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ABSTRACT

Artificial intelligence and machine learning have the potential to transform health

care by deriving new and important insights from the vast amount of data gener-

ated during routine delivery of healthcare. The digitization of health data provides

an important opportunity for new knowledge discovery and improved care delivery

through the development of clinical decision support that can leverage this data to

support various aspects of healthcare - from early diagnosis to epidemiology, drug

development, and robotic-assisted surgery. These diverse efforts share the ultimate

goal of improving quality of care and outcome for patients. This thesis aims to tackle

long-standing problems in machine learning and healthcare, such as modeling label

uncertainty (e.g., from ambiguity in diagnosis or poorly labeled examples) and rep-

resentation of data that may not be reliably accessible in a live environment.

Label uncertainty hinges on the fact that even clinical experts may have low

confidence when assigning a medical diagnosis to some patients due to ambiguity in

the case or imperfect reliability of the diagnostic criteria. As a result, some data

used for machine training may be mislabeled, hindering the model’s ability to learn

the complexity of the underlying task and adversely affecting the algorithm’s overall

performance. In this work, I describe a heuristic approach for physicians to quantify

their diagnostic uncertainty. I also propose an implementation of instance-weighted

support vector machines to incorporate this information during model training.

To address the issue of unreliable data, this thesis examines the idea of learning
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using “partially available” privileged information. This paradigm, based on knowl-

edge transfer, allows for models to use additional data available during training but

may not be accessible during testing/deployment. This type of data is abundant in

healthcare, where much more information about a patient’s health status is available

in retrospective analysis (e.g., in the training data) but not available in real-time en-

vironments (e.g., in the test set). In this thesis, “privileged information” are features

extracted from chest x-rays (CXRs) using novel feature engineering algorithms and

transfer learning with deep residual networks. This example works well for numerous

clinical applications, since CXRs are retrospectively accessible during model training

but may not be available in a live environment due to delay from ordering, developing,

and processing the request.

This thesis is motivated by improving diagnosis of acute respiratory distress syn-

drome (ARDS), a life-threatening lung injury associated with high mortality. The

diagnosis of ARDS serves as a model for many medical conditions where standard

tests are not routinely available and diagnostic uncertainty is common. While this

thesis focuses on improving diagnosis of ARDS, the proposed learning methods will

generalize across various healthcare settings, allowing for better characterization of

patient health status and improving the overall quality of patient care. This thesis also

includes development of methods for time-series analysis of longitudinal health data,

signal processing techniques for quality assessment, lung segmentation from complex

CXRs, and novel feature extraction algorithm for quantification of pulmonary opacifi-

cation. These algorithms were tested and validated on data obtained from patients at

Michigan Medicine and additional external sources. These studies demonstrate that

careful, principled use of methodologies in machine learning and artificial intelligence

can potentially assist healthcare providers with early detection of ARDS and help

make a timely, accurate medical diagnosis to improve outcomes for patients.
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CHAPTER I

Introduction

1.1 Motivation

The overarching, long-term goal of my research is to develop the computational

methods needed to help organize, process, and transform patient data into actionable

knowledge, and to work toward using machine learning and data science to build

models that will leverage electronic health records in ways that can help healthcare

providers improve patient outcomes. The research efforts of this thesis has appli-

cations in modeling disease progression and predicting adverse outcomes - including

work on developing approaches that can leverage label uncertainty and partially avail-

able data, with the ultimate goal of improving quality of care for patients.

The digitization of health data provides an important opportunity for new knowl-

edge discovery and improved care delivery through the development of clinical de-

cision support that can leverage this vast data to support all aspects of healthcare.

The advent and accelerated adoption of electronic health records (EHR), as a result

of efforts during the Obama administration [1], facilitated the process of generating

datasets containing electronically-stored medical data - creating a strong platform

digital health innovation. Although EHRs faced significant barriers to adoption [2],

this shift in paradigm positioned healthcare for applications of data-driven analyt-

ics and artificial intelligence (AI) in the future of medicine. These advances are
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expected to enhance the quality of healthcare adminstration, automation, and intelli-

gent decision-making in primary/tertiary patient care and public healthcare systems

for years to come.

Although EHRs came with the promise of faster and more efficient care, providers

in modern settings continue to be inundated by the vast amounts of clinical data

being generated during routine patient care. A seminal report from the Institute

of Medicine [3] describes how inaccurate medical diagnosis remains a frequent and

critical issue for disparity in the quality of healthcare. My research uses machine

learning and methodologies in AI to examine such long-standing problems. Specif-

ically, the works in this thesis investigate mathematical approaches to model label

uncertainty (e.g., from ambiguity in diagnosis or poorly labeled examples) and repre-

sentation of data that may not be reliably accessible in clinical settings (e.g., model

testing/deployment).

Label uncertainty hinges on the fact that even clinical experts may have low con-

fidence when assigning a medical diagnosis to some patients due to ambiguity in the

case or imperfect reliability of the diagnostic criteria. As a result, some data used

for machine training may be mislabeled, hindering the model’s ability to learn the

complexity of the underlying task and adversely affecting the algorithm’s overall per-

formance. Furthermore, substantial electronic health data is currently unused (or

under-used) during design and training of medical prediction systems, because this

data may not be available in live clinical environments. The works presented in this

thesis also examine novel approaches to use this type of data as “privileged infor-

mation” during learning, should improve the accuracy and efficiency of algorithm

training, and allowing the integration of a broader array of health data for precision

diagnosis. Integrating these disparate data sources in real-time and effectively as-

sisting clinicians in medical decisions could potentially transform how patient care is

delivered. By synthesizing this digital information into actionable knowledge, these

2



systems have the potential to provide important insights into the health status of

patients, helping physicians make more timely and accurate medical diagnosis and

evidence-based treatment decisions.

To achieve this broad set of goals in my research, I aim to develop theoretically-

motivated, principled algorithms by drawing from probabilistic modeling, learning

using privileged information, reinforcement learning, computer vision, Bayesian in-

ference, and other structured learning approaches. Furthermore, while conducting

the research described in this thesis, I also take into consideration the issues of in-

terpretability, reliability, and trustworthiness from the perspective of a healthcare

provider to ensure that that the algorithms developed in this thesis will consistently

perform as expected, even in the most rigorous tasks. These computational method-

ologies can assist physicians with making a timely, accurate medical diagnosis to

improve quality of care and outcome for patients.

1.2 Background

This thesis is motivated by improving diagnosis of acute respiratory distress syn-

drome (ARDS), a type of critical respiratory failure. The diagnosis of ARDS serves

as a model for many medical conditions where simple, inexpensive gold standard tests

are not routinely available and diagnostic uncertainty is common, even among medi-

cal experts. While the current proposal focuses on improving diagnosis of ARDS, the

proposed learning methods will generalize across various healthcare settings, allowing

for better characterization of patient health status and improving the overall quality

of patient care.

1.2.1 Acute Respiratory Distress Syndrome

ARDS is life-threatening lung injury characterized by poor oxygenation, diffuse

pulmonary infiltrates, and acuity of onset [4]. On the pathological level, this condition

3



is associated with widespread edema and buildup of fluids in the lung. As a result,

breathing becomes difficult and organs are deprived of the oxygen needed to function.

The clinical corollary is catastrophic and generally associated with poor outcomes,

with such risks increasing with age and severity of illness [5].

This condition manifests as an acute injury to the lung, commonly resulting from a

prior inciting event such as sepsis, trauma, and severe pulmonary infections [6]. About

50 percent of patients who develop ARDS do so within 24 hours of the inciting event;

at 72 hours, 85 percent of patients have clinically apparent ARDS [7]. The clinical

presentation of ARDS is characterized by dyspnea, profound hypoxemia, decreased

lung compliance, and diffuse bilateral infiltrates on chest radiography.

(a) (b)

Figure 1.1: Chest x-rays depicting unremarkable presentation and ARDS. The findings of
(a) shows a negative diagnosis while (b) is representative of an ARDS diagnosis.

Imaging findings are variable and depend upon the severity of ARDS. The initial

chest radiograph typically depicts diffuse, bilateral alveolar opacities with dependent

atelectasis [8]. Example chest x-ray (CXRs) depicting difference between a normal

presentation and a diagnosis of ARDS is provided in Figure 1.1. The radiographic

appearance of ARDS changes over time, with radiogarphic abnormalities following a

4



perceptible sequence to mirror the rapid histopathological changes. In the first 24

hours following insult, mild alveolar edema is typically present on the CXR [9]. As

ARDS progresses, widespread ground-glass opacification becomes more apparent on

CT scans. During the next 36 hours, if the condition continues to worsen, the clinical

course is characterized by further leakage of inflammatory fluid into the interstitium

and air spaces, with evident consolidation on the CXR [10].

ARDS is associated with a high mortality (40% unadjusted mortality, increasing

with condition severity [11]), affecting 200,000 patients in the United States and 3

million globally each year [12]. The primary management strategy is life-sustaining

supportive care and focuses on reducing shunt fraction, increasing oxygen delivery, de-

creasing oxygen consumption, and avoiding further injury. Evidence-based practices

associated with better outcomes for ARDS includes invasive mechanical ventilation

with the use of lower tidal volumes, conservative oxygen therapy, conservative fluid

management, lung protective ventilation, prone positioning, positive end-expiratory

pressure therapy, and usage of neuromuscular blocking agents until evidence of im-

provement is observed [13].

1.2.2 Current Approaches & Challenges for Diagnosis

The Berlin Definition of ARDS [4] requires several criteria to be present for clinical

diagnosis. First, the onset must be acute, defined as worsening respiratory symptoms

occurring within one week of known clinical insult (e.g., sepsis, pneumonia). Bilateral

opacities consistent with pulmonary edema (but not fully explained by pleural effu-

sions, lobar collapse, lung collapse, or pulmonary nodules) are required to be present

on chest imaging. Furthermore, the patient’s respiratory failure must not be fully ex-

plained by cardiac failure or fluid overload. Finally, a moderate to severe impairment

of oxygenation must be present as defined by the patient’s oxygen in arterial blood

(PaO2) to the fraction of the oxygen in the inspired air (FiO2). These patients have
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Table 1.1: The Berlin definition of ARDS.

Timing Within 1 week of a known clinical insult or new or worsening respiratory symptoms.
Chest Imaging Bilateral opacities - not fully explained by effusions, lobar/lung collapse, or nodules.
Origin of Edema Respiratory failure not fully explained by cardiac failure or fluid overload.

Need objective assessmenta to exclude hydrostatic edema if no risk factor present.
Oxygenation

Mild 200 mmHG < PaO2/FiO2 ≤ 300 mmHG with PEEP or CAP ≥ 5 cmH2O
Moderate 100 mmHG < PaO2/FiO2 ≤ 200 mmHG with PEEP ≥ 5 cmH2O
Severe PaO2/FiO2 ≤ 100 mmHG with PEET ≥ 5 cmH2O

CPAP = continuous positive airway pressure, FiO2 = fraction of inspired oxygen, PaO2 = partial
pressure of arterial oxygen, PEEP = positive end-expiratory pressure. ae.g., echocardiography.

a PaO2/FiO2 ratio of less than 300. These criteria are summarized in Table 1.1.

Patients may present with features specific to ARDS in addition to features of the

inciting event. However, the manifestations are so nonspecific that the diagnosis is

often missed until the disease progresses [6]. Current ARDS diagnostic criteria also

require chest x-ray results as an input, since they provide critical information about

whether ARDS is present [4]. However, chest x-rays may not always be available,

particularly at the early stages of care. Furthermore, clinicians may be equivocal or

even disagree about the diagnosis in some patients using chest x-ray [14], which may

result in incorrect labels being provided by an expert.

As ARDS evolves, massive streams of clinical data are collected from their bedside

monitoring devices, and recorded in electronic health records as part of routine care.

These data are asynchronous - with varying temporal frequency (from millisecond to

daily) - and stored in varying formats. Within 24−72 hours after initial presentation

of worsening respiratory symptoms from an inciting event, some patients progress

and develop ARDS. However, clinicians will fail to recognize ARDS if they are un-

able to synthesize the clinical data, obtain chest imaging, and correctly interpret the

findings to make an ARDS diagnosis. The ability of healthcare providers to process

the massive data-streams generated during the care of critically ill patients has been

specifically cited as a potential reason for ARDS miss-diagnosis [15, 11]. Delay in

recognition of this condition, followed by delay in the institution of appropriate treat-
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ment is associated with increased mortality [16]. Yet, only after a healthcare provider

correctly interprets a chest x-ray and synthesize this information with other clinical

data will they correctly diagnosis ARDS.

These challenges clinicians face in diagnosing ARDS is analogous to many other

clinical diagnoses across acute and chronic care settings. The key problem is the syn-

thesis of longitudinal clinical data to recognize a patient’s underlying illness trajectory

and the evolution of disease over time. Only with an appropriate level of suspicion

will a clinician then obtain the right confirmatory diagnostic test and correctly diag-

nose a patient’s condition. By building electronic clinical decision support systems

that models this diagnostic process, the accuracy and reliability of ARDS diagnosis

might be greatly enhanced, thereby ensuring patients receive timely treatments that

improve clinical outcomes.

1.2.3 Data Driven Clinical Decision Support

Although multiple evidence-based management strategies can be provided to pa-

tients with ARDS to improve their outcomes [17], recent evidence suggests that pa-

tients with ARDS are not recognized when they develop this syndrome, and conse-

quently, do not receive the evidence-based therapies proven to reduce mortality [11].

The inability of healthcare providers to process the massive streams of clinical data

generated while caring for these patients has been specifically cited as a potential

reason for poor ARDS recognition [18]. Algorithms that analyze electronic health

record (EHR) data and alert providers when patients develop signs of ARDS have

been proposed as a potential way to improve early ARDS detection [19, 20].

There have been multiple efforts to develop systems that detect ARDS automat-

ically using routinely collected clinical data. At present, simple rule-based electronic

algorithms have been described that analyze EHR data to screen patients for ARDS

[21, 22]. Current systems search the text of radiology reports for language consistent
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with ARDS to identify patients - for example, simple rule-based systems combining

arterial blood gas results with keywords searches of radiology reports. However, for

these systems to be successful, chest imaging must be obtained at the time when

ARDS develops and a radiologist must accurately interpret the radiology image in a

timely manner using language that could be interpreted as consistent with ARDS.

These dependencies are problematic for successful implementation in clinical practice.

Despite these concerns, if a chest x-ray is available, it is informative and should be

integrated into the predictive model’s training process - as such, there is considerable

potential for using data that is unavailable in live clinical environments but available

in training phase. As shown in Figure 1.2, and based on the Berlin Definition, a

chest radiograph is the main confirmatory data necessary for a definitive diagnosis

of ARDS. In addition, patients known to have early evidence of lung injury on chest

x-ray are at high risk for progression to ARDS. However, a chest radiograph may not

always be available in real-time, and even the need to perform a chest radiograph

may not be recognized at early stages. In addition, the frequency at which chest

radiographs are obtained is variable and not amendable to high density collection, in

contrast to physiologic monitoring data.

Figure 1.2: Timeline of ARDS development and clinical data for diagnosis. ECG = elec-
trocardiogram, PPG = photoplethysmography.

Therefore, clinical decision support systems should not rely on chest radiographic

data to determine a patient’s ARDS risk. However, chest radiographs still can provide

critical information about a patient’s current state of illness, and this information
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may be of great value during retrospective training of algorithms that can detect

high risk patients. New learning paradigms, specifically Learning Using Privileged

Information (LUPI), can leverage information only available during model training -

but not required during the testing/deployment phase - to improve the training and

predictive performance of machine learning algorithms.

Furthermore, there may also be many cases, particularly at the early stages of di-

agnosis, where even medical experts may have far less confidence in labeling patients

[8]. Computational models that can account for this uncertainty may be more robust

to the use of noisy or incomplete health data for medical diagnosis. When training

an algorithm to detect ARDS, rather than excluding patients with diagnostic uncer-

tainty, an alternative approach is to use this additional information about diagnostic

certainty during training, which could lead to more efficiently learning and better

generalize to new patient cases.

Learning with uncertainty is a machine learning paradigm that may be well suited

for the task of training an ARDS detection algorithm [23]. The standard machine-

learning classification task is to learn a function f(x) : X → Y , which maps input

training data x ∈ X to class y ∈ Y , where X represents a feature space of each

patient’s covariates and Y is the classification label. The model is trained on well-

defined input data of labeled training examples. However, in certain clinical applica-

tions, there may be uncertainty in the training labels themselves that could adversely

affect model training. In the example of ARDS, there may be challenging cases where

the physician has difficulty determining a patient’s diagnosis due to clinical ambigu-

ity. As a result, this uncertainty and subsequent mislabeling of training data could

adversely affect model training. However, experts may also be able to quantify their

diagnostic uncertainty in these cases. The works later described in this thesis examine

multiple approaches to incorporate a more realistic representation of uncertainty in

real-world applications, avoid discarding uncertain data, and balance the influence of
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such uncertain inputs in the learning algorithm.

Identifying relevant clinical information from massive data streams is a rapidly

advancing field of research in modern medicine. In many healthcare settings, there

is an abundance of rich, continuously measured data collected thorough all stages of

care. However, there is a lack of reliable systems to: 1) extract clinically relevant

features from these data, 2) integrate these features with clinical data to provide

quantitative predictions/recommendations about patient’s health status, thereby as-

sisting clinicians to improve the quality of decision making. Automated systems that

analyze routinely collected data to identify patients with ARDS could improve fidelity

with evidence based practice by alerting physicians when patients are not receiving

standard care [24]. These advances could support precision medicine by improving

rapid yet accurate diagnosis and making just-in-time treatment recommendations

that improve care quality and clinical outcomes.

1.3 Outline of Thesis

In this work, I developed and applied novel computational methodologies to in-

tegrate electronic health data for early detection of disease. This thesis represents

an interdisciplinary research effort encompassing the domains of machine learning,

computer vision, and healthcare.

In Chapter II, I present a practical approach to account for label uncertainty

for detection of ARDS. First, a heuristic approach for clinical experts to quan-

tify their diagnostic uncertainty is described. I then propose an implementation

of instance-weighted support vector machines to incorporate this information during

model training and provide validation/testing results on hold-out dataset from Michi-

gan Medicine. Methods to address using highly correlated longitudinal clinical data

and handle data imbalanced are also examined. Finally, a signal processing method

for quality assessment is presented - this forms the basis of extracting meaningful

10



features from physiological waveforms (e.g., photoplethysmogram).

Chapter III focuses on robust and reliable methods for chest x-ray interpretation.

I first discuss the development of an image processing technique for lung segmentation

of complex CXRs from hospitalized patients. A novel feature extraction method is

then proposed for capturing the notion of diffuse alveolar injury as a mathematical

concept. I integrate both of these algorithms and use the extracted features to train

multiple machine learning models to detect ARDS. Performance is evaluated with

cross-validation and testing on a hold-out test set.

Chapter IV introduces the idea of learning using privileged information, a para-

digm that allows for models to use additional data available during training but

may not be accessible during testing (i.e., deployment). Chapter V builds upon this

foundation and extends the existing algorithm’s capabilities to learn from partially

available data. I also integrate the previously developed methods of accounting for

label uncertainty and CXR interpretation into the privileged information paradigm

to train machine learning models for detection of ARDS. The final, comprehensive

model is then validated on EHR, CXR, and waveform data from 500 patients at

Michigan Medicine.

Chapter VI provides a conclusion to the research and work achieved in this the-

sis. A discussion is provided to highlight the importance of highly reliable models to

ensure healthcare providers that the algorithm will consistently perform as expected,

even in the most rigorous tasks. I also address the future direction of between ma-

chine learning and healthcare, with emphasis on advancing the discussion of using

AI in medical settings. Specifically, I provide insight on the U.S. Food and Drug

Administration’s perspective on what it will actually take to get these advancements

into practice to start making an impact towards better patient care.
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CHAPTER II

Accounting for Label Uncertainty

2.1 Introduction

When training a machine learning algorithm for a supervised-learning task in some

clinical applications, uncertainty in the correct labels of some patients may adversely

affect the performance of the algorithm. For example, even clinical experts may

have less confidence when assigning a medical diagnosis to some patients because of

ambiguity in the patient’s case or imperfect reliability of the diagnostic criteria. As a

result, some cases used in algorithm training may be mislabeled, adversely affecting

the algorithm’s performance. However, experts may also be able to quantify their

diagnostic uncertainty in these cases.

The works in this chapter examines a robust method implemented with Support

Vector Machines to account for such clinical diagnostic uncertainty when training an

algorithm to detect patients who develop ARDS. As previously mentioned in §1.2.1,

ARDS is a syndrome of the critically ill that is diagnosed using clinical criteria known

to be imperfect. Uncertainty in the diagnosis of ARDS is represented as a graded

weight of confidence associated with each training label. The work in this chapter also

involves development of a novel time-series sampling method to address the problem

of inter-correlation among the longitudinal clinical data from each patient used in

model training to limit overfitting. Preliminary results show that we can achieve
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meaningful improvement in the performance of algorithm to detect patients with

ARDS on a hold-out sample, when we compare our method that accounts for the

uncertainty of training labels with a conventional SVM algorithm.

Furthermore, this chapter also examines methods for signal quality assessment

used for obtaining features to train the machine learning models. Pulsatile physi-

ological signals are often noninvasive recordings of blood-related physiological mea-

surements used in health monitoring. Although these data can be highly informative,

the quality of these recordings is a major concern in healthcare [25, 26] as many

vital physiological measurements (e.g., respiratory rate, heart rate, and oxygen sat-

uration) are extracted from these signals [27]. The pulsatile nature and similarity

of patterns across these signals makes it possible to develop a general algorithm for

quality assessment.

The work in this chapter examines six propose morphological features that can be

used to determine the quality of the PPG signal and generate a signal quality index.

Unlike many similar studies, this approach uses machine learning and does not require

a separate signal, such as ECG, for reference. The experiments showed that a cost-

sensitive Support Vector Machine (SVM) outperformed other tested methods and

was robust to the unbalanced nature of the data. The covariates used as features are

provided in Appendix A and Table A.1.

2.2 Time Series Analysis of Health Data

The problem of using highly correlated longitudinal clinical data in model train-

ing is often ignored in applications of machine learning in biomedical domains. With

the increased use of electronic health records, clinical data are often available in a

longitudinal format, where specific metrics of health (e.g., vital signs, or laboratory

values) are measured intermittently over time. Analysis of such data requires addi-

tional consideration of the stochastic dependency and time-series nature of these data
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[28], and they should not be considered independent and identically distributed (i.i.d.)

[29], as the data is obviously not. By ignoring the inter-dependency of the time-series

data and the i.i.d assumption, training may result in a biased model that overfits to

the available data and yield unrealistically large values of specificity, sensitivity, and

AUROC [30, 31].

Several techniques, such as dynamic sampling within Markov chain Monte Carlo

methods [32] and Bayesian Changepoint Detection [33], are established for analyzing

the dependency structure of multivariate time series data. Another standard analytic

approach to building prediction models with longitudinal clinical data is using time-

to-event models (i.e. survival models) such as the cox-proportional hazards model

[34, 35]. Such models have been used in clinical research to estimate a patient’s in-

stantaneous hazard of an “absorbing” event such as death based on a patient’s current

clinical features. However, clinical diagnosis may be better suited as a classification

task, where the goal is to determine a patient’s status (e.g., ARDS or non-ARDS)

based on a set clinical features. Classifying patients at time points prior to their

development of a condition, time points after development, and tracking illness re-

covery, are important for informing treatment decisions—tasks less easily addressed

using time-to-event models. In addition, the proportional hazards assumption re-

quired of cox models may be overly constraining, while machine learning classifiers

like the support vector machine may be more robust.

Building on these techniques, similar methods exist to deal with correlated data in

machine learning - such as using a Markov switching process model [36], or partially

linear regression model [37] for longitudinal time-series data analysis or a correlation-

based fast filter method [38] for choosing among highly correlated features in the

model selection process. Beyond the scope of generalized machine learning problems,

additional methods to analyze time series properties exist in many domain-specific

applications, such as stock market prediction with support vector machine and case-
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based reasoning [39], or time-delay neural networks [40] and dynamic time warping

[41] for speech recognition. However, methods addressing stochastic dependency are

largely underdeveloped for applications on longitudinal clinical data.

2.2.1 Stochastic Dependencies in Longitudinal Data

Longitudinal patient data with repeated measurements over time have strong

inter-dependency between each instance for a given patient. Ignoring these depen-

dencies during training may lead to a biased estimator and a flawed learning model.

We address the problem by viewing patients’ time-series data as a mixing process

and consider the data structure as a stationary process with exponentially weakening

dependency, and sample instances in a strategic manner to minimize inter-correlation.

This approach provides a way to measure the decay in correlation [42] among data on

an individual patient over time, and informs a novel sampling strategy to minimize

the correlation among data sampled from the same patient for model training.

Inter-dependency among longitudinal data has been previously conceptualized as

a system under mixing conditions [36]. For a given stochastic process, “mixing”

indicates asymptotically independency – implying that for a stationary process X,

the dependency between X(t1) and X(t2) becomes negligible as |t1 − t2| increases

towards infinity [43]. This mixing structure, while assuming that the dependency

weakens in time, often exponentially, allows local dependency among the data points,

and as such matches the reality of the majority of time-series processed in medicine

as well as many other applications [44].

2.2.2 Thresholded Correlation Decay

In order to address the interdependency of the data, we assumed that each pa-

tient’s time-series data used to develop the ARDS detection algorithm was a mixing

stochastic process and we sampled data according to the quantitative assessment of
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the correlation decay among the data points. This approach limits the degree of

inter-correlation on the data points sampled within the same patient and allows a

more realistic assessment of model accuracy and reliability.

To implement this sampling strategy, we first calculated pairwise correlation dis-

tance matrices to represent dependency over the span of each patient’s time-series

data. Given an m-by-n matrix for each patient’s data, where m is the number of

times the patient was observed, and each observation is treated as 1-by-n row vectors,

the correlation distance between vectors Xa and Xb for a single pair of observations

is defined as:

dab = 1− (Xa − X̃a)(Xb − X̃b)
′√

(Xa − X̃a)(Xa − X̃a)′
√

(Xb − X̃b)(Xb − X̃b)′

where:

X̃a =
1

n

∑
j

Xaj and X̃b =
1

n

∑
j

Xbj

Using this correlation distance formula, an m-by-m correlation distance matrix

can be derived for all observations on the patient, taken pairwise.

The sampling procedure begins by examining the correlation distances between

Xt and 〈Xt〉 was generated, where Xt corresponds to an instance at the start of a

patient’s time-series data and 〈Xt〉 is the span of all subsequent time-points. Then a

sampling threshold η is set, which represents the point in which the inter-dependency

between data becomes more limited. We chose the threshold value of η to be 1√
2

,

based on literature that suggests values of approximately 1√
2

as an estimate of the

width of a correlation-type function [45]. We also explored other values of η to

understand their effect on the model building process. Figure 2.1 shows the effect

of different sampling thresholds on model performance, including the difference in

model accuracy in the training to testing set and AUROC of the testing set. With

the proposed sampling strategy, SVM performs very well on the training data at any
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threshold. This empirical analysis confirmed that optimal results are achieved when

the sampling threshold is approximately 0.7 and supports the literature suggested

value of 1√
2

.
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Figure 2.1: Effects of different sampling thresholds on prediction generalizability. Loss in
training accuracy is determined when predicting on a hold-out test set to assess the effects
of changing the sampling threshold and determining the value for optimal results.

During the data sampling process for each patient, Xt is selected as the start of a

patient’s time-series data. A pairwise correlation distance matrix is then calculated

between Xt and 〈Xt〉, and a data point Xt1 is sampled as the first instance with a

correlation distance of below η from 〈Xt〉. This selected pointXt1 and subsequent time

points beyond Xt1, 〈Xt1〉, are used to re-calculate a new pairwise correlation distance

matrix. A data point Xt2 is then selected in a similar manner as Xt1 from data points

in 〈Xt1〉 with a correlation distance below the threshold of η. The sampling method

is repeated until no further instances of 〈Xtn〉 are below the threshold from Xtn.
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For this specific dataset, we did not utilize the sampling strategy described above

for patient instances with the classification label of ARDS = 1. After inspection of

the data, we observed the correlation decay to behave differently according to the

label, with the data remained highly correlated over time when ARDS = 1 while

correlation decay occurring when ARDS = -1. Therefore, this sampling approach

was only performed on the data when ARDS = -1 while all instances were sampled

when ARDS = 1. This approach effectively samples all positive examples while

undersampling negative examples, which was also necessary given the significant class

imbalance of the two labels [46]. The sampling strategy is shown in pseudocode as

Algorithm 1 and the average decay of correlation from all patients is shown in Figure

2.11 with error bars representing standard error of the mean.

Algorithm 1: Pseudocode for our algorithm to sample time-series data and
reduce inter-dependency.

Input : All available time-series data 〈Xt〉 from each patient.
1 for each patient do
2 partition data into separate bins according to the classification label;
3 if size of either bins is ≤ 4 then
4 sample all available data;
5 else
6 1) select Xt at the start of the time-series data and sample this instance;
7 2) calculate the pairwise correlation distance from Xt to 〈Xt〉;
8 3) sample the first row in 〈Xt〉 with a correlation distance < η and set as the

new Xt;
9 repeat

10 1) set 〈Xt〉 as all points subsequent to Xt;
11 2) calculate the pairwise correlation distance matrix from Xt to 〈Xt〉;
12 3) sample the first row where the correlation distance is < η and set as

the new Xt;

13 until pairwise distance of Xt to 〈Xt〉 > η;

Output: Partial data {Xt, Xt1, Xt2, ..., Xtn} with reduced inter-correlation from
each patient.
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2.3 Signal Quality Assessment

Some of the features in the longitudinal data were obtained from pulse oximetry

- a noninvasive and low-cost physiological monitor that measures blood oxygen lev-

els. While the noninvasive nature of pulse oximetry is advantageous, the estimates

of oxygen saturation generated by these devices are prone to motion artifacts and

ambient noise, reducing the reliability of such estimations. Clinicians combat this

by assessing the quality of oxygen saturation estimation by visual inspection of the

photoplethysmograph (PPG), which represents changes in pulsatile blood volume and

is also generated by the pulse oximeter. The work described in this section investi-

gates methods to use this data by assessing the quality of the waveforms obtained.

Other clinical covariates, in addition to pulse oximetry, used for detection of ARDS

are provided in Appendix A and Table A.1

We propose six morphological features that can be used to determine the quality of

the PPG signal and generate a signal quality index. Unlike many similar studies, this

approach uses machine learning and does not require a separate signal, such as ECG,

for reference. Multiple algorithms were tested against 46 30-min PPG segments of

patients with cardiovascular and respiratory conditions, including atrial fibrillation,

hypoxia, acute heart failure, pneumonia, ARDS, and pulmonary embolism. These

signals were independently annotated for signal quality by two clinicians, with the

union of their annotations used as the ground-truth. Similar to any physiological

signal recorded in a clinical setting, the utilized dataset is also unbalanced in favor of

good quality segments.

We acquired data from bedside telemetry monitors of all patients. The PPG

recording equipment used in this study is Masimo LNCS DCI adult reusable sensor

with GE Medical PDM interface. The sampling frequency of the PPG signals in the

dataset is 60 Hz. For the current pulse oximetry quality study, 46 30-min segments of

PPG signal from different patients with various cardiovascular and res- piratory con-
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Figure 2.2: Segment of PPG signals designated as “bad” quality from clinicians. A signal
segment not annotated as bad quality is assumed to be of good quality.

ditions including atrial fibrillation, hypoxia, acute heart failure, pneumonia, ARDS,

and pulmonary embolism were extracted. 27 (out of 46) of these patients are male, the

average age of the patients is 57 years old, and 37 (out of 46) are Caucasian. Among

these 46 30-min segments, only 12 segments are almost entirely normal, 20 segments

contain long episodes of atrial fibrillation and sinus tachycardia, and the rest contain

sporadic short-term abnormalities (finger tapping, premature atrial contractions and

etc).

Two clinicians independently reviewed PPG signals for uniform, pulsatile changes

in the waveform, based on their experience interpreting such waveforms in clinical set-

tings. Waveforms without a clear pulsatile signal (regardless of arrhythmic episodes,

only based on morphology) that a clinician would not have trusted as accurate in a

clinical setting were annotated as poor quality segments. Certain pulsatile waveforms
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suspicious for artifact, e.g., finger tapping, were also annotated as poor quality. Figure

2.2 depicts a 24-second segment of PPG signal annotated for signal quality by both

clinicians. The union of their labels is used as ground-truth for the algorithm. This

cohort is primarily used for development and validation the proposed algorithms.

2.3.1 Preprocessing and Calibration

In the preprocessing phase, a raw PPG signal is first filtered using a band-pass

Butterworth filter with a 0.5–5 Hz pass band [47]. The next step is peak detection,

wherein potential peaks are only considered if the minimum temporal distance be-

tween two consecutive beats is 70% of the mean PPG beat period. Heart rate is

adaptively extracted from the power spectrum of the most recent 20 s of PPG signal,

as the frequency between 1 Hz and 3 Hz having maximum power spectrum determines

the heart rate.

Unlike many algorithms in the literature that use ECG a reference for beat de-

tection [47], the proposed algorithm is independent of any other signal. Moreover,

positive and negative peaks are detected independently, resulting in two heart rate

signals that should be approximately the same. As described later, the difference

between these two heart rate signals is used as a feature of the algorithm, for any

significant dissimilarity is due to abnormality in beat morphology. Figure 2.3 depicts

examples of raw and filter PPGs with detected positive and negative peaks.

2.3.2 Morphological Features

Six morphological signals/measurements are extracted that are used later to ex-

tract features:

1. Beat waveform with positive peak (the interval between two negative peaks).

2. Beat waveform with negative peak (the interval between two positive peaks).
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Figure 2.3: Preprocessed PPG signals with morphological measurements: (1) beat wave-
form with positive peak, (2) beat waveform with negative peak, (3) negative-to-negative
peak jump, (4) positive-to-positive peak jump, (5) positive and negative pulse duration,
and (6) backward and forward AC components.

3. Change in absolute amplitude between two consecutive negative peaks.

4. Change in absolute amplitude between two consecutive positive peaks.

5. Heart rates extracted from positive peaks and negative peaks (or pulse width).

6. Absolute positive to negative peak amplitude (e.g., the AC component).

These measurements are represented in Figure 2.3. The next step is to use the ex-

tracted signals/measurements to calculate morphological features. All of the proposed

features are based on some distance or dissimilarity from baseline values or templates.

One can think of these templates and baseline values as adaptive averages extracted

from normal beats/signals that have already been seen. For now, assume the algo-

rithm is provided with these adaptive averages and focus on the features; later it is

described how these averages can be calculated.

Let fs be the sampling frequency and suppose T = {tk | k ∈ N, tk = k 1
fs

}
is

the set of time samples in the PPG signal. Assume fPPG : T → V is the PPG
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signal amplitude function and U is the bounded set of these amplitude values, i.e.

V = {vk | k ∈ N, tk ∈ T , vk = fPPG (tk) ∈ R} . The features are then extracted as

follows:

2.3.2.1 Normalized pulse duration.

Suppose P+ and P− are respectively the set of positive and negative peak loca-

tions defined as:

P+ =
{
p+
i | i ∈ N, p+

i ∈ T : ∀t ∈
[
p−i−1, p

−
i

]
⊆ T ,

fPPG

(
p+
i

)
≥ fPPG(t)

}
P− =

{
p−i | i ∈ N, p−i ∈ T : ∀t ∈

[
p+
i−1, p

+
i

]
⊆ T ,

fPPG

(
p−i
)
≤ fPPG(t).

}
Then for each consecutive pair of positive peaks

(
p+
i−1, p

+
i

)
∈ (P+)

2
or negative

peaks
(
p−i−1, p

−
i

)
∈ (P−)

2
define the normalized pulse duration, ∇pi, as:

∇pi =
∇pi −∇p
∇p

where:

∇pi = pi − pi−1 =

 p+
i − p+

i−1 (pi−1, pi) ∈ (P+)
2

p−i − p−i−1 (pi−1, pi) ∈ (P−)
2

and ∇p is the baseline value (as defined in section 2.3.6) of pulse duration. An

example of ∇pi can be seen in Figure 2.3. Given that for every interval between two

consecutive positive (negative) peaks there is a negative (positive) peak, each value

of ∇pi is only associated with the interval between the first positive (negative) peak

to the next negative (positive) peak.
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2.3.2.2 Normalized negative-to-negative peak jump.

Define the set A − = fPPG (P−) =
{
P−i | i ∈ N, ∀p−i ∈P−, P−i = fPPG

(
p−i
)}

as

the set of negative peak amplitudes, and let ∇P− be the baseline value for negative-

to-negative peak jump and ∇P be the baseline value for amplitude change from

negative to positive (or positive to negative) peaks, i.e., the baseline value for the

AC component. For each pair of consecutive negative peaks
(
p−i−1, p

−
i

)
∈ (P−)

2
, the

normalized negative-to-negative peak jump, ∇P−i , is defined as:

∇P−i =
∇P−i −∇P−

∇P

where ∇P−i =
∣∣P−i − P−i−1

∣∣.
2.3.2.3 Normalized positive-to-positive peak jump.

Suppose A + = fPPG (P+) =
{
P+
i | i ∈ N,∀p+

i ∈P+, P+
i = fPPG

(
p+
i

)}
is the

set of positive peak amplitudes and ∇P+ is the baseline value for positive-to-positive

peak jump. For each pair of consecutive positive peaks
(
p+
i−1, p

+
i

)
∈ (P+)

2
, the

normalized positive-to-positive peak jump, ∇P+
i , is defined as:

∇P+
i =

∇P+
i −∇P+

∇P

where ∇P+
i =

∣∣P+
i − P+

i−1

∣∣.
2.3.2.4 Normalized beat amplitude jump.

Suppose P = P− ∪P+ is the set of positive and negative peak locations and

A = A − ∪A + is the set of peak amplitudes. Then for any consecutive positive and

negative peak (pi−1, pi) ∈P2, the normalized beat amplitude jump, ∇Pi, is defined:
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as

∇Pi =
∇Pi −∇P
∇P

where ∇Pi = |Pi − Pi−1|.

2.3.2.5 Dissimilarity measure of positive-peaked beats.

Due to nonlinear and non-stationary changes in beat morphology, a nonlinear

time-based stretching or compression of beats is necessary to perform effective tem-

plate matching [48]. As mentioned earlier in this section, beat waveforms with positive

peak (interval between two negative peaks, see Figure 2.3) are extracted and normal-

ized into the range [0,1]. Then, dynamic time warping (DTW) [48] is used to align

the PPG with a template as constructed in §2.3.6. Finally, KL divergence [49] is used

to measure the difference between the aligned PPG beat and the template, which is

formulated as

D
(
T+‖B+

)
=

m∑
i=1

t+i log
t+i
b+
i

where B+ =
{
b+
k | 1 ≤ k ≤ m

}
and T+ =

{
t+k | 1 ≤ k ≤ m

}
are two aligned time

series of beats and template with positive peak, both of which are of length m and

normalized such that
∑m

i=1 b
+
i =

∑m
i=1 t

+
i = 1. In the proposed algorithm, D (T+‖B+)

is used as the dissimilarity measure of positive-peaked beats feature.

2.3.2.6 Dissimilarity measure of negative-peaked beats.

Applying the same procedure as described above, a dissimilarity measure of neg-

ative peaked beats, i.e. D (T−‖B−) , is calculated in which B− =
{
b−k | 1 ≤ k ≤ m

}
and T− =

{
t−k | 1 ≤ k ≤ m

}
are two time series of beat and template with negative

peak, both of which are of length k and normalized such that
∑k

i=1 b
−
i =

∑k
i=1 t

−
i = 1.
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2.3.3 Templates and Baseline Values

As described in §2.3.2, the proposed features D (T−‖B−) and D (T−‖B−) require

templates, while the features ∇pi,∇P−i ,∇P+
i , and ∇Pi need baseline values. A dis-

tinct component of the proposed algorithm is the individually generated template and

value for each waveform. This section describes how to generate these templates.

2.3.3.1 Initial template and baseline value generation.

The proposed algorithm uses the first T seconds of each waveform in the calibra-

tion phase, during which preprocessing and then peak detection is performed on the

segment. Based on this segment and the peak locations, the baseline value ∇p is the

averaged pulse duration, ∇P− the average negative-to-negative peak jumps, ∇P+ the

average positive-to-positive peak jumps, and ∇P the average amplitude change from

negative to positive peaks. In the results presented in this paper, T = 20 seconds is

chosen.

Formally, suppose P+
0−20 =

{
p+
i | i ∈ N, p+

i ∈ T , 0 < p+
i < 20

}
and P−

0−20 ={
p−i | i ∈ N, p−i ∈ T , 0 < p−i < 20

}
are the sets of positive and negative peak locations

in the [0-20] time interval, and assume there are m positive and m negative peaks in

the 20 s segment, i.e.,
∣∣P+

0−20

∣∣ =
∣∣P−

0−20

∣∣ = m (the procedure is the same if the num-

ber of positive and negative peaks are not equal). Similarly, A +
0−20 = fPPG

(
P+

0−20

)
and A −

0−20 = fPPG

(
P−

0−20

)
. Also P0−20 = P−

0−20∪P+
0−20 and A0−20 = A −

0−20∪A +
0−20

are the sets of all (positive and negative) peaks and their amplitudes in the 20 -second

segment. Then:

∇P+ =
1

m− 1

m∑
i=2

∣∣fPPG

(
p+
i

)
− fPPG

(
p+
i−1

)∣∣
∇P− =

1

m− 1

m∑
i=2

∣∣fPPG

(
p−i
)
− fPPG

(
p−i−1

)∣∣
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∇P =
1

2m− 1

2m∑
i=2

| fPPG (pi)− fPPG (pi−1)

are the initial baseline values that will be used in the proposed algorithm. The

value of ∇p is calculated based on the power spectrum of the 20 s segment, as the

frequency between 1 and 3 Hz that has the highest power is the inverse of the heart

rate frequency [27], i.e., 1
∇p

In order to extract an initial template with positive peak T+, first the m − 1

positive-peaked pulses are sorted with respect to their pulse width. If the template

pulse duration is chosen to be the mode of pulse duration (the most frequent pulse

duration) in the 20-second segment, then the template T+ can be calculated as the

average of beats that have the same temporal duration as the mode of pulse duration.

If the mode of pulse duration is not unique, the median of pulse duration (the middle

value for pulse duration) in the 20 -second segment is chosen, and then the beats

that have the width closest to the median of pulse duration will be aligned (e.g., by

using DTW) or interpolated and then averaged to achieve the template T 4. The same

procedure is applied to negativepeaked beats in order to extract the template with

negative peak T−.

2.3.3.2 Updating template and baseline values.

As mentioned above, the first T seconds of each waveform is used as the calibration

phase to extract initial individual-specific templates and baseline values, with T = 20

seconds chosen for this paper. Since it’s possible that the first segment is noisy, the

initial baseline values and templates may be invalid. Thus, two criteria for accepting

a segment as valid are imposed:

1. The number of positive or negative peaks should be more than 0.95 × T ; i.e.,

on average a heartbeat should occur at least every 0.95 s.

2. At least one third of pulse widths (pulse durations) are within 5% of pulse
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duration mode/median (as mentioned in the previous section, if the mode of

pulse duration is not unique, the median of pulse duration is chosen for template

width).

If both of these conditions are satisfied, the first T seconds are accepted for initial

baseline values extraction, otherwise the T -second window is iteratively slid for 1 s

until both conditions are satisfied (e.g., intervals of [0,20] [1,21], etc.).

Due to the non-stationary nature of the source, after the initial calculation of

the baseline values and templates, an adaptive algorithm for updating these baseline

values and templates is necessary, particularly if the PPG signal has long duration.

As such, after calculating the features of each segment using the baseline values

and templates of the previous segment, these baseline values and templates are then

updated to be used in the subsequent segment. Similarly, an interval is accepted for

updating the baseline values and templates if it also satisfies the two aforementioned

criteria.

2.3.4 A Standard Algorithm

Through feature extraction, each sample is represented as x ∈ R6

x =



∇p

∇P−

∇P+

∇P

D (T+‖B+)

D (T−‖B−)


where ∇p,∇p−,∇p+,∇P ,D (T+‖B+) and D (T−‖B−) are the features described in

§2.3.1. Using a standard algorithm based on decision rules, these values can be com-

pared with thresholds for classification purposes. The hypothetical thresholds for a
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simplistic algorithm can be achieved experimentally using training data. After choos-

ing the thresholds, the six features can be used to classify each beat, more specifically

each interval between any two peaks (positive to negative peaks or negative to posi-

tive peaks), into a good or poor quality interval.

In this case, a standard algorithm assigns the “poor quality” label to each interval

between two consecutive peaks if any of the six features are greater than the threshold.

Formally speaking, for an interval set Ppi
pi−1

= [pi−1, pi] between any two consecutive

peaks (note that I pi
pi−1
⊆ T

)
define the feature function ffeature : T ×U → R6 as a

function from the set of time samples and bounded set of PPG values to the feature

space. The set of poor quality intervals is then:

T Poor =
{
tj | ∃F pi

pi−1
⊆ T s.t.tj ∈ F pi

pi−1
,

ffeature

(
F pi
pi−1

, fPPG

(
F pi
pi−1

))
≮ τ

}
,

where τ = [τ1, . . . , τ6] ∈ R6 is a vector of thresholds on the six features, and the

inequality is performed component-wise. Obviously the set of good quality signal is

the complement of T Poor , i.e. T Good =
(
T Poor

)C
= T −T Poor . This algorithm is

used later for threshold optimization.

2.3.5 Interval Classification and Signal Quality Index

One of the primary reasons for measuring PPG quality and reliability is that

other important signals such as oxygen saturation utilize PPG in their formation.

In general, oxygen saturation values are averaged over a moving window of PPG

signal. In the ARDS dataset, the pulse oximetry hardware (PPG recording device)

calculates every value of oxygen saturation based on the last 8 s of PPG signal.

Consequently, having isolated poor quality beats/intervals is insufficient to label a
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PPG segment as “poor quality.” Thus, for an interval Ttk of length 8 s such that

Ttk = {ti | ti ∈ T , tk − 8 < ti ≤ tk}, the signal quality index (SQI) for that window

is defined as:

SQI (Ttk) = 1−
∣∣Ttk ∩T Poor

∣∣
|Ttk |

=

∣∣T Good
∣∣

|Ttk |
,

which is always a number between zero and one. As discussed in section 3.4, the

SQI for any given interval will be compared with a pre-determined rate (threshold)

for classification.

2.3.6 Learning Models and Decision Rules

In this paper, two different training/testing frameworks are considered:

1. A standard learning method in which a single model is trained on 6-dimensional

samples (Figure 2.4a).

2. Six similar models that are trained on each sample feature separately, followed

by a decision rule (Figure 2.4b).
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Figure 2.4: Training/testing frameworks used for the initial study: (a) a framework for
training/testing model on 6-dimensional samples (b) a framework for training/ testing
six similar models on each 1-dimensional sample feature followed by decision rule, which
basically is a logical “or” operation on the six outcomes.

The principle reason for considering the second model is the nature of the proposed

normalized features. For a normal PPG beat all the features are expected to be close

to zero; while for a poor quality interval, the absolute value of at least one of these

features is expected to be greater than a threshold.

To support this argument, Figure 2.5 represents the cumulative distribution func-

tion (CDF) of the absolute value of the normalized negative-to-negative peak jump

feature
∣∣∣∇P−i ∣∣∣ for both classes. This figure shows that the larger the value of

∣∣∣∇P−i ∣∣∣,
the worse the quality, and this is valid for all the features. Thus, in the second frame-

work, the decision rule is simply a logical “or” operation on the outcomes of each

trained model on individual features.
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Figure 2.5: Cumulative distribution function of ∇P−i , the normalized negative-to-negative
peak jump.

2.4 Accounting for Label Uncertainty

After developing methods to process the time-series data and performing signal

quality assessment, the next step in developing the proposed machine learning model

is to account for uncertainty of the classification labels. Data in numerous applications

of machine learning may have uncertainty in their training labels or the input data

(i.e., features) might be corrupted by uniform/non-uniform noise distribution [50].

For example, in medical applications, precisely determining a prognosis might be

difficult due to erroneous lab results or a shirt in baseline perspective as patients may

vary in describing their symptoms. As a result, some cases used in algorithm training

may be mislabeled, adversely affecting the algorithm’s performance.

The diagnosis of ARDS is made based on clinical criteria, but even clinical experts

32



may disagree or have uncertainty about the diagnosis in some patients. However,

experts may also be able to quantify their diagnostic uncertainty in these cases. As

previously mentioned, label uncertainty can be incorporated as weights within a SVM

model. These weights determine the relative penalty of misclassification of training

set points. Information about the uncertainty level of an ARDS diagnostic label

provided by clinical experts can also prove useful when training a system for ARDS

detection. We present a robust method implemented with support vector machines

(SVM) to account for such clinical diagnostic uncertainty when training an algorithm

to detect patients who develop ARDS.

A group of expert clinicians reviewed all patients for the development of ARDS

based on the Berlin definition [4]. As ARDS is a clinical diagnosis without a gold

standard, we were unable to “benchmark” expert performance. However, because

the inter-rater reliability of ARDS diagnosis is known to be poor in patients with

acute hypoxic respiratory failure [51], these patients were reviewed independently by

3 experts, and their ratings were averaged. In addition to determining whether the

diagnosis was present (yes or no) and record the time of ARDS onset among positive

cases, the experts were also asked to provide their confidence level in the diagnosis

label (high, moderate, low, equivocal). This 4-point confidence scale was carefully

tested on the experts prior to use in this study, and felt to reasonably capture the range

of uncertain that they might have when reviewing patient cases. Their diagnosis label

and confidence level could then be converted to a 1 − 8 scale, as depicted in Figure

2.6, where 1 = no ARDS with high confidence, 8 = ARDS with high confidence.
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(a)

(b)

Figure 2.6: Accounting for label uncertainty and label generation. (a) Multiple expert
clinicians were asked to independently review patients’ data and determine if any individuals
had ARDS. Clinicians were also rated their confidence of the diagnosis as equivocal, slightly
confident, moderately confident, or highly confident. (b) The diagnosis and confidence were
converted to a scale between 1-8. The final label was generated from aggregating these
reviews to ensure correctness and consistency of the diagnosis. A label of -1 (non-ARDS)
was assigned if the averaged review was below or equal to 4.5, and a label of 1 (ARDS) was
assigned if the averaged review was above 4.5

2.4.1 Support Vector Machines

A support vector machine (SVM) is a supervised machine learning algorithm based

on the idea of finding a hyperplane that best divides a dataset into two classes [52].
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For a binary classification task, the hyperplane can be represented as a line that

linearly separates the two classes in a set of data. The SVM uses a subset of the

training data as support vectors to determine the optimal decision boundary, which

can be further adjusted to control the acceptable rate of miss-classification. SVMs

generally tend to work well on smaller datasets due to efficient usage of a subset of

training data as support vectors - reducing the tendency of larger machine learning

models to overfit. Furthermore, kernel functions can be used to transform the data

input into higher dimensional planes for better separability.

For this study, we train a linear SVM model to discriminate between an ARDS

and non-ARDS diagnosis. Given a set of training data:

(x1, y1) , . . . , (xn, yn) xi ∈ X, yi ∈ {−1, 1}

SVM first maps the training sample vector x ∈ X into a vector (space) z ∈ Z.

It then constructs the optimal separating hyperplane by learning the decision rule

f(z) = w · z + b where w and b are the hyperplane parameters and the solution of

minw,b,ξ
1
2
‖w‖2

2 + C
∑n

i=1 ξi

s.t. ∀1 ≤ i ≤ n, yi (w · zi + b) ≥ 1− ξi

∀1 ≤ i ≤ n, ξi ≥ 0

(2.1)

where C > 0 is a hyperparameter and ξi is the slack variable. C is a regularization

parameter to influence the slack variable, which allow certain constraints to be vio-

lated (i.e., perfect linear separability). C essentially controls the level of acceptability

for misclassifying each training example. For large values of C, the optimization will

choose a smaller-margin hyperplane if that hyperplane does a better job of getting all

the training points classified correctly. Conversely, a very small value of C will cause

the optimizer to look for a larger-margin separating hyperplane, even if that hyper-
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plane misclassifies more points. Grid search [53] was used to determine the optimal

value of C over ∈ {0.001, 0.01, 0.1, 1, 10, 100, 1000}.

Using Lagrangian multipliers, the dual optimization problem of 2.1 is:

max
α

D(α) =
n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyjKi,j

s.t.
n∑
i=1

yiαi = 0

∀1 ≤ i ≤ n, 0 ≤ αi ≤ C

whereKi,j , K (zi, zj) is the kernel in the decision space with the decision function

f(z) = w · z + b =
n∑
i=1

yiαiK (zi, z) + b (2.2)

2.4.2 Incorporating Label Uncertainty

To investigate learning with uncertain data, we briefly explore the changes in the

learning formulation when moving from the standard machine learning to learning

with uncertainty. Almost all existing machine learning paradigms use the following

learning scheme: given a set of training examples (xi, yi) , i = 1, . . . , N, ) in which

xi ∈ X form the input attributes/features and yi ∈ {−1, 1} is the output class, find a

function fγ(x) : X → {−1, 1} (where γ ∈ Λ represents the set of parameters used in

the function) to learn / generalize a mapping between the input and the output. In

the training phase, the parameters γ that minimizes a cost function, defined over the

training examples, identifies the solution fγ(x). Such a cost function often considers

both the magnitude of the estimation error on the training data and the complexity

of the model (to avoid overfitting).

In learning with uncertainty, the training examples while some examples have

certain labels, i.e. (xi, yi) , i = 1, . . . , N1, the rest have some level of uncertainty on

their labels, i.e. (xi, yi, li) , i = N1, . . . N, where 0 < li ≤ 1 is the level of confidenc
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(i.e., lack of uncertainty) over sample i. While the exact formulation of learning with

uncertainty might vary, the SVM-based formulation might be the most insightful

approach. Intuitively speaking, note that in the standa SVM the main objective is to

find parameters w and b in a hyperplane wTx+ b that separates positive and negative

examples while keeping the value of w small (controlling the complexity of model).

In the formulation of SVM with uncertainty, as described in [35], the following

optimization problem is solved:

We implement the following formulation of SVM to account for label uncertainty

in the classification model in the following manner:

min
w,ξ

1

2
‖ w ‖2 + C

N∑
i=1

ziξi

subject to:


yi(w

Txi + b) ≥ 1− ξi, i = 1, ..., N

ξi ≥ 0

(2.3)

where:

zi = (|li − α| − β) ∗ γ + δ

This formulation incorporates the slack variable ξi to permit some misclassifi-

cation and also includes the penalty parameter C to establish soft-margin decision

boundaries because ARDS and non-ARDS examples are not linearly separable. In

this implementation, support vectors that are based on patients’ data with high la-

bel confidence are given more weight and influence in the SVM decision boundary.

Uncertainty in the label (li), as shown in Figure 2.6, is incorporated within (zi) to

directly influence C. The formula for zi combines two linear transformations for un-

certainty in the label annotation (li) and generate a scalable weight to that specific

observation.
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In this application, we set α = 4.5, β = 3.0, γ = 20, and δ = 90, which scales li,

with a range of 1-8, into the weighting zi, with a range between 40-100 in increments

of 20. As a result, labels with high confidence (eg. li = 1 or 8) receive the weight

zi = 100, while equivocal labels (eg. li = 4 or 5) receive the weight zi = 40. zi is

then normalized to 1. This formula for zi adjusts sample weighting based on li and

rescales the C parameter as Ci for each observation in a patient’s data structure so

that the classifier puts more emphasis on points with high confidence.

2.5 Application

In this study, the primary learning algorithms we compare are linear SVM with

and without label uncertainty. 5-fold cross validation was performed on the training

data to find the optimal value of the hyper-parameter C using grid search [53] over

C ∈ {0.001, 0.01, 0.1, 1, 10, 100, 1000}. We then re-trained the model on the entire

training set using this optimal C parameter. This updated model was then used

to classify patients in the hold-out dataset using all their data (e.g., no sampling

was performed on the holdout data). The model predictions for each patient in the

holdout sample (e.g., ARDS = 1 or -1) are then compared against the label assigned

by the majority of experts reviewing the patient. We also compare the performance

of our proposed SVM method with Logistic Regression and Random Forest (using

the same subsampled training/testing bins and 5-fold cross validation partitions) to

determine if the achieved results are equivalent or superior to other state-of-the-art

methods.

A simplified protocol of this analysis, including data pre-processing, sampling from

the training data to limit inter-correlation, hyper-parameter optimization with 5-fold

cross-validation, and hold-out testing is shown in the flowchart of Figure 2.7.

To ensure that our proposed sampling strategy and threshold still maintains for

SVM with label uncertainty, we repeat the previous analysis to show the effect of
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Figure 2.7: Flowchart of the study’s experiment design, with 5-fold cross-validation and
hyper-parameter optimization using grid search. All samples from the same patient are
kept exclusively in either the training or testing set. Hyper-parameter optimization was
implemented for separately each model (with and without label uncertainty weight) to give
an accurate assessment of performance.
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different sampling thresholds on prediction generalizability. Figure 2.8 confirms that

optimal results are achieved when the sampling threshold is approximately 0.7, which

supports the previous analysis and the literature suggested value of 1√
2

.
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Figure 2.8: Effects of different sampling thresholds on prediction generalizability. We con-
firm that the sampling strategy and threshold effects observed in Figure 2 is maintained
when the SVM model is formulated to account for label uncertainty.

2.5.1 Data

The patient cohort included consecutive adult patients hospitalized in January

of 2016 with moderate hypoxia, defined as requiring more than 3 L of supplemental

oxygen by nasal cannula for at least 2 hours. The cohort was enriched with additional

patients who developed acute hypoxic respiratory failure (PaO2/FiO2 ratio of < 300

mm Hg while receiving invasive mechanical ventilation) in February and March of

2016 who are higher risk for developing ARDS.

A total of 401 patient cases were available from the study cohort. Within this
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dataset, 48 were positive for ARDS and the remaining 353 were negative. Two-thirds

of the patients were used in the model training process while the remaining one-third

were kept as a hold-out set for testing. All samples from the same patients are kept

exclusively in either the training or testing set (not both) to avoid bias in the data.

In patients who developed ARDS, data collected before the time of onset were

labeled as “no ARDS,” while data collected after the time of onset were labeled as

“ARDS.” In total, 48 of the patients in the cohort were diagnosed with ARDS with

a confidence of 5 or higher after expert review.

Data was first normalized to prevent features with large dynamic ranges from

dominating the separating hyperplane. Then the training data was sampled using

the proposed sampling method described previously to minimize correlation between

data points on the same patient. Prior to sampling, the training set contained 13,722

total instances, 736 of which were positive. After sampling, there were 1,893 total

instances, 736 of which were positive.

Time-stamped vital signs and laboratory values were extracted from each patient’s

electronic health record (EHR) from the first six days of hospitalization and included

as clinical features (covariates) to train the ARDS algorithm. Only routinely acquired

vital signs and laboratory values with potential for association with ARDS were

included, based on guidance from clinical experts. The covariates used as features

are provided in Appendix A and Table A.1. This approach minimized the total

number of features in the model to 24 variables commonly used in clinical practice

and statistical feature selection techniques were not utilized prior to model training.

Patients were observed every 2 hours with previous data carried forward until a new

value was recorded. If clinical data was missing on a patient because the vital sign

or laboratory tests was not performed, it was imputed as a normal value. This is

standard approach when developing clinical predictions models and assumes data

is not collected because the treating clinician had a low suspicion that it would be
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abnormal [54, 55].

EHR data also include records such as chief complaint, medications, comorbidi-

ties, age, gender, injury scores, and laboratory results. Most of these attributes are

measured at relatively fixed time intervals that are much less frequent than the rate

at which other physiological signals are recorded. In the database we will use for this

project, almost all these records are available for all patients.

2.5.2 Results

Signal quality assessment for beat-scale and fixed interval-scale analysis are pre-

sented in Table 2.1, Table 2.2, and Figure 2.9. The decision tree model and threshold

optimization both used the second framework in their learning process, while the en-

semble of decision trees and SVM used the first framework. The ensemble of decision

trees and threshold optimization are the two algorithms that used under-sampling.

Both of these methods were also significantly faster to train than those which used

the first framework. In comparing model performance on the training and testing

datasets, the tree based algorithms overfitted the training data, while SVM and the

threshold optimization algorithm have almost the same performance on both datasets.
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Table 2.1: Performance comparison of decision tree, the ensemble of decision trees, SVM,
and threshold optimization in beat-scale analysis.

DT EDT SVM TO

Undersampling No Yes No Yes
Framework Two One One Two
Running time (sec) 5 450 375 20

Train
Accuracy 96.92 100 85.37 80.02
Sensitivity 99.92 100 86.05 82.82
Specificity 96.70 100 85.31 80.67

Test
Accuracy 75.02 88.85 83.02 80.66
Sensitivity 73.01 70.03 85.45 82.38
Specificity 75.14 90.04 82.82 80.50

DT = decision trees, EDT = ensemble of decision trees, SVM = support vector machines,
TO = threshold optimization. The running time is the average time needed to train the algo-
rithms on 31 30-min PPG signals and test on 15 30-min PPG signals.

Table 2.2: Comparison of decision tree, the ensemble of decision trees, SVM, and threshold
optimization in interval-scale analysis.

DT EDT SVM TO

Sensitivity 88.96 91.56 93.25 90.05
Specificity 86.30 91.97 91.90 89.45
Corresponding Rate 0.45 0.40 0.70 0.65

DT = decision trees, EDT = ensemble of decision trees, SVM = support vector machines,
TO = threshold optimization. Please note that the rate in the table corresponds to the best
performance.
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Figure 2.9: ROC curves of the methods used for signal quality assessment.

The best results achieved with SVM yielded a sensitivity of 93.25% and specificity

of 91.90% for a rate of 0.7. Figure 2.10 depicts a visual example of the SVM model

used for classifying PPG signal quality on the three intervals. In comparison, the

best performance of the decision tree model for fixed interval-scale analysis yields a

sensitivity of 88.96 and specificity of 86.30 for a rate of 0.45. The best result achieved

with an ensemble of decision trees is sensitivity of 91.56 and specificity of 91.97 with

rate of 0.40.

In the first interval (0–8 s) both the algorithm and annotation have poor quality

segments in beat-scale, which is less than 5.6 (8 × 0.7) seconds; thus, this interval is

not considered poor quality by both the algorithm and the annotation. The second

interval (8–16 s) had more than 5.6 s of poor quality beat-scale segments using the
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algorithm, but slightly less than 5.6 s of poor quality beat-scale segments using the

annotation, therefore this interval is labeled as poor quality using the algorithm, but

not using the annotation. The last interval (16–24 s) has more than 5.6 s poor quality

beat-scale segments in both algorithm and annotation.

Figure 2.10: Signal quality assessment on fixed interval-scale segments. This example uses
an SVM model with rate (threshold on interval SQI) 0.7.

In addition to Table 2.1, the effect of uniform and non-uniform undersampling has

been tested on SVM and decision tree: non-uniform undersampling used in threshold

optimization reduces the performance of both algorithms, while uniform undersam-

pling has no significant effect on SVM (in its cost-sensitive SVM formulation) and

a negative effect on decision tree performance. Based on Figure 2.9 and Table 2.2,

SVM and the ensembles of decision trees outperform the other two methods in the

fixed interval-scale analysis. Overall, the cost-sensitive SVM with Gaussian kernel

outperform the rest, while the proposed threshold optimization is significantly faster.

The proposed thresholded correlation decay method (§2.2.2) is applied to the
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dataset used for model training. The average correlation decay for each patient’s

data is shown in Figure 2.11. On average, the correlation between Xt and 〈Xt〉 drops

below η at a distance in time of around 22 hours. Figure 2.12 shows the decay of

correlation to be different when the data was analyzed separately according to the

classification label: decay of correlation is observed when ARDS = -1 but not observed

when ARDS = 1.
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Figure 2.11: Average decay of correlation from all patients. Error bars represent standard
error of the mean and each point represents correlation in relation to time (hours) from the
initial observation sampled on each patient.
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Figure 2.12: Decay of correlation from all patients stratified by classification label. (A)
depicts the average correlation decay during negative diagnosis of ARDS and (B) corre-
sponds to the positive diagnosis of ARDS. Error bars represent standard error of the mean
and each point represents correlation in relation to time (hours) from the initial observation
sampled on each patient.

47



Therefore, the sampling under η approach was performed on the data when ARDS

= -1, which reduce the number of negative examples for model training. Due to the

lower number examples, and lack of correlation decay when ARDS = 1, sampling was

not performed as it would have further exacerbated the class imbalance.

We benchmarked our proposed SVM method utilizing uncertainty in the label to

SVM with a misclassification cost function proportional to the weight of imbalance

in the datasets and other standard classification models, such as Random Forest and

Logistic Regression, in Table 2.3. We also compared our sampling strategy to an

alternative method that utilizes random sampling on negative examples to yield a

2:1 negative to positive ratio from each patient to provide a more balanced dataset -

the results for this approach is provided in Table 2.3. In addition, we also examined

performance without sampling (using all available data).

Table 2.3: Performance of logistic regression, random forrest, SVM, SVM with a class-
weighted cost function, and SVM with label uncertainty.

Sampling Based on the
Proposed Correlation Decay Method

Random Sampling for
Balanced (2:1) Training Data

No Sampling

Accuracy AUROC
Specificity at

95% Sensitivity
Specificity at

90% Sensitivity
Accuracy AUROC Accuracy AUROC

Logistic Regression 72.63 72.65 30.07 42.67 69.82 69.79 66.21 64.54
Random Forrest 74.34 74.88 33.92 47.51 71.11 72.54 68.73 69.03
Support Vector Machines 74.92 75.42 37.97 51.14 72.53 73.61 69.20 71.52
SVM w/ Class Weight 78.04 81.13 45.71 59.18 74.78 77.03 70.94 71.22
SVM w/ Label Uncertainty 81.57 85.48 52.85 64.50 76.98 79.89 71.88 74.31

When the SVM was trained to account for uncertainty in the label, we observed

over 10% improvement of AUROC (0.8548 versus 0.7542) compared to the conven-

tional SVM learning algorithm (Figure 2.13) when judged in the holdout sample.

When the algorithms were benchmarked at a sensitivity of 95% and 90% (to ensure

few ARDS cases are missed), the SVM model that accounted for label uncertainty

also had improved specificity and outperforms the standard model. These sensitivity

levels were set to high levels because it is important clinically for a model to have a

high sensitivity and not miss cases of ARDS.
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Figure 2.13: ROC curves comparing SVM with and without label uncertainty. Performance
metrics are reported in Table 2.3.
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2.6 Discussion

We present a robust machine learning algorithm to detect Acute Respiratory Dis-

tress Syndrome among hospitalized patients using routinely collected electronic health

record data. We report an increase of approximately 10% in AUROC in a hold-out

data set when label uncertainty is incorporated in the learning process as a weight

on classification penalty, when compared to a conventional SVM learning model.

Our proposed SVM model was trained by incorporating a clinical expert’s uncer-

tainty in each patient’s classification label as a constraining weight of confidence on

the SVM’s box constraint. Rather than treating label uncertainty as stochastic noise,

this approach leverages information about the degree of uncertainty of each label, as

provided by clinical experts, to improve the efficiency of model training. Our im-

plementation of label weighting (zi) directly influences the C parameter and rescales

the cost of misclassification according to uncertainty associated with each label (li).

Support vectors that are based on the data from patients with high label confidence

are given more influence in the SVM decision boundary while instances with more

uncertainty are assigned less weight when determining the SVM hyperplane. In future

works, alternative mappings between the label uncertainty (li) provided by clinical

experts and label weighting (zi) used to find the SVM decision boundary should also

be explored.

In addition, we performed a novel time-series sampling method, guided by the

theory of mixing in stochastic processes, to limit the amount of correlation among

data points on the same patient over time. Due to the time-series structure of a

patient’s longitudinal health data, each instance is not independent from another.

We explored whether the data could be represented under mixing conditions and

implemented a novel sampling strategy for minimizing inter-correlation among data

points in the training data. For the data to be represented under mixing conditions,

the correlation between data on the same patient should decay over time such that
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CF,G(n) → 0 as n → ∞. A plot of the correlation function of the data in Figure 6

supported this assumption overall, but not for the data with a classification label of

ARDS = 1.

It may not be appropriate to assume all data types can be represented under

mixing conditions, therefore, plotting the correlation function of the data is essential

prior to utilizing the sampling algorithm. When patients were diagnosed with ARDS,

we found their data to have very high inter-correlation with little observable decay

– indicating a strong mixing process. Therefore, the proposed sampling method

would have been unsuccessful in reducing inter-correlation and would yield very little

data instances available for training. This finding made sense when interpreted from

a clinical point of view. When a patient is admitted to the emergency room for

pulmonary injury (eg. sepsis) and has not yet reached the critical stage of ARDS,

their condition rapidly changes as a result of clinical intervention or decline of health,

resulting in less stability and inter-correlation in the recorded data. If the patient

develops ARDS, less rapid change in the data would be observed since ARDS is

recognized as the “final pathway” of pulmonary damage [56].

Since there were significantly more negative than positive examples, we decided

against using the sampling strategy when ARDS = 1, which ensured a more balanced

number of positive and negative examples in the training data. As minimal correla-

tion decay was observed among the data when ARDS = 1, implementing the sampling

strategy for those data instances would have led to further imbalance among posi-

tive and negative examples, and limited the model’s ability to learn a good decision

boundary. Our sampling approach utilized a pairwise correlation distance matrix to

quantify dependency within the data structure. There are many ways to quantify the

measurement of dependency between Xt to 〈Xt〉. Bradley et al provides a comprehen-

sive list of mathematical definitions for dependency coefficients to define these mixing

conditions [57] and measure decay of correlations [42]. In the future work, we will
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perform a more comprehensive examination of the data structure using formalized

definitions of mixing, such as quantifying dependency with the α-mixing coefficient.

Our sampling method outperforms using all available data (no sampling) from the

EHR by producing a much balanced dataset for training and minimizing dependencies

in each patient’s time series data, making it closer to the state of being i.i.d. We

also compared our sampling algorithm to randomly sampling on negative examples

to yield a 2:1 negative to positive ratio from each patient. This random sampling

method also provides a balanced dataset for training, and as a result, we observed

an increase in accuracy and AUROC from all algorithms when compared to training

without sampling. However, compared to our proposed sampling strategy, random

sampling does not achieve as high performance metrics because it does not account for

correlation and may be sampling repeated measurements with strong dependencies,

and therefore is not as robust as our method.

This study used a linear SVM for the ARDS model. In preliminary work not

shown, we found that an SVM with a non-linear kernel (RBF) had less consistent

results. Although the SVM with RBF kernel generally outperformed linear SVM on

training dataset, it had inferior performance (accuracy and AUROC) on the hold-out

set. Even with 5-fold cross-validation and grid-search hyper-parameter optimization

(of C and gamma), we found the performance of the SVM with RBF kernel to be lower

on the test set, and standard deviation of the results (after multiple random train-

test splits) to be 2-3 fold larger than the linear SVM. We speculate that overfitting

possibly occurred because of lower sample size and the number of variables used as

features for machine learning. Because linear SVM was more robust, we chose to

focus on using label uncertainty in the modeling process using only linear SVM.

With more clinical data, it would be worthwhile to investigate whether incorpo-

rating both label uncertainty and a non-linear SVM model would lead to improved

model performance. The electronic health record may contain additional data that
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could be added to our model. Evaluating the performance of the training approach

that considers label uncertainty in a higher dimensional space would be of value;

however, to limit the possibility of overfitting with our current small dataset size, we

have focused on using features that are routinely used for clinical evaluation of ARDS

in the current study.

We believe this project makes a significant contribution towards solving tradi-

tional classification problems in the context of biomedical and clinical applications.

In medicine, there is almost always a degree of uncertainty when assigning a patient

to a medical diagnosis. Yet, that diagnosis label may then be used as the classification

label or predictive outcome during a machine learning task. Typically, the diagnostic

uncertainty associated with the label is not considered during model building. We

show how an expert clinicians’ confidence in a diagnosis label can be used as vital in-

formation in the model training process. Exploiting the known diagnostic uncertainty

within a medical domain is a generalizable approach that could be used in many med-

ical applications. For example, sepsis is a clinical condition where early recognition

is import for optimal patient care. However, diagnostic uncertainty is common [58],

limiting ability to develop robust algorithms for sepsis detection. Incorporating label

uncertainty when training an algorithm for sepsis detection may improve algorithm

performance in a manner similar to ARDS.

It would also likely be of value to further develop approaches to incorporate label

uncertainty into other machine learning frameworks besides SVM, such as random for-

est and neural networks. Since uncertainty in medical diagnosis occurs so commonly

in clinical practice, accounting for label uncertainty with these learning algorithms

may be highly applicable in other healthcare applications.
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CHAPTER III

Robust Yet Reliable Methods for Analysis of

Complex CXRs

3.1 Introduction

Imaging is integral to the care of ARDS patients that are critically ill. As previ-

ously mentioned in §1.2.1, CXR features of ARDS usually develop 12-24 hours after

initial lung insult. Although appearances in manifestation can vary depending upon

the stage of the disease, CXRs of patients typically exhibit characteristics of diffuse

bilateral opacities with dense consolidation. Because of this, CXRs are a critical re-

source that can support an early diagnosis and provide evidence-based management

strategies to patients with ARDS to improve their outcomes [56]. Identification of

pulmonary opacification is a requirement for diagnosis of ARDS; however, radiolog-

ical features by themselves are nonspecific and may not be correlated with clinical

findings [4, 59]. As a result, inconsistencies in interpretability of chest imaging and

poor inter-rater reliability suggest that patients with ARDS are not recognized when

they develop this illness. Consequently, they do not receive the therapies proven to

reduce mortality [60, 51].

At the time that a CXR is made available, radiology interpretation plays the

major role in diagnosis of ARDS. However, due to the noisy nature of these images,
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the expertise of the interpreter, and other factors, the reliability of chest radiograph

interpretation for ARDS is low among clinicians. There is a clear need for image

processing algorithms to quantitatively express and extract the changes in the CXR

(compared to normal cases) and evaluate the presence and severity of ARDS.

In this chapter, I present the development of an image processing technique for

lung segmentation of complex CXRs from hospitalized patients. A novel feature

extraction method is then proposed for capturing the notion of diffuse alveolar injury

as a mathematical concept. Finally, I integrate both of these algorithms and use the

extracted features to train multiple machine learning models to detect ARDS.

3.2 Challenges

Although many methods for lung segmentation exist in the literature [61, 62, 63,

64, 65, 66, 67], they are primarily designed and evaluated on high quality, standardized

chest radiographs from controlled studies or outpatient settings that may not be

representative of more complex CXRs from hospitalized patients. This is problematic

for many patient populations, especially the critically ill, whose CXRs tend to have

characteristics of varying image quality (e.g., dynamic range, sharpness), presence

of introduced medical devices [68], diverse body habitus [69], and manifestation of

disease [70]. As a result, these methods may not generalize and perform as well on

CXRs obtained from other clinical settings.

To address this challenge, we collected data for algorithm development in a “strat-

ified by severity” approach represent greater variety in patient population and hetero-

geneity of disease. The cohort selection criteria were intentionally designed as such,

rather than an investigation of ARDS vs. healthy patients, to create a realistic repre-

sentation of the patient population and clinical settings where these algorithms would

be used. Because these data were acquired from hospitalized settings, the CXRs tend

to be more complex than a standard chest imaging obtained from controlled stud-
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Figure 3.1: Examples of chest x-rays from the Michigan Medicine dataset, annotated as
consistent with ARDS or inconsistent with ARDS based on the reviews of multiple clinical
experts. Chest x-rays (a), (b), (c) demonstrate the findings of ARDS, which are bilateral
airspace disease not explained by effusions, lobar/lung collapse, or nodules. These findings
may (b) or may not (a, c) be uniform across both lung fields. Chest x-rays (d), (e), (f) do
not demonstrate clear findings of ARDS, either because the lung fields lack clear airspace
disease (d) or the disease that is present is unilateral (e, f).

ies or outpatient settings. Characteristics of these complexities in the CXRs include

varying quality (e.g., dynamic range and sharpness), presence of introduced medical

devices, diverse body habitus, and manifestation of disease. Additional details about

the data used is provided in §3.4.1. Examples of CXRs in this dataset are depicted

in Figure 3.1.

3.3 Lung Segmentation of Complex Chest X-Rays

Lung segmentation, the process of accurately identifying regions and boundaries of

the lung field from surrounding thoracic tissue, is an essential first step in pulmonary
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image analysis of many clinical decision support systems. Correct identification of

lung fields enables further computational analysis of these anatomical regions [71],

such as extraction of clinically relevant features to train a machine learning algorithm

for detection of disease and abnormalities. These computational methodologies can

assist physicians with making a timely, accurate medical diagnosis to improve quality

of care and outcome for patients.

We therefore hypothesize that it may be possible to use image processing tech-

niques to handle heterogeneous characteristics of CXRs to facilitate better, more

generalizable lung segmentation. The aim of this study was to develop such an al-

gorithm capable of robust and reliable performance on multiple patient populations,

including critically ill patients. Our proposed hierarchical method first uses total

variation denoising to remove irrelevant details and artifacts from medical equipment

obscuring the lung fields. The image is then binarized with recursive thresholding to

identify the left and right lung fields. Finally, a stacked active contour model is used

to refine the final shape of the segmentation mask. The proposed method also incor-

porates systematic quality checks by using various assessment criteria at each step

to ensure consistent, successful segmentation. It is especially important that these

clinical decision support systems are highly reliable to ensure healthcare providers

that the algorithm will consistently perform as expected, even in the most rigorous

tasks. A deep learning approaching using U-Net, a convolutional neural network

(CNN) architecture designed for biomedical image segmentation [72], was included

as a “state-of-the-art” benchmark. A widely-used algorithm based on random walks

[73] and another established shape-based “active spline” model [74] were also included

for comparison with conventional image processing methods. These algorithms were

selected on the basis of having excellent performance results on publicly available

databases, being widely cited, and having an available codebase.
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3.3.1 Total Variation-based Active Contour

The proposed algorithm, Total Variation-based Active Contour (TVAC), is com-

prised of three primary steps:

1. Total variation denoising was employed to delineate and remove various medical

equipment visually obscuring the lung fields (§3.3.1.1).

2. Recursive binarization was used to systematically identify the lungs (§3.3.1.2).

3. A stacked active contour model was utilized to improve lung boundary formation

(§3.3.1.3).

Prior to execution, chest radiographs are first normalized with contrast-limited

adaptive histogram equalization (CLAHE) [75] to adjust contrast locally while lim-

iting the amplification of noise to ensure that CXRs in the dataset are generally

represented within the same pixel intensity range. A schematic diagram of TVAC is

provided in Figure 3.2.
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Schematic Diagram of TVAC

Visual Output of TVAC at Each Step

Figure 3.2: Outline of the proposed TVAC method. (a) An example image containing a
few wires from a patient diagnosed with acute hypoxic respiratory failure is shown. The
image is normalized with CLAHE at this step. (b) Total variation denoising is used to
diffuse wires while preserving edges of the lungs. (c) The denoised image is binarized
with recursive thresholding and initial lung segments are extracted. (d) Convex hulls are
generated from the extracted lung regions to enclose the lung fields and capture regions lost
during binarization. (e) Lungs are partitioned into quadrants, each is individually processed
with the stacked active contour model. (f) Final output of the lung segmentation algorithm.
Green represents the ground truth, magenta shows the algorithm’s segmentation output,
and white illustrates overlap of the two – indicating regions that are correctly segmented.
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3.3.1.1 Total Variation Denoising

Total Variation Denoising is a method to remove noise from images using a model

of Rudin, Osher and Fatemi (ROF) [76]. If f : Ω→ R is a a grayscale image, where

Ω is a rectangle in R2, then the total variation of f is:

‖f‖TV =

∫
Ω

|∇f | (3.1)

To denoise an image f , we find an approximation u of f for which ‖u‖TV is small

by minimizing:

λ‖u‖TV +
1

2

∫
Ω

(f − u)2 (3.2)

Here λ is a regularization parameter. The level sets of an optimal solution u

have a small perimeter (relative to their area) (see for example [77, §2.2.2]). This

means that boundaries of the level sets tend to be smooth and round. ROF denoising

removes local details in images, while maintaining and smoothing the boundaries of

larger areas.

There are many algorithms for solving the optimization problem in the ROF

model. We use an algorithm and implementation of Zhu and Chan [78] that uses the

Primal-Dual Hybrid Gradient method (PDHG).

ROF denoising is used to remove irrelevant details and artifacts (e.g., electro-

cardiographic leads and prosthetic devices) from chest radiographs. Unlike blurring,

total variation denoising preserves sharp edges such as the boundary of the lungs.

The processed image retains most of the structurally large, well-defined regions of

the original image while removing unwanted objects of fine scale and discontinuous

variations. This workflow is illustrated in Figure 3.2a and 3.2b.
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3.3.1.2 Binarization with Recursive Thresholding

and Lung Field Identification

After denoising, the lung fields are localized through binarization of the image

with a recursive threshold. Binarization assumes that an image contains two classes

of pixels following a bi-modal distribution, where the foreground (region of interest)

and background pixels can be distinguished by finding an optimal threshold separating

the two classes. To determine this optimal threshold for global binarization, θk, the

Iterative Self-Organizing Data Analysis Technique (ISODATA) [79] is used.

First, the histogram is initially segmented into two parts using a starting threshold

(θ0) at half the maximum dynamic range. The mean of the values associated with

the foreground pixels (µf,θ0) and background pixels (µb,θ0) is calculated. An updated

threshold value θ1 is calculated as the average of these two sample means. This

method is repeated until the updated threshold value does not change anymore. This

process is formalized as:

θk =
µf,θk−1 + µb,θk−1

2
until θk = θk−1 (3.3)

The denoised image is then binarized with threshold θk.

After binarization, morphological area opening is performed to remove small ob-

jects corresponding to artifacts from binarization. To extract the left lung, an object

whose centroid is nearest to the upper right half of the image is selected; to extract the

right lung, another object whose centroid is nearest to the upper left half of the image

is selected. The binary masks (regions containing the object of interest) extracted

from this process are shown in Figure 3.2c. Both objects are assessed for quality of

segmentation and similarity comparison, summarized in Algorithm 2, to ensure that

they accurately correspond to the two lung fields.
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Algorithm 2: Pseudocode for Binarization with Recursive Thresholding and
Lung Field Identification
Input : Denoised Chest X-Ray

1 calculate global threshold (θ0) with ISODATA
2 repeat
3 perform global binarization denoised image at threshold θ0

4 exclude artifacts > imageArea/4 and artifacts < imageArea/100
5 identify leftLung as the connected component with minimal Euclidean distance

from its centroid to the upper left half of the image; check for individual
assessment:

6 check Eccentricity > α
7 check Equivalent Diameter > β
8 check Filled Area > γ of total image
9 check Filled Area < δ of total image

10 check ROI is adjacent to image borders
11 identify rightLung as the connected component with minimal Euclidean distance

from its centroid to the upper right half of the image; check for individual
assessment:

12 check Eccentricity > α
13 check Equivalent Diameter > β
14 check Filled Area > γ of total image
15 check Filled Area < δ of total image
16 check ROI is adjacent to image borders
17 merge the two lung masks; check for similarity assessment:
18 check Major Axis Length > 1.5x of each other
19 check Convex Area > 1

3 of total image
20 if ≥ 2 failure from individual assessment and ≥ 1 failure from similarity

assessment then
21 θ0 = θ0 ∗ 0.95

22 until quality of segmentation is satisfactory ;
23 generate convex hulls from leftLung and rightLung

Output: convex hulls as binary masks for each lung

The parameters utilized in Algorithm 2 can be varied as needed to implement

this method for similar applications. The specific values used for this experiment are

provided in Table 3.1. These values generated reasonable results and demonstrated

robustness to variations in analysis. In particular, we increased and decreased these

values by 10% and observed that these changes did not have a significant impact on

the results. If the masks violate more than 1 of these criteria, threshold θk is reduced

by 5% and binarization is repeated. This process of recursively reducing threshold θk
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Table 3.1: Parameters for Algorithm 1.

α 0.98
β 135
γ 1/3
δ 1/100

Although a wide range of parameters were tested, these are the specific values used in this
experiment. These values generated reasonable results and demonstrated robustness to variation
in analysis - even when the values were increased or decreased by 10%.

is repeated until all but one quality criteria are satisfied.

Convex hulls are then generated from both masks to enclose the lung fields. This

geometric representation of the lung fields, shown in Figure 3.2d, is the smallest

convex polygon shaped by vertices of the previous mask and is designed to capture

interior regions that weren’t included during binarization.

3.3.1.3 Stacked Active Contour Model

Following denoising and lung field segmentation the two convex hulls are then

further refined to better capture the shape of the lungs. A standard active contour

model (ACM) [80] is able to use these templates as a deformable spline, allowing the

convex hulls to “stretch” and better fit to the pleural lining of the lung. However,

we found that using the lung field as the template yielded unfavorable results and

incomplete segmentation, particularly with respect to the costophrenic recess and in

peripheral regions. To overcome this obstacle, we developed a stacked active contour

model where the lung quadrants, rather than the whole lung field, are used as tem-

plates to better capture these peripheral regions such as the apex and costophrenic

recess. Standard ACM uses a pre-defined number of consecutive iterations to ex-

pand or contract based on minimization of energy and other constraint forces. The

proposed ACM model sequentially “stacks” 50 iterations of parameterized contour

expansions, followed by 50 iterations of parameterized contractions. This process is

repeated 20 times, resulting in a total of 1000 iterations.
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The two masks from the upper and lower quadrants of each side are then combined

to reconstruct the lung fields. This final step is shown in Figure 3.3c and 3.3d for

reconstruction of the right lung field. A smoothing filter is applied to remove jagged

edges on the mask boundary.

Figure 3.3: Segmentation with the stacked active contour model. (a) An example source
image is shown for reference. (b) When the final segmentation mask is processed with
a standard active contour model, areas of incorrect segmentation can be systematically
observed – most commonly, at the right lung’s costophrenic recess and regions adjacent
to the diaphragm. (c) Quadrant-based processing with a stacked active contour model
shows better deformation and contouring to peripheral boundaries. (d) Final output for
segmentation of the right lung after combining the upper and lower quadrants and applying
a smoothing filter.
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3.3.2 Convolutional Neural Networks (U-Net)

U-Net is a convolutional neural network that was developed for biomedical image

segmentation [72]. For this study, we’ve trained the U-Net to perform lung segmen-

tation from CXRs. The network is based on the fully convolutional network and

its architecture was modified and extended to work with fewer training images and

to yield more precise segmentations. The U-Net CNN was implemented with Keras

[81] using the TensorFlow backend and trained on both the JSRT and Montgomery

datasets with 5-fold cross-validation. To further extend this analysis, additional ex-

periments were conducted with the U-Net trained on JSRT, Montgomery, and 50%

of Michigan Medicine data (including adult ARDS, adult severe ARDS, and pedi-

atric ARDS) to “fine-tune” the model so that it encounters an even greater variety

in patient population and heterogeneity of disease in the target dataset. Additional

details for these methods are published in previous works [72].

3.3.3 Random Walker

We used a modified implementation of the random walker algorithm designed for

unsupervised lung segmentation. This version relies on extracting horizontal intensity

profiles to intuitively match a pre-designed template to identify anatomical regions

of the CXR and accordingly place seed points for segmentation. First, the algorithm

proceeds by extracting 18 intensity profiles running horizontally, each of them equally

spacing apart, and in each intensity profile three extreme points denoting the two

lungs and the esophagus are determined through profile matching. The algorithm

removes profiles that do not intersect with the lung, and the rest of the extreme

points are plugged into random walker algorithm to perform segmentation. Additional

details for these methods are published in previous works [73].
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3.3.4 Active Spline Model

The active spline model used in this study is a combined point distribution model

and centripetal-parameterized Catmull-Rom spline for lung segmentation. This “tem-

plate matching” method uses a fixed set of points resembling a generalized shape of

the lungs and adapts this template to capture the lung fields from CXRs. After the

lung segmentation boundaries are generated, it can be easily edited to allow for users

to interact and refine the segmentation masks. Additional details for these methods

are published in previous works [74].

3.4 Application: Lung Segmentation from Complex CXRs

We evaluate the proposed TVAC method for lung segmentation on multiple data-

sets, including two publicly available CXR repositories and data from Michigan

Medicine comprising of critically ill patients with respiratory failure. Furthermore, we

compare the proposed algorithm’s performance to multiple state-of-the-art lung seg-

mentation methods, including a deep learning approach (§3.3.2), standard computer

vision algorithms (§3.3.3), and conventional image processing techniques (§3.3.4).

We used the Sørensen–Dice coefficient, a statistical validation method based on

spatial overlap to measure the degree of similarity between the algorithm’s segmenta-

tion and ground truth reference as annotated by multiple clinicians [82, 83]. Given two

sets X and Y representing the segmentation output and ground truth, respectively,

the Dice coefficient is defined as:

Dice(A,B) =
2TP

2TP + FP + FN
(3.4)

For this study, a Dice coefficient under 0.70 is recognized as failed lung segmen-

tation. This value is determined, through our experience from similar studies, as the

lowest acceptable level of segmentation correctness for effective feature extraction and
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sufficient for machine learning.

In addition to reporting summary statistics, we also present our experimental

results with a violin plot generated by a kernel density estimate of all the results

[84]. These plots are essentially mirrored density plots and enables a comparison of

algorithm performance, in terms of Dice coefficient, across patient populations. The

thicker part of a violin plot indicates higher frequency, and the thinner part implies

lower frequency. Violin plots with “longer tails” represent algorithms that more often

failed to accurately segment a patient’s lungs within a population.

3.4.1 Data

The Institutional Review Board approved this study with a waiver of informed

consent. We retrospectively identified three cohorts of patients hospitalized in adult

and pediatric intensive care units at Michigan Medicine in 2016 and 2017. The first

cohort was a random sample of 100 adult patients (mean age 58 years ± 16 [standard

deviation], 48% female) with acute hypoxic respiratory failure (PaO2/FiO2 ratio of <

300 mm Hg while receiving invasive mechanical ventilation), stratified such that 50

of the patients met the criteria for the Acute Respiratory Distress Syndrome (ARDS)

after review by clinical experts. The second cohort included chest radiographs from 25

additional adult patients (mean age 55 years ± 17 [standard deviation], 44% female)

with “high confidence ARDS” by multiple physicians [51]. Chest radiographs from

this cohort would be expected to have intense, widespread bilateral opacities that

would be more difficult for segmentation algorithms. The third cohort included 100

chest x-rays from pediatric patients (mean age 7 years ± 5 [standard deviation], 39%

female) hospitalized in the Pediatric Intensive Care Unit. Children age 14 days to 19

years with an endotracheal tube on mechanical ventilation were eligible for inclusion;

this cohort was stratified such that 50 of the patients met criteria for pediatric ARDS.

Additional details of these patient groups are provided in Table 3.2.
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Table 3.2: Patient demographic of Michigan Medicine cohort.

Adult Cohort Adult Severe ARDS Cohort Pediatric Cohort

n Age Non-ARDS ARDS n Age Non-ARDS ARDS n Age Non-ARDS ARDS

Total 100 58 ± 16 50 50 25 55 ± 17 0 25 100 7 ± 5 50 50
Male 52 60 ± 16 30 22 14 56 ± 16 0 14 61 9 ± 5 31 30
Female 48 64 ± 16 20 28 11 53 ± 19 0 11 39 6 ± 6 19 20

A total of 225 anterior-posterior chest radiographs were exported from Michigan

Medicine’s picture archiving and communication system then stored in the Digital

Imaging and Communications in Medicine format prior to analysis. Annotations for

ground truth of the lung regions on the two adult patient groups were performed by

a pulmonary critical care physician with 4 years of clinical experience. Annotations

for the pediatric cohort were performed by a pediatric critical care intensivist with 5

years of clinical experience.

CXRs from two publicly available datasets were also used to validate the algo-

rithm in other patient populations. The Japanese Society of Radiological Technology

(JSRT) [85, 86] is comprised of 247 posterior-anterior CXRs: 154 containing a pul-

monary lung nodule and the remaining 93 without any nodules. The second external

dataset from Montgomery County, made available by the U.S. National Library of

Medicine [87], contains 138 posterior-anterior CXRs: 58 are cases with manifestations

of tuberculosis and the remaining 80 are representative of normal, healthy lungs. A

summary of these patient groups is provided in Table 3.3.

Table 3.3: Patient demographic of JSRT and Montgomery datasets.

JSRT Montgomery

n Normal Abnormal n Normal Abnormal

Total 247 93 154 138 80 58
Male 119 n/a n/a 64 n/a n/a
Female 128 n/a n/a 74 n/a n/a

Individual patient age and gender information were not available for these two databases.
In the JSRT dataset, “abnormal’ refers to the presence of lung nodules. In the Mont-
gomery dataset, “abnormal” refers to the manifestation of tuberculosis.
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3.4.2 Results

Summary statistics of lung segmentation performance (mean, min, and standard

deviation of Dice coefficient) on the entire Michigan Medicine dataset, stratified by

different patient cohorts, from all four algorithms are reported in Table 3.4. The

results in Table 3.5 provide summary statistics from 50% of the Michigan Medicine

(held-out) dataset, when the other 50% is used for “fine-tuning” the U-Net algorithm.

Violin plots are also provided in Figure 3.5 to better visualize the distribution and

density of the reported results.

Table 3.4: Lung segmentation accuracy for the Michigan Medicine dataset.

Adult
(n = 100)

Adult Severe ARDS
(n = 25)

Pediatric
(n = 100)

Dice
(mean)

Dice
(min)

Standard
Deviation

Dice
(mean)

Dice
(min)

Standard
Deviation

Dice
(mean)

Dice
(min)

Standard
Deviation

TVAC 86.61 76.16 03.92 84.16 76.14 04.09 85.07 75.26 03.75
U-Net 88.85 00.01 11.77 84.82 43.32 11.81 87.32 56.45 08.53
Random Walker 74.46 14.97 18.82 64.63 15.96 16.19 67.31 18.92 17.78
Active Spline 64.01 20.03 16.70 62.29 15.83 15.83 61.37 14.91 17.60

Data are mean with minimum and standard deviation reported for each algorithm on different
patient populations. TVAC = Total Variation-based Active Contour, Dice = Sørensen–Dice
coefficient, ARDS = acute respiratory distress syndrome.

On all critically ill patient cohorts, TVAC and U-Net outperformed the random

walker and active spline model. Although the TVAC model and U-Net show com-

parable mean Dice coefficients, the TVAC algorithm maintained more consistency in

standard deviation and reliable performance (higher lowest Dice coefficient) across all

3 patient groups.

The TVAC algorithm was able to successfully segment lungs from CXRs of all

critically ill patient cohorts; the lowest Dice coefficient reported was 0.75 from the

pediatric cohort. Without fine-tuning, the U-Net has a total of 12 lung segmentation

failures from the entire Michigan Medicine test set: the algorithm was unable to

segment 4% of the adult cohort, 8% of the adult severe ARDS cohort, and 6% of the

pediatric cohort. With fine-tuning and exposure to a subset of Michigan Medicine’s
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data in its training set, the U-Net has a total of 12 lung segmentation failures from the

50% held-out test set: the algorithm was unable to segment 8% of the adult cohort,

15% of the adult severe ARDS cohort, and 12% of the pediatric cohort.

In comparison, the random walker algorithm was observed to have 83 unsuccessful

lung segmentations, failing 26% of the adult cohort, 44% of the adult severe ARDS

cohort, and 46% of the pediatric cohort. The most failures were observed from the

active spline model, which reported a total of 130 failures from 55% of the adult

cohort, 56% of the adult severe ARDS cohort, and 58% of the pediatric cohort.

Table 3.5: Lung segmentation accuracy with U-Net fine tuning.

Adult
(n = 50)

Adult Severe ARDS
(n = 13)

Pediatric
(n = 50)

Dice
(mean)

Dice
(min)

Standard
Deviation

Dice
(mean)

Dice
(min)

Standard
Deviation

Dice
(mean)

Dice
(min)

Standard
Deviation

TVAC 86.08 77.90 04.39 83.01 76.14 04.23 84.67 78.27 03.64
U-Net 89.53 48.42 09.75 81.88 00.01 26.85 88.29 42.77 14.03
Random Walker 74.22 38.98 12.38 67.11 34.05 14.48 66.81 26.92 16.75
Active Spline 64.75 20.03 17.43 64.31 34.10 12.70 62.03 20.03 18.14

Data are mean with minimum and standard deviation reported for each algorithm on different
patient populations. TVAC = Total Variation-based Active Contour, Dice = Sørensen–Dice
coefficient, ARDS = acute respiratory distress syndrome.

In Figure 3.4, all four algorithms and their final lung segmentation from chest

x-rays of critically ill patients in the Michigan Medicine dataset are shown. These

examples were selected to present common pathological findings and characteristics

of more complex chest x-rays from hospitalized patients. These visually qualitative

results are presented to provide insight into the difficulty of this task and why these

algorithms may fail.

Nearly all segmentation methods performed well on lung fields that were clearly

defined, unobscured by medical equipment, and absent or with minimal manifestation

of any pathological conditions. In the presence of abnormalities, such as pulmonary

infiltrate in Figure 3.4a or lung opacities in Figure 3.4b, U-Net and the random walker

algorithm both failed to produce acceptable results on these examples. Patients
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Figure 3.4: Lung segmentation from CXRs of patients at Michigan Medicine. This fig-
ure illustrates the qualitative difference among algorithms and focuses on how they fail in
different clinical scenarios, including (a) manifestations of unilateral infiltrate (b) bilat-
eral lung opacities (c) extracorporeal abnormality from an unrelated comorbidity in the
abdomen (d) electrocardiographic leads overlying the lung fields (e) a prosthetic device
obscuring the outer boundary of the lungs and (f) a prosthetic device interfering with the
inner boundary of the lung.
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suffering from traumatic injury may also present with multiple abnormalities from

these comorbidities. An example of extracorporeal abnormality in the abdomen is

shown in Figure 3.4c. These types of issues may be problematic for deep learning

approaches, which are rigorously trained to identify a specific pattern representation

and may struggle when present with an unexpected example outside of what the

algorithm has been trained on.

The presence of medical equipment present throughout the chest x-ray is also

problematic. Figure 3.4d shows an example with electrocardiographic leads and wires,

which have visual characteristics comparable to the lung field boundaries (e.g., edges

that are well-defined, bright, and elongated). In this example, U-Net recognizes the

wires as an extension of the lung boundary and overextends the final segmentation

mask of the right lung field into the patient’s shoulder region. The random walker

algorithm identifies the wire as lung boundary and produces two lung segmentation

masks truncated at where the wires overlay the lung fields. Additional examples

of obscuring medical equipment are shown in Figure 3.4e and 3.4f, we observe that

both the random walker algorithm and active spline model fails for similar reasons as

previously mentioned.

Table 3.6: Lung segmentation accuracy for the JSRT and Montgomery Datasets.

JSRT
(n = 247)

Montgomery
(n = 138)

Dice
(mean)

Dice
(min)

Standard
Deviation

Dice
(mean)

Dice
(min)

Standard
Deviation

TVAC 95.01 84.88 02.97 95.69 85.66 02.51
U-Net 98.17 95.00 00.12 96.94 84.42 02.67
Random Walker 88.09 49.73 05.76 87.83 50.84 07.29
Active Spline 87.90 00.01 07.83 86.72 38.35 08.26

Data are mean with minimum and standard deviation reported for each algorithm on different
patient populations. TVAC = Total Variation-based Active Contour, Dice = Sørensen–Dice
coefficient, ARDS = acute respiratory distress syndrome.

Summary statistics of lung segmentation performance on both the JSRT and

Montgomery datasets from our proposed algorithm (TVAC), the U-Net CNN, Ran-
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Figure 3.5: Violin plot of segmentation results. Multiple patient cohorts and datasets from
Michigan Medicine were analyzed, including (a) the adult ARDS dataset, (b) the adult
ARDS dataset comprising of only severe cases, and (c) pediatric ARDS dataset.

dom Walker, and Active Spline Model are reported in Table 3.6. On these two datasets

containing standardized chest radiographs from previous studies, all four algorithms

perform relatively well. The U-Net CNN reports the best performance (Dice: 0.98

± 0.01 for JSRT, 0.97 ± 0.03 for Montgomery) of lung segmentation from these two

datasets, followed by our proposed TVAC method (Dice: 0.95 ± 0.03 for JSRT, 0.96

± 0.03 for Montgomery), the Random Walker algorithm (Dice: 0.88 ± 0.06 for JSRT,

0.88 ± 0.07 for Montgomery), and the Active Spline Model (Dice: 0.88 ± 0.08 for

JSRT, 0.87 ± 0.08 for JSRT).

3.5 Feature Extraction

After developing a robust method for lung segmentation, the next step in de-

tecting the presence of ARDS is to extract clinically meaningful features from the

region of interest (i.e., the lung fields). To do so, it is critical to investigate the lung

fields for pulmonary opacification – which manifests as a “cloud-like” appearance on

radiographs. We propose a method, Directional Blur, which aims to capture this in-

tuitive notion of diffuse alveolar injury and “cloudiness” as a mathematical concept.

The basis of this approach is to strongly blur along areas of the image that exhibits
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directionality and also in regions where there are few details. Artifacts and periph-

eral structures in the CXR (e.g., ribs, vasculature, medical equipment) typically have

features of directionality, while the detail-rich regions of the lungs and areas with

opacification do not. This approach enables quantification of lung injury by captur-

ing a diverse set of properties and measurements that may be suitable indicators for

ARDS.

In addition to Directional Blur, this study also examines other features that have

been used for similar applications in the detection of related lung diseases. For ex-

ample, first-order statistics calculated from the histogram are also included in this

work. These features have shown promising results in previously published works as

a textural descriptor to differentiate a healthy lung field compared to a CXR present

with lung injury [88]. Furthermore, we also extracted features from the gray-level

co-occurrence matrix (GLCM). These features characterize the texture of an image

by considering the spatial relationship and dependencies in the matrix. Although

features from the GLCM have been used to train machine learning models for detec-

tion of various lung diseases (e.g., pneumonia and atelectasis), we did not find any

research or studies applying GLCM features for detection of ARDS [89, 90, 91].

We also investigate the use of transfer learning with pretrained neural networks for

extracting additional features that can be used to train machine learning algorithms

to detect ARDS. Recent studies have indicated that information extracted from cer-

tain layers of convolutional neural networks can be very powerful features for use in

classification tasks [92]. For example, neurons in the first layer learn features similar

to Gabor filters while those from the last layer are more specific to the given learning

task [93]. Initializing a network with transferred features from different layers can

yield boosts to generalization even after fine-tuning to the target dataset [94]. Previ-

ously published works demonstrate this notion of transfer learning and document the

success of using these features extracted from intermediate and higher layers of CNNs
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for recognition tasks that the network was not trained on [94, 95, 96, 97]. Further-

more, this approach of using deep learning models trained on large scale, non-medical

data to extract features for general medical image recognition tasks via transfer learn-

ing has been demonstrated with favorable results by multiple research groups [98, 99].

Although several research groups have used pretrained networks to extract features

from CXRs, we are not aware of any studies that evaluate the feasibility of using

transfer learning in this capacity for detection of ARDS [89, 100].

3.5.1 Directional Blur

Lung infiltrates present with a “cloud-like” appearance on CXRs. We propose

Directional Blur, a novel method to capture the intuitive notion of cloudiness as a

mathematical concept. For this task, we first exclude normal findings within the CXR

– such as ribs, vasculature, and medical equipment (e.g., tubes, cables, prosthetic

devices). These artifacts typically have features of directionality, whereas the “clouds”

corresponding to lung opacities are non- directional. Therefore, a cloudy lung region

without artifacts can be described as follows: a) the average gray value will be above

a certain threshold, b) the gray level varies within the region, and c) the gray level is

non-directional.

Suppose that T : [0, a] × [0, b] −→ [0, 1] is a grayscale CXR. Consider a window

W = [u− ε, u+ ε] × [v − ε, v + ε] of size 2ε × 2ε about a point [u, v] in the lung

region. Let Tx and Ty be the partial derivatives of T with respect to coordinates x

and y. Define:

Axx =

∫
W

T 2
xdx dy , Axy =

∫
W

TxTydx dy , Ayy =

∫
W

T 2
y dx dy

then the function G : [0, a] × [0, b] −→ [0, 1] defined as G (u, v) =
√
Axx + Ayy

measures the variation in a region. We normalize G such that it has values in [0,1].
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The matrix A, defined as:

A =

Axx Axy

Axy Ayy

 ,

is non-negative definite. Let λ1 < λ2 be the two eigenvalues of A, and define

H (u, v) = λ1
λ2

. Note that H has values between 0 and 1.

Our preliminary analysis and observation have shown that the product G ·H may

already be a suitable indicator for recognition of ARDS. The functions T,G,H, andG·

H applied to CXRs for a patient diagnosed with ARDS and for a non-ARDS patient

are shown in Figure 3.6a and 3.6b respectively. In both figures, the original CXR is

shown in the upper left, G in the lower left, H in the upper right, and G ·H in the

lower right.

First-order statistics and additional measurements, further described in §3.5.2,

are extracted from the product G · H as features to be used in training machine

learning algorithms for detection of ARDS. In total, 72 features were extracted from

Directional Blur.

3.5.2 Histogram

First-order statistics (mean, max, variance, kurtosis, and skewness) are calculated

from the CXR histogram to capture textural properties of the lung fields. Previ-

ously published literature has demonstrated that such features extracted from CXRs

exhibit significant differences between healthy and injured lung fields [88]. Specifi-

cally, higher variance and lower mean values in intensity have been observed in areas

with pulmonary opacities when compared to normal, healthy lungs [101]. This evi-

dence suggests that these first-order statistics correspond to the magnitude and the

coarseness (or fineness) of the infiltrate [102].
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Figure 3.6: Directional blur applied to CXRs. Output is shown (a) from a patient diagnosed
with ARDS and (b) from a non-ARDS diagnosis. The original CXR is shown in the upper
left, G in the lower left, H in the upper right, and G ·H in the lower right for both figures.

Additional measurements of the histogram are also used as features to capture

the density of pulmonary infiltrates by examining local grayscale distribution. These

features include standard deviation of the 5 largest local maxima (peaks), width of

the largest peak at half-prominence, gray-level value at the first and second largest

peaks, median of the maxima distribution and the frequency of that value, and area

under the histogram. Features were separately extracted from the lung fields and

lung quadrants. In total, 72 features were extracted from the histogram.

3.5.3 Gray-Level Co-Occurence Matrix

The gray-level co-occurrence matrix (GLCM) is a statistical method used to char-

acterize the texture of an image with respect to spatial relationships at the pixel

level [103]. The GLCM is defined as a two-dimensional matrix of joint probabilities

between pairs of pixels of co-occurring values at specified offsets, which is used to
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compute second-order statistics [104, 105]. Multiple offsets and angles can be defined

to increase the sensitivity of capturing pixel relationships of varying direction and

distance [90]. Statistics extracted from the GLCM have demonstrated promising re-

sults when used as features to train machine learning models for detection of various

lung diseases [89, 91, 106]. The second-order statistics extracted from the GLCMs in

this study are contrast, correlation, energy, and homogeneity.

Contrast measures local variation present in an image and returns a measure of

the intensity difference between a pixel and its neighbor over the entire image. For

example, a high value of this feature may indicate the presence of edges, noise, etc.

This property has been demonstrated to be higher in abnormal presentations within

chest radiographs as compared to normal findings [107]. Contrast is defined as

∑
i,j

pi,j|i− j|2,

where i and j represents the x and y coordinates of the GLCM and pi,j is the

element i, j of the GLCM.

Correlation measures the linear dependence (joint probability) of pixel pairs and

can be interpreted as quantifying the consistency of image textures. A high correlation

value indicates the predictability of pixel relationships. We expect that capturing

these characteristics of a CXR may be useful as features for this study. Correlation

is defined as ∑
i,j

pi,j(i− µi)(i− µj)
σiσj

Energy, also referred to as the angular second moment, measures the uniformity

of grayscale distribution of the image. Images with a smaller number of gray levels

(e.g., when it is considered very uniform in representation) have larger values of

energy. Therefore, we expect this measurement to be lower for abnormal findings and

useful for distinguishing between a CXR with an ARDS and one from a non-ARDS
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diagnosis. Energy is defined as: ∑
i,j

(pi,j)
2

Homogeneity measures the closeness of the distribution of elements in the GLCM

to the GLCM diagonal and can be interpreted as a representation of the scale of local

changes in image texture. High values of homogeneity indicate the absence of intra-

regional changes and locally homogenous distribution of image textures. Homogeneity

is defined as ∑
i,j

pi,j

1 + (i− j)2

Features were separately extracted from the lung fields and lung quadrants for

each of the described GLCM properties. GLCMs are generated with multiple angles

(0°, 45°, 90° and 135°) at a pixel distance of 1. A single, “invariant” spatial direction

is generated by taking an average of the four directions so that the texture features

will not be influenced by the angle of rotation. A total of 24 features were extracted

from the GLCMs.

3.5.4 Deep Learning

A pretrained ResNet-50 deep learning model is used as to extract features from

chest x-ray scans for detection of ARDS. ResNet-50 is a deep convolutional neural net-

work consisting of 50 layers with skip connections to facilitate training deep networks,

specifically for optimizing trainable parameters during backpropagation to mitigate

the problem of vanishing gradients [108]. Residual networks such as ResNet50 are

composed of multiple building blocks with shortcut connections that skip convolu-

tional layers via identity mapping. Each block is composed of 3 convolutional layers

that perform downsampling with a stride of 2, followed by batch normalization and

rectified linear unit (ReLU) activation. The architecture of ResNet-50 ends with a

global average pooling (GAP) layer and a 1,000 fully connected layer with softmax
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activation. The network was trained on over a million images from the ImageNet

database [109] to learn rich feature representations and is capable of classifying into

1000 object categories.

Based on previously published work on transfer learning, we propagate CXRs (re-

sized to 244 × 244) through the pretrained network. These layers can be reinterpreted

as learned feature extraction layers [110] and activations from the GAP layer prior

to the fully connected layer are extracted as feature vectors that can be used to train

machine learning models to solve the classification task of this study. In total, 2048

features were extracted from the GAP layer of ResNet-50.

3.6 Application: Detection of ARDS from Complex CXRs

In this study, we evaluate these approaches - Directional Blur, first-order statis-

tics from the histogram, GLCM, and pretrained deep neural networks - on CXRs

obtained from Michigan Medicine and use the extracted features to train machine

learning models for the detection of ARDS. Support vector machine (SVM), ran-

dom forest, AdaBoost, and RUSBoost models were trained and evaluated with 5-fold

cross-validation on these features from 2018 CXRs (data from 70% of patients); the

final overall performance was then reported on a hold-out test set comprised of the

remaining 1060 CXRs (data from 30% of patients). To better understand the strength

and contribution of each technique, we present the results of classification when using

each feature set separately and also combining all features when training the machine

learning algorithms.

The extracted features were used to train multiple machine learning models for

the detection of ARDS. A soft-margin support vector machine (SVM) with a linear

kernel was used in this study and utilizes Bayesian optimization for tuning the C pa-

rameter (to adjust the penalty of misclassification). Random forest was implemented

with 300 decision trees – we determined this was optimal ntrees since it provided
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adequate model complexity and further increasing ntrees did not show a significant

difference in performance on the validation data. Gradient boosting has often been

compared to random forest given the number of similarities between the two tech-

niques. While random forest is known to be more robust to noise and easier to train,

boosting techniques maintain a reputation of being more resistant to overfitting, with

benchmark results having shown that booting produces better learners than random

forests. We implement adaptive boosting (AdaBoost) and random under-sampling

boosting (RUSBoost) in this work. Both techniques utilize Bayesian optimization to

tune the learning rate and number of learning cycles. Data from 70% of patients

(approximately 2018 CXRs) were used for model training and performance evaluated

using 5-fold cross-validation ong this training set. The final reported results are from

the remaining 30% of patients (1060 CXRs) that were used as the hold-out test set.

3.6.1 Data

This study was approved by the Institutional Review Board with a waiver of in-

formed consent. The patient cohort consists of adult patients hospitalized in intensive

care units at Michigan Medicine between 2016 and 2017. We retrospectively identified

patients with moderate hypoxia (requiring more than 3 L of supplemental oxygen by

nasal cannula for at least 2 hours) and acute hypoxic respiratory failure (PaO2/FiO2

ratio of < 300 mm Hg while receiving invasive mechanical ventilation).

In total, 500 patients were included in this study and 3078 anterior-posterior chest

x-rays were obtained. Of this population, 208 patients met the criteria for acute

respiratory distress syndrome after being reviewed independently by multiple clinical

experts. Labels for this dataset were generated using the same method described in

§2.4. Data from 70% of patients (approximately 2018 CXRs) were used for model

training and validation while the remaining 30% of patients (1060 CXRs) were used

as the hold-out test set. There are 191 females (mean age of 58 years, 32% ARDS
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Table 3.7: Data available from the Michigan Medicine ARDS CXR dataset.

Patients Chest X-Rays

Positive 151 909
Negative 349 2169
Total 500 3078

Table 3.8: Cohort demographic for the Michigan Medicine ARDS CXR dataset.

n Age ARDS Non-ARDS

Male 151 57.16 ± 16.72 89 220
Female 349 58.46 ± 15.71 62 129
Total 500 57.65 ± 16.32 151 349

positive) and 309 males in this study cohort (mean age of 57 years, 29% ARDS

positive). The cohort demographics are summarized in Tables 3.7 and 3.8.

The chest x-rays in this study were reviewed independently by multiple clinical

experts to generate the labels used in training the machine learning algorithms. ARDS

is a life-threatening condition without a “gold standard” for diagnosis and the inter-

rate reliability for correct diagnosis of the illness is only moderate [8]. Because of

this, multiple experts were asked to determine whether each chest x-ray is consistent

with ARDS and also to provide a confidence level in their diagnosis as high, moderate,

slight, or equivocal. This information was converted to scale between 1-8 as illustrated

in Figure 2.6. If the clinical experts’ averaged review was below or equal to 4.5, a

label of -1 (no ARDS) would be assigned to the chest x-ray. If the averaged review

was above 4.5, a label of 1 (ARDS) would be assigned.

3.6.2 Results

CXRs are acquired in DICOM format and converted to an 8-bit grayscale image.

Lung segmentation was performed with TVAC (as described in §3.3.1) to identify

the region of interest from the CXR. Multiple masks were created for each CXR to

represent the two lung fields (e.g., left lung and right lung) and four lung quadrants

(e.g., upper-left lung and lower-left lung) to ensure that the extracted features meet
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one of the clinical criteria for diagnosis of ARDS (bilateral opacities on CXR).

Four distinct feature sets were used to train machine learning models for the de-

tection of ARDS from chest x-ray scans: Directional Blur, first-order statistics from

the histogram, information from a gray-level occurrence matrix, and deep learning

features extracted with a pre-trained neural network. Based on relevant works in an-

alytical morphomics, we perform a similar approach of normalization with structural

physiology (using a ratio of chest width to sternum width) for selected features [111].

Performance metrics (accuracy, Area under the Curve (AUC), and F1 score) on the

Michigan Medicine dataset for all four feature sets are reported in Table 3.9. The best

performance achieved using an individual feature set was attained with an AdaBoost

classifier trained on features derived from Directional Blur (0.78 accuracy and 0.74

AUC), followed by a RUSBoost classifier also trained on the same feature set (0.77

accuracy and 0.74 AUC). These results also indicate that training on multiple feature

sets can yield further improvements. The best overall performance was achieved

with AdaBoost trained on all available features from Directional Blur, first-order

statistics in the histogram, GLCM, and deep learning (0.83 accuracy and 0.79 AUC).

The second-best performing model when trained with all features is RUSBoost (0.81

accuracy and 0.77 AUC.) Results for additional permutations of combined features

(e.g., Directional Blur and histogram features) are provided in Table 3.10 and in the

supplementary materials (Table B.1, B.2, B.3).

Table 3.9: Performance metrics for detection of ARDS using features from Directional Blur,
the histogram, GLCM, and deep learning.

Directional Blur Histogram GLCM
Deep Learning

(ResNet-50)
All Features Combined

Accuracy AUC F1 Accuracy AUC F1 Accuracy AUC F1 Accuracy AUC F1 Accuracy AUC F1

SVM 73.31 66.58 58.91 70.83 62.60 57.97 72.47 65.62 59.79 73.34 67.90 64.85 74.63 73.70 64.24
Random Forest 75.97 66.80 56.28 73.86 64.64 54.36 74.98 65.70 54.63 75.91 65.76 59.47 76.81 71.22 63.43
AdaBoost 78.93 74.87 61.66 75.60 73.81 58.93 76.34 73.82 59.69 77.82 73.63 62.78 83.85 79.67 65.44
RUSBoost 77.68 74.78 65.90 74.62 71.55 64.62 77.70 72.12 66.38 77.88 72.46 63.93 81.03 77.68 67.29
Robust Boost 73.98 69.92 55.62 70.48 66.41 55.76 71.88 68.61 57.73 75.69 70.72 56.93 76.79 73.44 63.87
Total Boost 70.68 68.39 55.82 69.67 64.50 54.79 70.36 67.70 55.38 73.79 70.93 53.80 73.50 68.28 59.74

A total of 2216 features were used to generate these results: 72 features from
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Table 3.10: Additional performance metrics for classification results when using Directional
Blur with additional features.

Directional Blur
+ Histogram

Directional Blur
+ GLCM

Directional Blur
+ Deep Learning (ResNet-50)

All Features Combined

Accuracy AUC F1 Accuracy AUC F1 Accuracy AUC F1 Accuracy AUC F1

SVM 73.53 68.97 59.70 74.36 69.80 62.87 75.90 70.61 64.75 74.28 73.09 64.75
Random Forest 75.87 66.63 59.74 76.90 68.32 59.64 76.72 67.64 62.80 76.78 71.36 63.91
AdaBoost 79.88 75.70 62.46 81.80 77.46 63.73 80.98 77.35 65.46 83.18 79.61 65.80
RUSBoost 77.84 73.46 62.73 79.47 76.82 66.16 80.70 76.83 65.70 81.66 77.31 67.45
Robust Boost 71.80 70.73 60.58 70.44 70.73 60.82 72.91 69.46 60.80 76.77 73.28 63.67
Total Boost 70.39 69.74 58.58 71.67 68.58 58.37 73.73 68.25 59.96 73.47 68.68 59.97

Directional Blur, 72 features from the histogram, 24 features from the GLCM, and

2048 features from deep learning. To reduce the dimensionality of utilized features, we

implemented feature selection with PCA, minimum redundancy maximum relevance

(mRMR), and chi-squared test. The first three principal components (98% of variance

explained) were used for the PCA approach. The top 100 most important predictors

were selected from feature selection with mRMR and chi-squared test. We did not

test beyond using the top 100 ranked features since anything beyond that yielded an

insubstantial predictor importance score. The results of this analysis are provided in

Table 3.11.

Table 3.11: Comparison of methods used for feature selection.

All Features
PCA

(98% Variance Explained)
mRMR
(100)

Chi-Squared Test
(100)

Accuracy AUC F1 Accuracy AUC F1 Accuracy AUC F1 Accuracy AUC F1

SVM 74.82 73.69 64.31 73.88 67.39 62.44 70.76 66.98 61.71 79.73 74.20 59.47
Random Forest 76.23 71.88 63.91 74.73 65.44 53.09 75.76 67.41 62.82 79.60 73.91 61.70
AdaBoost 83.37 79.84 65.90 79.75 71.64 63.82 80.79 73.82 60.14 81.73 74.55 64.87
RUSBoost 81.79 77.80 67.57 76.64 68.71 58.23 76.92 72.52 62.57 80.96 76.80 65.43
Robust Boost 76.58 73.72 63.83 72.41 67.64 58.20 76.45 68.41 58.34 75.89 70.54 60.82
Total Boost 73.72 68.63 59.47 72.28 66.61 55.87 76.55 67.42 56.03 75.84 70.42 60.33
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3.7 Discussion

In this chapter, we developed a lung segmentation algorithm that would perform

well on both publicly available datasets from retrospective research studies and on

real-world data obtained from hospital and inpatient care, especially from critically

ill patients. We demonstrate that our TVAC algorithm is capable of accurate and

reliable lung segmentation from chest x-rays in the Michigan Medicine dataset com-

prising of hospitalized patients, of varying demographics and age groups, diagnosed

with moderate hypoxia, acute hypoxic respiratory failure, or ARDS. Furthermore, we

also evaluated TVAC on publicly available chest x-rays from the JSRT and Mont-

gomery datasets to benchmark our proposed method with multiple state-of-the-art

lung segmentation algorithms.

Many published algorithms and software platforms capable of lung segmentation

exist [61, 62, 63, 64, 65, 66, 67]. However, nearly all of them have only been evaluated

on chest radiographs where the lungs exhibit minimal or no pathological conditions

[112]. Segmentation of normal, healthy lungs can be fairly straightforward, as the

black pixels of the lung fields can be readily delineated from the white pixels of

peripheral anatomic regions [113]. This task becomes challenging when segmenting

lungs from chest x-rays of critically ill patients diagnosed with a lung disease or se-

vere condition, such as ARDS, pneumonia, and pulmonary edema. These injuries tend

to manifest with a white diffuse appearance [56, 114, 115] that may be incorrectly

recognized by many algorithms as regions outside the lungs, as these attenuating

characteristics are similar to the soft tissue of nearby anatomic structures. As a re-

sult, consolidation along the pleural margin of the lungs may generate an erroneous

delineation and incorrect segmentation. These complications are also present in re-

lated applications and orthogonal studies (e.g., detection of consolidation) involving

complex chest x-rays from hospitalized patients [70].

Furthermore, medical equipment such as wires, tubes, pacemakers, and various
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prosthetic devices can obscure lung fields on chest x-rays [68]. These objects are

characteristic of CXRs obtained from hospitalized patients or during inpatient care,

which may contain a diverse array of medical equipment used to monitor and treat

patients [116]. These items appear as connected regions of high pixel intensity with

strong edges, often interfering with edge detection of the lung’s pleural space and

resulting inaccurate boundaries. Because these objects don’t typically appear in

CXRs obtained from outpatient care or controlled studies, it is therefore essential

to include these types of complex data from clinical and hospital settings in the

evaluation set of any automatic lung segmentation algorithm. These physiological

abnormalities and noise from medical devices can hinder segmentation methods using

lung models that have been computed on healthy lungs only [117]. Because of this,

we also sought to investigate the efficacy and reliability of these algorithms on our

Michigan Medicine dataset.

Despite the high overall performance of the deep learning approach, our experi-

mental results demonstrate that U-Net can be inconsistent and suffers from numerous

lung segmentation failures. Based on the violin plots as well as results of segmenta-

tion on the JSRT and Montgomery datasets, we can infer that U-Net performs very

well on the types of x-rays it has encountered before. However, when new, unseen

examples of disease and noise are shown, the CNN is unable to generalize pattern

recognition for these challenging lung fields. Even when the U-Net is fine-tuned with

50% of all available Michigan Medicine so that it encounters an even greater variety

in patient population and heterogeneity of disease in the target dataset, the same

segmentation issues still persist - namely, failure to recognize the lung boundaries

due to interference from medical equipment or gross abnormalities present on the

image. These results suggest that although the U-Net is very capable of excellent

segmentation, robustness of the deep learning approach needs to be improved before

it is practical for clinical use.
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The “template matching” active spline model suffers from similar generalizability

issues as U-Net. On chest x-rays with well-defined lung boundaries, the algorithm is

capable of producing excellent masks. However, when lung fields and pleural regions

are obscured by injury (e.g. collapsed lung), the template matching attempt usually

fails [112, 118]. When developing TVAC, we also take into consideration the issues

of deployability, usability, and trustworthiness from the perspective of a healthcare

provider. Missing a few pixels is better than missing an entire lung field – especially

if the algorithm is extended and applied to subsequent clinical tasks (e.g., using

lung segmentation as a preprocessing step for prediction of acute respiratory distress

syndrome, pneumonia, or sepsis). Making a clinical decision based on inaccurate

information could be extremely dangerous for the patient’s outcome and we believe

that healthcare providers would likely opt for a more consistent system in lieu of one

with a slightly higher mean performance benchmark but less reliability.

We recognize that there are several limitations to this study. The cohort sample

sizes were relatively small, which limited the extent of stratified analysis, such as

looking at challenges in segmentation grouped by type of lung injury or in the pres-

ence of a specific treatment/medical device. Furthermore, due to the limited amount

of data available from Michigan Medicine, we were not able to train the U-Net on

this dataset. Therefore, the U-Net was trained on both the JSRT and Montgomery

datasets combined (evaluated with 5-fold cross validation) and we thus relied on trans-

fer learning for generalization of this CNN to the Michigan Medicine dataset. The use

of significantly larger training databases of CXR with heterogeneous characteristics

in future studies may improve the performance of the U-Net CNN. Another limitation

to note is that ground truth annotations of the lung fields were provided by critical

care physicians instead of radiologists. Although we don’t believe this has affected

our study, we do acknowledge that many similar studies involving ground truth from

radiographs typically relies on a radiologist, or the supervision of a radiologist, to
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correctly annotate the image.

To extract features for detection of ARDS from complex CXRs, we propose and

describe Directional Blur, a novel feature engineering technique used to capture the

“cloud-like” appearance of diffuse alveolar damage as a mathematical concept. This

work also examines the effectiveness of using a pretrained deep neural network via

transfer learning as a feature extractor in addition to standard features extracted

from the histogram and GLCM.

Many published algorithms for the detection of various lung pathologies from chest

radiology exists [88, 89, 90, 91, 119, 102]. However, we did not find any studies that

particularly focused on acute respiratory distress syndrome. Some of these conditions

share similarities in pathology and clinical presentation, but it was unknown whether

the features used to detect a particular condition (e.g., sepsis) would also be effective

for the detection of ARDS. Our results show that some of these features do in fact

work, e.g., first-order statistics from the histogram and GLCM. Furthermore, we

demonstrate that the proposed Directional Blur technique is capable of detecting

ARDS and outperforms other techniques that have been used for similar applications.

We report that the best overall performance is obtained when the machine learning

models are trained with all four features sets combined rather than only having access

to each individual feature separately.

We also conducted extensive tests with several feature selection methods, includ-

ing principal component analysis (PCA), minimum reduction maximum relevance

(mRMR), and chi-squared test. The outcome of those experiments demonstrated

that better classification results were obtained when using all available features com-

pared to only using the most important features selected by these techniques. These

results were surprising at first, since we expected redundancy in the feature space,

especially from the 2048 features from deep learning. However, after a more com-

prehensive analysis the data, we concluded that this is reasonable because many of
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the tree-based and boosting methods already include feature selection in their im-

plementation. Therefore, models that don’t already include this process (e.g., SVM)

will benefit the most from feature selection – which is exactly what we observe in

Table 3.11 with SVM when using all available compared to only using the top ranked

features from the chi-squared test.

Although ResNet-50 was used to extract the deep learning features, a number

of other pretrained deep neural networks were also considered – including ResNet-

18, ResNet-101, Inception-v3, U-Net, and VGG19. These networks were primarily

chosen based on their publication record and capability in using arbitrary layers for

feature extraction. Preliminary results showed that features extracted with ResNet18,

ResNet101, and Inception-v3 did not perform as well as ResNet50. As the architec-

tures for U-Net and VGG19 do not contain a GAP layer features would be extracted

from the max pooling or convolutional layers. The activations from VGG19’s max

pooling layer have a dimensionality of 7 × 7 × 512, while the activations from U-Net’s

ReLU layer are of size 256 × 256 × 32, resulting in almost 2 million features when

flattened. We did try multiple tensor decomposition methods to work with this high-

dimensional data, including higher-order singular value decomposition (HOSVD), but

did not achieve satisfactory performance.

Intuitively, one could argue that the learned weights from the deeper layers should

be more specific to the images of the training dataset and the task it was initially

trained for. However, a number of publications have reported promising results with

features derived from the GAP layer. Furthermore, our internal testing showed com-

parable results between extracting features from the GAP layer and a shallower layer.

Ultimately, we decided to use ResNet-50’s GAP layer – which yielded 2048 features.

We recognize that there are several limitations to this study. With more data,

it would be worthwhile to investigate training an end-to-end deep learning model

directly from CXRs, comparing the effectiveness of this approach to features extracted
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with a pretrained deep neural network via transfer learning. Another limitation to

note is that our dataset is only labeled for binary classification of ARDS or non-

ARDS, even though the patients in the non-ARDS cohort still exhibit a degree of

respiratory failure. In future work, we would like to examine the feasibility of multi-

label classification to further improve accuracy in diagnosis. We also plan to include

additional data, such as signals from physiological waveforms and data from electronic

health records, for the detection of ARDS.
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CHAPTER IV

Learning Using Privileged Information

4.1 Introduction

The idea of using privileged information was first proposed by V. Vapnik and A.

Vashist in, in which they tried to capture the essence of teacher-student based learning

and knowledge transfer [120]. Standard machine learning paradigms consider the

following scenario: given a set of training examples, find, in a given set of functions,

the one that approximates the unknown decision rule in the best possible way. In

such a paradigm, the teacher does not play an important role.

Inspired by the way human learning works, they created a new learning paradigm

in which the learner is provided with not only a set of training examples, as described

above, but also a set of additional ”privileged information” that can help significantly

improve the learning process. Learning using privileged information (LUPI) acceler-

ates machine learning by more closely mimicking human teacher-student interactions.

In human interactions, the teacher provides the student with additional information

specific to each example, such as explanations. This allows the student to learn more

information from each example, thus learning faster and more effectively [121]. LUPI

considers the fact that while the privileged information are not available at the test-

ing stage, the abundance of such information in the training phase can help tune-up

and improve the choice of the solution fγ(x). This type of information is abundant in
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healthcare, where much more information about a patient’s health status is available

in retrospective databases compared to real-time environments.

In the LUPI architecture, at the training stage some additional information x∗i

about training example xi are available, while this privileged information will not be

available at the test stage. The LUPI paradigm can be formulated as follows: given a

set of training examples plus privileged information (xi, x
∗
i yi) , i = 1, . . . , N, in which

xi ∈ X form the input attributes/features, x∗i ∈ X∗ are the privileged information

on the training sample i, and yi ∈ {−1, 1} is the output class, the learning task is

to find a function fγ(x) : X → {−1, 1} (where γ ∈ Λ) to learn/generalize a mapping

between the input and the output considering the privileged information. Note that

the additional privileged information comes from the space X∗, which is different from

the space X and is not needed after the training phase, i.e. the learned function fγ(x)

does not need the privileged information to form predictions on the testing data. A

depiction of the LUPI paradigm is provided in Figure 4.1.

Figure 4.1: Depiction of the LUPI paradigm.

Specifically, in the training phase, a cost function defined over the training ex-

amples (that includes both the main input X and the privileged X∗ information) is

minimized to find the best set of parameters, γ, and therefore the solution fγ(x). In

LUPI the cost function is often composed of two sets of terms, one representing in

the error in mapping X to the output (as well as the complexity of the function) and

another set of terms representing in the error in mapping X∗ to the output (as well
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as the complexity of the function). Again, note that even though X∗ is included in

the optimization process in the training phase, the result of this optimization is fγ(x)

which is defined only over X.

LUPI has proven successful in several applications. Sharmanska et al. found that

learning using privileged information aided computer vision tasks [122]. Ribeiro et al.

found that SVM+, a modification of SVM that leverages privileged information, im-

proved bankruptcy prediction compared to regular SVM [123]. Liang et al. modified

SVM+ to handle multi-task learning and found that it proved more effective than

regular SVM [124].

This learning paradigm is highly useful for time-course predictive scenarios such

as clinical decisions making, in which the retrospectively training data sets contain

highly informative additional information that cannot be used by conventional ma-

chine learning. For instance, in the case of the early detection and prediction of

ARDS, while the conventional machine learning would only consider the features

extracted from clinical/physiological data for early detection of ARDS, i.e. the in-

formation in X, an LUPI paradigm can consider the available data, X, along with

the chest x-rays that are not available at the time of the actual decision making, i.e.

X∗. In other words, since the CXRs are available in the training datasets, they can

serve as the privileged information when creating the function fγ(x) that maps the

clinical/physiological data to the presence or absence of ARDS, i.e. {-1,1}.

In this project, we implement the LUPI paradigm in several machine learning

models for detection patients with ARDS. This initial study uses CXR ratings by

clinicians as privileged information. Chapter V provides in-depth details on the opti-

mization algorithms, extension for partially available information, and incorporation

with label uncertainty with feature extraction methods as described in §3.5.
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4.2 Implementation with Support Vector Machines (SVM+)

The formulation of LUPI for SVM, called SVM+ is provided here. Given a set of

training data pairs:

(x1, y1) , . . . , (xn, yn) xi ∈ X, yi ∈ {−1, 1}

“Standard” SVM first maps training data vector x ∈ X into vector z ∈ Z where it

constructs the optimal separating hyperplane by learning the decision rule f (z) =

w · z + b where w and b are hyperplane parameters and the solution of:

minw,b,ξ
1
2
‖w‖2

2 + C
∑n

i=1 ξi

s.t. ∀1 ≤ i ≤ n, yi (w · zi + b) ≥ 1− ξi

∀1 ≤ i ≤ n, ξi ≥ 0

(4.1)

where C > 0 is a hyperparameter.

In the LUPI paradigm, the set of training data triplets are:

(x1,x
∗
1, y1) , . . . , (xn,x

∗
n, yn) xi ∈ X,x∗i ∈ X∗ yi ∈ {−1, 1}

where x∗i is the privileged information. Let z∗i be a feature map of x∗i . The SVM

formulation for LUPI, i.e. SVM+, can be thought of as the classical SVM with the

same decision function f(z) = w ·z+b but a correcting function, ϕ (z∗) = w∗ ·z∗+b∗,

in lieu of the slack variables. Then the decision rule and the correcting function

hyperplane parameters are achieved simultaneously by SVM+ optimization of:

minw,b,w∗,b∗
1
2
‖w‖2

2 + γ
2
‖w∗‖2

2 + C
∑n

i=1 (w∗ · z∗i + b∗)

s.t. ∀1 ≤ i ≤ n, yi (w · zi + b) ≥ 1− (w∗ · z∗i + b∗)

∀1 ≤ i ≤ n,w∗ · z∗i + b∗ ≥ 0

(4.2)
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where C > 0 and γ > 0 are hyperparameters. Note that γ
2
‖w∗‖2

2 restricts the

VC-dimension of the correcting function space. As implied in [11], replacing the slack

variables with the smooth correcting function ϕ (z∗) = w∗ · z∗ + b∗ may not always

be the best choice. Instead we can use a mixture of slacks as:

ξ′i = (w∗ · z∗i + b∗) + ρξ∗i ∀1 ≤ i ≤ n (4.3)

which results in the following optimization problem:

minw,b,w∗,b∗,ξ∗
1
2
‖w‖2

2 + γ
2
‖w∗‖2

2 + C
∑n

i=1 ξ
∗
i

+C∗
∑n

i=1 (w∗ · z∗i + b∗)

s.t. ∀1 ≤ i ≤ n, yi (w · zi + b) ≥ 1− (w∗ · z∗i + b∗)− ξ∗i

∀1 ≤ i ≤ n,w∗ · z∗i + b∗ ≥ 0 ξ∗i ≥ 0

(4.4)

where C = ρC∗. If C � C∗ (i.e. ρ � 1 ) this problem behaves similar to (4.4),

and if C � C∗ (i.e. 0 < ρ� 1 ) it converges to the solution of the conventional SVM

with soft-margin (4.1). The dual optimization problem of 4.4 is further discussed in

§5.2.

4.3 Implementation with Decision Trees

The proposed method for implementation of LUPI with decision trees is called

iterative privileged learning. In the gradient step that is used from step t− 1 to step

t, auxiliary variables are introduced. These encode the privileged information. In

other words, auxiliary functions are generated that gives an output corresponding to

privileged information.

We want to use a quadratic loss function to determine the “discrepancy” between

the label predicted by the model at an iteration t, and the ground truth labels. We

use an approach implementing the LUPI method in the theory of Gradient Boosted
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Decision Trees (GBDT) [125], modifying the loss function to incorporate privileged

information.

Suppose our dataset consists of triplets (xi, x∗i, yi) , where xi and x∗i are vectors

with real entries (possibly different lengths, since the number of privileged features

might be different from the number of non-privileged features), and yi are the ground

truth labels. In standard GBDT, the loss function used to update the decision trees

at each iteration of the algorithm is given by:

L =
1

2

∑
(Gt (xi)− yi)2

Where Gt (xi) is the decision function at step t, evaluated on the vector xi. At the

subsequent step of the algorithm, Gt is updated by Gt + ht, where the latter term is

a ”small” tree that perturbs the one obtained at step t. The new perturbing decision

tree can be determined by minimizing quantity:

∑
[ht (xi)− (Gt (xi)− yi)]2

over all small trees (for some fixed number of nodes etc.). GBDT with privi-

leged information includes an additional term that takes into account the privileged

information, corresponding to:

∑
C [ht (xi)− (Gt (xi)− yi)− wtxi]2

for real numbers wt that vary during the learning process.

The change of wt has the meaning of an adjustment of the teacher’s instructions

during the learning process, which has quite an intuitive meaning as compared to

human learning. The number C is a hyper-parameter whose optimal value is set

to be determined during cross-validation. We implement the LUPI methodology by
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including a mixture of slack variables, µi, µ
∗
i and a · µ∗ + b. The coefficients a are

updated during learning process, in analogy to the update of wt, whose significance

was previously pointed out. The objective function to minimize is therefore given by:

min
∑

[ht (xi) − (Gt (xi)− yi)]2 +
∑
t

C [ht (xi)− (Gt (xi)− yi)− wtxi]2

+C ′µi + C ′′µi ∗+C ′′′(a · µ ∗+b)

4.4 Application

In this project, we implement the LUPI paradigm in several machine learning

models for detection patients with ARDS. This initial study uses CXR ratings by

clinicians as privileged information and features previously described in §2.5.1 and

Appendix A. This initial study attempts to address the issue of unreliable data

and using the LUPI paradigm to incorporate additional data available during model

training but not accessible during testing.

4.4.1 Data

The ARDS dataset used in this study consisted of 485 patients with either moder-

ate hypoxia or acute hypoxic respiratory failure, treated at the University of Michigan

Hospital. We received institutional review board from the University of Michigan to

collect data for the study (HUM00104714) with a waiver of informed consent among

study participants. Each case was independently reviewed by multiple expert clini-

cians for the diagnosis of ARDS; the labels for this dataset were generated using the

same method described in §2.4. Multiple experts reviewed the cases as there can be

disagreement between doctors reviewing the same patients for the diagnosis of ARDS

[11]. Clinical experts also identified the time of ARDS onset for those patients who

were deemed to have developed the condition. Patients who developed ARDS were
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labeled as negative before the time of onset and positive for ARDS after.

The non-privileged information consisted of 25 clinical variables (features) ex-

tracted at two-hour intervals from the patient’s EHR. The clinical features are pro-

vided in Appendix A. Privileged information for each patient consisted of the average

of scores among multiple clinical experts reviewing CXRs performed during the hos-

pitalization. Each clinician gave each CXR a rating of 1− 8, scoring their belief that

the x-ray was consistent with ARDS (8 for high-confidence ARDS and 1 for high-

confidence non-ARDS). As such, privileged information is the average of these scores

if the CXRis available.

In the experiment for classifying ARDS, the dataset was first split into training

and testing sets as shown in Figure 4.2. In order to avoid bias toward patients,

all samples from the same patient were kept exclusively in either training or testing.

This yielded 323 patients in the training dataset, and the rest in the testing set. Also,

due to the strong inter-dependency between samples of longitudinal patient data, the

IID (independent and identically distributed) assumption was invalid. Therefore,

the time-series sampling method proposed in §2.2.2 was performed to reduce inter-

correlation among the longitudinal clinical data from each patient used in model

training. After sampling, there were 4661 samples in the training dataset, with 1298

positive for ARDS. Since there was no sampling in the testing dataset, there were

9362 samples in the test dataset.
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Figure 4.2: Flowchart of the study protocol. 5-fold cross-validation was performed as
suggested in §2.2.2 and hyperparameter optimization was implemented with grid search.

4.4.2 Results

Table 4.1 summarizes the preliminary results of this experiment. We report that

SVM+ achieves an AUROC of 69.85 on the hold-out test set, outperforming standard

SVM by 13.9%. Similarly, we observe that DT+ achieves an AUROC of 67.05 and

outperforms standard DT by 8.04%.

Table 4.1: Comparison of different learning paradigms in detection of ARDS.

AUROC
Specificity

at 98% Sensitivity
Specificity at

90% Sensitivity

SVM 69.85 55.23 77.90
SVM+ 79.61 67.88 91.41
DT 67.05 50.30 73.58
DT+ 72.44 64.91 88.47

SVM = support vector machine, SVM+ = LUPI implementation of support vector machine,
DT = decision trees, DT+ = LUPI implementation of decision trees.
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4.5 Discussion

This preliminary study demonstrates the capability of LUPI-based machine learn-

ing models for clinical applications and serves as the foundation for future works pre-

sented in Chapter V. From these initial experiments, we gained intuition for how to

use LUPI in practical scenarios and for how to improve on the existing paradigm.

In this work, the models utilized CXR ratings by clinicians as privileged infor-

mation. However, in an actual production environment, it may not be the feasible

for physicians to rate each CXR in order to assist with generating the privileged in-

formation used by SVM+. A future direction for this research would be to use the

methods developed in Chapters II and III to build a fully automated ARDS detection

system. In other words, we propose that the previously described lung segmentation

method (§3.3.1) and features extracted from the CXRs (§3.5) can serve as the privi-

leged information used in the LUPI models while using the routinely collected EHR

data can continue to be used as the standard training feature space.

One addition limitation of LUPI that hasn’t been discussed yet is the fact that

this learning paradigm assumes that privileged information is available for all train-

ing samples during parameter estimation. This motivates us to consider additional

modification to the LUPI framework to encode such partial availability of privileged

information in the training set. Based on the results presented in Table 4.1, it seems

intuitive to move forward with further development of the LUPI framework with an

SVM-based model. In Chapter V, we present a re-formulation the SVM model to

account for both label uncertainty and “partially available” privileged information to

reflect this problem.
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CHAPTER V

Learning Using Label Uncertainty and Partially

Available Privileged Information

5.1 Introduction

In developing the LUPI-based machine learing models for detection of ARDS,

it is important to recognize that privileged information (CXRs) are sometimes only

available for a portion of the training data. In other words - not every patient receives

an CXR, however, the LUPI paradigm assumes that privileged information is available

for all training samples during parameter estimation.

Building from LUPI framework previously described in in Chapter V, we will

proposed a learning scheme that provides the capabilities of both learning from un-

certain labels and learning using “partially available” privileged information to create

a methodology that would better match the clinical reality of ARDS detection and

many other healthcare problems. The proposed frameworks use EHR data as reg-

ular information, CXRs as partially available privileged information, and clinicians’

confidence levels in ARDS diagnosis as a measure of label uncertainty.

We first describe our proposed learning from uncertain labels using privileged in-

formation (LULUPI) at a general level and then customize the model towards SVM,

whose formulation make the design of such specialized learning paradigms more in-
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sightful. In the LULUPI formulation, training examples with uncertain labels and

privileged information are available:

1. A subset of data with certain labels, i.e. (xi, x
∗
i , yi) , i = 1, . . . , N1, in which

xi ∈ X form the input features, x∗i ∈ X∗ are the privileged information on the

training sample ui′′, and yi ∈ {−1, 1} is the output class.

2. A subset of data with uncertain labels, i.e. (xi, x
∗
i , yi, li) , i = N1 + 1, N1 +

2, . . . , N , in which xi ∈ X, x∗i ∈ X∗, yi ∈ {−1, 1} and 0 < li ≤ 1 is the level of

confidence (i.e. lack of uncertainty) over sample i.

In LULUPI, the learning task involves minimizing the cost function that includes

four sets of terms:

1. Terms representing in the error in mapping X to the output (as well as the

complexity of the function) for data with no uncertainty,

2. Terms representing in the error in mapping X to the output (as well as the

complexity of the function) for data with uncertainty,

3. Terms representing in the error in mapping X∗ to the output (as well as the

complexity of the function) for data with no uncertainty,

4. Terms representing in the error in mapping X∗ to the output (as well as the

complexity of the function) for data with uncertainty.

Another improvement considered here is to incorporate privilege information with

label uncertainty, since there are many real-world machine learning scenarios in which

the simultaneous use of privileged information and label uncertainty have the poten-

tial to improve model performance. Motivated by the potential benefit for such

an integration into a unified paradigm, label uncertainty is incorporated into the
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LUPAPI paradigm and attendant SVMp+ formulation, resulting in a general frame-

work of learning using label uncertainty and partially available privileged information

(LULUPAPI). A depiction of the LUPAPI paradigm is provided in Figure 5.1.

Figure 5.1: Comparison of LUPI and LUPAPI paradigms.

As there are multiple ways in which to incorporate partially available privileged

information into SVM, three models are considered:

1. Vapnik’s model [120], a natural extension of SVM+.

2. The mixture model, an SVMp+ formulation with a mixture of slack variables

and a correcting function.

3. The symmetric mixture model, an SVMp+ formulation with a mixture of slack

variables and a correcting function with label coefficients.

The end of this section describes how label uncertainty can be integrated into the

SVMp+ formulation (LULUPAPI).

5.2 Implementation with Support Vector Machines (SVM+)

5.2.1 Vapnik’s Model: An Initial Model for Partial Availability of Privi-

leged Information

Fundamentally, the problem of partial availability of privileged information can

be addressed using a combination of the classical SVM and standard SVM+. In other

words, one can consider slack variables for the samples without privileged information
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and the correcting function for the samples with privileged information. This model

was proposed by Vapnik et al. [120] within the LUPI framework, but not explored

further.

Suppose the training data has m samples with privileged information and n−m

samples without privileged information:

(x1,x
∗
1, y1) , . . . , (xm,x

∗
m, ym) , (xm+1, ym+1) , . . . , (xn, yn)

xi ∈ X,x∗i ∈ X∗, yi ∈ {−1, 1}

The decision rule, the slack variables, and the correcting function hyperplane param-

eters are achieved simultaneously by the following optimization:

minw,b,w∗,b∗,ξ
1
2
‖w‖2

2 + γ
2
‖w∗‖2

2 + C
∑n

i=m+1 ξi

+C∗
∑m

i=1 (w∗ · z∗i + b∗)

s.t. ∀1 ≤ i ≤ m yi (w · zi + b) ≥ 1− (w∗ · z∗i + b∗)

∀1 ≤ i ≤ m w∗ · z∗i + b∗ ≥ 0

∀m+ 1 ≤ i ≤ n yi (w · zi + b) ≥ 1− ξi

∀m+ 1 ≤ i ≤ n ξi ≥ 0

(5.1)

where C > 0, C∗ > 0, and γ > 0 are the hyperparameters. This cost function is the

most natural extension of the LUPI model. The dual optimization problem of (5.1)

can be written as:

maxα,βD(α,β) =
∑n

i=1 αi −
1
2

∑n
i,j=1 αiαjyiyjKi,j

− 1
2γ

∑m
i,j=1 (αi + βi − C∗) (αj + βj − C∗)K∗i,j

s.t.
∑n

i=1 yiαi = 0∑m
i=1 (αi + βi − C∗) = 0

∀m+ 1 ≤ i ≤ n, 0 ≤ αi ≤ C

∀1 ≤ i ≤ m, 0 ≤ αi, 0 ≤ βi

(5.2)
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where K∗i,j , K∗
(
z∗i , z

∗
j

)
is a kernel in the correcting space and Ki,j , K (zi, zj) is

the kernel in the decision space with the decision function:

f(z) = w · z + b =
n∑
i=1

yiαiK (zi, z) + b. (5.3)

Since the aforementioned Vapnik’s model was never explored further, in this paper

an optimization procedure was also developed and tested for this formulation.

5.2.2 The Proposed LUPAPI Framework: SVMp+ Formulations

In this section, two realizations of the SVMp+ formulation of LUPAPI are pro-

vided: the mixture model and the symmetric mixture model.

5.2.2.1 Mixture Model

This formulation of SVMp+ can be thought of as SVM+ with the mixture model

of slacks as:

ξ′i = (w∗ · z∗i + b∗) + ρξ∗i ∀1 ≤ i ≤ n (5.4)

In this case, the slack variables are considered for all training samples, and the

correcting function only for those samples with privileged information. The deci-

sion rule, the slack variables, and the correcting function hyperplane parameters are
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achieved simultaneously by the following optimization:

minw,b,ξ,w∗,b∗,ξ∗
1
2
‖w‖2

2 + γ
2
‖w∗‖2

2 + C
∑n

i=m+1 ξi

+ρC∗
∑m

i=1 ξ
∗
i + C∗

∑m
i=1 (w∗ · z∗i + b∗)

s.t. ∀1 ≤ i ≤ m yi (w · zi + b) ≥ 1− (w∗ · z∗i + b∗)− ξ∗i

∀1 ≤ i ≤ m w∗ · z∗i + b∗ ≥ 0

∀1 ≤ i ≤ m ξ∗i ≥ 0

∀m+ 1 ≤ i ≤ n yi (w · zi + b) ≥ 1− ξi

∀m+ 1 ≤ i ≤ n ξi ≥ 0

(5.5)

The dual optimization problem of (5.5) can be formulated as:

maxα,βD(α,β) =
∑n

i=1 αi −
1
2

∑n
i,j=1 αiαjyiyjKi,j

− 1
2γ

∑m
i,j=1 (αi + βi − C∗) (αj + βj − C∗)K∗i,j

s.t.
∑n

i=1 yiαi = 0∑m
i=1 (αi + βi − C∗) = 0

∀m+ 1 ≤ i ≤ n, 0 ≤ αi ≤ C

∀1 ≤ i ≤ m, 0 ≤ αi ≤ ρC∗, 0 ≤ βi

(5.6)

5.2.2.2 Symmetric Mixture Model

In this model, the goal is to better transfer the knowledge obtained in the privi-

leged information space to the decision space by allowing the privileged information

and the training label to interact, as suggested in [121]. Instead of the mixture model

of slacks in (5.4), consider the following mixture for the LUPAPI model:

ξ′i = yi (w
∗ · z∗i + b∗) + ρξ∗i ∀1 ≤ i ≤ m (5.7)

The problem can then be written as:

106



minw,b,ξ,w∗,b∗,ξ∗
1
2
‖w‖2

2 + γ
2
‖w∗‖2

2 + C
∑n

i=m+1 ξi

+ρC∗
∑m

i=1 ξ
∗
i + C∗

∑m
i=1 yi (w

∗ · z∗i + b∗)

s.t. ∀1 ≤ i ≤ m yi (w · zi + b) ≥ 1− yi (w∗ · z∗i + b∗)− ξ∗i

∀1 ≤ i ≤ m yi (w
∗ · z∗i + b∗) ≥ 0

∀1 ≤ i ≤ m ξ∗i ≥ 0

∀m+ 1 ≤ i ≤ n yi (w · zi + b) ≥ 1− ξi

∀m+ 1 ≤ i ≤ n ξi ≥ 0

(5.8)

The corresponding dual problem can be formulated as:

maxα,βD(α,β) =
∑n

i=1 αi −
1
2

∑n
i,j=1 αiαjyiyjKi,j

− 1
2γ

∑m
i,j=1 (αi + βi − C∗) (αj + βj − C∗) yiyjK∗i,j

s.t.
∑n

i=1 yiαi = 0

∀m+ 1 ≤ i ≤ n, 0 ≤ αi ≤ C∑m
i=1 yi (αi + βi − C∗) = 0

∀m+ 1 ≤ i ≤ m, 0 ≤ αi ≤ ρC∗, 0 ≤ βi

(5.9)

This model is referred to as symmetric because the yi coefficients are considered for

the hyperplane in the privileged space as well. This model differs from that proposed

[121] in two ways - it incorporates partially available privileged information and allows

for two separate sets of slack variables for the training and privileged spaces.

5.2.2.3 LULUPAPI: Incorporating Label Uncertainty within the SVMp+

Formulations

In this section, label uncertainty is integrated into the SVMp+ formulation of LU-

PAPI, yielding the Learning Using Label Uncertainty and Partially Available Privi-

leged Information (LULUPAPI) model. To avoid repetition, only the mixture model

of LUPAPI (described in §5.2.2) is considered. In order to incorporate label un-
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certainty, one can vary the parameter C for training samples in proportion to their

respective label confidence.

As the slack variables ξi (or the correcting function) permit some misclassification

with penalty parameter C to establish soft-margin decision boundaries, data with high

label confidence can be given more weight and subsequent influence on the decision

boundary. This yields the LULUPAPI paradigm, which requires the training samples:

(x1,x
∗
1, y1, π1) , . . . , (xm,x

∗
m, ym, πm) , (xm+1, ym+1, πm+1)

(xm+2, ym+2, πm+2) , . . . , (xn, yn, πn)

xi ∈ X,x∗i ∈ X∗, yi ∈ {−1, 1}, πi ≥ 0

where πi is a quantitative measure of uncertainty in the labels. In this case, the

LULUPAPI mixture model is:

minw,b,ξ,w∗,b∗,ξ∗
1
2
‖w‖2

2 + γ
2
‖w∗‖2

2 + C
∑n

i=m+1 πiξi

+ρC∗
∑m

i=1 πiξ
∗
i + C∗

∑m
i=1 yi (w

∗ · z∗i + b∗)

s.t. ∀1 ≤ i ≤ m yi (w · zi + b) ≥ 1− yi (w∗ · z∗i + b∗)− ξ∗i

∀1 ≤ i ≤ m yi (w
∗ · z∗i + b∗) ≥ 0

∀1 ≤ i ≤ m ξ∗i ≥ 0

∀m+ 1 ≤ i ≤ n yi (w · zi + b) ≥ 1− ξi

∀m+ 1 ≤ i ≤ n ξi ≥ 0

(5.10)

and the dual optimization problem is:

maxα,βD(α,β) =
∑n

i=1 αi −
1
2

∑n
i,j=1 αiαjyiyjKi,j

− 1
2γ

∑m
i,j=1 (αi + βi − C∗) (αj + βj − C∗)K∗i,j

s.t.
∑n

i=1 yiαi = 0∑m
i=1 (αi + βi − C∗) = 0

∀1 ≤ i ≤ m, 0 ≤ αi ≤ ρπiC
∗, 0 ≤ βi

(5.11)
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5.2.3 An Alternating SMO Algorithm for SVMp+ Formulations of LU-

PAPI and LULUPAPI Paradigms

A widely used algorithm for solving conventional SVM and SVM+ is Sequential

Minimal Optimization (SMO) [126]. SMO-style algorithms iteratively maximize the

dual cost function by selecting the best maximally sparse feasible direction in each

iteration and updating the corresponding αi and βj such that the dual constraints

are also satisfied.

A variant of SMO called Alternating SMO for solving SVM+ was previously in-

troduced Pechyony et at. [127, 128]. Inspired by this optimization method, an alter-

nating SMO-style algorithm for SVMp+ is proposed. The SVMp+ dual optimization

problems of (5.2), (5.6), (5.9), and (5.11) can be considered as the general form of:

max
θ∈F

D(θ),

where θ ∈ Rk, D : Rk → R is a concave quadratic function, and F is a convex

compact set defined by linear equalities and inequalities.

In order to achieve an alternating SMO algorithm for SVMp+, all feasible direc-

tions for each model must be determined. Feasible and maximally sparse feasible

directions were defined in [127] as follows:

Definition 1. A direction u ∈ Rk is feasible at the point θ ∈ F if there exists λ > 0

such that θ + λu ∈ F .

Definition 2. A direction u1 ∈ Rk with n1 < k zero elements is maximally sparse

feasible if any u2 ∈ Rk with n2 < k zero elements such that n1 < n2

is not feasible.

The cost function in equations (5.2), (5.6), (5.9), and (5.11) have n+m variables:

{αi}ni=1 and {βi}mi=1 . These can be combined into a single (n + m) variable vector θ

by concatenating the α and β variables: θ , (α,β)T . Thus, each maximally sparse
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feasible direction is u ∈ Rn+m. It can be verified that the cost functions in equations

(5.2), (5.6), and (5.11) have 9 sets of such directions, and (5.9) has 10. Following [127],

each set of feasible directions is denoted by Ii. The detailed descriptions of the feasible

directions and other optimization information for Vapnik’s model (5.2), the mixture

model (5.6), the symmetric mixture model (5.9), and the LULUPAPI mixture model

(5.11) formulations can be found in Appendices C, D, E, and F, respectively.

5.2.3.1 Optimization Process

Similar to the SMO algorithm for the LUPI model [127, 128], the recursive step in

the proposed optimization for the LUPAPI and LULUPAPI paradigms is finding θ =

θold + λ∗(s)us such that us ∈ ∪Ii of the corresponding feasible directions and the step

size λ∗(s) maximize the corresponding cost function ψ(λ) = D
(
θold + λus

)
, while

satisfying the constraints. Hence, given the cost function, its constraints, and the

corresponding feasible directions, the recursive optimization process of the proposed

alternating SMO-style algorithm is the same in both the LUPAPI and LULUPAPI

contexts.

Let g
(
θold

)
and H respectively be the gradient at point θold and the Hessian of

the cost function. Using the Taylor expansion of ψ(λ) at point λ = 0 yields:

λ′
(
θold , s

)
= arg max

λ≥0
ψ(λ) = −

∂ψ(λ)
∂λ

∂2ψ(λ)
∂λ2

∣∣∣∣∣
λ=0

= −
g
(
θold

)T
us

uT
s Hus

Let τ > 0 be small constant. Define: I = {us | us ∈
⋃
Ii,g

(
θold

)T
us > τ

}
. If

I = ∅, then the algorithm stops. Suppose I 6= ∅, define:

Ĩi =
{

us | us ∈ Ii,g
(
θold

)T
us > τ

}
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For each non-empty Ĩi, find the vector us(1) ∈ Ĩi that has the minimal angle with

g
(
θold

)
among all the candidates in Ĩi :

s(i) = arg max
s:us∈Ĩi

g
(
θold

)T
us (5.12)

In the next step, for the directions containing pairs, if s(i) =
(
s

(i)
1 , s

(i)
2

)
6= ∅, fix

the value of s
(i)
1 and find s′(i) =

(
s

(i)
1 , s

′(i)
2

)
such that us′(i) ∈ Ĩi and

s′(i) = arg max
t:t=

(
s
(i)
1 ,t2

)D (θold + λ′
(
θold , t

)
ut

)
−D

(
θold

)
(5.13)

= arg max
t:t=

(
s
(i)
1 ,t2

) −
(
g
(
θold
)T

ut

)2

uT
t Hut

where the last equality is achieved by substituting λ′
(
θold , s

)
of equation (24) into

D
(
θold + λ′

(
θold , t

)
ut

)
−D

(
θold

)
Similarly, for the directions containing triplets,

if s(i) =
(
s

(i)
1 , s

(i)
2 , s

(i)
3

)
6= ∅, fix the value of s

(i)
1 and s

(i)
3 , and find s′(i) =

(
s

(i)
1 , s

′(i)
2 , s

(i)
3

)
such that us′(i) ∈ Ĩi and

s′(i) = arg max
t:t=

(
s
(i)
1 ,t2,s

(i)
3

) −
(
g
(
θold
)T

ut

)2

uT
tHut

(5.14)

Among all the possible directions from us′(i) ∈ ∪Ĩi, the optimal direction that

maximizes the cost function is chosen:

s∗(i) = arg max
s′(i) 6=∅

−
(
g
(
θold

)T
ut

)2

uT
t Hut

(5.15)

Having chosen the optimal direction s∗(i), the value of
(
θold , s∗(i)

)
should be

clipped such that it satisfies the upper/lower bound constraints on {αi}ni=1 and

{βi}mi=1 . Clipping functions are specific to the dual problems of each SVMp+ for-
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mulation and can be found in the Appendices C, D, E, and F.

5.2.3.2 Algorithm

Having described the framework for the proposed alternating SMO-style algorithm

that solves the SVMp+ dual cost functions of the LUPAPI and LULUPAPI models,

the resultant algorithm is codified in Algorithm 3. Note that most of the calculations

for Ii can be performed once, rather than in each iteration, as they depend largely on

the label and indices of the training data samples. One can consider various initial

conditions for the α and β variables. Since the feasible directions and clipping function

ensure the satisfaction of the dual problem conditions, a satisfactory initial condition

guarantees the fulfillment of these conditions in each iteration. In all variants of the

LUPAPI and LULUPAPI models, the simplest initial condition that satisfies all of

the constraints is α
(0)
i = 0 and β

(0)
i = C∗.

Algorithm 3: Alternating SMO-style Optimization for SVMp+
formulations of LUPAPI and LULUPAPI
Require: Training data, training labels, τ > 0, γ > 0, C > 0, C∗ > 0, and 0 < ε� 1.

1 Calculate: Kernels K and K∗, Hessian H

2 Initialize: θ
(0)
i

(
i.e., α

(0)
i and β

(0)
i

)
3 Initialize: Ii for each feasible direction based on the indexes and training labels.

4 while exists a maximally sparse feasible direction us s.t. g (θnew )T us > τ and(
D (θnew )−D

(
θold

))
> ε do

5 θold = θnew

6 Calculate g(θold)

7 Update Ii for all i based on θold

8 Calculate Ĩi if Ii 6= ∅
9 Calculate s(i) if Ĩi 6= ∅ using (5.12)

10 Calculate s′(i) if Ĩi 6= ∅ using (5.13) or (5.14)

11 Calculate s∗(i) if ∪Ĩi 6= ∅ using (5.15) Calculate λ∗ using the corresponding
clipping function

12 Update θnew = θold + λ∗us∗

As previously mentioned, while the proposed optimization process for the LUPAPI

and LULUPAPI models is the same given the dual cost function and the corresponding
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Figure 5.2: Alternating SMO-style optimizer for the LULUPAPI model.

feasible directions, the LULUPAPI model is always the most comprehensive model

and any given algorithm for LULUPAPI can easily be modified to realize a LUPAPI

version. For instance, any algorithm specifically designed for the LULUPAPI mixture

model can be made into a LUPAPI mixture model by simply replacing the uncertainty

coefficients with unity. A general schematic diagram of the LULUPAPI iterative

optimizer is depicted in Figure 5.2.

5.3 Application

In this work, a unified framework for handling machine learning tasks in which

privileged learning is partially available is presented, while simultaneously correcting

for label uncertainty. As there are multiple means of incorporating partially available

privileged information into SVM, three models were considered: Vapnik’s model [120];

and two new SVMp+ formulations, the mixture and symmetric mixture models. An

alternating SMO-style optimization algorithm was provided that solves all model

formulations.

We implement the proposed LUPAPI and LULUPAPI paradigm in several ma-

chine learning models for detection patients with ARDS. The proposed frameworks

use EHR data as standard information, CXRs as partially available privileged in-

formation, and clinicians’ confidence levels in ARDS diagnosis as a measure of label
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uncertainty.

Unlike the previous study in Chapter IV that relied on CXR ratings from physi-

cians, this work uses feature extracted from the CXR as the privileged information.

As previously described, lung segmentation is performed with TVAC (§3.3.1) and fea-

tures are extracted from the lung fields. In this work, the extracted features are ob-

tained from Directional Blur (§3.5.1), the histogram (§3.5.2), gray-level co-occurence

matrix (§3.5.3), and deep learning (§3.5.4).

5.3.1 Data

This work uses the same dataset as previously described in §2.5.1 and §3.6.1.

5.3.2 Results

For the ARDS dataset in the previous section, a LUPAPI or LULUPAPI formu-

lation was the best performing model. In the LUPAPI experiments on the ARDS

dataset as depicted in Table 5.1, the mixture model was the best performing model,

achieving an AUC of 85.78%, a 2.8% improvement over SVM. Using the same mixture

model, but incorporating label uncertainty, the LULUPAPI formulation in Table 5.2

achieved an AUC of 87.01%, a 4.3% improvement over SVM. The statistical tests in

Table 5.3 verify the statistical significance of improvements in performance. Addi-

tionally, Table 5.5 shows that LULUPAPI formulation achieved 2.39% improvement

over the most competitive deep learning method.

Table 5.1: LUPAPI results for ARDS classification.

Train Test

Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity AUC

SVM 88.61 80.43 91.76 86.10 89.27 76.59 90.33 83.46
Vapnik’s Model 86.01 78.51 88.91 83.71 88.42 75.62 89.50 82.56
Mixture Model 88.09 81.28 90.72 86.00 88.78 82.23 89.34 85.78
Symmetric Mixture Model 88.56 81.59 91.26 86.42 88.94 81.13 89.60 85.37
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Table 5.4: Comparison of different LUPI paradigms in detection of ARDS.

Accuracy AUROC
Specificity at

98% Sensitivity
Specificity at

90% Sensitivity

SVM 78.04 81.13 45.71 59.18
SVM+ 83.81 83.75 51.02 62.83
SVM w/ LU 81.57 85.48 52.85 64.50
DT 73.59 67.05 50.30 73.58
DT+ 77.30 72.44 64.91 88.47

SVM = support vector machine, SVM+ = LUPI implementation with support vector machine,
SVM w/ LU = support vector machine with label uncertainty, DT = decision tree,
DT+ = LUPI implementation with decision trees.

Table 5.2: ARDS classification results using SVM.

Train Test

Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity AUC F1 Score

SVM 88.61 80.43 91.76 86.10 89.27 76.58 90.33 83.46 79.73
SVM with LU 87.56 78.74 90.96 84.85 89.52 80.03 90.32 85.17 79.60
LUPAPI 88.09 81.28 90.72 86.00 88.78 82.23 89.34 85.78 79.17
LULUPAPI 87.96 83.59 89.65 86.62 88.38 85.40 88.63 87.01 79.46

The McNemar test [129] was employed to assess the statistical significance of

improvements in performance of the proposed models over SVM. Since this test is

insensitive to the proportion of positive versus negative cases [130], the test was

applied exclusively to positive cases. Table 5.3 summarizes the results of the McNemar

tests and verifies the statistical significance of incorporating both label uncertainty

and partial available privileged information in detection of patients with ARDS.

Table 5.3: McNemar X 2 test assessment of statistical significance of performance improve-
ments exclusively among ARDS patients.

SVM SVM w/ LU LUPAPI LULUPAPI

SVM 0 12.80 39.02 56.70
SVM w/ LU X 0 10.22 33.58
LUPAPI X X 0 15.61
LULUPAPI X X X 0

In this table, each row represents the null classifier, and each column represents the alternative
classifier. For example, LULUPAPI versus SVM has the MeNemar test statistic X 2 = 56.70,
which is extremely in favor of LULUPAPI (p-value � 0.001), If the null classifier outperforms
the alternative classifier, the value is represented with an X.

Beyond comparisons with SVM-based methods, the LUPAPI and LULUPAPI
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Table 5.5: Comparison of ARDS classification using LUPAPI mixture model, LULUPAPI
mixture model, and deep learning methods.

Train Test

Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity AUC

LUPAPI 88.09 81.82 90.72 86.00 88.78 82.23 89.34 85.78
LULUPAPI 87.96 83.59 89.65 86.62 88.38 85.40 88.63 87.01
Shallow NN (2 layers, 10 nodes) 87.52 86.65 87.77 87.31 79.98 84.99 79.56 82.23
Shallow NN (2 layers, 50 nodes) 87.89 84.81 89.08 86.94 83.41 82.97 89.05 85.39
Shallow NN (2 layers, 100 nodes) 87.41 82.43 89.33 85.88 87.97 66.67 89.76 78.22
LSTM (25 layers, 10 nodes) 90.94 83.10 93.97 88.53 88.39 64.33 90.41 77.34
LSTM (25 layers, 50 nodes) 91.99 84.67 94.82 89.74 88.91 70.39 90.47 80.43
LSTM (25 layers, 100 nodes) 92.62 85.79 95.25 90.52 87.40 71.76 88.71 80.24

models were also benchmarked against multiple popular deep learning methods. A

“shallow” neural network (two-layer feedforward network) with one hidden layer of

either 10, 50, or 100 nodes was trained to create a less complex neural network more

suitable for this type of data. In addition, a long short-term memory (LSTM) network,

a specialized type of artificial recurrent neural network for time-series sequential data

[131], was also trained to provide a performance comparison to a state-of-the-art

deep learning algorithm. The LSTM network was composed of 25 layers with either

10, 50, or 100 hidden units. Both the shallow neural network (Shallow NN) and

LSTM models were implemented with the Keras deep learning library using the Adam

optimizer algorithm [132] with 500 epochs (mini-batch size of 32) and cross entropy

as the loss function. Table 5.5 summarizes the results of this experiment. As can be

seen, LUPAPI and LULUPAPI outperformed the deep learning methods.

5.4 Discussion

While Vapnik’s model (5.1) is a natural extension of the SVM+ framework, the ex-

periments showed that only the two SVMp+ models (5.5) and (5.8) outperform SVM

on the real-world ARDS dataset. Moreover, on the ARDS dataset, which contained

both partially available privileged information and label uncertainty, the LULUPAPI

model incorporating both outperformed the LUPAPI model that solely considered

privileged information. Even though these models were developed with clinical de-
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cision support systems in mind, the proposed models can be applied to many other

machine learning applications in healthcare and other domains.

Though the LUPAPI and LULUPAPI frameworks improved performance overall,

Vapnik’s model underperformed the mixture models and SVM on the ARDS dataset.

Based on the experiments, the primary reason for such performance is due to the

offset parameter b of the decision function (the detailed calculation of which can be

found in the Appendices). For the mixture models and SVM, the set N (defined in the

Appendices) includes fewer αis, corresponding to fewer support vectors that would be

used to calculate the offset parameter. This is in turn due to the consideration of slack

variables for all samples, regardless of privileged information availability. However,

for Vapnik’s model the set N consists of more αs that negatively effects the offset

parameter precision.

With respect to time complexity, the proposed alternating SMO-style algorithm

for the LUPAPI model is O(n). This is similar to the SMO algorithm for conventional

SVM and the alternating SMO algorithm for the LUPI model (the SVM+ formula-

tion), and results from the feasible direction vectors having a constant number of

nonzero components. However, the experiments showed that given the same parame-

ters and stoppage criterion, Vapnik’s model required more iterations for convergence.

The experimental results also support the claim that if the hyperparameter op-

timization is performed thoroughly, performance of the mixture model (9) is always

lower-bounded by SVM. This claim can also be verified using the dual forms, noting

the bound on αi and the inclusion of SVM feasible directions in the feasible directions

of (9).
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CHAPTER VI

Conclusion

In just the past decade, machine learning has made a profound impact in many

areas of science and technology, including life science and medical research. Ongoing

research and recent advances demonstrated the potential to transform the medical

landscape - from early diagnosis through clinical decision support to epidemiology,

drug development, and robotic-assisted surgery. These diverse efforts share the ulti-

mate goal of improving quality of care and outcome for patients.

In this thesis, I propose the integration of label uncertainty and learning using

privileged information to develop robust machine learning models for detection of

ARDS (§5.2.2). This research also includes development of methods for time-series

analysis of longitudinal health data (§2.2), signal processing techniques for quality

assessment (§2.3), lung segmentation from complex CXRs (§3.3.1), and novel feature

extraction algorithm for quantification of pulmonary opacification (§3.5.1). These

algorithms were tested and validated on retrospective study on data obtained from

hospitalized patients at Michigan Medicine in addition to data from external sources

(e.g. publicly available databases). These studies demonstrate that careful, principled

use of methodologies in machine learning and artificial intelligence can potentially

assist healthcare providers with early detection of ARDS. However, in light of these

advances, it is imperative to ensure that the developed methods are practical, reliable,
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clinical valid, and interpretable decision making tools.

Using AI in any existing research domain often heralds comparison to a (human)

expert’s performance for the same task. In research, if the domain expert achieves

90% accuracy for a given task and a machine learning model reports 95% on the same

test set - we can celebrate that advances were made and significant milestones have

been reached. However, if a CXR diagnosis model outperforms a panel of radiologists,

should that mean healthcare providers and hospital administrators can use it for their

patients? In reality, physicians and clinical experts care more about safety, reliability,

bias, performance on edge cases, and a number of other factors on which can’t assess

with a simple performance benchmark.

Although AI has potential to improve healthcare, the process of bringing these

advances to the practice seems to be the primary current setback to adoption and

innovation. For example - if you’ve put a neural network into production but achieved

slightly better results with a re-trained model, do you simply re-deploy the update

model for immediate use? In research, and also in certain commercial applications,

this is considered standard practice. However, in healthcare, if the updated model

misses an edge case, an incorrect medical decision may be made - possibly resulting

in an adverse outcome for the patient. This problem also poses significant challenges

for agencies like the U.S. Food and Drug Administration (FDA) who are used to

regulating products, not systems.

As such, there are is a growing need for a system view to regulate AI/ML-based

software as medical devices [133]. The FDA has recently released an action plan [134]

to address some of these issues. In this approach, they expressed an expectation for

transparency and real-world performance monitoring by manufacturers that could

enable FDA and manufacturers to evaluate and monitor a software product from its

pre-market development through post-market performance. These new safety chal-

lenges would enable FDA to provide a reasonable assurance of safety and effectiveness
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while embracing the iterative improvement power of artificial intelligence and machine

learning-based software as a medical device.

In addition to the action plan, the FDA also highlighted the importance of Good

Machine Learning Practice (GMLP) through consensus driven standards and other

community initiatives. They provide guidance similar to good software engineering

practices (e.g. data management, feature extraction, training, interpretability, eval-

uation, and documentation) in an effort to facilitate the shift in evaluation through

their proposed regulatory approach. Furthermore, to encourage transparency with

assessment and adoption, they also provide structured requirements for demonstra-

tion of analytical validation (e.g. performance evaluation protocols to minimize data

leakage if the data is used in multiple evaluations) and clinical validation (e.g. en-

suring that the software is valid on the targeted population in the context of clinical

care).

Although these regulatory processes can feel like additional obstacles and chal-

lenges to overcome, the updated guidelines should be seen as a starting point to

accelerate adoption and improve the quality of machine learning in healthcare. This

shift in perspective is crucial to maximizing the safety and efficacy of AI/ML in clin-

ical applications. These discussions at the regulatory level and advances in research,

like the works presented in this thesis, gives hope for the community to continue

working together and iterating upon these existing frameworks to be fit for purpose.
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APPENDIX A

Data Dictionary for Covariates Used as Features

Table A.1: Covariates used for model training.

Name Description

temp Temperature

hr Heart rate

rr Respiratory rate

sbp Systolic blood pressure

dbp Diastolic blood pressure

PEEP Positive end-expiratory pressure

plat Plateau pressure

mAirP Mean airway pressure

wbc White blood cell count level

lactate Lactate acid level obtained by blood gas

bicarb Bicarbonate level

paco2 Carbon dioxide level obtained by blood gas

pH pH level obtained by blood gas

bnp Brain natriuretic peptide level

trop Troponin level

alb Albumin level
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invasive If patient is currently receiving invasive mechanical ventilation (1 = yes, 0 = no)

non invasive If patient is currently receiving non-invasive mechanical ventilation (1 = yes, 0 = no)

sp02 Pulse oximetry value

fi02 Level of supplemental oxygen (FiO2 = fraction of inspired oxygen)

pf Ratio of blood oxygen to supplemental oxygen (P/F = Pa02/FiO2)

pressor If patient is currently receiving vasopressor support for hemodynamic insufficiency

net in Net IV fluids: amount of total IV fluids given (total urinary output to date)

shock Ratio of heart rate over systolic blood pressure
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APPENDIX B

Additional Results for Directional Blur

Table B.1: Classification results using the histogram with additional features.

Histogram +
Directional Blur

Histogram +
GLCM

Histogram +
Deep Learning

All Features Combined

Accuracy AUC F1 Accuracy AUC F1 Accuracy AUC F1 Accuracy AUC F1

SVM 73.55 68.61 59.42 71.65 65.78 58.43 72.64 67.88 60.48 74.86 73.41 64.06
Random Forrest 75.67 66.58 59.44 73.67 65.45 55.12 74.77 65.67 59.63 76.76 71.59 63.34
AdaBoost 79.55 75.61 62.43 75.76 73.32 59.19 77.83 74.50 61.44 83.51 79.93 65.47
RUSBoost 77.53 73.48 62.11 75.67 72.48 61.33 76.70 72.35 63.41 81.93 77.80 67.56
Robust Boost 71.55 70.61 60.13 70.52 68.94 56.37 73.96 68.44 59.52 76.47 73.82 63.42
Total Boost 70.65 69.77 68.91 70.84 67.61 55.38 71.54 66.53 58.11 73.84 68.31 59.60

Table B.2: Classification results using the GLCM with additional features.

GLCM +
Directional Blur

GLCM +
Histogram

GLCM +
Deep Learning

All Features Combined

Accuracy AUC F1 Accuracy AUC F1 Accuracy AUC F1 Accuracy AUC F1

SVM 74.55 69.60 62.71 72.56 63.32 58.55 72.62 67.55 62.47 74.56 73.27 64.05
Random Forrest 76.56 68.69 59.22 74.58 65.98 56.12 74.79 66.51 59.27 76.58 71.61 63.32
AdaBoost 81.53 77.80 63.51 76.63 74.91 59.36 77.51 75.81 61.32 83.87 79.50 65.49
RUSBoost 79.53 76.60 66.48 76.92 72.51 65.40 78.55 75.61 63.29 81.53 77.91 67.70
Robust Boost 70.51 70.70 60.39 71.90 69.32 57.60 74.55 71.53 57.10 76.59 73.90 63.44
Total Boost 71.53 69.90 58.44 70.53 66.31 55.09 72.31 70.22 55.31 73.57 68.43 59.55

Table B.3: Classification results using deep learning with additional features.

Deep Learning +
Directional Blur

Deep Learning +
Histogram

Deep Learning +
GLCM

All Features Combined

Accuracy AUC F1 Accuracy AUC F1 Accuracy AUC F1 Accuracy AUC F1

SVM 75.60 70.53 64.90 72.34 65.71 62.34 73.50 65.53 62.19 74.80 73.84 64.77
Random Forrest 76.71 67.95 62.30 74.59 66.91 59.04 74.61 66.10 63.37 76.88 71.30 63.43
AdaBoost 80.55 77.90 65.13 76.78 74.32 62.15 77.59 75.88 64.30 83.56 79.89 65.41
RUSBoost 80.76 76.51 65.19 75.65 72.94 61.34 78.55 75.61 65.04 81.82 77.89 67.55
Robust Boost 72.35 69.54 60.11 72.93 68.59 58.44 73.54 71.65 61.40 76.55 73.90 63.34
Total Boost 73.52 68.44 59.21 72.60 69.54 59.35 73.74 71.90 60.43 73.66 68.90 59.11
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APPENDIX C

Vapnik’s Model

Let θ be a (n+m)-variable vector as the concatenation of the α and β variables: θ , (α, β)T .

Feasible Directions and the Clipping Function

It can be verified that the cost function in equation 5.2 has 9 sets of maximally sparse feasible

directions (defined in §5.2.3) as follows:

Direction 1: I1 , {us | s = (s1, s2) , n+ 1 ≤ s1, s2 ≤

n+m, s1 6= s2;us1 = 1, us2 = −1, θs2 > 0,∀i /∈ sui = 0}

Direction 2: I2 , {us | s = (s1, s2) , 1 ≤ s1, s2 ≤ m, s1 6=

s2, ys1 = ys2 ;us1 = 1, us2 = −1, θs2 > 0,∀i /∈ sui = 0}

Direction 3: I3 , {us | s = (s1, s2) ,m+ 1 ≤ s1, s2 ≤

n, s1 6= s2, ys1 = ys2 ;us1 = 1, θs1 < C, us2 = −1, θs2 >

0,∀i /∈ sui = 0} .

Direction 4: I4 , {us | s = (s1, s2) ,m+ 1 ≤ s1, s2 ≤

n, s1 6= s2, ys1 6= ys2 ,∀i /∈ sui = 0;us1 = us2 = 1, θs1 <

C, θs2 < C or us1 = us2 = −1, θs1 > 0, θs2 > 0}
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Direction 5: I5 , {us | s = (s1, s2, s3) , 1 ≤ s1, s2 ≤

m,n+ 1 ≤ s3 ≤ n+m, s1 6= s2, ys1 6= ys2 ,∀i /∈ sui =

0;us1 = us2 = 1, us3 = −2, θs3 > 0 or us1 = us2 =

−1, θs1 > 0, θs2 > 0, us3 = 2}

Direction 6: I6 , {us | s = (s1, s2, s3) , 1 ≤ s1 ≤

m,m+ 1 ≤ s2 ≤ n, n+ 1 ≤ s3 ≤ n+m, ys1 = ys2 ,∀i /∈

sui = 0;us1 = 1, us2 = −1, θs2 > 0, us3 = −1, θs3 >

0 or us1 = −1, θs1 > 0, us2 = 1, θs2 < C, us3 = 1}

Direction 7: I7 , {us | s = (s1, s2, s3) , 1 ≤ s1 ≤ m,m+

1 ≤ s2 ≤ n, n+ 1 ≤ s3 ≤ n+m, ys1 6= ys2 ,∀i /∈ sui =

0;us1 = us2 = 1, θs2 < C, us3 = −1, θs3 > 0 or us1 =

us2 = −1, θs1 > 0, θs2 > 0, us3 = 1}

Direction 8: I8 , {us | s = (s1, s2, s3) , 1 ≤ s1, s2 ≤

m,m+ 1 ≤ s3 ≤ n, s1 6= s2, ys1 6= ys2 , ys3 = ys2 ,∀i /∈

sui = 0;us1 = 1, us2 = −1, θs2 > 0, us3 = 2, θs3 <

C or us1 = −1, θs1 > 0, us2 = 1, us3 = −2, θs3 > 0}

Direction 9: I9 , {us | s = (s1, s2, s3) , 1 ≤ s1, s2 ≤

m,m+ 1 ≤ s3 ≤ n, s1 6= s2, ys1 6= ys2 , ys3 = ys1 ,∀i /∈

sui = 0;us1 = 1, us2 = −1, θs2 > 0, us3 = −2, θs3 >

0 or us1 = −1, θs1 > 0, us2 = 1, us3 = 2, θs3 < C}

Generally, a move from an old feasible point θold to a new feasible point θold = θold + λus

in the direction of us ∈ ∪Ii will satisfy all the constraints corresponding to the dual problem if the

step size λ fulfills the bounding constraints of equation 5.2. In §5.2.3 it was shown how the best

direction and the corresponding step size parameter λ are chosen. After determining the direction

and step size, the clipping function (C.1), ensures that the aforementioned boundary conditions of

the dual form are satisfied.

λ∗
(
θold , s∗(i)

)
= min
k∈s∗(i),uk>0

{
C − θoldk

uk
, min
j∈s∗(i)

(
λ′
(
θold , s∗(i)

)
,

∣∣∣∣∣θoldjuj
∣∣∣∣∣
)}

(C.1)

126



Offset Parameter of the Decision Function

In order to calculate the offset parameter b of the decision function, suppose α and β are the

solution of the SVMp+ dual problem (2). Define the two sets N , {i |1 ≤ i ≤ m,αi〉 0} and

N ′ , {i | m+ 1 ≤ i ≤ n, 0 < αi < C} . By the conditions in SVMp+, for the support vectors the

KarushKuhn-Tucker (KKT) conditions state [128, 135]:

∀i ∈ N yi (w · zi + b) = 1− (w∗ · z∗i + b∗) (C.2)

∀i ∈ N ′ yi (w · zi + b) = 1 (C.3)

Define:

Fi , w · zi
∣∣∣
i∈N

=
∑n
j=1 yjαjKij

∣∣∣
i∈N

F ′i , w · zi
∣∣∣
i∈N ′

=
∑n
j=1 yjαjKij

∣∣∣
i∈N ′

fi , γw∗ · z∗i
∣∣∣
i∈N

=
∑m
j=1 (αj + βj − C∗)K∗ij

∣∣∣
i∈N

The equalities in equations C.2 and C.3 can be rewritten as:



b+ b∗ = 1− fi
γ − Fi ∀i ∈ N, yi = 1

b− b∗ = −1 + fi
γ − Fi ∀i ∈ N, yi = −1

b = 1− F ′i ∀i ∈ N ′, yi = 1

b = −1− F ′i ∀i ∈ N ′, yi = −1

Define N+ = {i | i ∈ N, yi = 1} and S+ =
∑
i∈N+

(
1− fi

γ − Fi
)
, N− = {i | i ∈ N, yi = −1}

and S− =
∑
i∈N−

(
−1 + fi

γ − Fi
)
, N ′+ = {i | i ∈ N ′, yi = 1} and S′+ =

∑
i∈N ′+

(1− F ′i ) , N ′− =

{i | i ∈ N ′, yi = −1} and S′− =
∑
i∈N ′−

(−1− F ′i ) . Solving the four equations gives two possible

answers: b = 1
2

(
S+

|N+| + S−
|N−|

)
and b = 1

2

(
S′+

|N ′+|
+

S′−

|N ′−|

)
. The following average for the offset

parameter was used:

b =

[
|N |

|N |+ |N ′|

(
S+

|N+|
+

S−
|N−|

)
+

|N ′|
|N |+ |N ′|

(
S′+∣∣N ′+∣∣ +

S′−∣∣N ′−∣∣
)]
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APPENDIX D

Mixture Model

Let θ be a (n+m)-variable vector as the concatenation of the α and β variables: θ , (α, β)T .

Feasible Directions and the Clipping Function

For the cost function in equation (5.6) and its constraints, the sets of feasible directions are as

follows:

Direction 1: I1 , {us | s = (s1, s2) , n+ 1 ≤ s1, s2 ≤

n+m, s1 6= s2;us1 = 1, us2 = −1, θs2 > 0,∀i /∈ sui = 0} .

Direction 2: I2 , {us | s = (s1, s2) , 1 ≤ s1, s2 ≤ m, s1 6=

s2, ys1 = ys2 ;us1 = 1, θs1 < ρC∗, us2 = −1, θs2 > 0,∀i /∈

sui = 0} .

Direction 3: I3 , {us | s = (s1, s2) ,m+ 1 ≤ s1, s2 ≤ n,

s1 6= s2, ys1 = ys2 ;us1 = 1, θs1 < C, us2 = −1, θs2 > 0,

∀i /∈ sui = 0} .

Direction 4: I4 , {us | s = (s1, s2) ,m+ 1 ≤ s1, s2 ≤ n,

s1 6= s2, ys1 6= ys2 ,∀i /∈ sui = 0;us1 = us2 = 1, θs1 < C,

θs2 < C or us1 = us2 = −1, θs1 > 0, θs2 > 0} .
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Direction 5: I5 , {us | s = (s1, s2, s3) , 1 ≤ s1, s2 ≤ m,

n+ 1 ≤ s3 ≤ n+m, s1 6= s2, ys1 6= ys2 ,∀i /∈ sui = 0;

us1 = us2 = 1, θs1 < ρC∗, θs2 < ρC∗, us3 = −2, θs3 > 0

or us1 = us2 = −1, θs1 > 0, θs2 > 0, us3 = 2} .

Direction 6: I6 , {us | s = (s1, s2, s3) , 1 ≤ s1 ≤ m,

m+ 1 ≤ s2 ≤ n, n+ 1 ≤ s3 ≤ n+m, ys1 = ys2 ,∀i /∈ sui = 0;

us1 = 1, θs1 < ρC∗, us2 = −1, θs2 > 0, us3 = −1, θs3 > 0

or us1 = −1, θs1 > 0, us2 = 1, θs2 < C, us3 = 1} .

Direction 7: I7 , {us | s = (s1, s2, s3) , 1 ≤ s1 ≤ m,

m+ 1 ≤ s2 ≤ n, n+ 1 ≤ s3 ≤ n+m, ys1 6= ys2 ,∀i /∈ sui = 0;

us1 = us2 = 1, θs1 < ρC∗, θs2 < C, us3 = −1, θs3 > 0

or us1 = us2 = −1, θs1 > 0, θs2 > 0, us3 = 1} .

Direction 8: I8 , {us | s = (s1, s2, s3) , 1 ≤ s1, s2 ≤ m,

m+ 1 ≤ s3 ≤ n, s1 6= s2, ys1 6= ys2 , ys3 = ys2 ,∀i /∈ sui = 0;

us1 = 1, θs1 < ρC∗, us2 = −1, θs2 > 0, us3 = 2, θs3 < C

or us1 = −1, θs1 > 0, us2 = 1, θs2 < ρC∗, us3 = −2, θs3 > 0}.

Direction 9: I9 , {us | s = (s1, s2, s3) , 1 ≤ s1, s2 ≤ m,

m+ 1 ≤ s3 ≤ n, s1 6= s2, ys1 6= ys2 , ys3 = ys1 ,∀i /∈ sui = 0;

us1 = 1, θs1 < ρC∗, us2 = −1, θs2 > 0, us3 = −2, θs3 > 0

or us1 = −1, θs1 > 0, us2 = 1, θs2 < ρC∗, us3 = 2, θs3 < C}.

It can be verified that when moving from any feasible point θold in the direction of us ∈ ∪Ii

and applying the clipping function of equation (30), the constraints corresponding to dual problems

are satisfied.

Offset Parameter of the Decision Function

In order to calculate the offset parameter b of the decision function, suppose α and β are the

solution of the SVMp+ dual problem (10). Define the two sets N , {i | 1 ≤ i ≤ m, 0 < αi < ρC∗}

and N ′ ,
{
i | m+ 1 ≤ i ≤ n, 0 < ᾱi < C

}
.

The rest of the calculations are similar to the previous case in Appendix C.

129



APPENDIX E

Symmetric Mixture Model

Let θ be a (n+m)-variable vector as the concatenation of the α and β variables: θ , (α, β)T .

Feasible Directions and the Clipping Function

Using the cost function in equation (5.9), the sets of feasible directions are:

Direction 1: I1 , {us | s = (s1, s2) , n+ 1 ≤ s1, s2 ≤

n+m, s1 6= s2, ys1−n = ys2−n;us1 = 1, us2 = −1, θs2 > 0,

∀i /∈ sui = 0} .

Direction 2: I2 , {us | s = (s1, s2) , n+ 1 ≤ s1, s2 ≤

n+m, s1 6= s2, ys1−n 6= ys2−n,∀i /∈ sui = 0;us1 = us2 = 1

or us1 = us2 = −1, θs1 > 0, θs2 > 0} .

Direction 3: I3 , {us | s = (s1, s2) , 1 ≤ s1, s2 ≤ m,

s1 6= s2, ys1 = ys2 ;us1 = 1, θs1 < ρC∗, us2 = −1, θs2 > 0,

∀i /∈ sui = 0} .

Direction 4: I4 , {us | s = (s1, s2) , 1 ≤ s1, s2 ≤ m,

s1 6= s2, ys1 6= ys2 ,∀i /∈ sui = 0;us1 = us2 = 1, θs1 < ρC∗,

θs2 < ρC∗ or us1 = us2 = −1, θs1 > 0, θs2 > 0}
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Direction 5: I5 , {us | s = (s1, s2) ,m+ 1 ≤ s1, s2 ≤ n,

s1 6= s2, ys1 = ys2 ;us1 = 1, θs1 < C, us2 = −1, θs2 > 0,

∀i /∈ sui = 0} .

Direction 6: I6 , {us | s = (s1, s2) ,m+ 1 ≤ s1, s2 ≤ n,

s1 6= s2, ys1 6= ys2 ,∀i /∈ sui = 0;us1 = us2 = 1, θs1 < C,

θs2 < C or us1 = us2 = −1, θs1 > 0, θs2 > 0} .

Direction 7: I7 , {us | s = (s1, s2, s3) , 1 ≤ s1 ≤ m,

m+ 1 ≤ s2 ≤ n, n+ 1 ≤ s3 ≤ n+m, ys1 = ys2 = ys3 − n,

∀i /∈ sui = 0;us1 = −1, θs1 > 0, us2 = 1, θs2 < C, us3 = 1

or us1 = 1, θs1 < ρC∗, us2 = −1, θs2 > 0, us3 = −1, θs3 > 0}.

Direction 8: I8 , {us | s = (s1, s2, s3) , 1 ≤ s1 ≤ m,

m+ 1 ≤ s2 ≤ n, n+ 1 ≤ s3 ≤ n+m, ys1 = ys2 , ys3−n 6= ys1 ,

∀i /∈ sui = 0;us1 = −1, θs1 > 0, us2 = 1, θs2 < C,

us3 = −1, θs3 > 0 or us1 = 1, θs1 < ρC∗, us2 = −1,

θs2 > 0, us3 = 1} .

Direction 9: I9 , {us | s = (s1, s2, s3) , 1 ≤ s1 ≤ m,

m+ 1 ≤ s2 ≤ n, n+ 1 ≤ s3 ≤ n+m, ys1 6= ys2 , ys3−n = ys1 ,

∀i /∈ sui = 0;us1 = 1, θs1 < ρC∗, us2 = 1, θs2 < C,

us3 = −1, θs3 > 0 or us1 = −1, θs1 > 0, us2 = −1,

θs2 > 0, us3 = 1} .

Direction 10: I10 , {us | s = (s1, s2, s3) , 1 ≤ s1 ≤ m,

m+ 1 ≤ s2 ≤ n, n+ 1 ≤ s3 ≤ n+m, ys1 6= ys2 , ys3−n = ys2 ,

∀i /∈ s ui = 0;us1 = 1, θs1 < ρC∗, us2 = 1, θs2 < C, us3 = 1

or us1 = −1, θs1 > 0, us2 = −1, θs2 > 0, us3 = −1, θs3 > 0}.

As described in the Chapter V, after determining the best feasible direction and the correspond-

ing step size, the clipping function of equation (E.1)ensures that the boundary conditions of the dual

form are satisfied.
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λ∗
(
θold, s∗(i)

)
=


min

{
ρC∗ − θoldk ,minj∈s∗(i)

(
λ′
(
θold , s∗(i)

)
,

∣∣∣∣ θoldj

uj

∣∣∣∣)} 1 ≤ k ≤ m, k ∈ s∗(i), uk > 0

min

{
Cπk − θoldk ,minj∈s∗(i)

(
λ′
(
θold , s∗(i)

)
,

∣∣∣∣ θoldj

uj

∣∣∣∣)} m+ 1 ≤ k ≤ n, k ∈ s∗(i), uk > 0

(E.1)

Offset Parameter of the Decision Function

If equation (5.9) is considered, the two sets N , {i | 1 ≤ i ≤ m, 0 < αi < ρC∗} and N ′ ,

{i | m+ 1 ≤ i ≤ n, 0 < αi < C} are defined. By the conditions for equation (5.8), for the support

vectors, the KKT conditions state:

∀i ∈ N yi (w · zi + b) = 1− yi (w∗ · z∗i + b∗)

∀i ∈ N ′ yi (w · zi + b) = 1

Define (note that fi is not the same as the previous cases in Appendices C and D):

Fi , w · zi
∣∣∣
i∈N

=

n∑
j=1

yjαjKij

∣∣∣∣∣∣
i∈N

F ′i , w · zi
∣∣∣
i∈N ′

=

n∑
j=1

yjαjKij

∣∣∣∣∣∣
i∈N ′

fi , γw∗ · z∗i
∣∣∣
i∈N

=

m∑
j=1

(αj + βj − C∗) yjK∗ij

∣∣∣∣∣∣
i∈N

Note that not only is fi not the same as previous cases, but the second equation has also been

changed. DefineN+ = {i | i ∈ N, yi = 1} and S+ =
∑
i∈N+

(
1− fi

γ − Fi
)
, N− = {i | i ∈ N, yi = −1}

and S− =
∑
i∈N−

(
−1− fi

γ − Fi
)
N ′+ = {i | i ∈ N ′, yi = 1} and S′+ =

∑
i∈N ′+

(1− F ′i ) N ′− =

{i | i ∈ N ′, yi = −1} and S′− =
∑
i∈N ′−

(−1− F ′i ) Solving the four equations gives two possible

answers: b = 1
2

(
S+

|N+| + S−
|N−|

)
and b = 1

2

(
S′+

|N ′+|
+

S′−

|N ′−|

)
. The following average for the offset

parameter was used:

b =

[
|N |

|N |+ |N ′|

(
S+

|N+|
+

S−
|N−|

)
+

|N ′|
|N |+ |N ′|

(
S′+∣∣N ′+∣∣ +

S′−∣∣N ′−∣∣
)]
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APPENDIX F

LULUPAPI Mixture Model

Let θ be a (n+m) -variable vector as the concatenation of the α and β variables: θ , (α, β)T .

Feasible Directions and the Clipping Function

For the cost function in equation (5.11) and its constraints, the sets of feasible directions are as

follows:

Direction 1: I1 , {us | s = (s1, s2) , n+ 1 ≤ s1,

s2 ≤ n+m, s1 6= s2;us1 = 1, us2 = −1, θs2 > 0,∀i /∈ sui = 0} .

Direction 2: I2 , {us | s = (s1, s2) , 1 ≤ s1, s2 ≤ m, s1 6= s2,

ys1 = ys2 ;us1 = 1, θs1 < ρC∗πs1 , us2 = −1, θs2 > 0,∀i /∈ sui = 0}.

Direction 3: I3 , {us | s = (s1, s2) ,m+ 1 ≤ s1, s2 ≤ n,

s1 6= s2, ys1 = ys2 ;us1 = 1, θs1 < Cπs1 , us2 = −1, θs2 > 0,∀i /∈ sui = 0}.

Direction 4: I4 , {us | s = (s1, s2) ,m+ 1 ≤ s1, s2 ≤ n,

s1 6= s2, ys1 6= ys2 ,∀i /∈ sui = 0;us1 = us2 = 1, θs1 < Cπs1 ,

θs2 < Cπs2 or us1 = us2 = −1, θs1 > 0, θs2 > 0} .
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Direction 5: I5 , {us | s = (s1, s2, s3) , 1 ≤ s1, s2 ≤ m,

n+ 1 ≤ s3 ≤ n+m, s1 6= s2, ys1 6= ys2 ,∀i /∈ sui = 0;

us1 = us2 = 1, θs1 < ρC∗πs1 , θs2 < ρC∗πs2 , us3 = −2,

θs3 > 0 or us1 = us2 = −1, θs1 > 0, θs2 > 0, us3 = 2}

Direction 6: I6 , {us | s = (s1, s2, s3) , 1 ≤ s1 ≤ m,

m+ 1 ≤ s2 ≤ n, n+ 1 ≤ s3 ≤ n+m, ys1 = ys2 ,∀i /∈ sui = 0;

us1 = 1, θs1 < ρC∗πs1 , us2 = −1, θs2 > 0, us3 = −1,

θs3 > 0 or us1 = −1, θs1 > 0, us2 = 1, θs2 < Cπs2 , us3 = 1}.

Direction 7: I7 , {us | s = (s1, s2, s3) , 1 ≤ s1 ≤ m,

m+ 1 ≤ s2 ≤ n, n+ 1 ≤ s3 ≤ n+m, ys1 6= ys2 ,∀i /∈

sui = 0;us1 = us2 = 1, θs1 < ρC∗πs1 , θs2 < Cπs2 , us3 = −1,

θs3 > 0 or us1 = us2 = −1, θs1 > 0, θs2 > 0, us3 = 1}.

Direction 8: I8 , {us | s = (s1, s2, s3) , 1 ≤ s1, s2 ≤ m,

m+ 1 ≤ s3 ≤ n, s1 6= s2, ys1 6= ys2 , ys3 = ys2 ,∀i /∈ sui = 0;

us1 = 1, θs1 < ρC∗πs1 , us2 = −1, θs2 > 0, us3 = 2, θs3 < Cπs3

or us1 = −1, θs1 > 0, us2 = 1, θs2 < ρC∗πs2 , us3 = −2, θs3 > 0}.

Direction 9: I9 , {us | s = (s1, s2, s3) , 1 ≤ s1, s2 ≤ m,

m+ 1 ≤ s3 ≤ n, s1 6= s2, ys1 6= ys2 , ys3 = ys1 ,∀i /∈ sui = 0;

us1 = 1, θs1 < ρC∗πs1 , us2 = −1, θs2 > 0, us3 = −2, θs3 > 0

or us1 = −1, θs1 > 0, us2 = 1, θs2 < ρC∗πs2 , us3 = 2, θs3 < Cπs3}.

It can be verified that when moving from any feasible point θold in the direction of us ∈ ∪Ii and

applying the clipping function of equation (F.1), the constraints corresponding to dual problems are

satisfied.

λ∗
(
θold, s∗(i)

)
=


min

{
ρπkC

∗−θoldk

uk
,minj∈s∗(i)

(
λ′
(
θold , s∗(i)

)
,

∣∣∣∣ θoldj

uj

∣∣∣∣)} 1 ≤ k ≤ m, k ∈ s∗(i), uk > 0

min

{
Cπk−θoldk

uk
,minj∈s∗(i)

(
λ′
(
θold , s∗(i)

)
,

∣∣∣∣ θoldj

uj

∣∣∣∣)} m+ 1 ≤ k ≤ n, k ∈ s∗(i), uk > 0

(F.1)
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Offset Parameter of the Decision Function

In order to calculate the offset parameter b of the decision function, suppose α and β are the

solution of the SVMp+ dual problem (23). Define two sets N , {i | 1 ≤ i ≤ m, 0 < αi < ρπiC
∗} and

N ′ , {i | m+ 1 ≤ i ≤ n, 0 < αi < Cπi} The rest of the calculations are then similar to the previous

case in Appendix C.
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[11] Giacomo Bellani, John G Laffey, Tài Pham, Eddy Fan, Laurent Brochard, Andres Esteban,
Luciano Gattinoni, Frank Van Haren, Anders Larsson, Daniel F McAuley, et al. Epidemiol-
ogy, patterns of care, and mortality for patients with acute respiratory distress syndrome in
intensive care units in 50 countries. Jama, 315(8):788–800, 2016.

[12] Gordon D Rubenfeld, Ellen Caldwell, Eve Peabody, Jim Weaver, Diane P Martin, Margaret
Neff, Eric J Stern, and Leonard D Hudson. Incidence and outcomes of acute lung injury. New
England Journal of Medicine, 353(16):1685–1693, 2005.

138



[13] Jennifer N Ervin, Victor C Rentes, Emily R Dibble, Michael W Sjoding, Theodore J Iwashyna,
Catherine L Hough, Michelle Ng Gong, and Anne E Sales. Evidence-based practices for acute
respiratory failure and acute respiratory distress syndrome: A systematic review of reviews.
Chest, 158(6):2381–2393, 2020.

[14] Michael W Sjoding, Timothy P Hofer, Ivan Co, Jakob I McSparron, and Theodore J Iwashyna.
Differences between patients in whom physicians agree and disagree about the diagnosis of
acute respiratory distress syndrome. Annals of the American Thoracic Society, 16(2):258–264,
2019.
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[53] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-
learn: Machine learning in python. the Journal of machine Learning research, 12:2825–2830,
2011.

[54] William A Knaus, Douglas P Wagner, Elizabeth A Draper, Jack E Zimmerman, Marilyn
Bergner, Paulo G Bastos, Carl A Sirio, Donald J Murphy, Ted Lotring, Anne Damiano,
et al. The apache iii prognostic system: risk prediction of hospital mortality for critically iii
hospitalized adults. Chest, 100(6):1619–1636, 1991.

[55] Matthew M Churpek, Trevor C Yuen, Christopher Winslow, Ari A Robicsek, David O Meltzer,
Robert D Gibbons, and Dana P Edelson. Multicenter development and validation of a risk
stratification tool for ward patients. American journal of respiratory and critical care medicine,
190(6):649–655, 2014.

[56] Lorraine B Ware and Michael A Matthay. The acute respiratory distress syndrome. New
England Journal of Medicine, 342(18):1334–1349, 2000.

[57] Richard C Bradley. Basic properties of strong mixing conditions. a survey and some open
questions. arXiv preprint math/0511078, 2005.

[58] Allan J Walkey. Unreliable syndromes, unreliable studies, 2016.

[59] Sarah Sheard, Praveen Rao, and Anand Devaraj. Imaging of acute respiratory distress syn-
drome. Respiratory care, 57(4):607–612, 2012.

[60] Jin-Min Peng, Chuan-Yun Qian, Xiang-You Yu, Ming-Yan Zhao, Shu-Sheng Li, Xiao-Chun
Ma, Yan Kang, Fa-Chun Zhou, Zhen-Yang He, Tie-He Qin, et al. Does training improve
diagnostic accuracy and inter-rater agreement in applying the berlin radiographic definition of
acute respiratory distress syndrome? a multicenter prospective study. Critical Care, 21(1):1–8,
2017.

[61] Ewa Pietka. Lung segmentation in digital radiographs. Journal of digital imaging, 7(2):79–84,
1994.

141



[62] Samuel G Armato III, Maryellen L Giger, and Heber MacMahon. Automated lung segmenta-
tion in digitized posteroanterior chest radiographs. Academic radiology, 5(4):245–255, 1998.

[63] Matthew S Brown, Laurence S Wilson, Bruce D Doust, Robert W Gill, and Changming Sun.
Knowledge-based method for segmentation and analysis of lung boundaries in chest x-ray
images. Computerized medical imaging and graphics, 22(6):463–477, 1998.

[64] Yonghong Shi, Feihu Qi, Zhong Xue, Liya Chen, Kyoko Ito, Hidenori Matsuo, and Dinggang
Shen. Segmenting lung fields in serial chest radiographs using both population-based and
patient-specific shape statistics. IEEE Transactions on medical Imaging, 27(4):481–494, 2008.

[65] Pavan Annangi, Sheshadri Thiruvenkadam, Anand Raja, Hao Xu, XiWen Sun, and Ling Mao.
A region based active contour method for x-ray lung segmentation using prior shape and low
level features. In 2010 IEEE international symposium on biomedical imaging: from nano to
macro, pages 892–895. IEEE, 2010.

[66] Ajay Mittal, Rahul Hooda, and Sanjeev Sofat. Lf-segnet: A fully convolutional encoder–
decoder network for segmenting lung fields from chest radiographs. Wireless Personal Com-
munications, 101(1):511–529, 2018.

[67] Chunliang Wang. Segmentation of multiple structures in chest radiographs using multi-task
fully convolutional networks. In Scandinavian Conference on Image Analysis, pages 282–289.
Springer, 2017.

[68] Tim B Hunter, Mihra S Taljanovic, Pei H Tsau, William G Berger, and James R Standen.
Medical devices of the chest. Radiographics, 24(6):1725–1746, 2004.

[69] Chamith S Rajapakse and Gregory Chang. Impact of body habitus on radiologic interpreta-
tions. Academic radiology, 21(1):1–2, 2014.

[70] Hamed Behzadi-khormouji, Habib Rostami, Sana Salehi, Touba Derakhshande-Rishehri,
Marzieh Masoumi, Siavash Salemi, Ahmad Keshavarz, Ali Gholamrezanezhad, Majid Assadi,
and Ali Batouli. Deep learning, reusable and problem-based architectures for detection of con-
solidation on chest x-ray images. Computer methods and programs in biomedicine, 185:105162,
2020.

[71] Shiying Hu, Eric A Hoffman, and Joseph M Reinhardt. Automatic lung segmentation for
accurate quantitation of volumetric x-ray ct images. IEEE transactions on medical imaging,
20(6):490–498, 2001.

[72] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In International Conference on Medical image computing and
computer-assisted intervention, pages 234–241. Springer, 2015.

[73] Jen Hong Tan, U Rajendra Acharya, Choo Min Lim, and K Thomas Abraham. An inter-
active lung field segmentation scheme with automated capability. Digital Signal Processing,
23(3):1022–1031, 2013.

[74] Jen Hong Tan and U Rajendra Acharya. Active spline model: A shape based
model—interactive segmentation. Digital signal processing, 35:64–74, 2014.

[75] Karel Zuiderveld. Contrast limited adaptive histogram equalization. In Graphics gems IV,
pages 474–485. Academic Press Professional, Inc., 1994.

[76] Leonid I Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based noise
removal algorithms. Physica D: nonlinear phenomena, 60(1-4):259–268, 1992.

142



[77] Antonin Chambolle, Vicent Caselles, Daniel Cremers, Matteo Novaga, and Thomas Pock.
An introduction to total variation for image analysis. Theoretical foundations and numerical
methods for sparse recovery, 9(263-340):227, 2010.

[78] Mingqiang Zhu and Tony Chan. An efficient primal-dual hybrid gradient algorithm for total
variation image restoration. UCLA CAM Report, 34, 2008.

[79] TW Ridler, S Calvard, et al. Picture thresholding using an iterative selection method. IEEE
trans syst Man Cybern, 8(8):630–632, 1978.

[80] Michael Kass, Andrew Witkin, and Demetri Terzopoulos. Snakes: Active contour models.
International journal of computer vision, 1(4):321–331, 1988.

[81] François Chollet et al. keras, 2015.

[82] Th A Sorensen. A method of establishing groups of equal amplitude in plant sociology based
on similarity of species content and its application to analyses of the vegetation on danish
commons. Biol. Skar., 5:1–34, 1948.

[83] Kelly H Zou, Simon K Warfield, Aditya Bharatha, Clare MC Tempany, Michael R Kaus,
Steven J Haker, William M Wells III, Ferenc A Jolesz, and Ron Kikinis. Statistical validation
of image segmentation quality based on a spatial overlap index1: scientific reports. Academic
radiology, 11(2):178–189, 2004.

[84] Jerry L Hintze and Ray D Nelson. Violin plots: a box plot-density trace synergism. The
American Statistician, 52(2):181–184, 1998.

[85] Junji Shiraishi, Shigehiko Katsuragawa, Junpei Ikezoe, Tsuneo Matsumoto, Takeshi
Kobayashi, Ken-ichi Komatsu, Mitate Matsui, Hiroshi Fujita, Yoshie Kodera, and Kunio Doi.
Development of a digital image database for chest radiographs with and without a lung nod-
ule: receiver operating characteristic analysis of radiologists’ detection of pulmonary nodules.
American Journal of Roentgenology, 174(1):71–74, 2000.

[86] Bram Van Ginneken, Mikkel B Stegmann, and Marco Loog. Segmentation of anatomical
structures in chest radiographs using supervised methods: a comparative study on a public
database. Medical image analysis, 10(1):19–40, 2006.

[87] Stefan Jaeger, Sema Candemir, Sameer Antani, Yı̀-Xiáng J Wáng, Pu-Xuan Lu, and George
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