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ABSTRACT

In this dissertation, problems in stochastic analysis and control are investigated,

which include mathematical finance, online learning, and mean field game. For math-

ematical finance, 1) a martingale optimal transport problem with bounded volatility

is studied, which allows to calibrate not only current observation (option prices)

but also historical data (stock prices); see Chapter II, 2) the embedding problem in

multi-dimension is solved via excursion theory in probability; see Chapter III, 3) size

of most stable subgraphs of random graphs, k-core, is determined by using branching

processes; see Chapter IV. For online learning, 1) an unprecedented solution to the

4-expert problem with finite stopping is provided, via an explicit construction of the

solution to a nonlinear partial differential equation; see Chapter V 2) prediction prob-

lems with a limited adversary are studied using partial differential equation tools; see

Chapter VI and VII. For mean field game, 1) the convergence phenomenon of N + 1-

player Nash equilibrium is studied by the entropy solution to scalar conservative laws;

see Chapter VIII, 2) infinite horizon mean field type control and game are solved via

McKean-Vlasov forward backward stochastic differential equations; see Chapter IX.
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CHAPTER I

Introduction

This thesis is devoted to several problems in stochastic analysis and optimal con-

trol.

Chapter II is based on [34]. It focuses on martingale optimal transport prob-

lems when the martingales are assumed to have bounded quadratic variation. First,

we give a result that characterizes the existence of a probability measure satisfying

some convex transport constraints in addition to having given initial and terminal

marginals. Several applications are provided: martingale measures with volatility

uncertainty, optimal transport with capacity constraints, and Skorokhod embedding

with bounded times. Next, we extend this result to multi-marginal constraints. Fi-

nally, we consider an optimal transport problem with constraints and obtain its Kan-

torovich duality. A corollary of this result is a monotonicity principle which gives a

geometric way of identifying the optimizer.

Chapter III is based on [32]. It investigates an embedding problem of Walsh

Brownian motion. Let (Z, κ) be a Walsh Brownian motion with spinning measure κ.

Suppose µ is a probability measure on Rn. We first provide a necessary and sufficient

condition for µ to be a stopping distribution of (Z, κ). Then if the stopped process is

required to be uniformly integrable, we show that such a stopping time exists if and

only if µ is balanced. Next, under the assumption of being balanced, we identify the

1



minimal stopping times with those τ such that the stopped process Zτ is uniformly

integrable. Finally, we generalize Vallois’ embedding, and prove that it minimizes

the expectation E[Ψ(LZτ )] among all the admissible solutions τ , where Ψ is a strictly

convex function and (LZt )t≥0 is the local time of the Walsh Brownian motion at the

origin.

Chapter IV is based on [23]. We determine the size of k-core in a large class of

dense graph sequences. Let Gn be a sequence of undirected, n-vertex graphs with

edge weights {ani,j}i,j∈[n] that converges to a kernel W : [0, 1]2 → [0,+∞) in the cut

metric. Keeping an edge (i, j) of Gn with probability min{ani,j/n, 1} independently,

we obtain a sequence of random graphs Gn( 1
n
). Denote by Ck(G) the size of k-core

in graph G, by XW the branching process associated with the kernel W , by A the

property of a branching process that the initial particle has at least k children, each of

which has at least k− 1 children, each of which has at least k− 1 children, and so on.

Using branching process and theory of dense graph limits, under mild assumptions

we obtain the size of k-core of random graphs Gn( 1
n
),

Ck

(
Gn

(
1

n

))
= nPXW (A) + op(n).

Our result can also be used to obtain the threshold of appearance of a k-core of order

n. In addition, we obtain a probabilistic result concerning cut-norm and branching

process which might be of independent interest.

Chapter V is based on [26]. We explicitly solve the nonlinear PDE that is the

continuous limit of dynamic programming equation of the expert prediction problem in

finite horizon setting with N = 4 experts. The expert prediction problem is formulated

as a zero sum game between a player and an adversary. By showing that the solution

is C2, we are able to show that the comb strategies, as conjectured in [107], form

an asymptotic Nash equilibrium. We also prove the “Finite vs Geometric regret”

2



conjecture proposed in [106] for N = 4, and show that this conjecture in fact follows

from the conjecture that the comb strategies are optimal for all N .

Chapter VI is based on [30]. We consider a prediction problem with two experts

and a forecaster. We assume that one of the experts is honest and makes correct

prediction with probability µ at each round. The other one is malicious, who knows

true outcomes at each round and makes predictions in order to maximize the loss

of the forecaster. Assuming the forecaster adopts the classical multiplicative weights

algorithm, we find an upper bound (6.5) for the value function of the malicious

expert, and also a lower bound (6.19). Our results imply that the multiplicative

weights algorithm cannot resist the corruption of malicious experts. We also show

that an adaptive multiplicative weights algorithm is asymptotically optimal for the

forecaster, and hence more resistant to the corruption of malicious experts.

Chapter VII is based on [27]. We study the problem of prediction with expert ad-

vice with adversarial corruption where the adversary can at most corrupt one expert.

Using tools from viscosity theory, we characterize the long-time behavior of the value

function of the game between the forecaster and the adversary. We provide lower and

upper bounds for the growth rate of regret without relying on a comparison result.

We show that depending on the description of regret, the limiting behavior of the

game can significantly differ.

Chapter VIII is based on [31]. We analyze an N + 1-player game and the corre-

sponding mean field game with state space {0, 1}. The transition rate of j-th player

is the sum of his control αj plus a minimum jumping rate η. Instead of working

under monotonicity conditions, here we consider an anti-monotone running cost. We

show that the mean field game equation may have multiple solutions if η < 1
2
. We

also prove that that although multiple solutions exist, only the one coming from the

entropy solution is charged (when η = 0), and therefore resolve a conjecture of [109].

Chapter IX is based on [33]. We show existence and uniqueness of solutions of the

3



infinite horizon McKean-Vlasov FBSDEs using two different methods, which lead to

two different sets of assumptions. We use these results to solve the infinite horizon

mean field type control problems and mean field games.

4



CHAPTER II

Transport Plans with Domain Constraints

2.1 Introduction

Martingale optimal transport has been an active research area in the past decade

due to its applications in robust hedging problems in Mathematical Finance. In this

set-up one is only given vanilla option prices at certain maturities, which thanks to

a result by [53] corresponds to fixing the marginals of the martingale measures at

these maturities, and tries to obtain model independent no-arbitrage price bounds.

Mathematically, given two probability measures α, β on Rd and a cost function c

on Rd × Rd, one wants to minimize EP [c(X, Y )] among all joint distributions P on

Rd ×Rd such that P has initial marginal α, terminal marginal β and EP [Y |X] = X.

However, it is not clear whether there exists such a P satisfying both the marginal

and martingale constraints. This question was answered by Strassen [179]: assume α

and β have finite first moments,

∃P s.t. P ◦X−1 = α; P ◦ Y −1 = β; EP [Y |X] = X

⇐⇒ α(f) ≤ β(f), ∀ convex functions f.

For martingale optimal transport and its application in Mathematical Finance, we

refer readers e.g. to [36],[101],[90],[37],[85], and the references therein.
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Another strand of literature considered pricing and hedging problems under volatil-

ity uncertainty (volatility is not known but is assumed to belong to a bounded inter-

val): [9, 147, 153, 152]. This is also related to the notion of G-expectations; see e.g.

[162, 154, 89]. However, in the volatility uncertainty literature, only the underlying

stock price process is assumed to be observable and no liquid option prices are given

as in the martingale optimal transport problem described above.

In this chapter our aim is to combine these two different ideas of model uncer-

tainty and analyze the martingale transport problem with bounded volatility. An-

other motivating factor for us is the fact that without the volatility restriction, the

hedging prices obtained from the martingale optimal transport are all the same for

large classes of European, American, Asian, Bermudan options with similar forms

of payoff functions (as observed in [25] and proved in [113]), which is of course not

financially realistic. On the other hand, there are results indicating that once we have

the bounded volatility restriction, these prices are generally not equal (see e.g., [5]

and [29]), which is more practically viable.

First, we determine when there exists such a martingale measure satisfying the

given volatility constraints and the marginals. Using [179, Theorem 7] together with

a measurable selection argument, we obtain Proposition 2.2.3. Based on this proposi-

tion, we prove a general result Theorem 2.2.2. After giving a financial interpretation of

this theorem (see Remark 2.2.5), we provide several examples: 1) martingale measures

with volatility uncertainty, see subsection 2.2.1; 2) optimal transport with capacity

constraints, see subsection 2.2.2; 3) Skorokhod embedding with bounded times, see

subsection 2.2.3.

Subsequently, we extend Theorem 2.2.2 to the case of finitely many marginals

using a pasting argument; see Theorem 2.3.3. By taking weak limits, we obtain

the corresponding in continuous time when all one-dimensional marginals are given,

which characterizes the existence of peacocks under constraints; see Theorem 2.4.1

6



and Remark 2.4.4. We also provide examples concerning the existence of martingale

measures with volatility uncertainty in the case of finitely many marginals and one-

dimensional marginals; see Example 2.3.2 and Example 2.4.3.

Finally, we consider the optimization problem (2.15), and obtain a duality result.

It is a natural generalization of [105, Theorem 9.5] in our setup. Using the duality

result established, we prove a general monotonicity principle which characterizes the

geometric structure of the optimizer.

The rest of the chapter is organized as follows. In the next section, we establish

the existence result when there are only two marginals given. In Section 3, we obtain

the result when there are finitely many marginals given. In Section 4 we have the

result with all the 1-D marginals in continuous time. In Section 5, we obtain the

Kantorovich duality. Finally, in Section 6, we deduce the monotonicity principle from

the duality result.

2.2 Result with two marginals

We will let Ω be one of the following three spaces:

• XN+1, where X is a polish space, and N ∈ N;

• C[0, 1], the space of continuous functions f : [0, 1] 7→ X, endowed with the

uniform distance metric, where X ⊂ Rd is connected and closed;

• D[0, 1], the space of RCLL functions g : [0, 1] 7→ X, endowed with the Skorokhod

metric, where X ⊂ Rd is connected and closed.

Let T = N if Ω = XN+1 and T = 1 if Ω = C[0, 1], D[0, 1]. For any probability

measure P and random variable Y , EP [Y ] := EP [Y +]− EP [Y −] with the convention

∞−∞ = −∞.

The spaces of probability measures in this chapter are endowed with the relativized

weak* topology (see e.g. [99, Appendix 6], [179, Section 6]) as we describe next.

7



Let G and H be continuous functions on X that are positive and bounded away

from 0. For F = G,H, let

PF := {µ ∈ P(X) : µ(F ) <∞} (simply P if F = 1),

and CF (simply C if F = 1) be the Banach space of continuous functions f on X such

that

sup
x∈X

|f(x)|
F (x)

<∞.

Define J := G⊕H the continuous function on X2,

J(x0, x1) := G⊕H(x0, x1) := G(x0) +H(x1).

Let

PJ := {µ ∈ P(X2) : µ(J) <∞},

and CJ be set of continuous functions f on X2 such that

sup
x∈X2

|f(x)|
J(x)

<∞.

For L = G,H, J , we say a subset of probability measures Λ ⊂ PL is L-closed, if for

any (Pn) ⊂ Λ and P with

EPn [l]→ EP [l], ∀l ∈ CL, (2.1)

we have P ∈ Λ. That is, we will endow spaces of probability measures with the

topology generated by (2.1). When no such L is specified (e.g., we simply say a

probability set is closed or weakly closed), then by default we endow the underlying

space of probabiliy measures with weak topology, i.e., the topology generated by (2.1)

with CL being the set of bounded and continuous functions.

8



Let X be the canonical process on Ω and (Ft)t be the filtration generated by X.

Let Γ : X 7→ 2P(Ω) be such that ∅ 6= Γ(x) ⊂ P(Ωx), where P(Ω) is the set of Borel

probability measures on Ω, and

Ωx := {ω ∈ Ω : ω0 = x}.

Here Γ(x) represents the set of admissible transport plans given X0 = x. We assume

that the graph of Γ,

Gr(Γ) := {(x, P ′) : x ∈ X, P ′ ∈ Γ(x)}

is analytic. Denote

C := {P ∈ P(Ω) : P |X0=ω0 ∈ Γ(ω0), P -a.s. ω}.

Let α ∈ PG and β ∈ PH be two probability measures on X. Let

A := {P ∈ P(Ω) : P ◦X−1
0 = α} and B := {P ∈ P(Ω) : P ◦X−1

T = β}. (2.2)

Remark 2.2.1. Thanks to the analyticity assumption of Gr(Γ), by the Jankov-von

Neumann Theorem (see, e.g., [40, Proposition 7.49]), there exists a universally mea-

surable selector P ′(·) such that P ′(x) ∈ Γ(x) for any x ∈ X. Then P0 ⊗ P ′ ∈ C for

any probability measure P0 on X, where

P0 ⊗ P ′(I) :=

∫
I

P0(dω0)P ′(ω0, dω), I ∈ B(Ω).

In particular, this implies that A ∩ C 6= ∅.

Our aim is to find a necessary and sufficient condition for A ∩ B ∩ C 6= ∅. In

particular, Γ here is treated as a transport constraint from time 0 to time T , which

9



is different from the marginal constraints. Below is the main result of this section.

Theorem 2.2.2. Assume α ∈ PG, β ∈ PH , and

(A ∩ C)0,T := {P ◦ (X0, XT )−1 : P ∈ A ∩ C}

is convex and J-closed. Then

A ∩B ∩ C 6= ∅ ⇐⇒ α(fΓ) ≤ β(f), ∀ f ∈ CH , (2.3)

where β(f) :=
∫
X f β(dx), and fΓ(x) is defined by

fΓ(x) := inf
Q∈Γ(x)

EQ[f(XT )]. (2.4)

We will prove this result at the end of this section. In the case of Ω = X2, we

have Proposition 2.2.3, which will be useful in proving Theorem 2.2.2. The proof

Proposition 2.2.3 essentially follows [179, Theorem 7] together with a measurable

selection argument.

Proposition 2.2.3. Assume Ω = X2, α ∈ PG and β ∈ PH . Moreover let A ∩ C be

convex and J-closed. Then

A ∩B ∩ C 6= ∅ ⇐⇒ α(fΓ) ≤ β(f), ∀ f ∈ CH .

Proof. “=⇒”. Take P ∈ A ∩ B ∩ C. For any f ∈ CH , we have EP |f(X1)| < ∞.

Hence,

β(f) = EP [f(X1)] = EP [EP [f(X1)|X0]] ≥ EP [fΓ(X0)] = α(fΓ).

10



“⇐=”. Using a measurable selection argument, we can show that

α(fΓ) = inf
P∈A∩C

EP [f ], ∀ f ∈ CH . (2.5)

Let

(A ∩ C) ◦X−1
1 := {P ◦X−1

1 : P ∈ A ∩ C}.

Then β is in the H-closure of (A∩C) ◦X−1
1 ∩PH , for otherwise by the Hahn-Banach

theorem (see e.g.[127, Corollary 14.4]) there would exist f ∈ CH such that

β(f) < inf
P∈A∩C

EP [f(X1)] = α(fΓ),

a contradiction.

Let Pn ∈ A ∩ C with βn := Pn ◦X−1
1 such that βn → β in the sense of (2.1). It

can be shown that the sequence (Pn) is relatively J-compact (see [179]). Then there

exists P∞ ∈ PJ such that up to a subsequence Pn → P∞ in the sense of (2.1). As

A∩C is J-closed, P∞ ∈ A∩C. Moreover, Pn ◦X−1
1 = βn → β implies that P∞ ∈ C.

The conclusion follows.

Let us discuss our assumptions in the following remarks. In what follows, we will

give natural examples where these assumptions are satisfied.

Remark 2.2.4. The closedness of A ∩ C cannot imply the closedness of (A ∩ C)0,T .

For instance, let Ω = R3, α = δ0,

Γ(x) = {P ∈ P(Ωx) : P ◦ (X1, X2)−1 = δ(x1,x2), (x1, x2) ∈ S},

where S = {(x1, x2) : x1 > 0, x2 > 0, x1x2 ≥ 1}. Then A ∩ C is weakly closed, but

(A ∩ C)0,2 = {δ0 ⊗ δx : x > 0} is not.

Moreover, in the above theorem the assumption (A ∩ C)0,T being closed cannot
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be replaced by A ∩ C being closed. Consider again the above with β = δ0. Then

obviously A ∩B ∩ C = ∅. However, for any continuous function f ,

α(fΓ) = fΓ(0) = inf
(x1,x2)∈S

f(x2) ≤ f(0) = β(f).

Remark 2.2.5 (Financial interpretation). Suppose Γ contains the martingale con-

straint, i.e.,

Γ(x) ⊂ {Q ∈ P(Ωx) : Q martingale measure}, x ∈ X.

Suppose X represents the stock price, and f is the payoff of an option written on XT .

Assume α = δx.

Then fΓ(x) represents the sub-hedging price of the option f given the current

stock price X0 = x, and β(f) is market price of f (which is consistent with the

vanilla option prices). Then the right-hand-side of (2.3) means that the sub-hedging

price is smaller than the market price. By symmetry, the super-hedging price is larger

than the market price. On the other hand, the left-hand-side of (2.3) means there is

a measure consistent with the constraints. As a result, both sides of (2.3) represent

no arbitrage. For the role martingale optimal transport plays in finance see [36].

The following lemma gives a useful sufficient condition for closedness of (A∩C)0,T .

Lemma 2.2.6. Let G = H = 1, so that the topology generated by (2.1) is the weak

topology in the usual sense. If A ∩ C is weakly compact, then (A ∩ C)0,T is weakly

closed.

Proof. Let Qn ∈ (A ∩ C)0,T such that Qn
w−→ Q for some Q ∈ P(X2). Then there

exists Pn ∈ A ∩ C such that

Pn ◦ (X0, XT )−1 = Qn.

12



Since A ∩ C is weakly compact, there exists some P ∈ A ∩ C such that Pn
w−→ P .

Obviously P ◦ (X0, XT )−1 = Q, and thus Q ∈ (A ∩ C)0,T .

2.2.1 Examples of volatility uncertainty

Our starting point is to consider C as the set of martingale measures with volatility

uncertainty. With some compact constraints on the volatility, we can show A ∩ C

is indeed weakly compact and thus weakly closed (Lemma 2.2.6). Here are some

examples.

Example 2.2.7 (Volatility uncertainty in one period). Let X = Rd and Ω = X2.

Assume α has a finite first moment (i.e., α(|x|) <∞), and let

Γ(x) =
{
Q ∈ P(Ωx) : EQ[XT ] = x, Q{(x, y) : |y − x| ≤ a(x)} = 1

}
, (2.6)

where a(·) is a nonnegative, bounded and continuous function on X. It can be shown

that Gr(Γ) is Borel measurable.

Proposition 2.2.8. In this example, A ∩ C is convex and weakly compact.

Proof. Convexity is obvious. Now for any ε > 0, there exists a compact set K ⊂ X

such that α(K) ≥ 1− ε. Then for any P ∈ A ∩ C,

P (X ∈ Kε) ≥ 1− ε,

where

Kε :=

{
(x, y) : x ∈ K, |y − x| ≤ sup

z∈X
a(z)

}

is a compact set in X2. Therefore, A ∩ C is tight and thus relatively compact by

Prokhorov’s theorem (see e.g. [65, Theorem 3.5.13]).

Assume Pn ∈ A ∩ C such that Pn
w→ P . Then by the Portmanteau Theorem (see
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e.g. [167, Theorem 1.2]),

P ({(x, y) : |y − x| ≤ a(x)}) ≥ lim sup
n→∞

Pn({(x, y) : |y − x| ≤ a(x)}) = 1.

Now, let us show the martingale property under the limiting measure. Let g be any

continuous and bounded function on X. Define the compact subset U ε := {(x, y) ∈

X2 : d((x, y), Kε) ≤ ε}. Let f ε be a continuous function on X2 such that 0 ≤ f ε ≤ 1, f ε

is compactly supported by U ε and f ε|Kε = 1. Since |X1−X0| ≤ supz∈X a(z) <∞ Pn-

a.s. and P -a.s., the function (x, y) 7→ (y − x)g(x)f ε(x, y) is continuous and bounded

for any ε > 0. According to the definition of weak convergence, we have that

EP [(X1 −X0)g(X0)f ε(X0, X1)] = lim
n→∞

EPn [(X1 −X0)g(X0)f ε(X0, X1)] = 0.

As the random variable |(X1 −X0)g(X0)| is bounded P -a.s., we can conclude by the

dominated convergence theorem,

EP [(X1 −X0)g(X0)] = lim
ε→0

EP [(X1 −X0)g(X0)f ε(X0, X1)] = 0.

This implies P is a martingale measure. As a result, P ∈ A ∩ C, and thus A ∩ C is

weakly compact.

With Γ defined in (2.6), it can be shown that for any function f : X 7→ R,

fΓ(x) = C(f |Ō(x,a(x)))(x)

= inf


d∑
i=0

λif(yi) : |yi − x| ≤ a(x), λi ≥ 0, i = 0, . . . , d,
d∑
i=0

λi = 1,
d∑
i=0

λiyi = x

 ,

where C(f |Ō(x,b))(x) is given by the convex envelope of f restricted on Ō(x, b) := {y ∈

X : |y − x| ≤ b} and then evaluating at x.
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Example 2.2.9 (Volatility uncertainty in multiple periods). Let X = Rd and Ω =

XN+1, N ≥ 1. Assume α has a finite first moment, and let

Γ(x) =

Q ∈ P(Ωx) :
Q martingale measure,

Q{|Xn −Xn−1| ≤ an−1(Xn−1)} = 1, n = 1, . . . , N

 ,

where an−1 is a nonnegative, bounded and continuous function on X for n =

1, . . . , N .

Proposition 2.2.10. In this example A ∩ C is convex and weakly compact, and fΓ

can be calculated recursively as follows:

gN = f, gn−1(x) = C(gn|Ō(x,an−1(x)))(x), n = 1, . . . , N, fΓ = g0.

Proof. The proof is similar to Proposition 2.2.8. It only remains to show EP [Xn|Xn−1] =

Xn−1 for n = 2, . . . , N . Let us show that EP [X2|X1] = X1, and the rest can

be proved by induction. Denote by α1 the distribution of X1 under P . Since

|X1 − X0| ≤ max
z∈X

a0(z) < +∞, α1 has finite first moment. Replacing α with α1

in the proof of Proposition 2.2.8, we directly obtain that EP [(X2−X1)g(X1)] = 0 for

any bounded continuous function g, which implies that EP [X2|X1] = X1.

Example 2.2.11 (Volatility uncertainty in continuous time). Let X = Rd and Ω =

C[0, 1]. Assume α has a finite first moment, and let

Γ(x) =

{
Q ∈ P(Ωx) : Q martingale measure,

d〈X〉t
dt

∈ D, dt×Q-a.e.

}
,

where D ⊂ Rd×d is some fixed convex and compact set of matrices. In this case, fΓ

is the G-expectation of f (see [89]).

Proposition 2.2.12. In this example, A ∩ C is convex and weakly compact.
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Proof. First, we show A ∩ C is tight. We have

lim
L→∞

sup
P∈A∩C

P (|X0| > L) = lim
L→∞

α
(
{x : |x| > L}

)
= 0.

Moreover, for any s, t ∈ [0, 1], since D is bounded, by the Burkholder-Davis-Gundy

inequality (see e.g. [124, Theorem 3.3.28]) there exists some constant K independent

of s and t such that

sup
P∈A∩C

EP [|Xt −Xs|4] ≤ sup
P∈A∩C

EP
EP [ sup

s≤r≤t
|Xr −Xs|4

∣∣∣Xs

] ≤ K|t− s|2. (2.7)

By the moment criterion, A ∩ C is tight (see e.g. [124, Problem 2.4.11]).

Next we show A ∩ C is closed. Let P n ∈ A ∩ C such that P n w→ P . Obviously

P ∈ A. Then using almost the same argument as in the proof of [155, Lemma 3.2],

we can show that P ∈ C.

2.2.2 Example of capacity constraint

In [134], Korman and McCann studied the optimal transport problem with ca-

pacity constraints. Suppose f and g are two probability density functions on Rd, c is

a cost function on Rd × Rd, and h̄ ∈ L∞(Rd × Rd) is a capacity constraint. Define

Γh̄(f, g) := {h ∈ L1(Rd × Rd) : h has f, g as its marginals, and h ≤ h̄}. Under the

assumption Γh̄(f, g) 6= ∅, Korman and McCann proved that any optimizer h0 of the

problem,

inf
h∈Γh̄(f,g)

∫
c(x, y)h(x, y)dxdy,

is geometrically extreme, i.e., h0 = 1W h̄ for some measurable set W ⊂ Rd × Rd.

In this subsection, we give one more criterion for weak closedness of (A ∩ C)0,T .

In doing so, we can apply Theorem 2.2.2 and describe when this non-emptiness as-
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sumption Γh̄(f, g) 6= ∅ is satisfied. Actually we can deal with more general capacity

constraints.

Let R : X 7→ P(Ω) be a transition kernel, and

Γ(x) :=

{
Q ∈ P(Ωx) :

Q(dy)

R(x, dy)
≤ a(x, y)

}
,

where a(·, ·) ≥ 0 is a bounded and Borel measurable function. For any Borel measur-

able set A ∈ B(Ω), according to [43, Lemma 4.6], the function Q 7→ EQ[1A] is Borel

measurable. Since the function x 7→
∫

Ω
1Aa(x, y)R(x, dy) is also Borel measurable, so

is the set

LA :=

(x,Q) ∈ X×P(Ω) : EQ[1A] ≤
∫
Ω

1Aa(x, y)R(x, dy)

 .

It can be easily checked that {(x,Q) : Q ∈ P(Ωx)} is closed, and hence the set

LA := LA ∩ {(x,Q) : Q ∈ P(Ωx)}

is Borel measurable. Now let (Ai)
∞
i=1 be a countable algebra generating B(Ω). Then

Gr(Γ) = ∩∞i=1LAi

is Borel measurable, and hence analytic.

Proposition 2.2.13. In this example, A∩C is weakly compact, and thus (A∩C)0,T

is weakly closed.

Proof. By the boundedness of a(·, ·), the subset of P(X× Ω)

Λ := {α×Q : Q is any transition kernel such that Q(·) ∈ Γ(·) α-a.s.}
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is relatively compact. If we can show Λ is weakly compact, then the subset of P(Ω),

A ∩ C = {P̄ ◦ π−1
2 : P̄ ∈ Λ and π2(x, y) := y, ∀ (x, y) ∈ X× Ω},

is also weakly compact. Take α×Qn ∈ Λ such that α×Qn
w−→ P̄ ∗. By the definition

of Γ(x), there exist Borel measurable functions bn with 0 ≤ bn(·, ·) ≤ a(·, ·) such that

for (x, y) ∈ X× Ω,

bn(x, y)R(x, dy) = Qn(x, y).

Consider L2(X×Ω) over the probability space (X×Ω, α×R). Since L2 is reflex-

ive, the weak* topology and weak topology coincide. Now because bn is uniformly

bounded, by Banach-Alaoglu theorem (see e.g. [127, Theorem17.4]), there exists a

Borel measurable function b∗ on X × Ω such that bn
w−→ b∗, i.e., for any measurable

function f on X× Ω with Eα×R|f |2 <∞,

Eα×R[fbn]→ Eα×R[fb∗]. (2.8)

In particular, the above holds for bounded and continuous functions f , which implies

that

α× bnR = α×Qn
w−→ α× b∗R.

So we conclude α× b∗R = P̄ ∗.

Note that for any bounded, nonnegative, and measurable function f ,

Eα×R[fbn] ≤ Eα×R[fa].

By (2.8),

Eα×R[fb∗] ≤ Eα×R[fa].

This implies that b∗ ≤ a, α×R-a.s., and thus P̄ ∗ = α× b∗R ∈ Λ.

18



2.2.3 Application to Skorokhod embedding with bounded times

Theorem 2.2.2 and Example 2.2.11 provide a necessary and sufficient condition

for the existence of a Skorokhod embedding in bounded time. We will rely on a time

change argument to make a connection to Skorohod embedding; see e.g. Hobson

[115]. To wit, let Ω = C[0, 1] with X = R. Let α, β ∈ P(X) with finite first moments

and σ > 0 be a constant. For u, r > 0, define

Qu,r :=

{
Q ∈ P(Ω̄) : Q martingale measure,

d〈X̄〉t
dt

≤ u, 0 ≤ t ≤ r, dt×Q-a.e.

}
,

where Ω̄ := C0[0,∞) is the set of continuous paths [0,∞)→ X starting from position

0, and X̄ is the canonical process on Ω. For any function f ∈ C and u, r > 0, define

fu,r(x) := inf
Q∈Qu,r

EQ[f(x+ X̄r)].

We have the following.

Proposition 2.2.14. For Brownian motion B with initial distribution B0
d
= α, there

exists a stopping time τ such that

τ ≤ σ and Bτ
d
= β,

if and only if for any f ∈ C,

α(fσ,1) ≤ β(f).

Proof. “=⇒”. For f ∈ C, we have that

β(f) = EW [f(Bτ )] = EW [EW [f(Bτ )|B0]] ≥ α(f 1,σ) = α(fσ,1),

where W is the probability measure associated with the Brownian motion, and the
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third (in)equality follows from d〈X̄·∧τ 〉t
dt

= 0 for t > τ , and the fourth (in)equality

follows from a change of the time scale.

“⇐=”. Take d = 1,D = [0, σ] in Example 2.2.11, and

Γ(x) :=

{
Q ∈ P(Ω̄x) : Q martingale measure,

d〈X̄〉t
dt

≤ σ, 0 ≤ t ≤ 1, dt×Q-a.e.

}
,

where Ω̄x is the set of continuous paths starting from position x. Then we have

fΓ(x) = fσ,1(x). Applying Theorem 2.2.2 and Example 2.2.11, there exists Q ∈ Qσ,1

such that

Q ◦X−1
0 = α and Q ◦X−1

1 = β.

By the Dambis-Dubins-Schwarz theorem (see e.g. [124, Theorem 3.4.6], we can extend

X and Q to the time interval [0,∞) so that the condition of the theorem is satisfied),

Bs := XT(s) is a Brownian motion w.r.t. the filtration Gs := FT(s), having the initial

distribution B0
d
= α, and Xt = B〈X〉t , where F t is given by ∩ε>0Ft+ε completed by

Q, and

Ts := inf{t ≥ 0 : 〈X〉t > s}.

In particular,

X1 = B〈X〉1
d
= β and τ := 〈X〉1 ≤ σ.

2.2.4 Proof of Theorem 2.2.2

Proof. “=⇒”. The argument is similar to the one for Proposition 2.2.3.

“⇐=”. Let

Γ0,T (x) := {P ◦ (X0, XT )−1 : P ∈ Γ(x)}.
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Then

fΓ(x) = inf
Q∈Γ0,T (x)

EQ[f(Y1)],

where Y = (Y0, Y1) := (X0, XT ) is the canonical process on X2 (starting from position

x). By Proposition 2.2.3, there exists P ∗ ∈ P(X2) such that

P ∗ ◦ Y −1
0 = α, P ∗ ◦ Y −1

1 = β, P ∗|Y0 ∈ Γ0,T (Y0), P ∗-a.s..

Let

P ∗ = α⊗Q∗,

be the disintegration of P ∗, where Q∗(·) is Borel measurable. By restricting to a

Borel set L ∈ σ(Y0) = B(X) with P ∗ ◦ Y −1
0 (L) = 1, we may without loss of generality

assume that Q∗(x) ∈ Γ(x) for all x ∈ X. Then the set

I1 := {(x, P,Q) : x ∈ X, P ∈ P(Ω), Q = Q∗(x)}

is Borel measurable. Moreover, since Gr(Γ) is analytic, the set

I2 := {(x, P,Q) : x ∈ X, P ∈ Γ(x), Q = P ◦X−1
T }

is also analytic. Then the set

I1 ∩ I2 = {(x, P,Q) : x ∈ X, P ∈ Γ(x), P ◦X−1
T = Q = Q∗(x)}

is analytic. By the Jankov-von Neumann Theorem (see e.g., [40, Proposition 7.49]),

there exists a univerally measurable selector (P ′, Q′) : X 7→ P(Ω)×P(X) such that

P ′ ∈ Γ(x), (P ′(x)) ◦X−1
T = Q′(x) = Q∗(x).

21



Define

P̄ = α⊗ P ′.

It can be seen that P̄ ∈ A ∩B ∩ C.

Remark 2.2.15 (Extension to moment constraints). Let A ⊂ PG(X) be convex

and G-compact, B ⊂ PH(X) be convex and H-closed. Define

A := {P ∈ P(Ω) : P ◦X−1
0 ∈ A} and B := {P ∈ P(Ω) : P ◦X−1

T ∈ B}.

Using almost the same argument as above, we have the following. Assume (A∩C)0,T

is convex and J-closed. Then

A ∩ B ∩ C 6= ∅ ⇐⇒ inf
α∈A

α(fΓ) ≤ sup
β∈B

β(f), ∀ f ∈ CH .

2.3 Result for multiple marginals

We still use the three cases of Ω from the last section. Assume 0 = t0 < t1 <

. . . < tn = T such that for i = 1, . . . , n − 1, ti ∈ {1, . . . , N − 1} if Ω = XN+1, and

ti ∈ [0, 1] if Ω = C[0, 1] or D[0, 1]. For i = 0, . . . , n−1, let Ωi = Xti+1−ti+1, C[0, ti+1−

ti], D[0, ti+1−ti], and Ωi = XN−ti+1, C[0, 1−ti], D[0, 1−ti], if Ω = XN+1, C[0, 1], D[0, 1]

respectively. Let Ωx
i ⊂ Ωi(·) be the space of the paths starting from x ∈ X. Denote

X[0,t] the path from time 0 to time t.

Let Γi : X 7→ 2P(Ωi) such that ∅ 6= Γi(x) ⊂ P(Ωx
i ) for any x ∈ X, and assume

Gr(Γi) is analytic, i = 0, . . . , n− 1. Define P ti,ω to be the conditional probability of

P given ω up to time ti, i.e., for any Borel measurable function f on Ω,

EP ti,ω [f(ω ⊗ti ·)] = EP [f |Ft](ω), P -a.s. ω,
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where for ω′ ∈ Ωi such that ω′0 = ωti ,

(ω ⊗ti ω′)s =


ωs, s < ti,

ω′s−ti , s ≥ ti.

Let

Ci := {P ∈ P(Ωi) : P |X0=ω0 ∈ Γi(ω0), P -a.s. ω}, (2.9)

and

Ci :=
{
P ∈ P(Ω) : P ti,ω, ◦X−1

[0,ti+1−ti] ∈ Γi(ωti), P -a.s. ω
}
, (2.10)

where P ti,ω, ◦X−1
[0,ti+1−ti] represents the marginal probability distribution of P ti,ω from

time 0 to time ti+1 − ti.

Remark 2.3.1. Here Γi represents the restriction of probability measures from time ti

to time ti+1. Note that the restriction only depends on the current location instead

of the whole history (i.e., path). This property is critical for the construction of

probability measures with multiple marginals later on. Also note that it does not

imply the underlying probability measure is Markovian.

Example 2.3.2. Assume Ω = C[0, 1] with X = Rd. Let P ∈ P(Ω) be a martingale

measure such that

d〈X〉t
dt

∈ D, dt× P -a.e., (2.11)

where D ⊂ Rd×d is some bounded set of matrices. Then this martingale and volatility

uncertainty restriction satisfies the property mentioned above. To be more specific,

let

Γi(x) :=

{
Q ∈ P(Ωx

i ) : Q martingale measure,
d〈X〉t
dt

∈ D, dt×Q-a.e.

}
.

Then P satisfies (2.11) if and only if P ∈ ∩n−1
i=0 Ci.
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Let αi ∈ P(X), and

Ai := {P ∈ P(Ωi) : P ◦X−1
0 = αi} and

Ai := {P ∈ P(Ω) : P ◦X−1
ti

= αi}, i = 0, . . . , n.

Recall fΓ defined in (2.4). The following is the main result of this section.

Theorem 2.3.3. Let G = H. Assume αi ∈ PH and (Ai ∩ Ci)0,ti+1−ti is convex and

J-closed for i = 0, . . . , n. Then

n⋂
i=0

Ai ∩
n−1⋂
j=0

Cj 6= ∅ ⇐⇒ αi(f
Γi) ≤ αi+1(f), ∀ f ∈ CH , i = 0, . . . , n− 1.

Proof. “=⇒ ”. Take P ∈ (
⋂n
i=0Ai) ∩ (

⋂n−1
j=0 Cj). For i = 0, . . . , n− 1,

αi+1(f) = EP [f(Xti+1
)] = EP [EP [f(Xti+1

)|Fti ]] ≥ EP [fΓi(Xti)] = αi(f
Γi),

where the inequality follows from the definition in (2.4), and the fact that the con-

ditional probability associated with EP [·|Fti ](ω) is an element of Γi(ωti) for P -a.s. ω

(see (2.9) and (2.10)).

“⇐=”. By Theorem 2.2.2 there exists a probability measure Pi ∈ Ai ∩Bi ∩Ci on

Ωi for i = 0, . . . , n− 1, where

Bi := {P ∈ P(Ωi) : P ◦X−1
ti+1−ti = αi+1}.

Let P := P0 ⊗ . . .⊗ Pn−1. That is,

P (I) :=

∫
I

P0(dω[t0,t1])P1(ωt1 , dω[t1,t2]) . . . Pn−1(ωtn−1 , dω[tn−1,tn]), I ∈ B(Ω).

where for x ∈ X,

Pi(x, ·) := Pi|ω0=x (2.12)
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is the conditional probability of Pi given ω0 = x. It can be shown that P indeed is a

probability measure on Ω. Moreover, P ti,ω ◦X−1
[0,ti+1−ti] = Pi(ωti , ·) ∈ Γi(ωti) for P -a.s.

ω, and thus P ∈ Ci for i = 0, . . . , n− 1.

It remains to show that

P ◦X−1
ti

= αi, i = 0, . . . , n. (2.13)

We prove the above by induction. Obviously (2.13) holds for i = 0. Assume it holds

for i = k with 0 ≤ k ≤ n− 1, and consider the case when i = k+ 1. For any bounded

and measurable function f on X, we have that

EP [f(Xtk+1
)] = EP [EP [f(Xtk+1

)|Xtk ]]

=

∫
X

αk(dx)

∫
Ωxk

f(ωtk+1−tk)Pk(x, dω)

=

∫
Ωk

f(ωtk+1−tk)αk(dx)Pk(x, dω)

= EPk [f(Xtk+1−tk)]

= αk+1(f),

where the second equality follows from the induction hypothesis P ◦ X−1
tk

= αk and

(2.12), the fourth equality follows from Pk ∈ Ak, and the fifth from Pk ∈ Bk.

2.4 Result with all the 1-D marginals in continuous time

In this section, we consider two cases Ω = C[0, 1] or D[0, 1]. For t ∈ [0, 1], let

Ωt = C[0, t], D[0, t] when Ω = C[0, 1], D[0, 1] respectively, Ωx
t ⊂ Ωt be the set of paths

starting from position x ∈ X. We are given a class of maps Γ[s,t] : X 7→ 2P(Ωt−s) for

0 ≤ s < t ≤ 1. Each Γ[s,t] will represent the restriction of probability measures to

the time interval [s, t]. In particular, this restriction is Markovian in the sense that
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Γ[s,t](·) only depends on the current value ωs ∈ X instead of the whole history ω[0,s].

Again we assume that for any 0 ≤ s < t ≤ 1, ∅ 6= Γ[s,t](x) ⊂ P(Ωx
t−s) for x ∈ X, and

Gr(Γ[s,t]) is analytic.

For 0 ≤ s < t ≤ 1, let

C[s,t] := {P ∈ P(Ω) : P s,ω ◦X−1
[s,t] ∈ Γ[s,t](ωs), P -a.s. ω}.

We assume {Γ[s,t]}0≤s<t≤1 is such that the following consistency property holds:

C[s,t] ∩ C[s′,t′] = C[s∧s′,t∨t′], if [s, t] ∩ [s′, t′] 6= ∅. (2.14)

Let (αt)t∈[0,1] ⊂ P(X). We will consider probability measures on Ω with marginals

(αt)t∈[0,1]. We assume the map t 7→ αt is continuous if Ω = C[0, 1], and is right

continuous if Ω = D[0, 1] (otherwise (αt)t∈[0,1] cannot be the marginals of any P ∈

P(Ω)). Define

At := {P ∈ P(Ω) : P ◦X−1
t = αt}, t ∈ [0, 1].

Below is the main result of this section.

Theorem 2.4.1. Assume As ∩C[s,t] is weakly compact for any 0 ≤ s < t ≤ T . Then

⋂
0≤r≤1

Ar ∩
⋂

0≤s<t≤1

C[s,t] 6= ∅ ⇐⇒ αs(f
Γ[s,t]) ≤ αt(f), ∀ f ∈ C, 0 ≤ s < t ≤ 1.

Proof. “=⇒” follows from the same argument used in the proof of Proposition 2.2.3.

“⇐=” By Theorem 2.3.3, there exists P n ∈ Λn, where

Λn :=
2n⋂
i=0

Ai/2n ∩
2n−1⋂
j=0

C[j/2n,(j+1)/2n].

According to our assumption As ∩ C[s,t] is weakly compact for any 0 ≤ s < t ≤ T ,
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it is easy to show that Λn is weakly compact for any n ∈ N. By the consistency

assumption (2.14), it follows that

2n−1⋂
j=0

C[j/2n,(j+1)/2n] = C[0,1],

and hence

Λn+1 =
2n+1⋂
i=0

Ai/2n+1 ∩ C[0,1] ⊂
2n⋂
i=0

Ai/2n ∩ C[0,1] = Λn.

Therefore, Pm ∈ Λn for any m ≥ n. In particular, Pm ∈ Λ1 with Λ1 weakly compact.

Then there exists P ∈ P(Ω) such that

Pm w→ P.

It can be seen that P ∈ Λn for any n ∈ N.

The proof of P ∈
⋂

0≤r≤1Ar ∩
⋂

0≤s<t≤1C[s,t] goes as follows. By (2.14), P ∈

C[0,1] ⊂ C[s,t] for any 0 ≤ s < t ≤ 1. If t ∈ T , where

T := {k/2n : k = 0, . . . , 2n, n ∈ N},

then P ◦X−1
t = αt, since Pn ◦X−1

t = αt for n large enough. In general, for t ∈ [0, 1],

let tk ∈ T such that tk ↘ t. Since X is right continuous,

αtk = P ◦X−1
tk

w→ P ◦X−1
t .

As t 7→ αt is right continuous, we have P ◦X−1
t = αt.

Remark 2.4.2. The result still holds and the proof still goes through with minor

adjustments, if we weaken/replace the assumption by: (1) there exists T ⊂ [0, 1]

that is dense in [0, 1], such that (As ∩C[s,t]) ◦ (Xs, Xt)
−1 is convex and closed for any

s, t ∈ T with s < t; (2) As ∩ C[s,t] is weakly compact for any s, t ∈ T with s < t; (3)
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the consistency assumption (2.14).

Example 2.4.3 (Martingale measures with volatility uncertainty). Let Ω = C[0, 1]

with X = Rd. Assume αt has a finite first moment for any t ∈ [0, 1]. Let

Λ :=

P ∈ P(Ω) :
P ◦X−1

t = αt, t ∈ [0, 1], P martingale measure,

d〈X〉t
dt

∈ D, dt× P -a.e.

 ,

where D ⊂ Rd×d is a convex and compact set of matrices.

Then it can be seen that

Λ =
⋂

0≤r≤1

Ar ∩
⋂

0≤s<t≤1

C[s,t],

with Γ[s,t] defined by

Γt−s := Γ[s,t](x)

:=

{
Q ∈ P(Ωx

t−s) : Q martingale measure,
d〈X〉r
dr

∈ D, dr ×Q-a.e.

}
.

Moreover, with Γ defined above, the consistency condition (2.14) is obviously satisfied,

and As∩C[s,t] is weakly compact for any 0 ≤ s < t ≤ T . Therefore, by Theorem 2.4.1,

Λ 6= ∅ ⇐⇒ αs(f
Γt−s) ≤ αt(f), ∀ f ∈ C, 0 ≤ s < t ≤ 1.

Again,

fΓr(x) = inf
Q∈Γr(x)

EQ[f(XT )]

is the G-expectation of f (see [89]).

Remark 2.4.4. When X = Rd, the existence of a martingale measure without volatility

constraint with given marginals (µt)t is characterized by Kellerer in [126], Hirsch

and Roynette in [114]. For any stochastic process X, denote by FX the filtration
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FX(t) := σ(Xs, s ≤ t). Then

∃ martingale X w.r.t. FX s.t. Xt
d
= µt

⇐⇒ t 7→ µt(f) is increasing, ∀ convex functions f.

In particular for d = 1, Kellerer showed that the martingale can be Markov.

2.5 Kantorovich duality

In this section, we will provide the Kantorovich duality with our domain constraint

as in section 2. Our proof idea is similar to [105, Theorem 9.5] where it proved an

unconstrained result. Here we use the usual weak topology, but the results can be

easily generalized to relativized case.

Consider the optimization problem

T Γ
c (α, β) = inf

π∈ΠΓ(α,β)

∫
X

c(x, π|X0=x)α(dx), (2.15)

where

ΠΓ(α, β) := {π ∈ P(Ω) : π ◦X−1
0 = α, π ◦X−1

T = β, π|X0=x ∈ Γ(x) π-a.s.}

is the set of probability measures with marginals α, β and domain constraint Γ. We

make the following assumption.

Assumption 2.5.1. (i) The cost function c : X×P(Ω)→ [0,∞] is

lower-semicontinuous with respect to product topology.

(ii) The function Q 7→ c(x,Q) is convex for all x ∈ X.
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Example 2.5.2. If c is given by

c(x,Q) =

∫
y∈X

C(x, y) Q ◦X−1
T (dy), (2.16)

where C : X× X→ [0,∞] is continuous. Then

T Γ
c (α, β) = inf

π∈ΠΓ(α,β)

∫
C(x, y) π(dx, dy). (2.17)

In this case, c is linear with respect to Q and Assumption 2.5.1 is satisfied.

Remark 2.5.3. By a slight modification of [13, Proposition 2.8], it can be seen that

the function

π 7→ Ic[π] :=

∫
c(x, π|X0=x)α(dx)

is lower-semicontinuous under Assumption 2.5.1.

Remark 2.5.4. Assume Ω = X2 and A∩C is weakly closed. Proposition 2.2.3 provides

a necessary and sufficient condition for the non-emptiness of the weakly compact set

A ∩B ∩ C. Then under Assumption 2.5.1, the infimum in (2.15) is attained.

We use Φ (resp. Φb(X)) to denote the set of continuous (resp. continuous and

bounded from below) functions φ : X→ R satisfying the linear growth condition

|φ(x)| ≤ a+ b d(x, x0),∀x ∈ X,

for some a, b ≥ 0 and some (and hence all) x0 ∈ X. Below is the Kantorovich duality

with the domain constraint.

Theorem 2.5.5. Assume Ω = X2, A ∩ C is convex and weakly closed, and let As-

sumption 2.5.1 hold. Then

T Γ
c (α, β) = sup

φ∈Φb(X)

{∫
RΓ
c φ(x)α(dx)−

∫
φ(y)β(dy)

}
, (2.18)
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where

RΓ
c φ(x) := inf

Q∈Γ(x)
{EQ[φ(XT )] + c(x,Q)}, x ∈ X, φ ∈ Φb(X).

Proof. We will apply Fenchel-Moreau theorem (see e.g. [52, Theorem 4.2.1]). For the

rest of the proof, let M(X) be the space of all Borel signed measures with finite first

moments. We equip it with weak topology.

Consider F : M(X) 7→ [0,∞] defined by

F (m) = T Γ
c (α,m) = inf

π∈ΠΓ(α,m)

∫
X

c(x, π|X0=x)α(dx),

with the convention inf ∅ = +∞. As A∩C is convex and weakly closed, first we show

that the set

Im := {P ◦X−1
T : P ∈ A ∩ C}

is also convex and weakly closed. Take any convergent sequence {mn}n∈N ⊂ Im,

with {πn}n∈N ⊂ A ∩ C such that πn ◦ X−1
T = mn. For any ε > 0, since {mn}n∈N is

relatively compact, we could find a compact set Kε ⊂ X such that mn(Kε) ≥ 1 − ε

for each n. Let Lε ⊂ X be a compact set such that α(Lε) ≥ 1 − ε. We get that

πn(Lε×Kε) ≥ 1− 2ε for each n and therefore conclude {πn}n∈N is relatively compact

by Prokhorov’s Theorem. By the closedness of A ∩ C, the limit π of the sequence

{πn}n∈N (up to a subsequence) is in A ∩ C. It is clear that {mn}n∈N converges to

π ◦X−1
T ∈ Im and we conclude.

Next, we show that F is convex. Take m0,m1 ∈ P(X). If either one of F (m0)

and F (m1) is positive infinity, then we trivially have

F (tm0 + (1− t)m1) ≤ tF (m0) + (1− t)F (m1), ∀ t ∈ (0, 1).

Thus we assumem0,m1 ∈ Im without loss of generality. Take πi ∈ ΠΓ(α,mi), i = 0, 1.
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Since the cost function c is convex in its second argument, it holds that

F (tm0 + (1− t)m1) ≤
∫
c(x, tπ0|X0=x + (1− t)π1|X0=x)α(dx)

≤ t

∫
c(x, π0|X0=x)α(dx) + (1− t)

∫
c(x, π1|X0=x)α(dx).

Optimizing over π0, π1, we get that

F (tm0 + (1− t)m1) ≤ tF (m0) + (1− t)F (m1), ∀t ∈ (0, 1),

which implies the convexity of F .

Then we prove that F is lower semicontinuous. Let {mn}n∈N converges to m in

the weak topology. If m /∈ Im, then by the closedness of Im, we have that mn /∈ Im

for n large enough. This implies that

lim inf
n→∞

F (mn) = +∞ = F (m).

Now consider the case m ∈ Im. Without loss of generality, we assume the limit

limn→∞ F (mn) exists and is finite. Let πn ∈ ΠΓ(α,mn) ⊂ A ∩ C such that

∫
c(x, πn|X0=x)α(dx) ≤ F (mn) +

1

n
.

By the same argument as in the second paragraph, we know {πn}n∈N is relatively

compact. Extracting a subsequence, we can assume {πn}n∈N converges to π without

loss of generality. It is easily seen that π ∈ ΠΓ(α,m). By Assumption 2.5.1,

F (m) ≤ Ic[π] ≤ lim inf
n→∞

Ic[πn] = lim
n→∞

F (mn).

Notice that M∗(X) can be identified with Φ(X)(see e.g. [105, Lemma 9.8]), i.e.,
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for any l ∈M∗(X), there is one corresponding φ ∈ Φ(X) such that

l(m) =

∫
X

φ(x)m(dx), ∀m ∈M(X).

Therefore Fenchel-Legendre transform F ∗(l) := sup
m∈M
{l(m) − F (m)} is equivalent to

F ∗(φ) = sup
m∈M
{
∫
φdm− F (m)}. Applying Fenchel-Moreau theorem, we get that

F (m) = sup
φ∈Φ(X)

{∫
φ dm− F ∗(φ)

}
= sup

φ∈Φ(X)

{∫
−φ dm− F ∗(−φ)

}
.

Replacing φ by φ ∨ k and letting k → −∞, we can restrict the last supremum to

Φb(X).

To conclude the proof, we show that

F ∗(−φ) = −
∫
RΓ
c φ(x)α(dx), ∀φ ∈ Φb(X).

Since F is positive infinity outside Im, we have that

F ∗(−φ) = sup
m∈Im

{∫
−φ dm− F (m)

}
= sup

m∈Im
sup

π∈ΠΓ(α,m)

{∫
−φ dm− Ic[π]

}
= − inf

π∈A∩C

{∫
[Eπ|X0=x [φ(XT )] + c(x, π|X0=x)] α(dx)

}
≤
∫ (
− inf

Q∈Γ(x)
{[EQ[φ(XT )] + c(x,Q)]}

)
α(dx)

= −
∫
RΓ
c φ(x)α(dx).

On the other hand, for any ε > 0, by [40, Proposition 7.50] there exists a universally

measurable probability kernel P ε : X×P(Ω)→ R such that

EP ε(x,·)[φ(XT )] + c(x, P ε(x, ·)) ≤ RΓ
c φ(x) + ε.
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Therefore,

F ∗(−φ) ≥ −
∫

[EP ε(x,·)[φ(XT )] + c(x, P ε(x, ·))]α(dx) ≥ −
∫
RΓ
c φ(x)α(dx)− ε.

Taking ε→ 0, we conclude the result.

Remark 2.5.6. For Ω 6= X2, weak closedness of A ∩ C cannot imply closedness of Im

(see Remark 2.2.4). But if we assume A ∩ C is convex and weakly compact, and let

Assumption 2.5.1 hold, we still have (2.18) by using the same argument as above.

Corollary 2.5.7. Let Ω = X2. Assume A ∩ C is convex and weakly closed, and c is

given by (2.16). Then

T Γ
c (α, β) = sup

(f,g)∈FΓ(α,β)

{∫
f(x) α(dx) +

∫
g(y) β(dy)

}
,

where

FΓ(α, β) =

(f, g) :
− g ∈ Φb(X);

f(x) +

∫
g(y) p(dy) ≤

∫
C(x, y) p(dy), ∀x ∈ X, p ∈ Γ(x)


In particular, if we take Γ(x) = P(X), ∀x ∈ X, then it is easy to see that (f, g) ∈

FΓ(α, β) iff f(x) + g(y) ≤ C(x, y), ∀(x, y) ∈ X × X. In this case, we recover the

classical duality result (see e.g. [174, Theorem 1.42]).

2.6 Monotonicity principle

In this section, we provide a monotonicity principle and an application. We again

use the usual weak topology. The monotonicity principle is as follows.

Theorem 2.6.1. Let Assumption 2.5.1 hold. Assume A ∩ C is convex and weakly

compact (or convex and weakly closed when Ω = X2), and T Γ
c (α, β) defined in (2.15)
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is finite. Let π∗ be an optimizer of T Γ
c (α, β). Then there exists a Borel set Λ ⊂ X

with α(Λ) = 1, such that if x, x′ ∈ Λ, mx ∈ Γ(x),mx′ ∈ Γ(x′), and

mx +mx′ = π∗|X0=x + π∗|X0=x′ , (2.19)

then

c(x, π∗|X0=x) + c(x′, π∗|X0=x′) ≤ c(x,mx) + c(x,mx′). (2.20)

Proof. Take an optimizing sequence {φn}n ∈ Φb(X) for the right-hand-side of (2.18).

Note that ∫
φn(y)β(dy) =

∫
x∈X

Eπ∗|X0=x [φn(XT )] α(dx).

We define

fn(x) := RΓ
c φn(x)− Eπ∗|X0=x [φn(XT )]

= inf
Q∈Γ(x)

{EQ[φn(XT )] + c(x,Q)− Eπ∗|X0=x [φn(XT )]}.
(2.21)

Then it is clear that

∫
c(x, π∗x)α(dx) = lim

n→∞

∫
fn(x)α(dx).

Since π∗|X0=x ∈ Γ(x) α- a.e, we have that fn(x) ≤ c(x, π∗|X0=x) by taking p = π∗|X0=x

on the right hand side of equation (2.21). Because

lim
n→∞

(∫
c(x, π∗|X0=x)− fn(x)

)
α(dx) = 0

and c(x, π∗|X0=x)− fn(x) ≥ 0, we can find a Borel set Λ ⊂ X and a subsequence fn(k)

such that α(Λ) = 1 and

lim
k→∞

fnk(x) = c(x, π∗|X0=x) on Λ.
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It remains to show that Λ has the monotonicity property. Let x, x′ ∈ Λ and

mx ∈ Γ(x),mx′ ∈ Γ(x′) satisfy (2.19). By (2.21),

fn(x) + fn(x′) ≤ Emx [φn(XT )] + c(x,mx)− Eπ∗|X0=x [φn(XT )]

+ Emx′ [φn(XT )] + c(x′,mx′)− Eπ
∗|X0=x′ [φn(XT )]

= c(x,mx) + c(x′,mx′).

Then (2.20) follows by sending n→∞

Remark 2.6.2. If we take Ω = X2 and Γ(x) = P(Ωx), ∀x ∈ X, then our result

recovers [12, Proposition 4.1]. While we use Kantorovich duality in the proof, [12]

uses a measurable selection argument.

2.6.1 Left-monotonicity when Ω = R2

In this part, we provide an application of Theorem 2.6.1. It can be thought of as

an extension of [37, Theorem 6.1].

Let Ω = R2. Then Ωx = {x} × R can be identified with R, and {P |X0=x}x∈R is

the disintegration {Px}x∈R. Let

Γ(x) =

{
Q ∈ P(R) : Q{y : |y − x| ≤ a(x)} = 1,

∫
y Q(dy) = x

}
, (2.22)

where a(·) is a nonnegative, bounded and continuous function on R.

Definition 2.6.3. A subset ∆ ⊂ R2 is called Γ-left monotone, if for every triple

(x, y−), (x, y+), (x′, y′) ∈ ∆ we cannot have the situation

x < x′, y− < y′ < y+, |y′ − x| ≤ a(x), |y− − x′| ≤ a(x′), |y+ − x′| ≤ a(x′). (2.23)

And a transport plan π ∈ P(R2) is said to be Γ-left monotone if it concentrates on a

Γ-left monotone set.
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Proposition 2.6.4. Assume the cost function c is given by

c(x,Q) =

∫
y∈R

h(y − x)Q(dy),

where h is a differentiable function on R with h′ strictly convex. Then any minimizer

of the problem (2.15) is Γ-left monotone.

Proof. By Proposition 2.2.8, A ∩ C is convex and weakly compact. Let π∗ be a

minimizer of (2.15). Let Λ be given in Theorem 2.6.1, and

∆ = ∪x∈Λ{(x, y) : y ∈ supp(π∗x)}.

It is clear that π∗(∆) = 1. Suppose there exists a triple (x, y−), (x, y+), (x′, y′) ∈ ∆

violates Γ-left monotonicity. We strive for a contradiction.

Because

y− < y′ < y+, {y−, y+} ⊂ supp(π∗x), y′ ∈ supp(π∗x′),

we can construct two measures µ, ν together with real numbers l, r satisfying the

following property:

{y−, y+} ⊂ supp(µ) ⊂ {y : |y − x′| ≤ a(x′)}, µ ≤ π∗x;

y′ ∈ supp(ν) ⊂ {y : |y − x| ≤ a(x)}, ν ≤ π∗x′ ;

µ and ν have the same barycenter and the same mass; (2.24)

µ is concentrated on R \ (l, r) while ν is concentrated on [l, r]. (2.25)

Let

mx := π∗x − µ+ ν and mx′ := π∗x′ + µ− ν.
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It is clear that mx + mx′ = π∗x + π∗x′ and mx ∈ Γ(x),mx′ ∈ Γx′ . Thanks to (2.24),

(2.25) and the strict convexity of h′, we can apply [37, Example 2.4] and get that

∫
h′(y − x) µ(dy) >

∫
h′(y − x) ν(dy).

Now we have

∫
h(y − x) π∗x(dy) +

∫
h(y − x′) π∗x′(dy)−

∫
h(y − x) mx(dy)−

∫
h(y − x′) mx′(dy)

=

∫
h(y − x) (µ− ν)(dy)−

∫
h(y − x′) (µ− ν)(dy)

=

x′∫
x

dz

∫
y∈R

h′(y − z)(µ− ν)(dy) > 0,

which contradicts (2.20).

Here is an example such that Γ-left monotone transport plans may not be left

monotone.

Example 2.6.5. Take α = 1
2
(δ0 + δ5), β = 1

4
(δ−2 + δ0 + δ2 + δ10), and

Γ(x) =

{
Q ∈ P(R) : Q{y : |y − x| ≤ 6} = 1,

∫
y Q(dy) = x

}
.

It can be easily checked that 1
4
(δ(0,−2) + δ(0,2) + δ(5,0) + δ(5,10)) is the unique Γ-left

monotone transport plan, while 1
8
(2δ(0,0) + δ(0,−2) + δ(0,2) + δ(5,−2) + δ(5,2) + 2δ(5,10)) is

the left-curtain coupling (i.e. the unique left monotone transport plan; see [37]).

Next, we will prove that the minimizer of the problem (2.15) is unique if the initial

distribution α concentrates on two points.

Proposition 2.6.6. Under the assumption of Proposition 2.6.4, if the initial dis-

tribution α concentrates on two points, then there exists at most one optimizer of

problem (2.15).
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Proof. Without loss of generality, we assume that α = pδ0 + (1 − p)δ1, where p ∈

(0, 1). Assuming that there are two optimizers π and π̃, we prove the proposition by

contradiction. Take

A0 := [−a(0), a(0)], A1 := [1− a(1), 1 + a(1)],

where a(.) defines the constraint in (2.22). Define

β0 = β|supp(β)\A1 , β1 = β|supp(β)\A0 , β̃ = β|A0∩A1 = β − β0 − β1.

Note that the mass at initial position 0 cannot be transported to supp(β)\A0. There-

fore the mass of β1 must be transported from position 1. Hence we have

π1|suppβ\A0 = π̃1|suppβ\A0 = β1/(1− p),

and similarly,

π0|suppβ\A1 = π̃0|suppβ\A1 = β0/p. (2.26)

Since π and π̃ are different, π0− π̃0 = σ+−σ− is a nontrivial signed measure with

positive part σ+ and negative part σ−. Using (2.26), the martingale condition, and

the fact that π0(R) = π̃0(R) = 1, we obtain that supp(σ+) ∪ supp(σ−) ⊂ A0 ∩ A1,

and that

∫
A0∩A1

x σ+(dx) =

∫
A0∩A1

x σ−(dx), σ+(A0 ∩ A1) = σ−(A0 ∩ A1). (2.27)

Without loss of generality, assume that y+ := max{y : y ∈ supp(σ+)} ≥ max{y :

y ∈ supp(σ−)}, and that σ−({y+}) = 0 if these two maximums are equal. Take

y− := min{y : y ∈ supp(σ+)}. As a result of (2.27), there exists some y′ ∈ supp(σ−)
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such that y− < y′ < y+. Therefore, we can find two positive measures µ, ν together

with two real numbers l, r satisfying the following property:

{y−, y+} ⊂ supp(µ) ⊂ supp(σ+), µ ≤ σ+;

y′ ∈ supp(ν) ⊂ supp(σ−), ν ≤ σ−;

µ and ν have the same barycenter and the same mass;

µ is concentrated on R \ (l, r) while ν is concentrated on [l, r].

Since π and π̃ have the same terminal distribution, i.e., pπ0+(1−p)π1 = pπ̃0+(1−

p)π̃1, we can deduce that π1 − π̃1 = p
1−p(σ− − σ+), and hence p

1−pν ≤ π1. Construct

a new coupling π∗ via π∗0 = π0 − µ+ ν and π∗1 = π1 + p
1−p(µ− ν). Then by the same

argument used in the last part of the proof of Proposition 2.6.4, it can be seen that

pc(0, π∗0) + (1− p)c(1, π∗1) < pc(0, π0) + (1− p)c(1, π1),

which contradicts our assumption that π is an optimizer.
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CHAPTER III

Embedding of Walsh Brownian Motion

3.1 Introduction

The Skorokhod embedding problem was formulated and solved by Skorokhod in

1961 [175]. For a centered target distribution µ with finite first moment, one looks for

a stopping time τ such that Bτ ∼ µ, where (Bt)t≥0 is a standard Brownian motion.

Over fifty years, various solutions have been proposed, and some of them have been

shown to have particular optimality properties. There is a large number of literature

on this problem, but we will only mention a few of them that are related to our own

work. For more detailed information, we refer the reader to [156] for a nice survey, to

[35] for the Skorokhod embedding’s connection with optimal transport, and to [115]

for its application to mathematical finance.

Although the embedding problem for one-dimensional Brownian motion has been

well studied, there are not many results in higher dimensions (see e.g. [96], [140]).

As stated in [156, Section 3.10], if we consider measures concentrated on the unit

circle, only the uniform distribution can be embedded by means of an integrable

stopping time. The main challenge is that a multi-dimensional Brownian motion

does not visit points anymore. This motivates us to consider the embedding of Walsh

Brownian motion, and our result shows that any µ ∈ P(Rn) can be embedded using

this alternative, where P(Rn) is the set of Borel probability measures on Rn.
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Walsh Brownian motion is a singular diffusion with state space Rn, which behaves

like a one-dimensional Brownian motion on each ray away from 0. Once it hits the

origin, it is kicked away from 0 like a reflected Brownian motion, and is assigned a

random direction according to some given distribution κ ∈ P(Sn−1) (see e.g. [18],

[98], [181]), where Sn−1 is the unit sphere of Rn. To be more precise, let us give the

following definition.

Definition 3.1.1. Let (Rt)t≥0 be a reflected Brownian motion and τ0 := inf{t ≥

0 : Rt = 0}. A process (Zt)t≥0 is an n-dimensional Walsh Brownian motion with

spinning measure κ ∈ P(Sn−1) if

(i) Zt = (Γt, Rt) in polar coordinates, where Γt is a Sn−1-valued process with the

convention that Γt = (1, 0, . . . , 0) when Rt = 0;

(ii) If Z0 = 0, then for each t > 0, the random variable Γt has distribution κ and is

independent of Rt;

(iii) If Z0 = (γ, r) with r > 0, then Γt = γ on the set {t < τ0}, and on the set

{t > τ0}, Γt has distribution κ independent of Rt.

In case n = 1, S0 = {−,+}, (Z, κ) becomes a skew Brownian motion. We will

discuss this simplest case and then the general case. The discussion of the skew

Brownian motion will let us see what to expect. Before that, let us introduce some

notation. Consider any µ ∈ P(Rn) as a measure on the product space Sn−1 × R+.

Denote its marginal on Sn−1 by µ̃σ, and its disintegration with respect to µ̃σ by

(µ̃γ)γ∈Sn−1 . Also define mµ =
∫
|z| µ(dz),mµ

γ =
∫
R+
r µ̃γ(dr).

Let us now report the three observations for skew Brownian motion. First, for

a skew Brownian motion, suppose there exists a stopping time τ such that Zτ ∼ µ.

Then if µ ∈ P(R) charges (−∞, 0), we must have κ(−) > 0. Similarly, if µ charges

(0,+∞), then κ(+) > 0. Hence it is necessary that µ̃σ � κ, i.e., µ̃σ is absolutely
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continuous with respect to κ. It can also be shown that µ̃σ � κ is a sufficient

condition for the existence of such τ that Zτ ∼ µ (see the discussion of Section 3.3).

The second observation is about the minimality of stopping time τ and the uni-

form integrability of stopped process (Zτ∧t)t≥0. By using scale functions and speed

measures, one can construct a one-to-one correspondence between the embedding

problem for one-dimensional diffusions and for Brownian motion (see [11]). In the

case of skew Brownian motion, the corresponding scale function is

sκ(x) =


κ(−)x if x ≥ 0,

κ(+)x if x < 0.

Then the scaled process Mt := sκ(Zt) is a martingale, and there exists some standard

Brownian motion (Bt)t≥0 such that Mt = B〈M〉t (see e.g. [111], [181]). Therefore,

Zτ ∼ µ is equivalent to that B〈M〉τ ∼ µ ◦ s−1
κ , where µ ◦ s−1

κ is the pushforward

measure of µ along sκ. According to [71] and [150], if
∫
R x µ ◦ s−1

κ (dx) = 0, then

the stopping time 〈M〉τ is minimal if and only if the stopped process (B〈M〉τ∧t)t≥0 is

uniformly integrable. Note that
∫
R x µ ◦ s

−1
κ (dx) = κ(−)µ̃σ(+)mµ

+ − κ(+)µ̃σ(−)mµ
−.

Therefore, µ ◦ s−1
κ being centered is equivalent to κ(±) =

mµ±
mµ
µ̃σ(±). It can also be

seen that the minimality of τ and 〈M〉τ and the uniform integrability of (Zτ∧t)t≥0

and (B〈M〉τ∧t)t≥0 are equivalent. Putting them all together we see that if Zτ ∼ µ and

κ(±) =
mµ±
mµ
µ̃σ(±), then τ is minimal if and only if (Zτ∧t)t≥0 is uniformly integrable.

Third observation is about the optimal embedding problems. In [83], Cox and

Hobson reconstructed Vallois’ embedding τ v of Brownian motion. They also reproved

that τ v minimizes E[Ψ(Lτ )] among all the admissible stopping times τ , where Ψ is

a strictly convex function and L is the local time of Brownian motion. By using

the scale function approach mentioned above, the results can be easily generalized to

skew Brownian motion.
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Now let us report our corresponding results in the case of Walsh Brownian motion,

which motivated from the discussion above. Our first result, Theorem 3.3.2, shows

that one can find a stopping time τ such that Zτ ∼ µ if and only if µ̃σ � κ. It

is proved by an application of potential theoretic results in [173]. In particular, the

proof is done by first characterizing α-excessive functions of Walsh Brownian motion

(see Proposition 3.2.8), and verifying assumption (3.7).

In our second result, we show the relationship between the minimality of τ and the

uniform integrability of (Zτ∧t)t≥0. In Proposition 3.4.1 we prove that if there exists

a stopping time τ such that Zτ ∼ µ and the stopped process is uniformly integrable,

then we must have the balanced condition, i.e.,

κ(dγ) =
mµ
γ

mµ
µ̃σ(dγ). (∗)

In Proposition 3.4.4, we prove that the uniform integrability implies the minimality.

To show the converse to this last proposition, we first develop properties of potential

functions of Walsh Brownian motion, then characterize the uniform integrability using

these potential functions. Finally, we prove the results in Proposition 3.4.14 and

Theorem 3.4.15 by adopting the method of [71], which relies on the so-called standard

stopping times and identifying their relevant properties.

Third, considering Brownian motion as a Poisson point process on its excursion

space, we generalize the construction of [83] to Walsh Brownian motion under the

condition (∗); see Theorem 3.5.4. As a corollary of this result and Proposition 3.4.1,

we obtain that there exists a stopping time τ such that Zτ ∼ µ and (Zτ∧t)t≥0 uniformly

integrable if and only if µ is balanced. The other corollary of Theorem 3.5.4 is that

there exists an integrable stopping time τ such that Zτ ∼ µ if and only if (µ, κ) is

balanced and the second moment of µ is finite; see Corollary 3.5.6. Also, we show

that the Vallois type embedding we constructed here solves the optimization problem
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(see Theorem 3.5.7)

inf
τ∈T

E[Ψ(LZτ )], (3.1)

where Ψ is a strictly convex function, T the collection of minimal stopping times τ

such that Zτ ∼ µ, and (LZt )t≥0 is the local time at the origin.

We would like to mention that there are two equivalent viewpoints of our results.

The first is, given a Walsh Brownian motion (Z, κ), which µ can be embedded. The

other is, given µ, how to choose κ such that µ can be embedded in (Z, κ).

The rest of the chapter is organized as follows. In Section 3.2, we present some

auxiliary results about excursion theory and stochastic calculus of Walsh Brownian

motion and its α-excessive functions as well as one-dimensional potential theory. In

Section 3.3, we prove the existence of almost surely finite solutions. In Section 3.4

, we identify minimal stopping times with those τ such that (Zτ∧t)t≥0 is uniformly

integrable. In Section 3.5, we construct the Vallois type embedding and prove that it

solves the optimization problem (3.1).

In the rest of this section, we provide frequently used notation.

3.1.1 Notation.

Denote the left-, right-hand derivative by ∂−, ∂+, respectively, and denote the

origin of Rn by 0. For any x ∈ R, define x+ = max{x, 0}, x− = max{−x, 0}. Denote

the probability law of Walsh Brownian motion starting from position z by Pz (simply

by P if z = 0), and the expectation with respect to Walsh Brownian motion starting

from position z by Ez (simply by E if z = 0). Denote a Walsh Brownian motion by

(Zt)t≥0 or (Γt, Rt)t≥0 in polar coordinates, and its local time at the origin by (LZt )t≥0.

For any subsets A,B ⊂ Sn−1, we define scalar processes

RA
t := Rt1{Γt∈A}, hA,B(Zt) := κ(A)RB

t − κ(B)RA
t . (3.2)
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Define a map Φ from punctured Euclidean space Rn \ {0} to Sn−1 × R+ as the

following,

Φ : z 7→ (γ, r),

where z = rγ. Denote µ̃ = µ|Rn\{0} ◦ Φ−1, the pushforward measure of µ|Rn\{0}. We

extend µ̃ to a probability measure on Sn−1× [0,+∞) by distributing the mass µ(0) to

Sn−1×{0} in proportion to γ 7→ µ̃({γ}×R+) . Take k = 1− µ̃(Sn−1×R+) = µ({0})

and assign mass k
1−k µ̃(A×R+) to A×{0} for any Borel subset A ⊂ Sn−1. Denote the

first marginal of µ̃ by µ̃σ, the disintegration of µ̃ with respect to µ̃σ by (µ̃γ)γ∈Sn−1 .

For any µ ∈ P(Rn) such that
∫
Rn |z| µ(dz) < +∞, define

mµ =

∫
Rn

|z| µ(dz),

mµ
γ =

∞∫
0

r µ̃γ(dr), γ ∈ Sn−1,

cµγ(x) =

∫
R

∣∣∣mµy/mµ
γ − x

∣∣∣ µ̃γ(dy) + x+mµ

2
, x ∈ R. (3.3)

When µ is clear from the context, we may write m for mµ, mγ for mµ
γ . In the special

case of µ = δ0, we define cµγ(x) = |x|, µ̃σ = κ, m
µ

mµγ
= 1 for convention. Foy any

stopping time τ , denote the distribution of Zτ by µ(τ). For simplicity, we also denote

mτ = mµ(τ), mτ
γ = mµ(τ)

γ , cτγ = cµ(τ)
γ , γ ∈ Sn−1.

3.2 Preliminaries

In this section, we present some auxiliary results.
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3.2.1 Excursions of Walsh Brownian motion

The excursion space for the Walsh Brownian motion (Zt)t≥0 is given by

UZ = Sn−1 × UR,

where UR = {e ∈ C([0,+∞)) : e−1(0,+∞) = (0, ξ), for some ξ > 0} is the excursion

space of reflected Brownian motion. Here ξ ∈ (0,+∞) is the lifetime of excursion e.

We can associate (Zt)t≥0 with a Poisson point process on UZ . To see this, let (LZt )t≥0

denote the local time of (Zt)t≥0 at the origin. It characterizes the amount of time

spent by (Zt)t≥0 at 0 and is just the local time of (Rt)t≥0 at 0. Take (Il)l≥0 to be the

right continuous inverse of (LZt )t≥0. We “label” excursions using the local time at 0.

Definition 3.2.1. The excursion point process is the process (el)l≥0, defined with

values in UZ by

(i) if Il − Il− > 0, then el is the map

t 7→ 1{t≤Il−Il−}ZIl−+t;

(ii) if Il − Il− = 0, then el is the identically zero function.

It can be shown that this excursion point process is a Poisson point process,

with intensity function given by a unique σ-finite measure η on the excursion space

UZ (refer to [169, Chapter XII], [171, Chapter VI, Section 8] for details). For any

U ⊂ UZ and l > 0, we set Ul := (0, l)× U , and

NUl =
∑

0<s<l

1U(es),

which is the number of excursions in U before local time l. It can be shown that NUl

is a Poisson random variable with parameter lη(U). According to our construction,
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the measure η is the product κ × n, where n is the excursion measure for reflected

Brownian motion. We recall one important property of the measure n, which is used

in Section 3.5 (see e.g. [169, Chapter XII, Exercise 2.10]).

Lemma 3.2.2. For every x > 0, we have

n

{e ∈ UR : sup
t≥0

e(t) ≥ x

} =
1

x
.

3.2.2 Stochastic calculus

First we state the change of variable formula for Walsh Brownian motion (see

[110], [119], [125]), and then prove a simple proposition which is used many times in

the chapter.

Definition 3.2.3. Let D be the class of Borel measurable functions g : Rn → R,

such that

(i) For every γ ∈ Sn−1, the function r 7→ gγ(r) is differentiable on [0,+∞), and the

derivative r 7→ g′γ(r) is absolutely continuous on [0,+∞);

(ii) The function γ 7→ g′γ(0) is bounded;

(iii) There exist a real number ξ > 0 and a Lebesgue-integrable function ι : (0, ξ]→

[0,+∞) such that |g′′γ(r)| ≤ ι(r) holds for all γ ∈ Sn−1 and r ∈ (0, ξ].

Now define

BZ
t = Rt −R0 − LZt ,

which is a Brownian motion according to [18, Lemma 2]. We have the following

change of variable formula (see [125, Theorem 2.12]).

Lemma 3.2.4. Let (Zt)t≥0 be a Walsh Brownian motion with spinning measure κ.

Then for any g ∈ D, the process g(Zt)t≥0 is a continuous semimartingale and satisfies
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the identity

g(Zt) =g(Z0) +

t∫
0

1{Rs 6=0}g
′
Γs(Rs) dB

Z
s

+

t∫
0

1{Rs 6=0}g
′′
Γs(Rs) ds+ V Z

g (t),

where V Z
g (t) :=

( ∫
γ∈Sn−1 ∂+gγ(0)κ(dγ)

)
LZt .

Proposition 3.2.5. Suppose ρ : Sn−1 → (0,+∞) is bounded, and define the hitting

time of ρ,

τ(ρ) = inf{t ≥ 0 : ρ(Γt) = Rt}.

Then we have τ(ρ) < +∞, and

P[Γτ(ρ) ∈ dγ] =

1
ρ(γ)∫

β∈Sn−1
1

ρ(β)
κ(dβ)

κ(dγ), E[τ(ρ)] =

∫
γ∈Sn−1 ρ(γ)κ(dγ)∫
γ∈Sn−1

1
ρ(γ)

κ(dγ)
.

Proof. For any disjoint Borel subsets A,B ⊂ Sn−1, recall the scalar process hA,B(Zt).

Applying Lemma 3.2.4, we see that (hA,B(Zt))t≥0 is a martingale. By the optional

sampling theorem, we obtain

0 = E[hA,B(Zτ(ρ))] = κ(A)

∫
γ∈B

ρ(γ)P[Γτ(ρ) ∈ dγ]− κ(B)

∫
γ∈A

ρ(γ)P[Γτ(ρ) ∈ dγ].

Since choices of A and B are arbitrary, it can be see that
ρ(γ)P[Γτ(ρ)∈dγ]

κ(dγ)
is a constant,

from which we can deduce the first part of the lemma.

Take g(γ, r) = r2. Again by Lemma 3.2.4, we know that (g(Zt) − t)t≥0 is a

martingale. By employing the optional sampling theorem, we conclude

E[τ(ρ)] = E[g(Zτ(ρ))] =

∫
γ∈Sn−1

ρ2(γ)P[Γτ(ρ) ∈ dγ] =

∫
γ∈Sn−1 ρ(γ)κ(dγ)∫
γ∈Sn−1

1
ρ(γ)

κ(dγ)
.
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3.2.3 α-excessive functions

Here we characterize bounded α-excessive functions of Walsh Brownian motion.

Definition 3.2.6. Let α ≥ 0, and (Pt)t≥0 be the semigroup of Walsh Brownian

motion (Zt)t≥0 (see [18]). A non-negative universally measurable function g is called

α-excessive relative to (Zt)t≥0 if

(i) g ≥ e−αtPtg for every t ≥ 0;

(ii) e−αtPtg → g pointwise as t→ 0.

The characterization of α-excessive functions for Brownian motion is well-known.

The following lemma can be deduced easily from [51, Chapter II], after which we

present the result for Walsh Brownian motion.

Lemma 3.2.7. Let g : R→ [0,+∞) be an α-excessive function of Brownian motion.

Then there exists a non-negative concave function W such that g(x) = e−
√

2αxW (e2
√

2αx).

Proposition 3.2.8. Suppose g is a bounded α-excessive function of (Zt)t≥0, then

there exists a family of functions (Wγ)γ∈Sn−1 such that

(i) The function Wγ : [1,+∞)→ [0,+∞) is concave and Wγ(1) = g(0);

(ii) For γ ∈ Sn−1, we have gγ(r) = e−
√

2αrWγ(e
2
√

2αr);

(iii)
∫
γ∈Sn−1 ∂+Wγ(1) κ(dγ) ≤ g(0)

2
.

Proof. By the strong Markov property for Walsh Brownian motion and the definition

of α-excessive function, we have, for all s ≤ t

Ez[e−αtg(Zt)|Fs] = e−αsEZs [e−α(t−s)g(Zt−s)] ≤ e−αsg(Zs).

Therefore, (e−αtg(Zt))t≥0 is a supermartingale, and hence for any stopping time τ ,

g(z) ≥ Ez[e−ατg(Zτ )].
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By restricting g to a single ray in E, we obtain that gγ is α-excessive for Brownian

motion for each γ ∈ Sn−1. Using Lemma 3.2.7, we can conclude (i)&(ii) of the

proposition.

Take τ(ε) := inf{t ≥ 0 : Rt = ε}. Employing Proposition 3.2.5, we obtain that

E[τ(ε)] = ε2 and P[Γτ(ε) ∈ dγ] = κ(dγ). By the optional sampling theorem, we get

g(0) ≥ E[e−ατ(ε)g(Zτ(ε))]. Subtracting both sides by g(0) and dividing the inequality

by ε, we obtain

0 ≥ E
[
g(Zτ(ε))− g(0)

ε

]
− E

[
1− e−ατ(ε)

ε
g(Zτ(ε))

]
=

∫
γ∈Sn−1

g(γ, ε)− g(0)

ε
κ(dγ)− E

[
1− e−ατ(ε)

ε
g(Zτ(ε))

]
.

(3.4)

Since function g is bounded, we can obtain the following inequality,

lim
ε→0

E
[

1− e−ατ(ε)

ε
g(Zτ(ε))

]
≤ ‖g‖∞ lim

ε→0
E
[

1− e−ατ(ε)

ε

]
≤‖g‖∞ lim

ε→0
E
[
ατ(ε)

ε

]
= ‖g‖∞ lim

ε→0
αε = 0.

(3.5)

As to the first term on the right-hand side of (3.4), we rewrite gγ(ε)−g(0)

ε
=
∫ ε

0

g′γ(r)

ε
dr

as a sum of two integrals

−
∫ ε

0

√
2αgγ(r) dr

ε
+

2(e
√

2αε − 1)

ε

∫ e√2αε

1
W ′
γ(x

2) dx

e
√

2αε − 1
.

Denote the first term by −uγ(ε), and the second term by 2(e
√

2αε−1)
ε

vγ(ε). In conjunc-

tion with (3.5), (3.4) becomes

∫
γ∈Sn−1

vγ(ε)κ(dγ) ≤ ε

2(e
√

2αε − 1)

( ∫
γ∈Sn−1

uγ(ε)κ(dγ) + ‖g‖∞ lim
ε→0

E
[
ατ(ε)

ε

])
. (3.6)

Since g is non-negative, the derivative W ′
γ(r) is non-negative. In addition, function
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vγ(ε) increases as ε decreases to 0. Therefore, we can apply monotone convergence

theorem to the left-hand side of (3.6). Since the boundedness of g implies the bound-

edness of uγ(ε), we can apply bounded convergence theorem to the first integral on

the right-hand side of (3.6). Letting ε decrease to 0 in (3.6), we obtain

∫
γ∈Sn−1

∂+Wγ(1)κ(dγ) ≤ 1

2
g(0).

3.2.4 One-dimensional potential theory

Here we state [70, Lemmas 2.5, 3.2] and the related notion of being standard for

stopping times of martingales, which will be used in Section 3.4.

Lemma 3.2.9. Suppose Xl is a sequence of random variables such that Xl weakly

converges to X and lim
l→∞

E[|x − Xl|] exists for one x ∈ R. If there exists a random

variable Y such that E[|x−Xl|] ≤ E[|x− Y |] for any x ∈ R, l ∈ N, then lim
l→∞

E[|x−

Xl|] = E[|x−X|] for all x ∈ R.

Definition 3.2.10. Let (Yt)t≥0 be a martingale on a filtered probability space (Ω,F , (Ft)t≥0,P).

A stopping time τ with respect to the filtration (Ft)t≥0 is said to be standard for

(Yt)t≥0 if E[|Yτ |] < +∞, and there exists a sequence of bounded stopping time (τl)l≥0

such that lim
l→∞

τl = τ a.s., and

lim
l→∞

E[|x− Yτl |] = E[|x− Yτ |], ∀x ∈ R.

Lemma 3.2.11. Let (Yt)t≥0 be a martingale on a filtered probability space

(Ω,F , (Ft)t≥0,P). If τ is a stopping time with respect to the filtration (Ft)t≥0, then

the following conditions are equivalent:

(i) τ is a standard stopping time;
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(ii) lim
l→∞

E[|x− Yτ∧l|] = E[|x− Yτ |], ∀x ∈ R;

(iii) There exists a sequence of standard stopping times (τl)l→∞ such that lim
l→∞

τl = τ

a.s., and lim
l→∞

E[|x− Yτl |] = E[|x− Yτ |], ∀x ∈ R;

(iv) E[|Yτ |] < +∞ and lim inf
l→∞

E[|Yl|1{τ>l}] = 0.

3.3 Almost surely finite Solutions

Suppose µ is a Borel measure on the Euclidean space Rn and (Z, κ) a Walsh

Brownian motion. We want to provide a necessary and sufficient condition for µ to

be a stopping distribution of (Z, κ). Here we say µ is a stopping distribution if and

only if there exists a stopping time τ < +∞ such that Zτ ∼ µ.

In the case of that µ̃σ =
∑l

i=1 ciδγi is sum of finitely many atoms, µ can be

embedded if κ charges all directions γi, i.e.,

κ(γi) > 0, i = 1, . . . , l.

Since κ(γi) > 0, we have P[inf{t ≥ 0 : Zt = (γi, r)} < ∞] = 1 for any r > 0. We

enlarge F such that F0 is rich enough to support an independent variable (only in

this section). Define the stopping time,

τ = inf{t > 0 : Zt = X},

where X is F0-measurable and of distribution µ. It is clear that Zτ ∼ µ.

However, if µ̃σ is continuous, it can be seen that κ({γ}) = 0, µ̃σ-a.s. for any

(Z, κ). Therefore, for any (γ0, r0) 6= 0 such that κ({γ0}) = 0, we have P[inf{t ≥ 0 :

Zt = (γ0, r0)} = +∞] = 1. Hence, the above construction does not provide us an

almost surely finite stopping time. In [173], Rost answers a general question about

the existence of embedding for an arbitrary Markov process. Suppose (Xt)t≥0 is a
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transient Markov process, UX is its potential operator, and ν0U
X , ν1U

X are σ-finite.

Then, for the initial distribution X0 ∼ ν0, there exists a stopping time τ such that

Xτ ∼ ν1 if and only if ν1U
X ≤ ν0U

X . If (Xt)t≥0 is not transient, it would be killed at

an independent time with exponential distribution (with parameter α), which results

in (Xα
t )t≥0. Rost proved that ν1 is a stopping distribution of (Xt)t≥0 starting with

ν0, if and only if lim
α→0

(ν1U
Xα − ν0U

Xα
) ≤ 0. The function UX(f) is excessive for any

measurable f , so the result can be reformulated as the following (see [173, Theorem

4]).

Lemma 3.3.1. Suppose (Xt)t≥0 is a Markov process with such state space that is

locally compact and completely separable. A necessary and sufficient condition for µ

to be a stopping distribution of (Xt)t≥0 starting with δ0 is

↓ lim
α→0

sup
1≥g∈Sα

〈µ− δ0, g〉 = 0, (3.7)

where Sα is the set of α-excessive functions (see Definition 3.2.6) of (Xt)t≥0, and

〈ν, f〉 :=
∫
fdν for any measure ν and measurable function f .

Note that if κ(A) = 0 for some set A ⊂ B(Sn−1), then we have P[inf{t > 0 :

Γt ∈ A} = +∞] = 1, i.e., the Walsh Brownian motion does not visit the region

{(γ, r) : r > 0, γ ∈ A} a.s. Therefore, if µ̃σ(A) > 0, we must have κ(A) > 0 in order

to make µ a stopping distribution, that is, µ̃σ � κ is a necessary condition. We will

show that it is also sufficient by checking (3.7) in Lemma 3.3.1.

Define µ̃αγ to be the pushforward measure of µ̃γ under the mapping r 7→ e2
√

2αr.

Let g ∈ Sα and (Wγ)γ∈Sn−1 be the characterization of g as in Proposition 3.2.8. We

make two observations: (1) As α → 0, the measure µ̃αγ weakly converges to δ1; (2)

The condition g ≤ 1 is equivalent to that Wγ(x) ≤
√
x for any γ ∈ Sn−1.

Theorem 3.3.2. If µ̃σ is absolutely continuous with respect to κ, then the equation

(3.7) holds for Walsh Brownian motion (Zt)t≥0. As a result, µ is a stopping distribu-
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tion of (Z, κ) if and only if µ̃σ � κ.

Proof. Recall that we have the characterization of α-excessive functions by Propo-

sition 3.2.8. Taking g ≡ 1, we see that sup
1≥g∈Sα

〈µ − δ0, g〉 ≥ 0 for any α > 0. It is

sufficient to show for any ε > 0, there exists α0 > 0 such that 〈µ− δ0, g〉 < ε for any

α < α0 and 1 ≥ g ∈ Sα.

Since µ̃σ � κ, we can find K > 8
ε

such that for any A ⊂ B(Sn−1), κ(A) < 1
K

implies µ̃σ(A) < ε
8
. Take δ = ε

4K
, and α0 such that for any α < α0

∫
γ∈Sn−1

µ̃αγ ([1, 1 + δ]) µ̃σ(dγ) > 1− ε

4
.

If C := g(0) > 1− ε, we automatically have 〈µ− δ0, g〉 < 1− C < ε. So without loss

of generality, we assume C ≤ 1− ε.

Since Wγ is concave, it is upper bounded on the interval [1, 1 + δ] by the linear

function

C + ∂+Wγ(1)(x− 1).

In order to have

C + ∂+Wγ(1)(x− 1) ≤
√
x, x ∈ [1, 1 + δ],

the derivative ∂+Wγ(1) cannot be greater than
√

1+δ−C
δ

. Denote by H the collection

of γ such that ∂+Wγ(1) >
√

1+δ−C
δ

, i.e.,

H :=

{
γ ∈ Sn−1 : ∂+Wγ(1) >

√
1 + δ − C

δ

}
.

By part (iii) of Proposition 3.2.8 and Markov’s inequality, we have

κ(H) ≤ Cδ

2
√

1 + δ − 2C
≤ δ

2ε
=

1

8K
<

ε

64
,
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and Therefore,

µ̃σ(H) <
ε

8
.

Denote

F := {γ ∈ Sn−1 :
dµ̃σ

dκ
≤ K},

G := Sn−1 \ (H ∪ F ) ⊂ {γ ∈ Sn−1 : ∂+Wγ(1) ≤
√

1 + δ − C
δ

}.

Note that
∫
γ∈Sn−1

dµ̃σ

dκ
κ(dγ) = 1. Therefore, by Markov’s inequality, we have κ(G) <

1
K

and thus µ̃σ(G) < ε
8
. According to our choice of δ, it can be seen that

µ(g) =

∫
γ∈Sn−1

µ̃σ(dγ)

+∞∫
0

gγ(r) µ̃γ(dr)

=

∫
γ∈Sn−1

µ̃σ(dγ)

+∞∫
1

Wγ(x)√
x

µ̃αγ (dx)

≤
∫

γ∈Sn−1

µ̃σ(dγ)

1+δ∫
1

Wγ(x)√
x

µ̃αγ (dx) +
ε

4
.

(3.8)

We estimate the term Wγ(x)√
x

in (3.8). For γ ∈ H, we have inequalities

1+δ∫
1

Wγ(x)√
x

µ̃αγ (dx) ≤ µ̃αγ ([1, 1 + δ]) ≤ 1,

and for γ 6∈ H,

1+δ∫
1

Wγ(x)√
x

µ̃αγ (dx) ≤
1+δ∫
1

C + ∂+Wγ(1)(x− 1)√
x

µ̃αγ (dx) ≤ C + δ∂+Wγ(1).
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Therefore, we obtain the upper bound,

µ(g) ≤ C +

∫
γ∈Sn−1\H

δ∂+Wγ(1) µ̃σ(dγ) + µ̃σ(H) +
ε

4
.

For γ ∈ F , we have µ̃σ(dγ) ≤ Kκ(dγ), and for γ ∈ G,

∂+Wγ(1) ≤ (
√

1 + δ − C)

δ
.

In conjunction with part (iii) of Proposition 3.2.8, we get

∫
γ∈Sn−1\H

δ∂+Wγ(1) µ̃σ(dγ)

≤
∫
γ∈F

δ∂+Wγ(1)K κ(dγ) +

∫
γ∈G

δ(
√

1 + δ − C)

δ
µ̃σ(dγ)

≤ δKC

2
+ 2µ̃σ(G).

Now we can conclude the result,

µ(g) ≤ C +
δKC

2
+ 2µ̃σ(G) + µ̃σ(H) +

ε

4
< δ0(g) + ε.

3.4 Minimality and Uniform Integrability

For Skorokhod embedding problem for Brownian motion, it was proved that a

stopping time is minimal if and only if the stopped Brownian motion is uniformly

integrable (see [71] and [150]). In this section, we prove the analogue in the case

of Walsh Brownian motion. First we present a necessary condition for the stopped

process (Zτ∧t)t≥0 to be uniformly integrable. Then we show that the uniform inte-

grability of (Zτ∧t)t≥0 implies the minimality of τ . To show the other direction, we
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adopt the potential theory method of [70] and [71]. In the rest of the chapter, we

assume that κ is not an atom, i.e., (Z, κ) does not degenerate to a reflected Brownian

motion. We would like to remark that with careful modifications by reproving [70,

Lemma 2.5, 3.2] for submartingales and redefining Wt = RS
n−1

t in (3.9), our results

still hold when κ is an atom.

Proposition 3.4.1. For any stopping time τ such that Zτ ∼ µ and (Zτ∧t)t≥0 is

uniformly integrable, we have mµ =
∫
Rn|z| µ(dz) is finite, and

κ(dγ) =
mµ
γ

mµ
µ̃σ(dγ). (∗)

Proof. Suppose τ is a stopping time such that Zτ ∼ µ and (Zτ∧t)t≥0 is uniformly

integrable. For any disjoint Borel subsets A,B ⊂ Sn−1, recall the scalar process

hA,B(Zt) = κ(A)RB
t − κ(B)RA

t .

Due to the uniform integrability of (Zτ∧t)t≥0 and Lemma 3.2.4, hA,B(Zτ∧t)t≥0 is a

uniformly integrable martingale. Therefore, hA,B(Zτ∧t) converges to hA,B(Zτ ) in L1.

In particular, when 0 < κ(A) < 1, B = Ac, we have

E[|Zτ |] ≤ max
{

1/κ(A), 1/κ(Ac)
}
E[|hA,B(Zτ )|] < +∞.

Also by the optional sampling theorem we have that

0 = E[hA,B(Z0)] = E[hA,B(Zτ )]

= κ(A)

∫
B

µ̃σ(dγ)

∫
R+

r µ̃γ(dr)− κ(B)

∫
A

µ̃σ(dγ)

∫
R+

r µ̃γ(dr)

= κ(A)

∫
B

mµ
γ µ̃

σ(dγ)− κ(B)

∫
A

mµ
γ µ̃

σ(dγ).
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Since the choice of disjoint pair (A,B) is arbitrary, there exists a constant m such

that for any γ ∈ Sn−1,

mµ
γ µ̃

σ(dγ) = mκ(dγ).

Integrating both sides of the above equation over Sn−1, we get

m =

∫
Sn−1

m κ(dγ) =

∫
Sn−1

mµ
γ µ̃

σ(dγ) =

∫
Rn

|z| µ(dz) = mµ < +∞.

In the case of n = 1, S0 consists of two directions {−,+}, and the process (Zt)t≥0

becomes a skew Brownian motion. Usually in the Skorokhod embedding problem

for Brownian motion, we say a target distribution µ is centered if
∫ +∞
−∞ x µ(dx) = 0.

Since the spinning measure of Brownian motion is κ(+) = κ(−) = 1
2
, it can be seen

that µ is centered if and only if µ̃σ(+)m+ = µ̃σ(−)m−, which is equivalent to (∗). We

generalize the concept of being centered to the case of Walsh Brownian motion.

Definition 3.4.2. A pair (µ, κ) is balanced if
∫
Rn |z| µ(dz) < ∞ and (µ, κ) satisfies

(∗).

Let us also recall the definition of minimality for stopping times.

Definition 3.4.3. A stopping time τ is said to be minimal if for any stopping time

υ ≤ τ , L(Zυ) = L(Zτ ) implies υ = τ a.s.

By the same argument as in [150, Proposition 2], it can be seen that for any stop-

ping time τ there exists a minimal stopping time υ such that L(Zυ) = L(Zτ ). In the

next proposition, by modifying the argument in the first paragraph of [150, Theorem

3], we show that for any stopping time τ , the uniform integrability of (Zτ∧t)t≥0 implies

the minimality of τ .

Proposition 3.4.4. If τ is a stopping time such that (Zτ∧t)t≥0 is uniformly integrable,

then τ is minimal.
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Proof. Choose a measurable subset A ⊂ Sn−1 such that 0 < κ(A) < 1, and recall

hA,Ac(Zt) = κ(A)RAc

t − κ(Ac)RA
t .

As in the proof of Proposition 3.2.5, hA,Ac(Zt) is a martingale. Since |hA,Ac(Zτ∧t)| ≤

|Zτ∧t|, the stopped process hA,Ac(Zτ∧t) is also uniformly integrable. Let υ be a stop-

ping time such that υ ≤ τ and L(Zυ) = L(Zτ ). Then it can be easily seen that

L(hA,Ac(Zυ)) = L(hA,Ac(Zτ )). Define

ā := sup
a∈R
{a : a ∈ supp(L(hA,Ac(Zτ )))}.

Using the equality of laws and the optional sampling theorem, for any a ≤ ā we have

that

E[hA,Ac(Zτ )|hA,Ac(Zτ ) ≥ a] = E[hA,Ac(Zυ)|hA,Ac(Zυ) ≥ a]

= E[hA,Ac(Zτ )|hA,Ac(Zυ) ≥ a],

which implies that

E[hA,Ac(Zτ )1{hA,Ac (Zτ )≥a}]

P[hA,Ac(Zτ ) ≥ a]
=

E[hA,Ac(Zτ )1{hA,Ac (Zυ)≥a}]

P[hA,Ac(Zυ) ≥ a]
.

Since hA,Ac(Zτ ) and hA,Ac(Zυ) have the same law, the above equality becomes

E[hA,Ac(Zτ )1{hA,Ac (Zτ )≥a}] = E[hA,Ac(Zτ )1{hA,Ac (Zυ)≥a}].

For a > ā, due to 1{hA,Ac (Zτ )≥a} = 1{hA,Ac (Zυ)≥a} = 0 a.s., the above equation still

holds.

Suppose X is an integrable random variable and a ∈ R. Then for any Ω′ ⊂ Ω
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such that P[Ω′] = P[X ≥ a], we have

X ≥ a on {X ≥ a} \ Ω′,

X < a on Ω′ \ {X ≥ a},

and P[{X ≥ a} \ Ω′] = P[Ω′ \ {X ≥ a}]. Therefore,

E[X1{X≥a}]− E[X1Ω′ ] = E[X1{X≥a}\Ω′ ]− E[X1Ω′\{X≥a}] ≥ 0.

And E[X1{X≥a}] = E[X1Ω′ ] if and only if P[{X ≥ a} \ Ω′] = P[Ω′ \ {X ≥ a}] = 0.

Let X = hA,Ac(Zτ ),Ω
′ = {hA,Ac(Zυ) ≥ a}, we get that

P[hA,Ac(Zτ ) ≥ a, hA,Ac(Zυ) < a] = P[hA,Ac(Zτ ) < a, hA,Ac(Zυ) ≥ a] = 0.

It implies that hA,Ac(Zυ) = hA,Ac(Zτ ) a.s. If ξ is any stopping time such that υ ≤

ξ ≤ τ , then

hA,Ac(Zξ) = E[hA,Ac(Zτ )|Fξ] = E[hA,Ac(Zυ)|Fξ] = hA,Ac(Zυ) a.s.

Therefore, hA,Ac(Zt) is constant on the interval υ ≤ t ≤ τ , which is impossible unless

υ = τ a.s.

Fix an A0 ⊂ Sn−1 such that 0 < κ(A0) < 1. Define s :=
κ(Ac0)

κ(A0)
, and a scalar process

Wt = sRA0
t −R

Ac0
t , t ≥ 0. (3.9)

According to Lemma 3.2.4, it can be seen that (Wt)t≥0 is a martingale.

Lemma 3.4.5. For any stopping time τ such that µ(τ) is balanced, we have for any
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A ⊂ Sn−1

2E[(RA
τ − x)+] = 2x− + 2

∫
γ∈A

(cτγ(m
τx/mτ

γ)− (mτx/mτ
γ)

+) κ(dγ),

and the potential function of Wτ

E[|x−Wτ |] =|x| − 2κ(Ac0)mτ + 2s

∫
γ∈A0

(cτγ(m
τx/(mτ

γs))− (mτx/(mτ
γs))

+) κ(dγ)

+ 2

∫
γ∈Ac0

(cτγ(−mτx/mτ
γ)− (−mτx/mτ

γ)
+) κ(dγ).

Proof. Since µ(τ) is balanced, we have κ(dγ) =
mτγ
mτ
µ̃(τ)

σ
(dγ). According to the

definition of cτγ in (3.3), it can be easily verifying that

∫
R

|y − x| µ̃(τ)γ(dy) =
2mτ

γ

mτ
cτγ(m

τx/mτ
γ)− x−mτ

γ.

Therefore, by direct computation

2E[(RA
τ − x)+] = E[|RA

τ − x|] + E[RA
τ ]− x

= µ̃(τ)
σ
(Ac) |x|+

∫
γ∈A

∫
R

|y − x| µ̃(τ)γ(dy) µ̃(τ)
σ
(dγ) +

∫
γ∈A

mτ
γ µ̃(τ)

σ
(dγ)− x

= |x| − x+ 2

∫
γ∈A

mτ
γ

mτ
(cτγ(m

τx/mτ
γ)− (mτx/mτ

γ)
+) µ̃(τ)

σ
(dγ)

= 2x− + 2

∫
γ∈A

(cτγ(m
τx/mτ

γ)− (mτx/mτ
γ)

+) κ(dγ),
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E[|x−Wτ |] =s

∫
γ∈A0

∫
R

|y − x/s| µ̃(τ)γ(dy) µ̃(τ)
σ
(dγ)

+

∫
γ∈Ac0

∫
R

|y − (−x)| µ̃(τ)γ(dy) µ̃(τ)
σ
(dγ)

=|x|+ s

∫
γ∈A0

(
2mτ

γ

mτ
cτγ(m

τx/(mτ
γs))− x/s−mτ

γ − |x/s|
)
µ̃(τ)

σ
(dγ)

+

∫
γ∈Ac0

(
2mτ

γ

mτ
cτγ(−mτx/mτ

γ)− (−x)−mτ
γ − |x|

)
µ̃(τ)

σ
(dγ)

=|x| − 2κ(Ac0)mτ + 2s

∫
γ∈A0

(cτγ(m
τx/(mτ

γs))− (mτx/(mτ
γs))

+) κ(dγ)

+ 2

∫
γ∈Ac0

(cτγ(−mτx/mτ
γ)− (−mτx/mτ

γ)
+) κ(dγ).

For any two functions f, g : R → R, we write f(·) = g(·) if f(x) = g(x),∀x ∈ R,

and f(·) ≤ g(·) if f(x) ≤ g(x),∀x ∈ R.

Lemma 3.4.6. A stopping time τ is standard (see Definition 3.2.10)) for (Wt)t≥0,

defined in (3.9), if and only if µ(τ) is balanced and

lim
l→∞

cτ∧lγ (mτ∧l · /mτ∧l
γ )− (mτ∧l · /mτ∧l

γ )+ = cτγ(m
τ · /mτ

γ)− (mτ · /mτ
γ)

+, κ-a.s.,

(3.10)

where the limit is understood in the sense of pointwise convergence of functions.

Proof. Note that for any A, the process (RA
t )t≥0 is submartingale, and hence by

Jensen’s inequality E[(RA
τ∧l − x)+] is increasing with respect to l. Since τ ∧ l is a

bounded stopping time, the stopped process (Zτ∧l∧t)t≥0 is uniformly integrable. Hence

by Proposition 3.4.1, µ(τ ∧ l) is balanced. Therefore, according to Lemma 3.4.5, the
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following functional series is increasing with respect to l for any A ⊂ Sn−1,

∫
γ∈A

(cτ∧lγ (mτ∧lx/mτ∧l
γ )− (mτ∧lx/mτ∧l

γ )+) κ(dγ).

Since the integral is increasing for an arbitrary A, it can be easily verified that

(cτ∧lγ (mτ∧lx/mτ∧l
γ )− (mτ∧lx/mτ∧l

γ )+) is increasing with respect to l κ-a.s.

According to Lemma 3.4.5, we also have

E[|x−Wτ∧l|] =|x| − 2κ(Ac0)mτ∧l

+ 2s

∫
γ∈A0

(cτ∧lγ (mτ∧lx/(mτ∧l
γ s))− (mτ∧lx/(mτ∧l

γ s))+) κ(dγ)

+ 2

∫
γ∈Ac0

(cτγ(−mτx/mτ
γ)− (−mτx/mτ

γ)
+) κ(dγ).

Since (cτ∧lγ (mτ∧lx/mτ∧l
γ ) − (mτ∧lx/mτ∧l

γ )+) = mτ∧l when x ≤ 0, the above equation

becomes

E[|x−Wτ∧l|] (3.11)

=


|x|+ 2s

∫
γ∈A0

(cτ∧lγ (mτ∧lx/(mτ∧l
γ s))− (mτ∧lx/(mτ∧l

γ s))+) κ(dγ) if x ≥ 0,

|x|+ 2
∫
γ∈Ac0

(cτ∧lγ (−mτ∧lx/mτ∧l
γ )− (−mτ∧lx/mτ

γ)
+) κ(dγ) if x ≤ 0.

Now suppose µ(τ) is balanced and satisfies (3.10). Since cτ∧lγ (0) = mτ∧l, we obtain

that

lim
l→+∞

mτ∧l = mτ .
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By the monotone convergence theorem, we conclude that

lim
l→∞

E[|x−Wτ∧l|] =|x| − 2κ(Ac0)mτ + 2s

∫
γ∈A0

(cτγ(m
τx/(mτ

γs))− (mτx/(mτ
γs))

+) κ(dγ)

+2

∫
γ∈Ac0

(cτγ(−mτx/mτ
γ)− (−mτx/mτ

γ)
+) κ(dγ) = E[|x−Wτ |],

and hence τ is standard for (Wt)t≥0.

If τ is standard for the martingale (Wt)t≥0, according to [70, Section 5], it is

equivalent to that (Wτ∧t)t≥0 is uniformly integrable. Therefore, the stopped processes

(Zτ∧t)t≥0 and (RA
τ∧t)t≥0 are also uniformly integrable. Therefore, µ(τ) is balanced, and

E[(RA
τ∧l − x)+] ≤ E[(RA

τ − x)+] for any x ∈ R. Hence

∫
γ∈A

(cτ∧lγ (mτ∧lx/mτ∧l
γ )− (mτ∧lx/mτ∧l

γ )+) κ(dγ)

≤
∫
γ∈A

(cτγ(m
τx/mτ

γ)− (mτx/mτ
γ)

+) κ(dγ).

The above inequality is true for any A ⊂ Sn−1. Then it can be deduced that

cτ∧lγ (mτ∧l · /mτ∧l
γ )− (mτ∧l · /mτ∧l

γ )+ ≤ cτγ(m
τ · /mτ

γ)− (mτ · /mτ
γ)

+ κ-a.s.

Combining the equalities lim
l→0

E[|x −Wτ∧l|] = E[|x −Wτ |], lim
l→+∞

mτ∧l = mτ and the

monotone convergence theorem, we conclude that

lim
l→∞

cτ∧lγ (mτ∧l · /mτ∧l
γ )− (mτ∧l · /mτ∧l

γ )+ = cτγ(m
τ · /mτ

γ)− (mτ · /mτ
γ)

+, κ-a.s.

Corollary 3.4.7. A stopping time τ is standard if and only if (Zτ∧t)t≥0 is uniformly

integrable.
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Proof. According to [70, Section 5], τ is standard for the martingale (Wt)t≥0 is equiv-

alent to that (Wτ∧t)t≥0 is uniformly integrable. Then the result follows from the fact

that uniform integrability of (Wτ∧t)t≥0 and (Zτ∧t)t≥0 are equivalent.

Definition 3.4.8. For two balanced measures µ, ν ∈ P(Rn), we say µ ≤wcx ν if

cµγ(mµ · /mµ
γ)− (mµ · /mµ

γ)+ ≤ cνγ(m
ν · /mν

γ)− (mν · /mν
γ)

+, κ-a.s.

Remark 3.4.9. As in the proof of Lemma 3.4.6, it can be seen that if υ ≤ τ are two

stopping times with τ standard, then we have µ(υ) ≤wcx µ(τ).

Lemma 3.4.10. Suppose υ, τ are two stopping times such that µ(υ), µ(τ) are bal-

anced. Then µ(υ) ≤wcx µ(τ) and µ(τ) ≤wcx µ(υ) imply that L(Zυ) = L(Zτ ).

Proof. According to Lemma 3.4.5 and the fact that µ(υ) µ(τ) are balanced, we have

for any x ∈ R

E[(RA
υ − x)+] = E[(RA

τ − x)+].

It implies that L(RA
υ ) = L(RA

τ ) for any A ⊂ Sn−1. Regarding µ(υ), µ(τ) as measures

on the product space Sn−1 ×R+, we have that

µ(υ)(A× (a, b)) = µ(τ)(A× (a, b)), ∀(a, b) ⊂ R+,

and hence µ(υ) = µ(τ).

Lemma 3.4.11. Suppose τ is a stopping time such that µ(τ) is balanced. Let D be

the collection of standard stopping times υ such that υ ≤ τ, µ(υ) ≤wcx µ(τ). With the

partial order of stopping times, any totally ordered subset C ⊂ D has an upper bound

in D.

66



Proof. Since C is totally ordered, any maximal element of C is an upper bound of C.

Therefore, without loss of generality, we assume that there does not exist a maximal

element in C. For each υ ∈ C,denote its survival function by Dυ : [0,+∞) → [0, 1],

i.e.,

Dυ(t) = P[υ > t].

Note that ξ ≤ υ is equivalent to Dξ ≤ Dυ. Let (tl)l∈N be a countable dense subset of

[0,+∞). Define a sequence of stopping times by induction,

(i) For t1, choose a stopping time υ1 ∈ C such that Dυ1(t1) ≥ 1
2

sup
υ∈C
{Dυ(t1)}.

(ii) Suppose υ1, . . . , υl−1 are well defined. For tl, choose a stopping time υl ∈ C such

that υl−1 ≤ υl and Dυl(tk) ≥ l
l+1

sup
υ∈C
{Dυ(tk)}, k = 1, . . . , l.

Since C is totally ordered and there does not exist a maximal element, it can be easily

verified that the construction works. We define

υ0 = lim
l→∞

υl.

For any ξ ∈ C, there exists some tk such that Dξ(tk) < sup
υ∈C
{Dυ(xk)}. Otherwise, due

to the right-continuity of Dξ, it is the actually the maximal element of C. Therefore,

there exists some l ∈ N such that Dξ(tk) <
l
l+1

sup
υ∈C
{Dυ(tk)}, and hence ξ ≤ υl ≤ υ0.

It remains to show that υ0 is standard and µ(υ0) ≤wcx µ(τ).

We claim that lim
l→∞

E[|Wυl |] = E[|Wυ0|]: Since paths of Walsh Brownian motion

are continuous, sRA0
υl

converges to sRA0
υ0

a.s., and hence sRA0
υl

weakly converges to

sRA0
υ0

. Define gk : R→ R, k ∈ N as follows

gk(x) = |x| ∧ k.
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Therefore, we have

E[sRA0
υl

] = E[gk(sRA0
υl

)] + sE[(RA0
υl
− k/s)+].

Since µ(υl) ≤wcx µ(τ), by Lemma 3.4.5 we obtain that

E[(RA0
υl
− k/s)+] =

∫
γ∈A0

(cυlγ (mυlk/(mυl
γ s))− (mυlk/(mυl

γ s))
+) κ(dγ)

≤
∫

γ∈A0

(cτγ(m
τk/(mτ

γs))− (mτk/(mτ
γs))

+) κ(dγ).

Therefore, E[gk(sRA0
υl

)] uniformly converges to E[sRA0
υl

] as k → ∞. In conjunction

with the fact that

lim
l→∞

E[gk(sRA0
υl

)] = E[gk(sRA0
υ0

)],

we conclude that lim
l→∞

E[sRA0
υl

] = E[sRA0
υ0

]. Similarly, we have lim
l→∞

E[R
Ac0
υl ] = E[R

Ac0
υ0 ],

and Therefore,

lim
l→∞

E[|Wυl |] = lim
l→∞

E[sRA0
υl

] + lim
l→∞

E[RAc0
υl

] = E[sRA0
υ0

] + E[RAc0
υ0

] = E[|Wυ0|].

We show that υ0 is standard for (Wt)t≥0. The almost sure convergence of Wυl →

Wυ0 implies the weak convergence. According to our assumption µ(υl) ≤wcx µ(τ), we

have for any x ∈ R, l ∈ N,

E[|Wυl − x|] ≤ E[|Wτ − x|].

In conjunction with the fact that lim
l→∞

E[|Wυl |] = E[|Wυ0|] and Lemma 3.2.9, we have

that lim
l→∞

E[|Wυl − x|] = E[|Wυ0 − x|] for any x ∈ R. We can conclude that υ0 is

standard for W from Lemma 3.2.11.

To close the argument, we show that µ(υ0) ≤wcx µ(τ). Since υ0 is standard,
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according to Remark 3.4.9, we have that µ(υl) ≤wcx µ(υ0). The equation (3.11) holds

for any standard stopping time. Together with lim
l→∞

E[|Wυl − x|] = E[|Wυ0 − x|] and

the monotone convergence theorem, we conclude that

lim
l→∞

cυlγ (mυl · /mυl
γ )− (mυl · /mυl

γ )+ = cυ0
γ (mυ0 · /mυ0

γ )− (mυ0 · /mυ0
γ )+, κ-a.s.

Now since µ(υl) ≤wcx µ(τ), we have that µ(υ0) ≤wcx µ(τ).

Lemma 3.4.12. If µ ∈ P(Rn) is balanced, then the stopping time τ := inf{t ≥ 0 :

Rt = mµ
Γt
} is standard for (Wt)t≥0.

Proof. Define τk := inf{t ≥ 0 : Rt = mµ
Γt
∧ k}. According to Proposition 3.2.5, we

have that E[τn] < +∞ and

P[Γτk ∈ dγ] =

1
mµγ∧k

κ(dγ)∫
β∈Sn−1

1
mµβ∧k

κ(dβ)
.

It is clear that µ̃(τk)γ = δmµγ∧k, m
τk
γ = mµ

γ ∧ k, and mτk = 1/
∫
β∈Sn−1

1
mµβ∧k

κ(dβ).

Therefore, we obtain that

(cτkγ (mτkx/mτk
γ )− (mτkx/mτk

γ )+) =


mτk , if x ∈ (−∞, 0],

mτk − mτkx
m
τk
γ
, if x ∈ [0,mτk

γ ],

0, if x ∈ [mτk
γ ,+∞) .

Since Γτk converges to Γτ a.s., it can be seen that

P[Γτ ∈ dγ] = lim
k→∞

1
mµγ∧k

κ(dγ)∫
β∈Sn−1

1
mµβ∧k

κ(dβ)
=

1
mµγ

κ(dγ)∫
β∈Sn−1

1
mµβ

κ(dβ)
,
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and also mτ
γ = mµ

γ ,m
τ = mµ, µ̃(τ)

σ
(dγ) = mτ

mτγ
κ(dγ). Therefore, τ is balanced and

(cτγ(m
τx/mτ

γ)− (mτx/mτ
γ)

+) =


mτ , if x ∈ (−∞, 0],

mτ − mτx
mτγ

, if x ∈ [0,mτ
γ],

0, if x ∈ [mτ
γ,+∞) .

Since lim
k→∞

mτk
γ = lim

k→∞
mµ
γ ∧ k = mτ

γ and lim
k→∞

mτk = mτ , it can be seen that

lim
k→∞

µ(τk) ≥wcx µ(τ).

By monotone convergence theorem, we have lim
k→∞

E[|Wτk − x|] = E[|Wτ − x|]. There-

fore, according to Lemma 3.2.11, τ is standard for (Wt)t≥0.

Suppose ξ is a standard stopping time, and (Iγ)γ∈Sn−1 is a collection of intervals on

rays. In the next lemma, we prove that the stopping time τ := inf{t ≥ ξ : Rt ∈ IcΓt}

is still standard. The result for Brownian motion was proved in [70, Lemma 10.1].

Here we give another proof based on Lemma 3.2.11.

Lemma 3.4.13. Given A ⊂ Sn−1, suppose (Iγ)γ∈A is a collection of intervals such

that Iγ = (aγ, bγ) ⊂ (0,+∞) and supγ∈A bγ < +∞. For γ ∈ Ac, we define Iγ = ∅ by

default. Let ξ be a standard stopping time, then stopping time given by τ = inf{t ≥

ξ : Rt ∈ IcΓt} is a standard stopping time as well.

Proof. According to Lemma 3.2.11, it is equivalent to E[|Wτ |] <∞ and

lim inf
k→∞

E[|Wk|1{τ>k}] = 0. The first condition follows from

E[|Wτ |] ≤ E[|Wξ|] + max{s, 1} sup
γ∈A

bγ < +∞,

Since paths of W are unbounded, it follows that τ < +∞ a.s. and hence

70



lim
k→∞

P[τ > k ≥ ξ] = 0. The second condition follows from

lim inf
k→∞

E[|Wk|1{τ>k}] ≤ lim inf
k→∞

E[|Wk|1{ξ>k}] + lim
k→∞

E[|Wk|1{τ>k≥ξ}]

≤ lim inf
k→∞

E[|Wk|1{ξ>k}] + max{s, 1} sup
γ∈A

bγ lim
k→∞

P[τ > k ≥ ξ] = 0.

The proof of the following proposition is based on the idea of [71, Theorem 1].

Proposition 3.4.14. For any stopping time τ such that µ(τ) is balanced, there exists

a standard stopping time υ ≤ τ such that L(Zυ) = L(Zτ ).

Proof. Let D be the collection of standard stopping times ξ such that ξ ≤ τ, µ(ξ) ≤wcx

µ(τ). D is not empty since ξ = 0 is in D. According to Lemma 3.4.11 and Zorn’s

lemma, there exists a maximal element in D. Let denote it by υ. Let us show that

L(Zυ) = L(Zτ ).

The equation (3.11) holds for any balanced stopping time ξ, and hence

E[|x−Wξ|] =


|x|+ 2s

∫
γ∈A0

(cξγ(m
ξx/(mξ

γs))− (mξx/(mξ
γs))

+) κ(dγ) if x ≥ 0 ,

|x|+ 2
∫
γ∈Ac0

(cξγ(−mξx/mξ
γ)− (−mξx/mξ

γ)
+) κ(dγ) if x ≤ 0 .

In conjunction with the fact that µ(υ) ≤wcx µ(τ) and Lemma 3.4.10, L(Zυ) = L(Zτ )

is equivalent to that E[|x−Wυ|] = E[|x−Wτ |] for any x ∈ R. Suppose not. Consider

the open set O = {x : E[|x −Wυ|] < E[|x −Wτ |]}. As in the proof of [71, Theorem

1], it can be shown that P[{υ < τ} ∩ {Wυ ∈ O}] > 0.

If 0 ∈ O and P[{υ < τ} ∩ {Wυ = 0}] > 0, it can be easily seen that mυ < mτ .

Construct a new stopping time as follows

υ′(ω) = υ(ω) + inf{t ≥ 0 : RΓt = rmτ
Γt}1{Rυ(ω)=0},
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where r > 0 will be determined later. If Zυ is not at the origin, we have υ′ = υ, and

if Zυ = 0, we transport the mass from origin to (γ, rmτ
γ)γ∈Sn−1 on rays. Denoting

p := P[Rυ = 0], for any A ⊂ Sn−1, we have that

E[|RA
υ′ − x|1{Rυ>0}] + E[RA

υ′1{Rυ>0}] = E[|RA
υ − x|] + E[RA

υ ]− p|x|.

As in the proof of Lemma 3.4.12, it can be easily verified that

E[|RA
υ′ − x|1{Rυ=0}] + E[RA

υ′1{Rυ=0}] =pµ̃(τ)
σ
(Ac) |x|+ p

∫
γ∈A

|x− rmτ
γ|µ̃(τ)

σ
d(γ)

+ p

∫
γ∈A

rmτ
γµ̃(τ)

σ
d(γ).

Combining these two equations, we obtain that

2E[(RA
υ′ − x)+] =E[|RA

υ′ − x|1{Rυ>0}] + E[|RA
υ′ − x|1{Rυ=0}]

+ E[RA
υ′1{Rυ>0}] + E[RA

υ′1{Rυ=0}]− x

=|x| − x+ 2

∫
γ∈A

(cυγ(m
υx/mυ

γ)− (mυx/mυ
γ)

+) κ(dγ)

+ p

∫
γ∈A

mτ

mτ
γ

(|x− rmτ
γ| − |x|+ rmτ

γ) κ(dγ).

We want to guarantee that for any γ ∈ Sn−1,

2(cυγ(m
υx/mυ

γ)− (mυx/mυ
γ)

+) + p
mτ

mτ
γ

(|x− rmτ
γ| − |x|+ rmτ

γ)

≤ 2(cτγ(m
τx/mτ

γ)− (mτx/mτ
γ)

+).

The left hand side evaluated at x = 0 is equal to 2mυ + 2prmτ , and right hand side

evaluated at x = rmτ
γ is greater than 2mτ − 2rmτ . Therefore, it is enough to take

r ≤ mτ−mυ
(1+p)mτ

. As in Lemma 3.4.12, the stopping time υ′ is also standard. Noting that
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P[{υ < τ} ∩ {υ < υ′}] > 0, and µ(υ′) ≤wcx µ(τ), the stopping time υ′ ∧ τ ∈ D is

strictly larger than υ, which violates our assumption that υ is maximal.

If P[{υ < τ} ∩ {Wυ ∈ O \ {0}}] > 0, there exist a subset A ⊂ Sn−1, a collection

of open intervals (Iγ)γ∈A and a collection of real numbers (dγ)γ∈A such that

(i) κ(A) > 0, Iγ = (aγ, bγ) and supγ∈A bγ < +∞.

(ii) For any γ ∈ A, P[{υ < τ} ∩ {Rυ ∈ Iγ}|Γυ = γ] > 0;

(iii) For any x ∈ Iγ, (cυγ(m
υx/mυ

γ)−(mυx/mυ
γ)

+) < dγ < (cτγ(m
τx/mτ

γ)−(mτx/mτ
γ)

+).

Then we define stopping time υ′(ω) := inf{t ≥ υ(ω) : Rt ∈ IcΓt}. According

Lemma 3.4.13, υ′ is still standard. Note that our construction keeps mυ
γ = mυ′

γ .

The new potential function cυ
′
γ is linear over the interval Iγ such that cυ

′
γ (x) = cυγ(x)

for x ∈ {aγ, bγ}. Therefore, µ(υ′) ≤wcx µ(τ), and P[{υ < τ} ∩ {υ < υ′}] > 0. Then

the stopping time υ′ ∧ τ ∈ D is strictly larger than υ, which violates the maximality

of υ.

Theorem 3.4.15. If τ is a stopping time such that µ(τ) is balanced, then τ is mini-

mal, in the sense of Definition 3.4.3, if and only if (Zτ∧t)t≥0 is uniformly integrable.

Proof. The proof of “if” part is given by Proposition 3.4.4. Now consider the case

when τ is balanced and minimal. First, according to Proposition 3.4.14, there exists

a standard stopping time υ ≤ τ such that L(Zυ) = L(Zτ ). Now using the minimality

of τ we obtain that υ = τ . Finally, according to Corollary 3.4.7, the process (Zτ∧t)t≥0

is uniformly integrable.

3.5 A generalization of Vallois’ Skorokhod embedding

Chacon and Walsh [72] gave a general construction of the Skorokhod embedding

based on one-dimensional potential theory. Later in [83], Cox and Hobson showed

that the construction of both Azéma-Yor [10] and Vallois [180] can be interpreted
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in the framework of [72]. For a strictly convex function Ψ, Vallois also proved that

his solution minimizes E[Ψ(L0
t )] among all the minimal solutions, where (L0

t )t≥0 is

the local time of a Brownian motion. Now we generalize this result to the Walsh

Brownian motion by using the method established in [72] and [83].

Suppose that the target distribution µ ∈ P(Rn) is balanced (see Definition 3.4.2).

Let Ψ be a strictly convex function defined on R such that Ψ′(+∞) ≤ K for some

positive constant K. Let T be the collection of stopping times τ such that the stopped

process (Zt∧τ )t≥0 is uniform integrable and Zτ is of distribution µ. We consider the

optimization problem (3.1)

inf
τ∈T

E[Ψ(LZτ )].

First we present a sufficient condition for the uniform integrability mentioned

above. Choose any A ∈ B(Sn−1) such that 0 < κ(A) < 1, and recall hA,Ac(Zt) in

(3.2). Define the hitting time for x ∈ R,

Hx := inf{t ≥ 0 : hA,Ac(Zt) = x}. (3.12)

Lemma 3.5.1. If xP[τ > Hx] → 0 as x → ±∞, then the stopped process (Zt∧τ )t≥0

is uniformly integrable.

Proof. The argument is part of [82, Theorem 5] and we repeat here for readers’ con-

venience. Note that the uniform integrability of stopped processes Zτ , Rτ , hA,Ac(Z
τ )

are equivalent, and the process (hA,Ac(Zt))t≥0 is a martingale, so it is sufficient to

show that for any stopping time υ ≤ τ ,

E[hA,Ac(Zτ )|Fυ] = hA,Ac(Zυ).

Suppose x < 0, F ∈ Fυ, and set Fx = F ∩ {υ < Hx}. Since hA,Ac(Zt∧Hx) is a
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supermartingale, we have

E[hA,Ac(Zυ∧Hx)1Fx ] ≥ E[hA,Ac(Zτ∧Hx)1Fx ].

By replacing Bt with hA,Ac(Zt) in [82, Lemma 9], we know hA,Ac(Zυ) is integrable.

As a result of the dominated convergence theorem, the left-hand side converges to

E[hA,Ac(Zυ)1F ] as x→ −∞. It is noted that the term on the right is equal to

E[hA,Ac(Zτ )1Fx∩{τ<Hx}] + xP[F ∩ {υ < Hx < τ}],

which converges to E[hA,Ac(Zτ )1F ] according to our assumption. We conclude

E[hA,Ac(Zυ)1F ] ≥ E[hA,Ac(Zτ )1F ], and thus E[hA,Ac(Zυ)|Fυ] ≥ hA,Ac(Zτ ). By a same

argument for x > 0, we obtain the result.

3.5.1 Construction of the stopping time

For each γ ∈ Sn−1, recall functions

cγ(r) =

∫ +∞
0

∣∣mu/mγ − r
∣∣ µ̃γ(du) + r +m

2
.

Here cγ is our potential function on rays. It has the following properties (see e.g. [70]

for proofs).

Lemma 3.5.2. cγ is a positive convex function such that

(i) cγ(0) = m and cγ(r) ≥ r;

(ii) ∂+cγ(r) = µ̃γ([0,
mγr

m
]), ∂−cγ(r) = µ̃γ([0,

mγr

m
));

(iii) lim
r→+∞

cγ(r)− r = 0.

Let us define

ζγ(s) := sup argmin
r>0

{
cγ(r)− s

r

}
.
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It can be seen that ζγ(s) is the r-coordinate of the point on cγ where the tangent line

passes through (0, s). Since such a point may not be unique, we choose the one with

maximum r-coordinate. We also take

φγ(s) =
cγ(ζγ(s))− s

ζγ(s)
, Λ(s) =

∫
γ∈Sn−1

φγ(s) µ̃
σ(dγ),

H(s) =

s∫
0

1

Λ(u)
du, aγ(l) =

mγ

m
ζγ(H

−1(l)),

(3.13)

where H−1 : [0,+∞) → [0,+∞) is the inverse function of H. We are now ready to

define the stopping time,

τ := inf{t ≥ 0 : Rt ≥ aΓt(L
Z
t )}, (3.14)

that is we stop the process if its excursion travels beyond the hypersurface γ 7→

aγ(L
Z
t ).

We say a stopping time τ is of barrier type if there exists some some closed subset

B ⊂ [0,+∞)×Rn such that τ is equal to the hitting time inf{t ≥ 0 : (LZt , Zt) ∈ B}.

Since aγ is non-increasing for any γ ∈ Sn−1, stopping time τ is of barrier-type: taking

B := ∪
r≥aγ(l)

{[l,+∞)× rγ} ⊂ [0,+∞)× Rn,

it can be easily seen that τ = inf{t ≥ 0 : (LZt , Zt) ∈ B}. Before verifying that Zτ ∼ µ,

we need a technical lemma.

Lemma 3.5.3. φγ is absolutely continuous on closed subsets [0,m) for each γ ∈ Sn−1

and

φγ(s) = 1−
s∫

0

1

ζγ(u)
du.

Proof. The proof is from [83, Lemma 2], and we record here for the sake of complete-
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ness. The function φγ is the gradient of the tangent to cγ that passes through (0, s).

By the convexity of cγ, we easily see that φγ is non-increasing on [0,m). In addition,

note that cγ is non-decreasing and ζγ is non-increasing. We estimate φγ(s−δ)−φγ(s)

for small positive δ,

φγ(s− δ) =
cγ(ζγ(s− δ))− (s− δ)

ζγ(s− δ)

≤cγ(ζγ(s))− s+ δ

ζγ(s)
= φγ(s) +

δ

ζγ(s)
.

Therefore, φγ is 1
ζγ(s)

-Lipschitz on closed intervals [0, s] ⊂ [0,m) for any s < m. As a

result, φγ is differentiable almost everywhere on [0,m) and φγ(s) =
∫ s

0
φ′γ(u) du + 1.

Since ζγ is left-continuous, we can calculate the left derivative of φγ,

∂−φγ(s) =∂−
cγ(ζγ(s))− s

ζγ(s)

=
∂+cγ(ζγ(s))∂−ζγ(s)− 1

ζγ(s)
− ∂−ζγ(s)(cγ(ζγ(s))− s)

ζ2
γ(s)

=− 1

ζγ(s)
+
∂−ζγ(s)

ζγ(s)

[
∂+cγ(ζγ(s))−

cγ(ζγ(s))− s
ζγ(s)

]
.

If µ̃γ has no atom at ζγ(s), cγ is then differentiable at ζγ(s) and ∂+cγ(ζγ(s)) is just

the gradient of the tangent cγ(ζγ(s))−s
ζγ(s)

. If µ̃γ has an atom at ζγ(s), we know ∂−ζγ(s)

is zero. In both of these two cases, the second term of the above equation vanishes

and we obtain the result.

Theorem 3.5.4. The stopped process (Zt∧τ )t≥0 is uniformly integrable and Zτ is of

distribution µ, where τ is defined in (3.14).

Before we prove this result we will give a corollary of this theorem and Proposi-

tion 3.4.1.

Corollary 3.5.5. There exists a stopping time υ such that Zυ ∼ µ and (Zυ∧t)t≥0 is

uniformly integrable if and only if µ is balanced.
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Proof of Theorem 3.5.4. Our proof relies on the excursion theory (see e.g. [169],

[171]). It is noted that LZτ is no less than H(s) is equivalent to excursions at local

time l has maximum modulus less than aγ(l) for any l ≤ H(s), where γ is the direction

of excursions. Denote by UR the excursion space of reflected Brownian motion (Rt)t≥0

(see Subsection 3.2.1 for the discussion). Take a subset V of Π := [0,+∞)×Sn−1×UR,

V := {(l, γ, e) : l < H(s), γ ∈ Sn−1, sup
t≥0

e(t) ≥ aγ(l)}.

According to Lemma 3.2.2, the random variable NV =
∑
l>0

1V(l, el) is Poisson with

parameter
H(s)∫
0

dl

∫
γ∈Sn−1

κ(dγ)

aγ(l)
.

Since LZτ ≥ H(s) if and only if NV = 0, we obtain

P[LZτ ≥ H(s)] = exp

−
H(s)∫
0

dl

∫
γ∈Sn−1

κ(dγ)

aγ(l)

 .

By Lemma 3.5.3, we have

−
∫

γ∈Sn−1

mκ(dγ)

mγζγ(u)
= −

∫
γ∈Sn−1

µ̃σ(dγ)

ζγ(u)
=

∫
γ∈Sn−1

φ′γ(u) µ̃σ(dγ) = Λ′(u).
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In conjunction with H ′(u) = 1
Λ(u)

, we get

P[LZτ ≥ H(s)] =exp

−
H(s)∫
0

dl

∫
γ∈Sn−1

κ(dγ)

aγ(l)


=exp

−
s∫

0

H ′(u) du

∫
γ∈Sn−1

mκ(dγ)

mγζγ(u)


=exp

−
s∫

0

Λ′(u)

Λ(u)
du

 = Λ(s).

Recall the definition of τ : we will stop in the region dγ× [r,+∞) at local time l if

and only if (Zt)t≥0 does dot hit stopping region B until an excursion travels beyond

aγ(l) ≥ r at local time l. Take a subset of Π,

V ′ :=

{
(u, γ, eu) : u ∈ (l, l + dl], sup

t≥0
e(t) ≥ aγ(l)

}
.

Hence by Lemma 3.2.2, we obtain

P[NV
′ ≥ 1] =

κ(dγ)

aγ(l)
dl.

Since Zτ ∈ dγ × [r,+∞), LZτ ∈ dl if and only if LZτ ≥ l, NV
′ ≥ 1, aγ(l) ≥ r, we

conclude

P[Zτ ∈ dγ × [r,+∞), LZτ ∈ dl] = 1{aγ(l)≥r}P[LZτ ≥ l]
κ(dγ)

aγ(l)
dl,
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and

P[Zτ ∈ dγ × [r,+∞)] =

∫
{l:aγ(l)≥r}

P[LZτ ≥ l]
κ(dγ)

aγ(l)
dl

=

∫
{u:ζγ(u)≥mr

mγ
}

H ′(u)Λ(u)
mκ(dγ)

mγζγ(u)
du

= −µ̃σ(dγ)

∫
{u:ζγ(u)≥mr

mγ
}

φ′γ(u) du.

Since φγ(s) = ∂−cγ(ζγ(s)) = µ̃γ([0,
mγζγ(s)

m
)), we obtain

∫
{u:ζγ(u)≥mr

mγ
}

φ′γ(u) du = µ̃γ([0, r))− 1,

and therefore

P[Zτ ∈ dγ × [r,+∞)] = µ̃σ(dγ)× µ̃γ([r,+∞)).

To finish the argument, we show that (Zt∧τ )t≥0 is uniform integrable by verifying

Lemma 3.5.1. Recall our notation from (3.12), and consider the case x > 0. Due to

the construction of τ , we have

P[τ > Hx] =

∫
γ∈Ac

κ(dγ)

∫
{l:aγ(l)≥x}

P[LZτ ≥ l]

x
dl

=

∫
γ∈Ac

κ(dγ)

∫
{u:ζγ(u)≥mx

mγ
}

H ′(u)Λ(u)

x
du.

Therefore, we have

xP[τ > Hx] =

∫
γ∈Ac

Leb({u : ζγ(u) ≥ mx

mγ

}) κ(dγ).

The function γ 7→ Leb({u : ζγ(u) ≥ mx
mγ
}) is bounded above by m, and decreases to

0 as x → +∞, so by the dominated convergence theorem, we have limx→+∞ xP[τ >
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Hx] = 0. �

To close this subsection, we show that there exists an integrable stopping time τ

such that Zτ ∼ µ if and only if (µ, κ) is balanced and µ has finite second moment.

The proof of the “only if” part is a simple application of Lemma 3.2.4 and Doob’s

optional sampling theorem. To show the “if” part, we prove that when µ has finite

second moment, the stopping time τ in Theorem 3.5.4 is actually integrable.

Corollary 3.5.6. There exists a stopping time τ such that Zτ ∼ µ and E[τ ] < +∞,

if and only if (µ, κ) is balanced and the second moment of µ is finite, i.e.,

∫
Rn

|z|2 µ(dz) < +∞. (3.15)

Proof. Suppose τ is a stopping time such that E[τ ] < +∞ and Zτ ∼ µ. The condi-

tion E[τ ] < +∞ implies that (Zτ∧t)t≥0 is uniformly integrable. Then due to Propo-

sition 3.4.1, µ is balanced. Take a measurable function on Sn−1 × R+, g(γ, r) = r2.

Applying Lemma 3.2.4, it can be seen that g(Zt)−t is a martingale. Since E[τ ] < +∞,

we can employ Doob’s optional sampling theorem and get

E[τ ] = E[g(Zτ )] =

∫
Rn

|z|2 µ(dz) < +∞.

For the converse, let Wt := κ(Ac)
κ(A)

RA
t − RAc

t for some κ(A) ∈ (0, 1), and τ be the

stopping time constructed in (3.14). Due to Lemma 3.2.4, (Wt)t≥0 is a martingale.

According to Theorem 3.5.4, (Zτ∧t)t≥0 is uniformly integrable and Zτ ∼ µ, and hence

(Wτ∧t)t≥0 is also uniformly integrable. Applying [156, Proposition 2.1], we obtain

that E[τ ] ≤ CE[|Wτ |2] for some constant C > 0. Due to the construction of (Wt)t≥0,
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we conclude that

E[τ ] ≤ CE[|Wτ |2] ≤ C max

{(
κ(Ac)

κ(A)

)2

, 1

}∫
Rn

|z|2 µ(dz) < +∞.

3.5.2 Verification of Optimality.

Beiglböck et al. have developed a new approach to the optimal Skorokhod em-

bedding problem based on the ideas of optimal transport in [35] and [38], where the

duality result and the monotonicity principle are presented. Most of their arguments

are abstract and can carry over to the embedding problem for continuous Feller pro-

cesses. By a similar argument as [35, Theorem 6.14], we know that the optimizer

of problem (3.1) must be of barrier type. Since barrier type solutions are in gen-

eral essentially unique (see [143]), our stopping time τ should solve the optimization

problem (3.1).

Applying the method of pathwise inequalities established in [78] and [84], we verify

the optimality of τ by constructing the dual optimizer (G,M). We define

∆(l) :=

l∫
0

dm

∫
γ∈Sn−1

1

aγ(m)
κ(dγ),

Aγ(l) := Ψ′(+∞)−
+∞∫
l

dm

aγ(m)
e∆(m)

+∞∫
m

e−∆(n)Ψ′′(dn),

where aγ is defined in (3.13). We now construct a function G : Rn → R and a local

martingale (Mt)t≥0 such that Mt + G(Zt) ≤ Ψ(LZt ), and equality is obtained when
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Zt = (Γt, aΓt(L
Z
t )). Define G to be concave on each ray,

G(γ, r) :=



Ψ(0)−
+∞∫
0

dm e∆(m)

+∞∫
m

e−∆(n)Ψ′′(dn) if r = 0,

inf
l>0

rAγ(l) + Ψ(0)−
l∫

0

dm e∆(m)

+∞∫
m

e−∆(n)Ψ′′(dn)

 if r > 0.

Denote by bγ the right-continuous inverse of aγ. Since aγ(r) is non-increasing with

respect to r, it is easily seen that the infimum above is obtained at l = bγ(r), and

hence

G′γ(r+) ≤ Aγ(bγ(r)) ≤ G′γ(r−),

G(γ, r) = rAγ(bγ(r)) + Ψ(0)−
bγ(r)∫
0

dm e∆(m)

+∞∫
m

e−∆(n)Ψ′′(dn).

Take

Mt :=

LZt∫
0

dm

∫
γ∈Sn−1

Aγ(m) κ(dγ)− AΓt(L
Z
t )Rt.

Theorem 3.5.7. The random process (Mt)t≥0 is a local martingale. We have the

pathwise inequality

Mt +G(Zt) ≤ Ψ(LZt ),

where equality is obtained for those paths such that Zt = (Γt, aΓt(L
Z
t )). Therefore, the

stopping time τ constructed in Section 3.5.1 solves the optimization problem

inf
τ∈T

E[Ψ(LZτ )].
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Proof. By Lemma 3.2.4, we have

−dMt = A′Γt(L
Z
t )Rt dL

Z
t + 1{Rt 6=0}AΓt(L

Z
t ) dBZ

t

+

∫
γ∈Sn−1

Aγ(L
Z
t ) κ(dγ) dLZt −

∫
γ∈Sn−1

Aγ(L
Z
t ) κ(dγ) dLZt

= A′Γt(L
Z
t )Rt dL

Z
t + 1{Rt 6=0}AΓt(L

Z
t ) dBZ

t .

Since (LZt )t≥0 is flat off {Rt = 0}, the first term vanishes. Therefore, (Mt)t≥0 is a

local martingale.

Note that

∫
γ∈Sn−1

Aγ(l) κ(dγ) = Ψ′(+∞)−
+∞∫
l

∆′(m)e∆(m) dm

+∞∫
m

e−∆(n)Ψ′′(dn)

= Ψ′(+∞)−
+∞∫
l

e−∆(n)Ψ′′(dn)

n∫
l

∆′(m)e∆(m) dm

= Ψ′(+∞)−
+∞∫
l

e−∆(n)Ψ′′(dn)(e∆(n) − e∆(l))

= Ψ′(l) + e∆(l)

+∞∫
l

e−∆(n)Ψ′′(dn).

Therefore, by the definition of G, we obtain

G(Zt) ≤ AΓt(Lt)Rt + Ψ(0)−
LZt∫
0

dm e∆(m)

+∞∫
m

e−∆(n)Ψ′′(dn)

= −Mt + Ψ(LZt ),

where the inequality is strict unless Zt = (Γt, aΓt(L
Z
t )).

Suppose υ is a stopping time such that Zυ ∼ µ and (Zt∧υ)t≥0 is uniformly inte-

grable. Then by a similar argument as [84, Lemma 2.1], we know that the stopped
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process (Mt∧υ)t≥0 is uniformly integrable, and hence E[Mt∧υ] = 0. So we have that

∫
z∈Rn

G(z) µ(dz) ≤ E[Ψ(LZυ )],

where the equality is obtained when υ = τ . Therefore, the stopping time τ solves the

optimization problem (3.1).
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CHAPTER IV

k-core in Percolated Dense Graph Sequences

4.1 Introduction

For an integer k ≥ 2, the k-core of a graph G is the largest induced subgraph

of G with minimum degree at least k. It was first introduced by Bollobás in [44] to

find large k-connected subgraphs, and since then several studies have been devoted to

investigate the existence and size of k-core. Apart from the theoretical interest, k-core

has been applied to the study of social networks [42, 118], graph visualizing [6, 59],

biology [183]. See also [132] for an extensive discussion on its applications. In the

seminal paper [165], Pittel, Spencer and Wormald determined the threshold for the

appearance of a non-empty k-core in Bernoulli random graphs and uniform random

graphs. The size of k-core have been studied in different random graph ensembles such

as Bernoulli random graphs [144], uniformly chosen random graphs and hypergraphs

with specified degree sequence [80, 97, 121, 122, 149], Poisson cloning model [128]

and the pairing-allocation model [54]. While almost all the previous work focused on

k-core of homogeneous random graphs, Riordan [170] determined the asymptotic size

of k-core for a sequence of inhomogeneous random graphs sampled from a graphon.

In this chapter we study the asymptotic size of k-core in random subgraphs of

convergent dense graph sequences. Let Gn be a sequence of undirected weighted

graphs on n vertices with edge weights {ani,j} that converges to a graphon W . For some
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c > 0, we keep an edge (i, j) of Gn with probability min{cani,j/n, 1} independently,

and denote the resulting random graph by Gn( c
n
). For any kernel W , we can associate

it with a branching process XW , i.e., the number of children of a particle with type

x has Poisson distribution with parameter
∫
W (x, y)dy (see Section 4.2 for precise

definition). Under some mild conditions, we show that

size of k-core of Gn

(
c

n

)
= nPXcW (A) + op(n), (4.1)

where A is the event that the initial particle has at least k children, each of which

has at least k − 1 children, each of which has at least k − 1 children, and so on.

Our contribution is two-fold. First, recall from [142] that every dense graph se-

quence has a convergent subsequence, and hence our result applies to a large class

of dense graph sequences. In particular, our result together with [47, Lemma 1.6]

recover [170] for bounded graphons. An important application of our result is quasi-

random graph (see e.g. [76, 135]), which corresponds to dense graph sequences that

converges to a constant limit, such as Paley graphs (see [120, 135]). As far as we

know, other than the present work no result is known about the size of the k-core in

random subgraphs of quasi-random graphs. Also, there are aplenty examples of dense

random graph models (which are not quasi-random) that are known to converge to

a positive limit (see [19, 41, 73, 74]). Second, as a byproduct of our proof of the

main result, for any sequence of kernels Wn satisfying some mild assumptions that

converges to W we have that

PXWn (A)→ PXW (A),

a new continuity result concerning branching processes, which we believe is of inde-

pendent interest. Even though the theory of graph limits received enormous attention

in the last two decades, the only result alike that we are able to find is [47, Theorem
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1.9], which concerns with the survival probability of a branching process.

Let us describe the main idea of our argument. The proof of upper bound of

size of k-core is based on carefully computing the probability of the event A, and

the estimation of this probability heavily involves homomorphism density; see e.g.

[45, 142]. The proof of lower bound is more delicate. First, we approximate W by a

sequence of finitary kernels Fm as in [46]. Then, we show that for each fixed m, the

branching process Xn associated with Gn contains X(1−εm)Fm as a subset for some εm

with 0 < εm < 1
m

when n is large enough. To conclude the lower bound, we prove a

continuity property and invoke a result (minor variant) from [170].

The rest of the chapter is organized as follows. In Section 4.2, we present our

main results with some discussions. In Section 4.3 and Section 4.4, we prove the

upper bound and lower bound of size of k-core respectively.

4.2 Main results and discussions

We now recall few definitions to state our results. A graphon (or kernel) is defined

to be a symmetric measurable function W : I × I → [0,∞), where I := [0, 1]. Take

W to be the space of graphons. The cut norm of W : I × I → R (signed graphon) is

defined by

‖W‖� := sup
S,T∈B(I)

∣∣∣∣∣∣∣
∫

S×T

W (u, v) du dv

∣∣∣∣∣∣∣ ,
and the cut metric between two graphons W1 and W2 is defined by

d�(W1,W2) := ‖W1 −W2‖�.
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An undirected finite graph Gn with adjacency matrix (ani,j)
n
i,j=1 can be embedded into

a symmetric kernel in a natural way

WGn(x, y) =
n∑

i,j=1

ani,j1Jni (x)1Jnj (y), (4.2)

where Jn1 = [0, 1
n
] and for i = 2, 3, . . . , n, Jni =

(
i−1
n
, i
n

]
.

Let Gn be a sequence of simple graphs on n vertices with edge weights {ani,j}

that converges to a kernel W . For some c > 0, we keep an edge (i, j) of Gn with

probability min{cani,j/n, 1} independently, and denote the resulting random graph

by Gn( c
n
). Here and throughout the chapter we assume that edge weights ani,j are

uniformly bounded by aM > 0, and therefore for sufficiently large n we will have

min{cani,j/n, 1} = cani,j/n. Since retaining every edge independently is nothing but

the bond-percolation on the graph , we call Gn

(
c
n

)
percolated graph sequence (bond-

percolation on arbitrary dense graph sequences was first studied in [45]). Our aim is

to study the size of the k-core of the random graph sequence Gn

(
c
n

)
.

We will heavily use the branching process XW associated with the kernel W . The

process starts with a single particle with type x0, which is chosen uniformly from

[0, 1]. Conditional on generation t, each member in generation t has offspring in next

generation independent of each other, and everything else. The number of children

with types in a set A ⊂ [0, 1] is Poisson with parameter
∫
A
W (x, y) dy, and these

numbers are independent for disjoint sets.

Let Ad be the event that the root has at least k children, each of these k children

has at least k − 1 children, each of those second generation of children has another

k − 1 children and so on until the d-th generation. Define A = ∩∞d=1Ad. Let Ck(G)

denote the size of the k-core of a graph G. We are now ready to discuss our main

result, which provides asymptotic size of the k-core in random subgraphs of dense

graph sequences or percolated dense graph sequences. First let us make the following

89



assumption.

Assumption 4.2.1. (i) There exists some positive constant δ such that

inf
x,y
W (x, y) ≥ δ.

(ii) λ→ PXλW (A) is continuous at λ = c for some c positive.

Theorem 4.2.2. Let Gn be a sequence of graphs with non-negative edge weights which

are bounded above by a constant aM > 0. Suppose that Gn converges to a graphon W

as n→∞ and that the Assumption 4.2.1 holds. Then we have that

Ck

(
Gn

(
c

n

))
= nPXcW (A) + op(n). (4.3)

It suffices to prove the case c = 1 in Theorem 4.2.2. To see this, let Gn be a graph

with edge weights {ani,j} and consider another graph G′n with edge weights {cani,j}.

Therefore the random subgraphs Gn

(
c
n

)
and G′n

(
1
n

)
are equal in distribution. Finally

by our assumption Gn converges to W and this gives G′n converges to cW . The result

(4.3) then follows from the result with c = 1.

Our proof of (4.3) is divided into two parts, which will be given in the next two

sections. We should remark that for the proof of ≤, we only need the assumption

that the edge weights of Gn are uniformly bounded above by aM and Gn → W .

Assumption 4.2.1 is used only in the proof of the ≥ direction in Section 4.4.

Remark 4.2.3. In Theorem 4.2.2, note that PXcW (A) could be zero and in that case

we will only be able to say that there is no ‘giant’ k-core (as usual by ‘giant’ we

mean ‘of size order of n’). From Theorem 4.2.2 one can also obtain the emergence

threshold for the giant k-core from the function c → PXcW (A). More precisely, if

there is a point c0 > 0 such that for 0 ≤ c < c0, PXcW (A) = 0 and for c > c0,

PXcW (A) > 0, then c0 will be the threshold for the appearance of giant k-core. The
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other discontinuity points could be studied from this function as well.

Remark 4.2.4. In Theorem 4.2.2, it is not possible to remove the assumption that

λ→ PXλW (A) is continuous at λ = c, and the reason is explained at the end of Section

3.1 in [170]. It can be easily seen that infx,yW (x, y) ≥ δ implies the irreducibility of

W (see e.g. [45] for the definition of irreducibility). It might be possible to replace

our Assumption 4.2.1 (i) by the irreducibility assumption of W , and we defer it to a

future work.

As a byproduct in the proof of Theorem 4.2.2, we also obtain a result regarding

branching processes that might be of independent interest.

Proposition 4.2.5. Let Wn be a sequence of graphons such that d�(Wn,W ) → 0.

Also suppose there exists some positive constant δ such that infx,yW (x, y) ≥ δ and

λ→ PXλW (A) is continuous from below at λ = 1. Then it holds that

PXWn (A)→ PXW (A), (4.4)

as n→∞.

Proof. It is proved in Propositions 4.3.7, 4.4.6.

Let us point out that Proposition 4.2.5 has the following important consequence.

Note that the function λ→ PXλW (A) is non-decreasing, and therefore it can have at

most countably many discontinuity points. Hence in many cases the next corollary

provides a way to approximate the size of k-core using only Gn.

Corollary 4.2.6. Let Gn be a sequence of graphs with non-negative edge weights

which are bounded above by a constant aM > 0. Suppose that Gn converges to a

graphon W as n → ∞, where infx,yW (x, y) ≥ δ for some δ > 0, and λ → PXλW (A)

is continuous at λ = c, then
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Ck

(
Gn

(
c

n

))
= nPXcWGn

(A) + op(n). (4.5)

Proof of Corollary 4.2.6. The proof is immediate using Theorem 4.2.2 and Proposi-

tion 4.2.5.

4.3 Proof of the upper bound in Theorem 4.2.2

We will first prove the upper bound, i.e.,

Ck

(
Gn

(
1

n

))
≤ nPXW (A) + op(n).

The idea is as follows: if a vertex v of a graph is in the k-core, then for any d > 0 either

v has property Ad or v is contained in a cycle of length smaller than 2d. Since the

probability of occurrence of short cycles is small for large enough n, the probability

that v is in the k-core is bounded above by the probability of having property Ad.

Therefore to prove the upper bound, we explicitly calculate the probability of eventAd

using homomorphism density, and a tightness argument. Finally, by letting d→∞,

we obtain that Ck

(
Gn

(
1
n

))
≤ nPXW (A)+op(n). Note that we do not need the limit

W to be bounded below by a constant or the continuity assumption for the upper

bound.

Let us construct a branching process ∗Xn associated with the random graph

Gn

(
1
n

)
. ∗Xn has n-types of offsprings 1, 2, . . . , n. It starts with a single particle whose

type is chosen uniformly from 1, 2, . . . , n. Conditioning on generation t, each member

of generation t has offsprings in the next generation independent of each other, and

everything else. The number of j-offspring of a particle of type i is Bernoulli(ani,j/n).

We will also use another branching process where number of j-offsprings of a

particle of type i is Poisson(ani,jρn), where ρn ≥ 1
n

is to be determined. We denote

this process by Xn,ρn (simply by Xn if ρn = 1
n
). By taking ρn = 1

n−aM
, the Poisson
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branching process Xn,ρn stochastically dominates, in the first order, ∗Xn for n > 3aM .

To see this, it is sufficient to show the following inequality for any i, j ∈ [n]

P
(

Poisson
(
ani,jρn

)
> t

)
≥ P

(
Bernoulli

(
ani,j
n

)
> t

)

It is trivial for t ≥ 1 and t < 0. We need to check only for t = 0. It can be easily

verified that the above inequality is equivalent to

nρn

(
1− e−ani,jρn

)
ani,jρn

≥ 1.

For n > 3aM , we have that ani,jρn =
ani,j
n−aM

< 1/2, and hence according to the Taylor

expansion of e−a
n
i,jρn ,

nρn

(
1− e−ani,jρn

)
ani,jρn

> nρn(1− ani,jρn/2) ≥ (1 + aMρn)(1− aMρn/2) ≥ 1.

Note that we can write

Ck

(
Gn

(
1

n

))
=
∑
v∈[n]

1

{
v ∈ k-core of Gn

(
1

n

)}

If a vertex v is in the k-core, then one of the two things must be true:

(i) v is in a cycle within d-neighborhood (this implies v is in a cycle of length at

most 2d);

(ii) Starting from v there is a tree such that v has k neighbors, each of these k

neighbors has at least k − 1 neighbors and this happens up to generation d. In

this case we will call vertex v has property Ad.

Therefore
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Ck

(
Gn

(
1

n

))
≤
∑
v∈[n]

1 {v is in a cycle of length at most 2d}

+
∑
v∈[n]

1 {v has property Ad}

=Term I + Term II. (4.6)

Let Vn be an uniform random variable on {1, 2, . . . , n} independent of everything else.

Then according to our construction,

E(Term II) ≤ nP (∗Xn with root Vn has property Ad)

≤ nP (Xn,ρn with root Vn has property Ad) . (4.7)

Before presenting our first proposition, we state an auxiliary result, BKR inequal-

ity (see e.g. [48]). Consider a product space Ω of finite sets Ω1, . . . ,Ωk,

Ω = Ω1 × . . .× Ωk.

Let F = 2Ω, and µ be a product of k probability measures µ1, . . . , µk. For any

configuration ω = (ω1, . . . , ωk) ∈ Ω, and any subset S of [k], we define the cylinder

[ω]S by

[ω]S := {ω̂ : ω̂i = ωi, ∀i ∈ S}.

For any two subsets A,B ⊂ Ω, define

A ◦B := {ω : there exists some S = S(ω) ⊂ [k] such that [ω]S ⊂ A, [ω]Sc ⊂ B}.
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Lemma 4.3.1. For any product space Ω of finite sets, product probability measure µ

on Ω and A,B ⊂ Ω, we have the inequality

µ(A ◦B) ≤ µ(A)µ(B).

In this chapter, to apply BKR inequality, we always take Ωn
i,j = {0, 1}, i 6= j ∈

{1, . . . , n}, and Ω =
∏

i 6=j∈[n] Ωn
i,j. Then ωni,j = 1 represents that the node i and j

are linked in the random graph Gn

(
1
n

)
. According to our construction, we also have

µi({1}) = min{ani,j/n, 1}.

Proposition 4.3.2. Let Gn be a sequence of graphs with non-negative edge weights

which are bounded above by a constant aM > 0. Then for any fixed d, it holds that

Ck

(
Gn

(
1

n

))
≤ nP (Xn,ρn with root Vn has property Ad) + op(n).

Proof. According to (4.6) and (4.7), it suffices to show that

Term II = E(Term II) + op(n), and Term I = op(n).

In the first two steps, we show the concentration of Term II by computing its variance,

and in the last step prove that Term I is small.

Step I: For any two independently and uniformly chosen vertices U and V of Gn

(
1
n

)
,

P(d(U, V ) ≤ 2d) =
1

n2

∑
u,v∈[n]

P(d(u, v) ≤ 2d) = o(1),

where d is the graph distance. To see this, note that d(U, V ) ≤ 2d implies there is a

path from U to V of length at most 2d. Thus

P(d(U, V ) ≤ 2d) ≤
2d∑
i=1

P(#{paths of length i from U to V } ≥ 1)

95



Using Markov’s inequality we get

P(d(U, V ) ≤ 2d) ≤ 1

n2

∑
u,v∈[n]

2d∑
i=1

E(#{paths of length i from u to v})

We can get a crude upper bound as

P(d(U, V ) ≤ 2d) ≤ 1

n2

∑
u,v∈[n]

2d∑
i=1

ni−1

(
aM
n

)i
= o(1).

Step II: Let Gd
n[v] be the subgraph of Gn

(
1
n

)
formed by the vertices within distance

d of v ∈ [n], and define Bv = {root v has property Ad in Gd
n[v]}. It can be easily

verified that

E(Term II2) =
∑

v,v′∈[n]

P
(
root v and v′ has property Ad

)
=
∑
v∈[n]

P(Bv) +
∑
v 6=v′

P(Bv ∩Bv′) (4.8)

For two different vertices v and v′, we break the probability in two parts,

P(Bv ∩Bv′) =P(Bv ∩Bv′ , d(v, v′) ≤ 2d) + P(Bv ∩Bv′ , d(v, v′) > 2d). (4.9)

For the second term on the right of (4.9), it can be easily seen that

{d(v, v′) > 2d} ∩Bv ∩Bv′ ⊂ {d(v, v′) > 2d} ∩Bv ◦Bv′ .

Therefore we get that

P(Bv ∩Bv′) = P
(
d(v, v′) ≤ 2d

)
+ P

(
Bv ◦Bv′ , d(v, v′) > 2d

)
≤ P

(
d(v, v′) ≤ 2d

)
+ P (Bv ◦Bv′) .
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Now since Bv and Bv′ are increasing events, according to Lemma 4.3.1 we obtain that

P (Bv ∩Bv′) ≤ P
(
d(v, v′) ≤ 2d

)
+ P(Bv)P(Bv′). (4.10)

Combining (4.10) and (4.8) we get

E(Term II2) ≤ n2P
(
d(U, V ) ≤ 2d

)
+
(
E (Term II)

)2
+
∑
v∈[n]

(
P(Bv)− P(Bv)

2
)
. (4.11)

Therefore using Step I we get V(Term II) = o(n2). Now using Markov’s inequality

we conclude that Term II = E(Term II) + op(n).

Step III: Let us denote Cv := {v is in a cycle of length at most 2d}. The first mo-

ment of the Term I is given by

∑
v∈[n]

P (Cv) ≤ n
2d∑
l=3

(n− 1)!

(n− l)!

(
aM
n

)l
≤

2d∑
l=3

alM = o(n). (4.12)

For the second moment, note that

E(Term I2) =
∑
v∈[n]

P(Cv) +
∑
v 6=v′

P(Cv ∩ Cv′).

For two different vertices v, v′, the probability can be written as

P(Cv ∩ Cv′) = P(Cv ∩ Cv′ , d(v, v′) > 2d) + P(Cv ∩ Cv′ , d(v, v′) ≤ 2d),

and therefore

P(Cv ∩ Cv′) ≤ P(Cv ∩ Cv′ , d(v, v′) > 2d) + P(d(v, v′) ≤ 2d).

97



Note that

{d(v, v′) > 2d} ∩ Cv ∩ Cv′ ⊂ {d(v, v′) > 2d} ∩ Cv ◦ Cv′ .

Therefore according to Lemma 4.3.1, we obtain that

P(Cv ∩ Cv′) ≤ P(Cv ◦ Cv′ , d(v, v′) > 2d) + P(d(v, v′) ≤ 2d)

≤ P(Cv ◦ Cv′) + P(d(v, v′) ≤ 2d)

≤ P(Cv)P(Cv′) + P(d(v, v′) ≤ 2d).

Now summing over all v, v′ ∈ [n] and using Step I, we get

E(Term I2) = E(Term I)2 + o(n2)

We can conclude our result by using Markov’s inequality.

4.3.1 Recursive formula

Let us first introduce some notation. For any graphon W , we denote the initial

particle of its associated branching process XW by XW
0 , and the first generation

by XW
{1}, . . . , X

W
{N(W )0}, where N(W )0 is the number of offsprings of XW

0 . For each

element in the d-th generation, we denote it by XW
{i1|i2|...|id} if he is the id-th child of

XW
{i1|i2|...|id−1}. Denote the number of offsprings of XW

{i1|i2|...|id} by N(W ){i1|i2|...|id}, and

the type of XW
{i1|i2|...|id} by T (W ){i1|i2|...|id}. Define the collection of offspring numbers

in the first d generations by

N(W )d := {N(W )0} ∪ . . . ∪ {N(W ){i1|i2|...|id} : ij ≤ N(W ){i1|i2|...|ij−1}, j = 1, . . . , d},
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and the collection of offspring numbers of XW
{i}, 1 ≤ i ≤ N(W )0 by

N(W )d{i} := {N(W ){i}} ∪ . . . ∪ {N(W ){i|i2|...|id} : ij ≤ N(W ){i1|i2|...|ij−1}, j = 2, . . . , d}.

Denote the realizations of random variables N(W )d and N(W )d{i} by Kd and Kd
{i}

respectively, and especially denote the realization of N(W )0 by k0. Define functions

g(x,Kd) := P(N(W )d = Kd |T (W )0 = x).

It is clear that

P(N(W )d = Kd) =

∫
g(x,Kd) dx.

Proposition 4.3.3. We have that

g(x,Kd) =
e−

∫
W (x,y)dy

k0!

k0∏
j=1

(∫
W (x, y)g(y,Kd

{j}) dy

)
. (4.13)

Proof. It can be easily seen that g(x, k0) = 1
k0!
e−

∫
W (x,y)dy

(∫
W (x, y)dy

)k0 . For d ≥ 1,

we get that

g(x,Kd) =P(N(W )d = Kd |T (W )0 = x)

=P(N(W )0 = k0 |T (W )0 = x)

× P(N(W )d{j} = Kd
{j}, j = 1, . . . , k0 |N(W )0 = k0, T (W )0 = x)

=g(x, k0)

∫
y1

. . .

∫
yk0

k0∏
j=1

g(yj,K
d
{j})P(T (W ){j} ∈ dyj |N(W )0 = k0, T (W )0 = x).
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In conjunction with the equation

k0∏
j=1

P(T (W ){j} ∈ dyj |N(W )0 = k0, T (W )0 = i) =

∏k0

j=1 W (x, yj) dyj

(
∫
y
W (x, y) dy)k0

,

we obtain the recursive formula

g(x,Kd) =
e−

∫
W (x,y)dy

k0!

k0∏
j=1

(∫
W (x, y)g(y,Kd

{j}) dy

)
.

4.3.2 Convergence

Let Wn be a sequence of graphons such that d�(Wn,W )→ 0 and

sup
n,x,y

Wn(x, y) ≤ aM

for some positive constant aM . Let Xn be the associated branching process of Wn,

and

gn(x,Kd) = P(N(Wn)d = Kd |T (Wn)0 = x).

We want to show that as n→∞

∫
gn(x,Kd) dx→

∫
g(x,Kd) dx.

To see this, for any graphon W , any finite tree T with root 0, any x ∈ [0, 1], we define

the vertex prescribed homomorphism density

tx(T,W ) =

∫
[0,1]|V (T )|−1

∏
0i∈E(T )

W (x, xi)
∏

ij∈E(T ),i,j≥1

W (xi, xj) dx1 . . . dx|V (T )|−1,
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and the homomorphism density

t(T,W ) =

∫
[0,1]

tx(T,W ) dx.

It is well-known that for finite T , t(T,Wn) → t(T,W ) as long as d�(Wn,W ) →

0; see e.g. [49, 50, 142]. We will rewrite
∫
gn(x,Kd) dx and

∫
g(x,Kd) dx) as∑

m≥0 λmt(Tm,Wn) and
∑

m≥0 λmt(Tm,W ) respectively for a sequence of trees Tm.

Proposition 4.3.4. Suppose W is a graphon such that supx,yW (x, y) ≤ aM . Then

for any d ∈ N and any configuration Kd, there exists a sequence of finite trees

(Tm)m≥0, and a sequence of real numbers (λm)m≥0 such that

(i)
∑

m≥0 |λm| a
|E(Tm)|
M < +∞ ;

(ii) g(x,Kd) =
∑

m≥0 λm t
x(Tm,W ).

Proof. Let us prove by induction. For d = 0, we have that

g(x, k) =
1

k!
e−

∫
W (x,y)dy

(∫
W (x, y)dy

)k
=

1

k!

∑
m=0

(−1)m

m!

(∫
W (x, y)dy

)m+k

.

For any m ∈ N, take Tm to be an (m + k)-star, i.e., a tree of height 1 with (m + k)

leaves. Define λm := (−1)m

k!m!
. Then it can be easily seen that

∑
m≥0

|λm| a|E(Tm)|
M =

∑
m≥0

at+kM

k!m!
< +∞,

and

g(x, k) =
∑
m≥0

λm t
x(Tm,W ).

Now suppose that our claim is true for any configuration Kd−1. According to our
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root

1 . . . m0 T 1
m1

. . . T k0
mk0

Figure 4.1: Tree Tm

recursive formulas (4.13), we expand the exponential term and obtain that

g(x,Kd) =
1

k0!

∑
m≥0

(−1)m

m!

(∫
W (x, y)dy

)m k0∏
j=1

(∫
W (x, y) g(y,Kd

{j}) dy

)
.

For each Kd
{j}, j = 1, . . . , k0, we have sequences (λjm)m≥0, (T

j
m)m≥0 such that

our claim is satisfied. For each m = (m0,m1, . . . ,mk0) ∈ Nk0+1, we define λm =

(−1)m0

k0!m0!

∏k0

j=1 λ
j
mj
, and tree Tm as in Figure 4.1. It is then clear that

∑
m∈Nk0+1

|λm| a|E(Tm)|
M ≤

∑
m0∈N

ak0+m0
M

k0!m0!

k0∏
j=1

∑
mj∈N

|λjmj | a
|E(T jmj )|
M

 < +∞.

According to our induction, we have that

g(y,Kd
{j}) =

∑
mj≥0

λjmj t
y(T jmj ,W ).

Therefore, we obtain that

g(x,Kd) =
∑

m∈Nk0+1

λm

(∫
W (x, y)dy

)m0 k0∏
j=1

(∫
W (x, y) ty(T jmj ,W ) dy

)
.

It can be easily verified that for each m ∈ Nk0+1,

tx(Tm,K
d) =

(∫
W (x, y)dy

)m0 k0∏
j=1

(∫
W (x, y) ty(T jmj ,W ) dy

)
.
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Thus, we conclude that

g(x,Kd) =
∑

m∈Nk0+1

λm t
x(Tm,W ).

Proposition 4.3.5. Suppose Wn is a sequence of graphons such that d�(Wn,W )→ 0,

and satisfying supn,x,yWn(x, y) ≤ aM for some positive constant aM . Then it holds

that

lim
n→∞

P(N(Wn)d = Kd) = P(N(W )d = Kd).

Proof. According to Proposition 4.3.4, we get that

P(N(Wn)d = Kd) =

∫
gn(x,Kd) dx =

∑
m≥1

λm t(Tm,Wn),

P(N(W )d = Kd) =

∫
g(x,Kd) dx =

∑
m≥1

λm t(Tm,W ).

Since Wn converges to W in that cut norm, we have that t(Tm,Wn) → t(Tm,W ) as

n→∞. Due to the uniform bound

∑
m≥1

λm t(Tm,Wn) ≤
∑
m≥1

λm a
|E(Tm)|
M < +∞,

we apply the dominated convergence theorem, and conclude that P(N(Wn)d = Kd)

converges to P(N(W )d = Kd) as n→∞.
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4.3.3 Tightness

Notice that XW ∈ Ad is equivalent to that N(W )d ∈ Ad. To make our compu-

tation clear, we will sometimes adopt the latter notation. Recall we want to show

that

P(N(W )d ∈ Ad) = lim
n→∞

P(N(Wn)d ∈ Ad). (4.14)

To apply Proposition 4.3.5, we need a tightness result.

Lemma 4.3.6. For K ∈ N, we define N(W )d ≤ K if N(W ){i1|i2|...|ij} ≤ K for any

XW
{i1|i2|...|ij} in the first d generations. Suppose supx,yW (x, y) ≤ aM for some positive

constant aM . Then for any α > 0, d ∈ N, there exists a large enough K0 ∈ N

uniformly for x ∈ [0, 1] such that K ≥ K0 implies

P(N(W )d ≤ K |T (W )0 = x) > 1− (1/K)α. (4.15)

Here, the choice of K0 only depends on α, d and aM .

Proof. Let us prove (4.15) by induction. Recall for the initial generation we have that

g(x, k) =
1

k!
e−

∫
W (x,y)dy

(∫
W (x, y)dy

)k
.

For any k ∈ N, we define for c ∈ R+

ψk(c) :=
∞∑

l=k+1

1

l!
e−ccl.

Thus we have that

P(N(W )0 ≤ k |T (W )0 = x) = 1− ψk
(∫

W (x, y)dy

)
.
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It can be easily verified that ψ′k(c) = e−cck

k!
≥ 0, and hence ψk

(∫
W (x, y)dy

)
≤

ψk(aM). Take K large enough that ψK(aM) < (1/K)α. Then it is clear that

P(N(W )0 ≤ K |T (Xn)0 = x) = 1− ψK
(∫

W (x, y)dy

)
> 1− (1/K)α.

Assume our claim is true for d − 1. Then for any β > 0, there exists a K such

that

P(N(W )d{j} ≤ K |T (W )d{j} = y) ≥ 1− (1/K)β.

Note that

P(N(W )d ≤ K |T (W )0 = x)

=
K∑
k=0

(
P(N(W )d{j} ≤ K, j = 1, . . . , k |N(W )0 = k, T (W )0 = x)

×P(N(W )0 = k |T (W )0 = x)
)
.

As in the proof of Proposition 4.3.3, we have that

P(N(W )d ≤ K |T (W )0 = x)

=
K∑
k=0

e−
∫
W (x,y)dy

k!

k∏
j=1

∫
y

W (x, y)P(N(W )d{j} ≤ K |T (W ){j} = y) dy




>
K∑
k=0

e−
∫
W (x,y)dy

k!

k∏
j=1

∫
y

W (x, y)(1− (1/K)β dy)




=
K∑
k=0

(
e−

∫
W (x,y)dy

k!

(∫
W (x, y)dy

)k
(1− (1/K)β)k

)
.
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Since (1− (1/K)β)K > 1− (1/K)β−2 for large K, we have that

P(N(W )d ≤ K |T (W )0 = x) >
K∑
k=0

(
e−

∫
W (x,y)dy

k!

(∫
W (x, y)dy

)k)
(1− (1/K)β−2)

>(1− ψK(aM))(1− (1/K)β−2).

Therefore by taking β = α + 3, and large K such that ψK(aM) < (1/K)α+1, we

conclude that

P(N(W )d ≤ K |T (W )0 = x) > 1− (1/K)α.

Proposition 4.3.7. Suppose Wn is a sequence of graphons such that d�(Wn,W )→ 0,

and satisfying supn,x,yWn(x, y) ≤ aM for some positive constant aM . Then for any

fixed d, we have that

lim
n→∞

P(N(Wn)d ∈ Ad) = P(N(W )d ∈ Ad),

from which we conclude that

lim sup
n→∞

PXWn (A) ≤ PXW (A).

Proof. Due to Proposition 4.3.5, it can be seen that for fixed d,K

lim
n→∞

P(N(Wn)d ∈ Ad,N(Wn)d ≤ K) = P(N(W )d ∈ Ad,N(W )d ≤ K).

Applying Lemma 4.3.6, we let K →∞, and obtain that

lim
n→∞

P(N(Wn)d ∈ Ad) = P(N(W )d ∈ Ad).
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For any ε > 0, there exists a d such that

P(N(W )d ∈ Ad) = P(XW ∈ Ad) ≤ PXW (A) + ε.

Then, it can be easily verified that

lim sup
n→∞

PXWn (A) ≤ lim sup
n→∞

P(N(Wn)d ∈ Ad) = P(N(W )d ∈ Ad) ≤ PXW (A) + ε.

Therefore we obtain that

lim sup
n→∞

PXWn (A) ≤ PXW (A).

4.3.4 Completing the proof of the upper bound

Recalling Proposition 4.3.2, we have that

Ck

(
Gn

(
1

n

))
≤ nP(Xn,ρn ∈ Ad) + op(n).

Note that Xn,ρn is the branching process associated with the graphon ρnWGn , and

d�(ρnWGn ,W )→ 0. Applying Proposition 4.3.7 with Wn = ρnWGn , we obtain that

Ck

(
Gn

(
1

n

))
≤ nPXW (Ad) + op(n).

Letting d→∞ in the above inequality, we conclude our result.

�
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4.4 The proof of the lower bound in Theorem 4.2.2

We say a graphon F is finitary if there exist finitely many disjoint intervals Iti , i =

1, . . . ,M such that ∪Mi=1Iti = [0, 1] and the restriction of F on Iti×Itj is a constant for

any 1 ≤ i, j ≤M . According to [46, Lemma 7.3], the graphon W can be approximated

pointwise from below by finitary graphons. More precisely, we have that

Lemma 4.4.1. There exists a sequence of finitary graphons (Fm)m∈N such that Fm ≤

W and lim
m→∞

Fm(x, y) = W (x, y) a.s.

Taking a sequence of finitary graphons (Fm)m∈N as in Lemma 4.4.2, without loss of

generality we can also assume that infx,y Fm(x, y) ≥ δ and Fm(x, y) is increasing in m

for any x, y ∈ [0, 1]2. Keep in mind that infx,y Fm(x, y) ≥ δ implies the irreducibility

of Fm. We will prove in Subsection 4.4.1 that for any ε > 0,m ∈ N,

Ck

(
Gn

(
1

n

))
≥ (1− 2ε)nPX(1−2ε)Fm (A) + op(n). (4.16)

Then in Subsection 4.4.2, we will show the continuity property

lim inf
ε→0,m→∞

PX(1−2ε)Fm (A) ≥ PXW (A). (4.17)

It is clear that (4.16) and (4.17) together prove the lower bound part of Theorem 4.2.2,

i.e.,

Ck

(
Gn

(
1

n

))
≥ nPXW (A) + op(n).

4.4.1 Proof of (4.16)

Fixing m ∈ N, and ε ∈ (0, 1
m

) such that λ → PXλ(1−ε)Fm (A) is continuous at

λ = 1. Suppose [0, 1] is a disjoint union of intervals Itj , j = 1, . . . ,M , and there

exists a collection {Fm(ti, tj) : 1 ≤ i, j ≤ M} such that Fm(x, y) = Fm(tj, tk) for
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x ∈ Itj , y ∈ Itk . Here we say th, h = 1, . . . ,M labels to distinguish types in the

definition of branching process Xn.

Before proceeding to the rigorous proof, let us first give main ideas of our argu-

ment. We divide vertices of Gn into M groups Goodn,t1 , . . . ,Goodn,tM with the

property that for any vertex i ∈ Goodn,th and k = 1, . . . ,M

d̃ni,tk
n

:=
∑

j∈Goodn,tk

ani,j
n
≥ (1− ε)Fm(th, tk)|Ik|.

Therefore, we can heuristically consider Gn as a ‘finitary’ graph by labelling vertices

in Goodn,th by th, h = 1, . . . ,M . Due to the above inequality, the branching process

Xn associated with Gn stochastically dominates, in the first order, the branching

process X(1−ε)Fm associated with (1− ε)Fm. Take F ε
m

(
1
n

)
to be an n-vertex random

graph sampled from (1− ε)Fm, i.e., independently uniformly select vertices vi ∈ [0, 1]

and then connect vi, vj independently with probability (1 − ε)Fm(vi, vj)/n. By the

standard exploration argument (see e.g. [46, Section 9]), locally the random graph

Gn

(
1
n

)
(F ε

m

(
1
n

)
resp.) is almost the branching process XGn (X(1−ε)Fm resp.). Thus,

heuristically the random graph Gn

(
1
n

)
is more connected than the random graph

F ε
m

(
1
n

)
, and thus has larger size of k-core. Therefore, the inequality (4.16) follows

from [170, Theorem 3.1], which says

Ck

(
F ε
m

(
1

n

))
= nPX(1−ε)Fm (A).

The following simple lemma will be used to label vertices of Gn.

Lemma 4.4.2. Let Assumption 4.2.1(i) hold and ε ∈ (0, 1
m

) be a fixed constant.

Suppose that ‖WGn −W‖� → 0, and η = min{|It1 |, . . . , |ItM |} > 0. Let c > 0. For

large n such that ‖WGn − W‖� ≤ ηδεc
2M

, there exists a collection of disjoint subsets

B̃adn,tj ⊂ Itj , j = 1, . . . ,M such that
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(i) |B̃adn,tj | ≤ c, j = 1, . . . ,M .

(ii) For any x ∈ Itj \ B̃adn,tj , we have that

∫
Itk

WGn (x, y) dy ≥ (1− ε/2)Fm(tj, tk)|Itk |, k = 1, . . . ,M. (4.18)

Proof. First let us recall that one can also write

‖W‖� = sup
0≤f,g≤1 measurable

∣∣∣∣∫ f(x)g(y)W (x, y) dx dy

∣∣∣∣ . (4.19)

For any 1 ≤ j, k ≤M , define

B̃adn,tj ,tk =

x ∈ Itj :

∫
Itk

WGn (x, y) dy < (1− ε/2)Fm(tj, tk)|Itk |

 .

Taking f(x) = 1{x∈B̃adn,tj ,tk}
and g(y) = 1{y∈Itk} in (4.19) , we obtain that

∫
B̃adn,tj ,tk

dx

∫
Itk

(WGn(x, y)−W (x, y)) dy ≥ −‖WGn −W‖� = −ηδεc
2M

. (4.20)

In conjunction with the fact that Fm ≤ W , it holds that

∫
B̃adn,tj ,tk

dx

∫
Itk

(WGn(x, y)− Fm(x, y)) dy ≥ −ηδεc
2M

. (4.21)

Since for any x ∈ B̃adn,tj ,tk ,
∫
Itk

(WGn(x, y)− Fm(x, y)) dy ≤ −ηδε/2, it follows that

|B̃adn,tj ,tk | ≤ c/M.
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Let us take

B̃adn,tj =
M⋃
k=1

B̃adn,tj ,tk ,

and it is clear that

|B̃adn,tj | ≤ c.

Before proving the main result in this subsection, we would like to point out that

our main contribution here is the observation that one can label vertices of Gn so

that heuristically it dominates the finitary graphon (1− ε)Fm. The remaining part of

proof is just a modification of [170, Theorem 3.1]. We summarize it as the following

lemma, and refer the reader to [170] for a detailed argument.

Lemma 4.4.3. Suppose Fm is an irreducible finitary graphon with M labels t1, . . . , tM ,

and λ→ PXλFm (A) is continuous at λ = 1. Let Gn be a sequence of graphs such that

sup{ani,j} < +∞. Denote by XGn
i (XFm

th
resp.) the branching process associated with

Gn (Fm resp.) that has the initial particle with type i (label th resp.). If the vertices

of Gn can be divided into M groups Gn,th , h = 1, . . . ,M such that for some ε ∈ (0, 1)

(i)
|Gn,th

|
n
≥ (1− ε)|Ith |, h = 1, . . . ,M ,

(ii) For each vertex i ∈ Gn,th, the branching process XGn
i stochastically dominates,

in the first order, the branching process XFm
th

,

then it holds that

Ck

(
Gn

(
1

n

))
≥ (1− ε)nPX(1−ε)Fm (A) + op(n).

Completing the proof of (4.16). Since λ→ PXλFm (A) is non-decreasing with respect

to λ, it has only countably many discontinuity points. Therefore we can choose arbi-
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trarily small ε such that λ→ PXλ(1−ε)Fm (A) is continuous at λ = 1. For concreteness

we choose 0 < ε < 1
m

. Take ε, c, η and B̃adn,th as in Lemma 4.4.2. For h = 1, . . . ,M ,

define

Goodn,th :=

{
i ∈ [n] :

(
i− 1

n
,
i

n

]
∈ Ith \ B̃adn,th

}
.

Due to the construction of WGn in (4.2), for any
(
i−1
n
, i
n

]
∈ Ith , we have either(

i−1
n
, i
n

]
⊂ B̃adn,th or

(
i−1
n
, i
n

]
∩ B̃adn,th = ∅. Therefore it can be easily verified that

|Goodn,th|
n

≥ |Ith| − c−
2

n
.

For any i ∈ Goodn,th , define

d̃ni,tk :=
∑

j∈Goodn,tk

ani,j, k = 1, . . . ,M.

As a result of (4.18), we obtain that

d̃ni,tk
n
≥
∫
Itk

WGn

(
i/n, y

)
dy − aM

(
|Itk | −

|Goodn,tk |
n

)

≥ (1− ε/2)Fm(th, tk)|Itk | − (c+ 2/n)aM .

Take c ≤ min
{

εδη
4aM

, εη
4

}
, n ≥ max

{
2
εδη
, 2
εη

}
with ‖WGn −W‖� ≤ ηδεc

2M
. We conclude

that there exists a collection of disjoint Goodn,th ⊂ [n], h = 1, . . . ,M , which satisfies

the following

(i) For all h = 1, . . . ,M ,

|Goodn,th|
n

≥ (1− ε)|Ith|. (4.22)

112



(ii) For any i ∈ Goodn,th , it holds that

d̃ni,tk
n
≥ (1− ε)Fm(th, tk)|Itk |, k = 1, . . . ,M. (4.23)

For vertices in Goodn,th , h = 1, . . . ,M , we label them with th. Let us define

Goodn :=
M⋃
h=1

Goodn,th , ñ := |Goodn|.

Let G̃ñ be a graph with vertices Goodn such that ãni,j := ñani,j/n for all i, j ∈ Goodn.

It is clear that

Ck

(
Gn

(
1

n

))
≥ Ck

(
G̃ñ

(
1

ñ

))
. (4.24)

Take X̃ ñ to be a branching process sampled from G̃ñ. For any i ∈ Goodn,th ,

take X̃ ñ
i to be a branching process sampled from graph G̃ñ with root i. For any th,

take X
(1−ε)Fm
th

to be a branching process sampled from kernel (1 − ε)Fm with root

of label th. Suppose a particle in generation t of X̃ ñ
i is of type j with label th, as a

result of (4.23) the number of its tk-labelled children has Poisson distribution with

parameter d̃nj,tk larger than (1− ε)Fm(th, tk)|Itk |. Therefore, for any i ∈ Goodn,th , we

can consider X
(1−ε)Fm
th

as a subset of X̃ ñ
i . Therefore for any increasing event I, we

have that PX̃ñ
i
(I) ≥ P

X
(1−ε)Fm
th

(I), and also

PX̃ñ(I) =
1

ñ

∑
i∈Goodn

PX̃ñ
i
(I) =

1

ñ

M∑
h=1

∑
i∈Goodn,th

PX̃ñ
i
(I) (4.25)

≥ 1

ñ

M∑
h=1

|Goodn,th|PX(1−ε)Fm
th

(I) ≥ (1− ε)
M∑
h=1

|Ith|PX(1−ε)Fm
th

(I)

= (1− ε)PX(1−ε)Fm (I),
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where the second inequality follows from (4.22).

Now we apply Lemma 4.4.3 to (1− ε)Fm and G̃ñ to conclude that

Ck

(
Gn

(
1

n

))
≥ Ck

(
G̃ñ

(
1

ñ

))
≥ (1− ε)ñPX(1−2ε)Fm (A) + op(n)

≥ (1− 2ε)nPX(1−2ε)Fm (A) + op(n).

4.4.2 Proof of (4.17)

Note that if Fm converges to W pointwise from below, by the dominated conver-

gence theorem it can be easily seen that

lim
ε→0,m→∞

d�((1− 2ε)Fm,W ) = 0.

Therefore it is sufficient to show that

lim
n→∞

PXWn (A) ≥ PXW (A) if lim
n→∞

d�(Wn,W ) = 0,

which we will prove in Proposition 4.4.6.

We say a branching process has property Bd if the root has at least k−1 offsprings,

each of these k − 1 offsprings has at least k − 1 offsprings, and this occurs up to

generation d, and let B = lim
d→∞
Bd. Define functions

Ψk(λ) := P(Poi(λ) ≥ k).
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For any graphon W , define

βW (x, d) := P(XW ∈ Bd |X0 = x), βW (x) := P(XW ∈ B |X0 = x). (4.26)

For W = Wn, we simply denote

βn(x, d) := βWn(x, d), βn(x) := βWn(x).

Lemma 4.4.4. Let (Wn)n∈N be a sequence of graphons such that ‖Wn −W‖� → 0.

Suppose that infx,yW (x, y) ≥ δ > 0 for some constant δ > 0, and α : [0, 1]→ [0, 1] is

a measurable function such that infy α(y) ≥ δ′ for some constant δ′ > 0. Fix ε > 0.

For any large n such that ‖Wn−W‖� ≤ ε3δδ′

2
, there exists a subset Bad ⊂ [0, 1] such

that Leb(Bad) ≤ ε2, and

(1− ε/2)

∫
α(y)W (x, y) dy ≤

∫
α(y)Wn(x, y) dy (4.27)

for all x ∈ Badc. Note that the choice of Bad depends on Wn,W, δ, δ
′, ε, α.

Proof. The proof is almost the same as Lemma 4.4.2.

Lemma 4.4.5. Let k ∈ N, and W be a graphon with W (x, y) ≥ δ for all x, y ∈ [0, 1]2

such that

α(x) = Ψk

(∫
W (x, y)α(y) dy

)
has a non-zero solution α(x). Then infx α(x) ≥ δ′ > 0 for some δ′ > 0.

Proof. Let us write
∫ 1

0
α(x) dx = ∆. If α(x) is a non-zero solution then we have for

any x ∈ [0, 1]

α(x) = Ψk

(∫
W (x, y)α(y) dy

)
≥ Ψk

(
δ

∫
α(y) dy

)
= Ψk (δ∆) := δ′.
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Proposition 4.4.6. Let (Wn)n∈N be a sequence of graphons such that d�(Wn,W )→ 0

as n→∞. Fix any ε > 0. Under Assumption 4.2.1 (i), we have that for large enough

n

PXWn (A) ≥ PX(1−ε)W (A)− ε2, (4.28)

and moreover under Assumption 4.2.1 (ii)

lim inf
n→∞

PXWn (A) ≥ PXW (A).

Proof. We will only prove (4.28), since the second statement follows from this directly.

Due to the equality

PX(1−ε)W (A) =

∫
Ψk

(∫
(1− ε)W (x, y)β(1−ε)W (y) dy

)
dx,

we assume that there exists an ε0 > 0 such that Leb{x : β(1−ε0)W (x) > 0} > 0.

Otherwise there is nothing to prove. Since β(1−ε0)W (x) is a non-zero solution of

α(x) = Ψk−1

(∫
(1− ε0)W (x, y)α(y) dy

)
,

according to Lemma 4.4.5 there exists a δ′ > 0 such that infx β(1−ε0)W (x) > δ′. Fix

ε ∈ (0,min{ε0,
δδ′

2aM
}). We first prove the following statement: for any large n such

that ‖Wn −W‖� ≤ ε3δδ′

2
, there exists a subset Badd ⊂ [0, 1] with Leb(Badd) < ε2

for each d ≥ 1 such that

βn(x, d) ≥ β(1−ε)W (x, d), for any x ∈ Badcd. (4.29)

Applying Lemma 4.4.4 with α(y) = 1, ∀y ∈ [0, 1], we obtain some Bad1 with

Leb(Bad1) ≤ ε2 such that x ∈ Badc1 implies
∫
Wn(x, y) dy ≥ (1− ε/2)

∫
W (x, y) dy.
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It follows that

βn(x, 1) = Ψk−1

(∫
Wn(x, y) dy

)
≥ Ψk−1

(
(1− ε/2)

∫
W (x, y) dy

)

≥ Ψk−1

(
(1− ε)

∫
W (x, y) dy

)
= β(1−ε)W (x, 1).

Suppose there exists some Badd−1 with Leb(Badd−1) ≤ ε2 such that x ∈ Badcd−1

implies βn(x, d− 1) ≥ β(1−ε)W (x, d− 1). Note that

βn(x, d) = Ψk−1

(∫
Wn(x, y)βn(y, d− 1) dy

)
, (4.30)

β(1−ε)W (x, d) = Ψk−1

(∫
(1− ε)W (x, y)β(1−ε)W (y, d− 1) dy

)
. (4.31)

Then applying Lemma 4.4.4 with α(y) = β(1−ε)W (y, d−1) > δ′, we obtain some Badd

with Leb(Badd) ≤ ε2 such that x ∈ Badcd implies that

∫
Wn(x, y)β(1−ε)W (y, d− 1) dy ≥ (1− ε/2)

∫
W (x, y)β(1−ε)W (y, d− 1) dy.

By induction, it follows that for x ∈ Badcd

∫
Wn(x, y)βn(y, d− 1) dy ≥

∫
y∈Badcd−1

Wn(x, y)β(1−ε)W (y, d− 1) dy

≥
∫
Wn(x, y)β(1−ε)W (y, d− 1) dy − Leb(Badd−1)aM

≥ (1− ε/2)

∫
W (x, y)β(1−ε)W (y, d− 1) dy − Leb(Badd−1)aM

≥ (1− ε/2)

∫
W (x, y)β(1−ε)W (y, d− 1) dy − εδδ′

2
.

Since infx∈[0,1]

∫
W (x, y)β(1−ε)W (y, d− 1) dy ≥ δδ′, we get that
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∫
Wn(x, y)βn(y, d− 1) dy ≥ (1− ε/2)

∫
W (x, y)β(1−ε)W (y, d− 1) dy − εδδ′

2

≥ (1− ε)
∫
W (x, y)β(1−ε)W (y, d− 1) dy. (4.32)

In conjunction with (4.30) and (4.31), we obtain that for x ∈ Badcd, βn(x, d) ≥

β(1−ε)W (x, d). Therefore for all d ≥ 1 there is a set Badd with Leb(Badd) < ε2 such

that for x ∈ Badcd

βn(x, d) ≥ β(1−ε)W (x, d).

Now we prove that PXWn (A) ≥ PX(1−ε)W (A)− ε2. Note that

PXWn (Ad) =

∫
Ψk

(∫
Wn(x, y)βn(y, d− 1) dy

)
dx,

and

PX(1−ε)W (Ad) =

∫
Ψk

(∫
(1− ε)W (x, y)β(1−ε)W (y, d− 1) dy

)
dx.

Due to (4.32), for x ∈ Badcd we have that

Ψk

(∫
Wn(x, y)βn(y, d− 1) dy

)
≥ Ψk

(∫
(1− ε)W (x, y)β(1−ε)W (y, d− 1) dy

)
.

Since Leb(Badd) < ε2 and Ψk(x) ≤ 1, x ≥ 0, it can be easily verified that

PXWn (Ad) ≥ PX(1−ε)W (Ad)− ε2.

Letting d→∞ in the above inequality, we conclude the result.
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CHAPTER V

Finite-Time 4-Expert Prediction Problem

5.1 Introduction

In this chapter, we explicitly solve the degenerate nonlinear PDE with N = 4

∂tu
T (t, x) +

1

2
sup

J∈P (N)

e>J ∂
2
xxu

T (t, x)eJ = 0,

uT (T, x) = Φ(x) := max
i
xi, (5.1)

where P (N) is the power set of {1, . . . , N} and eJ :=
∑

j∈J ej with {ej}j∈{1,··· ,N}

representing the standard basis of RN . Kohn and Drenska [91, 94] showed that this

equation has a unique viscosity solution, which is the continuous limit of dynamic

programming equation of the Expert Prediction Problem with finite stopping. The

Expert Prediction Problem is a zero sum game between a player and an adversary

(see e.g. [107]). Here we construct this unique viscosity solution explicitly

uT (t, x) =
−1

16
√

2

∞∫
−∞

e−(T−t)r2

r2

ψ(rθ · xo +
π

2

) 4∑
k=1

cos (rαk · xo)− 4

−ψ (rθ · xo)
4∑

k=1

sin (rαk · xo)

 dr +
1

4

4∑
i=1

xi +
1

2

√
(T − t)π

2
, (5.2)
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where ψ is the 2π periodic square wave function, xo is obtained from rearranging

the coordinates of x in the increasing order, and αk, θ ∈ R4 are defined by αk,j =

3√
2
1{k=j} − 1√

2
1{k 6=j}, θ = 1√

2
(1, 1,−1,−1). We show that uT ∈ C2, and due to this

regularity, we are able to show that the balanced comb strategy and the probability

matching algorithm proposed in [107] are the asymptotic saddle points for the game.

As noted in [91], in particular for x = 0, t = 0, T = 1, the value u1(0, 0) provides the

expansion of the best regret as

V M(0, 0) = u1(0, 0)
√
M + o(

√
M) as M →∞,

where V M is the value function of expert prediction problem with time maturity

M . According to our solution (5.2), we obtain the explicit value of the first order

coefficient u1(0, 0) = 1
2

√
π
2
, which resolves the open problem in [106] for N = 4; see

also [1].

Prediction problem with expert advice is classical and fundamental in the field of

machine learning, and has been studied for decades. We refer the reader to [69] for

a nice survey. It is a dynamic zero-sum game between a player and an adversary. At

each of the M rounds, based on all the prior information, the player chooses one of

the N experts to follow, and simultaneously the adversary chooses a set of winning

experts. The increment of the gain for each expert is either 0 or 1 depending on

whether the expert is chosen by the adversary, and the increment of the gain of the

player is that of the expert the player follows. Given a fixed maturity M , the objective

of the player is to minimize the regret max
i
Gi
M − GM , while the adversary wants to

maximize the regret, where Gi
M and GM are the gain of the expert i and the player,

respectively.

For the case of 2 experts, Cover [81] showed that the asymptotically optimal

strategy for the adversary is the one that chooses an expert uniformly at random.
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For the case of 3 experts with geometric stopping, Gravin, Peres and Sivan [107]

showed that the comb strategy, which chooses the experts with the highest gain and

the one with the lowest gain with probability 1
2
, and chooses the second leading expert

with probability 1
2

is asymptotically optimal for the adversary. They also showed that

the probability matching algorithm, which consists of following an expert with the

probability that under the comb strategy that that expert will be the leading one

at the end of game, is the player’s asymptotically optimal response. For the case of

N = 3 experts with finite stopping, it has been shown in [1] that the comb strategy

is asymptotically optimal. While both [1, 107] use the theory of random walk, [94]

exploits the power of the PDE method. By considering a scaled game, they have

shown that the value function of discrete games converges to the viscosity solution

of a PDE. Following this setting, for the case of N = 4 experts in the geometric

horizon setting, Bayraktar, Ekren and Zhang [28] showed that the comb strategy

is asymptotically optimal by explicitly solving the corresponding nonlinear PDE.

And very recently in [129], Kobzar, Kohn and Wang found lower and upper bounds

for the optimal regret for finite stopping problem by constructing certain sub- and

supersolutions of (5.1) following the method of [172]. Their results are only tight for

N = 3 and improved those of [1]. Let us also mention the Multiplicative Weights

Algorithm, which is asymptotically optimal as both N,M →∞ (see [68]).

In this chapter we construct an explicit solution to (5.1) for N = 4 with finite

stopping. We build our candidate solution based on the conjecture of [107], which

states that the comb strategy is asymptotically optimal for any number of experts

in both finite and geometric horizon problem. Note that if the comb strategy is

asymptotically optimal, the solution to (5.1) should also satisfy a linear PDE with

comb strategy based coefficients (see (5.7)), which is shown to be true in the geometric

horizon setting in [28]. The key observation is that the PDE of the finite horizon case

can, at least heuristically, be obtained by applying the inverse Laplace transform
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to the solution of [28] extended to the complex plane. This is at a heuristic level

because these linear PDEs, unlike (5.1), may not have unique solution and the analytic

extension of our function to the complex plane is not well-behaved. In Section 5.5,

we perform this formal inverse Laplace transform and obtain the explicit expression

in (5.2). We show in Theorem 5.3.4 that (5.2) is the classical solution of (5.7). In

Theorem 5.3.5, we show that it also satisfies (5.1) by verifying that the comb strategy

is optimal for the limiting problem. In Theorem 5.3.10, we show that the probability

matching strategy for the player and the comb strategy for the adversary form an

asymptotic saddle point, resolving the conjecture of [107] for four experts. As a

corollary, we resolve the Finite versus Geometric regret conjecture in [106] (see also

[1]); see Corollary 5.3.11. Our work reveals that the ratio of the value of two problems

(which was conjectured to be 2√
π
) actually comes from the inverse Laplace transform;

see (5.17). We also apply our method to obtain an explicit expression for uT in the 3

experts case, which was not known.

We now detail some of the difficulties in our proofs. The first main difficulty is

showing that the boundary condition uT (T, x) = Φ(x) is satisfied. We first write

the function uT in terms of sine and cosine integral functions (see [4]) and perform

some intricate and long arguments from complex analysis relying on the properties

of these functions. Second main difficulty is showing that the function uT actually

solves the nonlinear PDE. We perform this analysis through a verification type of

argument, in which we show that certain inequalities are satisfied for all (t, x) and

hence ruling out all the other alternative strategies for the adversary. This analysis

is the most demanding part of the chapter in which we rely on the properties of the

Jacobi-theta function (see [157]) and other properties of Fourier series. The third

main difficulty is showing that the probability matching algorithm for the player and

the comb strategy for the adversary form an asymptotic saddle point. Relying on

some delicate estimates, we show that the value function of discrete game converges
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to uT if either the player adopts the probability matching algorithm, or the adversary

adopts the comb strategy.

The rest of the chapter is organized as follows. In Section 5.2, we introduce

the problem and provide some of lemmata. In Section 5.3, we state the three main

results of our chapter, namely Theorem 5.3.4, 5.3.5 and 5.3.10. Here we also state the

Corollary 5.3.11 which resolves the “geometric versus finite horizon conjecture” for 4

experts. In Section 5.4, we provide all the proofs, and in Section 5.5, we provide a

heuristic derivation of the value functions for N = 3, 4 via inverse Laplace transform.

In the rest of this section, we will provide some frequently used notation.

Notation. Denote the left hand side and the right hand side derivatives by ∂−, ∂+

respectively. Denote the number of experts by N , the time horizon of the discrete

game by M , and the time horizon of the continuous time control problem by T (so

M in our chapter represents the T in [1, 107]). Denote by U the set of probability

measures on {1, . . . , N} and by V the set of probability measures on P (N), the

power set of {1, . . . N}. We denote by {ei}i={1,...,N} the canonical basis of RN , and for

J ∈ P (N), eJ is defined as eJ :=
∑

j∈J ej. For all x ∈ RN , we denote by xi the i-th

coordinate of x, by {x(i)}i=1,...,N the ranked coordinates of x with x(1) ≤ x(2) ≤ . . . ≤

x(N), by {i1, . . . , iN} the reordering of {1, . . . , N} such that xi1 ≤ xi2 ≤ . . . ≤ xiN

with the convention that if two components xi and xj are equal and i < j then the

ordering is defined to be xi ≤ xj. We define xo :=
(
x(1), . . . , x(N)

)
.

5.2 Preliminaries

We assume that a player and an adversary are playing a zero-sum game, and

they interact through the evolution of the gains of N experts. At step m ∈ N, by

{Gi
k}k=1,... ,m−1, we denote the history of the gains of each expert i = 1, . . . N , and by

{Gk}k=1,... ,m−1, the history of the gains of the player. After observing all the prior

history Gm−1 := {(Gi
k, Gk) : 1 ≤ i ≤ N, 1 ≤ k ≤ m−1}, simultaneously, the adversary
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chooses some experts Jm ∈ P (N), and the player chooses the expert Im ∈ {1, . . . , N}

to follow. For each i = 1, . . . , N , the gain of expert i increases by 1 if he is chosen

by the adversary, otherwise remains the same. The increment of the player’s gain

follows that of the expert Im he chooses. Therefore we have

Gi
m = Gi

m−1 + 1{i∈Jm}, i = 1, . . . , N ;

Gm = Gm−1 + 1{Im∈Jm}.

In order to have a value for the game, we allow both the adversary and the

player to adopt randomized strategies. At step m ∈ N, the adversary decides on the

distribution βm ∈ V to draw Jm from, and independently the player decides on the

distribution αm ∈ U of Im. Then the dynamic of {(Gi
m, Gm : 1 ≤ i ≤ N} is given by

Eαm,βm [Gi
m|Gm−1] = Gi

m−1 +
∑

J∈P (N)

βm(J)1{i∈J}, i = 1, . . . , N ;

Eαm,βm [Gm|Gm−1] = Gm−1 +
N∑
i=1

∑
J∈P (N)

αm(i)βm(J)1{i∈J}.

Denote by U the collection of sequences {αm}m∈N such that αm is a function of

Gm−1, by V the collection of such sequences {βm}m∈M. We take

Xm := (X1
m, . . . , X

N
m ) := (G1

m −Gm, . . . , G
N
m −Gm), (5.3)

the difference between the gain of the player and the experts. Define the function

Φ : x 7→ max
1≤i≤N

xi = x(N),
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and the regret of the player at step m ∈ N,

Φ(Xm) = max
i=1,...,N

Gi
m −Gm.

The objective of the player is to minimize his expected regret at maturity M

while the objective of the adversary is to maximize the regret of the player. By the

Minimax theorem, the game has a solution (see [91, 107]), i.e.,

sup
β∈V

inf
α∈U

Eα,β
[
Φ(XM)|X0 = x

]
= inf

α∈U
sup
β∈V

Eα,β
[
Φ(XM)|X0 = x

]
, (5.4)

where Eα,β is the probability distribution under which we evaluate the regret given

the controls α = {αm} and β = {βm}. Therefore we can define the value function

V M(m,x) := sup
β∈V

inf
α∈U

Eα,β
[
Φ(XM)|Xm = x

]
= inf

α∈U
sup
β∈V

Eα,β
[
Φ(XM)|Xm = x

]
,

which satisfies the following dynamical programming principle

V M(m,x) = inf
α∈U

sup
β∈V

∑
J

βJ

(
V M (m+ 1, x+ eJ)− α(J)

)
.

Additionally, it was shown in [91] that for any sequence mM ∈ N and xmM ∈ R4

such that mMT
M
→ t and

xmM
√
T√

M
→ x as M →∞, we have that

lim
M→∞

V M(mM , xmM )
√
T√

M
→ uT (t, x),

where uT (t, x) is the unique viscosity solution to (5.1). Also, we have the Feynmann

Kac representation of uT (t, x)

uT (t, x) = sup
σ

E
[
Φ(Xσ

T )|Xt = x
]
, (5.5)

125



where Xσ is defined by Xu = Xt +
∫ u
t
σsdWs with W a 1-dimensional Brownian

motion and the progressively measurable process (σs) satisfying for all s ∈ [t, u],

σs ∈ {eJ : J ∈ P (N)}.

5.3 Main Results

5.3.1 Solution to PDE (5.1) with N = 4

Define αk, θ ∈ R4 by αk,j = 3√
2
1{k=j}− 1√

2
1{k 6=j} and θ = 1√

2
(1, 1,−1,−1). Denote

the 2π periodic square wave function by

ψ(r) := sign

(
tan

(
r

2

))
= sign

(
sin (r)

)
.

Define the auxiliary function

Λ(r, x) :=

ψ(rθ · x+
π

2

) 4∑
k=1

cos (rαk · x)− 4− ψ (rθ · x)
4∑

k=1

sin (rαk · x)

 ,

and our conjectured solution to (5.1)

uT (t, x) :=
−1

16
√

2

∞∫
−∞

e−(T−t)r2

r2
Λ(r, xo)dr +

1

4

4∑
i=1

xi +
1

2

√
(T − t)π

2
. (5.6)

Remark 5.3.1. Due to the presence of r−2, there is a possible integrability issue of

∞∫
−∞

e−(T−t)r2

r2
Λ(r, xo)dr.

However as a result of the fact that
∑4

k=1 αk · xo = 0, we have the Taylor expansion

around 0

Λ(r, xo) =
4∑

k=1

|r|αk · xo −
4∑

k=1

(rαk · xo)2

2
+ o(r2) = O(r2).
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Thus, uT (t, x) is well-defined.

Remark 5.3.2. Since the function Λ(r, x) is even with respect to r, we sometimes use

the expression

uT (t, x) =
−1

8
√

2

∞∫
0

e−(T−t)r2

r2
Λ(r, xo)dr +

1

4

4∑
i=1

xi +
1

2

√
(T − t)π

2
.

Definition 5.3.3. For all x ∈ R4 with xi1 ≤ xi2 ≤ xi3 ≤ xi4 , we denote by JC(x) ∈

P (4) the comb strategy which chooses the experts i4 and i2. Denote σC(Xs) := eJC(Xs)

to be the corresponding control of problem (5.5). We take the convention that if two

components xi and xj of the points are equal for i < j then the ordering of the point

is taken with xi ≤ xj.

The following theorem assembles properties of uT , and its proof is provided in

Section 5.4.1.

Theorem 5.3.4. The function uT is symmetric in x, satisfies uT ∈ C([0, T ]× R4) ∩

C2([0, T )× R4) and

∂tu
T (t, x) +

1

2
e>JC(x)∂

2
xxu

T (t, x)eJC(x) = 0,

u(T, x) = max
i=1,...,4

xi. (5.7)

The first derivative of uT on θ · xo < 0 is

∂xiu
T (t, x) =

1

16
√

2

∞∫
−∞

e−(T−t)r2

r

4∑
k=1

αk,i

(
ψ

(
rθ · xo +

π

2

)
sin (rαk · x)

+ψ (rθ · xo) cos (rαk · x)
)
dr +

1

4
, (5.8)
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and if θ · xo = 0, it is

∂xiu
T (t, x) =

1

4
. (5.9)

If θ · xo < 0, and x(2) < x(3), we have

∂2
xixj

uT (t, x) =
1

16
√

2

∞∫
−∞

e−(T−t)r2
4∑

k=1

αk,iαk,j

(
ψ

(
rθ · xo +

π

2

)
cos (rαk · x)

−ψ (rθ · xo) sin (rαk · x)
)
dr

+
∂xj(θ · xo)

16
√

2

∑
l∈Z

(−1)le
− (T−t)(π(l+1/2))2

(θ·xo)2

θ · xo
4∑

k=1

2αk,i sin

(
αk · xπ(l + 1/2)

θ · xo

)

−
∂xj(θ · xo)

16
√

2

∑
l∈Z

(−1)le
− (T−t)(πl)2

(θ·xo)2

θ · xo
4∑

k=1

2αk,i cos

(
αk · xπl
θ · xo

)
, (5.10)

if θ · xo < 0 and x(2) = x(3),

∂2
xixj

uT (t, x) =
1

16
√

2

∞∫
−∞

e−(T−t)r2
4∑

k=1

αk,iαk,j

(
ψ

(
rθ · xo +

π

2

)
cos (rαk · x)

−ψ (rθ · xo) sin (rαk · x)
)
dr, (5.11)

and if θ · xo = 0,

∂2
xixj

uT (t, x) =
1

16
√

2

∞∫
−∞

e−(T−t)r2
4∑

k=1

αk,iαk,jdr. (5.12)

The proof of the following theorem is in Section 5.4.2.

Theorem 5.3.5. The function uT defined in (5.6) is also a solution to (5.1) and the

comb strategy eJC is optimal for the problem (5.1).
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5.3.2 An asymptotical Nash equilibrium for the game (5.4) with N = 4

Given the value of uT , we now describe a family of asymptotically optimal strate-

gies for both the player and the adversary. Inspired by [107] we give the following

definition.

Definition 5.3.6. (i)For M ∈ N, we denote by J b
C (M) ∈ V , the balanced comb

strategy, which at state x ∈ R4 and round m ∈ N, chooses experts JC (x) ∈ P (4)

with probability 1
2

and J c
C (x) ∈ P (4) with probability 1

2
.

(ii)For M ∈ N, we denote by α∗(M) ∈ U , the strategy that, at state x ∈ R4

and round m ∈ N, chooses the expert i with probability ∂xiu
T
(
mT
M
, x
√
T√
M

)
for all

i = 1, . . . , 4.

Remark 5.3.7. Note that Definition 5.3.3 defines a control for the problem (5.5) while

Definition 5.3.6 defines controls for the game (5.4). Hence the latter depends on M,T

and x, and the control α∗(M) actually reflects the scaling between the two problems

(see [94] for details).

Remark 5.3.8. According to the Feynmann Kac representation (5.5) and Theorem

5.3.4, we have

uT (t, x) = E

Φ

x+

T∫
t

σC(Xs)dWs


 .

Then heuristically

∂xiu
T (t, x) = E

∂xiΦ
x+

T∫
t

σC(Xs)dWs


 = P

[
(XσC

T )i = (XσC
T )(4)|Xt = x

]
,

which is just the probability matching algorithm proposed in [107].
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Definition 5.3.9. Define the following two value functions

V M(m, .) : x 7→ inf
α∈U

Eα,J bC (M)
[
Φ(XM)|Xm = x

]
,

V
M

(m, .) : x 7→ sup
β∈V

Eα∗(M),β
[
Φ(XM)|Xm = x

]
,

and their limits

uT (t, x) := lim inf
(M,

mMT

N
,
xmM

√
T

√
M

)→(∞,t,x)

V M
(
mM , xmM

)√
T

√
M

,

uT (t, x) := lim sup

(M,
mMT

M
,
xmM

√
T

√
M

)→(∞,t,x)

V
M

(mM , xmM )
√
T√

M
.

The proof the following theorem can be found in Section 5.4.3.

Theorem 5.3.10. The family of strategies (α∗(M))M∈N ∈ UN and (J b
C (M))M∈N ∈ VN

are asymptotic saddle points for the player and the adversary, in the sense that for

all (t, x) ∈ [0, T ]× R4

uT (t, x) = uT (t, x) = uT (t, x).

It can be easily seen that uT (t, x) ≤ uT (t, x) ≤ uT (t, x), and our main result states

that they are actually equal, which implies that at the leading order it is optimal for

both the player and the adversary to choose respectively the controls α∗(M) and

J b
C (M), i.e., for any αM ∈ U , βM ∈ V and T > 0, we have that

lim inf
M→∞

√
T

M

EαM ,J bC (M)

Φ(XM)

∣∣∣∣∣X0 =

√
Mx√
T



−Eα∗(M),J bC (M)

Φ(XM)

∣∣∣∣∣X0 =

√
Mx√
T


 ≥ 0,
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lim sup
M→∞

√
T

M

Eα∗(M),βM

Φ(XM)

∣∣∣∣∣X0 =

√
Mx√
T



−Eα∗(M),J bC (M)

Φ(XM)

∣∣∣∣∣X0 =

√
Mx√
T


 ≤ 0.

5.3.3 Relation between the finite and geometric stopping

We recall the following results from [28] and [94]. Let T δ be a geometric random

variable with parameter δ > 0. Define

V δ(X0) := sup
β∈V

inf
α∈U

Eα,β
[
Φ(XT δ)

]
= inf

α∈U
sup
β∈V

Eα,β
[
Φ(XT δ)

]
,

and

uδ : x ∈ RN 7→ V δ

(
x√
δ

)√
δ.

so that as δ ↓ 0, the function uδ converges locally uniformly to u : RN 7→ R which is

the unique viscosity solution of the equation

u(x)− 1

2
sup

J∈P (N)

e>J ∂
2u(x)eJ = Φ(x). (5.13)

The main conjecture in [107] regarding the relation between the finite and geo-

metric horizon control problems is that

V M(0, 0) ∼
M→+∞

2√
π
V

1
M (0).

The corollary below shows that this statement is true for N = 3, 4.
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Corollary 5.3.11. For N = 3, 4, we have the limit

lim
M→∞

V M(0, 0)

V
1
M (0)

=
2√
π
.

Proof. According to Theorem 5.3.5 and Proposition 5.5.1, (5.6) and (5.72) are so-

lutions to (5.1) with N = 4 and N = 3, respectively. As a result of [28, Propo-

sition 6.1] and [94, Theorem 8], (5.67) and (5.71) are the solutions to (5.13) with

N = 4 and N = 3, respectively. Plugging in T = 1, t = 0, x = 0 into these equa-

tions, we obtain that for N = 4, u1(0, 0) = 1
2

√
π
2
, u(0) = π

4
√

2
, and for N = 3,

u1(0, 0) = 4
3
√

2π
, u(0) = 4

6
√

2
. Due to the equalities

lim
M→∞

1√
M
V M(0, 0) = u1(0, 0), lim

M→∞

1√
M
V

1
M (0) = u(0),

we conclude that for both N = 3 and N = 4,

lim
M→∞

V M(0, 0)

V
1
M (0)

=
u1(0, 0)

u(0)
=

2√
π
.

5.3.3.1 From “optimality of the comb strategy conjecture” to “Finite vs

Geometric regret conjecture”

For any T > 0 and (t, x) ∈ [0, T ] × RN consider a given weak solution of the

equation

X t,x
u = x+

u∫
t

σC(X
t,x
s )dWs, for u ∈ [t, T ]. (5.14)

Proposition 5.3.12. Let N ≥ 2 and assume that the comb strategies are optimal

in the sense that the weak solution of (5.14) is an optimizer of (5.5) and uT is
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C0([0, T ]× RN) ∩ C1,2([0, T )× RN) and satisfies for some ε > 0 and for all x ∈ RN

∞∫
0

e−T sup
|x−y|≤ε

|∂2
xxu

T (0, y)|dT <∞. (5.15)

Then, the comb strategy is optimal for the problem (5.13) and the function u defined

at (5.13) satisfies

u(x) = E

 ∞∫
0

e−TΦ(X0,x
T )dT

 =

∞∫
0

e−TuT (0, x)dT. (5.16)

Remark 5.3.13. Given the results in Proposition 5.3.12, a simple change of variable

formula allows us to claim that the function

uλ(x) = λ−3/2u(
√
λx)

solves the equation

λuλ(x)− 1

2
sup

J∈P (N)

e>J ∂
2uλ(x)eJ = Φ(x)

and satisfies

uλ(x) = E

 ∞∫
0

e−λTΦ(X0,x
T )dT

 =

∞∫
0

e−λTuT (0, x)dT

Therefore, a corollary of (5.16) is the following relationship due to the Inverse Laplace

transform from uλ(x) to uT (0, x),

u1(0, 0) =
u(0)

2πi

1+i∞∫
1−i∞

eλλ−3/2dλ = −
Γ
(
−1

2

)
π

u(0) =
2√
π
u(0), (5.17)
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where Γ is the gamma function. Thus, under the assumption of the optimality of

the comb strategies for the finite time problem and some technical assumption the

Proposition 5.3.12 yields the constant in the “Finite versus Geometric” conjecture of

[106] for all N ; see also [1]. According to (5.10), we have

|∂2
xixj

uT (0, x)| ≤ C

 ∞∫
−∞

e−Tr
2

dr +
∑
l∈Z

e
−T (πl)2

4(θ·xo)2

θ · xo

 ,

where C is a positive constant. Multiplying both sides by e−T and integrating from

0 to ∞, we can easily check (5.15) for our expression (5.6). As a result, Proposition

5.3.12 in fact implies Theorems 3.1 and 3.2 of [28].

5.4 Proofs

5.4.1 Proof of Theorem 5.3.4

5.4.1.1 Continuity of x 7→ uT (t, x)

Proof. Using (5.6) and the continuity of x 7→ xo, it suffices to show that

Λ(r, x) =

ψ(rθ · x+
π

2

) 4∑
k=1

cos (rαk · x)− 4− ψ (rθ · x)
4∑

k=1

sin (rαk · x)

 .
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is continuous with respect to x. Due to the formula sin(x)+sin(y) = 2 sin(x+y
2

) cos(x−y
2

),

and the fact
4∑

k=1

αk · x = 0, we obtain

4∑
k=1

sin(rαk · x) = 2 sin

(
r(α1 + α2) · x

2

)
cos

(
r(α1 − α2) · x

2

)
+ 2 sin

(
r(α3 + α4) · x

2

)
cos

(
r(α3 − α4) · x

2

)
=2 sin

(
r(α1 + α2) · x

2

)(
cos

(
r(α1 − α2) · x

2

)
− cos

(
r(α3 − α4) · x

2

))
=− 2 sin(rθ · x)

(
cos

(
r(α1 − α2) · x

2

)
− cos

(
r(α3 − α4) · x

2

))
.

The square wave function ψ(rθ·x) changes its sign at rθ·x = kπ, k ∈ Z, when sin(rθ·x)

is equal to zero. Therefore the function x 7→ ψ(rθ · x) sin(rθ · x) is continuous, and so

is the term ψ(rθ · x)
4∑

k=1

sin(rαk · x).

Similarly, using the formula cos(x) + cos(y) = 2 cos
(
x+y

2

)
cos
(
x−y

2

)
, we obtain

4∑
k=1

cos(rαk · x) = 2 cos(rθ · x)

(
cos

(
r(α1 − α2) · x

2

)
− cos

(
r(α3 − α4) · x

2

))
.

Then the continuity of x 7→ ψ
(
rθ · x+ π

2

)∑4
k=1 cos (rαk · x) follows from the conti-

nuity of x 7→ ψ
(
rθ · x+ π

2

)
cos(rθ · x), and we finish the proof.

5.4.1.2 Terminal condition

Proof. Due to the continuity of x 7→ uT (t, x) and the symmetry of uT , we only need

to show the equality uT (T, x) = Φ(x) for the case x(1) < x(2) < x(3) < x(4). Recall the

definition of sine integral function si(x) and cosine integral function Ci(x) (see e.g.

[4]),

si(x) = −
∞∫
x

sin(t)

t
dt, Ci(x) = −

∞∫
x

cos(t)

t
dt,
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and denote

T0 = − π

2θ · xo
, Ak = αk · xo, Rk = |AkT0|, k = 1, . . . , 4.

Under the assumption x(1) < x(2) < x(3) < x(4), it is easy to check the following

inequalities

−3π

2
< A1T0 < −

π

2
< A2T0 < A3T0 <

π

2
< A4T0 <

3π

2
. (5.18)

According to (5.6), we have

2
√

2
4∑

k=1

xk − 8
√

2uT (T, x) =

∞∫
0

Λ(r, xo)

r2
dr.

Note that

ψ

(
rθ · xo +

π

2

)
=


−1, r ∈ [(4n+ 1)T0, (4n+ 3)T0]

+1, r ∈ [(4n− 1)T0, (4n+ 1)T0],

ψ (rθ · xo) =


−1, r ∈ [4nT0, (4n+ 2)T0]

+1, r ∈ [(4n+ 2)T0, (4n+ 4)T0].
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We can rewrite the integral as infinite sum of integrals

∞∫
0

Λ(r, xo)

r2
dr =

∞∫
0

ψ(rθ · xo +
π

2

) 4∑
k=1

cos(Akr)

r2
− 4

r2

 dr

−
∞∫

0

ψ (rθ · xo)
4∑

k=1

sin(Ak4)

r2
dr

=
∞∑
n=0

(−1)n
(2n+2)T0∫
2nT0

4∑
k=1

sin(Akr)

r2
dr +

T0∫
0

4∑
k=1

cos(Akr)− 1

r2
dr

+
∞∑
n=1

(−1)n
(2n+1)T0∫

(2n−1)T0

4∑
k=1

cos(Akr)

r2
dr −

∞∫
T0

4

r2
dr. (5.19)

Our aim is to prove
∫∞

0
Λ(r,xo)
r2 dr = −4A4, which is equivalent to uT (T, x) = Φ(x).

It is easy to check the following indefinite integral formulas,

∫
sin(x)

x2
dx = Ci(x)− sin(x)

x
+ Constant,∫

cos(x)

x2
dx = −si(x)− cos(x)

x
+ Constant.

Let us compute the integral

2T0∫
0

1

r2

4∑
k=1

sin(Akr)dr =
4∑

k=1

Ak

(
Ci(2|AkT0|)−

sin(2|AkT0|)
2|AkT0|

)

− lim
ε→0

4∑
k=1

Ak

(
Ci(|Akε|)−

sin(|Akε|)
|Akε|

)
.

According to
4∑

k=1

Ak = 0 and lim
x→0

sin(x)
x

= 1, the term
4∑

k=1

Ak
sin(|Akε|)
|Akε|

vanishes. Since

the expansion of Ci(x) near x = 0 is ln(x) + γ, where γ is the Euler-Mascheroni
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constant (see e.g. [79]), we obtain that

lim
ε→0

4∑
k=1

AkCi(|Akε|) = lim
ε→0

4∑
k=1

Ak(ln(|Ak|) + ln(ε) + γ) =
4∑

k=1

Ak ln(|Ak|).

Accordingly, we have

2T0∫
0

1

r2

4∑
k=1

sin(Akr)dr =
4∑

k=1

Ak

Ci(2|AkT0|)−
sin(2|AkT0|)

2|AkT0|
)−

4∑
k=1

Ak ln(|Ak|

 ,

and similarly for each n ∈ N,

(2n+2)T0∫
2nT0

1

r2

4∑
k=1

sin(Akr)dr =
4∑

k=1

Ak(Ci((2n+ 2)|AkT0|)−
sin((2n+ 2)|AkT0|)

(2n+ 2)|AkT0|
)

−
4∑

k=1

Ak(Ci(2n|AkT0|)−
sin(2n|AkT0|)

2n|AkT0|
).

Therefore, we get the equation

+∞∫
0

− ψ
(
rθ · xo +

π

2

) 4∑
k=1

sin(Akr)

r2
dr

=−
4∑

k=1

Ak ln(|Ak|) + 2
4∑

k=1

∞∑
n=1

Ak(−1)n+1Ci(2n|AkT0|)

− 2
4∑

k=1

∞∑
n=1

(−1)n+1 sin(2nAkT0)

2nT0

. (5.20)

Now we deal with the cosine term in (5.19). Due to the equality si(0) = −π
2
, it
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can be seen that

T0∫
0

1

r2
(

4∑
k=1

cos(Akr)− 4)dr =−
4∑

k=1

|Ak|si(|AkT0|)−
4∑

k=1

cos(|AkT0|)
T0

+
4

T0

+ lim
ε→0+

|Ak| 4∑
k=1

si(|Akε|) +
4∑

k=1

cos(|Akε|)− 1

ε


=− π

2

4∑
k=1

|Ak| −
4∑

k=1

|Ak|si(|AkT0|)−
4∑

k=1

cos(|AkT0|)
T0

+
4

T0

,

and similarly

(2n+3)T0∫
(2n+1)T0

1

r2

4∑
k=1

cos(Akr)dr =−
4∑

k=1

|Ak|si((2n+ 3)|AkT0|)−
4∑

k=1

cos((2n+ 3)|AkT0|)
(2n+ 3)T0

+
4∑

k=1

|Ak|si((2n+ 1)|AkT0|)−
4∑

k=1

cos((2n+ 1)|AkT0|)
(2n+ 1)T0

.

Then, in conjunction with the equality
∫ +∞
T0

−4
r2 dr = − 4

T0
, we obtain that

+∞∫
0

ψ(rθ · xo +
π

2

) 4∑
k=1

cos(Akr)

r2
− 4

r2

 dr

= −π
2

4∑
k=1

|Ak| − 2
4∑

k=1

∞∑
n=1

(−1)n+1|Ak|si(|(2n− 1)AkT0|)

− 2
4∑

k=1

∞∑
n=1

(−1)n+1 cos((2n− 1)AkT0)

(2n− 1)T0

. (5.21)
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Using the inverse Fourier transform, we have

∞∑
n=1

(−1)n+1 cos((2n− 1)AkT0)

(2n− 1)T0

=
π

4T0

sign

(
tan

(
π

4
+
AkT0

2

))
,

∞∑
n=1

(−1)n+1 sin(2nAkT0)

2nT0

=
i
(

log
(
1 + e−i2AkT0

)
− log

(
1 + ei2AkT0

))
4T0

.

Recalling the inequalities (5.18), for k = 1, 4, we have |AkT0| ∈ (π
2
, 3π

2
), and hence

the term sign

(
tan
(
π
4

+ AkT0

2

))
= −1. For k = 2, 3, since |AkT0| < π

2
, we get

sign

(
tan
(
π
4

+ AkT0

2

))
= 1, and therefore

4∑
k=1

π

2T0

sign

(
tan

(
π

4
+
AkT0

2

))
= 0. (5.22)

It can be seen that the function

x 7→ i
(

log(1 + e−ix)− log(1 + eix)
)
≡ i log

(
1 + e−ix

1 + eix

)
≡ x mod 2π

is 2π-periodic, and equals to x when restricted to (−π, π). So that we obtain

∞∑
n=1

(−1)n+1 sin(2nAkT0)

2nT0

=



2AkT0+2π
4T0

, if k = 1,

2AkT0

4T0
, if k = 2, 3,

2AkT0−2π
4T0

, if k = 4,

and hence
4∑

k=1

∞∑
n=1

(−1)n+1 sin(2nAkT0)

2nT0

= 0. (5.23)
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Combining (5.19), (5.20), (5.21), (5.22) and (5.23), we simplify the expression,

∞∫
0

Λ(r, xo)dr

r2

=−
4∑

k=1

Ak ln(|Ak|)−
π

2

4∑
k=1

|Ak|+ 2
4∑

k=1

∞∑
n=1

(−1)n+1|Ak|si(|(2n− 1)AkT0|)

− 2
4∑

k=1

∞∑
n=1

(−1)n+1 cos((2n− 1)AkT0)

(2n− 1)T0

+ 2
4∑

k=1

∞∑
n=1

Ak(−1)n+1Ci(2n|AkT0|)

− 2
4∑

k=1

∞∑
n=1

(−1)n+1 sin(2nAkT0)

2nT0

=− π

2

4∑
k=1

|Ak|+ 2
4∑

k=1

∞∑
n=1

(−1)n+1|Ak|si(|(2n− 1)AkT0|)

−
4∑

k=1

Ak ln(|Ak|) + 2
4∑

k=1

∞∑
n=1

Ak(−1)n+1Ci(2n|AkT0|). (5.24)

It remains to calculate the infinite sum including Ci(x) and si(x). Note that

−2
∞∑
n=1

(−1)n+1si((2n− 1)Rk) = 2
∞∑
n=1

(4n−1)Rk∫
(4n−3)Rk

sin(r)

r
dr.

and sin(z)
z

= Im eiz

z
for z ∈ R. We apply contour integral to eiz

z
. Denoting the curves

in the counterclockwise direction by

γkn := {nRke
iθ : θ ∈ [0, π]},

we have equalities

2

(4n−1)Rk∫
(4n−3)Rk

−
∫

γk4n−3

+

∫
γk4n−1

eiz

z
dz = 0, n ∈ N.
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Therefore, we obtain

−2
∞∑
n=1

(−1)n+1si((2n− 1)Rk) =
∞∑
n=1

(−1)n+1Im

∫
γk2n−1

eiz

z
dz

=
∞∑
n=1

(−1)n+1Re

π∫
0

ei(2n−1)Rke
iθ

dθ. (∗)

According to the inequalities (5.18), we have 2Rk 6∈ {−3π,−π, π, 3π}, and hence can

exchange the infinite sum and the integral and compute the geometric series to obtain

−2
∞∑
n=1

(−1)n+1si((2n− 1)Rk) = Re

π∫
0

eRke
iθ

1 + e2Rkeiθ
dθ. (5.25)

Similarly, we calculate

2
∞∑
n=1

(−1)n+1Ci(2nRk) = −2Re

 ∞∑
n=1

4nRk∫
(4n−2)Rk

eiz

z
dz

 .

Denoting the quarter of circles in the counterclockwise derivation by

γ̃kn := {nRke
iθ : θ ∈ [0, π/2]},

we obtain that

0 =

4nRk∫
(4n−2)Rk

+

∫
γ̃k4n

−
i4nRk∫

i(4n−2)Rk

−
∫

γ̃k4n−2

eiz

z
dz

=

4nRk∫
(4n−2)Rk

eiz

z
dz + i

0∫
π
2

e(4n−2)Rke
iθ

dθ + i

π
2∫

0

e4nRke
iθ

dθ +

(4n−2)Rk∫
4nRk

e−r

r
dr.
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Recalling the definition of integral exponential function for x > 0,

E1(x) =

+∞∫
x

e−r

r
dr =

+∞∫
0

exp(−xet)dt,

it can be seen that

−2Re

4nRk∫
(4n−2)Rk

eiz

z
dz =2Re

−i


π
2∫

0

e(4n−2)Rke
iθ

dθ −

π
2∫

0

e4nRke
iθ

dθ




+ 2(E1(4nRk)− E1((4n− 2)Rk))

=2Im


π
2∫

0

e(4n−2)Rke
iθ

dθ −

π
2∫

0

e4nRke
iθ

dθ


+ 2(E1(4nRk)− E1((4n− 2)Rk)).

By direct computation, we have

2
∞∑
n=1

(−1)n+1Ci(2nRk) = 2Im


π
2∫

0

ei2Rke
iθ

1 + ei2Rkeiθ
dθ


+ 2

(
∞∑
n=1

(E1(4nRk)− E1((4n− 2)Rk))

)

= 2Im


π
2∫

0

ei2Rke
iθ

1 + ei2Rkeiθ
dθ

− 2

∞∫
0

e−2Rke
r

1 + e−2Rker
dr

= 2Im


π
2∫

0

ei2Rke
iθ

1 + ei2Rkeiθ
dθ

− 2

∞∫
Rk

e−2t

t(1 + e−2t)
dt, (∗∗)

where the last equation follows from the change of variable t = Rke
r.
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Ik, k = 2, 3

π
2

Ik, k = 1, 4

π
2

Figure 5.1: Contour of Ik

Then, we can further simplify the expression (5.24) using (∗) and (∗∗),

∞∫
0

Λ(r, xo)

r2
dr =−

4∑
k=1

Ak ln(|Ak|)−
π

2

4∑
k=1

|Ak|+
4∑

k=1

|Ak|Re
π∫

0

eiRke
iθ

1 + ei2Rkeiθ
dθ

+
4∑

k=1

2AkIm

π
2∫

0

ei2Rke
iθ

1 + ei2Rkeiθ
dθ − 2Ak

∞∫
Rk

e−2t

t(1 + e−2t)
dt. (5.26)

Let us denote

Ik =

π∫
0

eiRke
iθ

1 + ei2Rkeiθ
dθ = −i

∫
γk1

eiz

z(1 + ei2z)
dz,

Jk =

π
2∫

0

ei2Rke
iθ

1 + ei2Rkeiθ
dθ = −i

∫
γ̃k1

ei2z

z(1 + ei2z)
dz.

For k = 2, 3, we have Rk <
π
2
, and therefore 0 is the only pole of complex function

z 7→ eiz

z(1+ei2z)
over the interval [−Rk, Rk]. According to the contour integral (see

Figure 5.1), we have that

0 =

∫
γk1

+

−ε∫
−Rk

−
∫

{εeiθ:θ∈[0,π]}

+

Rk∫
ε

−ieiz

z(1 + ei2z)
dz

=Ik − i
−ε∫

−Rk

eit

t(1 + ei2t)
dt−

π∫
0

eiεe
iθ

1 + ei2εeiθ
dθ − i

Rk∫
ε

eit

t(1 + ei2t)
dt.

Since eit

t(1+ei2t)
= eit+e−it

t|1+ei2t|2 is real, and lim
ε→0

eiεe
iθ

1+ei2εe
iθ = 1

2
, we obtain that ReIk = π

2
. For

k = 1, 4, since Rk ∈ (π
2
, 3π

2
), we have −π

2
, 0, π

2
are three poles of the complex function
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Jk, k = 2, 3

π
2

Jk, k = 1, 4

π
2

Figure 5.2: Contour of Jk

z 7→ eiz

z(1+ei2z)
over the interval [−Rk, Rk]. Again by contour integral (see Figure 5.1)

the real part of Ik is equal to the integral around the three poles,

ReIk = lim
ε→0

Re

π∫
0

ieiεe
iθ
εeiθ

1− ei2εeiθ
(

1
π
2

+ εeiθ
+

1
π
2
− εeiθ

)
dθ +

π

2

=

π∫
0

lim
ε→0

Re
ieiεe

iθ
εeiθ

1− ei2εeiθ
(

1
π
2

+ εeiθ
+

1
π
2
− εeiθ

)
dθ +

π

2

=

π∫
0

− 2

π
dθ +

π

2
=
π

2
− 2,

and hence

4∑
k=1

|Ak|ReIk =
π

2

4∑
k=1

|Ak| − 2|A1| − 2|A4|. (5.27)

For k = 2, 3, we apply contour integral to Jk (see Figure 5.2),

0 =

∫
γ̃k1

+

iε∫
iRk

−
∫

{εeiθ:θ∈[0,π/2]}

+

Rk∫
ε

−iei2z

z(1 + ei2z)
dz

= Jk − i
ε∫

Rk

e−2t

t(1 + e−2t)
dt+

0∫
π
2

ei2εe
iθ

1 + ei2εeiθ
dθ − i

Rk∫
ε

ei2t

t(1 + ei2t)
dt.
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Noting that imaginary part of i ei2t

t(1+ei2t)
is just 1

2t
, we obtain that

ImJk =

ε∫
Rk

e−2t

t(1 + e−2t)
dt+ Im

π
2∫

0

ei2εe
iθ

1 + ei2εeiθ
dθ +

Rk∫
ε

1

2t
dt.

For k = 1, 4, z = π
2

is the other pole over the interval [0, Rk] (see Figure 5.2), and we

have

0 =Jk − i
ε∫

Rk

e−2t

t(1 + e−2t)
dt+

0∫
π
2

ei2εe
iθ

1 + ei2εeiθ
dθ − i

π
2
−ε∫
ε

ei2t

t(1 + ei2t)
dt

− i
Rk∫

π
2

+ε

ei2t

t(1 + ei2t)
dt+

π∫
0

ei2εe
iθ
εeiθ

(π
2

+ εeiθ)(1− ei2εeiθ)
dθ,

and therefore,

ImJk =

ε∫
Rk

e−2t

t(1 + e−2t)
dt+ Im

π
2∫

0

ei2εe
iθ

1 + ei2εeiθ
dθ +

Rk∫
ε

1

2t
dt

−

π
2

+ε∫
π
2
−ε

1

2t
dt− Im

π∫
0

ei2εe
iθ
εeiθ

(π
2

+ εeiθ)(1− ei2εeiθ)
dθ.

Take

P 1
ε = Im

π
2∫

0

ei2εe
iθ

1 + ei2εeiθ
dθ, P 2

ε = Im

π∫
0

ei2εe
iθ
εeiθ

(π
2

+ εeiθ)(1− ei2εeiθ)
dθ.
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Then we compute

2ImJk − 2

∞∫
Rk

e−2t

t(1 + e−2t)
dt− ln(|Ak|)

= −2

∞∫
ε

e−2t

t(1 + e−2t)
dt+ (ln(Rk)− ln(|Ak|)− ln(ε))

+ 2P 1
ε − 1{k=1,4}

(
ln

(
π/2 + ε

π/2− ε

)
+ 2P 2

ε

)
.

As a result of
4∑

k=1

Ak = 0, ln(Rk) − ln(|Ak|) = ln(T0) and lim
ε→0

P 2
ε = 1, it can be seen

that

4∑
k=1

Ak

(
2ImJk− ln(|Ak|)− 2

∞∫
Rk

e−2t

t(1 + e−2t)
dt

)

=− 2
4∑

k=1

Ak

∞∫
ε

e−2t

t(1 + e−2t)
dt+

4∑
k=1

Ak(ln(T0)− ln(ε))

+
4∑

k=1

AkP
1
ε − (A1 + A4)

(
ln

(
π/2 + ε

π/2− ε

)
+ 2P 2

ε

)

=− lim
ε→0

(A1 + A4)

(
ln

(
π/2 + ε

π/2− ε

)
+ 2P 2

ε

)

=− 2A1 − 2A4. (5.28)

Combining (5.26), (5.27), (5.28), we obtain

∞∫
0

Λ(r, xo)

r2
dr = −2|A1| − 2|A4| − 2A1 − 2A4 = −4A4, (5.29)

which concludes the result.
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5.4.1.3 Smoothness

Proof. Step 1: Equation (5.8). As a result of

4∑
k=1

sin(rαk · xo) =
4∑

k=1

sin(rαk · x),
4∑

k=1

cos(rαk · xo) =
4∑

k=1

cos(rαk · x),

we obtain that

uT (t, x) =
−1

16
√

2

∞∫
−∞

e−(T−t)r2

r2

ψ(rθ · xo +
π

2

) 4∑
k=1

cos(rαk · x)− 4

−ψ (rθ · xo)
4∑

k=1

sin(rαk · x)

 dr +
1

4

4∑
k=1

xk +
1

2

√
(T − t)π

2
.

To stress the dependence of T0 on x, we denote it as T0(x) := − π
2θ·xo . Since θ ·xo < 0,

define two functional series Fl(x), Gl(x), l ∈ Z by

Fl(x) :=

(2l+1)T0(x)∫
(2l−1)T0(x)

e−(T−t)r2

r2

ψ(rθ · xo +
π

2

) 4∑
k=1

cos(rαk · x)− 4

 dr,

Gl(x) := −
(2l+2)T0(x)∫
2lT0(x)

e−(T−t)r2

r2

ψ (rθ · xo)
4∑

k=1

sin(rαk · x)

 dr.

Then we have

uT (t, x) = − 1

16
√

2

∑
l∈Z

(Fl(x) +Gl(x)) +
1

4

4∑
k=1

xk +
1

2

√
(T − t)π

2
.
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Noting that
4∑

k=1

cos(rαk · x) = 0 at endpoints r = (2l − 1)T0(x), l ∈ Z, the partial

derivative of Fl(x) is given by

∂+
xi
Fl(x) =−

(2l+1)T0(x)∫
(2l−1)T0(x)

e−(T−t)r2

r

4∑
k=1

αk,iψ

(
rθ · xo +

π

2

)
sin(rαk · x)dr

− 4(2l + 1)∂+
xi
T0(x)

e−(T−t)(2l+1)2T 2
0 (x)

(2l + 1)2T 2
0 (x)

+ 4(2l − 1)∂+
xi
T0(x)

e−(T−t)(2l−1)2T 2
0 (x)

(2l − 1)2T 2
0 (x)

,

and similarly

∂+
xi
Gl(x) = −

(2l+2)T0(x)∫
2lT0(x)

e−(T−t)r2

r

4∑
k=1

αk,iψ (rθ · xo) cos(rαk · x)dr.

It is well-known that summation and differentiation are interchangeable if the partial

sum of derivatives converges uniformly. Since
∑
l∈Z

∂+
xi
Fl(x) and

∑
l∈Z

∂+
xi
Gl(x) converge

uniformly in any bounded region of x, we conclude that,

∂+
xi
uT (t, x) =− 1

16
√

2

∑
l∈Z

(
∂xiFl(x) + ∂xiGl(x)

)
+

1

4

=
1

16
√

2

∞∫
−∞

e−(T−t)r2

r

4∑
k=1

αk,i

(
ψ

(
rθ · xo +

π

2

)
sin (rαk · x)

+ψ (rθ · xo) cos (rαk · x)
)
dr +

1

4
.

We can calculate ∂−xiu
T (t, x) in the exactly same way, and find that it has the same

expression with ∂+
xi
uT (t, x). Therefore we proved the result (5.8).

Step 2: Equation (5.9). If θ · xo = 0, then all the coordinates of x are equal, i.e.,

x = (x1, x1, x1, x1). Let us compute the derivative of uT (t, x) by definition. Take
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ε > 0 and denote
(
x1 + ε, x1, x1, x1

)
simply by x+ ε. Then we have

uT (t, x+ ε) =
−1

8
√

2

∞∫
0

e−(T−t)r2

r2

ψ( εr√
2

+
π

2

)(
cos

(
3εr√

2

)
+ 3 cos

(
3εr√

2

))
− 4

−ψ
(
εr√

2

)(
sin

(
3εr√

2

)
− 3 sin

(
εr√

2

)) dr

+ x1 +
1

4
ε+

1

2

√
(T − t)π

2
.

In order to conclude our result, it remains to show that

0 = lim
ε→0

1

ε

∞∫
0

e−(T−t)r2

r2

ψ( εr√
2

+
π

2

)(
cos

(
3εr√

2

)
+ 3 cos

(
εr√

2

))
− 4

−ψ
(
εr√

2

)(
sin

(
3εr√

2

)
− 3 sin

(
εr√

2

)) dr.

According to the estimation

∞∫
1√
ε

e−(T−t)r2

r2
dr ≤ ε

∞∫
1√
ε

e−(T−t)r2

dr,

it can be seen that

0 = lim
ε→0

∞∫
1√
ε

12e−(T−t)r2

dr ≥ lim
ε→0

1

ε

∞∫
1√
ε

12e−(T−t)r2

r2
dr

≥ lim
ε→0

1

ε

∞∫
1√
ε

e−(T−t)r2

r2

∣∣∣∣∣∣
ψ( εr√

2
+
π

2

)(
cos

(
3εr√

2

)
+ 3 cos

(
εr√

2

))
− 4

−ψ
(
εr√

2

)(
sin

(
3εr√

2

)
− 3 sin

(
εr√

2

))∣∣∣∣∣∣ dr.
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Now, both ψ
(
εr√

2
+ π

2

)
and ψ

(
εr√

2

)
are positive over the interval

[
0, 1√

ε

]
. In conjunc-

tion with two equalities

cos

(
3εr√

2

)
+ 3 cos

(
εr√

2

)
= 4 cos3

(
εr√

2

)
,

sin

(
3εr√

2

)
− 3 sin

(
εr√

2

)
= −4 sin3

(
εr√

2

)
,

we make the estimation

∣∣∣∣1ε
1√
ε∫

0

e−(T−t)r2

r2
Λ(t, x+ ε)dr

∣∣∣∣ ≤ ∣∣∣∣1ε
1√
ε∫

0

e−(T−t)r2

r2

(
4 cos3

(
εr√

2

)
− 4 + 4 sin3

(
εr√

2

))
dr

∣∣∣∣
≤ ε

1√
ε∫

0

e−(T−t)r2

4− 4 cos3
(
εr√

2

)
(εr)2

+
4 sin3

(
εr√

2

)
(εr)2

 dr.

Since the integral
∫ 1√

ε

0 e−(T−t)r2

(
4−4 cos3

(
εr√

2

)
(εr)2 +

4 sin3
(
εr√

2

)
(εr)2

)
dr is bounded as ε→ 0, we

conclude that

lim
ε→0

1

ε

∞∫
0

e−(T−t)r2

r2
Λ(t, x+ ε)dr = 0,

and hence ∂x1u
T (t, x) = 1

4
. Similarly, we can prove that ∂xiu

T (t, x) = 1
4
, i = 2, 3, 4.

Step 3: Equation (5.10). Define two functional series Hl(x), Kl(x), l ∈ Z by

Hl(x) :=

(2l+1)T0(x)∫
(2l−1)T0(x)

e−(T−t)r2

r

4∑
k=1

αk,iψ

(
rθ · xo +

π

2

)
sin (rαk · x) dr,

Kl(x) :=

(2l+2)T0(x)∫
2lT0(x)

e−(T−t)r2

r

4∑
k=1

αk,iψ (rθ · xo) cos (rαk · x) dr.
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Then we have ∂xiu
T (t, x) = 1

4
+ 1

16
√

2

∑
l∈Z

(Hl(x) +Kl(x)). We compute the right-hand

derivatives of Hl(x), Kl(x),

∂+
xj
Hl(x) =

(2l+1)T0(x)∫
(2l−1)T0(x)

e−(T−t)r2
4∑

k=1

αk,iαk,jψ

(
rθ · xo +

π

2

)
cos (rαk · x) dr

+ ∂+
xj

(θ · xo)(−1)le
− (T−t)(π(l+1/2))2

(θ·xo)2

θ · xo
4∑

k=1

2αk,i sin

(
αk · xπ(l + 1/2)

θ · xo

)

− ∂+
xj

(θ · xo)(−1)le
− (T−t)(π(l−1/2))2

(θ·xo)2

θ · xo
4∑

k=1

2αk,i sin

(
αk · xπ(l − 1/2)

θ · xo

)
,

(5.30)

∂+
xj
Kl(x) =−

(2l+2)T0(x)∫
2lT0(x)

e−(T−t)r2
4∑

k=1

αk,iαk,jψ (rθ · xo) sin (rαk · x) dr

+ ∂+
xj

(θ · xo)(−1)le
− (T−t)(π(l+1))2

(θ·xo)2

θ · xo
4∑

k=1

2αk,i cos

(
αk · xπ(l + 1)

θ · xo

)

− ∂+
xj

(θ · xo)(−1)le
− (T−t)(πl)2

(θ·xo)2

θ · xo
4∑

k=1

2αk,i cos

(
αk · xπl
θ · xo

)
. (5.31)

Replacing all the ∂+
xj

with ∂−xj , we obtain the left hand side derivatives of Hl(x)

and Kl(x). It can be easily checked that if θ · xo < 0, x(2) < x(3), the function

x 7→ θ · xo is differentiable, and hence ∂+
xj
Hl(x) = ∂−xjHl(x), ∂+

xj
Kl(x) = ∂−xjKl(x).

Since
∑
l∈Z

∂xjHj(x) and
∑
l∈Z

∂xjHj(x) converge uniformly in any bounded region of x,

we can interchange summation and differentiation and obtain (5.10).

Step 4: Equation (5.11). If θ · xo < 0, x(2) = x(3), the right derivative ∂+
xj

(θ · xo)

may not equal to the left derivative ∂−xj(θ · x
o). However, by showing that for each
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i = 1, 2, 3, 4,

4∑
k=1

αk,i sin

(
αk · xπ(l + 1/2)

θ · xo

)
=

4∑
k=1

αk,i cos

(
αk · xπl
θ · xo

)
= 0, l ∈ Z,

functions Hl(x), Kl(x) are still differentiable, and hence we can conclude (5.11).

Since we need to show the equality for any i = 1, 2, 3, 4, we can simply assume x = xo

without loss of generality. It can be easily checked that

α1 · xo

θ · xo
=
α4 · xo

θ · xo
− 4 =

3x(1) − 2x(2) − x(4)

x(1) − x(4)
,

α2 · xo

θ · xo
=
α3 · xo

θ · xo
=

2x(2) − x(1) − x(4)

x(1) − x(4)
,

and hence

sin

(
α1 · xπ(l + 1/2)

θ · xo

)
= sin

(
α4 · xπ(l + 1/2)

θ · xo

)
,

sin

(
α2 · xπ(l + 1/2)

θ · xo

)
= sin

(
α3 · xπ(l + 1/2)

θ · xo

)
,

cos

(
α1 · xπl
θ · xo

)
= cos

(
α4 · xπl
θ · xo

)
,

cos

(
α2 · xπl
θ · xo

)
= cos

(
α3 · xπl
θ · xo

)
.

We finish the proof of (5.11) by the following computation

4∑
k=1

αk,i sin

(
αk · xπ(l + 1/2)

θ · xo

)
=± 2

(
sin

(
α1 · xπ(l + 1/2)

θ · xo

)
− sin

(
α2 · xπ(l + 1/2)

θ · xo

))

=± 4 sin

(
2x(1) − 2x(2)

x(1) − x(4)
π(l + 1/2)

)
cos
(
π(l + 1/2)

)
= 0,

4∑
k=1

αk,i cos

(
αk · xπl
θ · xo

)
=± 2

(
cos

(
α1 · xπl
θ · xo

)
− cos

(
α2 · xπl
θ · xo

))

=± 4 sin

(
2x(2) − 2x(1)

x(1) − x(4)
πl

)
sin (πl) = 0.
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Step 5: Equation (5.12). Finally, supposing x = (x1, x1, x1, x1) and x + εj =

(x1 + ε)1{k=j} + x11{k 6=j}, we calculate ∂2
xixj

uT (t, x). According to (5.8), we have

∂xiu
T (t, x+ εj) =

1

8
√

2

∞∫
0

e−(T−t)r2

r

4∑
k=1

αk,i

(
ψ

(
εr√

2
+
π

2

)
sin
(
rαk · (x+ εj)

)
+ψ

(
εr√

2

)
cos
(
rαk · (x+ εj)

))
dr +

1

4
.

As a result of the equalities

∞∫
1√
ε

e−(T−t)r2

r
dr = −

∞∫
1√
ε

1

2(T − t)r2
de−(T−t)r2

=
εe−

(T−t)
ε

2(T − t)
+

∞∫
1√
ε

e−(T−t)r2

4(T − t)r3
dr,

we deduce that

0 = lim
ε→0

 e−
(T−t)
ε

2(T − t)
+

∞∫
1√
ε

e−(T−t)r2

4(T − t)r

 6
√

2 ≥ lim
ε→0

6
√

2

ε

 εe−
(T−t)
ε

2(T − t)
+

∞∫
1√
ε

e−(T−t)r2

4(T − t)r3


≥ lim

ε→0

1

ε

∞∫
1√
ε

e−(T−t)r2

r

∣∣∣∣∣∣
4∑

k=1

αk,i

(
ψ

(
εr√

2
+
π

2

)
sin
(
rαk · (x+ εj)

)

+ψ

(
εr√

2

)
cos
(
rαk · (x+ εj)

))∣∣∣∣∣∣ dr. (5.32)

From the equality

4∑
k=1

αk,i cos(rαk · (x+ εj)) =1{i=j}

(
3 cos

(
3εr√

2

)
− 3 cos

(
εr√

2

))

+ 1{i 6=j}

(
cos

(
εr√

2

)
− cos

(
3εr√

2

))
,
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it can be easily seen that

lim
ε→0

1

rε

4∑
k=1

αk,i cos(rαk · (x+ εj)) = 0. (5.33)

Combining (5.32) and (5.33), we conclude that

∂2
xixj

uT (t, x)

= lim
ε→0

1

8
√

2ε

1√
ε∫

0

e−(T−t)r2

r

4∑
k=1

αk,i

(
sin
(
rαk · (x+ εj)

)
+ cos

(
rαk · (x+ εj)

))
dr

=
1

8
√

2
lim
ε→0

1√
ε∫

0

e−(T−t)r2

 4∑
k=1

αk,i
sin
(
rαk · (x+ εj)

)
rε

+
1

rε

4∑
k=1

αk,i cos(rαk · (x+ εj))

 dr

=
1

8
√

2

∞∫
0

e−(T−t)r2

 4∑
k=1

αk,i lim
ε→0

sin
(
rαk · (x+ εj)

)
rε

+ lim
ε→0

1

rε

4∑
k=1

αk,i cos(rαk · (x+ εj))

 dr

=
1

8
√

2

∞∫
0

e−(T−t)r2

 4∑
k=1

αk,iαk,j

 dr.

Since ∂xjHl(x), ∂xjKl(x) defined in Step 3 are continuous with respect to x, and both

series
∑
l∈Z

∂xjHl(x),
∑
l∈Z

∂xjKl(x) converge uniformly in any bounded region of x, the

second derivative ∂2
xixj

uT (t, x) is also continuous, and hence we have proved that

uT (t, x) is in C2([0, T )× R4).

5.4.1.4 Solution Property

Proof. Supposing that {i1, i2, i3, i4} = {1, 2, 3, 4} are subscripts such that xi1 ≤ xi2 ≤

xi3 ≤ xi4 , we prove the equation

∂tu
T (t, x) +

1

2

(
∂xi2 + ∂xi4

)2

uT (t, x) = 0.
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Taking derivative with respect to t, we obtain that

∂tu
T (t, x) =

−1

16
√

2

∞∫
−∞

e−(T−t)r2

ψ(rθ · xo +
π

2

) 4∑
k=1

cos (rαk · x)

−ψ (rθ · xo)
4∑

k=1

sin (rαk · x)

 dr +
1

4
√

2

∞∫
−∞

e−(T−t)r2

dr − 1

4

√
π

2(T − t)

=
−1

16
√

2

∞∫
−∞

e−(T−t)r2

ψ(rθ · xo +
π

2

) 4∑
k=1

cos (rαk · x)

−ψ (rθ · xo)
4∑

k=1

sin (rαk · x)

 dr. (5.34)

According to (5.10) and the equality ∂xi2 (θ · xo) + ∂xi4 (θ · xo) = 0, the series part

cancels out and we have

(
∂xi2 + ∂xi4

)2

uT (t, x)

=
1

16
√

2

∞∫
−∞

e−(T−t)r2
4∑

k=1

(αk,i2 + αk,i4)2

(
ψ

(
rθ · xo +

π

2

)
cos (rαk · x)

−ψ (rθ · xo) sin (rαk · x)
)
dr.

Since (αk,i2 + αk,i4)2 = 2 for every k = 1, 2, 3, 4, we conclude that

1

2

(
∂xi2 + ∂xi4

)2

uT (t, x) =
1

16
√

2

∞∫
−∞

e−tr
2

4∑
k=1

(
ψ

(
rθ · xo +

π

2

)
cos (rαk · x)

−ψ (rθ · xo) sin (rαk · x)
)
dr = −∂tuT (t, x). (5.35)
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5.4.2 Proof of Theorem 5.3.5

Proof. By using arguments similar to the proof of (5.35), we have for

(j, k) = (1, 3), (1, 4), (2, 3),

∂tu
T (t, x) +

1

2

(
∂xij + ∂xik

)2

uT (t, x) = 0.

From (5.8), we obtain that
4∑

k=1

∂xku
T (t, x) = 1, which implies

∂2
xxu

T (t, x) (e1 + e2 + e3 + e4) = 0.

Subsequently, for all J ∈ P (4), we have that

e>J ∂
2
xxu

T (t, x)eJ − e>Jc∂2
xxu

T (t, x)eJc =
(
e>J − e>Jc

)
∂2
xxu

T (t, x) (eJ + eJc) = 0.

Therefore, it remains to show that the strategies J ∈ {∅, {i1, i2}, {i1}, {i2}, {i3}, {i4}}

are suboptimal, i.e.,

∂tu
T (t, x) +

1

2
sup

J∈P (N)

e>J ∂
2
xxu

T (t, x)eJ ≤ 0.

Since the second derivatives of uT (t, x) are continuous, we assume that θ·xo < 0, x(2) <

x(3) without loss of generality. First we introduce some notations, and simplify the
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expressions for ∂tu
T (t, x), ∂2

xxu
T (t, x). Define

Sk :=
√
T − t

∞∫
−∞

e−(T−t)r2

(
ψ

(
rθ · xo +

π

2

)
cos (rαk · xo)− ψ (rθ · xo) sin (rαk · xo)

)
dr,

Lk :=
√
T − t

∑
l∈Z

(−1)le
− (T−t)(π(l+1/2))2

(θ·xo)2

θ · xo
sin

(
αk · xoπ(l + 1/2)

θ · xo

)

−
∑
l∈Z

(−1)le
− (T−t)(πl)2

(θ·xo)2

θ · xo
cos

(
αk · xoπl
θ · xo

) .

According to (5.34) and (5.10), it can be checked that

∂tu
T (t, x) =

−1

16
√

2(T − t)

4∑
k=1

Sk, (5.36)

∂2
xihxij

uT (t, x) =
1

16
√

2(T − t)

 4∑
k=1

αk,hαk,jSk + 2
4∑

k=1

∂xij (θ · x
o)αk,hLk

 , (5.37)

where we use the fact that the ih-th coordinate of x is the h-th coordinate of xo.

Define T̃ := −
√
T−tπ

2θ·xo , βk := αk·xo
2π
√
T−t , k = 1, 2, 3, 4, and

f(r) = e−r
2

, F 1
k (r) = f(r) cos(2πβkr), F 2

k (r) = f(r) sin(2πβkr).

Their Fourier transforms are given respectively by

f̂(v) :=

∞∫
−∞

f(x)e−2πivxdx =
√
πe−πv

2

,

F̂ 1
k (v) :=

f̂ (v − βk) + f̂ (v + βk)

2
,

F̂ 2
k (v) :=

f̂ (v − βk)− f̂ (v + βk)

2i
.

158



By change of variables, we obtain

Sk =

∞∫
−∞

e−r
2

(
ψ

(
r
θ · xo√
T − t

+
π

2

)
cos

(
r
αk · x√
T − t

)
− ψ

(
r
θ · xo√
T − t

)
sin

(
r
αk · x√
T − t

))
dr

=
∑
l∈Z

(−1)l
(2l+1)T̃∫

(2l−1)T̃

F 1
k (r)dr +

∑
l∈Z

(−1)l
(2l+2)T̃∫
2lT̃

F 2
k (r)dr.

Since the functions F 1
k are even and F 2

k are odd, we obtain that

Sk =

∞∫
−∞

F 1
k (r)dr − 2

∑
l∈Z

3T̃∫
T̃

F 1
k (4lT̃ + r)dr + 2

∑
l∈Z

2T̃∫
0

F 2
k (4lT̃ + r)dr. (5.38)

Also it can be seen that

Lk =
2T̃

π

∑
l∈Z

(−1)lF 2
k ((2l + 1)T̃ ) +

∑
l∈Z

(−1)lF 1
k (2lT̃ )

 . (5.39)

Step 1: J = {i1, i2}. We prove the inequality

∂tu
T (t, x) +

1

2

(
∂xi1 + ∂xi2

)2

u(t, x) ≤ 0. (5.40)

According to trigonometric formulas, we have the following equalities

sin

(
α1 · xoπ(l + 1/2)

θ · xo

)
= sin

(
α2 · xoπ(l + 1/2)

θ · xo

)
,

sin

(
α3 · xoπ(l + 1/2)

θ · xo

)
= sin

(
α4 · xoπ(l + 1/2)

θ · xo

)
,

cos

(
α1 · xoπl
θ · xo

)
= cos

(
α2 · xoπl
θ · xo

)
,
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cos

(
α3 · xoπl
θ · xo

)
= cos

(
α4 · xoπl
θ · xo

)
.

Therefore we have L1 = L2, L3 = L4. Plugging in (5.36), (5.37) and noting that

∂xi1 (θ · xo) = ∂xi2 (θ · xo) = 1√
2
, it can be checked that

∂tu
T (t, x) +

1

2

(
∂xi1 + ∂xi2

)2

u(t, x) =
1

16
√

2(T − t)

 4∑
k=1

(
1

2
(αk,1 + αk,2)2 − 1

)
Sk


+

1

16
√

2(T − t)
(4L1 − 4L4)

=
1

4
√

2(T − t)
(L1 − L4).

Let us introduce

µ :=
πα1 · xo

4θ · xo
+
π

4
, ν :=

πα4 · xo

4θ · xo
+
π

4
, τ̂ :=

(T − t)iπ
4 (θ · xo)2 ,

and the Jacobi-theta function

θ3 (z, τ) :=
∞∑

l=−∞

exp
(
πil2τ + 2ilz

)
.

We rewrite sine and cosine terms as

(−1)l sin

(
α1 · xoπ(l + 1/2)

θ · xo

)
= −Re e2i(2l+1)µ,

−(−1)l cos

(
α1 · xπl
θ · xo

)
= −Re e4ilµ.

Note that exp(πil2τ̂) = e
− (T−t)(πl)2

4(θ·xo)2 . Then according to the definition of L1, we obtain

that

L1√
T − t

= −Re θ3(µ, τ̂)

θ · xo
= −θ3(µ, τ̂)

θ · xo
,
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and

L4√
T − t

= −θ3(ν, τ̂)

θ · xo
.

Therefore, we obtain

∂tu
T (t, x) +

1

2

(
∂xi1 + ∂xi2

)2

u(t, x) = − 1

4
√

2

θ3(µ, τ̂)− θ3(ν, τ̂)

θ · xo
, (5.41)

and (5.40) is equivalent to

θ3 (µ, τ̂)− θ3 (ν, τ̂) ≤ 0. (5.42)

Taking q = eiπτ̂ , we have the infinite product representation for the Jacobi-theta

function (see e.g. [157])

θ3 (z, τ̂) =
∞∏
l=1

(
1− q2l

)(
1 + 2q2l−1 cos(2z) + q4l−2

)
. (5.43)

By the definition of µ, ν, it can be easily checked that

µ− ν =
π
(
x(1) − x(4)

)
x(1) + x(2) − x(3) − x(4)

∈ (0, π),

µ+ ν =
π
(
x(1) − x(2) − x(3) + x(4)

)
2
(
x(1) + x(2) − x(3) − x(4)

) +
π

2
∈ (0, π),

and hence dist(µ,Zπ) > dist(ν,Zπ). Subsequently, we have cos(2µ) ≤ cos(2ν), and

therefore conclude (5.42) by (5.43).

Step 2: J = ∅. According to the Poisson summation formula for Fourier transform
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(see e.g. [178]), it can be seen that

∑
l∈Z

F 1
k (4lT̃ + r) =

∑
l∈Z

1

4T̃
F̂ 1
k

(
l

4T̃

)
ei2π

l
4T̃
r,

∑
l∈Z

F 2
k (4lT̃ + r) =

∑
l∈Z

1

4T̃
F̂ 2
k

(
l

4T̃

)
ei2π

l
4T̃
r .

Then according to (5.38),

Sk =F̂ 1
k (0)− 1

2T̃

∑
l∈Z

F̂ 1
k

(
l

4T

) 3T̃∫
T̃

ei2π
l

4T̃
rdr +

1

2T̃

∑
l∈Z

F̂ 2
k

(
l

4T̃

) 2T̃∫
0

ei2π
l

4T̃
rdr

=
∑
l∈Z

(−1)lF̂ 1
k

(
2l + 1

4T̃

)
2

(2l + 1)π
−
∑
l∈Z

F̂ 2
k

(
2l + 1

4T̃

)
2

i(2l + 1)π

=
∑
l∈Z

(−1)lf̂

(
2l + 1

4T̃
+ (−1)l+1βk

)
2

(2l + 1)π
.

By direct computation,

− 1

2T̃
F̂ 1
k

(
l

4T

) 3T̃∫
T̃

ei2π
l

4T̃
rdr =


F̂ 1
k (0), if l = 0,

(−1)(l−1)/2F̂ 1
k

(
l

4T̃

)
2
lπ
, if l is odd,

0, if l is even,

1

2T̃
F̂ 2
k

(
l

4T̃

) 2T̃∫
0

ei2π
l

4T̃
rdr =


−F̂ 2

k

(
l

4T̃

)
2
ilπ
, if l is odd,

0, if l is even.
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Therefore, we obtain that

Sk =
∑
l∈Z

(−1)lF̂ 1
k

(
2l + 1

4T̃

)
2

(2l + 1)π
−
∑
l∈Z

F̂ 2
k

(
2l + 1

4T̃

)
2

i(2l + 1)π

=
∑
l∈Z

(−1)lf̂

(
2l + 1 + (−1)l+14T̃ βk

4T̃

)
2

(2l + 1)π

=2
∑
l≥0

(−1)lf̂

(
2l + 1 + (−1)l+14T̃ βk

4T̃

)
2

(2l + 1)π
, (5.44)

where the last equation follows from the identity

(−1)lf̂

(
2l + 1 + (−1)l+14T̃ βk

4T̃

)
2

(2l + 1)π

= (−1)−l−1f̂

(
−2l − 1 + (−1)−l4T̃ βk

4T̃

)
2

(−2l − 1)π
.

Denoting

η1 := 4T̃ β1 = −α1 · xo

θ · xo
=

3x(1) − x(2) − x(3) − x(4)

x(4) + x(3) − x(2) − x(1)
,

η4 := 4T̃ β4 = −α4 · xo

θ · xo
=
−x(1) − x(2) − x(3) + 3x(4)

x(4) + x(3) − x(2) − x(1)
,

it can be easily checked that they satisfy the constraints

η1 ∈ [−3,−1], η4 ∈ [1, 3], η4 − η1 ≤ 4. (5.45)

Since ∂tu
T (t, x) = −1

16
√

2(T−t)

4∑
k=1

Sk, the inequality

∂tu
T (t, x) ≤ 0. (5.46)

is equivalent to
4∑

k=1

Sk ≥ 0. Due to definitions of T̃ and βk, we have that 4T̃ β1+4T̃ β2 =
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−2, 4T̃ β3 + 4T̃ β4 = 2. Therefore we obtain the equations

S1 + S2 =2
∑
l≥0

(−1)lf̂

(
2l + 1 + (−1)l+1η1

4T̃

)
2

(2l + 1)π

+ 2
∑
l≥0

(−1)lf̂

(
2l + 1 + (−1)l+1(−2− η1)

4T̃

)
2

(2l + 1)π

=2
∑
l≥0

(
2

(4l + 1)π
− 2

(4l + 3)π

)(
f̂

(
4l + 1− η1

4T̃

)
+ f̂

(
4l + 3 + η1

4T̃

))
,

(5.47)

S3 + S4 =2
∑
l≥0

(−1)lf̂

(
2l + 1 + (−1)l+1η4

4T̃

)
2

(2l + 1)π

+ 2
∑
l≥0

(−1)lf̂

(
2l + 1 + (−1)l+1(2− η4)

4T̃

)
2

(2l + 1)π

=− 2
∑
l≥0

(
2

(4l − 1)π
− 2

(4l + 1)π

)(
f̂

(
4l − 1 + η4

4T̃

)
+ f̂

(
4l + 1− η4

4T̃

))
.

(5.48)

It is obvious that S1 + S2 ≥ 0. As a result of (5.45), we obtain that 0 ≤ −1 + η4 ≤

5− η4 ≤ 3 + η4, and hence the inequalities

f̂ (−1 + η4) ≥ f̂ (5− η4) ≥ f̂ (3 + η4) .
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Noting that 2
∞∑
l=1

(
2

(4l−1)π
− 2

(4l+1)π

)
= 4−π

π
< 4

π
, we get that

S3 + S4 =
8

π
f̂

(
−1 + η4

4T̃

)
− 2

∞∑
l=1

(
2

(4l − 1)π
− 2

(4l + 1)π

)(
f̂

(
4l − 1 + η4

4T̃

)
+ f̂

(
4l + 1− η4

4T̃

))

≥ 8

π
f̂

(
−1 + η4

4T̃

)
− (4− π)

π

(
f̂

(
3 + η4

4T̃

)
+ f̂

(
5− η4

4T̃

))
≥ 0,

and hence
4∑

k=1

Sk ≥ S3 + S4 ≥ 0.

Step 3: J = {ih}. In the end, we prove the following inequality for each h =

1, 2, 3, 4,

−∂tu(t, x) +
1

2
∂2
xihxih

u(t, x) ≤ 0. (5.49)

Recalling in (5.39), we have

Lk =
2T̃

π

∑
l∈Z

(−1)lF 2
k ((2l + 1)T̃ ) +

∑
l∈Z

(−1)lF 1
k (2lT̃ )

 .

Applying Poisson summation formula, we obtain that

∑
l∈Z

(−1)lF 2
k ((2l + 1)T̃ ) =2

∑
l∈Z

F 2
k ((4l + 1)T̃ ) =

∑
l∈Z

1

2T̃
F̂ 2
k

(
l

4T̃

)
ei
πl
2

=
∑
l∈Z

1

2T̃
F̂ 2
k

(
2l + 1

4T̃

)
ei
π(2l+1)

2

=
1

4T̃

∑
l∈Z

(−1)l

(
f̂

(
2l + 1

4T̃
− βk

)
− f̂

(
2l + 1

4T̃
+ βk

))
,
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∑
l∈Z

(−1)lF 1
k (2lT̃ ) = −

∑
l∈Z

F 1
k (2lT̃ ) + 2

∑
l∈Z

F 1
k (4lT̃ )

= −
∑
l∈Z

1

2T̃
F̂ 1
k

(
l

2T̃

)
+
∑
l∈Z

1

2T̃
F̂ 1
k

(
l

4T̃

)

=
1

4T̃

∑
l∈Z

(
f̂

(
2l + 1

4T̃
− βk

)
+ f̂

(
2l + 1

4T̃
+ βk

))
,

and therefore

Lk =
1

π

∑
l∈Z

f̂

(
2l + 1 + (−1)l+14T̃ βk

4T̃

)
=

2

π

∑
l≥0

f̂

(
2l + 1 + (−1)l+14T̃ βk

4T̃

)
. (5.50)

We first prove the following three inequalities by direct computation.

S1 ≤ S2, S3 ≤ S4, S2 ≤ S4.

To prove the first inequality we write

S2 − S1

=
∑
l≥0

(−1)l
4

(2l + 1)π

f̂ (2l + 1 + (−1)l+1(−2− η1)

4T̃

)
− f̂

(
2l + 1 + (−1)l+1η1

4T̃

)
=
∑
l≥0

(
4

(4l + 1)π
+

4

(4l + 3)π

)(
f̂

(
4l + 3 + η1

4T̃

)
− f̂

(
4l + 1− η1

4T̃

))
.

As a result of 0 ≤ 4l + 3 + η1 ≤ 4l + 1− η1, we have for every l ≥ 0,

f̂

(
4l + 3 + η1

4T̃

)
− f̂

(
4l + 1− η1

4T̃

)
≥ 0,

and hence we conclude the first inequality.
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To show the second inequality we compute

S4 − S3

=
∑
l≥0

(−1)l
4

(2l + 1)π

f̂ (2l + 1 + (−1)l+1η4

4T̃

)
− f̂

(
2l + 1 + (−1)l+1(2− η4)

4T̃

)
=
∑
l≥1

(
4

(4l − 1)π
+

4

(4l + 1)π

)(
f̂

(
4l + 1− η4

4T̃

)
− f̂

(
4l − 1 + η4

4T̃

))
.

It can be easily seen that f̂
(

4l+1−η4

4T̃

)
− f̂

(
4l−1+η4

4T̃

)
≥ 0 for any l ≥ 1, and therefore

we have proved the second inequality.

Finally for the third inequality we have

S4 − S2

=
∑
l≥0

(−1)l
4

(2l + 1)π

f̂ (2l + 1 + (−1)l+1η4

4T̃

)
− f̂

(
2l + 1 + (−1)l+1(−2− η1)

4T̃

) .

For even l ≥ 0, we have |2l + 1− η4| ≤ |2l + 3 + η1|, and hence

f̂

(
2l + 1− η4

4T̃

)
− f̂

(
2l + 3 + η1

4T̃

)
≥ 0,

while for odd l ≥ 0, since |2l + 1 + η4| ≥ |2l − 1− η1|, we get that

f̂

(
2l + 1 + η4

4T̃

)
− f̂

(
2l − 1− η1

4T̃

)
≤ 0.

Subsequently we conclude the third inequality.

Now we prove (5.49). According to (5.36)and (5.37), we have that

∂tu
T (t, x) +

1

2
∂xihxihu

T (t, x) =
1

16
√

2(T − t)

(
2Sh −

3

4
(S1 + S2 + S3 + S4) + L1 − L4

)
,
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and therefore the inequality is equivalent to

L1 −
3

4
(S1 + S2) ≤ L4 +

3

4
(S3 + S4)− 2Sh. (5.51)

We have shown that S1 ≤ S2 ≤ S4, S3 ≤ S4. Subsequently, it is enough for us to prove

the inequality for the case h = 4. According to (5.44) and (5.50) can be checked that

L4 +
3

4
S3 −

5

4
S4 =

∑
l≥1

((
2

π
+

3

(4l + 1)π
+

5

(4l − 1)π

)
f̂

(
4l − 1 + η4

4T̃

)

+

(
2

π
− 3

(4l − 1)π
− 5

(4l + 1)π

)
f̂

(
4l + 1− η4

4T̃

))
,

L1 −
3

4
(S1 + S2)

=
∑
l≥1

(
2

π
− 3

(4l + 1)π
+

3

(4l + 3)π

)(
f̂

(
4l + 1− η1

4T̃

)
+ f̂

(
4l + 3 + η1

4T̃

))
.

Note that 0 ≤ 4l + 1 − η4 ≤ 4l − 1 + η4 ≤ 4l + 3 + η1 ≤ 4l + 1 − η1 for any l ≥ 1.

Subsequently we have that

f̂

(
4l + 1− η4

4T̃

)
≥ f̂

(
4l − 1 + η4

4T̃

)
≥ f̂

(
4l + 3 + η1

4T̃

)
≥ f̂

(
4l + 1− η1

4T̃

)
,
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and hence the inequalities

(
2

π
− 3

(4l + 1)π
+

3

(4l + 3)π

)(
f̂

(
4l + 1− η1

4T̃

)
+ f̂

(
4l + 3 + η1

4T̃

))

≤
(

4

π
− 6

(4l + 1)π
+

6

(4l + 3)π

)
f̂

(
4l + 3 + η1

4T̃

)
≤ 4

π
f̂

(
4l − 1 + η4

4T̃

)
≤

((
2

π
+

3

(4l + 1)π
+

5

(4l − 1)π

)
f̂

(
4l − 1 + η4

4T̃

)

+

(
2

π
− 3

(4l − 1)π
− 5

(4l + 1)π

)
f̂

(
4l + 1− η4

4T̃

))
,

from which we conclude that L1− 3
4
(S1 +S2) ≤ L4 + 3

4
S3− 5

4
S4 and also the inequality

(5.51).

5.4.3 Proof of Theorem 5.3.10

Proof. The dynamics of state Xm is given by

Xm = Xm−1 + eJm − 1{Im∈Jm}1.

Take any sequence mM ∈ N and xmM ∈ R4 such that mMT
M
→ t,

xmM
√
T√

M
→ x as

M →∞. Denote tm = mT
M

, ∆Xm = eJm − 1{Im∈Jm}1, and define the scaled state

x̃mM =
xmM
√
T√

M
, X̃m =

Xm

√
T√

M
, ∆X̃m =

∆Xm

√
T√

M
.
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Step 1: uT (t, x) ≤ uT (t, x). To prove the inequality, we rewrite

V
M

(mM , xmM )
√
T√

M
− uT (t, x) =

supβ∈V Eα
∗(M),β

[
Φ(XM)|XmM = xmM

]√
T

√
M

− uT (t, x)

= sup
β∈V

Eα∗(M),β
[
uT (T, X̃M)− uT (tmM , X̃mM )|X̃mM = x̃mM

]
+ uT (tmM , x̃mM )− uT (t, x)

=
M∑

m=mM+1

sup
β∈V

Eα∗(M),β

[(
uT
(
tm, X̃m

)
− uT

(
tm−1, X̃m−1

))
|X̃mM = x̃mM

]

+ uT (tmM , x̃mM )− uT (t, x).

Note that

Eα,β
[
uT
(
tm, X̃m

)
− uT

(
tm−1, X̃m−1

)
|X̃m−1 = x̃m−1

]
(?)

= Eα,β
[
∂xu

T (tm−1, x̃m−1)>∆X̃m

]
(5.52)

+ 2Eα,β


√

T
M∫

0

(√
T

M
− s

)(
∂tu

T +
1

2
e>Jm∂xxu

T eJm

)
(tm−1, x̃m−1 + s∆Xm)ds


(5.53)

+ 2Eα,β


√

T
M∫

0

(√
T

M
− s

)(
∂tu

T (tm−1, X̃m)− ∂tuT (tm−1, x̃m−1 + s∆Xm)
)
ds


(5.54)

+ Eα,β


T
M∫

0

(
∂tu

T (tm−1 + s, X̃m)− ∂tuT (tm−1, X̃m)
)
ds

 . (5.55)

By the definition of α∗(M), the player chooses expert i with probability

170



∂xiu
T (tm−1, x̃m−1) at round m for all i = 1, 2, 3, 4. Subsequently, we have

Eα∗(M),β
[
∂xu

T (tm−1, x̃m−1)>∆X̃m

]
= Eβ

 4∑
i=1

∂xiu
T
(
e>Jm∂xu

T − 1{i∈Jm}1
>∂xu

T
)√ T

M

= Eβ
e>Jm∂xuT − 4∑

i=1

1{i∈Jm}∂xiu
T

√ T

M
= 0,

where all the partial derivatives of uT are evaluated at (tm−1, x̃m−1).

As a result of the solution property of u, the term (5.53) is non-positive. Also, it

is easy to find the partial derivatives ∂2
ttu(t, x) and ∂2

txi
u(t, x)

∂2
ttu

T (t, x) =
−1

16
√

2

∞∫
−∞

r2e−(T−t)r2

ψ(rθ · xo +
π

2

) 4∑
k=1

cos (rαk · x)

−ψ (rθ · xo)
4∑

k=1

sin (rαk · x)

 dr,

∂2
txi
uT (t, x) =

1

16
√

2

∞∫
−∞

re−(T−t)r2
4∑

k=1

αk,i

(
ψ

(
rθ · xo +

π

2

)
sin (rαk · x)

+ψ (rθ · xo) cos (rαk · x)
)
dr.

According to the boundedness of ψ, sin, cos, we obtain that

∣∣∣∂2
ttu

T (t, x)
∣∣∣ ≤ 1

16
√

2

∞∫
−∞

8r2e−(T−t)r2

dr =
1

2
√

2(T − t)3

∞∫
−∞

r2e−r
2

dr ≤ C√
(T − t)3

,
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∣∣∣∂2
txi
uT (t, x)

∣∣∣ ≤ 1

16
√

2

∞∫
−∞

6
√

2re−(T−t)r2

dr ≤ 6

16(T − t)

∞∫
−∞

re−r
2

dr ≤ C

T − t
,

where C is a positive constant independent of (t, x) and is allowed to change from

line to line.

Noting that the above estimation is independent of x, we can therefore estimate

the bound of (5.54) and (5.55).

∣∣∣∣∣∣∣∣E
α,β

2

√
T
M∫

0

(√
T

M
− s

)(
∂tu

T (tm−1, X̃m)− ∂tuT (tm−1, x̃n−1 + s∆Xm)
)
ds


∣∣∣∣∣∣∣∣

≤ CEα,β


√

T
M∫

0

(√
T

M
− s

)
ds

√
T
M∫

s

∣∣∣∂2
txu

T (tm−1, x̃m−1 + u∆Xm)
∣∣∣ du


≤ C

T − tm−1

√
T
M∫

0

(√
T

M
− s

)2

ds =
C

(T − tm−1)M
3
2

, (5.56)

∣∣∣∣∣∣∣∣E
α,β


T
M∫

0

(
∂tu

T (tm−1 + s, X̃m)− ∂tuT (tm−1, X̃m)
)
ds


∣∣∣∣∣∣∣∣

≤ CEα,β


T
M∫

0

ds

s∫
0

∣∣∣∂2
ttu

T (tm−1 + u, X̃m)
∣∣∣ du


= CEα,β


T
M∫

0

(
T

M
− s
) ∣∣∣∂2

ttu
T (tm−1 + s, X̃m)

∣∣∣ ds


≤ C

T
M∫

0

T
M
− s

(T − tm−1 − s)
3
2

ds. (5.57)
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Therefore we obtain that

sup
β∈V

Eα∗(M),β

[
uT
(
tm, X̃m

)
− uT

(
tm−1, X̃m−1

)
|X̃m−1 = x̃m−1

]

≤ C

 1

(T − tm−1)M
3
2

+

T
M∫

0

T
M
− s

(T − tm−1 − s)
3
2

ds

 .

Let us estimate

M∑
m=1

1

(T − tm−1)M
3
2

=
1

TM
1
2

M∑
k=1

1

k
≤ 1

TM
1
2

M+1/2∫
1/2

1

λ
dλ =

ln(M + 1/2)− ln(1/2)

TM
1
2

,

and

M∑
m=1

T
M∫

0

T
M
− s

(T − tm−1 − s)
3
2

ds =
M−1∑
m=1

T
M∫

0

T
M
− s

(T − tm−1 − s)
3
2

ds+

T
M∫

0

T
M
− s

( T
M
− s) 3

2

ds

≤
M−1∑
m=1

T

M

T
M∫

0

1

(T − tm−1 − s)
3
2

ds+
1

2

√
T

M

=
T

M

T∫
T
M

1

s
3
2

ds+
1

2

√
T

M
=

T

M

(√
M

T
− 1√

T

)
+

1

2

√
T

M
.

Thus we conclude that

lim
M→∞

M∑
m=1

 1

(T − tm−1)M
3
2

+

T
M∫

0

T
M
− s

(T − tm−1 − s)
3
2

ds


≤ lim

M→∞

 T

M

(√
M

T
− 1√

T

)
+

1

2

√
T

M
+

ln(M + 1/2)− ln(1/2)

TM
1
2

 = 0, (5.58)

173



and furthermore

uT (t, x)−uT (t, x) = lim sup(
M,

mMT

M
,
xmM

√
T

√
M

)
→(∞,t,x)

V M
(mM , xmM )

√
T√

M
− uT (t, x)



≤ lim sup(
M,

mMT

M
,
xmM

√
T

√
M

)
→(∞,t,x)

M∑
m=mM+1

C

 1

(T − tm−1)M
3
2

+

T
M∫

0

T
M
− s

(T − tm−1 − s)
3
2

ds


+ lim sup(

M,
mMT

M
,
xmM

√
T

√
M

)
→(∞,t,x)

(
uT (tmM , x̃mM )− uT (t, x)

)
= 0.

Step 2: uT (t, x) ≥ uT (t, x). Similarly, we have

V M(mM , xmM )
√
T√

M
− uT (t, x)

=
M∑

m=mM+1

inf
α∈U

Eα,J bC (M)

[(
uT
(
tm, X̃m

)
− uT

(
tm−1, X̃m−1

))
|X̃mM = x̃mM

]

+ uT (tmM , x̃mM )− uT (t, x),

and we need to estimate the conditional expectation (?). At round m, the adver-

sary chooses experts JC(x̃m−1) with probability 1
2
, and J c

C (x̃m−1) with probability 1
2
.

Therefore we compute

Eα,J bC (M)
[
∂xu

T (tm−1, x̃m−1)>∆X̃m

]
= Eα

[
1

2

(
e>JC∂xu

T − 1{Im∈JC}1
>∂xu

T
)

+
1

2

(
e>J cC∂xu

T − 1{Im∈J cC}1
>∂xu

T
)]√ T

M

= Eα
[

1

2

(
1>∂xu

T − 1>∂xu
T
)]

= 0. (5.59)

Since the bounds of (5.54) and (5.55) are the same, it remains to find the lower

bound of (5.53) when the adversary adopts the comb strategy. We show that if
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Jm = JC(x̃m−1), then the following inequality holds

(
∂tu

T +
1

2
e>Jm∂xxu

T eJm

)
(tm−1, x̃m−1 + s∆Xm) ≥ − Cs

T − tm−1

, (5.60)

where C is a positive constant independent of x̃m−1 and is allowed to change from line

to line. The proof for the case Jm = J c
C (x̃m−1) is the same. To simplify the notation,

in the following argument, we denote J = JC(x̃m−1) and x̃s = x̃m−1 + s∆Xm.

Note that if x̃
(3)
m−1 ≥ x̃

(2)
m−1 +

√
T
M

, then according to Subsection 5.4.1.4, we have

that for any s ∈
[
0,
√

T
M

]
(
∂tu

T +
1

2
e>J ∂xxu

T eJ

)
(tm−1, x̃s) = 0, (5.61)

which satisfies (5.60). Otherwise there exists a unique s0 ∈
[
0,
√

T
M

]
such that

x̃
(2)
s0 = x̃

(3)
s0 , i.e., x̃

(3)
m−1 = x̃

(2)
m−1 + s0. Then for s ∈ [0, s0], we still have (5.61), but for

s ∈
[
s0,
√

T
M

]
, according to the definition of J , the adversary actually selects the

first two leading experts. Recall (5.41),

(
∂tu

T +
1

2
e>J ∂xxu

T eJ

)
(tm−1, x̃s) =

θ3(νs, τ̂s)− θ3(µs, τ̂s)

4
√

2θ · x̃os
, (5.62)

where

µs :=
πα1 · x̃os
4θ · x̃os

+
π

4
, νs :=

πα4 · x̃os
4θ · x̃os

+
π

4
, τ̂s :=

iπ(T − tm−1)

4 (θ · x̃os)
2 .

Since x̃
(2)
s0 = x̃

(2)
s0 , it can be easily checked that µs0 − νs0 = π. According to the

definition of Jacobi-theta function, θ3(z + π, τ) = θ3(z, τ) and hence θ3(µs0 , τ̂s0) =

θ3(νs0 , τ̂s0). Let us calculate µs − νs for s ≥ s0,

µs − νs =
π

4

(
α1 · x̃os0 − 2(s− s0)

θ · x̃os
−
α4 · x̃os0 + 2(s− s0)

θ · x̃os

)
= π − π(s− s0)

θ · x̃os
.
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Then we have the estimation

∣∣θ3(νs, τ̂s)− θ3(µs, τ̂s)
∣∣ =

∣∣∣∣∣θ3

(
µs +

π(s− s0)

θ · x̃os
, τ̂s

)
− θ3(µs, τ̂s)

∣∣∣∣∣
=

∣∣∣∣∣∣
∞∑

n=−∞

exp
(
iπτ̂sn

2
)cos

(
2n

(
µs +

π(s− s0)

θ · x̃os

))
− cos(2nµs)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∞∑

n=−∞

exp
(
iπτ̂sn

2
) 2nπ(s− s0)

θ · x̃os

∣∣∣∣∣∣ . (5.63)

To finish proofing (5.60), we need an auxiliary result

sup
λ>0

(
∞∑
n=1

nλe−n
2λ

)
= C < +∞. (5.64)

According to the inequality,

∞∑
n=1

nλe−n
2λ ≤

∞∑
n=1

nλe−nλ =
λeλ

(eλ − 1)2
,

we conclude that lim
λ→∞

∞∑
n=1

nλe−n
2λ = 0 and λ 7→

∞∑
n=1

nλe−n
2λ is continuous over R>0. It

remains to show that lim sup
λ→0

∞∑
n=1

nλe−n
2λ <∞. Fix λ > 0, we can view

∞∑
n=1

nλe−n
2λ as

the Riemann sum of the integral
∫∞

1
tλe−t

2λdt. It can be easily seen that t 7→ tλe−t
2λ

is increasing over
[
0, 1√

2λ

]
and decreasing over

[
1√
2λ
,∞
]
. Take I(λ) to be largest

integer that is smaller than or equal to 1√
2λ

. Then we obtain that

I(λ)−1∑
n=1

nλe−n
2λ ≤

I(λ)∫
0

tλe−t
2λdt,

∞∑
I(λ)+2

nλe−n
2λ ≤

∞∫
I(λ)+1

tλe−t
2λdt,
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and therefore

∞∑
n=1

nλe−n
2λ ≤ I(λ)λe−I(λ)2λ + (I(λ) + 1)λe−(I(λ)+1)2λ +

∞∫
1

tλe−t
2λdt

≤ I(λ)λe−I(λ)2λ + (I(λ) + 1)λe−(I(λ)+1)2λ +
1

2
e−λ.

As a result of I(x) =
⌊

1√
2λ

⌋
, we conclude that

lim sup
λ→0

∞∑
n=1

nλe−n
2λ ≤ 2 lim

λ→0

λ√
2λ
e−

1
2 + lim

λ→0

1

2
e−λ =

1

2
.

Taking λ = π2(T−tm−1)
4(θ·x̃os)2 in (5.64), and combining (5.62),(5.63), (5.64), we obtain

that

(
∂tu

T +
1

2
e>J ∂xxu

T eJ

)
(tm−1, x̃s) =

θ3(νs, τ̂s)− θ3(µs, τ̂s)

4
√

2θ · x̃os

≥ −
∞∑

n=−∞

exp
(
iπτ̂sn

2
) 2nπ(s− s0)

(θ · x̃os)2
≥ −C(s− s0)

T − tm−1

∞∑
n=1

nλe−n
2λ ≥ − Cs

T − tm−1

,

and hence

Eα,J


√

T
M∫

0

(√
T

M
− s

)(
∂tu

T +
1

2
e>Jm∂xxu

T eJm

)
(tm−1, x̃m−1 + s∆Xm)ds



≥ − C

T − tm−1

√
T
M∫

0

(√
T

M
− s

)
sds ≥ −C

(T − tm−1)M3/2
.
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In conjunction with (5.56), (5.57), (5.58) and (5.59), we obtain that

inf
α∈U

Eα,J bC (M)

[
uT
(
tm, X̃m

)
− uT

(
tm−1, X̃m−1

)
|X̃m−1 = x̃m−1

]

≥ −C

 1

(T − tm−1)M
3
2

+

T
M∫

0

T
M
− s

(T − tm−1 − s)
3
2

ds

 ,

and finally

uT (t, x)−uT (t, x) = lim inf(
M,

mMT

M
,
xmM

√
T

√
M

)
→(∞,t,x)

(
V M(mM , xmM )

√
T√

M
− uT (t, x)

)

≥ lim inf(
M,

mMT

M
,
xmM

√
T

√
M

)
→(∞,t,x)

−
M∑

m=mM+1

C

 1

(T − tm−1)M
3
2

+

T
M∫

0

T
M
− s

(T − tm−1 − s)
3
2

ds


+ lim inf(

M,
mMT

M
,
xmM

√
T

√
M

)
→(∞,t,x)

(
uT (tmM , x̃mM )− uT (t, x)

)
= 0.

5.4.4 Proof of Proposition 5.3.12

Proof. The estimates in [94, Theorem 4] allows us to claim that there exists a constant

C > 0 so that for all T > 0 and (t, x) ∈ [0, T ]× RN ,

|uT (t, x)| ≤ C(T − t+ 1 + |x|).
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Thus, the function v defined by the expression (5.16)

v(x) := E

 ∞∫
0

e−TΦ(X0,x
T )dT

 =

∞∫
0

e−TuT (0, x)dT.

has at most linear growth and due to (5.15) it is C2. The optimality of comb strategies

implies that for all T > 0 and (t, x) ∈ [0, T )× RN ,

1

2
sup

J∈P (N)

e>J ∂
2
xxu

T (t, x)eJ =
1

2
e>JC(x)∂

2
xxu

T (t, x)eJC(x) = −∂tuT (t, x).

Equation (5.15) and the optimality of comb strategies imply that

1

2
sup

J∈P (N)

e>J ∂
2
xxv(x)eJ ≥

1

2
e>JC(x)∂

2
xxveJC(x) ≥

∞∫
0

e−T
1

2
e>JC(x)∂

2
xxu

T (0, x)eJC(x)dT

=

∞∫
0

e−T
1

2
sup

J∈P (N)

e>J ∂
2
xxu

T (0, x)eJdT ≥
1

2
sup

J∈P (N)

e>J ∂
2
xxv(x)eJ .

Thus, using the fact that for some function u], uT (t, x) = u](T − t, x) for all T > 0

and (t, x) ∈ [0, T ]× RN , all the inequalities above are equalities and

1

2
sup

J∈P (N)

e>J ∂
2
xxv(x)eJ = −

∞∫
0

e−T∂tu
T (0, x)dT =

∞∫
0

e−TuT (0, x)dT − u0(0, x)

= v(x)− Φ(x).

Given the uniqueness of viscosity solution with linear growth for (5.13) proven in

[86, Theorem 5.1] v = u and comb strategies are indeed optimal for the problem

(5.13).
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5.5 Solutions of (5.1) from Inverse Laplace Transform

5.5.1 A heuristic derivation for N = 4

We derive the solution of (5.1) when there are 4 experts. From [28, Proposition

6.1], the solution of the linear PDE

u(x)− 1

2
e>JC(x)∂

2u(x)eJC(x) = Φ(x), (5.65)

is given by

u(x) =x(4) −
√

2

4
sinh(

√
2(x(4) − x(3))) +

1

4
√

2
arctan

(
eθ·x

o
) 4∑
k=1

cosh (αk · xo)

+
1

4
√

2
arctanh

(
eθ·x

o
) 4∑
k=1

sinh (αk · xo) .

It is well-known that an elliptic PDE can be solved by applying the Laplace transform

to the corresponding parabolic one. Here, to obtain the solution to (5.7), we formally

compute the inverse Laplace transform of (5.65). It can be easily checked that for

λ ∈ R+

uλ(x) = λ−3/2u(
√
λx)

solves the equation

λuλ(x)− 1

2
e>JC(x)∂xxu

λ(x)eJC(x) = Φ(x).

We formally extend the function λ 7→ uλ(x) to the complex plane with R− as its

branch cut. Applying the inverse Laplace transform for t ∈ R+,

u#(t, x) =
1

2πi

x0+i∞∫
x0−i∞

etλuλ(x)dλ, (5.66)
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should solve the PDE, at least heuristically,

∂tu
#(t, x)− 1

2
e>JC(x)∂

2
xxu

#(t, x)eJC(x) = 0,

u#(0, x) = Φ(x),

where x0 is chosen so that the function to integrate is analytic on the line of integra-

tion. Now the solution of (5.7) is given by

uT (t, x) = u#(T − t, x).

Let us compute (5.66). Since the functions arctan, arctanh can be extended to the

complex plane via the formulas,

arctan(z) =
1

2i
log

(
i− z
i+ z

)
, arctanh(z) =

1

2
log

(
1 + z

1− z

)
,

we obtain that

u(x) =x(4) −
√

2

4
sinh(

√
2(x(4) − x(3))) +

1

8i
√

2
log

(
i− eθ·xo

i+ eθ·xo

)
4∑

k=1

cosh (αk · xo)

+
1

8
√

2
log

(
1 + eθ·x

o

1− eθ·xo

)
4∑

k=1

sinh (αk · xo) . (5.67)

To cancel the singularity at λ = 0, we rewrite

u#(t, x) =
1

2πi

x0+i∞∫
x0−i∞

etλ
u(
√
λx)− u(0)

λ3/2
dλ+

u(0)

2πi

x0+i∞∫
x0−i∞

etλ
1

λ3/2
dλ

=
1

2πi

x0+i∞∫
x0−i∞

etλ
u(
√
λx)− u(0)

λ3/2
dλ+

1

2

√
tπ

2
, (5.68)

where we use the facts that u(0) = π
4
√

2
, and the inverse Laplace transform of 1

λ3/2
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Figure 5.3: Contour of inverse Laplace transform

is 2
√
t√
π

. Take x0 = 1, ε > 0, R > 0, and the contour in Figure 5.3. The integral

of etλ(u(
√
λx) − u(0))/λ

3
2 along the contour is zero. Letting R → ∞, ε → 0, and

assuming that the limit of the integral along γ1, γ2 vanish, we obtain that

1

2πi

x0+i∞∫
x0−i∞

etλ
u(
√
λx)− u(0)

λ3/2
dλ = − lim

(R,ε)→(∞,0)

1

2πi

∫
γε+l1+l2

etλ
u(
√
λx)− u(0)

λ3/2
dλ.

It can be seen that

lim
(R,ε)→(∞,0)

1

2πi

∫
l1+l2

etλ
u(
√
λx)− u(0)

λ3/2
dλ

=
1

2πi

0∫
−∞

etλ
u(
√
λx)− u(0)

λ
3
2

dλ+

−∞∫
0

etλ
u(
√
λx)− u(0)

λ
3
2

dλ, (5.69)

where the first integral is above the branch R− and the second below. Thus the
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computation reduces to

1

2π

∞∫
0

e−tr
u(i
√
rx) + u(−i

√
rx)− 2u(0)

r
3
2

dr =

1

16
√

2

∞∫
0

e−tr

r3/2

 1

iπ

log

(
i− ei

√
rθ·xo

i+ ei
√
rθ·xo

)
+ log

(
i− e−i

√
rθ·xo

i+ e−i
√
rθ·xo

) 4∑
k=1

cos
(√

rαk · xo
)
− 4

− 1

iπ

log

(
1 + ei

√
rθ·xo

1− ei
√
rθ·xo

)
− log

(
1 + e−i

√
rθ·xo

1− e−i
√
rθ·xo

) 4∑
k=1

sin
(√

rαk · xo
) dr.

For some values of r depending on x, the first two log are respectively ∓∞. But

heuristically they cancel each other. Due to the factorizations

i− ei
√
rθ·xo

i+ ei
√
rθ·xo =

e
i
(
π
4
−
√
rθ·xo
2

)
− ei

(
−π

4
+
√
rθ·xo
2

)

e
i
(
π
4
−
√
rθ·xo
2

)
+ e

i
(
−π

4
+
√
rθ·xo
2

) = i tan

(
π

4
−
√
rθ · xo

2

)
,

1 + ei
√
rθ·xo

1− ei
√
rθ·xo =

e
i
(
−
√
rθ·xo
2

)
+ e

i
(√

rθ·xo
2

)

e
i
(
−
√
rθ·xo
2

)
− ei

(√
rθ·xo
2

) =
1

−i tan
(√

rθ·xo
2

) ,
and the identities

log

 i

tan
(√

rθ·xo
2

)
− log

 −i

tan
(√

rθ·xo
2

)
 = iπsign

tan

(√
rθ · xo

2

) ,

log

i tan

(
π

4
−
√
rθ · xo

2

)+ log

i tan

(
π

4
+

√
rθ · xo

2

)
= iπsign

tan

(
π

4
+

√
rθ · xo

2

) ,
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it can be checked that the integral (5.69) becomes

1

16
√

2

∞∫
0

e−tr

r3/2

sign
tan

(
π

4
+

√
rθ · xo

2

) 4∑
k=1

cos
(√

rαk · xo
)
− 4

−sign

tan

(√
rθ · xo

2

) 4∑
k=1

sin
(√

rαk · xo
) dr. (5.70)

According to [28, Equation (3.4)], we have lim
λ→0

u(λx)−u(0)
λ

= 1
4

(x1 + x2 + x3 + x4),

and therefore

1

2πi
lim
ε→0

∫
γε

etλ
u(
√
λx)− u(0)

λ
3
2

dλ =
−1

2πi
lim
ε→0

2π∫
0

etεe
iθ u(
√
εeiθx)− u(0)

εeiθ
1
2

idθ

=− 1

4
(x1 + x2 + x3 + x4).

In conjunction with (5.68) and (5.70), we get that

u#(t, x) =
−1

16
√

2

∞∫
0

e−tr

r3/2

sign
tan

(
π

4
+

√
rθ · xo

2

) 4∑
k=1

cos
(√

rαk · xo
)
− 4

−sign

tan

(√
rθ · xo

2

) 4∑
k=1

sin
(√

rαk · xo
) dr +

1

4

4∑
i=1

xi +
1

2

√
tπ

2

=
−1

8
√

2

∞∫
0

e−tr
2

r2

sign(tan

(
π

4
+
rθ · xo

2

)) 4∑
k=1

cos (rαk · xo)− 4

−sign

(
tan

(
rθ · xo

2

)) 4∑
k=1

sin (rαk · xo)

 dr +
1

4

4∑
i=1

xi +
1

2

√
tπ

2
,

where the last equality follows from the change of variable. Since uT (t, x) = u#(T −

t, x), we obtain (5.2).
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5.5.2 Explicit expressions for N = 3

According to [94, Theorem 8], the value function in the geometric stopping case

is given by

u(x) = x(3) +
1

2
√

2
e
√

2(x(2)−x(3)) +
1

6
√

2
e
√

2(2x(1)−x(2)−x(3)), (5.71)

which solved (5.13) with N = 3. We compute the inverse Laplace transform

u#(t, x) =
1

2πi

x0+i∞∫
x0−i∞

etλλ−3/2u(
√
λx)dλ,

where we extend the function λ 7→ u(
√
λx)/λ

3
2 naturally to C \ R−. The inverse

Laplace transform of 1
s
, 1√

s
and e−a

√
s

s
are 1, 1√

πt
and erfc

(
a

2
√
t

)
respectively, where

erfc is the complementary error function (see e.g. [4]). Subsequently according to

the convolution theorem, it can be easily checked that

u#(t, x) = x(2) +
1

3
(2x(1) − x(2) − x(3)) +

√
te
−(2x(1)−x(2)−x(3))2

2t

3
√

2π
+

√
te
√
t
−(x(2)−x(3))2

2t

√
2π

− 1

3
√
π

(2x(1) − x(2) − x(3))

∞∫
2x(1)−x(2)−x(3)

√
2t

e−y
2

dy − 1√
π

(x(2) − x(3))

∞∫
x(2)−x(3)
√

2t

e−y
2

dy.

Then uT (t, x) := u#(T − t, x) is our conjectured solution to (5.1) with N = 3.
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Proposition 5.5.1. The explicit solution to Equation (5.1) with N = 3 is given by

uT (t, x) := x(2) +
1

3
(2x(1) − x(2) − x(3)) +

√
T − te

−(2x(1)−x(2)−x(3))2

2(T−t)

3
√

2π

+

√
T − te

√
T−t−(x(2)−x(3))2

2(T−t)

√
2π

− 1

3
√
π

(2x(1) − x(2) − x(3))

∞∫
2x(1)−x(2)−x(3)√

2(T−t)

e−y
2

dy

− 1√
π

(x(2) − x(3))

∞∫
x(2)−x(3)√

2(T−t)

e−y
2

dy. (5.72)

Proof. The proof follows from straightforward computations and is left to the reader.
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CHAPTER VI

Malicious Experts Versus the Multiplicative

Weights Algorithm in Online Prediction

6.1 Introduction

Prediction with expert advice is classical and fundamental in the field of online

learning, and we refer the reader to [69] for a nice survey. In this problem, a fore-

caster makes predictions based on advices of experts so as to minimize his loss, i.e.,

the cumulative difference between his predictions and true outcomes. A standard per-

formance criterion is the regret: the difference between the loss of the forecaster and

the minimum among losses of all experts. The prediction problem is often studied in

the so-called adversarial setting and the stochastic setting. In the adversarial setting,

the advice of experts is chosen by an adversary so as to maximize the regret of the

forecaster, and therefore the problem can be viewed as a zero-sum game between the

forecaster and the adversary (see e.g. [141] [107] [94] [28] [26]). In the stochastic

setting, the losses of each expert are drawn independent and identically distributed

(i.i.d.) over time from a fixed but unknown distribution, and smaller regrets can be

achieved compared with the adversarial setting (see e.g. [87] [133] [151]).

In this chapter, we consider the model in [95] which considers a mix of adversarial

and stochastic settings. It is a learning system with two experts and a forecaster.
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One of the experts is honest, who at each round makes a correct prediction with

probability µ. The other one is malicious, who knows the true outcome at each round

and makes his predictions so as to maximize the loss of the forecaster. Here we assume

that the forecaster adopts the classical multiplicative weights algorithm, and study its

resistance to the corruption of the malicious expert. Denote by V α(N, ρ) the expected

cumulative loss for the forecaster, where α is the strategy chosen by the malicious

expert, N is the fixed time horizon, and ρ is the initial weight of the malicious expert.

Instead of regret, we analyze the asymptotic maximal loss lim
N→∞

max
α

V α(N,1/2)
N

.

It was proved in [95] that if the malicious expert is only allowed to adopt offline

policies, i.e., to decide whether to tell the true outcome at each round at the beginning

of the game, then we have lim
N→∞

max
α

V α(N,1/2)
N

= 1−µ. It implies that the extra power

of the malicious expert cannot incur extra losses to the forecaster.

Here we allow the malicious expert to adopt online policies, i.e., at each round, the

malicious expert chooses whether to tell the truth based on all the prior histories. To

find an upper bound on asymptotic losses, we rescale dynamic programming equations

of the problem and obtain a partial differential equation (PDE). Then we prove that

the unique solution of this PDE provides us an upper bound

lim sup
N→∞

max
α

V α(N, 1/2)

N
≤ 1− µ2.

For the lower bound, we design a simple strategy for the malicious expert and prove

that

lim inf
N→∞

max
α

V α(N, 1/2)

N
> 1− µ,

which implies that the malicious expert can incur extra losses to the forecaster when

online policies are admissible. To make the forecaster more resistant to the malicious

expert, we consider an adaptive multiplicative weights algorithm and prove that it is

asymptotically optimal for the forecaster.
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The rest of the chapter is organized as follows. In Section 6.2, we mathemat-

ically formulate this problem and develop its dynamic programming equations. In

Section 6.3, we show the upper bound of asymptotic losses, and in Section 6.4 we find

the lower bound. In Section 6.5, we consider the malicious expert versus the adaptive

multiplicative weights algorithm. In Section 6.6, we summarize our results and their

implications.

6.2 Problem Formulation

In this section, we introduce the mathematical model as in [95]. Consider a

learning system with two experts and a forecaster. For each round t ∈ N+, denote

the prediction of expert i ∈ {1, 2} by xit ∈ {0, 1}, and the true outcome by yt ∈ {0, 1}.

Suppose that the forecaster adopts the multiplicative weights algorithm. For each

round t ∈ N+, denote by pit the weight of expert i ∈ {1, 2}, p1
t + p2

t = 1. Then the

prediction of the forecaster is

ŷt :=
2∑
i=1

pitx
i
t.

Given ε ∈ (0, 1), the weights evolve as follows

pit+1 =
pitε
|xit−yt|

p1
t ε
|x1
t−yt| + p2

t ε
|x2
t−yt|

, i = 1, 2.

Denote the entire history up to round t− 1 by

Gt := {p1
l , p

2
l , x

1
l , x

2
l , yl : l = 1, . . . t− 1} ∪ {p1

t , p
2
t}.

Assume expert 2 is honest, and at each round t ∈ N+ make correct predictions with
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probability µ ∈ (0, 1) independently of Gt, i.e.,

x2
t =


yt with probability µ,

1− yt with probability 1− µ.

Expert 1 is malicious and knows the accuracy µ of expert 2 and the outcome yt at

each round. At each stage t ∈ N+, based on the information Gt, the malicious expert

can choose to lie, i.e., make x1
t = 1−yt, or to tell the truth, i.e., make x1

t = yt. Denote

by At the space of functions from Gt to {T, L}, where T (truth) and L (lie) represent

x1
t = yt and x1

t = 1− yt respectively.

At each round t ∈ N+, the loss of the forecaster is l(ŷt, yt) := |ŷt − yt|, which is

also the gain of the malicious expert. It can be easily verified that

l(ŷt, yt) =



p1
t if αt = L, x2

t = yt,

1 if αt = L, x2
t = 1− yt,

0 if αt = T, x2
t = yt,

1− p1
t if αt = T, x2

t = 1− yt.

(6.1)

And the evolution of p1
t is as follows:

p1
t+1 =


g(p1

t ) if αt = L, x2
t = yt,

g(−1)(p1
t ) if αt = T, x2

t = 1− yt,

p1
t otherwise,

(6.2)
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where

g(p1
t ) =

1

1 + (1/p1
t − 1)/ε

,

g(−1)(p1
t ) =

1

1 + (1/p1
t − 1)ε

.

For a fixed time horizon N , the goal of the malicious expert is to maximize the cumu-

lative loss of the forecaster by choosing a sequence of strategies α = {(α1, α2, . . . ) :

αt ∈ At, t ∈ N+}, i.e., solving the optimization problem

V (N, ρ) := max
α

Eα
 N∑
t=1

l(ŷt, yt)
∣∣ p1

1 = ρ

 .
According to (6.1), we obtain the expected current loss

Eαt
[
l(ŷt, yt)|Gt

]
=


(1− µ+ µp1

t ) if αt = L,

(1− µ)(1− p1
t ) if αt = T.

(6.3)

In combination with (6.2), we get dynamic programming equations

V (t+ 1, ρ) = max{(1− µ+ µρ) + µV (t, g(ρ))

+ (1− µ)V (t, ρ), (1− µ)(1− ρ)

+ (1− µ)V
(
t, g(−1)(ρ)

)
+ µV (t, ρ)}, (6.4)

together with initial conditions V (0, ρ) = 0.
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6.3 Upper bound on the Value function

In this section, we properly rescale the (6.4) and obtain a PDE (HJB). We explic-

itly solve this equation, and show that its solution (6.11) provides an upper bound

lim sup
N→∞

V (N, 1/2)

N
≤ 1− µ2 (6.5)

6.3.1 Limiting PDE

To appropriately rescale (6.4) and follow the formulation of [15], we change the

variable

x =
ln(1/ρ− 1)

ln(1/ε)
, ρ =

1

1 + (1/ε)x
,

and define

Ṽ (t, x) := −V
(
t,

1

1 + (1/ε)x

)
. (6.6)

Then (6.4) becomes

Ṽ (t+ 1, x) = min

{
−
(

1− µ+
µ

1 + (1/ε)x

)
(6.7)

+µṼ (t, x+ 1) + (1− µ)Ṽ (t, x),

−(1− µ)

(
1− 1

1 + (1/ε)x

)
+(1− µ)Ṽ (t, x− 1) + µṼ (t, x)

}
.

Define scaled value functions via the equation Ṽ δ(δt,δx)
δ

= Ṽ (t, x). Substituting in
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(6.7), we obtain that

Ṽ δ(t+ δ, x) = min

{
−δ
(

1− µ+
µ

1 + (1/ε)x/δ

)
+µṼ δ(t, x+ δ) + (1− µ)Ṽ δ(t, x),

−δ(1− µ)

(
1− 1

1 + (1/ε)x/δ

)
+(1− µ)Ṽ δ

(
t, x− δ)

)
+ µṼ δ(t, x)

}
. (6.8)

Taking δ to 0 in (6.8), we obtain a first order PDE

0 = vt(t, x) + max
{

1− µ+ µs(x)− µvx(t, x),

(1− µ)(1− s(x)) + (1− µ)vx(t, x)
}
, (6.9)

where v(0, x) = 0, and

s(x) =


0, if x > 0,

1, if x < 0.

Define Ω1 = {x > 0},Ω2 = {x < 0},H = {x = 0}. Note that such division

corresponds to ρ < 1/2 and ρ > 1/2, i.e. whether the malicious expert is more

credible than a benign one. Define Hamiltonians

H1(x, p) = max{1− µ− µp, 1− µ+ (1− µ)p}, x ∈ Ω̄1,

H2(x, p) = max{1− µp, (1− µ)p}, x ∈ Ω̄2.

Then (6.9) becomes

vt +Hi(x, vx) = 0 for x ∈ Ωi, i = 1, 2. (6.10)

Following Ishii’s definition of viscosity solutions to discontinuous Hamiltonians, we
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complement (6.10) by

min{vt +H1(x, vx), vt +H2(x, vx)} ≤ 0 for x ∈ H,

max{vt +H1(x, vx), vt +H2(x, vx)} ≥ 0 for x ∈ H,

where min and max should be understood in the sense of viscosity solutions.

Solving (6.10) by the method of characteristics and assuming that the value func-

tion is differentiable with respect to x on H, we conjecture the solution

v(t, x) =


−(1− µ)t, if x ∈ [(1− µ)t,∞),

−(1− µ2)t+ µx if x ∈ [−µt, (1− µ)t],

−t, if x ∈ (−∞,−µt].

(6.11)

Proposition 6.3.1. A viscosity solution of



vt +Hi(x, vx) = 0, for x ∈ Ωi, i = 1, 2,

min{vt +H1(x, vx), vt +H2(x, vx)} ≤ 0 for x ∈ H,

max{vt +H1(x, vx), vt +H2(x, vx)} ≥ 0 for x ∈ H,

v(0, x) = 0.

(HJB)

is given by (6.11).

Proof. The initial condition v(0, x) = 0 is trivially satisfied. We show that v is a

subsolution. Suppose φ : [0,∞)×R→ R is differentiable, and v − φ achieves a local

maximum 0 at (t0, x0) ∈ (0,∞) × R. Since v is differentiable in the domain O :=

{(t, x) : t > 0, x 6= (1 − µ)t, x 6= −µt}, we have φt(t0, x0) = vt(t0, x0), φx(t0, x0) =

vx(t0, x0) if (t0, x0) ∈ O. Then it is can be easily verified that φt + Hi(x, φx) = 0 at

(t0, x0), where i = 1 if x0 ≥ 0, and i = 2 if x0 ≤ 0.
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Suppose (t0, x0) is on the line {(t, x) : t > 0, x = (1− µ)t}. Note that

∂−t v(t0, x0) = −(1− µ), ∂+
t (t0, x0) = −(1− µ2),

∂−x v(t0, x0) = µ, ∂+
x v(t0, x0) = 0.

Since (t0, x0) is a local maximum of v − φ, we must have

(φt(t0, x0), φx(t0, x0))

∈ {(r, p) : r ∈ [−(1− µ2),−(1− µ)], p ∈ [0, µ]}.

Take ∆x = (1− µ)∆t. As a result of

v(t0 + ∆t, x0 + ∆x)− φ(t0 + ∆t, x0 + ∆x) ≤ 0,

we obtain that

−(1− µ)∆t− φt∆t− φx∆x+ O(∆t) ≤ 0.

Since we can choose ∆t to be either positive or negative, it can be easily deduced

that

−(1− µ)− φt − (1− µ)φx = 0.

Substituting into H1, we obtain that

φt(t0, x0) +H1(x0, φx(t0, x0)).

= φt(t0, x0) + (1− µ) + (1− µ)φx(t0, x0) = 0.

If (t0, x0) is on the line {(t, x) : t > 0, x = −µt}, we have sub/super differentials
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of v,

∂−t v(t0, x0) = −1, ∂+
t (t0, x0) = −(1− µ2),

∂−x v(t0, x0) = 0, ∂+
x v(t0, x0) = µ.

Therefore v− φ cannot achieve a local maximal on the line {(t, x) : t > 0, x = −µt}.

Hence we have proved that v is a subsolution of (HJB), and similarly, we can show

that v is a supersolution.

6.3.2 Control problem

In this subsection, we show that there is a unique viscosity solution of (HJB) by

applying results from [14] and [15]. Then in the next subsection, we will show that

the unique solution given by (6.11) provides an upper bound of lim sup
N→∞

V (N,1/2)
N

by

using the comparison principle. First, we interpret (HJB) as a control problem.

In the domain Ωi, i = 1, 2, we take Ai = [0, 1] as the space of controls, and

bi(x, αi) = αiµ− (1− αi)(1− µ), αi ∈ Ai,

as the controlled dynamics. For x ∈ H, define the space of controls A := A1 × A2 ×

[0, 1], and the dynamics

bH(x, (α1, α2, c)) :=cb1(x, α1) + (1− c)b2(x, α2),

where (α1, α2, c) ∈ A. The running cost in the domain Ω1 is given by l1(x, α1) =

−(1− µ), in the domain Ω2 by l2(x, α2) = −α2, and in H by

lH(x, (α1, α2, c)) = cl1(x, α1) + (1− c)l2(x, α2),
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where (α1, α2, c) ∈ A.

In order to restrict the dynamics on the boundaryH, we require that bH(x, (α1, α2, c)) =

0 for x ∈ H. We denote the collection of all such controls by

A0(x) := {a = (α1, α2, c) ∈ A :

bH(x, (α1, α2, c)) = 0}.

We say a control a ∈ A0(x) is regular if b1(x, α1) ≤ 0, b2(x, α2) ≥ 0, and denote

Areg0 (x) := {a = (α1,α2, c) ∈ A0(x) :

(−1)ibi(x, αi) ≥ 0}.

Define A := L∞([0, 1];A). We say a Lipschitz function Xx : [0, 1]→ R, Xx(0) = x,

an admissible trajectory if there exists some control process a(·) ∈ A, such that for

a.e. t ∈ [0, 1]

Ẋx(t) =b1(Xx(t), α1(t))1{Xx(t)∈Ω1} (6.12)

+ b2(Xx(t), α2(t))1{Xx(t)∈Ω2}

+ bH(Xx(t), (α1(t), α2(t), c(t))1{Xx(t)∈H}.

According to [15, Theorem 2.1], we have a(t) ∈ A0(Xx(t)) for a.e. t ∈ {s : Xx(s) ∈

H}. Denote by Tx the set of admissible controlled trajectories starting from x, i.e.,

Tx := {(Xx(.), a(.)) ∈ Lip([0, 1];R)×A

such that (6.12) is satisfied and Xx(0) = x}.
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Let us also introduce the set of regular trajectories,

T regx := {(Xx(.), a(.)) ∈ Tx : a(t) ∈ Areg0 (Xx(t))

for a.e. t ∈ {s : Xx(s) ∈ H}}.

For each x ∈ R, t ∈ [0, 1), we define two value functions

V −(x, t) := inf
(Xx(.),a(.))∈Tx

t∫
0

l(Xx(s), a(s)) ds, (6.13)

V +(x, t) := inf
(Xx(.),a(.))∈T regx

t∫
0

l(Xx(s), a(s)) ds, (6.14)

where the cost function l is given by

l(Xx(s), a(s)) :=
∑
i=1,2

li(Xx(s), αi(s))1{Xx(s)∈Ωi}

+ lH(Xx(s), a(s))1{Xx(s)∈H}.

Note that in Ωi, i = 1, 2, the associated Hamiltonian of (6.13) and (6.14)

(x, p) 7→ sup
αi∈Ai
{−bi(x, αi)p− li(x, αi)}

coincides with Hi in the last subsection. Then according to [15, Theorem 3.3], both

V − and V + are viscosity solutions of (HJB). We will show that they are actually

equal and there is only one viscosity solution of (HJB).

Proposition 6.3.2. V − = V + is the unique viscosity solution of (HJB), and V − is

the minimal supersolution of (HJB).

Proof. The argument is an application of results from [15]. Define the Hamiltonians
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on H via

HT (x) := sup
A0(x)

{−lH(x, a)},

Hreg
T (x) := sup

Areg0 (x)

{−lH(x, a)},

Let us compute HT (x). Suppose a = (α1, α2, c) ∈ A0(x). Then it can be easily

verified that maximizing −lH(x, a) over A0(x) is equivalent to maximizing

c(1− µ) + (1− c)α2, (6.15)

subject to constraints,

c(α1 + µ− 1) + (1− c)(α2 + µ− 1) = 0, (6.16)

c, α1, α2 ∈ [0, 1].

We first fix α2 and suppose α2 > (1− µ). Due to the equality

c(1− µ) + (1− c)α2 = (1− µ− α2)c+ α2,

and the fact that the coefficient before c is negative, maximizing (6.15) is equivalent to

minimizing c under the constraints. It can be easily seen that the minimum c can be

obtained if and only if α1 = 0. Therefore the equation (6.16) becomes 1+α2c = α2+µ,

and hence (6.15) is equal to (1 + c)(1 − µ). Now fix α1 = 0. In order to obtain the

maximum of c, we have to take α2 = 1. In that case α1 = 0, α2 = 1, c = µ and

c(1− µ) + (1− c)α2 = 1− µ2.

If α2 ≤ (1− µ), we have c(1− µ) + (1− c)α2 ≤ (1− µ) < 1− µ2. Since (0, 1, µ) is
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a regular control, we conclude that

HT (x) = Hreg
T (x) = 1− µ2.

We say a continuous function v is viscosity solution of

vt + H−(x, vx) = 0 in (0, 1)× R, (6.17)[
resp., vt + H+(x, vx) = 0 in (0, 1)× R

]
if it satisfies (HJB) and

vt +HT (x) = 0 on [0, 1]×H,

[resp., vt +Hreg
T (x) = 0 on [0, 1]×H].

According to [15, Theorem 3.3], V + is a viscosity subsolution of vt + H+(x, vx) = 0,

and hence also a viscosity subsolution of (6.17) since HT = Hreg
T in our case. As

a result of [15, Theorem 4.2, 4.4], V − is the viscosity solution of (6.17), and the

comparison result holds for (6.17). Therefore we conclude that V + ≤ V −. Then

according to their definitions (6.13) and (6.14), they must be equal.

Finally according to [15, Theorem 4.4], V − is the minimal supersolution of (HJB)

and V + is the maximal subsolution of (HJB). Then if v is a viscosity solution of

(HJB), we must have V − ≤ v ≤ V + and hence v = V − = V +.

6.3.3 Upper bound (6.5)

In this subsection, we show that

v(t, x) := lim inf
(s,y,δ)→(t,x,0)

Ṽ δ(s, y)
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is a viscosity supersolution of (HJB). Then according to Proposition 6.3.2, we obtain

that v(t, x) ≥ v(t, x), and hence

lim inf
N→∞

Ṽ (N,Nx)

N
≥ v(1, x).

In particular, if we take x = 0, then due to (6.6) and (6.11) the above inequality

becomes

lim sup
N→∞

V (N, 1/2)

N
≤ 1− µ2.

Proposition 6.3.3. v is a viscosity supersolution of (HJB).

Proof. The proof is almost the same as [17, Theorem 2.1], and we record here for

completeness. Fixing arbitrary T > 0, we show that v is a viscosity supersolution

over [0, T ] × R. Assume that (t0, x0) is a strict local minimum of v − φ for some

φ ∈ C∞b ([0, T ] × R). As a result of (6.8), it can be easily seen that v(t, x) ∈ [−t, 0].

Without loss of generality, we assume that t0 ∈ (0, T ), v(t0, x0) = φ(t0, x0), and there

exists some r > 0 such that

(i) φ ≤ −2T outside the ball B((t0, x0), r) := {(t, x) : (t− t0)2 + (x− x0)2 ≤ r2},

(ii) v − φ ≥ 0 = (t0, x0)− φ(t0, x0) in the ball B((t0, x0), r).

Then there exists a sequence of (tn, xn, δn) such that (tn, xn, δn) → (t0, x0, 0) and

(tn, xn) is a global minimum of Ṽ δn − φ. Due to the definition of v, we have that

ξn := Ṽ δn(tn, xn)−φ(tn, xn)→ 0 and Ṽ δn(t, x) ≤ φ(t, x)+ξn for any (t, x) ∈ [0, T ]×R.
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According to (6.8), we obtain that

0 ≤φ(tn, xn) + max

{
δn

(
1− µ+

µ

1 + (1/ε)xn/δn

)
−µφ(tn − δn, xn + δn)− (1− µ)φ(tn − δn, xn),

δn(1− µ)

(
1− 1

1 + (1/ε)xn/δn

)
−(1− µ)φ

(
tn − δn, xn − δn)

)
− µφ(tn − δn, xx)

}
. (6.18)

We prove for the case x0 = 0, and the proof for x 6= 0 is the same. Since{
1

1+(1/ε)xn/δn

}
n≥0
∈ [0, 1], we can take a convergent subsequence. For simplicity, we

still denote it by
{

1
1+(1/ε)xn/δn

}
n≥0

, and assume it converges to some s ∈ [0, 1]. Letting

n→∞ in (6.18), we obtain that

0 ≤ φt(t0, x0)+ max
{

1− µ+ µs− µφx(t0, x0),

(1− µ)(1− s) + (1− µ)φx(t0, x0)
}
.

Note that if

1− µ+ µs− µφx(t0, x0) ≥ (1− µ)(1− s) + (1− µ)φx(t0, x0),

then we have

H2(x0, φx(t0, x0)) ≥ 1− µφx(t0, x0)

≥ 1− µ+ µs− µφx(t0, x0),

and hence

φt(t0, x0) +H2(x0, φx(t0, x0) ≥ 0.
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Similarly if

(1− µ)(1− s) + (1− µ)φx(t0, x0) ≥ 1− µ+ µs− µφx(t0, x0),

then

H1(x0, φx(t0, x0)) ≥ 1− µ+ (1− µ)φx(t0, x0)

≥ (1− µ)(1− s) + (1− µ)φx(t0, x0),

and hence

φt(t0, x0) +H1(x0, φx(t0, x0) ≥ 0.

Therefore, we have shown that

max{φt(t0, x0) +H1(x0, φx(t0, x0)),

φt(t0, x0) +H2(x0, φx(t0, x0))} ≥ 0.

6.4 Lower Bound on the Value function

It was proved in [95] that the asymptotic average value is (1 − µ) for any of-

fline strategy of the malicious expert if starting with weight p1
1 = 1/2. Recall that

g(ρ) = 1
1+(1/ρ−1)/ε

. Here we provide a lower bound on the value functions for the

corresponding online problem

lim inf
N→∞

V (N, ρ)

N
≥ 1− µ+ µ(1− µ)(ρ− g(ρ))

> 1− µ, (6.19)
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which shows that the malicious expert has more advantages when he adopts online

policies.

This lower bound can be achieved if the malicious expert chooses to lie at state ρ

and chooses to tell the truth at state g(ρ). Since g(ρ) < ρ, intuitively the malicious

experts lies when he is still credible, and tells the truth when its credibility has been

lowered by the algorithm. For p1
1 = ρ, define the corresponding strategies by

αρt (Gt) =


L if p1

t = ρ,

T if p1
t = g(ρ),

(6.20)

and αρ := (αρ1, α
ρ
2, . . . ). We denote the value function associated with αρ by

V αρ(N, ρ) = Eαρ
 N∑
t=1

l(ŷt, yt)
∣∣ p1

1 = ρ

 .
Proposition 6.4.1.

lim
N→∞

V αρ(N, ρ)

N
= 1− µ+ µ(1− µ)(ρ− g(ρ)).

Proof. Under strategy αρ, {p1
t}t∈N is a Markov chain with two states {ρ, g(ρ)} starting

with p1
0 = ρ, and its transition probability is given by

P
[
p1
t+1 = ρ | p1

t = ρ
]

= 1− µ,

P
[
p1
t+1 = g(ρ) | p1

t = ρ
]

= µ,

P
[
p1
t+1 = ρ | p1

t = g(ρ)
]

= 1− µ,

P
[
p1
t+1 = g(ρ) | p1

t = g(ρ)
]

= µ.
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Denote its distribution at time t by

πt :=
(
P(p1

t = ρ),P(p1
t = g(ρ))

)
.

It can be easily seen that (1−µ, µ) is the stationary distribution of {p1
t}t∈N. According

to [139, Theorem 4.9], the distribution πt converges to (1 − µ, µ) as t → ∞. Due to

the equality

Eαρ
 N∑
t=0

l(ŷt, yt)
∣∣ p1

0 = ρ


=

N∑
t=0

P(p1
t = ρ)(1− µ+ µρ)

+
N∑
t=0

P(p1
t = g(ρ))(1− µ)(1− g(ρ)),

it can be easily verified that

lim
N→∞

V αρ(N, ρ)

N
=(1− µ)(1− µ+ µρ)

+ µ(1− µ)(1− g(ρ))

=1− µ+ µ(1− µ)(ρ− g(ρ))

>1− µ.

6.5 asymptotically optimal strategy for the forecaster

In this section, we show that an adaptive multiplicative weights algorithm can

resist corruptions of the malicious expert. Different from the multiplicative weights

algorithm in Section 6.2, the adaptive multiplicative weights algorithm updates the
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weights pit, i = 1, 2, as follows:

pit+1 = (pit)
ηt+1/ηte−ηt+1|xit−yt|,

where ηt =
√

8(ln 2)/t, t ∈ N+ is time-varying. Hence the prediction of the forecaster

is

ŷt =
p1
tx

1
t + p2

tx
2
t

p1
t + p2

t

.

Denote by V ∗(N, τ1, τ2) the value function for the malicious expert under the adaptive

multiplicative weights algorithm with initial weights p1
1 = τ1, p

2
1 = τ2. For any t ∈

N+, pt ∈ (0,∞), define

ht(pt) := (pt)
ηt+1/ηte−ηt+1 .

It can be easily verified that V ∗(N, τ1, τ2) is the solution to dynamic programming

equations

V ∗(t+ 1, τ1, τ2) = max

{(
1− µ+

µτ1

τ1 + τ2

)
+µV ∗(t, ht(τ1), τ2) + (1− µ)V ∗(t, ht(τ1), ht(τ2)),

(1− µ)τ2

τ1 + τ2

+ (1− µ)V ∗
(
t, τ1, ht(τ2)

)
+ µV ∗(t, τ1, τ2)

}
,

together with initial conditions V ∗(0, τ1, τ2) = 0.

Proposition 6.5.1.

lim
N→∞

V ∗(N, 1, 1)

N
= 1− µ, (6.21)

which implies that this adaptive multiplicative weights algorithm is asymptotically

optimal for the forecaster.

Proof. Suppose the malicious expert keeps lying, i.e. taking strategies αt(Gt) = L, t ∈
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N+. Then according to (6.3), it can be easily seen that the cumulative loss under this

strategy is greater than or equal to (1− µ)N , and hence

lim inf
N→∞

V ∗(N, 1, 1)

N
≥ 1− µ.

To prove the other inequality, for any path GN+1 with p1
1 = p2

1 = 1, we define

L̂N :=
N∑
t=1

l(ŷt, yt), LiN :=
N∑
t=1

l(xit, yt), i = 1, 2.

Applying [69, Chapter 2, Theorem 2.3], we obtain that

L̂N − min
i=1,2

LiN ≤ 2

√
N

2
ln 2 +

√
ln 2

8
,

and hence

L̂N ≤ L2
N + 2

√
N

2
ln 2 +

√
ln 2

8
.

Therefore for any strategy α, we obtain

Eα
[
L̂N
∣∣p1

1 = p2
1 = 1

]
≤Eα

[
L2
N

∣∣p1
1 = p2

1 = 1
]

+ 2

√
N

2
ln 2 +

√
ln 2

8

=(1− µ)N + 2

√
N

2
ln 2

+

√
ln 2

8
,

and also

lim sup
N→∞

V ∗(N, 1, 1)

N
≤ 1− µ.
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6.6 Conclusions

In this chapter, we have studied an online prediction problem with two experts of

whom one is malicious. At each round, based on all the prior history, the malicious

expert chooses to tell the true outcome or not so as to maximize the loss. We have

shown that the multiplicative weights algorithm cannot resist the corruption of the

malicious expert by explicitly finding upper and lower bounds on the value function;

see (6.5) and (6.19). We have also proved that an adaptive multiplicative weights

algorithm can resist the corruption; see Proposition 6.5.1.
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CHAPTER VII

Prediction Against a Limited Adversary

7.1 Introduction

Prediction with expert advice is one of the fundamental problems in online learn-

ing and sequential decision making. In this problem, at each round a forecaster

chooses between alternative actions based on his current and past observations with

the objective of performing as well as the best constant strategy. We refer the reader

to [69] for a survey. This problem is often studied in the adversarial setting where

an adversary chooses the outcomes to maximize the regret of the forecaster. This

interaction between the forecaster and the adversary can be seen as a zero-sum game

(see e.g. [1, 2, 26, 28, 92, 94, 107, 168]). Using the minimax theorem, one can easily

show that this zero-sum game admits a value under mild assumptions and the value

function satisfies a discrete time dynamic programming principle. Then, the long-

time behavior of the value function can be studied by showing that the discrete time

dynamic programming equation “converges” to a differential operator and a scaled

version of the value function converges to the solution of a partial differential equation

associated to the differential operator. Viscosity solution theory provides formidable

tools to rigorously show this convergence and study the properties of the long-time

behavior of the value function.

One can also state the prediction problem in the stochastic setting where the
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actions of the adversary are drawn from a fixed distribution (unknown or known to

the forecaster). Since the decisions of the adversary do not depend on the state, the

forecaster has better performances and his regret is smaller.

Similar to [7, 30, 108, 123, 146], in this chapter, we bridge the adversarial and

stochastic settings by considering an adversary who cannot freely choose the out-

comes. In our framework, the gains of the experts are drawn from a fixed distribu-

tion. Then, without seeing the outcomes and each other’s decisions, the adversary

chooses to corrupt the gain of one of the experts and the forecaster chooses one of

the experts. If the forecaster chose the corrupted expert, he obtains the corrupted

gain. Otherwise he obtains the gain of the expert he chose. By studying the value

function of this game between the adversary and the forecaster, we show that several

important features of the fully adversarial setting do not extend to our framework

and the assumptions on the data of the problem can lead to dramatic differences for

the long-time behavior of regret.

First of all, we show that the existence of the value for the zero-sum game in the

pre-limit regime is not guaranteed. Indeed, if one does not state the problem of the

adversary properly, the strategies of the adversary might fail to range in a convex

set. This point has crucial implications. Indeed, the minimax theorem fails and one

cannot establish a dynamic programming equation and the analysis of the interaction

becomes significantly more challenging. In our work, we identify a relevant set of

strategies for the adversary that allows us to obtain the existence of the value and to

use the viscosity machinery.

The second contribution of our chapter is to exhibit wildly different behavior of the

regret in the long-time regime for different types of final conditions for the zero-sum

game. In the classical statement of the prediction problem the gain of the forecaster

is compared against the gain of the best expert. In this case, the payoff function at

maturity of the zero-sum game is given by Φm(x) := maxi x
i, ∀x ∈ RN , where N is
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the number of experts in this game. One fundamental question is whether the long-

time behavior of the prediction problem is robust with respect to the choice of this

payoff function. Different choices of payoff functions are made in [112, Proposition

4.1], [92, 94], see also the distinction between internal and external regret in [100].

In particular, in [92], the authors assume that the payoff function satisfies a strict

monotonicity condition which is for example not satisfied by the function Φm. Since

the choice of the payoff function only impacts the final condition of the associated

partial differential equation, the viscosity solution approach is a formidable tool to

study the impact of the payoff function on the growth of the regret. Using these tools,

we show that the long-time behavior of the regret have different regimes depending

on whether we assume this strict monotonicity.

The third contribution of our chapter is to show that, although mathematically

appealing, a comparison result for viscosity solutions of the limiting equation is not

fundamental to obtain algorithms for the forecaster and the adversary and the growth

of the regret. Indeed, similarly to [130, 129], algorithms for the adversary and a

lower bound for the growth of regret can be found using a smooth subsolution of the

limiting equation. Additionally, by considering a smooth supersolution of a relevant

equation, one can construct an algorithm for the forecaster and an upper bound

for the growth of the regret. As in Theorem 7.4.3, usually one can show that the

infimum (supremum) limit of scaled value functions is a supersolution (subsolution)

of the limiting equation. Therefore if a comparison result for viscosity solutions exists,

one can conclude that the scaled value function converges and thus obtain the exact

growth rate of regret. Note also that the Hamiltonian of the limiting equation we

obtain has a discontinuous dependence on the first derivative and the equation is

similar to the geometric equations studied in [75, 102, 176, 177].

Finally, unlike in [26, 55, 94] where the gradient (or simple transformation of

the gradient) of the solution to the limiting equation yields an asymptotic optimal
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algorithm for the forecaster, we show that this gradient may not provide an asymptotic

optimal algorithm for the forecaster in our problem. Unfortunately, this point shows

that the solution to the limiting equation might fail to capture some feature of the

prediction problem. There are other variants of the prediction problem, e.g., [145]

considers online learning when the time horizon is unknown and similar to our case

the controls of the adversary are limited, and [3] studies a repeated zero-sum game

where an adversary plays on a budget.

The rest of the chapter is organized as follows. In Section 7.2, we formulate the

problem of prediction against a limited adversary and state the relevant assumptions.

In Section 7.3, we heuristically derive the limiting equation and in Section 7.4 state

our main results. The Section 7.5 contains special cases where we can explicitly solve

the limiting equation.

7.1.1 Notations

Let N ≥ 2 and denote {ei}Ni=1 the canonical basis of RN . We define 1 =
∑N

i=1 e
i,

RN
+ = [0,∞)N . We denote by SN the set of symmetric matrices of dimension N .

7.2 Problem Formulation

Consider a learning system with N ≥ 2 experts, an adversary and a forecaster.

At each round m, each expert i ∈ {1, . . . , N} makes a prediction which yields a gain

gim ∈ {0, 1}. Here gim = 0 (resp. gim = 1) represents that the prediction is wrong (resp.

correct) at this round. We assume that each expert is correct with probability µi, i.e.,

E[gim] = µi ∈ [0, 1]. Knowing the values of {µi : i ∈ {1, . . . , N}}, the adversary and

the forcaster play a zero-sum game. At each round, the adversary picks one expert

Am ∈ {1, . . . , N}, and sets his gain to hm ∈ {0, 1}. The adversary uses mixed type

strategies and therefore, he chooses a distribution for (Am, hm) ∈ {1, . . . , N}×{0, 1}

that may depend on the past history of the game. The realized gain ∆Gi
m of the
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expert i at round m is

∆Gi
m = gim1{i 6=Am} + hm1{i=Am}

and the total gain of the expert i is

Gi
m =

m∑
k=1

∆Gi
k.

The fact that the adversary can only interfere on the outcome of the prediction of

one expert is the main difference between our framework and the classical prediction

with expert advice problems in [2, 68, 69, 94, 107], and also the bandit problems

with corruption such as [108] and [146] where the regret bounds provided depend on

the corruption. However, unlike [7] and [123], the adversary can optimally control

the level of corruption at each round and therefore the level of corruption might be

unbounded.

If the forecaster chooses to follow expert Fm ∈ {1, . . . , N} at each round, then his

gain is given by

Gm :=
m∑
k=1

∆Gk :=
m∑
k=1

∆GFk
k .

The state of the zero-sum game between the adversary and the forecaster is

Xm = (X1
m, . . . , X

N
m ) = (G1

m −Gm, . . . G
N
m −Gm)

which evolves as

∆Xm = (∆G1
m −∆Gm, . . . ,∆G

N
m −∆Gm).
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Given the state, the control of the adversary is αm = {(aim, bim)}i=1,...N where

aim = P(Am = i, hm = 0), bim = P(Am = i, hm = 1),

and the control of the forecaster is φm = {φim}i=1,...N where

φim = P(Fm = i).

We assume that the random variables {gim} ∪ {(Am, hm)} ∪ {Fm} are mutually inde-

pendent.

Remark 7.2.1. We do not assume that Am and hm are independent and this point is

crucial. Indeed, in the definition of admissible strategies, if we require Am and hm

to be independent, then the set of admissible distributions of ∆Gm might fail to be

convex. Then, we would not be able to apply the minimax theorem to have a saddle

point for the interaction between the adversary and the forecaster.

However, since we assume that Am and hm are not required to be independent,

the set of distributions of ∆Gm is isomorphic to

A :=

((ai)Ni=1, (b
i)Ni=1) ∈ [0, 1]N × [0, 1]N :

N∑
i=1

ai + bi = 1

 ,

which is convex.

Simple computation yields that for all j ∈ {1, . . . , N},

Eαm [∆Gj
m] = (1− ajm − bjm)µj + bjm, (7.1)

Eφm,αm [∆Xj
m] = (1− ajm − bjm)µj + bjm −

N∑
i=1

φim((1− aim − bim)µi + bim). (7.2)

Suppose the maturity is M > 0 and let Φ : RN 7→ R be a given function. We
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define the regret of the forecaster via

Φ(XM) = Φ(G1
M −GM , . . . , G

N
M −GM).

We now state the following assumptions on Φ.

Assumption 7.2.2 (Assumptions on the final condition). (i) Φ is Lipschitz contin-

uous and increasing in the sense that

Φ(x+ y) ≥ Φ(x) for all x ∈ RN and y ∈ RN
+ .

(ii)For all x ∈ RN and λ > 0, Φ(λx) = λΦ(x) and Φ(x+ λ1) = Φ(x) + λ.

(iii)There exists θ > 0 so that

Φ(x+ y) ≥ Φ(x) +
θ

N
y · 1 for all x ∈ RN and y ∈ RN

+ .

Trivially, (i) and (ii) holds for classical examples of functions such as

Φm(x) := max
i
xi. (7.3)

However, this choice of final value does not satisfy (iii). In order to satisfy all the

assumption, one can perturb the function Φm(x) as

Φm,θ(x) := (1− θ) Φm(x) +
θ

N

∑
i

xi

for θ ∈ (0, 1) by making the forecaster partially satisfied if he does better than the

average. Our Theorems 7.4.3 and 7.4.7 below state that the leading order expansion

of the regret crucially depends on whether Φ satisfies the Assumption 7.2.2 (iii) or

not.

The objective of the forecaster is to minimize his expected regret at maturity M
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while the objective of the adversary is to maximize the regret of the forecaster. Then,

given the terminal condition Φ, for x ∈ RN and m ∈ {0, . . . ,M − 1}, we can define

the value function of interest via the iteration

V M(M,x) := Φ(x) (7.4)

V M(m,x) := min
φm

max
αm

Eφm,αm [V M(m+ 1, x+ ∆Xm)], (7.5)

where Eφm,αm is the expectation given the choices of φm and αm. Since the space of

strategies is the same for eachm, we might suppressm from notation φm, αm,∆Gm,∆Xm

in the dynamic programming equation (7.5).

We have the following result for the value function.

Lemma 7.2.3. Under Assumption 7.2.2 (i) and (ii), for all m ∈ {0, . . . ,M} and

(x, y) ∈ RN × RN
+ , we have the following relations

V M(m,x) = max
α

min
φ

Eφ,α[V M(m+ 1, x+ ∆X)] (7.6)

V M(m,x+ λ1) = V M(m,x) + λ, and V M(m,x+ y) ≥ V M(m,x). (7.7)

If we also make the Assumption 7.2.2 (iii), then

V M(m,x+ y) ≥ V M(m,x) +
θ

N
y · 1. (7.8)

Proof. The integrability of the random variables are a direct consequence of the Lip-

schitz continuity of Φ that passes to V M by induction. It is clear that for all φ the

mapping α 7→ Eφ,α[V M(m + 1, x + ∆X)] is linear therefore convex. Similarly, for all

α the mapping φ 7→ Eφ,α[V M(m + 1, x + ∆X)] is concave. Given the Remark 7.2.1,

we can apply the classical minimax theorem to commute the min and the max. (7.7)

is a simple consequence of the invariance of the final condition Φ in Assumption 7.2.2

(ii) and similarly (7.8) is a consequence of Assumption 7.2.2 (iii).
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7.3 PDE describing the long-time regime

In order to study the behavior of V M for large M , we define the scaled value

function as

uM(t, x) =
1√
M
V M

(
dMte,

√
Mx

)
.

Thanks to Lemma 7.2.3, it can be easily seen that uM satisfies equations

uM(t, x) = min
φ

max
α

Eφ,α
[
uM
(
t+

1

M
,x+

1√
M

∆X

)]
(7.9)

= max
α

min
φ

Eφ,α
[
uM
(
t+

1

M
,x+

1√
M

∆X

)]
,

where φ, α are the strategies of the forecaster and the adversary respectively.

Our objective is to study the value function V M for large M via the limit of the

scaled function uM . In order to illustrate the underlying ideas of our main results and

define the relevant quantities, we first assume that uM → u as M → ∞, and that u

is regular enough. According to the Taylor expansion of the right-hand side of (7.9),

we obtain that

0 = min
φ

max
α

Eφ,α
√M∇u(t, x) ·∆X + ∂tu(t, x) +

1

2

N∑
i,j=1

∂2
iju(t, x)∆X i∆Xj

+ o(1)

(7.10)

= max
α

min
φ

Eφ,α
√M∇u(t, x) ·∆X + ∂tu(t, x) +

1

2

N∑
i,j=1

∂2
iju(t, x)∆X i∆Xj

+ o(1).

(7.11)

For large enough M , in order to have the equality in this expansion, the following
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conditions have to hold for all (t, x) ∈ [0, 1)× RN ,

0 = min
φ

max
α
∇u(t, x) · Eφ,α [∆X] = max

α
min
φ
∇u(t, x) · Eφ,α [∆X] . (7.12)

Additionally, (7.7) yields that

1 · ∇u = 1.

Regarding the control of the adversary, assume that there exists j0, j1 ∈ {1, . . . , N}

so that

(1− aj0 − bj0)µj0 + bj0 < (1− aj1 − bj1)µj1 + bj1 .

We can define the control φ by

φj = ∂ju(t, x) if j ∈ {1, . . . , N} \ {j0, j1}, (7.13)

and

φj1 = ∂xj0u(t, x) + ∂xj1u(t, x), φj0 = 0.

Computing

0 = max
α

min
φ
∇u(t, x) · Eφ,α [∆X]

= max
α

min
φ

N∑
j=1

(
∂ju(t, x)− φj

)(
(1− aj − bj)µj + bj

)
, (7.14)

this choice of φ leads to

min
φ

N∑
j=1

(
∂ju(t, x)− φj

)(
(1− aj − bj)µj + bj

)
≤ ∂xj0u(t, x)

(
(1− aj0 − bj0)µj0 + bj0 − (1− aj1 − bj1)µj1 − bj1

)
.

If ∂xj0u(t, x) > 0, we obtain a contradiction with (7.14). Therefore, the first order
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condition (7.12) implies that for all j0 so that ∂xj0u(t, x) > 0, we have Eα[∆Gj0 ] =

(1 − aj0 − bj0)µj0 + bj0 = supj
(
(1− aj − bj)µj + bj

)
= supj Eα[∆Gj]. In order to

describe the dynamics of u, we define

A(p) :=

{
α ∈ A : Eα[∆Gi] = sup

j
Eα[∆Gj] if pi > 0

}
,

for any p ∈ [0,∞)N .

Therefore, by the heuristic expansion above, one expects that if there is a limit u

of uM , then u has to solve

0 = ∂tu(t, x) +
1

2
max

α∈A(∂u(t,x))

N∑
i,j=1

∂2
iju(t, x)Eα,∂u(t,x)

[
∆X i∆Xj

]
.

Since 1 · ∇u = 1 implies that 1 · ∇2u = 0, the above equation is equivalent to that

0 = ∂tu(t, x) +
1

2
max

α∈A(∂u(t,x))

N∑
i,j=1

∂2
iju(t, x)Eα

[
∆Gi∆Gj

]
. (7.15)

For notational simplicity, for all p ∈ RN
+ and S ∈ SN , we define

H(p, S) :=
1

2
max
α∈A(p)

N∑
i,j=1

SijEα[∆Gi∆Gj], (7.16)

so that (7.15) can be written as

0 = ∂tu(t, x) +H(∇u(t, x),∇2u(t, x)). (7.17)

Equations of type (7.17) are studied in [75, 102, 176, 177] in the context of ge-

ometric flows. In particular [176] provides a stochastic representation for geometric

flow type equations. Note that our equation (7.17) is not geometric in the sense

of [16, Equation (1.3)] and our problem can be seen as a deterministic game where
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the adversary and the forecaster chooses (deterministic controls) in A and the sim-

plex of dimension N . Thus, in this regard, similar to [131], our main results can be

seen as representations for the solutions to (7.17) as the limit of deterministic games

(whenever wellposedness of (7.17) holds).

Similar equations also appear in [55, 92, 93] in the context of prediction. In

particular, our Assumption 7.2.2 (iii) is inspired by [92] where the authors study the

long-time behavior of a prediction problem where the experts are history-dependent

and not controlled by the adversary. This point has a fundamental impact on the

problem. Indeed, impressively, the limiting equation in [92] is geometric and can

be solved by considering the evolution of its level sets. Similarly to [94, 107], in our

framework the adversary has to solve a control problem in the long-time regime. Thus,

the equation (7.17) is fully nonlinear and in general it is not solvable via geometric

methods. However, in some particular cases, we find explicit solutions to (7.17) by

finding an optimal control for the adversary; see Section 7.5.

Unlike the various cases in the literature where the generator is continuous on

RN − {0}, depending on the specification of (µi), H might fail to be continuous in p

on the set {(p, S) ∈ RN
+×SN : pi = 0 for some i}. This lack of continuity has a crucial

impact on the wellposedness for viscosity solution of (7.17) and the comparison result

for this PDE is not available in the literature.

Note also that under the Assumption 7.2.2 (iii), formally, we have the inequality

∂xju
M(t, x) ≥ θ

N
> 0 for all j ∈ {1, . . . , N}. Thus, in this case, one expects that

A(∇u(t, x)) :=

{
α ∈ A : Eα[∆Gi] = sup

j
Eα[∆Gj], ∀i

}
,

and the set of strategies for the adversary yields the balanced strategies defined in

[107].

Definition 7.3.1. AB denotes the set of “balanced” strategies α for the adversary,
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i.e., strategies α ∈ A satisfying

Eα[∆Gj0 ] = Eα[∆Gj1 ] (7.18)

for all j0, j1 ∈ {1, . . . , N}. For any α ∈ AB, we define

cα := Eα[∆Gi] = (1− ai − bi)µi + bi, for any i = 1, . . . , N . (7.19)

Note that for any p ∈ (0,∞)N , A(p) = AB no matter this set is empty or not.

We provide a necessary and sufficient condition on (µi) for the existence of balanced

strategies.

Proposition 7.3.2. The set of balanced strategies AB is not empty if and only if

inf
c∈[0,1]

N∑
i=1

(
µi − c
µi

∨ c− µ
i

1− µi

)
≤ 1, (7.20)

where we make the convention 0
0

= 0.

Proof. Suppose AB 6= ∅, and α ∈ AB. Then according to (7.19), we have that

cα = (1− aj − bj)µj + bj, ∀j. If cα ≥ µj, we have that

cα − µj = −(aj + bj)µj + bj ≤ (1− µj)(aj + bj),

which is equivalent to that cα−µj
1−µj ≤ aj + bj. If µj ≥ cα, we obtain that

µj − cα = (aj + bj)µj − bj ≤ (aj + bj)µj,

and hence µj−cα
µj
≤ aj + bj. Since

∑N
j=1(aj + bj) = 1, we get that

inf
c∈[0,1]

N∑
i=1

(
µi − c
µi

∨ c− µ
i

1− µi

)
≤

N∑
j=1

(
µj − cα
µj

∨ cα − µ
j

1− µj

)
≤

N∑
j=1

(aj + bj) = 1.
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For the converse, suppose there exists some c ∈ [0, 1] such that
∑N

j=1

(
µj−c
µj
∨ c−µj

1−µj

)
≤

1. Denote s :=
∑N

j=1

(
µj−c
µj
∨ c−µj

1−µj

)
. For each j = 1, . . . , N , if c ≥ µj, we take

aj = (c− µj)
(

1

s
− s
)
, bj = (c− µj)

(
1 +

µj

s(1− µj)

)
,

and if µj ≥ c,

aj = (µj − c)

(
1− µj

sµj
+ 1

)
, bj = (µj − c)

(
1

s
− 1

)
.

It can be easily verified that aj, bj ∈ [0, 1],
∑N

j=1(aj + bj) = 1, and (aj, bj) satisfies

(7.19). Therefore, it is a balanced strategies.

For notational simplicity, we also define the generator,

HB(S) :=
1

2
max
α∈AB

N∑
i,j=1

SijEα[∆Gi∆Gj], (7.21)

whose definition is motivated by the fact that

H∗(p, S) := lim sup
(q,R)→(p,S)

H(q, R) = H(p, S) and

H∗(p, S) := lim inf
(q,R)→(p,S)

H(q, R) = HB(S) for all p ∈ RN
+ if AB 6= ∅.

Given this discontinuity of the generator, we provide here the definition of viscosity

solutions which is also available in [102].

Definition 7.3.3. An upper (resp. lower) semicontinuous function u is a viscosity

subsolution (resp. supersolution) of (7.17) if for all (t, x) ∈ [0, 1) × RN and smooth

function φ so that u − φ has a local maximum (resp. minimum) at (t, x), we have

that

−∂tφ(t, x)−H∗(∇φ(t, x),∇2φ(t, x)) ≤ 0

222



(resp.− ∂tφ(t, x)−H∗(∇φ(t, x),∇2φ(t, x)) ≥ 0).

7.4 Main results

In this section, we provide the main results regarding the growth of regret and

asymptotically optimal strategies of the forecaster and the adversary. The results

fundemantally depend on whether AB = ∅ or not.

7.4.1 Growth of regret for the case AB 6= ∅

We assume in this subsection that AB 6= ∅. We prove the following priori bound

for uM .

Lemma 7.4.1. Assume that Assumption 7.2.2 (i) holds. Then, there exists a constant

C independent of M such that for all (t, x) ∈ [0, 1]× RN

|uM(t, x)− Φ(x)| ≤ C(2− t).

Proof. For any ε > 0, there exists a mollifier η such that

|η ∗ Φ− Φ|∞ < ε.

Define Φ̃ := η ∗ Φ, and it suffices for us to show that

|uM(t, ·)− Φ̃(·)|∞ ≤ C(2− t). (7.22)

According to the terminal condition of uM , the inequality (7.22) holds for t = 1.

Assume it is true for t < 1, we prove for t− 1
M

. Due to the dynamical programming
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equations and our induction, we get that

|uM(t− 1/M, x)− Φ̃(x)| =
∣∣∣∣min

φ
max
α

Eφ,α
[
uM(t, x+ ∆X/

√
M)
]
− Φ̃(x)

∣∣∣∣
≤
∣∣∣∣min

φ
max
α

Eφ,α
[
uM(t, x+ ∆X/

√
M)− Φ̃(x+ ∆X/

√
M)

+ Φ̃(x+ ∆X/
√
M)− Φ̃(x)

]∣∣∣∣
≤C(2− t) +

∣∣∣∣min
φ

max
α

Eφ,α
[
Φ̃(x+ ∆X/

√
M)− Φ̃(x)

]∣∣∣∣
Applying Taylor expansion to Φ̃(x), we obtain that

min
φ

max
α

Eφ,α
[
Φ̃(x+ ∆X/

√
M)− Φ̃(x)

]
=

1√
M

min
φ

max
α

Eφ,α
[
∇Φ̃(x) ·∆X

]
+O(1/M)

=
1√
M

min
φ

max
α

N∑
i=1

[∂iΦ̃− φi]Eα[∆Gi] +O(1/M).

Choosing φi = ∂iΦ̃, and α ∈ AB, it can be easily checked that the minimax is zero.

Since the second derivative of Φ̃ is upper bounded, there exists a constant C > 0 such

that

min
φ

max
α

Eφ,α
[
Φ̃(x+ ∆X/

√
M)− Φ̃(x)

]
≤ C/M,

and hence

|uM(t− 1/M, x)− Φ̃(x)| ≤ C(2− (t− 1/M)).
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Given Lemma 7.4.1, we define the functions

u(t, x) := lim sup
(M,s,y)→(∞,t,x)

uM(s, y) (7.23)

u(t, x) := lim inf
(M,s,y)→(∞,t,x)

uM(s, y). (7.24)

The following comparison principle is a special case of [102, Theorem 2.1] backwards

in time.

Lemma 7.4.2. Under Assumption 7.2.2 (i)-(ii) and subject to the final condition

U(1, x) = Φ(x), there exists a unique viscosity solution to

0 = ∂tU(t, x) +HB(∇2U(t, x)) (7.25)

that grows at most linearly and is uniformly continuous. We will denote this unique

solution by U . Moreover, if u1 is a subsolution, and u2 is a supersolution, then

comparison principle holds, i.e., u1 ≤ U ≤ u2 on [0, 1]× RN .

Proof. The result is a direct consequence of [102, Theorem 2.1].

Thanks to the identity H∗(p, S) = HB(S), any supersolution to (7.17) is also a

supersolution to (7.25). In the following theorem, using this property, we show that

U provides a lower bound for the scaled value function.

Theorem 7.4.3. Assume that Assumption 7.2.2 (i) and (ii) holds. Then, u(resp.

u) is a supersolution (resp subsolution) of (7.17) subject to the terminal condition

u(1, x) = u(1, x) = Φ(x), and hence the solution of (7.25) provides a lower bound to

the growth of regret as

lim inf
M→∞

1√
M
V M

(
dMte,

√
Mx

)
≥ u(t, x) ≥ U(t, x), (7.26)

where U is the unique viscosity solution to (7.25).
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Proof. The proof is almost the same as [17, Theorem 2.1] and [94, Theorem 7], and we

only indicate our modifications. We first show the supersolution property of u. Let

(t0, x0) ∈ [0, 1)×RN and ψ smooth so that u−ψ has a strict local minimum at (t0, x0).

Then, similarly to [17, Theorem 2.1], there exists Mn → 0 and (sn, yn) → (t0, x0)

satisfying

uMn(sn, yn)→ u(t0, x0) and uMn − ψ has a local minimum at (sn, yn).

Denote ξn = uMn(sn, yn)− ψ(sn, yn) that converges to 0. The dynamic programming

principle (7.9) and the minimality condition for uMn − ψ yields that

ξn = uMn(sn, yn)− ψ(sn, yn)

= min
φ

max
α

Eφ,α
[
uM
(
sn +

1

Mn

, yn +
1√
Mn

∆X

)
− ψ(sn, yn)

]

≥ min
φ

max
α

Eφ,α
[
ψ

(
sn +

1

Mn

, yn +
1√
Mn

∆X

)
− ψ(sn, yn) + ξn

]

where we used the minimality of uMn − ψ to obtain the inequality. Given that ψ is

fixed, we can now proceed to expand as in (7.10) to have

o(1) ≥

min
φ

max
α∈A

Eφ,α
√Mn∇ψ(sn, yn) ·∆X + ∂tψ(sn, yn) +

1

2

N∑
i,j=1

∂2
ijψ(sn, yn)∆X i∆Xj

 .
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By restricting the choice of α this inequality in particular implies that

o(1)

≥ min
φ

max
α∈AB

Eφ,α
√Mn∇ψ(sn, yn) ·∆X + ∂tψ(sn, yn) +

1

2

N∑
i,j=1

∂2
ijψ(sn, yn)∆X i∆Xj


≥ max

α∈AB
Eφ,α

∂tψ(sn, yn) +
1

2

N∑
i,j=1

∂2
ijψ(sn, yn)∆X i∆Xj


where we used the fact that for a balanced strategy the regret does not depend on

the strategy of the forecaster. uM satisfies

uM(s, y + λ1) = uM(s, y) + λ (7.27)

for all (s, y) ∈ [0, 1]× RN and λ ∈ R, and uMn − ψ has a local minimum at (sn, yn).

Thus, ψ satisfies ∇ψ(sn, yn) ·1 = 1. Therefore, similarly as in (7.15), we easily obtain

that

o(1) ≥ ∂tψ(sn, yn) +HB(∇2ψ(sn, yn)) = ∂tψ(sn, yn) +H∗(∇ψ(sn, yn),∇2ψ(sn, yn)).

The convergence of (sn, yn), and the continuity of HB concludes the proof of the super

solution.

We now prove the subsolution property of u. Similarly as above, for a given

(t0, x0) ∈ [0, 1) × RN and ψ smooth so that u − ψ has a strict local maximum at

(t0, x0), we can establish that

o(1) ≤ max
α∈A

min
φ

√Mn

N∑
j=1

(
∂jψ(sn, yn)− φj

)(
(1− aj − bj)µj + bj

)
(7.28)

+∂tψ(sn, yn) +
1

2

N∑
i,j=1

∂2
ijψ(sn, yn)Eφ,α

[
∆X i∆Xj

] .
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Let α /∈ A(∇ψ(sn, yn)), then there exists i ∈ {1, . . . , N} so that ∂iψ(sn, yn) > 0 and

(1− ai − bi)µi + bi < sup
j

(1− aj − bj)µj + bj.

Similarly as (7.13), for such a strategy one can find strategy φ for the forecaster so

that
N∑
j=1

(
∂jψ(sn, yn)− φj

)(
(1− aj − bj)µj + bj

)
≤ −ε < 0

for all n large enough. Thus, the maximum in (7.28) cannot be achieved at such a

strategy for n large enough. Therefore, (7.28) yields

o(1) ≤ max
α∈A(∇ψ(sn,yn))

min
φ

√Mn

N∑
j=1

(
∂jψ(sn, yn)− φj

)(
(1− aj − bj)µj + bj

)

+∂tψ(sn, yn) +
1

2

N∑
i,j=1

∂2
ijψ(sn, yn)Eφ,α

[
∆X i∆Xj

]
≤ max

α∈A(∇ψ(sn,yn))

√Mn sup
j

(
(1− aj − bj)µj + bj

) N∑
j=1, ∂jψ(sn,yn)>0

∂jψ(sn, yn)− 1


+∂tψ(sn, yn) +

1

2

N∑
i,j=1

∂2
ijψ(sn, yn)Eα

[
∆Gi∆Gj

]
≤ ∂tψ(sn, yn) + max

α∈A(∇ψ(sn,yn))

1

2

N∑
i,j=1

∂2
ijψ(sn, yn)Eα

[
∆Gi∆Gj

]

where we use the fact that

N∑
j=1, ∂jψ(sn,yn)>0

∂jψ(sn, yn) = 1,

and
N∑

i,j=1

∂2
ijψ(sn, yn)Eφ,α

[
∆X i∆Xj

]
=

N∑
i,j=1

∂2
ijψ(sn, yn)Eα

[
∆Gi∆Gj

]
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due to ∇ψ(tn, yn) · 1 = 1. Thus, we finally obtain that

o(1) ≤ ∂tψ(sn, yn) +H(∇ψ(sn, yn),∇2ψ(sn, yn)),

which leads to the subsolution property

0 ≤ ∂tψ(t0, x0) +H∗(∇ψ(t0, x0),∇2ψ(t0, x0)).

Given the supersolution property of u, the identity H∗(p, S) = HB(S) and the

comparison result in Lemma 7.4.2, we easily have that u ≥ U which implies (7.26).

Remark 7.4.4. Although, it is mathematically appealing to have a comparison result

for the PDE (7.17), we do not need it for practical problems such as lower bound

of growth of regret such as (7.26). The lower bound of regret is a consequence of

supersolution property of u and a comparison result for the PDE (7.25) (which is a

significantly simpler task than a comparison for (7.17)).

Remark 7.4.5. The classical online problem easily yields an upper bound. Indeed, in

this problem the adversary decides on the distribution of experts’ predictions at each

round, i.e., the adversary chooses an element in the probability space over {0, 1}N ,

see [26, 28, 94], etc. Denote the value function of this game by WM(m,x). According

to [94, Theorem 7], we have that

lim
M→∞

1√
M
WM

(
dMte,

√
Mx

)
= w(t, x),

where w(t, x) is the viscosity solution to

∂tw(t, x) +
1

2
max

v∈{0,1}N
〈∂2
xxw(t, x) · v, v〉 = 0, (7.29)

w(1, x) = Φ(x). (7.30)
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Since the adversary in this game fully controls the the prediction of experts, it can

be easily seen that V M(m,x) ≤ WM(m,x), and therefore we obtain that

V M(dMte,
√
Mx) ≤ w(t, x)

√
M + o(

√
M). (7.31)

Both in the classical problem in Remark 7.4.5 and in the description of the lower

bound function u, the set of strategies of the adversary are balanced. We now provide

a counter example that shows that without Assumption 7.2.2 (iii) it might be optimal

for the adversary to choose a non balanced strategy by exhibiting a case where (7.26)

is strict. Thus, unlike in [107], with corruption, the optimal strategy of the adversary

is not always balanced. This example also shows that, in general, u can not be a

subsolution to (7.25), but has to be characterized as a subsolution to (7.17). We will

show in Theorem 7.4.7 that Assumption 7.2.2 (iii) is in fact sufficient to obtain that

u = u and solves (7.25).

Example 7.4.6. For N = 3, µ1 = 0, µ2 = µ3 = 1, it can be easily verified that

AB = {(ai, bi) : b1 = 1}, i.e., the adversary always corrupts the first expert, and set

his gain to 1. Then the viscosity solution of (7.25) is U(t, x) = Φm(x) = maxi x
i.

However, if the adversary chooses the strategy (a2 = a3 = 1/2), then we have that

uM(t, x) > Φm(x) for any t ∈ [0, 1). Therefore lim supM→∞ u
M(t, x) cannot always be

a subsolution of (7.25).

The following Theorem and Example 7.4.6 show the importance of Assumption

7.2.2 (iii), which allows us to obtain the exact growth rate of regret. With Assumption

7.2.2 (iii), formally we obtain that ∇uM ∈ (θ/N,+∞)N , and thus the adversary is

forced to use balanced strategies. Therefore, we can show that the scaled value

function converges to the solution U of (7.25).

Theorem 7.4.7. Assume that Assumption 7.2.2 (i), (ii) and (iii) hold. Then, u(resp.

u) is a lower (resp. upper) semicontinuous viscosity supersolution (resp. subsolution)
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of (7.25) subject to the terminal condition u(1, x) = u(1, x) = Φ(x). Therefore,

u = u = U provides the growth rate of regret as

V M
(
dMte,

√
Mx

)
= U(t, x)

√
M + o(

√
M).

Proof. By (7.8), we have that

uM(t, x+ y) = min
φ

max
α

Eφ,α
[
uM
(
t+

1

M
,x+ y +

1√
M

∆X

)]

≥ min
φ

max
α

Eφ,α
[
uM
(
t+

1

M
,x+

1√
M

∆X

)]
+

θ

N
〈y,1〉

= uM(t, x) +
θ

N
〈y,1〉.

Therefore if u−ψ or ū−ψ attains a local extreme at (t0, x0) ∈ [0, 1)×RN , it follows

that ∇ψ(t0, x0) ∈
[
θ
N
,+∞

)N
. Then, following the same arguments as in the proof of

Theorem 7.4.3, we obtain the sign of

∂tψ(sn, yn) +H(∇ψ(sn, yn),∇2ψ(sn, yn))

for (sn, yn) → (t0, x0). The conclusion ∇ψ(t0, x0) ∈
[
θ
N
,+∞

)N
and the identity

H(p, S) = HB(S) if pi > 0 for all i allows us to obtain the sign of

∂tψ(sn, yn) +H(∇ψ(sn, yn),∇2ψ(sn, yn)) = ∂tψ(sn, yn) +HB(∇2ψ(sn, yn)).

Therefore we obtain the required viscosity property. The conclusion of the theorem

follows by the Lemma 7.4.2.

Given the solution U of (7.25), we design strategies for the adversary. For a fixed
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maturity M , denote x̃ := x√
M
, tm := m

M
. We define the strategy for the adversary

α∗ = (α∗1, . . . , α
∗
M) (7.32)

via

α∗m(x) = argmax
α∈AB

N∑
i,j=1

∂2
ijU(tm−1, x̃)Eα[∆Gi∆Gj].

Define

V M(0, x) = inf
φ

Eφ,α∗ [Φ(XM) |X0 = x],

where φ = (φ1, . . . , φM) is any strategy of the forecaster. In the next proposition, we

will show that

lim
M→∞

1√
M
V (0,

√
Mx) ≥ U(0, x), (7.33)

under assumptions on U . In Section 7.5, we will verify these assumptions for a special

case.

Proposition 7.4.8. Assume that Assumption 7.2.2 (i) and (ii) hold. Suppose the

solution U to (7.25) is smooth and satisfies the derivative bounds

|∂2
ttU(1− t, x)| ≤ C

t
3
2

, |∂2
txU(1− t, x)| ≤ C

t
, |∂3

xxxU(1− t, x)| ≤ C

t
, ∀x ∈ RN ,

(7.34)

for some positive constant C. Then (7.33) holds. Therefore, according to Theo-

rem 7.4.3 the asymptotic strategy α∗ in (7.32) for the adversary guarantees U as a

lower bound of regret, i.e.,

lim
M→∞

1

M
V M(0,

√
Mx) ≥ lim

M→∞

1

M
V M(0,

√
Mx) ≥ U(0, x).
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Proof. It can be easily verified that

1√
M
V M(0,

√
Mx)− U(0, x) =

infφ Eφ,α∗ [Φ(XM) |X0 =
√
Mx]√

M
− U(0, x)

= inf
φ

Eφ,α∗ [U(1, X̃M) | X̃0 = x]− U(0, x)

= inf
φ

 M∑
m=1

Eφ,α∗m [U(tm, X̃m)− U(tm−1, X̃m−1) | X̃0 = x]

 .

Note that

Eφ,α
[
U
(
tm, X̃m

)
− U

(
tm−1, X̃m−1

)
| X̃m−1 = x̃m−1

]
(7.35)

= Eφ,α
[
∂xU (tm−1, x̃m−1)>∆X̃m

]
(7.36)

+ 2Eφ,α


√

1
M∫

0

(√
1

M
− s

)(
∂tU +

1

2
∆X>m · ∂2

xxU ·∆Xm

)
(tm−1, x̃m−1 + s∆Xm)ds


(7.37)

+ 2Eφ,α


√

1
M∫

0

(√
1

M
− s

)(
∂tU(tm−1, X̃m)− ∂tU(tm−1, x̃m−1 + s∆Xm)

)
ds


(7.38)

+ Eφ,α


1
M∫

0

(
∂tU(tm−1 + s, X̃m)− ∂tU(tm−1, X̃m)

)
ds

 . (7.39)

Under the strategy α∗m, the term (7.36) is zero. Since ∂2
xxU ·1 = 0, the term (7.37)

is independent of φ. Due to our choice of α∗m, we have that

Eφ,α∗m
[(

∂tU +
1

2
∆X>m · ∂2

xxU ·∆Xm

)
(tm−1, x̃m−1)

]
= 0.
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According to the derivatives bounds (7.34), it can be easily seen that

(
∂tU +

1

2
∆X>m · ∂2

xxU ·∆Xm

)
(tm−1, x̃m−1 + s∆Xm)

≥
(
∂tU +

1

2
∆X>m · ∂2

xxU ·∆Xm

)
(tm−1, x̃m−1)− Cs

1− tm−1

.

Therefore the term (7.37) is bounded below by

−2C

√
1
M∫

0

(√
1
M
− s
)
s

1− tm−1

ds = − C

(1− tm−1)M
3
2

,

where C is allowed to change from line to line. Similarly, it can be easily verified that

the term (7.38) is bounded below by − C

(1−tm−1)M
3
2

. As a result of (7.34), we have that

∂tU(tm−1 + s, X̃m)− ∂tU(tm−1, X̃m) ≥ −C
s∫

0

1

(1− tm−1 − w)
3
2

dw,

and therefore the term (7.39) is bounded below by

−C

1
M∫

0

s∫
0

1

(1− tm−1 − w)
3
2

dwds = −C

1
M∫

0

1
M∫
w

1

(1− tm−1 − w)
3
2

dsdw

= −C

1
M∫

0

1
M
− s

(1− tm−1 − s)
3
2

ds.

Putting together all the estimates for (7.36), (7.37), (7.38) and (7.39) above, we
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conclude that

Eφ,α∗m
[
U
(
tm, X̃m

)
− U

(
tm−1, X̃m−1

)
| X̃m−1 = x̃m−1

]

≥ −C

 1

(1− tm−1)M
3
2

+

1
M∫

0

1
M
− s

(1− tm−1 − s)
3
2

ds

 .

It can be easily verified that

lim
M→∞

M∑
m=1

 1

(1− tm−1)M
3
2

+

1
M∫

0

1
M
− s

(1− tm−1 − s)
3
2

ds

 = 0,

and therefore

lim
M→∞

1√
M
V M(0,

√
Mx)− U(0, x) ≥ 0.

One might expect that the function U captures important features of the problem,

and the algorithm of the forecaster given by

φ∗m = {∂jU(tm−1, X̃m−1)}Nj=1

yields the best algorithm for the growth of the regret, i.e., an equality holds in (7.33).

Such a conjecture holds in [26, 55, 130, 129]. Unfortunately, as proved by the following

counter example, in our case φ∗m does not provide an asymptotic optimal algorithm.

Counter Example: Consider the case N = 2, µ1 = 3
4
, µ2 = 1

4
with final condition
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Φ = Φm,θ. Let U be the viscosity solution to (7.25). Then it holds that

lim
M→∞

1√
M

sup
α

Eφ∗,α[Φ(XM) |X0 =
√
Mx] > U(0, x),

i.e., φ∗m is not asymptotically optimal. According to Proposition 7.5.3 in the next

section, it can be easily verified that (7.25) becomes

∂tU(t, x) +
3

32
(∂2

11U(t, x) + ∂2
22U(t, x)) = 0.

From ∂2
11U + ∂2

12U = ∂2
12U + ∂2

22U = 0, we deduce that

∂2
11U = ∂2

22U = −∂2
12U = −∂2

21U,

and hence

∂tU(t, x) +
3

16
∂2

11U(t, x) = 0.

By Feynman-Kac representation of U , it can be easily verified ∂tU ≤ 0, ∂2
11U ≥ 0. By

choosing b1 = a2 = 1
2
, we obtain that

∂tU(t, x) +
1

2
max
α

∑
i,j

∂2
ijU(t, x)Eα[∆Gi∆Gj]

= ∂tU(t, x) +
3

8
∂2

11U(t, x) = −∂tU(t, x).

Therefore we obtain that

sup
α

Eφ∗m,α
[
U
(
tm, X̃m

)
− U

(
tm−1, X̃m−1

)
| X̃m−1 = x̃m−1

]
= −∂tU(tm−1, x̃m−1)

M
+ o(1/M).
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Due to the explicit formula of U , we obtain that

−∂tU(1− t, x1, x2) ≥ ct−1/2e−
(x1−x2)2

4dt

for some positive constants c, d. To close the argument, we need an estimate of

x̃1
m−1 − x̃2

m−1.

Define the strategy α̂ = (α̂1, . . . , α̂M) such that

α̂m = {b1
m = a2

m =
1

2
}.

Under the strategy α̂, Zm := X1
m −X2

m becomes a random walk with

Eα̂[Zm] =
3

4
, Varα̂[Zm] =

3

16
.

Therefore, the scaled random walk (tm, Z̃m) converges to a drifted Brownian motion

(Bt)t≥0 such that

E[Bt] =
3t

4
, Var[Bt] =

3t

16
.

Since
Bt− 3t

4√
3t
16

has standard normal distribution, we define

p := P

 |Bt − 3t
4
|√

3t
16

≤ 1

 = P

[
3t

4
−
√

3t

16
≤ Bt ≤

3t

4
+

√
3t

16

]
.
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Therefore, we obtain the estimate

lim
M→∞

1√
M

Eφ∗,α̂[Φ(XM) |X0 =
√
Mx]− U(0, x)

= lim
M→∞

M∑
m=1

Eφ∗,α̂[U(tm, X̃m)− U(tm−1, X̃m−1) | X̃0 = 0]

= E

 1∫
0

c(1− t)−1/2e−
B2
t

4d(1−t)dt


≥ p

1∫
0

c(1− t)−1/2e−
( 3t

4 +

√
3t
16 )2

4d(1−t) dt > 0.

Algorithm for the forecaster: The decomposition in (7.35) and the identity

(7.14) show that the algorithm for the forecaster defined as φ∗m = {∂jU(tm−1, X̃m−1)}Nj=1

would set to 0 the term (7.36). However, even if u solves (7.17) but not (7.29),

we cannot control the sign of (7.37) and there exist strategies for the adversary

that renders u(tm−1, X̃m−1) a submartingale (instead of a supermartingale). Thus,

φ∗ = (φ∗1, . . . , φ
∗
M) is not the best strategy for the learner and ∇u does not necessar-

ily provides the best algorithm for the forecaster.

However, if we assume that ψ is a smooth supersolution to (7.29), it can be easily

verified that φ∗m = {∂jψ(tm−1, X̃m−1)}Nj=1 provides an algorithm for the forecaster for

which the growth of the regret can be bounded from above as in (7.31).

7.4.2 Growth of regret when AB = ∅

We now assume that AB = ∅. In this case, we cannot rely on the PDE (7.25) to

obtain the growth of the regret and we have to introduce some auxiliary functions.

Without the Assumption 7.2.2 (iii), we provide an example showing that the regret

is also of order
√
M . The following result holds no matter AB is empty or not.

Proposition 7.4.9. Assume that Φ(x) = Φm(x) = maxi x
i. Then, there exists a
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function û : [0, 1] × R2 7→ R solving a linear parabolic non-degenerate PDE with

constant coefficients and terminal condition û(1, x) = x1 ∨ x2 for x ∈ R2 so that

lim inf
M→∞

V M(0,
√
Mx)√

M
≥ û(0, x1, x2).

Proof. Denote Φ̃(x) = x1 ∨ x2 for all x ∈ RN so that Φ(x) ≥ Φ̃(x). Now consider a

second game with final condition Φ̃. We denote its value function by Ṽ M . It is then

clear that V M(m,x) ≥ Ṽ M(m,x) for all x ∈ RN and 0 ≤ m ≤M .

The final condition of the second game only depends on the first two components

of the state. Thus, Ṽ M(m,x) = V̂ M(m,x1, x2) where V̂ M is the value of an auxiliary

two-expert game. Thanks to the Proposition 7.3.2, the game with two experts always

admits balanced strategies.

Thanks to Theorem 7.4.3,

lim inf
M→∞

V̂ M(tM,
√
Mx1,

√
Mx2)√

M
≥ û(t, x1, x2).

where û solves

0 = ∂tû(t, x) + ĤB(∇2û(t, x)). (7.40)

with final condition û(1, x) = x1 ∨ x2 and the generator ĤB is associated to the

balanced strategies to the auxiliary two-expert game. Thanks to Proposition 7.5.3

(which will be proved independently of this Proposition), the optimizer in (7.40) is

associated to a constant strategy so that û in fact solves a linear non-degenerate PDE

which concludes the proof.

Remark 7.4.10. Note that due to the non-degeneracy of the PDE solved by û, we

easily have that ∂iû(t, x) > 0 for all t ∈ [0, 1). Therefore, û is a smooth solution of
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(7.17) and for the auxiliary two-expert game, 1√
M
V̂ M

(
dMte,

√
Mx

)
indeed converges

to û(t, x).

The following Proposition shows the importance of Assumption 7.2.2 (iii). For

any Φ satisfying Assumption 7.2.2 (iii), we will show that Φ(x) ≤ Φ(0) + Φm,θ(x).

Therefore the forecaster is partially satisfied when he does better than the average of

the experts. Since no balanced strategies exist, the forecaster can do better than the

average by following the best performed expert at each round, and thus the scaled

value function tends to −∞.

Proposition 7.4.11. Assume that the terminal condition Φ satisfies Assumption

7.2.2. Then, we obtain that

lim sup
M→∞

1√
M
V M(0,

√
Mx) = −∞.

Proof. Recall that Φm(x) = maxi x
i. For any x ∈ RN , due to Assumption 7.2.2 (i),

(ii), it follows that

Φ(x) ≤ Φ(Φm(x)1) = Φ(0) + Φm(x).

And by Assumption 7.2.2 (iii), we obtain that

Φ(0) + Φm(x)− Φ(x) = Φ(Φm(x)1)− Φ(x) ≥ θ

N
(Φm(x)1− x) · 1,

and therefore

Φ(x) ≤ Φ(0) + Φm(x)− θ

N
(Φm(x)1− x) · 1

= Φ(0) + (1− θ)Φm(x) +
θ

N
x · 1 =: Φ(0) + Φm,θ(x). (7.41)
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Since V M(0,
√
Mx) ≤ V M(0, 0) +

√
MΦ(x), it suffices to prove that

lim sup
M→∞

1√
M
V M(0, 0) = −∞.

Denote φ := (φ1, . . . , φM) the sequence of strategies of the forecaster, and α :=

(α1, . . . , αM) the sequence of strategies of the adversary. Due to (7.41), we obtain

that

V M(0, 0) = inf
φ

sup
α

Eφ,α[Φ(XM) |X0 = 0]

≤ Φ(0) + inf
φ

sup
α

Eφ,α[Φm,θ(XM) |X0 = 0]. (7.42)

For any α ∈ A, we define

M(α) = max
i

Eα[∆Gi],

and

m(α) = max
i
{Eα[∆Gi] : Eα[∆Gi] < M(α)}.

Here M(α) is the largest expected expert gain under the policy α, and m(α) is the

second largest expected gain. Since AB = ∅, for any α ∈ A we have that m(α) ≥ 0

and M(α)−m(α) > 0. Define

δ := inf
a∈A

(M(α)−m(α)).

It can be easily seen that δ > 0.

For any value function V (7.5) with terminal condition Φ (7.4) satisfying Φ(x +

λ1) = Φ(x) + λ, it holds that V M(m + 1, x + λ1) = V M(t, x) + λ. It can be easily
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verified that

V M(m− 1, x) = min
φm

max
αm

Eφm,αm [V M(m,x+ ∆Xm)]

= max
αm

Eαm [V M(m,x+ ∆Gm)]−max
φm

∑
i

φimEαm [∆Gi
m].

Therefore for any fixed strategy α̂ of the adversary, the optimal response of the

forecaster is to follow the experts with maximal expected gain under policy α̂ at each

round, i.e., φim = 0 if and only if Eα̂m [∆Gi] < M(α̂m). Denote one such optimal

response of the forecaster by φ̂. Therefore we obtain that

inf
φ
Eφ,α̂[Φm,θ(XM) |X0 = 0] = Eφ̂,α̂[Φm,θ(XM) |X0 = 0]

= (1− θ)Eφ̂,α̂[Φm(XM) |X0 = 0] +
θ

N
Eφ̂,α̂[XM · 1 |X0 = 0]

= (1− θ) inf
φ

Eφ,α̂[Φm(XM) |X0 = 0] +
θ

N
inf
φ

Eφ,α̂[XM · 1 |X0 = 0]. (7.43)

According to Remark 7.4.5, there exists some positive C independent of choice of α̂

such that

lim sup
M→∞

1√
M

inf
φ

Eφ,α̂[Φ(XM) |X0 = 0] ≤ C. (7.44)

Due to our definition of δ, we obtain that for any α̂

inf
φ

Eφ,α̂[XM · 1/N |X0 = 0] ≤ −δM/N. (7.45)

In conjunction with (7.43),(7.44) and (7.45), we conclude that

lim sup
M→∞

1√
M
V M(0, 0) = −∞.
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7.5 Explicit solutions in some special cases

In this section we exhibit some cases where the value function and the strategies

of the adversary can be explicitly computed. The results are valid for final condition

Φθ,m(x) = (1− θ)Φ(x) + θ
N

∑N
i=1 x

i for any fixed θ ≥ 0.

Our methodology is to provide a stochastic representation for the solution of (7.25)

that allows us to claim that this solution also solves (7.17). Then, we use this solution

to obtain a strategy for the adversary.

Definition 7.5.1. Any ᾱ ∈ AB satisfying

cᾱ = sup
α∈AB

cα

is called a generous adversary and any α ∈ AB satisfying

cα = inf
α∈AB

cα

is called a greedy adversary.

Note that for α ∈ AB, one has

N∑
i,j=1

SijEα[∆Gi∆Gj] = cαTr (Σ1S)− Tr (Σ2S) (7.46)

where Σ1 = {µi + µj}Ni,j=1 + diag(1− 2µ1, . . . , 1− 2µN) and Σ2 = {1{i 6=j}µiµj}Ni,j=1.

The next lemma shows that the linear differential operator associated to each

balanced strategy is non-degenerate.

Lemma 7.5.2. If N ≥ 2, and 0 < µi < 1, i = 1, . . . , N , then for any α ∈ AB (if this

set is not empty) the matrix cαΣ1 − Σ2 is positive definite.

243



Proof. It suffices to show that for any vector y = (y1, . . . , yN) 6= 0,

y(cαΣ1 − Σ2)y> =
N∑

i,j=1

yiyjEα[∆Gi∆Gj] = Eα
[(
y>∆G

)2
]
> 0. (7.47)

As a result of (7.47), y(cαΣ1 − Σ2)y> = 0 if and only if y>∆G = 0 Pα-a.s. Denote

the collection of all the possible realizations of ∆G by

O = {z ∈ {0, 1}N : Pα[∆G = z] > 0}.

We will prove that the dimension of the linear expansion 〈O〉 is N . Then it follows

that y>∆G = 0 Pα-a.s. is impossible, and hence y(cαΣ1 − Σ2)y> > 0.

Recall that bi is the probability that the adversary corrupts expert i and sets

his gain to 1. Suppose there exists some bi > 0. For any z ∈ {0, 1}N , we define

ẑ = z − ziei + ei, and pj = 1{zj=0}(1 − µj) + 1{zj=1}µ
j for any j 6= i. Note that the

i-th coordinate of ẑ is always 1. It can be easily seen that

P(∆G = ẑ) ≥ P(∆G = ẑ, the adversary corrupts expert i and sets his gain to 1)

≥ bi
N∏

j=1,j 6=i

pi > 0.

Therefore ẑ ∈ O for any z, and O ⊃ {z ∈ {0, 1}N : zi = 1}. Hence the dimension of

〈O〉 is N .

Recall that ai is the probability that the adversary corrupts expert i and sets

his gain to 0. If bi = 0, i = 1, . . . , N , there must exist some ai > 0. For any

z ∈ {0, 1}N , we define z̃ = z − ziei. Note that the i-coordinate of z̃ is always 0.

Since P(∆G = z̃) ≥ ai
∏N

j=1,j 6=i pi > 0, we obtain that z̃ ∈ O for any z, and hence

O ⊃ {z ∈ {0, 1}N : zi = 0}. Since Ncα =
∑N

j=1((1−aj− bj)µj + bj) > 0 for N ≥ 2, it

must hold that Eα[∆Gi] > 0. There must exist some z ∈ O such that zi = 1. Hence
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〈O〉 is of dimension N .

The next proposition provides a condition on {µi} that allows us to characterize

the optimal strategy of the adversary as a constant strategy. Therefore, in this case,

the optimal strategy of the adversary is the maximizer of the Hamiltonian in (7.25).

Proposition 7.5.3. If (7.20) holds, µi ∈ (0, 1) for any i and µi + µj ≤ 1 (resp.

µi + µj ≥ 1) for any i 6= j, then any generous adversary α (resp. greedy adversary

α) is the maximizer of the Hamiltonian in (7.17) for all (t, x) ∈ [0, 1)× RN .

Additionally, the solution u to (7.17) is equal to U (which is the solution to (7.25)),

and satisfies (7.34). Therefore according to Proposition 7.4.8, the asymptotic strategy

α∗ in (7.32) for the adversary guarantees U as a lower bound of regret.

Proof. Note that according to Proposition 7.3.2, AB 6= ∅ if and only if (7.20) holds.

We only provide the proof for the case where µi + µj ≥ 1 for any i 6= j. The other

case can be proved similarly. Our methodology is to show that the solution of the

linear PDE associated with the constant strategy α also provides a solution to (7.25)

and (7.17).

Step 1: Approximating the final condition: Using the definition of Φm,θ and

the assumption on {µi}, we first find an approximation sequence Φε such that Φε

converges to Φm,θ in L∞ as ε→ 0 and Tr(Σ1∂
2Φε(x)) ≤ 0. Since

Φm,θ(x) = (1− θ) max{x1, . . . , xN}+
θ

N

N∑
i=1

xi = (1− θ)Φm(x) +
θ

N

N∑
i=1

xi

and the second derivative of the linear part is 0, it is sufficient to prove the claim for

θ = 0. We prove the existence of such Φε by induction.

First we approximate the absolute value function on R1. For each ε > 0, it can

be easily verified that there exists some fε : R1 → R1 such that

(i) fε(x) = |x| if |x| ≥ ε;
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(ii) fε is convex;

(iii) |x| ≤ fε ≤ |x|+ ε, ∀x ∈ R1.

Then in the case of N = 2, we define

Φ2
ε(x

1, x2) :=
x1 + x2 + fε(x

1 − x2)

2
.

It can be easily seen that Φ2
ε converges to Φ2 in L∞, and ∂1Φ2

ε + ∂2Φ2
ε = 1. We

compute the second derivative of Φ2
ε and obtain that

∂2
11Φ2

ε(x) = ∂2
22Φ2

ε(x) =
1

2
f ′′ε (x1 − x2),

∂2
12Φ2

ε(x) = ∂2
12Φ2

ε(x) = −1

2
f ′′ε (x1 − x2).

Since fε is convex, we have f ′′ε (x1 − x2) ≥ 0, and therefore

Tr(Σ1∂
2Φ2

ε(x)) = (µ1 + µ2 − 1)f ′′ε (x1 − x2) ≤ 0.

Suppose our claim is correct for N−1 many experts, let us prove it for N . Without

loss of generality, we assume that µN = max{µ1, . . . , µN}. Denote by x̃ the first N−1

components of x, and by Σ̃1 the principal submatrix of Σ1 by removing its last row

and column. By induction, we have ΦN−1
ε such that

(i)
∑N−1

i=1 ∂iΦ
N−1
ε = 1 and ∂iΦ

N−1
ε ≥ 0, ∀i ≤ N − 1;

(ii) ΦN−1
ε → ΦN−1 in L∞ as ε→ 0;

(iii) Tr(Σ̃1∂
2ΦN−1

ε ) ≤ 0.

Define

Φε(x) :=
ΦN−1
ε (x̃) + xN + fε(Φ

N−1
ε (x̃)− xN)

2
.

246



It is then clear that Φε → Φ in L∞. To simplify notation, we omit the arguments x, x̃

when it is clear from the context. Let us compute its first derivatives

∂iΦε =
1

2
∂iΦ

N−1
ε +

1

2
f ′ε(Φ

N−1
ε − xN)∂iΦ

N−1
ε , i ≤ N − 1,

∂NΦε =
1

2
− 1

2
f ′ε(Φ

N−1
ε − xN),

and second derivatives

∂2
ijΦε =

1

2

(
1 + f ′ε(Φ

N−1
ε − xN)

)
∂2
ijΦ

N−1
ε +

1

2
f ′′ε (ΦN−1

ε − xN)∂iΦ
N−1
ε ∂jΦ

N−1
ε , i, j ≤ N − 1,

∂2
iNΦε = −1

2
f ′′ε (ΦN−1

ε − xN)∂iΦ
N−1
ε , i ≤ N,

∂2
NNΦε =

1

2
f ′′ε (ΦN−1

ε − xN).

Due to
∑N−1

i=1 ∂iΦ
N−1
ε = 1 and 1 + f ′ε, 1− f ′ε ≥ 0, we obtain that ∂iΦε ≥ 0 and

N∑
i=1

∂iΦ
N
ε = 1. (7.48)

Denote by ∂̃2ΦN
ε the principal submatrix of ∂2ΦN

ε by removing the last row and

column. We rewrite the trace as

Tr(Σ1∂
2ΦN

ε ) =Tr(Σ̃1∂̃2ΦN
ε ) + 2

N−1∑
i=1

(µi + µN)∂2
iNΦε + ∂2

NNΦε

=
1

2

(
1 + f ′ε(Φ

N−1
ε − xN)

)
Tr(Σ̃1∂

2ΦN−1
ε )

+
1

2
f ′′ε (ΦN−1

ε − xN)

(∂ΦN−1
ε )> · Σ̃1 · ∂ΦN−1

ε − 2
N−1∑
i=1

(µi + µN)∂iΦ
N−1
ε + 1

 .

According to our induction, we know that Tr(Σ̃1∂
2ΦN−1

ε ) ≤ 0. Since
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(
1 + f ′ε(Φ

N−1
ε − xN)

)
≥ 0, f ′′ε (ΦN−1

ε − xN) ≥ 0, it suffices to show that

(∂ΦN−1
ε )> · Σ̃1 · ∂ΦN−1

ε − 2
N−1∑
i=1

(µi + µN)∂iΦ
N−1
ε + 1

 ≤ 0. (7.49)

Due to the equality
∑N−1

i=1 ∂iΦ
N−1
ε = 1, we obtain that

(∂ΦN−1
ε )> · Σ̃1 · ∂ΦN−1

ε =(
N−1∑
i=1

∂iΦ
N−1
ε )2 +

∑
i 6=j≤N−1

(µi + µj − 1)∂iΦ
N−1
ε ∂jΦ

N−1
ε

=1 +
∑

i 6=j≤N−1

(µi + µj − 1)∂iΦ
N−1
ε ∂jΦ

N−1
ε .

Similarly, we have that

2
N−1∑
i=1

(µi + µN)∂iΦ
N−1
ε = 2 +

N−1∑
i=1

(µi + µN − 1)∂iΦ
N−1
ε .

Therefore (7.49) is equivalent to that

∑
i 6=j≤N−1

(µi + µj − 1)∂iΦ
N−1
ε ∂jΦ

N−1
ε ≤

N−1∑
i=1

(µi + µN − 1)∂iΦ
N−1
ε . (7.50)

For fixed i ≤ N − 1, according to our assumption µN = max{µ1, . . . , µN} we have

that

∑
j≤N−1,j 6=i

(µi + µj − 1)∂iΦ
N−1
ε ∂jΦ

N−1
ε ≤ (µi + µN − 1)∂iΦ

N−1
ε

∑
j≤N−1,j 6=i

∂jΦ
N−1
ε

≤ (µi + µN − 1)∂iΦ
N−1
ε .

Summing from i = 1 to i = N − 1, we obtain the inequality (7.50), and hence (7.49).

In conjunction with (7.48), we finish proving the induction.

Step 2: Solving the nonlinear PDE with the linear PDE: Denote by u the solution
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of

0 = ∂tu(t, x) +
1

2
Tr
(
Σ∂2

xxu(t, x)
)

with terminal condition Φθ,m, and by uε the solution of

0 = ∂tu
ε(t, x) +

1

2
Tr
(
Σ∂2

xxu
ε(t, x)

)
(7.51)

with terminal condition Φε(smooth approximation of Φθ,m satisfying Tr(Σ1∂
2Φε(x)) ≤

0). In order to show that α is optimal, it suffices to prove that u solves PDE (7.17). To

show this solution property, it is sufficient to show that u solves (7.25), ∂iu(t, x) > 0

for all (t, x) ∈ [0, 1)× RN , and Tr(Σ1∂
2
xxu(t, x)) ≤ 0.

We can differentiate (7.51) in x twice to obtain that

wε(t, x) = Tr(Σ1∂
2
xxu

ε(t, x))

solves the same PDE

0 = ∂tw
ε(t, x) +

1

2
Tr
(
Σ∂2

xxw
ε(t, x)

)
with final condition

wε(1, x) = Tr(Σ1∂
2
xxΦε(x)).

Due to the choice of Φε we have that that wε(1, x) ≤ 0.

Thus, by the maximum principle, wε(t, x) ≤ 0 for all (ε, t, x) ∈ (0, 1)× [0, 1]×RN .

Fix t ∈ [0, 1). Due the Malliavin calculus representation of ∂2
xxv

ε,

∂2
xxu

ε(t, x) = E

[
Φε(x+

√
Σ(W1−t))

√
Σ
−1W1−tW

>
1−t − (1− t)IN
(1− t)2

√
Σ
−1

]

and we have that ∂2
xxu

ε(t, x) → ∂2
xxu(t, x). This implies that for all t ∈ [0, 1) and
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x ∈ RN ,

Tr(Σ1∂
2
xxu(t, x)) ≤ 0.

Thus, thanks to (7.46)

2HB(∂2
xxu(t, x)) = sup

α∈AB

N∑
i,j=1

∂2
iju(t, x)Eα[∆Gi∆Gj]

= sup
α∈AB

cαTr
(
Σ1∂

2
xxu(t, x)

)
− Tr

(
Σ2∂

2
xxu(t, x)

)
= cαTr

(
Σ1∂

2
xxu(t, x)

)
− Tr

(
Σ2∂

2
xxu(t, x)

)
,

and therefore α is optimal among balanced strategies and u solves (7.25) and is

therefore equal to U .

Note also that using the the density of the Brownian motion one can show that

∂iu (t, x) = (1− θ)P
(
ith coordinate of (x+

√
ΣW1−t) is maximal

)
+

θ

N
> 0

(7.52)

for all (t, x) ∈ [0, 1)× RN and θ ≥ 0. Thus, u also solves (7.17).

Step 3: The derivatives of u satisfies (7.34). According to Lemma 7.5.2 and

Proposition 7.5.3, the coefficient matrix Σ of the optimal adversary is positive definite.

Then there exists some matrix P = (P1, . . . , PN) with detP > 0 such that Σ = P>P .

It can be easily verified that the solution is given by

u(1− t, x) =
detP

(2πt)N/2

∫
RN

e−
|Py|2

2t Φm,θ(x− y) dy.

Note that Φm,θ(x) = (1 − θ) max{x1, . . . , xN} + θ
N

∑
xi is differentiable almost ev-
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erywhere and

∂iΦm,θ(x− y) = (1− θ)1{xi−yi≥Φm(x−y)} +
θ

N
a.e.

Therefore we obtain that

∂iu(1− t, x) =
θ

N
+

(1− θ) detP

(2πt)N/2

∫
RN

e−
|Py|2

2t 1{xi−yi≥Φm(x−y)} dy

=
θ

N
+

(1− θ) detP

(2πt)N/2

∫
RN

e−
|Px−Py|2

2t 1{yi≥Φm(y)} dy. (7.53)

Differentiating the above equation with respect to xj, it follows that

∂2
iju(1− t, x) = −(1− θ) detP

(2πt)N/2

∫
RN

e−
|Px−Py|2

2t

(
P>j P (x− y)

t

)
1{yi≥Φm(y)} dy. (7.54)

Similarly, it can be easily seen that

∂3
ijku(1− t, x)

=− (1− θ) detP

(2πt)N/2

∫
RN

e−
|Px−Py|2

2t

(
P>j Pk

t

)
1{yi≥Φm(y)} dy

+
(1− θ) detP

(2πt)N/2

∫
RN

e−
|Px−Py|2

2t

(
P>j P (x− y)

t

)(
P>k P (x− y)

t

)
1{yi≥Φm(y)} dy,
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and also

∂4
ijklu(1− t, x)

=
(1− θ) detP

(2πt)N/2

∫
RN

e−
|Px−Py|2

2t

(
P>j Pk

t

)(
P>l P (x− y)

t

)
1{yi≥Φm(y)} dy

+
(1− θ) detP

(2πt)N/2

∫
RN

e−
|Px−Py|2

2t

(
P>j P (x− y)

t

)(
P>k Pl
t

)
1{yi≥Φm(y)} dy

+
(1− θ) detP

(2πt)N/2

∫
RN

e−
|Px−Py|2

2t

(
P>j Pl

t

)(
P>k P (x− y)

t

)
1{yi≥Φm(y)} dy

− (1− θ) detP

(2πt)N/2
×∫

RN

e−
|Px−Py|2

2t

(
P>j P (x− y)

t

)(
P>k P (x− y)

t

)(
P>l P (x− y)

t

)
1{yi≥Φm(y)} dy.

Let us show that there exists a constant C such that for any x ∈ RN

|∂2
iju(1− t, x)| ≤ C√

t
.

It can be easily seen that

|∂2
iju(1− t, x)| =

∣∣∣∣∣∣∣−
(1− θ) detP

(2πt)N/2

∫
RN

e−
|Py|2

2t

(
P>j Py

t

)
1{xi−yi≥Φm(x−y)} dy

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣−
(1− θ) detP

(2π)N/2

∫
RN

e−
|Py|2

2

(
P>j Py√

t

)
1{

xi√
t
−yi≥Φm

(
x√
t
−y
)} dy

∣∣∣∣∣∣∣
≤(1− θ) detP

(2π)N/2
√
t

∫
RN

e−
|Py|2

2 |P>j Py| dy =
C√
t
.

Similarly, it can be proved that

|∂3
ijku(1− t, x)| ≤ C

t
,
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and

|∂4
ijklu(1− t, x)| ≤ C

t
3
2

.

Now let us estimate ∂2
ttu and ∂2

txu. Since ∂tu = −1
2
Tr(Σ∂2

xxu), we obtain that

|∂2
ttu(1− t, x)| =

∣∣∣∣12∂tTr(Σ∂2
xxu(1− t, x))

∣∣∣∣ =

∣∣∣∣12Tr(Σ∂2
xx∂tu(1− t, x))

∣∣∣∣
=

∣∣∣∣∣∣12Tr
(

Σ∂2
xx

(
1

2
Tr(Σ∂2

xxu(1− t, x))

))∣∣∣∣∣∣ .
The right hand of the above equation is a linear combination of ∂4

ijklu(1− t, x), and

hence

|∂2
ttu(1− t, x)| ≤ C

t
3
2

, ∀x ∈ RN .

Similarly, it can be easily verified that

|∂3
xxxu(1− t, x)| ≤ C

t
, |∂2

txu(1− t, x)| ≤ C

t
, ∀x ∈ RN ,

which concludes the proof of (7.34).

Example 7.5.4. In the special case of µi = µ, i = 1, . . . , N , the equation becomes

0 = ∂tU(t, x) +
1

2
max
α∈AB

 N∑
i,j=1

(2µcα − µ2)∂2
ijU(t, x) +

N∑
i=1

(cα − 2µcα + µ2)∂2
iiU(t, x)

 .

Since 1 · ∇U = 1, we have
∑N

i,j=1(2µcα − µ2)∂2
ijU(t, x) = 0. Hence the equation can
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be simplified as

0 = ∂tU(t, x) +
1

2
max
α∈AB

(
(cα − 2µcα + µ2)∆U(t, x)

)
. (7.55)

Note that

C :=
1

2
max
α∈AB

(cα − 2µcα + µ2) =


1
2
(1− 2µ)(µ+ 1

N
(1− µ)) + 1

2
µ2 if µ ≤ 1/2 ,

1
2
(1− 2µ)(µ− 1

N
µ) + 1

2
µ2 if µ ≥ 1/2 .

It can be easily verified that C ≥ 0. We claim that the solution of (7.55) is the

solution of the following equation,

0 = ∂tU(t, x) + C∆U(t, x), (7.56)

additionally the asymptotic strategy α∗ in (7.32) for the adversary guarantees U as

a lower bound of regret.

7.6 Conclusion

In this chapter, we study an expert prediction problem, where an adversary only

corrupts one expert at each round and a forecaster makes predictions based on ex-

perts’ past gains. The forecaster aims at minimizing his regret, while the adversary

wants to maximize it. Therefore this problem can be interpreted as a zero-sum game

between the adversary and the forecaster. Using viscosity theory tools in the field of

partial differential equation, we provided the growth rate of regret for the forecaster.

A strategy of the adversary is called balanced if the expected gain of each expert is

the same under this strategy. We showed that the growth rate of regret fundamen-

tally depends on whether balanced strategies exist and whether the final condition Φ

satisfies the strictly monotone condition Assumption 7.2.2 (iii),
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(i) Balanced strategies exist, Φ does not satisfy Assumption 7.2.2 (iii): the growth

rate of regret is bounded below by the solution of (7.25); see Theorem 7.4.3.

(ii) Balanced strategies exist, Φ satisfies Assumption 7.2.2 (iii): the growth rate of

regret is given by the solution of (7.25); see Theorem 7.4.7.

(iii) Balanced strategies do not exist, Φ does not satisfy Assumption 7.2.2 (iii): the

asymptotic regret is of order
√
M ; see Proposition 7.4.9.

(iv) Balanced strategies do not exist, Φ satisfies Assumption 7.2.2 (iii): the asymp-

totic regret is −∞; see Proposition 7.4.11.

Also, we designed asymptotic optimal strategies for the adversary in Proposition 7.4.8,

and solved (7.17), (7.25) in some special cases; see Proposition 7.5.3.
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CHAPTER VIII

On Non-uniqueness in Mean Field Games

8.1 Introduction

The theory of mean field games (MFGs) was introduced recently (2006-2007)

independently by Lasry, Lions (see [136], [137], [138]) and Caines, Huang, Malhamé

(see [116], [117]). It is an analysis of limit models for symmetric weakly interacting

N+1-player differential games (see e.g. [61], [62]). The solution of MFGs provides an

approximated Nash Equilibrium. It also under some conditions follows that MFGs

are limit points of N + 1-player Nash equilibria.

The influential work [56] by Cardaliaguet, Delarue, Lasry, and Lions established

the convergence of closed loop equilibria using the the so-called master equation,

which is a partial differential equation with terminal conditions whose variable are

time, state and measure. It is known that under the monotonicity condition, the mas-

ter equation possess a unique solution, which is used to show the above convergence.

A similar analysis was carried in finite state mean field games by Bayraktar and Co-

hen [24] and Cecchin and Pelino [66] independently obtain the above convergence

result (as well as the the analysis of its fluctuations).

In this chapter, we consider a case when the monotonicity assumption is not

satisfied and resolve a conjecture of [109], in which a two-state mean field game with

Markov feedback strategies is analyzed. In this game the transition rate of each
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player is the sum of his control and a background jump rate η ≥ 0. Supposing an

anti-monotone running cost (follow the crowd game), [109] poses a conjecture on

the nature of the limits of N + 1-player Nash equilibrium. We proceed by using

similar techniques to [67], which considers an anti-monotone terminal condition. In

particular, we again rely on the entropy solution of the master equation to prove the

convergence and show that the limit of N + 1-player Nash equilibrium selects the

unique mean field equilibrium induced by this entropy solution. In [67], they showed

that the mean field game equation has at most three equations, while in our model if

η < 1
2
, the number of solutions is increasing with time horizon and can be arbitrarily

large. Also, the entropy solution in our case cannot be written down explicitly, and

so we need to construct using the characteristics and check that it is entropic. For

numerical methods towards the convergence of N+1 player games to entropy solution,

we refer readers to the work of Gomes et al. [103]. Let us mention the recent work by

[88], where they study linear-quadratic mean field games in the diffusion setting. To

re-establish the uniqueness of MFG solutions, they add a common noise and prove

that the limit of MFG solutions as noise tends to zero is just the solution induced by

the entropy solution of the master equation without common noise.

The chapter is organized as follows. In Section 8.2, we introduce the N + 1-player

game we are considering, and introduce the equations characterizing the mean field

equilibria. In Section 8.3, we show that the forward backward equation characterizing

the mean field game possesses a unique solution if η ≥ 1
2
, may have multiple solutions

if η < 1
2
. Furthermore, we also determine the number of solutions. In Section 8.4, we

explicitly find the entropy solution of the master equation. In Section 8.5, we show

that if η = 0 each player in the N +1-player game will follow the majority and briefly

present that the optimal trajectories of N + 1-player game converges to the optimal

trajectory induced by the entropy solution of the master equation.
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8.2 Two states mean field games

We consider the N + 1-players game with state space Σ = {0, 1}, and denote the

state of players by Z(t) := (Zj(t))
N+1
j=1 , which evolves as controlled Markov processes.

The jump rate of Zj(t) is given by αj(t,Z(t))+η, where αj : [0, T ]×ΣN+1 → [0,+∞)

is the control of player j and η ≥ 0 is the minimum jump rate, i.e.,

P[Zj(t+ h) = 1− i|Zj(t) = i] = (αj(t,Z(t)) + η)h+ o(h).

Denote by A the collection of all the measurable and locally integrable functions

[0, T ] × ΣN+1 → [0,+∞), and by αN+1 = (α1, . . . , αN+1) ∈ AN+1 the control of all

players. It is can be easily seen that the law of Markov process is determined by the

control vector αN+1.

Let the empirical measure of player j at time t to be

θN+1,j(t) =
1

N

N+1∑
k=1,k 6=j

δZk(t)=0.

Then given the running cost function

f(i, θ) = |1− θ − i| =


1− θ i = 0

θ i = 1,

(8.1)

the control vector αN+1 ∈ AN+1 and it is associated Markov process (Z(t))0≤t≤T , the

objective function of the k-th player is defined by

JN+1
k (αN+1) = E

[ T∫
0

f(Zk(t), θ
N+1,k(t)) +

αk(t,Z(t))

2
dt

]

258



For a control vector αN+1 ∈ AN+1 and β ∈ A, define the perturbed control vector by

[αN+1,−j; β]k :=


αk, k 6= j

β, k = j.

Definition 8.2.1. A control vector αN+1 ∈ AN+1 is a Nash Equilibrium if for any

k = 1, . . . , N + 1

JN+1
k (αN+1) = inf

β∈A
JN+1
k ([αN+1,−; β]).

To find the Nash equilibrium, it is standard to solve its corresponding Hamilton-

Jacobi equations for value functions V N+1(t, i, θ), i = 0, 1 (see e.g. [104]).



− d
dt
V N+1(t, i, θ) = f(i, θ)− (αN+1

∗ (t,i,θ))2

2

+η(V N+1(t, 1− i, θ)− V N+1(t, i, θ))

+N(1− θ)
(
αN+1
∗ (t, 1, θ + 1−i

N
) + η

)
(V N+1(t, 1, θ + 1

N
)− V N+1(t, 1, θ))

+Nθ

(
αN+1
∗ (t, 0, θ − i

N
) + η

)
(V N+1(t, 1, θ − 1

N
)− V N+1(t, 1, θ)),

V N+1(T, i, θ) = 0,

(HJB)

where the optimal control is given by

aN+1
∗ (t, i, θ) = (V N+1(t, i, θ)− V N+1(t, 1− i, θ))+.
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It is also easy to write down the corresponding mean field game equation,



d
dt
θ(t) = (1− θ(t))((u(t, 1)− u(t, 0))+ + η)− θ(t)((u(t, 0)− u(t, 1))+ + η),

− d
dt
u(t, i) = f(i, θ)− η(u(t, i)− u(t, 1− i))− ((u(t,i)−u(t,1−i))+)2

2
,

θ(0) = θ̄,

u(T, i) = 0,

(MFG)

and see e.g. [104] and the corresponding master equation, the corresponding master

equation,



− ∂
∂t
U(t, i, θ) = f(i, θ)− [(U(t,i,θ)−U(t,1−i,θ)+]2

2
+ η(U(t, 1− i, θ)− U(t, i, θ))

+ ∂
∂θ
U(t, i, θ)((U(t, 1, θ)− U(t, 0, θ)+ + η)(1− θ)

− ∂
∂θ
U(t, i, θ)((U(t, 0, θ)− U(t, 1, θ)+ + η)θ,

U(T, i, θ) = 0,

(ME)

see Bayraktar, Cohen [24] and Cecchin, Pelino [66]. Recall from the latter two refer-

ences that the uniqueness of (MFG) and (ME) is guaranteed by the so-called mono-

tonicity condition, i.e., for every θ, θ
′ ∈ [0, 1],

∑
i=0,1

(−1)i(f(i, θ)− f(i, θ
′
))(θ − θ′) ≥ 0,

which does not hold true with our choice of running cost.

8.3 non-uniqueness

We show that the mean field equations (MFG) may have multiple solutions. Tak-

ing

y(t) = u(t, 1)− u(t, 0), x(t) = 2θ(t)− 1,
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then (MFG) becomes



d
dt
x = y − x|y| − 2ηx

− d
dt
y = x− 1

2
y|y| − 2ηy

y(T ) = 0, x(0) = 2θ̄ − 1.

(8.2)

The second one of (8.2) is equivalent to

x =
1

2
y|y|+ 2ηy − d

dt
y. (8.3)

Taking derivative with respect to t in (8.3) and in conjunction with (8.2), we obtain

d2

dt2
y + y − 1

2
y3 − 3η|y|y − 4η2y = 0. (8.4)

For simplicity, we time reverse the system and try to solve



d2

dt2
y + y − 1

2
y3 − 3η|y|y − 4η2y = 0

1
2
y(T )|y(T )|+ 2ηy(T ) + d

dt
y(T ) = x(T ) = 2θ̄ − 1

y(0) = 0.

(8.5)

Since (8.5) contains only the y variable, it can be uniquely solved if imposing the initial

conditions y(0) = 0, d
dt
y(0) = v, and we denote its C1 solution as yv(.). Therefore

the number of solutions to (8.5) is just the number of initial velocity v such that

2θ̄ − 1 = xv(T ), where for any t ≥ 0

xv(t) :=
1

2
yv(t)|yv(t)|+ 2ηyv(T ) +

d

dt
yv(t) (8.6)

We rewrite the differential equation as a derivative with respect to y instead of t,
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i.e.,

d2y

dt2
=

d

dt

(
1

2
(
dy

dt
)2

)
dt

dy
=

d

dy

(
1

2
(
dt

dy
)−2

)
.

We can therefore get an implicit solution

dt

dy
= ± 1√

G(y) + v2
, (8.7)

where G(y) = 1
4
y4 + 2η|y|3 + 4η2y2 − y2.

When y ≥ 0, the first order derivative of G is

G
′
(y) = y3 + 6ηy2 + 8η2y − 2y = y(y + 3η −

√
η2 + 2)(y + 3η +

√
η2 + 2).

It is then easy to conclude the following results

• If η ≥ 1
2
, the function G(y) is strictly increasing for y ≥ 0;

• If 0 ≤ η < 1
2
, the function G(y) decreases on the interval [0,

√
η2 + 2− 3η] and

increases on the interval [
√
η2 + 2− 3η,+∞);

• If η < 1
2
, |v| < v0, the function G(y) + v2 maybe negative for some y ∈ R.

Let us denote by y(v) the smallest positive root of G(y) + v2 = 0. Since the

function y 7→ G(y) first decreases to −v2
0 over the interval [0,

√
η2 + 2 − 3η],

and then increasing to +∞ over the interval [
√
η2 + 2−3η,+∞), we know that

the function y 7→ G(y) + v2 decreases over [0, y(v)) and crosses 0 at y(v), which

implies that y(v) is a simple root.

Let v0 :=
√
−G(

√
η2 + 2− 3η) if η < 1

2
. and

T (v) :=

y(v)∫
0

dz√
G(z) + v2

, v ∈ (0, v0), (8.8)

whose role will be clear in the next result.
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Lemma 8.3.1. The following properties hold for solutions yv(.),

• yv(.) is strictly increasing if v > 0, strictly decreasing if v < 0, identically 0 if

v = 0;

• If either η ≥ 1
2
, v ∈ R or η < 1

2
, |v| ≥ v0, then the solution yv(t) < +∞ if and

only if t <
∫ +∞

0
dz√

G(z)+v2
. Furthermore, yv(.) is strictly increasing if v > 0,

strictly decreasing if v < 0;

• If η < 1
2
, |v| ∈ (0, v0), the solution yv(.) is a periodic function.

Proof. The first statement is clear. We prove the rest by writing down the unique C1

solution explicitly.

If either η ≥ 1
2
, v ∈ R or η < 1

2
, |v| ≥ v0, then G(z) + v2 ≥ 0 for any z ∈ R and

thus we obtain from (8.7) that

t = sign(v)

y∫
0

dz√
G(z) + v2

.

Since the function y 7→
∫ y

0
dz√

G(z)+v2
is strictly increasing, for any t <

∫ +∞
0

dz√
G(z)+v2

,

we can find a unique yv(t) such that

t =

yv(t)∫
0

dz√
G(z) + v2

.

It can be seen that the function t 7→ yv(t) is C1, and therefore is the unique solution

to (8.5).

Since G(yv(t))+v2 is always nonnegative, the solution yv(t) must oscillate between

[−y(v), y(v)]. For any 0 ≤ t ≤ T (v), there exists a unique yv(t) such that

t =

yv(t)∫
0

dz√
G(z) + v2

.

263



Define a periodic function, still denoted by yv(.),

yv(t) =



yv(t− 4kT (v)) t ∈ [4kT (v), (4k + 1)T (v)),

yv((4k + 2)T (v)− t) t ∈ [(4k + 1)T (v), (4k + 2)T (v)),

−yv(t− (4k + 2)T (v)) t ∈ [(4k + 2)T (v), (4k + 3)T (v)),

−yv((4k + 4)T (v)− t) t ∈ [(4k + 3)T (v), (4k + 4)T (v)).

It can be easily seen that yv(t) is the unique C1 solution to (8.5).

Proposition 8.3.2. If η ≥ 1
2
, then xv(T ) is strictly increasing with respect to v and

therefore (8.5) has unique solution.

Proof. It can be seen that both of the equation (8.5) and the function v 7→ xv(T ) are

odd. Therefore y−v(.) = −yv(.), x−v(T ) = −xv(T ), and we only need to prove the

proposition for v ≥ 0.

The strictly decreasing function v 7→
∫ +∞

0
dz√

G(z)+v2
approaches +∞ as v → 0,

approaches 0 as v → +∞. Therefore any positive T there exists a unique u > 0 such

that
+∞∫
0

dz√
G(z) + u2

= T.

As a result of Lemma 8.3.1, the solution yv(.) is finite at T if and only if v < u, and

there exists a unique yv(T ) > 0 such that

T =

yv(T )∫
0

dz√
G(z) + v2

,

and also dyv
dt
|T =

√
G(yv(T )) + v2. Suppose 0 ≤ v1 < v2 < u. Due to the fact that

G(z) + v2
1 < G(z) + v2

2,∀z ∈ R, we obtain

yv1(T ) < yv2(T ),
d

dt
yv1(T ) <

d

dt
yv2(T ),
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from which we can conclude xv1(T ) < xv2(T ). As a result of lim
v→u

yv(T ) = +∞, we

obtain lim
v→u

xv(T ) = +∞, and thus there exists a unique solution to (8.5) for any

2θ̄ − 1 ∈ R.

As a result of the above proposition, the mean field equation (8.2) may have

multiple solutions only if η < 1
2
. To find the number of solutions, we study the period

of yv(.) in the following lemma. Note that since y−v(t) = −yv(t) and y0(t) = 0, it

suffices for us to consider the period of yv(.) for v ∈ (0, v0).

Lemma 8.3.3. Suppose 0 ≤ η < 1
2
, v ∈ (0, v0), and y(v) is the smallest postive root

of z 7→ G(z) + v2. Recall (8.8) and define

H(v) :=

y(v)∫
v

dz√
G(z) + v2

.

Take T (v) = T (−v), H(v) = H(−v) if v ∈ (−v0, 0). Then both T (.) and H(.) are

increasing with respect to v over the interval (0, v0), and lim
v→v0

T (v) = +∞.

Proof. By the definition, we have G(y) + v2 = (y
2

2
+ 2η|y|)2 + v2− y2, from which we

can conclude that y(v) ≥ v, and therefore H(v) is positive.

By change of variable p = z
y(v)

, we obtain

T (v) =

1∫
0

dp√
G(y(v)p)
y(v)2 + v2

y(v)2

=

1∫
0

dp√
1
4
y(v)2p4 + 2ηy(v)p3 + (4η2 − 1)p2 + v2

y(v)2

.

Denote the square of the bottom of the integrand by P (v, p), i.e.,

P (v, p) :=
1

4
y(v)2p4 + 2ηy(v)p3 + (4η2 − 1)p2 +

v2

y(v)2
.
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To prove T (v) is increasing, it suffices to show that P (v, p) is decreasing with respect

to v for any fixed p ∈ [0, 1].

Since y(v) is an increasing function of v, the derivative dP
dv

(v, p) is no larger than

dP
dv

(v, 1), which is equal to 0 according to the definition of y(v),

dP

dv
(v, 1) =

d(G(y(v)) + v2)

dv
= 0.

Therefore P (v1, p) ≥ P (v2, p) for any p ∈ [0, 1], 0 < v1 < v2 < v0.

We can also rewrite H(v) as

H(v) =

1∫
v
y(v)

dp√
P (v, p)

,

and it is enough to show that v 7→ v
y(v)

is decreasing. Taking derivative of the following

equation with respect to v,

G(y(v)) + v2 = 0,

we get dy(v)
dv

= − 2v
G′ (y(v))

, and thus

d

dv
(
v

y(v)
) =

y(v)− v dy(v)
dv

y(v)2
=
y(v) + 2v2

G
′
(y(v))

y(v)2
.

As a result of dy(v)
dv
≥ 0, we obtain that G

′
(y(v)) < 0 and d

dv
( v
y(v)

) ≤ 0 is equivalent to

G
′
(y(v))y(v) + 2v2 ≥ 0. We conclude our claim by the following computation,

G
′
(y(v))y(v) + 2v2 = G

′
(y(v))y(v) + 2v2 − 2(G(y(v)) + v2)

=
1

2
y(v)4 + 2ηy(v)3 > 0

In the end, it can be seen that the function z 7→ G(z) + v2
0 is always positive over

the interval [0,+∞) and only attains 0 at z =
√
η2 + 2 − 3η. Since G(z) + v2

0 is a
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polynomial, we obtain that y(v0) =
√
η2 + 2− 3η, (z −

√
η2 + 2 + 3η)2 is a factor of

G(z) + v2
0, and hence

lim
v→v0

T (v) =

√
η2+2−3η∫

0

dz√
G(z) + v2

0

= +∞.

For each k ∈ N, define Tk(v) := (2k − 1)T (v) +H(v) if |v| ∈ (0, v0), and Tk(v) :=

+∞ if |v| > v0. Now we show that for v 6= 0, {Tk(v) : k ∈ N} is the set of times T

such that xv(T ) attains 0 (Tk(v) = +∞ for |v| ≥ v0 simply implies that xv(t) never

reaches 0 for those v). As a result of Lemma 8.3.1, the function xv(T ) can equal to 0

only if η < 1
2
, |v| ∈ (0, v0) or v = 0. Setting xv(T ) = 0, by (8.6) we get

0 = xv(T ) =
1

2
yv(T )|yv(T )|+ 2ηyv(T ) +

d

dt
yv(T )

=
1

2
yv(T )|yv(T )|+ 2ηyv(T ) + sign(

d

dt
yv(T ))

√
G(yv(T )) + v2.

Moving the last term to the left, taking square of both sides and plugging in the

formula of G(y), it becomes

(
1

2
yv(T )|yv(T )|+ 2ηyv(T ))2 + v2 − (yv(T ))2 = (

1

2
yv(T )|yv(T )|+ 2ηyv(T ))2,

which is equivalent to v2 − (yv(T ))2 = 0. Therefore we obtain that |yv(T )| =

v, sign(yv(T )) = − sign( d
dt
yv(T )), from which we conclude that xv(T ) = 0 if and

only if T = Tk(v) or v = 0.

Therefore T1(v) is the first time xv(t) reaches 0. Taking Tk(0+) := lim
v↓0

Tk(v), it

can be seen that for t ≤ T1(0+), v 6= 0, we have xv(t) 6= 0. Before computing the

number of solutions, we still need one more result, which is also important for us to

construct the entropy solution of the master equation in the next section.
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Lemma 8.3.4. Suppose η < 1
2
. Then for any (x, t) ∈ R×R+ \{0}×R+, there exists

a unique v(x, t) ∈ R+ such that xv(t) = x, t < T1(v) (simply take v(x, t) = 0 if x = 0).

Proof. Step 1. For any 0 < v1 < v2 ≤ v0, we prove that yv1(t) < yv2(t),∀t ∈

(0, T1(v1)]. Otherwise suppose yv1(t) = yv2(t) for some t ∈ (0, T1(v1)]. If t ≤ T (v1),

as in the proof of Lemma 8.3.1 we have

t =

yv1 (t)∫
0

dz√
G(z) + v2

1

=

yv2 (t)∫
0

dz√
G(z) + v2

2

, (8.9)

which is impossible since G(z) + v2
1 < G(z) + v2

2. If t ∈ (T (v1), T (v2)], then yv2(t) >

yv2(T (v1)) > yv1(T (v1)) > yv1(t), which is contradictory to our assumption. If t ∈

(T (v2), T1(v1)], we have

2T (v1)− t =

yv1 (t)∫
0

dz√
G(z) + v2

1

>

yv2 (t)∫
0

dz√
G(z) + v2

2

= 2T (v2)− t,

which contradicts to Lemma 8.3.3.

Step 2. For any v0 ≤ v1 < v2, t ∈
(
0,
∫ +∞

0
dz√

G(z)+v2

]
, we have yv1(t) < yv2(t),

which can be proved as in Step 1.

Step 3. For any 0 < v1 < v2 ≤ v0, we prove that xv1(t) < xv2(t),∀t ∈ [0, T1(v1)].

Otherwise suppose t = sup{t : xv1(t) = xv2(t), t ≤ T1(v1)}, where supreme is attained

by the continuity of xv1(.) and xv2(.). To show the contradiction, we prove that

d
dt

(xv2(t) − xv1(t)) < 0, in which case these two curves have to intersect after time t

since xv2 decreases to 0 at time T1(v2) > T1(v1).

If t ≥ T (v1), we have

xv1(t) =
1

2
yv1(t)2 + 2ηyv1(t)−

√
G(yv1(t)) + v2

1

=
1

2
yv2(t)2 + 2ηyv2(t) + sign(

d

dt
yv2(t))

√
G(yv2(t)) + v2

2 = xv2(t).
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Since we proved yv1(t) < yv2(t), the derivative d
dt
yv2(t) must be negative, and hence

1

2
yv1(t)2+2ηyv1(t)−

√
G(yv1(t)) + v2

1 =
1

2
yv2(t)2+2ηyv2(t)−

√
G(yv2(t)) + v2

2. (8.10)

Combining (8.10) and d
dt
yvi(t) = −

√
G(yvi(t)) + v2

i , i = 1, 2 , we obtain

d

dt
(xv2(t)− xv1(t)) =yv1(t)

(√
G(yv1(t)) + v2

1 −
1

2
yv1(t)2 − 2ηyv1(t) + 1)

)
− yv2(t)

(√
G(yv2(t)) + v2

2 −
1

2
yv2(t)2 − 2ηyv2(t) + 1)

)
.

Because of (8.10) and the fact that yv2(t) > yv1(t), we deduce that d
dt

(xv2(t)−xv1(t)) <

0 is equivalent to
√
G(yv2(t)) + v2

2 − 1
2
yv2(t)2 − 2ηyv2(t) + 1 > 0, which is true since

√
G(yv2(t)) + v2

2 −
1

2
yv2(t)2 − 2ηyv2(t) + 1 > −1

2
yv2(t)2 − 2ηyv2(t) + 1

> −1

2
(
√
η2 + 2− 3η)2 − 2η(

√
η2 + 2− 3η) + 1 > 0.

If t < T (v1), by the same reasoning we have

1

2
yv1(t)2 + 2ηyv1(t) +

√
G(yv1(t)) + v2

1 =
1

2
yv2(t)2 + 2ηyv2(t) +

√
G(yv2(t)) + v2

2,

and also

d

dt
(xv2(t)− xv1(t)) =yv2(t)

(√
G(yv2(t)) + v2

2 +
1

2
yv2(t)2 + 2ηyv2(t)− 1

)
− yv1(t)

(√
G(yv1(t)) + v2

1 +
1

2
yv1(t)2 + 2ηyv1(t)− 1

)
.

Accordingly, it suffices to show that

(√
G(yv2(t)) + v2

2 + 1
2
yv2(t)2 +2ηyv2(t)−1

)
< 0,

which is equivalent to

√
G(yv2(t)) + v2

2 < 1− 1

2
yv2(t)2 − 2ηyv2(t). (8.11)

269



Taking square of (8.11) , we obtain the equivalent inequality v2
2 + 4ηyv2(t) − 1 < 0.

Since yv2(t) ≤ y(v2), we conclude our claim by the following computation

v2
2 + 4ηyv2(t)− 1 ≤v2

2 + 4ηy(v2)− 1 = −G(y(v2)) + 4ηy(v2)− 1

=− (
1

2
y(v2)2 + 2ηy(v2)− 1)2 < 0.

Step 4. For any v0 ≤ v1 < v2, t ∈
(
0,
∫ +∞

0
dz√

G(z)+v2

]
, we have xv1(t) < xv2(t),

which can be proved as in Step 3.

Step 5. Until now we have shown that the stopped curves {xv(t) : 0 ≤ t < T1(v)}

do not intersect, and it remains to prove that for any (x, t) ∈ R+ × R+, there exists

a v(x, t) ∈ R+ such that xv(t) = x, t < T1(v). Note that according to (8.5), for any

fixed t, the couple (yv(t),
d
dt
yv(t)) is continuous with respect to the initial velocity v,

and thus the mapping v 7→ xv(t) is also continuous.

First suppose x < xv0(t) and t ≤ T1(0+). As a result of lim
v→0

xv(t) = 0, lim
v→v0

xv(t) =

xv0(t) and the continuity of v 7→ xv(t), we know that there must exist some v ∈ (0, v0)

such that xv(t) = x. The equality t < T1(v) simply follows from the inequality

t ≤ T1(0+) < T1(v).

Suppose x < xv0(t) and t > T1(0+). Since T1(v) increases to +∞ as v increases

to v0, we know that there exists a unique v′ ∈ (0, v0) such that t = T1(v′), which

also implies xv′(t) = 0. According to the continuity of v′ 7→ xv′(t), and the fact that

lim
v→v0

xv(t) = xv0(t), we know there must exist a v > v′ such that xv(t) = x, and

t = T1(v′) < T1(v).

In the end suppose x > xv0(t). Because the mapping v 7→
∫ +∞

0
dz√

G(z)+v2
is

decreasing from +∞ to 0 over the interval (v0,+∞), there exists a unique v′ > v0

such that
∫ +∞

0
dz√

G(z)+v′2
= t, which also implies xv′(t) = +∞. Again by the continuity

of v 7→ xv(t) and the fact that lim
v→v0

xv(t) = xv0(t) < x, there exists a v > v0 such that

xv(t) = x.
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Proposition 8.3.5. Suppose η < 1
2
. Then there exists a unique solution to (8.5) for

any T > 0 if |2θ̄−1| ≥ 1−η2−η
√
η2 + 2, and the number of solutions to (8.5) can be

arbitrarily large if |2θ̄− 1| < 1− η2− η
√
η2 + 2 and T is large enough. In particular,

the number of solutions with boundary condition 2θ̄ − 1 = 0 is given by

1 + 2 sup
k∈N
{k : Tk(0+) < T}.

Proof. Recalling v0 =
√
−G(

√
η2 + 2− 3η), we first prove that xv0(t) is increasing

with respect to t and lim
t→+∞

xv0(t) = 1− η2 − η
√
η2 + 2.

Taking derivative of the following equation,

xv0(t) =
1

2
yv0(t)yv0(t) + 2ηyv0(t) +

d

dt
yv0(t),

we get d
dt
xv0(t) = (yv0(t) + 2η) d

dt
yv0(t) + 1

2
G
′
(yv0(t)). Therefore xv0(t) is increasing is

equivalent to

(yv0(t) + 2η)
d

dt
yv0(t) ≥ −1

2
G
′
(yv0(t)). (8.12)

Since both sides of (8.12) are positive, it is enough to show that

(yv0(t) + 2η)2(
d

dt
yv0(t))2 − 1

4
(G
′
(yv0(t)))2 > 0.

Plugging in the equality d
dt
yv0(t) =

√
G(yv0(t)) + v2

0 and the formula of G, the in-

equality becomes

2η(yv0(t))3 + (4η2 − 1 + v2
0)(yv0(t))2 + 4ηv2

0yv0(t) + 4η2v2
0 ≥ 0.
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Now we finish proving xv0(t) is increasing by the following equality,

2η(yv0(t))3 + (4η2 − 1 + v2
0)(yv0(t))2 + 4ηv2

0yv0(t) + 4η2v2
0

= (yv0(t)−
√
η2 + 2 + 3η)2

(
2ηy +

4η2v2
0

(
√
η2 + 2− 3η)2

)

Recall Lemma 8.3.1, yv0(t) is given by the equation

t =

yv0 (t)∫
0

dz√
G(z) + v2

0

.

Combining the equality proved in Lemma 8.3.3 that
∫√η2+2−3η

0
dz√

G(z)+v2
0

= +∞, we

conclude that lim
t→+∞

yv0(t) =
√
η2 + 2− 3η. Also, according to (8.7), we get that

lim
t→+∞

d

dt
yv0(t) =

√
G(
√
η2 + 2− 3η) + v2

0 = 0.

Therefore by (8.6), we conclude the second claim

lim
t→+∞

xv0(t) =
1

2
(
√
η2 + 2− 3η)2 + 2η(

√
η2 + 2− 3η) = 1− η2 − η

√
η2 + 2.

It can be seen that the curves {xv(t) : t ≥ 0, v ≥ v0} never cross each other, and

that xv(t) < 1 − η2 − η
√
η2 + 2 for any t > 0 if v < v0. Therefore according to

Lemma 8.3.4, if |2θ̄− 1| ≥ 1− η2 − η
√
η2 + 2, there exists only one v ≥ v0 such that

xv(T ) = 2θ̄ − 1.

Now suppose that 0 < 2θ̄ − 1 < 1− η2 − η
√
η2 + 2. For each v ∈ (0, v0), define

M(v) := max
t≥0

xv(t).

As a result of Lemma 8.3.4, M(v) is actually an increasing function, and there exists

a unique v̄ ∈ (0, v0) such that M(v̄) = 2θ̄ − 1. Also for any v ∈ [v̄, v0), we can define
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t(v) as the unique t satisfying xv(t) = 2θ̄ − 1, t < T1(v), which is also an increasing

function of v. Then (xv(.), yv(.)) is a solution of (8.4) with time horizon T = t(v).

Since the period of xv(.) is 4T (v), and lim
v→v0

t(v) = +∞, for each k ∈ N we know that

if T > t(v̄) + 4kT (v̄), there must exist some v′ ∈ [v̄, v0) such that T = t(v′) + 4kT (v′).

Therefore we conclude that the number of solutions to (8.4) with time horizon T is

greater than

sup
k∈N
{k : T ≥ t(v̄) + 4kT (v̄)},

which can be arbitrarily large if T is large enough.

In the end, we consider the number of solutions for the terminal condition 2θ̄−1 =

0. We have already shown that Tk(v) is the time when xv(t) attains zero. According

to Lemma 8.3.3, the functions Tk(v) are increasing with respect to v for each k ∈ N

and lim
v→v0

Tk(v) = +∞. Since x−v(t) = −xv(t), and v = 0 is always a solution, the

number of solutions is just

1 + 2{(k, v) : Tk(v) = T, k ∈ N, v ∈ (0, v0)} = 1 + 2 sup
k∈N
{k : Tk(0+) < T}.

8.4 The Master Equation

Letting Y (t, θ) = U(t, 1, θ) − U(t, 0, θ), x = 2θ − 1, and time reverse the master

equation (ME), we obtain the equation

∂Y

∂t
+

∂

∂x

(
2ηxY +

xY |Y |
2
− Y 2

2
− x2

2

)
= 0, (8.13)

with the boundary condition Y (0, x) = 0, ∀x ∈ [−1, 1].

Since the equation has the form of a scalar conservation law, there exists a unique

entropy solution. By the method of characteristics, we directly construct a piecewise
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C1 solution to (8.13) and then check it is entropic.

Rewriting (8.13) as

∂Y

∂t
+
∂Y

∂x
(2ηx− Y + x|Y |) = −2ηY − Y |Y |

2
+ x,

and letting y(t) = Y (t, x(t)), d
dt
x = 2ηx− y + x|y|, we obtain the characteristic curve

of (8.13) 

d
dt
x = 2ηx− y + x|y|,

d
dt
y = −2ηy − y|y|

2
+ x,

y(0) = 0, x(0) = dy
dt

(0),

whose solution is given explicitly in Lemma 8.3.1. If η ≥ 1
2
, the solution given by

characteristic curves is smooth everywhere. If η < 1
2
, the shock curve is taken to be

γ(t) = 0, t ∈ R+. See our illustration in Figure 8.1.

Figure 8.1: Characteristic curves, η = 0.1, T = 3 on the left; η = 0.6, T = 1 on the
right.

Proposition 8.4.1. The function Y (x, t) := yv(x,t)(t) is the entropy solution of (8.13)

with shock curve γ(t) = 0, t > T1(0+), where v(x, t) ∈ R is defined in Lemma 8.3.4.

Proof. It is clear that the function Y (x, t) is C1 outside the shock curve, and we

only need to check the Rankine-Hugoniot condition and the Lax condition (see [67,

Proposition 3]). Define

Y+(t) := lim
x↓0

Y (x, t), Y− := lim
x↑0

Y (x, t).
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If t > T1(0+), there exists a v > 0 such that t = T1(v) since v 7→ T1(v) is increasing

to +∞ as v increases to v0. Also it can be seen that lim
x↓0

v(x, t) = v. According to the

discussion above Lemma 8.3.4, we conclude that Y+(t) = yv(t) = v = lim
x↓0

v(x, t), and

similarly Y−(t) = − lim
x↓0

v(x, t). If t ≤ T1(0+), the mapping v 7→ xv(t) is continuous

and strictly increasing, which is zero at v = 0. Therefore lim
x↓0

v(x, t) = 0, and Y+(t) =

Y−(t) = 0. In summary, we have

Y+(t) = −Y−(t) =


lim
x↓0

v(x, t) if t > T1(0+),

0 if t ≤ T1(0+).

Taking g(x, Y ) = 2ηxY + xY |Y |
2
− Y 2

2
− x2

2
, we have

d

dt
γ(t) = 0 =

− (Y+(t))2

2
+ (Y−(t))2

2

Y+(t)− Y−(t)
=

g(γ(t), Y+(t))− g(γ(t), Y−(t))

Y+(t)− Y−(t)
,

which verifies the Rankine-Hugoniot condition.

For any c strictly between Y−(t) and Y+(t), t > T1(0+), we have

g(γ(t), c)− g(γ(t), Y+(t))

c− Y+(t)
=

(Y+(t))2

2
− c2

2

c− Y+(t)
= −c+ Y+(t)

2
,

g(γ(t), c)− g(γ(t), Y−(t))

c− Y−(t)
==

(Y−(t))2

2
− c2

2

c− Y−(t)
= −c+ Y−(t)

2
,

and therefore

g(γ(t), c)− g(γ(t), Y+(t))

c− Y+(t)
<

d

dt
γ(t) = 0 <

g(γ(t), c)− g(γ(t), Y−(t))

c− Y−(t)
,

which verifies the Lax condition.

Remark 8.4.2. It is easily seen that the entropy solution of (8.13) corresponds to a

solution of (ME).
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Remark 8.4.3. By Lemma 8.3.4, we know that for any θ̄ ∈ [0, 1], there exists a unique

v
′

such that xv′ (T ) = 2θ̄ − 1, T < T1(v
′
). Then (xv′ (T − t), yv′ (T − t)) solves (8.2),

which is the mean field equilibrium induced the entropy solution.

8.5 N + 1-player game and the selection of Equilibrium

In this section, we consider the N + 1-player game and always assume η = 0.

Since the model we are considering is invariant under permutation, it can be easily

seen that

V N+1(t, 0, 1− θ) = V N+1(t, 1, θ),

and therefore we only need to consider the HJB systems for V N+1(t, 1, θ):



− d
dt
V N+1(t, 1, θ) = f(1, θ)− (αN+1

∗ (t,1,θ))2

2

+N(1− θ)αN+1
∗ (t, 1, θ)(V N+1(t, 1, θ + 1

N
)− V N+1(t, 1, θ))

+NθαN+1
∗ (t, 0, θ − 1

N
)(V N+1(t, 1, θ − 1

N
)− V N+1(t, 1, θ))

V N+1(T, 1, θ) = 0,

(8.14)

where the optimal control policy is

aN+1
∗ (t, i, θ) = (V N+1(t, i, θ)− V N+1(t, 1− i, θ))+.

As a result of the local Lipschitz continuity of the HJB equation (8.14), the system

can be uniquely solved with terminal condition V N+1(T, 0, θ) = 0, which provides us

the unique Nash Equilibrium of the game. Supposing that the representative player

is applying the zero control while the other players are taking the optimal policy, then
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by the definition of Nash Equilibrium we conclude that

V N+1(t, 1, θ) ≤ E
[ T∫
t

f(i(t), θt)dt

]
≤ T − t.

Now we prove that if the representative player agrees with the majority, then he will

keep his state by taking the zero control.

Proposition 8.5.1. Taking

Y N+1(t, θ) = V N+1(t, 1, θ)− V N+1(t, 0, θ) = V N+1(t, 1, θ)− V N+1(t, 1, 1− θ),

for any θ ∈ {0, 1
N
, . . . , 1} we have

Y N+1(t, θ) ≥ 0 (αN+1
∗ (t, 0, θ) = 0) if θ ≥ 1

2
,

Y N+1(t, θ) ≤ 0 (αN+1
∗ (t, 1, θ) = 0) if θ ≤ 1

2
.

(8.15)

Proof. We only prove the first inequality of (8.15) for even N , and the rest can be

proved similarly. As a result of Y N+1(t, 1
2
) = 0, it is enough for us to show it for

θ ≥ 1
2

+ 1
N

. Take

WN+1(t, θ) = V N+1(t, 1, θ)− V N+1(t, 1, θ − 1

N
).

According to (8.14), we obtain

d

dt
Y N+1(t, θ) = 1− 2θ +

|Y N+1(t, θ)|Y N+1(t, θ)

2

+Nθ

(
Y N+1(t, θ − 1

N
)−W

N+1(t, θ) + Y N+1(t, θ)−W
N+1(t, 1− θ +

1

N
)

)
−N(1− θ)

(
Y N+1(t, θ)+W

N+1(t, θ +
1

N
) + Y N+1(t, θ +

1

N
)+W

N+1(t, 1− θ)
)
,

(8.16)
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and

d

dt
WN+1(t, 1− θ) =− 1

N
+
Y N+1(t, 1− θ)2

+

2
−
Y N+1(t, 1− θ − 1

N
)2
+

2

−NθY N+1(t, 1− θ)+W
N+1(t, 1− θ +

1

N
)

+N(1− θ)Y N+1(t, 1− θ − 1

N
)−W

N+1(t, 1− θ)

+N(θ +
1

N
)Y N+1(t, 1− θ − 1

N
)+W

N+1(t, 1− θ)

−N(1− θ − 1

N
)Y N+1(t, 1− θ − 2

N
)−W

N+1(t, 1− θ − 1

N
).

(8.17)

By our terminal condition V N+1(T, 1, θ) = 0, it is easy to see that Y N+1(T, θ) =

WN+1(T, θ) = 0, and both d
dt
Y N+1(T, θ), d

dt
WN+1(T, 1− θ) are negative if θ > 1

2
. And

therefore by the continuity of V N+1(t, 1, θ), there exists a small positive ε > 0 such

that Y N+1(t, θ),WN+1(t, 1−θ) are positive during the time interval [T −ε, T ). Define

s := sup
{t<T−ε}

{t : WN+1(t, 1− θ) = 0 or Y N+1(t, θ) = 0 for some θ >
1

2
}.

We finish the argument by showing that Y N+1(t, θ) and WN+1(t, 1 − θ) are both

positive for t ∈ [s, T − ε], θ > 1
2
, which implies s has to be −∞. By the definition of

s, we have Y N+1(t, θ) = −Y N+1(t, 1 − θ) ≥ 0,WN+1(t, 1 − θ) ≥ 0 if t ∈ [s, T − ε),

θ > 1
2
, and therefore we obtain the following inequality from (8.16),

d

dt
Y N+1(t, θ) ≤ Y N+1(t, θ)

(
Y N+1(t, θ)

2
−N(1− θ)WN+1(t, θ +

1

N
)

)
.

Since V N+1(t, 1, θ) ≤ T , we get that |Y N+1(t, θ)| ≤ 2T , |WN+1(t, θ)| ≤ 2T for any

θ ∈ {0, 1
N
, . . . , 1}. Therefore Y N+1(t, θ) is bounded below by the solution of


d
dt
l(t) = (T + 2NT )l(t)

l(T − ε) = Y N+1(T − ε, θ),
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which is always positive. Similarly, for t ∈ [s, T − ε], θ > 1
2
, we obtain the inequality

from (8.17)

d

dt
WN+1(t, 1− θ) ≤ N(1− θ)Y N+1(t, 1− θ − 1

N
)−W

N+1(t, 1− θ)

≤ 2NT (1− θ)WN+1(t, 1− θ),

which implies WN+1(t, 1− θ) > 0 for t ∈ [s, T − ε].

Remark 8.5.2. Recall that Z(t) is the state of the N+1 players at time t when agents

play the Nash equilibrium given by (HJB). Denote by θN+1(t) the fraction of players

at state 0, i.e.,

θN+1(t) =
1

N + 1

N+1∑
j=1

δZj(t)=0.

and let U be the solution of (ME) corresponding to the entropy solution of (8.13).

According to Proposition 8.5.1, θN+1(t) will always stay on one side of 1
2

if θN+1(0) 6=
1
2
. In combination with the fact that U(t, i, θ) is smooth outside the curve γ̄(t) = 1

2
,

it can be easily seen that V N+1(t, 1, θ) converges to U(t, 1, θ) if θ 6= 1
2

(see e.g. [67,

Theorem 8] ).

Let (ξj)j∈N be the i.i.d initial datum of Zj such that P[ξj = 0] = θ̄ 6= 1
2
,P[ξj =

1] = 1− θ̄. Denote by Z̃j the i.i.d process in which players choose the optimal control

α̃(t, i) := (U(t, i, θ(t)) − U(t, 1 − i, θ(t)))+, where U is the corresponding entropy

solution of (ME). Also, we can prove the propagation of chaos property by using the

technique developed in [66] and [67].

8.6 Conclusion

When η > 1/2, the N-player game converges to the mean field game following the

analysis of [24] and [66]. Here we considered the case when η = 0 and showed that

the N-player game value functions converge to the entropic mean-field game solution
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and verified in this case the conjecture of [109].

When η ∈ (0, 1
2
), it is always possible for players to jump to the other state.

Therefore θN+1(t) may not always stay on one side of 1
2
, and when we use Itô’s

formula to the entropy solution U , there would be extra jump terms. Subsequently

our strategy does not work when η ∈ (0, 1/2), and new techniques are needed. We

leave this as an open problem.

When θ̄ = 1/2, it is expected that the N player limit will charge the two solutions

we obtain with equal probability (as in [88]), which is numerically justified by the

Figure 3 of [109]. Hence in that case the N -player empirical distribution will not

converge to the stable fixed points of the MFG map (in the language of [109]) unlike

what is claimed in the conjecture.
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CHAPTER IX

Solvability of Infinite Horizon McKean-Vlasov

FBSDEs in Mean Field Control Problems and

Games

9.1 Introduction

Motivated by infinite horizon mean field control and mean field game, in this chap-

ter we establish existence and uniqueness of solutions to an infinite horizon McKean-

Vlasov FBSDE
dXt = B(t,Xt, Yt,L(Xt, Yt)) dt+ σ dWt,

dYt = −F (t,Xt, Yt,L(Xt, Yt)) dt+ Zt dWt, ∀t ≥ 0,

X0 = ξ,

(9.1)

where (Wt) is a Brownian motion on a stochastic basis (Ω,F ,F,P), B,F : Ω ×

R+ × R2 × P2(R2) → R are two progressively measurable functions, and ξ is an

F0-measurable square integrable random variable. Compared with finite horizon FB-

SDEs, in (9.1) no terminal conditions are required. Instead, for the well-posedness

we specify the solution space which determines asymptotic behavior of the processes.

Due to our interest in infinite horizon discounted problems, we look for solutions

281



(Xt, Yt, Zt) to (9.1) in L2
K(0,∞,R3), where K ∈ R and L2

K(0,∞,R3) is the Hilbert

space of all R2-valued adapted stochastic process (vt) such that

E

 ∞∫
0

eKt|vt|2 dt

 < +∞.

Using methods of [163] and [161, 182], we show that there exists a unique solution

(Xt, Yt) ∈ L2
K(0,∞,R2) to (9.1) under two sets of assumptions. As applications, we

solve the corresponding infinite horizon McKean-Vlasov FBSDEs of mean field type

control and mean field game problems.

The study of mean field games was initiated independently by Lasry, Lions (see

[136], [137], [138]) and Caines, Huang, Malhamé (see [116], [117]), which is an analysis

of limit models for symmetric weakly interacting N + 1-player differential games.

Since then, mean field game has been an active research area. We refer the readers

to [21, 22, 24, 66] for the study of finite state mean field games, to [31, 58, 67, 88]

for uniqueness of mean field game solutions, and to [61, 62] for a nice survey. Also,

inspired by the surge of interest in optimal control, several works have been published

for the analysis of mean field type control, which includes the distribution of controlled

states in coefficients; see e.g. [8, 39, 63].

The investigation of BSDEs was pioneered by Pardoux and Peng [158, 159] in

the early 90s, which is now a standard tool in stochastic optimization problems (see

e.g. [60, 164]). Applying Pontryagin’s maximum principle, both mean field game

and mean field type control can be studied using McKean-Vlasov FBSDEs; see e.g.

[64, 63]. For analysis of FBSDE, we refer to a common reference [148].

The linear quadratic model for infinite horizon mean field game and mean field

type control have been studied in [57, 116, 166] using HJB-FP equations and in [20]

using martingale method respectively. [166] provided the exact stationary solution

to linear quadratic infinite horizon mean field games. We also refer to [57, 77] for
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the PDE analysis of long time behavior of mean field game. For the best of our

knowledge, this chapter is the first to investigate infinite horizon mean field game

and mean field type control problems using FBSDE techniques.

The result of the chapter is organized as follows. In Section 9.2, we prove the

existence and uniqueness of solutions to (9.1) under two sets of assumptions; see

Theorems 9.2.4 and 9.2.8. In Section 9.3, as an application, we solve the infinite

horizon mean field type control problems and games. In Section 9.4, we analyze the

particular case of linear quadratic models.

In this rest of this section we will list some frequently used notation.

Notation. Denote by P2(Rn) the space of random variables in Rn with finite second

moment endowed with the Wasserstein 2-metric W2. For any Rn, define δ0 to be the

Dirac measure at the origin, and for any random variable X, denote by L(X) the law

of X.

9.2 Solutions to infinite horizon McKean-Vlasov FBSDEs

In this section, we establish the existence and uniqueness of the infinite hori-

zon McKean-Vlasov FBSDE (9.1) under two sets of assumptions. For any (vt) ∈

L2
K(0,∞,Rn), we define the exponentially weighted L2 norm

||v||2K := E

 ∞∫
0

eKt|vt|2 dt

 .
For simplicity, we only solve (9.1) for one dimensional (Xt, Yt, Zt), but our results can

be easily generalized to multidimensional case.
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9.2.1 Continuity method

As in [163], we study the following family of infinite horizon FBSDEs parametrized

by λ ∈ [0, 1],


dXλ

t = (λB(t,Xλ
t , Y

λ
t ,L(Xλ

t , Y
λ
t ))− κ(1− λ)Y λ

t + φ(t)) dt+ σ dWt,

dY λ
t = −(λF (t,Xλ

t , Y
λ
t ,L(Xλ

t , Y
λ
t )) + κ(1− λ)Xλ

t + ψ(t)) dt+ Zλ
t dWt,

Xλ
0 = ξ, (Xλ

t , Y
λ
t , Z

λ
t ) ∈ L2

K(0,∞,R3),

(9.2)

where φ, ψ are two arbitrary processes in L2
K(0,∞,R) and κ is a positive constant

to be determined below in Assumption 9.2.2. Note that when λ = 1, φ ≡ 0, ψ ≡ 0,

(9.2) becomes (9.1), and when λ = 0, (9.2) becomes


dX0

t = (−κY 0
t + φ(t)) dt+ σ dWt,

dY 0
t = −(κX0

t + ψ(t)) dt+ Z0
t dWt,

X0
0 = ξ.

(9.3)

Lemma 9.2.1. Assume that −2κ < K < 0. For any φ, ψ ∈ L2
K(0,∞,R), there exists

a unique solution (X0, Y 0, Z0) ∈ L2
K(0,∞,R3) to (9.3).

Proof. The argument is almost the same as [163, Lemma 2], and we repeat it here

for readers’ convenience. Let us consider the following infinite horizon BSDE,

dPt = −(−κPt + φ(t) + ψ(t)) dt+ (Qt − σ) dWt, ∀t ≥ 0.

Applying [163, Theorem 4] with the fact that K + 2κ > 0, the above equation has a

unique solution (P,Q) ∈ L2
K(0,∞,R). Then we consider the following SDE,

dXt = (−κXt − κPt + φ(t)) dt+ σ dWt, X0 = ξ.
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Since P,Q, φ ∈ L2
K(0,∞,R), it can be easily seen that the above equation has a

unique solution over arbitrary finite horizon [0, T ]. Therefore, it remains to show

that X ∈ L2
K(0,∞,R). Applying Itô’s formula to eKt|Xt|2, it follows that

E[eKT |XT |2]− E[ξ2]

= E

 T∫
0

(K − 2κ)eKt|Xt|2 + 2eKtXt · (−κPt + φ(t))) dt

+ E

 T∫
0

eKtσ2 dt

 .
Choose a positive ε such that K − 2κ+ ε < 0. Using the inequality

2eKtXt · (−κPt + φ(t)) ≤ εeKt|Xt|2 +
1

ε
(−κPt + φ(t))2,

we easily obtain that

E[eKT |XT |2]− E[ξ2] ≤ E

 T∫
0

(K − 2κ+ ε)eKt|Xt|2 dt

+ Cε,

where Cε is a constant that only depends on ε and ‖P‖2
K , ‖Q‖2

K , ‖φ‖2
K . Letting

T →∞ in the above inequality, we conclude that X ∈ L2
K(0,∞,R). It can be easily

verified that (X0, Y 0, Z0) = (X,X +P,Q) ∈ L2
K(0,∞,R3) is a solution to (9.3). The

uniqueness can be proved in a similar way as in Theorem 9.2.4.

Assumption 9.2.2. (i) There exists a positive constant l such that for any x, x′, y, y′ ∈

R, m,m′ ∈ P2(R2)

|B(t, x, y,m)−B(t, x′, y′,m′)|+ |F (t, x, y,m)− F (t, x′, y′,m′)|

≤ l(|x− x′|+ |y − y′|+W2(m,m′)) a.s.

(ii) There exist constants κ > −K/2 > 0 such that for any t ≥ 0 and any square
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integrable random variables X, Y,X ′, Y ′

E
[
KX̂Ŷ − X̂(F (t, U)− F (t, U ′)) + Ŷ (B(t, U)−B(t, U ′))

]
≤ −κE

[
X̂2 + Ŷ 2

]
,

where X̂ = X −X ′, Ŷ = Y − Y ′ and U = (X, Y,L(X, Y )), U ′ = (X ′, Y ′,L(X ′, Y ′)).

Proposition 9.2.3. Suppose λ0 ∈ [0, 1) and for any F0-measurable square integrable

random variable ξ, φ, ψ ∈ L2
K(0,∞,R), (9.2) has a unique solution (Xλ0 , Y λ0 , Zλ0)

in L2
K(0,∞,R3). Then under Assumption 9.2.2 there exists a δ0 independent of λ0

such that for any δ ∈ [0, δ0], φ, ψ ∈ L2
K(0,∞,R2), (9.2) also has a unique solution

(Xλ0+δ, Y λ0+δ, Zλ0+δ) in L2
K(0,∞,R3).

Proof. For any pair (x, y) ∈ L2
K(0,∞,R2) such that x0 = ξ, according to our hypoth-

esis, there exists a unique solution (X, Y, Z) to the following equation

dXt = (λ0B(t,Xt, Yt,Mt)− κ(1− λ0)Yt + δ(B(t, xt, yt,mt) + κyt) + φ(t)) dt+ σ dWt,

dYt = −(λ0F (t,Xt, Yt,Mt) + κ(1− λ0)Xt + δ(F (t, xt, yt,mt)− κxt) + ψ(t)) dt+ Zt dWt,

X0 = ξ,

where mt := L(xt, yt) and Mt := L(Xt, Yt). We define a map Φ via

Φ : (x, y) 7→ (X, Y ).

Then a fixed point of Φ is a solution to (9.2) with parameter λ0 + δ. Let us prove

that Φ is actually a contraction.

Take another (x′, y′) and its image (X ′, Y ′) under Φ. Denote ut = (xt, yt,mt), Ut =

(Xt, Yt,Mt), and x̂t = xt − x′t, ŷt = yt − y′t and similarly X̂t, Ŷt. Since X̂, Ŷ ∈
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L2
K(0,∞,R), there exists an increasing sequence of Ti such that lim

i→∞
Ti =∞ and

lim
i→∞

E
[
eKTiX̂TiŶTi

]
= 0.

By Itô’s formula, it can be easily seen that

E
[
eKTiX̂TiŶTi

]
= λ0E

 Ti∫
0

eKt
(
KX̂tŶt − X̂t(F (t, Ut)− F (t, U ′t)) + Ŷt(B(t, Ut)−B(t, U ′t))

)
dt


− κ(1− λ0)E

 Ti∫
0

eKt
(
X̂2
t + Ŷ 2

t

)
dt

+ (K − λ0K)E

 Ti∫
0

eKtX̂tŶt dt


+ κδE

 Ti∫
0

eKt
(
X̂tx̂t + Ŷtŷt

)
dt


+ δE

 Ti∫
0

eKt
(
−X̂t(F (t, ut)− F (t, u′t)) + Ŷt(B(t, ut)−B(t, u′t))

)
dt

 . (9.4)

According to Assumption 9.2.2 (ii), it holds that

E
[
KX̂tŶt − X̂t(F (t, Ut)− F (t, U ′t)) + Ŷt(B(t, Ut)−B(t, U ′t))

]
≤ −κE

[
X̂2
t + Ŷ 2

t

]
.

(9.5)

Therefore by Assumption 9.2.2 (i) and the fact that

W2(L(xt, yt),L(x′t, y
′
t)) ≤

√
E[|xt − x′t|2] +

√
E[|yt − y′t|2],
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it can be easily deduced from (9.4)

E
[
eKTiX̂TiŶTi

]
≤−

(
κ+K/2− kδ + 4lδ

2

)
E

 Ti∫
0

eKt
(
X̂2
t + Ŷ 2

t

)
dt


+
κδ + 4lδ

2
E

 Ti∫
0

eKt
(
x̂2
t + ŷ2

t

)
dt

 .
Letting i→∞ and choosing δ ≤ 2κ

3κ+12l)
, we actually obtain that

E

 ∞∫
0

eKt
(
X̂2
t + Ŷ 2

t

)
dt

 ≤ 1

2
E

 ∞∫
0

eKt
(
x̂2
t + ŷ2

t

)
dt

 ,
and therefore Φ is a contraction.

Theorem 9.2.4. Under Assumption 9.2.2, for each F0-measurable square integrable

random variable ξ, (9.1) has a unique solution in L2
K(0,∞,R3).

Proof. By Lemma 9.2.1, for any φ, ψ ∈ L2
K(0,∞,R), there exists a solution in

L2
K(0,∞,R) to (9.2) with λ = 0. Then according to Proposition 9.2.3, for any

φ, ψ ∈ L2
K(0,∞,R) there exists a solution to (9.2) with λ = δ0. Repeating this pro-

cess for d 1
δ0
e many times, we conclude that there exists a solution to (9.2) with λ = 1.

In particular, letting φ ≡ 0, ψ ≡ 0, we get a solution to (9.1).

For the uniqueness, suppose there exist two solution (X, Y, Z), (X ′, Y ′, Z ′) ∈

L2
K(0,∞,R3) to (9.1), and denote X̂ = X − X ′, Ŷ = Y − Y ′, Ẑ = Z − Z ′. There

exists a sequence of Ti → ∞ such that E
[
eKTiX̂TiŶTi

]
→ 0. By Itô’s formula and
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Assumption 9.2.2, we have that

E
[
eKTiX̂TiŶTi

]
= E

 Ti∫
0

eKt
(
KX̂tŶt − X̂t(F (t, Ut)− F (t, U ′t)) + Ŷt(B(t, Ut)−B(t, U ′t))

)
dt


≤ −(κ+K/2)E

 Ti∫
0

eKt
(
X̂2
t + Ŷ 2

t

)
dt

 .
Letting Ti → ∞, we conclude that ‖X̂‖2

K = ‖Ŷ ‖2
K = 0, and hence complete the

proof.

9.2.2 Fixed point argument

We prove the existence of solution to (9.1) under another monotonicity condition,

which in the spirit of [161],[182]. The main idea is as follows. Take any process

(xt) ∈ L2
K(0,∞,R) such that x0 = ξ. Using [160, Theorem 4.1], there exists a unique

solution (yt, zt) to the following infinite horizon BSDE

dyt = −F (t, xt, yt,L(xt, yt)) dt+ zt dWt, ∀t ≥ 0. (9.6)

And then we show that there exists a unique solution to the forward McKean Vlasov

SDE 
dXt = B(t,Xt, yt,L(Xt, yt)) dt+ σ dWt,

X0 = ξ,

(9.7)

and hence we construct a mapping which sends (xt) to (Xt). We will prove that this

mapping is a contraction, and hence its unique fixed point is the unique solution to

(9.1). First we present the main assumption of this subsection.
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Assumption 9.2.5. (i) There exists some constants κ1, κ2 such that for any t ∈ R+,

x, x′, y, y′ ∈ R, m ∈ P2(R2)

(y − y′)(F (t, x, y,m)− F (t, x, y′,m) ≤ −κ1|y − y′|2 a.s.,

(x− x′)(B(t, x, y,m)−B(t, x′, y,m)) ≤ −κ2|x− x′|2 a.s.

(ii) F (t, x, y,m), B(t, x, y,m) are Lipschitz in (x, y,m). There exist some positive

constant l1, l2 such that for any t ∈ R+, x, x′, y, y′ ∈ R, m,m′ ∈ P2(R2)

|F (t, x, y,m)− F (t, x′, y,m′)| ≤ l1(|x− x′|+W2(m,m′)) a.s.,

|B(t, x, y,m)−B(t, x, y′,m′)| ≤ l2(|y − y′|+W2(m,m′)) a.s.

(iii) There exist some positive constants ε1, ε2 and negative constant K such that

−2κ1 + 2l1 + 2l1ε1 < K < 2κ2 − 2l2 − 2l2ε2,

and also

4l1l2 ≤ ε1ε2(K + 2κ1 − 2l1 − 2l1ε1)(−K + 2κ2 − 2l2 − 2l2ε2).

(iv) ‖F (·, 0, 0, δ0)‖2
K + ‖B(·, 0, 0, δ0)‖2

K < +∞.

Lemma 9.2.6. Under Assumption 9.2.5, for any (xt) ∈ L2
K(0,∞,R) there exists a

unique solution (y, z) to (9.6) such that (y, z) ∈ L2
K(0,∞,R2).

Proof. According to [160, Theorem 4.1], for any (yt) ∈ L2
K(0,∞,R), there exists a

unique solution (yt, zt) ∈ L2
K(0,∞,R2) to the infinite horizon BSDE

dyt = −F (t, xt, yt,L(xt, yt)) dt+ zt dWt, ∀t ≥ 0. (9.8)
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Therefore it suffices to show that (yt) 7→ (yt) is a contraction on L2
K(0,∞,R). Take

any (yt), (y
′
t) ∈ L2

K(0,∞,R), and denote by (yt), (y
′
t) their corresponding solutions to

(9.8).

From Itô’s formula, one can easily deduce that

KeKt|yt − y′t|2 dt+ eKt|zt − z′t|2 dt = deKt|yt − y′t|2 − 2eKt(yt − y′t) d(yt − y′t) (9.9)

Since y, y′ ∈ L2
K(0,∞,R), there exists a sequence of Ti →∞ such that

E
[
eKTi |yTi − y

′
Ti
|2
]
→ 0. Integrating (9.9) over interval [0, Ti], taking expectation,

and letting Ti →∞, we obtain that

E

 ∞∫
0

KeKt|yt − y′t|2 + eKt|zt − z′t|2 dt

 = −E
[
|y0 − y′0|2

]

+ E

 ∞∫
0

2eKt(yt − y′t)
(
F (t, xt, yt,L(xt, yt))− F (t, xt, y

′
t,L(xt, y

′
t))
)
dt

 .
For the second term on the right hand side, we have that

2eKt(yt − y′t)
(
F (t, xt, yt,L(xt, yt))− F (t, xt, y

′
t,L(xt, y

′
t))
)

≤ 2eKt(yt − y′t)
(
F (t, xt, yt,L(xt, yt))− F (t, xt, y

′
t,L(xt, yt))

)
+ 2eKt(yt − y′t)

(
F (t, xt, y

′
t,L(xt, yt))− F (t, xt, y

′
t,L(xt, y

′
t))
)

≤ −2κ1e
Kt|yt − y′t|2 + 2eKt|yt − y′t|

(
W2(L(xt, yt),L(xt, y

′
t))
)

Together with W2
2 (L(xt, yt),L(xt, y

′
t)) ≤ l1E[|yt − y′t|2], it holds that

(K + 2κ1 − l1)‖y − y′‖2
K + ‖z − z′‖2

K ≤ l1‖y − y′‖2
K .

Since K + 2κ1 − l1 > l1, the mapping (yt) 7→ (yt) is indeed a contraction.
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Proposition 9.2.7. Under Assumption 9.2.5, for any (yt) ∈ L2
K(0,∞,R) there exists

a unique solution X to (9.7), and furthermore X ∈ L2
K(0,+∞,R).

Proof. The existence and uniqueness of solution to (9.7) is standard (see e.g. [60]).

We only need to show that the unique solution X belongs to the space L2
K(0,+∞,R).

Applying Itô’s formula, it can be easily seen that

E
[
eKt|Xt|2

]
=E[ξ2] + 2E

 t∫
0

eKsXs ·B(s,Xs, ys,L(Xs, ys)) ds


+KE

 s∫
0

eKs|Xs|2 ds

+ E

 t∫
0

eKsσ2 ds

 . (9.10)

For the integrand of the second term on the right, we have that

Xs ·B(s,Xs, ys,L(Xs, ys))

= Xs ·
(
B(s,Xs, ys,L(Xs, ys))−B(s, 0, ys,L(Xs, ys))

)
+Xs ·B(s, 0, ys,L(Xs, ys))

≤ −κ2|Xs|2 + |Xs| ·
(
|B(s, 0, ys, δ0 ⊗ L(ys))|+ l2W2(δ0 ⊗ L(ys),L(Xs, ys))

)
.

With the fact that W2(δ0⊗L(ys),L(Xs, ys)) ≤
√

E[|Xs|2], one can easily derive that

E
[
Xs ·B(s,Xs, ys,L(Xs))

]
≤ (−κ2 + l2 + ε2)|Xs|2 +

1

4ε2

(
|B(s, 0, ys, δ0 ⊗ L(ys))|2

)
.

Therefore from (9.10), we obtain that

E
[
eKt|Xt|2

]
≤ (−2κ2 + 2l2 +K + 2ε2)

t∫
0

eKs|Xs|2 ds+ Cε2 ,

where Cε2 is a constant depends on K, σ,E[ξ2], l2, ‖B(·, 0, 0, δ0)‖2
K , ‖y‖2

K . Due to As-

sumption 9.2.5 (iii), the coefficient before the integral on the right hand side is nega-
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tive, and thus we conclude the ‖X‖2
K < +∞.

Theorem 9.2.8. There exists a unique solution (X,Y,Z) to (9.1) in L2
K(0,∞,R3).

Proof. For any x ∈ L2
K(0,∞,R) such that x0 = ξ, define Ψ(x) := (y, z) ∈ L2

K(0,∞,R2)

to be the unique solution to (9.6), and for any (y, z) ∈ L2
K(0,∞,R2), define Φ(y, z) :=

X ∈ L2
K(0,∞,R) to be the unique solution to (9.7). We prove that the composition

Φ ◦ Ψ : L2
K(0,∞,R) → L2

K(0,∞,R) is a contraction, and hence the fixed point of

Φ ◦ Ψ provides the unique solution to (9.1). Take x, x′ ∈ L2
K(0,∞,R) such that

x0 = x′0 = ξ, (y, z) = Ψ(x), (y′, z′) = Ψ(x′), and X = Φ(y, z), X ′ = Φ(y′, z′).

From Itô’s formula, one can easily deduce that

KeKt|yt − y′t|2 dt+ eKt|zt − z′t|2 dt = deKt|yt − y′t|2 − 2eKt(yt − y′t) d(yt − y′t).

(9.11)

Since y, y′ ∈ L2
K(0,∞,R), there exists a sequence of Ti →∞ such that

E
[
eKTi |yTi − y

′
Ti
|2
]
→ 0. Integrating (9.11) over interval [0, Ti], taking expectation,

and letting Ti →∞, we obtain that

E

 ∞∫
0

KeKt|yt − y′t|2 + eKt|zt − z′t|2 dt

 = −E
[
|y0 − y′0|2

]

+ E

 ∞∫
0

2eKt(yt − y′t)
(
F (t, xt, yt,L(xt, yt))− F (t, x′t, y

′
t,L(x′t, y

′
t))
)
dt

 .
(9.12)
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For the second term on the right hand side, we have that

2eKt(yt − y′t)
(
F (t, xt, yt,L(xt, yt))− F (t, x′t, y

′
t,L(x′t, y

′
t))
)

≤ −2κ1e
Kt|yt − y′t|2 + 2l1e

Kt|yt − y′t|
(
|xt − x′t|+W2(L(xt, yt),L(x′t, y

′
t))
)

≤ −2κ1e
Kt|yt − y′t|2 + 2l1e

Kt|yt − y′t|
(
|xt − x′t|+

√
E[|xt − x′t|2] +

√
E[|yt − y′t|2]

)
.

Therefore it holds that

(K + 2κ1 − 2l1 − 2l1ε1)‖y − y′‖2
K + ‖z − z′‖2

K ≤
2l1
ε1
‖x− x′‖2

K . (9.13)

Applying Itô’s formula to deKt|Xt −X ′t|2, similarly we obtain that

−E

 ∞∫
0

KeKt|Xt −X ′t|2 dt


= E

 ∞∫
0

2eKt(Xt −X ′t)
(
B(t,Xt, yt,L(Xt, yt))−B(t,X ′t, y

′
t,L(X ′t, y

′
t))
)
dt


Note that

E
[
2eKt(Xt −X ′t)

(
B(t,Xt, yt,L(Xt, yt))−B(t,X ′t, y

′
t,L(X ′t, y

′
t))
)]

≤ E
[
−2κ2e

Kt|Xt −X ′t|2 + 2l2e
Kt|Xt −X ′t|

(
|yt − y′t|+W2(L(Xt, yt),L(X ′t, y

′
t))
)]

≤ (−2κ2 + 2l2 + 2l2ε2)E
[
eKt|Xt −X ′t|2

]
+

2l2
ε2

E
[
eKt|yt − y′t|2

]
,

and therefore

(−K + 2κ2 − 2l2 − 2l2ε2)‖X −X ′‖2
K ≤

2l2
ε2
‖y − y′‖2

K . (9.14)

294



According to Assumption 9.2.5 (iii), (9.13), (9.14), it can be easily seen that

‖X −X ′‖2
K ≤

2l2
ε2(−K + 2κ2 − 2l2 − 2l2ε2)

‖y − y′‖2
K

≤ 4l1l2
ε1ε2(K + 2κ1 − 2l1 − 2l1ε1)(−K + 2κ2 − 2l2 − 2l2ε2)

‖x− x′‖2
K < ‖x− x′‖2

K ,

and therefore Φ ◦Ψ is a contraction.

9.3 Infinite horizon mean field game and mean field type

control

In this section, we apply our main results to solve the infinite horizon mean field

type control problem and the infinite horizon mean field game. First in Subsec-

tion 9.3.1, we derive the corresponding McKean-Vlasov FBSDEs (9.20) and (9.27) by

Pontryagin’s maximum principle, and solve the problems given solutions to (9.20) and

(9.27). Then in Subsection 9.3.2, we provide sufficient conditions for the existence of

solutions to (9.20) and (9.27). Let r > 0 be a discount factor and A ⊂ R be a convex

control space. Suppose b, f : R+×R×P2(R)×A→ R are two measurable functions.

We work under the following assumption.

Assumption 9.3.1. (i) b(t, x, µ, a) is Lipschitz in (x, µ, a), and f(t, x, µ, a) is of at

most quadratic growth in (x, µ, a). There exists a positive constant l such that for any

µ, µ′ ∈ P2(R), t ∈ R+, x ∈ R, a ∈ A,

|b(t, x, µ, a)− b(t, x, µ′, a)| ≤ lW2(µ, µ′).

(ii) ||b(·, 0, δ0, a)||2−r < +∞,
∫∞

0
e−rt|f(·, 0, δ0, a)| dt < +∞ for some (and thus any)

a ∈ A.

(iii) There exists a constant κ > l − r
2

such that for any t > 0, a ∈ A, µ ∈ P2(R),
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x, x′ ∈ R, it holds that

(x− x′)(b(t, x, µ, a)− b(t, x′, µ, a)) ≤ −κ(x− x′)2.

9.3.1 Pontryagin’s maximum principle

DefineA := L2
−r(0,∞, A) to be the space of all admissible controls. For any control

α ∈ A, let (Xt) be a strong solution to the following controlled McKean-Vlasov SDE


dXt = b(t,Xt,L(Xt), αt) dt+ σ dWt,

X0 = ξ.

As in the proof of Proposition 9.2.7, it can be easily shown that under Assump-

tion 9.3.1, we have that (Xt) ∈ L2
−r(0,∞,R). The cost functional takes the form

J(α) := E

 ∞∫
0

e−rtf(t,Xt,L(Xt), αt) dt

 ,
which is finite for any α ∈ A due to Assumption 9.3.1. We want to solve the mini-

mization problem

inf
α∈A

J(α). (9.15)

Let us formally derive the maximum principle of the mean field type control problem.

Suppose α is an optimal control. Choose another admissible control β, define αε :=

α + εβ, and denote by Xε the state trajectory corresponding to the control αε. Let

Vt = lim
ε→0

Xε
t −Xt

ε
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be the variation process. Introduce the short-hand notation

θt := (Xt,L(Xt), αt), θεt = (Xε
t ,L(Xε

t ), α
ε
t).

Then it can be shown that V satisfies

dVt =

(
∂xb(t, θt) · Vt + Ẽ

[
∂µb(t, θt)(X̃t) · Ṽt

]
+ ∂ab(t, θt) · βt

)
dt,

V0 = 0,

where (X̃, Ṽ ) is an independent copy of (X, V ) defined on (Ω̃, F̃ , P̃) and

Ẽ
[
∂µb(t, θt)(X̃t) · Ṽt

]
is the derivative on the probability measure space when the

state variable and the control are fixed, i.e.,

Ẽ
[
∂µb(t, x,L(Xt), a)(X̃t) · Ṽt

]∣∣∣∣
x=Xt,a=αt

. (9.16)

To make (9.16) clear, in the following remark we briefly introduce how to differ-

entiate functions of probability measures. We refer readers to [61, Chapter 5] for a

nice survey on this topic.

Remark 9.3.2. Let Ω be a polish space and (P,F) be an atomless probability measure

over Ω. For any function u : P2(R) → R, we define its lift to the Hilbert space

L2(Ω,F ,P;R) by u(X) := u(L(X)). Then u is said to differentiable at µ0 = L(X0)

if u is Fréchet differentiable at X0. By identifying L2(Ω,F ,P;R) with its dual, the

Fréchet derivative of u at X0, denoted by Du(X0), is an element in L2(Ω,F ,P;R).

It can be shown that there exists a measurable function ∂µu(µ0) : R → R such that

∂µu(µ0)(X0) = Du(X0) P-a.s. Therefore we define the derivative of u at µ0 as the

measurable function ∂µu(µ0), which satisfies

u(µ) = u(µ0) + E
[
∂µu(µ0)(X0) · (X −X0)

]
+ o(||X −X0||2),
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where L(X) = µ,L(X0) = µ0.

The function α→ J(α) is Gâteaux differentiable in the direction β and its deriva-

tive is given by

d

dε
J(α + εβ)

∣∣∣∣
ε=0

= E

 ∞∫
0

e−rt
(
∂xf(t, θt) · Vt + Ẽ

[
∂µf(t, θt)(X̃t) · Ṽt

]
+ ∂af(t, θt) · βt

)
dt

 .
Define the generalized Hamiltonian

H(t, x, µ, a, y) := b(t, x, µ, a) · y + f(t, x, µ, a)− rxy. (9.17)

We consider the following infinite horizon BSDE

dYt = −
(
∂xH(t,Θt) + Ẽ

[
∂µH(t, Θ̃t)(Xt)

])
dt+ Zt dWt, (9.18)

where Θt := (θt, Yt) = (Xt,L(Xt), αt, Yt) and (Θ̃, Ω̃, F̃ , P̃) is an independent copy of

(Θ,Ω,F ,P).

According to Itô’s formula, it can be easily seen that

d

dε
J(α + εβ)

∣∣∣∣
ε=0

= E

 ∞∫
0

e−rt∂aH(t,Θt) · βt dt

 .
Thus when α is an optimal admissible control with the associated stochastic processes

(Xt, Yt, Zt), it holds that

H(t,Xt,L(Xt), αt, Yt) = min
a∈A
H(t,Xt,L(Xt), a, Yt) Leb⊗ P a.e.
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For any x, y ∈ R, m ∈ P2(R2) with first marginal µ ∈ P2(R), define

α̂t(x, y, µ) = argmin
a∈A

H(t, x, µ, a, y), (9.19)

and

Bc(t, x, y,m) := b(t, x, µ, α̂t(x, y, µ)),

Fc(t, x, y,m) := ∂xH(t, x, µ, α̂t(x, y, µ), y) +

∫
x′,y′

∂µH(t, x′, µ, α̂t(x
′, y′, µ), y′)(x) dm(x′, y′).

The above discussion connects the infinite horizon mean field control problem to the

McKean-Vlasov FBSDE
dXt = Bc(t,Xt, Yt,L(Xt, Yt)) dt+ σ dWt,

dYt = −Fc(t,Xt, Yt,L(Xt, Yt)) dt+ Zt dWt,

X0 = ξ.

(9.20)

Proposition 9.3.3. Let (b, f) be differentiable in (x, µ, a), Assumption 9.3.1 hold

and H be convex in (x, µ, a). Suppose ||α̂·(0, 0, δ0)||2−r < +∞, α̂t is Lipschitz and

(Bc, Fc) satisfies either Assumption 9.2.2 or 9.2.5 with K = −r. Then we have that

J(α̂) = minα J(α).

Proof. Due to Theorem 9.2.4, 9.2.8, there exists a uniques solution (X, Y, Z) to (9.20).

Let us denote θ∧t := (Xt,L(Xt), α̂t(Xt, Yt,L(Xt))) and Θ∧t := (θ∧t , Yt). For an arbi-
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trary admissible control α′ and its associated process X ′, we have that

J(α̂)− J(α′) =E

 ∞∫
0

e−rt
(
H(t,Xt,L(Xt), α̂t, Yt)−H(t,X ′t,L(X ′t), α

′
t, Yt)

)
dt


− E

 ∞∫
0

e−rt
(
b(t,Xt,L(Xt), X̂t)− b(t,X ′t,L(X ′t), α

′
t)
)
· Yt dt


+ rE

 ∞∫
0

e−rt(Xt −X ′t) · Yt dt

 . (9.21)

It can be easily seen that there exists a sequence of Ti →∞ such that

E
[
e−rTi(XTi −XT ′t

) · YTi
]
→ 0. Applying Itô’s formula to e−rTi(XTi −XT ′t

) · YTi and

letting Ti →∞, we obtain that

E

 ∞∫
0

e−rt(Xt −X ′t)
(
∂xH(t,Θ∧t ) + Ẽ

[
∂µH(Θ̃∧t )(Xt)

])
dt


= E

 ∞∫
0

e−rt
(
−r(Xt −X ′t) + b(t,Xt,L(Xt), X̂t)− b(t,X ′t,L(X ′t), α

′
t)
)
· Yt dt

 .
(9.22)

According to the convexity ofH and the fact that α̂t = argmina∈AH(t,Xt,L(Xt), a, Yt),

it holds that

H(t,X ′t,L(X ′t), α
′
t, Yt)−H(t,Xt,L(Xt), α̂t, Yt)

≥ (X ′t −Xt) · ∂xH(t,Θ∧t ) + Ẽ
[
∂µH(t,Θ∧t )(X̃t) · (X̃ ′t − X̃t)

]
+ (α′t − α̂t) · ∂aH(t,Θ∧t )

≥ (X ′t −Xt) · ∂xH(t,Θ∧t ) + Ẽ
[
∂µH(t,Θ∧t )(X̃t) · (X̃ ′t − X̃t)

]
. (9.23)
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By Fubini’s theorem, we have that

E
[
(X ′t −Xt) · Ẽ

[
∂µH(Θ̃∧t )(Xt)

]]
= EẼ

[
∂µH(t,Θ∧t )(X̃t) · (X̃ ′t − X̃t)

]
.

In conjunction with (9.21), (9.22), (9.23), we conclude that

J(α̂)− J(α′) ≤ E

 ∞∫
0

e−rt
(
H(t,Xt,L(Xt), α̂t, Yt)−H(t,X ′t,L(X ′t), α

′
t, Yt)

)
dt


− E

 ∞∫
0

e−rt(Xt −X ′t)
(
∂xH(t,Θ∧t ) + Ẽ

[
∂µH(Θ̃∧t )(Xt)

])
dt


≤ E

 ∞∫
0

e−rt
(
H(t,Xt,L(Xt), α̂t, Yt)−H(t,X ′t,L(X ′t), α

′
t, Yt)

)
dt


− E

 ∞∫
0

e−rt
(

(Xt −X ′t) · ∂xH(t,Θ∧t ) + Ẽ
[
∂µH(t,Θ∧t )(X̃t) · (X̃t − X̃ ′t)

])
dt

 ≤ 0.

Now we introduce an infinite horizon mean field game with discounted cost. Sup-

pose there are N players, and each player i has state variable X i
t at time t. Denote the

empirical distribution of N players by µt := 1
N

∑N
i=1 δXi

t
. Given admissible controls

α1, . . . , αN ∈ A and N independent Brownian motions W i, . . . ,WN , the players have

dynamics

dX i
t = b(t,X i

t , µt, α
i
t) dt+ σ dW i

t , i = 1, . . . , N. (9.24)
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The cost functional for player i is given by

J i(α1, . . . , αN) := E

 ∞∫
0

e−rtf(t,X i
t , µt, α

i
t) dt

 , (9.25)

where r > 0 is the discount factor and f : R+ × R × P2(R) × A → R is the running

cost. We want to study the Nash equilibrium as N →∞.

Suppose µt converges to a measure flow µt in equilibrium as N → ∞. Then a

representative player wants to minimize

Jµ(α) := E

 ∞∫
0

e−rtf(t,Xt, µt, αt) dt

 ,
under the constraint

dXt = b(t,Xt, µt, αt) dt+ σ dWt.

As the variational argument for the mean field type control problem, the optimal

strategy of the representative should be given by α̂(t,Xt, Yt, µt) where (X, Y, Z) is

the solution to
dXt = b

(
t,Xt, µt, α̂t(Xt, Yt, µt)

)
dt+ σ dWt,

dYt = −∂xH
(
t,Xt, µt, α̂t(Xt, Yt, µt), Yt

)
dt+ Zt dWt, ∀t ≥ 0,

X0 = ξ.

(9.26)

For any m ∈ P2(R2) with first marginal µ ∈ P2(R), define

Bg(t, x, y,m) := b(t, x, µ, α̂t(x, y, µ)),

Fg(t, x, y,m) := −∂xH(t, x, µ, α̂(x, y, µ), y).
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It also required that the law of Xt coincides with µt. Thus plugging µt = L(Xt) in

(9.26), we obtain the FBSDE of mean field game


dXt = Bg(t,Xt, Yt,L(Xt, Yt)) dt+ σ dWt,

dYt = −Fg(t,Xt, Yt,L(Xt, Yt)) dt+ Zt dWt, ∀t ≥ 0.

X0 = ξ.

(9.27)

Proposition 9.3.4. Let (b, f) be differentiable in (x, a), Assumption 9.3.1 hold and

H be convex in (x, a). Suppose ||α̂·(0, 0, δ0)||2−r < +∞, α̂t is Lipschitz and (Bg, Fg)

satisfies either Assumption 9.2.2 or 9.2.5 with K = −r. Then there exists a unique

solution (X, Y, Z) ∈ L2
−r(0,∞,R3) to (9.27) which provides an equilibrium to the

infinite horizon mean field game, i.e.,

JL(X)(α̂) ≤ JL(X)(α), ∀α ∈ A.

Proof. Given the existence of solutions to (9.27), the proof is standard, see e.g. [61,

Theorem 3.17].

Remark 9.3.5. In the mean field game, since there are large number of players, any

change of a representative player doesn’t impact the measure flow (µt). Therefore (µt)

is fixed in the derivation of (9.26). That’s the main difference from mean field control

problem, where the law L(Xt) changes as the control changes. For more detailed

discussions, see e.g. [63].

9.3.2 Solvability of Mean field type control and Mean field game FBSDEs

In this subsection, we find sufficient conditions on the given data for the ex-

istence and uniqueness of solutions to (9.20) and (9.27). For the mean field type

control problem, we assume that b(t, x, µ, a) = b0(t) + b1(t)µ+ b1(t)x+ b2(t)a, where
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b0(t), bt(t), b1(t), b2(t) are deterministic functions. For the mean field game problem,

we assume that b(t, x, µ, a) = b0(t, µ) + b1(t)x + b2(t)a, where by abuse of notation

b0(t, ·) is a measurable function of µ ∈ P2(R) for any t ∈ R+. Let us compute (Bc, Fc),

Bc(t, x, y,m) =b0(t) + b1(t)µ+ b1(t)x+ b2(t)α̂t(x, y, µ),

Fc(t, x, y,m) =b1(t)y + ∂xf(t, x, µ, α̂t(x, y, µ))− ry

+ b1(t)ν +

∫
x′,y′

∂µf(t, x′, µ, α̂t(x
′, y′, µ))(x) dm(x′, y′), (9.28)

where µ is the first marginal of m.

Definition 9.3.6. A continuously differentiable function ρ : R → R is said to be

η-convex for some η > 0 if

ρ(z′)− ρ(z)− (z′ − z) · ∂zρ(z) ≥ η(z′ − z)2, ∀z, z′ ∈ R.

It can be easily seen that if ∂zρ is ζ-Lipschitz, then

ρ(z′)− ρ(z)− (z′ − z) · ∂zρ(z) ≤

∣∣∣∣∣∣∣(z′ − z) ·
1∫

0

∂zρ(t(z′ − z) + z)− ∂zρ(z) dt

∣∣∣∣∣∣∣
≤ ζ

2
(z′ − z)2.

First, we show the Lipschitz and convex property of the minimizer α̂t (9.19).

Lemma 9.3.7. Suppose b(t, x, µ, a) = b0(t, µ)+b1(t)x+b2(t)a, f is once continuously

differentiable in (x, a), η-convex in a, and ∂af is l-Lipschitz in (µ, x). Then it holds

that

|α̂t(x, y, µ)− α̂t(x′, y′, µ′)| ≤
l

2η
|x′ − x|+ |b2(t)|

2η
|y′ − y|+ l

2η
W2(µ, µ′), (9.29)
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and for any (t, x, y, µ) ∈ R+ × R2 × P2(R),

|α̂t(x, y, µ)| ≤ η−1(|∂af(t, x, µ, a0)|+ |b2(t)y|) + |a0|. (9.30)

Furthermore, if A = R and ∂af is ζ-Lipchitz in a, it follows that

b2(t)(y′ − y) ·
(
α̂t(x, y

′, µ)− α̂t(x, y, µ)
)
≤ −2b2(t)2η

ζ2
(y′ − y)2. (9.31)

Proof. The proofs of (9.29) and (9.30) are from [61, Lemma 3.3, Lemma 6.18]. Denote

α̂t = α̂t(x, y, µ) and α̂′t = α̂t(x, y
′, µ). In the case that A = R, it is clear that

∂aH(t, x, µ, α̂t, y) = ∂aH(t, x, µ, α̂′t, y
′) = 0, and thus

b2(t)(y′ − y) +
(
∂af(t, x, µ, α̂′t)− ∂af(t, x, µ, α̂t)

)
= 0. (9.32)

Since f is η-convex in a and ∂af in ζ-Lipschitz in a, we obtain that

ζ

2
(α̂′t − α̂t)2 ≥ f(t, x, µ, α̂′t)− f(t, x, µ, α̂t)− (α̂′t − α̂t) · ∂af(t, x, µ, α̂t) ≥ η(α̂′t − α̂t)2,

ζ

2
(α̂′t − α̂t)2 ≥ f(t, x, µ, α̂t)− f(t, x, µ, α̂′t)− (α̂t − α̂′t) · ∂af(t, x, µ, α̂′t) ≥ η(α̂′t − α̂t)2,

and therefore

ζ(α̂′t − α̂t)2 ≥ (α̂′t − α̂t) ·
(
∂af(t, x, µ, α̂′t)− ∂af(t, x, µ, α̂t)

)
≥ 2η(α̂′t − α̂t)2.

Multiplying (9.32) by (α̂′t − α̂t) and using the above inequality, we get that

ζ(α̂′t − α̂t)2 ≥ −b2(t)(y′ − y) · (α̂′t − α̂t) ≥ 2η(α̂′t − α̂t)2,
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and also

|α̂′t − α̂t| ≥
|b2(t)|
ζ
|y′ − y|.

Therefore we conclude that

b2(t)(y′ − y) · (α̂′t − α̂t) ≤ −2η(α̂′t − α̂t)2 ≤ −2b2(t)2η

ζ2
(y′ − y)2.

We show that the following function, as a part of Fc (9.28), is Lipschitz

Ψ : (t, x,m) 7→ b1(t)ν + Φ(t, x,m),

where

Φ(t, x,m) =

∫
x′,y′

∂µf(t, x′, µ, α̂t(x
′, y′, µ))(x) dm(x′, y′).

Lemma 9.3.8. Assume that f is once continuously differentiable in (x, µ, a), η-

convex in a, ∂af is l-Lipschitz in (x, µ), and ∂µf(t, x′, µ, a)(x) is l-Lipschitz in (x′, µ, a, x).

Then for any x, x ∈ R, m,m ∈ P2(R2) it holds that

|Ψ(t, x,m)−Ψ(t, x,m)| ≤
(
|b1(t)|+ l(4η + 2l + |b2(t)|)

2η

)
W2(m,m) + l|x− x|.

(9.33)
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Proof. Together with Lemma 9.3.7, we have the Lipschitz property

∣∣∂µf(t, x′, µ, α̂t(x
′, y′, µ))(x)− ∂µf(t, x′, µ, α̂t(x

′, y′, µ))(x)
∣∣

≤ l
(
|x′ − x′|+ |α̂t(x′, y′, µ)− α̂t(x′, y′, µ)|

)
≤ l

(
|x′ − x′|+ l

2η
|x′ − x′|+ |b2(t)|

2η
|y′ − y′|

)
.

Therefore it holds that∣∣∣∣∣∣∣
∫
x′,y′

∂µf(t, x′, µ, α̂t(x
′, y′, µ))(x) d(m−m)(x′, y′)

∣∣∣∣∣∣∣ ≤
l(2η + l + |b2(t)|)

2η
W2(m,m),

and hence

|Ψ(t, x,m)−Ψ(t, x,m)|

≤ |b1(t)|W1(ν, ν ′) + |Φ(t, x,m)− Φ(t, x,m)|+ |Φ(t, x,m)− Φ(t, x,m)|

≤ |b1(t)|W2(m,m) + l|x− x|+

∣∣∣∣∣∣∣
∫
x′,y′

∂µf(t, x′, µ, α̂t(x
′, y′, µ))(x) d(m−m)(x′, y′)

∣∣∣∣∣∣∣
+

∫
x′,y′

∣∣∂µf(t, x′, µ, α̂t(x
′, y′, µ))(x)− ∂µf(t, x′, µ, α̂t(x

′, y′, µ))(x)
∣∣ dm(x′, y′)

≤
(
|b1(t)|+ l(4η + 2l + |b2(t)|)

2η

)
W2(m,m) + l|x− x|.

Remark 9.3.9. [61, Lemma 5.41] provides a sufficient condition for the Lipschitz prop-

erty of

(x′, µ, a, x) 7→ ∂µf(t, x′, µ, a)(x).

Theorem 9.3.10. Let b(t, x, µ, a) = b0(t) + b1(t)µ + b1(t)x + b2(t)a. The conclu-

sion of Proposition 9.3.3 holds under either conditions (i), (ii), (iii), (iv) or conditions
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(i′), (ii′), (iii′), (iv′) below, and thus α̂ solves the minimization problem (9.15).

(i) b1(t), b2(t) are uniformly bounded, and there exists a positive constant l such

that |b1(t)| ≤ l and −maxt b1(t) ≥ l − r
2
. f is once continuously differen-

tiable in (x, µ, a), of at most quadratic growth in (x, µ, a), and it holds that

b0(·), |f(·, 0, δ0, a)|1/2 ∈ L2
−r(0,∞,R) for some (any thus any) a ∈ A.

(ii) There exist some positive constants η, ι such that the following convexity condi-

tion holds

f(t, x′, µ′, a′)− f(t, x, µ, a)− ∂(x,a)f(t, x, µ, a) · (x′ − x, a′ − a)

− E
[
∂µf(t, x, µ, a)(X) · (X ′ −X)

]
≥ ι(x′ − x)2 + η(a′ − a)2,

for any t ∈ R+ whenever X ′, X have distributions µ′, µ respectively.

(iii) ∂xf and ∂af are l-Lipschitz in (µ, a) and (x, µ) respectively. ∂af is ζ-Lipschitz

in a, and ∂µf(t, x′, µ, a)(x) is l-Lipschitz in (x′, µ, a, x).

(iv) A = R, and it holds that

inf
t

min

{
2ι− 13l

2
− 5l2 + 3|b2(t)|l

2η
,
2b2(t)2η

ζ2
− 3l

2
− l2 + 2|b2(t)|l

2η

}
>
r

2
.

(9.34)

(i’) b1(t), b2(t) are uniformly bounded, and there exists a positive constant l such that

|b1(t)| ≤ l. f is once continuously differentiable in (x, µ, a), of at most quadratic

growth in (x, µ, a), and it holds that b(·), |f(·, 0, δ0, a)|1/2 ∈ L2
−r(0,∞,R) for

some (any thus any) a ∈ A.

(ii’) There exists a positive constant η such that the following convexity condition
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holds

f(t, x′, µ′, a′)− f(t, x, µ, a)− ∂(x,a)f(t, x, µ, a) · (x′ − x, a′ − a)

− E
[
∂µf(t, x, µ, a)(X) · (X ′ −X)

]
≥ η(a′ − a)2,

for any t ∈ R+ whenever X ′, X have distributions µ′, µ respectively.

(iii’) ∂xf and ∂af are l-Lipschitz in (x, µ, a) and (x, µ) respectively. ∂µf(t, x′, µ, a)(x)

is l-Lipschitz in (x′, µ, a, x).

(iv’) It holds that

max
t
b1(t) ≤ −max

{
9l − r

2
+ max

t

9l2 + 4l|b2(t)|
2η

,

3l − r

2
+ max

t

4|b2(t)|l + 3b2(t)2

2η

}
. (9.35)

Proof. Assume that conditions (i), (ii), (iii), (iv) hold. It is clear that Assumption 9.3.1

is satisfied, and due to Lemma 9.3.7 α̂t is Lipschitz and α̂·(0, 0, δ0) ∈ L2
−r(0,∞,R).

According to condition (ii), it can be easily seen that H is convex in (x, µ, a). By

Lemma 9.3.8 and explicit formulas of (Bc, Fc) (9.28), Assumption 9.2.2 (i) can be

easily verified. It remains to to check Assumption 9.2.2 (ii) with K = −r.

Take any square integrable random variables X, Y,X ′, Y ′, and denote µ = L(X),

µ′ = L(X ′),m = L(X, Y ),m′ = L(X ′, Y ′). Define X̂ = X − X ′, Ŷ = Y − Y ′ and

U = (X, Y,L(X, Y )), U ′ = (X ′, Y ′,L(X ′, Y ′)). Let us compute

− rX̂Ŷ − X̂(Fc(t, U)− Fc(t, U ′)) + Ŷ (Bc(t, U)−Bc(t, U
′))

= −X̂
(
∂xf(t,X, µ, α̂t(X, Y, µ))− ∂xf(t,X ′, µ′, α̂t(X

′, Y ′, µ′)) + Ψ(X,m)−Ψ(X ′,m′)
)

+ Ŷ
(
b1(t)E[X̂] + b2(t)(α̂t(X, Y, µ)− α̂t(X ′, Y ′, µ′))

)
. (9.36)
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Since f is ι-convex in x, we have that

− X̂
(
∂xf(t,X, µ, α̂t(X, Y, µ))− ∂xf(t,X ′, µ′, α̂t(X

′, Y ′, µ′))
)

= −X̂
(
∂xf(t,X, µ, α̂t(X, Y, µ))− ∂xf(t,X ′, µ, α̂t(X, Y, µ))

)
− X̂

(
∂xf(t,X ′, µ, α̂t(X, Y, µ))− ∂xf(t,X ′, µ′, α̂t(X

′, Y ′, µ′))
)

≤ −2ιX̂2 + l|X̂|
(
W2(µ, µ′) +

l

2η
|X̂|+ |b2(t)|

2η
|Ŷ |+ l

2η
W2(µ, µ′)

)
. (9.37)

According to (9.31), it follows that

Ŷ b2(t)
(
α̂t(X, Y, µ)− α̂t(X ′, Y ′, µ′)

)
=Ŷ b2(t)

(
α̂t(X, Y, µ)− α̂t(X, Y ′, µ)

)
+ Ŷ b2(t)

(
α̂t(X, Y

′, µ)− α̂t(X ′, Y ′, µ′)
)

≤− 2b2(t)2η

ζ2
Ŷ 2 + |Ŷ b2(t)|

(
l

2η
|X̂|+ l

2η
W2(µ, µ′)

)
. (9.38)

Using Lemma 9.3.8, equations (9.36),(9.37),(9.38), condition (iv) and basic inequali-

ties, Assumption 9.2.2 (ii) can be verified.

Assume that conditions (i′), (ii′), (iii′), (iv′) hold. We only check Assumption 9.2.5,

and the rest is very similar to the first part of proof. Recalling the formula (9.28), it

can be easily verified that

(y − y′)
(
Fc(t, x, y,m)− Fc(t, x, y′,m)

)
≤
(
b1(t)− r +

|b2(t)|l
2η

)
(y − y′)2,

(x− x′)
(
Bc(t, x, y,m)−Bc(t, x

′, y,m)
)
≤
(
b1(t) +

|b2(t)|l
2η

)
(x− x′)2,

|Fc(t, x, y,m)− Fc(t, x′, y,m′)|

≤

(
3l +

3l2 + |b2(t)|l
2η

)
W2(m,m′) +

(
2l +

l2

2η

)
|x− x′|,

|Bc(t, x, y,m)−Bc(t, x, y
′,m′)|

≤
(
l +
|b2(t)|l

2η

)
W2(m,m′) +

b2(t)2

2η
|y − y′|.
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Therefore we define

κ1 = −max
t

(
b1(t)− r +

|b2(t)|l
2η

)
,

κ2 = −max
t

(
b1(t) +

|b2(t)|l
2η

)
,

l1 = max
t

(
3l +

3l2 + |b2(t)|l
2η

)
,

l2 = max
t

(
l +
|b2(t)|l

2η
+
b2(t)2

2η

)
.

Due to condition (iv′), it can be easily verified that

−2κ1 + 6l1 < −r < 2κ2 − 6l2,

and hence Assumption 9.2.5 (iii) is satisfied.

Now we provide sufficient conditions to solve (9.27). Assume that b(t, x, µ, a) =

b0(t, µ) + b1(t)x+ b2(t)a. Then it is clear that

Bg(t, x, y, µ) =b0(t, µ) + b1(t)x+ b2(t)α̂t(x, y, µ),

Fg(t, x, y, µ) =b1(t)y + ∂xf(t, x, µ, α̂t(x, y, µ))− ry.

Theorem 9.3.11. Let b(t, x, µ, a) = b0(t, µ) + b1(t)x + b2(t)a. The conclusion of

Proposition 9.3.4 holds under either conditions (i), (ii), (iii), (iv)

or conditions (i′), (ii′), (iii′), (iv′) below, and thus (L(Xt), α̂t) solves the infinite hori-

zon mean field game.

(i) b1(t), b2(t) are uniformly bounded, and b0(t, µ) is l-Lipschitz in µ, such that

−maxt b1(t) ≥ l − r
2
. f is once continuously differentiable in (x, a), of at

most quadratic growth in (x, µ, a), and it holds that b(·, δ0), |f(·, 0, δ0, a)|1/2 ∈
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L2
−r(0,∞,R) for some (any thus any) a ∈ A.

(ii) f is ι-convex in x and η-convex in a.

(iii) ∂xf and ∂af are l-Lipschitz in (µ, a) and (x, µ) respectively. ∂af is ζ-Lipschitz

in a.

(iv) A = R and it holds that

inf
t

min

{
2ι− 3l

2
− l2

η
− 3|b2(t)|l

4η
,
2b2(t)2η

ζ2
− l

2
− 3|b2(t)|l

4η

}
≥ r

2
. (9.39)

(i’) b1(t), b2(t) are uniformly bounded, and b0(t, µ) is l-Lipschitz in µ. f is once

continuously differentiable in (x, a), of at most quadratic growth in (x, µ, a),

and it holds that b(·, δ0), |f(·, 0, δ0, a)|1/2 ∈ L2
−r(0,∞,R) for some (any thus

any) a ∈ A.

(ii’) f is η-convex in a, convex x.

(iii’) ∂xf is l-Lipschitz in (x, µ, a), and ∂af is l-Lipschitz in (x, µ).

(iv’) It holds that

max
t
b1(t) ≤ −max

{
3l − r

2
+ max

t

3l2 + |b2(t)|l
2η

,

3l − r

2
+ max

t

4|b2(t)|l + 3b2(t)2

2η

}
. (9.40)

Proof. The proof is almost the same as that of Theorem 9.3.10.

Remark 9.3.12. Using PDE tools, [57, 77] studied the long time behavior of mean

fields games in the special case when b(t, x, µ, a) = a, f(t, x, µ, a) = L(x, a) +F (x, µ).

Their main assumption, the convexity of y 7→ − infa{ay+L(x, a)}, is similar to (9.31)
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which is needed in Assumption 9.2.2 (ii). However in the case that A 6= R, (9.31) may

no longer hold. This is a case when Assumption 9.2.5 can prove to be less demanding

since (9.31) is not needed.

[57, 77] proved that the vanishing discount limit for the infinite horizon problem is

the solution to an ergodic mean field games [77, Theorem 6.4], and that the solution to

the discounted mean field game converges to the unique stationary solution exponen-

tially fast [57, Theorem 3.7]. It remains open to show the above convergence results

for general models using FBSDE techniques, and we leave it for future research.

9.4 Linear quadratic models

In this section, we apply Theorem 9.3.10, 9.3.11 to linear quadratic models. For

any µ ∈ P2(R), define µ :=
∫
xµ(dx) as the mean of distribution µ. Let us suppose

A = R, and

b(t, x, µ, a) :=b1(t)x+ b1(t)µ+ b2(t)a,

f(t, x, µ, a) :=
1

2

(
x2q(t) + (x− µ)2q(t) + a2p(t)

)
,

where b1(t), b1(t), b2(t), q(t), q(t), p(t) are deterministic functions.

In this simple case, we can explicitly compute (9.19)

α̂t(x, y, µ) = −b2(t)

p(t)
y.

Plugging in (9.20) and (9.27), we obtain that

Bc(t, x, y,m) = Bg(t, x, y,m) = b1(t)x− b2(t)2

p(t)
y + b1(t)µ,

Fc(t, x, y,m) = b1(t)y + (q(t) + q(t))x− q(t)µ− ry + b1(t)ν,

Fg(t, x, y,m) = b1(t)y + (q(t) + q(t))x− q(t)µ− ry,
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where µ and ν are the first and second marginals of m respectively.

Applying Theorem 9.3.10, 9.3.11, we can easily obtain the following two corollaries.

Corollary 9.4.1. Suppose b1(t), b2(t), q(t), q(t), p(t) are bounded. Let l, ι, η, ξ be some

positive constants. Then α̂t solves the mean field type control problem under either of

the following:

(i) |b1(t)| ≤ l, −b1(t) ≥ l− r
2
, ξ ≥ p(t) ≥ 2η, q(t) ≥ 2ι, q(t) ≥ 0, |q(t)| ≤ l for all t,

and (9.34) holds.

(ii) |b1(t)| ≤ l, p(t) ≥ 2η, q(t) ≥ 0, q(t) ≥ 0, |q(t)| + |q(t)| ≤ l for all t, and (9.35)

holds.

Corollary 9.4.2. Suppose b1(t), b2(t), q(t), q(t), p(t) are bounded. Let l, ι, η, ξ be some

positive constants. α̂t solves the mean field game under either of the following two

conditions:

(i) |b1(t)| ≤ l, −b1(t) ≥ l − r
2
, ξ ≥ p(t) ≥ 2η, q(t) ≥ 2ι, |q(t)| ≤ l for all t, and

(9.39) holds.

(ii) |b1(t)| ≤ l, p(t) ≥ 2η, q(t) + q(t) ≥ 0, |q(t)| + |q(t)| ≤ l for all t, and (9.40)

holds.

Remark 9.4.3. It is known that one can solve linear quadratic mean field games by

Riccati equations, and thus the solution Yt is a linear transformation of Xt. As in

[61, Section 3.5], one may assume that Yt = η(t)Xt + χ(t), Zt = η(t)σ, and it can be

shown that (η(t), χ(t)) solves


0 = η̇(t)− η(t)2 b2(t)2

p(t)
+ η(t)

(
2b1(t)− r

)
+ q(t) + q(t),

0 = χ̇(t) + χ(t)
(
−η(t) b2(t)2

p(t)
+ b1(t)− r

)
− q(t)x(t) + η(t)b1(t)x(t), ∀t ≥ 0,

(9.41)
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where x(t) := E[Xt] together with η(t) is the solution to


0 = η̇(t) + η(t)

(
2b1(t) + b1(t)− r

)
− η(t)2 b2(t)2

p(t)
+ q(t),

ẋ(t) =
(
b1(t) + b1(t)− η(t) b2(t)2

p(t)

)
x(t), ∀t ≥ 0,

x(0) = E[ξ].

(9.42)

Both (9.41) and (9.42) are systems of infinite horizon ordinary differential equations,

and we impose the growth condition
∫∞

0
e−rt

(
x(t)2 + χ(t)2

)
dt+ supt |η(t)| <∞, and

that η(t) ≥ p(t)
b2(t)2 (b1(t)− r/2).

When there exists a solution (η(t), χ(t), x(t)) to (9.41)(9.42), it can be easily veri-

fied that Yt = ηtXt +χt, E[Xt] = x(t) solves (9.27) and that (Xt, Yt) ∈ L2
−r(0,∞,R2).

Therefore by the uniqueness result of MFG FBSDE (9.27), the solution to (9.41)(9.42)

is also unique. The solvability of (9.41) and (9.42) is strongly connected with an

equivalent deterministic linear quadratic optimal control problem, which is beyond

the scope of this chapter and we refer to [61, Section 3.5.1]. Similarly, one can also

write down ordinary equations for solutions to infinite horizon linear quadratic mean

field control problems.
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[37] Mathias Beiglböck and Nicolas Juillet. On a problem of optimal transport under
marginal martingale constraints. Ann. Probab., 44(1):42–106, 2016.
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Vlasov dynamics versus mean field games. Math. Financ. Econ., 7(2):131–166,
2013.
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[99] Hans Föllmer and Alexander Schied. Stochastic finance. De Gruyter Graduate.
De Gruyter, Berlin, 2016. An introduction in discrete time, Fourth revised and
extended edition of [ MR1925197].

[100] Dean P Foster and Rakesh Vohra. Regret in the on-line decision problem.
Games and Economic Behavior, 29(1-2):7–35, 1999.

[101] A. Galichon, P. Henry-Labordère, and N. Touzi. A stochastic control approach
to no-arbitrage bounds given marginals, with an application to lookback op-
tions. Ann. Appl. Probab., 24(1):312–336, 2014.

[102] Y. Giga, S. Goto, H. Ishii, and M.-H. Sato. Comparison principle and convexity
preserving properties for singular degenerate parabolic equations on unbounded
domains. Indiana Univ. Math. J., 40(2):443–470, 1991.

[103] Diogo Gomes, Roberto M. Velho, and Marie-Therese Wolfram. Socio-economic
applications of finite state mean field games. Philos. Trans. R. Soc. Lond. Ser.
A Math. Phys. Eng. Sci., 372(2028):20130405, 18, 2014.

324



[104] Diogo A. Gomes, Joana Mohr, and Rafael Rigão Souza. Continuous time finite
state mean field games. Appl. Math. Optim., 68(1):99–143, 2013.

[105] Nathael Gozlan, Cyril Roberto, Paul-Marie Samson, and Prasad Tetali. Kan-
torovich duality for general transport costs and applications. J. Funct. Anal.,
273(11):3327–3405, 2017.

[106] Nick Gravin, Yuval Peres, and Balasubramanian Sivan. Towards Optimal Al-
gorithms for Prediction with Expert Advice. arXiv:1409.3040, Sep 2014.

[107] Nick Gravin, Yuval Peres, and Balasubramanian Sivan. Towards optimal algo-
rithms for prediction with expert advice. In Proceedings of the Twenty-Seventh
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 528–547. ACM,
New York, 2016.

[108] Anupam Gupta, Tomer Koren, and Kunal Talwar. Better algorithms for
stochastic bandits with adversarial corruptions. In Proceedings of Machine
Learning Research, volume 99, pages 1562–1578, 2019.

[109] Bruce Hajek and Michael Livesay. On non-unique solutions in mean field games.
arXiv e-prints, page arXiv:1903.05788, Mar 2019.

[110] Hatem Hajri and Wajdi Touhami. Itô’s formula for Walsh’s Brownian motion
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