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ABSTRACT
 

Experiencing poverty during childhood may prompt experience-dependent neural adaptations. 

These manifest through functional connectivity patterns across networks thought to support 

cognitive and socio-emotional processing. Interrelated network connectivity disruptions have 

been associated with the development of internalizing disorders. Connectome-wide network 

characterizations of functional connectivity in adolescents who grew up in poverty are lacking. 

To this end, this dissertation aimed to characterize the association between family material 

hardship, connectome-wide network connectivity and internalizing symptoms in adolescence. 

The introductory chapter proposes material hardship, which directly measures a family's 

experiences with unmet basic needs (e.g., no access to food) as a better alternative to income-

based measures used in research. Subsequently, in Chapters Two and Three, network 

contingency analyses were conducted to characterize connectome-wide connectivity associated 

with lifetime family material hardship for adolescents drawn from a national longitudinal study. 

Correlational analyses evaluating the association between network connectivity and current 

adolescent internalizing symptoms were done. Notably, the mixed findings across the two studies 

suggest that connectome-wide adaptations confer both cost and benefits to youth who 

experienced material hardship. Data suggests that altered network connectivity may be protective 

and that not everyone who experiences material hardship develops internalizing symptoms. In 

the final chapter, the limitations and implications of the present findings are discussed. 

Recommendations for more multi-method research to better characterize the association between 

brain function and poverty are made.
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CHAPTER I 
Poverty, Children, and Measurement Issues: A General Introduction 

 

Poverty in the U.S. 

Despite the declining poverty rate in the United States of America from 14.8% in 2014 to 

11.8% in 2018, the number of families in poverty remains in the millions (Semega, Kollar, 

Crearmer, & Mohanty, 2019). For a family to be considered “in poverty”, their annual pre-tax 

household income must be below the Official Federal Poverty threshold measure (OPM), a 

guideline that is adjusted yearly based on family size and income. Of the 38.1 million Americans 

in poverty in 2018, 18.5 million are in deep poverty, which refers to households with a 

total income below 50% of the poverty threshold. Although individuals in deep poverty represent 

5.7% of the U.S. population, they represent 46.7% of those in poverty (Semega et al., 2019).  

Furthermore, the rates of individuals growing up in poverty have disproportionately 

affected families based on other relevant demographic characteristics such as race, family 

composition, parental education, age, employment status, and immigration status (National 

Academies of Science, Engineering and Medicine, 2019). Even though race may be a social 

construct (Helms, Jernigan, & Mascher, 2005; Smedley & Smedley, 2005), it is a construct that 

has influenced and maintained long-standing economic inequalities in the U.S. reflected by  

poverty rates being historically higher for non-white families in the U.S.; the 2018 census data 

reports that 20.8% of Blacks, 17.6% of Hispanics, and 10.1% of Asians live in poverty, relative 

to 8.1% of non-Hispanic whites (Semega et al., 2019). The dynamics underlying these race-

based wealth gaps are engrained in the historical foundations of the U.S. and have been of 
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concern in American politics and policy ever since the 1960’s President Johnson’s ‘War on 

Poverty’ social reforms (Cellini, McKernan, & Ratcliffe, 2008).  

Recent longitudinal research using the Panel Study of Income Dynamics (PSID) data that 

examined intergenerational mechanisms of how these disparities persist identified that higher 

rates of economic disadvantage for Black American families was associated with their kin’s 

socioeconomic resources (e.g., educational attainment, home ownership) and socioeconomic 

disadvantages (e.g., at least one member of household is unemployed) relative to non-Hispanic 

White families (Park, Wiemers, & Seltzer, 2019).  In the same vein, transfer of intergenerational 

wealth seems to influence the social mobility capabilities of families such that historically Black 

families who start with less economic advantages tend to face hardships over generations, while 

non-White families tend to start with more advantages and maintain them (Pfeffer & Killewald, 

2019). Overall, these wealth gaps arise from both the historical disadvantage reflected in the 

unequal starting positions of Black and White children, and contemporary processes that hinder 

the closing of the gaps including institutional discrimination such as racial segregation in the 

U.S. (e.g., concentrations of poverty across the U.S. differ by race; Lichter, Parisi, & Taquino, 

2012).   

The persistence of these race-based socioeconomic disadvantages are of great concern to 

poverty researchers given the adverse health outcomes associated with poverty (Ananat, 2011; 

Grusky & Hill, 2018; Iceland, 2019; Lichter et al., 2012). Specially for young children in 

families who are in poverty are one of the most vulnerable populations; in fact, one in five 

children (individuals under the age of 18) grow up in poverty in the U.S. (Koball & Jiang, 2018). 

Given these sobering statistics, further research investigating the impact of growing up in 

poverty on normative development is essential. Research evaluating the effect of family income 
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and the availability to resources to meet a family’s basic needs on children’s normative 

development on domains such as socio-emotional development and brain function would inform 

how poverty gets underneath the skin. Lastly, following the recent American Psychological 

Association's recommendations to refer to people in poverty as “low-income and economically 

marginalized” (LIEM), this dissertation followed the APA’s guidance and broadly incorporated 

many aspects of what it means to be economically oppressed, including access to limited 

financial resources and marginalization related to social class (American Psychological 

Association, 2019). 

Poverty and Health Outcomes 

To date, research on the association between a family's level of income (i.e., a proxy for 

poverty) and health outcomes demonstrates the damaging effects of growing up in poverty. For 

example, growing up in low-income families has been associated with poorer health outcomes in 

childhood such as difficulties with socio-emotional regulation (Bradley & Corwyn, 2002; 

Chaudry & Wimer, 2016; Mohamed & Toran, 2018), impaired cognitive function (Mani, 

Mullainathan, Shafir, & Zhao, 2013), adverse mental health (Bøe, Øverland, Lundervold, & 

Hysing, 2012), higher levels of inflammation (Chiang et al., 2015; Pietras & Goodman, 2013), 

lower academic achievement (Sirin, 2005), lower reading ability (Chen, Kong, Gao, & Mo, 

2018), and more behavioral problems (Hosokawa & Katsura, 2018), relative to children growing 

up in higher-income families. Furthermore, the effects of early childhood poverty have 

downstream consequences that also emerge in adulthood, such as reduced cardiovascular health 

(Lipowicz, Koziel, Hulanicka, & Kowalisko, 2007), difficulties with working memory (Evans & 

Schamberg, 2009), and a shorter life expectancy (Bor, Cohen, & Galea, 2017; Chetty et al., 

2016; Mode, Evans, & Zonderman, 2016). These findings demonstrate the downstream effects of 
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poverty on development throughout the life course. Yet, given the complicated circumstances 

around poverty conditions, it may be necessary to operationalize poverty in a more precise 

manner to elucidate how this association manifests.  

Poverty: Definition and Measurement  

Defining poverty is challenging given the multidimensional nature of this condition (Alkire, 

2007; Anand & Sen, 1997; Spicker, Gordon, & Scotland, 2009; Tsui, 2002), but broadly 

speaking, poverty is understood to limits a person’s opportunities. Sen’s “capabilities” theory 

posited that an individual’s chances to choose between different states of being are limited when 

deprived of such capabilities due to poverty (Sen, 2005). Beyond the limited opportunities, there 

is less agreement on what circumstances count as a dimension of poverty, such as low income, 

limited access to resources, or low levels of education (Atkinson, 2003). However, there are 

three main approaches in which to conceptualize poverty: (a) as a material condition, 

characterized by patterns of deprivation and limited access to resources (b) as an economic 

circumstance, focusing on the standards of living, inequality and economic positions and (c) as a 

social circumstance, linking access to financial security with an individual’s social class that by 

consequence will be exclusionary (Lipina & Evers, 2017). These approaches tap into distinct and 

intersecting dimensions of poverty that are likely to interact with each other.  

Regarding the first approach, the most commonly quoted definition of material poverty is 

Townsend's (1979), a British sociologist:  

“Individuals, families, and groups in the population can be said to be in poverty when 

they lack the resources to obtain the type of diet, participate in the activities and have the 

living conditions and amenities which are customary, or at least widely encouraged, or 

approved, in the societies to which they belong. Their resources are so seriously below 
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those commanded by the average individual that they are, in effect, excluded from 

ordinary living patterns, customs, and activities” (p. 31). 

Groups considered to be LIEM families under Townsend’s definition disagreed with 

being labeled as individuals “in poverty”(Sen, 1985; Shaw, 1988), suggesting that an 

individual’s subjective view of their living conditions might be relevant to consider as well. 

Although Townsend proposed a comparative standard of poverty based on disproportionate 

deprivation relative to available resources and a societal standard of living, in practice 

developing countries use an absolutist definition where a single income-based indicator identifies 

those LIEM families (Chen & Ravallion, 2007; dos Santos, 2017). However, an absolutist 

interpretation cannot be applied equally to all people without regard to the individualized 

contextual factors that foster the circumstances LIEM families face (Boltvinik, 1999; Dutta, 

Foster, & Mishra, 2011).  

Despite this shortcoming, the U.S. still favors this absolutist approach of calculating an 

official federal poverty threshold based on a family’s pre-tax annual income earnings from 

sources such as wages, salaries, Social Security benefits, pensions, or other retirement income. 

The official poverty threshold favored in the U.S. estimates that families spend one-third of their 

annual income on a food diet basket (cost of a minimum food diet ) from 1963 and multiplies a 

family's food costs by three based on the current year’s food cost estimates (Orshansky, 1963, 

1965). However, these estimates incorrectly allocate one–third of a family’s income to only food 

costs, which underestimates the role of increasing housing costs that are typically more than one-

third of a family’s income. Because of this underestimation, the pre-taxed annual income used to 

determine the threshold for poverty does not accurately reflect a family’s needs or available 

resources (Fass & Cauthen, 2008). Additionally, although the cost of living is adjusted annually 
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for inflation, some families’ yearly income remains fixed due to an unchanged federal minimum 

wage, a factor not considered when calculating the federal poverty threshold. For these reasons, 

the federal poverty threshold has been harshly criticized for its heavy reliance on a family’s 

reported income and unrealistic cost of living estimates (Blank, 2008; Cauthen, 2007). 

Among the many income-based alternative poverty indexes proposed to better capture a 

family’s experiences with poverty (Iceland, 2005; Short & Garner, 2002), the U.S. government 

introduced a second estimate of poverty in 2011. Unlike the Official Poverty Measure (OPM) 

threshold determined by a select few sources of income, the Supplemental Poverty Measure 

(SPM) estimate accounts for more sources of a family's income, such as the governmental 

benefits received to help families meet their basic needs. The SPM also considers a more realistic 

cost of living by geographical region, accounting for other necessary expenses beyond a food 

basket such as clothing, shelter, utilities, payroll taxes, health care costs, commuting costs for all 

workers, and childcare expenses while parents work, at today’s prices (U.S. Census Bureau, 

2018). By more accurately representing families’ cost of living, the SPM index identifies a wider 

group of individuals in poverty compared to the Official Poverty Measure. For example, in 2016, 

based on the OPT, 12.7% of the U.S. population was deemed to be in poverty, whereas with the 

SPM index, the rate was slightly higher at 14% (Fox, 2018). 

Looking at youth under the age of 18, we see a different pattern: the OPM estimates 18% 

of youth to be in poverty, relative to the 15.2% based on the SPM. Though this lower SPM rate 

for youth may more accurately reflect a family’s sources of income, it still does not accurately 

account for the direct costs of children’s basic needs for care and healthy development 

(Mirowsky & Ross, 1999). The average costs of raising a child from birth through age 17 in the 

U.S. is $233,610, according to the 2017 report from the U.S. Department of Agriculture, based 
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on 2015 data (Lino, Kuczynski, Rodriguez, & Schap, 2017), meaning that a family should expect 

to spend $13,750 per year per child. It has been estimated that the poverty threshold is too low 

and that it should be doubled (e.g., $22,050 for the year 2009) to accurately reflect what it would 

cost for a family of four to meet their needs (e.g., estimated money needed to not be in poverty in 

the U.S. ranges from $42,748 to 66,840; Fass, 2009). Taken together, neither of the most 

prominent income measures used to define poverty are sufficient to adequately identify all the 

families facing socio-economic disadvantage because the indexes do not consider their everyday 

challenges to make ends meet. Perhaps a more direct measure of a family's inability to meet their 

needs is merited.  

Poverty and Material Hardship 

Children growing up in LIEM families are caught up in their parents’ economic struggles. 

There are several ways they experience the consequences of economic hardship such as through 

unmet needs, attending low-quality schools, and living in unstable family circumstances 

(Gershoff, Aber, Raver, & Lennon, 2007; Ratcliffe, 2015). Much like the U.S. government’s 

income-based poverty index, child development researchers have opted to capture these 

experiences of unmet needs through self-reported income-based indicators (Hauser, 1994), often 

supplementing this information with additional information about a family’s eligibility for free or 

reduced lunch,  parental education, income-to- needs ratio and parental job status. Some 

researchers studying measures of material hardship have attempted to create indices of 

deprivation (Bauman, 2002; Beverly, 2001; Callan, Nolan, & Whelan, 1993; Mayer & Jencks, 

1989). These indices share some similarities: 1) they all define hardship in terms of direct 

measures of families’ experiences and their actual living conditions, and 2) they all include a 

core set of basic needs and food security indicators. Some methodological work seems to support 



 8

this approach (Bauman, 2002; Mayer & Jencks, 1989), but this research is preliminary, and the 

question remains whether it is valid to treat all indicators of material hardship in a unified way 

(Ouellette, Burstein, Long, & Beecroft, 2004). This lack of consensus of an operational 

definition for material hardship makes comparing findings across studies challenging. Despite 

this conceptual lack of clarity, material hardship has been defined as an inability to meet basic 

needs and an individual’s lack of access to or deprivation of resources, relative to the acceptable 

living conditions encouraged by the rest of society (Nelson, 2011). These material hardship items 

typically rely on the parent’s knowledge and perception about their experience counting as a 

hardship for their family. Determining what counts as material hardship is further complicated by 

the survey’s lack of specificity of who is affected by the hardship, assuming that all family 

members are equally affected. Yet, few questions, if any, ask about material hardship events that 

directly affect the children in the home. Including these types of questions would provide a direct 

measure of deprivation and unmet need that an income indicator does not.  

 Asking about a family’s experiences with material hardship reveals an understudied 

dimension of poverty not captured by the federal income poverty threshold, as evidenced by the 

small association (r =.18; r =0.33) between material hardship and the poverty threshold 

(Hamilton et al., 1997; Short, 2005). Although findings are mixed when evaluating the 

association between material hardship and a family’s level of income in the U.S., with direction 

depending on how poverty is coded (r= -.07; Ashiabi & O’Neal, 2007).  Other studies estimate 

that income level explains about 14% of the variation in the number of material hardships a 

family reports, while an income-to-needs ratio (which accounts for the division of available 

resources among the family; McLoyd, 1998) can explain up to 23.6% of the variance of the total 

number of material hardships reported (Mayer & Jencks, 1989). Nonetheless, the expected 
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likelihood that low-income families experience more material hardship due to a reduced capacity 

to meet their needs is a consistent finding in the literature relative to higher income families 

(Levy, 2015). One study that evaluated the overlap in dimensions of poverty estimated that you 

are 2.32 times more likely to be ‘necessities poor’ (i.e., face material hardships) if you are 

income poor (Bradshaw & Finch, 2003). Additionally, children have been found to be two to 

four times more likely to be in  household facing material hardship relative to older senior adults, 

another vulnerable population affected by high rates of poverty (Rodems & Shaefer, 2020). 

However, other contextual factors may play an important role in this observed relation (e.g., 

parent’s ability to budget, parent’s mental health, not having a checking account; Sullivan, 

Turner, & Danziger, 2008; family instability Heflin, 2014; or length of time in poverty; Cellini, 

McKernan, & Ratcliffe, 2008). Because the underlying reasons for a family’s material hardship 

can vary, income should not be the only indicator used to assess a family’s financial 

circumstances. 

First, material hardship improves upon income-based measures because is not based 

solely on consumption estimates or costs of living. For example, a previous study characterized 

four dimensions of material hardship: health, food, bill-paying, and housing hardship; yet these 

changes can arise from distinct processes (e.g., unexpected disability) rather than just a families’ 

limited income (Heflin, Sandberg, & Rafail, 2009). Second, material hardship avoids 

misrepresenting actual household economic and material resources that may not be captured by 

income. In particular, material hardship rates increase when families are living below the poverty 

line, suggesting a robust association between depth of poverty and material hardship (e.g., food 

insecurity, difficulty paying bills), while the association between material hardship and housing 

or neighborhood issues is less robust (Iceland & Bauman, 2004). Indeed, LIEM families are 
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more likely to report material hardship given that, on average, their income does not reach twice 

the federal poverty level, which has been estimated as necessary for a family to meet their basic 

needs (Cauthen, 2007). Third, reports of material hardships provide better representation of how 

the available resources may be allocated differently for each family based on their individual 

needs (Beverly, 2001). Lastly, material hardship allows us to capture all families’ experience 

with hardship across the socioeconomic spectrum, including those low-income families above 

the poverty threshold who may still be unable to meet their basic needs (Beverly, 2001; Gershoff 

et al., 2007; Iceland & Bauman, 2004; Neckerman, Garfinkel, Teitler, Waldfogel, & Wimer, 

2016; Nelson, 2011). 

Families with incomes above the poverty line may also experience material hardship. 

Low-income families (who technically are not below the official federal poverty threshold) are 

more likely to experience material hardship, given that any unexpected material hardship will tap 

into a limited income (Baek & DeVaney, 2010; Meyer & Sullivan, 2004). For example, in a 

nationally representative internet-based study, the Urban Institute’s Well-Being and Basic Needs 

Survey (WBNS),  families with children (n=1,4154; under 19 years old) reported that over half 

of low-income parents (i.e., income below 200% of the federal poverty line)  experienced food 

insecurity, 42.8% medical hardship, 33% problems paying utilities, and 27.6% problems making 

a rent or mortgage payment (Karpman, Gonzalez, Zuckerman, & Adams, 2018). A study that 

examined material hardship responses in the Survey of Income and Program Participation (SIPP) 

data from 1993 – 2011 found that over that time period approximately 15% of all U.S. families 

reported facing difficulties in meeting household “essential expenses”, which included families 

in poverty as well as, responses from families who did not meet the federal criteria for poverty 

(Heflin, 2014).  When separating responses to this “essential expense” hardship by families in 
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poverty versus not in poverty, those categorized to be in poverty based on the official guidelines 

reported (36.2%) higher difficulties in meeting their essential household expenses, relative to 

those not in poverty (12.3%) (Rector, Johnson, & Youssef, 1999). A more recent study reported 

that one third of the households with children facing material hardships are above the 200% 

poverty line (Rodems & Shaefer, 2020). Lastly, the race-based income disparities are also 

observed with increased risk for experiencing hardship with White and Asian children reporting 

the lowest rates of hardship, relative to Black and Hispanic children (Rodems & Shaefer, 2020). 

These findings suggest that facing material hardship is not limited to LIEM families whose 

income is below the poverty line, but families of color are at higher risk of experiencing material 

hardship. This indicates and that defining poverty through material hardship broadens the 

inclusion criteria to identify children from families facing financial hardships would not be 

captured through traditional income-based methods.  

Rates of reported material hardship vary in cross-sectional studies specific to the sample 

and time of sampling. The most reported material hardship items are food insecurity and utility 

disconnection (Bauman, 2002; Boushey & Gundersen, 2001; Cancian & Meyer, 2004; Heflin, 

Sandberg, & Rafail, 2009; Mayer & Jencks, 1989). Fewer studies have examined longitudinal 

reports of material hardship, and those that have revealed that certain material hardship items are 

experienced more chronically. A longitudinal study investigating employment data from 753 

Michigan mothers over five years who were asked to report on six different types of material 

hardship found that the most prevalent items, ordered from highest to lowest rates, were: unmet 

medical needs, telephone disconnection, food insufficiency, housing problems, utility 

disconnection, improper winter clothing (Heflin, 2006). Another longitudinal study (i.e., two-

time points) with 798 New York City families with at least one child younger than 18 years of 
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age examined five types of material hardship based on a ten-item questionnaire (food insecurity, 

housing hardship, unmet medical needs, utility cutoffs, and financial uncertainty). They found 

that 39% of those families experienced at least one type of material hardship during the year of 

the study. Given the challenges to recruit low-income families for research, these families 

provided better insight into how disadvantaged circumstances increase material hardship. 

Additionally, when this longitudinal study aggregated families by subgroups based on a poverty 

threshold, “poor families” vs. “nonpoor families,” they found that “poor” families (55%) 

reported more material hardship than the “nonpoor” families (33%). When examining the 

dynamics of material hardship, they found that 81% of the families facing poverty reported 

material hardship both at baseline and follow-up (Neckerman et al., 2016). Regardless of 

grouping, all the families who reported material hardship had a child, leaving the question as 

how experiences of material hardship impact children’s development.  

In summary, the findings from behavioral studies of LIEM families using income-based 

indicators are insufficient to capture a family's daily experiences with economic hardship. 

Income-based indicators do not capture a family’s struggle to meet basic needs such as medical 

care, food, and rent. Furthermore, material hardship captures how income resources are allocated 

independently of a family’s income level and may capture temporary experiences of economic 

hardship for children from both non-LIEM and LIEM families. Given that there is no consensus 

on what items comprise material hardship (Blank, 2008; Ouellette et al., 2004), the present 

dissertation focused on a weighted sum score from eight different types of hardship that 

represent different dimensions of material hardship such as housing hardship, medical hardship, 

and food insecurity. This multidimensional composite score allowed me to assess the variety of 
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possible hardships experienced by low-income families and by families regardless of income, 

including infrequent events such as needing to borrow money to pay the bills or homelessness.  

Material Hardship and Children’s Well-Being  

Studies examining the unique association between a family’s material hardship and their 

child’s well-being outcomes report extensive adverse effects during a child’s development from 

in utero through adolescence. The timing at which a child experiences material hardship is also 

associated with the types of health outcomes that are affected. For example, a study examining 

low-income women’s mental health during pregnancy found that both mother’s depression and 

anxiety were uniquely associated with lower income and higher material hardship, even after 

controlling for age, race/ethnicity, relationship status, and the number of children in the home 

(Katz, Crean, Cerulli, & Poleshuck, 2018). These findings suggest that the impact of material 

hardship on expecting mothers’ health may disadvantage the unborn child at the time of birth 

because the mother’s health may impact the care, they can provide their child. 

Material hardship also affects children after birth.  For example, family material hardships 

have been associated with shortened sleep duration across infancy and toddlerhood in low-

income Hispanic families (e.g., food insecurity, housing disrepair, financial difficulties; Duh-

Leong et al., 2020). Similarly, multisite data from families with infants 4 to 36 months reported 

that increased material hardship was associated with decreased infant well-being, as measured by 

a pediatric wellness index that included parent reports of infant health as well as, score on a 

multidimensional pediatric scale (Frank et al., 2010).  In a similar vein, a study of  Latino 

mother-child dyads found that high food hardship and 3 to 4 other hardships (e.g., housing 

despair, difficulty paying bills, neighborhood stress) was associated with the infant’s lower 

orienting and regulatory temperament capacity (Fuller, Messito, Mendelsohn, Oyeku, & Gross, 
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2018). This temperamental capacity may be a precursor to later childhood internalizing behavior 

problems between age 3-5 and externalizing problems between ages 6-12 (Slack & Yoo, 2005). 

Another two-year longitudinal study focusing on food insecurity reported that children from 

homes with high food insecurity had more internalizing and externalizing behavior problems 

(Slopen, Fitzmaurice, Williams, & Gilman, 2010).  

A few longitudinal studies based on data from The Fragile Families Child Wellbeing Study, 

FFCWS have found that other types of material hardship affect child socioemotional 

development as well. Namely, a family’s inability to pay bills, having their utility services cut-

off, and having unmet medical needs when a child is three years of age was associated with 

negative socioemotional behaviors (e.g., aggressive, withdrawn, anxious/depressed) at age 5 

(Zilanawala & Pilkauskas, 2012). Follow-up studies with the same FFCWS sample at age nine 

showed that boys in the sample who lived in homes where more than one material hardship was 

reported were three times as likely to exhibit externalizing behaviors (Bellair, McNulty, 

Roscigno, & Lei, 2019). Similarly, a FFCWS sample of children whose families reported food 

and energy hardships within the last two years (i.e., an inability to pay the gas/oil/electricity bill) 

showed greater internalizing and externalizing behaviors at age 9 (Fernández, Yomogida, 

Aratani, & Hernández, 2018). Given that economic interventions during early childhood (~age 4) 

aiming to reduce material hardship alleviated the negative socioemotional development observed 

in the literature (Huang, Nam, Sherraden, & Clancy, 2016; Huang, Sherraden, Kim, & Clancy, 

2014),  understanding material hardship in greater depth is particularly important.   

Unsurprisingly, other studies examining children's development (5-11 years old) identified a 

strong relationship between households' food hardship and poor physical health outcomes (Yoo, 

Slack, & Holl, 2009). This strong association between food hardship and poor health was 
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observed above and beyond the other commonly reported hardships: housing stability, housing 

quality, overcrowding, difficulty paying bills, unmet medical needs, and lack of adequate 

transportation. Associations between material hardship and obesity (Eisenmann, Gundersen, 

Lohman, Garasky, & Stewart, 2011) and delayed language development have also been reported 

(Sonik, Parish, Akobirshoev, Son, & Rosenthal, 2017). Some evidence suggests that specific 

parenting practices and parental attitudes mediate the relationship between material hardship and 

children's mental health (McConnell, Breitkreuz, & Savage, 2011; Yoo, Slack, & Holl, 2010). 

Taken together, these studies demonstrate that the developmental effects of food hardship 

experienced during childhood can be immediately observed and alter normative development 

through inadequate nutrition. 

Studies focusing on the association between a family’s material hardship and adolescent 

adjustment outcomes provide further evidence for the need to continue examining these effects 

on youth development. One study found that material hardship indirectly affected adolescents’ 

internalizing and externalizing problem behaviors through parental depression and negative 

parenting, though no direct effects were found (Sun, Li, Zhang, Bao, & Wang, 2015). Similarly, 

family economic hardship seems to be associated with youth’s poor sleep quality (Bao et al., 

2016), lower self-esteem (Bolger, Patterson, Thompson, & Kupersmidt, 1995), higher depression 

(particularly loneliness; Lempers, Clark-Lempers, Simons, 1989), increased parent-adolescent 

conflict (Ponnet, 2014) and increased engagement in adolescent drinking (Hardaway & 

Cornelius, 2014). This body of research would suggest that the role of material hardship should 

be examined across multiple domains of well-being over time.  
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Poverty and Psychopathology 

Growing up in poverty has been theorized to be an etiological factor in the development 

of psychopathology; the sequelae of childhood poverty on psychological well-being seem to 

cascade into later life stages. The negative association between current SES and depression has 

been well documented in adult populations (Angelini, Howdon, & Mierau, 2019; Domènech-

Abella et al., 2019; Freeman et al., 2016). However, retrospective cohort studies of early 

childhood poverty and adulthood psychopathology have yielded mixed findings for internalizing 

disorders such as depression and anxiety. Studies concluded that adults who retrospectively 

reported experiencing higher early childhood poverty were more likely to be diagnosed with 

major depression (three times more likely; Domènech-Abella et al., 2019; two times more likely, 

Gilman, Kawachi, Fitzmaurice, & Buka, 2002). Relatedly, those who reported experiencing 

lower childhood poverty reported more depressive symptoms in adulthood, though at sub-clinical 

levels (Luo & Waite, 2005). Similar evidence exists for anxiety, where early childhood adversity 

increases the likelihood of adult-onset anxiety disorder (by 1.21 times, Benjet, Borges, & 

Medina-Mora, 2010). Yet, other studies have reported no link between childhood experiences of 

poverty (measured by income) with adult depression; but did identify a link between poverty and 

externalizing symptoms (Evans, 2016; Poulton et al., 2002). Despite somewhat equivocal 

findings, growing up in poverty does seem to increase a person’s risk for developing 

psychopathological symptoms. 

Early childhood poverty has been associated with other types of psychopathology during 

different life stages. Some researchers have explored whether the recency of the event plays a 

role in the manifestation of symptoms. For example, a few studies demonstrated that parent 

reported current childhood SES is linked to childhood mental illnesses such as 
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emotional/behavioral disorder symptoms, ADHD, conduct problems and anxiety  (e.g., Reiss, 

2013), whereas other studies have found no correlation between parent reported SES and 

depressive symptoms among their 8 to 16-year-old children (Twenge & Nolen-Hoeksema, 

2002). One cohort study with 2,111 children and adolescents reported an association between 

current SES level and parent-reported child mental health problems, independently of family 

structure and children’s mental health at baseline (when children were ages 7-17, Mage = 11; 

Reiss et al., 2019). Other studies have focused on the likelihood of developing any type of 

psychopathology associated with growing up with material hardship, rather than focusing on 

concurrent experiences of hardship and psychopathology.  For example, Benjet and colleagues 

(2010) conducted 2,362 semi-structured interviews and evaluated the likelihood of onset for 

mood and anxiety disorders with participants who reported more early life economic adversity. 

Interestingly, those who reported high occurrences of economic hardship were less likely to 

report an onset of an internalizing disorder during childhood (ages 4-12 OR 0.80) or adolescence 

(ages 13-24 OR 0.68; Benjet et al., 2010). These studies, and particularly the contradiction 

between the longitudinal and cross-sectional work, suggest that economic hardship may serve as 

a catalyst to other early life stressors linked to psychopathology, but that longitudinal data may 

be necessary to see these downstream effects.  

 Studies focused on the relationship between material hardship and psychopathology are 

limited. To date, most research examining this relationship has focused on the parents of children 

facing economic adversity (i.e., adults). Another study examining a rural African American 

subsample (N=250), found that those reporting more material hardship had poorer self-rated 

physical health and had higher levels of depressive symptoms and psychological distress relative 

to those who had lower material hardship (Weaver, Taylor, Chatters, & Himle, 2018). Studies 
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evaluating children and adolescent mental health around material hardship are lacking. Thus far, 

these studies show that material hardship can negatively impact the mental health of children’s 

parents, which in term affects their children (Ashiabi & O’Neal, 2007) . Moreover, these results 

highlight the need to study the brain as a mediator of the effect of poverty on the development of 

psychopathology. This is a particularly important mediating mechanism to investigate given that 

neurological changes may elucidate the mixed findings in the literature.  

Poverty and Brain Function  

To date, indirect evidence that socioeconomic disadvantage is associated with altered 

brain function across a variety of domains is well established. For example, several behavior-

based studies support the link between early childhood poverty and poor cognitive performance 

across several processes, language development (Berger, Paxson, & Waldfogel, 2009; Fernald, 

Marchman, & Weisleder, 2013), cognition (executive function, Lawson, Hook, & Farah, 2018; 

Raver, Blair, & Willoughby, 2013); verbal memory/processing speed; Hazzouri et al., 2017), 

memory, (Evans & Fuller-Rowell, 2013; Markant, Ackerman, Nussenbaum, & Amso, 2016), 

academic achievement (Hair, Hanson, Wolfe, & Pollak, 2015; Jotterand, 2018), and poor mental 

health outcomes (McLaughlin, Costello, Leblanc, Sampson, & Kessler, 2012; McLaughlin, 

Green, et al., 2012; Sommet, Morselli, & Spini, 2018). Moreover, the neurological basis of these 

associations has been studied at different levels of analysis. For example, reduced white matter is 

often observed in the frontal and parietal lobes of socioeconomically disadvantage children 

relative to their advantaged peers (Hanson, Adluru, et al., 2013; Johnson, Riis, & Noble, 2016) as 

well as reduced brain surface area (Noble et al., 2015). While cortical thickness has not been 

found to be associated with cognitive skills, reduced cortical surface area mediates the 

association between SES and cognitive outcomes (Brito, Piccolo, & Noble, 2017). Similarly, 
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evidence from a large cohort of LIEM families (n=36,443) whose children exhibited 

neurological abnormalities at 4 months old, and 7 years old, as well as display autonomic 

nervous system dysfunction at 7 years old that was not accounted for by perinatal factors, 

suggests that altered nervous system development contributes to these associations (Hung et al., 

2015). Taken together, these studies suggest that growing up in poverty can adversely affect 

brain development in ways that are detectable through behavioral assessments, white matter 

imaging, or neurological testing.  

Applying neuroscience methodology, the interconnectivity of brain patterns of individuals 

who grew up in poverty can be characterized through functional connectivity, which can be 

evaluated both from elicited (i.e., task-based) and at-rest (i.e., non-task based) paradigms 

(Rogers, Morgan, Newton, & Gore, 2007). A review that evaluated several child behavioral 

studies related to attention, reading and language development found links between altered brain 

network function and growing up in low-SES (Lipina & Posner, 2012). Taken together, these 

studies demonstrate that the effects of early childhood poverty on cognition are pronounced and 

varied, suggesting that these behavioral changes are related to changes in brain connectivity. 

Theoretical Frameworks  

The interactive adjustment of biological human development by experience is referred to as 

experiential canalization (Gottlieb, 1991). Two possible guiding frameworks that relate 

experiential canalization to material hardship  aim to describe how these experiences of material 

hardship change brain development and function through neurological adaptations. These 

adaptations are neither good nor bad, but rather seen as necessary for survival. First, if we 

consider material hardship as an environmental stressor, then brain development and function is 

altered through adaptations to neurobiological mechanisms that respond to stress (McEwen & 
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McEwen, 2017). Researchers refer to the body’s ability to adapt its stress response systems (e.g., 

body temperature) to different types of chronic or sporadic stressors, as ‘allostatic load’. A 

higher allostatic load, assessed through various metabolic systems in the body (e.g., HPA axis 

functioning) would reflect the biological effect of accumulated ‘wear and tear’ on the body’s 

response systems to environmental stressors. 

In keeping with this ‘allostatic load’ framework, material hardship must exert its effects on 

neurocognitive systems whose adaptations are associated with unfavorable mental health and 

poor cognitive performance outcomes. Indeed, greater allostatic loads have been observed in 

children growing up in poverty relative to children who do not grow up in poverty (Blair et al., 

2011; Chen, Miller, Brody, & Lei, 2015; Rainisch & Upchurch, 2013). Poverty-related stressors 

affect multiple body systems differently (e.g., cardiac system, de Mestral & Stringhini, 2017; 

HPA-axis, Burke, Fernald, Gertler, & Adler, 2005 ;  amygdala responsivity, Kim et al., 2013) 

and as such specific system changes have been proposed as biological mediators that link early 

life economic hardships to later life adverse outcomes. However, given the biological 

interactions between all the systems that work together to achieve body homeostasis, no one 

pathway is solely responsible for how material hardship gets “underneath the skin”, and more 

than likely all systems contribute to the allostatic load “weathering” effects on development 

(Geronimus, Hicken, Keene, & Bound, 2006).  

Alternatively, if we view material hardships as part of the cultural and social circumstances 

in the environment then these adaptations come about through recurrent, active, and long-term 

engagement in scripted behavioral response sequences. As anthropologist Oscar Lewis wrote in 

1959, “The culture of poverty is not just a matter of deprivation or disorganization, a term 

signifying the absence of something. It is a culture in the traditional anthropological sense in that 
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it provides human beings with a design for living, with a ready-made set of solutions for human 

problems, and so serves a significant adaptive function” (Lewis, 1966). Notably, Lewis was also 

referring to the structural forces such as capitalism, racism and lack of access to education to 

name a few that perpetuate poverty conditions for some families in the U.S.  Therefore, these 

neural modifications are reflecting necessary adaptations that are good and favorable for the 

child’s own environment. The fine tuning of the neurological systems comes about through this 

neuro-culture interaction that brings about systemic changes to neural connectivity of the brain 

through cultural practices or repeated behaviors (Kitayama & Uskul, 2011). Although poverty 

research findings have heavily focused on negative outcomes associated with poverty, it is 

important to emphasize that not everyone who experiences material hardship develops 

psychopathology or has negative health outcomes. One area of research that hints at these 

protective adaptations is found in resilience literature where it has been suggested that early 

adversity fosters protective traits that strengthen a person’s ability to overcome adversity 

(Williamson, Steven Witzel, & Steven, 2016). Other work has reported adolescent resilience 

buffered the development of depression symptoms in poverty contexts (Sun, Li, Zhang, Bao, & 

Wang, 2015), suggesting that these culturally-based modifications to the brain had significant 

adaptive value.    

In either case, the interplay of brain and environment continues to influence brain 

development through these neural adaptations that sculpt brain development of the individual 

regions or circuits that support social and emotion processing functions. To study these 

adaptations across the whole brain in a systematic manner, one can examine connectome-wide 

functional connectivity patterns organized into large-scale networks that provide meaning and 

specificity related to the purported function. Networks such as the frontoparietal network (FN), 
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involved in top-down regulation of attention and emotion; the default mode network (DMN) and 

dorsal attention network (DAN), involved in internally or externally oriented attention as well as, 

the ventral attention network (sometimes called the salience network; Seeley et al., 2007) 

involved in the processing of emotion or monitoring of salient events (Yeo et al., 2011). 

Furthermore, these networks can be grouped into three major networks whose altered 

connectivity patterns have been theorized to contribute to deficits in cognitive an emotion 

processing functions that are believed to underly depression and anxiety symptoms.   

Of relevance to this dissertation are Menon’s tripartite model networks: the Salience 

Network (SAL), the Central Executive Network (CEN), and the Default Mode Network (DMN). 

Each of these three networks is purported to be involved in cognitive processes that support 

healthy functioning. The network functions are of the salience network has been associated with 

an individual’s ability to detect threat in their environments, as well as support the relay of 

information between the SN and the other two major networks. The Central Executive Network 

is recruited when attentional tasks are engaged, while the Default Mode Network has been 

associated with inner thought and mood regulation (Sylvester et al., 2012).  

In support of their relevance to the current study, the theorized dysregulated functioning of 

these three networks has been associated with the manifestation of psychopathology in various 

pediatric and adult samples (Menon, 2011). Furthermore, Menon argues that dysregulation in 

one network has consequences for the functioning of the other large-scale networks that co-

activate together when executing any specific function such as emotion processing. These co-

activation imbalances can create disruptions to cognitive and emotional processing that have 

been hypothesized to support the emergence of depression and anxiety symptoms.  
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The proposed framework guiding this dissertation borrows from all these theoretical 

frameworks to characterize how material hardship gets “underneath the skin” to alters neural 

mechanisms that support adolescent brain function. Additionally, I provide a rationale for my 

focus on early childhood, age 1 to 3, and argue for it to be a crucial period in development to 

provide context for the neural changes that are associated with that time period.  

Figure 1: Proposed Functional Adaptation Framework 

 

Proposed Framework  

The proposed framework for this dissertation asserts that greater material hardship will 

promote biological adaptations that change functional connectivity brain patterns across multiple 

large-scale networks. These neural adaptations across socio-emotional and cognitive networks 

are of concern given that these large-scale networks underlie important cognitive and emotion 

processing functions whose dysregulation has been theorized to support the emergence of 

psychopathology or resilience.    



 24

By examining family material hardship, I will be able to characterize how unmet basic 

needs during early childhood are associated with adolescent functional connectivity. My focus 

on early childhood (ages 1 to 3) was motivated by previous work that identified externalizing 

and internalizing problems in young children in this age range associated with living in poverty 

(e.g., Duncan, Brooks-Gunn, & Klebanov, 1994; Duncan, Magnuson, Kalil, & Ziol-Guest, 2012; 

Frank et al., 2010). Additionally, the emerging evidence of structural brain differences in 

children growing up in poverty such as reduced brain volume (Butterworth, Cherbuin, Sachdev, 

& Anstey, 2012; Noble, Houston, Kan, & Sowell, 2012) , inefficient connectome network 

organization (Kim et al., 2019), demonstrates the heightened sensitivity of brain development to 

poverty-related stressors (Bashat et al., 2005; Leijser, Siddiqi, & Miller, 2018; Mukherjee et al., 

2001; Paus et al., 2001). Indeed, these differences in brain development seem to persist from 

infancy to adulthood (Hackman & Farah, 2009; Lipina & Posner, 2012) if no intervention to 

remedy living conditions occurs (Lipina & Posner, 2012), and perhaps are exacerbated by the 

decreased rate of brain growth and maturation associated with growing up in poverty (Hanson, 

Hair, et al., 2013). Consequently, the altered development of these neural structures is likely to 

affect the organization of the functional connectome as well (Power, Fair, Schlaggar, & Petersen, 

2010). Recent evidence lends support to the one-to-one mapping of structural and functional 

network topology organization and interregional connectivity (Casey, Giedd, & Thomas, 2000; 

Haimovici, Tagliazucchi, Balenzuela, & Chialvo, 2013; Wang, Dai, Gong, Zhou, & He, 2015) .  

One possible biological mechanism through which these altered neural adaptations occurs 

is through neural plasticity, which describes experience-dependent changes to brain function and 

structure (Lillard & Erisir, 2011; Voss, Thomas, Cisneros-Franco, & de Villers-Sidani, 2017).  

Neural plasticity is supported by collection of biological mechanisms involved in the 
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organization and the reorganization of neural structures and connections that occur throughout 

the life cycle (Lledo, Alonso, & Grubb, 2006). Individual experiences during a sensitive period 

such as material hardship in early childhood would prompt the developing neural circuits to 

become customized to a child’s needs in their environment (Knudsen, 2004). Therefore, any 

observed changes to functional connectivity brain patterns associated with early childhood 

family material hardship will reflect underlying brain adaptations that occurred before 

adolescence.  

Connectome Network Framework  

The mature brain organizes into distinct neural networks defined by strong functional 

connectivity correlations between different brain regions that collectively form the human 

connectome (Collin & Van Den Heuvel, 2013; Lebel, Walker, Leemans, Phillips, & Beaulieu, 

2008; Sporns, 2013). Most commonly, functional connectivity employs Pearson cross-

correlations of hemodynamic time courses (Li, Guo, Nie, Li, & Liu, 2009). Similar connectome-

wide network organization has been documented in children and adolescents (Dennis & 

Thompson, 2013). Although this network organization has been shown to have weaker internal 

connectivity and to be less functionally segregated in younger children relative to adults (Fair et 

al., 2009), adolescent network organization is spatially similar to that of an adult (Sherman et al., 

2014).  

Connectome-wide functional connectivity better characterizes the interconnected nature 

of co-activation across different brain regions that occurs during cognitive and emotion processes 

relative to a single region focus (Bassett & Sporns, 2017; Bressler & Menon, 2010; Sporns, 

2014). Connectome-wide connectivity can be organized and interpreted through large-scale 

network parcellations that have been identified through data driven approaches (e.g., Power, 



 26

Schlaggar, & Petersen, 2014; Smith et al., 2013).  These large-scale networks represent brain 

regions linked by ‘edges’ which can represent a physical or statistical connections between 

‘nodes’ across individual regional time-series data (Bullmore & Sporns, 2009; Friston, 2013; 

Sporns, 2013). Additionally, these functional networks are highly variable and dynamic when 

evaluated in both task-based and at-rest neuroimaging fMRI paradigms (Cole, Marin, & Dennis, 

2004). Previously connectome-wide analyses were limited by the statistical methodology used to 

assess functional connectivity in single regions of interest. Specifically, the issue of correcting 

for multiple comparisons when evaluating functional connectivity in more than one single region 

(Lindquist & Gelman, 2009; Rousselet & Pernet, 2012). However, recent advances in analytical 

approaches of neuroimaging data allow us to examine these large-scale functional networks 

simultaneously (e.g., Sripada et al., 2014). Thus, the present dissertation will evaluate 

connectome-wide connectivity organized using the Power and colleagues (2011) thirteen large-

scale network parcellation. Utilizing a large-network parcellation allows us to have location 

specificity and interpretation that references biological regions of any interrelated network 

functional connectivity elicited by a task or in the absence of the task (e.g., resting-state 

connectivity).   

Limitations of Current Poverty and Brain Research   

Although scientific advancements on understanding the consequences of growing up in 

poverty on brain function have been made, several important limitations exist. First, a large 

amount of brain research and poverty has focused on characterizing structure and region-specific 

functional connectivity associated with a specific cognitive outcome, but recent methodological 

advances now allow us to examine how overall brain function has been changed through 

adaptations in response to poverty-related stressors. Second, brain research to date tends to 
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define experiences in poverty based on income-based guidelines, but few studies have looked at 

other dimensions of poverty such as family material hardship that capture everyday difficulties 

with meeting their basic needs. Third, fMRI poverty researchers have not been able to 

successfully overcome the challenges in recruiting samples that are representative of the general 

population, therefore community-based and nationally representative samples are recommended 

to gather a more nuanced understanding of how poverty affects individuals from understudied 

populations. Furthermore, the present dissertation will improve upon the existing research by 

proposing a connectome-based network approach to examining how early childhood family 

material hardships (i.e., poverty) impacts adolescent brain function. Accordingly, the proposed 

work will evaluate adolescents’ connectome-wide functional connectivity at two levels of 

analysis, through resting-state and while performing a task. 

Summary 

Neuroimaging poverty research has primarily measured family economic hardship using 

income-based measures which do not capture how LIEM family income is distributed to meet 

basic needs. I argued for the operationalization of poverty through material hardship, which 

measures families' experiences with their inability to meet their basic needs due to the absence of 

resources. Next, I proposed that neural adaptations in response to material hardship stress would 

be evident through functional connectivity using at-rest and task-based methodology. 

Specifically, I argued that unmet basic needs in early childhood (ages 1 to 3) will affect 

underlying brain development and subsequently alter adolescent brain functional connectivity 

patterns. The aim of this dissertation is to characterize altered functional connectivity at age 15 

as a possible biological pathway through which early childhood poverty manifests in 

development.
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CHAPTER II 
Material Hardship and Adolescent Resting-State Functional Connectivity

 
Abstract 

An understudied environmental effect on neural development is the experience of family 

material hardship during early childhood, which may act as both a chronic stressor and an 

environmental insult on brain function. Indeed, poverty has been associated with neural 

adaptations across large-scale cognition and emotion processing networks, which have been 

implicated as prerequisites to developing depression and anxiety symptoms. The triple network 

theory posits that disruptions across the Salience (SAL), the Central Executive (CEN), and the 

Default Mode (DMN) networks undergird the development of psychopathology. The present 

study applied a large-scale network connectome analyses to characterize the association between 

adolescent brain function at-rest and a family’s experience of material hardship when the 

adolescent was between ages 1 and 3. Guided by the triple network theory, results did not 

support my prediction that adolescents whose families reported greater material hardship during 

early childhood would be associated with altered at-rest network connectivity across the SAL, 

CEN, and DMN networks. Furthermore, study results did not support my hypothesis that these 

network alterations would be positively associated with current depression and anxiety 

symptoms. Exploratory analyses evaluating the period-specific and the incremental effects of 

material hardship were non-significant. Correlational analyses identified significant associations 

between extracted network connectivity and internalizing symptoms, independently of material 

hardship. Study limitations and implications of these findings are discussed. 



 29

 
Introduction 

Youth growing up in families who experience material hardship––the inability to meet 

basic needs such as food, housing, or medical care—face a host of developmental challenges that 

increase their risk for socioemotional problems (Huang, Kim, & Sherraden, 2017). Despite the 

many studies reporting that youth from low-income families report higher internalizing (Goosby, 

2007; Heflin & Iceland, 2009; McLoyd, 2011; Rushton, Forcier, & Schectman, 2002) and 

externalizing (Bellair, McNulty, et al., 2019; Skinner, Elder, & Conger, 1992) symptoms, 

research linking material hardship and youth internalizing psychopathology remains 

understudied. Specifically, this research has yet to examine how the association between poverty 

and psychopathology may be mediated by brain connectivity. Commonly reported associations 

between mother’s material hardship and an infant’s adverse emotional reactions (e.g., negative 

affect and temperament; Fuller, Messito, Mendelsohn, Oyeku, & Gross, 2018; psychological 

distress; Gross, Mendelsohn, & Messito, 2018), may serve as precursors to later 

psychopathology (Mezulis, Priess, & Hyde, 2011; Sidor, Fischer, & Cierpka, 2017). Research on 

adult populations commonly report small, but significant correlations between current material 

hardship and internalizing symptoms (Heflin & Iceland, 2009; Huang, Heflin, & Validova, 

2021). However, some adult studies posit that only some types of material hardship such as 

problems paying bills and disconnected phone service were positively correlated with depression 

(Neckerman et al., 2016), while other researchers using a 6 item material hardship (items 

included: ‘I have enough food in the house’, ‘My housing is safe’, ‘I have access to a working 

phone’, ‘I have appropriate clothing’, ‘My housing is stable’, and ‘I have transportation’) scale 

reported significant positive correlations to both depression (r = .29) and anxiety (r =.31) (Katz 

et al., 2018).  
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To date, studies that used a family’s income level to infer economic hardship have 

characterized how levels of SES were associated with brain network development during the first 

year of life. Gao and colleagues evaluated nine critical functional networks and determined that 

the typical maturation sequence of several networks was interrupted in lower SES infants ( the 

primary sensorimotor/auditory to visual to attention/default-mode and final to executive control 

networks; Gao et al., 2015). Another study reported that childhood (age 10) household income 

was associated with altered coupling between the amygdala and the ventromedial prefrontal 

cortex at age 15 (Hanson et al., 2019). This altered functional connectivity coupling has been 

proposed to signal a future psychological vulnerability to stress, which may increase the 

likelihood of psychopathology (Hanson et al., 2019). Furthermore, Lipina and Posner (2012) 

reviewed studies examining the link between material deprivation (i.e., poverty) and brain 

network function related to attention, language and literacy, and numeracy. Their review of the 

available evidence demonstrated that decreased connectivity across large-scale networks is 

associated with reduced cognitive skills for children growing up in poverty, suggesting that 

levels of SES influence brain development. Given that previous literature has demonstrated a 

link between poverty and internalizing symptoms and between poverty and altered functional 

connectivity in the brain, it is of interest to better assess how material hardship impacts brain 

connectivity to support the emergence of adolescent depression.  

Resting-State Functional Connectivity Explained 

Resting-state functional connectivity (RSFC) has become a non-invasive approach for 

assessing experience-dependent neuroplasticity to brain architecture, organization, and function 

(Kelly & Castellanos, 2014). RSFC captures spontaneous low-frequency oscillations (0.01-

0.1Hz) that reflect both unique and universal aspects of an individual’s interactions with their 



 31

world through patterns of co-activation that echo lived experiences and social contexts that is 

impacted the interplay between the environment and an individual (Biswal et al., 2010). It is this 

dependence on experience that makes RSFC ideal to capture undergoing neural adaptations that 

occur in development. For example, ongoing brain development can be observed through the 

reorganization of RSFC patterns as different networks mature (Hoff, Van den Heuvel, Benders, 

Kersbergen, & De Vries, 2013), meaning changing RSFC patterns reflect the integration or 

segregation of functional large-scale networks. Differences in RSFC patterns organized by large-

scale network affiliation can be interpreted through their associations with behavior, its observed 

localization within expected cortex topography (Biswal, Yetkin, Haughton, & Hyde, 1995; 

Stevens, 2016a).   

Moreover, the RSFC patterns reflect the adaptations underlying the dynamic nature of 

multiple brain processes that range from short-term transient brain states (e.g., during 

mindfulness; Parkinson, Kornelsen, & Smith, 2019) to long-term enduring conditions (e.g., 

chronic fatigue; Gay et al., 2016). RSFC susceptibility to changes due to biological variations of 

human systems (e.g., cicadian rhythms; Facer-Childs, Campos, Middleton, Skene, & Bagshaw, 

2019; genetic variation; Meyer-Lindenberg, 2009; Meyer et al., 2016; HPA axis function; 

Thomason, Hamilton, & Gotlib, 2011) makes this a valuable tool for clinical research aiming to 

identifying unique neural signatures to inform treatment and diagnosis of mental health 

disorders.  

Recent work has examined the associations between RSFC and distinct adolescent 

behavioral-health outcomes, and found that by and large, differences in RSFC reflect the 

outcomes under study. For example, RSFC in adolescents demonstrates associations between 

RSFC and major depressive disorder (Chattopadhyay et al., 2017; Cullen et al., 2014; Mulders, 
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van Eijndhoven, Schene, Beckmann, & Tendolkar, 2015; Sacchet et al., 2016; Zhang, 2017), 

emotional dysregulation related to MDD (Ho et al., 2015), gender dysphoria (Garcia, 2018), 

schizotypal trait expression (Lagioia, van de Ville, Debbané, Lazeyras, & Eliez, 2010), 

adolescent risk-taking behavior (DeWitt, Aslan, & Filbey, 2014), substance use (Orr et al., 

2013), adolescent conduct disorder (Cao et al., 2019) and higher-order cognitive functions (i.e., 

general ability, speed/flexibility, learning/memory; Sripada et al., 2020).  

RSFC can be an advantageous method to examine underlying brain adaptations 

associated with poverty related stressors and ongoing brain development and function, whose 

interpretation can be framed through large-network organization. Consequently, the present 

study will utilize Power et al., 13 network parcellation that was identified though data driven 

approaches using RSFC (2011).  

Large-Scale Networks in Resting-State Connectivity 

While prior neuroimaging research examining the link between early childhood poverty 

and brain function has made extensive contributions to our understanding of how individual 

brain regions are affected (e.g., hippocampus and amygdala), large-scale network functional 

connectivity evidence characterizing these associations at a connectome-wide level are limited. 

The available resting-state connectivity evidence that has taken a large-scale network approach 

suggests that children growing up in poverty exhibit altered resting state connectivity relative to 

children who are not growing up in poverty. For example, Sripada and colleagues (2014) 

examined altered hypothalamic-pituitary-adrenal (HPA) axis function as a possible biological 

mediator, linking poverty and altered resting-state connectivity. In this study, researchers 

recruited a matched sample of adults (~ age= 24 years old, n=26), one group with a history of 

childhood poverty at age nine, and the other from middle-income families. Using seed-based 
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correlation analysis (SCA) with strategically placed ROIs serving as proxies for large-scale 

networks with the DMN (PCC; posterior cingulate cortex seed) and the salience network 

(dACC/SMA; dorsal anterior cingulate cortex/supplementary motor area seed), the authors 

reported that adults with a history of childhood poverty had decreased connectivity in the DMN 

relative to the middle-income group. However, they found no association between SN 

connectivity and level of poverty. Despite this mixed finding, this study provides some evidence 

that financial status in childhood may relate to brain function in adulthood. Another study that 

examined income changes and large-scale network connectivity in adolescents demonstrated 

divergent patterns of connectivity in the DMN and regions of the central executive function, 

depending on when they experienced the lowest income (Weissman, Conger, Robins, Hastings, 

& Guyer, 2018). Taken together, these resting-state findings suggest that early childhood poverty 

is associated with disruptions of resting-state connectivity within networks that subserve key 

cognitive and emotion processing functions. This is of note because disruptions in these same 

cognition and emotion processing large-scale networks are implicated in the development of 

psychopathology (Barch, 2017; Lopez, Luby, Belden, & Barch, 2018; Menon, 2011; Sha, Wager, 

Mechelli, & He, 2019). As such, these disruptions may be one possible mechanism through 

which children and adolescents growing up in low-income families are at an increased likelihood 

of developing mental health problems (Cohen, Janicki-Deverts, Chen, & Matthews, 2010; Currie 

& Lin, 2007; Reiss, 2013). However, not everyone living in poverty will develop any 

psychopathology, nor does this commonly reported association indicate that experiencing 

poverty-related stressors will inevitably support the emergence of depression or anxiety 

symptoms.  
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Given the previous research to date, I evaluated the interrelated coactivation patterns at-

rest (i.e., connectome-wide RSFC) across 13 large-scale networks, including the Salience 

Network, the Default Mode Network, and the Central Executive Network, for youth who grew 

up in families who experienced material hardship during their early childhood (i.e., ages 1 to 3). 

Focus on this early childhood period is motivated by  (1) the empirical evidence of the deficits in 

language and cognition  associated with growing up in poverty that become apparent as early as 

3 years of age and get larger by age 5 (Black et al., 2017; Campbell, Pungello, Miller-Johnson, 

Burchinal, & Ramey, 2001) and (2) the brain growth that occurs during early childhood  has 

been linked to later cognitive function (Gale, O’Callaghan, Godfrey, Law, & Martyn, 2004), 

implying that disruption of the development of the neural correlates underlying the large-scale 

networks may have downstream cognitive impairments (3) the timing and type of hardship 

seems to be important for certain child outcomes at this age (e.g., internalizing vs. externalizing 

behaviors), highlighting early childhood as a crucial period that establishes the neural functions 

and structures that shape future cognition and socioemotional networks (Duncan et al., 1994, 

2012).   

The present study extends previous research on material hardship and brain function in 

several ways. First, I use longitudinal data of material hardship from low-income families and 

minority parents that allow me to better understand the patterns of family material hardship. 

Specifically, I examined eight items of material hardship (i.e., inability to pay bills, food 

insecurity, housing insecurity, medical hardship, having the utilities cut off, needing to borrow 

money to pay bills, needing to sleep in a shelter) to determine how childhood family material 

hardship is associated with both brain connectivity at-rest and with current psychopathology in 

adolescents. Second, the current study investigated the impact of family material hardship on 
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resting state functional connectivity and the presence of internalizing symptoms among a 

nationally representative community sample of predominately African American families with 

children from non-marital births, which may differ from the families in deep poverty that have 

been previously studied. Third, I used functional connectivity at a connectome level of analysis, 

parceling out 264 ROIS into 13 large-scale networks, to evaluate the large-network functional 

connectivity interrelationships. Specially focusing on three major networks, the Salience 

Network, the Default Mode Network, and the Central Executive Network during adolescence. 

Lastly, this study used an innovative analytical methodology, a Network Contingency Analysis 

(NCA), to evaluate large-scale network functional connectivity at-rest organized through 

correlations between equally spaced ROIs, while controlling for multiple comparisons issue that 

correlations between 264 ROIs produces by using non-parametric significance testing.  

Furthermore, there are several benefits to using the NCA method with connectome data. 

First, this method is applied to grid-based connectomes that represent patterns of connectivity 

across the entire brain and does not require potentially arbitrary choices of seed regions that may 

bias the results. Second, this method uses data-driven network structure identification (i.e., 

Power et al., 2011) to directly assess questions about the interrelationships of large-scale network 

connectivity, while providing a meaningful organized network framework. Third, this approach 

avoids univariate tests (i.e., t-tests) and the pitfalls (e.g., normality assumption) of such analyses 

with neuroimaging data by instead conducting a single permutation test for each large-brain 

network pair investigated across all seven major networks. Lastly, these permutation tests are 

robust to violations regarding assumptions of normality and independence. Thus, combining the 

strengths of resting-state connectivity with an NCA analysis, the present study examined the 
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simultaneous resting state connectivity interrelationships between the thirteen canonical 

networks identified by Power et al. (2014).  

The aim of this study is to characterize altered resting-state connectivity of adolescents 

who grew up in families who reported experiencing material hardship using a connectome-wide 

approach. I predicted that greater material hardship during early childhood (ages 1 to 3) would be 

associated with altered resting state connectivity across the functional connectivity 

interrelationships of three networks the Central Executive Network (CEN), the Default Mode 

Network (DMN) and the Salience Network (SAL). Specifically, I expected that from those 

network pairs affected by material hardship would be positively associated with current 

adolescent (age 15) psychopathology (i.e., depression and anxiety) symptoms.  

Additionally, guided by previous reports that the incremental effects of material hardship 

have stronger associations with child internalizing and externalizing behaviors (Frank et al., 

2010; Zilanawala & Pilkauskas, 2012), I conducted exploratory analyses characterizing the 

association between family material hardship reports across ages 1,3,5,9,15 both by time period 

and incrementally and at-rest connectivity at age 15. The incremental effects of material hardship 

were examined by sequentially grouping material hardship reports by increasing age (e.g., 1 to 3, 

1 to 5). Furthermore, the association between extracted at-rest network connectivity and current 

depression/anxiety symptoms was evaluated, independently of material hardship. No specific 

predictions were formally tested with these exploratory analyses.   

Methods 

Participants 

The study sample was drawn from 237 families from Detroit, Toledo, or Chicago who 

were part of the Study of Adolescent Neural Development (SAND; see table 2.1). These 237 
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families were a subsample from the larger longitudinal nationally representative Fragile Families 

and Child Wellbeing Study (FFCWS; Reichman, Teitler, Garfinkel, & McLanahan, 2001). The 

FFCWS longitudinal cohort of 4,898 families with children born in 20 large U.S. cities between 

1998-2000 were oversampled for low-income families with non-marital births (~3:1; Reichman 

et al., 2001).  One child (i.e., target child) from each of the 237 families was followed overtime. 

Target children were predominantly female (52%) and 76% self-identified as non-Hispanic 

Black/African American, as well as White/Caucasian (13%), other non-Hispanic groups (2%), 

Hispanic/Latino (4%) and 5% identified as being Multi-Ethnic/Race. Youth were 15.41 years old 

(SD =0.54) on average at the time of assessment. The majority of primary caregivers (48%; n 

=113) reported an annual household income between $29,999 or less, while 24% (n=57) reported 

$30,000-$59,999, 11% (n=24) reported $60,000-$89,999, 10% (n=22) reported $90,000 or more 

and 8% (n=21) of did not report household income (See table 2.1 for sample descriptives).  Of 

the 237, one hundred and eighty-six (186) participants completed a resting state scan. From these 

186 participants, 172 were included in the connectome-analysis following specific exclusionary 

criteria (See Table 2.4).  

Procedure 

All participants completed the surveys below and a resting state scan as part of their visit. 

Parental or guardian consent and child assent were obtained. All protocols and procedures were 

approved by the ethical review board at the University of Michigan. 

Self-Reported Measures 

Ethnic-Racial Identity  

Ethnic-Racial Identity (ERI) was constructed using two items. Priority was given to the 

adolescent reported ethnic identity write-in question, “What is your ethnic identity?”.  Next, 
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parent’s report of child’s race was considered if first item was ambiguous or unclear (e.g., 

“American”). ERI refers to “a subjective, self-ascribed sense of oneself as a member of an ethnic 

or racial group”(Rivas-drake et al., 2014; Schwartz et al., 2014, p. 59). By constructing 

adolescent’s ERI using this approach, gave those youth who at first identified as Biracial an 

opportunity to self-identify with a group of choice.  

Material Hardship  

At ages 1 (12 items), 3 (10 items), 5 (14 items), 9 (11 items), and 15 (11 items), 

caregivers indicated whether they experienced housing, utility, food, medical, and financial 

hardship within the past year. These questions were derived from the “Basic Needs – Ability to 

Meet Expenses” section of the Survey on Income and Program Participation (SIPP) 1996 Panel 

Wave 8 Adult Well-Being Topical Module Questionnaire (SIPP, 1998) and the 1997 & 1999 

New York City Social Indicators Survey (SIS). Material hardship items were coded as 0 (no) or 

1 (yes). The following eight items were asked at all waves (SAND sample KR20 α =.57-67):  

(1) In the past twelve months, did you receive free food or meals? 

(2) In the past twelve months, did you not pay the full amount of gas or electricity bill? 

(3) In the past twelve months, did you borrow money from friends or family to help pay 

bills? 

(4) In the past twelve months, did you ever not pay the full amount of rent or mortgage 

payments? 

(5) In the past twelve months, did you stay at a shelter, in an abandoned building, an 

automobile, or any other place not meant for regular housing, even for one night? 

(6) In the past twelve months, were you evicted from your home or apartment for not 

paying the rent or mortgage? 
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(7) In the past twelve months, was there anyone in your household who needed to see a 

doctor or go to the hospital but couldn't go because of the cost? 

(8) In the past twelve months, did you move in with other people even for a little while 

because of financial problems? 

Children did not necessarily live with the birth mother at all waves and material hardship 

can vary between households. Therefore, material hardship at each wave was based on primary 

caregiver reports (i.e., the caregiver the child lived with for most of the time). The primary 

caregiver was the mother if the child lived with their mother for at least half of the time. If the 

mother was not the primary caregiver, the father was considered the primary caregiver if the 

child lived with their father for at least half of the time. The 8-item composite score was 

combined into a weighted sum, where the weights for each indicator are based on the proportion 

of individuals not deprived by the indicator (e.g., Muffels, Ruud & Fouarge, Didier, 2001). 

These weighted indicators better represent those individuals who have experienced the rarer 

types of hardship (e.g., living in a shelter, abandoned building, or in their automobile in the past 

12 months), underscoring statistically the fact that these more severe forms of material hardship 

may be more impactful on a family’s wellbeing. Therefore, the weighted average of material 

hardship for each wave was used. Lastly, any participant who had missing data for a particular 

wave was filled in with the nearest next wave weighted average value (missing entries were less 

than 5% at any one wave).   

Depression  

Symptoms of depression were screened for using adolescent self-reported Children’s 

Depression Inventory (CDI; Kovacs & Beck, 1977). The CDI is a 27-item measure (SAND 

sample α =.86), each consisting of three statements ranging from no symptomatology to severe 
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symptomatology. The child selects one of the three statements for each item that best describes 

them within the past 2 weeks. Previous research has found the CDI to be a reliable and valid self-

report measure of depressive symptoms in both clinical and non-clinical samples of children ages 

6 to 17 (Huberty, 2012, α = .70 -.92). Symptoms are scored “0” to “2”, yielding a maximum 

score of 54. Additionally, the total score can be separated into 5 factors (Negative Mood, 

Interpersonal Problems, Ineffectiveness, Anhedonia, Negative Self-Esteem) to offer more precise 

descriptions of the nature of the symptoms (See Appendix B for full measure).  

Anxiety 

Screening for anxiety symptoms was completed with The Screen for Child Anxiety 

Related Disorders (SCARED; Birmaher et al., 1997, α=.7-.9). The SCARED is a 38-item (SAND 

sample α =.92) inventory rated on a 3-point Likert-type scale (0 = Almost Never, 1 = Sometimes 

and 2 =Often). Sample items include: “I worry about being as good as other kids” and “I am a 

worrier” (See Appendix C for full measure). The items assess for DSM-IV classification of 

anxiety disorders: panic/somatic, generalized anxiety, separation anxiety, social phobia, pertinent 

simple phobia, and school phobia. Other studies have found good psychometric properties with 

demographically diverse non-clinical samples (Birmaher, et al., 1999, α = .90; Arab et al., 2016, 

α = .80). 

Gender  

Adolescent self-reports of gender were determined using the Pubertal Development Scale 

(Petersen, Crockett, Richards, & Boxer, 1988) which has had high correlations (r= 0.61–0.67) 

with physician rating (Brooks-Gunn, Warren, Rosso, & Gargiulo, 1987). Scores range from 1 to 

4. Gender was determined from the specific female or male set of questions on the scale. 
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Age  

Age was calculated from date of birth provided by teen and confirmed by parent on the 

fMRI safety screener, and then the date of the visit to calculate age in months.  

 Resting-State fMRI Data and Preprocessing  

MRI Acquisition  

MRI image data for the SAND study were acquired on a GE Discovery MR750 3T MRI 

scanner with an 8-channel head coil. Data acquisition included a T1-weighted structural scan and 

an 8-minute resting-state fMRI scans obtained using functional T2*-weighted BOLD images 

with a gradient echo spiral sequence (TR = 2000 ms, TE = 30 ms, 40 contiguous 3 mm axial 

slices, flip angle = 90°, FOV = 22 cm, voxel size = 3.44 mm × 3.44 mm x 3 mm) aligned with 

the AC-PC plane. Resting state functional images were collected while participants were awake, 

passively viewing a fixation cross at the end of the scanning session. Slices were acquired 

contiguously, which optimized the effectiveness of the movement post-processing algorithms. 

Images were reconstructed off-line using processing steps to remove distortions caused by 

magnetic field inhomogeneity and other sources of misalignment to the structural data, which 

yields excellent coverage of subcortical areas of interest. Standard preprocessing, slice-timing, 

realignment, and coregistration to the structural scans, and normalization to MNI 152 space, and 

a spatial smoothing using a Gaussian kernel (6-mm) was completed in SPM12 using defaults. 

Next, the top five white matter components were regressed out as well. Finally, all brain activity 

was filtered through a bandpass filter between .01 to .1hz, our wavelength of interest. 

Image Processing  

Resting-state fMRI data were preprocessed using CONNTOOL scripts from the 

Psychiatry Methods Core repository using statistical parametric mapping software (SPM12). 
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Scans were slice-time corrected, realigned to the tenth scan in the experiment for correction of 

head motion, and coregistered with the high-resolution T1-weighted image. Normalization was 

performed using the voxel-based morphometry toolbox implemented in SPM12. The high 

resolution T1-weighted image was segmented into biased corrected tissue types. Smoothing of 

functional data was performed with a 6 mm3 kernel and the top five cerebral spinal fluid (CSF) 

components were regressed out. Next, the top five white matter components were regressed out 

as well. Finally, all brain activity was filtered through a bandpass filter between .01 to .1hz, our 

wavelength of interest. 

Motion and Denoising Correction Strategy  

Because head motion confounds the interpretation of RSFC, the following strategies were 

used with our BOLD data to identify and correct for motion. First, 8-minute scans were motion 

scrubbed to identify and remove motion artifacts from the fMRI time series, using a mean frame 

displacement (FD) cut-off value of .5 mm (Power et al., 2012). FD criteria quantifies head 

movement from one volume to the next at every time point, which is used to identify how many 

slices are to be removed from the total available volumes (Goto et al., 2016). We identified and 

removed subjects who did not have at least 4 minutes of usable data. Secondly, ICA-AROMA 

was applied to data at the subject-level to remove motion related artifacts (Pruim, Mennes, 

Buitelaar, & Beckmann, 2015; Pruim, Mennes, van Rooij, et al., 2015). ICA-AROMA increases 

the reproducibility of RSFC networks and limits the loss of temporal degrees of freedom (Pruim 

et al., 2015). A conservative approach was taken to address motion correction by combining both 

strategies in deciding who was kept or removed from subsequent analyses(Parkes, Fulcher, 

Yu¨cel, & Fornitod, 2017).  
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Brain Connectome Generation  

To produce a whole-brain resting functional connectome, we placed 264 regions of 

interest (ROIs) encompassing approximately nineteen 3x3x3 mm voxels in a regular grid 

overlapped across the entire brain, following the Power et al., (2011) 13-network parcellation 

(See figure 2.1) As such, groups of ROIs (network nodes) that defined the networks were spaced 

apart at 12 mm intervals from center-to-voxel-center radius, creating an artificial sphere of 

voxels (i.e., pseudospheres), throughout the brain. None of the ROIs are near brain edges to 

avoid perception of false activation. Each region of interest (ROI) consisted of a 3.2 voxel 

center-to-voxel center radius pseudosphere, allowing for the measurement of the edges between 

the individual ROIs.  

Analytical Approach 

The aim of this study was to characterize the association between connectome-wide 

resting-state functional connectivity for adolescent youth who grew up in families experiencing 

material hardship. To that end, data analyses were completed in several steps. Descriptive 

statistics, zero-order correlations, and chi-square tests were completed using SPSSv27. Imaging 

data analyses were conducted using the following software SPM12 (SPM - Statistical Parametric 

Mapping (ucl.ac.uk) and Psychiatry Methods Core Scripts (Release 1.6; ConnTool & Network 

Contingency Analysis). Given that the network contingency analysis requires non-missing 

behavioral data to model the individual connectomes, weighted means were created for our 

material hardships scores and near neighbor substitution was completed for missing data points 

(less 5%).   
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Network Contingency Analysis  

To avoid the multiple comparison corrections across all 264 ROIs that would be typically 

necessary when using a mass univariate approach, I will apply a nonparametric network 

contingency analysis for significance testing. This analysis addresses the question of whether the 

functional connectivity for each set of edges linking two nodes within each large-scale network 

is different because of the variation in reported in family material hardship than one would 

expect by chance. This Network Contingency Analysis (NCA) has three sequential steps (See 

Figure 2.2):  

Step 1. Subtraction and Thresholding: Each edge represents a multiple regression model 

that models the effects of material hardship while controlling for the effects of gender, motion, 

age, race, and current age 15 material hardship. For each edge, we fit the following multiple 

regression model: 

yi = 1 + β1X MH(age 1-3 ) + β2Xage + β3X race + β4Xgender + β5Xpre-corrected motion   

+ β6X MH(Current~15) + ε 

where yi is the magnitude of connectivity at edge i; X2 through X6 are covariates: current 

age, gender, pre-corrected motion, current age material hardship, and ethnic-racial identity. β1-β6  

are the estimated betas; ε is the mean error term. Only the edges whose mean activation met 

statistical significance (thresholded at p < 0.005) were retained for plotting in a cross-tabulation 

map. The rationale for this threshold is based on a prior study that systematically tested different 

p-values {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1} to identify their effect on the robustness 

of the network analyses (Sripada, Kessler, et al., 2014) To test for robustness of analysis 

different threshold values were tested (0.005, 0.001) if network results were significant. 

Covariates individually modeled and were retained in the final model due to their influence on 
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the overall functional connectivity (i. e., gender); race was included as a covariate because of its 

previously demonstrated association with economic disadvantage related to material hardship.  

Step 2. Organize edges based on network affiliation: Network organization was identified 

using the 13-network Power et al., (2011) large scale network map (See Figure 2.2). A cross-

tabulation map is generated with non-redundant cells where each cell represents the set of edges 

linking two nodes, and both inter- and intra- network relationships are represented. Each edge is 

represented in each crosstab map cell by colored dots, blue or red, indicating decreasing or 

increasing connectivity, respectively.  

Step 3. Cell-wise contingency analysis: In this step, we test the hypothesis that the 

number of observed edges in a cell of the thresholded network cross-tabulation map exceeds the 

number that would be expected by chance alone. Only the observed edges that remain significant 

from Step 2 are retained for analysis. Next, this value is compared to the number of edges that 

would be expected by chance under the null hypothesis that material hardship has no effect on 

resting state connectivity. To evaluate the null distribution, this cross-tabulation analysis uses a 

non-parametric test that is robust to deviations from independence assumptions of parametric 

tests such as Bernoulli or chi-square tests. This distribution was generated from the drawing of 

random edges repeated 10,000 times and Nobserved edges were calculated at each iteration, 

yielding a distribution of Nobserved values. The p-value of the actual Nobserved values was calculated 

as the number of Nobserved values in the permutation that exceeded the actual value divided by 

10,000. Since the permutation test is performed for a multiple regression model that includes 

covariates (see step 1), Freedman and Lane’s (1983)was followed. In brief, this procedure first 

estimates a multiple regression model with covariates alone, and its residuals are formed and 
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permuted. The covariate effect is then added back in, creating an approximate realization of the 

data under the null hypothesis. The statistical test of interest is then calculated on this data. 

We performed a cell-wise contingency analysis separately for each cell of the thresholded 

network cross-tabulation map and corrected for multiple comparisons with the false discovery 

rate (FDR) correction procedure (Benjamini & Hochberg, 1995). Cells that survived FDR 

correction were next shaded. Since we were also interested in the directionality of network 

connectivity changes, the cell was shaded more red as the proportion of suprathreshold cells that 

exhibit positive change approaches one and more blue as this number approaches zero 

(predominantly negative changes). 

Lastly, each of these pthreshold values yielded an p-value map (one p-value for each of the 

78 cells that make up the map). We then generated a weighted mean of these p values across the 

thresholds by calculating a normalized area under the curve. In doing this calculation, 

the pthreshold values were first z-transformed so that the distance between pthreshold values was well 

scaled. This procedure yielded a single weighted mean p value map. We then performed False 

Discovery Rate correction for multiple comparisons on these adjusted values, set at a p <.05. 

Figure 2.3 depicts these analytical steps in a diagram.  

Selection of Covariates  

To provide a rigorous test of our network contingency analysis (NCA)models of at-rest 

connectivity, we controlled for important covariates that might confound the association between 

early childhood material hardship and at-rest network connectivity. Several theoretical, 

statistical, and prior work support the inclusion of the following covariates in our models 

including age, gender, motion, ethnic racial identity, and current age 15 material hardship. 

Additionally, the covariates also reflect an effort to remove any confounding effects of these 
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covariates related to brain development, experiences of poverty, and internalizing symptoms. 

Specifically, NCA models included age, gender, scanner motion, and current age 15 material 

hardship. Of note, ethnic racial identity was included as a covariate given the persistence of 

structural and institutional discrimination that perpetuates income inequalities in the U.S., as well 

as reports of increased likelihoods of facing material hardship when you identify as Black or 

Hispanic in the U.S. (See Rodems & Shaefer, 2020). 

Network Contingency Analysis Models Tested  

Based on previous literature and grounded in theoretical rationale, NCA models 

evaluated the association between early childhood (age 1 to 3) and resting-resting state 

connectivity, controlling for age, gender, ethnic-racial identity, scanner motion, and current age 

15 material hardship. Next, given the extant literature on the timing and cumulative effects of 

material hardship on brain connectivity, the following exploratory analysis were completed to 

characterize the association between material hardship reported between ages 1 to 15 during 

development. Therefore, material hardship scores were independently modeled by wave (i.e., 

reports at age 1, age 3, age 5, age 9, age 15) with covariates to characterize the individual effect 

of these events on age 15 functional connectivity at-rest. Lastly, the incremental additive effect 

of material hardships was tested including our covariates from ages 1 to 15 (i.e., 1-3, 1-5, 1-9, 1-

15).  All models whether testing the effect of family material hardship in one wave or the 

additive effect across several waves included the following covariates: age, ethnic-racial identity, 

gender, and pre-corrected motion based following previous analyses.  

Resting-state Networks and Internalizing Symptoms  

One of the primary interests of this study was to identify how large-scale network RSFC 

dysregulation accounting for material hardship is associated with psychopathology. To test for 
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these associations in our adolescent sample, independent zero-order correlations were performed 

between depression or anxiety symptom scores and the extracted mean network activation 

associated with material hardship from statistically significant networks identified from our first 

hypothesis. Also, an exploratory correlation analyses evaluating the association between the 

extracted at-rest network functional connectivity and current psychopathology was completed, 

independently of material hardship.  

Results 

Demographics   

Table 2.1 summarizes our sample demographic variables, weighted family material 

hardship scores, and psychopathology outcomes (N=237). Next, preliminary descriptive analyses 

of the demographic and outcome variables for the 174 adolescents retained for our neuroimaging 

analysis were completed. Group differences between included (n=53) and excluded youth were 

done (n= 53; of which n=51 did not complete scan and n=2 had excessive movement during 

scanning session; See Table 2.4 for exclusionary criteria). No significant sample differences 

between included and excluded youth in any of the demographic variables were found, 

suggesting that across these characteristics the sub-sample retained for analysis was 

representative of the youth who were excluded. No group differences were identified in material 

hardship reports at any age. No sex differences were found in weighted mean family material 

hardship at any age. Additionally, most excluded adolescents from the connectome analysis did 

not complete a resting state scan. Lastly, there were no differences in internalizing symptoms 

reported (See Table 2.5). Overall, the lack of group differences between those included in the 

analyses and those excluded suggest that our sample of 174 was representative of the larger 

sample 237. Specifically, the 174-youth included in the analyses were predominantly female 
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(56%) and 78% self-identified as non-Hispanic Black/African American, as well as 

White/Caucasian (10%), other non-Hispanic groups (2%), Hispanic/Latino (5%) and 4% 

identified as being Multi-Ethnic/Race. Youth were 15.43 years old (SD =0.55) on average at the 

time of assessment.  (See Table 2.5).  

Family Material Hardship   

Table 2.3 summarizes the weighted family material hardship 8-item composite score 

proportions by wave (i.e., age 1, age, 3, age 5, age 9, and age 15) for the whole sample (N=237). 

These analyses showed that on average between 51% to 67% of the primary caregivers of these 

237 adolescents consistently reported facing at least one material hardship during any wave of 

data collection. Across all waves the top three types of hardship reported were struggles to pay 

their utility bills (i.e., gas or electricity; 23% to 38%), needing to borrow money to meet their 

needs (23% to 48%), and struggling with rent or mortgage payments (12% to 24%). The least 

reported material hardship across the five waves of data collection were needing to sleep in a car 

or non-shelter location (1% to 3%) and facing home eviction (2% to 4%). Although this study 

controlled for any ethnicity and race effects, preliminary analyses of material hardship 

differences by ethnic-racial identity demonstrated higher weighted material hardship average 

scores for Black and Hispanic families from age 1 to age 3, relative to lower reports of material 

hardship of White youth during this same period (See Figure 2.1). Furthermore, this early 

difference in material hardship becomes more pronounced over time, whereby a difference gap 

between Black and White families is evident relative to the other groups in the study.  

 Of the 237 youth who completed the study, 174 were included in the connectome 

analyses for this study. No statistical differences were found between reported material hardship 

patterns between the two groups(See Table 2.5). Specifically, more than half (between 51% to 
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68%) of the primary caregivers reported at least one material hardship during any wave of data 

collection. The top hardship items endorsed by the families across the 5 waves of data were an 

inability to pay gas or electricity bills (between 24% to 40%), needing to borrow money to pay 

bills (27% to 43%), and inability to pay the rent or mortgage (12% to 26%). The least reported 

hardships were seeking shelter for the night (between 2 - 3%), facing housing eviction (2% to 

5%) and an inability to go see a doctor when needed (4% to 7%). 

For the participants in the sub-sample included in the present analyses (See Table 2.7), 

age 15 material hardship and annual income at age 15 were not significantly correlated (r = -

0.05, p =.59). Primary caregiver income data from previous waves was not included in the 

present analyses and therefore no correlations between income and their respective material 

hardship scores were reported. The weighted material hardship 8-item composite scores between 

age 1 and age 3 were positively correlated with each other (r = 0.57, p <.001). Overall, 

correlational analyses of all weighted material hardship scores between age 1 through age 15 had 

significant magnitudes of association across time (r =0.22 to r=0.55, all significant at p <.001). 

Additionally, weighted family material hardship scores reported closer in time had higher 

positive associations to each other (r= 0.45 to r = 0.57, all significant at p<.001). Of note, 

weighted family material hardship reported at age 3 was negatively correlated with current age 

(age 15; r =-0.16, p=.04). No other significant associations between any of the demographic 

variables and any material hardship score were found.     

Connectome-Wide Network Connectivity 

Primary Hypotheses 

Family material hardship during early childhood (age 1 to 3) was hypothesized to alter 

adolescent resting-state functional connectivity network patterns, across three major large-scale 
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networks: Central Executive Network, Salience Network and Default Mode Network. To test the 

primary hypothesis, we modeled the cumulative effect of family material hardship from ages 1 to 

3, while controlling for adolescent’s race, gender, mean frame displacement (i.e., in-scanner 

motion metric) and current reports of family material hardship. Next, a visual summary plot of 

the edges retained for significance testing illustrated overall increased node connectivity (i.e., 

more red dots) across all 13-large scale networks (See Figure 2.6). Overall, the visual plot shows 

that increased material hardship between age 1 to 3 was related with increased node connectivity 

across all 13 large-scale networks, including the default mode network, the memory network, the 

visual network , the frontoparietal network, and the salience network. However, non-parametric 

significance testing of this pattern of edges identified in our age 1 to 3 model did not survive the 

false discovery rate adjusted correction at p < .05, yielding non-significance of any network 

interrelationship. Table 2.8 contains the specific adjusted p-values across the networks in a 

contingency table for material hardship during ages 1-3. Therefore, these data did not support the 

first hypothesis because no altered network interrelated co-activation was deemed statistically 

significant across any of the three hypothesized networks.  

Given the extant literature on the timing and cumulative effects of material hardship on 

brain connectivity, the following exploratory analysis were completed to examine the association 

between material hardship by wave and the additive increments in consecutive order from ages 1 

through 15. All exploratory models testing the association between material hardship and at-rest 

connectivity included the following co-variates: age, ethnic-racial identity, gender, and pre-

corrected motion, and current age 15 material hardship to remain consistent with the initially 

hypothesized model. The evaluation of the individual material hardship effects on overall 

connectome-wide at-rest connectivity demonstrated a higher number of increased connectivity 



 52

nodes (i.e., red dots, see Figure 2.7) at age 1 and age 3, relative to a reduced number of increased 

connectivity nodes at age 5, age 9, age 15. Additionally, from age 5 through 9 an equal number 

of decreased nodes (i.e., blue dots) and increased connectivity nodes were present across all 13 

networks. Non-parametric significance testing of these connectome patterns did not identify any 

significant associations between individual material hardship reports at age 1, age 3, age 5, age 9 

and age 15 and interrelated at-rest connectivity (i.e., all FDR-corrected p-values were between 

.43 to 1.0). Interestingly, when evaluating the incremental effects of material hardship during 

early childhood age 1 through 5, the thresholded connectome shows a higher number of nodes 

with increased connectivity across all 13 networks relative to the incremental effects of ages 1 

through 9 or ages 1 through 15. The incremental effects of family material hardship from ages 1-

5, 1-9, 1-15 on adolescent functional connectivity were not associated with  any significant 

interrelated network connectivity (i.e., all p-values were 1).    

Internalizing Symptoms   

Overall, adolescent (i.e., age 15) reports of internalizing symptoms within the sub-sample 

of 174 youth were low with sex differences by internalizing disorder. First, age 15 depression 

symptoms were positively correlated with age 15 anxiety symptoms (r =0.45, p<.001).  The 

average depression symptom score for the youth in the sub-sample was 8.82(SD = 6.78). 

Although females (M=9.48, SD=7.09) reported higher depression symptoms relative to and 

males (M=7.99, SD=6.33), these differences were not significant; t(172)=1.45, p =.15. Similarly, 

the sub-sample reported low anxiety symptoms on average (M=17.25, SD=11.25). Females 

reported significantly more anxiety symptoms (M=20.45, SD=11.84) compared to male reports 

(M=13.27, SD=9.07); t(171) =4.38, p =.001, Cohen’s d=0.67, 95%CI [0.36,0.98].  
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Of note, two additional associations between the psychopathology measures and our 

variables of interest emerged within the full sample data. First, adolescent anxiety symptoms and 

depression symptoms were negatively correlated with gender (r= -0.33, p<.001; r= -0.16, p=.02, 

respectively), meaning that reports of psychopathology were more commonly associated with 

being female (based on variable coding). Second, a positive association between family material 

hardship reported at age 15 and current adolescent depression symptoms (r=0.14, p=.04) was 

found, but not with youth’s anxiety symptom scores (r=0.09, p=0.16; See Table 2.3). 

Additionally, since no association between at-rest network co-activation and material 

hardship was significant, I was unable to test my second hypothesis that predicted a positive 

association between significant altered network connectivity and current reports of 

psychopathology at age 15. However, an exploratory analysis characterizing the association 

between network connectivity, independent of material hardship, and adolescent 

psychopathology symptoms identified interrelated connectivity by type of internalizing 

disorders. Table 2.9 summarizes the correlations between extracted network connectivity at-rest 

and depression. Higher depression symptoms were negatively correlated with decreased within-

network connectivity in the cingular opercular task control (COT-COT; r= -0.17, p=0.02) and 

auditory network (AUD-AUD; r= -0.16, p=0.03). In contrast, higher anxiety symptoms were 

positively associated with increased interrelated network-coactivation during rest. Specifically, 

within network coactivation of the memory retrieval (MEM-MEM; r =0.18, p=.02) was 

positively correlated with higher anxiety symptoms. Similarly, higher anxiety symptoms were 

positively associated with network co-activation of the default mode and the somatosensory 

mouth network (DMN-SSM; r=0.17, p=0.02), and the memory retrieval network (DMN-MEM; 

r=0.16, p=.03). Moreover, increased memory retrieval coactivation with the salience network 
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(MEM-SAL; r=0.17, p=.03) and the limbic network (MEM-LIM; r=0.17, p=.03) was also 

positively associated with higher anxiety symptoms. Lastly, higher anxiety symptoms were 

positively associated with increased co-activation between the cerebellar network and three other 

networks: the somatosensory hand (CER-SSH; r=0.16, p=.03), the auditory network (CER-

AUD; r=0.18, p=.02), and the limbic network (CER-LIM; r=0.16, p=.03; see Table 2.10).   

Discussion 

Poverty is a multi-dimensional construct and income-based measures should not be the 

only indicator of a family’s financial well-being because they do not characterize their everyday 

experiences with economic hardship. Addressing this concern, the present study used an eight 

item composite score of family material hardship that documented past year hardships such as 

not being able to pay the utility bills or rent to characterize a family’s unmet basic living needs 

(Gershoff et al., 2007). The aim of this study was to characterize the association between early 

childhood (Age 1 to 3) material hardship and connectome-wide adolescent functional 

connectivity at- rest. Our study revealed that early childhood material hardship was not 

associated with alterations of at-rest network connectivity at age 15. Additionally, through 

follow-up exploratory analyses we reveal two important findings. First, there was no significant 

associations between the individual or incremental effects of material hardship from ages 1 

through age 15 on at-rest network connectivity. Next, both positive and negative associations 

between psychopathology symptoms and extracted resting-state network connectivity were 

observed across distinct networks. 

The current study identified that more than half of the families in our study had reported 

at least one material hardship item over the past 12 months across all five waves of data 

collection and that Black and Hispanic families reported higher material hardship over time 
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relative to the White families in our sample. This characterization of material hardship is in line 

with findings from other national studies of low-income families (Karpman, Gonzalez, 

Zuckerman, & Adams, 2018; Rodem & Shaefer, 2020). Surprisingly, there was no significant 

association between concurrent family material hardship and annual household income at age 15, 

which has been found in other larger studies of material hardship (r=-0.07; Ashiabi & O’Neal, 

2007; r=-0.18; Bellair et al., 2019). This could be due to our modest sample size and the different 

material hardship items used in our composite score, yet other item hardship specific studies 

have also reported mixed associations with family income (e.g., food hardship, r =-.39, Gershoff 

et al., 2007; r =-.07, ns; Slack & Yoo, 2005). Taken together, this suggests that material hardship 

characterizes experiences in poverty differently than income-based measures and at least in our 

sample are not necessarily correlated.  

Moreover, the current study examined the association between early childhood (Age 1 to 

3) material hardship and connectome-wide adolescent functional connectivity at- rest. Through 

our network contingency analysis, we identified that higher material hardship during early 

childhood was associated with positive node connectivity patterns across all 13 networks for the 

youth in our sample, yet contrary to the primary hypothesis these patterns did not associate with 

greater material hardship after non-parametric significance testing was applied. Our findings 

differ from with the reported associations between childhood poverty and adolescent resting state 

connectivity such as altered resting state connectivity in ROIs situated within the default mode 

network (Weissman et al, 2018) or the weakened resting state connectivity coupling between the 

amygdala and the ventral prefrontal cortex in low-income adolescents who had been followed 

since the age of 9 from a sample with a diverse income range (Hanson et al., 2019). Other 

retrospective fMRI poverty studies  have also identified childhood poverty impacting adult 
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resting-state connectivity with reduced default mode network connectivity at-rest for those who 

reported greater degrees of poverty (Sripada, Swain, Evans, Welsh, & Liberzon, 2014). Perhaps, 

there were protective factors that we did not account for, such as supportive parenting, which has 

been found to offsets the association between living in poverty and altered resting-state 

connectivity of neural networks that support cognition and emotion regulation during young 

adulthood (Brody et al., 2019). Overall, our findings reinforce the need for more 

multidimensional approaches in poverty research and suggest that available family income and 

material hardship are distinct dimensions of poverty that impact brain function in different ways.  

Follow-up exploratory analyses to characterize the cumulative effects or individual 

effects of material hardship between ages 1 through 15 did not find any significant associations 

with adolescent at-rest network connectivity. Despite the reported associations between the 

cumulative effects of poverty and poor developmental consequences relative to individual 

incidents of hardship (Evans & Cassells, 2014; Evans, Li, & Whipple, 2013), this association 

was not present with material hardship for our sample. Given the persistence of material hardship 

for some of our families since early childhood, it is surprising that adolescent resting state 

connectivity did reflect any underlying neurological adaptations in response to growing up in 

families facing material hardships. Our results contribute to the mixed findings about the 

cumulative effects of material hardship with some studies reporting significant associations with 

well-being (Frank et al., 2010) while others reporting none (Yoo et al., 2009). Overall, the 

exploratory models were not significant, suggesting that early life material hardship experiences 

did not have an association with at-rest connectivity at age 15.    

One possible reason why the association between early childhood material hardship and 

adolescent at-rest connectivity was not identified in our sample could be that resting-state 
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connectivity seems to be more sensitive to changes in cognitive ability rather than environmental 

stressors such as poverty (Millar et al., 2020). More support for this possibility comes from other 

connectome-wide studies that reported that structural connectivity disruptions mediated the 

relationship between SES and cognitive ability, while no association with internalizing and 

externalizing symptoms were found (Astle, Johnson, Bathelt, Akarca, & Team, 2020; Mill, Ito, 

& Cole, 2017). Yet a recent study using a large sample from the Adolescent Brain and Cognitive 

Development (ABCD) sample (N=3,778) reported a positive association between youth in 

families facing resource insecurity (i.e., material hardship) measured through a 7-item composite 

score asking about past year immediate family experiences with hardships (e.g., food insecurity, 

unable to pay rent, evicted from home, utilities cut-off) and internalizing symptoms (r=0.12, 

p<.001; Oh, 2019). Given that the association of material hardship and network connectivity is 

so small, it suggests that future studies should seek to conduct connectome wide analyses with 

larger samples to be able to detect any associations.  

Although previous work suggests that higher early childhood material hardship events 

increase the likelihood of depression symptoms in adolescence (Joinson, Kounali, & Lewis, 

2017), we could not test our second prediction that network connectivity accounting for early 

childhood material hardship would be associated with current adolescent psychopathology.  On 

average depression and anxiety symptom reports were low for our youth from a community-

based non-clinical sample. Similar low reports of anxiety and depression symptoms for Black 

youth relative to White youth has been reported in nationally representative samples, with Black 

youth having a higher likelihood of endorsing mood and anxiety symptoms relative to their 

White peers(McLaughlin, Hilt, & Nolen-Hoeksema, 2007; Palmer, Oosterhoff, Bower, Kaplow, 

& Alfano, 2018). However, it may be possible that the low reports of anxiety and depression 
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may reflect adolescent resilience fostered in the face of economic adversity; resilience that 

moderates the relationship between material hardship and current internalizing symptoms (Sun et 

al., 2015).   

Motivated by the theorized triple network disruptions (default mode network,  DMN; 

central executive network, CEN; salience network, SAL)  associated with psychopathology 

(Sylvester et al., 2012; Menon, 2011) and empirical work testing those theories in clinical 

samples (Gong & He, 2015; Jacobs et al., 2016), we conducted an exploratory analyses of 

extracted network connectivity and current psychopathology symptoms in our community based-

sample. The present study revealed differences in the pattern of activation , but also deactivation 

associated with specific internalizing symptoms. First, within network co-activation of the 

cingular opercular task (COT-COT) and the auditory network (AUD-AUD) were negatively 

correlated with depression symptoms. Although these networks are not part of the three large 

networks, they have been associated with different cognitive functions that support emotion-

cognition processing such as, the COT network has been purported to help maintain alertness, 

and cue selective attention, as well as, be indicative of faster response speed (Coste & 

Kleinschmidt, 2016). While less is known about the AUD network and its association with 

depression symptoms, it has been implicated in schizophrenic hallucinatory symptoms (Li et al., 

2019). Given that our sample does not meet criteria for major depression disorders, these 

negative correlations may be indicative of the phenotypic variability of depression symptoms 

(Vaidya & Gordon, 2013).   

In contrast, we observed a positive association between higher anxiety symptoms and 

network connectivity between the DMN and the somatosensory mouth (DMN-SSM) and 

memory retrieval network (DMN-MEM)  as well as the salience (SAL-MEM) were observed. 
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The increased network co-activation associated with anxiety may reflect the increased alertness 

and interrupted processing of inner thought and memory retrieval which has been observed to be 

negatively biased in youth with anxiety disorders (Gagnon & Wagner, 2016). As for the memory 

network, this network seems to be vulnerable to acute stress such that it may negatively bias 

attention and processing with other networks (Hitchcock, Werner-Seidler, Blackwell, & 

Dalgleish, 2017). People with high trait anxiety and anxiety disorders generally show a similar 

pattern of network dysfunction(Sylvester et al., 2012).  Lastly, the increased coactivation of the 

cerebellar and three other networks CER-SSH, CER-AUD, CER-limbic network (LIM) maybe 

indicative of changes to automatic processes and information processing directed by the 

cerebellar network (Córdova-Palomera et al., 2016; Lee et al., 2020).  By and large, these 

associations have been proposed to reflect state of anxiety rather than trait anxiety (Li et al., 

2019). Taken together these associations provide additional information that characterizes 

symptom level associations with at-rest network connectivity which may be relevant to 

understand how these symptoms, affect mood and anxiety that compromise the pursuit of 

important goals such as an education. Lastly, understanding race-ethnic differences among these 

disorders is especially important to address racial disparities in health access and treatment.  

Limitations and Future Directions 

The present study is not without its limitations. The connectome-wide study may have 

been underpowered for two reasons, the eight-minute resting state scan may not have provided 

sufficient data to detect the small environmental effects of material hardship (See Oh, 2020, 

reporting r =-.02 using an n= 3778) and the sample size needs to be increased (~1000 + 

participants) to detect the small material hardship effect size on brain connectivity. 

Recommendations to increase the sample size through collaborations with multi-site projects 



 60

would be ideal as well as extending the scan time may improve data quality and yield a better 

signal-to-noise ratio for connectome analysis that are data intensive approaches to identify 

behavioral and environmental effects associated with functional connectivity (Power, Schlaggar, 

& Petersen, 2015). Next, even though I created weighted items to reflect the potentially more 

potent effects by type of  material hardship and then averaged the eight items to create 

comprehensive composite scores of material hardship (e.g., used a similar approach Bellair et al., 

2019), some of the eight items used identified material hardship by asking if the primary 

caregiver ‘had received free food’ or ‘borrowed money from friends to pay for bills’. The 

wording of these items conflates family material hardship with receiving some type of relief or 

aid that addresses the material hardship rather than describe the occurrence of the hardship. I 

would encourage future work to explore the unique associations that each type of hardship d 

(e.g., unable to pay gas or electric bill versus experiencing housing evictions) may have on 

mental health and functional connectivity outcomes. Additionally, efforts to examine material 

hardship through  multi-dimensional indices that better represent those experiences with material 

hardship (Alkire, 2007) to include duration, timing and resolution would disentangle some of 

these confounds that may have impacted our ability to detect any at-rest functional connectivity. 

Lastly, children’s subjective experience with family material hardship would be important to 

measure to best characterize how the awareness of not having their individual needs met 

mediates the relationship between childhood adversity and brain function.  

Future replications testing the strong theoretically grounded predictions made by the 

current study are crucial even though the reproducibility of neuroimaging studies has come into 

question (Sato et al., 2016; Shrout & Rodgers, 2018). Ways to address the difficulties in 

reproducing neuroimaging findings should be a priority for poverty researchers whose data 
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support conclusions that assert deficits in brain development and function for individuals 

growing up in poverty. Specially since some of the work produced will be used as evidence to 

inform public social policies that will directly affect those most in need. Researchers should 

make efforts to be more critical with the statistical pipelines used in analyzing neuroimaging data 

by being sensitive to sample specific characteristics such as cultural norms and the participant 

lived experiences while also to be adequately powered for the proposed analysis (Anderson & 

Maxwell, 2017). In similar ways to how we select the most representative sample in clinical 

research through careful preliminary evaluation of behavioral data from multiple sources to 

characterize the individual’s understudy. By applying a similar approach, while being sensitive 

to poverty-related factors, we can begin to elucidate important social factors that should be 

present in neuroimaging research to increase reproducibility across different samples. Granted no 

one solution can attend to the individual differences of each sample, but efforts to include those 

social variables in the analyses should be made. Lastly, efforts to identify other buffers such as 

resilience or other potential mediators of the neural adaptations that occur in response to a 

family’s material hardship could provide potential areas for the development of future cognitive 

and behavioral interventions.   

Summary 

The present study aimed to characterize the association between early childhood material 

hardship and resting-state connectivity in adolescence. Despite finding no association between 

early childhood family material hardship and adolescent resting-state functional connectivity, the 

null findings underscored the need to examine and compare the detrimental effects of different 

dimensions of poverty on brain function and development. Additionally, analyses of behavioral 

data revealed the chronic nature of family material hardships faced by some of the families in our 
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sample, as well as, adolescent depression was associated with current age material hardship, 

suggesting that having unmet needs affects mental health. Indeed, our exploratory analyses of 

psychopathology revealed unique associations by type of internalizing symptoms and extracted 

network connectivity, independently of material hardship. Overall, reporting null findings is 

important because it generates new questions and invites researchers to revisit previous literature 

more critically. 
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CHAPTER III 
Material Hardship and Adolescent Task-Based Functional  Connectivity

   
Abstract 

Associations between neural adaptations within emotion processing networks and poverty-

related stressors such as family material hardship have been reported. Aberrant functional 

connectivity across large-scale networks that support emotion processing: Salience(SAL),  

Central Executive (CEN), and Default Mode (DMN) networks confer a risk of developing 

internalizing symptoms. The present study applied connectome-wide psychophysiological 

interaction (PPI) analyses to characterize the association between childhood material hardship 

(ages 1 to 3) and adolescent task-based functional connectivity across the SAL, CEN, and DMN 

during a gender identification task with implicit emotion processing. PPI results indicated that 

greater material hardship during early childhood was associated with increased co-activation of 

the Frontoparietal and Dorsal Attention Networks (FPN-DAN, p < .03), subnetworks situated 

within the CEN while youth viewed ‘fearful’ faces, supporting our prediction. However, non-

significant correlational analyses between FPN-DAN and adolescent depression and anxiety 

symptoms (r =-0.06; r =-0.03, respectively) did not support our second hypothesis. Exploratory 

analyses of period-specific and incremental effects of material hardship and ‘fearful’ network 

connectivity were non-significant. Correlational analyses identified significant associations 

between extracted ‘fearful’ network connectivity and internalizing symptoms, independently of 

material hardship. Study limitations and implications of the association between early life 

material hardship and adolescent altered emotion processing to fearful faces are discussed.  
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Introduction 

One in five children in the U.S. is growing up in families with annual incomes below the 

federal poverty line, with child poverty rates highest among Black (29%) and Latino (25%) 

Americans (Census, 2017). Unfortunately, not children growing up in families facing poverty-

related hardships are not represented in those statistics because their family’s income is above 

the official poverty threshold (Rodems & Shaefer, 2020). However, reports of household income 

are subject to unreliable recall, can fluctuate, and income assumes an equal distribution within 

the household (Bradshaw & Finch, 2003). Therefore, the present study examined a more 

proximal measure,  material hardship, an understudied dimension of poverty, which captures the 

lived conditions of economic hardship through instances when demands on the families’ 

resources exceed the available resources, resulting in families having unmet basic needs such as 

food or electricity (Chaudry & Wimer, 2016; Neckerman et al., 2016).  

 Studies examining the correlation between material hardship and family income have 

reported small associations and identified material hardship as a separate and distinct construct 

(Ouellette et al., 2004). Nonetheless, more than two-thirds (68.5%) of low-income parents (i.e., 

income is 200% above poverty threshold) living with children under the age of 19 reported 

material hardships in paying for housing, utilities, food, or medical care in the past year 

(Karpman et al., 2018).  However, not all families living in poverty experience material hardship, 

and not all families in poverty may have access to federal assistance programs (Wimer, Nam, 

Waldfogel, & Fox, 2016), but they may have strong social supports (e.g., church; Iceland, 2005) 

Because the underlying reasons for a family’s material hardship can vary, income should not be 

the only indicator used to assess a family’s economic hardships. 
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The developmental consequences for children who grow up in families experiencing 

material hardship are widespread, ranging from cognitive deficits to socio-emotional 

dysregulation (Gershoff et al., 2007; Ratcliffe, 2015). Material hardships in early childhood may 

be particularly detrimental to the rapid brain development that occurs during this time because 

material hardship confers a risk to disrupt  brain development (Duncan, Ziol-Guest, & Kalil, 

2010; Shonkoff, Boyce, & McEwen, 2009). For example, children who experience food hardship 

display disrupted emotional development which has consequences across various life domains, 

including vulnerabilities to psychopathology (Althoff, Ametti, & Bertmann, 2016). Material 

hardship has been associated with higher internalizing  and externalizing symptoms in children, 

even after accounting for family income (Bellair, Mcnulty, et al., 2019; Zilanawala & Pilkauskas, 

2012).  It is theorized that the neural mechanisms that may be affected are based in the socio-

emotional networks (Mueller, 2011). Yet, the neural mechanisms underlying these associations 

are not well understood.  

Poverty and Emotion Processing 

Biologically based models of emotion suggest that lacking resources may directly impact 

the normative development of the neural correlates that support emotion processing (Perry et al., 

2019), affecting how those neural correlates may function in different social situations. To date, 

behavioral evidence suggests that one’s ability to recognize emotion in another person is a 

crucial factor in healthy emotional development and regulation (Saarni, Campos, Camras, & 

Witherington, 2008). Indeed, emotion recognition has been theorized to play a crucial role in the 

emotion processing and emotional development that underlies social interactions (Batty & 

Taylor, 2006; Eckman, 1973; Taylor, Batty, & Itier, 2004). These processes are vulnerable to 

poverty related stressors, which may have long-term consequences into adulthood.  Evidence 
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from a longitudinal behavioral study aimed at identifying links between early life age-specific 

periods of income poverty and emotion distress in adulthood (~ age 37) reported a small negative 

correlation between poverty during age 11 to age 15 (r = -.25, p <.01), but no links between early 

(prenatal to age 5) or middle childhood (age 6 to 10), demonstrating that timing of poverty may 

confer different vulnerabilities to emotion circuit development that persist into adulthood 

(Duncan, Ziol-Guest, & Kalil, 2010).  

Behavioral evidence from children growing up in poverty suggests that challenges in 

recognizing and accurately describing the emotion a face is displaying have been linked to 

adverse mental health outcomes (Guyer, Choate, Grimm, Pine, & Keenan, 2011). Moreover, it 

has been reported that children growing up in contexts of neglect process emotions differently. A 

study of children (N =46) with economically diverse representation (i.e., half of the sample was 

living in poverty based on their income-to-needs ratio) examined how the group living in poverty 

fared worse in an emotion recognition task. Specifically, youth in the low-income group required 

higher levels of emotional intensity displayed by morphed faces to accurately identify the 

emotion (Erhart, Dmitrieva, Blair, & Kim, 2019). These group differences in the processing of 

emotion were attributed to the child’s time in poverty, suggesting that some underlying 

biological changes may have occurred that altered how the brain perceives and processes 

emotion-based cues. 

Similarly, other studies have also reported that children growing up in low-income 

contexts who have difficulties with emotion recognition performed poorly in assessments of 

emotion knowledge skills (Miller et al., 2005). In particular, the children were unable to produce 

an adequate response to hypothetical scenarios where knowledge of emotions was key to 

identifying an appropriate response behavior. Moreover, evidence from behavioral studies from 
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children who grew up in low-income families suggests that a lower ability to recognize others’ 

emotions accurately was associated with emotion regulation difficulties (Raver, 2004; Raver, 

Roy, Pressler, Ursache, & McCoy, 2017). Furthermore, these emotion recognition difficulties 

were associated with an increased risk of psychopathology (Fine, Izard, Mostow, Trentacosta, & 

Ackerman, 2003; Izard et al., 2001). These studies describe deficits in children’s socio-emotional 

functioning that vary due to differences in a family’s socio-economic status that impact the home 

environment in which children grow up. The difficulties in emotion processing seem to suggest 

that the income-based differences in our environments promote different neural adaptations in a 

child’s socio-emotional circuitry. 

Altered Co-Activation within Socio-Emotional Circuitry  

Early life stress due to poverty-related stressors has been associated with  neural 

adaptations that alter emotion processing circuits which confers a vulnerability that may support 

the emergence of psychopathology in adulthood (VanTieghem & Tottenham, 2018). Early work 

that identified two brain regions that showed distinct relationships retrospective reports of 

income hardship at age 9 were linked to altered left amygdala activations in adulthood (age 24) 

during an emotion reappraisal task, while the additive effect of chronic stressors reported from 

age 9 to 17 (including poverty related stressors) mediated executive function connectivity in 

adulthood  (Kim et al., 2013).  

However, advances in analytical approaches now allow researchers to examine the co-

activation of these neural structures through psychophysiological interactions (PPI), which allow 

for the evaluation of how different brain areas co-activate in response to various emotionally 

valanced stimuli or tasks. Indeed, the coactivation (“coupling”) between the amygdala and other 

frontocortical regions during emotion processing tasks (the subgenual ACC, the frontal/cingulate 
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cortex has been shown to be a reliable biomarker of emotion processing (DMFC; Nord, Gray, 

Robinson, & Roiser, 2019). Indeed, altered co-activation of these regions has been associated 

with adolescent depression (Ho et al., 2014), and adolescent Generalized Anxiety 

Disorder(Monk et al., 2008). Additionally, age differences in the co-activation of the amygdala-

ventral/dorsal prefrontal cortex have been reported with adolescents showing decreased 

activation of the ventrolateral prefrontal cortex in response to a task that distinguishes negative 

emotional reactivity from reappraisal ability relative to adults (McRae et al., 2012) Thus, there 

are normative age-related changes in connectivity that may be a consequence of the still 

developing neural architecture.  

In a study that measured poverty in two distinct ways first reported that relative to adults 

from middle income households, a study of 25 Caucasian adults who grew up in poverty 

identified a direct association between altered co-activation of left amygdala- medial prefrontal 

cortex and the processing of negative emotions (e.g., anger, fear ; Javanbakht et al., 2015). 

However, the coactivation between the structures was not evident when childhood poverty was 

assessed using income-to-needs ratio, leaving only amygdala activation to be negatively 

correlated the processing of negative emotions (2015). Although the previous studies used 

retrospective reports of poverty, they demonstrated poverty measured through different 

approaches consistently identified altered connectivity in the amygdala-prefrontal cortex 

coupling. Importantly, these studies also demonstrated that timing of when poverty occurs during 

development, the operationalization of poverty and the duration of poverty (i.e., additive effects) 

are factors to consider when assessing the multidimensional nature of poverty.   

Evidence of how childhood poverty affects the coupling integrity between the amygdala 

and other brain regions recruited during emotion processing in pediatric samples is limited. A 
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recent pediatric (ages 5 -7) study that examined how the structural connectivity of an amygdala-

prefrontal cortex (i.e., the uncinate fasciculus that connects the orbitofrontal cortex and the 

amygdala) circuit mediated the association between poverty (measured in two ways) and 

internalizing symptoms reported sex differences for this mediation.  Interestingly, when poverty 

was measured using material hardship, greater material hardship was associated with lower 

fractional anisotropy (FA) in the uncinate fasciculus UNC and smaller amygdala volume, which 

in turn was associated with higher internalizing symptoms for girls, but not boys. Yet, when this 

mediation was tested using family income-to-need ratio no associations between any of the 

structures or internalizing symptoms were found, indicating a unique effect of material hardship 

on this amygdala-prefrontal cortex structure (Lichtin et al., 2020).  Similar altered functional 

connectivity has been observed in adolescent samples that examined the association between 

household income and functional connectivity, lower income was associated with weaker 

coupling of these structures, which was associated with more internalizing and externalizing 

symptoms (Hanson et al., 2019). Taken together these studies suggest that different dimensions 

of poverty can impact emotion processing structures in similar ways, whose altered activation 

has been associated with the presence of psychopathology.  

However, this amygdala coupling with other prefrontal regions during emotion 

processing does not always occur in all types of emotion processing. A neuroimaging study with 

young adults (age 22) who grew up in poverty examined the association between implicit 

emotion regulation and functional connectivity during a shifted-attention emotion appraisal task. 

During this task, participants viewed grayscale pictures of faces displaying emotion (fearful or 

neutral) superimposed onto indoor or outdoor backgrounds while engaging with cognitive 

appraisals of the images (male/female, indoor/outdoor, like/dislike, face/place).  For youth who 
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grew up in poverty, measured through income-to-needs ratio at age 9, they had lower activation 

in the left dorsolateral prefrontal cortex during emotion regulation by cognitive appraisal, which 

also was negatively associated with recognition task performance.  However, given the many 

features of possible appraisal, childhood poverty also was associated with increased insula and 

reduced hippocampal activation (Liberzon et al., 2015). Although the previous task tapped into 

various emotion-cognition processes recruited in emotion processing, the complexity can inform 

those difficult to disentangle emotion-cognition interactions that are likely to occur in everyday 

context and interactions. Other evidence suggests that amygdala reactivity is not always present 

during undirected processing of affective stimuli, but that activation across other brain regions 

associated with emotion processing was still present (Pessoa & Adolphs, 2010). Research on 

neural response to explicit emotion processing found that regions involved with perception and 

somatosensory cortices were important for this type of processing (Winston, O’Doherty, & 

Dolan, 2003).  Childhood poverty has consistently been associated with altered functional 

connectivity in adulthood, however the variable activation of amygdala-prefrontal structures to 

different stimuli and tasks highlights the complexity of brain regions involved with emotion 

processing.  

Connectome-Wide Emotion Processing in the Brain 

The “Billiard Ball Model” proposes that emotion processing occurs in a “spreading of 

activation” fashion across neural circuitry involved in response to affective visual stimuli 

(Pessoa, 2018). Additionally, Pessoa and McMenamin argue that emotion processing circuitry is 

distributed across the brain with different regions participating more actively in some networks 

than in others during differently valanced emotions (Pessoa & McMenamin, 2017). Adding to 

this complexity of network level emotion processing is adolescent ongoing brain development of 
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cortical regions recruited in emotion processing. A review identified common brain regions 

reported in adolescent emotion neuroimaging research to include the dorsolateral prefrontal 

cortex (dlPFC), the medial prefrontal cortex (mPFC), the anterior cingulate cortex (ACC), as 

well as subcortical structures like the amygdala, however the activation patterns elicited during 

explicit and implicit emotion processing vary widely and depend on the fMRI paradigm being 

used (Ahmed, Bittencourt-Hewitt, & Sebastian, 2015). Additionally, emotion processing recruits 

cognition-based functions that create emotion-cognition interactions that are difficult to 

disentangle when emotion tasks can vary so widely, but whose influence on emotion-processing 

must be considered (Bell & Wolfe, 2004; Dolcos, Wang, & Mather, 2014; Ochsner & Gross, 

2005).  Thus, a connectome-wide evaluation will afford us an ability to better characterize 

emotion processing in adolescents across large-scale networks rather than the individual neural 

structures, allowing for a global assessment of the emotion-cognition interactions across different 

networks. Further advancing our ongoing understanding of network neuroscience associated with 

human behavior.  

To date, connectome-wide neuroimaging studies examining how early poverty affects 

adolescent emotion regulation are limited. Recent connectome-based work examining the effect 

of poverty at age nine (defined by income-to-needs ratio) on emotion regulation in young adults 

had no findings using a PPI connectome approach (Sripada, Angstadt, et al., 2014). However, 

motivated by the previous findings of poverty being associated with various altered patterns of 

functional connectivity, as well as the specificity of these effects to the operationalization of 

poverty during emotion processing. I proposed to characterize the relationship between early 

childhood material hardship and task-based functional connectivity elicited while youth 

performed a gender identification task with implicit emotion processing.  
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In this study, I sought to characterize the unique adolescent connectome-wide neural 

patterns evoked during an emotion processing task and their association with family material 

hardship during early childhood. I hypothesized that higher reports of family material hardship 

during 1 to 3 years of age would be associated with adolescent altered functional connectivity 

patterns during emotion processing conditions (Happy, Sad, Anger, Fear) across three major 

networks: the Central Executive Network (CEN), the Salience Network (SAL) and the Default 

Mode Network (DMN). In addition, I predicted that altered large-scale network connectivity 

associated with early childhood material hardship would be positively correlated with higher 

depression and anxiety symptoms at age 15.  

Exploratory analysis of the independent (e.g., age 9) and incremental effects of material 

hardship (i.e., age 1 to 3, age 1 to 5, age 1 to 9, age 1 to 15) were examined, for any emotion 

condition deemed statistically significant by our primary hypothesis. By doing so, I could gather 

nuanced information about how period specific or lifetime experiences of material hardship 

together contribute to a stronger association between material hardship and this specific task-

based emotion. Additionally, to evaluate specificity of altered task-based interactions to emotion 

a network contingency analysis model testing the condition contrast of all emotions versus 

neutral was completed. Lastly, given that this is a non-clinical and understudied sample it was of 

interest to characterize the relationship between task-based network functional connectivity for 

any emotion condition deemed significant and youth’s current depression and anxiety symptoms, 

independently of material hardship. No specific predictions were formally tested with these 

exploratory analyses.   
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Methods 

Participants 

The adolescent sample for this study completed informed assent and their primary 

caregivers provided written consent for their child to participate in the study. Recruitment efforts 

aimed to recruit as many youth from the Detroit, Toledo or Chicago subsamples of the Fragile 

Families and Child Wellbeing Study (FFCWS; Reichman, Teitler, Garfinkel, & McLanahan, 

2001) as possible. 237 youth were successfully recruited and invited to complete fMRI scanning 

and behavioral surveys. Of those 237, 104 were removed from the current analysis due to 

exclusionary criteria outlined in Table 3.1 that included: incomplete resting fMRI scan, ASD 

diagnosis, excessive motion and less than 70% task performance. The 134 participants who 

completed the faces tasks did not differ on any demographic characteristic from the total sample 

(Appendix Table A).  All study procedures were approved by the IRB.  

Procedures 

fMRI data acquisition  

Functional T2*-weighted BOLD images were acquired using a reverse spiral sequence 

(Glover and Law, 2001) of 40 contiguous axial 3 mm slices (TR=2000 ms, TE=30 ms, flip 

angle=90°, FOV=22 cm, voxel size=3.44 mm x 3.44 mm x 3 mm, sequential ascending 

acquisition). Slices were prescribed parallel to the AC-PC line (same locations as structural 

scans). Images were reconstructed into a 64x64 matrix. Slices were acquired contiguously, which 

optimized the effectiveness of the movement post-processing algorithms. Images were 

reconstructed off-line using processing steps to remove distortions caused by magnetic field 

inhomogeneity and other sources of misalignment to the structural data, which yields excellent 



 74

coverage of subcortical areas of interest. Preprocessing of these images was completed with 

SPM12 defaults.  

Motion Detection and Correction  

Beyond regressing the BOLD time series signal against the 6 head motion parameters 

from the three translational axes of X, Y, and Z and three rotational axes of pitch, roll, and yaw, 

segmentation in SPM12 was used to generate non-gray matter tissue probability maps. 

Segmentation in SPM12 was completed to capture non-neuronal origin signal from different 

tissues that do not include gray matter.  WM and CSF tissue masks were extracted using the 

SPM12 tissue probability maps. Threshold erosion for the CSF and WM masks was set to 

conservative standards (WM, threshold of .9; CSF, threshold of .7) to ensure minimal 

contamination with the GM voxels.  Subject specific masks were produced and binarized. 

Additionally, volumes with an excessive mean frame displacement (meanFD) value that 

exceeded 0.9mm of motion (for reference, FD values in very still subjects range from 0 to 

0.2mm), a summary statistic for quantifying the degree of person-specific head motion is the 

temporal mean of their FD time series. Given the large number of ROIs – motion is a concern 

because typically head movement has a more pronounced influence on short-range connectivity 

near neighboring ROIs (Power et al., 2015, VanDijk et al., 2012).   

Gender Identification fMRI Task  

The youth completed an implicit emotion face processing task during a continuous fMRI 

acquisition session. Before entering the scanner room, all participants completed a practice trial 

with the same facial affect stimuli in black and white. Next, in an event-related design, 

participants viewed images with expressions of facial affect expressed by different actors varying 

on race (black or white) and gender (male or female). In this task, youth were asked to identify 
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the gender of the actor by pressing their thumb for males or their index finger for females on a 

button box. Facial affect images were from the NimStim set (Tottenham et al., 2009). Gender 

and race were counterbalanced. There were 100 pseudo-randomized trials, 20 trials each of the 

following emotions: fearful, happy, sad, neutral, and angry. Each trial consisted of a fixation 

cross (500 ms), followed by a face (250 ms), then a black screen (1500 ms) during which 

participants responded to the face being displayed, and finally a second black screen (jittered 

inter-trial interval: 2, 4, or 6 s). Participant performance was measured as accuracy on the correct 

gender identification of target picture. To reach a minimum 70% accuracy rate, the task difficulty 

is adjusted over the course of the task. One hundred and sixty-eight (168) participants completed 

the gender identification task (Correct Identification: M= 87.49, SD=19.38, n =168).  After 

removing participants with below the 70% accuracy benchmark and due to other exclusionary 

criteria, the average accuracy across the task increased (Correct Identification: M= 93.51, SD = 

5.63; n =134) 

Self-Reported Measures 

Ethnic-Racial Identity  

Ethnic-Racial Identity (ERI) was constructed using two items. Priority was given to the 

adolescent reported ethnic identity write-in question, “What is your ethnic identity?”.  Next, 

parent’s report of child’s race was considered if first item was ambiguous or unclear (e.g., 

“American”). ERI refers to “a subjective, self-ascribed sense of oneself as a member of an ethnic 

or racial group”(Rivas-drake et al., 2014; Schwartz et al., 2014, p. 59). By constructing 

adolescent’s ERI using this approach, gave those youth who at first identified as Biracial an 

opportunity to self-identify with a group of choice.  
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Material Hardship  

At ages 1 (12 items), 3 (10 items), 5 (14 items), 9 (11 items), and 15 (11 items), 

caregivers indicated whether they experienced housing, utility, food, medical, and financial 

hardship within the past year. These questions were derived from the “Basic Needs – Ability to 

Meet Expenses” section of the Survey on Income and Program Participation (SIPP) 1996 Panel 

Wave 8 Adult Well-Being Topical Module Questionnaire (SIPP, 1998) and the 1997 & 1999 

New York City Social Indicators Survey (SIS). Material hardship items were coded as 0 (no) or 

1 (yes). The following eight items were asked at all waves (SAND sample KR20 α =.57-67):  

(1) In the past twelve months, did you receive free food or meals? 

(2) In the past twelve months, did you not pay the full amount of gas or electricity bill? 

(3) In the past twelve months, did you borrow money from friends or family to help pay 

bills? 

(4) In the past twelve months, did you ever not pay the full amount of rent or mortgage 

payments? 

(5) In the past twelve months, did you stay at a shelter, in an abandoned building, an 

automobile, or any other place not meant for regular housing, even for one night? 

(6) In the past twelve months, were you evicted from your home or apartment for not 

paying the rent or mortgage? 

(7) In the past twelve months, was there anyone in your household who needed to see a 

doctor or go to the hospital but couldn't go because of the cost? 

(8) In the past twelve months, did you move in with other people even for a little while 

because of financial problems? 
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Children did not necessarily live with the birth mother at all waves and material hardship 

can vary between households. Therefore, material hardship at each wave was based on primary 

caregiver reports (i.e., the caregiver the child lived with for the majority of the time). The 

primary caregiver was considered to be the mother if the child lived with their mother for at least 

half of the time. If the mother was not the primary caregiver, the father was considered the 

primary caregiver if the child lived with their father for at least half of the time.  

The 8-item composite score was combined into a weighted sum, where the weights for 

each indicator are based on the proportion of individuals not deprived by the indicator (e.g., 

Muffels, Ruud & Fouarge, Didier, 2001). These weighted indicators better represent those 

individuals who have experienced the rarer types of hardship (e.g., living in a shelter, abandoned 

building, or in their automobile in the past 12 months), underscoring statistically the fact that 

these more severe forms of material hardship may be more impactful on a family’s wellbeing. 

Therefore, the weighted average of material hardship for each wave was used. Lastly, any 

participant who had missing data for a particular wave was filled in with the nearest next wave 

weighted average value (missing entries were less than 5% at any one wave).   

Depression  

Symptoms of depression were screened for using adolescent self-reported Children’s 

Depression Inventory (CDI; Kovacs & Beck, 1977). The CDI is a 27-item measure (SAND 

sample α =.86), each consisting of three statements ranging from no symptomatology to severe 

symptomatology. The child selects one of the three statements for each item that best describes 

them within the past 2 weeks. Previous research has found the CDI to be a reliable and valid self-

report measure of depressive symptoms in both clinical and non-clinical samples of children ages 

6 to 17 (Huberty, 2012, α = .70 -.92). Symptoms are scored “0” to “2”, yielding a maximum 
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score of 54. Additionally, the total score can be separated into 5 factors (Negative Mood, 

Interpersonal Problems, Ineffectiveness, Anhedonia, Negative Self-Esteem) to offer more precise 

descriptions of the nature of the symptoms (See Appendix B for full measure).  

Anxiety 

Screening for anxiety symptoms was completed with The Screen for Child Anxiety 

Related Disorders (SCARED; Birmaher et al., 1997, α=.7-.9). The SCARED is a 38-item (SAND 

sample α =.92) inventory rated on a 3-point Likert-type scale (0 = Almost Never, 1 = Sometimes 

and 2 =Often). Sample items include: “I worry about being as good as other kids” and “I am a 

worrier” (See Appendix C for full measure). The items assess for DSM-IV classification of 

anxiety disorders: panic/somatic, generalized anxiety, separation anxiety, social phobia, pertinent 

simple phobia, and school phobia. Other studies have found good psychometric properties with 

demographically diverse non-clinical samples (Birmaher, et al., 1999, α = .90; Arab et al., 2016, 

α = .80). 

Gender  

Adolescent self-reports of gender were determined using the Pubertal Development Scale 

(Petersen et al., 1988) which has had high correlations (r= 0.61–0.67) with physician ratings 

(Brooks-Gunn et al., 1987). Scores range from 1 to 4. Gender was determined from the specific 

female or male set of questions on the scale. 

Age  

Age was calculated from date of birth provided by teen and confirmed by parent on the 

fMRI safety screener, and then the date of the visit to calculate age in months.  
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Analytical Approach 

The aim of Study 2 was to characterize connectome-wide task-based functional 

connectivity patterns evoked during an emotion processing task for adolescents who grew up in 

families experiencing material hardship. To that end, data analyses were completed in several 

steps. Descriptive statistics, zero-order correlations, and chi-square tests were completed using 

SPSSv27. Imaging data analyses were conducted using the following software SPM12 (SPM - 

Statistical Parametric Mapping (ucl.ac.uk) and Psychiatry Methods Core Scripts (Release 1.6; 

ConnTool & Network Contingency Analysis). Given that the network contingency analysis 

requires non-missing behavioral data to model the individual connectomes, weighted means were 

created for our material hardships scores and near neighbor substitution was completed for 

missing data points (less 5%).   

PPI Interaction Regressors 

Psychophysiological interaction (PPIs) analysis is a method for investigating task-

specific changes in functional connectivity across different brain areas (Friston et al., 1997). A 

PPI analysis will allow me to obtain condition-specific information regarding brain areas 

involved during a task, and how functional connectivity can change across different regions 

across the brain during specific tasks (O’Reilly, 2012). 

In the first step of a PPI analysis, we extract representative activation real-time time 

course data from a seed region of interest, based on task condition of interest (Physiological 

Variable, e.g., Happy Faces). In the current study, the seed region of interest is each individual 

ROI from the 264 Power et al., (2011) parcellation. In the second step, we create a psychological 

vector or contrast of interest (e.g., “main effect of emotion”, psychological variable) in neuronal 

space estimates (in SPM12). These neuronal space estimates are then deconvolved with the HRF 
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function to match BOLD activation. In the third step, we calculate element‐by‐element 

interaction term products (PPI-regressors) between the physiological and psychological time 

courses (psychophysiological interaction (PPI) variable, e.g., functional connectivity). This step 

generates an interaction term for each of the 264 ROIs, using each ROI as a seed to produce the 

interactions terms across the whole brain by condition. In step four, we build a new model to 

search for ROIs whose time courses are reliably correlated with the PPI regressor (ROI). Finally, 

in step 5, we produce separate connectivity maps for each task condition. These condition 

connectivity maps are then subtracted to investigate connectivity across conditions of interest 

(i.e., contrasts related to key hypotheses under study). 

Network Connectome Matrix Construction  

After pre-processing, we generated functional connectivity PPI matrices based on 264 

ROI locations contained within the predetermined 13 networks identified by Power et. al., 

(2011). A PPI interaction term was generated between each ROI and the other 263 ROIs by 

condition. This process is repeated with each ROI set as the seed, meaning that the connectomic 

PPI places the seeds through the whole brain, and not just within a single region of interest. 

Notably, because PPI is a multiple regression-based approach that quantifies unique interactions 

between every ROI in the brain, the repeated process of making each ROI both a target and a 

seed will not necessarily generate redundant information between two neighboring ROIs when 

creating the edges (node to node distance). Each condition-specific connectome has 69,696 

ROIs, yielding 69,432 unique edges (where a small number of edges are dropped from the 

analyses because they represent the interaction of an ROI with itself). These edges refer to the 

connection between each pair of ROIs and their relationship is interpreted as a PPI interaction 

term, described by beta weights that represent the interaction between a task condition and 
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connectivity. Only those edges that survive the p <.005 threshold are retained (see Sripada et al., 

2014 and Study 1 for rationale). These connectomes are then read into the nonparametric 

network contingency analysis following the same procedure as described in Study 1, except that 

the resultant edges represent ROI psychophysiological interaction terms rather than ROI 

standardized correlations. 

Selection of Covariates  

To provide a rigorous test of our network contingency models of task-based connectivity, 

we controlled for important covariates that might confound the association between early 

childhood material hardship and at-rest network connectivity. Several theoretical, statistical, and 

prior work support the inclusion of the following covariates in our models including age, gender, 

motion, ethnic racial identity and current age 15 material hardship. Additionally, the covariates 

also reflect our effort to remove any confounding effects of age, gender, scanner motion, and 

current material hardship since they tend to co-occur with brain development, poverty, and 

internalizing symptoms. Specifically, NCA models included age, gender, scanner motion, and 

current age 15 material hardship. Of note, ethnic racial identity was included as a covariate given 

the persistence of structural and institutional discrimination that perpetuates income inequalities 

in the U.S., as well as reports of increased likelihoods of facing material hardship when you 

identify as Black or Hispanic in the U.S. (See Rodems & Shaefer, 2020). 

NCA Models Tested 

Several theoretical, statistical, and prior work support the inclusion of the following 

covariates in our models including age, gender, motion, ethnic racial identity and current age 15 

material hardship, as well as their relationships with adolescent functional connectivity and 
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psychopathology symptoms. Additionally, age 15 material hardship was kept as a covariate due 

to its temporal and contextual relevance to the current age functional connectivity.  

Based on previous literature and grounded in theoretical rationale, NCA models 

evaluated the association between early childhood (age 1 to 3) family material hardship and task-

based functional connectivity evoked during an emotion processing paradigm, controlling for 

age, gender, ethnic-racial identity, scanner motion, and current age 15 material hardship. Our 

analytic approach using psychophysiological interactions in a connectome network analysis 

allowed us to test the hypothesis using contrasts between emotion condition to baseline (e.g., 

Happy vs. Baseline). A total of five emotion conditions were tested (Happy, Sad, Anger, Fear, 

Neutral).   

Lastly, given the extant literature on the timing and cumulative effects of material 

hardship on brain connectivity, the following exploratory analysis were completed to 

characterize the association between material hardship reported between ages 1 to 15 during 

development. Both the independent material hardship scores were modeled by wave (i.e., reports 

at age 1, age 3, age, 5 and age 9) and the incremental additive effect of material hardship was 

tested including our covariates from ages 1 to 15 (i.e., ages 1-3, 1-5, 1-9, 1-15) for those 

conditions that were found to have altered connectivity. This was done to explore if the altered 

network connectivity finding would hold at later ages. All models whether testing the effect of 

family material hardship in one wave or the additive effect across several waves included the 

following covariates: age, ethnic-racial identity, gender, and pre-corrected motion based on 

analyses previous analyses with covariates. 
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Task-Based Networks and Internalizing Symptoms 

One of the primary interests of this study was to identify how large-scale network 

connectivity dysregulation during a task is associated with psychopathology. To test for these 

associations, independent zero-order correlations between depression or anxiety symptom scores 

and the extracted mean activation across each of the 13 large-scale networks were conducted, 

only for altered networks connectivity deemed significant through our non-parametric testing. 

An exploratory correlation analyses evaluating the association between the extracted task-based 

functional connectivity by network for any condition deemed significant and current 

psychopathology was completed, independently of material hardship. 

 

Results 

Demographics 

Table 2.1 presents whole sample (N=237) descriptive statistics for demographic 

variables, weighted family material hardship scores, and psychopathology outcomes. Next, 

preliminary descriptive analyses of the demographic and outcome variables for those 134 (See 

table 3.2) adolescents retained for the NCA-PPI neuroimaging analysis were completed, as well 

as group difference testing versus those 113 youth who were excluded from the analysis (See 

Table 3.1 for exclusionary criteria). No significant sample differences between included and 

excluded youth in any of the demographic variables, material hardship and psychopathology 

outcomes were found, suggesting that across these characteristics the sub-sample retained for 

analysis was representative of the youth who were excluded.   
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Family Material Hardship   

Table 2.3 summarizes the weighted family material hardship 8-item composite score 

proportions by wave (i.e., age 1, age, 3, age 5, age 9, and age 15) for the whole sample (N=237). 

These analyses showed that on average between 51% to 67% of the primary caregivers of these 

237 adolescents consistently reported facing at least one material hardship during any wave of 

data collection. Across all waves the top three types of hardship reported were struggles to pay 

their utility bills (i.e., gas or electricity; 23% to 38%), needing to borrow money to meet their 

needs (23% to 48%), and struggling with rent or mortgage payments (12% to 24%). The least 

reported material hardship across the five waves of data collection were needing to sleep in a car 

or non-shelter location (1% to 3%) and facing home eviction (2% to 4%).  

Although this study controlled for any ethnicity and race effects, preliminary analyses of 

material hardship differences by ethnic-racial identity demonstrated higher weighted material 

hardship average scores for Black and Hispanic families from age 1 to age 3, relative to lower 

reports of material hardship of White youth during this same period (See Figure 2.1). 

Furthermore, this early difference in material hardship becomes more pronounced over time, 

whereby a difference gap between Black and White families is evident relative to the other 

groups in the study.  

Of the 237 youth who completed the study, 134 were included in the connectome 

analyses for this study. No statistical differences were found between reported material hardship 

patterns between the two groups. Preliminary analysis of material hardship showed that the 

families of these 134 adolescents were consistently facing three types of material hardship across  

the five waves of data. The most reported types of material hardship by the primary caregiver 
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were needing to borrow money to meet their needs (25% to 47%), struggling to pay their utilities 

(i.e., gas or electricity; 23%-41%), and struggling to pay rent or mortgage payments (11%-28%). 

The least reported material hardships across the five waves were lacking medical attention (6%-

10%), facing home eviction (2%-3%), and sleeping in a car or non-shelter location (2%-5%). 

Overall, between 53 to 69% of the families reported at least one material hardship during the 5 

waves of data collection from ages 1 through age 15. In contrast, between 31% to 46% reported 

never facing material hardship during the same period (See Table 3.3). 

For the participants in the sub-sample included in the present analyses (See Table 3.4), 

age 15 material hardship and annual income at age 15 were not correlated (r =-0.01, ns). Primary 

caregiver income data from previous waves was not included in the present analyses and 

therefore no correlations between income and their respective material hardship scores were 

reported. The material hardship 8-item composite scores between age 1 and age 3 were 

positively correlated with each other (r = 0.53, p <.01). Overall, correlational analyses of all 

weighted material hardship scores between age 1 through age 15 had significant magnitudes of 

association across time (r =0.25 to r=0.59, all significant at p <.001). Additionally, weighted 

family material hardship scores reported closer in time had higher positive associations to each 

other (r= 0.45 to r = 0.59, all significant at p<.001).  

Interactions Between Network Connectivity and Emotion Contrasts   

Primary Hypothesis 

To characterize the association between family material hardship in early childhood (ages 

1 to 3) and adolescent task-based functional connectivity while performing an emotion 

processing task, we regressed the cumulative effect of material hardship from ages 1-3  by 

condition. All subsequent NCA models represent contrasts between baseline and the condition of 
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interest, adjusted for ethnic-racial identity, gender, mean frame displacement and material 

hardship at age 15.  

Fearful. Model of material hardship at ages 1-3 predicted differences in functional 

connectivity during the fearful condition relative to baseline. Visual inspection of the 

suprathreshold tabulation map showed that the nodes retained for analysis were predominately 

displaying increased connectivity (i.e., red dots) within the frontoparietal task network and 

mixed connectivity across all other 12 networks (See Figure 3.2).  Non-parametric statistical 

testing identified predominately increased and significant co-activation between the 

frontoparietal task network (FPT) and dorsolateral attention network (DAN) (p = .03; FDR 

corrected; Cohen’s d = 0.01, 95% CI [-0.51,0.48]). No other altered network connectivity 

interrelationships were identified.  Results from non-parametric significance testing for all 

networks for early childhood (age 1 to 3) are displayed in Table 3.5.  Next, support for our 

second prediction that altered network connectivity would be positively correlated with current 

psychopathology was not supported. FPT-DAN mean activation not correlated with age 15 

depression scores (r = -.06, p=.47) or anxiety scores (r= -.02, p =.81),  

Lastly, exploratory analysis of the association between task-based network activation and  

independent material hardship scores or the additive increments across other age periods (i.e., 1-

5, 1-9, 1-15) did not yield any significant network dysregulation in the fearful condition, 

meaning all non-parametric network tests had p-values equal to 1. Interestingly, the network 

connectivity evoked by viewing fearful faces was significantly associated with only the 

incremental material hardship from age 1 to 3, and at no other time frame.  The absence of node 

patterns for the individual material hardship waves shows that for the fearful condition no one 

period of time was uniquely associated with the observed pattern identified in early childhood 
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(Age 1 to 3; see Figure 3.3). Yet the observed ‘L’ pattern of coactivation across the frontoparietal 

network and all other 12 networks including the dorsal attention network, the ventral attention 

network, the limbic network, the salience network, and the default mode network was evident 

when including all material hardship from age 1 to age 15 (See Figure 3.4). 

Anger. Model of material hardship at ages 1-3 did not predicted differences in functional 

connectivity during the anger condition relative to baseline. Similar to fear a faint ‘L’ pattern of 

increased connectivity nodes was visible across the frontoparietal network and all other 12 

networks. Nonparametric testing did not identify any significant interrelated connectivity of any 

network (See Figure 3.2). 

Sad. Model of material hardship at ages 1-3 did not predicted differences in functional 

connectivity during the sad condition relative to baseline. Node connectivity patterns show a 

concentration of increased node connectivity within the frontoparietal network (FPT-FPT). 

However, no altered interrelated connectivity was identified across any of the networks. 

Happy. Model of material hardship at ages 1-3 did not predicted differences in functional 

connectivity during the happy condition relative to baseline. This condition had an absence of 

node connectivity patterns with only 4 nodes surviving thresholding. No altered interrelated 

connectivity was identified across any of the networks. 

Neutral. Model of material hardship at ages 1-3 did not predicted differences in 

functional connectivity during the neutral condition relative to baseline. Node connectivity in 

this condition was spread across the FPT and all other 12 networks, as well as across the 

cerebellar network. No significant interrelated connectivity was identified.  

All Emotions V. Neutral. Contrast model of material hardship at ages 1-3 to examine if 

early adversity predicted differences during task-based functional connectivity in a contrast 
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condition that aggregated evoked connectivity to all emotions (i.e., Happy, Sad, Angry, Fear) 

versus neutral. Node connectivity patterns seemed to concentrate across the FPT, and 

somatosensory network. No discernable increased or decreased pattern of node connectivity was 

observed. NCA model did not produce any significant network pairs (all adjusted p-values equal 

to 1) across the network cross-tabulation map, suggesting that early childhood (age 1-3) material 

hardship was not associated with emotion processing more broadly. 

Internalizing Symptoms and Extracted Network Connectivity 

Of note, a positive association between family material hardship reported at age 15 and 

current adolescent depression symptoms (r=0.14, p<.05) was found, but not with youth’s anxiety 

symptom scores (r=0.09, ns) in our overall sample. For the 134-youth kept in the network 

contingency analysis, report of internalizing symptoms was low with sex differences by 

internalizing disorder. First, age 15 depression symptoms were positively correlated with age 15 

anxiety symptoms (r =0.49, p<.001). On average depression symptom score for the youth in the 

sub-sample was 9.09(SD = 6.77). Of the youth included in the connectome network contingency 

analyses, the females reported more depression symptoms (M=10.15, SD =7.11) relative to males 

(M =7.80, SD= 6.14); t(132)=2.02, p =.04, Cohen’s d = 0.35, 95% CI [0.07,0.69]. Similarly, the 

sub-sample reported low anxiety symptoms on average (M=20.35, SD=17.74). Significant sex 

differences in anxiety symptoms were found. Females reported more anxiety symptoms 

(M=23.78, SD=16.18) compared to male reports (M=16.12, SD=18.77); t(132) =2.53, p =.01, 

Cohen’s d=0.44, 95% CI[0.10,0.79]. For the 134 youth, there was a small positive correlation 

between their ethnic-racial identity and anxiety scores (r=0.21, p=0.02), meaning that higher 

anxiety symptoms were associated with non-white youth.   
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Exploratory analyses evaluating the association between extracted task-based network 

connectivity evoked by viewing fearful faces and depression and anxiety symptoms identified a 

few significant associations. Coactivation between the Frontal Parietal Network and the 

Cerebellar Network (FPT-CER) was negatively associated with depression symptoms (r =-.20, p 

<.03; see table 3.6).  In contrast, we saw increased within network co-activation in the 

somatosensory mouth (SSM-SSM) and between network coactivation in the somatosensory 

mouth and the somatosensory hand (SSM-SSH)  networks that were positively correlated with 

higher anxiety symptoms (r =.22, p <.05; r =.21, p <.05, respectively; see table 3.7).  

Discussion 

The current study examined task-based fMRI data from an understudied population 

sample who completed a gender identification task with implicit emotion processing of five 

facial affect conditions. Using subject specific psychophysiological interaction (PPI) connectome 

maps generated for each facial affect condition, I modeled the effect of early childhood (age 1-3) 

family material hardship on task-based functional connectivity, which revealed increased and 

decreased node connectivity unique to each affect condition. However, non-parametric 

significance testing indicated that only the co-activation network patterns between the 

frontoparietal network (FPN) and the dorsal attention network (DAN) in response to viewing 

fearful faces were statistically significant. Early childhood material hardship was not associated 

with any other altered network connectivity in response to the other emotion conditions (i.e., sad, 

anger, neutral and happy). This finding supports our first hypothesis that material hardship 

during early childhood would be associated with current age 15 network dysregulation across 

three major networks (Central Executive Network, Salience Network, and Default Mode 

Network), though this support is tempered by the lack of significant findings for the other 
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emotional conditions. Moreover, our second prediction that this increased FPN-DAN co-

activation associated with material hardship would be positively correlated with current anxiety 

and depression symptoms was not supported. Follow-up exploratory network contingency 

analyses evaluating the magnitude of the association between period specific or incremental 

material hardships indicated that network connectivity observed while viewing fearful faces was 

not associated with any other period of material hardship. Lastly, anxiety symptoms were 

positively associated with extracted ‘fearful’ coactivation of the frontoparietal-cerebellar 

network, on the other hand, depression symptoms were negatively correlated with interrelated 

co-activation in the somatosensory networks.  

Income-based measures of poverty are insufficient to characterize a family’s experiences 

with economic hardship. Household income reports are subject to unreliable recall, can fluctuate, 

and income assumes an equal distribution within the household (Bradshaw & Finch, 2003). The 

present study used self-reported family material hardship which inform about the extent to which 

families can meet their basic needs to complement the income-based research. Over half of 

families in the current sample reported at least one type of material hardship over the last 5 

waves of data collection. Specifically, families in the current sample reported commonly having 

trouble paying bills and needing to borrow money to paying utility bills. Although these reports 

are higher than the national averages of material hardship reports (Ouellette et al., 2004; Rodems 

& Shaefer, 2020), these families provide evidence that low-income families are indeed at a 

higher likelihood of experiencing material hardships. Additionally, ethnic-racial differences are 

apparent in the rates of material hardship reported with non-Hispanic Black and Hispanic 

families reporting higher material hardship, on average over the 5 waves of data,  relative to 

White families.  
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Childhood poverty has been associated with altered connectivity between brain regions 

recruited for emotion processing (Hackman & Farah, 2009; Kim et al., 2013). However, emotion 

processing activation has been theorized to “spread” across the brain(Pessoa, 2018), and 

adolescent studies that examine the association between connectome-wide emotion processing 

and material hardship are lacking. Although a previous connectome-wide study found no 

association between poverty (measured using income-to-needs ratio) at age 9 and emotion 

regulation (Sripada et al., 2019), the present study provides evidence of an association between 

early childhood material hardship and altered emotion processing specific to ‘fearful’ faces 

during adolescence. 

The present findings contribute empirical evidence of an association between early 

childhood (age 1 to 3) material hardship and increased co-activation of the FPN-DAN in 

response to a ‘fearful’ face, suggesting that material hardship has downstream consequences for 

emotion processing networks that are evident in adolescence not just in adulthood, as commonly 

reported with retrospective studies of poverty. The increased co-activation between the 

frontoparietal network (FPN) and the dorsal attention network  (DAN) in response to a ‘fearful’ 

facial expression aligns with previous neuroimaging findings that have identified associations 

between childhood poverty and altered processing of negative emotions in adulthood (i.e., fearful 

and angry faces; Javanbakht et al., 2015; Moulson, Fox, Zeanah, & Nelson, 2009). Interestingly, 

this ‘fearful’ condition network connectivity was only associated with early childhood material 

hardship, and not to any specific period during development, or any other incremental range (i.e., 

1 to 5, 1 to 9, 1 to 15). This finding stands in contrast to behavioral studies commonly reporting 

that cumulative lifetime material hardship has a stronger association with behavioral outcomes 
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(e.g., Li, & Whipple, 2013). This was not the case with task-based connectivity, which suggests 

early childhood (age 1 to 3) as especially vulnerable time period to environmental stressors.  

Specifically, the frontoparietal network has been implicated as a “flexible hub” that 

interacts with other content-specific networks (i.e., salience network) to guide processing across 

multiple cognitive domains (Zanto & Gazzaley, 2013). As part of the ‘Central Executive 

Network’, the FPN will interact with other networks depending on the demands of the task 

(Dixon et al., 2018). The DAN is engaged during externally directed attentional tasks and 

comprised of functionally connected brain regions including the visual motion area (Spreng, 

Sepulcre, Turner, Dale, & Schacter, 2013). Moreover, the increased co-activation of the FPN-

DAN has been found to be indicative of the degree to which one implements cognitive control 

processes necessary to maintain goals, inhibit distractions and shift behaviors in goal directed 

behaviors (Vincent et al., 2008). For example, a study evaluating two conditions found increased 

FPN-DAN connectivity was associated with an exaggerated finger tapping task, while movie 

watching was associated with decreased FPN-DAN coactivation and increased Default Mode 

Network Activation-DAN(Gao & Lin, 2012). The previous finding suggests that the observed 

increased FPN-DAN connectivity to fearful images by youth in our sample may be indicative of 

adaptations in network functioning associated with emotion processing. Importantly, recent 

behavioral studies suggest that these adaptations are malleable to cognitive-emotion regulation 

strategy training, and in fact, these strategies have greater benefit for lower-SES individuals 

relative to their higher income counterparts (Troy, Ford, McRae, Zarolia, & Mauss, 2017). 

An alternative explanation for these findings relates to adolescent’s selective attention to 

fearful faces. Recent work examining how adolescent attention may affect emotion processing 

reported that adolescent’s attention seems to be captured by fearful faces more than any other 
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type of emotion relative to adults, suggesting that processing of emotional faces is qualitatively 

different for adolescents (Grose-Fifer, Rodrigues, Hoover, & Zottoli, 2013). Other researchers 

have shown that adolescents have more difficulty ignoring emotional faces than adults. For 

example, Monk and colleagues reported no differences in terms of the youth’s accuracy and 

reaction times in identifying emotion, but when asked to evaluate a non-emotional aspect (nose 

width) of fearful faces, there were differences in task performance for adolescents, suggesting an 

involuntary attentional capture of fearful faces for adolescents than adults (2003).   

Although the low depression and anxiety scores were comparable to reports from other 

samples of similarly aged adolescents (Brown et al., 2006; Goosby, 2007; McLaughlin et al., 

2007), our prediction that  FPN-DAN connectivity would be positively corelated with adolescent 

anxiety or depression symptoms was not supported. Therefore, altered task-based connectivity 

associated with early childhood material hardship did not correlate with the current adolescent 

psychopathology. However, follow up exploratory analyses identified that depression symptoms 

were negatively correlated with co-activation of the FPN and cerebellar network (CER), 

independently of material hardship. In other words, reduced FPN-CER network coactivation 

when viewing ‘fearful’ faces was associated with an increase of depression symptoms. These 

networks are part of the fronto-cerebellar neural networks (Arnsten & Rubia, 2012) involved in 

selective and sustained attention and motivation (Steinlin, 2007). Indeed, reduced FPN-CER co-

activation has been suggested to be a compensatory response in attention and reward during 

motivated attention, but not unmotivated attention for youth who have been diagnosed with 

Major Depression Disorder (MDD; Chantiluke et al., 2012). In the opposite direction, higher 

anxiety symptoms were positively correlated with coactivation within the somatosensory mouth 

(SSM-SSM) and the coactivation between somatosensory hand and mouth networks (SSM-
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SSH). Importantly, this increased somatosensory network connectivity during a fearful condition 

supports the notion that increased connectivity within the sensory-motor activity networks and 

anxiety are reflecting somatic symptoms associated with the processing of fear  (Bertini & 

Elisabetta, 2021). In fact, a meta-analysis of psychopathology and its association with 

somatosensory networks suggests that disruptions in sensory networks may be indicative of the 

early signs of developing psychopathology associated with emotion processing deficits (Levit-

binnun, Davidovitch, & Golland, 2013).  

Lastly, an exploratory network contingency analysis modeling the contrast of all 

emotions versus the neutral found no significant association between early childhood material 

hardship and interrelated task-based network connectivity during adolescence. Yet, recent 

connectome-wide PPI work has provided evidence for interrelated network activation in youth 

(N=843) with Social Anxiety Disorders who are viewing angry and fearful faces (Markett, 

Jawinski, Kirsch, & Gerchen, 2020). This suggests that perhaps the modulation of the other 

emotions may not have been apparent in our sample due to a sample size that may not be 

sensitive to smaller effects. By and large, network level connectivity is an emerging field, and 

the present finding provides support for network level emotion processing as well as, contributes 

to our understanding of how emotion is processed across the brain. The present findings 

characterize emotion processing adaptations observed in early adolescence associated with early 

childhood material hardship, suggesting that the neural adaptations commonly reported in adult 

with retrospective reports of poverty may begin as early as age 15. This is important because 

efforts to create interventions and preventative programs should target this age group to reduce 

the impact of material hardship on brain function.  
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Limitations and Future Directions 

The present study is not without limitations that should be addressed in future research. 

First, the gender identification task used in this study with pictures of faces displaying emotions 

at full intensity may not adequately evoke the emotion processing circuitry activation engaged in 

typical interactions for youth who may already have altered emotion processing due to early 

adversity. Second, the implicit nature of the task may have presented a disadvantage for youth 

who had never been inside a scanner and whose sense of discomfort or anxiety would prime the 

activation in these networks(Winston et al., 2003). Additionally, the neural activation reliability 

of an implicit face task has come into question perhaps signaling that different tasks should be 

used (Haller et al., 2018). Perhaps, an emotion task that engages cognitive processes such as the 

reappraisal task used by Liberzon and colleagues(2015) might provide a more nuance 

characterization of the dynamic cognitive interactions that support emotion-based processes, or 

using tasks that require an endogenous generated emotion by the participant have also shown 

promise in network level emotion studies (Engen, Kanske, & Singer, 2017). Third, the event-

related fMRI design during the scanning session may have limited the application of the PPI 

analytical approach, given that the events do not allow for full estimation of activation during the 

presentation of a certain type of emotion, as would be possible in a block design. Future PPI 

work could leverage multi-method imaging data with block and event-related design to better 

discern the extent to fMRI design may be modified to allow for the application of PPI in both 

types of design.  

Summary 

To summarize, the present study leveraged longitudinal reports of material hardship for a 

diverse sample with overrepresentation of understudied African American youth to examine a 
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connectome-wide PPI network contingency analysis to characterize how large-scale network 

functional connectivity was associated with different types of emotion. Specifically, greater 

material hardship experienced in early childhood (ages 1-3) increased large-scale network 

connectivity between the frontoparietal network and the dorsal attention network in response to 

fearful faces, but not for other emotional faces. Findings from our connectome-wide approach 

contribute to the emerging field of connectome-based functional connectivity and generates new 

questions related to how the complexities of emotion is processed during adolescence.  
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CHAPTER IV 
Discussion

 
 

Poverty and income inequalities in the U.S. remain crucial public health concerns that require 

ongoing research efforts to elucidate possible areas for prevention and intervention. More than 

48 million people in the United States live in low-income working families, and more than 10.3 

million working families earn less than the 200% of the government’s official poverty income 

threshold level, which is thought to be the minimum income needed by families to meet a basic 

standard of living. As recommended by APA, these families should not be referred to as being 

“poor” or in poverty, but rather as individuals who are low-income and economically 

marginalized (LIEM) (2019). The label describes the persisting social, political, and educational 

barriers that disproportionately marginalize these families, whose consequences are reflected in 

their economic well-being. Moreover, LIEM families are more likely to be non-White, which 

reflects the historical marginalization of non-White people in the U.S. through structural and 

individual racism. Consequently, my dissertation presented arguments and research studies that 

improved upon the existing poverty research by using innovative methodological approaches to 

better characterize the dynamic and complex nature of poverty in neuroimaging research.  

In the first chapter, I reviewed the history of an income-based indicator commonly used in 

the U.S., the Official Poverty Measure threshold that mischaracterizes a family’s financial well-

being which increases the likelihood of not identifying children growing up in families facing 

economic hardship. I presented the argument for the need of a more direct measure of family’s 
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economic well-being to complement the income-based poverty research to date. I proposed to 

operationalize poverty through a family’s material hardships which better characterize their lived 

experiences and struggles in meeting basic living needs, independently of their household 

income. Moreover, I discussed how material hardships disproportionately affect non-White 

LIEM families and their children’s development with focus on their increased risk of developing 

internalizing disorders, which has downstream consequences that persist until adulthood. As 

such, I provided a rationale to support my interest in examining how early childhood (Age 1 to 3) 

material hardship would be associated with adolescent brain function. Lastly, I proposed a 

functional adaptation framework that purported experience dependent neural adaptations over 

development (i.e., brain plasticity) to be one of the biological mediators that link material 

hardship to brain development, which can be measured through connectome-wide functional 

connectivity.    

The aim of Study 1 (Chapter 2) was to characterize the association between early childhood 

material hardships and adolescent brain functional connectivity at-rest. Youth in this study 

completed neuroimaging assessments at age 15 and were recruited from a nationally 

representative study, the Fragile Families and Child Wellbeing Study. As such, I had access to 

longitudinal information over 5 waves of data for one target child at age 1, 3, 5, 9 and 15 and 

their family’s material hardship reports over this time. Although Study 1 combined innovative 

sampling, statistical, and neuroimaging techniques to conduct a data-driven connectome-wide 

analysis of at-rest adolescent functional connectivity, my primary hypothesis was not supported. 

At-rest connectivity did not have an association between increased material hardship during early 

childhood and altered adolescent at-rest network connectivity across the Salience Network, the 

Central Executive Network, and the Default Mode Network. Nonetheless, increased node 
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connectivity was observed across 13 brain networks, but this increased connectivity was deemed 

to be statistically non-significant, as such no follow-up testing of interrelated networks 

connectivity and current internalizing symptoms was completed. Additionally, exploratory 

analyses demonstrated that no single material hardship period or their incremental effects had 

any associations with altered at-rest network connectivity. However, exploratory correlational 

analyses of network connectivity and internalizing symptoms, independently of material 

hardship identified both positive and negative correlations with a few interrelated networks. 

Based on these results that did not align with the current resting-state poverty literature, I 

concluded that income-based poverty and material hardship are indeed distinct dimensions of 

poverty and impact brain function differently. Importantly, the null findings of study one should 

not be used to dismiss or undercut the negative impact that material hardships have on child 

development, family functioning and quality of life. 

In Study 2 (Chapter 3), I used a connectome-wide psychophysiological interaction (PPI) 

approach to characterize altered functional connectivity involved in emotion processing using the 

same sample of adolescents from Study 1. Given that dysregulated emotion processing has been 

implicated in the development of psychopathology, Study 2 examined adolescents’ responses to 

a gender recognition task with actors expressing five emotions (i.e., happy, sad, fearful, anger 

and neutral). The aim of study 2 was to characterize the association between adolescent emotion 

processing and early childhood material hardship. Towards this end, I used multiple different 

contrasts (e.g., sad vs. baseline, neutral versus all emotions) within a connectome framework to 

pinpoint the nature of altered emotion processing while simultaneously evaluating whole brain 

activation as opposed to emotion circuit specific regions. I was interested in examining how 

material hardship experienced during important early childhood critical periods (e.g., 1 to 3) may 
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be especially impactful. I hypothesized that adolescents who had experienced more material 

hardship would show cognitive and emotional processing difficulties relative to adolescents who 

had experienced less material hardship and that this dysregulation would support the emergence 

of psychopathology. Despite previous research to the contrary, the current study did not find any 

significant differences between conditions tested, except in the case of the task-based activation 

elicited while viewing ‘fearful’ faces.  

Specifically, adolescents who had experienced more material hardship between ages 1 and 3 

showed greater coactivation between the frontoparietal and the dorsal attention networks at age 

15 in response to viewing ‘fearful’ faces. However, this increased coactivation was not 

associated with any current adolescent internalizing symptoms. Furthermore, exploratory 

analyses testing the association between the individual periods and incremental periods (e.g., age 

1 to 15) of material hardship with the task-activation during the ‘fearful’ condition were not 

significant. However, extracted functional connectivity while viewing ‘fearful’ faces across a 

few networks was associated with current internalizing symptoms, independently of material 

hardship. These findings were in line with previous research and highlighted the importance of 

evaluating brain function through a multi-method approach to characterize the differential impact 

of material hardship on brain function.  

Although this study had several methodological strengths and sought to fill an important gap 

in the literature, it also had some limitations. One limitation of the current study that may have 

influenced the null findings in Study 1 could be the way in which I conceptualized family 

material hardship.  To characterize how all types of material hardship were associated with 

multi-method functional connectivity, I aggregated eight weighted items to produce an average 

score. Although my review of the literature supported the weighted mean approach, which aimed 
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to not treat all types of material hardship as ‘equally’ impactful, important information such as 

the most reported types of hardships and the subtle fluctuations by type of material hardship over 

the five waves of data collection were lost when items were averaged. This loss of information 

contributed to the low variability across the weighted averages (See Figure 2.2). Indeed, material 

hardship item-based analyses (See Figure 2.3) demonstrated the complex variability underlying 

the weighted material hardship averages. Based on the individual item variability within the 

sample, it suggests that perhaps a more nuanced approach was merited. Perhaps a dimensional 

approach to measuring material hardship is necessary to better characterize how different 

features of material hardship such as type of hardship, the duration of hardship, and resolution of 

hardship alter social and physical child development in different contexts. In fact, previous 

studies exploring these distinct dimensions of material hardship separately have indicated 

different relationships with different child outcomes (e.g., food insecurity associated with poor 

academic performance). Additionally, both traditional material hardship items and items that 

assess families’ subjective sense of material hardship may prove informative as well, given the 

emerging research that has found strong links between subjective reports of economic hardship 

and health outcomes. 

Although studies examining the effects of material hardship on children do not survey the 

children themselves about their experiences directly, one valuable direction for future research 

may be to develop material hardship items that either ask parents directly about children’s needs 

that may have gone unmet or that ask children themselves, in developmentally appropriate terms, 

about their needs that may have been unmet. Perhaps a more focused measure that targeted child-

specific material hardship would improve the accuracy and validity of material hardship 

measures oriented towards children. Therefore, a multidimensional and multi-informant 
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approach (e.g. parent and teacher reports) may help triangulate and better focus our assessment 

of material hardship affecting children. 

Next, the use of the SAND sample in this study is a both a strength and a limitation. On the 

one hand, the subsample used in this study is drawn from a nationally representative sample of 

LIEM families, but the participants included in this study were predominantly African American 

families from urban areas. Accordingly, these results may not be generalizable to LIEM families 

from, for example, other racial/ethnic backgrounds or who struggle with material hardship in 

nonurban environments. That said, this study does shed light on this group’s experiences, which 

is valuable in its own right. Moreover, the use of an implicit emotion processing task (i.e., gender 

recognition task) may not have been the most appropriate for assessing adolescent’s reactivity to 

emotional stimuli. the actors in the images were all adults, this may have prompted a low priority 

of emotion processing for adult faces by the adolescents. Especially given the  age, gender, and 

race differences between the youth and the actors. To improve on this, perhaps the use of faces 

that reflect similar demographic characteristics (e.g., age, race, gender) and that are 

representative of the youth they would be exposed to at school and in other social situations daily 

would improve engagement with the task. Additionally, the use of an event-related design versus 

a block design may not have provided sufficient presentation time of each of the emotions to 

capture the associated activation required for PPI analyses, which may have been low to begin 

with given the implicit nature of the emotion processing task.  

Despite these limitations, the finding that material hardship experienced between ages 1 and 

3 does have downstream impacts on network level emotion processing at age 15 is noteworthy 

and a valuable contribution to the literature. Income effects, or other social variables that serve as 

proxies for poverty effects (e.g., maternal education), tend to be small and thus difficult to 
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identify in small samples using neuroimaging functional connectivity, which may have reduced 

our ability to detect an effect during resting state connectivity, but it is likely the case that the use 

of the connectome wide PPI analysis isolating conditions gave us stronger signal to detect 

effects. These findings reflect that many of the environmental stressors that are of concern to 

development may require larger sample sizes or more sensitive approaches to identify the small 

effect sizes on brain function. Careful evaluation of the available methodology and surveys 

should be conducted to reduce noise and confounds with our current approaches.  

Although these studies failed to identify all the relations initially hypothesized, it is important 

to note that this work should not be used to discredit the powerful impact of material hardship, 

particularly in early life. There is a plethora of behavioral data that has repeatedly demonstrated 

the role of poverty in general and material hardship in the development of internalizing and 

externalizing symptoms, as well as in other domains of development. As described above, there 

are a variety of different reasons why the functional connectivity findings did not emerge as 

expected; however, the mixed findings of this dissertation provide valuable information to 

advance our understanding of material hardship and research practices. The altered co-activation 

of networks identifies a possible area for the development of executive function interventions for 

those youth whose increased connectivity may be interfering with general executive skills in 

other domains of life such as school or work. Additionally, the finding regarding emotional 

processing differences for fearful faces is a valuable piece of information that could be 

incorporated in intervention programs for children from LIEM families, as part of targeted 

socioemotional learning curriculum, or to reduce the severity of any potential emergent 

psychopathology that could arise due to a hyperactive Central Executive Network. 
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More broadly, this dissertation examined comparable youth drawn from the same sample 

through task-based and at-rest functional connectivity. The use of a multi-method approach 

demonstrated that research questions may have opposing findings, which is valuable to our 

understanding of how environmental stressors such as material hardship impact brain function 

differently. Recommendations to publish multi-method work are suggested. Research that has 

attempted to reconcile mixed findings between task-based and at-rest connectivity often finds 

equally valuable contributions to the research field (e.g., Stevens, 2016). Next, the null findings 

of study one encourages reflection about the important value of publishing null findings. 

Understandably, there is a preference to publish poverty research studies with statistically 

significant findings. However, much can be learned from publishing studies with null findings 

that also help advance scientific knowledge in psychology  or any field for that matter by 

shedding light on new questions. Barring this approach, encouraging more replication studies 

would be equally as important, which would address our ongoing ‘replication crisis’ in 

neuroimaging research. Pre-registration of studies may help address these concerns by allowing 

the publication of scientifically sound research with null findings while documenting the 

methodology, and proposed analyses prior to project completion. 
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Table 2.1 SAND Sample: Demographic characteristics, N=237. 
Measures  N = 237 
Age in Years (Mean, SD) 15.41(0.54) 
Gender (%, Count)  

Female 52% (124) 
Male  48% (113) 

Ethnic Racial Identity (%, Count)  
Black/African American (non-Hispanic)  76% (181) 

White/Caucasian (non-Hispanic)  13% (30) 
Other Non-Hispanic Groups  

(Asian, Native Americans, Arabs) 
2% (5) 

Hispanic/ Latino 4% (10) 
Multi-Ethnic/Race 5% (11) 

Household Annual Income at Age 15 (%, Count)  
$4,999 or less 12% (28) 

$5,000 - $9,999 2% (5) 
$10,000 - $14,999  8% (20) 
$15,000 - $19,000 7% (16) 
$20,000 - $24,999 14% (33) 
$25,000 - $29,999 5% (11) 
$30,000 - $39,999 10% (23) 
$40,000 - $49,999  9% (21) 
$50,000 - $59,999  5% (13) 
$60,000 – $69,999  5% (11) 
$70,000 - $79,999 3% (8) 
$80,000 - $89,000 2% (5) 

$90,000 or more   9% (22) 
No Response    9% (21) 

Weighted 8-Item Material Hardship (Mean, SD)  
Age 1  .10(0.13) 
Age 3  .10(0.13) 
Age 5  .11(0.13) 
Age 9  .12(0.12) 

   Age 15  .11(0.14) 
Material Hardship Occurrence (%, Count)  

Families Who Never Reported Material Hardship 13% (32) 
Families who Reported Material Hardships at All Waves 17% (40) 

Internalizing Symptoms Scales (Mean, SD)  
Depression-CDI 8.42(6.52)  

Anxiety-SCARED 16.96(11.20) 
Note. SAND: Study of Adolescent Neural Development; SD: Standard Deviation;  
CDI: Children’s depression inventory, score range 0-54, SCARED: Screen for Child 
Anxiety Related Disorder, score range 0-76. 
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Table 2.2 SAND Sample: Material hardship correlated with variables of interest.  
Variables 1 2 3 4 5 6 7 8 9 10 11 
1. Age in Years -           
2. Gender .04 -          
3. ERI -.01 .00 -         
4. Annual Incomea .06 -.05 .00 -        
5. Age 1 MH -wM -.11 .02 .04 -.11 -       
6. Age 3 MH -wM -.17c .05 .06 -.05 .56d -      
7. Age 5 MH -wM -.12 .07 .09 .05 .41d .53d -     
8. Age 9 MH -wM -.09 .12 .12 -.07 .26d .36d .42d -    
9. Age 15 MH -wM -.03 .04 .07 -.05 .28d .37d .35d .52d -   
10.SCARED -.03 -.33d .08 .01 .02 .04 .09 .06 .09 -  
11.CDI .05 -.16b -.01 .01 .04 .11 .11 .12 .14b .46d - 
Note. N=237; values are Pearson correlation coefficients ; SAND: Study of Adolescent Neural 
Development; ERI: Ethnic-Racial Identity; MH: Material Hardship; ‘-wM’: weighted mean; 
SCARED: Screener for Child Anxiety Disorders; CDI: Children’s Depression Inventory; a 
household income at age 15 assessment; bp<.05; c p<.01; d p<.001 
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Table 2.3 SAND Sample: Weighted material hardship by item and average score by wave. 
N=237 Age 1 Age 3 Age 5 Age 9 Age 15 
MH Item (%, Count)      

Receive Food Meals 9% (22) 12% (28) 12% (29) 10% (23) 20% (48) 
Gas or Electricity 23% (54) 26% (61) 32% (75) 44% (105) 38% (90) 

Borrow Money 24% (57) 22% (53) 29% (69) 41% (96) 29% (69) 
Rent Mortgage  16% (38) 12% (29) 14% (34) 24% (57) 18% (42) 

Shelter  3% (7) 3% (7) 3% (6) 1% (3) 2% (5) 
Evicted 4% (10) 2% (5) 3% (8) 4% (9) 2% (5) 

No Doctor 5% (12) 8% (18) 9% (21) 5% (11) 6% (14) 
Move In w Friend/Family 10% (24) 11% (27) 10% (24) 11%  (25) 7% (17) 

MH Reported (%, Count)      
None  49% (116) 48% (114) 42% (98) 33% (78) 44% (103) 

At least One Hardship 51% (121) 52% (123) 59% (139) 67% (159) 57% (134) 
MH 8-Item Composite (Mean, SD)      

MH-non-weighted 0.12(0.16) 0.12(0.16) 0.15(0.17) 0.19(0.18) 0.15(0.18) 
MH-weighted 0.10(0.13) 0.10(0.13) 0.11(0.13) 0.12(0.12) 0.11(0.14) 

Note. SAND: Study of Adolescent Neural Development; SD: Standard Deviation; a original data 
average sum non-weighted averages reported for interpretability and completeness. 
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Table 2.4 Sample attrition for resting state analysis. 
Reasons for Exclusion  Number of Subjects 
Original Sample 237 

Did not attempt MRI scan 29 
Incomplete fMRI scan 4 

fMRI scan quality issues (e.g., cut off structural images) 26 
Autism Spectrum Disorder 2 

Sample size prior to motion correction for connectome analyses 176 
Censored Volumes (>50%); less than 4 minutes of data 2 

Loss to Excessive Motion (Mean FD > 0.5mm) 0 
Incomplete/Missing Material Hardship Wave Data 0 

Total Sample Included in rs-fMRI Connectome Analyses 174 
Note. Motion correction used AROMA-ICA that allowed for the inclusion of more participants; 
FD: Frame displacement. 
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Table 2.5 Resting-state sample: Demographic characteristics, N=174. 
Measure  N=237 N=174 ANOVA or X2 

Age in Years (Mean, SD) 15.41(0.54) 15.43(0.55) 
F(1,235)=0.91, 

p=.34 

Gender (%, Count) 
  

χ 2 (1)=3.08, 
p=.08 

Female 52% (124) 56% (97)  
Male  48% (113) 44% (77)  

Ethnic Racial Identity (%, Count)   
χ 2 (4)=5.10, 

p=.28 

Black/African American 
(non-Hispanic)  

76% (181) 78% (136) 
 

White/Caucasian  
(non-Hispanic)  

13% (30) 10% (18) 
 

Other Non-Hispanic Groups  
(Asian, Native Americans) 

2% (5) 2% (4) 
 

Hispanic/ Latino 4% (10) 5% (9)  
Multi-Ethnic/Race 5% (11) 4% (7)  

Weighted Material Hardship 
Score(Mean, SD) 

  
 

Age 1  .10(0.13) .10(0.13) 
F(1,235)=0.12, 

p=.73 

Age 3  .10(0.13) .11(0.13) 
F(1,235)=0.91, 

p=.34 

Age 5  .11(0.13) .12(0.13) 
F(1,235)=2.98, 

p=.09 

Age 9  .12(0.12) .12(0.13) 
F(1,235)=0.98, 

p=.32 

   Age 15  .11(0.14) .12(0.14) 
F(1,235)=1.04, 

p=.31 

Internalizing Scales (Mean, SD)    

Depression-CDI 8.42(6.52) 8.82(6.78) 
F(1,234)=2.48, 

p=.12 

Anxiety-SCARED 16.96(11.20) 17.25(11.25) 
F(1,228)=0.48, 

p=.49 

Note. Weighted material hardship score is derived from an 8-item composite sum; SD: 
Standard Deviation; CDI: Children’s depression inventory, score range 0-54, SCARED: 
Screen for Child Anxiety Related Disorder, score range 0-76; group differences were 
testing the excluded versus included youth in the sample used for connectome analyses. 
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Table 2.6 Resting-state sample: Weighted material hardship by item and average score by 
wave. 
N = 174 Age 1 Age 3 Age 5 Age 9 Age 15 
MH Item (%, Count)      

Receive Food Meals 10% (18) 13% (23) 15% (26) 9% (16) 20% (34) 
Gas or Electricity 24% (41) 28% (49) 35% (60) 47% (81) 40% (68) 

Borrow Money 27% (47) 26% (45) 32% (56) 43% (52) 31% (53) 
Rent Mortgage  13% (23) 12% (21) 16% (27) 26% (45) 20% (35) 

Shelter  3% (6) 3% (5) 3% (5) 2% (3) 2% (4) 
Evicted 5% (8) 3% (5) 5% (8) 3% (6) 2% (4) 

No Doctor 5% (9) 6% (11) 9% (15) 4% (7) 7% (12) 
Move In w Friend/Family 10% (18) 12% (21) 11% (19) 12%  (21) 6% (11) 

MH Reported (%, Count)      
None  49% (85) 45% (79) 39% (68) 32% (55) 42% (73) 

At least One Hardship 51% (89) 55% (95) 61% (106) 68% (119) 58% (101) 
MH 8-Item Composite (Mean, SD)      

MH-non-weighted 0.13(0.16) 0.13(0.16) 0.16(0.17) 0.20(0.19) 0.16(0.19) 
MH-weighted 0.10(0.13) 0.11(0.13) 0.12(0.13) 0.12(0.13) 0.12(0.14) 

Note. MH: Material Hardship; SD: Standard Deviation; original data average sum non-weighted 
averages reported for interpretability and completeness.  
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Table 2.7 Resting-state sample: Material hardship correlated with variables of interest. 
Variables 1 2 3 4 5 6 7 8 9 10 11 
1. Age in Years -           
2. Gender .01 -          
3. ERI .04 .00 -         
4. Annual Incomea .01 -.07 .08 -        
5. Age 1 MH -wM -.13 .00 -.02 -.06 -       
6. Age 3 MH -wM -.16b .04 -.01 -.13 .57d -      
7. Age 5 MH -wM -.12 .06 .03 .05 .39d .52d -     
8. Age 9 MH -wM -.03 .12 .10 -.07 .22d .33d .45d -    
9. Age 15 MH -wM .00 .07 .05 -.05 .30d .37d .33d .55d -   
10.SCARED -.08 -.32d .14 -.04 .04 .05 .13 .13 .08 -  
11. CDI .03 -.11 .00 -.03 -.03 .07 .10 .12 .13 .45d - 

Note. N=174; values are Pearson correlation coefficients; ERI: Ethnic-Racial Identity; MH: Material 
Hardship; ‘-wM’: weighted mean; SCARED: Screener for Child Anxiety Disorders; CDI: Children’s 
Depression Inventory; a household income at age 15 assessment;  bp<.05; c p<.01; d p<.001 
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Table 2.8 Non-parametric significance testing (FDR, p <.05): Adjusted p-values for 
material hardship during age 1-3 and network connectivity at-rest. 
Network 1 2 3 4 5 6 7 8 9 10 11 12 13 
1. SSH 1 .73 .93 .88 .73 .88 .73 1 .79 1 1 1 1 
2. SSM  1 .73 .73 .73 1 .88 .73 .73 .73 1 .73 1 
3. COT   1 1 .73 1 .73 1 1 .88 1 1 1 
4. AUD    1 .73 .73 .73 .73 .77 .73 1 1 1 
5. DMN     .99 1 .88 1 .73 1 1 .88 1 
6. MEM      1 .93 .73 .79 1 1 .73 1 
7. VIS       1 1 .73 .73 1 1 1 
8. FPN        1 .73 1 1 .88 1 
9. SAL         .73 .73 1 1 1 
10. LIM          1 1 1 1 
11. VAN           1 1 1 
12. DAN            .73 1 
13. CER             1 
Note. N=174; values are corrected False Discovery Rate p-values (FDR, p <.05), Networks: SSH: 
Somato Sensory Hand; SSM: Somato Sensory Mouth; COT: Cingular Opercular Task Control; 
AUD: Auditory; DMN: Default Mode; MEM: Memory Retrieval; VIS: Visual; FPN: Frontoparietal 
Task Control; SAL: Salience; LIM: Limbic; VAN: Ventral Attention; DAN: Dorsal Attention; CER: 
Cerebellum; Network Contingency Analysis Model adjusted for mean frame displacement motion 
value, ethnic-racial identity and gender and current age 15 material hardship. 
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Table 2.9 Zero-order correlation between extracted at-rest network connectivity and 
depression symptoms.   
Network 1 2 3 4 5 6 7 8 9 10 11 12 13 
1. SSH -.08 -.05 -.11 -.09 -.03 .02 -.08 -.04 -.05 .00 -.13 -.06 .04 
2. SSM  -.13 -.09 -.15 .04 .04 -.06 .07 .02 .00 -.06 -.05 -.06 
3. COT   -.17a -.14 -.01 .00 -.10 -.06 -.10 -.06 -.09 -.08 -.02 
4. AUD    -.16a -.03 .03 -.07 -.01 -.06 -.04 -.13 -.03 -.01 
5. DMN         -.08 .02 .00 -.03 -.01 -.01 -.05 .00 -.02 
6. MEM      .08 .02 -.03 .02 .03 -.01 .04 .02 
7. VIS       -.12 .01 -.07 -.05 -.01 -.09 -.11 
8. FPN        -.11 -.07 -.04 -.07 -.09 -.02 
9. SAL         -.07 -.06 -.10 -.07 -.03 
10. LIM           -.04 -.06 -.01 -.02 
11. VAN           .02 -.03 -.03 
12. DAN            -.15 -.03 
13. CER             .02 
Note. N=174; values are Pearson correlation coefficients; Networks: SSH: Somato Sensory Hand; 
SSM: Somato Sensory Mouth; COT: Cingular Opercular Task Control; AUD: Auditory; DMN: 
Default Mode; MEM: Memory Retrieval; VIS: Visual; FPN: Frontoparietal Task Control; SAL: 
Salience; LIM: Limbic; VAN: Ventral Attention; DAN: Dorsal Attention; CER: Cerebellum;  
a p <.05 
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Table 2.10 Zero-order correlation between extracted at-rest network connectivity and 
anxiety symptoms. 
Network 1 2 3 4 5 6 7 8 9 10 11 12 13 
1. SSH -.01 .05 -.02 .09 .04 .10 .01 .05 .00 .11 .04 .02 .16a 
2. SSM  -.02 .01 .05 .17a .09 .06 .10 .05 .07 .09 .01 .07 
3. COT   -.01 .00 .03 .07 .00 .07 .00 .12 .05 .03 .13 
4. AUD    .04 .08 .11 .07 .09 .00 .10 .00 .06 .18a 
5. DMN         .02 .16a .04 .04 .08 .08 .01 .02 .07 
6. MEM      .18a .13 .06 .17a .17a .08 .10 .10 
7. VIS       .13 .09 .04 .07 .10 .06 .05 
8. FPN        -.02 .07 .12 .00 .00 .11 
9. SAL         .05 .13 .03 .03 .09 
10. LIM           .13 .08 .12 .16a 
11. VAN           .09 .03 .10 
12. DAN            -.06 .08 
13. CER             .10 

Note. N=174; values are Pearson correlation coefficients; Networks: SSH: Somato Sensory Hand; 
SSM: Somato Sensory Mouth; COT: Cingular Opercular Task Control; AUD: Auditory; DMN: 
Default Mode; MEM: Memory Retrieval; VIS: Visual; FPN: Frontoparietal Task Control; SAL: 
Salience; LIM: Limbic; VAN: Ventral Attention; DAN: Dorsal Attention; CER: Cerebellum;  
a p <.05; b p<.01; c p<.001 
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Table 3.1 Sample attrition for PPI connectome analyses 
Reasons for Exclusion Number of Subjects 

Original Sample 237 
Did not attempt MRI scan 29 

Incomplete fMRI scan 4 
fMRI scan quality issues (e.g., structural artifacts) 21 

Alternate faces ask version 2 
Autism Spectrum Disorder 2 

Inconsistent Tasks Response Pattern 11 
Total Faces Task Sample Prior to Motion Exclusion 168 
Exclusionary Criteria  

White Matter/CSF Masks (e.g., warped masks) 11 
Minimum (>4 Minutes) time of Uncensored Volumes  0 

Excessive Mean Frame Displacement (>.5mm)  6 
Low (<70%) accuracy on faces tasks  17 

Missing Behavioral Data  0 
Total Sample Included in PPI Connectome Analyses 134 
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Table 3.2 Faces task sample: Demographic characteristics, N=134. 
Measure  N=237 N=134 ANOVA or X2 

Age in Years (Mean, SD) 15.41(0.54) 15.40(0.54) 
F(1,235)=0.09, 

 p=.76 

Gender (%, Count) 
  

χ 2 (1)=1.04,  
p=.30 

Female 52% (124) 55% (74)  
Male  48% (113) 45% (60)  

Ethnic Racial Identity (%, Count) 
  

χ 2 (4)=1.85,  
p=.76 

Black/African American 
(non-Hispanic)  

76% (181) 77% (103) 
 

White/Caucasian  
(non-Hispanic)  

13% (30) 12% (16) 
 

Other Non-Hispanic Groups  
(Asian, Native Americans) 

2% (5) 3% (4) 
 

Hispanic/ Latino 4% (10) 5% (6)  
Multi-Ethnic/Race 5% (11) 4% (5)  

Weighted Material Hardship 
Score(Mean, SD) 

  
 

Age 1  .10(0.13) .10(0.13) 
F(1,235)=0.01, 

 p=.94 

Age 3  .10(0.13) .11(0.13) 
F(1,235)=0.18, 

 p=.68 

Age 5  .11(0.13) .12(0.14) 
F(1,235)=0.65, 

 p=.42 

Age 9  .12(0.12) .12(0.13) 
F(1,235)=0.90, 

 p=.34 

   Age 15  .11(0.14) .12(0.15) 
F(1,235)=0.06, 

 p=.82 
Internalizing Scales (Mean, SD)    

Depression-CDI 8.42(6.52) 9.10(6.78) 
F(1,234)=3.34, 

 p=.07 

Anxiety-SCARED 16.96(11.20) 17.25(11.73) 
F(1,228)=.87, 

 p=.35 
Note Weighted material hardship score is derived from an 8-item composite sum; SD: 
Standard Deviation; CDI: Children’s depression inventory, score range 0-54, SCARED: 
Screen for Child Anxiety Related Disorder, score range 0-76; group differences were 
testing the excluded versus included youth in the sample used for connectome analyses. 
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Table 3.3 Faces task sample: Weighted material hardship by item and average score by 
wave. 
N = 134 Age 1 Age 3 Age 5 Age 9 Age 15 
MH Item (%, Count)      

Receive Food Meals 10% (14) 12% (16) 14% (19) 10% (13) 19% (26) 
Gas or Electricity 23% (31) 29% (39) 35% (47) 49% (65) 41% (55) 

Borrow Money 28% (37) 25% (34) 32% (43) 47% (59) 28% (37) 
Rent Mortgage  18% (24) 11% (15) 14% (19) 28% (37) 19% (26) 

Shelter  5% (6) 2% (2) 3% (4) 2% (3) 3% (4) 
Evicted 3% (4) 3% (4) 5% (6) 3% (4) 2% (3) 

No Doctor 7% (9) 8% (11) 10% (13) 5% (6) 5% (7) 
Move In w Friend/Family 10% (13) 10% (14) 10% (14) 10%  (14) 6% (8) 

MH Reported (%, Count)      
None  46% (62) 46% (61) 40% (54) 31% (41) 44% (59) 

At least One Hardship 53% (72) 55% (73) 60% (80) 69% (93) 56%  (75) 
MH 8-Item Composite (Mean, SD)      

MH-non-weighted 0.13(0.16) 0.13(0.17) 0.16(0.18) 0.20(0.18) 0.16(0.19) 
MH-weighted 0.10(0.13) 0.10(0.13) 0.12(0.14) 0.12(0.13) 0.12(0.15) 

Note. N=134; MH: Material Hardship; SD: Standard Deviation; original data average sum non-
weighted averages reported for interpretability and completeness. 
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Table 3.4 Faces task sample: Material hardship correlated with variables of interest. 
Variables 1 2 3 4 5 6 7 8 9 10 11 
1. Age in Years -           
2. Gender -.02 -          
3. ERI -.01 .01 -         
4. Annual Incomea .03 -.04 -.01 -        
5. Age 1 MH -wM -.10 -.05 .08 -.07 -       
6. Age 3 MH -wM -.13 .07 .04 .04 .53d -      
7. Age 5 MH -wM -.07 .05 .09 .06 .41d   .59d -     
8. Age 9 MH -wM -.01 .15 .14 -.08 .25d .39d .45d -    
9. Age 15 MH -wM -.01 .06 .03 -.01 .32d .44d .32d .56d -   
10.SCARED -.06 -.39d .13 .11 .06 .07 .16 .00 .07 -  
11. CDI .00 -.17b -.01 .12 -.03 .07 .09 .09 .05 .49d - 
Note. N=134; values are Pearson correlation coefficients; ERI: Ethnic-Racial Identity; MH: Material 
Hardship; ‘-wM’: weighted mean; SCARED: Screener for Child Anxiety Disorders; CDI: 
Children’s Depression Inventory; a household income at age 15 assessment;  bp<.05; c p<.01; d 

p<.001 
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Table 3.5 Non-parametric significance testing (FDR, p <.05): Adjusted p-values for 
material hardship during age 1-3 and network connectivity while viewing fearful faces. 
Network 1 2 3 4 5 6 7 8 9 10 11 12 13 
1. SSH 1 .52 1 1 1 .75 .66 1 1 1 1 1 1 
2. SSM  1 1 1 1 .22 .88 .11 1 1 1 1 .52 
3. COT   1 1 1 1 1 1 1 1 1 1 1 
4. AUD    1 1 .23 .66 .11 1 1 1 1 1 
5. DMN         1 1 1 1 1 1 1 1 1 
6. MEM      .42 1 .42 1 .68 1 1 1 
7. VIS       1 .68 .91 .68 1 1 1 
8. FPN        .11 .07 .19 .22 .03* 1 
9. SAL         1 1 1 1 .79 
10. LIM           1 1 1 1 
11. VAN           1 1 1 
12. DAN            1 1 
13. CER             1 

Note. N=134; values are corrected False Discovery Rate p-values (FDR, p <.05), Networks: SSH: 
Somato Sensory Hand; SSM: Somato Sensory Mouth; COT: Cingular Opercular Task Control; 
AUD: Auditory; DMN: Default Mode; MEM: Memory Retrieval; VIS: Visual; FPN: Frontoparietal 
Task Control; SAL: Salience; LIM: Limbic; VAN: Ventral Attention; DAN: Dorsal Attention;  
CER: Cerebellum; FPN-DAN, p=.03 adjusted FDR, Cohen’s d = 0.01, 95% CI [-0.51,0.48]; 
Network Contingency Analysis Model adjusted for mean frame displacement motion value, ethnic-
racial identity and gender and current age 15 material hardship. 
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Table 3.6 Zero-order correlations between extracted task-based network connectivity 
evoked during ‘fearful’ condition and depression symptoms. 
Network 1 2 3 4 5 6 7 8 9 10 11 12 13 
1. SSH .00 .02 -.06 .06 .06 .09 .04 -.09 -.02 -.08 -.03 -.15 -.04 
2. SSM 

 
.10 -.07 -.04 .01 .07 .06 .04 .08 -.11 -.07 -.11 -.06 

3. COT  
 

-.02 .02 -.03 .06 .09 -.01 -.01 -.12 -.05 -.12 .00 
4. AUD   

 
.02 -.02 .04 .02 .06 .01 -.14 .03 -.16 .02 

5. DMN        
 

-.03 -.01 .05 -.01 -.08 -.02 -.02 -.05 -.10 
6. MEM     

 
.02 -.11 -.02 -.01 -.04 .04 -.15 .04 

7. VIS      
 

.02 .02 -.10 -.06 -.01 -.06 -.05 
8. FPN        .01 -.01 .02 .00 -.06 -.20a 
9. SAL         .01 .03 -.01 -.09 -.03 
10. LIM           -.07 .12 -.07 -.03 
11. VAN           .04 -.08 -.03 
12. DAN            -.13 -.04 
13. CER             -.12 
Note. N=134; values are Pearson correlation coefficients; Networks: SSH: Somato Sensory Hand; 
SSM: Somato Sensory Mouth; COT: Cingular Opercular Task Control; AUD: Auditory; DMN: 
Default Mode; MEM: Memory Retrieval; VIS: Visual; FPN: Frontoparietal Task Control; SAL: 
Salience; LIM: Limbic; VAN: Ventral Attention; DAN: Dorsal Attention; CER: Cerebellum; a p 
<.05 
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Table 3.7 Zero-order correlations between extracted task-based network connectivity 
evoked during ‘fearful’ condition and anxiety symptoms.  
Network 1 2 3 4 5 6 7 8 9 10 11 12 13 
1. SSH -.12 .21a .06 .11 .00 -.05 .04 -.15 -.11 -.03 .01 -.04 -.01 
2. SSM  .22a .03 .05 .08 -.05 .05 -.13 -.09 .03 .06 -.04 .00 
3. COT   .06 .09 -.02 -.13 .07 -.02 .01 .01 -.01 -.06 .04 
4. AUD    .16 .01 -.03 .09 -.03 -.07 -.05 .10 .01 .09 
5. DMN         -.05 -.01 .03 -.10 -.10 .08 .03 -.04 .05 
6. MEM      .07 .00 -.01 -.13 -.06 .03 .00 -.02 
7. VIS       .09 -.15 -.06 .05 .11 -.03 .01 
8. FPN        -.03 .01 .08 .03 -.03 .03 
9. SAL         .05 .09 -.08 -.01 .03 
10. LIM           .03 .11 -.07 .06 
11. VAN           .13 .02 .03 
12. DAN            -.02 .04 
13. CER             -.04 
Note. N=134; values are Pearson correlation coefficients; Networks: SSH: Somato Sensory Hand; 
SSM: Somato Sensory Mouth; COT: Cingular Opercular Task Control; AUD: Auditory; DMN: 
Default Mode; MEM: Memory Retrieval; VIS: Visual; FPN: Frontoparietal Task Control; SAL: 
Salience; LIM: Limbic; VAN: Ventral Attention; DAN: Dorsal Attention; CER: Cerebellum; 
a p <.05 



 123

 

 
Figure 2.1 SAND Sample: Weighted family material hardship 8-item average plotted by ethnic-
racial group membership. 
 

Note. Higher weighted averages reflect more material hardship; SAND: Study of Neural 
Development; No statistically significant ethnic-racial group differences were identified in the 
family material hardship reports in our sample. However, age 9 and age 15 group differences in 
material hardship are trending towards significance (p=.06 & p=.06) 
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Figure 2.2 SAND Sample: Average of 8-item weighted material hardship score by study specific 
sample. 
 

Note. Higher weighted averages reflect more material hardship; SAND: Study of Neural 
Development; Material hardship reports for youth who were included in the distinct connectome-
based analyses relative to the full sample.  
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Figure 2.3 SAND Sample: Family material hardship frequency count of reports plotted by item over the 5 waves of data collection. 

Note. SAND: Study of Neural Development; Eight material hardship items used for composite score are plotted over 5 waves of data 
collection. Data Collection Years: Age 1(2000-2001);Age 3(2002-2003);Age 5(2004-2005); Age 9(2008-2009); Age 15 (2014-2015)  
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Figure 2.4 Illustration of Power et al’s (2011) 13 large-scale network brain parcellation. 
 

 

Note. Uses 264 MNI ROIs; Three Networks not shown in figure are Salience, Ventral and Dorsal 
Attention Networks not shown, Regions of Interest are MNI Space; Image originally published 
in Yang et al. (2016). Doi: 10.3389/fnins.2016.00123/full 
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Figure 2.5 Procedure for conducting network contingency analysis. 
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Figure 2.6 Suprathreshold (p<.005) cross-tabulation network map displaying the node activation 
associated with material hardship during ages 1 to 3 and at-rest connectivity. 
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Note. Networks: SSH: Somato Sensory Hand; SSM: Somato Sensory 
Mouth; COT: Cingular Opercular Task Control; AUD: Auditory;  
DMN: Default Mode; MEM: Memory Retrieval; VIS: Visual;  
FPN: Frontoparietal Task Control; SAL: Salience; LIM: Limbic;  
VAN: Ventral Attention; DAN: Dorsal Attention; CER: Cerebellum 
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Figure 2.7. Suprathreshold (p<.005) cross-tabulation network maps of at rest-connectivity displaying node activation by individual 
material hardship wave. 
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Figure 2.8. Suprathreshold (p<.005) cross-tabulation network maps of at rest-connectivity displaying node activation by incremental 
material hardship waves. 
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Figure 3.1 Gender identification task during scanning session. 
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Figure 3.2. Suprathreshold (p<.005) cross-tabulation network maps of node activation of task-based connectivity by condition versus 
baseline contrasts for material hardship during ages 1 to 3.  
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Figure 3.3. Suprathreshold (p<.005) cross-tabulation network maps of task-based connectivity displaying node activation by 
individual material hardship wave for “Fearful” condition.  
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Figure 3.4. Suprathreshold (p<.005) cross-tabulation network maps of node activation evoked while viewing “Fearful” faces by 
incremental material hardship waves 
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Figure 3.5 Shaded contingency cross-tabulation network map displaying non-parametric 
significance testing results for network activation observed during the “Fearful” faces condition 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Note. Non-parametric significance testing used adjusted False Discovery Rate p-values generated 
from a 10K permutation distribution (p<.05); Networks: SSH: Somato Sensory Hand; SSM: 
Somato Sensory Mouth; COT: Cingular Opercular Task Control; AUD: Auditory; DMN: Default 
Mode; MEM: Memory Retrieval; VIS: Visual; FPN: Frontoparietal Task Control; SAL:Salience; 
LIM: Limbic; VAN: Ventral Attention; DAN: Dorsal Attention; CER: Cerebellum;  
FPN-DAN, adjusted FDR p=.03, Cohen’s d = 0.01, 95% CI [-0.51,0.48]. 
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APPENDICES
 
A. Aggregated sample characteristics table 
Table 3.8 Aggregated sample characteristics table   

Measure Full Sample 
Resting-State 
fMRI Sample 

Task-Based 
fMRI Sample 

Sample Size  237 186 168 

Age in Years (Mean, SD) 15.41(.54) 15.41(.55) 15.43(.55) 

Gender (%, Count)    

Female 52% (124) 55% (102) 54% (91) 

Male  48% (113) 45% (84) 46% (77) 

Ethnic Racial Identity (Count, %)    
Black/African American  

(Non-Hispanic)  
76% (181) 77% (144) 76% (128) 

White/Caucasian  13% (30) 11% (21) 10% (17) 

Hispanic/ Latino 4% (10) 5% (9) 5% (9) 
Other Non-Hispanic Groups  

(Asian, Native Americans, Arabs) 
2% (5) 2% (4) 3% (5) 

Multi-Ethnic/Race 5% (11) 4% (8) 5% (9) 
Household Poverty Ratio (Mean, SD)    

Age 1 Wave (n=225) 1.80(1.96) 1.81(1.95) 1.81(1.93) 
Age 3 Wave (n=224) 1.83(1.97) 1.79(1.97) 1.85(2.02) 
Age 5 Wave (n=226) 1.68(1.74) 1.60(1.64) 1.63(1.65) 
Age 9 Wave (n=219) 1.77(1.69) 1.67(1.68) 1.76(1.63) 

Age 15 Wave (n=236) 1.95(2.12) 1.98(2.24) 2.06(2.27) 
Material Hardship (Mean, SD)    

Age 1 Wave (n=225) .12(.16) .12(.16) .12(.16) 
Age 3 Wave (n=224) .13(.16) .14(.17) .13(.16) 
Age 5 Wave (n=226) .15(.17) .16(.17) .15(.17) 
Age 9 Wave (n=220) .19(.18) .20(.19) .19(.18) 

   Age 15 Wave (n=236) .15(.19) .16(.19) .15(.19) 
Internalizing Sxs Scales    

Depression-CDI 8.42(6.52) 8.73 (6.68) 8.57(6.46) 
Anxiety-SCARED 21.51(20.46) 19.68(16.75) 19.48(16.63) 

Total N in Connectome Analyses - 174 134 
Note. CDI: Children’s depression inventory, score range 0-54, SCARED: Screen for Child 
Anxiety Related Disorder, score range 0-76; household income poverty ratio drawn from 
Fragile Families Child Wellbeing Study Longitudinal Data; SD: Standard Deviation 
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B. Measures: Child Depression Inventory (CDI) 
Directions: Kids sometimes have different feeling and ideas. Pick one sentence that describes you best for the past 2 weeks. 
Item 1. 
I am sad once in a while. (0) 
I am sad many times. (1) 
I am sad all the time.  (2) 

Item 10. 
I feel like crying every day. (2) 
I feel like crying many days. (1) 
I feel like crying once in a while.(0) 

Item 19 
Most days I do not feel like eating. (2) 
Many days I do not feel like eating. (1) 
I eat pretty well. (0) 
 

Item 2. 
Nothing will ever work out for me. 
(2) 
I am not sure if things will work out 
for me. (1) 
Things will work out for me O.K.  (0) 

Item 11. 
Things bother me all the time. (2) 
Things bother me many times. (1) 
Things bother me once in a while. (0) 

Item 20 
I do not worry about aches and 
pains.(0) 
I worry about aches and pains many 
times. (1) 
I worry about aches and pains all the 
time. (2) 
 

Item 3. 
I do most things O.K. (0) 
I do many things wrong. (1) 
I do everything wrong.  (2) 

Item 12. 
I like being with people. (0) 
I do not like being with people many times. 
(1) 
I do not like being with people at all. (2) 

Item 21 
I do not feel all alone. (0) 
I feel all alone many times. (1) 
I feel alone all the time. (2) 

Item 4. 
I have fun in many things. (0) 
I have fun in some things. (1) 
Nothing is fun at all (2) 

Item 13. 
I cannot make up my mind about things. (2) 
It is hard to make up my mind about things. 
(1) 
I make up my mind about things easily. (0) 

Item 22 
I never have fun at school. (2) 
I have fun in school once in a while. 
(1) 
I have fun at school many times. (0) 
 

Item 5. 
I am bad all the time. (2) 
I am bad sometimes. (1) 
I am bad once in a while. (0) 

Item 14. 
I cannot make up my mind about things. (2) 
It is hard to make up my mind about things. 
(1) 
I make up my mind about things easily. (0) 

Item 23. 
I have plenty of friends. (0) 
I have some friends but I wish I had 
more. (1) 
I do not have any friends. (2) 

Item 6. 
I think about bad things happening to 
me once in a while. (0) 
I worry that bad things will happen to 
me. (1) 
I am sure that terrible things will 
happen to me.(2) 

Item 15. 
I look O.K. (0) 
There are some bad things about my looks. 
(1) 
I look ugly. (2) 

Item 24. 
My schoolwork is all right. (0) 
My schoolwork is not as good as 
before. (1) 
I do very badly in subjects I used to be 
good in. (2) 

Item 7. 
I hate myself. (2) 
I do not like myself. (1) 
I like myself. (0) 

Item 16. 
I have to push myself all the time to do my 
schoolwork. (2) 
I have to push myself many times to do my 
schoolwork. (1) 
Doing schoolwork is not a big problem (0) 

Item 25. 
I can never be as good as other kids. 
(2) 
I can be as good as other kids if I want 
to. (1) 
I am just as good as other kids. (0) 

Item 8. 
All bad things are my fault. (2) 
Many bad things are my fault. (1) 
Bad things are not usually my fault. 
(0) 

Item 17 
I have trouble sleeping every night. (2) 
I have trouble sleeping many nights. (1) 
I sleep pretty well. (0) 
 

Item 26 
Nobody really loves me. (2) 
I am not sure if anybody loves me. (1) 
I am sure that somebody loves me. (0) 

Item 9. 
I want to kill myself (2) 
I think about killing myself, but I 
would not do it (1) 
I do not think about killing myself (0) 

Item 18 
I am tired once in a while. (0) 
I am tired many days. (1) 
I am tired all the time. (2) 
 

Item 27. 
I usually do what I am told. (0) 
I do not do what I am told most times. 
(1) 
I never do what I am told. (2) 
 

  Item 28. 
I get along with people. (0) 
I get into fights many times. (1) 
I get into fights all the time. (2) 

Source: (Kovacs, 1992) 
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C. Measures: Screen for Child Anxiety Related Disorders (SCARED) 

Item  
Almost 
Never Sometimes Often 

1. When frightened, it is hard to breathe 0 1 2 
2. I get headaches or stomach aches when I am at school 0 1 2 
3. I don’t like to be with people I don’t know 0 1 2 
4. I get scared when I sleep away from home 0 1 2 
5. I worry about others not liking me 0 1 2 
6. When frightened, I feel like passing out 0 1 2 
7. I am nervous 0 1 2 
8. I follow my parents wherever they go 0 1 2 
9. People tell me that I look nervous 0 1 2 
10. I feel nervous with people I don’t know well 0 1 2 
11. I don’t like going to school 0 1 2 
12. When frightened, I feel like going crazy 0 1 2 
13. I worry about sleeping alone 0 1 2 
14. I worry about being as good as other kids 0 1 2 
15. When frightened, I feel that things are not real 0 1 2 
16. I have nightmares about my parent 0 1 2 
17. I worry about going to school 0 1 2 
18. When frightened, my heart beats fast 0 1 2 
19. I feel weak and shaky 0 1 2 
20. I have nightmares about bad things happening to me 0 1 2 
21. I worry about things working out for me 0 1 2 
22. I am a worrier 0 1 2 
23. When frightened, I sweat a lot 0 1 2 
24. I get really frightened for no reason 0 1 2 
25. I am afraid to be alone at home 0 1 2 
26. I find it hard to talk with people I don’t know 0 1 2 
27. When frightened, I feel like I am choking 0 1 2 
28. People tell me I worry too much 0 1 2 
29. I don’t like being away from my family 0 1 2 
30. I am afraid of having anxiety attacks 0 1 2 
31. I worry that bad things happen to my parents 0 1 2 
32. I am shy with people I don’t know well 0 1 2 
33. I worry about the future 0 1 2 
34. When frightened, I feel like throwing up 0 1 2 
35. I worry about how well I do things 0 1 2 
36. I am scared to go to school 0 1 2 
37. I worry about things that happened in the past 0 1 2 
38. When frightened, I feel dizzy 0 1 2 
Source: (Birmaher et al., 1997) 

 
 
 


