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Abstract 
 

The centromere is an essential structure required for the faithful segregation of 

chromosomes during mitosis, a process that is significantly dysregulated in cancer. The nucleic 

acid sequences that dominate the centromeric landscape are α-satellites, arrays of 171 base-pair 

monomer units arranged into higher-order arrays throughout the centromere. Nucleosomes that 

replace the canonical histone H3 with the centromeric H3 variant CENPA epigenetically mark the 

centromeric locus. Modern genomics and epigenomics are, however, unable to navigate the highly 

repetitive structure of this region, a technical shortcoming that greatly hinders the ability to study 

their role in human malignancy, which is the second leading cause of death globally. 

Methodologies aimed at characterizing centromeric sequence and function are thus needed to 

effectively study the genetics and molecular biology of the centromere in cancer. Our group has 

developed quantitative PCR assays capable of detecting chromosome-specific α-satellite 

sequences. This novel methodology has enabled us to study centromeres in the contexts of normal 

biology and human disease. 

We demonstrate in this thesis that centromeres undergo both genetic and epigenetic 

alterations in the setting of cancer. Specifically, centromeric α-satellite sequences and 

pericentromeric HERV-K111 retroviral sequences experience copy number reductions and 

sequence homogenization in neoplastic cells and tissue. Furthermore, CENPA, the H3 variant that 

defines centromeric chromatin, was observed to be overexpressed across multiple cancer types, 

with functional significance to prostate cancer phenotypes. Intriguingly, we show that 

overexpressed CENPA possesses a previously uncharacterized function as a putative regulator of 



 xi 

gene transcription of important cell cycle, centromere, and kinetochore genes, through ectopic 

localization to their respective transcriptional start sites. 

Our findings collectively underscore the necessity of studying diseases of cell division (i.e. 

cancer) from the perspectives of centromere genetics and epigenetics. Further insight into the 

mechanistic underpinnings of centromere derangements in cancer will provide additional 

molecular context to our understanding of this fundamental structure, thus providing opportunities 

to therapeutically reconfigure centromeres to structurally emulate their normal conformation. 

Repairing the form and function of this structure that is ubiquitously important for cancer 

proliferation may prove to be a viable and efficacious therapeutic strategy that has pan-cancer 

clinical potential. 
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Chapter 1 – Introduction: Centromeres in Biology and Disease 

 

Cell Division 

Over three centuries have transpired since Robert Hooke first coined the term “cell” in his 

1665 publication Micrographia to describe what we now classify as the fundamental unit of life1. 

Within this historic work, Hooke detailed his use of microscopy to visualize empty spaces 

contained by walls within a thin slice of cork. He called these contained spaces “cells.” This 

discovery galvanized a period of unprecedented study into these building blocks that make up all 

living things2. The variation in structure and function of these microscopic units is now thought to 

underlie the diversity of life-forms on Earth3. This diversity ranges from simple unicellular 

prokaryotes to complex multicellular eukaryotes. Indeed, the complex tissues, organs, organ 

systems and symbiotic unicellular microbiota that govern human biology reflect the importance of 

cellular variation to the maintenance of human life and health4. 

Equally important to human life and health is cellular proliferation, the process by which 

cellular life propagates to facilitate growth and reproduction5. This process is highly conserved 

across all domains of life, where pre-existing cells give rise to new cells through cell division. The 

unifying principle that defines cell division is the segregation of hereditary material from the parent 

cell into each resulting daughter cell. Cell division takes on vastly different forms in prokaryotes 

and eukaryotes, owing to structural differences in their respective hereditary material6. While both 

rely upon chromosomes containing DNA to encode hereditary information, prokaryotes typically 

possess circular chromosomes while eukaryotes possess linear sets of chromosomes. These 
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structural differences necessitate distinct mechanisms to partition chromosomes during cell 

division. Circular chromosomes typically undergo DNA replication and segregation 

simultaneously in a process known as binary fission7. Linear sets of chromosomes, on the contrary, 

require physical and temporal compartmentalization of DNA replication and segregation in order 

to preserve the fidelity of both processes8. The physical and temporal compartmentalization of 

replication and segregation is conferred through the cell cycle, whereby each linear set of DNA is 

replicated first within a membrane bound nucleus and subsequently partitioned by way of either 

meiosis or mitosis8,9. Meiosis is the process by which haploid gametes are produced whereas 

mitosis is the process by which somatic cells produce genetically identical progeny. While their 

products differ genetically and functionally, both result in the partitioning of linear sets of 

chromosomes, thus requiring similar molecular machinery.  

 

Molecular Determinants of Cell Division 

Microscopic evidence of cell division was first published in 1882, when Walther Flemming 

used dyes that selectively bound what were later called chromosomes to depict the segregation of 

threadlike material during various stages of cell division in salamander embryos10. Reconciling 

Flemming’s molecular work with Gregor Mendel’s laws of inheritance ultimately established 

chromosomes as the hereditary material that is transferred from parent to offspring11,12. 

Flemming’s methodology represents one of the first instances by which molecular compatibility 

between a synthetic substance and naturally occurring biological structures (i.e. chromosomes) 

was repurposed for the study of cell biology. Advances in technology have since facilitated 

molecularly driven studies of cell division that demonstrate remarkable specificity. Modern 

renditions of Flemming’s work rely upon compounds that selectively bind molecular targets of 
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interest in order to precisely ascertain spatial and temporal distributions of the molecular 

components essential to cell division13,14. Aided by these techniques, we have uncovered enormous 

complexity within the molecular composition of the cell division machinery. Various structures, 

their subunits, and their derivatives work in a highly coordinated fashion in order to ensure that 

each cell’s set of chromosomes is divided with high fidelity8. 

First, the cell cycle, a process that spatially and temporally separates DNA replication and 

segregation, is orchestrated by molecules termed cyclins and their effector kinases called cyclin-

dependent kinases (CDKs)15. First characterized in 1971 through experimentation with frog 

oocytes, cyclin-CDK complexes (then called the maturation promoting factor) are now known to 

phosphorylate enzymes and structural proteins important for DNA replication, chromosome 

segregation, and cell cycle progression16,17. Cyclins have many isoforms, each of which exhibit 

cell cycle stage dependent abundance. For example, cyclin B and its effector kinase CDK1 together 

initiate and preside over mitosis during M-phase of the cell cycle. Similarly, the G1, S, and G2 

phases of the cell cycle have their own dominant cyclin-CDK complexes5,15,18. 

Second, once the mitotic cyclin-CDK complex has initiated mitosis, a number of structural 

factors are required to physically separate replicated chromosomes (Figure 1.1). Going from distal 

to proximal relative to the chromosomes, centrosomes assemble at opposites poles of the cell 

during prophase, establishing the axis along which cell division will occur19. The centrosomes 

subsequently give rise to the mitotic spindle fibers, composed of the cytoskeletal protein tubulin20. 

Tubulin multimers polymerize towards the chromosomes until they engage multimeric structures 

on each chromosome termed kinetochores21. Kinetochores serve as the molecular interface 

between each chromosome and the spindle fibers tasked with separating replicated strands of 

DNA. Finally, the structural hallmark of chromosomes that specifies the assembly point for the 
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overlying kinetochore is known as the centromere, a genomic locus that is typically situated centric 

to the ends of each chromosome21–23. 

The importance of each of these components to cell division thus suggests that 

derangements in their structure and function are observed in diseases of cell division, i.e. cancer. 

Indeed, numerous components of the molecular machinery for cell division demonstrate altered 

structure and activity in the setting of malignancy24,25. In particular, given the broad consensus 

surrounding genomic instability and epigenetic anomalies in cancer, the centromere presents an 

intriguing focus of study26. Indeed, these genetic loci and their overlying histone profiles serve as 

the nexus for all components of the cell division machinery, given their central positions within 

each chromosome21. Here, I review our current understanding of centromeres and their 

contributions to cancer pathogenesis. 

 

Centromeres 

When Walther Flemming outlined his observations about cell division in 1882, he paid 

particular attention to an area of each chromosome that he called the “primary constriction10.” This 

region, now called the centromere, has since been the subject of much investigation. The 

centromere is an area of specialized chromatin that serves as the foundation upon which the 

kinetochore assembles21–23. The reliance upon centromeres for proper cell division is highly 

conserved across eukaryotic biology27,28. Centromeres have been observed in numerous species, 

with structural differences that guide their respective molecular biology (Figure 1.2). Point 

centromeres are compact loci whose DNA sequences are both necessary and sufficient to specify 

centromere identity and function, as these sequences serve as binding sites for essential 

kinetochore proteins. Regional centromeres are composed of large arrays of repetitive satellite 
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DNA that is often packaged into condensed and largely inaccessible heterochromatin. The DNA 

in regional centromeres contributes to but, does not necessarily define, function28. This variation 

in structure coincides with species variation in genome size and function; point centromeres are 

found in smaller and simpler organisms like budding yeast whereas regional centromeres are found 

in higher order organisms, including humans.   

 

Point Centromeres 

 Point centromeres were first identified in 1980 by Louise Clarke and John Carbon29,30. 

Their finding represents the first time that centromere DNA was isolated for molecular analyses. 

Point centromeres are discreet loci that contain consensus sequences with binding affinity to 

essential kinetochore proteins. In budding yeast (Saccharomyces cerevisiae), where point 

centromeres are best characterized, a single ~125 base pair monomeric sequence is occupied by a 

single nucleosome composed of a histone H3 variant termed Cse4 (Figure 1.2a). Each of the 16 

chromosomes in budding yeast contains the ~125 base pair consensus sequence bound nucleosome 

that subsequently directs the assembly of the kinetochore30. Since this discovery, the field has 

uncovered astounding structural complexity within centromeres across numerous species, 

complexity that serves as the bedrock upon which cell division finds its genesis. The discovery of 

point centromeres led Clarke to subsequently identify regional centromeres in fission yeast 

(Schizosaccharomyces pombe), paving the way for understanding centromeres of higher order 

species that almost exclusively possess regional centromeres31. 

 

Regional Centromeres 
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Regional centromeres are large regions of DNA that serve as the assembly point for the 

kinetochore and the cell division machinery to facilitate separation of chromosomes. Regional 

centromeres are found across eukaryotic species and take on similar structure22,23. The positioning 

of these centromeres relative to the telomeres, or the ends of the chromosomes, produces varied 

chromosomal structures (acrocentric, submetacentric, or metacentric) based on the ratio between 

the length of the q (or long) arm and the p (or short) arm (Table 1.1). The genetic component of 

regional centromeres is defined by highly repetitive DNA sequences arranged in head to tail 

fashion across the entire centromere, where each repeat unit is largely similar but not identical. In 

humans, regional centromeres make up close to 5% of the human genome22. The repetitive 

elements that comprise human centromeres are called a-satellites, which are 171 base pair units 

that are rich in adenine and thymine (Figure 1.2b). Unlike point centromeres, the a-satellite rich 

backbone of regional centromeres is sufficient but not necessary for proper cell division to 

occur23,28. There are a handful of reports that outline the existence of structures termed 

neocentromeres, or centromeres that form in areas of the genome outside of the canonical 

centromere that do not contain a-satellites but that can still recruit the epigenetic factors required 

for cell division32–35. Neocentromeres have been identified in neoplastic settings and are thought 

to be a purely pathologic finding. In the absence of pathology, the epigenetic factors important for 

cell division decorate the a-satellite rich regional centromeres. The factors are components that 

are critical to proper localization and assembly of the kinetochore21. The distinction between the 

genetic and epigenetic components of regional centromeres is thus central to this thesis, as both 

contribute to centromere function in humans and both genomic instability and epigenetic 

anomalies are observed in human cancer. 
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Centromere Genomics: A Wild Frontier 

 While it is widely acknowledged that the a-satellite rich human centromere plays a 

significant role in cell division, large gaps remain in our collective understanding of the precise 

mechanisms by which the human centromere carries out its function22,23. A full end-to-end 

assembly of each human centromere is to this day unavailable, with the exception of the 

centromere from chromosome Y36. These regions thus remain as one of the final uncharted 

frontiers within the human genome. Despite major advancements in next generation sequencing 

(NGS) technology, low-complexity regions characterized by repetitive sequences, including 

centromere a-satellite DNA, have generally been considered refractory to sequencing due to non-

unique alignments that arise during computational assembly of these regions. Bioinformatics 

approaches that require a reference genome for alignment thus traditionally exclude these low-

complexity regions during analysis. 

Recent efforts at overcoming the technical shortcomings of NGS approaches have focused 

on more conventional molecular biology techniques, including extended chromatin fiber analysis, 

fluorescent in-situ hybridization (FISH), and Southern blotting-based approaches22,37–43. 

Chromatin fiber analysis, FISH, and Southern blotting, while effective for qualitatively and 

quantitatively characterizing localization and size of given centromeric proteins and sequences, 

are labor, resource, and time intensive. Polymerase chain-reaction (PCR) based approaches, such 

as those recently developed by Dr. Rafael Contreras-Galindo in our group, offer expedited 

evaluation of the centromeric content within any given sample, making it more scalable than 

chromatin fiber analysis and hybridization-based approaches when evaluating samples derived 

from human cell lines and tissue44. Corroboration of the specificity and sensitivity of PCR-

approaches by a number of orthogonal methodologies, including FISH, Southern blotting, and 
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Sanger sequencing, suggests that using rapid centromere targeted PCR methodologies is a viable 

strategy for studying centromere genetics39,44–46. In this thesis, all genetic interrogation of 

centromeres relies upon PCR-based methodologies, unless otherwise denoted in the data. 

 

Centromere Epigenetics 

 Given the difficulties associated with studying the genetics of human centromeres, efforts 

to study them have focused on the epigenetics that drive centromere assembly (Fig 1.3)47,48. The 

a-satellite sequences that define centromere DNA are primarily occupied by a centromere specific 

histone H3 variant known as CENPA47,49. CENPA is a highly conserved ~17 kDa molecule that 

forms a centromere-specific nucleosome with H2A, H2B and H450. Proper CENPA localization is 

a ubiquitin E3 ligase dependent process, requiring ubiquitination of lysine 124 (K124) for 

engagement with the CENPA specific chaperone HJURP51. HJURP, along with the MIS18 

complex subsequently facilitates the incorporation of newly synthesized CENPA into nucleosomes 

occupying replicated a-satellite DNA52,53. CENPA nucleosomes have a unique set of binding 

partners that facilitate proper genomic localization, including CENPB, CENPC, and the 

constitutive centromere associated network (CCAN) that comprises the inner kinetochore54,55. The 

CCAN serves as a multimeric interface between the DNA-enveloped CENPA nucleosomes and 

the KMN (KNL-1/Mis12 complex/Ndc80 complex) network that comprises the outer kinetochore 

and directly interacts with the microtubule spindle fibers56. CENPA and its associated proteins 

therefore represent structural components that are essential to the integrity of cell division, and 

appropriate genomic localization of centromeric proteins is consequently a critical event in the cell 

cycle. 
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Cancer: A Disease of Cell Division 

The importance of cell division to human growth and development therefore establishes that 

derangements that occur during the process of cell division can give rise to diseases defined by 

abnormal cell growth and proliferation. Indeed, three of the hallmarks presented in Hanahan and 

Weinberg’s landmark paper in 2000 (and their follow-up paper in 2011) implicate dysregulated 

cell division as a fundamental characteristic that defines cancer26,57. In 2018, there were 17 million 

new cases of cancer worldwide58. Cancer is the second leading cause of death globally, claiming 

9.6 million lives in 2018 according to the World Health Organization (WHO). While the 

underlying reasons are complex, a steadily aging and growing population as well as changes in the 

prevalence and distribution of risk factors are implicated in the rising prevalence and mortality of 

cancer59. Multi-institutional endeavors that catalogue molecular and clinical irregularities within 

cancer tissue in the form of large publicly available databases have provided oncologists and 

cancer biologists a wealth of information to comprehensively interrogate this heterogeneous class 

of diseases60,61. Understanding cancer from the standpoints of cellular and molecular biology is 

imperative to identifying novel therapeutics that can curb the growing burden of disease. 

 

Genomic Instability 

One of the enabling characteristics of cancer outlined by Hanahan and Weinberg in 2011 

is genomic instability and mutation. Of the ten hallmarks, many of them depend upon successive 

genomic alterations to ultimately produce neoplastic cells26. Indeed, many genes that are important 

for regulating the timing and structural definitions of cell division are subjected to mutational 

events that relieve checks on uncontrolled proliferation or produce additional mutations in the form 

of rearrangements or copy number amplification through aneuploidy. These genes include those 
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that encode cyclins, cyclin dependent kinases, and DNA-replication/repair machinery62–66. Certain 

cancers also demonstrate hypermutability phenotypes, owing to mutational loads that accumulate 

due to dysfunctional DNA repair machinery or to chemical carcinogens that increase mutation 

rates in actively dividing cells67–69. Comparative genomic hybridization (CGH) of chromosomes 

from various cancer types has additionally unveiled gross copy number alterations in specific 

genomic loci and sometime of whole chromosomes themselves70. The advent of NGS technologies 

eventually paved the way for The Cancer Genome Atlas (TCGA) Program, a multi-institutional 

effort that has molecularly catalogued over 20,000 primary cancer tissues and matched normal 

samples from 33 cancer types60. Parsing through this massive database has provided high-

resolution assessments of cancer genomes, corroborating much of what we had previously known 

about genomic instability in cancer while simultaneously providing novel insights into biological 

processes that maybe preferentially going awry in neoplastic cells relative to their normal 

counterparts. 

 

Epigenetic Destabilization 

Running parallel to the well-established notion that cancer genomes display widescale 

alterations that confer selective advantage are the discoveries of pathogenic alterations to the 

epigenetic landscape in cancer. Comprehensive evaluation of gene expression, transcription factor 

binding, histone modifications, DNA methylation, and histone variant occupancies have 

uncovered gross alterations in gene regulation and epigenetic function across several cancer 

types71–74. Transcription factors such as c-Myc, FOXM1, and the E2F family, which are important 

for proper timing and initiation of cell division, are almost universally implicated in oncogenic 

gene expression patterns75–81. Polycomb repressor complex 2 (PRC2) component abundance and 
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the resultant increase in the H3K27me3 repressive mark are established markers of disease across 

cancer types82,83. Global DNA hypomethylation is considered a ubiquitous feature of 

carcinogenesis thought to alter gene expression profiles through destabilizing transcriptional 

repression in cancer72,84. Gene regulatory elements that are uncharacteristically occupied by 

promiscuous histone variants, such as H3.3 or macroH2A, have been shown to alter gene 

expression profiles towards those that are reflections of malignant phenotypes85–88. 

 

Derangements in Centromeres 

Genetics 

 Diseases of cell division, particularly cancer, remain largely unexplored within the realm 

of centromere genetics33,89–92. Gaining deeper insight into the contribution of centromere genetics 

to tumorigenesis and cancer progression thus has the potential to inform novel therapeutic 

strategies capable of improving long-term outcomes. Unfortunately, the oncogenic potential of 

centromeric sequences remains undetermined, due to the shortcomings of sequencing 

methodologies. TCGA has largely overlooked these sequences when evaluating loci that are 

frequently altered in cancer, due to the issue of non-unique alignments that arise during 

bioinformatic analyses of sequencing data. However, one can postulate that repetitive loci, which 

are known to undergo recombination events that produce amplifications and deletions, may 

experience expansions and contractions due to the genomic instability that is an enabling feature 

in cancer92–94. Indeed, recombination in centromeres has been observed in maize, resulting in 

sequence evolution with every generation95–97. Chapter 2 of this thesis presents a foray into the 

wild frontier of centromeres in cancer as an effort to gain a better understanding of potentially 

pathological processes that occur within this largely overlooked, but important locus. Using the 
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centromere specific PCR assay developed in-house, we report wide-scale alterations in 

centromeric content in both cancer cell lines and tissue.  

 

Epigenetics 

 Diseases of uncontrolled cell proliferation such as cancer, are compelling to examine from 

the epigenetic perspective of centromere biology. A number of studies have identified aberrant 

expression of centromeric/kinetochore proteins in cancers, where overexpression is predictive of 

survival and response to therapy, though their mechanistic contribution to cancer pathogenesis 

remains elusive24,25,98,99. In the setting of ectopic constitutive overexpression, CENPA, the histone 

H3 variant that epigenetically defines centromeric chromatin, has been shown to bind non-

centromeric DNA. While CENPA localization normally requires engagement with HJRUP 

through a ubiquitin E3 ligase dependent process, CENPA promiscuity for non-centromeric DNA 

in the setting of ectopic overexpression is independent of aberrant E3 ligase activity and reliant 

upon the histone chaperone DAXX100. Ectopic localization of endogenously overexpressed 

CENPA has also been shown in colon cancer cell lines101. CENPA promiscuity thus presents 

another example of altered histone variant occupancy in cancer. The phenotypic consequences of 

such mislocalization in malignancy have yet to be elucidated, though ectopic binding to sites 

marked by DNase hypersensitivity and CTCF transcription factor affinity hint at a potential role 

in regulating gene transcription100,101. In Chapter 3 of this thesis, we aim to expand upon these 

intriguing findings to provide novel insight into the process of ectopic CENPA localization. 

Through the use of cell biology and integrated genomics approaches, we demonstrate a possible 

regulatory function in gene transcription for ectopically localized CENPA. 
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Conclusion 

 Centromeres represent essential structural components to cell division that ensure the 

faithful segregation of chromosomes during mitosis. Through interactions with the overlying 

kinetochore and mitotic spindle fibers, centromeres coordinate the cell division machinery to 

equally partition hereditary material from parent cells to each resulting daughter cell. Centromeres 

are thus compelling to study from both genetic and epigenetic perspectives in diseases of cell 

division such as cancer. Previous work has demonstrated that the epigenetic components of the 

centromere demonstrate uncharacteristic behavior in neoplastic settings, though the functional 

consequences of this behavior have yet to be ascertained. Unfortunately, technologic shortcomings 

limit a more comprehensive characterization of centromere genetics in cancer, and whether genetic 

aberrations may contribute to the promiscuous behavior of the epigenetic factors that define 

centromere chromatin. Novel and integrative methodologies are thus required to gain a more 

complete understanding of how centromeres behave during cancer pathogenesis and progression. 

We here demonstrate large scale genetic alterations in the centromeric locus in cancer cell lines 

and tissue. We further demonstrate that the epigenetic anomalies in centromeric components that 

arise in cancer, such as CENPA overexpression, have functional roles that affect gene regulation 

and transcription, using prostate cancer as our primary disease model. Collectively, this work aims 

to provide clarity to the roles that both the genetics and epigenetics of centromeres play in the 

setting of cancer, the most widely studied disease of cell division. 
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Figures 

 
Authors: Anjan K. Saha, David M. Markovitz 
 
Figure 1.1: Schematic depiction of the structural factors necessary for chromosomal 
segregation. Centrosomes produce mitotic spindle fibers that polymerize towards the kinetochore, 
a multimeric structure that assembles over the centromere. 
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Figure 1.2: Schematic representation of point and regional centromeres. a) Point centromeres 
in budding yeast contain discreet consensus sequences within centromere DNA elements (CDE I 
– III) that recruit essential kinetochore proteins. The locus is occupied by a single CenH3 histone 
variant called Cse4 (the yeast equivalent of what is called CENPA in humans). b) Regional 
centromeres in humans are large loci composed of 171 base pair a-satellite DNA arranged in a 
head to tail fashion. Regional centromeres make up close to 5% of the human genome. 
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Figure 1.3: Schematic illustration of the epigenetic compartmentalization of the centromeric 
locus in humans and the overlying kinetochore. Most proximal to the DNA on each 
chromosome is the centromeric H3 variant known as CENPA, along with its chaperone, HJURP, 
and recruitment machinery known as the MIS18 complex. The inner kinetochore, also known as 
the constitutive centromere associated network (CCAN), serves as the molecular interface between 
the centromere and the outer kinetochore (KMN complex) that directly interacts with the mitotic 
spindle fibers. 
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Tables 
 
Table 1.1: Centromere position-dependent nomenclature of human chromosomes 

Description Definition Examples 

Telocentric 
Centromere located near the telomere. 
The p-arm is barely visible if visible at 
all. 

No examples in humans. 
Mouse chromosomes are 
characteristically telocentric. 

Acrocentric 
The p-arm of the chromosome is much 
shorter than the q-arm but longer than 
those in telocentric chromosomes. 

Chromosomes 13, 14, 15, 21, 
22, and Y 

Submetacentric The p arm and q arm are similar in 
length but not equal. 

Chromosomes 2, 4, 5, 6, 7, 8, 
9, 10, 11, 12, 17, 18, X 

Metacentric The p arm and q arm are equal in 
length. Chromosomes 1, 3, 16, 19, 20 
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Chapter 2 – The Genomic Landscape of Centromeres in Cancers 

 

Summary 

Centromere genomics remain poorly characterized in cancer, due to technologic limitations 

in sequencing and bioinformatics methodologies that make high-resolution delineation of 

centromeric loci difficult to achieve. We here leverage a highly specific and targeted rapid PCR 

methodology to quantitatively assess the genomic landscape of centromeres in cancer cell lines 

and primary tissue. PCR-based profiling of centromeres revealed widespread heterogeneity of 

centromeric and pericentromeric sequences in cancer cells and tissues as compared to healthy 

counterparts. Quantitative reductions in centromeric core and pericentromeric markers (α-satellite 

units and HERV-K copies) were observed in neoplastic samples as compared to healthy 

counterparts. Subsequent phylogenetic analysis of a pericentromeric endogenous retrovirus 

amplified by PCR revealed possible gene conversion events occurring at numerous 

pericentromeric loci in the setting of malignancy. Our findings collectively represent a more 

comprehensive evaluation of centromere genetics in the setting of malignancy, providing valuable 

insight into the evolution and reshuffling of centromeric sequences in cancer development and 

progression. 

 

Introduction 

The centromere is essential to eukaryotic biology due to its critical role in genome 

inheritance1,2. The nucleic acid sequences that dominate the human centromeric landscape are α-
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satellites, arrays of ~171 base-pair monomeric units arranged into higher-order arrays throughout 

the centromere of each chromosome1–3. These α-satellites underlie a hierarchical network of 

proteins that collectively make up the kinetochore, a large multimeric structure that serves as a 

molecular bridge between chromosomes and microtubule polymers from the mitotic spindle during 

cell division. The interaction between centromeres, kinetochores and microtubule polymers lies at 

the nexus of metaphase and anaphase, ensuring faithful separation of the sister chromatids during 

mitosis.  

 Centromeres are thus critical to maintaining the fidelity of chromosomal segregation in 

proliferating tissues. While much is known about the hierarchical network of proteins that 

epigenetically compartmentalizes centromeres, the genomic foundation of the centromere remains 

largely uncharted. Centromeres remain a genetic black box that encompasses 2-5% of the human 

genome4. Despite advancements in next-generation sequencing (NGS) technologies, full 

assemblies of centromeric loci are still unavailable within the latest builds of the human genome, 

with the exception of a linear assembly of the centromere of chromosome Y5. Low complexity 

genomic regions, characterized by the contiguous arrangement of repetitive sequences, present 

computational challenges owing to nonunique alignments that are impractical for current 

informatics pipelines to navigate. Low complexity regions like centromeric loci are consequently 

excluded from most downstream bioinformatics analyses. 

 Methodologies that can add resolution to the genomic landscape of the centromere will 

thus play an integral role in developing a more nuanced understanding of its contribution to health 

and disease. Efforts to overcome the technical shortcomings of NGS approaches have focused on 

more conventional molecular biology techniques, including extended chromatin fiber analysis, 

fluorescent in-situ hybridization (FISH), Southern blotting, and polymerase chain-reaction (PCR) 
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based approaches4,6–13. While effective for qualitatively and quantitatively characterizing 

localization and size of centromeric proteins and sequences, these methods are labor, resource, and 

time intensive. Diseases of cell division, particularly cancer, remain largely unexplored within the 

realm of centromere genetics, due to the lack of scalable alternatives to sequencing technology14–

18. PCR-based approaches, corroborated for specificity and sensitivity, offer expedited evaluation 

of the centromeric content within any given sample, making it more scalable than chromatin fiber 

analysis and hybridization-based approaches when evaluating samples derived from human cell 

lines and tissue8,9,19,20. Applying scalable PCR-based approaches to the assessment of centromere 

size and structure in biological settings like cancer is therefore critical to contextualizing our 

knowledgebase on centromere genetics. 

 Here we report substantial heterogeneity in the centromeric landscape in cancer cell lines 

and tissues, in terms of copy number differences between tissues as well as differences between 

cancer cells/tissues and healthy cells. Both solid and hematologic tumors demonstrated marked 

copy number alterations in centromeric and pericentromeric repeats, as measured by a previously 

described quantitative centromere-specific PCR assay that targets core centromeric α-satellite 

DNA as well as pericentromeric human endogenous retrovirus (HERV) DNA9. Phylogenetic 

analysis of HERV sequences in several cancer cell lines suggests that pericentromeric sequences 

undergo aberrant recombination during tumorigenesis and/or disease progression, consistent with 

derangements that have been previous reported12,18,21,22. Strikingly, centromeric variation is a 

feature present across cancer tissue types, including primary tissue samples, providing further 

substantiation to the notion that genomic instability in centromeres is a ubiquitous occurrence in 

cancer. Evaluation of the centromeric landscape in the setting of malignancy thus reveals marked 
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genetic alterations that may reflect novel pathophysiologic contributions to the development and 

progression of cancer. 

 

Results 

Cancer Cell Lines Demonstrate Heterogeneous Alterations in Centromeric and Pericentromeric 

DNA 

 NGS approaches to interrogating genetic alterations in cancer have repeatedly 

demonstrated ubiquitous genomic instability that is a hallmark of malignancy. However, the lack 

of an end-to-end assembly of centromeric loci prevents mapping of representative centromeric 

reads to a standardized reference. We have thus employed a rapid PCR-based approach that we 

previously described to evaluate the genomic landscape of centromeres and pericentromeres in 

several human cancer cell lines (Figure 2.1). The method was previously validated by comparison 

to meta-analyses of data from studies using NGS and southern blot, as well as through FISH 

analysis9. The cell lines studied here are representative of a variety of different tissue types, 

originating from both solid and hematologic malignancies. Our PCR-based methodology unveils 

significant heterogeneity in the centromeric and pericentromeric content in all 24 chromosomes 

across tissue types and as compared to healthy cells. This heterogeneity extends to HERVs, such 

as HERV K111, that we have previously shown to reside in pericentromeric regions. Unsupervised 

hierarchical clustering of the chromosome specific repeats demonstrates a striking organization to 

the patterns in centromere heterogeneity, differentiated by the region of the centromere (core or 

pericentromere) to which each repeat localizes. Similar clustering analysis applied across the 

different cell lines revealed that heterogeneity in centromeric and pericentromeric content is tissue 

type agnostic, with the exception of healthy peripheral blood lymphocytes (PBLs) that demonstrate 
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higher relative concordance. The heterogeneity observed reflects a preference for contractions in 

centromeric and pericentromeric content, consistent across numerous tissue types (Figure 2.2 – 

2.6). More specifically, D13Z1, D10Z1, D2Z1, D3Z1, D8Z2, D16Z2, and K111 demonstrated the 

most appreciable losses when collectively assessing all tested cancer cell lines. The nomenclature 

of these α-satellites begins with the letter D, followed by their resident chromosome number (1–

22, X or Y), followed by a Z, and a number indicating the order in which the sequence was 

discovered. Consistent with the global loss of whole chromosomes previously reported in 

teratocarcinoma cells, we noted widescale loss of centromere arrays in teratocarinoma cell lines 

derived from male patients in this study (Figure 2.6)23–26. Of note, K111 deletion stood out as 

ubiquitous across all evaluated cell lines. Collectively comparing normal peripheral blood 

mononuclear cells (PBMCs) to cancer cell lines, grouped by tissue type, revealed marked 

reductions in pericentromeric material, using K111 copy number as a surrogate for pericentromeric 

content (Figure 2.7)12,27. 

 A more focused analysis on breast cancer cell lines allowed us to cross-reference the 

observed heterogeneity in centromeric DNA against known molecular classifications and 

karyotypes for each cell line to ascertain whether centromeric and pericentromeric deletions were 

the result of previously described genetic derangements, such as recurrent molecular alterations or 

whole chromosome copy number loss, as seen in teratocarcinoma cell lines (Figure 2.8)28–33. 

Strikingly, the centromeric content demonstrated heterogeneity across the four molecular subtypes 

for breast cancer (Basal, HER2, Luminal A, and Luminal B); unsurprisingly, healthy PBLs 

clustered together. Similar to other tissue types tested, breast cancer cell lines also demonstrated a 

predilection for contracted centromeres and pericentromeres compared to healthy PBLs (Figure 

2.9). While contraction of D13Z1 in Hs578T, BT474, and MDA-MB-361 can be attributed to loss 
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of whole chromosome 13, contraction of D8Z2 in T47D, D3Z1 and D8Z2 in BT549, and D8Z2 

and D10Z1 in SKBr3 were observed despite well characterized copy number amplifications of the 

respective chromosomes. K111 again demonstrated robust contractions relative to other markers. 

The strong reduction in DYZ3 (α-satellite on chromosome Y) to nearly undetectable levels 

provided validation for the specificity of the rapid PCR-based approach to evaluating centromeric 

content, given the absence of Y-chromosomes in breast cancer cell lines derived from females. 

Taken together, marked heterogeneity in centromeric and pericentromeric DNA is observed in 

cancer cell lines, with a predilection towards contraction when comparing cancer cell lines to 

healthy PBLs. 

 

Gene Conversion of Pericentromeric HERV Sequences in Cancer Cell Lines 

 The genomic landscape of the centromere is characterized by thousands of copies of 

repetitive elements arranged in tandem to form higher order arrays1. Repetitive genomic regions 

are known to be subject to recombination due to sequence homology18,34,35. Intrachromosomal 

recombination is one example of repeat-associated recombination that can lead to either deletions 

that reduce the number of repeat units or gene conversion events that genetically homogenize the 

sequences of repeat units36–38. Interestingly, in contrast to healthy PBLs, we identified drastic 

reductions in pericentromeric K111 sequences across all evaluated cancer cell lines (Figure 2.1 

and 2.8). While real-time PCR demonstrates deletion of centromeric and pericentromeric material 

in cancer cell lines, purely quantitative assessments do not provide insight into other recombination 

events, such as gene conversion. Furthermore, sequence analysis of α-satellites is unreliable for 

identifying gene conversion events. We thus conducted phylogenetic analysis on the sequences of 

real-time PCR amplicons from breast cancer cell lines to identify gene conversion events within 
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K111 loci, given ubiquitous loss of K111 across all cancer cell lines (Figure 2.10a). Our previous 

work has shown that divergence in K111 sequence similarity is dependent on chromosomal 

location of K111 loci12,27. We now show that K111 copies identified in breast cancer cell lines 

demonstrate cell line dependent sequence convergence towards K111 subtypes that organize into 

distinct clades (Figure 2.10b). The K151 cell line (pink) remarkably produced distinct clades that 

emerged in close proximity relative to each other from the same ancestral sequence. Sequences 

amplified from the K151 cell line were notably not distributed heterogeneously throughout the 

tree. Three additional breast cancer cell lines (MDA-MB-435, DT-13, and HCC1599) formed two 

exclusive subtypes that were also separated by phylogenetic analysis. 

 Phylogenetic analysis was also conducted in adult T-cell leukemia (ATL) cell lines and 

revealed similar patterns as in breast cancer (Figure 2.11). ATL26 alone formed three exclusive 

subtypes that diverge in homology from normal K111 clades. Of note, K111 clades arising from 

ATL43 and ATL16 demonstrated strong homology to K111 Solo LTRs, suggesting 

intrachromosomal recombination that has deleted K111, i.e. pericentromeric material. ATL43 and 

ATL16 indeed demonstrate the strongest reductions in K111 copy number relative to other ATL 

cell lines (Figure 2.7). As Solo LTRs are the result of homologous recombination between the 

LTRs flanking endogenous retroviral sequences39–41, ATL cell lines having de novo K111 

sequences with higher relative homology to Solo LTR sequences suggested that pericentromeric 

K111 sequences served as templates for gene conversion. Taken together, cell line dependent 

sequence convergence of HERV-K111 in cancer cell lines suggests that gene conversion events 

are driving sequence evolution within the pericentromeres of cancer cell lines. 

 

Heterogeneous Loss of Centromere DNA in Cancer Tissue 
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 Human cancer cell lines are useful models for evaluating cancer biology and genetics in an 

in vitro setting. Indefinite cellular propagation, however, results in clonal selection for cells that 

have a fitness advantage for growing ex vivo. Such a fitness advantage is sometimes conferred by 

abnormal karyotypes (aneuploidy), a cytogenetic feature that can influence the results of PCR 

based analyses. Cancer tissue itself thus presents the most accurate representation of malignancy-

associated genomic instability that results from microenvironmental pressures that cannot be 

reproduced ex vivo. We thus applied our rapid PCR-based approach to DNA isolated from primary 

cancer tissue. Profiling the centromeric landscape in 9 different ovarian cancer samples against 

matched PBMCs revealed similarly significant loss of a-satellites across multiple chromosomes 

as observed in cell lines (Figure 2.12). Indeed, quantitative assessment of this heterogeneity again 

revealed copy number reductions in the cancer tissue, similar to findings noted in cell lines (Figure 

2.13). Strikingly, a drastic reduction in the centromere of chromosome 17 (D17Z1) was seen in 

ovarian cancer tissue when compared to healthy tissue (Figure 2.13), corroborating previous 

reports of chromosome 17 anomalies in ovarian cancer42. No changes were seen in the single copy 

gene GAPDH found in the arm of chromosome 12. A significant loss in GAPDH is, however, 

noted in Sample 285, raising the possibility that this sample’s karyotype displayed derangements 

that are reflected in the PCR data. Tumor karyotypes for tested samples were, however, unavailable 

for corroboration. 

 While matched blood samples provide reliable non-malignant references to their malignant 

counterparts, comparisons between primary ovarian cancer tissue and matched blood does not 

sufficiently deconvolute tissue specific genetic heterogeneity that may be present in normal 

biologic settings. To expand upon our findings, and to specifically address this latter issue, we 

profiled the centromeres of B-cells and T-cells that were separated by cell-surface marker selection 
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from chronic lymphocytic leukemia (CLL) primary samples. CLL is a malignancy that arises in 

B-cells, as opposed to T-cells, within the bone marrow. Applying our methodology to compare 

patient matched B-cells and T-cells from CLL samples, both cells of lymphocytic lineage, thus 

largely eliminates the confounding contributions of normal development and tissue specificity to 

genetic heterogeneity in the centromere. Fewer repeats per sample were evaluated than in the 

experiments described above due to the limited availability of tumor DNA from each patient. 

Intriguingly, unsupervised hierarchical cluster analysis across patient samples cleanly separates 

healthy cells from diseased cells based on chromosome specific α-satellite abundance (Figure 

2.14). We show contraction of numerous centromeres in malignant CD19+ B-cells as compared to 

their normal CD3+ T-cell counterparts, whereas no changes were seen in the housekeeping gene 

GAPDH found in the arm of chromosome 12 (Figure 2.15). Strikingly, we see no such centromeric 

differences between B-cells and T-cells separated from blood samples derived from healthy 

individuals. Taken together, centromeric contraction is a characteristic that is present in primary 

cancer samples, consistent with our data in cancer cell lines. 

 

Discussion 

 The importance of centromeres to cell division provides a strong rationale for interrogating 

the genetics of the centromere in cancers. The challenges associated with studying the genomic 

landscape of centromeres, owing to the informatics impracticalities of evaluating low complexity 

regions, have however hindered meaningful progress in understanding the contributions of 

centromere genetics to tumorigenesis and cancer progression. Only one previous study reported 

the loss of centromere DNA in leukemia cells using fluorescent in situ hybridization (FISH)43. We 

demonstrate, for the first time, that centromeres and pericentromeres display heterogeneous 
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alterations in the setting of malignancy, both in cancer cell lines and primary samples. We show 

that these heterogeneous alterations reflect marked reductions and gene conversions of repetitive 

elements and HERVs in multiple centromeres and pericentromeres, suggesting that oncogenic 

genomic instability selects against the presence of most centromeric sequences and perhaps for 

certain pericentromeric sequences. While mechanistically uncharacterized, these findings have 

direct implications for our understanding of global genomic instability in cancer, given the 

importance of centromeres to faithful segregation of chromosomes. The loss of centromeric 

material in chromosome 17 described above is an example of the concordance between centromere 

instability and ovarian cancer pathogenesis, given the recurrent alterations in chromosome 17 that 

have been previously described in ovarian cancer42. While in some cases loss of centromeric DNA 

could be attributed to a loss of that entire chromosome, there is also a substantial loss of 

centromeric DNA in specific chromosomes that are known to be euploid or even polyploid in a 

given cancer cell line. Further, we have shown previously that DNA from patients with trisomy 13 

and trisomy 21 exhibit loss of pericentromeric K111 and that DNA from patients with trisomy 21 

exhibit loss of D21Z1, suggesting that pericentromeric and centromeric contraction may drive mis-

segregation of chromosomes 13 and 219. It is thus conceivable that alterations in centromeres and 

pericentromeres may underlie chromosome segregation defects that are routinely observed in the 

context of abnormal cell proliferation. Gaining deeper insight into the mechanism driving gene 

conversion and centromere contraction may facilitate the identification of novel molecular drivers 

that can be targeted to prevent potentially oncogenic mis-segregation events. 

 While the genetics of centromeres in cancer continue to be elucidated, there is a body of 

work that has uncovered dysregulation of centromere epigenetics and transcriptional activity in 

malignancy. Overexpression of CENPA is observed ubiquitously across various cancers, with 
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evidence of ectopic CENPA deposition at extra-centromeric loci across the human genome44–47. 

Satellite RNA abundance is an additional feature that been identified in cell lines and tissue48–50. 

Our findings of genomic contraction of centromeres provides a topographic rationale for the 

redirection of unbound CENPA to readily accessible ectopic loci in the setting of CENPA 

overexpression, though additional work is required to distinguish the role of cancer specific post-

translational modifications in ectopic deposition of CENPA51,52. Moreover, while not 

mechanistically validated, regions that repress transcriptional homeostasis within centromeric loci 

may be lost (but beyond the sensitivity of PCR interrogation) during genomic contraction of 

centromeres and pericentromeres in cancer, thus driving transcriptional activity and 

overexpression of satellite RNAs in malignancy. Indeed, DNA methylation, an epigenetic mark of 

transcriptional repression, is prevalent within centromeric loci53,54. Selective deletion of 

methylated regions in centromeres during cancer pathogenesis may relieve transcriptional 

repression, resulting in overexpression of satellite RNAs. Cancer specific examination of DNA-

methylation at the centromeric region that leverages our PCR methodology will be essential to 

validating this line of reasoning. 

 Instability in centromeric and pericentromeric loci in the setting of malignancy is consistent 

with the global genome instability that is a well characterized hallmark of cancer55. Subsets of 

breast and ovarian cancer have well studied DNA repair aberrations in homologous recombination 

proteins BRCA1/256. Recent genomic profiling of several other malignancies has identified new 

disease subsets classified by molecular alterations in DNA repair genes and pathways57,58. It is 

conceivable that subsets of cancer that are dysfunctional in DNA repair may exhibit pronounced 

heterogeneity in centromeric content. Thus, it must be acknowledged that hypermutability in DNA 

that results from DNA repair dysfunction in cancer may alter centromere and pericentromere 
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sequences enough to prevent detection by PCR, appearing like copy number loss or gene 

conversion in phylogenetic analysis instead of mismatches or single nucleotide polymorphisms 

(SNPs). Stratifying samples by DNA repair signatures prior to profiling the genomic landscape of 

centromeres may provide a strategy for identifying mechanistic contributors to centromere 

contraction in the setting of malignancy. Moreover, genomic profiling of centromeres in cancer 

tissue may produce signatures that are predictive of responders to therapies that target the DNA 

repair machinery, such as poly-ADP ribose polymerase (PARP) inhibitors. 

 In conclusion, we here provide quantitative resolution of the largely uncharacterized 

human centromere in the setting of cancer.  We notably shed light on a region that has been widely 

considered a black box and impervious to rapid and comprehensive inquiry at the genomic level. 

The wide-spread alterations observed in cancer cell lines and primary tissue provide a sound 

rationale to mechanistically interrogate the molecular machinery that is likely driving the selection 

against centromeric material. Mechanistic characterization of genomic instability at centromeric 

loci has the potential to inform therapeutic approaches aimed at improving disease outcomes across 

several cancer types. 

 

Materials and Methods 

Cell Lines and Cell Culture. Cell lines were cultured according to American Type Culture 

Collection (ATCC) recommendations. Cell lines were grown at 37 °C in a 5% CO2 cell culture 

incubator and authenticated by short tandem repeat (STR) profiling for genotype validation at the 

University of Michigan Sequencing Core. ATL cell lines were cultured and authenticated as 

previously described59. 
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DNA Isolation. DNA extraction was performed on cell lines and tissue with the DNeasy Blood 

and Tissue Kit (QIAGEN) according to manufacturer’s instructions. DNA was preserved at -20° 

C. 

 

Blood and Tumor Cell Separation. Between January 2005 and September 2016 patients with 

chronic lymphocytic leukemia (CLL) evaluated at the University of Michigan Comprehensive 

Cancer Center were enrolled onto this study. The trial was approved by the University of Michigan 

Institutional Review Board (IRB no. HUM00045507). Patients consented for tissue donation in 

accordance with a protocol approved by the University of Michigan’s IRB (IRB no. 

HUM0009149). Written informed consent was obtained from all patients before enrollment in 

accordance with the Declaration of Helsinki. CLL diagnostic criteria were based on the National 

Cancer Institute Working Group Guidelines for CLL. Eligible patients needed to have an absolute 

lymphocytosis (> 5000 mature lymphocytes/μL), and lymphocytes needed to express CD19, 

CD23, sIg (weak), and CD5 in the absence of other pan-T-cell markers. Peripheral blood 

mononuclear cells (PBMCs) were isolated by venipuncture and separated using Histopaque-1077 

(Sigma). Cryopreserved PBMCs (frozen after Ficoll-gradient purification) from CLL blood 

specimens were prepared for FACS and sorted into CD19+ (B-cells) and CD3+ (T-cells) cells as 

previously described60. Ovarian cancer DNA were isolated from Stage IIIc or Stage IV ovarian 

carcinomas. Tumor samples were obtained from the operating room and immediately taken to the 

laboratory for processing. Tissue was maintained in RPMI/10% FBS throughout processing. Fresh 

4 × 4 × 2–mm tumor slices were rinsed several times to remove all loosely attached cells. The 

tissue was then placed in a tissue culture dish and DNA was extracted as described above. 
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Rapid Centromere Target PCR Assay. PCR was conducted on DNA samples from cell lines and 

primary cancer samples according the previously described conditions9. Briefly, copy numbers for 

each centromeric array, proviruses K111/K222, and single-copy genes were measured by qPCR 

using specific primers and PCR conditions as described. PCR amplification products were 

confirmed by sequencing. The qPCR was carried out using the Radiant Green Low-Rox qPCR 

master mix (Alkali Scientific) with an initial enzyme activation step for 10 min at 95°C and 16–

25 cycles consisting of 15 sec of denaturation at 95°C and 30 sec of annealing/extension. 

 

PCR for 5’ and 3’ K111 LTR Insertions. K111 insertions were amplified by PCR using the Expand 

Long Range dNTPack PCR kit (Roche Applied Science, Indianapolis, IN) as described. K111 5’ 

and 3’ LTRs and accompanying flanking regions were amplified. PCR was performed using an 

initial step of 94 °C for 2 min followed by 35 cycles consisting of denaturation at 94 °C for 30 sec, 

annealing at 55 °C for 30 sec, and extension at 68 °C for 5 min. The amplification products were 

cloned into the topo TA vector (Invitrogen, Carlsbad, CA) and sequenced. 

 

Phylogenetic Analysis. Analysis was conducted as outlined previously61. The K111-related LTR 

sequences obtained from the DNA of cell lines, and DNA from human/rodent chromosomal cell 

hybrids were subjected to BLAST analysis against the NCBI nucleotide database. Sequences were 

aligned in BioEdit and exported to the MEGA5 matrix. LTR trees were generated using Bayesian 

inference (MrBayes v 3.262) with four independent chains run for at least 1,000,000 generations 

until sufficient trees were sampled to generate more than 99% credibility. 
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Statistics and Data Analysis. All heatmaps were generated using the gplots, RColorBrewer, and 

plotrix packages within the RStudio integrated development environment for the R statistical 

programming language. Data were log2 normalized to the median values of healthy samples. Tests 

of statistical significance employed two-sided student t-tests, with level of significance denoted on 

appropriate plots. 

 

Data Availability. Sequences of K111-related insertions amplified from human DNA and 

human/rodent somatic chromosomal cell hybrids are deposited in the NCBI database with 

Accession Numbers (JQ790790 - JQ790967). All other data generated or analyzed during this 

study are included in this published article (and its Supplementary Information files). 
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Figures 
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Figure 2.1: Heterogeneous alterations of centromere DNA in cancer cell lines. Heatmap 
representing the abundance of α-satellites specific for each centromere array (rows) obtained by 
qPCR in 50 ng of DNA from healthy cells and from cancer lines (columns). Relative abundance 
is denoted by the gradient legend (top left). Cancer type and α-satellite localization is depicted as 
indicated by the legend (bottom left). Repeats marked with an asterisk (also bolded and italicized) 
represent α-satellites with appreciable alterations across various cell lines relative to healthy 
controls. Data depicting α-satellite abundance are log2 normalized to healthy PBL median values 
(asterisks, red). The nomenclature of these α-satellites begins with the letter D, followed by their 
resident chromosome number (1–22, X or Y), followed by a Z, and a number indicating the order 
in which the sequence was discovered. The DYZ3 repeat was excluded from the analysis to reduce 
confounding from gender. 
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Figure 2.2: Heterogeneous loss of centromeres in acute lymphoblastic leukemia (ALL) cell 
lines. Abundance of centromere specific α-satellites is depicted by the Z-score (Y-axis) of each α-
satellite. The nomenclature of these α-satellites begins with the letter D, followed by their resident 
chromosome number (1–22, X or Y), followed by a Z, and a number indicating the order in which 
the sequence was discovered. The log2 normalized numbers for each α-satellite were normalized 
to the average copy number of a given repeat in DNA from healthy cells (blue circles). Statistical 
significance was calculated using a t-test. * = p< 0.05, ** = p< 0.01, *** = p<0.001, **** = p< 
0.0001. 
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Figure 2.3: Heterogeneous loss of centromeres in cutaneous T-cell lymphoma (CTCL) cell 
lines. Abundance of centromere specific α-satellites is depicted by the Z-score (Y-axis) of each α-
satellite. 
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Figure 2.4: Heterogeneous loss of centromeres in B-cell lymphoma (BCL) cell lines. 
Abundance of centromere specific α-satellites is depicted by the Z-score (Y-axis) of each α-
satellite. 
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Figure 2.5: Heterogeneous loss of centromeres in melanoma cell lines. Abundance of 
centromere specific α-satellites is depicted by the Z-score (Y-axis) of each α-satellite. 
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Figure 2.6: Heterogeneous loss of centromeres in cancer cell lines. Abundance of centromere 
specific α-satellites is depicted by the Z-score (Y-axis) of each α-satellite. 
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Figure 2.7: Abundance of pericentromeric K111 across cell lines and PBMCs. Dot plots 
representing the abundance of centromeric HERV env sequences from either PBMCs or cell lines 
with disease type designations listed along the X axis. The gag region of K111 was not assessed 
in our analysis, as select populations and CTCL patients are homozygous null for K111 gag. HIV 
= HIV patient sample, CTCL = Cutaneous T-Cell Lymphoma, BC = Breast Cancer, TCL = T-Cell 
Lymphoma, BCL = B-Cell Lymphoma, ATL = Adult T-Cell Lymphoma. Abundance of K111 is 
depicted by the log2 Z-score (Y-axis). Statistical significance was calculated using a t-test. * = p< 
0.05, ** = p< 0.01, *** = p<0.001, **** = p< 0.0001. 
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Figure 2.8: Genomic profiling of centromeres in breast cancer cell lines. Heatmap representing 
the abundance of α-satellites specific for each centromere array (rows) obtained by qPCR in 50 ng 
of DNA from healthy cells and from breast cancer lines (columns). Relative abundance is denoted 
by the gradient legend (bottom left). Data depicting α-satellite abundance are log2 normalized to 
healthy PBL median values (asterisks). Repeats marked with an asterisk (also bolded and 
italicized) represent α-satellites with appreciable alterations across various cell lines relative to 
healthy controls. Hormone receptor, TP53 status, histologic, and molecular classifications are 
depicted as indicated by the legend (top left). The DYZ3 repeat was excluded from the analysis to 
reduce confounding due to gender. 
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Figure 2.9: Heterogeneous loss of centromeres in breast cancer cell lines. Dot plots 
representing the abundance of α-satellites specific for each centromere array (X axis) in breast 
cancer cell lines. Abundance of centromere specific α-satellites is depicted by the Z-score (Y-axis) 
of each α-satellite. The log2 normalized numbers for each α-satellite were normalized to the 
average copy number of a given repeat in DNA from healthy cells (blue circles). Statistical 
significance was calculated using a t-test. * = p< 0.05, ** = p< 0.01, *** = p<0.001, **** = p< 
0.0001. 
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Figure 2.10: Gene conversion of HERV-K111 in breast cancer cell lines. a) Schematic outline 
of the experimental methodology employed to identify gene conversion events. b) Phylogenetic 
analysis conducted on K111 sequences amplified by PCR on breast cancer cell lines (T47D, 
BT549, HCC-1599, MD-MB-435, DT13, DT22, K151, and SKBr3) and human-hamster hybrid 
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cell lines (each containing a single human chromosome) as a reference. Amplicons are labeled and 
color-coded along the edge of the phylogenetic tree according to the cell line that produced the 
amplicon. Amplicons from human-hamster hybrid cell lines are denoted numerically by the human 
chromosome present in each hybrid cell line. Amplicons from K111 5’LTR, 3’LTR, and Solo LTR 
are additionally denoted. An example of gene conversion is shown in the cell line K151, possessing 
clades (pink) that localize in close proximity relative to each other but are not found 
heterogeneously throughout the tree. Convergence on two distinct K111 subtypes can additionally 
be identified within the MDA-MB-435, DT-13, and HCC1599 cell lines. 
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Figure 2.11: Gene conversion of HERV K111 in adult T-cell leukemia (ATL) cell lines. 
Phylogenetic analysis conducted on K111 sequences amplified by PCR in ATL cell lines (ATL26, 
ATL72, ATL16, and ATL43) and heathy cells (brown labels). Amplicons are labeled and color-
coded along the edge of the phylogenetic tree according to the cell line that produced the amplicon. 
Amplicons from human-hamster hybrid cell lines are denoted numerically by the human 
chromosome present in each hybrid cell line. Amplicons from K111 5’LTR and Solo LTR are 
additionally denoted. Recombinant K111 sequences resembling Solo LTRs are seen in cell lines 
ATL43 and ATL16, shown in blue arising from the same ancestral sequence to K111 Solo LTR 
sequences. K111 sequences from heathy PBLs show heterogeneous distribution along the tree and 
did not cluster in novel clades.  
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Figure 2.12: Genomic profiling of centromeres in primary ovarian cancer tissue. Heatmap 
representation of rapid PCR data from nine primary ovarian cancer tissue samples with matched 
PBMC DNA. Matched sets from the same patient are grouped by color. PBMC control samples 
and tumor samples are labeled according to the legend (bottom left). Data depicting α-satellite 
abundance are log2 normalized to PBMC median values. Relative abundance is denoted by the 
gradient legend (bottom left). Repeats marked with an asterisk (also bolded and italicized) 
represent α-satellites with appreciable alterations across tissue samples relative to PBMC controls. 
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Figure 2.13: Heterogeneous loss of centromeres in ovarian cancer patients. Dot plots 
representing the abundance of α-satellites specific for each centromere array (X axis) in ovarian 
cancer tumors. Abundance of centromere specific α-satellites is depicted by the log2 Z-score (Y-
axis) of each α-satellite. The log2 normalized numbers for each α-satellite were normalized to the 
average copy number of a given repeat in DNA from healthy cells (blue circles). Statistical 
significance was calculated using a t-test. * = p< 0.05, ** = p< 0.01, *** = p<0.001, **** = p< 
0.0001. 
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Figure 2.14: CLL (malignant B-cells) and patient matched T-cells assessed for select 
centromeric α-satellite markers. Heatmap representation of rapid PCR data from six primary 
CLL and two healthy samples post-separation by indicated cell surface markers into B-cell 
(CD19+) and T-cell (CD3+) populations. Data depicting α-satellite abundance are log2 normalized 
to T-cell median values. Relative abundance is denoted by the gradient legend (bottom left). 
Lymphocyte characterization and disease status is depicted as indicated by the legend (top left). 
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Figure 2.15: Heterogeneous loss of centromeres in chronic lymphoctyic leukemia (CLL) 
patients. Dot plot representing the abundance of α-satellites specific for each centromere array (X 
axis) in CLL tumors. Abundance of centromere specific α-satellites is depicted by the log2 Z-score 
(Y-axis) of each α-satellite. The log2 normalized numbers for each α-satellite were normalized to 
the average copy number of a given repeat in DNA from healthy cells (blue circles). Statistical 
significance was calculated using a t-test. * = p< 0.05, ** = p< 0.01, *** = p<0.001, **** = p< 
0.0001. 
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Chapter 3 – Non-Canonical Function of CENPA as a Regulator of Gene Expression in 
Prostate Cancer 

 
 

Summary 

Overexpression of centromeric proteins has been identified in a number of human 

malignancies, though their functional and mechanistic contributions to disease progression have 

not been characterized. CENPA, the centromeric histone H3 variant, is the epigenetic mark that 

determines centromere identity. Here, we demonstrate that CENPA is highly overexpressed in 

prostate cancer in both tissue and cell lines, and the level of CENPA expression correlates with 

the stage of disease. Gain-of- and loss-of-function experimentation confirms that CENPA 

promotes prostate cancer cell line growth. Integrated sequencing studies further reveal a previously 

unidentified function of CENPA as a transcriptional regulator that modulates expression of critical 

proliferation, cell-cycle, and centromere/kinetochore genes. Our findings, therefore, suggest a 

previously undescribed biological function for CENPA, a protein normally thought to be solely 

and importantly involved in centromere identity. Identifying a novel function for CENPA as a 

regulator of gene expression represents a major shift in our understanding of the role it plays in 

biology and disease. While CENPA is indeed a crucial factor that epigenetically 

compartmentalizes centromere function during cell division, our findings shed light on a parallel 

mechanism for CENPA that might be involved in perpetuating malignant phenotypes through gene 

regulation. Though this study is focused on interrogating prostate cancer, the scope of these 
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findings might be generalizable to other malignancies and can ultimately serve as a foundation for 

designing therapeutics that selectively target CENPA’s gene-regulatory activity. 

 

Introduction 

 Centromeres are cellular structures that are necessary for the propagation of hereditary 

information1,2. Located centric to the ends of each chromosome, centromeres provide the structural 

foundation for kinetochores, multimeric complexes that serve as molecular interfaces between 

microtubule spindle fibers and individual chromatids during mitosis1. The centromere-

kinetochore-microtubule interaction facilitates separation of the sister chromatids as mitosis 

proceeds from metaphase to anaphase. Centromeres are thus essential to ensuring faithful 

segregation of chromosomes in actively dividing cells. 

 Efforts to study human centromeres have focused on the epigenetics that drive centromere 

assembly3,4. Alpha satellite sequences that define centromere DNA are primarily occupied by the 

centromere-specific histone H3 variant known as CENPA, a highly conserved ~17 kDa molecule 

that forms a centromere-specific nucleosome with H2A, H2B and H43,5,6. The CENPA-specific 

chaperone HJURP facilitates proper localization and incorporation of newly synthesized CENPA 

into nucleosomes occupying replicated alpha satellite DNA through a ubiquitin E3 ligase 

dependent process7–9. CENPA nucleosomes subsequently engage a unique set of binding partners 

that ensure proper genomic localization. These binding partners including CENPB, CENPC, and 

the constitutive centromere associated network (CCAN) that comprises the inner kinetochore10,11. 

The CCAN further serves as a multimeric interface between CENPA nucleosomes and the KMN 

(KNL-1/Mis12 complex/Ndc80 complex) network that comprises the outer kinetochore and 

directly interacts with the microtubule spindle fibers12. 
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 CENPA and its associated proteins therefore represent structural components that are 

essential to the integrity of cell division, and appropriate genomic localization of centromeric 

proteins is consequently a critical event in the cell cycle. Diseases of uncontrolled cell division, 

particularly cancer, are thus compelling to examine from the epigenetic perspective of centromere 

biology, primarily as it pertains to the key epigenetic mark CENPA. A number of studies have 

identified aberrant expression of centromeric/kinetochore proteins in cancers, where 

overexpression is predictive of survival and response to therapy, though their mechanistic 

contribution to cancer pathogenesis remains elusive13–16. In the setting of ectopic constitutive 

overexpression, CENPA mislocalization in HeLa cells is independent of aberrant E3 ligase 

activity, but rather demonstrates a reliance on the histone chaperone DAXX17. Endogenously 

overexpressed CENPA has also been shown to ectopically localize in colon cancer cell lines18. The 

effects of such mislocalization on phenotypes in malignancy have yet to be elucidated, though 

enrichments in ectopic binding to DNase hypersensitivity sites and CTCF transcription factor 

consensus sequences hint at a potential role in regulating gene transcription17,18. 

Here we report that CENPA is highly overexpressed in prostate cancer and that disease 

progression correlates with CENPA expression within a large patient cohort. CENPA knockdown 

markedly decreases proliferation of prostate cancer cells but not that of benign prostate cells, and 

increased expression of CENPA causes benign prostate epithelial cells to proliferate more rapidly. 

Most strikingly, CENPA appears to affect proliferation of prostate cancer cells by acting as a 

transcriptional regulator that modulates expression of genes critical to proliferation, cell cycle 

progression, and centromere/kinetochore integrity. Thus, overexpression of CENPA, a histone 

variant studied in great detail in its role as a centromere epigenetic mark, unexpectedly also 
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contributes to prostate cancer pathogenesis by an alternative and previously uncharacterized 

mechanism. 

 

Results 

Overexpression of Centromeric Factors in Prostate Cancer 

The significance of centromeres to cell division suggests that centromeric components may 

play important roles in development and in diseases of cell division gone awry, particularly in 

cancer. Previous work identified a centromere-kinetochore (CEN-KT) signature that was 

associated with aggressive, treatment-refractory malignancy16. We therefore profiled the 

transcriptomes of different types of malignancies across a compiled catalogue of publicly available 

RNA-sequencing (RNA-seq) databases19. We found that CENPA is ubiquitously overexpressed in 

malignant tissue relative to respective normal counterparts (Figure 3.1A, Table 3.1). These 

observations, combined with the well-characterized contributions of centromeric components like 

CENPA to cell division, suggested conducting a more focused interrogation of these components 

in cancers that display poor prognosis in the context of high proliferation indices. Prostate cancer 

is one such disease, where a high proliferation index is predictive of poor outcomes20,21. New 

treatment strategies are much needed for prostate cancer, which remains the most diagnosed 

malignancy in men and the second leading cause of cancer-related death in men22. While hormonal 

therapy and chemotherapeutic options are available, resistant metastatic disease and life-altering 

side effects, such as urinary incontinence and erectile dysfunction, are everlasting concerns23. In 

view of the above considerations, we performed Sample Set Enrichment Analysis in the prostate 

tissue type cohort containing RNA-seq data from 685 tissue samples19. Gene expression of 
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numerous centromeric components exhibited strong enrichments in prostate cancer tissue relative 

to their normal counterparts (Figure 3.2A, Table 3.2). 

Our analysis corroborates previous reports that characterize some of these components as 

part of the CEN-KT signature that is strongly associated with poor disease outcomes16. We selected 

CENPA from this panel of genes for further assessment, given its central role in centromere 

biology, importance for development, and highly conserved structure, and found a significant 

increase in expression with disease progression (Figure 3.2B)24. This in silico finding was 

validated at the protein level through prostate tissue microarrays stained for CENPA, notably 

demonstrating marked overexpression of CENPA that increased with disease severity (Figure 

3.2C). Importantly, receiver operator characteristic (ROC) analysis of the CENPA-stained prostate 

tissue microarray produced an area under the curve (AUC) of 0.89, orthogonally demonstrating a 

strong association between elevated CENPA expression and metastatic prostate cancer (Figure 

3.1B). Assessment of CENPA expression was also examined in cancer cell line models to 

determine feasibility for more focused molecular inquiry. We verified robust overexpression of 

CENPA in prostate cancer cell lines, as compared to benign prostatic epithelial lines (Figure 

3.2D). The PNT2 benign cell line was a notable exception, likely due to its rapid proliferation rate 

relative to other cell lines we tested (Figure 3.1C). Taken together, CENPA is a well-conserved, 

developmentally important factor abundant in prostate cancer tissue, as seen in a large number of 

patients, and in prostate cancer cell lines, and an increase in its expression at the RNA and protein 

levels is highly correlated with more aggressive disease. 

 

CENPA is Associated with Cell Division in Prostate Cancer 
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The abundance of CENPA in prostate cancer raised the question as to whether 

overexpression plays a functional role in disease pathogenesis and progression. We thus first 

conducted a comparative analysis of CENPA expression relative to the remaining transcriptome in 

prostate cancer to identify associations with biologic concepts that could computationally guide 

functional assessments. Our efforts to profile transcriptomes in human cancer and normal tissue 

facilitates performing transcriptome-wide correlations against nominated genes of interest in a 

tissue specific manner within a large catalogue of samples (n = 10,848). We thus correlated 

CENPA mRNA levels to the expression levels of all other protein coding elements (Table 3.3) to 

deconvolute its relative contribution to prostate cancer progression. CENPA expression tracks 

tightly with a number of previously identified prostate cancer pathogenesis factors including 

CENPF, UBE2C and EZH2 (Figure 3.3A, 3.4C, and 3.4D, Table 3.3). MKI67 (gene encoding 

proliferation marker Ki67) also performed well in our analysis, further suggesting a role for 

CENPA in cellular proliferation (Figure 3.3B). Of note, CENPA does not tightly correlate with 

ACTB (housekeeping gene), AMACR (prostate cancer biomarker), or AR (Figures 3.4A and 3.4B, 

Table 3.3), suggesting a pathogenic process that is independent of androgen signaling, a 

pharmacologically relevant molecular pathway that is frequently targeted in prostate cancer 

treatment. 

Strong associations with cellular proliferation genes and select pathogenesis factors 

independent of AR implicates CENPA as a contributor to a biologic process that is involved in 

androgen refractory prostate cancer progression. In fact, we found that AR signaling actually 

represses CENPA expression in cell culture (Figure 3.5A). We additionally used the Database for 

Annotation, Visualization, and Integrated Discovery (DAVID) to conduct ontology assessments 

on the highest performing genes from our transcriptome-wide correlation against CENPA 
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expression in prostate cancer (r > 0.8)25. Our analysis revealed a correlation between CENPA gene 

expression and biologic concept clusters that highlight centromeres, kinetochores, mitosis, and cell 

division (Figure 3.3C and 3.5B). Concepts that include genes encoding components of the CCAN 

were additionally captured by our analysis. Of note, CDC25C, CDCA5, TOP2A, and CENPU, 

genes known to play roles in cellular proliferation, cell cycle progression and 

centromere/kinetochore integrity, were included in these biological concepts. Pre-ranked Gene Set 

Enrichment Analysis (GSEA) independently confirmed enrichments in gene signatures important 

for cell cycle, cell division, and mitosis (Figure 3.3D and 3.5C). Taken together, CENPA 

expression is strongly linked to gene signatures that underlie processes that govern proliferation, 

cell cycle progression, and centromere/kinetochore integrity in prostate cancer. 

 

CENPA Dependent Proliferation in Prostate Cancer 

 Significant association between CENPA and proliferation signatures is expected given 

the role CENPA plays in the structural integrity of the centromere. There is limited evidence, 

however, concerning CENPA function in human malignancy. We therefore performed loss-of- 

and gain-of-function experiments in cell lines stably expressing either doxycycline-inducible 

short hairpin RNAs against CENPA or EF1A-promoter driven full-length CENPA. Doxycycline 

administration at 2 µg/mL was sufficient to produce robust knockdown of CENPA after 72 hours 

(Figure 3.6A, 3.7A, and 3.7B). CENPA depletion led to a profound growth-inhibitory effect on 

22Rv1, LnCaP, and DU145 prostate cancer cells (Figure 3.6B, 3.6C, 3.6E, 3.7C, and 3.7D). 

CENPA depletion in prostate cancer cells results in an accumulation of cells in G1 that seem to 

be unable to progress through the cell cycle (Figure 3.6D, 3.7E, and 3.7F). Conversely, 

overexpression of CENPA in the 957E-hTERT benign prostate epithelial cell line leads to a 
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profound growth-promoting effect (Figure 3.6F and 3.6G). Interestingly, benign 957E-hTERT 

cells depleted of CENPA do not demonstrate significant proliferative changes, consistent with 

previous reports that cells can proliferate with low levels of CENPA (Figure 3.6G)26. Taken 

together, our data show that CENPA is an essential factor for progression through the cell cycle 

and that overexpression drives proliferation of prostate cancer cells. 

 

Non-Canonical Genomic Localization of CENPA 

 Given prior reports of ectopic deposition in the setting of CENPA overexpression and the 

marked overexpression of CENPA in prostate cancer, we performed native chromatin 

immunoprecipitation followed by sequencing (NChIP-seq) to identify non-centromeric and 

potentially regulatory binding sites for CENPA in prostate cancer. As expected, four a-satellites 

were enriched relative to the IgG control antibodies using a PCR assay we previously devised that 

can distinguish chromosome specific a-satellite DNA from any given centromere, verifying the 

validity of the CENPA ChIP (Figure 3.8A)27. CENPA directed ChIP-seq identified 569 non-

centromeric binding sites in the VCaP prostate cancer cell line within three experimental replicates 

(Figure 3.9A, 3.8C, and 3.8D). One example of such a CENPA binding site is present in the 

promoter region of CDC25C (Figure 3.9B), a cell cycle phosphatase that is critical for progression 

through anaphase that was also identified in our comparative gene expression analysis described 

above (Figure 3.3A). Intriguingly, the promoter of CENPA itself was also bound by CENPA, 

consistent with previously reported results18. CENPA directed ChIP was additionally conducted 

in the benign prostatic epithelial cell line 957E-hTERT to determine whether ectopic CENPA 

binding is a cancer specific observation (Figure 3.8B). CENPA enrichment over the four 

previously assessed a-satellites was significantly lower than that observed in the VCaP cell line, 
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consistent with each cell line’s respective CENPA abundance observed above (Figure 3.2D). 

CENPA directed ChIP-seq for the 957E-hTERT cell line was thus deferred. 

We next conducted a global assessment of CENPA binding sites to obtain a functional 

taxonomy of CENPA-bound genes. Ontologic assessment of genes whose transcriptional start sites 

were in close proximity to CENPA binding sites revealed enrichments in biologic concepts that 

are involved with maintenance of nuclear architecture and organization, such as protein-DNA 

complex assembly (p = 6.44 x 10-18) and chromosome organization (p = 8.70 x 10-13) (Figure 

3.9C). Furthermore, binning CENPA binding sites into categories corresponding to discreet 

locations within the human genome demonstrates a predilection towards binding regulatory 

elements such as promoters and CpG islands (Figure 3.9D). Comparing the number of peaks 

present within any two genomic regions reveals significant overlap between loci considered to be 

regulatory areas (Figure 3.8E). Taken together, we show that CENPA localizes to non-canonical 

genomic loci, with a predilection towards the regulatory elements of genes that control cellular 

proliferation. 

 

Gene Regulation by CENPA 

 Histone variants have been well characterized as modulators of aberrant gene expression 

in cancer. H2A.Z.2, macroH2A, and H3.3 are well documented as key contributors to malignant 

phenotypes in a number of cancer types28–31. CENPA is a centromere specific histone H3 variant 

overexpressed in cancer but whose functional contributions to malignancy have remained elusive. 

CENPA localizing to regulatory elements outside of the centromere near genes involved in 

maintaining nuclear architecture and chromosome organization, however, presents the intriguing 

possibility that CENPA plays a direct and previously unsuspected role in gene regulation. We thus 
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conducted RNA-seq on CENPA-depleted cell lines to evaluate whether removing CENPA 

drastically alters the gene expression profiles of genes bound by CENPA. Doxycycline 

administration at 2 µg/mL was sufficient to produce ~71% (shCENPA1) and ~85% (shCENPA2) 

knockdown of CENPA mRNA relative to the non-targeting control (shNT) after 72 hours (Figure 

3.10A). RNAi off-target effects were excluded by filtering genes that were either differentially 

expressed or dimensionally inconsistent between each independent CENPA-targeted shRNA 

(Figure 3.11A and 3.11B). The remaining 427 differentially expressed genes (DEGs) illustrated 

global transcriptional downregulation in the setting of CENPA depletion (Figure 3.10B and 

3.11C). Indeed, when conducting ontologic assessments on the RNA-seq dataset, we identified 

overlap between concepts bound by CENPA and concepts that are transcriptionally perturbed, 

specifically nuclear architecture and organization (Figure 3.10C). Formal integrative analysis 

between the ChIP-seq and RNA-seq data (obtained from two different prostate cancer cell lines 

for technical reasons) additionally identified a number of genes essential to cellular proliferation 

and centromere/kinetochore integrity that were both bound by CENPA and differentially expressed 

in the setting of CENPA depletion (Figure 3.10D). CDC25C, CDCA5, TOP2A, and CENPU, 

genes whose expression levels were strongly correlated to CENPA expression in prostate cancer 

tissue, were all notably downregulated with CENPA depletion as well as bound by CENPA. Of 

note, cell division was also found to be an additional enriched biologic concept within our RNA-

seq data, again exhibiting similarity with earlier correlative findings in tissue. These findings 

collectively suggest that CENPA is a regulator of transcription for genes important for proliferation 

and cell cycle progression in prostate cancer. 
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Discussion 

The centromeric histone H3 variant CENPA is overexpressed in cancer and has the 

propensity to localize to genomic loci that lie outside of the canonical centromere in the setting of 

overexpression. Yet to date, the functional significance of the ectopic localization of CENPA in 

the biological setting of malignancy has been largely unexplored. We demonstrate for the first time 

that CENPA mislocalization has functional consequences through an unexpected role as a 

regulator of gene expression in prostate cancer. CENPA is infrequently mutated and amplified in 

metastatic prostate cancer32,33. Given the relative genomic stability of the CENPA locus, the 

observed phenotypic aberrations that are the result of modulating CENPA expression are likely to 

be epigenetically driven. While histone variants exhibiting aberrant biologic properties in 

malignancy have been studied extensively, previous thought has been that CENPA’s importance 

to cell division and proliferation is purely a function of its role as a structural node for the CCAN 

and KMN network. While its role in the centromere is certainly vital, we now show that ectopic 

deposition of CENPA in prostate cancer likely plays a role in modulating cell division, functioning 

as a regulator of critical proliferation, cell cycle, and centromere/kinetochore genes. These 

observations thus suggest an additional critical way in which this much-studied protein can affect 

cellular proliferation when overexpressed in the setting of cancer. 

Given the ubiquitous nature of CENPA overexpression in cancer, it is conceivable that 

ectopically bound CENPA driving proliferation through transcriptional regulation is a 

generalizable feature exhibited across numerous cancer types. Previous work shows that while 

centromeric/kinetochore proteins are infrequently mutated or amplified in cancer, coordinate 

overexpression of centromeric/kinetochore factors is a common characteristic identified in 

malignancy13. Our findings suggest a potential epigenetic feedforward mechanism by which 
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progressively increasing levels of CENPA drive gene expression of critical proliferation, cell cycle 

progression, and centromere/kinetochore factors that complement shifting mutational landscapes 

previously identified through cancer genomics approaches34. Intriguingly, AR signaling, the most 

commonly targeted and mutated molecular signature in metastatic-castration resistant prostate 

cancer, was not captured by a CENPA focused analysis, a finding that we further confirmed in 

tissue culture experiments. This phenomenon mirrors EZH2 expression changes in response to 

androgen stimulation, implicating CENPA as an additional epigenetic factor that may contribute 

to androgen-refractory progression35. Of note, we observed EZH2 expression indeed tracked 

tightly with CENPA expression in prostate cancer tissue (SI Appendix, Fig. S2D). 

While we show here that prostate cancer tissue and cell lines overexpress CENPA, previous 

work suggests that occupation of only ~4% of the alpha-satellite rich centromere is sufficient for 

producing functional centromeres36. Indeed, benign prostatic epithelial cells do proliferate in spite 

of expressing low levels of CENPA and exhibiting reduced CENPA binding to a-satellite DNA. 

Loss-of-function experimentation yields pronounced growth inhibition in prostate cancer cell lines 

while producing no observable phenotype in a benign prostatic epithelial cell line. Moreover, 

overexpression of CENPA drives proliferation in benign prostatic epithelial cells. These findings 

are consistent with the presence of an ancillary gene regulatory function for CENPA that further 

dictates its control of proliferation in the setting of overexpression and malignancy. Work in HeLa 

cells suggests that overexpressed CENPA is directed to gene regulatory elements through 

interaction with DAXX, a protein that has been previously been shown to be overexpressed in 

prostate cancer37. It is thus conceivable that DAXX carries out a chaperone like function for 

CENPA when they are both overexpressed in prostate cancer, though Re-ChIP assays involving 
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CENPA and DAXX together would be necessary to formally prove the presence of such a 

mechanism. 

 In conclusion, we show here that the much-studied centromeric histone H3 variant CENPA 

likely also has a previously uncharacterized function as an epigenetic regulator of transcriptional 

activity involving genes important for proliferation, cell cycle progression, and centromere and 

kinetochore integrity in prostate cancer. CENPA overexpression, driven by as yet uncharacterized 

oncogenic events, thus potentiates a feedforward loop designed to maintain uncontrolled 

proliferation in cancer. The ubiquitous nature of CENPA overexpression in other malignancies in 

addition to prostate cancer suggests that CENPA-driven gene expression will be present across 

different cancer types, providing a generalizable rationale to exploit CENPA and its downstream 

targets for therapeutic purposes. 

 

Materials and Methods 

Cell Lines and Cell Culture. LnCaP, 22Rv1 and DU145 prostate cancer cell lines were cultured in 

Roswell Park Memorial Institute (RPMI) medium supplemented with 10% fetal bovine serum 

(FBS) (Atlanta Biologics) and 1% penicillin/streptomycin (P/S), as was the PNT2 prostatic 

epithelial cell line. VCaP and PC3 prostate cancer cell lines were cultured in Dulbecco’s modified 

Eagle’s medium (DMEM) supplemented with 10% FBS and 1% P/S. The RWPE-1 and 957E-

hTERT immortalized prostatic epithelial cell lines were cultured in keratinocyte serum free 

medium (K-SFM) supplemented with 0.05 mg/mL Bovine Pituitary Extract (BPE) and 5 ng/mL 

epidermal growth factor (EGF). All cell lines were grown at 37 °C in a 5% CO2 cell culture 

incubator, authenticated by short tandem repeat (STR) profiling for genotype validation at the 

University of Michigan Sequencing Core and tested for Mycoplasma contamination. 
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Tissue RNA-seq Differential Expression Analysis. Analysis was performed on a compendium of 

10,848 poly(A)+ RNA-sequencing (RNA-seq) libraries containing primary cancer tissue, normal 

tissue, and cancer cell lines from the TCGA, Michigan Center for Translational Pathology, and 

other public sources. Sample Set Enrichment Analysis (SSEA) was performed as previously 

described across all libraries to query CENPA expression in a cancer vs. normal fashion19. Further 

analysis restricted to the prostate tissue type cohort was conducted to determine CENPA 

expression levels at different stages of malignancy. 

 

Ontologic Assessments. CENPA mRNA levels within the cancer cohort were subjected to 

transcriptome-wide correlation studies against all protein-coding genes. All genes satisfying the r 

> 0.8 criteria were included in a custom list for ontologic assessments. This list of genes was ranked 

by the Spearman rho coefficient and subject to pathway analysis. The Database for Annotation, 

Visualization, and Integrated Discovery (DAVID) tool performed ontologic assessments against 

Gene Ontology (GO) terms as well as UniProt concepts. Weighted, pre-ranked Gene Set 

Enrichment Analysis (GSEA) was performed against MSigDB datasets. 

 

Tissue Microarray. CENPA expression in prostatic epithelium was assessed by 

immunohistochemistry (IHC) on a Tissue Microarray (TMA) using a mouse anti-CENPA 

antibody. Benign prostate tissue, high grade prostatic intraepithelial neoplasia (HGPIN), localized 

prostate cancer and metastatic castration resistant prostate cancer (CRPC) tissues were spotted in 

triplicate on the core (n=58 total tissues, n=174 cores). Staining was evaluated by assessing the 

most frequent pattern of intensity at 20x in addition to the percentage of cells showing that pattern. 
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A product score was subsequently calculated (intensity x percentage of cells with the pattern) for 

each core. Receiver operator characteristic (ROC) curve was generated based on average product 

scores. 

 

Quantitative Reverse Transcriptase–Polymerase Chain Reaction (qRT-PCR) Assay. The All Prep 

DNA/RNA Mini Kit (Qiagen) was utilized to isolate RNA from cell lysates. RNase-Free DNase 

(Qiagen) was used to eliminate contaminating genomic DNA. RNA was quantified by the 

NanoDrop 2000 (ThermoFisher Scientific) and diluted to 25 ng/µL. The Step One Plus Real-Time 

PCR System (Applied Biosystems) was utilized for One-Step qRT-PCR reactions and Moloney 

Murine Leukemia Virus Reverse Transcriptase (Promega) for reverse transcription. Gene-specific 

primers were designed and subsequently synthesized by IDT Technologies. A relative 

quantification method was used to analyze qRT-PCR data and subsequently presented as average 

fold change over an internal reference (as internal reference, GAPDH was utilized). All primers 

used for qPCR are detailed in Table 3.4. Three technical replicates were used in each assay, and 

all data shown were from three biological replicates. 

 

Lysates, Antibodies and Immunoblotting. Cells were pelleted, dissolved in 4x Laemmli Buffer, 

sonicated for 30 seconds and immediately placed in ice. Whole cell extracts were then heated for 

an additional two minutes at 95° C and returned to ice. Samples were subsequently separated on 

4-20% SDS-polyacrylamide gels (BioRad) and transferred to polyvinylidene fluoride (PVDF) 

membranes via wet transfer at 80 V for 90 minutes. Membranes were then incubated in blocking 

buffer (phosphate buffered saline, 0.1% Tween, (PBS-T) 5% non-fat dry milk) for an hour at room 

temperature. Primary antibody incubations were conducted with indicated antibodies in blocking 
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buffer at 4° C overnight. Secondary antibody incubations were conducted the following day with 

species appropriate horseradish peroxidase (HRP) conjugated secondary antibodies. Blots were 

developed using enhanced chemiluminescence substrate according to manufacturer’s protocol 

(Millipore). Antibodies against CENPA (Abcam ab13939) and GAPDH (ab181602) were used as 

primary antibodies. 

 

Knockdown and Overexpression Studies. Stable knockdown of CENPA was achieved using the 

pTRIPZ Tet-On system (Dharmacon). Commercial glycerol stocks of bacteria propagating 

plasmids containing two different CENPA-directed shRNAs and a non-targeting shRNA were 

inoculated and cultured for 24 hours. Plasmid DNA was subsequently isolated using the Plasmid 

Maxi Kit (Qiagen) and sent to the University of Michigan Vector Core for lentiviral production. 

22Rv1, DU145, and LnCaP cells were transduced with lentivirus in the presence of 8 µg/mL 

polybrene. After 24 hours, cells were cultured in the presence of 2 µg/mL puromycin. Knockdown 

was achieved through culturing cells with doxycycline at a final concentration 2 µg/mL. 

Doxycycline response was assessed by microscopy, immunoblot, and qRT-PCR. Stable CENPA 

overexpression was achieved using the pLV system driven by an EF1A promoter (VectorBuilder). 

Plasmids and lentivirus were prepared as described for the pTRIPZ system. 957E-hTERT cells 

were incubated with lentivirus in the presence of 8 µg/mL polybrene. After 24 hours, cells were 

cultured in standard K-SFM and subjected to fluorescence-activated cell sorting (FACS) to select 

mCherry positive cells by the University of Michigan Flow Cytometry Core. Overexpression was 

verified by qRT-PCR and immunoblot. Maps of all vectors are provided in Supplemental 

Information. 
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R1881 Treatment. To evaluate the effect of androgen signaling, cells were cultured in medium 

containing 10% charcoal-treated FBS and treated with DMSO vehicle or with 1 nM or 10 nM 

R1881. After 24 and 48 hrs, RNA was isolated and qRT-PCR was performed as described above 

using FastStart SYBR Green Mastermix (Roche). 

 

Cell Proliferation Assays. Cells were seeded in T-25 flasks at 1x106 cells per flask. Flasks were 

evaluated by microscopy 24 hrs following seeding to assess initial confluence. Growth curves were 

constructed by imaging flasks by microscopy, where the growth curves are generated from 

confluence measurements acquired from 6 fields per condition, using the NIS Elements 

microscope imaging software. Proliferation assay was performed for shRNA-mediated 

knockdown, overexpression, and basal growth experiments. 

 

Crystal Violet Assays. Cells were seeded in triplicate in 6-well plates at 1x104 cells per well. Cells 

were given 24 hours to adhere and were subsequently subjected to doxycycline treatments at 2 

µg/mL. Doxycycline was replenished every 2 days to maintain continuity of the pTRIPZ system. 

Treatment was discontinued 7 days after induction. Cells were washed with ice-cold PBS and 

subsequently fixed with methanol. Cells were then stained with 0.5% crystal violet for 10 minutes, 

washed with water, and air-dried. 

 

Cell Cycle Analysis. Cells were subjected to 15 minutes of ethanol fixation at -20° C and 

subsequently collected by centrifugation. Cells were rehydrated at room temperature in PBS, 

pelleted and re-suspended in 3 µM DAPI diluted in staining buffer (100 mM Tris pH 7.4, 150 mM 

NaCl, 1 mM CaCl2, 0.5 mM MgCl2, 0.1% Nonidet P-40). Cells were incubated for 15 minutes 
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prior to flow cytometry by University of Michigan Flow Cytometry Core. Cell cycle distribution 

was evaluated using FCS Express. 

 

ChIP-sequencing Library Preparation and Analysis. Native ChIP was conducted as previously 

described38 using a monoclonal antibody against CENPA (Abcam ab13939). CENPA targeted 

ChIP DNA and input control DNA were prepared for parallel sequencing using the TruSeq ChIP 

Library Preparation kit (Illumina) according to the manufacturer’s protocol. Library preparations 

were done in conjunction with the University of Michigan Sequencing Core. Paired-end libraries 

were sequenced with the Illumina HiSeq 4000 (2X150 nucleotide read length) with sequence 

coverage to >50M total reads per sample. FASTQC was employed to assess overall quality of each 

sample followed by TrimGalore processing to trim low-quality bases and adapter sequences. Reads 

were aligned to hg38 using Bowtie2 (version 2.2.1) with default parameters. Principal component 

analysis was conducted to determine the degree of variation between samples. PePr (version 

1.1.14) was employed to identify CENPA bound regions. P-values were adjusted for multiple 

testing using the false-discovery rate (FDR) approach and CENPA bound regions were considered 

significant peaks when p-values < 1.0 x 10-5. Peaks were annotated with annotatr (version 1.0.3). 

Ontology assessments were conducted using ChIP-Enrich39. 

 

RNA-sequencing Library Preparation and Analysis. RNA was isolated as described and RNA 

integrity was evaluated using an Agilent TapeStation. Strand-specific libraries were prepared using 

the TruSeq Stranded mRNA kit (Illumina) according to the manufacturer’s protocol. Library 

preparations were done in conjunction with the University of Michigan Sequencing Core. Paired-

end, strand-specific libraries were sequenced with the Illumina HiSeq 4000 (2X50 nucleotide read 
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length) with sequence coverage to >50 M paired-end reads and >100 M total reads per sample. 

Sequencing results were run through a computational pipeline to trim low-quality bases and 

adapters (TrimGalore), align reads (STAR) to a reference genome (UCSC hg38 from iGenomes), 

quantify gene expression levels (HTseq), and call differentially expressed genes (edgeR). 

Ontology assessments were conducted using RNA-Enrich40. 

 

Data Availability. RNA-sequencing and ChIP-sequencing data are deposited in the MIAME-

compliant GEO repository (NCBI) with Accession Numbers GSM3639705 - GSM3639722. 
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Authors: Anjan K. Saha, Yashar S. Niknafs, Matthew Iyer, Javed Siddiqui, Scott Tomlins, Scott 
Gitlin, Arul M. Chinnaiyan, David M. Markovitz 
 
Figure 3.1: Characterization of CENPA in cellular proliferation, and cancer. A) Cancer vs. 
normal analysis conducted across a curated RNA-seq catalogue querying tissue CENPA levels by 
SSEA. B) Receiver operator characteristic (ROC) separating metastatic castration resistant 
prostate cancer (mCRPC) from localized disease by CENPA staining in a tissue microarray. C) 
Proliferation rates of a panel of prostate cancer (LnCaP, VCaP, 22rv1, DU145, and PC3) and 
benign prostatic epithelial (RWPE-1, 957E-hTERT, and PNT2) cell lines. 
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Gitlin, Arul M. Chinnaiyan, David M. Markovitz 
 
Figure 3.2: Overexpression of CENPA in prostate cancer. A) Sample Set Enrichment Analysis 
(SSEA) was used to query a catalogue of curated RNA-seq libraries (n=685) for differentially 
expressed centromeric genes in the prostate tissue type cohort. Genes were selected based on 
associations identified in prior studies with cancer progression and were characterized by their 
inclusion in the previously described CEN/KT signature that negatively impacts therapy response 
and survival. B) Focused SSEA on CENPA mRNA levels in normal prostate (n=52), primary 
prostate cancer (n=501), and metastatic prostate cancer (n=132) tissue. C) Tissue Microarray 
(TMA, n=58 total tissues, n=174 cores) of benign prostate (I), high grade prostatic intraepithelial 
neoplasia (HGPIN), Gleason grade 6-9 prostate cancer, and castration resistant prostate cancer 
(CRPC) (II) tissue stained for CENPA, *P<0.05. Staining was evaluated by assessing the most 
frequent pattern of intensity at 20x and percentage of cells exhibiting that pattern (III). D) 
Immunoblot for CENPA and GAPDH (loading control) in a panel of benign and malignant prostate 
cell lines. Note that PNT2, although benign, proliferates the most rapidly of all cell lines tested 
(Figure 3.1C). 
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David M. Markovitz 
 
Figure 3.3: Proliferation signature associated with CENPA. A) CENPA mRNA levels from 
SSEA subjected to a transcriptome-wide correlation. Results were rank-ordered by the strength of 
correlation. Heatmap depicts genes that performed at r ≥ 0.8. B) Scatterplot depicting strong 
concordance between CENPA and the proliferation marker MKI67. C) Top 117 performers from 
transcriptome-wide correlation subjected to functional annotation analysis using the publicly 
available Database for Annotation, Visualization, and Integrated Discovery (DAVID). Enriched 
biological concepts are rank-ordered by their false discovery rate (FDR). D) Independent Gene Set 
Enrichment Analysis (GSEA) of mitotic nuclear division, cell division, and cell cycle gene 
signatures conducted on transcriptome-wide correlation values pre-ranked by the strength of 
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correlation. Barplot depicts enrichment scores from biologic concepts designated along vertical 
axis (left). Representative enrichment plot from “Cell Cycle” gene signature (right). 
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David M. Markovitz 
 
Figure 3.4: Transcriptome-wide correlation against CENPA mRNA levels in prostate cancer. 
A-D) Individual scatterplots depicting correlation strength between CENPA expression, 
previously characterized prostate cancer pathogenesis factors (AMACR, CENPF, and EZH2) and 
a housekeeping control gene (ACTB). 
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David M. Markovitz 
 
Figure 3.5: Association between CENPA mRNA levels and cell division in prostate cancer. 
A) VCaP prostate cancer cell lines treated with the androgen agonist R1881 and evaluated for 
CENPA and TMPRSS2 (androgen-responsive positive control) expression by qRT-PCR. *P<0.05, 
**P<0.01, comparing to DMSO for each condition and time point via Student's t-test.  B) 
Additional biological concepts identified as associated with CENPA expression through functional 
annotation analysis using DAVID, highlighting enrichments in concepts important for centromeric 
and kinetochore integrity. C) Representative enrichment plots from GSEA of “Cell Division” (left) 
and “Mitotic Nuclear Division” (right) gene signatures conducted on transcriptome-wide 
correlation values pre-ranked by the strength of correlation. 
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Figure 3.6: Functional importance of CENPA in prostate cancer cells. A) Immunoblot for 
CENPA and GAPDH in 22Rv1 cells expressing a doxycycline inducible vector encoding a non-
targeted and two independent CENPA-targeted shRNAs. B) Growth curve depicting proliferation 
over 7 days following doxycycline induction in CENPA knockdown cell lines. Error bars represent 
the standard error of three biologic replicates. *P<0.05, **P<0.01, comparing to shNT for each 
condition via Student's t-test. C) Crystal violet cell proliferation assay conducted 7 days post-
doxycycline induction. D) Cell cycle analysis with DAPI in CENPA shRNA-depleted cells 
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compared to shNT. E) Quantification of crystal violet colonies in panel C. Error bars represent the 
s.e.m. of three biologic replicates. F) Immunoblot for CENPA and GAPDH in 957E-hTERT 
benign prostatic epithelial cells expressing a vector encoding a constitutively active CENPA 
construct (CENPA-OE). G) Growth curve depicting proliferation over 7 days following CENPA 
overexpression or knockdown in 957E-hTERT cells. Error bars represent the standard error of 
three biologic replicates. *P<0.05, **P<0.01, ***P<0.001, comparing CENPA-OE to ORF_91bp 
(vector control) via Student's t-test. 
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Figure 3.7: Panel of prostate cancer cell lines subjected to CENPA depletion. A, B) 
Immunoblot for CENPA and GAPDH in LnCaP and DU145 cells expressing a doxycycline 
inducible vector encoding a non-targeted and two independent CENPA-targeted shRNAs. C, D) 
Growth curve depicting proliferation over 7 days following doxycycline induction in CENPA 
knockdown cell lines (left – LnCaP, right – DU145). Error bars represent the standard error of 
three biologic replicates. *P<0.05, **P<0.01, comparing to shNT for each condition via Student's 
t-test. E, F) Cell cycle analysis with DAPI in CENPA shRNA-depleted LnCaP and DU145 cells 
compared to shNT. 
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Figure 3.8: CENPA N-ChIP-seq validation. A) Validation of native chromatin 
immunoprecipitation (N-ChIP) efficiency of CENPA, through PCR targeting individual 
centromeric repeats. B) N-ChIP-PCR conducted in benign prostatic epithelial cell line 957E-
hTERT. C) Principal Component Analysis (PCA) to determine variation in N-ChIP-seq replicates. 
D) Heatmap depicting correlation strength between each individual N-ChIP-seq sample. Bottom 
left and top right indicate near perfect consistency between ChIP and input replicates, further 
validated by the unsupervised hierarchical clustering (see dendrogram along the vertical 
component). E) Matrix depicting the degree of overlap of CENPA occupancy between different 
genomic regions. Abbreviations: CDS – coding sequence, UTR – untranslated region, CGI – CpG 
Island. 
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Figure 3.9: Deposition of CENPA at regulatory regions across the genome in prostate cancer 
cells. A) Heatmap across 4 kb windows of CENPA ChIP vs. input signals centered at the CENPA 
peaks. B) UCSC Genome Browser illustration of CENPA binding to transcriptional start site (TSS) 
of the CDC25C gene on chromosome 5. C) 569 CENPA peaks were subjected to Gene Ontology 
assessment. Representative concepts are rank ordered by their FDR. D) CENPA peaks were 
annotated against 16 genomic regions relative to known genes. Abbreviations: CDS – coding 
sequence, UTR – untranslated region, CGI – CpG Island. Peak abundance (black bars) was 
compared to abundance from random selection (grey bars) within each genomic region. 
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Figure 3.10: Transcriptional profile of CENPA depleted prostate cancer cells. A) Jitterplot 
reflecting CENPA knockdown efficacy across all replicates. B) Heatmap representation of the 427 
differentially expressed genes (DEGs) when comparing a non-targeting shRNA to two 
independent CENPA targeted shRNAs. Unsupervised hierarchical clustering was performed to 
group samples (columns) and genes (rows) by similarities in data structure. C) Ontologic 
assessments conducted on the 427 DEGs using the RNAEnrich program. A subset of significant 
concepts from the analysis of CENPA depleted cells are depicted. KEGG and GO are databases 
that reflect ontologies representative of connected biologic processes. D) Transcriptional profile 
of CENPA depleted 22Rv1 cells merged with CENPA ChIP-seq data from VCaP. Genes listed 
demonstrate both differential expression with CENPA depletion as well as CENPA binding. 
Directionality of differential expression for each gene is depicted in the right column. Only genes 
that satisfy the absolute log fold change > 2 and FDR < 0.05 were considered for integrative 
analysis. 
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Figure 3.11: CENPA-depletion RNA-seq quality control. A) Scatterplot comparing the 
directionality of differentially expressed genes from the two independent CENPA-targeted 
shRNAs. B) Volcano plot depicting significance against fold change (FC) between shNT and two 
independent CENPA-targeted shRNAs. Genes that satisfied the absolute FC > 1.5 (blue lines) and 
p-value < 0.01 (top right and top left) criteria were considered differentially expressed. C) Venn 
diagrams illustrating the overlap in differential gene expression by comparison of analysis pairs 
for all differentially expressed genes (DEGs), upregulated DEGs and downregulated DEGs. 
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Tables 
 
Table 3.1: Cancer vs. normal sample set enrichment analysis performed across tissue types 
for tissue CENPA expression. 

*CH: Chromophobe Renal Cell Carcinoma; GBM: Glioblastoma multiforme 

Tissue Type Enrichment Score (ES) Normalized ES (NES) FDR Percentile 

Uterus: Endometrial 0.82400674 4.45339332 <<<0.00001 0.993245958 

Prostate 0.62010533 4.7605022 <<<0.00001 0.986821833 

Kidney: CH* 0.5436092 2.61474901 0.001257495 0.882046881 

Colon 0.82709628 5.88013794 <<<0.00001 0.982360294 

Bladder 0.75358915 3.98232218 <<<0.00001 0.994756839 

Thyroid 0.27684852 2.61333875 0.000382503 0.654878626 

Lung: Squamous 0.98630798 7.85019046 <<<0.00001 0.999219786 
Esophagus 0.86499405 3.59421046 <<<0.00001 0.997247915 

Head/Neck 0.82944953 6.20450438 <<<0.00001 0.998761127 

Stomach 0.76970363 5.34637779 <<<0.00001 0.991716617 

Breast 0.79628032 9.41603282 <<<0.00001 0.996246823 

Rectum 0.68856615 2.52076371 0.002767945 0.90579198 

Kidney: Renal Cell 0.75847375 6.87649952 <<<0.00001 0.975200584 

Cholangiocarcinoma 1 3.38185023 <<<0.00001 0.867112947 

Kidney: Renal Papillary 0.75839376 4.50619268 <<<0.00001 0.983743856 

Lung: Adenocarcinoma 0.86407524 7.14574446 <<<0.00001 0.992993828 

Liver 0.90532684 6.72891874 <<<0.00001 0.994865907 

Brain: GBM* 1 2.66158809 3.06E-06 0.966514945 
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Table 3.2: Sample set enrichment analyses comparing expression levels of centromere and 
kinetochore genes in normal prostate tissues, primary prostate cancers, and metastatic 
prostate cancers. 

Transcript ID Comparison Name Enrichment Score 
(ES) 

Normalized 
Enrichment 
Score (NES) 

FDR Percentile 

ENSG00000115163.13 Metastasis vs. Primary 0.677312 7.644799 <<<0.00001 0.982245411 

ENSG00000115163.13 Metastasis vs. Normal 0.831278 5.604697 <<<0.00001 0.983979735 
ENSG00000115163.13 Cancer vs. Normal 0.620105 4.760502 <<<0.00001 0.986821833 

ENSG00000129810.13 Metastasis vs. Primary 0.733815 8.111382 <<<0.00001 0.988213656 
ENSG00000129810.13 Metastasis vs. Normal 0.854931 5.903665 <<<0.00001 0.989456749 

ENSG00000129810.13 Cancer vs. Normal 0.474081 3.714663 4.43E-07 0.946241884 
ENSG00000117724.11 Metastasis vs. Primary 0.674255 7.850147 <<<0.00001 0.984572651 

ENSG00000117724.11 Metastasis vs. Normal 0.832376 5.956698 <<<0.00001 0.990244069 
ENSG00000117724.11 Cancer vs. Normal 0.551631 4.368803 <<<0.00001 0.976147243 

ENSG00000123485.10 Metastasis vs. Primary 0.652578 7.61156 <<<0.00001 0.98187005 
ENSG00000123485.10 Metastasis vs. Normal 0.844991 5.728154 <<<0.00001 0.986033615 

ENSG00000123485.10 Cancer vs. Normal 0.643455 5.051252 <<<0.00001 0.992104105 
ENSG00000138778.10 Metastasis vs. Primary 0.7042 8.101394 <<<0.00001 0.988025975 

ENSG00000138778.10 Metastasis vs. Normal 0.874649 6.131515 <<<0.00001 0.993256427 
ENSG00000138778.10 Cancer vs. Normal 0.450099 3.641762 4.43E-07 0.941152195 

ENSG00000151725.10 Metastasis vs. Primary 0.605186 7.05999 <<<0.00001 0.974775722 
ENSG00000151725.10 Metastasis vs. Normal 0.80322 5.746591 <<<0.00001 0.986581317 

ENSG00000151725.10 Cancer vs. Normal 0.468724 3.758717 4.43E-07 0.948470342 
ENSG00000102384.12 Metastasis vs. Primary 0.682269 7.739223 <<<0.00001 0.983446567 

ENSG00000102384.12 Metastasis vs. Normal 0.848675 5.837062 <<<0.00001 0.988053264 
ENSG00000102384.12 Cancer vs. Normal 0.308641 2.41594 0.003485 0.828656322 

ENSG00000123219.11 Metastasis vs. Primary 0.654545 7.487768 <<<0.00001 0.980593822 
ENSG00000123219.11 Metastasis vs. Normal 0.758751 5.215585 <<<0.00001 0.974531886 

ENSG00000123219.11 Cancer vs. Normal 0.214367 1.679269 0.121066 0.708237042 
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Table 3.3: Transcriptome-wide correlation results against CENPA expression in prostate 
cancer tissue samples (n=633) rank ordered by correlation strength. Table restricted to genes 
with r > 0.8. 

Gene ID Gene Name Gene Type Coefficient p-value 
ENSG00000115163.13 CENPA protein_coding 1 0 
ENSG00000088325.14 TPX2 protein_coding 0.953247713 0 
ENSG00000175063.15 UBE2C protein_coding 0.949233385 0 
ENSG00000100526.18 CDKN3 protein_coding 0.942322286 3.90E-302 
ENSG00000117399.12 CDC20 protein_coding 0.940619244 2.88E-298 
ENSG00000117650.11 NEK2 protein_coding 0.940405145 8.65E-298 
ENSG00000090889.11 KIF4A protein_coding 0.939524776 7.66E-296 
ENSG00000126787.11 DLGAP5 protein_coding 0.939319726 2.16E-295 
ENSG00000089685.13 BIRC5 protein_coding 0.938308668 3.36E-293 
ENSG00000075218.17 GTSE1 protein_coding 0.936094029 1.60E-288 
ENSG00000137804.11 NUSAP1 protein_coding 0.933599848 1.88E-283 
ENSG00000143228.11 NUF2 protein_coding 0.932731673 9.85E-282 
ENSG00000112984.10 KIF20A protein_coding 0.931277019 6.64E-279 
ENSG00000170312.14 CDK1 protein_coding 0.929232336 4.96E-275 
ENSG00000158402.17 CDC25C protein_coding 0.928026105 8.43E-273 
ENSG00000138180.14 CEP55 protein_coding 0.927882891 1.54E-272 
ENSG00000165304.6 MELK protein_coding 0.926369475 8.45E-270 
ENSG00000109805.8 NCAPG protein_coding 0.922418309 6.45E-263 
ENSG00000169679.13 BUB1 protein_coding 0.92241255 6.60E-263 
ENSG00000165480.14 SKA3 protein_coding 0.922179349 1.64E-262 
ENSG00000135451.11 TROAP protein_coding 0.919163683 1.62E-257 
ENSG00000121152.8 NCAPH protein_coding 0.916186482 9.00E-253 
ENSG00000087586.16 AURKA protein_coding 0.916174417 9.40E-253 
ENSG00000186185.12 KIF18B protein_coding 0.916080692 1.32E-252 
ENSG00000146670.8 CDCA5 protein_coding 0.915046688 5.30E-251 
ENSG00000142945.11 KIF2C protein_coding 0.914678507 1.95E-250 
ENSG00000072571.18 HMMR protein_coding 0.914549332 3.08E-250 
ENSG00000105011.7 ASF1B protein_coding 0.91427943 7.97E-250 
ENSG00000171848.12 RRM2 protein_coding 0.913730469 5.46E-249 
ENSG00000237649.6 KIFC1 protein_coding 0.912124451 1.41E-246 
ENSG00000129810.13 SGOL1 protein_coding 0.911795314 4.36E-246 
ENSG00000117724.11 CENPF protein_coding 0.911751692 5.06E-246 
ENSG00000169607.11 CKAP2L protein_coding 0.910515383 3.33E-244 
ENSG00000131747.13 TOP2A protein_coding 0.910413271 4.69E-244 
ENSG00000101057.14 MYBL2 protein_coding 0.908588507 2.01E-241 
ENSG00000152253.7 SPC25 protein_coding 0.908524197 2.49E-241 
ENSG00000145386.8 CCNA2 protein_coding 0.907887864 2.00E-240 
ENSG00000109674.3 NEIL3 protein_coding 0.90739416 9.94E-240 
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ENSG00000166851.13 PLK1 protein_coding 0.907201273 1.86E-239 
ENSG00000123485.10 HJURP protein_coding 0.90714193 2.25E-239 
ENSG00000183856.9 IQGAP3 protein_coding 0.90557122 3.45E-237 
ENSG00000111665.10 CDCA3 protein_coding 0.901495447 1.09E-231 
ENSG00000111206.11 FOXM1 protein_coding 0.901026443 4.51E-231 
ENSG00000164611.11 PTTG1 protein_coding 0.900555263 1.87E-230 
ENSG00000011426.9 ANLN protein_coding 0.89990179 1.32E-229 
ENSG00000135476.10 ESPL1 protein_coding 0.89973951 2.15E-229 
ENSG00000154839.8 SKA1 protein_coding 0.899334885 7.16E-229 
ENSG00000076382.15 SPAG5 protein_coding 0.897243566 3.33E-226 
ENSG00000134690.9 CDCA8 protein_coding 0.897162757 4.21E-226 
ENSG00000171241.7 SHCBP1 protein_coding 0.895676201 3.05E-224 
ENSG00000066279.15 ASPM protein_coding 0.894498322 8.66E-223 
ENSG00000035499.11 DEPDC1B protein_coding 0.894092574 2.72E-222 
ENSG00000013810.17 TACC3 protein_coding 0.893768311 6.76E-222 
ENSG00000137807.12 KIF23 protein_coding 0.89050008 5.58E-218 
ENSG00000178999.11 AURKB protein_coding 0.889938345 2.56E-217 
ENSG00000077152.8 UBE2T protein_coding 0.887617124 1.26E-214 
ENSG00000174371.15 EXO1 protein_coding 0.887581464 1.38E-214 
ENSG00000051341.12 POLQ protein_coding 0.887002447 6.36E-214 
ENSG00000104147.7 OIP5 protein_coding 0.886376225 3.28E-213 
ENSG00000118193.10 KIF14 protein_coding 0.88611361 6.50E-213 
ENSG00000168078.8 PBK protein_coding 0.885390953 4.24E-212 
ENSG00000065328.15 MCM10 protein_coding 0.88287278 2.65E-209 
ENSG00000198901.12 PRC1 protein_coding 0.876931157 5.93E-203 
ENSG00000163808.15 KIF15 protein_coding 0.876690103 1.06E-202 
ENSG00000068489.11 PRR11 protein_coding 0.875783463 9.16E-202 
ENSG00000161888.10 SPC24 protein_coding 0.874162081 4.18E-200 
ENSG00000121211.6 MND1 protein_coding 0.873879568 8.09E-200 
ENSG00000138778.10 CENPE protein_coding 0.873655133 1.37E-199 
ENSG00000085999.10 RAD54L protein_coding 0.87323259 3.65E-199 
ENSG00000129195.14 FAM64A protein_coding 0.873200215 3.93E-199 
ENSG00000127564.15 PKMYT1 protein_coding 0.870136858 4.39E-196 
ENSG00000137812.18 CASC5 protein_coding 0.869693748 1.19E-195 
ENSG00000276043.3 UHRF1 protein_coding 0.8690451 5.13E-195 
ENSG00000091651.7 ORC6 protein_coding 0.868969543 6.08E-195 
ENSG00000148773.11 MKI67 protein_coding 0.867715775 9.94E-194 
ENSG00000151725.10 CENPU protein_coding 0.867167902 3.34E-193 
ENSG00000156970.11 BUB1B protein_coding 0.865106175 3.05E-191 
ENSG00000007968.6 E2F2 protein_coding 0.864803155 5.88E-191 
ENSG00000093009.8 CDC45 protein_coding 0.864549042 1.02E-190 
ENSG00000184661.12 CDCA2 protein_coding 0.861725496 4.25E-188 
ENSG00000102384.12 CENPI protein_coding 0.8615679 5.93E-188 
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ENSG00000198826.9 ARHGAP11A protein_coding 0.858654441 2.59E-185 
ENSG00000143476.16 DTL protein_coding 0.858074052 8.57E-185 
ENSG00000167900.10 TK1 protein_coding 0.85737153 3.61E-184 
ENSG00000138160.5 KIF11 protein_coding 0.85714429 5.75E-184 
ENSG00000166803.9 KIAA0101 protein_coding 0.855859296 7.80E-183 
ENSG00000139734.16 DIAPH3 protein_coding 0.855388765 2.02E-182 
ENSG00000186871.6 ERCC6L protein_coding 0.853544067 8.05E-181 
ENSG00000161800.11 RACGAP1 protein_coding 0.851907563 2.03E-179 
ENSG00000146410.10 MTFR2 protein_coding 0.85137979 5.71E-179 
ENSG00000154920.13 EME1 protein_coding 0.848101678 3.20E-176 
ENSG00000113368.10 LMNB1 protein_coding 0.841708517 4.81E-171 
ENSG00000188610.11 FAM72B protein_coding 0.841587693 6.00E-171 
ENSG00000157456.6 CCNB2 protein_coding 0.836448844 5.92E-167 
ENSG00000122966.12 CIT protein_coding 0.835824278 1.77E-166 
ENSG00000101412.12 E2F1 protein_coding 0.835231932 4.98E-166 
ENSG00000071539.12 TRIP13 protein_coding 0.83289595 2.84E-164 
ENSG00000106462.9 EZH2 protein_coding 0.832630908 4.47E-164 
ENSG00000134057.13 CCNB1 protein_coding 0.83135339 3.96E-163 
ENSG00000171320.13 ESCO2 protein_coding 0.826995672 5.88E-160 
ENSG00000094804.8 CDC6 protein_coding 0.825740153 4.64E-159 
ENSG00000167513.7 CDT1 protein_coding 0.824746176 2.35E-158 
ENSG00000075702.15 WDR62 protein_coding 0.823395844 2.10E-157 
ENSG00000121621.6 KIF18A protein_coding 0.821762945 2.90E-156 
ENSG00000196550.9 FAM72A protein_coding 0.820033411 4.53E-155 
ENSG00000197299.9 BLM protein_coding 0.819740648 7.19E-155 
ENSG00000117632.19 STMN1 protein_coding 0.819190897 1.71E-154 
ENSG00000129173.11 E2F8 protein_coding 0.818021052 1.07E-153 
ENSG00000165490.11 DDIAS protein_coding 0.817674061 1.84E-153 
ENSG00000101003.9 GINS1 protein_coding 0.815175278 8.75E-152 
ENSG00000123219.11 CENPK protein_coding 0.815104073 9.75E-152 
ENSG00000185480.10 PARPBP protein_coding 0.815102512 9.78E-152 
ENSG00000164087.6 POC1A protein_coding 0.811596424 2.00E-149 
ENSG00000085840.11 ORC1 protein_coding 0.810709703 7.55E-149 
ENSG00000278023.3 RDM1 protein_coding 0.80986939 2.64E-148 
ENSG00000165244.6 ZNF367 protein_coding 0.807180403 1.39E-146 
ENSG00000139354.9 GAS2L3 protein_coding 0.802631464 9.90E-144 
ENSG00000122952.15 ZWINT protein_coding 0.800761444 1.40E-142 
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Table 3.4: Primers used in this chapter. 

Direction Target Method Sequence 

GAPDH F GAPDH qRT-PCR ACATCGCTCAGACACCATG 

GAPDH R GAPDH qRT-PCR TGTAGTTGAGGTCAATGAAGGG 

CENPA F CENPA qRT-PCR GTGTGGACTTCAATTGGCAAG 

CENPA R CENPA qRT-PCR TGCACATCCTTTGGGAAGAG 

TMPRSS2 F TMPRSS2 qRT-PCR CCTGCAGGGACATGGGCTATA 

TMPRSS2 R TMPRSS2 qRT-PCR CCGGCACTTGTGTTCAGTTTC 

D2Z1 F D2Z1 ChIP-PCR TCGTTGGAAACGGGATTGT 

D2Z1 R D2Z1 ChIP-PCR CTGCTCTATGAAAGGGACTGTT 

D11Z1 F D11Z1 ChIP-PCR CTTCCTTCGAAACGGGTATATCT 

D11Z1 R D11Z1 ChIP-PCR GCTCCATCAGCAGGATTGT 

DXZ1 F DXZ1 ChIP-PCR CGGGATCACCTTCCCATAAC 

DXZ1 R DXZ1 ChIP-PCR GGTGTTGCAAACCTGAACTATC 

D20Z2 F D20Z2 ChIP-PCR TGCTTGGAAACGGGAATGT 

D20Z2 R D20Z2 ChIP-PCR CCTGCTCTATGAAAGGGAATGT 
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Chapter 4 – Conclusion: Future Directions for Studying Centromeres 

 

Summary of Dissertation 

  The aim of the work encapsulated in this thesis was to ascertain the role centromeres play 

in cancer. The well-established contributions of centromeres to faithfully orchestrating 

chromosomal segregation, as well as some early data in the literature, bestow biologic rationale to 

further interrogate this essential subcellular structure in the context of malignancy. The findings 

presented here reflect the degree to which alterations in centromere genetics and epigenetics have 

been overlooked in our quest towards a more complete understanding of the molecular 

determinants of cancer. Two immediate future directions can be readily surmised from this thesis 

work: 1) instability in centromeric loci requires further elucidation to mechanistically delineate 

factors that drive the aberrations observed in the genomic centromere; and 2) epigenetic 

promiscuity exhibited by CENPA in prostate cancer may be generalizable across additional 

centromeric factors as well as across additional cancer tissue lineages. 

 

Genomic Derangements 

Global genome instability in cancer underscored our supposition that centromere DNA 

undergoes molecular alterations that have gone unnoticed due to technologic shortcomings in NGS 

methodologies that hinder interrogation of repetitive loci1. The repetitive landscape of the genomic 

centromere thus necessitated that we use a methodology that can successfully navigate low-

complexity regions of the human genome. Previous work had characterized a novel PCR-based 
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methodology that takes advantage of the rare divergences in homology between chromosome 

specific a-satellites to quantify copy numbers of chromosome specific repeat units2. The 

specificity of this assay lends itself to applications that seek to characterize centromeric genetics 

through copy number assessments of the a-satellites that reside within each chromosome. Prior 

reports in a number of model organisms described copy number alterations at centromeric loci due 

to recombination and retrotransposition of centromeric DNA, motivating us to apply this PCR 

methodology to study potential a-satellite copy number alterations in cancer3–10. We thus began 

by applying this methodology to DNA samples from cancer cell lines, tissues, and normal controls, 

hypothesizing that our assay would unveil cancer-associated copy number variation in centromeric 

DNA. 

 The ease of use of our centromere-specific PCR assay allowed us to broadly examine the 

genetic landscape of centromeres across numerous cancer types. We found heterogeneous losses 

in centromeric material in terms of copy number differences between tissues as well as differences 

between cancer cells/tissues and healthy cells in a manner independent of aneuploid karyotypes.  

The heterogeneous copy number losses identified in centromeric DNA from cancer cell lines was 

also identified in both bulk cancer tissue and flow sorted cancer tissue. Within a particular locus, 

we identified evolution in the sequences of the HERV-K111 virus in the form of gene conversion 

events that homogenized HERV-K111 sequence relative to K111 copies evaluated within normal 

cells. Taken together, we confirm our hypothesis that gross derangements in centromeric DNA in 

the form of copy number alterations and gene conversion is nearly ubiquitous within cancer. Our 

novel PCR assay provides insight into a genetic locus that has been widely-deemed as impervious 

to genomic inquiry. These findings thus shed light on a largely overlooked region of the human 

genome in the context of cancer (Figure 4.1).  
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Epigenetic Rewiring 

 Numerous reports in the literature have however deemed a-satellite DNA as sufficient but 

not necessary for centromere function11–14. The field widely accepts that human centromere 

function is defined not just by its genetic underpinnings, but also by its epigenetic composition. It 

thus follows that these postulates must inform our interrogation of centromeres in cancer. The 

advent of publicly available databases that have molecularly catalogued cancer tissues (TCGA) 

facilitated a more nuanced assessment of gene expression signatures that display an 

overrepresentation of centromeric epigenetic factors. Furthermore, RNA-sequencing and ChIP-

sequencing are valuable tools by which centromere dysfunction can be epigenetically unraveled 

in the setting of malignancy. Underlying derangements in the centromeric locus compelled us to 

investigate the epigenetic components that traditionally occupy centromeric DNA. We thus 

leveraged a wide array of NGS-based molecular profiling techniques to investigate epigenetic 

destabilization of centromeres, using prostate cancer as our primary model system. We 

hypothesized that overexpression of centromeric factors such as CENPA has functional 

consequences to prostate cancer pathogenesis. 

 Mining transcriptomic data within a compendium of 10,848 RNA-sequencing libraries 

revealed widescale overexpression of CENPA in cancer tissue relative to lineage matched normal 

tissue. This finding corroborated previous reports of wide-scale overexpression of CENPA in 

cancer, though in much larger cohort sizes15–17. A more focused analysis within the prostate cancer 

tissue type cohort within this compendium demonstrated overexpression of a number of 

centromere/kinetochore proteins relative to normal prostate tissue, and further showed a successive 

increase of CENPA mRNA with disease progression, a finding that was validated at the protein 
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level in cell lines and tissue. Ontologic assessments of transcriptional signatures that correlate 

tightly with CENPA expression in prostate cancer tissue further revealed significant associations 

with proliferation, cell division, centromere, and kinetochore concepts, corroborating the notion 

that CENPA overexpression in prostate cancer is linked to cellular programs that govern cell 

division. Loss-of- and gain-of-function experimentation in cell lines revealed that CENPA 

modulation indeed affects proliferative phenotypes, where CENPA depletion impairs prostate 

cancer proliferation by altering flux through the cell cycle while overexpression of CENPA propels 

proliferation of benign prostatic epithelial cells. As seen previously in colon cancer cell lines, we 

demonstrate that in a cell line that overexpresses CENPA, we identify non-canonical binding 

across the genome to regulatory regions in close proximity to genes involved with nuclear 

architecture and DNA-replication, including the CENPA locus itself. Intriguingly, subsequent 

RNA-seq analysis on CENPA depleted cells reveals drastic changes in the transcriptional profile 

of prostate cancer cells. Integrative analysis between ChIP-seq and RNA-seq analysis indeed 

revealed an intersection between genes that are bound by CENPA and genes that are differentially 

expressed with CENPA depletion. Of note, this list of genes includes those that encode factors 

crucial for cell cycle, centromere, and kinetochore integrity. Collectively, our findings implicate a 

previously uncharacterized function for CENPA in regulating transcription of genes important for 

cell cycle, centromere, and kinetochore function when overexpressed in the setting of prostate 

cancer (Figure 4.1).  

 

Furthering our Understanding of Centromeres in Cancer 

The work outlined in this thesis presents a lens into what remains to be accomplished to 

more completely delineate the contribution of centromere genetics and epigenetics to the 
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pathogenesis of cancer. While we present a previously uncharacterized taxonomy of the molecular 

irregularities that arise within centromeres in neoplastic settings, much work is required to inform 

our understanding of the mechanisms that drive these changes in cancer. 

 

Genetics 

Revisiting publicly available genomics data can help us build new tools that can navigate 

repetitive regions within NGS datasets. A thorough dissection of the abundance of sequencing 

reads across TCGA samples that contain chromosome specific a-satellites would provide powerful 

corroboration for the PCR findings presented in this thesis. Cross-referencing these findings to 

known genetic anomalies within each sample has the potential to reveal mechanistic drivers that 

result in the heterogeneous losses observed in a-satellite copy number. Tools that can survey 

variation in a-satellites across large datasets like TCGA can be subsequently leveraged to evaluate 

transcription arising from centromeric loci from RNA-seq datasets. These tools can additionally 

be repurposed to prospectively and/or cross-sectionally evaluate additional non-neoplastic 

biologic and disease processes, including development, aging, and inflammation (Figure 4.2). 

Indeed, as we have shown previously, contractions in the centromere of chromosome 21 were 

associated with trisomy 21 in DNA samples from those afflicted by Down’s Syndrome, a widely 

known disease due to aberrant development2. Cancer is widely known to be associated with 

increased age, and thus evaluating centromeric content in a prospective cohort of individuals as 

they age in conjunction with the diseases they develop during the aging process, may shed light 

into whether centromeric contraction observed in malignancy is in reality a signature that arises 

due to aging. Oxidative stress due to reactive-oxygen species (ROS) tension in an inflammatory 

setting may also have a propensity to alter centromeric DNA in a manner that facilitates copy 
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number variation when comparing healthy cells to cells from an inflammatory milieu in tissue. 

The insights drawn from these sorts of inquiries can collectively further our understanding of how 

the genomics underlying this critical structure for cell division affect outcomes under any number 

of biological conditions. 

From a functional standpoint, advances in gene-editing technologies have augmented our 

ability to genetically manipulate regions of interest to gain a better understanding of their 

contributions to biology. CRISPR-Cas9 gene-targeting strategies that employ guide RNAs with 

sequence complementarity to chromosome specific a-satellites and/or HERV-K111 have the 

potential to unlock deeper comprehension of the role centromere genetics play in both in vitro and 

in vivo settings. Cre-Lox recombination systems activated by tissue specific factors can 

additionally enhance these insights by offering an orthogonal methodology to validate CRISPR-

Cas9 findings while simultaneously determining if tissue lineage affects phenotypes in cells/tissues 

devoid of chromosome specific a-satellites. Given our findings presented in this thesis, it is 

conceivable that selective deletion of a-satellites will have oncogenic effects, both in vitro and in 

vivo, phenotypes that can be readily assessed through examination of cell proliferation and cell 

cycle in cell culture and in tissue. To ascertain the mechanisms that underlie the losses in 

centromere material, one can conduct parallel loss-of-function experiments that selectively target 

effectors within one of the several DNA-repair pathways, to determine if dysfunctional DNA-

repair machinery result in the heterogeneous losses in centromeric DNA in cancer. Finally, the use 

of human artificial chromosomes (HACs) may clarify the debate surround necessity and 

sufficiency of the genetic and the epigenetic components of the centromere to cell division, with 

insights into whether centromeric polyploidy can itself drive malignant phenotypes. 
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Epigenetics 

 There are two related but separate components of our epigenetic findings that would benefit 

from future cell biology and mechanistic assessments: 1) canonical centromere epigenetics and 2) 

non-canonical centromere epigenetics. 

Canonical 

The altered gene expression patterns linked to CENPA expression that we uncovered in 

prostate cancer are unlikely to be restricted to the prostate lineage. A handful of studies have 

investigated centromeric signatures within cancer datasets that, while not nearly as comprehensive 

as our findings, present trends that are indeed similar to patterns we present here16,18. Thus, a 

natural extension is to investigate the significance of each of the genes within these centromeric 

signatures (genes that encode members of the CCAN and KMN complex) to malignant phenotypes 

and identify potentially synergistic partners through combinatorial loss-of-function 

experimentation. Identifying the most promising genes to target through such a strategy can 

involve using biochemical approaches such as immunoprecipitation of CENPA from cancer tissue 

followed by mass spectrometry (IP-MS) to nominate strong interactors that maybe therapeutically 

actionable. As an example, in prostate cancer tissue, CENPA expression is tightly associated with 

expression of HJURP, the chaperone responsible for localizing CENPA to a-satellite DNA. The 

interaction between CENPA and HJURP that is dependent upon ubiquitination of lysine 124 on 

CENPA, can potentially be a druggable interface between two molecules important for the fidelity 

of cell division. Dual loss-of-function studies involving both CENPA and HJURP that demonstrate 

a synergistic reduction in cell proliferation would serve as an immediate prerequisite to 

demonstrate the potential utility targeting this essential interaction. 
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Non-Canonical 

 With regards to the localization defects of CENPA tied to its overexpression in cancer, 

additional work is necessary to separate the contributions of ectopic CENPA deposition from those 

of canonical CENPA function in prostate cancer. Complementation experiments involving genes 

that are both CENPA bound and differentially expressed with CENPA modulation will partly 

address the importance of non-canonical CENPA function to prostate cancer pathogenesis. 

Preliminary attempts at reversing the proliferation defects in CENPA-depleted cells with 

CDC25C, a cell cycle phosphatase both bound by CENPA and differentially expressed under 

CENPA-depleted conditions, did not show complementation, as the proliferation defect is likely 

polygenic. A combinatorial approach to complementation will be required to better distinguish the 

role ectopic CENPA binding plays in perpetuating malignant phenotypes. 

Reproducing the prostate cancer findings presented in this thesis through a similar 

integrative genomics approach in additional cancer types will provide necessary parallel validation 

of the importance of gene expression signatures linked to ectopic CENPA deposition. Furthermore, 

mechanistically interrogating the binding partners that drive this ectopic deposition through similar 

IP-MS approaches as described above may inform additional therapeutic development. Previous 

work suggests that distinct binding partners direct canonical and non-canonical CENPA 

localization, with canonical deposition requiring HJURP and non-canonical deposition requiring 

DAXX19. Carefully choosing cell line models that either express intermediate or high levels of 

CENPA will aid in determining whether CENPA levels determine binding capacity to these 

chaperone proteins, potentially through similar use of a doxycycline-inducible system. Finally, a 

wholistic understanding of centromeric derangements in cancer will require mechanistically 

linking the genetic findings of heterogenous a-satellite loss with the epigenetic findings involving 
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ectopic CENPA localization. CRISPR-Cas9 mediated or Cre-Lox recombination directed deletion 

of specific centromeric markers followed by CENPA ChIP-seq may provide insight into whether 

ectopic localization of CENPA is related to deficiencies in a-satellites available for canonical 

binding. 

 

Conclusion 

 The importance of centromeres to cell division underscores our motivation to study these 

structures in the context of malignancy. Centromeres are vital to coordinating the faithful 

segregation of chromosomes, providing the foundation for kinetochore assembly and spindle fiber 

recognition. Eukaryotic biology is thus dependent on this highly conserved process in order to 

maintain proper growth and development. Aberrant regulation and control of cellular growth and 

development provide the underpinnings for the development diseases of cell division, i.e. cancer. 

Highly repetitive sequences termed a-satellites arranged in a head-to-tail fashion across each 

human centromere however present methodologic challenges to evaluating their genomic structure 

and function. Moreover, epigenetic characterization of centromeric components in cancer has to 

date yielded an incomplete understanding of the role they play in driving cancer pathogenesis. We 

thus sought to comprehensively dissect the genetic and epigenetic components of centromeres in 

the context of malignancy through methodologies that provide insight into the changes that occur 

in cancer, while functionally characterizing a subset of these changes. We found anomalies in both 

the a-satellite and HERV-K111 rich genetic landscape as well as in CENPA expression and 

localization in the setting of cancer. Our data suggest that the findings reported in this thesis have 

broad implications to cancer genetics and cancer biology, as the anomalies in a-satellite copy 

number, sequence homogenization in HERV-K111, and the overexpression/ectopic localization of 
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CENPA are present in a number of cancers, described above and in the literature. A deeper 

understanding of centromere structure and function in cancer will thus give rise to the future 

development of novel therapeutic strategies that may have clinical utility across several cancer 

types. Future work that is focused on mechanistically characterizing as well as generalizing the 

findings presented above will set the stage for high impact discoveries in both science and in 

medicine. 
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Figure 4.1: Schematic depiction of centromeric molecular alterations in cancer. Copy number 
alterations in the form of a-satellite deletions are observed across cancer types in both cell lines 
and tissue. CENPA, the H3 variant that traditionally occupies a-satellite DNA, ectopically binds 
gene regulatory elements, such as transcriptional start sites (TSS), of genes important for cell cycle 
progression, such as CDC25C, when overexpressed in cancer. Future studies are necessary to 
functionally link the ectopic localization to the a-satellite deletions. 
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Figure 4.2: Schematic outline of future directions with chromosome specific PCR assay. 
Widescale applications of rapid centromere-specific PCR approaches have the potential to 
markedly expand our understanding of numerous biologic and disease oriented processes. The 
collection of a-satellite consensus sequences we have produced through rapid PCR-approaches 
can be computationally compiled into a centromere-specific reference genome build. Tools that 
can parse NGS datasets such as TCGA genomic and transcriptomic libraries for these consensus 
sequences can corroborate our PCR findings in a high throughput fashion. These tools can be 
further leveraged to study additional non-neoplastic processes such as development, aging, and 
inflammation. 
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