisions

down the understand-and-act pipeline would be erroneous and could result in sig-

nificant damage. Though some redundancy could be built throughout the system

by fusing different sensor information, the computational cost of path planning and

other control algorithms to work around and ignore the tampered sensor data is much

higher than detecting the tampering at the sensor level. It can be observed from Fig-

ure 1.2 that given a vehicle architecture in which a sensor transmits raw data to the

vehicle for data interpretation, an attacker can exploit vehicle attack surfaces to tam-

per with the raw sensor data by simple operations like fake object insertion (FOI) or

target object deletion (TOD) to dupe the object information extractor and the per-

ception estimation applications that are down the pipeline. By inserting tampered

data containing fake objects or by deleting existing objects an attacker can influence

the perception and localization algorithms to consider and act on the tampered data.

This would result in the ADAS making wrong control decisions like decelerating or

braking when it is not supposed to or driving right into a target object. These wrong

control decisions can pose a serious safety threat to the occupants of an autonomous

103

vehicle. Integrity verification of sensor data before acting on it is crucial.

To demonstrate the effectiveness of the data hiding-based integrity verification

methods for sensor data, a 3-dimensional quantization index modulation (3D-QIM) is

implemented on LiDAR sensor point cloud data. Simplicity, low embedding/decoding

complexity, quantifiable embedding distortion as a function of embedding parameter

∆, and detection performance as a function of channel distortion and embedding

parameters are the salient features of QIM-based data hiding, which is the main

motivation behind selecting it over the other information-hiding methods (Malik et al.,

2008), (Chen and Wornell, 2001). The proposed method could be easily adapted into

other 3D point-cloud data generators like RADAR, red-green-blue-depth (RGBD)

cameras, etc.

5.2 LiDAR Point Cloud: Applications

The LiDAR sensor plays a key role in an autonomous-driving vehicle due to its

ability to provide better perception in all light conditions in comparison to other sen-

sors like digital cameras. Adverse weather conditions like fog and rain could reduce

the accuracy of the data, but in moderate weather conditions, LiDAR is well suited

for high-frequency applications such as building a perception layer for an autonomous

vehicle. High-end LiDARs could generate detailed local maps of an ego vehicle work-

ing in all light conditions. These maps could be used for a variety of critical tasks such

as behavior predictions of the surrounding vehicles and environment. This environ-

mental behavior prediction, such as whether a vehicle ahead is making a turn or not,

helps a self-driving vehicle in predictive path planning. Typically, LiDARs are used in

medium-range {80 to 160 m} applications such as collision avoidance and pedestrian

detection and also in long-range {160 to 300 m} applications like adaptive cruise con-

trol and critical object tracking. A smart LiDAR is equipped with integrated ECUs to

perform pre-processing, object-recognition (detection and classification), and track-

104

ing functions and provides a list of tracked objects to a control system. On the other

hand, a simple LiDAR provides a raw point cloud, and the object recognition and

tracking are performed in the ADAS ECU, as shown in Figure 1.2. The choice of

the type of LiDAR depends on autonomous vehicle architecture and functional safety

requirements. For this research, we focus on autonomous vehicle systems built on

LiDARs that provide a raw point cloud.

The LiDAR data returns have no shape attributes, as they represent the perceived

environment. The density of the point cloud depends on the horizontal and vertical

angular resolution of the LiDAR. For automotive applications in general, the point

cloud is sparse, as the points are spread across the maximum range of the LiDAR,

which could be up to 300 m. Each point in the point cloud is usually represented

by its Cartesian coordinates and the intensity of reflection. In autonomous vehicle

applications, most of the existing object detection and tracking models do not consider

the intensity of reflection; hence, that value is neglected. The 3D point cloud is

considered as a set of points pc = {p1, p2, p3..pn}, where each point is the combination

of its x, y, z components pi = {pix, piy, piz}.

5.2.1 QIM-based Data Hiding on LiDAR Point Cloud

Any given sample in a LiDAR dataset is the combination of the reflection intensity

of a point in space and its corresponding 3D location coordinates. Since we are

focusing on autonomous vehicle applications, the primary usage of LiDAR data would

be in the areas of perception and localization. These applications require distance

measurements to the detected objects in the LiDAR point cloud. In performing object

detection on the raw LiDAR point cloud, the general norm is to reduce the redundancy

and bring in fixed connectivity between the points and then feed this sensor data to

a prediction model. Most of these prediction models are deep-learning-based, where

the model extracts features based on the training data set. The existing prediction

105

models cannot detect LiDAR point-cloud tampering. Cryptographic- or data hiding-

based approaches can be developed to solve this problem. It can be observed from

Figure 1.4 that the data hiding-based solution outperforms the cryptographic-based

solution as far as latency is concerned. The challenge for the data hiding-based

integrity verification method for automotive and robotic applications is to ensure that

message embedding distortion should not deteriorate the performance of prediction

models used in the ADAS unit. The QIM-based data hiding provides the flexibility to

select a desired embedding distortion level as a function of the quantization parameter,

which is the main motivation behind selecting QIM over other available data-hiding

methods. In the following, we outline QIM-based data hiding for a LiDAR point

cloud.

The basic principle of quantizing the host signal using multiple quantizers, where

each one of them could be treated as a set of reconstruction points, can be extended to

a 3D point cloud such as LiDAR sensor data (Joachim and Bernd, 2002). The point

samples from the LiDAR sensor are randomly located by default and lack connectivity

information. To give them shape and connectivity aspects, the point cloud is divided

into fixed-size voxels. A voxel is a fixed-width cube in 3D space. Once the maximum

range of the point samples from the sensor is determined, points are quantized with

a specific step size ∆. After this quantization step, all the points that fall within

a voxel are represented either by a fixed vertex of the corresponding voxel or by its

centroid. This voxelization step also reduces the redundancy in reflections from the

same target.

After voxelization, all the points of the signal S, with position vectors that fall

within a voxel k are represented by the vertex at the origin of the voxel vk =

{xk, yk, zk} that assumes a value given by a uniform scalar quantizer Q(vk,∆)

Q(vk,∆) = round(
vk
∆

) ·∆ (5.1)

106

Figure 5.1: Illustration of 3D QIM-based data hiding, here axis representation is in
LiDAR frame

Extending the QIM based data-hiding method from section 3.4 to a 3D point cloud

gives the ability to embed multiple bits in each point. We implement a simple form

of the lattice QIM using the 3D cubic base lattice. Data is hidden in the spatial

domain by modifying the three-dimensional position vector of each point; hence, we

have three degrees of freedom in the selection of reconstruction points as shown in

Figure 5.1. The non-intersecting nature of the reconstruction points results in host-

signal interference rejection (Chen and Wornell, 1998). Based on the hidden message

tuple, mk, to be embedded, here mk = {mxk,myk,mzk} the vertex can be moved

around a fixed inner cube of a given dither size. The resulting watermarked signal

for 3D QIM can be represented as:

sw(svk ,mk) = qmk
(svk ,∆) (5.2)

107

where qmk
(·), denotes 3D QIM quantizer which is expressed as:

qmk
(vk,∆) = round(

vk
∆

) ·∆± ∆

2
·

√√√√√√√√√

mxk

myk

mzk

 (5.3)

If we embedded three bits per host-signal sample to take advantage of the three-

dimensional spread of points, with the embedding rate R = 3 bits/sample, the em-

bedded message mk would assume 2R values. The range of mk determines the count

of the ensemble of quantizers hence the quantizer ensemble will have eight values

qi ∈ {q1, q2, q3, · · · , q8} in this case. Each one of these eight quantizers shifts the

vertex point at A in Figure 5.1 to one of the eight vertices {a, b, c, d, e, f, g, h} within

the inner cube. If, for example, all the points of a 3D point cloud are arranged in

sequential order, Figure 5.1 represents the first two voxels of the point cloud. If the

point cloud is quantized with a step-size ∆, the points within these first two voxels

are represented by vertices A and C. In the proposed 3D QIM method, the position

of the vertex is moved within an inner hypercube of size ∆/2 based on the embedded

message, which is the sequence number of the voxel, i.e., 0 or 1. This shift in the

vertex position is depicted by the red circle in Figure 5.1. The proposed method of

moving the vertex within an inner hypercube does not increase the vertex count in

comparison to a normal quantization and hence does not introduce any additional

transmission overhead.

5.3 Attack Modeling

Attacks on LiDAR sensors used in autonomous vehicle applications such as local-

ization and perception can be broadly divided into two categories:

1. Regular-channel attacks at sensor level: Sensor saturation, spoofing.

108

Figure 5.2: Block diagram of the proposed QIM-based framework

2. Transmission-channel attacks at interface level: Point cloud tampering or de-

formation.

Regular-channel attacks such as sensor saturation (flooding the target with bright

light) and relay and replay attacks (capturing and re-sending the target LiDAR pulse

sequence) can be launched external to the vehicle but need precise knowledge of the

target LiDAR pulse sequence, receiving angles, and listening time interval (Shin et al.,

2017), (Petit et al., 2015). These attacks could be nullified by introducing some

pre-processing steps like random probing, correlation, and voting-based confidence

estimators. The proposed data hiding-based method is unable to detect regular-

channel attacks.

For transmission-channel attacks, which can be launched from inside the vehicle,

creating a fake scene could be as simple as copying or deleting a section of the point

cloud at the desired location. These insider attacks can be launched with ease in real-

time and can have a maximum impact on vehicle decision making if the ADAS core

algorithms are designed on the assumption that the sensor data is credible. Most

109

of the object-detection and classification algorithms in the data analysis pipeline

are deep-learning-based and are run or inferenced in real-time. These deep-learning

models do not differentiate between a fake object and a real object, which could result

in erroneous object detections on tampered data. In this section, we describe the

attack model for transmission-channel attacks. Transmission-channel attacks happen

at the edge system when a hacker gets access to the network interfaces or the decision-

making control unit. A hacker could modify the data or point cloud in real-time by

some simple operations like copying the existing targets from the point cloud and

pasting them in the direct path of the vehicle, which could prompt the vehicle to come

to a sudden halt. If the point-cloud tampering is not detected before the inference

engine runs on the raw data, it will put more burden on the decision-making logic

(the ADAS unit) as it has to incorporate more checks and balances, thus increasing

the processing time. Moreover, the ADAS outputs are also expected to be wrong.

If we could detect and localize tampering in real-time, then that would ensure the

integrity of the sensor data and therefore guarantee the expected ADAS performance.

5.3.1 Attack Vectors

Similar to the attack vectors discussed in Section 4.4, for LiDAR data We have

identified two main attack vectors for transmission-channel attacks, which require

not only the detection of tampering but also the specific location of the tampering to

neglect that area in the decision-making process.

1. Fake Object Insertion (FOI): A fake target is inserted in the direct path of

the vehicle.

2. Target Object Deletion (TOD): An existing target in the path of the vehicle

is removed.

110

5.4 Countermeasures to Transmission Channel Attacks

To counter the above-mentioned attack scenarios on the transmission channel

between the LiDAR sensor and the ADAS, we propose a QIM-based data-hiding

method for tamper detection and localization. Shown in Figure 5.2 is the block

diagram of the proposed method. We divide the framework into an information-hiding

processing block at the LiDAR sensor unit and a point-cloud verification and tamper-

detection and localization processing block in the ADAS unit. The information-

hiding processing framework that is implemented inside the sensor embeds a binary

watermark in the raw point cloud, introducing a negligible distortion. After this step,

the embedded point cloud is transmitted over the vehicle network. The watermarked

point cloud can be directly worked on by the ADAS core to detect and track objects.

The integrity-verification processing block runs in parallel to perform integrity checks

on the point cloud data in real-time and inputs its decision to the ADAS unit. This

verification-processing block localizes the tampered region once it determines that

the point cloud is tampered. This approach secures the point cloud against any

transmission-channel-intrusion insider attacks, which are hard to detect at the data

inference stage.

5.4.1 Implementation Details

In the QIM-based information-hiding processing framework, which runs in close

vicinity to the physical sensor, the LiDAR point cloud is filtered to capture forward-

looking points or the front camera view. This step can be skipped if the surround-view

point cloud is required by the application. The resulting points are quantized based

on the predefined step size ∆. After basic quantization, each voxel vertex is shifted to

one of the eight positions at a minimum distance of ∆/2 based on a binary message

vector as discussed in section 5.2.1. For simplicity in this study, a repeating message

sequence ∈ {0, 1, 2, 3, 4, 5, 6, 7} was chosen. At each sample with index i the message

111

value is given by m = i (mod (8)). The computational complexity of the implemented

algorithm is O(3N) for N samples, as embedding each bit per sample is O(1).

For the point-cloud verification framework, a blind watermark extraction mecha-

nism is used, that is, the original point cloud is not used for the watermark extraction

process. In the verification block, the embedded message is extracted by quantizing

the received signal with the same step-size ∆/2 and selecting the nearest reconstruc-

tion point. For simplicity, we have assumed that the verification block is aware of the

repeating message-embedding pattern. If a dynamic message embedding is needed,

the required pattern can be communicated to the verification block at the receiver

end through any selected vehicle interface, as shown in the Figure 5.2.

Based on the correlation values and pattern matching between the embedded and

extracted messages, the indices of the received signal where the embedded and ex-

tracted messages do not match are determined. From these indices, the corresponding

LiDAR frame points are traced and localized as tampered. To measure the accuracy

of tamper localization, the Hausdorff distance (Agarwal and Prabhakaran, 2009) is

computed between the bounding boxes of the points detected as tampered against

the bounding boxes of the ground truth data points.

5.4.2 Performance Evaluation

To evaluate the performance of the proposed framework, we used KITTI vision

benchmark data collected using a 64-channel Velodyne HDL-64E LiDAR running

at 10 Hz (Geiger et al., 2012). The KITTI offers a sensor synchronized and labeled

dataset with the location information of the objects in the data frame. The majority of

deep-learning-based object detection and classification models in automated driving

domain rely on this dataset for training and performance benchmarking. We also

chose this dataset to evaluate the performance of the proposed integrity verification

and tamper-resistant methods to keep the analysis as close as possible to

112

real-world autonomous driving scenarios.

A fake object insertion (FOI) is simulated on the fly by copying a real target

object’s points from the LiDAR frame at a different location. Similarly, the other

attack vector of target object deletion (TOD) is also simulated by removing points

in the frame that represents a real labeled target object. These two techniques could

be combined to move the targets to a different location, which could be considered as

another attack vector. A sample representation of the LiDAR data from the KITTI

dataset is shown in Figure 5.3. It visualizes the fake object insertion and known target

deletion along with accurate detection and localization. To further understand the

effects of channel noise, random Gaussian noise of varying variance is added globally

to the LiDAR frame.

The minimum distance dmin between two reconstruction points measures the size

of the noise vector that can be tolerated by the system (Chen and Wornell, 1998). If

we set a limit on message embedding distortion by choosing a fixed quantization step

size ∆ or, in other words, set a constraint that the composite signal in Equation (5.6)

should be closely equal to the svk ∀mk, then the message detection accuracy would

be high when channel noise is bounded by Equation (4.7). Our experimental results

confirmed that the proposed algorithm adheres to this theoretical noise limit.

5.5 Experimental Results

The performance of the proposed framework is evaluated on KITTI’s 3D object

detection benchmark training dataset. For performance evaluation, LiDAR frames

with cars in close proximity to the ego vehicle with no occlusions and less truncation

are selected. The motivation behind this selection criteria is to aid the visual in-

spection of the simulated FOI and TOD attack vectors and to precisely evaluate the

tamper localization accuracy in a controlled environment. To this end, the first 1000

frames of KITTI’s dataset are analyzed that resulted in 67 frames satisfying selection

113

(a) Camera view of LiDAR frame

(b) LiDAR frame clean

(c) QIM-modulated LiDAR frame

(d) Tamper: Fake car added

(e) Detection: Fake car located

(f) Tamper: Car removed

(g) Detection: Deleted car located

Figure 5.3: Attack models and tamper detection and localization results

114

criteria. It is important to highlight that the proposed framework applies to all the

LiDAR frames in the KITTI’s dataset and the LiDAR frame selection criteria is not

the limitation of the proposed system. It is rather used to have a more meaningful

and fair performance analysis.

The performance of the proposed method is evaluated using four experiments,

ranging from investigating the impact on the object detection performance of the

ADAS unit of embedding induced distortion to embedding strength analysis and

robustness in the presence of additive noise.

5.5.1 Impact of Embedding Distortion on ADAS Performance

The primary goal of this experiment is to investigate the impact of embedding

distortion on ADAS functionality. Specifically, this experiment studies the impact

of QIM-based data hiding distortion on the performance of object detection and -

recognition algorithms. The motivation behind using an object detection algorithm

as a key performance indicator in this experiment is because it provides a direct error

measurement in terms of the distance between object(s) in the original point cloud

and corresponding object(s) in the watermarked point cloud. In other LiDAR appli-

cations such as simultaneous localization and mapping (SLAM) and object tracking

the message embedding distortion is estimated through indirect methods. In these

methods, distortion is estimated as sensor bias and often gets compensated for or

canceled based on the filters used in SLAM (Perera et al., 2003).

To verify the effect of embedding induced distortion on object detection, as a

first step, we ran inference on a selected KITTI dataset frame processed using 3D

QIM with nine different step sizes using a pre-trained 3D FCN deep-learning model

(Li, 2017). We used an existing implementation of the 3D FCN which was pre-

trained on raw KITTI data frames for this experiment (Tsuji, 2018). From the KITTI

training data set, we selected a frame in which a target vehicle is within a 50 m

115

range with zero heading angle. The selected frame is processed using 3D-QIM with

nine different step-sizes ∆ ∈ {1, 4, 6, 8, 10, 30, 40, 50 cm}. The resulting frames are

run individually through the 3D FCN deep-learning model inference engine, and the

resulting bounding box prediction is compared with the ground-truth bounding box.

The deviation in terms of the Hausdorff distance between the ground truth and the

predicted bounding boxes is compared. The results depicted in Table 5.1, show that

the inferencing of the deep-learning model resulted in good accuracy for a step-size

of 30 cm and below. It can be observed from Figure 5.4 that the shape of the raw

point cloud shown in Figure 5.4 (a) with a distinguishable car in the red bounding

box (ground truth) deteriorates as we increase the step size ∆. It can be observed

that the green bounding box corresponding to the model prediction starts moving

away from the red box corresponding to the ground truth as the step-size increases

beyond 30 cm. As we move farther, with the 64-channel LiDAR data, the number

of points representing a target becomes much smaller and falls into single digits.

For those labels, we observed a variation in prediction from the raw frame to the

QIM-modulated frame even at a smaller ∆ = 5 cm. Since the probability of false

alarms is high for objects with low reflection points, they are generally filtered by

the decision-making process. The range at which this filtering occurs depends on the

LiDAR resolution.

StepSize ∆ (cm) Bounding box shape distortion (m)
1 0.44
4 0.78
6 0.73
8 0.78
10 0.73
30 0.90
35 17.36
40 22.70
50 28.08

Table 5.1: QIM-induced distortion at different step-sizes

116

(a) Camera view of LiDAR point cloud

(b) LiDAR: Raw point cloud

(c) QIM-modulated point cloud with ∆ = 5 cm

(d) QIM-modulated point cloud with ∆ = 8 cm

(e) QIM-modulated point cloud with ∆ = 30 cm

(f) QIM-modulated point cloud with ∆ = 35 cm

(g) QIM-modulated point cloud with ∆ = 50 cm

Figure 5.4: Bounding box estimation of a ground truth label at different QIM-
embedding step sizes

117

∆/Step size (cm) Bird’s Eye View 3D Detection
0 96.92 77.38
1 96.59 83.05
4 96.96 73.12
6 96.21 72.90
8 97.61 75.18
10 89.40 65.30
20 83.50 57.39
30 73.42 34.65
35 54.77 23.51
40 42.01 13.40
50 12.20 2.38

Table 5.2: VoxelNet: Car detection average precision scores

To further understand the effect of message embedding induced distortion on

LiDAR object detection accuracy, we tested watermarked LiDAR frames on another

3D object detection model called VoxelNet (Zhou and Tuzel, 2017). VoxelNet is

an end to end deep learning network that stacks the voxelization, convolution, and

region proposal network (RPN) operations to detect and localize objects from the

raw 3D LiDAR point cloud and its performance is claimed to be better than 3D FCN

(Zhou and Tuzel, 2017). The VoxelNet implementation determines object detection

precision based on the 70% overlap of the predicted 3D and 2D (bird’s eye view)

bounding boxes with their corresponding ground truth. In this experiment, we used

an existing implementation of the VoxelNet that is trained on KITTI benchmark

data to detect cars (Huang, 2018). We chose a validation set of 25 frames that fall

under the easy detection category defined by KITTI and ran inference on them using

a pre-trained model checkpoint. A base-line average precision score of VoxelNet is

established by running inference on the selected validation set multiple times. Same

set of 25 LiDAR frames watermarked using 3D-QIM with different step-sizes ∆ ∈

{1, 4, 6, 8, 10, 20, 30, 40, 50 cm} are then generated. VoxelNet inference is executed on

each watermarked dataset to get the average precision score as shown in Table 5.2.

The first row (∆ = 0) of Table 5.2 shows the average precision of the model for raw

118

data frames. For the raw data frames, the average precision of 2D and 3D detections

was 96.92% and 77.38% respectively.

It can be observed from Table 5.2 that for watermarked frames there is no sig-

nificant deterioration in the average precision of the model for up-to a step size of

8 cm. Within this range, the bird’s eye view detection scores had a mean of 96.85%

with a 0.51% standard deviation. The 3D detection scores averaged at 76.32% with a

standard deviation of 4.17%. The additional spread in 3D prediction scores in com-

parison to the 2D scores could be attributed to the fact that the 3D detection is a

more challenging task as it requires more accurate localization of shapes in 3D space

(Chen et al., 2017) and hence model needs to be trained on a larger data-set to be

able to generalize well. It can also be observed from Table 5.2 that for both methods,

the average precision score of the VoxelNet model decreases significantly as the step

size goes above 8 cm. Modifying the voxel dimensions of the model and training the

model on the modulated point cloud could improve the model performance in general.

Nevertheless, since our proposed data-hiding technique provides flexibility to select

the desired embedding distortion level as a function of the step-size, for any given

application an optimum step size could be selected based on the empirical evaluation

of the model and application needs.

5.5.2 Embedding Distortion Analysis

This experiment is designed to investigate the impact of single- vs multiple-bit

message embedding on tamper localization accuracy. Specifically, for a given step

size ∆ = 10 cm, we compared bounding box prediction results of the following three

QIM message embedding methods under various added noise levels:

1. 1D QIM with one-bit embedding along the x-axis

2. 2D QIM with two-bit embedding along x,y axes

119

3. 3D QIM with three-bit embedding along x,y,z axes

Shown in Figure 5.5 is the performance of different bit-embedding methods in local-

izing the tampered area in a point cloud forged with FOI and global uniform noise.

It is observed that the tampered point localization accuracy decreased as the

additional uniform noise levels increased. For a given step size ∆ = 10 cm, the

tamper localization accuracy of 1D QIM is good up to an additional uniform noise

of σ = 2.5 cm, 2D QIM is good up to σ = 2.4 cm, and 3D QIM is good up to σ = 1.4 cm.

The noise tolerance values for a given ∆ are within the limits of the σ values for N = 1,

2, and 3 as per Equation (4.7). Figure 5.6 shows the performance of different bit-

embedding QIM methods in the presence of additional Gaussian noise. It is observed

that there is no significant difference in accuracy between multi- and single-bit

embedding.

One of the goals of the data hiding is to detect tampering under high lossy con-

ditions such as compression. The data-hiding method should detect any global in-

tentional attacks on the integrity of data such as sensor saturation by external noise

addition or affine transforms in multiple dimensions, along with local attacks like

FOI and TOD. Though single-bit embedding offers higher robustness to noise levels,

it will not detect targeted attacks in multiple dimensions. Hence, we propose using

3D QIM for autonomous vehicle applications.

5.5.3 Robustness Analysis

After choosing a range of step-sizes that result in acceptable embedding-induced

distortion to analyze the tamper detection and localization accuracy of the proposed

3D QIM method, three attributes are considered:

1. Bit error rate (BER) of embedding

2. Tamper localization distortion

120

(a) One-bit embedding

(b) Two-bit embedding

(c) Three-bit embedding

Figure 5.5: Bounding box distortion analysis for different bit-embedding schemes un-
der Uniform additive noise attack

121

(a) One-bit embedding

(b) Two-bit embedding

(c) Three-bit embedding

Figure 5.6: Bounding box distortion analysis for different bit-embedding schemes un-
der Gaussian additive noise attack

122

3. Tamper detection false-alarm rate far

In different experiments, these three attributes were measured under various variance

levels of both uniform and Gaussian noise addition, along with analysis of the TOD

and FOI attack vectors and results.

5.5.3.1 Bit Error Rate

This experiment is designed to measure the performance of the proposed method

in terms of bit error rate (BER) in the presence of additive channel-noise. The output

of the message-decoding step in our method is a decoded message bit stream from

the received signal M̂ = { ̂m1, m̂2, · · · , m̂N }. In this experiment, the bit error rate

is measured for each LiDAR frame after the decoding step, where each extracted

bit from the received LiDAR frame, m̂ i, is compared with the embedded message

bit as shown in Equation (4.22). To achieve this goal, Gaussian noise with different

standard deviations and uniform noise with different upper bounds are added into

watermarked point-cloud frames separately, and the impact of the additive noise

attack on BER performance is evaluated. For a clean QIM-modulated frame, the

BER is close to 0%. As we tamper with the data by the attack vectors FOI and

TOD, a constant BER of close to 2% is observed at zero added noise. As the added

noise value increases, the proposed three-bit QIM quantization method maintains a

bit error rate of less than 2%, for an added uniform noise of σ < ∆/6.93). This noise

threshold as defined by Equation (4.7) is {0.7, 2.9, 5.1 cm}, respectively, for step-sizes

of ∆ ∈ {5, 20, 35 cm}. It can be observed from Figure 5.7 that the BER values are

within acceptable bounds until the noise levels exceed the threshold defined by

Equation (4.7). The BER values go high at levels below the threshold bounds defined

by Equation (4.7) for added Gaussian white noise, as observed in Figure 5.8. This

change can be attributed to the 32% noise values falling outside the 1σ range in the

Gaussian distribution. Figures. 5.7, and 5.8 show the BER for one of the

123

attack vectors, FOI. A similar trend is observed for the TOD attack vector.

5.5.3.2 Tamper Detection and Localization

This experiment aims to measure the accuracy of the tamper localization feature

of the proposed method and how the accuracy is affected by added channel noise. As

part of the decoding step, the indices of the tampered points are extracted from the

received frame. A bounding box enclosing these points is generated, and the corners

of this bounding box are compared with the corners of the ground-truth bounding

box provided by KITTI to get a measure of their proximity. We calculated the

Hausdorff distance between the two corner sets to measure the maximum distance of

a given vertex from the ground-truth bounding box to a similar vertex in the predicted

bounding box. Smaller values of this localization-distortion attribute suggest higher

accuracy of the prediction or, in other words, suggest that the proposed method can

draw a boundary across the tampered points accurately. We added Gaussian noise

with different standard deviations and uniform noise with different upper bounds to

the QIM-modulated frames and measured the effect of added noise on the performance

of the localization accuracy. The added noise is tested at varying levels of σ in the

range σ ∈ {0.0,∆/(10
√

(N),∆/(8
√

(N)),∆/(6
√

(N)), ..., 2∆} and step-size ∆ in

range ∆ ∈ {5, 10, 20, 30, 35, 40 cm}, where N = 3 is the number of bits used for

embedding.

Shown in Figure 5.9 are the localization distortion box plots for the FOI attack

vector measured on point clouds with added uniform noise. It is observed that the

localization distortion is less than 2 cm as long as the noise level σ < dmin/(2∗
√

(N)),

where dmin = ∆/2 and N = 3. These results are in sync with the theoretical lim-

its given by Equation (4.7) and demonstrate that the proposed method can localize

tampering in the point cloud accurately in the presence of bounded noise. The perfor-

mance of the proposed method under added Gaussian noise is shown in Figure 5.10.

124

(a) ∆ = 5 cm

(b) ∆ = 20 cm

(c) ∆ = 35 cm

Figure 5.7: Bit error rate of decoded code book for different step sizes and added
uniform noise

125

(a) ∆ = 5 cm

(b) ∆ = 20 cm

(c) ∆ = 35 cm

Figure 5.8: Bit error rate of decoded code book for different step sizes and added
Gaussian noise

126

For added Gaussian noise, we observed that the localization distortion is less than

2 cm as long as the noise level σ < dmin/(5 ∗
√

(N)), where dmin = ∆/2 and N = 3.

Again, this behavior of low robustness to noise can be attributed to the noise samples

that fall outside the 1σ range in Gaussian noise. Similar trends were observed for the

TOD attack vector.

5.5.3.3 False-alarm Rate Analysis

This experiment aims to measure the false-alarm rate of the proposed method in

detecting the tampered point cloud in the presence of additive noise as per Equa-

tion (4.23). In this experiment, we tracked the number of frames that our algorithm

falsely detected as tampered when it was given a clean frame.In this test, the tamper

detection false-alarm rate far stayed at 0% when there was no added channel noise.

In other words, the proposed model detected the presence of both the FOI and TOD

attack vectors accurately when there was no added channel noise. When noise was

added along with the attack vectors, for added uniform noise, far stayed at 0% for

σ < dmin/(2 ∗
√

(N)), where dmin = ∆/2, N = 3 and ∆ ∈ {5, 10, 20, 30, 35, 40 cm}.

As the noise σ level increased beyond that threshold, the far value jumped to

100%, as shown in Table 5.3. It is also observed that the far value increased to 100%

at lower thresholds of σ > dmin/(10 ∗
√

(N)) in the case of Gaussian added noise,

and this could be attributed to the noise values grater than 1σ. It can be observed

from Table 5.3 that at a given ∆ within acceptable distortion bound, the proposed

method can achieve 100% accurate detection and localization. A similar trend was

observed for the TOD attack vector. In automotive applications, the ethernet and

other local networks are not susceptible to high channel noise; hence, our proposed

method is expected to achieve the desired performance.

127

(a) ∆ = 5 cm

(b) ∆ = 20 cm

(c) ∆ = 35 cm

Figure 5.9: Bounding box distortion in meters for different step sizes and added uni-
form noise

128

(a) ∆ = 5 cm

(b) ∆ = 20 cm

(c) ∆ = 35 cm

Figure 5.10: Bounding box distortion in meters for different step sizes and added
Gaussian noise

129

5.6 Vulnerability Analysis of QIM

The plain QIM framework proposed above has some security vulnerabilities due

to the use of plain QIM for embedding and plain text exchange of the embedded

message sequence. The effectiveness of data hiding schemes like QIM is measured

by their robustness against the message estimation attack. An estimation attack is

a process where the embedded message is estimated through the codebook or step-

size (∆). Accurate estimation of ∆ can lead to the estimation of embedded message

σ(cm) 0 0.3 0.4 0.5 0.7 1.4
∆ = 5 Gaussian 0 0.95 1.0 1.0 1.0 1.0

uniform 0 0 0 0 0 1.0
σ(cm) 0 1.2 1.4 1.9 2.9 5.8

∆ = 20 Gaussian 0 0.94 1.0 1.0 1.0 1.0
uniform 0 0 0 0 0 1.0
σ(cm) 0 2.0 2.5 3.4 5.1 10.1

∆ = 35 Gaussian 0 0.55 1.0 1.0 1.0 1.0
uniform 0 0 0 0 0 1.0

Table 5.3: False alarm rates at different step-sizes for added noise

features (Malik et al., 2008). The plain QIM method is more vulnerable to the

estimation attack when compared to dither QIM due to its regularity and predicted

outcome. This phenomenon is depicted in Figure 5.11, where-in a sample LiDAR

frame is embedded with a given message stream using both dither QIM and plain

QIM methods. It can be observed from Figure 5.11, that the plain QIM frame points

are regularly spaced where-as the dither QIM frame points display randomness in

spacing for a given step-size ∆ = 35 cm. This randomness adds more uncertainty

to watermark embedding hence making it more challenging to estimate. A relatively

simple step-size estimation algorithm proposed in (Malik et al., 2008) can estimate

the ∆ of QIM-stego images of varying message lengths and embedding rates with

100% accuracy. A similar approach would fail for the dither QIM stego image due to

the randomness in the quantization step-size. A similar pattern is observed even in

130

the passive steganalysis approach using non-parametric methods like average entropy

estimation (Malik et al., 2008). The images embedded using normal QIM are detected

with high accuracy (0.2% false negatives) when compared to the images embedded

with dither QIM (7% false negatives).

(a) Clean LiDAR frame

(b) Dither modulated LiDAR frame

(c) Plain QIM modulated LiDAR frame

Figure 5.11: Illustration of quantization noise

Based on this vulnerability analysis, we chose the dither QIM method to enhance

the sensor data integrity verification process. In dither modulation based QIM, dif-

ferent factors such as the dither range (DR) and the sample length of embedded

message sequence determine the tamper detection and localization accuracies of the

framework. We deduce the optimal values of those parameters and discuss the trade-

offs between the channel noise tolerance and the tamper detection and localization

accuracy using LiDAR sensor data.

131

5.6.1 Countermeasure Framework

To overcome the security vulnerabilities of the countermeasure framework pro-

posed in section 5.4, we propose a more secured quantization method called spread

3D dither QIM. In this new approach, which is a combination of cryptography and

watermarking, the initial handshake between the sensor and the central ADAS unit

relies on symmetric or asymmetric cryptography to transmit embedded message se-

quences and other data hiding parameters. As shown in the sequence diagram of

Figure 5.12. After this initial data exchange, the sensor transmits the 3D dither

modulated frames to the ADAS unit. The ADAS unit can directly work on these

frames as the embedding induced distortion is minimal and does not affect the in-

ference engine. In parallel, the decoding algorithms extract the embedded data to

detect and localize the tampered area in the data frame. The data validity flag would

indicate further applications to use or ignore that particular data from the sensor.

5.6.1.1 Dither Modulation

In the proposed method based on the dither modulation to embed a binary mes-

sage m ∈ 0, 1 the message bits 0 and 1 are embedded using the quantizers Q0 & Q1

as defined below

Q0(x,∆) = round

(
x+ d0

∆

)
·∆− d0 (5.4)

Q1(x,∆) = round

(
x+ d1

∆

)
·∆− d1 (5.5)

in Equation (5.4) & 5.5, dither values d0 and d1 are defined by

d1 =

d0 + ∆

2
, d0 < 0

d0 − ∆
2
, d0 > 0

(5.6)

132

In Equation (5.6) the dither value d0 is pseudo-randomly chosen over a uniform

Figure 5.12: Sequence diagram of proposed method

distribution over a min and max range of [−∆
2
, ∆

2
], for a given step size ∆. With this

embedding mechanism, the data hiding technique cannot be easily reverse-engineered

even when the embedding message scheme is compromised. The quantized signal

value is represented as (Bitar et al., 2015)

xq = x+ (Qm(x,∆)− x) m ∈ {0, 1} (5.7)

The extraction of embedded message md is performed using the minimum distance

decoder such as

md =m∈0,1 |xq −Qm(x,∆)| (5.8)

Applying the dither QIM approach to 3D QIM, the embedding region becomes a

hyper-cube, and the set of points obtained by perturbing the center of the hyper-

cube to all possible vertices are given by a coset vector (Wenjun et al., 2006). These

133

coset vectors for a 3D QIM can be represented as S0, · · · , S7

Wi,j,k =

S0 = 000 W 1
i = 0,W 1

j = 0,W 1
k = 0

S1 = 001 W 1
i = 0,W 1

j = 0,W 1
k = 1

...

S7 = 111 W 1
i = 1,W 1

j = 1,W 1
k = 1

(5.9)

In Equation (5.9), Wi,j,k represents embedded message symbol value at a given 3D

voxel centeroid of the point cloud represented by its x, y, z position. In 3D QIM the

message symbol can contain up to three bits and the numeric values of message m

can be in range m ∈ {0, . . . , 7}. For the voxelized LiDAR data, the dither modulation

would move the voxel centeroid based on the embedding message sequence as shown

in Figure 5.13 In the spread 3D QIM method, each message symbol is embedded into

Figure 5.13: Voxel centeroid movement due to dither modulation

the host signal vector for a length of (L) samples. The advantage of this spread is

the spread of the distortion across groups of samples that increases the embedded

message extraction accuracy.

5.6.1.2 Watermark Generation

The watermark used in this method is a numeric sequence m ∈ {0 · · · 7} that is

generated based on a random seed. The exchange of the watermark message sequence

and the dither modulation parameters can happen one time during the sensor initial-

ization on power-up through asymmetric cryptographic encoding. Also, to further

134

fortify the system, these parameters could be exchanged between the sensor and re-

ceiver at random time intervals to reduce further the chances of a man in the middle

attack where the hacker learns the watermark sequence.

5.6.1.3 Watermark Embedding

For embedding the hidden message into the LiDAR point cloud using the pro-

posed spread 3D dither QIM, first, the LiDAR data frame is quantized into voxels as

explained in section 5.4. For a given frame if LFvl denotes the LiDAR frame voxel

length, a message with a symbol length msl ≤ LFvl is selected. This message can be

ciphered by applying the XOR operation and a secret key or any other cryptographic

algorithm. Each symbol of the cipher message, which is represented by 3 bits, is

embedded into a group of L voxels (L ≥ 1) in the LiDAR frame. In this process, each

bit of the three-bit message symbol is embedded into the (x, y, z) coordinates of the

voxel centroid, as shown in Equation (5.9).

To embed a message string of length k, into a host signal x with L samples at a

time, we need k×L voxels. If L is chosen to be say six, then to embed three message

symbols we need eighteen voxels as shown Figure 5.14. Each bit of the encoded

message is inserted into six samples that correspond to the (x, y, z) coordinates of the

six samples (x0, y0, z0), (x1, y1, z1), · · · , (x5, y5, z5). After the embedding process, the

six samples become: (x
′
0, y

′
0, z

′
0), (x

′
1, y

′
1, z

′
1), · · · , (x′5, y

′
5, z

′
5), with each voxel centeroid

moved by a dither value within a hypercube of size ∆/2. The embedded message can

be extracted using the Equation (5.8).

Figure 5.14: Message embedding example with three bits and L= 6

135

5.6.2 Experiments & Results

As discussed in section 5.5.2, the acceptable levels of watermarking induced distor-

tion in the autonomous vehicle applications, for LiDAR object detection in specific,

depends on the detection models used and their corresponding constraints. In QIM

based data hiding approach the step-size ∆ can be adjusted to produce acceptable

levels of distortion based on the choice of the detection algorithm. In the distortion

analysis presented in section 5.5.2, the maximum distance between the reconstruc-

tion points is ∆/2. Within this range, in the proposed method of 3D spread dither

QIM, we have additional parameters such as dither range (DR) and spread sample

length (L) that can affect the tamper detection accuracy and noise robustness. To

understand the effects of these parameters on the tamper detection and localization

accuracy, multiple experiments are performed to deduce values for dither-range and

spread length for a given step-size ∆. Experiments focus on three features for the

robustness analysis

• Encoding bit-error-rate (BER),

• Tamper localization accuracy, and

• Tamper detection false-negative rate fn.

These features are computed for various attack vectors in the presence of uniform

Gaussian noise. These features are tested at the noise boundary conditions such as

σ < DR and σ > DR to verify the performance of the proposed method. Also to

determine the impact of the spread of the dither modulation, multiple spread sample

lengths L are used in performing the boundary condition checks.

5.6.2.1 Dataset

The proposed method of spread dither 3D-QIM encoding and decoding is tested

on random urban driving scenario LiDAR frames from the KITTI vision benchmark

136

suite. Building on top of the analysis done in section 5.5.3.2 to choose the appropriate

step-size to reduce the QIM embedded distortion, here, we focus on methods to further

secure the encoding mechanism and understand the trade-offs in implementing those

methods.

5.6.2.2 Bit Error Rate

In this experiment, the BER is measured by comparing the embedded mes-

sage bitstream messageembedd with the decoded message bitstreams messagedecode.

The number of mismatches errorbits are divided by the length of the bitstream

len(messagedecode) to get the rate of error as per Equation (4.22). Varying levels

of uniform noise is added to the embedded frames, and BER values are measured

at different spread sample lengths (L). It is observed that the BER values increased

with the increase in the dither range (DR) values irrespective of the sample length.

For a given step size ∆, the BER values are higher when the dither range nears the

max values ±∆/2. As the dither range values get lower, the BER values improve

and get below the 2% range for higher sample length spread. This trend persists

even when the added noise variance σ is greater than the QIM toleration theoretical

toleration limit shown in Equation (4.7) Figure 5.15-5.17 show the average bit error

rate values calculated by the counter framework pipeline at different spread lengths

L and dither ranges DR.

5.6.2.3 Localization Accuracy

The LiDAR frames once encoded with the proposed method of spread dither 3D

QIM method, are tampered with the attack vectors in this experiment. The accuracy

with which the proposed method localizes the tampered area in the tampered LiDAR

frames is estimated by calculating the Hausdorff distances between the 3D bounding

boxes encompassing the tampered area and the corresponding ground truth bounding

137

Figure 5.15: Bit Error Rate at ∆ = 5cm, σ = 0.0

Figure 5.16: Bit Error Rate at ∆ = 5cm, σ = 0.0072

boxes.

These calculations are repeated for multiple data frames with additional uniform

noise for a given step-size ∆ = 5 cm. It is observed that the localization accuracy

is in general low for higher dither ranges ±∆/2 at all spread lengths. As the dither

range decreases, the spread length values in the extremes still show lower accuracy.

The optimum spread lengths for accurate localization of tamper are {8, 16, 32} at

the dither ranges {∆/4,∆/8} for clean LiDAR frames without added noise. Here as

the dither range goes above ∆/4, the probability of decoding the wrong voxel vertex

increases. Though the spread should decrease this error by increasing the number of

138

Figure 5.17: Bit Error Rate at ∆ = 5cm, σ = 0.0144

occurrences, in this particular use case with the tamper points covering 10% of the

total frame length which is around ∼ 30K voxels, the experiments show that having

a spread length of > 10% of the tamper points results in inaccurate localization of

the tampering.

As the noise, σ increases, the acceptable localization accuracy levels are achieved

at the lower dither ranges ∆/8 and the sample lengths of {16} or ∼ 5% of total sample

points seem to be the optimum length for spread. This analysis provides an important

insight into the selection of dither ranges and spread lengths for autonomous vehicle

applications. The theoretical tolerance for QIM at a given step size is given by

Equation (4.7). The dither range that falls within this range is {∆/8}, and even

within this range, the optimum length of the spread for the localization accuracy is

deduced to be ∼ 5%.

Figure 5.18-5.20 show the average localization distortion values calculated by the

counter framework pipeline at different spread lengths and dither ranges.

5.6.2.4 False Negatives

In this experiment, the number of tampered LiDAR frames that escaped the

detection pipeline is estimated. The two main issues with probabilistic functions

139

Figure 5.18: Localization distortion at ∆ = 5cm, σ = 0.0

Figure 5.19: Localization distortion at ∆ = 5cm, σ = 0.0072

Figure 5.20: Localization distortion at ∆ = 5cm, σ = 0.0144

140

Figure 5.21: Detection False Negatives at ∆ = 5cm, σ = 0.0

Figure 5.22: Detection False Negatives at ∆ = 5cm, σ = 0.0072

are false alarms, both positive and negative. In the case of sensor frame integrity

checks, the false negatives cause more damage than false-positives. Any frame that

is tampered and goes undetected by the system is not acceptable for our application.

To get this value, both tampered and clean frames are given as input to the spread

dither QIM pipeline.

To measure the false-alarms or the number of frames that are clean, but our

algorithm flags them as tampered. The false-negative rate (fn) is calculated as the

ratio of number of tampered frames that are falsely determined as clean by the pipeline

141

Figure 5.23: Detection False Negatives at ∆ = 5cm, σ = 0.0144

(NfalseClean) to total number of tampered frames(Ntampered) given as

fn = NfalseClean/Ntampered (5.10)

It is observed that the false-negative rate is close to 0% for dither range ±∆/2,

for lower dither ranges, it is low for lower spread lengths and drastically increases

for higher spread lengths. Figure 5.21-5.23 show the average false negative values

identified by the counter framework pipeline at different spread lengths and dither

ranges.

142

CHAPTER VI

Future Work & Conclusion

In this chapter, we look into the future prospects of extending the research and

provide concluding remarks on the work that has been done. When it comes to future

work ideas, there are two different areas into which the research can be extended. One

of them is to build a generic watermarking based data integrity framework to deal

with different data transactions occurring in the automotive domain. The second idea

is to extract the sensor-specific fingerprint and use it to build a security framework

that can stop regular channel and the transmission channel attacks on the sensor

data.

6.1 Need for Data Security in Autonomous Vehicles

Sensor data importance in modern cars and its integrity verification methods using

cryptography alternatives like watermarking is discussed extensively in earlier chap-

ters. Data transactions are happening all over the place in a modern car. Advances

in driver assistance, automated driving, infotainment, and comfort features such as

customization based on biometric sensors, etc are accounting for data generation and

data transfers (Stanely, 2015). Along with individual vehicle generated data, the in-

crease in connected vehicle technology such as 5G C2X and V2I/V2X where vehicles

form clusters and share the data with vehicles inside the clusters is a growing trend.

143

According to a Gartner report, by 2022 the majority of premium segment cars would

be offering connected vehicle services. With an average sensor set count of around

200 sensors measuring different data from the cars such as vehicle usage, vehicle en-

vironment, and driver biometrics, etc. a modern car acts like a high-end edge system

with constant connectivity to the cloud and other vehicles in the vicinity (TE

Connectivity, 2018). Along with the onboard sensing, these real-time communications

with other vehicles and infrastructure help the cars to build temporal databases that

help them with developing predictive route planning. All these on-board, off-board

data transactions, flows need to be secured not only to provide safe and secured func-

tionality but also to protect the data generator’s intellectual property and protect

them from false claims of liability. The cryptography based techniques can be of help

to protect the integrity of the data to an extent but the end to end traceability of the

data can only be achieved when we combine cryptography with watermarking.

To train the deep learning models that are used to make some automated driving

decisions, data is collected from the real road driving of the vehicles. Companies

spend huge amount of money to set-up vehicles, do test drives and to collect the

drive data. Heavy load processing servers are used to store and retrieve the scenario

information from these road runs. This data is accessed by engineers to train the

models locally or on the cloud, some times the data is used to analyze the scenario

better, to annotate it so the deep learning algorithm can be trained. The data trans-

actions from the vehicle to cloud and cloud to local machines are secured but once

the data is downloaded to a local node, it loses the security shield. With the current

trend of remote working, there is no secure way to make sure that the data doesn’t

end up with some competitor who could use it to his advantage or train his models

without having to spend money in collecting it. Watermarking can help answer most

of the traceability, leakage control, access control questions. One of the growing re-

search areas of watermarking is to bring it to the cutting edge technologies and as a

144

part of this research applying watermarking to real-time communications also needs

to be researched. The time it takes to embed and extract a watermark along with

its optimum performance is crucial when bringing this technology to real-time data

transfers. In the above scenario embedding the vehicle data with a watermark before

it gets uploaded to the cloud would provide end-to-end traceability but given the sce-

nario where each vehicle is generating GigaBytes of data every hour, the time budget

of watermark embedding, packetizing the data, and transporting becomes crucial. A

robust watermarking scheme that can embed large volumes of data in such a short

time is still a matter of research.

6.1.1 Data Sources

A McKinsey report states that current day cars have the compute power of 20

modern PCs, process about 25 GB of data/hr and contains around 100 million lines of

code. Autonomous vehicles in particular are considered as supercomputers rolling on

the highways, generating around 5 TB of data per hour, necessitating the need to split

the data processing between the cloud and the edge which is the vehicle. Doing simple

math, these mind-boggling data numbers can be easily proved. At a standard 30 fps

data rate, a single video camera generates about 300 GB of data an hour for 720-pixel

video and this number can creep up-to 5.4 TB for a 4K video resolution (Miller, 2020).

Now consider an autonomous car, there are multiple sets of such cameras, along with

other high data generators like a LiDAR and RADARS, etc. Many algorithms process

this data in real-time and make self-driving decisions and some of the data is sent

to the cloud for storage and post-processing and deep learning algorithm scenario

training. Along with the sensor data the vehicles need to store and retrieve HD map

data to help them identify the road boundaries, guard rails medians at centimeter-

level accuracy. Along with the sensor data that senses the environment, a vehicle also

carries many internal sensors to monitor its performance, this information needs to

145

be sent to the cloud as-well to support few specific applications. Many applications

also require sensors to monitor human drivers, their cognitive distractions, and their

ability to take over the vehicle in scenarios where the vehicle cannot drive by itself.

These sensors collect data that need to be sent to the cloud for logging. Other

customer convenience features also require the vehicle to collect driver information

to customize the vehicle to his needs like setting the vehicle environment to driver

needs.

6.1.2 Framework Proposal

We see that there is a need to bring in end-to-end transaction traceability, access

control into data transactions in the automotive domain and this can be done with

the help of watermarking techniques. We want to propose a generic framework to

watermark any data contained in an automotive domain. If we consider the data

that is collected by the sensors for the autonomous driving use case, it is estimated

that around 30% of the data collected by the vehicle is will be uploaded to the cloud

by every car. This accounts for the rest of 70% of the data to be processed in real-

time by the vehicle or the edge node. The data that gets uploaded goes through lossy

compression. Handing this data needs changes both in the cloud infrastructure as well

as edge computing. Many interesting research problems such as how to manage the

data storage and retrieval with low latencies, content and scenario mining, exchange

of the data securely with different stakeholders, etc. arise as the companies start

building the drive database. Here we present the high-level overview and try to

provide a direction to future research in the area of data integrity and traceability.

To solve this problem, we first need to identify at what stage of this data flow

process we can embed the watermark and what is the best strategy to embed the

watermark.

If we take the general case of video data encryption, the mechanism chosen to

146

Figure 6.1: Data-transactions in modern-vehicles and watermarking framework pro-
posal

encrypt the data where it is block cipher based or stream-based, etc. depends on

the underlying universal coding standard that the video has to adhere to. In our

use case, we do not have any format compliance or transcodability restrictions as the

data compression strategy can be unique to a specific organization. Based on the data

density, timing, and bandwidth requirements, they can make some design choices like

partial encryption, encryption before or after compression, etc. but encryption and

compression can be considered as inevitable steps in the data that gets transmitted

to the cloud. We view adding watermarking to this equation would complement

the cryptography and provides extended protection to the content even after the

decryption. Now the question comes when should the data be watermarked.

Here there can be three choices to embed a watermark, pre-encryption, and com-

pression, based on the robustness of the watermark, the watermarking could get

altered or removed during the compression step. Inter-encryption and compression,

here we find an appropriate step like quantization of the bitstream to embed the

watermark during the compression and finally the post-encryption and compression,

147

again here application based careful consideration is required (Bohó et al., 2013).

From these three choices, based on the computational power distribution and the

time complexity we suggest going with the pre-compression and encryption stage for

the watermark encryption. This method has a couple of advantages.

1. The data that doesn’t get uploaded to the cloud can also benefit from the

integrity checks as mentioned in this research

2. The watermark embedding burden is distributed among different sensors or

the data origin locations so it’s faster to encode and the concept of real-time

watermarking can be achieved

The watermarking scheme we propose is the one that has high imperceptibility and

can be universally applied to any type of data. QIM and its variants are primary

candidates to investigate but this area can be researched to find any other spatial

domain variants of the watermarking that fit the bill.

The next crucial step is to find the embedding location selection. By location, we

mean wherein the data generation process we want to embed the watermark. Here

we want to explore a universally applicable area. The embedding location should be

data-independent, in the sense it should apply to all forms of data whether it is a

raw video captured by high definition cameras or images or the 3D point cloud of the

environment captured by a LIDAR or even a 1D time series captured by a biometric

sensor, we should be able to apply the watermark universally. Here, without loss of

generality, we can assume that any data generated from the vehicle is a set of pack-

etized data. This assumption gives us the ability to apply the same watermarking

technique at every vehicle data origin. If we look at data as the application-specific

streams like frames for video, 3D point cloud for LiDAR data, etc, the embedding

strategy must be specific to the sensor and soon the process can get clumsy with

the addition of different sensors. Also, another assumption we make is that the data

148

generation nodes are connected to the vehicle network over Ethernet. Needless to

say that Ethernet is becoming the major automotive network backbone. Most of

the sensor manufacturers are also migrating to this network to support the band-

width requirements. With this assumption, the proposal is to embed a watermark in

different layers of the networking model as shown in Figure 6.2. Based on how we

design the gateway modules and hopping networks within the vehicle, the embedded

watermark can be stripped and re-assigned or it can be directly forwarded to the

destination node depending on the layer in which the watermark is embedded. Also,

to let the watermark stay beyond the network transactions, the watermark needs to

be randomly embedded into the user data itself as a data element. In (Artru et al.,

2019) multiple locations to embed the watermark in-network headers are discussed,

such as

• Physical layer embedding: At this level, the data bits are arranged as bit

frames before getting transmitted as a signal on the Ethernet bus. This layer

can be used to embed data by using spread spectrum techniques as discussed

in (Li et al., 2013).

• Storage channel embedding: The storage channel watermarking exploits the

redundancies and the unused fields of the multi-layer Ethernet stack shown in

Figure 6.2. In (Kundur and Ahsan., 2003), a method to store a bit per datagram

by modifying the 3-bit flag bit in the IP header. Similarly, making use of the

Time to Live, TCP sequence numbers, packet length alterations, and checksum

packets are discussed in (Collins and Agaian, 2016).

• Timing channels: Using the time sync modules to hide and forward the wa-

termark between two endpoints is discussed in (Houmansadr et al., 2009). One

such simple method is modifying the inter-packet Delay (IPD) to embed the wa-

termark. There are also methods to exploit the TCP segment temporal bursts

149

(Luo et al., 2008).

• Application protocols: Many applications are built on the top of the network

stack such as FTP, SMTP, HTTP, SSH, etc. The choice of which is dependent on

the end application. These applications can have an optional header file that can

be added to the user data and this can be used to embed the watermark. Several

methods like using secret fields to inform receivers that the MAC contains the

watermark as discussed in (Lucena et al., 2005). The works that mention ways to

embed the watermark in the spaces included in HTTP headers reveal that there

exist multiple locations to store a cleverly crafted watermark in any application.

• User data: Given the packet size of an Ethernet frame, many watermark

embedding schemes like the addition of watermark to the packet data at random

locations can be explored. This method has the advantage that the watermark

stays with the data beyond the data stripping realm of the network.

Figure 6.2: OSI model of an Ethernet frame

The proposed framework can make use of spatial domain watermarking methods like

150

the QIM and can be worked on as an extension to the concepts verified in this work. As

shown in Figure 6.1, the framework can be divided into different areas like watermark

embedding method selection where you decide the best approach to insert watermark

into the data, then decide the watermark location like where int e network layer you

want to insert the watermark and what type of data you want to watermark. Here

the autonomous car collects data from on-board sensors, external entities like other

vehicles, map servers, etc. This data gets watermarked at the source and then can be

consumed within the vehicle or the edge for real-time data interpretation or can be

uploaded to the cloud after compression. After the extraction process, the data can

be used for post-processing like deep learning model training or sharing with multiple

stakeholders or within the vehicle where the watermark will be still in the dormant

state ready to be retrieved if required.

6.2 Sensor Fingerprints

As the market for autonomous vehicles advances, a need for robust safety protocols

also increases. Autonomous vehicles rely on sensors to understand their operating

environment. Active sensors such as cameras, LiDAR, ultrasonic, and radar are

vulnerable to regular channel attacks. One way to counter these attacks is to pattern

match the sensor data with its unique physical distortions, commonly referred to as a

fingerprint. This fingerprint exists because of how the sensor was manufactured, and

it can be used to determine the transmitting sensor from the received waveform.

Fingerprints are formed due to microscopic imperfections and dissimilarities in the

sensor manufacturing process. They are physical features prevalent in a multitude

of Cyber-Physical Systems (CPS) and other hardware devices that arise in specific

waveform characteristics. Sensor fingerprints can be represented as a function of the

material properties which make up a sensor or a piece of hardware and fabrication pro-

cess. These imperfections are assumed to be unique to a specific sensor and random.

151

The concept of physical fingerprinting has been used for RF transmitter identifica-

tion (Deng et al., 2017) and hardware validation for sensors used in non-automotive

applications (Ahmed et al., 2020). In this study, we focus on extracting sensor in-

trinsic properties called fingerprints that can serve as a potential countermeasure

for two physical signal level attacks, which are attacks categorized by manipulating

the environment in such a way to cause incorrect ultrasonic sensor measurements.

Using an ultrasonic sensor, we establish that there exists a specific distortion profile

in the transmitted waveform called physical fingerprint that can be attributed to their

intrinsic characteristics. In the case of ultrasonic sensors, this fingerprint manifests

in the form of random noise in the transmitted pulse sequence from the sensor which

can be observed in the sensor transmissions.

We propose a joint time-frequency analysis-based framework for ultrasonic sensor

fingerprint extraction and use it as a feature to train a Naive Bayes classifier. The

trained model is used for transmitter identification from the received physical wave-

form. In the future, this proposed framework can be extended using a simple or deep

learning-based classifier to identify its signature in the returns and reject data from

an attacker.

Figure 6.3: Block-diagram of the system model

152

6.2.1 Methodology

We propose a method to extract the sensor fingerprints by observing the spec-

trogram for each sensor at multiple distances to determine each sensor’s respective

resonance frequency Figure 6.5. Once we have determined the resonance frequency

for a sensor, our algorithm extracts data from the necessary frequencies which will

create a frequency profile used for training our classifier. By applying a band-pass

filter to our data, our classifier ignores irrelevant data and is in turn more accurate.

Each frequency bin in our spectrogram over the desired interval acts as a feature

vector later for our classifier and essentially contains the fingerprinting information

of a given sensor. As mentioned, pattern matching a fingerprint to a specific sensor

based on spectral content is extremely robust, since it is infeasible for an attacker to

generate and transmit an ultrasonic waveform with the same fingerprint or random

noise profile, even if the attacker has a sophisticated knowledge of our implementa-

tion. Here, we train a simple, computationally light machine learning model with

this feature to demonstrate that the transmitting sensor can be identified through a

physical fingerprint.

6.2.2 System Model

The system model assumes an ultrasonic sensor system on chip devices commonly

used in automotive applications (Texas Instruments, 2014). The sensor does the signal

conditioning and processing for the transducer echo signals and transmits the distance

to the obstacle and other parameters over the chosen interface like CAN, LIN. The

on-board ECU allows complete configurability for the end applications.

The proposed fingerprint extraction happens on the sensor itself, during an initial

calibration phase where the sensor learns the fingerprint and trains a model to identify

its echo and differentiate it from others. This model can be used at a later stage to

identify if the sensor is under attack. Shown in Figure 6.3 is the block diagram of the

153

Figure 6.4: Spectrograms of sensor transmissions generated using 8 ms window size,
25% overlap, and Hanning weight window

system model. During the calibration phase, the system learns its echo and trains

the model which is then used to determine the authenticity of the received signal.

Specifically, the received signal is analyzed for fingerprint extraction in the background

while the data gets processed to detect obstacles. The output from the sensor includes

a validity flag along with the data to assure that the data is authentic and not subject

to physical attacks. In the proposed framework, we use power spectrum coefficients as

features and a simple Gaussian Naive Bayes classifier to perform supervised learning

and classification of labeled data. As the Naive Bayes classifier supports multi-class

classification, it will not only allow our system to accurately detect when an attack

occurs but also on what sensor, since most vehicles that utilize ultrasonic sensors use

more than one.

Our system for combating attacks launched by the adversary is under the assump-

tion that the time in which we detect an attack is not a leading factor in the success

of our model. In real-time applications, ADAS systems have stringent safety require-

154

ments such as brake engagement that have a maximum latency of 0.1 seconds (Lin

et al., 2018).

6.2.3 Data Model

Our data model assumes that the data inputs have the following characteristics as

noted in (Xu et al., 2018) except we define the transmitted and received signals with

the inclusion of noise characteristics emitted by the transducer due to a hardware

fingerprint. We can describe the transmitted waveform of our ultrasonic sensor as an

ideal sinusoidal signal

s(t) = A cos(ωct), tε[0,∞] (6.1)

Where in Equation (6.1), A is the amplitude of the signal, t is the time and ωc is the

radial frequency of the carrier signal. In reality, the transmitted signal will have some

noise component to it as a result of the hardware fingerprint

sr(t) = A cos(ωct) + nr(t), tε[0,∞] (6.2)

Where in Equation (6.2), nr(t) denotes the noise of the transmitted signal due to the

hardware fingerprint. At the receiver, the transmitted signal appears as

r(t) = α cos((ωct+ ωD)(t− τ) + θ) + nr(t) + n(t), tε[0,∞] (6.3)

Where in Equation (6.3), α represents the attenuated amplitude of the transmitted

signal, ωD is the Doppler velocity, τ is the time delay (time for the echoed signal to

reach the receiver), θ is the phase shift, and n(t) is the additive noise component. We

expect nr(t) to be centered at the resonance frequency of our sensors since ultrasonic

sensors transmit pulses by exciting a piezoelectric transducer (Hagood and von Flo-

tow, 1991). This transducer will vibrate acoustically at the same frequency as the AC

155

voltage that is applied to it. Noise due to microscopic hardware imperfections will be

exacerbated around the resonance frequency of the sensor. Signals of this type will

be analyzed and used as input to our classifier.

Figure 6.5: Power spectrum of sensors under test at 25 cm distance measurement

6.2.4 Threat Model

While evaluating the security of our model, it is important first to identify what

possible adversaries we must defend against and what types of attacks they can

employ. We identified these main physical channel attacks on the ultrasonic sensors.

It is assumed that the attacker will be able to perform these three types of attacks

and for launching these attacks, the assumption is made that the attacker will have

a know-how of all the information of our system, such as what sensors are used,

the frequency at which data is recorded, and even our method for defending against

malicious attacks.

1. Jamming Attacks : The attacker will be able to perform jamming attacks (Li

et al., 2007), where the transducer of an ultrasonic sensor is always excited with

156

ultrasound in such a way that it cannot measure the echo of its transmitted

ultrasonic waves and therefore cannot accurately perceive its surroundings.

2. Spoofing Attacks : The attacker will be able to generate ultrasonic pulses to

excite the transducer of an ultrasonic sensor such that a ”phantom object” can

be perceived by the sensor when it is not truly there. This is the case when

an ultrasonic wave is spoofed to the transducer of an ultrasonic sensor before

the echo of its transmitted wave can return, resulting in the sensor perceiving

a non-existent object. Although this is difficult to perform while a sensor is

in motion due to timing dependencies, it has been implemented on stationary

sensors used in automobiles in (Chen. Yan, 2016) in the case where the attacker

has knowledge of the frequency of ultrasonic sensor readings, which fits this

threat model.

3. Sensor Damage & Replacement : In addition to jamming and spoofing attacks,

the adversary may also perform an attack that requires physical contact with

the sensor. This is the case when the adversary damages (Elvin et al., 2003)

the sensor or replaces it entirely. It is assumed that the adversary can do this

stealthily, such that visually it is not possible to tell whether or not a sensor

has been physically damaged, replaced, or altered in any way.

The proposed framework can handle jamming and spoofing attacks along with the

sensor damage contact-based attacks. Since we assume a smart sensor that runs

the data-processing on-board, we cannot detect the sensor replacement contact-based

attack.

6.2.5 Fingerprint Extraction

To extract and localize the hardware-specific fingerprints, we chose the time-

frequency analysis method. As spectrograms give the time-frequency distribution

157

of time series data, we started with spectrogram analysis of the sensors under test.

In Figure 6.4, the spectrograms of the five sensors under test are shown. With the

reduced window size of 8 ms, the frequency distribution of each sensor is visually

distinguishable, although minutely, and laid the first step towards our claim towards

the presence of an intrinsic sensor fingerprint. As a next step, we focused on the

spectral components at a central frequency of operation of the sensors. We obtained

the power spectrum of the ultrasonic sensor signal around the operating frequency of

40 kHz with a timing resolution of 250 ms and a frequency resolution of 1 kHz. The

power spectrum is generated with a persistence option to visualize the percentage of

time that a particular frequency component is present in the input signal. The results

as shown in Figure 6.5, display a distinct feature in the form of the power spectrum

peak location that can be used to identify each sensor. The power spectrum peak

and the corresponding peak shape profile occurred at different frequencies for different

sensors under test. It can be observed from the Figure 6.5, that the spectral peaks

for sensors under test, A,B,C,D & E occurred at 40.91, 40.36, 40.45, 41.03, 40.65

kHz respectively. The peak locations of any two sensors were separated with a 100

Hz frequency resolution and the peak roll-off rates for different sensors are different

as-well. Given the fact that our sensors under test are from the same manufacturer,

of the same grade and data collection conditions are the same across multiple exper-

iment runs, the variation in the location of the peak for power spectral components

can be considered as a unique fingerprint for each sensor. We used this variation

in the peak location and the shape profile information as our main feature for the

classification of the sensors. Though it can be argued that as the number of sensors

increases drastically the frequency resolution might not be sufficient to distinguish

different sensors based on just the spectral peak location, for our end application of

supporting Advanced Driver Assistance System (ADAS) or Automated Driving (AD)

features, the number of ultrasonic sensors used in a vehicle is usually less than 15. For

158

Figure 6.6: Power spectrum of all sensors under test at different distances

instance, Tesla autopilot advanced sensor coverage has 12 ultrasonic sensors (Tesla,

2020). We observed similar trends in power spectrum peak location and shape profile

at different distances as shown in Figure 6.6. The power spectrum visualization in

Figure 6.6 shown in a table form with each row displaying the power spectra of a

single sensor collected at different distances and similarly the columns represent the

power spectra of different sensors at a given distance. While the peak location was a

good feature to classify different sensors at a given distance it did not generate good

results for distance agnostic sensor classification. It can be observed that for distance

agnostic sensor classification feature the peak roll-off rate and the shape profiles need

to be used and modeled. This is considered a future extension of this research.

159

6.2.6 Experiments & Results

The first step in building a system model to counter the physical attacks on an

ultrasonic sensor is to establish that different ultrasonic sensors generate fingerprints

in their transmissions unique to the host and this fingerprint can be used to identify

the host sensor. To prove this point, we set-up an experiment as shown in Figure 6.7.

The microphone placed at various distances from an ultrasonic sensor captures the

sensor transmissions and records them.

Figure 6.7: Data collection set-up for fingerprint extraction

This recorded data is then used to generate feature vectors from spectrograms.

After generating the scattering features for each ultrasonic sensor under test, the

Gaussian Naive Bayes model is trained with the training dataset. The Gaussian

Naive Bayes classifier also had promising results as shown in Table 6.1. Data used

from the same experiment is shown in Figure 6.7. was input to our classifier. One

benefit of the Gaussian NB method is that only 10 percent of the data was needed

for training to achieve high accuracy classification.

As an extension, we decided to synthetically saturate the received signal of our

ultrasonic sensor by adding a percentage of the peak noise values seen graphically

160

Distance (cm) Training Size Test Size Accuracy
25 10% 90% 99.67%
50 10% 90% 96.68%
75 10% 90% 95.42%
100 10% 90% 99.66%
Mixed Distances 10% 90% 91.72%

Table 6.1: Accuracy: Gaussian NaiveBayes Method

in Figure 6.4 as a DC component to the signal before the spectrogram is applied.

By synthetically adding Gaussian white noise (Simon, 2002), the discernibly of the

fingerprint was diminished. The goal of this was to experiment with pseudo-jamming

to see at what point our classifier would no longer be able to successfully identify a

sensor. To recursively add noise until the fingerprint was no longer identifiable, we

let the amount of saturation be proportional to some value of the peak value.

Nr[n] = x[n] + ασxN [n] (6.4)

Where x(n) is the received digital signal,σx is the standard deviation of the original

signal, α is a saturation coefficient and N [n] is a noise signal with standard normal

mean and standard deviation and Nr[n] is our total saturation which is added to the

entire time-domain signal. Figure 6.8 shows the effect different values of α have on the

spectrum of the received signal. The classifier performed reasonably well for

Figure 6.8: Saturation of received signal - Spectrogram visual

values of 0 ≤ α ≤ 0.539. The Table 6.2 below shows the accuracy of the classifier f or

different values of α for a single sensor

161

Distance (cm) αmax Accuracy
25 0.539 91.41%
50 0.4179 93.38%
75 0.4009 92.59%
100 0.394 90.33%
Mixed Distances 0.2154 91.72%

Table 6.2: Accuracy: Saturated Gaussian NaiveBayes Method

This framework of fingerprint extraction can be combined with watermarking to

build an end-to-end sensor security system that can work against regular channel and

transmission channel attacks.

6.3 Conclusion

In this research, we presented the watermarking methods to deal with the insider

attacks on the sensor data that pose a real threat to autonomous vehicles. A Cyber-

physical system, such as an autonomous vehicle, is susceptible to insider attacks

targeting sensors and their transmission channels, making it necessary to verify the

integrity of sensor data before acting on it. Traditional data integrity protection

methods like cryptography cannot be applied in their entirety to solve this problem

due to their resource requirements and complexity. In chapters 2 & 3 we presented

an overview of the watermarking methods. In chapter 4, we proposed a 2D QIM for

watermarking the RADAR data and proposed a pipe-line to design watermarks when

dealing with smart sensors. This pipeline is tested for the effects of embedding induced

distortion using simulated RADAR data on an EKF based sensor fusion algorithm.

The experimental results conclude that that the 2D QIM method for watermarking

has a little or no effect on the EKF predictions for small values of quantization step-

size ∆ ≤ 0.05 m, which can be attributed to the minimal distortion induced by

the 2D QIM process. In chapter 5, we proposed a novel approach to detect and

localize tampering of the raw data from the LiDAR sensor. We demonstrated that

162

the proposed method can detect and localize tampering to the real-world benchmark

KITTI dataset with a 100% success rate as long as additive noise is less than the

quantization step-size. We also established the QIM embedding-induced distortion

thresholds for proper detection using 3D FCN and VoxelNet deep learning models.

We analyzed the security vulnerabilities of the plain QIM method and enhanced it

by proposing a spread dither 3D QIM method to verify the sensor data integrity. We

tested the effectiveness of the proposed method on KITTI LiDAR sensor data-set.

We deduced the optimum values of parameters for the proposed method by building

a pipe-line based on the proposed approach to detect and localize the tampering of

the raw data from the sensor.

The low complexity data hiding or watermarking techniques proposed in this

research can be applied to existing legacy interfaces without burdening the interface

bandwidth or computational resources of the system. This makes the process of

transitioning to the secured data link possible even in legacy systems. Always, having

some level of security in place is still better than having none. Having sensor data

integrity checks in place can help to secure the applications and build safer systems.

In the security world, often a layered architecture is preferred wherein if an attack

cannot be prevented; It can be detected to prevent the worst outcome. We believe

that watermarking the sensor data adds another layer to the security scheme using

some light-weight and yet efficient techniques. These techniques can be used either in

a standalone mode or in conjunction with traditional cryptography methods wherever

necessary, to secure data transfers over any physical interface such as CAN/CAN-FD,

Ethernet, etc.

We also presented the future directions to the research. This research can be

extended to designing a universal framework to provide integrity verification and

traceability to different data transactions in the automotive domain. Also, we pro-

pose to exploit the unique watermarks for sensors by extracting the sensor intrinsic

163

distortions or fingerprints that can be successfully used to identify them. The pro-

posed frameworks can be extended to different sensor modalities, different watermark

embedding methods along with the study to find out the effects of embedding induced

distortion on more complex process models and state vectors.

164

APPENDICES

165

APPENDIX A

Algorithms

Algorithm 1: Find Modified Indices

Result: modifiedIndices[]
modifiedIndices← 0;
gtlistIndex← 0;
while gtIndex < len(gtlist) do

if gtlist[gtlistIndex] == modlist[modlistIndex] then
gtlistIndex+ = 1;

end
modifiedIndices[]← gtlistIndex;
gtlistIndex+ = 1;

end

166

Algorithm 2: Find Deleted Indices

Result: missingIndices[]
missingIndices← 0;
gtlistIndex← 0;
modlistIndex← 0;
while modlistIndex < len(modlist) & gtIndex < len(gtlist) do

if gtlist[gtlistIndex] == modlist[modlistIndex] then
gtlistIndex+ = 1;
modlistIndex+ = 1;

end
missingIndices[]← gtlistIndex;
gtlistIndex+ = 1;

end

Algorithm 3: Find Added Indices

Result: addedIndices[]
addedIndices← 0;
gtlistIndex← 0;
modlistIndex← 0;
while modlistIndex < len(modlist) & gtIndex < len(gtlist) do

if gtlist[gtlistIndex] == modlist[modlistIndex] then
gtlistIndex+ = 1;
modlistIndex+ = 1;

end
addedIndices[]← gtlistIndex;
modlistIndex+ = 1;

end

167

Algorithm 4: Watermark Sequence Generator

Result: generatedSequence[]
generatedPair ← LSbits(b(t0));
generatedSequence[]← generatedPair;
randomNum← pseudorandom(MSnibble(b(t0)));
numPairs ← floor(randomNum);
while size(generatedSequence) <= numPairs do

generatedPair+ = b01;
generatedPair = generatedPair%4;
generatedSequence[]← generatedPair;

end

168

APPENDIX B

Source Code

All the git repositories used for the development of source code for this research

are made public.

1. 2D QIM implementation for RADAR sensor from Chapter 4, can be found in

the following github location (Changalvala et al., 2020)

https://github.com/raghu429/RADAR DataIntegrity.git

2. 3D QIM implementation for LiDAR sensor from Chapter 5, can be found in the

following github location (Changalvala and Malik, 2019b), (Changalvala and

Malik, 2019a)

https://github.com/raghu429/LiDAR QIM.git

3. 3D Dither QIM implementation for LiDAR sensor from Chapter 5, can be found

in the following github location (Changalvala and Malik, 2020)

https://github.com/raghu429/DitherQIM.git

4. Fingerprint generation for Ultrasonic sensor from Chapter 6, can be found in

the following github location (Cheek et al., 2020)

https://github.com/raghu429/Ultrasonic Integrity.git

169

BIBLIOGRAPHY

Agarwal, P., and B. Prabhakaran (2009), “Robust blind watermarking of point-sampled
geometry,” IEEE Trans. on Information Forensics and Security, vol. 4(1), pp. 36-48.

Ahmed, C. M., A. P. Mathur, and M. Ochoa (2020), “Noisense: Detecting data integrity
attacks on sensor measurements using hardware-based fingerprints,” ACM Transactions
on Privacy and Security, 24(1), doi: 10.1145/3410447.

Artru, R., A. Gouaillard, and T. Ebrahimi (2019), “Digital watermarking of video
streams: Review of the state-of-the-art,” ArXiv, vol. abs/1908.02039.

AUTOSAR CP R19-11 (2019), “Specification of time synchronization over CAN,
standard,” AUTOSAR, AUTOSAR CP R19-11.

AUTOSAR CP Release 4.3.1 (2017), “Specification of secure onboard communication,
standard,” AUTOSAR, AUTOSAR CP Release 4.3.1.

Baxter, J. A., D. A. Merced, D. J. Costinett, L. M. Tolbert, and B. Ozpineci (2018),
“Review of electrical architectures and power requirements for automated vehicles,”
IEEE Transportation Electrification Conference and Expo, pp. 944-949.

Begum, M., and M. S. Uddin (2020), “Digital image watermarking techniques: A
review,” Information, 11(2), doi: 10.3390/info11020110.

Bitar, A., R. Darazi, J.-F. Couchot, and R. Couturier (2017), “Blind digital watermarking
in pdf documents using spread transform dither modulation,” Multimedia Tools and
Applications, 76, pp. 143-161, doi: 10.1007/s11042-015-3034-2.

Boho, A., G. Wallendael, A. Dooms, J. De Cock, G. Braeckman, P. Schelkens, B.
Preneel, and R. Van de Walle (2013), “End-to-end security for video distribution: The
combination of encryption, watermarking, and video adaptation,” IEEE Signal
Processing Magazine, vol. 30, pp. 97-107, doi: 10.1109/MSP.2012.2230220.

Brian, C., and W. G. W (2001), “Quantization index modulation methods for digital
watermarking and information embedding of multimedia,” Journal of VLSI Signal
Processing Systems for Signal, Image, and Video Technology, 27(1-2), pp. 7-33, doi:
10.1023/A:1008107127819.

Cárdenas, A. A., S. Amin, Z.-S. Lin, Y.-L. Huang, C.-Y. Huang, and S. Sastry (2011),
“Attacks against process control systems: Risk assessment, detection, and response,” 6th

170

ACM Symposium on Information, Computer and Communications Security, pp. 355-366,
doi: 10.1145/1966913.1966959.

Changalvala, R., and H. Malik (2019a), “LiDAR data integrity verification for
autonomous vehicle,” IEEE Access, vol. 7, pp. 138,018-138,031, doi:
10.1109/ACCESS.2019.2943207.

Changalvala, R., and H. Malik (2019b), “LiDAR data integrity verification for
autonomous vehicle using 3d data hiding,” IEEE Symposium Series on Computational
Intelligence, pp. 1219-1225, doi: 10.1109/SSCI44817.2019.9002737.

Changalvala, R., and H. Malik (2020), “Sensor data integrity verification for autonomous
vehicles using spread 3D dither QIM,” IEEE 92nd Vehicular Technology
Conference, pp. 1-7, doi: 10.1109/VTC2020-Fall49728.2020.9348492.

Changalvala, R., B. Fedoruk, and H. Malik (2020), “Radar data integrity verification
using 2D QIM-based data hiding,” Sensors, 20(19), 5530, doi: 10.3390/s20195530.

Checkoway, S., et al. (2011), “Comprehensive experimental analyses of automotive
attack surfaces,” USENIX Conference on Security.

Cheek, E., D. Khuttan, R. Changalvala, and H. Malik (2020), “Physical fingerprinting of
ultrasonic sensors and applications to sensor security,” IEEE 6th International
Conference on Dependability in Sensor, Cloud and Big Data Systems and Application,
pp. 65-72, doi: 10.1109/DependSys51298.2020.00018.

Chen, B., and G. W. Wornell (1998), “Digital watermarking and information embedding
using dither modulation,” IEEE 2nd Workshop on Multimedia Signal Processing, vol.
1998-Decem, pp. 273-278, doi: 10.1109/MMSP.1998.738946.

Chen, B., and G. W. Wornell (2001), “Quantization index modulation: A class of
provably good methods for digital watermarking and information embedding,” IEEE
Transactions on Information Theory, 47(4), pp. 1423-1443, doi: 10.1109/18.923725.

Chen, X., H. Ma, J. Wan, B. Li, and T. Xia (2017), “Multi-view 3D object detection
network for autonomous driving,” 30th IEEE Conference on Computer Vision and
Pattern Recognition, vol. 2017-Janua, pp. 6526–6534, doi: 10.1109/CVPR.2017.691.

Chen, Y., J. Liu, W. Xu (2016), “Can you trust autonomous vehicles : Contactless attacks
against sensors of self-driving vehicle," DEF CON, vol. 24, pp. 1-13.

Chopra, J., A. Kumar, A. K. Aggarwal, and A. Marwaha (2018), “An efficient wa-
termarking for protecting signature biometric template,” 5th International Conference on
Signal Processing and Integrated Networks, pp. 413-418, doi:
10.1109/SPIN.2018.8474269.

Cleland, A. N. (2003), “Two-and three dimensional lattices,” in Foundations of
Nanomechanics, Berlin: Springer-Verlag, pp. 43-85 doi: 10.1007/978-3-662-05287-7.

Collins, J., and S. Agaian (2016), “Trends toward real-time network data steganography,”
ArXiv, vol. abs/1604.02778.

171

Conway, J., and N. Sloane (1982), “Fast quantizing and decoding algorithm for lattice
quantizers and codes,” IEEE Transactions on Information Theory, vol. 28, pp. 227-232,
doi: 10.1109/TIT.1982.1056484.

Cox, I., M. Miller, J. Bloom, J. Fridrich, and T. Kalker (2008), Digital Watermarking and
Steganography, 2 ed., San Francisco: Morgan Kaufmann Publishers Inc.

Cui, J., L. Liew, G. Sabaliauskaite, and F. Zhou (2018), “A review on safety failures,
security attacks, and available countermeasures for autonomous vehicles,” Ad Hoc
Networks, vol. 90, doi: 10.1016/j.adhoc.2018.12.006.

Deng, S., Z. Huang, X. Wang, and G. Huang (2017), “Radio frequency fingerprint
extraction based on multidimension permutation entropy,” International Journal of
Antennas and Propagation, pp. 1-6, doi: 10.1155/2017/1538728.

Digital Watermarking Alliance (2020), “Digital watermarking applications,” [Online].
Available: https://digitalwatermarkingalliance.org/digital-watermarking-applications,
[Accessed: Dec. 12, 2020].

Dzemyda, G., O. Kurasova, J. Zilinskas (2013), “Multidimensional data and the concept
of visualization,” in Multidimensional Data Visualization: Methods and Applications,
NewYork:Springer, pp. 1-4, doi: 10.1007/978-1-4419-0236-8_1.

European Commission (2017), “Autonomous cars: A big opportunity for european
industry,” Digital Transformation Monitor- European Commission, [Online].
Available:https://ati.ec.europa.eu/reports/sectoral-watch/autonomous-cars-big-opportunit
y-european-industry.

Elvin, N., et al. (2003), “A self-powered damage detection sensor,” The Journal of Strain
Analysis for Engineering Design, vol. 38(2), doi: 10.1243/030932403321163640.

Feng, J., and M. Potkonjak (2003), “Real-time watermarking techniques for sensor
networks,” SPIE 5020 -Security and Watermarking of Multimedia Contents V, doi:
10.1117/12.479736.

Gope, P., and T. Hwang (2016), “BSN-care: A secure IoT-based modern healthcare
system using body sensor network,” IEEE Sensors Journal, vol. 16(5), pp. 1368-1376,
doi: 10.1109/JSEN.2015.2502401.

Hagood, N. W., and A. von Flotow (1991), “Damping of structural vibrations with
piezoelectric materials and passive electrical networks,” Journal of Sound and Vibration,
vol.146, pp. 243-268, doi: 10.1016/0022-460X(91)90762-9.

Hanson, A. J. (1994), “Geometry for n-dimensional graphics,” in Graphics Gems IV, San
Diego: Academic Press Professional, pp. 149-170, doi:
10.1016/B978-0-12-336156-1.50024-0.

Hartmann, K., and C. Steup (2013), “The vulnerability of uavs to cyber attacks - an
approach to the risk assessment,” in 5th International Conference on Cyber Conflict, pp.
1-23.

172

Houmansadr, A., N. Kiyavash, and N. Borisov (2009), “Rainbow: A robust and invisible
non-blind watermark for network flows,” Network and Distributed Security Symposium
Symposium.

Huang, Q. (2018), Voxelnet, GitHub repository, [Online]. Available:
https://github.com/qianguih/voxelnet,
commit-b74823daa328fc2fa99452bf79793e1f3c32c72a.

Jetto, L., S. Longhi, and G. Venturini (1999), “Development and experimental validation
of an adaptive extended kalman filter for the localization of mobile robots,” IEEE
Transactions on Robotics and Automation, 15(2), pp. 219-229.

Jo, K., J. Kim, D. Kim, C. Jang, and M. Sunwoo (2014), “Development of autonomous
car part i: Distributed system architecture and development process,” IEEE
Transactions on Industrial Electronics, vol. 61(12), pp. 7131-7140, doi:
10.1109/TIE.2014.2321342.

Jo, K., J. Kim, D. Kim, C. Jang, and M. Sunwoo (2015), “Development of autonomous
car part ii: A case study on the implementation of an autonomous driving system based
on distributed architecture,” IEEE Transactions on Industrial Electronics, vol. 62(8), pp.
5119-5132, doi: 10.1109/TIE.2015.2410258.

Joachim, E., and G. Bernd (2002), “General concepts and state-of-the-art,” in Informed
Watermarking, Boston: Springer, pp. 7-31.

Kaur, G., S. Singh Kasana, and M. Sharma (2019), “An efficient authentication scheme
for high efficiency video coding/h.265,” Multimedia Tools and Applications, vol. 78, pp.
21245-21271, doi: 10.1007/s11042-019-7456-0.

Kundur, D., and K. Ahsan (2003), “Practical internet steganography: Data hiding in IP,”
Texas workshop Security of Information Systems.

Li, B. (2017), “3D fully convolutional network for vehicle detection in point cloud,”
IEEE International Conference on Intelligent Robots and Systems, pp. 1513-1518, doi:
10.1109/IROS.2017.8205955.

Li, M., I. Koutsopoulos, and R. Poovendran (2007), “Optimal jamming attacks and
network defense policies in wireless sensor networks,” 26th IEEE International
Conference on Computer Communications, pp. 1307-1315, doi:
10.1109/INFCOM.2007.155.

Li, X., C. Yu, M. Hizlan, W. Kim, and S. Park (2013), “Physical layer watermarking of
direct sequence spread spectrum signals,” IEEE Military Communications Conference,
pp. 476-481, doi: 10.1109/MILCOM.2013.88.

Lin, C., and A. Sangiovanni-Vincentelli (2012), “Cyber-security for the controller area
network (CAN) communication protocol,” International Conference on Cyber Security,
pp. 1-7.

Lin, S.-C., Y. Zhang, C.-H. Hsu, M. Skach, M. E. Haque, L. Tang, and J. Mars (2018),

173

https://github.com/qianguih/voxelnet

“The architectural implications of autonomous driving,” ACM Special Interest Group on
Programming Languages Notices, 53(2), pp. 751-766, doi: 10.1145/3296957.3173191.

Liu, C., J. Chen, T. Nguyen, and M. Tomizuka (2017), “The robustly-safe automated
driving system for enhanced active safety1,” SAE Technical Paper 2017-01-1406, doi:
10.4271/2017-01-1406.

Longxiang, G., M. Sagar, L. Xuehao, and J. Yunyi (2017), “Teaching autonomous
vehicles how to drive under sensing exceptions by human driving demonstrations,” SAE
Technical Paper 2017-01-0070, doi: 10.4271/2017-01-0070.

Lu, Z.-M., and S.-Z. Guo (2017), “Chapter 1- Introduction,” in Lossless Information
Hiding in Images, pp. 1-68, Massachusetts: Syngress, doi:
10.1016/B978-0-12-812006-4.00001-2.

Lucena, N. B., J. Pease, P. Yadollahpour, and S. J. Chapin (2005), “Syntax and
semantics-preserving application-layer protocol steganography,” in Information Hiding,
Berlin: Springer, pp. 164-179.

Luo, X., E. Chan, and R. Chang (2008), “Tcp covert timing channels: Design and
detection,” IEEE International Conference on Dependable Systems and Networks With
FTCS and DCC, pp. 420-429.

Madhavan, R., and C. Schlenoff (2003), “Moving object prediction for off-road au-
tonomous navigation,” SPIE 5083 -Unmanned Ground Vehicle Technology V, doi:
10.1117/12.485771.

Malik, H., K. P. Subbalakshmi, and R. Chandramouli (2008), “Nonparametric
steganalysis of QIM data hiding using approximate entropy,” SPIE 6819 -Security,
Forensics, Steganography, and Watermarking of Multimedia Contents X, doi:
10.1117/12.767313.

Mercedes Benz Technologies (2018), “Carnd-mercedes-sf-utilities GitHub repository,”
[Online]. Available: https://github.com/udacity/CarND-Mercedes-SF-Utilities.

Miller, C., and C. Valasek (2015), “Remote exploitation of an unaltered passenger
vehicle,” Black Hat USA.

Miller, R. (2020), “Rolling zettabytes quantifying the data impact of connected
cars,” Data Center Frontier, [Online]. Available:
https://datacenterfrontier.com/rolling-zettabytes-quantifying-the-data-impact-of-connecte
d-cars, [Accessed: Jan. 21, 2020].

Mohanty, S. (2003), “Digital watermarking: A tutorial review,” ResearchGate, [Online].
Available:https://www.researchgate.net/publication/2568630_Digital_Watermarking_A_
Tutorial_Review.

Moulin, P., and R. Koetter (2005), “Data-hiding codes,” IEEE Proceedings, 93(12), pp.
2083-2126, doi: 10.1109/JPROC.2005.859599.

174

https://github.com/udacity/CarND-Mercedes-SF-Utilities

Nabati, R., and H. Qi (2019), “RRPN: Radar region proposal network for object detection
in autonomous vehicles,” IEEE International Conference on Image Processing, doi:
10.1109/icip.2019.8803392.

Parah, S. A., J. A. Sheikh, N. A. Loan, and G. M. Bhat (2016), “Robust and blind wa-
termarking technique in DCT domain using inter-block coefficient differencing,” Digital
Signal Processing, vol. 53, pp. 11-24, doi: 10.1016/j.dsp.2016.02.005.

Park, S., M.-S. Gil, H. Im, and Y.-S. Moon (2019), “Measurement noise recommendation
for efficient kalman filtering over a large amount of sensor data,” Sensors, 19(5), 1168,
doi: 10.3390/s19051168.

Perera, L. D., W. S. Wijesoma, S. Challa, and M. D. Adams (2003), “Sensor bias
correction in simultaneous localization and mapping,” 6th International Conference on
Information Fusion, vol. 1, pp. 151-158, doi: 10.1109/ICIF.2003.177440.

Petit, J., B. Stottelaar, and M. Feiri (2015), “Remote attacks on automated vehicles
sensors : Experiments on camera and LiDAR,” Black Hat Europe, pp. 1-13.

Qin, C., P. Ji, X. Zhang, J. Dong, and J. Wang (2017), “Fragile image watermarking with
pixel-wise recovery based on overlapping embedding strategy,” Signal Processing,
vol.138, pp. 280-293, doi: 10.1016/j.sigpro.2017.03.033.

Quain, J. R. (2019), “These high-tech sensors may be the key to autonomous cars,” The
New York Times, [Online]. Available:
https://www.nytimes.com/2019/09/26/business/autonomous- cars-sensors.html,
[Accessed: 2019].

Rigatos, G. G. (2010), “Extended kalman and particle filtering for sensor fusion in
motion control of mobile robots,” Mathematics and Computers in Simulation, 81(3), pp.
590-607, doi: 10.1016/j.matcom.2010.05.003.

SAE Ground Vehicle Standard (2018), “Taxonomy and definitions for terms related to
driving automation systems for on-road motor vehicles,” SAE J3016 201806, rev. Jun.
2018.

Sarmento, A., B. Garcia, L. Coriteac, and L. Navarenho (2017), “The challenges of the
autonomous vehicle for emergent markets,” SAE Technical Paper 2017-36-0436, doi:
10.4271/2017-01-1406.

Shin, H., Y. Son, Y. Park, Y. Kwon, and Y. Kim (2016), “Sampling race: Bypassing
timing-based analog active sensor spoofing detection on analog-digital systems,” 10th
USENIX Workshop on Offensive Technologies.

Shin, H., D. Kim, Y. Kwon, and Y. Kim (2017), “Illusion and dazzle: Adversarial optical
channel exploits against lidars for automotive applications,” in Cryptographic hardware
and embedded systems – CHES 2017, Cham: Springer International Publishing, pp.
445-467 doi: 10.1007/978-3-319-66787-4_22.

Simon, M. K. (2002), Probability distributions involving Gaussian random variables, a

175

http://www.nytimes.com/2019/09/26/business/autonomous-
http://www.nytimes.com/2019/09/26/business/autonomous-

handbook for engineers and scientists, Boston: Springer International Publishing.

Sin-Joo Lee, and Sung-Hwan Jung (2001), “A survey of watermarking techniques
applied to multimedia,” IEEE International Symposium on Industrial Electronics, vol. 1,
pp. 272-277.

Snehaprabha, N., and S. Ram (2019), Automated parking made possible with TI mmwave
radar and ultrasonic sensors, Texas Instruments, [Online]. Available:
https://www.ti.com/lit/wp/spry331a/spry331a.pdf?ts=1619895589441.

Stanely, B. (2015), “Digital data transfer is transforming the auto industry,” IBM Journey
to AI Blog, [Online]. Available:
https://www.ibmbigdatahub.com/blog/digital-data-transfer-transforming- auto-industry,
iBM, [Accessed: Dec. 20, 2020].

Sugawara, T., B. Cyr, S. Rampazzi, D. Genkin, and K. Fu (2020), “Light commands:
Laser-based audio injection attacks on voice-controllable systems,” USENIX Security
Symposium.

TE Connectivity Ltd. (2018), “The car in the age of connectivity: Enabling car to cloud
connectivity,” IEEE Spectrum, [Online]. Available:
https://spectrum.ieee.org/telecom/wireless/the-car-in-the-age-of-connectivity-enabling-ca
r-to-cloud-connectivity, [Accessed: Dec. 20, 2020].

Tesla (2020), Model S Owner’s Manual, Tesla, NA.

Texas Instruments (2014), “TI designs: TIDA-00151 automotive ultrasonic sensor
interface for park assist or blind spot detection systems,” [Online]. Available:
https://www.ti.com/tool/TIDA-00151technicaldocuments.

Tsuji, Y. (2018), “KITTI data processing and 3D CNN for vehicle detection GitHub
repository,” [Online]. Available: https://github.com/yukitsuji/3D_CNN_tensorflow.

Wenjun, Z., Y. Heather, and L. Chingyung (2006), “An overview of digital
watermarking,” in Multimedia security technologies for digital rights management, pp.
167-195, Burlington: Academic Press, doi: 10.1016/B978-0-12-369476-8.X5000-3.

Woo, S., H. J. Jo, and D. H. Lee (2015), “A practical wireless attack on the connected car
and security protocol for in-vehicle can,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 16(2), pp. 993-1006.

Woo, S., H. J. Jo, I. S. Kim, and D. H. Lee (2016), “A practical security architecture for
in-vehicle can-fd,” IEEE Transactions on Intelligent Transportation Systems, vol. 17(8),
pp. 2248-2261.

Wyglinski, A. M., X. Huang, T. Padir, L. Lai, T. R. Eisenbarth, and K. Venkatasub-
ramanian (2013), “Security of autonomous systems employing embedded computing and
sensors,” IEEE Micro, vol. 33(1), pp. 80-86, doi: 10.1109/MM.2013.18.

Xu, W., C. Yan, W. Jia, X. Ji, and J. Liu (2018), “Analyzing and enhancing the security of

176

http://www.ti.com/lit/wp/spry331a/spry331a.pdf?ts=1619895589441
http://www.ti.com/lit/wp/spry331a/spry331a.pdf?ts=1619895589441
http://www.ibmbigdatahub.com/blog/digital-data-transfer-transforming-
http://www.ibmbigdatahub.com/blog/digital-data-transfer-transforming-
http://www.ti.com/tool/TIDA-00151technicaldocuments
http://www.ti.com/tool/TIDA-00151technicaldocuments
http://www.ti.com/tool/TIDA-00151technicaldocuments

ultrasonic sensors for autonomous vehicles,” IEEE Internet of Things Journal, vol. 5(6),
pp. 5015-5029.

Zhang, G., L. Kou, L. Zhang, C. Liu, Q. Da, and J. Sun (2017), “A new digital
watermarking method for data integrity protection in the perception layer of IoT,”
Security and Communication Networks, pp. 1-12, doi: 10.1155/2017/3126010.

Zhou, Y., and O. Tuzel (2017), “Voxelnet: End-to-end learning for point cloud based 3D
object detection,” IEEE Conference on Computer Vision and Pattern Recognition, pp.
4490-4499, doi: 10.1109/CVPR.2018.00472.

Zolotavkin, Y., and M. Juhola (2015), “A new two-dimensional quantization method
for digital image watermarking,” 17th International Conference on Advanced
Communication Technology, pp. 155-160, doi: 10.1109/ICACT.2015.7224776.

Zou, Q., W. K. Chan, K. C. Gui, Q. Chen, K. Scheibert, L. Heidt, and E. Seow (2017),
“The study of secure can communication for automotive applications,” 17th SAE World
Congress Experience, doi: 10.4271/2017-01-1658.

177

	Raghavendar Changalvala 210507 no bib
	Raghavendar Changalvala 210506 complete
	Raghavendar Changalvala 210506 complete
	Raghavendar Changalvala 210505 complete ver2
	Raghavendar Changalvala nobib 210504 ver2

	bibliography_210506

