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ABSTRACT
Spherical Jeans modeling is widely used to estimate mass profiles of systems from star clusters
to galactic stellar halos to clusters of galaxies. It derives the cumulative mass profile, " (< A),
from kinematics of tracers of the potential under the assumptions of spherical symmetry and
dynamical equilibrium. We consider the application of Jeans modeling to mapping the dark
matter distribution in the outer reaches of the Milky Way using field halo stars. We present a
novel non-parametric routine for solving the spherical Jeans equation by fitting B-splines to the
3-dimensional velocity and density profiles of halo stars. While most implementations of Jeans
modeling assume parametric forms for these profiles, B-splines provide non-parametric fitting
curves with analytical derivatives. Despite Jeans modeling’s prevalence, there is little work
quantifying the biases introduced in the resulting mass profile when considering observational
errors on full 6D phase space coordinates. We validate our routine on several progressively
more complex and realisticmock datasets. Our routine recovers themass profiles of equilibrium
systems with flattened halos or a stellar disk and bulge excellently (≤4% error at most radii).
Tests with non-equilibrium, Milky Way-like galaxies from the Latte cosmological simulations
perform quite well (≤15% error out to 100 kpc). Lastly, when we impose observationally
motivated selection functions and errors on the phase space coordinates of tracer particles
drawn from cosmological simulations, our code still yields cumulative mass estimates within
∼30% error out to 100 kpc. Our results with observationally motivated mock datasets from
cosmological simulations compared to the equilibrium models implies that spherical Jeans
modeling is more sensitive to incomplete samples due to survey selection functions and
deviations from dynamical equilibrium than deviations from sphericity.
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1 INTRODUCTION

The European Space Agency’s Gaia satellite (Perryman et al.
2001; Lindegren et al. 2016; Gaia Collaboration et al. 2016, 2018),
launched in 2013, has released 3D positions and proper-motions for
billions of MilkyWay stars. In conjunction with line-of-sight veloc-
ities and chemical abundances for stars obtained with ground based
spectroscopic surveys (e.g. RAVE,Steinmetz et al. 2006; LAMOST,
Hu & Jiang 2005; APOGEE, Allende Prieto et al. 2008; GALAH,
De Silva et al. 2015; Gaia-ESO, Gilmore et al. 2012, DESI Allende
Prieto et al. 2020),various components of the Milky Way’s stellar
halo are being characterized: field halo stars, stars in individual tidal
streams, globular clusters, and satellites. The dynamics of these halo
objects are important probes of the Milky Way’s dark matter distri-
bution and, in principle, allow us to determine several things about
the Milky Way’s dark matter halo, most fundamentally its mass
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density profile. The mass of the Milky Way is fundamental quantity
of interest for comparisons with cosmological simulations, but it is
surprisingly poorly constrained. The availability of distances, radial
velocities and even proper motions for huge numbers of individual
stars, globular clusters and satellite galaxies has led to numerous
efforts to determine the Milky Way halo parameters. Despite the
availability of increasingly high quality data, the measurements of
some basic properties of the dark matter halo of the Milky Way
have not converged. Bland-Hawthorn & Gerhard (2016) summarize
in their Table 8 estimates for "200 from 1999–2014 that range from
0.55 − 2.62 × 1012"� . A more recent compilation by Wang et al.
(2020) considering only results obtained with Gaia DR2 data finds
a similar range of values. Other methods using tidal streams, the ve-
locities of satellite galaxies and field halo stars give a similarly large
range of halo masses. This range of a factor of two in mass could
be due to differences in the spatial distributions tracers, systematic
differences between methods, and differences in the treatment of
errors and perturbations due to the LMC (which has only recently
been accounted for in this context by, Deason et al. 2021).
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The absence of a large population of halo tracers with precision
6-D phase space information led over the past two decades to the
development of a number of sophisticated techniques that incorpo-
rate the observational uncertainties via forward modeling. Starting
with assumed parametric forms for the gravitational potential and
distribution functions of tracers (star or globular clusters), these
techniques impose observational errors and selection functions on
the models to derive, using Bayesian inference, the best fit estimates
and their confidence intervals for a variety of potential parameters,
including the mass of the halo. The most recent example of such
distribution function modeling applied to Gaia EDR3 data (Deason
et al. 2021) is based on a sample of 665 halo stars (98% with full
6D phase space data) in the distance range 50-100 kpc (including K
giant stars, Blue Horizontal Branch (BHB) stars, RR Lyrae stars and
Blue Stragglers) and attempts to correct for the dynamical effect of
the LMC.

We are on the verge of an era where the numbers of stars
with full 6D phase space data is going to see a dramatic increase
from hundreds to hundreds of thousands or even millions. The Dark
Energy Spectroscopic Instrument (DESI) (DESI Collaboration et al.
2016a,b; Allende Prieto et al. 2020) is a 5000 fiber spectrograph
on the Mayall 4-meter telescope at Kitt Peak National Observatory,
Arizona, and is expected to obtain spectra of 5-8 million Gaia stars
(down to � = 19.5) in the next five years. In addition, the 4MOST
de Jong et al. (2012) and WEAVE Dalton et al. (2014) surveys
are similar multi-fiber spectrographic surveys which will together
obtain spectra for millions of stars. These spectroscopic surveys
will deliver radial velocities and spectro-photometric distances to
stars out to 100 kpc, enabling – for the first time – the assembly of
samples of stars with 6D phase space coordinates that are orders of
magnitude larger than the best samples currently available.

In this work we take a step back and implement a new version
of one of the oldest and conceptually simplest dynamical model-
ing tools – the spherical form of the Jeans equations (Jeans 1915;
Binney 1980; Binney & Tremaine 2008) – under the assumption
that very soon we will have samples of 104 − 105 halo stars out to
∼ 100 kpc with full 6D phase space coordinates. Our goal in this
paper is to assess the effects of various factors on the derived cumu-
lative mass profiles obtained with the spherical Jeans equation: (a)
the underlying assumptions of spherical symmetry, (b) dynamical
equilibrium, (c) realistic observational errors on proper motions,
radial velocities and distances to halo stars and (d) the effects of
limited survey volumes inherent to all surveys.

Most previous implementations of the spherical Jeans equa-
tion, applied to the Milky Way halo either bin the data (Kafle et al.
2018) and/or use analytic functions (e.g. power laws) to describe the
density and velocity profiles and velocity anisotropy of tracer stars
(Gnedin et al. 2010). Binning the data necessitates the computation
of numerical derivatives which can be noisy (Kafle et al. 2018). For
this reason, the use of analytic functions has been favored because
they are relatively easy to implement and, in some cases, align well
with theoretical predictions. For example, Gnedin et al. (2010) as-
sign a power law relation to the tracer density profile of BHB stars
beyond 25 kpc, which is broadly consistent with predictions for the
“broken power-law” density profile of the stellar halo from cosmo-
logical simulations (Bullock & Johnston 2005; Johnston et al. 2008;
Cooper et al. 2011). Other studies use parametric fits to the velocity
distribution and velocity anisotropy profile. These approaches have
their limitations since parametric fitting curves may not adequately
represent the true velocity or density profiles. Many studies con-
struct parametric fits from binned data, which is sensitive to how
bins are chosen. Since the velocity anisotropy profile, in particu-

lar, requires accurate determination of proper motions (which have
only become available in large numbers in the past 3 years, thanks to
Gaia), it has historically been is common to assume either a constant
value or a few functional forms (e.g. Battaglia et al. 2005), or to use
functional forms motivated by cosmological simulations (Xue et al.
2008; Gnedin et al. 2010).

In the context of external dwarf spheroidal galaxies, sophisti-
cated Bayesian methods have been developed to derive parametric
fits to the tracer density, line-of-sight velocity distributions and ve-
locity anisotropy profiles (e.g. GravSphere, by Read&Steger 2017).
Diakogiannis et al. (2017) have developed a hybrid approach and
use B-splines to construct the radial velocity dispersion profile f2A ,
while using a parametric mass model. They apply their method
to line-of-sight velocities in the Fornax dwarf spheroidal galaxy.
There have been several recent studies to assess how well the spher-
ical Jeans equation performs on dwarf spheroidal galaxies when
the various underlying assumptions are broken (e.g. spherical sym-
metry, dynamical equilibrium). For example, Evslin & Del Popolo
(2017) use tracer particles drawn fromN-body simulations to evalu-
ate the fourth-order spherical Jeans equation when applied to dwarf
spheroidal galaxies. Genina et al. (2020) assess how GravSphere
fares on mock dwarf spheroidal galaxies drawn from cosmological
ΛCDMand SIDM simulations. El-Badry et al. (2017) show that, us-
ing mock data sets from cosmological hydrodynamical simulations,
dwarf galaxies with recent episodes of star formation and feedback
are not in dynamical equilibrium and Jeans modeling results in an
overestimate of the mass of the dwarf galaxy. We do not discuss
these methods for modeling external dwarf galaxies any further
since the nature of the data, both in sample size and phase space
dimensionality (typically only position on the sky and line-of-sight
velocities are available for < 5000 stars) are completely different
from the situation considered in this work.

There have been several recent works done to understand the
errors introduced when breaking various assumptions of the spher-
ical Jeans equation (Kafle et al. 2018; Wang et al. 2018). This is
pertinent because real potentials of Milky Way-like disk galaxies
are not spherically symmetric nor are they in dynamical equilib-
rium. Prior to applying it to real data, it is important to assess the
modeling biases introduced by any spherical Jeans modeling code.
In addition, it is helpful to have a quantitative understanding the
effect that breaking these assumptions has on the resulting mass
profile.

We present a novel B-spline based routine for performing
spherical Jeans modeling. We construct a diverse suite of mock
datasets to validate our routine and quantify the errors in the derived
cumulative mass estimate when the standard assumptions are bro-
ken. The mock datasets in our suite include smooth, self-consistent
equilibrium distribution functions generated using Agama (Vasiliev
2019) – an efficient all-purpose galactic modeling package – and
mock stellar halos generated from three Latte (FIRE-2) cosmologi-
cal hydrodynamic simulations (Wetzel et al. 2016). The results from
each mock dataset provide insights into how the quality of the Jeans
mass estimate changes with the geometry of the system and with its
dynamical state.

For the Latte simulations, we also test different methods for
identifying halo stars including by imposing different metallicity
cuts to select metal poor star particles. We also consider the effect
of imposing survey selection functions. Specifically, we impose a
Gaia-like magnitude limit of � = 20.7 and exclude star particles
outside the fiducial footprint of the Dark Energy Spectroscopic
Instrument (DESI) (DESI Collaboration et al. 2016a,b; Allende
Prieto et al. 2020). Finally, we consider the effects of imposing
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observational errors on proper-motions, line of sight velocities and
distances to tracer stars. Once DESI data are available, wewill apply
our Jeans routine to Gaia proper motions and DESI radial velocities
to construct a mass profile of the Milky Way out to ∼ 80− 100 kpc.

2 ANALYSIS METHODS

The Jeans equations are obtained from the collisionless Boltzmann
equation by computing second order moments of the distribution
function (Binney&Tremaine 2008). Under the assumption of spher-
ical symmetry, they reduce to a single equation which can be used to
derive the enclosed mass at any radius " (< A), from which the full
gravitational potential Φ can be obtained using Φ(A) = �" (<A )

A .
The form of the spherical Jeans equation we use here is given by,

" (< A) = − AE
2
A

�

(
d ln d
d ln A

+ d ln E2A
d ln A

+ 2V
)
. (1)

The velocity anisotropy parameter V is defined as

V = 1 −
E2
\
+ E2

q

2E2A
. (2)

The terms E2A , E2q and E2
\
are the means of the squares of the radial,

azimuthal, and polar velocities respectively; d is the number density
of tracer (stars, globular clusters, etc.); A is the spherical galacto-
centric radius; � is the gravitational constant. V < 0 indicates a
tangentially biased velocity distribution, V = 0 indicates velocity
isotropy, and V > 0 indicates a radially biased velocity distribution.
Note that in the above we define V in terms of E2A , E2q and E2

\
rather

than in terms of the velocity dispersion components, f2A , f2q , and
f2
\
, since the former are more suitable for B-spline evaluation and

these quantities are more relevant from the dynamical standpoint.
Note that we do not assume zero mean tangential streaming velocity
(Eq = E \ = 0) as is often done.

The spherical Jeans equation can be solved in two complemen-
tary regimes: (1) solving a “dynamical inverse problem” where one
measures the dispersion of the line-of-sight velocities (Elos) directly
from observations (with errors) and then “inverts” it to derive the
radial velocity dispersion and anisotropy profiles (or assume V), and
then infer the potential or cumulative mass distribution (Eq. 1); (2)
“forward modeling” on the other hand assumes some parametric
form for the gravitational potential and tracer distribution function
and then computes the expected velocity dispersion and anisotropy
profiles and convolves them with expected observational uncertain-
ties and selection functions and compares with observations.

Although dynamical inverse modeling was the original formu-
lation of the method, inverse problems in general have difficulty
dealing properly with error and noise from small samples. Fur-
thermore, it has been shown that in the context of the Milky Way
halo, inferring the anisotropy profile from the line-of-sight velocity
distribution results in a biased profile at galactocentric distances
beyond ∼20 kpc (Hattori et al. 2017). Most current applications
therefore follow the second route because it is easier to account for
observational errors. In this work, we assess how well the “inverse
modeling” route functions when full 6D phase space coordinate
information is available (i.e. V does not need to be inferred from
Elos alone), for samples that are orders of magnitude (>104) larger
than have previously been available. This method gives the poten-
tial (more precisely the cumulative mass) more directly, but also
suffers from errors more directly. In future we aim to modify the

B-spline fitting of the E2 profiles while accounting for observational
errors as has been done for the measurement of Gaia proper-motion
dispersions in globular clusters (Vasiliev & Baumgardt 2021).

Our goal in this work is to assess if the enormous increase in
sample size mitigates the effects of only partially accounting for the
observational errors.

Each component of the spherical Jeans equation (Eq. 1) is com-
puted using B-splines, a category of piecewise polynomial function
defined by an array of grid points called knots. We choose our
polynomials to be cubic functions to fit a smooth curve between
successive pairs of knots. We specifically perform penalized spline
regression to fit B-splines to E2A , E2q , E

2
\
and perform a penalized

spline density estimate to calculate ln(d). This computation is done
with the routines implemented in Agama (Vasiliev 2019), and more
information on penalized spline regression and penalized spline
density estimation can be found in appendix A.

There is no universally optimal procedure for the determination
of the knots’ parameters – their count, spacing, minimum bound,
and maximum bound. Diakogiannis et al. (2017) use a sophisti-
cated but more computationally intensive evolutionary modeling
algorithm to optimize and adapt their choice of knots when apply-
ing the JEAnS code to dwarf spheroidal galaxies. In contrast, we
empirically determine our knot configurations, placing significant
emphasis on keeping their parameters as consistent as possible to
mitigate overfitting.

In these fits, we use logarithmically spaced knots in radius
(equally spaced in ln A) because we find that this best captures the
radial distribution of tracer particles. The number of knots varies
from #knots = 6 for datasets described in Section 3.1 to #knots = 4
for the datasets described in Sections 3.2 and 3.3. Theminimum and
maximum radial bound of the knots is similarly dataset dependent,
but we have arranged them such that the knots are identical across
all datasets presented in a given figure. When constructing our B-
spline fits, we only use tracers whose radii lie within the extent of
the knots. This is not required when using B-splines, but we find
that this produces the best results, particularly at large radii.

B-splines are an attractive choice for multiple reasons: namely,
they provide analytical derivatives and non-parametric fits. The
radial derivative terms in Eq. 1 on ln(d) and ln(E2A ) are computed
trivially by utilizing the B-splines’ analytical derivatives. Further,
the B-spline’s non-parametric nature means that they do not restrict
the velocity or density profiles to a specific shape as power-laws
would.

Each of the mock datasets described in Section 3 are provided
as input to our routine and the resulting " (< A) is computed using
Eq. 1. This estimatedmass profile is comparedwith the system’s true
mass profile over the relevant radial range. The true mass profile is
computed for the entire radial extent of the system by cumulatively
summing themasses of all particles over their Galactocentric radius.

3 MOCK DATA

We now describe the various mock datasets used to validate our
B-spline-based routine.

In Section 3.1 we describe the equilibrium mock datasets that
were generated using Agama. These come in two categories: “Halo-
alone” models (hereafter HA-models) and “Halo-Disk-Bulge” mod-
els (hereafter HDB-models). The purpose of these tests is verify the
accuracy of the routine and assess the effects of realistic deviations
from sphericity and, in the case of the HDB-models, the effect of
contamination of halo tracers by disk particles.
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In Section 3.2 we describe more realistic mock datasets gener-
ated from star particles drawn from three galaxies (m12f, m12i, and
m12m) from the Latte cosmological hydrodynamic zoom-in simu-
lations (Wetzel et al. 2016). These models introduce dramatically
more complexity and realism, including the challenge of accurately
separating disk and halo stars, and the effects of halo substructure
(streams and clustered halo stars) and disequilibrium arising from
tidal interactions with nearby satellites.

In Section 3.3 we describe how we impose observational se-
lection functions and errors onto the mocks described in 3.2. The
selection functions are the fiducial DESI footprint and a Gaia-like
magnitude limit, and errors are present on proper motions, line-
of-sight velocities, and heliocentric distances. These mocks also
introduce a dependence on the choice of solar position, which we
vary between three locations in the disk.

3.1 Self-consistent equilibrium mock datasets

The Agama dynamics package is used to generate self-consistent
equilibrium distribution functions with all particles having the same
mass. In practice, the halo tracers provided to the Jeans routine are
dark matter particles.

The HA-models contain only a spheroidal halo with axis ra-
tio @ varying from @ = 1.0 (spherical) to @ = 0.6. Agama uses
the double-power-law distribution function model from Posti et al.
(2015) in which we tailor the mixing coefficients to produce the de-
sired oblate axisymmetric shape. Changing the mixing coefficients
also has the minor side-effect of unpredictably changing the veloc-
ity anisotropy. We verify the system has the desired axis ratio @ by
measuring it with E1method described in Zemp et al. (2011). These
halos are initialized with Agama’s Spheroid mass density function,
with parameters (U, V, W) = (1, 4, 1). With this specific choice of
parameters, the Spheroid density function is exactly equivalent to
the Hernquist (1990) density function. Once generated, the halo
mass and scale radius are scaled to "halo = 1.3 × 1012"� and
'halo = 25 kpc, roughly matching the Galactic virial mass and halo
density break radius quoted in Bland-Hawthorn & Gerhard (2016).

The HDB-models have a spherical halo, a disk, and a spherical
bulge. The HDB’s initial halo density function adds an exponen-
tial cutoff to the HA density function but scales to the same mass
"halo = 1.3 × 1012"� with the same scale radius 'halo = 25 kpc.
The disk is a combination of the thin and thick disk parameters
quoted in Bland-Hawthorn & Gerhard (2016). Summing the thin
and thick disk’s stellarmass yields"disk = 4.1×1010"� and amass
weighted average of the radial scalelengths and scaleheights for the
thin and thick disks yields 'disk = 2.5 kpc and ℎdisk ≈ 375 pc1.
The HDB’s disk is initialized with Agama’s Disk density function
(a double-exponential) with 'disk and ℎdisk. The spherical bulge
mimics the axisymmetric bulge in McMillan 2017 by scaling with
total mass "bulge = 8.9× 109"� , scale radius 'bulge = 0.075 kpc,
and Agama’s Spheroid density function with (U, V, W) = (1, 1.8, 0).

While we create variations of the HA-models with different
axis ratios, the HDB-model halo remains spherical. However, we
make additional HDB-models with other alterations. In one variant,
we inject a random sample containing 1/4 of the system’s disk par-
ticles into the halo tracer population to test the routine’s sensitivity
to contamination of the halo tracer population with disk particles.

1 The exact mass-weighted value of the thin and thick disk scaleheights is
387 pc but we use 375 pc to generate our mocks. The difference is within
the uncertainties of the current scale height measurements.

In another mock, we assess the effect of a radially varying velocity
distribution for halo particles by creating a halo particle distribution
with an anisotropic Osipkov-Merritt velocity dispersion profile (Os-
ipkov 1979, Merritt 1985a, Merritt 1985b), using V(A = 0) = 0.2
and anisotropy radius A0 = 100 kpc.

The HA-models and HDB-models are generated with 300,000
particles in their halos, all of which are used in the Jeans estimation.
The HDB-model with disk contamination has an additional 40,000
particles used as input, which come from the 160,000 particles
comprising its disk.

3.2 Mock datasets from cosmological hydrodynamic
simulations

The Latte cosmological simulations are performed using mesh-
free hydrodynamics from the GIZMO code (Hopkins 2015) and
the Feedback in Realistic Environments model 2 (FIRE-2) (Hop-
kins et al. 2014; Wetzel et al. 2016). The Latte simulations are a
collection of simulated Milky Way-mass galaxies at uniquely high
resolution that are well suited for generating mock Milky Way-like
datasets. We use the I = 0 public snapshots of the m12f, m12i,
and m12m galaxies released with the Ananke synthetic Gaia cata-
log (Sanderson et al. 2020). We create datasets for each galaxy by
selecting only the star particles with metallicities [M/H] ≤ −1.5.
This is a proxy for selecting metal-poor accreted halo stars since the
public FIRE snapshots do not contain information about whether
stars were accreted from satellites or formed in situ in the host
galaxy. Since information about whether a star was accreted is also
not available a priori in real data this provides an additional level
of realism to our mock datasets. We calculate the [M/H] ratio and
the Hydrogen mass fraction (-) from the mass fractions of He (. )
and metals (/) provided in the public Latte data as follows:

- = 1 − (. + /) (3)
[M/H] = log(//-) − log(/�/-�) (4)

These mocks and the mocks in Section 3.3 operate under the
simplification considering each Latte star particle to be a single
tracer star. We consider these stars to be RR-Lyrae stars (RRLs)
because they serve as standard candles. Each metal poor halo star
particle (∼7070"�) can be considered to represent the entire stellar
population of a single star cluster. Further, it is generally considered
reasonable to assume each star cluster of this mass would result in at
most a single RRL. After selecting tracers by metallicity, there are
approximately 200,000 remaining particles in each dataset (m12f :
188,577, m12i: 231,599, m12m: 218,891).

The three Latte galaxies, while all MilkyWaymass, have vary-
ing amounts of halo substructure in the form of tidal streams and
shells and a fairly broad range of satellite properties. Their halos
are also in different states of dynamical equilibrium, have a range of
realistic morphologies, have experienced a varied assembly history
(Garrison-Kimmel et al. 2018), and have realistic satellite popula-
tions (Wetzel et al. 2016). In addition, these galaxies have halo stars
with moderate amounts of tangential streaming motions (azimuthal
Eq and polar E \ ). Figure 1 shows heatmaps of stars in these three
galaxies from the I = 0 snapshot color coded by E \ (upper row) and
Eq (lower row). In addition to substructure in the form of streams,
shells and over-densities, there is recent observational evidence that
the Milky Way disk is moving with respect to the outer stellar halo
as a result of on-going tidal interaction with the Large Magellanic
Cloud (LMC) (Petersen & Peñarrubia 2021) and that the stellar halo

MNRAS 000, 1–10 (2021)



Non-parametric Jeans Mass 5

density distribution shows a distinct bi-symmetry that is also likely
to be due to the LMC (Conroy et al. 2021). Recent studies that
account for the disequilibrium arising from the LMC suggest that
dynamical models that do not account for it correctly can overesti-
mate the total mass of the Galaxy (Erkal et al. 2020; Deason et al.
2021). In this paper we do not consider the effects of a significant
perturbations, such as that of the LMC.

3.3 Adding observationally motivated selection functions and
errors

One must choose a solar position or a Local Standard of Rest (LSR)
before imposing observationally motivated selection functions or
magnitude dependent errors on mock halo stars from simulated
galaxies. As part of the construction of the Ananke synthetic Gaia
catalog (Sanderson et al. 2020), the Latte collaboration provided
three LSRs with precomputed solar velocities for each of the three
galaxies m12f, m12i, and m12m. The first LSR position, LSR0,
places the sun at (G, H, I) = (0, 8.2, 0) kpc and the other two, LSR1
and LSR2, are located at the same Galactocentric radius, in the
galactic midplane, and rotated 120◦ in either direction from LSR0.
We transform the coordinates of the star particles to ICRS and
Galactic coordinates frame with Astropy (Astropy Collaboration
et al. 2013, 2018) when applying the following observational selec-
tion functions and errors.

We start imposing the magnitude selection function by cal-
culating each star particle’s Gaia �-band apparent magnitude. We
assume that each star particle is a single RR-Lyrae star with�-band
absolute magnitude "� = 0.58, as quoted for metal-poor RRL in
Iorio & Belokurov (2019). We then calculate the �-band appar-
ent magnitudes with the assumed "� , each star particle’s distance
modulus D, and heliocentric distance 3.

D = 5 ∗ log(3/kpc) + 10 (5)
� = "� + D (6)

Once we have� for each mock RRL, we select only those with
magnitudes � < 20.72

We then impose a sky-selection function similar to the fidu-
cial DESI footprint with a declination cut −35◦ ≤ X ≤ 90◦ and a
galactic latitude cut 30◦ ≤ |1 | ≤ 90◦. Because the resulting sample
is dependent on the LSR, imposing these selection functions pro-
duces 3 datasets for each Latte galaxy or 9 total error-free datasets
with observational selection functions and roughly 30,000–40,000
remaining particles each.

We impose realistic Gaia- and DESI-like errors on the phase
space coordinates of the 9 datasets with observational selection
functions to assess how their presence biases the Jeans estimate.
The Gaia-like errors are present on the proper motions (`U∗, `X)
and heliocentric distances (3), and the DESI-like errors are present
on the line-of-sight velocities (Elos). Lastly, we assume the right
ascension (U∗) and the declination (X) have no error.

The errors are randomly generated from independent Gaussian
distributions on each quantity for each star particle with standard
deviations determined by characteristic or expected errors for Gaia
and DESI observations. The Gaia heliocentric distance error is the
same for all star particles at f3 = 0.1107 (Hattori et al. 2020).
The Gaia proper motion errors (f`U∗, f`X) are a function of �

2 Gaia Expected Science Performance https://www.cosmos.esa.int/
web/gaia/science-performance

– and also 3 by Eq. 5 and 6 – and come from PyGaia3. PyGaia
allows for calculations of proper motion errors from Gaia EDR3,
and expected proper motion errors from DR4 (containing the first
5 1/2 years of observations) and DR5 (containing up to 10 years of
observations). Figure 2 shows the 3D velocities squared of tracers
in m12f after imposing the observational selection functions and
errors at LSR0 over the different Gaia data releases. Because the
Gaia proper motion errors scale up with 3, stars at large radii tend to
be given very large velocities, often above a visual escape velocity
curve. These extremely high velocity starswill cause Jeansmodeling
to blow up at large radii. This is discussed further in Section 4.3 and
Figure 5.

Finally, we use the nominal line-of-sight velocity error ex-
pected from the DESI Milky Way survey fElos = 2 km/s (Allende
Prieto et al. 2020).

4 RESULTS

The estimated mass profile from each mock is judged for accuracy
by computing the percentage error relative to the corresponding true
mass profile. Figures 3-6 show the estimated (solid line) and true
mass profiles (dashed line) for a set of mock datasets and the error
as a function of radius. The mocks described in each subsection of
Section 3 correspond to a matching subsection in Section 4.

4.1 Initial tests with self-consistent equilibrium mocks

In this section we describe the results from tests with the self-
consistent equilibrium mock datasets described in Section 3.1. Fig-
ure 3 shows the results for the three HA-models, whose B-spline fits
are each run with #knots = 6 knots logarithmically spaced between
Amin = 1 kpc and Amax = 70 kpc. The blip in error near the begin-
ning of the curve is merely an artifact of small number statistics
at small radii. Aside from this, the progression of flattening from
@ = 1.0 to @ = 0.6 only has a very small effect on the accuracy of
the estimation. The @ = 0.6 mock oscillates around the true profile
and is clearly less stable than the @ = 1.0 and @ = 0.8mocks. For all
three, the error is less than 4% beyond A = 5 kpc. We also run tests
on HA models with @ = 0.9 and @ = 0.7, which perform in-line
with the three models shown here.

Figure 4 shows the results of tests with the original HDB-model
and its variants. For these models, the B-spline fits are all performed
with#knots = 6 knots logarithmically spaced between Amin = 15 kpc
and Amax = 100 kpc. The error in the estimation on the HDB-models
is within 10% at all radii. The error is extremely low (≤1%) between
25 < A kpc < 60 for all HDB-models. Notably, the accuracy of the
HDB variants is excellent despite the significant modifications to
the original HDB dataset. We also run an additional test for the disk
contamination variant, setting Amin = 5 kpc to include more of the
injected disk particles in the B-spline fitting. This yields similarly
excellent results with error ≤10% at all radii, but we show only the
Amin = 15 kpc test for consistency with other tests.

3 PyGaia: https://github.com/agabrown/PyGaia written by A.G.
Brown
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Figure 1. 2-dimensional heatmaps colored by 〈E\ 〉 and 〈Eq 〉 of three Latte galaxies m12f (left column), m12i (center column), and m12m (right column).
Each of the three show significant streaming motion and substructure as deviations from dynamical equilibrium - breaking the assumptions of the spherical
Jeans equation. Of the three, m12m has the most dramatic streaming motion, so we expect our mass profile estimation to perform the worst on the mock dataset
derived from it.

Figure 2. 3D velocities squared (E23D) of tracers in the observational mock of m12f at LSR0 with errors on proper motion (`U∗, `X), heliocentric distance
(3), and line-of-sight velocity (Elos). From left to right: f`U∗ and f`X characteristic of Gaia data release EDR3, DR4, and DR5 respectively. f`U∗ and
f`X increase with dimmer �-band apparent magnitude and thus with larger 3, so stars at large galactocentric radius A tend to have larger f`U∗, and f`X .
When errors are imposed, their E23D increase dramatically, making them unbound and unfit for use in Jeans modeling. The amount of unbound stars in each
dramatically decreases with progressive Gaia data releases as the expected f`U∗ and f`X decrease.

4.2 Early tests with metal-poor particles from cosmological
simulations

In this section we describe tests of our Jeans modeling routine
with mock halo stars drawn from the Latte (FIRE-2) cosmological
simulations, m12f, m12i, and m12m. The datasets we generate us-
ing these three galaxies select a population of star particles with
[M/H] < −1.5meant to represent a halo RR Lyrae population. The
B-spline fits on these datasets are each run with #knots = 4 knots
logarithmically spaced between Amin = 15 kpc and Amax = 100 kpc.
We decrease the number of knots from the tests with equilibrium
mocks (Section 4.1) to increase the smoothing in the fits. Figure 5

shows the results of the tests for these three galaxies when all metal
poor stars within the radial region above are selected. The accuracy
with which our Jeans modeling routine recovers the input mass dis-
tribution is, of course, worse for these mocks than for the idealized
mocks in the previous section but over most of the radial range
the error remains ≤10%, increasing to a maximum error of ∼14%
at 100 kpc. This is despite the fact that all the Latte galaxies we
use have triaxial dark matter halos, show significant halo substruc-
ture (shells and tidal streams), show varying amounts of tangential
streaming (see Fig. 1 of 〈Eq〉), and have satellites within 100 kpc.

MNRAS 000, 1–10 (2021)
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Figure 3.Mass profiles of three “Halo-alone” mock datasets with increasing
flattening quantified by the axis ratio@ = 1.0 (spherical), 0.8, and 0.6 (oblate
axisymmetric). The flattened models are to test for accuracy when breaking
the assumption of sphericity made by the Jeans equation. The error due
to flattening appears as instability in the @ = 0.6 mock, which yields less
than 4% error at most radii. The @ = 1.0 and @ = 0.8 mocks give even
smaller errors at most radii. The deviation at small radii in all three mocks
is inconsequential and most likely due to noise in the simulation.
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Figure 4. Mass profiles of the “Halo-Disk-Bulge” mock datasets includ-
ing variants with contamination from disk particles and a radially varying
anisotropy profile. All variants perform well (≤10% error) and very consis-
tently. The inclusion of a disk and bulge into the system’s potential to break
Jeans modeling’s assumption of sphericity has little effect on the accuracy.
Similarly, there is little effect on the accuracy due to contamination from
disk particles with large tangential velocities or a radially varying anisotropy
profile.

4.3 Tests with observational errors and selection functions on
cosmological simulations

All our previous tests have assumed that the phase space coordinates
available to our model have no errors, a simplification that allows
us to assess the systematic error introduced by the code itself. In re-
ality, all observations come with errors. In this section, we describe
tests on the observationally motivated mock datasets described in
Section 3.3. These mocks best capture the data we expect to ob-
tain from Gaia and DESI by imposing the observational selection
functions and errors of these surveys onto the halo star particles
from the Latte galaxies m12f, m12i, andm12m. The B-spline fits on
these datasets are run with #knots = 4 knots logarithmically spaced
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Figure 5. Mass profiles of the mock datasets generated from star particles
with [M/H] < −1.5 in the Latte m12f, m12i, and m12m cosmological
simulations. All three resulting mass profiles are within 15% of the truth
at all radii. These early tests with cosmological simulations illustrate our
B-spline routine’s ability to smooth out disequilibrium like tidal streams,
halo substructure, and tangential streaming motion to accurately recover the
underlying mass distribution.

between Amin = 15 kpc and Amax = 100 kpc. Figure 6 shows the
results from the error-free mock data (left panel), mock data with
expected Gaia DR5 errors (middle panel), and expected Gaia DR4
errors (right panel). As described in Section 3.3 we consider three
LSRs for each galaxy, shown in Figure 6 by the three solid curves of
the same color. The datasets with errors imposed have 50 indepen-
dent trials of random errors. The standard deviation at each radial
point of the 50 trials is shown as the width of the bands above and
below each solid curve. There are a few takeaways from Figure 6:

First, with the expected Gaia DR4 errors, the error in the esti-
mated enclosed mass rises rapidly and is above 20% by A∼50 kpc in
all models and is even more significant at larger radii. As illustrated
in Figure 2, the relatively large errors on proper motions in DR4
make too many very high velocity stars, which causes the Jeans
estimation to blow up at large radii, especially in the case of m12m.
This suggests that reducing the maximum extent of the knots to
Amax ∼50 kpc would including many fewer unbound stars in the
B-spline fits, which would produce a more accurate estimate.

Second, all of themocks in Figure 6 demonstrate that the spread
in the mass profiles due to the position of the LSR is quite large,
reaching upwards of 15% difference at some radii in the LSRs of
m12i.

Third, the error-free mocks and Gaia DR5 mocks demonstrate
that realistic expected errors will get small enough such that they
do not introduce much deviation of the estimated mass profile from
the error-free case. The Gaia DR5 mocks decrease the error on the
estimated enclosed masses from the DR4 mocks to no more than
30% out to 100 kpc for all three models. It is also apparent that the
spread from many trials of random error generation on the same
setup (shown by the bands above and below the solid lines) is very
small.

We do not show models with Gaia DR3 errors since they are
worse, as would be expected, than results with Gaia DR4 errors.
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Figure 6. Comparison of true and recovered enclosed mass estimates for the three Latte galaxies m12f, m12i, and m12m with observational selection functions
and errors. Error-free models are shown in the left column, Gaia DR5 error mocks are shown in the center and Gaia DR4 error mocks are shown in the right
column. For each galaxy we consider three LSR positions, and the mass estimates for these are shown as three lines of the same color. The DR4 errors on
proper motion tend to create very high velocity stars, which cause the Jeans estimate to blow up at large radii. The DR5 errors are much smaller and do not
deviate significantly from the error-free case.

5 SUMMARY & CONCLUSION

We have presented a new non-parametric spherical Jeans modeling
code that uses B-splines to fit the enclosed mass distribution within
the Milky Way halo. We present tests of this code with a variety of
mock datasets to assess the effects of breaking various assumptions
made in deriving the spherical Jeans equations: that the underlying
mass distribution is spherical, that tangential streaming motions
are absent (〈Eq〉= 〈E \ 〉 = 0), and that the potential is in global
dynamical equilibrium. Our main results are listed below:

• With our simplest “Halo-alone” models we show that going
from a spherical mass distribution to a flattened mass distribution
with @ = 0.6 only slightly increases the error on the estimate of
enclosed mass but the error is within 4% beyond A = 5 kpc (see
Fig. 3).
• Our “Halo-disk-bulge” (HDB) models are constructed to re-

semble the Milky Way halo, disk, and bulge but consider only a
spherical halo, but with both isotropic and anisotropic velocity dis-
tributions for halo particles. One of themock data sets also considers
“contamination” from disk stars. Our Jeansmodeling code performs
extremely well with these HDB models with maximum errors on
the enclosed mass out to 100 kpc not greater than 10% in all cases
and less than 1% at most radii (see Fig. 4).
• The mock datasets with the next level of complexity are con-

structed from three galaxies from the Latte FIRE-2 simulations,
m12f, m12i, and m12m. These galaxies were constructed to be
Milky Way analogs and contain realistic amounts of substructure
and display moderate amounts of disequilibrium (see Fig. 1). With
error-free data over the whole sky, the code still gives better than
15% error out to 100kpc in all three Latte galaxies (see Fig. 5).
This suggests that our Jeans modeling code is very robust and

will introduce little systematic error when applied to real data in the
future.
• The final datasets considered the effects of observational selec-

tion functions and errors from Gaia and the DESI survey. The Gaia
component included a�-band magnitude limit and expected proper
motion errors from the end of DR4 and DR5. The DESI component
included its observational footprint and errors on Elos = 2 km s−1.
These errors are imposed on the same three Latte (FIRE-2) galaxies
and consider three possible positions for the LSR. The variation
resulting from the LSR position alone reaches upwards of 15% at
some radii in m12i. With proper motion errors expected of Gaia
DR4, the error on the mass estimate is small at small radii but very
quickly rises above 20% by A = 50 kpc in all cases, growing to
more than 40% by 100 kpc (see Fig. 6). In contrast, with proper
motion errors expected of Gaia DR5, the errors on the mass es-
timate drop dramatically and are within 30%, often less, all the
way out to 100 kpc (a radial range that includes some satellites
and considerable amounts of substructure from tidal streams, see
Fig. 1).

The spherical Jeans equation method is a fairly simple, but
popular method for recovering the mass distribution of (nearly)
spherical potentials. A fundamental feature of this method is that
it depends on the radial derivatives of the tracer mass distribution
as well as the radial velocity dispersion profile. Since derivatives of
observational data profiles are extremely noisy (Kafle et al. 2018),
most authors model the tracer density and velocity dispersion pro-
files with analytic functions (often power-laws) to enable conve-
nient computation of the derivatives. In our implementation of this
method, we have used B-splines to estimate the density profile and
velocity dispersion profiles of the tracer particles, enabling us to
avoid the need to assume a functional form but still allowing for the
rapid computation4 of the enclosed mass profile. Although the tests
we carry out with mock data add noise with magnitudes comparable

4 The routine’s run time is on the order of <10 seconds for the observational
mocks.
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with the expected observational errors to the line-of-sight veloci-
ties and proper motions, we do not rigorously evaluate how those
errors translate to uncertainties on the galactocentric phase space
coordinates, not do we propagate those errors forward to derive
uncertainties on the enclosed mass distribution. Rather, the tests
with mock datasets allow us to assess the bias in the derived mass
distribution, that arises from the limited size of the survey volume
and proper motion errors.

Other methods such as distribution function fitting (Eadie et al.
2017, 2018; Eadie & Jurić 2019; Hattori et al. 2020; Deason et al.
2021) use Bayesian MCMC analysis to properly account for the
errors on themass estimates arising from the error on the data. These
methods, while much more sophisticated, are computationally and
technically challenging. Our goal in developing this non-parametric
B-spline Jeans modeling code and testing it with mock data is to
provide the community with a fast and easy-to-use code with well
quantified systematic errors. The code is written in Python and uses
the Agama library (Vasiliev 2019). It can be applied to a sample
of observed 6D coordinates for tracer stars to construct B-spline
estimates of the radial density profile, three velocity dispersion
profiles and the velocity anisotropy profile, which are then used to
evaluate Eq. 1.

In future, we aim to apply this code to Gaia DR4 and Gaia DR5
data with radial velocities from DESI, as well as publicly available
data from WEAVE (Dalton et al. 2014) and 4MOST (de Jong et al.
2012).
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APPENDIX A: FITTING DENSITY AND VELOCITY
PROFILES WITH B-SPLINES

In this sectionwe provide a brief overview of the B-spline formalism
in the context of fitting and density estimation. For a more complete
mathematical background see Appendix A2 in Vasiliev (2018).

B-splines are a set of piecewise-polynomial basis functions
� 9 (G) defined by nodes of a grid G: , : = 1.. . B-splines of poly-
nomial degree # are nonzero on at most # + 1 consecutive grid
segments, their # − 1’th derivatives are continuous at grid nodes,
and a grid with  nodes ( −1 segments) generates  +# −1 basis
functions. A B-spline representation of a curve is a linear combina-
tion of basis functions with some coefficients: 5 (G) = ∑

9 � 9 � 9 (G).
The most familiar case is a histogram, which is nothing else than
a 0th degree B-splines basis; however, since even the curve itself
is discontinuous, it is not suitable for evaluating derivatives. In this
study we use 3rd degree B-splines, which are mathematically equiv-
alent to a clamped cubic spline curve (clamped meaning that its 2nd
derivatives at endpoints are not necessarily zero).

In the present context, we use B-splines to estimate the density
from discrete samples. Namely, given a set of points G= with weights
F=, = = 1..#data, we seek to construct a density function ?(G) such
that

∫ 1
0
?(G) 3G ≈ ∑

= F= u(G=; 0, 1), where the indicator function
u(G; 0, 1) = 1 when 0 ≤ G ≤ 1 and zero otherwise. The density is
normalized so that the integral over the entire interval containing all
points equals

∑
= F=. It turns out that B-splines are very useful for

representing the logarithm of ?, ensuring the positivity constraint
on density. After choosing the interval and grid nodes, the coeffi-
cients of the B-spline representation ln ?(G) = ∑

9 � 9� 9 (G) can be
found by maximizing the penalized log-likelihood of the input sam-
ple: {� 9 } = argmax

∑
= F= ln ?(G=) − _

∫ [
32 ln ?(G)/3G2

]2
3G,

where the second term biases the solution towards smooth curves,
and the roughness penalty _ is automatically determined by cross-
validation. With the optimal choice of _, the number of grid nodes
has little effect on the resulting curve (as long as it is sufficient to
resolve key features in the distribution).

For the Jeans equation, we need the density and the kinetic
energy, which are estimated as follows. The distribution of points
in spherical radius (the number of points in the radial interval A..A +
3A) is 3# (< A)/3A = 4c A2 d(A), and it is convenient to use j ≡
ln A instead of radius. We construct a B-spline estimate for the
logarithm of the density of points in j, using the masses <= of
particles in the input snapshot as the weights associated with points:
51 (j) ≡ ln

[
3#/3 ln A

]
= ln

[
4c A3 d(A)

]
; hence the mass density

is given by d(A) = (4c)−1 exp
[
51 (j) −3j

]
. Likewise, when using

the masses multiplied by squared radial and tangential velocity
components E2A , E2\+E

2
q
of each particle as theweights, we obtain the

estimates of the corresponding terms in the kinetic energy tensor:
5E2A
(j) ≡ ln

[
4c A3 d(A) E2A

]
, etc. The logarithmic derivative of the

radial kinetic energy 3 ln
[
d E2A

]
/3 ln A appears in the Jeans equation

directly, and the other terms contains the ratios of exp 51, exp 5E2A ,
etc.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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