
Multiscale Modeling of T cells in Mycobacterium tuberculosis Infection 
 

by 

 

Louis R Joslyn 

A dissertation submitted in partial fulfillment 

 of the requirements for the degree of  

Doctor of Philosophy 

(Bioinformatics) 

in the University of Michigan 

2021 

Doctoral Committee: 

 

Professor Denise E. Kirschner, Co-Chair  

Professor Jennifer J. Linderman, Co-Chair  

Assistant Professor Sriram Chandrasekaran  

Associate Professor Marisa C. Eisenberg  

Professor Kayvan Najarian 

 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

Louis R. Joslyn  

  

louisjos@umich.edu  

  

ORCID iD:  0000-0002-7260-6568 

 

  

  

© Louis R. Joslyn 2021 

 



 ii 

Acknowledgements 
 

There are many individuals who supported me on this journey and contributed to my intellectual 

and personal development.  First, I would like to thank my co-mentors, Dr. Denise Kirschner and 

Dr. Jennifer Linderman, for their exceptional mentorship.  Denise and Jennifer are an excellent 

team, and I can think of no better duo for co-advisors.  Denise’s collaborative spirit, bold ideas, 

and never-say-no attitude will serve as continued inspiration throughout my career.  Jennifer’s 

professionalism, devotion to her students, and guidance through the many hurdles of academia 

exemplify what it means to be a research advisor.  I will forever be thankful that I had the 

opportunity to be mentored by both Denise and Jennifer. Their energy and enthusiasm for 

science is contagious.  

 

Thank you to the rest of my committee: Dr. Sriram Chandrasekaran, Dr. Marisa Eisenberg, and 

Dr. Kayvan Najarian, who have provided key insights, stimulating scientific conversation, and 

productive suggestions. Your positivity and support have been instrumental during every step of 

this dissertation. To Julia Eussen and the rest of the Bioinformatics staff, thank you for 

answering my many questions about the program, for planning departmental events, and 

providing general support for all the bioinformatics students.  

 

Thank you to all members, past and present, of the Kirschner and Linderman Labs. Your 

scientific advice, company, support, and willingness to identify a “Friday-afternoon task” made 

this journey a fun one.   

 

To my friends in Michigan and across the country, thank you for the genuinely great times. Life 

is easier as part of a community, and I count myself lucky to have such a fantastic community 

around me. 

 



 iii 

To my family, whose support provides the foundation for my growth. Mom, you are a constant 

source of strength, the epitome of hard work, and manage to do it all with a smile. Dad, you’ve 

shown me that finding your path sometimes involves identifying just the right key. You are the 

ultimate motivator. Nick, your technical abilities may only be matched by your ability to flat-out 

grind.  You’ve inspired me countless times and I will forever cherish that we were able to be 

roommates during the past few years.  

 

To Alex, words cannot express how much you mean to me.  Thank you for your endless support, 

kindness, patience, and love.  I look forward to our future and the next ‘big adventures’ that 

await.   

 

 

 

  



 iv 

 
 
 
 
 

Table of Contents 

 

Acknowledgements ....................................................................................................................... ii 

List of Tables ................................................................................................................................. ix 

List of Figures ................................................................................................................................ x 

List of Appendices ...................................................................................................................... xii 

Abstract ...................................................................................................................................... xiii 

Chapter 

1 Introduction ....................................................................................................................... 1 

1.1 Motivation ............................................................................................................................... 1 
1.2 The global impact of tuberculosis ........................................................................................... 2 
1.3 Tuberculosis treatment and vaccines ...................................................................................... 3 
1.4 The immune response to Mtb and the formation of tuberculosis granulomas ........................ 4 
1.5 T cells and their role in the immune response to Mtb infection ............................................. 7 

1.5.1 Antigen specificity and naïve T cells ...................................................................... 7 
1.5.2 Priming, differentiation and effector expansion ...................................................... 7 
1.5.3 Memory T cells ........................................................................................................ 8 
1.5.4 T cells in TB ............................................................................................................ 9 
1.5.5 CD4+ T cells ............................................................................................................ 9 
1.5.6 CD8+ T cells .......................................................................................................... 10 

1.6 Experimental Models in TB .................................................................................................. 10 
1.6.1 Mice ....................................................................................................................... 11 
1.6.2 Non-human primates ............................................................................................. 11 

1.7 Computational models of TB ................................................................................................ 12 
1.7.1 Multiscale Modeling .............................................................................................. 12 
1.7.2 Ordinary differential equations and agent-based models capture immune response 

within the lung ................................................................................................................... 12 
1.7.3 Models of T-cell responses within the lung-draining lymph node ........................ 13 
1.7.4 Whole host modeling efforts ................................................................................. 14 

1.8 Calibrating and evaluating computational models ................................................................ 14 



 v 

1.8.1 Calibrating complex models .................................................................................. 15 
1.8.2 Evaluating models with uncertainty and sensitivity analysis ................................ 15 

1.9 Dissertation Summary ........................................................................................................... 16 
1.10 References ............................................................................................................................. 18 

2 Investigating T-cell Exhaustion within Tuberculosis Granulomas ............................. 27 

2.1 Introduction ........................................................................................................................... 27 
2.2 Methods ................................................................................................................................ 29 

2.2.1 Animals, necropsy procedures, bacterial burden and staining for cell receptors .. 29 
2.2.2 Computational modeling with GranSim ................................................................ 30 
2.2.3 Model definitions, assumptions, and justifications ............................................... 30 
2.2.4 Computational platform and post-run analysis ...................................................... 31 
2.2.5 Model calibration and defining exhaustion ........................................................... 32 
2.2.6 Exposure event (EE) threshold selection ............................................................... 33 

2.3 Results ................................................................................................................................... 34 
2.3.1 GranSim simulations match in vivo granuloma cell counts, bacterial burden and 

exhaustion levels ............................................................................................................... 34 
2.3.2 Temporal and spatial analysis of in silico exhaustion ........................................... 36 
2.3.3 Extreme levels of in silico exhaustion drive unrealistic granuloma outcomes ...... 38 

2.4 Discussion ............................................................................................................................. 39 
2.5 References ............................................................................................................................. 42 

3 A Computational Model Tracks Whole-Lung Mycobacterium tuberculosis Infection 
and Predicts Factors that Inhibit Dissemination ...................................................................... 46 

3.1 Introduction ........................................................................................................................... 46 
3.2 Methods ................................................................................................................................ 49 

3.2.1 Animals and Experimental Dataset ....................................................................... 49 
3.2.2 Non-human primate lung lattice data .................................................................... 50 
3.2.3 Identifying granuloma distributions in non-human primate lungs ........................ 50 
3.2.4 Model Overview .................................................................................................... 51 
3.2.5 Simulation Environment ........................................................................................ 52 
3.2.6 Granuloma Establishment ..................................................................................... 53 
3.2.7 Granuloma Development ....................................................................................... 53 
3.2.8 Granuloma Dissemination ..................................................................................... 54 
3.2.9 Granuloma Merging .............................................................................................. 55 
3.2.10 Model Calibration ................................................................................................ 56 
3.2.11 Sensitivity Analysis ............................................................................................. 57 
3.2.12 Linking Cellular Scale and Tissue Time Scales .................................................. 59 

3.3 Results ................................................................................................................................... 59 
3.3.1 Simulated individual granulomas recapitulate in vivo primate granuloma 

dynamics ............................................................................................................................ 59 
3.3.2 MultiGran simulates the appearance of granulomas throughout the lung, as seen 

in vivo 60 



 vi 

3.3.3 Simulations are consistent with in vivo infection and predict dissemination 

likelihood rates .................................................................................................................. 62 
3.3.4 MultiGran simulations match individual NHP infections ..................................... 65 
3.3.5 Sensitivity analysis reveals important mechanisms responsible for dissemination

 66 
3.4 Discussion ............................................................................................................................. 69 
3.5 References ............................................................................................................................. 73 

4 Integrating Non-Human Primate, Human, and Mathematical Studies to Determine 
the Influence of BCG Timing on H56 Vaccine Outcomes ....................................................... 77 

4.1 Introduction ........................................................................................................................... 77 
4.2 Methods ................................................................................................................................ 79 

4.2.1 Non-Human Primate Data Collection and Analysis .............................................. 79 
4.2.2 Phase I Clinical Trial Data Collection and Analysis ............................................. 79 
4.2.3 Mathematical Model .............................................................................................. 81 
4.2.4 Model Calibration and Sensitivity Analysis .......................................................... 83 
4.2.5 Parameter Space Visualization .............................................................................. 84 

4.3 Results ................................................................................................................................... 85 
4.3.1 Humans and non-human primates exhibit different T-cell responses to ESAT6 

following H56 vaccination ................................................................................................ 85 
4.3.2 A single mathematical model describes both human and NHP T-cell responses to 

ESAT6 ............................................................................................................................... 87 
4.3.3 Sensitivity analysis reveals both similar and distinct outcome drivers across 

species in response to ESAT6 ........................................................................................... 89 
4.3.4 Humans and non-human primates exhibit different T-cell responses to Ag85B 

following H56 vaccination ................................................................................................ 91 
4.3.5 A single mathematical model describes NHP and human T-cell responses to 

Ag85B 93 
4.3.6 Differences in BCG timing between humans and NHPs is captured by initial 

conditions .......................................................................................................................... 95 
4.3.7 Sensitivity analysis reveals both similar and distinct outcome drivers across 

species in magnitude of T-cell responses to Ag85B antigen ............................................. 97 
4.3.8 Secondary response to Ag85B antigen is characterized by the upregulation of 

differentiation to central memory phenotype .................................................................... 98 
4.4 Discussion ........................................................................................................................... 100 
4.5 References ........................................................................................................................... 104 

5 A Host-Scale Model Distinguishes Infection Outcomes in Tuberculosis .................. 108 

5.1 Introduction ......................................................................................................................... 108 
5.2 Methods .............................................................................................................................. 110 

5.2.1 HostSim model overview ..................................................................................... 110 
5.2.2 Modeling multiple lung granulomas across time – MultiGran ........................... 111 
5.2.3 Lymph node and blood models ........................................................................... 112 



 vii 

5.2.4 Creating the multiscale model: Linking the lung model (MultiGran) and the 

lymph node model ........................................................................................................... 112 
5.2.5 Creating the multiscale model: Linking the blood model to the lung model 

(MultiGran) ..................................................................................................................... 113 
5.2.6 Calibrating HostSim to multiple datasets ............................................................ 117 
5.2.7 Establishing criteria for clinical classifications in HostSim ................................ 118 
5.2.8 Uncertainty and sensitivity analysis .................................................................... 119 
5.2.9 Pro- and anti- inflammatory profiles of HostSim granulomas ............................ 120 
5.2.10 Model analysis tools and simulation environment ............................................ 120 

5.3 Results ................................................................................................................................. 121 
5.3.1 HostSim recapitulates in vivo granuloma-scale and host-scale dynamics ........... 121 
5.3.2 Emergent HostSim behavior across a virtual population matches spectrum of 

tuberculosis ...................................................................................................................... 123 
5.3.3 Infection outcomes of virtual hosts are dose dependent ...................................... 125 
5.3.4 The fate of individual granulomas is heterogeneous within hosts ...................... 126 
5.3.5 Early events across multiple scales during infection are predictive of TB clinical 

classification .................................................................................................................... 128 
5.3.6 A multiscale sensitivity analysis reveals adaptive immunity drives clinical 

classification, but innate immunity impacts granuloma-scale outcomes ........................ 131 
5.4 Discussion ........................................................................................................................... 132 
5.5 References ........................................................................................................................... 136 

6 Mediators of Concomitant Immunity in Mycobacterium tuberculosis Infection ..... 143 

6.1 Introduction ......................................................................................................................... 143 
6.2 Methods .............................................................................................................................. 145 

6.2.1 Including resident memory T cells to the HostSim modeling framework ........... 145 
6.2.2 Resident memory T cell (TRM) lifespan in the lungs ......................................... 146 
6.2.3 Simulating TRM during reinfection .................................................................... 146 
6.2.4 Parallel virtual host reinfection studies ............................................................... 148 
6.2.5 Calculating the reduced risk of active TB following reinfection compared to 

primary infection ............................................................................................................. 149 
6.2.6 Model environment and analysis ......................................................................... 150 

6.3 Results ................................................................................................................................. 150 
6.3.1 HostSim recapitulates in vivo granuloma and host-scale dynamics of reinfection

 150 
6.3.2 Predicting the lifespan of TRMs and durability of concomitant immunity ......... 152 
6.3.3 In the absence of TRMs, T-cell counts in the blood delineate active vs latent 

outcomes following reinfection ....................................................................................... 154 
6.4 Discussion ........................................................................................................................... 156 
6.5 References ........................................................................................................................... 159 

7 CaliPro: A Calibration Protocol that Utilizes Parameter Density Estimation to 
Explore Parameter Space and Calibrate Complex Biological Models ................................. 163 



 viii 

7.1 Abstract ............................................................................................................................... 163 
7.2 Introduction ......................................................................................................................... 163 
7.3 Methods .............................................................................................................................. 166 

7.3.1 Defining the appropriate use of CaliPro ............................................................. 166 
7.3.2 General Overview of CaliPro ............................................................................. 168 
7.3.3 Highest Density Region estimation to identify parameter subranges ................. 171 
7.3.4 Alternative Density Subtraction to identify parameter subranges ....................... 171 
7.3.5 Computational Platform ...................................................................................... 172 

7.4 Results ................................................................................................................................. 172 
7.4.1 Example 1: CaliPro finds parameter ranges that satisfy a predator-prey test 

problem ............................................................................................................................ 173 
7.4.2 Example 2: CaliPro identifies parameter ranges for ODE granuloma lesion model 

within non-human primate lung ...................................................................................... 177 
7.4.3 Example 3: CaliPro identifies continuous parameter space for a transmission 

model of infectious disease without assigning likelihoods or informative priors ........... 180 
7.4.4 Example 4: CaliPro successfully calibrates stochastic models: using an agent-

based model of granuloma outcomes as an example ....................................................... 182 
7.5 Discussion ........................................................................................................................... 185 
7.6 References ........................................................................................................................... 189 

8 Conclusions and Future Directions .............................................................................. 193 

8.1 Summary ............................................................................................................................. 193 
8.1.1 The granuloma is a physical barrier that prevents T-cell exhaustion .................. 193 
8.1.2 Multi-functional CD8+ T cells prevent dissemination of bacteria throughout the 

lung 194 
8.1.3 Prior BCG vaccination impacts the T-cell response to current vaccines ............ 195 
8.1.4 A whole-host model describes the multiscale immune response to Mtb ............ 195 
8.1.5 Biomarkers may be transient in TB ..................................................................... 196 
8.1.6 Protection against reinfection is dependent on resident memory T cells that wane 

across time ....................................................................................................................... 196 
8.1.7 CaliPro can calibrate complex models to diverse biological datasets ................ 197 

8.2 Future Directions ................................................................................................................ 197 
8.2.1 Future directions in T-cell biology and memory ................................................. 197 
8.2.2 Future Directions for GranSim ............................................................................ 199 
8.2.3 Future Directions for HostSim ............................................................................. 200 
8.2.4 Extending Model Development, Analysis and Calibration ................................. 204 
8.2.5 Future directions for TB vaccination – how can we develop a clinically effective 

vaccine? ........................................................................................................................... 207 
8.3 References ........................................................................................................................... 209 

9 Appendices ..................................................................................................................... 214 



 ix 

List of Tables 
 

Table 3.1 Distinct datasets used to calibrate, validate and inform predictions in MultiGran ....... 58 
Table 3.2 Sensitivity analysis reveals global drivers of dissemination outcomes ......................... 68 
Table 4.1 Parameters with significant PRCCs for ESAT6 immune response outcomes. ............. 90 
Table 4.2 Initial conditions represent the difference in BCG timing between experimental 

protocols ................................................................................................................................ 96 
Table 4.3 Significant PRCCs for Ag85B immune response outcomes ......................................... 97 
Table 5.1 Parameters identified as significant from sensitivity analysis. .................................... 132 
Table 7.1 Initial and Calibrated Parameter Ranges for the predator-prey test case problem ...... 177 

Table A.1 Parameter Table for in silico granuloma repositories. ................................................ 214 

Table B.1 Granuloma Ordinary Differential Equations .............................................................. 222 
Table B.2 ODE model parameters that govern individual granuloma formation and growth across 

time. ..................................................................................................................................... 225 
Table B.3 Other parameters for size of granulomas and runtime execution. .............................. 227 
Table B.4 Dissemination Parameters. ......................................................................................... 227 

Table C.1 Parameter ranges for NHP and human ESAT6 and Ag85B fits. ................................ 240 
Table C.2 Parameter names in radar charts. ................................................................................ 243 

Table D.1 Parameter table for granuloma model and lymph node & blood model .................... 254 
Table D.2 Effect size measure comparisons for Figure 5.6C. ..................................................... 259 
Table D.3 PRCC values for host-scale sensitivity analysis. ........................................................ 259 
Table D.4 PRCC values from granuloma-scale sensitivity analysis for active TB case. ............ 260 
Table D.5 PRCC values from granuloma-scale sensitivity analysis for TB eliminator case ...... 261 
 

 



 x 

List of Figures 
 

 

Figure 1.1 Overview of the immune response and granuloma formation during Mtb infection. .... 5 
Figure 1.2 A dynamic, balanced immune response contains Mtb to the granuloma. ...................... 6 
Figure 1.3 Multiscale modeling of T-cell response during Mtb infection. ................................... 17 
Figure 2.1 Example analysis of in silico versus in vivo T-cell exhaustion data. .......................... 33 
Figure 2.2 Comparison of macaque and simulated granulomas with varying levels of bacterial 

burden. ................................................................................................................................... 35 
Figure 2.3 T-cell location within granulomas prevents T-cell exhaustion by reducing exposure 

events. .................................................................................................................................... 37 
Figure 2.4 Artificially increasing T-cell exhaustion levels result in bacterial burdens that are not 

observed experimentally. ....................................................................................................... 39 
Figure 3.1 Three NHP lung maps illustrating the position of pulmonary granulomas and thoracic 

lymph nodes ........................................................................................................................... 48 
Figure 3.2 Process of Mtb infection and rules for granuloma dissemination and location within 

MultiGran .............................................................................................................................. 52 
Figure 3.3 MultiGran calibration process ..................................................................................... 57 
Figure 3.4 Bacteria, macrophage and T-cell dynamics within an individual granuloma .............. 60 
Figure 3.5 MultiGran in silico infection in a non-human primate lung ........................................ 62 
Figure 3.6 MultiGran recapitulates non-human primate dissemination outcomes ....................... 63 
Figure 3.7 MultiGran recapitulates spread of infection data ......................................................... 64 
Figure 3.8 MultiGran matches individual NHP granuloma dynamics and predicts CFU burden 

across time ............................................................................................................................. 66 
Figure 4.1 Vaccination Experimental Protocol. ............................................................................ 80 
Figure 4.2 Schematic of the two-compartment model. ................................................................. 82 
Figure 4.3 Experimental data show different responses to ESAT6 antigen following H56 

vaccination ............................................................................................................................. 86 
Figure 4.4 Model captures diverse response of both NHP and humans to ESAT6 antigen 

following H56 vaccination .................................................................................................... 89 
Figure 4.5 Human and NHP experimental data show different responses to Ag85B antigen 

following H56 vaccination .................................................................................................... 92 
Figure 4.6 Model can fit diverse responses of both NHP and Humans to Ag85B antigen 

following H56 vaccination .................................................................................................... 95 
Figure 4.7 Radar charts reveal impact of immunological memory in response to Ag85B ........... 99 
Figure 5.1 HostSim multiscale modeling framework .................................................................. 116 
Figure 5.2 Calibrated HostSim recapitulates dynamics of Mtb infection at both granuloma-scale 

and host-scale. ..................................................................................................................... 122 
Figure 5.3 HostSim exhibits a spectrum of whole-host outcomes across a population of 500 

virtual hosts. ........................................................................................................................ 124 



 xi 

Figure 5.4 Infection outcomes at day 200 post-infection across a population of 500 virtual hosts 

are dose dependent. ............................................................................................................. 126 
Figure 5.5 HostSim exhibits spectrum of granuloma-scale outcomes within hosts. ................... 127 
Figure 5.6 Early events at granuloma-scale and host-scale can predict clinical classifications 

across a population of 500 virtual hosts. ............................................................................. 130 
Figure 6.1 Resident memory T cells impact establishment of reinfection. ................................. 148 
Figure 6.2 Parallel virtual host reinfection study protocol. ......................................................... 149 
Figure 6.3 Reinfection in 50 virtual hosts matches dynamics of reinfection in NHPs. .............. 152 
Figure 6.4 Clinical classifications and total lung CFU across three sets of virtual reinfection 

studies. ................................................................................................................................. 154 
Figure 6.5 Mtb-specific T cells in blood from primary infection offer protection against active 

TB during reinfection in absence of TRM populations. ...................................................... 155 
Figure 7.1 Calibrating a model to a range of plausible outcomes requires a new calibration 

approach .............................................................................................................................. 167 
Figure 7.2 Overview of CaliPro .................................................................................................. 170 
Figure 7.3 Example 1 - Predator-Prey Model: CaliPro identifies best fit parameter space using 

HDR ..................................................................................................................................... 175 
Figure 7.4 Example 1 - Parameter Density Plots at each CaliPro iteration ................................ 177 
Figure 7.5 Example 2 - Single Granuloma ODE: CaliPro identifies calibrated parameter space 

using ADS ........................................................................................................................... 178 
Figure 7.6 Example 3 - Disease transmission: SIR and CaliPro calibrations ............................. 181 
Figure 7.7 Example 4 - agent-based model: CaliPro finds calibrated parameter space using ADS.

 ............................................................................................................................................. 185 

Figure B.1 The rules of granuloma establishment and dissemination within MultiGran. .......... 228 

Figure C.1 Radar charts reveal parameter space differences between species. ........................... 242 

Figure D.1 Representative simulations for intra-compartment sensitivity analysis. ................... 261 

Figure E.1 Histogram of Total Lung CFU in HostSim virtual population 500 hosts. ................. 262 
Figure E.2 Percentages of active TB cases per study for TST+/TST- individuals. ..................... 263 
Figure E.3 Blood T-cell counts delineate active TB and LTBI cases for each set of reinfection 

studies. ................................................................................................................................. 264 
 

 



 xii 

List of Appendices 

Appendix A Supporting Information for Chapter 2 .............................................................. 214 

Appendix B Supporting Information for Chapter 3 .............................................................. 221 

Appendix C Supporting Information for Chapter 4 .............................................................. 230 

Appendix D Supporting Information for Chapter 5 .............................................................. 244 

Appendix E Supporting Information for Chapter 6 .............................................................. 262 

Appendix F Supplementary Material for Chapter 7 .............................................................. 265 

 

 



 xiii 

Abstract 
 

Tuberculosis (TB), caused by infection with Mycobacterium tuberculosis (Mtb), is one of the 

deadliest infectious diseases in the world and remains a significant global health burden. Central 

to the immune response against Mtb are T cells, a type of adaptive immune cell that can kill 

infected cells, secrete cytokines to activate other immune cells, and orchestrate the broader 

immune response. Over the past few decades, experimental studies have significantly furthered 

our understanding of T-cell biology and function during Mtb infection. However, these findings 

have yet to translate to a clinically effective TB vaccine. As a complementary approach to 

experimental studies, systems biology and computational modeling can provide context to T-cell 

function by describing T-cell interactions with other immune cells across multiple scales.  In this 

thesis we utilize a systems biology approach to characterize T-cell behavior, function, and 

movement across multiple physiological and temporal scales during Mtb infection. In addition, 

we develop a whole-host model of the immune response to Mtb.  

 

Following infection with Mtb, the immune response leads to the development of multiple lung 

granulomas – organized structures composed of immune cells that surround bacteria. Using a 

previously developed agent-based model of granuloma formation and function, we explore the 

role of T cells within the granuloma and predict that T-cell exhaustion, a type of T-cell 

dysfunction, is prevented from occurring by the physical structure of the granuloma. Next, we 

develop a novel whole lung model that tracks the formation of multiple granulomas. Using this 

model, we predict that a special type of T-cell, called a multi-functional CD8+ T cell, is key in 

preventing dissemination events - when bacteria escape one granuloma and seed the formation of 

a new one elsewhere in the lung.  We also present a model of T-cell priming, proliferation, and 

differentiation within the lymph nodes and blood following TB vaccination and illustrate that 

non-human primates and humans respond similarly when receiving TB vaccination.  

 



 xiv 

We mathematically link the whole lung model and lymph node and blood model to create a 

whole-host model of the immune response following Mtb infection. We show that this model can 

capture various aspects of human and non-human primate TB disease and predict that 

biomarkers in the blood may only faithfully represent events in the lung at early time points after 

infection.  Using this model, we predict that resident memory T cells are important mediators of 

protection against reinfection with Mtb and additionally predict the lifespan of these crucial cells 

in humans.  Finally, we develop a protocol for calibrating mathematical and computational 

models to experimental datasets.  

 

Overall, this dissertation builds on our knowledge of the various roles T cells play in responding 

to Mtb infection, presents a set of computational models for evaluating the T-cell response to 

either infection or vaccination, and identifies mechanisms that control different outcomes across 

multiple scales following Mtb infection, reinfection, or vaccination.   
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1 Introduction 
 

1.1 Motivation 

Few diseases have been as continuing and ever-present in human history as tuberculosis (TB).  

Known under various names such as consumption, the robber of youth and the white plague, the 

symptomatic course of TB is referenced in the writings of Hippocrates (1), the Old Testament of 

the Bible (2) and ancient Chinese medical texts (3) dating back thousands of years. In just the 

past two centuries, TB has killed an estimated one billion people (4). Mycobacterium 

tuberculosis (Mtb), the causative agent of TB, is inhaled into the lungs and initiates the immune 

response. Unlike other infections, the immune response to Mtb is typically delayed due to the 

slow growth of the bacteria during early stages of infection (5–8). The immune response 

following infection leads to the development of multiple lung granulomas which serve to 

immunologically restrain and physically contain bacteria (9).  Although antibiotic therapy can 

cure TB, lengthy drug treatment regimens lead to non-compliance, and multi-drug resistant cases 

of TB are rising worldwide. Additionally, there is currently no highly effective TB vaccine for 

adults.  If future interventions are to be successful in eliminating TB, they require a better 

understanding of the mechanisms that drive a successful and protective immune response against 

Mtb.  

 

T cells are key players in orchestrating an effective immune response against most pathogens. As 

part of the immune response during Mtb infection, T cells can kill infected cells, secrete 

cytokines that activate other immune cells, and generally have critical functions against Mtb (10–

12).  The adaptive immune response during Mtb infection is driven primarily by T cells and 

requires integration of events across multiple spatial and temporal scales.   

 

While a licensed vaccine against TB, known as Bacille Calmette-Guérin (BCG), was developed 

approximately 100 years ago, its efficacy ranges from 0-80% in adults and it is most effective in 

preventing the childhood form of TB (13,14).  Despite advancements within the past few 
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decades, promising new findings related to T-cell biology have not translated to a new clinically 

effective vaccine against Mtb (15).  As a complementary approach to experimental studies, 

computational modeling can provide context to T-cell behavior in natural infection as well as 

vaccination scenarios by describing T-cell interactions with other immune cells and mapping T-

cell behavior across multiple physiological scales.  

 

Computational modeling can provide additional support for experimental inquiries and lead to 

quantitative predictions about the role of T cells in infection that can be used for clinical 

translation. In this thesis, I employ a systems biology approach using multiple modalities to 

study TB.  I introduce several multi-scale mathematical and computational models that 

characterize T cell behavior, function, and movement during Mtb infection.  Using these models, 

I show how T cell behaviors are affected at sites of infection, offer insight into critical T cell 

functions, and identify mechanisms that lead to protective immune responses during Mtb 

infection with implications for vaccine development.  

 

1.2 The global impact of tuberculosis 

Tuberculosis kills three people per minute worldwide and is one of the world's most common 

infectious diseases stretching back for millennia (16). In 2019, an estimated 10 million 

individuals contracted symptomatic TB disease and approximately 1.4 million people died 

worldwide (16). The World Health Organization estimates that approximately one-quarter of the 

world’s population -1.8 billion people - are currently infected with Mtb (16).  

 

Symptomatic TB, clinically described as active TB, is characterized by cough, fever, night 

sweats, weight loss and chest pains. Of the approximately 1.8 billion individuals infected 

worldwide, approximately 10% will develop symptomatic disease (16). Infected individuals that 

do not show symptomatic outward signs of disease may simply harbor the pathogen and are 

clinically characterized as latently infected (LTBI). As latent infection can persist for years, 

LTBI individuals represent a large reservoir of individuals that could potentially become active 

TB cases, if individuals become immuno-suppressed (e.g., co-infection with HIV, old age, or 

treated with immunosuppressive drug regimens) (17,18). While individuals are clinically defined 
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as latently or actively infected, it is now widely understood that infected individuals actually lie 

upon a spectrum of disease states that include latent and active disease (19,20). 

1.3 Tuberculosis treatment and vaccines 

The standard of care against TB requires an antibiotic regimen. The current World Health 

Organization recommended regimen treats active forms of TB using isoniazid, rifampin, 

ethambutol and pyrazinamide across 6 months of treatment (21). This unusually long and 

complicated regimen against bacterial infection reflects the difficulties of treatment against TB. 

Worldwide patient non-compliance, treatment withdrawal, and bacterial mutations are leading to 

emergent drug-resistant strains of bacteria (22).  Thus, new drugs that can quickly ameliorate 

disease by targeting novel host or bacterial mechanisms are desperately needed to resolve the 

global TB epidemic.  

 

A highly efficacious vaccine against TB would represent the ultimate weapon against TB. BCG, 

the world’s most widely administered vaccine, is the only currently licensed vaccine against TB. 

BCG has been used as a live attenuated vaccine against TB since 1921 but only has acceptable 

efficacy against childhood forms of TB and variable efficacy in adults (13,14,23,24).  Currently, 

there are 12 TB vaccines in various stages of clinical trials (15). These candidate vaccines 

employ diverse formulations that attempt to stimulate different aspects of the immune system. 

The candidates include attenuated versions of Mtb, mycobacterial whole-cell vaccines, viral-

vector vaccines and subunit vaccines, with the later formulization utilized heavily in TB vaccine 

efforts of the past decade (25,26). In order to achieve the ambitious goals of the ‘EndTB’ 

strategy to eliminate TB by 2050 (27), the world requires a highly efficacious vaccine that 

outperforms BCG’s current protective profile. To this date, that goal has not been met in clinical 

trials. 

 

There are multiple theories as to why an efficacious vaccine against TB has been elusive 

(15,25,28–32).  Global funding commitments are diminishing and fail to provide adequate 

resources for TB researchers worldwide (33,34).  However, beyond resources and global focus, 

the most prominent reason for the lack of a highly efficacious TB vaccine is that little is known 

about the mechanisms of a truly protective immune response against Mtb. Risk factors, genetic 

defects, and deletion studies have identified mechanisms of a poor host immune response, but 
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questions still persist about what constitutes a protective immune response and why the majority 

of infections are latent (29,35). Further, the route of administration for a vaccine may impact its 

efficacy and altering the route of administration may provide maximal protection (36).  If armed 

with a better understanding of the immune response to Mtb, we could develop effective vaccines 

against TB.  

 

1.4 The immune response to Mtb and the formation of tuberculosis granulomas 

Infection begins when a pathogen enters the body.  In TB, pathogen encounter begins when an 

individual inhales Mtb that are expelled within aerosolized droplets from the cough or breath of a 

contagious individual (37). Upon landing within the lower respiratory tract of the lung 

environment, Mtb actuates the innate immune response and Mtb is phagocytized by alveolar 

macrophages (38). Intracellular Mtb are able to replicate within the environment of the 

macrophages and are able to avoid being killed during phago-lysosomal fusion (39,40).  

Eventually, Mtb initiate cellular lysis and burst from the infected macrophage (Figure 1), 

stimulating phagocytosis by nearby macrophages (41–43).  These macrophages secrete 

molecules, i.e. cytokines and chemokines, to signal the recruitment of more monocytes from the 

blood, including neutrophils, macrophages and dendritic cells, to the site of infection.   

 

Together, this recruitment forms the beginnings of a granuloma, the pathological hallmark of TB 

(44). The granuloma, a mass of immune cells that surround bacteria in a typically spherical 

structure, is an attempt by the immune system to isolate and eliminate bacteria and plays a 

central role in disease dynamics. Multiple granulomas form following infection as granuloma 

development can begin with as few as a single initial bacterium entering the pulmonary alveoli 

(45).  Activated macrophages surround infected macrophages and extracellular bacteria at the 

center of the granuloma. Dendritic cells sample antigen from within the granuloma and migrate 

to the lung-draining lymph nodes (LN) to stimulate the adaptive immune system, i.e. the 

development of antigen specific lymphocytes (B- and T-cells).  Upon priming, and 

differentiation, effector T cells generated within the LN enter the blood (Figure 1.1) and circulate 

throughout the body until they are recruited to the sites of infection by chemotactic signals. T 

cells recruited to the lung environment in response to an Mtb infection migrate to the site of the 

granuloma and form a lymphocytic cuff that constitutes the outer layer of the granuloma (Figure 
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1.1).  T cells play crucial roles in antimicrobial processes through cytokine secretion, induction 

of macrophage activation and apoptosis, and cellular mediated killing (11,12,46–53).  However, 

compared to other infectious diseases, T cells are slow to enter the granuloma environment and 

only arrive in large numbers approximately one month following infection (8). The slow arrival 

of this critical cell type mirrors the slow growth of Mtb at early stages of infection, which delays 

‘danger signals’ necessary for a prompt T-cell response (7). 

 

 

Figure 1.1 Overview of the immune response and granuloma formation during Mtb 
infection.  
Mtb infection is a complex process that occurs across multiple time scales and organs. Following inhalation of the 
bacteria by the host, the innate immune response is activated. Mtb is phagocytized and replicates within 
macrophages, eventually bursting from within the macrophages to the local lung environment. More monocytes 
(precursors to macrophages) are recruited to sites of infection. Antigen presenting cells sample antigens within the 
infected tissues, traffic through the lymphatics system and enter a lung-draining lymph node wherein they prime a 
T-cell response. T cells migrate through blood and enter the lung environment approximately 1 month following 
inhalation of Mtb, initiating an adaptive immune response at the site of infection.  Together, immune cells surround 
Mtb, completing the formation of the granuloma. Figure adapted from (54). 
 

Across time, granulomas reflect an on-going battle between host and pathogen.  From the 

perspective of the host, a successful granuloma employs a balanced immune response to contain 

the pathogen to a local environment within the lung and halts the spread of bacteria throughout 

the host (Figure 1.2).  From the perspective of the pathogen, the bacteria are physically protected 

from the immune system by the structure of a granuloma, such that Mtb can persist in an 

unaffected manner for years.  Importantly, this battleground between host and pathogen is highly 

dynamic across time (55).  Should the host immune response be successful, granulomas will 
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sterilize the bacteria and eventually resolve.  However, should the pathogen succeed, granulomas 

are unable to control bacterial growth, leading to bacterial escape and dissemination to other 

spots in lung, or even elsewhere in the body.  Not much is known about the exact mechanisms of 

bacterial escape and dissemination across the lung (56). In Chapter 3, we develop a whole-lung 

model of Mtb infection to predict mechanisms of dissemination.   

 

Multiple granulomas develop within a single host and intuition suggests that all granulomas must 

indirectly influence one another through recruitment and stimulation of the same host immune 

system. However, each granuloma takes a heterogeneous course of development over time (45), 

perhaps due to the structure of the local lung environment, granuloma location relative to blood 

vessels or airways, or heterogeneity of cell types present within the granuloma (57).  Little is 

known about the factors that control differential outcomes in patients across the course of 

disease, but it is speculated that all the granulomas in a single host collectively shape the course 

of disease (20), perhaps through their shared interactions with the adaptive immune system. In 

Chapter 5, we develop a whole-host modeling framework and predict heterogeneous whole-host 

outcomes in TB are driven primarily by proliferation and differentiation of T cells within the 

lung-draining lymph nodes during early stages of infection. 

 

 

 

Figure 1.2 A dynamic, balanced immune response contains Mtb to the granuloma.  
Conceptual images of granuloma formation across a spectrum of anti-inflammatory or pro-inflammatory responses. 
A balanced immune response contains Mtb and results in proper granuloma formation but may not always sterilize 
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bacteria. We list the main cellular mediators of pro- and anti-inflammatory responses. Note, T-cells play a role in 
both pro- and anti-inflammatory responses and contribute to cell death via cytotoxicity. Figure adapted from (55). 
 

1.5 T cells and their role in the immune response to Mtb infection 

1.5.1 Antigen specificity and naïve T cells 

When an infecting pathogen evades or survives the innate immune response, it activates the 

adaptive immune response, a critical aspect of which is the T cell, a type of lymphocyte that 

expresses T cell antigen receptors (TCRs) on its surface. T cells are generated within a lymphoid 

organ called the thymus and undergo maturation and thymic education through positive and 

negative selection – a complex process through which cells are genetically selected to recognize 

specific molecular structures called antigen (58). Following maturation, naïve T cells circulate 

between blood and lymphoid organs in search of antigen for which they are ‘specific’ (i.e. they 

have been selected to recognize a specific foreign antigen through the maturation process).  The 

frequency of cells that are specific to each antigen is very low, ranging as low as 1 per million 

cells or less due to the inherent diversity of TCRs (59).  When these matches are found, naïve T 

cells undergo activation and differentiation.  

 

T cells can only recognize an antigen presented within the proper context.  That is, TCRs will 

only selectively bind to antigen that has been mounted and presented onto specialized molecules 

called major histocompatibility complexes (MHC).  Together, the antigen and MHC complex 

displayed on the cell surface of an antigen presenting cell (APC) is called peptide-MHC. 

Endogenous antigens are presented through the MHC class I pathway of antigen presentation, 

which can be recognized by CD8+ T cells. In contrast, exogenous antigens, such as pathogenic 

proteins are loaded on MHC class II complexes and can be recognized by CD4+ T cells.  Upon 

activation, CD4+ T cells provide helper functions by modulating and stimulating the functions of 

other immune cells, whereas CD8+ T cells directly kill infected host cells. 

 

1.5.2 Priming, differentiation and effector expansion 

T cell priming occurs when a naïve T cell encounters its specific antigen and binds with the APC 

for an extended period of time, typically within the lymph nodes. Priming acts to accumulate 

activation signals within a T cell prior to cellular proliferation and differentiation.  Priming, 

proliferation and differentiation of T cells is central to the effector expansion phase necessary to 
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carry out an adaptive immune response. Simply put, effector expansion is an effort by the body 

to optimize the immune response by creating a large number of T cells that can all respond to the 

same antigen.  

 

In addition to TCR and co-stimulatory signals (reviewed in (60)), cytokines play an important 

role in polarizing T cell proliferation and differentiation toward the generation of effector cells 

with a certain functional phenotype (61).  For example, interleukin-12 (IL-12) production by 

APCs direct CD4+ precursors to differentiate to a Th1 cell type: a cell that typically produces 

large levels of interferon gamma (IFN-γ) (62).  After differentiation and effector expansion, T 

cells exit the lymph nodes and travel through the blood stream for recruitment to the sites of 

infection.   

 

During chronic antigen stimulation, a subpopulation of T cells will exhibit a type of dysfunction 

epitomized by the loss of functional and proliferative capabilities.  This type of dysfunction is 

called T cell exhaustion and can be phenotypically characterized by a series of inhibitory 

receptors, the most studied of which include PD-1 CTLA-4 and LAG-3 (63,64). In cancer and 

chronic viral infections, this subpopulation has been fairly well-defined, and a blockade of these 

inhibitory receptors has even reversed exhaustion to rescue T cell functional capabilities (65,66).  

In TB, T-cell exhaustion is relatively understudied, and further research could provide important 

clues to infection dynamics within the granuloma.  In Chapter 2, I investigate T-cell exhaustion 

using an in silico model of granuloma formation paired with experimental studies by 

collaborators. We show that granuloma structure actually prevents widespread T-cell exhaustion. 

1.5.3 Memory T cells 

In most infections, the vast majority of effector T cells generated during immune response die as 

an immune response wanes, and only a small fraction persists as long-lived memory cells. These 

cells, unified by their relatively long lifespans and ability to generate a quick response upon 

pathogen re-encounter, can be delineated into three major cell populations:  effector memory T 

cells, central memory T cells and resident memory T cells.  Each of these populations can be 

chiefly separated according to physiologic location:  effector memory T cells recirculate between 

blood and tissue and lack lymph node homing receptors, whereas central memory T cells 

circulate between blood and lymph nodes but are not thought to migrate into tissue (67).  Newly 
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identified resident memory T cells are a non-circulatory cell type that resides within the 

previously infected tissue.  Effector memory T cells and resident memory T cells are thought to 

derive from effector cells and readily exert effector function to contain pathogen upon 

reinfection (68–71).  Whereas resident memory T cell longevity is not yet known, effector 

memory T cell survival is not thought to be as durable as central memory T cells, whose 

continued maintenance can last through an entire lifetime in an antigen-independent manner 

(72). 

1.5.4 T cells in TB 

In the human immune response to Mtb infection, the adaptive immune response is primarily 

composed of CD4+ T cells that play critical roles and functions against Mtb. Unlike other 

infections, T cells are slow to enter the site of infection within the lungs and arrive in large 

numbers approximately one month after primary infection. In fact, this delayed onset of adaptive 

immunity is a prominent characteristic of TB immunology and pathology and is thought to 

originate due to the delayed migration of APCs to the lymph node (5). The reason for this delay 

is unclear but is thought to originate due to the slow growth of Mtb within the lungs, which 

delays ‘danger signals’ necessary from prompt immune response (7). Upon activation, effector 

expansion, and arrival into the lung environment, T cells surround the outer layers of the 

granuloma in a characteristic lymphocytic cuff spatial configuration. 

1.5.5 CD4+ T cells 

It is well established within TB literature that a CD4+ Th1 response is required for resistance 

against Mtb infection (73). In fact, the Tuberculin Skin Test (TST) - a popular TB test wherein 

tuberculin is injected intradermally - takes advantage of a CD4+ T cell driven delayed 

hypersensitivity reaction to identify individuals who are currently or have previously been 

infected with Mtb. In both mice and NHP experiments, animals with deficiencies in CD4+ T 

cells have increased susceptibility to Mtb (10,74).  Further, humans with HIV infection have a 

depleted CD4+ T cell population and are at increased risk of developing active TB (75).  

 

CD4+ T cells secrete cytokines that have critical functions against Mtb and assist in orchestrating 

the broader immune response to Mtb.  IFN-γ is a cytokine secreted by CD4+ T cells that is a 

driving factor for the resistance against Mtb (10,76), as evidenced by the susceptibility of 
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individuals born with genetic mutations that affect IFN-γ production (77).  While IFN-γ can be 

secreted by other cells, work in mice has shown that IFN-γ derived from CD4+ T cells is critical 

to control Mtb and IFN-γ from other cells is not sufficient for protection (78).   Not all CD4+ T 

cells exhibit a single functionality or secrete only a single cytokine.  Poly-functional CD4+ T 

cells are T cells that can produce multiple cytokines (79).  Typically, these include IFN-γ, TNF-

α, and IL-2, where TNF-α and IFN-γ can act synergistically to enhance the ability of 

macrophages to contain intracellular Mtb (80), and IL-2 induces proliferation and activation of 

other T cells. In addition to synergistic interactions with IFN-γ, TNF-α has known critical 

functions against Mtb from pharmacological blockade, knock-out and modeling studies 

(17,81,82). Despite these known functions against Mtb, the potential of polyfunctional CD4+ T 

cells as a correlate of protection is still uncertain. Contradictory evidence suggests that 

polyfunctional CD4+ T cells are associated with both resistance to Mtb and susceptibility to Mtb 

(reviewed in (79,83)). Therefore, much still remains unknown about the mechanisms CD4+ T 

cells employ in a protective response against Mtb. 

1.5.6 CD8+ T cells 

Known primarily for their capacity to kill infected cells via secretion of granzymes and perforin, 

CD8+ T cells can also secrete cytokines such as IFN-γ or TNF-α (84).  Changes in CD8+ T cell 

function have been described during active TB (85).  Compared to latently infected or healthy 

patients, active TB cases had circulating Mtb-specific CD8+ T cells that showed reduced 

cytotoxic activity (86).  In another study of active TB disease, CD8+ T cells located within 

granulomas also showed impaired expression of granulysin and cytotoxic function, suggesting 

CD8+ T cell dysfunction may lead to more progressive forms of TB disease (87). Data from 

previous modeling efforts (50) and non-human primate studies (47) have shown support for the 

critical role of both cytokine production and cytotoxic CD8+ T cell functions against Mtb. 

Despite this emerging evidence, CD8+ T cells are understudied in TB relative to CD4+ T cell 

populations but offer an intriguing target for future therapies against Mtb.   

1.6   Experimental Models in TB 

The computational and mathematical models I develop in this dissertation are calibrated to 

multiple experimental datasets.  In particular, various animal models have been helpful to 

understanding of TB pathology and immunology.  Key species that have been used include mice, 
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zebrafish, rabbits, guinea pigs and non-human primates (88). Depending on the scientific 

question at-hand, these experimental models have varying utility. For example, mice may 

represent an animal more inclined toward progressive disease studies than rabbits, which are 

relatively resistant to infection as an experimental model and have traditionally been used in 

treatment evaluation studies (89).  

1.6.1 Mice 

Due to their short life cycle, cost-effectiveness, and the abundance of genetic resources, mice are 

perhaps the most used animal model in all of biomedical science. In TB research, mouse models 

remain the preferred animal model. However, despite a relatively similar immune response as 

humans, mice have a distinctly unique disease pathology, wherein inflammatory but non-necrotic 

granulomas form in the popular mouse models BALB/c and C57BL/6 (90). Additionally, the 

mouse model does not exhibit latent stages of infection, but rather exhibits a chronic state of 

elevated bacterial load that eventually progresses to bacteremia and morbidity.  In contrast, the 

human bacterial burden is considerably reduced following the onset of adaptive immunity.  

 

Recently, some techniques have enabled the mouse model of TB to better recapitulate aspects of 

latent infection.  Notably, these include the ‘Kramnick mouse model’ (a mouse strain with a 

recessive allele, C3HeB/FeJ mice) and the ultra-low dose model of infection.  The Kramnick 

model develops necrotic granulomas that are highly encapsulated, but disease is highly 

progressive, and the mice are considered to have a ‘super-susceptibility to tuberculosis’ (91).  

The ultra-low dose model inoculates C57BL/6 (B6) mice with a 1-3 bacterium of Mtb (H37Rv) 

strains and shows promise in recapitulating necrotic, well-formed granulomas that exhibit 

heterogeneity in overall bacterial burdens and disease outcomes (92). However, this model has 

yet to be adopted by the wider TB research community.   

1.6.2 Non-human primates 

Non-human primates (NHP) were first used in the mid 20th century to study antituberculosis 

drugs (93) and have re-emerged as the animal model that most faithfully represents the spectrum 

of TB outcomes. Depending on experimental design and species, NHPs can exhibit active, latent 

and reactivation TB.  Cynomolgus macaques can develop either latent or active TB, whereas 

rhesus macaques are relatively more susceptible to Mtb (94). All NHPs are outbred, and typically 
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infected with a low-dose of Mtb.  NHP studies have used PET-CT imaging to monitor disease 

progression or treatment efficacy across time (94). Further, NHPs are able to capture a 

heterogeneous array of granuloma outcomes and bacterial burdens within a single monkey (94–

97). There are, however, significant disadvantages to the NHP model.  In addition to animal 

rights concerns, animals require BSL-3 facilities, require significant financial resources and 

reagents are not as readily available as other animal models. 

 

1.7 Computational models of TB 

1.7.1 Multiscale Modeling 

Reductionist approaches in science, used to dissect biological systems into parts and identify the 

role of each part in isolation, have proven to be very powerful in understanding the fundamental 

principles of each part.  However, within the human body, biological processes require the 

simultaneous action of systems of molecules and processes, take place across multiple spatial 

and temporal scales, and require interactions between scales in order to yield the phenomena that 

is empirically evident.  In particular, the immune response during Mtb infection requires the 

integration of multiple events across cellular, tissue, and multi-organ scales, across time scales 

ranging from seconds to years. Systems biology and multi-scale modeling are approaches that 

offer a way to embrace this complexity and connect these multiple phenomena into a framework 

that can be used to better understand the role the adaptive immune system during granuloma 

formation, development and maintenance as well as the broader role for the adaptive immune 

system in host-level TB outcomes.  Formally, multiscale modeling is a mathematical or 

computational model that accounts for more than one level within the spatial or temporal 

domains (98).  Modeling approaches complement experimental studies, as predictions and 

observations from one modality can be tested or validated in the other.  

1.7.2 Ordinary differential equations and agent-based models capture immune 

response within the lung 

Ordinary differential equation (ODE) models and agent-based models (ABMs) are two types of 

models that can be employed within a multi-scale modeling framework. ODE models are a type 

of continuous mathematical model that has been formulated to capture the average behaviors of 

species (or populations) over time.  In particular, within TB, ODEs were used as the first 
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modeling platform to capture overall lung dynamics following infection (99,100).  Additionally, 

these models have been used to describe macrophage presentation of bacteria (101), and explain 

the impact of macrophage polarization on granuloma outcome (102).  

 

Unlike ordinary differential equation modeling, agent-based modeling (ABM) (also known as 

individual-based modeling) is a stochastic, discrete modeling framework that tracks the 

interactions of agents (discrete entities) across spatial and temporal scales. Each agent behaves 

according to a set of rules and interactions on a predefined environment. Importantly, within 

ABMs, heterogeneity arises naturally as ABMs are able to generate a complex, systems 

emergent behavior from a set of rule-based descriptions. ABMs were used as the first spatial 

modeling framework of granuloma formation, in a framework that tracked multiple immune cell 

and bacterial interactions across time, where the emergent behavior of the model was granuloma 

formation (103). This ABM framework, called GranSim, became explicitly multi-scale with the 

introduction of receptor-ligand dynamics, described by a system of ODEs, and molecular 

diffusion (represented as partial differential equations) (82,104).  Predictions using one modeling 

technique can be further validated within another model system.  For example, the role of TNF 

and drug binding kinetics during TB reactivation was a prediction that was validated both in an 

ODE model (81) and an ABM platform (105).  ABM and ODE model formulations within TB 

are extensively covered in a review of all TB models (106).     

1.7.3 Models of T-cell responses within the lung-draining lymph node 

Historically, ODEs represent the preferred model of choice when tracking T cell dynamics. For 

example, ODEs have been used to predict T cell turnover and in vivo death rates (107), predict T 

cell homeostasis and thymic flux kinetics (108), and describe T cell dynamics in response to 

infection (109).  Additionally, ODE models have been used extensively to investigate within-

host dynamics of T cells during HIV infection ((110,111), reviewed in (112)).  Finally, ODEs 

have the resolution necessary to explain contradicting hypothesis in T cell literature, as shown by 

the use of CD8+ T cell differentiation models (113).  

 

There have been several efforts to model the initiation of adaptive immunity within a lung 

draining lymph node.  For example, Marino et al. developed a mathematical model of T cell 

priming in lymph nodes and eventual migration to the lungs to display that inoculation dose does 
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not influence priming of T cell responses in mice lymph nodes (114).  Additionally, Gong et al. 

utilized a 3D ABM and ODEs to model T cell generation within the lymph node and lymph node 

output (68,115).  In particular, ODE models of T cell activation and differentiation have proven 

especially useful as a sub-compartment within a hybrid multi-scale model, as they provide a 

coarse-grained approximation of the events that yield an adaptive immune response (116–119).  

As such, they offer potential utility within a larger, whole-host model of Mtb infection. 

1.7.4 Whole host modeling efforts 

As Mtb infection is a process that involves more than just a single granuloma and a lymph node 

several efforts have been made to scale in-host modeling frameworks to a whole host.  First 

among these efforts are two compartment models that link the lymph node and lung.  Several 

two-compartment models have captured cellular activation and priming within the lymph node as 

well as cellular movement between lung and lymph nodes (114,120–122).  Additionally, several 

models have linked individual granulomas to lung-draining lymph nodes (102,116).  On the 

whole, these studies have found that mechanisms leading to the generation of greater CD4+ T-

cell priming and activation may be key to sterilizing bacteria within an established or developing 

granuloma.  

 

Other efforts have included three-compartment models that capture the physiological granuloma, 

lymph nodes and blood compartments across time.  These modeling frameworks predicted 

potential biomarkers for infection outcomes (118) and improved representation of dendritic cell 

trafficking into the lymph node (123). In contrast, others have used a bubble modeling 

framework to track the development of multiple granulomas within a single lung across time, 

although this framework did not specifically model events at the granuloma scale (124,125).  The 

natural next step is to integrate blood and lymph node models, together with a whole-lung 

modeling framework in order to develop a modeling framework that can be used to study 

adaptive immune responses to Mtb, identify mechanisms related to whole-host outcomes, and, in 

the future, test various therapeutic interventions on a virtual patient.  In Chapter 5, I present a 

whole-host modeling framework. 

1.8 Calibrating and evaluating computational models 
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1.8.1 Calibrating complex models 

Prior to making useful predictions about relationships and mechanisms between various 

biological agents, a model must be able to replicate experimental outcomes and recapitulate the 

known temporal dynamics of the represented biological system.  Formally, the process of model 

calibration is the altering of model inputs (initial conditions and/or parameters) until model 

outcomes satisfy one or more criteria. These criteria are typically experimental data that model 

outcomes should match across time.   

 

There is a large literature that covers calibration of mathematical models.  As reviewed in Read 

et al., popular approaches can leverage the power of optimization schemes to minimize the 

difference between experimental data and model outcomes (126).  However, not all models can 

or should be minimized to a single metric for each outcome.  Bayesian calibration approaches 

represent a suite of techniques that have been used to successfully identify regions of parameter 

space wherein the distribution of model outcomes matches the distribution of experimental 

outcomes (127–129).  However, if the distribution of experimental outcomes cannot be 

sufficiently derived from the experimental data, or a modeler requires a continuous parameter 

space for their calibrated model, Bayesian calibration techniques might not be the best approach.  

As such, there is an opportunity for new calibration protocols that can improve upon previous 

Bayesian calibration efforts should a modeler find themselves with such constraints.  In Chapter 

6, I develop a new calibration protocol that utilizes parameter density estimate to calibrate 

complex biological models. 

1.8.2 Evaluating models with uncertainty and sensitivity analysis 

Modeling of complex biological systems often incorporates large numbers of interactions 

between model components across time.  Uncertainty and sensitivity analysis approaches provide 

interpretability for these models by relating variability in model outputs and model inputs to 

identify the key drivers of a system outputs.  Formally, uncertainty analysis measures variability 

in model output generated by variability in model input, whereas sensitivity analysis assesses 

how different model inputs can be apportioned to variations in model outputs (106,130).  

 

As complex biological system models are too large for analytical evaluation of local parameter 

sensitivity, global sensitivity analysis tools are the best approach.  In particular, partial rank 
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correlation coefficients (PRCC) is a global method that can be used to detect non-linear 

monotonic relationships between lists of parameter combinations and subsequent simulation 

outcomes. Typically, this process begins with a Latin Hypercube Sampling (LHS) to sample the 

parameter space and generate the lists of parameter combinations (130).  Although, other 

efficient sampling schemes, such as Sobol Sequences (131), can be utilized to sample parameter 

space.  

 

In TB modeling, these approaches can not only help establish relationships between model 

outcomes and parameters, but provide a guide for parameter estimation, identify critical 

mechanisms within the system as a whole, and help with model tuneability (117).  Sampling and 

sensitivity analysis techniques are used throughout this dissertation to compare computational 

model outcomes to experimental datasets and perform analysis of the computational models.  

1.9 Dissertation Summary 

In this thesis, I employ a multi-scale modeling approach to understand the mechanistic role of T 

cells during the immune response to Mtb infection (Figure 3). In particular, I first perform a 

study where I investigate the spatial dynamics of T cells in TB granulomas and predict that the 

granuloma structure itself may prevent a form of T-cell dysregulation called T-cell exhaustion.  

In Chapter 3, I present a whole lung model and characterize the role that T cells play in 

preventing spread of bacteria throughout the lung.  In Chapter 4, I utilize a lymph node and 

blood model that tracks the T-cell response to Mtb antigens and show similarities between the 

NHP and human response to a TB vaccine.  In Chapter 5, I utilize the two modeling frameworks 

presented in Chapters 3 and 4 to develop a whole-host modeling framework and identify 

mechanisms that lead to controlled or uncontrolled disease.  I further utilize the whole-modeling 

framework to identify T cells as main mediators of protection against reinfection with Mtb.  

Finally, in Chapter 7, I present a method for calibrating complex, multi-scale modeling 

frameworks.  Throughout this thesis, I characterize T cell responses across and within various 

organs and at the site of infection.  This dissertation highlights the important, and often 

protective roles, of T cells in driving the heterogeneity of TB disease and infection outcomes 

across cellular, tissue, and whole-host scales (Figure 1.3). Finally, this dissertation presents a 

whole-modeling framework of Mtb infection that has future implications for evaluating 

therapeutics against TB. 
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Figure 1.3 Multiscale modeling of T-cell response during Mtb infection.  
Throughout this dissertation, we employ computational modeling techniques to track spatiotemporal interactions 
across multiple scales occurring between T-cells, other immune cells, and bacteria during Mtb infection and 
vaccination scenarios. Beginning at the cellular and tissue scale, we use an ABM model called GranSim to show that 
the granuloma structure prevents T-cell exhaustion. We then develop and present a multiple-granuloma model of 
infection within the lungs and predict multi-functional T cells present dissemination of bacteria. Additionally, we 
show that prior BCG vaccination can impact the T-cell response to vaccines currently in the clinical trial pipeline. 
Finally, we present a whole-host modeling framework of Mtb infection and predict T cells as drivers of 
heterogenous clinical outcomes in TB as well as cellular mediators of protection against reinfection. Lung image 
adapted from Medical Servier Art.   
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2 Investigating T-cell Exhaustion within Tuberculosis Granulomas 
 

This chapter is part of a published work: 

Wong, EA*, Joslyn, LR*, Grant NL, Klein E, Lin PL, Kirschner DE, Flynn JL.  “Low Levels of 

T cell Exhaustion in Tuberculosis Lung Granulomas”. Infection and Immunity Aug 2018, 86 (9) 

e00426-18; DOI: 10.1128/IAI.00426-18. 

2.1 Introduction 

Tuberculosis (TB), caused by inhalation of the bacterium Mycobacterium tuberculosis 

(Mtb), continues to be a major global health problem. The World Health Organization estimates 

that more than 10 million people became ill with TB in 2016 alone, and 1.7 million deaths were 

caused by TB (1). TB is a chronic pulmonary disease. Consequently, the hallmarks of pulmonary 

Mycobacterium tuberculosis infection are granulomas that reside within the lungs.  These 

organized structures are composed of host immune cells whose purpose is to contain or clear 

infection, creating a complex hub of immune and bacterial cell activity, as well as limiting 

pathology in the lungs. Due to substantial heterogeneity of granulomas, even within the same 

host, these structures can contain and kill Mtb but also can be a niche for bacterial survival, 

replication, and persistence (2). The host immune cells and Mtb bacilli and antigens interact 

within the granulomas for the entire course of infection, which, during clinically latent TB, can 

last the lifetime of the host (3). Macrophages are the primary host cell for infection, while CD4+ 

T cells have been shown to be critical for granuloma formation and maintenance through 

cytokine secretion and activation of other immune cells, including macrophages (4,5). Yet, given 

cellular activity and potential for frequent interactions between host immune cells and Mtb 

infected cells, it has been observed that a surprisingly low quantity of cytokine producing T cells 

(<10% of granuloma T cells) in non-human primate (NHP) granulomas (6).  While various 

mechanisms could be limiting T cell function, one potential explanation for the low T cell 

responses within granulomas is T-cell exhaustion occurring due to chronic antigen stimulation 

from Mtb-infected cells. 
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In chronic viral infections and cancer, a subpopulation of T cells has been demonstrated 

to lose both functionality and proliferation capabilities over time in response to persistent antigen 

stimulation (7–12). This subpopulation of T cells enters an “exhausted” state, characterized by 

low cytokine production, low proliferation, and expression of a series of inhibitory receptors. 

The most well-studied of these receptors include PD-1, CTLA-4, and LAG-3, which interact 

with a range of ligands to activate negative regulatory pathways (13,14). While these inhibitory 

receptors may balance an overly activated immune response that could lead to disease pathology, 

the receptors can also prevent an effective immune response from clearing infections and tumor 

cells. In cancer and some infectious diseases, blockade of these inhibitory receptors reverses 

exhaustion and rescues T cell functions (15–20).  

 

Since Mtb causes a chronic bacterial infection confined to a structured environment, it 

seems obvious that T cell exhaustion would occur within the critical site of granulomas.  Not 

surprisingly, the contribution of T cell exhaustion to TB has been the subject of several studies. 

Patients with active TB were shown to have significantly higher PD-1 expression on their 

peripheral blood mononuclear cells (PBMC) compared to healthy controls, and blockade of 

inhibitory receptors in vitro enhanced T cell function (21–23). Additionally, increased antigen 

load was associated with decreased T cell responses in patients with high Mtb loads compared to 

patients with latent Mtb infections (24). Rhesus macaques with active or reactivated TB 

expressed more LAG-3 on their CD3+ T cells in their lung tissue compared to clinically latent 

animals (25). PD-1 expression significantly correlated with CTLA-4 expression on CD4+ T cells 

from tissues of Mtb-infected rhesus macaques (26). Mtb infections in mice increased the 

expression of PD-1 and LAG-3 as the infection progressed, and this was associated with 

increased T cell impairment (27). However, murine studies also suggested that presence of these 

inhibitory receptors may be beneficial for overall TB disease pathology and bacterial control, and 

are necessary to maintain antigen-specific effector T cells during Mtb infections (28,29), with 

detrimental outcomes when mice lacking PD-1 were infected with Mtb (30–32). While these 

studies examined T cell exhaustion in the periphery (patient studies) or in the whole lung (animal 

models), the frequency and role of exhausted T cells in individual granulomas is still unstudied 

and could provide important clues to overall infection dynamics as granulomas are the sites of 

infection in pulmonary TB.  
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We hypothesized T cell exhaustion could be contributing to the observed low frequencies 

of T cells producing cytokines in TB granulomas.  We used a NHP model of TB that 

recapitulates human granuloma structure and disease to assess the extent of exhausted T cells and 

their function in lung granulomas.  Very little evidence of T-cell exhaustion was found across 

NHP granulomas. Further, T-cell exhaustion in granulomas did not correlate with bacterial 

burden across granuloma samples.  

 

While the in vivo data based on inhibitory receptors did not demonstrate large levels of T-

cell exhaustion, the relationship between inhibitory markers and functional exhaustion is not 

abundantly clear. Recent studies have shown that inhibitory receptors can act as activation 

markers and that T cells can simultaneously express both inhibitory and activation markers 

(15,33–36).  Therefore, it becomes difficult to distinguish T cell exhaustion using inhibitory 

receptors alone.  To further explore the phenomenon of T cell exhaustion we utilized our existing 

computational model, GranSim (37–42). Within this chapter, we simulated a wide range of 

granuloma outcomes and incorporated varying levels of exhausted T cell phenotypes to ascertain 

the effects of T cell exhaustion on granuloma outcomes.  Finally, we evaluated T cell dynamics 

across infection space and time in order to develop a hypothesis to explain the low levels of 

exhaustion observed in the NHP lung granulomas. 

2.2 Methods 

2.2.1 Animals, necropsy procedures, bacterial burden and staining for cell receptors 

All animal care, necropsy procedures, and experimental protocols and procedures are 

fully described in the published version of this chapter (43). Briefly, NHP granuloma samples 

were assessed from 11 cynomolgus macaques. 34 lung granulomas were collected upon necropsy 

and 8 lung samples of complex TB disease (clusters, consolidations or TB pneumonia). 

Granuloma cells were stained for surface markers, inhibitory receptors and cytokines as part of 

prep for flow cytometry analysis. Granuloma bacterial burden was determined by plating 

granuloma homogenate and enumerating colony-forming units of Mtb. Immunofluorescence 

procedures are also described in the published version of this chapter. 
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2.2.2 Computational modeling with GranSim  

 All simulations utilize a 2D hybrid, agent-based model (ABM) called GranSim that 

captures environmental, cellular, and bacterial dynamics across molecular, cellular, and tissue 

scale events. As an established model, GranSim has been calibrated extensively to data from a 

non-human primate model of TB (37–41). At the molecular scale, GranSim incorporates 

cytokine and chemokine diffusion, secretion and degradation (44).  GranSim also tracks 

individual immune cells on a 2D simulation grid of micro-compartments, including four 

macrophage states (resting, activated, infected, and chronically infected) and T-cell types 

(cytotoxic, IFN-γ producing, and regulatory). Granuloma formation at the tissue level is an 

emergent behavior of GranSim.  See http://malthus.micro.med.umich.edu/GranSim for full 

model details and an executable file. The following methods provide detail on added 

mechanisms to GranSim so that we can use GranSim as a tool to study exhaustion in 

granulomas. 

2.2.3 Model definitions, assumptions, and justifications 

A great advantage of our in silico representation is that we can track cellular movement, 

behavior, and interaction across time.  In GranSim, we define an interaction between a T cell and 

macrophage by the occurrence of a macrophage entering the double Moore neighborhood of a T 

cell (45–47) (i.e. Moore neighborhood is defined as all micro-compartments on the grid 

immediately adjacent to the one the cell is in; double Moore includes the next outer ring of 

micro-compartments).  In particular, as we evaluate the possibility of T-cell exhaustion 

influencing the pathology of granuloma formation, we become solely interested in Exposure 

Events (EE), defined as the interactions between a T cell and an antigen “exposed” macrophage.  

In previous model versions, we defined an exposed macrophage according to three criteria: 1) If 

the cell contained any intracellular Mtb, 2) If, within the single Moore neighborhood of the 

macrophage, there exists any live or dead extracellular Mtb, and 3) If, within the single Moore 

neighborhood of the macrophage, there is another macrophage that was determined to be 

exposed during a previous timestep.  Additionally, once a macrophage becomes exposed, it 

remains exposed for the entirety of its lifespan (41).    

 

As noted in the introduction, chronic antigenic stimulation is sufficient to develop 

exhaustion within a T-cell population.  Based on current literature, we model antigenic 
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stimulation via EE (48,49). We use EE as a standard of stimulation across a T-cell’s lifetime to 

evaluate various analytical measures about T-cell exhaustion, including:  individual T-cell 

exposure to antigens, average EE across T-cell populations, and determination of whether only a 

few T cells out of the entire population accrue the majority burden of EE.   

 

 Finally, we created a new parameter within GranSim to introduce an exhausted T-cell 

phenotype (this parameter was aptly named ‘ExhaustionThreshold’).  If the EE of an IFN-γ 

producing T cell or a cytotoxic T cell exceeds this preset threshold, then a T cell is marked as 

‘exhausted’.  Once labeled, it loses all effector function, but continues to move around the grid 

until it dies from its natural lifespan (we do not assume there is an enhanced death rate for 

exhausted cells).  Because we explore the possible role of exhaustion within granuloma 

formation, we crafted this parameter to represent the worst-case scenario:  if a T cell exceeds the 

threshold, it immediately ceases effector function rather than for example, exhibiting a 

progressive loss of function.  Other formulations are possible, but we have considered this case 

as an upper bound for quantifying exhaustion levels (yielding the worst-case scenario). 

 

2.2.4 Computational platform and post-run analysis  

GranSim is constructed through use of the C++ programming language, Boost libraries 

(distributed under the Boost Software License – www.boost.org), and the Qt framework for 

visualization (distributed under GPL – www.qt.digia.com). The ABM is cross-platform 

(Macintosh, Windows, Unix) and runs with or without visualization software. GranSim model 

simulations were performed locally and also on the XSEDE’s OSG Condor pool resources.   

We relied on uncertainty analysis (UA) techniques to explore model parameter space.  In 

particular, we used Latin Hypercube Sampling (LHS, reviewed in (50)) for UA. The LHS 

algorithm is a stratified Monte Carlo sampling method without replacement and was used to 

generate 1,500 unique parameter sets, which were simulated in replication 3 times (a total of 

4,500 in silico simulations) for 200 days.  When we matched our simulations to NHP 

granulomas, often the size of the high and median bacterial burden samples necessitated the use 

of a 200 by 200 micro-compartment simulation space, whereas the simulation space for sterile 

samples could be performed within 100 by 100 micro-compartments.  
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Analysis of statistical data derived on EE from simulations was performed using 

smoothScatter, ggplot2 and base packages in R and MATLAB.  Additional analysis was 

conducted on more general data concerning granuloma-scale infection outcomes, granuloma 

formation, and concentration values of various effector molecules and CFU within the 

simulations.   

2.2.5 Model calibration and defining exhaustion 

Once the model was updated, we re-calibrated GranSim with respect to i) CFU totals, ii) 

CD3 totals, and iii) time based on 45 separate NHP granuloma sample data. Table A.1 shows the 

parameter ranges we used to generate an in silico bio-repository of 4,500 granulomas.   Figure 1 

outlines a portion of the comprehensive analysis we performed to compare T-cell exhaustion in 

silico versus the data derived on T-cell exhaustion in vivo.  

Since the exact roles of individual inhibitory receptors as markers in the progression of T-cell 

exhaustion is unclear (35), we assume that a T cell is only truly exhausted if it co-expresses any 

two or more inhibitory receptors.  Thus, when we compared T-cell exhaustion levels and markers 

in vivo against T-cell exhaustion in silico, the in vivo percentage of T-cells that are “exhausted” 

are actually the percent of T-cells that expressed 2 or more inhibitory receptors. 

 

 Out of the 4,500 granulomas in our in silico bio-repository, we matched simulations to 

samples according to our criteria, as shown in Table 2.1 of Figure 1.  As an example, if we 

examine NHP Sample 13516_RLL 17_20, we were able to select 5 unique simulations that 

matched CFU and CD3 values across various simulation time points. For each of the 5 

simulations, across every time point that matched the NHP sample’s CFU and CD3+ T cell 

levels, we found the average percent of exhausted T cells (Table 2.2).  For example, the first 

replication of simulation no. 33 matched CFU and CD3 counts across 5 different time points 

over the 200-day simulation.  We averaged the exhausted T cells across each of the 5 days and 

found that the mean percentage of exhausted T cells when this simulation matched our criteria 

was 0.0%, with a standard deviation of ~1.5%.   

 

Finally, we aggregated the data to provide a sense of overall model fit for each of the 45 

NHP samples.  Table 2.3 displays the median value across all the mean percentages of exhausted 

T cells for each sample’s matching simulations.  Thus, for Sample 13516_RLL 17_20, the 
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median percent of exhaustion across all the samples that matched was 0.0%.  Flow cytometry 

data shows that this sample had 0.66% of T cells that displayed 2 or more inhibitory markers. 

 

 

Figure 2.1 Example analysis of in silico versus in vivo T-cell exhaustion data.  
Table 2.3 displays the direct comparison between exhaustion in our matching simulations and the level of observed 
exhaustion in NHP samples.  Tables 2.1 and 2.2 explain our method of matching and aggregating data.   Table 2.1 
displays 1 of the 44 granuloma NHP samples that we used for calibration.  The right-most column shows the number 
of simulations that matched to the NHP sample CFU values and CD3 Count.  Each simulation could match the 
criteria across several time points. Table 2.2 shows each of the 5 simulations that calibrated to NHP sample 
13516_RLL 17_20 cluster and the average percentage of exhausted T cells across the simulation timepoints that 
matched NHP sample criteria.  Finally, we aggregated the data to display an overall sense of model fit by selecting 
the “median of the means” for each matching simulation. Thus, for NHP sample 13516_RLL 17_20 cluster, the 
median percent of exhaustion across all samples that matched was 0.0%.  Flow cytometry data shows that this 
sample had 0.66% of T cells that showed two or more exhaustion markers. 
 

2.2.6 Exposure event (EE) threshold selection 

Initially, we created a biorepository of 4500 granulomas using the LHS technique. Within 

this biorepository, the EE threshold for T cell exhaustion ranged from 200 to 10000.  We 

calculated the upper bound of 10000 interactions of the EE threshold as a T cell that has every 

location in a T cell double Moore Neighborhood occupied by an exposed macrophage 

throughout the entirety of its life (average of 3 days in our simulation), will accrue 10500 

interactions.  We selected 200 interactions as the lower level of EE because a T cell with 200 

interactions has encountered exposed macrophages less than 2% of the time it has been alive – 

certainly, a sufficient EE threshold for a phenotype that is caused by chronic stimulation.  

 

 Figure 2.3 and Figure 2.4 were produced from a second biorepository of 4500 

granulomas.  This biorepository was created with the exact same parameter ranges as in Table 

A.1, but the EE threshold was set to 5236, the median of all simulations that matched the 

macaque granulomas.  A threshold of 5236 EE seems reasonable, as 4320 interactions equals 1 

interaction per minute through the average lifespan of a T cell. 
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2.3 Results 

2.3.1 GranSim simulations match in vivo granuloma cell counts, bacterial burden and 

exhaustion levels 

Full experimental data on T-cell exhaustion within NHP granulomas can be viewed in the 

published version of this chapter. Briefly, the in vivo data do not support widespread T cell 

exhaustion within TB granulomas. Furthermore, the in vivo data could not answer the following 

questions about T cell exhaustion: 1) What are the temporal dynamics of exhaustion in the 

granuloma? 2) Within the granuloma, are there areas where a T cell has greater likelihood of 

becoming exhausted? 3) Can we generally explain the presence of only low quantities of 

exhausted T cells? These questions require a technique that addresses both the spatial and 

temporal dynamics that are intrinsic to development of a T cell exhaustion phenotype.  To further 

explore the relationship between T cell exhaustion and granuloma function, we turned to our 

existing computational model, GranSim (37–41). We simulated a wide range of granuloma 

outcomes, creating a library of granulomas using a Latin Hypercube Sampling algorithm (50). 

We also incorporated varying levels of exhausted T cell phenotypes to ascertain the effects of T 

cell exhaustion on granuloma outcomes.  Finally, we evaluated T cell dynamics across infection 

time and space in order to develop a hypothesis to explain the low levels of exhaustion observed 

in the NHP studies herein.  

 

   After creating an in silico biorepository of 4,500 granulomas (see Methods), we found 

that every macaque granuloma sample has at least one corresponding simulation match. We 

selected three individual granuloma simulations that best matched bacterial burden and CD3+ T 

cell counts of the three NHP granuloma samples 2016_LLL GR B, 9515_RLL GR 20, 

4017_LLL TB pneumonia to investigate the potential roles of exhaustion in granulomas. These 

were chosen to represent a spectrum of granuloma outcomes: sterile, median bacterial load, and 

high bacterial load samples, respectively. We directly compared these three NHP samples and 

their corresponding simulations from GranSim (Figure 2.2). The leftmost column represents a 

sample that was sterile at the time of necropsy (112 days post-infection with 0 CFU), the middle 

column shows a sample with median bacterial burden during the time of necropsy (84 days post-

infection with 600 CFU), and the far-right column displays a high burden sample (70 days post-

infection, with 138000 CFU). The first row displays the H&E of sections, while the second row 
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displays the PD-1 and CD3 expression in the matched granulomas. The third row displays an in 

silico snapshot taken at day 100 for each corresponding granuloma simulation (near time of 

necropsy of the NHPs).  The fourth row represents a prediction: each figure is an in silico 

snapshot of the granuloma simulation at day 200. These comparisons support that the simulated 

granulomas both temporally and spatially capture the characteristics of the macaque granulomas. 

 

 

Figure 2.2 Comparison of macaque and simulated granulomas with varying levels of 
bacterial burden.  
Row 1: H&E sections from granulomas excised from NHPs. Row 2: IHC staining showing spatial organization of 
PD-1 and CD3 expressing cells in lung granulomas excised from NHPs, green = CD3, red = PD1. Inset is a 
magnification of the region of interest (indicated by white box), where arrowheads indicate PD-1+CD3+ cells. Row 
3: Simulated granuloma snapshots at day 100 (near the corresponding time of necropsy). Row 4: A snapshot 
prediction of the granuloma outcome if each simulation is continued until day 200.  In both Rows 3 and 4, green - 
resting macrophages, blue - activated macrophages, orange - infected macrophages, red - chronically infected 
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macrophages, brown - extracellular bacteria, pink - gamma-producing T cells, purple - cytotoxic T cells, aqua - 
regulatory T cells, and white crosshatched – caseated. 

2.3.2 Temporal and spatial analysis of in silico exhaustion  

Under the assumption that T cell exhaustion occurs upon repeated exposure to antigen, we 

defined an Exposure Event (EE) as the interaction between a T cell and an antigen exposed 

macrophage in the granuloma. The range of EE across the 2945 simulations that matched the 44 

macaque granuloma samples was 205 to 9199, with a median of 5236.  Therefore, a threshold of 

5236 EE was set as a conservative estimate of our exhaustion threshold, as 5000 interactions 

across the average life of a T cell (~ 3 days) equates to approximately 1 APC-T cell interaction 

per minute. We assume this number of interactions constitutes a reasonable threshold for T-cell 

exhaustion, a phenotype that only develops following chronic interactions between APC and T 

cells. We created a new biorepository of 4500 granulomas, using this EE threshold for 

exhaustion. Using the same three granulomas as in Figure 2.2, we performed a spatial and 

temporal analysis (out to 200 days) to investigate the location of exhausted T cells within 

granulomas (Figure 2.3).  Row 1 displays the spatial location and magnitude of EE throughout 

the sterile (Figure 2.3A), median CFU (Figure 2.3B), and TB pneumonia (Figure 2.3C) 

simulations, where dark blue represents high density EE areas and white represents areas within 

the simulation that lack EE. Row 2 reveals the spatial location of T cells as they exceed the EE 

threshold and become labeled with an exhaustion phenotype. Each simulation (sterile – Figure 

2.3D, median CFU – Figure 2.3E, TB pneumonia – Figure 2.3F) has its own scale ranging from 

white to dark blue, thus comparison from one EE map to another simulation’s EE map should 

not be performed.  Row 3 (Figure 2.3G, H, I) displays a plot of the level of overall exhaustion, 

across time, as a cumulative percentage of all T cells that were activated in the granuloma 

simulation.  As these simulations show, many granulomas show little cumulative exhaustion 

throughout the simulation. Note the spatial location of exhaustion is similar for each type of 

granuloma; T cells only become exhausted when they enter the center of the granuloma and can 

accrue sufficient EE. Furthermore the cumulative exhaustion plots reveal that, across time, 

exhaustion accumulates faster in early time points (between days 25 and 50) than later time 

points (between days 100 and 200).  However, as the granuloma matures and organizes, T cell 

exposure events decline, and the rate of exhaustion lowers or stabilizes. 
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Figure 2.3 T-cell location within granulomas prevents T-cell exhaustion by reducing 
exposure events.  
Row 1 (A,B,C): Cloud Maps showing the location of every EE in sterile, medium CFU, and TB pneumonia 
simulations. Dark blue represents areas of high numbers of EE and white represents a lack of EE. Row 2 (D, E, F): 
Heatmap location where T-cells (cytotoxic or IFN-γ producers) became exhausted.  White represents the location of 
T cell at time of exhaustion. Row 3 (G, H, I): Time series graphs that display cumulative levels of exhaustion (as a 
percentage of total cytotoxic and IFN-γ  producers) within corresponding simulations to Rows 1 and 2.   
 

Based on the location of exhausted T cells in the simulations, it appears that cells are more likely 

to become exhausted as they penetrate deeper into the granuloma. As previously shown, Mtb 

bacilli are primarily located in the inner core of macrophages and within the necrotic center (52). 

As the structure becomes more organized, fewer T cells appear in this region. Thus, GranSim 

predicts that identifying large quantities of a T-cell exhaustion phenotype is unlikely after 

granuloma formation.  
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Using our biorepository of nearly 3000 simulated granulomas that matched to all 45 NHP 

granulomas, we compared observed levels of exhaustion (NHP granulomas) versus those 

obtained from simulations (Figure 2.4A).  Note that we did not calibrate to the exhaustion levels 

found in NHP data, but instead calibrated the model to the NHP CFU and CD3+ T cell counts, 

and then compared exhaustion levels within these simulations to those obtained from NHP 

studies. The average difference between pairs in these two populations was not significant.  That 

is, overall, our model was able to recapitulate the observed levels of exhaustion. 

2.3.3 Extreme levels of in silico exhaustion drive unrealistic granuloma outcomes 

Computational modeling allows us to artificially inflate the levels of T cell exhaustion in 

granulomas, to test the impact of widespread T-cell exhaustion on granuloma outcome. We 

selected the median bacterial burden simulation (Panel B from Figure 2.3) and re-simulated that 

same granuloma under hypothetical condition of decreasing EE threshold.  We reasoned that a 

lower EE threshold would result in a larger number of T cells becoming exhausted, and a 

decreased ability of the granuloma to contain bacterial growth.  We observe that inflated levels 

of exhaustion in the simulation lead to unfeasible granuloma outcomes, particularly in those 

granulomas whose EE threshold was less than 200 (Figure 2.4B). The previous simulation with 

an EE threshold of 5236 has a bacterial burden of about 288 CFU by day 200 (Figure 2.4C) and 

the simulation with an EE of 1 has 115,192,400 CFU (Figure 2.4D).  To our knowledge and in 

our experience with macaque granulomas (51), these bacterial burdens are biologically 

unreasonable and can only be attained computationally when exhaustion levels are extremely 

high, well beyond the NHP findings. We conclude that T-cell exhaustion alone cannot explain 

the low-frequency of Mtb-responsive T cells in the granuloma, as the vast majority of T cells do 

not encounter stimulation by antigen sufficiently frequently to become exhausted. 
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Figure 2.4 Artificially increasing T-cell exhaustion levels result in bacterial burdens that 
are not observed experimentally.  
(A) A box and whisker plot demonstrating the distribution of exhaustion levels from NHP studies versus those 
obtained via simulation in the 45 macaque granulomas (blue) and the simulations that matched (red).  (B) Graph of 
CFU vs time at varying EE thresholds. (C) Snapshot of granuloma with an EE threshold of 5236 taken at day 200. 
This granuloma represents a biologically feasible outcome and had a bacterial burden of 288 CFU. (D) Snapshot of 
granuloma with an EE threshold of 1 taken at day 200. This granuloma had a bacterial burden of 115192400 CFU. 
 

2.4 Discussion 

The presence and effect of T cell exhaustion has been studied in many chronic diseases. The 

chronic nature of Mtb infection and continued presence of bacterial antigens in granulomas 
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seemed to be an obvious scenario for development of exhausted T cells, which could explain the 

inability of some granulomas to completely eliminate bacteria. However, in NHP models of TB, 

both rhesus and cynomolgus macaques, we detect only limited apparent exhaustion of T cells 

within granulomas, based on the expression of inhibitory receptors. 

 

To further investigate the lack of apparent exhaustion in granulomas, we turned to our 

computational, agent-based model of granuloma formation and function, GranSim.  We 

demonstrated that GranSim can match macaque granuloma CFU and T cell counts datasets, and 

then explored the extent of exhaustion in the simulated granulomas. Like the NHP in vivo data, 

we found low levels of exhausted T cells within in silico granulomas. GranSim revealed that T 

cells could not readily penetrate into the macrophage or caseous layers of the granulomas, where 

most bacilli exist. Thus, the organized structure of the granuloma precludes widespread T cell 

exhaustion, in that macrophages and Mtb bacilli tend to be in the center of the granuloma, while 

T cells are concentrated in the lymphocyte cuff on the periphery of the granuloma. In fact, in 

cases of less organized pathology (TB pneumonia), we observed experimentally and 

computationally, somewhat higher levels of exhaustion, although still relatively low. Finally, we 

used our computational model to artificially inflate the level of T cell exhaustion in granulomas 

(by decreasing the threshold of T cell-APC interactions) and found that this would lead to 

exceptionally high bacterial burdens in granulomas. Such high bacterial burdens in individual 

granulomas are rarely seen in macaque models, even including those with substantial amounts of 

disease. Thus, we conclude that limited T cell exhaustion in granulomas is due to the relative 

infrequency of T cells contacting Mtb infected macrophages (or APCs carrying Mtb antigens), 

which is a key feature of the organized structure of granulomas. 

 

Altogether, in silico data coupled with in vivo data support that the lack of T cell exhaustion in a 

chronic disease like TB is likely a result of the unique characteristic of the disease – containment 

of the Mtb bacilli within a well-structured granuloma. While the close proximity of bacterial 

antigens to the host immune cells seemed to be an obvious environment for T cell exhaustion, 

the structure and spatial arrangement of the immune cells in the granuloma may be responsible 

for the low levels of T cell exhaustion. T cells infiltrate the granulomas early in infection, but 

during chronic infection (>3 months), the vast majority of T cells are on the outer periphery of 
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the granuloma, away from bacteria and exposed macrophages in the center of the granuloma, 

thus preventing Mtb-T cell interactions, as also previously suggested by Kauffman et al. (25).  

Together, these data support and extend the notion that a balance of cytokine responses and T 

cell functionality are necessary for control of Mtb within granulomas, and that due to the spatial 

organization of the granuloma, T-cell exhaustion is likely not a major contributor to this balance 

at the local granuloma level.   
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3 A Computational Model Tracks Whole-Lung Mycobacterium tuberculosis Infection 
and Predicts Factors that Inhibit Dissemination 

 

This chapter is a published work: 

Wessler T*, Joslyn LR*, Borish HJ, Gideon HP, Flynn JL, Kirschner DE, Linderman JJ. A 

computational model tracks whole-lung Mycobacterium tuberculosis infection and predicts 

factors that inhibit dissemination. PLoS computational biology. 2020 May 20;16(5):e1007280. 

(*indicates co-first authorship) 

3.1 Introduction 
 

Tuberculosis (TB) kills more individuals per year than any other infectious disease and treatment 

remains a global challenge (1). Only a small fraction (5–10%) of those infected with 

Mycobacterium tuberculosis (Mtb) develop active symptomatic disease (2), while the remainder 

control but do not eliminate the infection, which is termed latent TB (LTBI). A hallmark of Mtb 

infection is the presence of lung granulomas (lesions), collections of immune cells that surround 

Mtb in an effort to contain and control an infection. Multiple granulomas can be present in 

humans and non-human primates (NHPs). In NHPs, each granuloma is initiated by a single 

bacillus (3). Of key importance is that each granuloma within an individual has its own 

independent trajectory behavior. For example, the immune response in some granulomas 

eliminates all bacteria, resulting in sterilization. In other granulomas, immune cells only contain 

Mtb growth, resulting in stable granulomas that may persist for decades (4). If Mtb growth is not 

contained, however, granulomas can grow and/or spread, allowing for dissemination of bacteria 

across the lungs leading to the formation of new granulomas, spread to the airways resulting in 

transmission of infection through aerosolized bacteria, and possibly death of the host if not 

treated. Understanding the collective behavior of granulomas within lungs leading to 

dissemination events is critical to the ultimate goal of controlling the global TB epidemic. 

 

It is difficult to experimentally address specific mechanisms operating within lungs that drive 

different granuloma outcomes in primates, although it is known through interventional studies 

that certain factors, such as TNF, CD4+ T cells, and CD8+ T cells are important in controlling 

early and established Mtb infection (5–8). As a complementary approach, mathematical 



 47 

modeling can generate hypotheses that can then be tested experimentally. Several mathematical 

and computational models for Mtb infection have been developed to explore the contributions of 

the innate and adaptive immune responses to granuloma formation and function (9–20). These 

models are informed by studies in humans and in animal models of infection, especially NHPs, 

rabbits, pigs, and mice (21). In particular, GranSim, our computational model that allows 

simulation of the formation and function of a single granuloma using a hybrid agent-based model 

framework, has offered strategies for drug treatment and vaccine development (12,14,22–24). 

GranSim, which considers thousands of cells and bacteria as “agents” in the simulation and 

tracks diffusion of multiple immune mediators (e.g., cytokines), is computationally intensive, 

limiting our ability to simultaneously simulate multiple granulomas present in an entire lung 

during infection. In contrast, Prats et al. (18) utilized a bubble model to demonstrate the 

importance of local inflammation, dissemination, and coalescence of lesions as key factors 

leading to active TB, but did not specifically model events at the granuloma scale. However, 

following the formation of individual granulomas, the dissemination of those granulomas across 

the lungs over time, and, importantly, tracking events at the granuloma scale could provide an 

important window into infection dynamics and could lead to new insights for prevention or 

treatment. 

 

In order to study the formation of new granulomas after initial establishment of infection, 

referred to as dissemination, the evolution of individual granulomas must be captured over time. 

Recently, research on Mtb-infected NHPs provided data on disseminating granulomas (25). Of 

all animal models used to study Mtb infection, NHPs are most relevant to human TB disease 

because they recapitulate the full spectrum of clinical outcomes and pathologies seen in humans 

(26). From PET CT imaging, the emergence of new granulomas was tracked and recorded. The 

authors genetically matched Mtb barcodes, assigned each inoculation Mtb a unique barcode ID, 

and associated each granuloma identified in the temporal PET CT images with the Mtb barcodes 

inside that granuloma (Figure 3.1). By identifying Mtb barcodes that were present in multiple 

granulomas, they were able to distinguish disseminating from non-disseminating granulomas. 

When identifying multiple bacterial barcodes within a single granuloma, it is surmised a merger 

of granulomas took place. While Martin et al. showed these distinctions, the mechanisms that 
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lead to granuloma clustering or dissemination remain unanswered. We address these open 

questions using a hybrid computational-mathematical modeling framework. 

 

 

Figure 3.1 Three NHP lung maps illustrating the position of pulmonary granulomas and 
thoracic lymph nodes 
Gray outlines denote the extent of the lungs, bronchial tubes, and trachea. Small markers superimposed on the 
outlines represent the positions of pulmonary granulomas, while larger markers denote lymph nodes. Colors denote 
unique barcode tags. Some samples had more than one barcode tag present, and often these were doublet 
granulomas (i.e., two granulomas too close in proximity to distinguish at necropsy) and so are marked with a pie 
chart showing the relative abundance of each barcode tag. The black markers represent pulmonary granulomas for 
which no barcode tags were found. Filled black markers are granulomas which grew bacteria upon plating but 
barcodes could not be determined for technical reasons, while open markers are granulomas that did not grow 
bacteria upon plating (sterile). Data previously published in Martin et al. (25) 
 

Herein, we develop a novel multi-scale hybrid model, MultiGran, to track Mtb infection at the 

scale of the entire lung, including capturing multiple granulomas and their individual outcomes 

as well as the formation of new granulomas. MultiGran is an agent-based model that follows 

cells, cytokines, and bacterial populations across multiple lung granulomas throughout the course 

of infection. Each granuloma is now formulated as a single agent, and each agent contains within 

it a system of non-linear ordinary differential equations (ODEs) that capture individual 

granuloma dynamics. MultiGran follows the steps observed through the course of Mtb infection: 

(1) initial granuloma establishment with Mtb that have been virtually barcoded and placed within 

the lung environment, (2) granuloma development across time, (3) the possibility of granuloma 

dissemination with barcoded bacteria moving to a new location, and (4) granuloma merging by 

granulomas that have formed close together and whose individual boundaries are 

indistinguishable, or those that grow in size and thus merge into a granuloma cluster (that may 

have multiple barcoded bacteria IDs). We use MultiGran to address three outstanding questions 



 49 

about dissemination: what mechanisms are consistent with granuloma dissemination and 

merging patterns seen in vivo? What is the likelihood of a granuloma to disseminate? Can we 

predict factors that lead to dissemination? 

 

3.2 Methods 

3.2.1 Animals and Experimental Dataset 
 

All animal care, necropsy procedures, and experimental protocols and procedures are fully 

described in the published version of this chapter.  Briefly, experimental data specifically for this 

study were obtained from seven cynomolgus macaques, infected with low dose Mtb (~10 CFU) 

as previously described (27–29). Necropsy was performed as previously described (28-30). For 

bacterial burden, each granuloma homogenate was plated, and the CFU were enumerated 21 

days later to determine the number of bacilli in each granuloma (27,29). 

 

To calibrate the individual granuloma computational model, we used excised granulomas from 

macaques that were infected for 3 weeks (n=2), 5 weeks (n=2), 7 weeks (n=2) and 9 weeks 

(n=1). In addition, an animal without Mtb infection was also included in this study as a control. 

To obtain accurate cell number measurements, enzymatic digestion was performed on excised 

granulomas. The single cell suspension obtained by enzymatic digestion was processed for 

bacterial burden and cell numbers enumeration (27). Single cell suspensions of individual 

granulomas were stained with cell surface antibodies to enumerate T cells (CD3) and 

macrophages (CD11b) for flow cytometry analysis. 

 

In addition, bacterial burden data of 623 granulomas from 38 NHP that were controls in other 

studies (previously published (20,27,31–33) and ongoing studies) at University of Pittsburgh 

(Flynn Lab) were included for evaluation. The timing of infection depended on the particular 

study (Table of CFU values and tables of cell counts located at 

http://malthus.micro.med.umich.edu/lab/movies/MultiGran/ Table: gran-cfu-cyno-size) and 

ranged from 4-17 weeks post Mtb infection. 
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3.2.2 Non-human primate lung lattice data 
 

To create a virtual lung that replicates an NHP lung, we used a CT scan of an uninfected NHP to 

model the 3-dimensional lung space. Binary images mapping the cross section of the lungs were 

created for each CT slice by segmentation of CT image values below -320 Houndsfield units. 

The individual slices were then stacked into an array, and a polygon mesh outlining the lung 

volume was generated using the marching_cubes_classic function in the open source Python 

scikit-image package (v 0.14.1, (34)). 

 

3.2.3 Identifying granuloma distributions in non-human primate lungs 
 

To allow us to test whether the distribution of granulomas in our virtual lungs matched that 

observed in NHP lungs, we refer to the distribution of granulomas arising from barcoded bacteria 

derived from our previously published data in Martin et al. (25). In that study, four cynomolgus 

macaques were infected with 11+/- 5 CFU barcoded Mtb Erdman. Barcoded libraries were 

generated where each bacterium has a different random 7-mer along with one of three 75-mer 

identifier tags inserted into the bacterial chromosome. This process created roughly 50,000 

bacteria that are able to be uniquely identified by the random 7-mer tag with very small (< 2%) 

risk of duplication in an infection of <50 CFU (See Figure 1 in Martin et al. (25)). The animals 

were necropsied between 15 and 20 weeks post-infection. Animals were imaged at monthly 

intervals (or more frequently) to identify timing of granuloma establishment. Pulmonary 

granulomas were excised during necropsy, and their three-dimensional positions were recorded 

via matching to PET/CT imaging. Homogenates from excised pulmonary granulomas and 

infected thoracic lymph nodes were plated, scraped, and sequenced to identify the specific 

barcode(s) present in each granuloma. Matching the x, y, and z coordinates recorded for each 

granuloma with its determined barcode content led to a three-dimensional map of the locations of 

each barcode throughout the pulmonary space. Bacterial burden for each granuloma was 

determined by counting colonies on the plates. 

 

Three of the four maps are shown in Figure 1 (the fourth was already presented in the original 

paper (25)). Lung outlines were calculated from terminal scans of each NHP by the process of 

creating a polygon mesh described above. Small markers represent pulmonary granulomas, while 
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larger markers denote lymph nodes. Each color represents a unique barcode tag. Some samples 

had more than one barcode tag present, and often these were doublet granulomas (i.e., two 

granulomas too close in proximity to distinguish at necropsy) and so are marked with a pie chart 

showing the relative abundance of each barcode tag. The black markers represent pulmonary 

granulomas for which no barcode tags were found. Filled black markers are granulomas which 

grew bacteria upon plating but for which barcodes could not be determined, while open markers 

are granulomas that did not grow bacteria upon plating (sterile); in this study, only CFU+ 

granulomas were available for barcode determination. 

 

3.2.4 Model Overview 
 

MultiGran is a novel multi-scale, hybrid agent-based model that describes the formation, 

function, and dissemination of lung granulomas containing Mtb (Figure 3.2). It uses sampling of 

nonhomogeneous Poisson processes; rule-based agent placement; parameter randomization; 

solving systems of non-linear ODEs; and post-process agent groupings to perform in silico 

experiments that track the progress of infection in an individual host. Each granuloma (agent) is 

placed stochastically within the boundary of the lung environment based on a set of rules. Within 

each agent, a system of ODEs is linked internally and solved simultaneously to update 

concentrations of cells, cytokines, and bacterial burdens within each granuloma at every time 

step. Additionally, within every time step, each granuloma is given the opportunity to 

disseminate locally and non-locally. Local dissemination involves a new granuloma being 

initialized nearby, while non-local dissemination allows initialization anywhere within the lung 

environment. At the lung scale, the model tracks the development, location, and quantity of 

granulomas, and determines whether each granuloma is either alone or a member of a larger 

granuloma cluster. At the granuloma scale, dissemination-event decisions, rules for granuloma 

formation, and concentrations of all granuloma components are tracked and defined. As is 

occasionally done when a flexible agent size is needed (35), our agents (granulomas) are placed 

on a continuous grid. Agents are spherical with dynamically-changing sizes, and granuloma 

clustering depends on the geometry and position of each of the agents. 
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Figure 3.2 Process of Mtb infection and rules for granuloma dissemination and location 
within MultiGran 
A non-human primate is inoculated with Mtb, here tracked using different “barcodes” or IDs. These Mtb are taken 
up by resident macrophages, initiating an innate immune response. This response includes the secretion of various 
cytokines and chemokines that help prime and/or recruit other immune cells to the site of the infection, resulting in 
the formation of lung granulomas. The dynamics within each granuloma are governed by systems of ordinary 
differential equations. Occasionally, as a granuloma develops, it may disseminate—either locally or non-locally. In 
local dissemination, an Mtb-infected macrophage moves to another nearby location within the same lung lobe. In 
non-local dissemination, a free extracellular Mtb reaches the airways or is carried to a draining lymph node and then 
deposited at a site not necessarily near the original location; i.e., in a different lung lobe. The (x,y,z) positions of 
disseminated granulomas depend on the method of dissemination (i.e., local or nonlocal) and the position of the 
parent granuloma. Granuloma clusters can form when granulomas develop near each other and may grow into each 
other, or when one granuloma forms immediately adjacent to the original granuloma via local dissemination (3). 
Granuloma clusters may contain more than one Mtb ID. Lung image adapted from Servier Medical Art. 
 

Each in silico experiment using MultiGran is designed to replicate an in vivo experiment. To 

replicate the studies by Martin et al. (25), our simulated NHP is infected with roughly 19 

uniquely-identified (barcoded) Mtb that are randomly placed in a localized region of the lungs, 

similar to the typical inoculation process in the NHP experiments. Each Mtb is assumed to be 

immediately taken up by a resident lung macrophage, forming a single, unique new granuloma 

(25). Each granuloma evolves independently. Whenever a granuloma is formed, it is initialized 

with parameter values that represent several characteristics that ultimately influence its future 

behavior, as well as the emergent outcomes of the system as a whole. 

 

3.2.5 Simulation Environment 
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Code is written in MATLAB, with Bash script for submission to run on computer clusters. ODEs 

are solved using MATLAB’s ode15s with the NonNegative option for all terms, and we define 

the start and end time interval to be the size of the agent time step. To avoid complications with 

the random number generator seed being reset with the initialization of each MATLAB instance, 

the Bash script executes code that generates a randomized seed list for the simulation to use. The 

website http://malthus.micro.med.umich.edu/lab/movies/MultiGran/ has pseudocode and 

implementation descriptions, as well as simulation videos. 

 

3.2.6 Granuloma Establishment 
 

A granuloma is initialized when Mtb is deposited into the lung environment. Based on our 

previous publications (3,25), we assume that each Mtb creates one granuloma (3,36). The 

granulomas established during inoculation (Figure B.1– Case 1) are referred to as “founder” 

granulomas and are considered first-generation granulomas; all other granulomas that may 

emerge throughout the simulation originate from these founders. 

 

Granulomas are agents, so at initialization we assign parameter values to each granuloma and its 

infecting Mtb, as well as counts and concentrations of all cell types and cytokines. Every 

granuloma is assigned unique identification markers. These include being given a unique 

individual granuloma ID IndivGranID(i), which is assigned in chronological order of 

initialization i=1,2,…N (where N is the total number of granulomas), as well as the individual 

granuloma ID of its parent, so the lineage of each of the founder Mtb can be tracked throughout 

the course of infection. Each granuloma is also given a position on a continuous grid. 

 

3.2.7 Granuloma Development 
 

The development of each individual granuloma “agent” is captured by a set of ODEs with 16 

equations for 16 state variables capturing bacterial, T cell, macrophage and cytokine dynamics 

(see Table B.1 Equations for complete term-by-term description of the model). ODE model 

formulations build on our previous work (37–39) describing cells and levels of cytokines in a 

whole lung. The equations have been re-calibrated to NHP granuloma data (see section on 

Experimental dataset) to represent an individual granuloma (see section Model Calibration), and 
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have been updated in several ways. First, we increased the role of IL-10, including it as a factor 

for downregulating macrophage activation and TNF-α  production by activated macrophages, as 

well as allowing infected macrophages to produce IL-10, based on NHP data (40–42). The other 

set of changes relates to intra- and extra-cellular Mtb to be consistent with recent findings on 

Mtb growth within macrophages (43–45). Rather than releasing the entire carrying capacity of 

bacteria at the occurrence of each death of an infected macrophage, the amount of intracellular 

Mtb within an average infected macrophage is released (with the exception of a bursting infected 

macrophage, in which case the maximum amount of Mtb is released). Furthermore, only a 

fraction of intracellular Mtb released during the natural death of an infected macrophage survives 

to become an extracellular Mtb. The expression for intracellular Mtb replication was also 

changed along with the addition of an expression for the natural slow death of intracellular Mtb 

for model stability. We record granuloma sterilization when the count of Mtb drops below 0.5. 

 

3.2.8 Granuloma Dissemination  
 

While the mechanisms behind dissemination are not yet well-understood (25), we have created 

rules such that the emergent outcomes are consistent with experiments (Figure B.1). We define a 

probability function for likelihood of a dissemination event, which we make dependent on the 

bacterial load (CFU) of the granuloma. We selected CFU because the data presented by Lin et al. 

(3) indicates that granuloma carrying capacity has a limit (approximately 10^5). Because NHP 

granulomas rarely exceed this limit (3,28), there is likely a link between granuloma CFU and 

dissemination. Because Mtb is by itself non-motile, we consider two routes of dissemination: 1) 

Mtb conveyance within an infected macrophage and 2) a single Mtb flowing through lung 

airways or deposited via a draining lymph node (LN). From these, we incorporated two types of 

dissemination events: local and non-local, the probabilities of each event being independent, and 

in the unlikely event that multiple dissemination events occur in the same time step, the order of 

events is randomized. 

 

When a granuloma disseminates locally (Figure B.1– Case 3), an infected macrophage carrying 

intracellular Mtb is assumed to move from the parent granuloma position to a new position 

nearby. We assume the distance between the parent granuloma and a new position likely follows 
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a normal distribution with respect to parent location and we calibrated the mean and variance of 

this location using the data presented in Martin et al. (25). In Martin et al., the authors compute 

distances of each granuloma and granuloma clusters that they could identify via PET/CT, rather 

than every individual granuloma regardless of size and cluster affiliation. We also assume that a 

pre-determined quantity of T cells moves with an infected macrophage. After this dissemination 

event, the parent and daughter granulomas evolve independently from each other. When a 

granuloma disseminates non-locally (Figure B.1– Case 2), an extracellular Mtb is simulated as if 

entering airways (or via a LN) and deposited with equal likelihood anywhere within the lungs, 

where it is immediately taken up by a macrophage. Figure B.1-- Case 2 represents three 

realizations of trial coordinates wherein the trial coordinates represented by the red arrow do not 

satisfy our criteria, but the two black arrows would be acceptable placements for a bacterium in 

non-local dissemination. 

 

We created two dissemination event probabilities describing local and non-local dissemination. 

In both, λ is the maximum probability of dissemination and is scaled by a Michaelis-Menten 

fraction, using a value of CFU at which the probability is half of the maximum value. 

 

Equation 1     !"#$!"#$%(&) = )!"#$%
&'((*)

&'((*),&'(!"#$
%&'"# 

Equation 2     !"#$-".%"#$%(&) = )-".%"#$%
&'((*)

&'((*),&'(!"#$
(&)#&'"# 

 

3.2.9 Granuloma Merging 
 

Experiments demonstrate that a subset of granulomas contain a more than one Mtb barcode (25). 

Following inoculation or dissemination events, individual granulomas may merge, or are 

sufficiently close to each other, to form clusters. We identify granuloma clusters and their 

members when needed for plotting and computing statistics but allow them to evolve 

independently. Briefly, our algorithm evaluates all intersections of granulomas, and combines 

groups of granulomas that intersect in 3D space. These grouped granulomas are the granuloma 

clusters. A granuloma cluster may contain only descendants of a single founder Mtb ID, or may 

contain descendants of multiple founder Mtb IDs. 
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3.2.10 Model Calibration 
 

An effective strategy for calibration of a complex system such as our multiscale model is 

evaluating the model’s ability (and model parameters) to reproduce multiple scenarios and 

datasets (46–48), reducing the likelihood of overfitting parameters to a single dataset. Herein, we 

have built our multi-scale model of granuloma formation and dissemination using a priori 

biological knowledge and utilized multiple datasets, across multiple scales from unique 

experiments, to calibrate and validate our model parameters. Table 1 displays the multiple 

distinct datasets that we used to calibrate and validate this multi-scale model. First, we identified 

the parameter space of the individual granuloma ODE model that best represents the individual 

granuloma datasets (CFU and cell counts). See Figure 3.3 for an example of our workflow. To 

determine an initial, wide range of parameter values to test, we examined experimental values 

from literature, previous ODE models of a single granuloma formation (37–39), and values from 

GranSim (14,16,19,22,37–40,49). We then used a Latin Hypercube Sampling (LHS) algorithm 

(50) to sample this multi-dimensional parameter space 500 times. This initial wide range of 

simulations did not match the NHP data. We then narrowed the initial ranges and resampled the 

space in an iterative process until, out of the 500 simulations, ninety percent of the runs fell 

within the bounds of our experimental data on CFU, T cell counts, and macrophages within 

individual NHP granulomas. Figure 3.3 shows how we identify simulations that satisfy our 

criteria and isolate the parameters of those simulations to narrow parameter space. The parameter 

ranges for the calibrated model runs are in Table B.2, and represent the parameter space that we 

sampled in order to create the granulomas for our biorepository of 200 virtual monkey lungs and 

perform global sensitivity analysis techniques on. 
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Figure 3.3 MultiGran calibration process  
The model structure for the single granuloma ODE model and the broad parameter ranges (S1 Table) were based on 
previously published models and experimental data (14,16,19,22,37–40,49). We sample from the initial parameter 
space using a Latin Hypercube Sampling (LHS) process. LHS divides each of the k varied parameters into N 
subintervals (A), randomly selects a value from each subinterval, and randomly groups k values (one for each 
parameter) to create N parameter sets (B). We next identify simulations that satisfy all our criteria (C). Here, only 
the purple simulation curve (parameter set #1) has satisfied the criteria of passing within the minimum and 
maximum value at each timepoint for each of our three datasets simultaneously. Note that in a single LHS run, many 
simulations may satisfy all criteria, but for simplicity we have shown only a single one (purple curve). By inspecting 
values from parameter sets that pass all criteria, we are able to narrow each of the k broader parameter ranges. We 
iterate performing an LHS simulation followed by narrowing the k parameter ranges based on passing all of the 
criteria until 90% of the 500 simulations fall within the bounds of our experimental data on CFU, T cell counts, and 
macrophages within individual NHP granulomas. 
 

Next, we identified the dissemination parameter space of MultiGran that matched the NHP 

whole lung outcome datasets (previously published (20,25,27,31–33) and ongoing studies). We 

again utilized LHS to sample this space and identify baseline parameter ranges that match the 

data (Table B.4). Figure 3.3 explains our workflow for calibrating the single-granuloma ODE 

model, which was similar to the approach for calibrating the lung-level dissemination equations. 

This calibrated parameter space was sampled to create a biorepository of in silico lungs to be 

used in Results. The entire repository of 200 virtual NHP CFU trends are displayed at 

http://malthus.micro.med.umich.edu/lab/movies/MultiGran/. 

 

3.2.11 Sensitivity Analysis 
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We then used Partial Rank Correlation Coefficient (PRCC), a global sensitivity analysis index 

(50), to identify significant correlations between single-granuloma ODE model parameter 

changes and variation in whole lung outputs. We excluded the dissemination parameters from 

our multi-scale PRCC analysis because they are phenomenological in nature and we are 

interested in identifying the mechanistic events that occur at the granuloma scale and lead to 

dissemination, a whole lung outcome. 

 

Table 3.1 Distinct datasets used to calibrate, validate and inform predictions in MultiGran  
We calibrated our single-granuloma model, and then calibrated parameters specific for dissemination at the whole-
lung level, prior to validation and predictions of individual NHP outcomes. 

Dataset Use Model 
(scale) 

Experimental values from 

literature, parameter values 

from previous ODE models 

of a single granuloma 

formation (37–39), and 

values from GranSim 

(14,16,19,22,37–40,49). 

Initial sampling of entire 

single-granuloma parameter 

space 

Single-granuloma ODE 

model 

(granuloma-level) 

CFU/Granuloma Dataset 
Includes 623 granulomas 

from 38 NHPs 

Calibration 

Single-granuloma ODE 

model 

(granuloma-level) 

Individual Granuloma Cell 
Count Dataset 

Includes 26 granulomas from 

7 NHPs including total T cell 

counts and macrophage 

counts 

Calibration 

Single-granuloma ODE 

model 

(granuloma-level) 

Granuloma Location Data 
Mean and variance of 

granuloma dissemination 

presented in Martin et al. (25) 

Initial sampling of entire 

dissemination parameter 

space 

MultiGran model 

(lung-level) 

Whole Lung Outcome 
Measures 

Four outcomes - (1) number 

of Mtb at time of inoculation 

(2) number of granulomas at 

necropsy (3) the percentage 

of Mtb barcodes found in 

multiple granulomas and (4) 

the percentage of granulomas 

containing multiple Mtb 

barcodes  

Calibration of dissemination 

parameters 

MultiGran model 

(lung-level) 
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Spread of Infection Outcome 
Measures 

Including 38 NHP and the 

location of 623 granulomas 

across both lungs 

Model validation 
MultiGran model 

(lung-level) 

Individual NHP 
CFU/granuloma 

Individual CFU/granuloma 

for a single NHP 

Model prediction 

MultiGran predictions about 

dissemination 

(multi-scale) 

 

3.2.12 Linking Cellular Scale and Tissue Time Scales 
 

We link the cell and cytokine scale events in the ODE model (single granuloma) with the tissue 

scale ABM (multiple granulomas) to form the multi-scale MultiGran model (Figure 2). Linking 

of timescales is important for proper model design (51). We use an ABM time-step of 1 day. At 

each ABM time-step, dissemination events can occur. After each ABM time step, the system of 

ODEs is solved for each granuloma to update the states of all host cells, cytokines and Mtb 

populations over the next 24 hours. We run the ODEs using adaptive time steps for 1 agent 

iteration, for each granuloma, before proceeding to the next agent time step, as dissemination 

events at the agent time step depend on the dynamically-changing state of ODEs. Additionally, 

the ODE state variable concentrations can be affected by the occurrence of a dissemination 

event. 

 

3.3 Results 

3.3.1 Simulated individual granulomas recapitulate in vivo primate granuloma 
dynamics 

 

We calibrated our single-granuloma model, comprised of a system of non-linear ODEs, to data 

derived from NHP studies. We compared bacterial load (CFU), T cell counts, and macrophage 

counts over time per granuloma. Our CFU dataset consists of 623 granulomas from 38 NHPs 

(previously published (20,27,31–33) and ongoing studies). T cell and macrophage counts, as well 

as additional CFU, were derived from a separate, new dataset of 26 granulomas from 7 Mtb-

infected NHPs and baseline data from one uninfected macaque (see Methods). The data from 

these 7 NHPs capture the timing of the immune system during early events in infection 
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(granulomas from all NHPs were collected between 3-9 weeks post infection) and were 

imperative for proper calibration of the model. 

 

The single-granuloma model contains many parameters to represent various mechanisms that are 

part of innate and adaptive immune responses to Mtb infection, but we include few assumptions 

about the relative roles of each of these mechanisms; rather, we define equations and allow the 

relative influence of each mechanism emerge during calibration. We identify ranges of parameter 

values (Table B.2) that replicate CFU peaks at approximately 35 days and subsequent control of 

CFU after day 100 post-infection (Figure 3.4A), macrophage dynamics (Figure 3.4B), and T-cell 

dynamics (Figure 3.4C). These dynamics reflect the initial inability of the innate immune system 

to control Mtb replication, the eventual control provided by T cells that arrive from the lymph 

node around day 28, and the stabilization of Mtb counts around day 100. When isolating a 

suitable parameter range, we identified ranges that matched these overall trends and recapitulated 

the spread of granuloma outcomes outlined by the NHP datasets. Likely, our spread captures a 

fuller range of individual granuloma dynamics than a sample from a limited number of NHP can 

achieve. 

 

 

Figure 3.4 Bacteria, macrophage and T-cell dynamics within an individual granuloma 
Individual NHP granuloma bacteria (A), macrophages (B), and CD3+ T cells (C) shown as orange points across 
time. Each individual point represents data from a single NHP granuloma. Purple lines indicate simulation outputs 
from 500 simulations that match NHP data. Light purple shading shows the minimum and maximum of simulation 
runs, darker purple shading represents the 5th to 95th percentiles of the simulations, and dark purple lines represent 
the 5th, 50th, and 95th percentiles of simulations. Parameter ranges are listed in Table B.2. 
 

3.3.2 MultiGran simulates the appearance of granulomas throughout the lung, as seen 
in vivo  
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By employing the calibrated single-granuloma model (Figure 3.4) within our MultiGran 

framework, we can now simulate the spread of infection within the lung. We inoculate with 16 to 

21 individual bacteria, mimicking the protocol of Martin et al. (25), placing them within an 

inoculation region within one of the lower lung lobes, as is done in the NHP inoculations via 

bronchoscope (see Methods). Each initial granuloma in an NHP arises from a single bacterium in 

an inoculation event (25). Therefore, we initially establish 16-21 granulomas. A sample 

simulation at the time-point of 250 days post-infection is shown in Figure 3.5. The blue lung 

mesh represents the dataset derived from NHPs for (x,y,z) coordinates of a lung. Placed on this 

mesh are simulation results – individual granulomas (“agents” in the model) and their location, 

size, and bacterial origin (barcode). Note that, as in the NHP images of Figure 3.1, infection is 

primarily within the inoculation region – but that 7 granulomas disseminated non-locally to the 

opposite lung. In this simulation, one granuloma cluster was found that contained more than one 

Mtb barcode, as is shown in the pie chart. Movies of disease progression using this 3D 

visualization are available on the website 

http://malthus.micro.med.umich.edu/lab/movies/MultiGran/. 
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Figure 3.5 MultiGran in silico infection in a non-human primate lung  
A single in silico simulation at 250 days post infection from three angles (A-anterior view, B&C-opposite posterior-
lateral views), plotted over a data grid taken from PET/CT images of a single NHP. Granulomas are located within 
the lung in 3D space. Each circle of a single color represents a granuloma or granuloma cluster with a single Mtb 
barcode ID. The circle shown as a pie chart represents a granuloma cluster with two unique Mtb barcode IDs; each 
color represents the relative proportion of CFU of each ID compared to the total CFU of the granuloma cluster, 
while the overall size of the circle is proportional to the size of the cluster. Inoculation was in the lower right lung 
(bottom left in each image). Granulomas found in the upper right lung and the left lung result from non-local 
dissemination within the simulation. 
 

3.3.3 Simulations are consistent with in vivo infection and predict dissemination 
likelihood rates  

 

MultiGran allows both local and non-local dissemination of bacteria to initiate new granulomas, 

tracks the origin (Mtb ID) of each granuloma, and allows for merging of nearby granulomas to 

form a cluster. Each granuloma has a unique parameter set chosen from the ranges in Table B.2 

according to an LHS design. To determine what leads to different dissemination patterns in vivo, 

we use our dataset consisting of four NHPs in that were inoculated with uniquely identifiable 

Mtb (Figure 3.1; Martin et al. (25)). Outcome measures from these experiments include: (1) the 

number of Mtb at time of inoculation (16-21 Mtb), (2) the number of granuloma (or granuloma 
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clusters) at necropsy (17-28 granulomas), (3) the percentage of Mtb barcodes found in multiple 

granulomas (12.5 - 68.4%), and (4) the percentage of granulomas containing multiple Mtb 

barcodes (~10-20%). We calibrated MultiGran dissemination dynamics to this dataset by varying 

the seven dissemination parameters (S3 Table). Our whole lung simulations and the NHP dataset 

are shown in Figure 3.6. Notice that the simulations capture the full heterogeneity of the in vivo 

results across each NHP. Additionally, the experimental data are from only four NHPs, while our 

simulations represent a larger, more diverse set of possible outcomes. 

 

 

Figure 3.6 MultiGran recapitulates non-human primate dissemination outcomes  
Martin et al. (25) infected 4 NHP with 16-21 different Mtb barcodes (A), and after 120 days the NHP immune 
system formed 16-28 non-sterilized granuloma clusters (B). We replicated these experiments by simulating 200 
NHP, which started with 16-21 different Mtb. Of the 16-21 Mtb in NHP, 10%-70% were found in multiple 
granuloma clusters, meaning at least 10%-70% of Mtb were disseminating. Similar to the NHP data, our simulations 
have 0%-90% of Mtb barcodes disseminated to multiple granuloma clusters (C). Within the NHP experiments, of 
the 16-28 non-sterilized granuloma clusters, 10%-25% had multiple Mtb IDs within them, meaning at least 10%-
25% of observed granulomas are clusters involving multiple sources of Mtb infection. Our 200 MultiGran 
simulations demonstrate a similar range of granuloma clusters with multiple Mtb barcodes (D). Simulations are 
shown in gray whereas NHP experiment outcomes are shown in blue. Each point represents a single NHP or in 
silico simulated granuloma. 
 

To more directly test for non-local dissemination events, we validate our simulations against a 

second dataset of 38 NHPs (Figure 3.7). Within this NHP dataset, we identified the lung that 

contained the most granulomas for each NHP, and termed this lung the more-populated lung. 
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Next, we calculated the percentage of granulomas that resided in the more-populated lung out of 

the total number of granulomas across both lungs. We found that the 38 NHPs exhibited a range 

of 52%-100% of granulomas in the lung that was more-populated. Results from the same 

simulations used to create Figure 3.6 give a range ~54%-100%, providing additional support for 

the model in its ability to capture the range of data offered by NHP experiments. As this result is 

a validation step of our model, if MultiGran could not exhibit a similar range of granulomas 

across both lungs, the employed approach would have invalidated the model. 

 

 

Figure 3.7 MultiGran recapitulates spread of infection data  
At necropsy of 38 NHP experiments, we identified the lung that contained the most granulomas for each NHP. Next, 
we calculated the percentage of granulomas that resided in the more-populated lung out of the total number of 
granulomas. We found that 52-100% of granulomas formed resided within the more-populated lung. Blue dots 
represent each NHP experiment. We ran 200 in silico simulations that capture a similar range to the NHP spread of 
infection from lung to lung, ranging from 54.3% to 100%. Gray dots represent each simulated lung. 
 

When examining in vivo data, the total number of dissemination events may be undercounted 

due to sterilization and granuloma clustering. In contrast, our model is able to count every 

dissemination event, and thereby provides a predicted frequency of local and non-local 

dissemination. We found that, on average, the rate of dissemination is about 1/24 dissemination 

events per granuloma per month for simulations run out to 250 days. Most dissemination occurs 
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earlier in the infection, as noted in Martin, et al. (25). Further, MultiGran predicts that local 

dissemination events occur about twice as frequently as non-local dissemination events. 

 

3.3.4 MultiGran simulations match individual NHP infections 
 

From our repository of 200 MultiGran simulated lungs, we isolated the five simulations that 

yielded the closest match to the median values of Mtb inoculation (20), the median number of 

granulomas at necropsy (20.5), the median percentage of Mtb barcodes that were found in 

multiple granulomas (14.3%), and the median percentage of granulomas that contained multiple 

Mtb barcodes (17.5%) across the four NHP from Martin et al. (25). 

 

These five simulations represent the best matches to the NHP used in Martin et al. (25). We 

compare two of these simulations to the CFU/granuloma at necropsy from NHP:179-14 (Figure 

3.8A & Figure 3.8C). Both lung simulations display satisfactory matches to the NHP CFU data; 

both simulations cover the spread of the experimental data while lying within the bounds of the 

dataset. However, while both simulations match the CFU data at 17 weeks, we are able to predict 

what could have happened beyond the necropsy date by running the simulation for a longer time 

period. Shown are two distinct possible outcomes with the same parameter set: note they diverge 

when predicting later dissemination events. Figure 3.8B shows one simulation predicts bacterial 

control across all the granulomas within that simulation. Figure 3.8D shows another outcome. 

Here, a single granuloma within the lung exhibits uncontrolled bacterial growth leading to 

dissemination and there is also formation of new granulomas via both local and non-local 

dissemination (at days 145, 166, and 193). These simulations suggest that NHP:179-14 was 

either containing the bacteria (i.e., LTBI) (our prediction in Figure 3.8B) or could have had a 

subclinical infection that was on the edge of leading to multiple dissemination events (our 

prediction in Figure 3.8D). Simulations that match the other three NHP are shown on our 

website, and reveal similar trends and predictions. Additionally, the entire repository of 200 

virtual NHP CFU trends are displayed at: 

http://malthus.micro.med.umich.edu/lab/movies/MultiGran/. 
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Figure 3.8 MultiGran matches individual NHP granuloma dynamics and predicts CFU 
burden across time  
We compared the CFU/granuloma at necropsy for NHP:179-14 (A&C) to two separate 

simulations that matched these outcomes. Blue dots represent single-granuloma values taken 

from NHP:179-14; gray dots represent simulation values at comparable timepoints. Simulation 

predictions diverged after 17 weeks. One simulation predicted stability – i.e., granuloma 

containment of bacteria (B). The other simulation (D) predicted uncontrolled growth of bacteria 

within one granuloma, leading to dissemination and the formation of other granulomas across 

time. Each line in (B&D) represents one granuloma realization within MultiGran across time. 

Blue dots represent NHP:179 granuloma CFU values. Simulation behavior to the right of the 

blue dots should be considered a prediction. In D), the two disseminating granulomas arise after 

the provided experimental data and represent predictions of dissemination events occurring 

around day 130 and day 165 (colored peach and purple respectively). 

 

3.3.5 Sensitivity analysis reveals important mechanisms responsible for dissemination 
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To predict the mechanisms that lead to dissemination events within lungs, we perform global 

sensitivity analysis using our repository of 200 MultiGran simulated lungs on four whole-lung 

outcomes of interest: the number of dissemination events, the total number of granuloma clusters 

at the end of the simulation, the percentage of granuloma clusters that contain multiple barcodes, 

and the percentage of granulomas that occupy the initially inoculated lung at the end of the 

simulation. We quantify the contributions of each model parameters to the outcomes of interest 

by calculating partial rank correlation coefficients (PRCC) at the end of the simulation (250 

days). This analysis provides information about the contribution of each model parameter within 

our parameter space that was calibrated to multiple NHP datasets across cellular, granuloma, and 

whole-lung datasets. Our analysis reveals one parameter as the main driver of these four whole 

lung outcomes (Table 3.2). Parameter CD8MultiFunc describes the multi-functional nature of 

CD8+T cells, i.e., the amount of overlap of cytotoxic function and cytokine expression in CD8+ 

T cells. While the single-granuloma model was designed to be agnostic prior to calibration about 

the primary drivers behind bacterial killing and Mtb containment, we found that CD8MultiFunc 

is significantly correlated with each of the four outcomes. If CD8MultiFunc is increased so that a 

greater proportion of CD8+ T cells exhibits multi-functionality, then a larger percentage of 

granulomas will reside within a single lung (less non-local dissemination) and there will be fewer 

dissemination events and fewer granulomas overall. CD8+ T cells are a key host cell in a 

functional immune response to Mtb infection, and if the subpopulation that can perform multiple 

roles within the complex microenvironment of a granuloma increased, it would certainly benefit 

the host. 

 

If we exclude parameter CD8MultiFun from the analysis, we reveal secondary contributions of 

other parameters to the whole lung outcomes (Table 3.2). These 12 parameters represent both 

adaptive and innate immune dynamics: we found both the adaptive and innate immune system 

were associated with non-local and local dissemination events. Notably, the role of macrophage-

bacteria interactions is found to be important. k18 represents the base rate of killing of 

extracellular bacteria by macrophages. If this rate is high, there are fewer dissemination events 

and fewer granulomas across the simulation. Additionally, k17 represents the maximum bursting 

rate of infected macrophages. This parameter is positively correlated with the number of 

dissemination events and the number of granulomas across a simulation. If bursting occurs at a 
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high rate within a granuloma, our model predicts that a granuloma is more likely to disseminate 

both locally and non-locally. Taken together, these two parameters identify an important role for 

macrophage dynamics within the granuloma: if macrophages cannot adequately respond to Mtb, 

the likelihood of dissemination increases. Altogether, the results of this analysis represent a 

multi-scale impact: events governing cell function at the cellular scale impact local and non-local 

dissemination outcomes across the lungs and predict the difference between dissemination and 

control across the lung environment. 

 

Table 3.2 Sensitivity analysis reveals global drivers of dissemination outcomes  
PRCCs are shown for each parameter, showing a significant impact on each of the 4 MultiGran 

whole lung simulation outcomes at the end of the simulation. **Excluding parameter 

CD8MultiFunc, the overlap of cytotoxic function and cytokine expression in CD8+ T cells, 12 

other parameters were also identified as having a significant impact on each of 4 MultiGran 

whole lung simulation outcomes at the end of the simulation. All PRCCs shown are significant to 

p < .05.  

Parameter 
Name 

Parameter Description 
Number of 

Dissemination 
Events 

Number of 
Granulomas 
and Clusters 

Percentage of 
Granulomas 
with Multiple 

Barcodes 

Percentage of 
Granulomas in 

More-
Populated 

Lung 

CD8MultiFunc 
** 

overlap of cytotoxic function 
and cytokine expression in 

CD8+ T cells 
-0.39 -0.38 -0.14 0.32 

k18 
Extracellular bacteria killed 

by macrophages 
-0.11 -0.11 -0.041 0.11 

nuI10 decay rate of IL-10 cytokine -0.088 -0.087 -0.068 0.089 

Sr1b 
TNF based recruitment of 

primed CD4+ T cells 
-0.075 -0.074 -0.044 0.06 

k6 
rate of differentiation from 

primed to Th1 CD4+ T cells 
-0.084 -0.073 -0.047 0.071 

s12 cell production of IL-12 -0.058 -0.056 -0.025 0.056 

w 
contribution of intracellular 

bacteria to resting 
macrophage activation 

-0.037 -0.04 -0.021 0.04 

s2 half-saturation of IL-4 -0.024 -0.021 -0.025 0.02 

Sr3b 
TNF based recruitment of 

Th2 CD4+ T cells 
-0.036 -0.033 -0.021 0.025 

alpha30 
TNF production by infected 

macrophages 
0.032 0.028 0.022 -0.037 

nuTg 
IFNg induced apoptosis of 

Th1 CD4+ T cells 
0.057 0.055 0.037 -0.04 
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s4b 
half-saturation of TNF on 
local resting macrophage 

recruitment 
0.042 0.043 0.04 -0.043 

k17 
max rate of infected 

macrophages bursting 
0.14 0.14 0.076 -0.12 

 

 

3.4 Discussion 
 

Tuberculosis is a complex and heterogeneous disease with a spectrum of outcomes, and the 

myriad of mechanisms that influence outcomes of initial infection are poorly defined. Our data in 

NHP models, and bolstered by data in humans, support the notion that each individual granuloma 

in a host is independent and dynamic, in terms of immunologic composition and function, ability 

to kill or restrain Mtb bacilli, and risk for dissemination or reactivation (52,53). However, it can 

be challenging in NHP models to determine the full range of host mechanisms that play a role in 

initial containment and prevention of dissemination, both of which are essential to limiting 

development of active TB. In the pursuit of a better understanding of the collective behavior of 

lung granulomas in individuals infected with Mtb, we performed a systems biology approach 

pairing NHP experiments and computational/mathematical modeling. Specifically, we explored 

events that lead to dissemination and new granuloma formation, and several studies have 

recently explored this biological phenomenon (25,36,54,55). In particular, the barcoding 

technique introduced by Martin et al. showed that dissemination varies widely among macaques 

despite initial infection conditions being similar, and that in individual macaques, each 

granuloma had a different dissemination risk, from no dissemination by most granulomas, even 

though these granulomas were CFU+, to multiple dissemination events from a single granuloma. 

The barcoding analysis provided critical new information about bacterial spread within the lung. 

However, identifying mechanisms that leading to granuloma dissemination, which is linked to 

development of active TB (36), is important in designing more effective vaccines and 

therapeutics against TB. Systems biology approaches can address these mechanisms and more 

generally contribute to our still limited understanding of Mtb infection dynamics. 

 

In this work, we combine experimental data from NHPs with a novel multi-scale, hybrid agent-

based model of granuloma formation, function and dissemination within the lung, called 
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MultiGran. We calibrate and validate MultiGran against multiple distinct NHP datasets that span 

cellular, bacterial, granuloma, and whole-lung scales. This calibration and validation allowed us 

to make predictions about dissemination within Mtb infected lungs. We report that the likelihood 

of local dissemination is approximately two times greater than non-local dissemination, which 

supports the in vivo data reported in Martin, et al. (25), and we used sensitivity analysis 

techniques to identify that dissemination is intertwined with the role of CD8+ T cells in 

granulomas. Specifically, we predict that the functionality of CD8+ T cells is critically 

important: if a greater percentage of CD8+ T cells can perform dual functions of cytokine 

expression (IFN-γ, TNF, and IL-10) and cytotoxicity, then the likelihood of dissemination 

significantly decreases. 

 

The role of CD8+ T cell multi-functionality within the granuloma is controversial (for reviews of 

CD8+ T cells in TB, see (38,56). While the majority of T cells within a granuloma are single 

cytokine producers (27), multifunctional CD8+ T cells have been demonstrated in the blood of 

Mtb-infected humans and the proliferation and response rate of these cells differed between 

active and latent infection (57,58). Together, these studies and our current work suggest a need 

for increased focus on this specific cell type to evaluate the potential that CD8+ multifunctional 

T cells may offer. 

 

Using MultiGran, we were able to match to granuloma population data coming from multiple 

monkeys (Figures 6 & 7) and granulomas (Figure 4). we were also able to match experimental 

data from a single NHP (Figure 8). In the era of precision medicine (59), the ability of MultiGran 

to match to individual data could help predict, in real time, whether the granulomas within that 

individual are likely to disseminate. This could happen when paired with PET/CT images of 

individually lung granulomas. However, more realistically, this provides an impetus for 

identifying biomarkers that are associated with granulomas at risk of dissemination, which could 

be more widely used to identify persons at risk of developing active TB following infection. 

 

There are a few limitations of our study and model. First, the driving dissemination probability 

rules are somewhat phenomenological. Our goal in this first study was to rely on as few 

assumptions as possible; the only granuloma characteristic that is explicitly used in the 
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dissemination rules is the total bacterial burden. As a consequence, the model allows for even a 

stable, mature granuloma to disseminate (with small probability). We addressed this by allowing 

T cells to leave the parent granuloma to travel to a daughter granuloma in a local dissemination 

event, expecting this to sterilize new granulomas. Surprisingly, this was largely ineffective. 

Instead, it is more likely that the lung parenchyma in infected individuals has increased numbers 

of Mtb-specific T cells and possibly activated macrophages, so that new granulomas form in a 

completely different immune environment, compared to the initial granulomas that form in an 

immunologically naïve environment. This notion is supported by our data in NHP models 

demonstrating that primary ongoing infection protects against reinfection (32). MultiGran could 

be refined to test this in future iterations. Second, we restrict dissemination to be within the 

boundary of the lungs, but the actual environment within the lungs is very complicated and also 

could include airways and blood. Third, while we acknowledge thoracic lymph nodes as a source 

of non-local dissemination, and include adaptive immune cell recruitment in our ODE model, we 

currently do not explicitly model lymph node compartments. In future work, we plan to address 

the role of lymph nodes in Mtb infection and dissemination. Finally, while MultiGran was 

developed based on extensive NHP and human data, it does not contain all the various cell types 

and mechanisms in the complex environment of the granuloma, primarily because the functions 

and importance of certain cell types and factors remain obscure. As data become available, 

MultiGran can evolve to include additional factors for mechanistic test. Potentially, other 

modeling techniques might be better suited to answer specific questions surrounding granuloma 

dissemination. For example, if one was interested in exactly the path an infected macrophage 

might take when escaping the granuloma and initiating local dissemination, a spatial model at the 

site of infection, such as GranSim (60), could be more appropriate. However, such a modeling 

approach necessitates a loss of total lung-level dynamics that were critical to address our 

questions about dissemination events (both local and non-local) across NHP lungs. 

 

In summary, we utilized a systems biology approach that combined computational modeling and 

NHP datasets to better understand mechanisms of granuloma dissemination. We present 

MultiGran, the first multi-scale model of granuloma dissemination and formation, that was 

calibrated and validated to NHP data and we make predictions about the rate of dissemination 

and the role of specific immune cells in granuloma dissemination. In particular, we discovered 
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roles for multifunctional CD8+ T cells and macrophage dynamics in preventing local and non-

local dissemination within the lungs. Altogether, we argue that MultiGran, together with NHP 

experimental approaches, offers great potential to understand and predict dissemination events 

within Mtb infected lungs. 
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4 Integrating Non-Human Primate, Human, and Mathematical Studies to Determine 
the Influence of BCG Timing on H56 Vaccine Outcomes 

 

This chapter is a published work: 

Joslyn LR, Pienaar E, DiFazio RM, Suliman S, Kagina BM, Flynn JL, Scriba TJ, Linderman JJ, 

Kirschner DE. Integrating non-human primate, human, and mathematical studies to determine 

the influence of BCG timing on H56 vaccine outcomes. Frontiers in microbiology. 2018 Aug 

17;9:1734. 

4.1 Introduction 

 

Among infectious diseases, tuberculosis (TB) remains the leading cause of death due to a single 

agent.  Its infectious agent, Mycobacterium tuberculosis (Mtb), kills approximately three 

individuals per minute (1).  Additionally, in 2015, there were an estimated 480,000 incident 

cases of multi-drug resistant TB.  The morbidity and mortality due to tuberculosis, including 

drug resistant strains, require renewed investment and research for an effective vaccine.  

While Bacillus Calmette-Guérin (BCG) is widely used to prevent TB disease in infants, its 

efficacy amongst the adult population is highly variable (2–7).  Originally developed in the early 

1900s, the first clinical trials for BCG began in France in the 1920s and proved its efficacy in 

children (8).  By 1973, BCG was compulsory for South Africa (9) and emerged as the most 

widely used of all vaccines, due to ease of testing for vaccination via the tuberculin skin test.  

However, BCG efficacy fails to protect both infants and adults; with protection varying from 0-

80% (8,10). Thus, the search for a more effective vaccine continues.  

 

Improved management of the TB epidemic could stem from vaccinations that prevent infection, 

active disease, or reactivation from latent infection, or ameliorate active infections. Currently, 

more than 13 TB vaccine candidates have entered clinical trials (11,12). These candidates 

include attenuated versions of Mtb, mycobacterial whole cell vaccines, viral vectored vaccines, 

and subunit vaccines (13).   
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Subunit vaccination strategies emerged when the Mtb genome was sequenced in 1998 (14).  One 

such promising subunit vaccine candidate is H56 formulated with adjuvant IC31. H56 is a 

multistage vaccine composed of three antigens: ESAT6, Ag85B, and Rv2660c (15).  ESAT6 and 

Ag85B are early secreted antigens that have been used before as individual vaccine antigens (16–

20). Ag85B is an antigen that is present in both BCG and H56 vaccine formulations. Both 

Ag85B and ESAT6 have been shown to be highly immunogenic antigens that are targeted by T 

cell populations (21,22). Rv2660c was included in the vaccine because of its association with T 

cell responses from LTBI (Latent Tuberculosis Infection) individuals and its expression under 

starvation or hypoxic conditions, although its function has not yet been determined  (23–25).  

Finally, all three antigens are thought to play a role in a variety of methods that mycobacteria 

likely employs to survive the intracellular environment (23,26–29).   

 

Common formulations of the H56 vaccine include the adjuvants IC31 and Cationic Adjuvant 

Formulation (CAF01).  Human clinical trials used the IC31 adjuvant, a two-component adjuvant 

that includes the KLK peptide (an anti-microbial peptide) and oligodeoxynocleotide (a Toll-like 

receptor nine agonist) (30).  IC-31 was used in an NHP study that showed H56 limited 

reactivation of clinical latent TB (23), while CAF01 has been used in NHP studies herein.  

CAF01 is composed primarily of DDA (liposomes prepared in dimethyl dioctadecyl ammonium) 

and TDB (a component of the mycobacterial cell wall, trehalose dimycolate) (31).  Both 

adjuvants support a Th1 CD4 T cell response (30,31).  

 

While H56 represents a new vaccine candidate, it also provides an opportunity for a case study. 

Before evaluating the success of a vaccine via challenge, can we compare vaccine 

immunogenicity in humans and NHPs to further characterize the inherent differences between 

each species?  Furthermore, can we utilize antigen specificity to explore the impact and role of 

prior BCG vaccination on H56 immunogenicity? 

 

We use a systems biology approach employing mathematical modeling to relate pre-exposure 

vaccination dynamics in humans and non-human primates.  We describe T-cell responses in 

lymph nodes and blood using a 2-compartment mathematical model, demonstrate the impact of 

BCG timing on subsequent H56 vaccination, and reveal basic mechanisms that dictate vaccine 
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outcomes in NHPs and humans.  We propose that timing of BCG vaccination and inherent 

differences between species could play an important role in the immune responses to the H56 

vaccine candidate. Having this knowledge could improve the vaccine pipeline.    

 

4.2 Methods 

4.2.1 Non-Human Primate Data Collection and Analysis 

 

Full animal and experimental protocols are described in the published version of this chapter.  

Briefly, eight cynomolgus macaques were primed with 0.1 mL BCG Danish intramuscularly 

followed by two doses of the vaccine H56 (Ag85B-ESAT6-Rv2660c; 50 μg) mixed with CAF01 

(625 μg dimethyldioctadecyl-ammonium (DDA) and 125 μg trehalose-6,6-dibehenate (TDB)) at 

weeks 10 and 14 after BCG priming.  Timing and doses of vaccination are based on previous 

studies by our collaborators and others in the field who perform protein-based boosting of BCG 

in macaques (16,23).  ELISPOT for IFN-γ was performed to identify antigen-specific T-cell 

responses to the ESAT6 and Ag85B antigens at various time points following vaccination 

(Figure 4.1).   

 

Figure 4.1 shows the timeline of experimental protocol, with blood draw events for NHP studies 

(bottom timeline).  We represent the data from NHPs in a manner consistent with the 

standardization of the phase I clinical trial data provided by Luabeya et al. Like Luabeya et al., 

we analyzed the antigen specific T cell response for CD4+ effector (CD27-CD45+), effector 

memory (CD27-CD45-), and central memory (CD27+CD45-) subtypes. ESAT6- or Ag85B-

specific cellular concentrations were calculated.  Finally, we converted the antigen-specific 

responses for each T-cell subtype to represent a percentage of total CD4+ T cells in blood. 

4.2.2 Phase I Clinical Trial Data Collection and Analysis 

 

For model calibration, we used data described previously (30).  Briefly, the data is from the first 

in-human phase I clinical trial of candidate TB vaccine, H56 in IC31 adjuvant.  The authors 

tested the safety and immunogenicity of H56:IC31 in adults with or without Mtb infection.  

Across 112 days, eight individuals without evidence of Mtb infection were injected with 3 doses 
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of H56 (50 μg H56, 500 nmol IC31) at 56 day intervals. Blood was drawn from individuals on 

days 0, 14, 56, 70, 112, 126 and 210.  Antigen-specific T-cell responses were isolated and 

collected at each sample collection time point. Every individual in the study received BCG 

vaccination as a child (approximately 30 years prior to this study). Figure 4.1 shows the timeline 

of experimental protocol for the human trial (top timeline).  

 

We standardized the results of Luabeya et al. in a manner that allows for eventual comparison to 

NHP data.   The study revealed that the H56 vaccine does not induce a robust CD8+ T cell 

response.  Therefore, we focused all data analysis, model calibration, and results on individual 

subtypes of the CD4+ T cell response to vaccination.  That is, we examined effector (CD45RA+ 

CCR7–), effector memory (CD45RA–CCR7–), central memory (CD45RA–CCR7+), and total 

CD4+ T cell populations. Luabeya et al. also discovered that a dose of 50 μg of H56 was not 

optimal; however, we have selected the 50 μg dataset so that we can directly compare human 

responses to the NHP studies described above.  

 

For each T cell subtype, we normalized the response by subtracting the number of unstimulated, 

cytokine-producing T cells from the quantity of T cells that produced cytokines in response to 

antigen.  We converted this metric to represent a percentage of the total number of CD4+ T cells.    

This calculation was performed for responses to both the ESAT6 and Ag85B antigens.  

Note that the adjuvants used in these two studies (NHP and human) are different and could 

contribute significantly to the results observed. In this work, we do not examine adjuvant 

differences but focus instead on the impact of BCG timing and differences in T cell responses 

between species. See below for further discussion of how we indirectly capture adjuvants. 

 

 

Figure 4.1 Vaccination Experimental Protocol.  
Comparison of the Human (red) and Non-Human Primate (blue) study protocols. Dots along the respective timelines 
represent blood sample data collection time points. BCG, Bacillus Calmette–Guerin; H56, vaccination with H56 and 
adjuvant (IC31 in Human, CAF01 in Non-Human Primate). 
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4.2.3 Mathematical Model 

 

In recent studies (32–35), we captured lymph node and blood dynamics in response to Mtb 

infection using a mathematical model.  We used a compartmentalized system of 16 non-linear, 

autonomous ordinary differential equations (ODEs) to track specific and non-specific CD4+ 

effector, effector memory, and central memory T cell responses. In these previous works we 

represent Mtb-specific T-cells as a generic class of antigen-specific cells; thus, it was simple to 

retool this class of cells and track them as ESAT6- or Ag85B-specific. We assume that all 

antigen-specific T cells are equally immune responsive.  Figure 4.2 displays the model 

schematic, Appendix C details the system of ODEs, and Table C.1 gives the list of all 

parameters, definitions, and values. 
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Figure 4.2 Schematic of the two-compartment model.  
Each equation represents a concentration of a particular cell type, as outlined in the legend.  These concentrations 
are dependent on other cell concentrations and interactions (as shown by arrows) between cells or compartments.  
Arrow labels are defined in greater detail in Appendix C. Briefly, !*+,-./	and !*+,-.01 represents the impact of 
APCs on naïve and central memory cell recruitment. !/2,334 and !012,334 shows the transformation of naïve and 
central memory T cells to the precursor T cell population.  !*+56,3, !42,337, !42,3301, and !72,3371 represents 
precursor proliferation and differentiation to effector, central memory and effector memory cell types, respectively.  
Finally, influx and efflux rates between LN and blood are shown as !/,8369:, !01,8369:, !01.3369:, !7.3369:, and 
!71.3369:. 
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Our key assumption is that the in silico, exogenous introduction of antigen loaded, antigen-

presenting cells (APCs) will act as a reasonable proxy for vaccination. This is valid for two 

reasons:  First, it is well known that vaccine peptides are presented to T cells by APCs.  Second, 

while we did not mechanistically model the impact of an adjuvant in this study, this assumption 

indirectly evaluates the impact of an adjuvant on T-cell responses. APCs require adjuvant to 

properly process and present vaccine peptides (36).  Therefore, to account for variability in 

individual response to an adjuvant and to represent variability across adjuvants (IC31 versus 

CAF01), the quantity of APCs pulsed during vaccination events was assigned to a single quantity 

within a range of values. Thus, we simulated vaccination events by pulsing the APC equation in 

the system of ODEs at a time point equal to the day of H56 vaccination, according to each 

experimental protocol.   

The non-linear ODE model system was implemented and solved in Matlab (R2016b v 9.1).  

Experimental and simulation data cleaning, visualization, and post-processing was performed in 

R (R version 3.4.0, RStudio version 1.0.143) using ggplot2 (37), plyr (38), and tidyr (39) 

packages. See Appendix C for equations and model parameters. 

 

4.2.4 Model Calibration and Sensitivity Analysis 

 

We first sought to define the parameter space that best represents each “immunogenicity 

dataspace” to calibrate to the human and NHP datasets (see Appendix C for a description of 

several important terms for this section of our work).  The parameter space was identified by a 

two-step process.  First, for each immunogenicity space, we ran 1500 simulations with a 50% 

range around the baseline parameters outlined in our previous model construction (shown in 

(32)).  A Latin hypercube sampling (LHS) algorithm was used to sample the multi-dimensional 

parameter space (40) .  This wide range of simulations yielded multiple candidates of baseline 

parameters that might best represent each immunogenicity dataspace.  In the second step, we 

simulated 500 runs (sampling parameters in approximately 20% range) around these candidates’ 

baseline values, again using LHS to sample the parameter space.  We accepted the candidate 

parameter sets if all 500 runs fulfilled two criteria: (1) the simulations’ minimum and maximum 

run must remain within the immunogenicity dataspace.  That is, all simulations from the 

parameter ranges needed to remain within the logarithmic scale of the data.  (2) the median 
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simulation run across all 500 runs must cross the interquartile range of the majority of 

experimental time points (4 of 7 for human data, 4 of 8 for NHP data).  This ensured that our 

model mimics at least the majority of both experimentally-determined dynamics.  Appendix C 

displays the parameter range values after calibration to each immunogenicity dataspace. 

We quantify the importance of each host mechanism involved in vaccination dynamics by 

finding correlations between model parameters and outputs.  Correlations between specific 

model outputs and parameters were determined by using Partial Rank Correlation Coefficient 

(PRCC), where -1 denotes a perfect negative correlation between a model output and parameter 

(+1 denotes a perfect positive correlation between model output and parameter). Marino et al. 

completed a review of the statistical tests available to access significance of PRCC (40). PRCC 

results performed a dual role:  not only do they reveal the relationship between model outcomes 

and parameters, they also inform calibration of the model to the immunogenicity dataspace.  As 

the model is tuned, manipulations to the more sensitive parameters ameliorate model fitting 

according to the criteria above. 

 

Since our model provides measurements in the form of cell counts in lymph node and 

cells/mm^3 in the blood, we performed post-processing of the simulations to ensure that units 

matched those provided by the H56 vaccination data (See Appendix C for details). 

 

4.2.5 Parameter Space Visualization 

 

We utilized radar charts to illustrate parameter range comparisons between species and the 

impact of BCG on cellular responses. Radar charts are a graphical visualization of multivariate 

data across multiple axis.  In this work, we plotted radar charts using R’s radarchart function in 

the fmsb package (41).  Each axis represents a parameter of interest in our ODE model.  Points 

near the center of each axis represent a lower value for that parameter whereas points near the 

outer edges of each axis represent larger values.  To compare parameter ranges across species, 

we calculate the minimum and maximum for each axis on the charts as the minimum and 

maximum value for each parameter across all species and antigen-specific fits (see Appendix C).  

To compare the impact of BCG memory on the H56 immune response, we created the human 

radar charts with a minimum and maximum for each axis defined by the minimum and 
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maximum parameter value across human model fits to ESAT6 or Ag85B.  We created the NHP 

radar charts by displaying the parameter ranges within the minimum and maximum values across 

NHP model fits to either antigen. 

4.3 Results 

 

4.3.1 Humans and non-human primates exhibit different T-cell responses to ESAT6 
following H56 vaccination 

 

In response to H56 vaccination, humans and NHPs showed large variability within and across 

species.  While some of this variability can be attributed to the different experimental protocols 

used (Figure 4.1), the magnitudes of responses between species still differ. Several differences in 

the magnitude and timing of response across species are notable (Figure 4.3). The total response 

of CD4+ ESAT6+ T cells in NHPs is larger and more variable than the response in humans.  For 

example, an F test to compare variances between the two species at day 14 reveals a significant 

difference (p-value = 0.0003; variance of NHPs was approximately 25 times greater than the 

humans).  Day 14 is the final day that protocols follow the same timelines.  Therefore we 

selected day 14 for this statistical test in order to exclude variability due to different experimental 

protocols.   
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Figure 4.3 Experimental data show different responses to ESAT6 antigen following H56 
vaccination  
The percentage of blood CD4+ T cells that respond to ESAT6 by producing cytokines (cytokine+) is divided by the 
total number of CD4+ T cells in the blood. T cell subtypes are also shown. Each time point shows the responses of 
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all 8 human (red) or all 8 NHPs (blue) subjects. Note that it can be difficult to perceive 8 individual dots–if the 
subject's responses are similar or the same, as individual dots overlap. For ease of comparison, we have placed both 
panels of data on the same y-axis. Arrows represent vaccination timepoints. 
 

Furthermore, the magnitude of effector and central memory population responses is larger in 

NHPs than humans.  Between species, the effector memory subpopulation responses are most 

similar. The major contributors to the total NHP CD4+ ESAT6+ T-cell response are the effector 

T cell population during early timepoints and the central memory T cell population at later 

timepoints. The human response is dominated by effector memory T cells. Interestingly, some 

data suggest that the dose of H56 used in this study may also have contributed to this 

exaggerated memory T cell response; current thinking will pursue at least a 10-fold lower dose. 

 

4.3.2 A single mathematical model describes both human and NHP T-cell responses to 
ESAT6 

 

Statistically, we have shown that there is a difference in NHP and human responses to ESAT6.  

However, statistical analysis could not answer the following questions: 1) Are the data for both 

humans and NHPs consistent with the same mechanisms for mounting an immune response? 2) 

If those mechanisms are the same, can the rates of proliferation and differentiation alone be 

responsible for the differences we observe in ESAT immunogenicity? These questions require a 

method that can address the dynamics of priming, proliferation, and differentiation that are 

intrinsic to the development of an immune response.  In Methods, we present a mathematical 

model that describes T cell priming, proliferation, and differentiation in response to APCs in the 

blood and LN of primates.  Here, we hypothesize that this mathematical model can capture both 

human and NHP T cell responses to ESAT6; however, it will require the use of different sets of 

parameter values. In Figure 4.4, experimental data from Figure 4.3 were replotted as box and 

whisker plots (blue – NHP, red – human) and simulation curves are shown by the cloud and 

median lines (blue and red, respectively). 
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Figure 4.4 Model captures diverse response of both NHP and humans to ESAT6 antigen 
following H56 vaccination  
The percentage of blood CD4+ T cells that respond to ESAT6 by producing cytokines (cytokine+) is divided by the 
total number of CD4+ T cells in the blood. T cell subtypes are also shown. Each time point shows the responses of 
all 8 human (red) or all 8 NHPs (blue) subjects using a box and whisker plot. These box and whisker plots provided 
a guide for the boundaries of immunogenicity dataspace. Whiskers were created by extending from the edge of the 
box to the data point that is the closest but does not exceed 1.5 times the interquartile range (defined as the distance 
between the first and third quartiles) from the edge of the box. Any experimental points beyond the edge of the 
whisker are deemed as outliers and plotted as black points. Simulation data are displayed as a blue or red cloud that 
outline the min and max of 500 runs for NHP or human calibrations, respectively. The blue or red line represents the 
median of those simulations. Our goal when calibrating to cell levels in blood of both species was to ensure that in 
silico simulations fell reasonably within these dataspaces, as outlined in Methods. Parameter ranges used to generate 
the simulation curves are shown in Appendix C. 
 

NHP simulation data recapitulates the variability in the experimental data by capturing the 

dynamics of the experimental data.  In particular, the median simulation line demonstrates how 

the model captures the general behavior of the data, by traveling through the interquartile range 

of at least 4 of the 8 timepoints for each subpopulation of T cells. The human simulations capture 

the clinical data– our maximum and minimum simulations include nearly all of the outlying data 

points across the subpopulations of T cells.  A visual comparison of these parameter ranges is 

displayed in Appendix C.  Altogether, we demonstrate that our model captures the ESAT6 

immunogenicity dataspace of both NHPs and humans – suggesting that the mechanisms of 

generating a primary immune response are the same for both NHPs and humans.   

 

4.3.3 Sensitivity analysis reveals both similar and distinct outcome drivers across 
species in response to ESAT6 

 

Having calibrated our model to both ESAT6 human and ESAT6 NHP immunogenicity 

dataspaces, we next used these two model fits to ask questions about important processes within 

the CD4+ T cell response.  In particular, we wanted to better understand the dual roles of 

proliferation and differentiation that drive immune response magnitude and timing following 

vaccination in both species. To investigate these processes, we performed uncertainty and 

sensitivity analysis on 3 outcomes (ESAT6-specific central memory, effector, and effector 

memory T cell subtypes) of our model.  Table 4.1highlights processes (i.e. parameters) found to 

be significantly associated with changes in T cell response subpopulations for each species. 

For both species, uncertainty and sensitivity analysis support a key role for priming and 

proliferation within lymph nodes.  This is not a novel concept, but rather acts as a proper control 
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for the utility of our model, as it is accepted that priming and proliferation within the lymph node 

underlies immunogenicity of a vaccine (42).   Specifically, uncertainty and sensitivity analysis 

revealed a crucial role for CD4+ T cell precursor proliferation rates (k4) within the lymph node 

compartment.  The significant, positive association between precursor T cell proliferation rates 

and 3 different T cell subtypes in the blood represents an inter-compartmental effect – not only 

does the parameter influence the dynamics within its own compartment (lymph node), it drives 

the dynamics of the compartment yielding experimentally validated results (blood).   

There were also modest differences in the mechanisms driving model fits for NHP and humans, 

(Table 4.1). For example, only the human dataset showed significant negative correlations 

between cellular responses in the blood and the half-saturation values of precursor proliferation 

and differentiation in the lymph node (represented as ‘likelihood of proliferation and 

differentiation’ in Table 4.1). We predict that humans and NHPs are generally alike in response 

to ESAT6, but proliferation and differentiation in humans is not quite as easily triggered as 

proliferation and differentiation in the NHP. This could be in part due to the influence of humans 

regularly exposed to many and diverse environmental factors. 

 

Table 4.1 Parameters with significant PRCCs for ESAT6 immune response outcomes. 
 One row displays humans, the other displays NHPs.  Columns list the 3 model outcomes of interest – ESAT6-
specific central memory, effector and effector memory T cell phenotypes.  These outcomes were selected for 
analysis because the model was calibrated to their dataspace.  Each table cell contains a general description of 
significant (i.e., p < 10−3) parameters with respect to each output of the model. 
ESAT6 Central Memory Effector  Effector Memory 
NHP central memory reactivation 

rate; precursor proliferation 
and differentiation into central 
memory cells; APC and 
precursor death rates 

precursor proliferation and 
differentiation into effector cells; 
effector, APC, and precursor 
death rates 

precursor proliferation and 
differentiation into effector 
cells; APC and precursor death 
rates 

Human Likelihood of proliferation; 
precursor proliferation and 
differentiation to central 
memory; central memory 
recruitment; APC, and 
precursor death rates; 

Likelihood of proliferation and 
differentiation; Naïve T cell 
recruitment; Precursor 
proliferation and differentiation 
to Effector; effector 
differentiation to effector 
Memory; effector Lymph efflux; 
effector, APC, and precursor 
death rates; 

Likelihood of proliferation and 
differentiation; precursor 
proliferation; effector memory, 
APC, and precursor death 
rates;  
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4.3.4 Humans and non-human primates exhibit different T-cell responses to Ag85B 
following H56 vaccination 

 

While the immunological response between humans and NHPs to the ESAT6 antigen in H56 

vaccination can be attributed to intrinsic similarities and differences between species, the 

response to the Ag85B antigen offers an opportunity to investigate the role of prior BCG 

vaccination on H56 immunogenicity (Figure 4.5). When we compare magnitude and timing of 

responses across species, several differences emerge. As observed for responses to ESAT6, the 

total response of CD4+ Ag85B+ T cells in NHPs is higher and more variable than the response 

in humans.  For example, an F test to compare variances for the central memory T cell 

population at day 14 revealed a significant difference (p-value = 3.984e-06; variance in NHPs is 

about 96 times greater than humans).  While the magnitude of effector and central memory 

subpopulation responses were larger in NHPs, it appeared that humans had a larger effector 

memory subpopulation response. 
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Figure 4.5 Human and NHP experimental data show different responses to Ag85B antigen 
following H56 vaccination  
The percentage of blood CD4+ T cells that respond to Ag85B by producing cytokines (cytokine+) is divided by the 
total number of CD4+ T cells in the blood. T cell subtypes are also shown. Each time point shows the responses of 
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all 8 human (red) or all 8 NHPs (blue) subjects (some responses overlap, so it might be difficult to see 8 distinct 
dots). For comparison, we placed both panels of data on the same y-axis. Arrows represent vaccination timepoints. 
 

4.3.5 A single mathematical model describes NHP and human T-cell responses to 
Ag85B 

 

Using statistical analysis, we have revealed a difference between species in immune response to 

Ag85B.  However, statistical analysis cannot answer the following questions: 1) what is the 

impact of different BCG timing on H56 response? 2) is the influence of BCG prime on H56 

immune response the same for both species – i.e., do the two species possess a similar secondary 

response to an antigen?  To mechanistically understand the role and timing of BCG prime on 

H56 vaccination, we require a mathematical modeling approach to predict dynamics of the 

different T cell responses to Ag85B. As with ESAT6, we tested whether our mathematical model 

can capture the Ag85B immunogenicity dataspace for both NHPs and humans (Figure 4.6). Our 

simulation data mimic the variability in the NHP experimental data by tracking most outlier 

points and whiskers. For example, simulations reflect a contraction of the central memory 

population and follow expected logic – a percentage of central memory cell populations will 

reactivate and become precursor T cells in the LN.  Thus, the percentage of central memory T 

cells should contract within blood.  
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Figure 4.6 Model can fit diverse responses of both NHP and Humans to Ag85B antigen 
following H56 vaccination  
The percentage of blood CD4+ T cells that respond to Ag85B by producing cytokines (cytokine+) is divided by the 
total number of CD4+ T cells in the blood. T cell subtypes are also shown. Each time point shows the responses of 
all 8 human (red) or all 8 NHPs (blue) subjects as a box and whisker plot. Whiskers were created in the same 
manner as the ESAT6 datasets. Simulation data are displayed as a blue or red cloud that outline the min and max of 
500 runs for NHP or human calibrations, respectively. The blue or red line represents the median of those 
simulations and demonstrates that the model captures the general behavior of the data, by traveling through the 
interquartile range of at least 4 of the 8 timepoints for each subpopulation of T cells. Exact parameters ranges used 
to generate the simulation curves for NHP and human CD4+Ag85B+ T cells are shown in Table C.1. 
 

The human simulations also capture the variability of the human dataset as well as the general 

trends, as shown by the median red line.  A visual comparison between the parameter ranges is 

displayed in Figure C.1 and Table C.2 using radar charts.  Altogether, we show that our 

mathematical model can capture the Ag85B immunogenicity dataspace of NHPs and humans 

with species-specific parameter ranges. 

 

4.3.6 Differences in BCG timing between humans and NHPs is captured by initial 
conditions 

 

Throughout our calibration process, we were aware of the potential for the timing of BCG 

priming events to influence the immune response of each species to Ag85B (as NHPs received 

BCG vaccination 70 days before H56 vaccination and humans received their BCG vaccination 

roughly 30 years before the clinical trial began -- see Methods and Figure 4.1). Instead of 

explicitly modeling a BCG vaccination event 70 days or 30 years prior to H56 vaccination, we 

varied initial concentrations of memory cell types in the LN and blood as a proxy for these BCG 

vaccinations.  The initial cell concentrations represent the value of memory antigen-specific T 

cells within the system.  That is, these T cells, prior to vaccination with H56, were specific for 

the Ag85B antigen.  The initial condition values that led to the best model fits for both NHP and 

human T cell response are shown in Table 4.2 Initial conditions represent the difference in BCG 

timing between experimental protocols. Note that the abbreviated time between BCG and H56 

vaccinations for NHPs meant that many precursor CD4+ T cells were present in the LN; this 

population may well have waned in humans who were vaccinated many years (to decades) prior.  

As a portion of these precursor T cells differentiate into central memory T cells and effector T 

cells, the BCG vaccination event enabled the model to recapitulate the immunogenicity 
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dataspaces for these two T cell subpopulations and could also explain the larger NHP response to 

the vaccine. 

 

Table 4.2 Initial conditions represent the difference in BCG timing between experimental 
protocols  
The disparity between initial condition values that preceded the NHP response and those corresponding values for 
the human response represent the impact of prior presentation of Ag85B via BCG on the system. ***** signifies 
that NHP experimental protocol did not give the NHPs a second boost of H56 vaccination  

  ESAT6 Ag85b 

  NHP Human NHP Human 
Initial Condition of 
Cell Type Units Range of Values Range of Values Range of Values 

Range of 
Values 

Naïve CD4+ specific 
Blood T cells cell/mm3 [0.1,0.25] [0.07, 0.6] [0.17,0.37] [0.04,0.27] 
Effector CD4+ 
specific Blood T cells cell/mm3 [0.001,1.5] 0 [0.001,2.5] 0 
Central Memory 
CD4+  
specific Blood T cells cell/mm3 [0.0015,0.006] [0.00002, 0.03] [0.002,0.2] [0.02,0.3] 
Effector Memory 
CD4+  
specific Blood T cells cell/mm3 [0.001,0.5] [0.003, 0.15] [0.003, 0.9] [0.0016,2.6] 
Naïve CD4+ 
nonspecific Blood T 
cells cell/mm3 [160,240] [100,600] [241,361] [59,272] 
Effector CD4+ 
nonspecific Blood T 
cells cell/mm3 [200,800] [530,110] [445, 670] [358,875] 
Central Memory 
CD4+  
nonspecific Blood T 
cells cell/mm3 [1,3] [0.009,10] [1,100] [10,100] 
Effector Memory 
CD4+  
nonspecific Blood T 
cells cell/mm3 [1,150] [1,22] [1,300] [0.3,370] 
Naïve CD4+ specific 
LN T cells 

cell 
count [91957, 322492] [8255,111806] [144500,546200] [5000,5720] 

Precursor CD4+ 
specific LN T cells 

cell 
count 0 0 [6770, 10150] 0 

Effector CD4+ 
specific LN T cells  

cell 
count 0 0 [22,34] 0 

Central Memory 
CD4+ specific LN T 
cells 

cell 
count [1295,7878] [3.4, 5046] [2377,285871] [3132, 59431] 

Effector Memory 
CD4+ specific LN T 
cells 

cell 
count 0 0 [828,1241] 0 

Naïve CD4+ 
nonspecific LN T 
cells 

cell 
count [123430594,355639025] 

[11839508, 
122029962] 

[177300481, 
535316901] 

[7865162, 
53811216] 
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Central Memory 
CD4+  
nonspecific LN T 
cells 

cell 
count [775507,4253381] [1229, 1895598] 

[1219316, 
134489106] 

[1401106, 
19893946] 

APC (Prime 
Vaccination of H56) 

cell 
count [150,800] [200,500] [350,500] [500,1000] 

APC (Boost 
Vaccination 1 of H56) 

cell 
count [50, 150] [200,500] [250,500] [400,600] 

APC (Boost 
Vaccination 2 of H56) 

cell 
count ****** ****** [200,500] ****** ****** [400,600] 

 

4.3.7 Sensitivity analysis reveals both similar and distinct outcome drivers across 
species in magnitude of T-cell responses to Ag85B antigen 

 

We performed uncertainty and sensitivity analysis on the same 3 model outcomes as the ESAT6 

response analysis to identify important processes in CD4+ T cell response to Ag85B in each 

species.  We identified factors, such as CD4+ central memory cell recruitment, to be 

significantly associated with changes in T cell response subpopulations (Table 4.3). Uncertainty 

and sensitivity analysis also revealed a crucial role for CD4+ Precursor proliferation and half-

saturation rates within the lymph node compartment (Table 4.3).   

 

Table 4.3 Significant PRCCs for Ag85B immune response outcomes  
One row represents humans, the other represents NHPs.  Columns list the 3 model outcomes of interest – Ag85B-
specific central memory, effector and effector memory T cell phenotypes.  These outcomes were selected for 
analysis because the model was calibrated to their dataspace.  Each table cell contains a general description of 
significant (i.e., p < 10−3) parameters with respect to outputs of the model 
Ag85B Central Memory Effector  Effector Memory 
NHP central memory reactivation 

rate; Likelihood of 
differentiation; precursor 
proliferation and 
differentiation into central 
memory cells; APC and 
precursor death rates 

Likelihood of differentiation; 
precursor proliferation and 
differentiation into effector 
cells; effector, APC, and 
precursor death rates 

precursor proliferation and 
differentiation into effector 
cells; APC and precursor death 
rates 

Human Likelihood of proliferation; 
precursor proliferation and 
differentiation into central 
memory; central memory 
recruitment rate; APC and 
precursor death rates 

Likelihood of proliferation and 
differentiation; naïve T cell 
recruitment; precursor 
proliferation and differentiation 
to effector; effector 
differentiation to effector 
memory; effector Lymph efflux; 
effector, APC, and precursor 
death rates  

Likelihood of proliferation; 
precursor Proliferation; effector 
memory, APC, and precursor 
death rates 
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Modest differences also exist in the mechanisms driving model fits for NHP and human (see 

Table C.1).  In addition to the stark differences in initial conditions (from BCG timing), 

uncertainty and sensitivity analysis predicts that in NHPs, central memory reactivation rates were 

significantly associated with the total CD4+Ag85B+ response outcome.  The importance of 

reactivation in the central memory population supports not only the role of BCG memory in this 

system, but could indirectly explain the late increase in Ag85B+ effector cells around day 56 (as 

the central memory cells that reactivate become precursor cells that, in turn, can become effector 

cells). Overall, the human and NHP Ag85B responses differ in values of initial conditions, 

central memory reactivation, and T cell differentiation.  Despite these differences, like the 

ESAT6 response, we predict that the Ag85B response in NHPs and humans are generally alike – 

this similarity hints at a general secondary response that is conserved across species.     

 

4.3.8 Secondary response to Ag85B antigen is characterized by the upregulation of 

differentiation to central memory phenotype 

 

If we consider the T cell response of NHP and humans to ESAT6 as the epitome of each species’ 

primary response to an antigen in vaccination, then we can view the parameter values that 

recapitulate the Ag85B response (a secondary response to the same antigen) as a BCG-induced 

modification to the parameter values that captured the ESAT6 response.  For NHPs (blue) and 

humans (red), three parameters (k5, k6, k7) are represented on each axis of the radar charts for 

ESAT6 and Ag85B (Figure 4.7). Notice that, for each species, the radar charts include the 

maximum value for each parameter across the ESAT6 and Ag85B response fits.  In the ESAT6 

radar charts, both NHPs and humans skew toward the differentiation of effector and effector 

memory T cell phenotypes.  As neither species has encountered ESAT6 prior to H56 vaccination, 

the relatively high rates of differentiation to effector and effector memory T cell phenotypes 

constitute a primary response that may be conserved across species.  
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Figure 4.7 Radar charts reveal impact of immunological memory in response to Ag85B  
We display 4 radar charts (see Appendix C and Methods) that visually represent the parameter space for several key 
parameters (as identified by PRCC) in model fits for both species and antigens. Each chart includes the maximum 
value of each parameter (for each species) on the diagrams. The top chart shows the parameter ranges that fit the 
ESAT6 immunogenicity dataspace. The bottom radar chart displays the parameter ranges that fit the Ag85B 
immunogenicity dataspace. These parameters were picked as they represent T-cell differentiation rates to central 
memory (k6), effector (k5), and effector memory (k7) T cell phenotypes. Each parameter space is represented by a 
blue (NHP) or red (human) band, which represents the min and max parameter value for each model fit. Table C.1 
shows the numerical values of the parameter ranges. To directly compare the impact of BCG memory on the H56 
immune response, we created the Human radar charts with a minimum and maximum for each axis defined by the 
minimum and maximum parameter value across Human model fits to ESAT6 or Ag85B. We created the NHP radar 
charts by displaying the parameter ranges within the min and maximum values across NHP model fits to either 
antigen. Viewers should not compare the charts from left to right, as the human charts display a parameter range that 
is wholly distinct from that of the non-human primates. For each species, the maximum values for each parameter 
are displayed at the edges of the radar charts. 
 

Ag85B is an antigen that was first presented in BCG vaccination; if we compare the dynamics of 

ESAT6 responses to the dynamics of Ag85B responses, we can predict the BCG-induced 

modifications to T-cell differentiation during secondary responses to the same antigen.  In the 

Ag85B radar charts, both species’ ranges for differentiation to effector and effector memory 

become relatively smaller than the ranges that fit the ESAT6 response.  Further, the ranges for 

the parameter that captures differentiation to a central memory phenotype grow larger relative to 
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the ranges shown in ESAT6 response. We speculate that this change in response is conserved 

across species – upon secondary response to the same antigen, both species’ precursor T-cell 

populations upregulate the production of a central memory phenotype during differentiation. 

 

4.4 Discussion 

 

In the pursuit of a vaccine that can confer long-term, consistent immunity against TB, H56 is one 

new vaccine candidate. However, the role of prior BCG vaccination on H56 immunogenicity is 

unclear. In addition, the differences between NHP – a useful model animal for vaccine studies - 

and human responses to H56 has not been explicitly characterized.  Identifying the influence of 

BCG on H56 vaccination and characterizing the species-specific responses to H56 will better 

facilitate our understanding of H56 immunogenicity and could potentially pave the way for more 

effective therapies. In addition, we strive to elaborate how computational modeling can assist 

with vaccine development and testing. 

 

In this work, we used a systems biology approach that utilized mathematical modeling to explore 

both NHP and human response datasets to H56.  We calibrated our two-compartment 

mathematical model to the ESAT6 and Ag85B immunogenicity dataspaces for both NHPs and 

humans.  This calibration allowed us to study pre-exposure vaccination dynamics such as antigen 

presentation, T cell priming, and differentiation in both the lymph node and blood.  Specifically, 

we utilized antigen specificity to draw our main conclusion: BCG similarly influences H56 

immunogenicity in both NHPs and humans by upregulating differentiation to the central memory 

phenotype in the Ag85B-specific CD4+ T cell response.  While Lin et al. found that H56 boosts 

the effects of BCG and prevents reactivation of latent infection (23), to our knowledge no one 

has documented the direct impact of prior BCG on H56 immunogenicity. 

 

Using mathematical modeling, we were also able to isolate the impact of BCG timing differences 

on H56 immunogenicity.  We discovered that the narrow window between BCG prime and H56 

vaccination in NHPs promotes a larger quantity of antigen-specific cells that reside in the lymph 

node prior to H56 vaccination.  Calibration to the Ag85B immunogenicity dataspace for NHPs 

revealed a much larger initial number of precursor T cells in the lymph node than the number of 
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initial precursor cells that were required for calibration to the human data.  The difference in 

timing of BCG for the NHP experimental protocol (70 days prior to H56 vaccination) and human 

experimental protocol (up to decades before H56) explains the necessary differences required in 

model initial conditions to capture these events. Experimental assessment of vaccines in NHPs 

preclude the administration of BCG years prior to boosting with a subunit vaccine, due to costs. 

However, our data indicate that the timing of BCG and booster vaccines strongly influence the 

subsequent immune responses. Whether this also affects protection conferred by a vaccine 

remains to be tested. 

 

Using uncertainty and sensitivity analysis, we found that each species’ response to H56 

vaccination was generally similar.  While each species resides in a separate parameter space, the 

general dynamics dictating the H56 immune response was quite similar. This finding contrasts 

with previous findings that show the immune response of monkeys and humans to SIV or HIV 

(respectively) differs (43,44), however, like many others in the field of TB research, we conclude 

that NHPs are a good model for human responses (45–48).  However, one consistent difference 

between NHP and human response were observed.  Unlike the NHP response, the humans’ 

central memory, effector, and effector memory T cell phenotypes was significantly negatively 

correlated with the half-saturation values of proliferation and differentiation in both the ESAT6 

and Ag85B immunogenicity dataspaces.  As the half-saturation values in our model measure the 

affinity (or likelihood) of a cell to proliferate or differentiate upon priming, our findings suggest 

that humans differ from NHPs in the ability of T cells to quickly react to H56 vaccination 

antigens within lymph nodes.  Perhaps presentation of these antigens to T cells is not as effective 

in humans as it is in NHPs. We indirectly modeled adjuvant impact on vaccination (see 

Methods); however, a more mechanistic approach may be necessary to elucidate these species-

specific differences in antigen uptake and presentation.    

 

Furthermore, uncertainty and sensitivity analysis revealed an intriguing result regarding the 

human experimental protocol.  Throughout our analysis, the number of APCs that entered the 

system via vaccinations (prime or boost events) was significantly, positively, associated with 

cellular responses in the blood.  However, our analysis also showed that the number of APCs that 

entered the system as a result of the second boosting event (third H56 vaccination event) for 
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humans did not significantly impact the number of central memory T cells within the blood 

compartment.  This result agrees with the previous finding that 50 ug of H56 is too high of a 

dose (30), resulting in large effector responses that may be suboptimal for long-term memory.  

As one major goal of any vaccination is to provide long lasting immunity in the form of 

immunological memory, our computational analysis has revealed that the third dose was likely 

redundant and that optimization of dose using computational predictions could have potentially 

improved outcomes, especially prior to the clinical trial.   In the future our systems biology 

approach together with virtual clinical trials could help investigate these issues and assist in 

improving the vaccine pipeline. 

 

One potential limitation of this study is that our current model represents the complex processes 

of proliferation, differentiation, and reactivation rates as a single parameter with a range of 

values.  We believe this suffices since our goal was to identify the role of BCG in H56 

vaccination response across humans and NHPs. However, future investigations into the 

processes dictating proliferation, differentiation, or reactivation could create a more detailed 

mathematical model including those details.  In fact, the field of T-cell memory and the exact 

mechanisms of reactivation have been extensively studied (49–52). Conversely, 

phenomenological modeling has provided insights for T cell expansion (44,53,54). Future work 

could discuss the benefits of mechanistic or phenomenological models when addressing distinct 

questions about proliferation, differentiation, or reactivation.    

 

In summary, we used a systems biology approach that combined NHP and human datasets with 

mathematical modeling to better understand the differences between NHP and human immune 

response to H56 vaccination.  Specifically, we showed that each primate species had a similar 

response to H56, identified the role of BCG timing on H56 vaccination, and discovered that 

BCG similarly influences H56 immunogenicity in humans and NHPs. 

 

Beyond the scope of this paper, we could have characterized other comparisons between humans 

and NHPs.  For example, future studies could identify the species-specific differences during TB 

infection, identify the adaptive immune response differences to other antigens, or capture the 

dissimilarities of each species’ innate immune response to adjuvant.  Further, future studies 
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could also model the cellular dynamics following H56 vaccination before, during, or after TB 

infection in an effort to evaluate the potential success of this vaccine candidate.  We argue that a 

systems biology approach that melds mathematical modeling together with experimental and 

clinical studies has the greatest potential to discover, predict, and evaluate new vaccination 

strategies that could end the TB epidemic. 
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5 A Host-Scale Model Distinguishes Infection Outcomes in Tuberculosis 

5.1 Introduction 

Even during the COVID-19 pandemic, tuberculosis (TB) continues to be a global threat.  

Approximately 25% of the world is infected with Mycobacterium tuberculosis (Mtb) and 5-10% 

of those currently infected will progress to develop symptomatic clinical disease (1). TB patients 

are often classified as having latent tuberculosis (LTBI) or active TB.  LTBI is an asymptomatic 

state of infection with typically low levels of Mtb present. Active TB cases exhibit clinical 

symptoms including fever, weight loss, night sweats, and coughing typically with high levels of 

Mtb present. While patients are categorized within these binary states, recent work has shown 

that TB manifests as a spectrum of clinical and infection outcomes within humans and non-

human primates (NHPs) (2–5).  Latently-infected individuals can undergo reactivation events 

and therefore act as a potential reservoir for disease transmission (6,7).  Much remains unknown 

about the biology that drives clinical outcomes in TB (i.e., latent or active) for each individual 

patient. It is critical to understand events that lead to latent or active TB in order to develop 

effective vaccines and host-directed therapies.   

 

The hallmark of TB is the formation of lung granulomas, which are organized immune structures 

that surround Mtb and Mtb-infected cells within lungs of infected hosts (8).  NHP data have 

shown that a single mycobacterium is sufficient to begin the formation of a granuloma and that 

each granuloma has a unique trajectory (9,10).  Granulomas are composed of bacteria and 

various immune cells, such as macrophages and T cells (primarily CD4+ and CD8+ T cells, 

although other unconventional T cell phenotypes are also present, reviewed in (11)). Other cells 

such as neutrophils, fibroblasts and dendritic cells are also present. T cells have well-known 

critical functions against Mtb (12–14), but unlike other infections, T cells are slow to enter the 

site of infection within lungs, arriving approximately one month after primary infection (15). 

Lung-draining lymph nodes (LN) serve as the sites for initiating and generating an adaptive 

immune response against most pulmonary infections, including Mtb.  However, delays in LN T-

cell priming, activation, and trafficking through blood to lungs is characteristic of the adaptive 
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immune response in Mtb (16,17) and is thought to be key in allowing Mtb to establish infection 

within lungs (15). The delay is thought to arise from slowly growing mycobacteria in the lungs, 

delaying the signals for adaptive immunity (18). 

 

While studies at the granuloma scale have elucidated important features about how individual 

granulomas control infection, it is difficult to experimentally identify specific immune 

mechanisms within lung granulomas and LNs that drive clinical outcomes of TB at a whole-host 

scale. Specific factors such as CD4+ T cells, CD8+ T cells and TNFα are important in 

controlling established Mtb infection (12,19,20). NHP studies have also shown active TB 

individuals harbor significantly more bacteria than LTBI individuals (21) but these studies have 

been unable to relate individual granuloma outcomes to whole-host clinical outcomes, in part 

because the fate of individual granulomas vary within a single host (9). 

 

Data from sites of infection (lung granulomas) in humans are generally unavailable. 

Consequently, it is not known whether numbers of immune cells in the blood reflect ongoing 

events during infection within human lungs (22).  This has limited the ability to use blood as a 

predictive measure for infection progression or diagnosis. However, recent association studies 

suggest ratios of antigen-specific CD4+ and CD8+ T cells within the blood of Mtb-infected hosts 

may help delineate LTBI from active TB (23,24).  Conversely, NHP studies have shown that T-

cell responses in the blood do not consistently reflect T-cell responses in granulomas (25,26).  

 

Mathematical and computational modeling offer complementary approaches to experimental 

studies. Models have the power to simultaneously track multiple immune cell populations across 

multiple compartments, explore mechanisms of action related to immunological phenomenon, 

and predict timing of major immune events. In TB (27), modeling has been used to explore 

bacterial behavior in relation to the granuloma environment (28), drug-dynamics within 

granulomas (29,30) and immune cell interactions and cytokines within a lung model (31–33). 

Additionally, pseudo whole-host models have been developed to begin to investigate biomarkers 

in TB (26) and drug dynamics across a host (34).  Mathematical and computational modeling is a 

unique tool that could serve to bridge events occurring within a host to whole-host level TB 

outcomes (i.e. LTBI vs active TB).   
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Here we develop a novel whole-host scale modeling framework that captures key elements of the 

immune response to Mtb within three physiological compartments - LNs, blood and lungs of 

infected individuals. Beginning with our whole lung framework originally called MultiGran, 

each granuloma is formulated as an individual ‘agent’ in an agent-based model that contains a 

sub-model tracking immune cells, cytokines, and bacterial populations for each granuloma 

(previously presented in Chapter 3 and (35)).  We extend this framework to capture dynamics of 

a whole host by linking it with a two-compartment model representing immune cell dynamics 

occurring within LNs and blood (previously presented in Chapter 4 and (36,37)). Together, this 

new model platform, called HostSim, represents a whole-host framework for tracking Mtb 

infection dynamics within a single host across long time scales (days to months to years). We 

calibrate and validate the model using multiple datasets from published NHP studies. We use 

HostSim to answer two outstanding questions surrounding whole-host outcomes in TB: 1) what 

are the mechanisms within a host that drive clinical outcomes in TB at the whole-host scale?  2) 

is there a relationship between counts of blood immune cells and clinical outcomes at the whole-

host scale?  We use HostSim to relate immune responses in blood to the sites of infection within 

lungs and utilize sensitivity analysis to predict factors that lead to clinical outcomes of TB.  

5.2 Methods 

5.2.1 HostSim model overview 

Our novel multi-scale whole-host scale model, HostSim, tracks Mtb infection across three 

separate physiological compartments (Figure 5.1).  We describe the formation, function and 

dissemination of multiple granulomas that represent distinct sites of infection developing within 

a whole-lung model.  We additionally describe the initiation of adaptive immunity within a LN 

compartment after receiving signals from antigen presenting cells migrating from lungs.  Finally, 

we track immune cell counts within a blood compartment that acts as a bridge between LN to 

lungs. HostSim uses rule-based agent placement, parameter randomization, solves non-linear 

systems of ODEs, performs post-processing agent groupings, and utilizes rule-based linking 

between scales to perform in silico simulations of a single host.  

 

Our model is called HostSim as we consider a simulation of an entire primate host during Mtb 

infection; however, our in silico “hosts” are comprised solely of lungs, LN and blood. These 
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three physiological compartments comprise the majority of dynamics that occur during 

pulmonary TB (38,39).  Other organs and body system are also involved during extrapulmonary 

TB, including liver, brain, and other extrapulmonary sites. We believe that focusing this study on 

pulmonary TB is without loss of generality, and that adding in those other body sites would serve 

to fine tune our predictions to other clinical outcomes of TB.  

 

Each virtual host includes multiple granulomas with separate parameter values, and a single 

parameter set for the LN and blood. The assumption that granulomas within the same host have 

separate parameter values is supported broadly by both modeling and experimental studies that 

have shown each granuloma within a host evolves independently (9,10,25,26,29,35,40,41).  

5.2.2 Modeling multiple lung granulomas across time – MultiGran 

In a recent study, we built a novel hybrid agent-based model that describes the development of 

multiple lung granulomas known as MultiGran (35). In this model, each granuloma acts as an 

agent, placed stochastically within the boundary of a 3-dimensional lung environment (Figure 

5.1A). To create this ‘virtual lung’ we used a CT scan from an uninfected NHP (35) as the three-

dimensional lung architecture upon which multiple granulomas develop across time (translating 

the x,y,z coordinates from a CT scan to our computer model).  Our previous study provides 

further detail about lung architecture (35). Simulations begin with inoculation of multiple 

bacteria into the lung environment.  A granuloma is initialized when each Mtb is placed within 

the lung environment, as NHP studies have shown that each Mtb bacterium can form a unique 

granuloma (9,10).  

 

Briefly, the development of each individual granuloma “agent” is captured by a system of ODEs 

that tracks bacterial, macrophage, T cell, and cytokine dynamics. To describe the role of the 

innate immune response within a granuloma, we track resting, infected and activated 

macrophages as well intracellular and extracellular bacterial populations.  To capture the impact 

of the adaptive immune system, we track primed CD4+ and CD8+ T cell populations.  Primed 

CD4+ T cells can differentiate into effector Th1 or Th2 populations and primed CD8+ T cell 

populations can differentiate into cytotoxic or cytokine producing CD8+ T cell populations. 

Recruitment of T cells from the blood compartment to granulomas is described in greater detail 

below. We additionally track concentrations of pro- and anti- inflammatory cytokines within 
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each granuloma, including IFN-γ, TNF-α, IL-10, IL-4 and IL-12.  MultiGran originally only 

included the primed and differentiated T cell populations described above; but we now include 

effector memory T cells to be consistent with experiments that have shown effector memory T 

cells are present within the granuloma environment (42–44).  Thus, we expanded the set of 

ODEs representing each single granuloma in MultiGran (35) to include CD4+ and CD8+ 

effector memory T cell subpopulations.  Briefly, we assume effector memory cells are recruited 

from the blood to granulomas according to the inflammatory profiles of granulomas (see Linking 

models section below for further detail). Once at the site of the granuloma, effector memory cells 

differentiate into T cells that exhibit effector functions (44–46).  

 

Granulomas within MultiGran can sterilize bacteria, control bacterial growth over time, or 

exhibit uncontrolled bacterial growth. Granulomas can also disseminate, spreading bacteria 

locally or non-locally (Figure 5.1A). Local dissemination events initialize a new granuloma near 

the disseminating granuloma whereas non-local dissemination initializes a new granuloma 

randomly within the lung environment.  Model equations and details are in the Appendix D and 

includes the list of all parameters, definitions, and ranges. 

5.2.3 Lymph node and blood models 

In previous work, we captured lung-draining lymph node (LN) and blood cellular dynamics 

following Mtb infection or vaccination using a two-compartment mathematical model 

(26,37,47).  Briefly, we track Mtb-specific and Mtb-non-specific CD4+ and CD8+ naïve, 

effector, effector memory, and central memory T cell responses using a compartmentalized 

system of 31 non-linear ODEs (Figure 5.1B).  We represent Mtb-specific T cells as a generic 

class of antigen-specific cells across time.  In the LN, T cells are tracked as counts across time, 

whereas in the blood, the cells are tracked as a concentration (cells/μL) because experimental 

data on blood T cells is often presented as a concentration.  The Appendix D gives the list of all 

parameters, definitions, and ranges for the blood and LN models. 

5.2.4 Creating the multiscale model: Linking the lung model (MultiGran) and the 

lymph node model 

T-cell priming, proliferation and differentiation begins in the LN when an antigen-presenting cell 

(APC) travels from lungs to LN and interacts with a Mtb-specific T cells. In mice, this process 
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does not begin until 9-13 days after inoculation (16,39), but serial positron emission tomography 

coupled with computed tomography scans (PET-CT) in NHP studies have shown that LNs do not 

become metabolically active until 2-4 weeks post-infection (38,48,49).  Wolf et al. showed that 

the migration of cells to LN is transient (39), and NHP PET-CT studies revealed that LNs do not 

increase metabolic activity following 8-12 weeks post-infection during latent infection (48).   

 

We mirror this biological phenomenon in a coarse-grained manner within HostSim (Figure 2C). 

As infection progresses within HostSim, we allow infected macrophages within granulomas to 

act as a proxy for APCs that migrate to the LN beginning ~1-4 weeks post-infection. This 

assumption is supported by experimental studies and previous modeling has made similar 

assumptions (35,50,51). We represent the percentage (5-25%) of infected macrophages which 

will act as APCs and migrate to the lymph node as a parameter.  This range emerged from 

calibration but is validated by experiments that show only a small fraction of cells can traffic to 

the LN (50–52). The main migration of cells to the LN ceases ~7-14 weeks post-infection, 

consistent with the NHP PET-CT data (48).  However, as TB is a chronic disease, we include 

stochastic events where a small percentage of cells randomly migrate to the LN in low levels 

every few days.  All processes that link lung and LN compartments are events guided by 

parameters whose initial ranges were estimated from both mouse (16,39) and NHP data 

(38,48,49).  For example, even though we model a single LN compartment, approximately five 

lung draining lymph nodes are involved in NHP and human Mtb infection (49), so we scale all 

LN T cell counts by a multiple of five when they enter the blood compartment, as done 

previously (26,36,37). 

5.2.5 Creating the multiscale model: Linking the blood model to the lung model 

(MultiGran) 

We also coarse-grain the process of T-cell lung-homing and migration to the sites of granulomas. 

In HostSim, there are three types of blood T cells that are recruited to the granuloma: Mtb-

specific effector T cells, Mtb-specific effector memory T cells, and non-specific T-cells. Note, 

once blood Mtb-specific effector T cells arrive in the granuloma, they are considered primed T 

cells. Recruitment occurs for both CD4+ and CD8+ T cell lineages.  
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Each cell type is recruited to each granuloma according to inflammatory signals within our 

granuloma model.  These include counts of activated and infected macrophages, and levels of the 

pro-inflammatory cytokine TNF, consistent with experimental data and previously presented 

models (25,36,53–56). We calculate the number of Mtb-specific effector T cells that will be 

recruited from the blood to the ith granuloma, *"+,-.#/+/, per time step according to the 

following equation, as outlined in our previous modeling work (33,35,57): 

*"+,-.#/+/012"-3&
= 	50$(*"+,-.#/+/61 +82*"+,-.#/+/63)

+ 9"04 :
*"+,-.#/+/;<=5

*"+,-.#/+/;<=5 + >6*"+,-.#/+/?@07 + A842
B	 

 

Where 50$ , 82, 9"04 , >6, A842	 are granuloma-specific parameters (see Table D.1 for details). 

Effector Memory T cells are recruited similarly to each granuloma, but recruitment is performed 

proportional to the level of TNF-α within the granuloma (see Effector Memory T cell granuloma 

equations in Appendix D). We assume different mechanisms of recruitment between these T cell 

phenotypes arises due to known differences in migration of effector memory and effector T cells 

to non-lymphoid sites, such as the lung (reviewed in (58)).  Altogether, numbers of macrophage 

and inflammatory cytokine levels act as a proxy within our model for chemotactic and adhesion 

molecules acting within a granuloma that attract T cells to the site. We perform this recruitment 

for each granuloma at every timestep within the model – once per 24 hours. At each timestep we 

update the blood cell levels by subtracting the summed granuloma recruitment for each cell type, 

according to the following general form: 

 

D.##EF1.. = D.##EF#,21,&"+&3#, ∗ A2+.1;#F#-,& 
 

D.##EF1.. = 	D.##EF1.. − I *"+,-.#/+/012"-3&

.9.:;4<=	"?	@=$.:%";$A

/90

 

 

D.##EF#,21,&"+&3#, = D.##EF1.. ∗ A2+.1;#F#,21,&"+&3#,	 
 

where blood cell concentrations (cells/μL) are converted to blood cell numbers prior to entering 

the granulomas. The parameter  A2+.1;#F#-,& = 3.6x105, is a well-established value in the 

literature that represents the volume of blood in μL (26,36,37,59). This parameter is used to scale 

cells when they traffic between the blood and the lung or LN compartments. The value of 
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A2+.1;#F#-,& is the inverse of A2+.1;#F#,21,&"+&3#,.  This type of volumetric scaling is 

standard in compartmental modeling (60). 

 

During very early timesteps following inoculation, granulomas may occasionally attempt to 

recruit more Mtb-specific T cells than are physically available within the blood compartment.  

Should this happen, recruitment cell counts are obtained by normalizing the corresponding blood 

concentrations, such that the magnitude of cell recruitment is proportional to the blood 

concentration.  In general, our assumption that more inflammatory granulomas are able to recruit 

larger quantities of T cells is consistent with previously presented models and experimental data 

(25,26,33,41,53).   
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Figure 5.1 HostSim multiscale modeling framework  
(A) Multiple lung granuloma (MultiGran) model conceptual framework. Adapted from Figure 2 in (35), and Chapter 
3.  B) The blood and lymph node (LN) model that tracks multiple T cell phenotypes across LN and blood 
compartments. Adapted from Figure 2 in (37) and Chapter 4. C) i) HostSim model schematic showing lungs (gray), 
separate granulomas (various colored circles), lung draining lymph nodes (green near trachea), and conceptual lung 
vasculature (red curves).  (ii) APCs travel from lung granulomas to lymph nodes to initiate T cell priming, 
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proliferation and differentiation. T cells travel from lymph nodes into (iii) blood and re-enter lung granuloma 
environments (iv) continuously over time to participate in bacterial killing and containment within the granuloma. 

5.2.6 Calibrating HostSim to multiple datasets 

After construction of HostSim, we calibrated the model to estimate model parameter values.  An 

effective strategy to calibrate a complex, multi-scale and multi-compartment system is to 

calibrate to multiple datasets, thereby reducing the likelihood of parameter overfitting (61). We 

utilized our previously published protocol for calibrating complex systems to biological data, 

CaliPro (62), to generate a range of calibrated parameter values.  

 

Using CaliPro, we simultaneously calibrated to biological datasets across multiple biological 

scales.  We calibrated the single granuloma ODE model to previously published T cell and 

macrophage datasets from 28 NHP granulomas across 70 days and a bacterial CFU dataset for 

623 granulomas from 38 NHPs across 120 days (25,26,63,64).  At the whole-host scale, we 

calibrated the lymph node and blood compartment to a previously published T cell dataset from 

26 NHPs across 200 days (26). Each time point within these data sets includes multiple data 

points, such that the experimental data illustrates a heterogenous range of potential outcomes 

(Figure 5.2 B, C & D).  

 

We determined initial parameter ranges for each model parameter based on experimental values 

from literature, as well as previous single granuloma ODE models, previous lymph node and 

blood ODE models, and our previous work in modeling multiple granulomas (33,37,57,65).  In 

this modeling framework, some of the parameter values are constrained (such as rates of 

bacterial killing or cellular death rates) and were not as widely varied as others.  We utilized a 

Latin hypercube sampling (LHS) scheme to sample 500 times within the initial parameter space, 

thereby creating 500 unique simulations of HostSim (i.e. generating 500 unique virtual hosts). 

We then use CaliPro to refine and resample this wide initial parameter space in an iterative 

manner.  

 

CaliPro requires users to explicitly define a pass set – this is an automated criterion for which 

the model simulations can be considered calibrated. We specify a pass set as the simulations that 

fall within the range bounded by an order of magnitude on either side of the minimum and 

maximum experimental data point for every time point across each of the experimental 
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outcomes. The experimental data range includes over four orders of magnitude (Figure 5.2 B), 

therefore our pass set definition was selected since it encapsulates the general behavior of the 

experimental datasets we are using for calibration and will not remove simulations that are 

within the same order of magnitude as experimental data points. Additionally, we know that the 

long-term behavior of bacterial numbers in granulomas are fairly stable without intervention (9), 

and thus we set an upper bound at 36000 bacteria for days 90-200 as a specific criterion for 

calibration of this outcome. If the simulation value for bacterial numbers eclipses this bound 

within those days, the simulation does not belong to the pass set, even if the granuloma T cells 

and macrophages all lie within the bounds of the experimental data.  In an iterative manner, 

CaliPro redefines the parameter ranges for each parameter according to the pass set simulations 

and reruns the model, comparing against the experimental data until calibration is considered 

complete (a pre-defined user input).  For HostSim, calibration was considered complete when 

90% of simulations belonged to the pass set. Table D.1 lists the calibrated parameter ranges for 

each varied parameter. 

5.2.7 Establishing criteria for clinical classifications in HostSim 

To explore the range of possible host-scale outcomes in HostSim, we sample from our calibrated 

parameter space and generate a virtual population of 500 unique hosts.  Each individual 

simulation begins with an inoculation dose of 10 CFU, stochastically placed within the lower left 

lung lobe to seed the formation of 10 unique granulomas. We start each simulation with 10 CFU 

to be consistent with the inoculation of NHPs, which inoculate ~10 CFU to begin experiments 

(71).   

 

Each virtual host in the population is simulated for 200 days. At 200 days, we delineate clinical 

classifications across the population of 500 virtual hosts according to the total lung CFU per 

host. We calculate the total lung CFU by summing the individual granuloma CFU for all 

granulomas within a host at each time point. We use the following cutoffs for clinical 

classification: TB eliminators: total lung CFU<1; Active TB cases: total lung CFU > 105; LTBI: 

all other virtual hosts. We establish the threshold between active TB cases and LTBI cases in 

HostSim to be consistent with NHP studies that show that total bacterial burden in active TB 

cases is significantly higher than that of LTBI monkeys, although the same study did show a 

small number of active cases with a bacterial burden similar to that of latent NHPs (see 
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Discussion and (21) for more detail).  Finally, we select 200 days (~7 months) post-infection for 

clinical classification in order to be consistent with NHP studies that classify animals 6-8 months 

following infection (67).   

 

In the dose inoculation studies, we use the same virtual population of 500 hosts, but run 25 

separate virtual experiments and vary the inoculation dose from 1-25 CFU. Thus, depending on 

the study, hosts begin the simulation with 1 to 25 unique granulomas.  At the conclusion of the 

simulation – day 200 – we use the same thresholds of total lung CFU for determining clinical 

classifications across all hosts.  

5.2.8 Uncertainty and sensitivity analysis 

We quantify the importance of host-scale and granuloma-scale mechanisms involved in infection 

outcomes using statistical techniques known as uncertainty and sensitivity analysis. As 

mentioned above, we efficiently sample our multi-dimensional calibrated parameter space using 

LHS algorithms to generate 500 individual virtual hosts. We then determine correlations between 

model outputs and parameter values by using Partial Rank Correlation Coefficient (PRCC), a 

common method for determining correlation-based sensitivity (68).   

 

Sensitivity analyses of multiscale models can be difficult (69).  ‘All-in-one’ sensitivity analyses 

are one method for exploring relationships between model parameters and outcomes by treating 

the full model as a black box and varying all parameters.  In particular, ‘all-in-one’ sensitivity 

analyses are not always sufficient for understanding relationships between model parameters and 

outcomes, especially when a model is sufficiently complex and composed of multiple 

compartments or sub-models, as is the case with HostSim. As reviewed in (70), an ‘all-in-one’ 

sensitivity analysis can be paired with an intra-compartmental model approach to provide 

comprehensive understanding of the model behavior across scales.   

 

We present results from two separate sensitivity analyses in the Results Section.  First, we vary 

parameters across the whole-host scale and granuloma-scale physiological compartments to 

create 500 unique virtual hosts. Each virtual host in this population includes multiple granulomas 

with separate parameter values. We perform an ‘all-in-one’ sensitivity analysis across these 500 
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virtual hosts to identify significant associations between parameters and whole-host clinical 

outcomes in TB (i.e., LTBI or active TB cases).   

 

Next, to perform an intra-compartmental analysis, we select two representative hosts – one host 

that was classified as an active TB host and one that was classified as a TB eliminator according 

to their total lung CFU at day 200. For each representative host, we rerun the simulation 500 

times, varying only granuloma-scale parameters while fixing the blood and LN parameters 

(Figure D.1 displays granuloma CFU trajectories of each set of 500 simulations). From each set 

of simulations, we calculate PRCC values to identify associations between granuloma-scale 

parameters and granuloma CFU at day 200. We performed False Discovery Rate test corrections 

(71) on all reported significant parameters. 

5.2.9 Pro- and anti- inflammatory profiles of HostSim granulomas 

We present a unitless measure that represents the ratio of pro- and anti- inflammatory cytokines 

for granulomas within HostSim. Cytokine units in HostSim granulomas are picograms per 

microliter, a measure that is consistent with previously published models of cytokine levels in 

granulomas (33,57,72). However, to investigate relative ratios of pro- and anti- inflammatory 

cytokines within each HostSim granuloma, we calculated the common logarithm (logarithm with 

base 10) of the IL-10, TNF-α and IFN-γ cytokines and plotted these values in a 3-dimensional 

scatterplot. This allows for a comparison of granuloma inflammatory profiles, across orders of 

magnitudes of cytokine concentrations within the granuloma environment. 

5.2.10 Model analysis tools and simulation environment 

Model code and preliminary data analyses are written in MATLAB (R2020a).  We solve the 

systems of ODEs using MATLAB’s ode15s stiff solver, using a timestep of one day. At the end 

of each timestep, we perform cell recruitment and update granuloma cell, cytokine, and bacterial 

states as well as lymph node and blood cell concentrations. A single in silico individual 

simulation across 200 days of infection time can be performed on a 2-core laptop in 

approximately 5 minutes.  We wrote bash scripts to submit multiple runs of HostSim on compute 

clusters. We perform post-processing statistical analysis, graphing and movie rendering within 

MATLAB (R2020a). 
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5.3 Results 

5.3.1 HostSim recapitulates in vivo granuloma-scale and host-scale dynamics 

We calibrate HostSim to published datasets from NHPs across multiple scales following a single 

primary infection event. We utilized CaliPro, our protocol to define and perform calibration for 

computational models (62). CaliPro identifies a parameter space where each varied parameter 

has a range of values that correspond to a range of outcomes that match experimental datasets. 

For this work, the experimental data come from published NHP studies (10,25,35,64).  Our 

HostSim website shows calibration datasets and references for each dataset 

(http://malthus.micro.med.umich.edu/lab/movies/HostSim/).   

 

When sampling parameter sets within our calibrated parameter ranges, HostSim matches both the 

range of experimental outcomes and the dynamics outlined by datasets of primary Mtb infection 

derived from published NHP studies (Figure 5.2). At the granuloma scale, in silico granulomas 

from HostSim simulations are able to replicate NHP granuloma CFU, T cell and macrophage 

dynamics across time (Figure 5.2B, experimental data from previously published NHP studies 

(10,25,35,64)). Granuloma CFU peaks at approximately 35 days as macrophage and T cell 

counts increase.  Following the peak, CFU, macrophage and T-cell counts correspondingly 

stabilize across time.  At the host scale, in silico blood cell counts replicate NHP blood CD4+ 

and CD8+ T cell data across time (26).  Following infection, there is a slight peak in overall 

effector and effector memory T-cell types that precedes a growing number of central memory 

CD4+ and CD8+ T cells. (Figure 5.2 C&D). Across multiple scales, HostSim presents a ‘virtual 

host’ model of the immune response to Mtb infection. 
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Figure 5.2 Calibrated HostSim recapitulates dynamics of Mtb infection at both granuloma-
scale and host-scale.  
(A) Snapshot of HostSim time-lapse video showing virtual lungs, granulomas, lung draining lymph nodes, and blood 
cell concentrations for three cell types. Mtb-specific effector, effector memory and central memory T cells numbers 
within blood are qualitatively captured by a color change across time, from black (very few cells in the blood) to 
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bright red (representing the maximum number of cells of that blood type across the simulation).  At day 70, Mtb-
specific effector T cells numbers peak, Mtb-specific effector memory T cells are continuing to grow in magnitude, 
and Mtb-specific central memory T cells have not yet started to differentiate in large numbers.  Full time courses can 
be found at http://malthus.micro.med.umich.edu/lab/movies/HostSim/.  HostSim was calibrated to published datasets 
from NHPs on (B) lung granuloma CFU, macrophage and T cell granuloma numbers from previous studies (26); (C) 
blood CD4+ T cell data and (D) blood CD8+ T cell data from both simulation and NHP following a single infection 
event in NHP studies (25,26,63,64). Published NHP study data is shown as black dots across the graphs. For direct 
comparison, we display simulation data as a gray (granuloma outcomes) or red (blood outcomes) cloud that outlines 
the 1st and 99th percentile across 500 host simulations. Gray and red lines represent the medians of those 
simulations. Simulations shown until day 200 post-infection. In A) granulomas are scaled by a factor of 10 for ease 
of visibility in lung environment.  

5.3.2 Emergent HostSim behavior across a virtual population matches spectrum of 

tuberculosis  

Humans present a spectrum of clinical outcomes in TB, including (but not limited to) complete 

elimination of infection, latent infection, and active TB disease (3). Work in NHPs have shown 

that total bacterial burden is associated with clinical outcomes. Specifically, total bacterial 

burden in active TB cases is significantly higher than that of LTBI monkeys (21). HostSim 

exhibits similarly heterogenous host-scale outcomes.  

 

To explore the range of host-scale outcomes virtual hosts, we sample from our calibrated 

parameter space to generate a virtual population of 500 unique hosts.  Each simulation begins 

with an inoculation dose of 10 CFU (selected to be consistent with inoculation of NHPs (71)), 

thereby starting the formation of 10 individual granulomas within the lung environment. 

Simulations run for 200 days. We calculate the total lung CFU by summing the individual 

granuloma CFU for all granulomas within a host.   

 

Across our virtual population of 500 virtual hosts, the total lung CFU per host spans several 

orders of magnitude, from 0 CFU (infection elimination) to 106 CFU (Figure 5.3A). We 

delineate our virtual population into 3 groups according to their total lung CFU at day 200, 

analogous to the clinical classifications of NHPs 6-8 months following primary infection (67). 

We use the following cutoffs for classification: TB eliminators: total lung CFU<1; Active TB 

cases: total lung CFU > 105; LTBI: all other virtual hosts. Across our 500 virtual hosts, there are 

24 TB eliminators, 110 active TB cases, and 366 LTBI individuals. Snapshots from 

representative simulations of these diverse outcomes are displayed in Figure 5.3D, E & F.   
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After classifying the virtual hosts by total lung CFU, we looked at two additional statistics. First, 

the number of sterilized granulomas across the three different clinical classifications (Figure 

5.3B). Our model predicts that ~75% of active TB cases include at least one sterile granuloma. 

This finding is validated by a previously published NHP dataset, which showed 11 out of 13 

active monkeys had at least a single sterilized granuloma (9).  

 

Second, we looked at the number hosts which have individual granulomas with a high bacterial 

burden (defined as granulomas with 5x104 CFU or higher; Figure 5.3C). As expected, all TB 

eliminators and the majority of LTBI virtual hosts do not contain a granuloma with a high 

bacterial burden. However, we see approximately 8% of our LTBI classified hosts include one 

high CFU granuloma. These cases indicate that our model may have the potential to capture 

incident or subclinical TB and may explain the spectrum nature of TB disease these individuals 

could be more likely to reactivate or progress to active disease (5). 

 

Figure 5.3 HostSim exhibits a spectrum of whole-host outcomes across a population of 500 
virtual hosts.  
(A) Histogram displaying the total lung CFU per host at day 200 across our virtual population of 500 hosts. We 
delineate the virtual population into three groups: TB eliminator (yellow), LTBI (green), or active TB cases (dark 
blue) according to the total Lung CFU. (B) Stacked bar chart displaying the number of sterile granulomas per host 
across TB eliminator, LTBI, or active TB cases. (C) Stacked bar chart displaying the number of high CFU 
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granulomas per host across TB eliminator, LTBI, or active TB cases. (D, E, F) HostSim time-lapse video snapshots 
display virtual lung architecture and granuloma locations for representative TB eliminator, LTBI and active TB 
cases at day 200 post-infection. 
 

5.3.3 Infection outcomes of virtual hosts are dose dependent  

In humans, a relationship between inoculation dose and severity of clinical disease has been 

hypothesized (73–75).  To explore this in our virtual hosts, we performed a set of inoculation 

dose experiments using HostSim. We reran our virtual population of 500 hosts through 25 

simulated experiments.  For each experiment we re-simulated the 500 virtual hosts with identical 

random seeds and parameter sets, and only varied dose inoculum.  We varied dose inoculum 

from 1 to 25 CFU.  Figure 5.4 displays the total lung CFU and clinical classification of those 500 

hosts at day 200 following each of the 25 experiments.  

 

As dose inoculum increases, the median lung CFU for the population of 500 hosts (at day 200 

post-infection) increases; however, the model predicts a range of outcomes across the population 

for each inoculation dose (Figure 5.4A). For example, among the 500 hosts inoculated with 25 

CFU, a few hosts had low levels of CFU within the lung (CFU <100). Conversely, after a dose 

inoculum of 1 CFU, some hosts still exhibited considerable infection, with total lung CFU > 105. 

 

For each of the 25 dose experiments, clinical classifications of the virtual hosts based on the total 

lung CFU at 200 days post-infection are shown in Figure 5.4B. We delineated the virtual 

population into three groups, as above, where TB eliminators have a total lung CFU<1, active 

TB cases have a total lung CFU > 105 and all other hosts are classified as LTBI. After an 

inoculum of 25 CFU, ~55% of the simulations are classified as LTBI and ~45% are classified 

active TB cases at day 200 (Figure 5.4B). Thus, HostSim predictions agree with human 

association studies (73–75) suggesting TB disease severity is dose dependent.  
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Figure 5.4 Infection outcomes at day 200 post-infection across a population of 500 virtual 
hosts are dose dependent.  
(A) Distribution of total lung CFU per host among the virtual population for the 25 inoculation dose experiments. 
Total lung CFU is calculated by summing CFU across all granulomas in a single host. (B) Stacked bar charts display 
the classification of virtual hosts based on total lung CFU per host for the 25 inoculation dose experiments. Bar chart 
colors are the same as Figure 3 - TB eliminators (yellow), active TB cases (dark blue) or LTBI (green). 
 

5.3.4 The fate of individual granulomas is heterogeneous within hosts 

In both human and NHP studies, individual granulomas within a single host can present a 

heterogeneous array of morphological, pathological, and immunological outcomes (40,76–78). 

In NHP studies, even granulomas within active TB monkeys can exhibit sterilization (9,21,79). 

Similarly, within individual hosts across our virtual population of 500 hosts, we identify a range 

of granuloma-scale outcomes, from total sterilization to uncontrolled growth. Figure 5.5 displays 

the individual granuloma CFU trajectories from five representative hosts ranging across different 

clinical cohort classifications: TB eliminator, LTBI and active TB cases, respectively. Within-

host variation is apparent in all hosts, but we highlight that host #5 has both sterilized and 

disseminating granulomas present. Dissemination occurs when bacteria escape one granuloma 

and seed the formation of another granuloma elsewhere in the lung environment. Dissemination 

granulomas can be identified when a new CFU trajectory begins at any timepoint after the initial 

infection (c.f. Figure 5.5B host #5). However, dissemination does not only occur in active TB 

hosts; we also note a dissemination event occurred in host #3 (Figure 5.5B), a virtual host that is 

still classified as LTBI according to our established criteria outlined in Figure 3A and Methods. 
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Figure 5.5 HostSim exhibits spectrum of granuloma-scale outcomes within hosts.  
500 virtual hosts were simulated to create our population, as shown in Figure 3.  We identified 5 representative hosts 
that exhibited a spectrum of whole-host outcomes (elimination, control and uncontrolled infection outcomes).  Each 
graph is an individual host – the same five hosts are shown in (A) and (B). Each line represents the CFU in a single 
granuloma within the host over time. Sterilization of an individual granuloma can be seen when CFU reaches 0 at 
any timepoint post-infection. Dissemination occurs when a new line begins at any timepoint after the initial 
infection. Dissemination granuloma CFU trajectories are colored to match the granuloma from which they 
disseminated. (A) Individual granuloma CFU trajectories for primary infection granulomas within the 5 
representative virtual hosts. B) Primary infection and dissemination granuloma CFU trajectories across the same 5 
virtual hosts.  Note that in the far-right of panel B), one granuloma (blue CFU trajectory) incurred multiple 
dissemination events, spurring the formation of multiple new granulomas across time.  Each color is a separate 
granuloma within each host, except dissemination granulomas which are colored to match the granuloma from 
which they disseminated. 
 
For the majority of hosts across our virtual population, the fate of the primary infection 

granulomas is sufficient to delineate the clinical cohort classification at day 200. Out of the 500 

in silico hosts, only 8 hosts (~2%) are reclassified as active TB cases when considering both 

primary infection granuloma and disseminating granuloma bacterial burdens. That is, the 

outcomes of dissemination granulomas are not necessary to classify clinical cohorts within 

HostSim. This prediction suggests that the fate of clinical outcomes is determined at early stages 

of infection, even prior to dissemination events that occur after inoculation. 
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5.3.5 Early events across multiple scales during infection are predictive of TB clinical 

classification 

Early events in Mtb infection are thought to impact late-stage clinical outcomes (13,15,67,80) 

however, this is a difficult relationship to investigate clinically or experimentally. Once an 

animal is necropsied there is no way to know a priori if that animal would have progressed to 

active or latent infection. HostSim provides a tool through which we can relate early events 

within the lungs and LNs to clinical classifications (TB eliminators, LTBI, or active TB) 

determined months later across our virtual population of hosts.  In HostSim, we predict that 

mechanisms operating at early stages across multiple scales impact clinical classifications. At the 

host scale, we investigate relationships between blood and lung immune cell counts. 

Additionally, we stratify lung T-cell counts by clinical classifications. At the granuloma scale, 

we examine the ratio of pro- and anti- inflammatory cytokines within the granuloma.  

 

First, we asked whether there is a relationship between levels of immune cells in the blood and 

within the lung. Figure 5.6A shows an association between lung levels and blood levels of T 

cells at day 50 for four separate T cell phenotypes (Mtb-specific CD4+ effector, effector memory 

and Mtb-specific CD8+ effector, effector memory) across the 500 virtual hosts.  Day 50 was 

selected as it is typically the height of effector-expansion within in the model, timing that is 

supported by the NHP granuloma and blood T cell datasets (c.f. Figure 5.2).  Each datapoint is 

colored according to the simulations’ clinical outcomes at day 200.  Note that there is a 

relationship between numbers of lung and blood CD4+ effector T cells and CD8+ effector T 

cells (r = 0.5, p < 0.01 and r = 0.61, p < 0.01, respectively).  However, by day 200 (Figure 5.6B), 

the time point we use for clinical classification, this relationship between blood and lung is less 

clear (r = 0.3, p < 0.01 and r = 0.14, p < 0.01; for CD4+ and CD8+ effector T cells, respectively).   

 

Second, we identify the fold-change difference of numbers of lung T cells between days 30 and 

40 post-infection as indicative of clinical classification 160 simulation days later (Figure 5.6C).  

Across the four Mtb-specific T cell phenotypes that are recruited into the lung (Mtb-specific 

CD4+ effector, effector memory and Mtb-specific CD8+ effector, effector memory), virtual 

hosts that are classified as TB eliminators typically had a larger fold-change difference between 

days 30 and 40 than did virtual hosts that are classified as active TB or LTBI cases at day 200 
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(Table D.2 shows Vargha and Delaney’s A measure for effect size comparisons across all 

clinical outcomes).  Specifically, the median fold change between days 30 and 40 of numbers of 

Mtb-specific CD8+ effector memory T cells in TB eliminator virtual hosts is approximately 10x 

larger than that of active TB virtual hosts. We observe a similar difference between LTBI and 

active TB virtual hosts for numbers of Mtb-specific CD4+ effector T cells. These results suggest 

that numbers of these cell types have a crucial and early role that impacts clinical classifications 

made over 150 days later. 

 

Finally, the cytokine profile of granulomas at early time points is indicative of downstream 

clinical classifications.  Figure 5.6D shows a three-dimensional scatterplot of pro- and anti-

inflammatory cytokine concentrations (pg/mL of IFN-γ, TNF-a, and IL-10) of every granuloma 

at day 60 across the 500 virtual hosts.  Each granuloma data point is colored according to the 

classification of the host within which the granuloma resides.  Note that a cluster emerges 

wherein granulomas with high levels of IFN-γ, low levels of TNF-α, and low levels of IL-10 are 

indicative of granulomas that are destined to be within active hosts. By day 200 (Figure 5.6E), 

this cluster cannot be as easily separated from the other simulations, suggesting that the dynamic 

balance of pro- and anti-inflammatory cytokines across time (81) could obscure this finding for 

granulomas sampled at later timepoints.   
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Figure 5.6 Early events at granuloma-scale and host-scale can predict clinical 
classifications across a population of 500 virtual hosts.  
Scatterplots display blood (x-axis) and lung (y-axis) cell counts for Mtb-specific effector and effector memory 
CD4+ and CD8+ T cells at day 50 (A) and day 200 (B). C) The fold change in numbers of lung T-cells between day 
30 and day 40, grouped by clinical classifications at day 200. Each graph displays the fold change for a separate T 
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cell phenotype in the lung.  All granulomas from 500 virtual hosts plotted according to relative concentration TNF, 
IFN-γ and IL-10 cytokine concentrations (pg/mL) on a log scale (see Methods) at day 60 (D) and day 200 (E) 
colored according to the classification of the host within which the granuloma resides.  Across all plots, dark blue = 
active TB cases, green = LTBI, yellow = TB eliminators. 
 

5.3.6 A multiscale sensitivity analysis reveals adaptive immunity drives clinical 

classification, but innate immunity impacts granuloma-scale outcomes 

To investigate the mechanisms that drive host-scale clinical outcomes in HostSim, we perform an 

‘all-in-one’ sensitivity analysis (described in Methods) on the clinical classifications across the 

500 virtual hosts from our calibrated parameter space.  Table 5.1 highlights parameters found to 

be significantly correlated (p<0.05) with each clinical classification from our PRCC analysis.  

We find that adaptive immune responses within the LN are the main drivers of whole-host 

clinical outcomes within our calibrated parameter space. Specifically, the differentiation and 

proliferation of T cells within LNs are significantly associated with clinical classification (i.e. 

active TB, LTBI or TB eliminator). The significant, positive association between T-cell 

proliferation in LN and clinical classification at the whole-host scale represents an inter-

physiologic compartmental effect – not only does lymph node parameter influence T-cell counts 

within the lymph node, but it influences whole-host scale clinical outcomes as well. Further, both 

Mtb-specific CD4+ and Mtb-specific CD8+ T cell parameters in the lymph node impact whole-

host outcomes, lending further support to emerging studies showing the importance of CD8+ T 

cells in TB (44,71,82).  

 

To explore the drivers of granuloma-scale variation within a host, we perform an intra-

compartmental sensitivity analyses (see Methods) focusing solely on which granuloma-scale 

parameters are associated with granuloma CFU at day 200.  This allows us to identify how 

granuloma scale parameters may contribute to heterogenous granuloma CFU outcomes within a 

host when blood and LN parameters are held fixed (exact PRCC values are given in Appendix 

D).  Table 5.1 lists mechanisms that we identified from both the adaptive and innate immune 

responses. Multiple parameters that dictate macrophage behavior were identified as key drivers 

of granuloma CFU.  Additionally, adaptive immune response parameters were also associated 

with reduced granuloma CFU (i.e., Fas:FasL cell death in Table 1). 
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Altogether, the results from our ‘all-in-one’ sensitivity analysis as well as our intra-

compartmental analyses show important roles for both adaptive and innate immune systems. 

Specifically, we predict that while the adaptive immune response in LNs drives host-scale 

clinical outcomes, the innate immune system plays an important role within a host by 

contributing to the heterogeneity of granuloma CFU outcomes seen within humans and NHPs. 

 

Table 5.1 Parameters identified as significant from sensitivity analysis.  
For each analysis, parameters shown here have a PRCC absolute value of ρ > 0.1 and p-value<0.05. Parameters 
listed as associated with clinical outcomes are the result of our ‘all-in-one’ sensitivity analysis.  Clinical 
classifications were assigned a value of 0 (active TB case), 1 (LTBI) or 2 (TB eliminator) to calculate the PRCC 
value for each parameter.  Parameters listed as associated with granuloma CFU were the result of our intra-
compartment analysis.  These parameters were significantly correlated with granuloma CFU at day 200. PRCC 
values are listed in Appendix D. 

Parameters associated 

with clinical outcomes 

Description for parameters from  

‘all-in-one’ sensitivity analysis 

LN_k13 Precursor CD8+ T cell proliferation within the lymph node 

LN_k14 CD8+ T cell differentiation to CD8+ effector T cell in lymph node 

LN_k4 Precursor CD4+ T cell proliferation within the lymph node 

LN_k5 CD4+ T cell differentiation to CD4+ effector T cell in lymph node 

Parameters associated 

with granuloma CFU 

Description for parameters from  

intra-compartment sensitivity analysis 

k2 Resting macrophage infection rate 

c9 Likelihood of resting macrophages to phagocytize bacteria 

N Carrying capacity of intracellular bacteria within macrophages 

k17 Max rate of infected macrophage death from intracellular bacteria 

k18 Extracellular bacterial killing by resting macrophages 

k14a Fas:FasL induced apoptosis of MI 

alpha11 IL-4 production from primed T cells 

 

5.4 Discussion 

Tuberculosis is a complex and heterogenous disease.  At the host-scale, the disease can manifest 

clinically across a spectrum of classifications, including but not limited to TB eliminators, LTBI 

or active TB (3). Within a single host, individual granulomas are diverse in terms of morphology, 

immunology and bacterial burden. One of the most highly studied aspects of TB pathology is the 

granuloma, but the link between granuloma-scale outcomes and whole-host outcomes is still not 

clear.  Even active TB cases can contain a non-uniform collection of granulomas, wherein a 

subset of granulomas can still sterilize bacteria despite a collective failure by the host to rid the 

body of disease (9).  Using experimental studies alone, it can be challenging to identify the full 
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set of mechanisms responsible for such heterogeneous outcomes within and across hosts in TB. 

Mathematical and computational modeling approaches provide a unique tool that can address 

these mechanisms by linking events within a host to outcomes operating at the host-scale.  In 

pursuit of a better understanding of the events that occur across multiple-scales and lead to 

clinical classifications in TB, we develop a novel multi-scale and multi-compartment model of 

whole-host Mtb infection called HostSim. We calibrate and validate HostSim against previously 

published, distinct NHP datasets that span cellular, bacterial, granuloma and whole-host scales 

and make predictions about events that may cause heterogeneous outcomes across multiple 

scales.   

 

An effective weapon in the global public health battle against TB is identification of robust 

biomarkers for disease diagnosis and treatment.  In TB, there have been many studies and 

debates regarding both the identification and usefulness of biomarkers (83–90).  One barrier to 

identifying robust biomarkers is the variability in disease outcomes between, and within, hosts at 

a population scale.  In this work, we have presented evidence for another relatively unconsidered 

barrier: biomarkers are transient in time by their very nature.  In this work, we have predicted 

that the relationship between numbers of blood immune cells and numbers of cells within the 

lung may only be well-defined at early time points following infection.  Months, or years later, 

when an individual might present to a clinic (91), blood immune cell levels may not accurately 

reflect events within the lung and therefore may not be a useful compartment to sample when 

delineating disease status or progression.  This reflects a key HostSim prediction: recent efforts 

to identify events in the blood that may correlate with events in the lung (23,24) may not be 

generalizable to every time point for every patient.  This prediction is consistent with a recent 

NHP study that shows blood T-cell responses do not consistently reflect T-cell responses within 

granulomas (25). These findings are more broadly supported by the idea of a dynamically 

balanced immune response that occurs across time during chronic infections (81).  

 

In TB animal studies, experimentalists are often unable to know a priori if animals necropsied at 

early time points were destined to be classified as active or latent (67).  Using our virtual 

population of 500 hosts, we were able to show that early events at both the granuloma-scale and 

host-scale can be predictive of clinical classifications ~150 days later.  These predictions are 



 134 

potentially useful for experimentalists, who can use analogous experimental techniques (such as 

serial intravascular staining (92), or IHC cytokine staining of granulomas (93)) to make educated 

predictions about downstream clinical classifications.  Further, these HostSim predictions 

contribute to a growing body of evidence that suggests early immune events matter in TB 

(15,80,94).  

 

As the primary intracellular niche for Mtb during both early and chronic stages of infection, 

macrophages play a central role in TB pathology (95). Recent experimental work has identified 

Bacille Calmette Guérin (BCG), the only licensed TB vaccine, as a potentially potent innate 

immune response stimulator by educating macrophage progenitors (96,97).  In this work, we 

used sensitivity analysis techniques to show that parameters governing interactions between Mtb 

and macrophages at the granuloma-scale are important contributors to the heterogenous 

granuloma outcomes within a host. Together, these studies and our predictions suggest that 

macrophages could be viable targets for future therapeutic interventions in TB. This follows as 

macrophages are crucial cells that sit at the intersection of adaptive and innate immune responses 

against Mtb. 

 

There are a few limitations to our study and model.  First, while we call HostSim a whole-host 

model of Mtb infection, we only represent three physiologically unique compartments (lung, 

lung-draining lymph nodes and blood).  Some of the most progressive forms of TB include 

extrapulmonary disease (98). As it is beyond the scope of this work, we do not capture the 

dynamics of extrapulmonary disease with this model, though future work could focus on the 

dissemination of bacteria into the lymph node as an initial step to model extrapulmonary disease. 

Second, while HostSim has been developed based on previous modeling efforts and extensive 

NHP datasets, it does not include all the various cell types present within the granuloma 

environment (i.e. neutrophils (99) or fibroblasts (100)). These cells were not included here 

primarily because datasets were not as readily available or mechanistic functions of these cells 

within granulomas are not as well characterized.  The HostSim modeling framework is flexible 

and can include these cell types in the future as more becomes known about their role in 

granulomas. This limitation extends to the lymph node and blood models as well, where we do 

not capture the events of every cell type involved in Mtb infection (i.e., B cells in the lymph 
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node).  Finally, HostSim does not capture symptoms of TB disease such as coughing or weight 

loss.  Accordingly, we assumed total lung bacterial burden can be used as a proxy for clinical 

classifications of TB. This assumption is not without precedent.  Antibiotic studies in TB 

frequently use sputum-based assays as a proxy for drug efficacy and assessment of treatment 

progression in humans (101). Further, NHP studies have shown that total bacterial burden in 

active TB cases is significantly higher than that of LTBI monkeys, although the same study did 

show a small number of active cases with a bacterial burden similar to that of latent NHPs (21). 

Thus, our cut-off for active TB cases (total lung CFU>105) in HostSim virtual hosts is unable to 

capture individuals that may have symptomatic TB but relatively low bacterial burdens.  

However, as more data become available regarding the relationship between symptomatic TB 

and bacterial burden, future work can integrate those findings into our HostSim framework, 

perhaps by incorporating a bronchoalveolar lavage (BAL) compartment, for direct comparison to 

sputum samples.      

 

In conclusion, we utilized a computational modeling framework to better understand the 

relationship between within-host dynamics and clinical outcomes in TB.  We present HostSim: 

the first whole-host model to track events across granuloma- and host- scales.  Using HostSim, 

we make predictions about relationships between immune cell counts in the blood and lungs and 

the role of adaptive and innate immune cells in granuloma-scale and host-scale outcomes. In 

particular, we predict that adaptive immunity generated in lymph nodes drives clinical 

classifications across hosts in TB, but that innate immunity can drive heterogeneous granuloma 

outcomes within a single host. We posit that HostSim offers potential as a computational tool that 

can be used in concert with experimental approaches to understand and predict events about 

various aspects of TB disease and therapeutics. 
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6 Mediators of Concomitant Immunity in Mycobacterium tuberculosis Infection 

6.1 Introduction 

The human immune system responds extremely well to invasion and infection by most 

pathogens.  After a first encounter (primary infection), the immune response leaves behind a 

memory immune response that is typically protective against a second infection event 

(reinfection) at a later date.  It is well-documented that primary infection with some pathogens 

confers protection against secondary infection, even with a primary infection that is persistent 

(1–5). This later phenomenon, known as concomitant immunity, was first described in 

Stedman’s medical dictionary as “infection-immunity” (6). Formally, concomitant immunity is 

“the paradoxical immune status in which resistance to reinfection coincides with the persistence 

of the original infection” (7,8).   

 

Concomitant immunity is thought to be pathogen-dependent and thereby mediated by different 

immune modalities depending on infection type. For example, persistent infection with 

lymphocytic choriomeningitis virus (LCMV) promotes a greater accumulation of effector-like 

memory T cells at nonlymphoid sites (9). On the other hand, a study of infection with 

Leishmania major found that CD4+ regulatory T cells were key mediators of concomitant 

immunity during persistent infection (7) and it was recently found that if these CD4+ effector T 

cells are not sustained, concomitant immunity against reinfection is inadequate (10). Across 

multiple types of parasitic infection, separate and distinct cellular and antibody immune 

responses develop that are consistent with acquisition of concomitant immunity (1–5). Thus, 

both cellular mediators and longevity of concomitant immunity are both likely pathogen-

dependent.  

 

In tuberculosis (TB), which remains the worldwide leading cause of death by infectious agent 

even during the COVID-19 pandemic, it is unclear if primary infection confers enduring 

protection against reinfection during a persistent infection with M. tuberculosis (Mtb). The 

hallmark of TB, a primarily pulmonary disease, is the formation of lung granulomas: organized 
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immune cellular structures that surround Mtb (11).  Granulomas are composed of various 

immune cells, including macrophages and T cells (primarily CD4+ and CD8+ T cells, although 

other unconventional T cell phenotypes are also present, reviewed in (12)). T cells have well-

known critical functions against Mtb (13–17), but unlike other infections, T cells arrive 

approximately one month after primary infection (18). The delays in lymph node T-cell priming, 

activation, and trafficking through blood to lungs is characteristic of Mtb infection (19,20) and is 

thought to arise due to a lack of ‘danger’ signals (21) at early stages of infection during Mtb 

growth in the lungs (18). 

 

Concomitant immunity against Mtb appears to provide at least limited protection against 

reinfection.  Observational cohort studies from natural infection case studies suggest that 

individuals with latent TB had a 35 - 80% lower risk of progression to active TB after reinfection 

compared to uninfected individuals (22–26). Further, other studies in mice suggest that 

concomitant immunity is not fully protective against secondary infection with Mtb, but that 

bacterial burden from a secondary infection is reduced when compared to primary infection 

(27,28). Recently, Cadena et al. showed that in non-human primates (NHP) concomitant 

immunity was robust against a secondary infection with Mtb (29). However, due to the inherent 

constraints of NHP studies, Cadena et al. were only able to show reduction of bacterial burden at 

a single time point, and therefore were unable to test mechanisms driving concomitant immunity 

or predict the potential longevity of a concomitant immune response in TB.  Based on the 

observation that Mtb-specific T cells resided in uninvolved lung tissue prior to reinfection, 

Cadena et al. did hypothesize that resident memory T cells prevent the establishment of 

reinfection.  

 

Resident memory T cells (TRM) are a relatively newfound cell that may drive concomitant 

immunity in TB.  The defining feature of TRMs is their permanent residence within 

nonlymphoid tissues and inability to circulate through the blood stream and lymphatics (30).  

These cells act as a sentinel against future infection and have been shown to be protective against 

various infectious diseases, including influenza, herpes simplex virus, and human 

immunodeficiency virus (reviewed in (30)).  Further, skin TRM cells have been shown to 

provide concomitant immunity in the case of cutaneous leishmaniasis (31). Relatively few 
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studies have examined TRMs in the context of TB (32). However, mucosal administration of the 

BCG vaccine in mice, as well as adoptive transfer of CD8+ TRMs in mice, have demonstrated 

enhanced protection against Mtb, presumably through the ability of CD8+ TRM to respond 

quickly following infection (33).  TRMs develop during the adaptive immune response to 

primary infection in TB and may play a role in concomitant immunity as they have been 

identified within uninvolved lung tissue of infected hosts (29).  However, experimental studies 

have so far been unable to identify their exact role in concomitant immunity against Mtb.  

Further, the longevity of this cell population in the lung has not been well-characterized in NHPs 

or humans.  

 

As a complementary approach, mathematical and computational modeling can predict the 

mechanism and timing of major immune events beyond the timeline of experimental studies.  In 

TB, modeling has been used to explore various aspects of granuloma formation (34,35), drug-

dynamics (36,37), and immune cell and cytokine dynamics within lung granulomas (34,38–40). 

The advantages of a modeling approach are well-suited to answer outstanding questions about 

reinfection and the potential longevity of TRM cell populations in the human lung.   

 

To investigate questions surrounding concomitant immunity during Mtb infection, we utilize 

HostSim, our whole-host modeling framework that captures key elements of TB pathology 

across lungs, lymph nodes and blood in infected individuals. We have previously calibrated and 

validated the model using multiple datasets derived from published NHP studies and have shown 

the ability of this model to capture heterogeneous host-scale clinical outcomes such as infection 

clearance, control (LTBI) or active disease (Chapter 5). We now use the HostSim framework to 

address three outstanding questions about concomitant immunity in TB: Do TRMs mediate 

concomitant immunity in Mtb?  Can we predict if and when concomitant immunity will wane in 

Mtb infection? Further, can we predict the lifespan of TRMs in human lung tissue?  

6.2 Methods 

6.2.1 Including resident memory T cells to the HostSim modeling framework 

In Chapter 5, we present HostSim, a whole host modeling framework of Mtb infection. Briefly, 

HostSim tracks the development of multiple lung granulomas, as well as immune cell trafficking 

to the lymph node and from the blood. Within each lung granuloma, we capture the dynamics of 
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various immune cells across time, including macrophages and T cells, as well as pro-

inflammatory and anti-inflammatory cytokines. Within the lymph node and blood, we track Mtb-

specific T-cell priming, proliferation, differentiation and migration to forming lung granulomas. 

Chapter 5 includes full model details as well as calibration of this model to primary infection 

dynamics.  Additionally, it shows how we delineate TB clinical outcomes across a virtual host 

population. Briefly, we identify TB eliminators, whose total lung CFU<1, active TB cases, 

whose total lung CFU >105, and LTBI, all other virtual hosts. Figure E.1 displays the breakdown 

of each clinical classification following primary infection, wherein across 500 virtual hosts, 110 

are classified as active TB cases, 366 are classified as LTBI cases, and 24 are classified as TB 

eliminators. 

6.2.2 Resident memory T cell (TRM) lifespan in the lungs 

The lifespan of lung TRM in humans is largely unknown, but there is evidence that TRM 

populations are not as stable in the lung environment as they are in the skin or other locations 

(41,42).  Further, one study estimated lung TRM persistence in mice (43). Morris et al used an 

exponential decay function to model the longevity of TRM populations across time and assumed 

no influx to the lung TRM population: 

;BC =	;BC(0)1
D;<=* 

where EEBCis the death rate of TRM. By calibrating to mice lung TRM datasets, Morris et al. 

determined EEBC = 0.03 cells/day, or a lifespan of about 33 days (where lifespan is calculated as 

1/dTRM). As they note, human lung TRMs are less well-studied, primarily due to inability to 

sample healthy lung tissue. In our parallel virtual host reinfection studies (see below), we utilize 

this TRM longevity function to inform the initial conditions of TRMs (Figure 1). Additionally, 

we explore the death rate value to predict lifespan of these cell types in primates.   

6.2.3 Simulating TRM during reinfection 
 

In this chapter, we use HostSim to explore reinfection at various timepoints.  We expanded the 

set of granuloma ordinary differential equations in HostSim to include an equation for TRMs to 

be present during reinfection scenarios (Figure 6.1) since TRMs have been hypothesized to play 

a role in preventing the establishment of reinfection with Mtb (29).  
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We have two key assumptions about the roles of TRMs during reinfection. First, TRMs have 

been shown to kill pathogens upon re-encounter very quickly, presumably by rapidly activating 

macrophages to kill their intracellular bacteria (29,30,33).  Therefore, we assume that TRMs in 

HostSim assist macrophages in killing intracellular bacteria at a rate proportional to bacteria, 

macrophage, and TRM counts within the granuloma (see supplement for full intercellular Mtb 

equation). 

 

Second, Mtb specific TRMs have been identified in uninvolved lung tissue during primary 

infection (29). Thus, we assume TRMs would be present at very early stages prior to granuloma 

formation upon reinfection. To identify how many TRMs might be present, we matched the 

reinfection CFU dynamics from the NHP study at the reinfection timepoint (day 112) and use 1 

to 10 TRM as initial conditions (see Figure 6.3).  However, when we perform the parallel virtual 

reinfection studies (see below), we change the initial condition of the TRM population to reflect 

the lifespan of this cell population (see TRM lifespan section above).  

 

Reinfection studies within HostSim involve re-inoculating our virtual hosts with 10 CFU at the 

reinfection timepoint which seeds 10 unique new granulomas within the lung environment 

(Figure 6.1). Each reinfection granuloma begins with one intracellular bacterium, one infected 

macrophage and between 1 and 10 TRM as initial conditions. 
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Figure 6.1 Resident memory T cells impact establishment of reinfection.  
Primary infection begins with the inoculation of 10 CFU. At the reinfection timepoint, which varies from study to 
study, virtual hosts are re-inoculated with 10 CFU. TRMs may or may not be present during reinfection depending 
on the TRM lifespan and the reinfection timepoint. 

6.2.4 Parallel virtual host reinfection studies 

In order to predict the lifespan of TRMs in the lung, we perform several parallel virtual host 

studies. Figure 6.2 demonstrates the experimental protocol for three sets of 21 reinfection 

studies.  Each reinfection study consists of the same 500 individual HostSim simulations run for 

500 virtual hosts over approximately a 7-year timeframe (2,500 total days) differing only in the 

time of reinfection.  Study 1 begins with a reinfection timepoint at day 112 (the reinfection 

timepoint used in the NHP dataset from Cadena et al. (29)) and each subsequent study has a 

reinfection time point occurring 100 days after the previous study.   

 

The 21 reinfection studies are each simulated three times, varying the death rate of TRMs 

between each set. The first death rate, 0.03 cells/day, is the predicted death rate of TRM in mice 

from Morris et al (43). The second, 0.0012 cells/day, was calculated based on allometric scaling, 

as humans live ~25x longer than mice (44). The third death rate selected was 0.0001 cells/day, a 

rate similar to that observed for central memory T cell populations, which are known to persist 

for decades (45). 
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Figure 6.2 Parallel virtual host reinfection study protocol.   
The experimental protocol for our HostSim reinfection studies. We performed 3 sets of 21 separate reinfection 
studies on 500 virtual hosts, where the only difference between studies was timing of Mtb reinfection with a low 
dose of 10 CFU. Reinfection time points shown as gray dots on the timeline. We assigned a different death rate of 
TRM (dTRM) for each of 3 sets of reinfection studies. In total, we perform 63 reinfection studies where the same 500 
hosts are simulated for 2500 days (approx. 7 years).   
 

6.2.5 Calculating the reduced risk of active TB following reinfection compared to 
primary infection 

 

Studies from the pre-antibiotic era of TB tracked the percentage of nursing students that 

contracted active TB disease (22). Upon entering nursing school, students were stratified into 

two groups: those that had a positive Tuberculin Skin Test (TST), indicating previous exposure 

to Mtb, and those that had a negative TST, indicating no previous exposure to Mtb. A meta-

analysis of these studies showed that individuals with a TST+ upon entering nursing school were 

at a 79% reduced risk of developing active TB compared to TST- individuals (22). Assuming 

that all nurses had similar exposure to infectious TB patients, these studies are strong evidence of 

a protective concomitant immune response against reinfection.  Figure E.2 shows the data from 

these studies – note that studies with a longer period of observation (closer to 5 years) saw 

greater percentages of active TB cases among the TST+ population compared to those where 

students were observed for two years or less. Although this association is not statistically 
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significant, the greater percentage of active TB cases during longer studies suggests a potentially 

waning protection from concomitant immunity. 

 

Using HostSim, we can estimate the reduced risk of developing active TB from reinfection for 

virtual hosts. We do this by simulating a virtual population of hosts and comparing 1) the 

fraction of virtual hosts which develop active TB from primary infection and 2) the fraction of 

virtual hosts which develop active TB from reinfection. These two fractions are analogous to the 

TST- and TST+ groups in the meta-analysis of nursing students, respectively (22). We 

previously determined this first fraction in Chapter 5 (see Figure E.1) where we showed 110 out 

of a virtual population 500 hosts will develop active TB (total lung CFU>105 at day 200 post-

infection).  We determine the second fraction during our reinfection studies by counting the 

number of hosts that have a total lung CFU > 105 at 200 days after reinfection. As an example, if 

50 out of 500 virtual hosts develop active TB after reinfection, the risk reduction calculation 

would be as follows: 

#$%&'(&) − &+,&-.&)
&+,&-.&) =

0'1-.2#3	#0	1-.2(&	ℎ#%.%	
0#55#6237	'&230&-.2#3 −		 0'1-.2#3	#0	1-.2(&	ℎ#%.%	

0#55#6237	,'281'9	230&-.2#3
0'1-.2#3	#0	1-.2(&	ℎ#%.%	

0#55#6237	,'281'9	230&-.2#3
=

50
500 −

110
500

110
500

 

resulting in a 54.5% reduced risk of developing active TB.  

6.2.6 Model environment and analysis 

Model code and preliminary data analysis is written in MATLAB (R2020b). ODEs are solved 

using MATLAB’s ode15s stiff solver.  Simulation for a single in silico individual across 200 

days post-infection can be performed on an 8-core laptop in approximately 30 seconds.  Bash 

scripts were written for submission to run on Great Lakes HPC Cluster at the University of 

Michigan for parallel virtual host reinfection studies. Post-processing statistical analysis and 

graphing was performed in MATLAB (R2020b). 

6.3 Results 

6.3.1 HostSim recapitulates in vivo granuloma and host-scale dynamics of reinfection 

In NHPs, ongoing primary infection with Mtb confers protection against reinfection. This 

previously published dataset includes 8 NHPs that received a primary inoculation of barcoded 

Mtb and a secondary inoculation of separately barcoded Mtb 16 weeks later (29). Four weeks 

after the secondary inoculation, the animals were necropsied and granuloma bacterial loads from 
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both primary and secondary inoculation events were obtained. We performed 50 HostSim 

simulations following the same experimental protocol, for comparison to the in vivo granuloma 

CFU from primary infection and reinfection (Figure 6.3A).  

 

Concurrent Mtb infection within HostSim limits the establishment of reinfection granulomas, 

matching what was observed in NHPs (29).  We predict the vast majority of reinfection 

granulomas do not contain CFU at 28 days post-infection using HostSim (Figure 6.3D black data 

points). For 33 out of the 50 virtual hosts, reinfection was not established, as these hosts had total 

sterilization of all reinfection granulomas prior to day 28. This is consistent with the NHP study, 

that showed 5 of 8 monkeys had total sterilization of reinfection granulomas at this time point. If 

we rerun the 50 virtual hosts but knock-out TRM, we no longer match the NHP dataset. 

Intriguingly, reinfection granulomas in the knockout study still contained significantly less 

bacterial burden than primary infection granulomas (Figure 6.3D red data points). This suggests 

that while TRMs are the main drivers of a concomitant immune response, other immune cells 

may also impact the growth of bacteria within reinfection granulomas. 
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Figure 6.3 Reinfection in 50 virtual hosts matches dynamics of reinfection in NHPs.  
(A) Experimental protocol for reinfection study. Primary infection (blue) with 10 CFU inoculum occurred at day 0 
and reinfection (gray) with 10 CFU inoculum, matching the NHP study protocol (29).  Granuloma CFU trajectories 
from two representative hosts shown in panel (B) & (C). (D) Across 50 virtual hosts, reinfection granulomas exhibit 
greater sterilization compared to primary infection granulomas 28 days post-infection, as previously shown in NHPs 
(29).  We re-simulated the same 50 hosts but knocked-out the TRM cell population at reinfection (red data points).  
CFU per granuloma between KO TRM virtual hosts and the primary infection granuloma CFU was significantly 
different (Vargha and Delaney’s A measure = 0.76). 

6.3.2 Predicting the lifespan of TRMs and durability of concomitant immunity 

While concomitant immunity is protective against reinfection at 112 days in NHPs, the durability 

of the concomitant immune response across time is not yet known (29). However, prospective 

cohort studies from the pre-antibiotic era of TB treatment predict that LTBI individuals had a 

79% reduced risk of developing active TB following reinfection compared to uninfected 

individuals (22). These studies were observational, and it was not possible to determine the exact 

time point of reinfection.  However, these studies provide an opportunity for a case study: we can 

use HostSim to predict the death rate of lung TRM – the main cellular mediators of concomitant 

immunity, as shown by in silico knock-out in Figure 6.3D.  
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We performed three sets of virtual reinfection studies using 500 virtual hosts (see Methods) to 

predict the death rates of lung TRM and measure the longevity of concomitant immunity in 

HostSim. Figure 6.2 shows the experimental protocols for the three sets of virtual reinfection 

studies. We alter the death rate of lung TRMs between the three sets of reinfection studies (See 

Methods).  

 

In Figure 6.4, we display the breakdown of active TB (dark blue), LTBI (green) and TB 

eliminator (yellow) cases (as defined by the total lung bacterial burden [Figure E.1]) at day 200 

post-reinfection for the 500 hosts across the 21 reinfection studies.  When the lifespan of TRMs 

is set to previous estimates from Morris et al. in mice (dTRM =0.03 cells/day) (43), concomitant 

immunity wanes quickly (Figure 6.4 A & D); by reinfection study 2 (reinfection 212 days after 

primary infection), there is a total loss of concomitant immunity against reinfection. In contrast, 

if the lifespan of TRM lasts for decades (dTRM =0.0001 cells/day; Figure 6.4 C & F), then all of 

the hosts sterilize or control reinfection. Both of these TRM lifespans result in predictions 

inconsistent with the human cohort studies. Only when the lifespan of TRMs is ~25x longer than 

originally estimated by Morris et al. (dTRM =0.0012 cells/day, calculated based on allometric 

scaling), does the reduced risk of active TB match that of the human cohort studies (Figure 6.4 B 

& E).  Across the 21 reinfection studies in Figure 6.4 B, the average reduced risk of active TB is 

77% following reinfection compared to uninfected virtual hosts. This is a prediction that is 

consistent with reduced risk estimates in humans. Thus, we predict that the lifespan of TRMs is 

approximately 2-3 years.    
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Figure 6.4 Clinical classifications and total lung CFU across three sets of virtual reinfection 
studies.  
Clinical classifications for 500 virtual hosts across 21 separate reinfection studies when the lifespan of TRMs is 
varied from 33 days, 833 days, or 10,000 days (dTRM = 0.03, 0.0012, or 0.0001 cells/day) (A, B, C, respectively).  
Each stacked bar chart shows the number of active TB (dark blue), LTBI (green) or TB eliminator (yellow) hosts for 
each reinfection study. Clinical classifications are determined according to total lung CFU 200 days after 
reinfection.  Box-and-whisker plots show the distribution of total lung CFU across the 500 virtual hosts for each 
reinfection study when dTRM = 0.03, 0.0012, or 0.0001 cells/day (D, E, F, respectively).   
 

6.3.3 In the absence of TRMs, T-cell counts in the blood delineate active vs latent 

outcomes following reinfection 

We have shown that concomitant immunity is intrinsically associated to TRM lifespan across 

time. Intriguingly, at reinfection timepoints after the majority of TRM cells have died, we still 

note an average reduction of 35% in active TB from reinfection compared to uninfected controls 

(Figure 4A, reinfection studies 2-21).  We use this situation as a case study to identify 

mechanisms driving active and LTBI classification host outcomes during reinfection events that 

may occur after waning of TRMs populations.   

 

In Figure 6.5, we focus on the first set of reinfection studies, when the life span of TRMs is 33 

days (dTRM = 0.03 cells/day), although results are consistent across sets of reinfection studies 
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(Figure E.3). In this set of reinfection studies, the TRM population is no longer present by a 

reinfection time point 212 days after primary infection (Figure 6.5A).  For reinfection studies 2-

21, we observed many virtual hosts still control infection, and are only classified as LTBI, even 

without the presence of TRM populations in the lung (Figure 6.4A). Further, we observed that 

virtual hosts who control reinfection (classified as LTBI) had higher counts of Mtb-specific 

effector (Figure 6.5B), effector memory (Figure 6.5C), and central memory (Figure 6.5D) T cells 

in the blood one day prior to reinfection compared to hosts that went on to develop active TB 

after reinfection.  Thus, we predict that the numbers of Mtb-specific T cells in the blood prior to 

reinfection is a key factor for protection against active TB following reinfection in the absence of 

TRMs. 

 

 

Figure 6.5 Mtb-specific T cells in blood from primary infection offer protection against 
active TB during reinfection in absence of TRM populations.  
In our first set of reinfection studies, we set the lifespan of TRMs to be 33 days (dTRM = 0.03 cells/day). (A) 
Accordingly, all TRM populations have died by day 212, the reinfection time point of reinfection study 2. Box-and-
whisker plots show the distribution of Mtb-specific effector memory (EM), effector, and central memory (CM) T 
cell counts in the blood one day prior to the timepoint of reinfection for each reinfection study (B, C, D, 
respectively). We stratify the T-cell numbers according to a host’s total lung CFU at a time point 200 days later.  If 
the host was classified as an active TB case (total lung CFU>105), the box and whisker plot is dark blue.  If the host 
was classified as an LTBI case (total lung CFU<105), the box and whisker plot is green. Note that the vast majority 
of LTBI hosts have larger numbers of Mtb-specific blood effector, effector memory and central memory T cells than 
that of their active TB case counterparts. 
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6.4 Discussion 

Concomitant immunity is a special case of immune memory that is generated when a host is 

infected by the same pathogen while they are current fighting a primary infection by the same 

pathogen.  Concomitant immunity does not provide a robust and enduring immune response 

against reinfection for all persistent pathogens (46). For example, during chronic HIV infection, 

reinfection has been shown to clinically arise as quickly as before one-year after primary 

infection (47).   If a concomitant immune response is observed, then cellular-mediators and 

longevity of immunity appear to be pathogen-dependent, ranging from memory T cell mediated 

immunity in chronic LCMV to extremely short-lived immunity in parasitic infection (48,49).  In 

TB, concomitant immunity against reinfection appears protective initially, but the longevity and 

cellular mediators of such a response are not yet known.   

 

To address these uncertainties, we utilize HostSim, our novel mathematical and computational 

modeling tool that allows us to more directly investigate the cellular mechanisms that lead to 

concomitant immunity by relating events and dynamics within each host to population scale 

outcomes.  A significant benefit of this in silico approach is that the group of 500 virtual 

individual HostSim simulations is identical across reinfection studies.  Therefore, we can directly 

compare each reinfection study against the others. This allows us to build on the studies begun in 

NHP (29) and perform simulated studies impossible to do with in vivo experiments – even 

performing two separate reinfection experiments on different NHPs would require a large 

financial and resource commitment, and since NHPs are outbred animals there is substantial 

host-to-host variation that might complicate comparisons between reinfection studies. 

 

Our predictions add support to growing evidence that primary Mtb infection does provide a 

concomitant immune response (29), but our studies predict that this protection is transient, 

waning ~3 years after primary infection, with a substantial loss of protection by 5 years post-

infection (Figure 4B). Further, we predict that longevity of concomitant immunity against Mtb is 

intrinsically tied to the magnitude of numbers of TRM cells generated, as our studies indicate 

that these cells are key mediators of protection against reinfection.  
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As key players against reinfection, TRMs offer intriguing targets for vaccination.  In fact, 

intravenously administered BCG was recently shown to provide a pool of lung resident memory 

T cells that exhibited protection against infection with Mtb in NHPs (50).  The longevity of these 

cells has implications for vaccine design. In humans, the longevity of TRMs in the lungs is not 

yet known. In this work, we predict that in the context of an ongoing, persistent infection the 

lifespan (1/dTRM) of TRMs in the lungs is 833 days, or approximately two years.  To our 

knowledge, this is the first estimate of TRM lifespan human lungs.  

  

Our findings suggest that if immunity can only be achieved through an antigen-specific TRM 

cell population, then a successful vaccine must extend the durability and longevity of this cell 

population, thereby toggling the properties of T cell memory across time.  Preclinical trial results 

of a viral vector-based vaccine in TB suggests that this vaccine platform might provide the 

necessary antigen persistence for continuous stimulation toward a protective memory T cell pool 

across time (51). However, vaccine protection studies in NHPs have yet to be completed where 

the timing of infection was >1 year after vaccination (51). 

 

In the absence of TRM populations, we still note limited protection against reinfection (Figure 

3D and Figure 5). In our first set of reinfection studies, the average reduction of risk of 

developing active TB was 35% for reinfection studies 2-21 (the studies that included a 

reinfection timepoint after the loss of all lung TRMs). This percentage is consistent with 

estimates of protection from reinfection in a household contact study in Peru, that showed 3-35% 

protection against reinfection across an average interval of 3.5 years (26).  Our works suggests 

that in lieu of TRMs, there are other mechanisms within the body to prevent uncontrolled 

reinfection and perhaps this is reflected in the study of Peruvian individuals. We posit that in 

order for individuals to develop active TB following reinfection, it requires a sufficiently poor 

adaptive immune response; wherein the magnitude of both TRMs and blood Mtb-specific T cells 

must be deficient.  

 

In this study, we could not model every cell type present in both primary infection and 

reinfection granulomas. For example, unrestricted or unconventional T cells have not been 

considered in this work but could very well impact reinfection granuloma environments and have 
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important implications for vaccination (12).  Therefore, these cell types (as well as others) could 

be considered in future work.  Additionally, while natural TB case studies have shown protection 

against reinfection (22,25,26), patients who successfully complete TB drug treatment are at an 

increased risk of developing TB upon reinfection, with an incidence rate four times that of 

primary infection (48,49). We do not capture this population in the current study, although 

current work in our group is incorporating drug treatment into HostSim and could further 

investigate this phenomenon. Finally, we selected three values for dTRM based on previous 

estimates and our hypotheses of lung TRM longevity, although many other death rates could 

have been tested through an optimization process using a surrogate model, as has been 

previously done by our group (52).  In the current work, we used a virtual host framework of 

Mtb infection and reinfection and predict that concomitant immunity protects and wanes in 

accordance with the magnitude of TRM populations across time. However, even in the absence 

of TRM populations, the majority of hosts are able to control reinfection through blood Mtb-

specific cells that were generated during primary infection. 
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7 CaliPro: A Calibration Protocol that Utilizes Parameter Density Estimation to 
Explore Parameter Space and Calibrate Complex Biological Models 

 
This chapter is a published work: 

Joslyn, L.R., Kirschner, D., & Linderman, J. (2020). CaliPro: A Calibration Protocol That 

Utilizes Parameter Density Estimation to Explore Parameter Space and Calibrate Complex 

Biological Models. Cellular and Molecular Bioengineering, 1-17. 

 

7.1 Abstract 
 

Mathematical and computational modeling have a long history of uncovering mechanisms and 

making predictions for biological systems. However, to create a model that can provide relevant 

quantitative predictions, models must first be calibrated to recapitulate known biological data 

about that system. While many calibration approaches exist, current approaches may not be 

appropriate for complex biological models because: 1) many calibration approaches minimize an 

objective function in order to recapitulate only a single aspect of the experimental data (such as a 

median trend) or 2) Bayesian calibration techniques require specification of parameter priors and 

likelihoods to experimental data that cannot always be confidently assigned.  Here, we develop 

CaliPro, an iterative, model-agnostic calibration protocol that utilizes parameter density 

estimation to refine parameter space and calibrate to temporal biological datasets. We illustrate 

the usefulness of CaliPro with four examples, spanning different model formulations, unique 

calibration datasets and diverse calibration goals. CaliPro can reduce time until calibration, 

reduce computational cost, and optimize model calibration.    

 

7.2 Introduction 
 

As part of a systems biology approach, mathematical and computational modeling can 

interrogate biological theories and provide context to better understand complex phenomena 

across multiple scales. In particular, the explosion of data from genomics, transcriptomics, 

proteomics and metabolomics coupled with the introduction of data from new cytometry and 
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imaging techniques have revealed an opportunity for systems modeling approaches to predict 

and reveal mechanistic relationships between various biological agents (1–13).  However, before 

making useful predictions, a model must be able to replicate particular experimental outcomes 

and/or temporal dynamics of the related biological system.     

 

Model calibration is the process of altering model inputs, e.g. initial conditions and parameters, 

until model outputs satisfy one or more biologically-related criteria.  Often, these criteria include 

matching model outputs to experimental data across time. For simple models with relatively few 

parameters, calibration can be trivial.  However, complex models often face a more difficult 

calibration process for three reasons. First, the number of parameters in these models can be 

large. Second, initial parameter estimates can be discovered via experimental studies (or other 

models) but still may contain a large degree of uncertainty.  For example, if a parameter estimate 

is derived from multiple studies, estimates could vary greatly between them and a modeler will 

understandably have less confidence in the true value of this parameter. Third, some parameters 

are, by construction, intended to represent a group of biological processes.  If a process(es) is 

modeled more phenomenologically, then parameter values may be very difficult, if not 

impossible, to measure directly via experiments.  

 

A large body of work covers the calibration of complex models to biological data (see Read et al 

(14) for a thorough review of various calibration techniques in biological modeling).  Popular 

calibration algorithms such as simulated annealing (15), genetic algorithms (16,17), gradient 

descent (18) and others (19,20) leverage the power of optimization schemes to refine parameter 

space in an iterative fashion.  As Read et al. acknowledge, many, if not all, of these calibration 

techniques use a single metric (often called an ‘objective function’) to define the difference 

between experimental and simulated outcomes.  The general aim is to minimize these differences 

across each iteration. However, not all models can or should be fit to experimental data through 

the minimization of a single metric for each outcome.  

 

In fact, new experimental technologies (e.g., single-cell measurements, flow cytometry, 

advanced imaging) have allowed for the identification of greater biological variability, often 

across scales ranging from genomic to population-level information.  In fact, many experimental 
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techniques now allow for the observation of greater biological variability.  For example, at the 

genetic scale, advanced imaging techniques, single cell sequencing and mass cytometry have 

catalyzed the Human Cell Atlas Project (21), an effort to map the variability across every human 

cell type.  Additionally, the introduction of functional assay screening (22) and targeted 

immunotherapy strategies (23) within cancer precision medicine have embraced heterogeneity 

across the population and provide a path toward patient-specific clinical therapies.   

In response, mathematical and computational models have been built to address questions from 

fields as diverse as cell-signaling (24), wound healing (25), sepsis (26) and drug treatment in 

tuberculosis (27), among many others.  As systems biology approaches attempt to reveal sources 

of variability, models must first be able to recapitulate biological variance and therefore should 

not be fit to a median trend line or a single metric. By calibrating to and thereby capturing a 

distribution of outcomes, modeling can assess and provide explanations of variability between 

individuals, species or other modelled biological agents. 

 

Bayesian calibration approaches are a collection of calibration techniques that utilize Bayesian 

statistics to leverage information about the distribution of model outputs, information about the 

distribution of parameters and assumptions that relate model parameters to outputs (28–37).  

Sample Importance Resampling (SIR) is one example of a Bayesian calibration approach that 

draws a large number of parameter combinations from a prior parameter distribution, executes 

the model to create simulation outcomes, then uses outcomes to estimate a likelihood for each 

parameter set compared to the experimental data.  The approach requires resampling from the 

original parameter space with replacement, where likelihood values are assigned as sampling 

weights (38).  This approach, refined and modified over the years (30,39–41) has yielded success 

in calibrating models for which the distribution of both parameter values and experimental 

outcomes can be sufficiently derived from available data.   

 

However, if the distribution of values within experimental datasets or model parameters cannot 

be approximated, Bayesian calibration approaches may not be the best strategy. Furthermore, 

some models should be calibrated with an emphasis on finding a robust parameter space – 

defined as a continuous region of parameter space wherein the vast majority of model runs will 

pass within the bounds of experimental data for the particular outcomes of interest – instead of a 
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single global optimum or a vast parameter space wherein some areas are weighted more than 

others.  Finding a robust parameter space for a complex biological model is often a user-

intensive process that, when performed manually, can take weeks due to a lack of automated 

protocols.  Here, we describe a calibration protocol, CaliPro, that quickly identifies a robust 

parameter space where a range of distinct and biologically reasonable simulation results are 

represented when both model parameter and experimental data distributions cannot be 

approximated. We highlight the ability of CaliPro to identify a robust parameter space for 

multiple model types, including simple, complex, deterministic and stochastic biological models. 

We apply this approach to a variety of model types to show the flexibility of this protocol to 

calibrate different types of systems to multiple datasets. 

 

7.3 Methods 
 

7.3.1 Defining the appropriate use of CaliPro  
 

Many traditional model-fitting techniques and strategies discover the global, or local, optimum 

within the outcome landscape.  These techniques belong to a class of optimization procedures 

called metaheuristics (42). Unlike these procedures, CaliPro is an empirical approach that is not 

guaranteed to find the single global, or even local, optimum as it is commonly defined.  

 

Both hill-climbing (a heuristic procedure (43)) and simulated annealing (a metaheuristics process 

(15)) algorithms will find the global optimum of a smooth, peaked landscape (Figure 7.1A&B) 

given ample time and computational resources.  However, if a modeler wishes to fit to only the 

median of the data, they may potentially ignore important events that cause a higher or lower 

response. Models do have the potential to elucidate this behavior when properly calibrated to the 

entire range of experimental outcomes  (44).  If the modeler seeks to identify model simulations 

that fit within the range of the experimental data (blue simulation lines in Figure 7.1D), the 

outcome space (Figure 7.1C) becomes very difficult, if not impossible, for these algorithms to 

evaluate.  As the model simulations either fall within the elevated region, or far below it, this 

binary classification of model simulations does not provide a heuristic or meta-heuristic process 

with enough information to estimate the next parameter combination decision.  Figure 7.1C & D 

outlines one such theoretical case where CaliPro can calibrate the model, by embracing the 
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binary classification of model simulation outcomes and represent the full range of experimental 

outcomes. 

 

We envision the use of CaliPro in situations such as those shown in Figure 7.1 but, more 

specifically, for calibration to meet three criteria: 1) the termination of model calibration is not a 

single parameter set that can recapitulate one aspect of the experimental dataspace (such as the 

median), but rather a set of parameter ranges that represent a continuous and robust parameter 

space able to recapitulate the broad range of outcomes captured within the experimental data. 2) 

The objective function cannot be easily defined as many model simulations may lie within the 

experimental dataspace and those that lie outside of that dataspace may not necessarily provide 

an optimization procedure with information for its next parameter choice. 3) The distribution of 

experimental outcomes is indistinguishable, or should not be approximated.  CaliPro provides a 

method for which models with these criteria can be calibrated to experimental data that might 

encompass a broad range of outcomes but whose distribution might not be easily distinguished. 

 

 

Figure 7.1 Calibrating a model to a range of plausible outcomes requires a new calibration 
approach  
(Panel A& B) Panel A represents an example of a smooth model outcome landscape defined by a biologically 
relevant hypercube of parameter space. Each (x,y,z) point in this hypothetical 3D mapping of outcome space is 
defined by a single set of parameter inputs. B) The teal curve represents a single model outcome within the full 
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landscape in A), that is, the teal curve corresponds to a single (x,y,z) point in A).  The blue dots are available 
experimental datasets, and the black curve represents a hypothetically known optimal for fitting the model to that 
experimental data (this corresponds to the white peak in A). Ultimately, in the situation outlined by Panel A&B, the 
modeler seeks to minimize the difference (shown as arrows) between the simulation and median line by defining an 
objective function and using either hill-climbing or simulated annealing (or another similar technique) to select the 
next parameter combination. (Panel C&D) If the optimal within outcome space is a set of simulations that 
encompass various aspects of the experimental data, the landscape in A) looks much more like the landscape in C). 
Here, the optimum is now an elevated region of space that may include many outcomes. Panel D) now includes a set 
of simulations (shown in royal blue) that reasonably recapitulate different aspects of the experimental data and each 
individual simulation maps to different points on the elevated region in C). One failed simulation (shown in red) 
does not reasonably portray the experimental data (light blue dots), and would map to the lower regions in outcome 
space in C). 
 

7.3.2 General Overview of CaliPro 
 

CaliPro is utilized following a model building process, when a modeler already has 1) a model 

in hand and 2) a series of datasets that exhibit behavior that the model is partially designed to 

replicate.  Figure 7.2 displays the general overview process of CaliPro.  Step 1 of Figure 7.2 

shows the multiple data types that are input to CaliPro.  

 

Determining initial parameter ranges can be a difficult process as even parameters discovered via 

experimental studies (or other models) may contain uncertainty as to their exact value(s). 

However, by examining multiple values from the literature, the modeler should assign the widest 

range that are biologically feasible, which includes all previous estimates that have been derived.  

It is also important to note that some parameters are fairly well-constrained, either biologically or 

by design, and are thus easier to assign an initial range. Following initial parameter range 

assignment, in Step 2 the modeler performs a stratified sampling of the parameter space using 

such algorithms as Latin Hyper-cube Sampling (LHS), Sobel sequences, Monte Carlo, etc. The 

model is then executed for each of the parameter combinations.  

 

Step 3 in Figure 7.2, Model Evaluation, is a crucial step.  If the experimental datasets for 

calibration at each timepoint can be approximated as a distribution (Gaussian, Poisson, or 

otherwise) we suggest following Bayesian calibration approaches by creating a likelihood to 

compare model parameters and simulation outcomes with the experimental data.  Subsequently, 

there are many techniques to refine parameter space, including SIR.  However, should the 

experimental data be uniform or indistinguishable, then we suggest specifying a pass set 

definition ( 
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Appendix F - Box 1).  This is a user-intensive step of CaliPro, as the pass set definition is 

entirely up to the modeler. Within CaliPro this model evaluation step can also be automated and 

defined computationally a priori. Model simulations that satisfy the pass set definition are 

gathered together into one matrix and thereby constitute a pass run set ( 

Appendix F - Box 1).  All model runs that do not satisfy the pass set definition are placed within 

the fail run set ( 

Appendix F - Box 1).  

 

Next, CaliPro creates two density plots for each parameter within the pass and fail parameter 

sets ( 

Appendix F - Box 1) to display the regions of parameter space that are more inhabited by the 

pass or fail run set (Step 4 in Figure 7.2).  Once the density plots have been created, the initial 

parameter ranges can be refined using one of two methods (Step 4 in Figure 7.2, methods 

below).  Following parameter range refinement, these parameters will be sampled again in an 

iterative fashion.  Steps 2-4 will be repeated until the termination criteria ( 

Appendix F - Box 1) is met.   
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Figure 7.2 Overview of CaliPro  
The model building process begins by incorporating biological theory and experimental estimates to inform rules, 
mechanisms, and model structure.  Once the model is built, there is (an often prolonged) period of calibration, 
wherein the model outcomes and general behavior are compared to a set of experimental outcomes across time to 
identify the best fit. Here, we have provided a protocol, called CaliPro, for calibrating complex biological models. 
This begins with Step 1: Inputs. Several inputs including the experimental data, the model itself, and the model 
parameters – given as a range of initial values for each parameter. Step 2: Sampling.  Here, we utilize an Latin 
Hyper-cube Sampling (LHS) scheme (See (64) for an in-depth review of LHS and uncertainty/sensitivity analysis) 
where each parameter is sampled uniformly or normally, but sampling could be performed using any sampling 
scheme (Sobel sequences, Monte Carlo, etc.). Step 3: Model Evaluation. At this stage in the calibration process, the 
modeler will execute the model for each of the parameter combinations created via sampling parameter space, and 
begin to evaluate the model by comparing it to the experimental data.  If the form of the experimental data can be 
approximated by a likelihood, or the modeler is comfortable assigning a distribution to the experimental data, they 
should proceed with Bayesian calibration approaches such as Sample Importance Resampling, approximate 
Bayesian computing or other techniques. However, if the modeler cannot distinguish a distribution for experimental 
datasets, or if that distribution is uniform at each timepoint, then we suggest narrowing the parameter space via our 
CaliPro techniques.  Still as part of the model evaluation in step 3, the modeler chooses a pass set definition ( 
Appendix F - Box 1) to identify a subset of model simulations that they consider the pass run set (blue simulation 
lines). All other runs constitute the fail run set (red simulation lines). Step 4: Redefine Parameter Space. 
Transitioning from evaluating the model, the modeler creates two density plots for each parameter, one for the pass 
parameter set and the other for the fail parameter set (blue, red lines density plot lines, respectively) across the 
original parameter range (the x-axis) for each parameter.  Like any other density plot, the y-axis represents the 
probability density function.  If a modeler prefers, the y-axis could be transformed to become a percentage 
(normalized from 0 to 100). The modeler then narrows the parameter ranges using either Highest Density Region 
(HDR) or Alternative Density Subtraction (ADS) selection (see more on these approaches in methods).  Each 
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parameter will be sampled again from this new parameter subrange (purple bounded region identified on the x-axis) 
at Step 2 in an iterative fashion.  Steps 2-4 are repeated until the termination criteria ( 
Appendix F - Box 1) has been met. At this point, the modeler has a well-calibrated model. 
 

7.3.3 Highest Density Region estimation to identify parameter subranges 
 

Calculating the Highest Density Region (HDR) is one approach to summarize a probability 

distribution.  HDR satisfies the following criteria: 1) the region that summarizes the probability 

distribution must occupy the smallest possible volume in the sample space and 2) every point 

within the region has a probability density larger than every point outside the region (45). HDR 

is defined by letting >(K) be the density function of random parameter L. Then the 

100(1 − 5)% HDR 0(>5), is the subset of the sample space of L such that 0(>5) = {K: >(K) ≥

	>5}	where >5 is the largest constant such that !" !"	SL	 ∈ 0(>5)U 	≥ 1 − 5  (45).  A modeler 

specifies 5, which represents the size of the region, as a percentage of the density function, >(K).  

 

We apply this method to the distribution created by the pass parameter set across a one-

dimensional parameter space, for each parameter (Step 4 in Figure 7.2). When used within the 

CaliPro pipeline, HDR serves to refine parameter space by identifying subranges within each 

individual parameter range toward the region that has the highest density of simulations that 

satisfy the pass set definition. While HDR can identify several disjoint regions for multimodal 

distributions, within the CaliPro pipeline, if disjoint regions are identified, the parameter range 

for the next iteration will be bounded by the minimum value and the maximum value across the 

disjoint regions.  

 

7.3.4 Alternative Density Subtraction to identify parameter subranges 
 

Another option for narrowing the initial parameter range of each parameter is Alternative 

Density Subtraction (ADS).  ADS leverages information from the probability density of both the 

pass parameter set and fail parameter set across each parameter range.  ADS is defined by letting 

V(K) be the density function of the pass parameter set for the random parameter L and by letting 

E(K) be the density function of fail runs for the same random parameter L.  Then ADS is the 

subset of the sample space of L such that {K:	V(K) − E(K) ≥ 	0}.  
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When used within the CaliPro pipeline (Step 4 in Figure 7.2), ADS refines parameter space by 

identifying regions within each individual parameter range that have a higher density of 

simulations that satisfy the pass set definition than those that fail to satisfy the pass set definition. 

If disjoint regions are identified, the parameter range for the following iteration will be bounded 

by the minimum value and the maximum value across the disjoint regions. 

 

7.3.5 Computational Platform 
 

CaliPro can be implemented within any programming language.  In the examples we list below, 

we have implemented CaliPro in R (version 3.5.3) and MATLAB (R2016) environments. R 

packages used include plyr, dplyr and tidyr for data organizing and reformatting.  We used 

ggplot2 and scales for plotting and hdrcde to identify highest density regions when that option 

was exercised within CaliPro.  

 

On our lab website (webpage address: http://malthus.micro.med.umich.edu/CaliPro ), we 

provide a directory that includes all MATLAB scripts for running a fully automated version of 

CaliPro, including model execution of the predator-prey model example described below. We 

suggest modelers wishing to utilize the CaliPro framework use these scripts as a starting point 

for their own implementation.  Additionally, all equations are listed in the  

Appendix F. 

 

7.4 Results 
 

To show how to apply CaliPro, we provide four examples of model formulations with datasets 

for calibration. We show that CaliPro is model agnostic and works well for these types of model 

structures: ordinary differential equations (ODEs) (deterministic, continuous) and agent-based 

models (stochastic, discrete).  The number and type of experimental datasets will likely differ for 

potential CaliPro users: therefore, we also illustrate this diversity in our examples.  
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7.4.1 Example 1: CaliPro finds parameter ranges that satisfy a predator-prey test 
problem 

 

We first test CaliPro using a classic ODE system of deterministic population dynamics: a 

predator-prey (or Lotka-Volterra) model. The Lotka-Volterra model is a two-equation model that 

was developed independently by Lotka (1925) and Volterra (1926) to represent predator-prey 

interactions across time and has been studied in thousands of papers since its first publication.   

 

The model has two state variables (H(t) and L(t) as a vector of values corresponding to each time 

point) and several parameters that represent predator and prey interactions across time. H(t) 

represents the number of prey per time, L(t) represents the number of predators per time, α 

represents reproduction rate constant of prey, β is the rate constant of predation, σ is the death 

rate of predators and δ is the reproduction rate constant of predators: 

EW

E&
= 	5W(&) − XW(&)@(&) 

 

E@

E&
= 	−Y@(&) + ZW(&)@(&)	 

 

At this point, a modeler could calibrate this model to a single trend line for each of the two 

species using traditional calibration techniques (e.g. least square regression).  However, we use 

this model to test whether CaliPro can identify a parameter space that satisfies a range of 

experimental outcomes. For simplicity, we built a small test problem using a synthetic 

experimental dataset that has a range of outcome values at each time point.  To build this 

synthetic experimental dataset, we selected a narrow range of values for each of the four 

parameters in the model (Table 7.1– Synthetic Data Range).  Then, we simulated the model 500 

times, sampling from this narrow parameter space. The minimum and maximum value of those 

500 simulations for 21 timepoints are shown as black data points in Figure 7.3 and make-up our 

synthetic experimental dataset.  These synthetic experimental data points serve as the data for 

calibration within this test-case CaliPro example.  
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Beginning CaliPro to calibrate this model, we sample from our initial parameter range: a larger 

range of values for each parameter that encompass the smaller range used to create the synthetic 

experimental dataset (Table 7.1– First Iteration Range). Note that for the initial parameter range 

for beta, this . Figure 7.3(top row) shows the predator (gold) and prey (blue) outcomes following 

this initial sampling of parameter space.  As part of the CaliPro process, we define a termination 

criterion that 90% of runs must belong to pass run set. Additionally, we outline a pass set 

definition where simulation values must fall within ranges bounded by two times the maximum 

experimental data point and one-half of the value of the minimum experimental data for both 

predator and prey populations for every time point.  This pass set definition was selected because 

it encapsulates the synthetic experimental data while ensuring there are enough simulations 

within the pass run set to inform the next iteration. Altogether, a given model simulation must 

satisfy each of those criteria (above the minimum, but below the max for each of the 21 

timepoints for each species) in order to belong within the pass run set. If even one simulation 

value does not reside within this range for one time point in one species, the simulation is 

designated as part of the fail run set.  Following initial sampling, <1% of the 500 model 

simulations satisfy the pass set definition, so we narrow this parameter space using the HDR 

method with a coverage of 0.85 as described in Methods.  The second iteration in Figure 7.3 

reveals the results of sampling this parameter space, wherein ~35% of runs are now classified as 

part of pass run set. 
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Figure 7.3 Example 1 - Predator-Prey Model: CaliPro identifies best fit parameter space 
using HDR  
Prey (blue) and predator (gold) model simulation populations overlaid on synthetic experimental data (black data 
points) at each timepoint (minimum and maximum values shown). Termination criteria: 90% of runs must belong to 
pass run set. Pass set definition: (Iterations 1 & 2) Simulation values, at each timepoint, lie within the range bounded 
by two times the maximum experimental data point and half the value of the minimum experimental data point for 
each species. (Iterations 3-6) For each time point, the simulation value must fall within the 1.25 times the maximum 
experimental data point and the value of the minimum experimental data point divided by 1.25 for both predator and 
prey.  In the final iteration, 98% of the 500 simulations belong to the pass run set, exceeding our termination criteria. 
 

Now, there may be modeling instances wherein the termination criteria for CaliPro could be 

satisfied following the results of this second iteration, as the model outcomes do capture the full 

spread of experimental outcomes and generally capture the behavior of the experimental data 

across both predator and prey (Figure 7.3, second iteration). However, the goal is to identify a 



 176 

more refined parameter space for this test problem as the range of outcomes is slightly too broad 

for our satisfaction.   

 

We continue using CaliPro via iteration, but reformulate our pass set definition to be stricter than 

the previous iterations (see MATLAB files for automated implementation at 

http://malthus.micro.med.umich.edu/CaliPro ) since our pass parameter set is sufficiently large.  

Now, we impose a new pass set definition specifying a narrower range for both predators and 

prey for every time point.  We use HDR again to narrow the parameter space following iteration 

2 and resample this space 500 times. Following the third iteration, 16% of the 500 model 

simulations satisfy the new pass set definition. We narrow and resample parameter space three 

more times before our termination criteria is met (see Figure 7.3).  Out of 500 total model 

simulations at the final iteration, 98% of model simulations belong to the pass run set. Figure 7.3 

shows model outcomes against the synthetic experimental dataset; and Figure 7.4 displays the 

iterative refining of the parameter space for each parameter in this model.  We display the pass 

and fail parameter density plots for each parameter at each iteration in Figure 7.4. These 

parameter density plots reveal where, across the range of sampled values, the majority of 

simulations did or did not satisfy the pass set definition.  For example, in the initial sampling of 

the δ parameter range in column 4 of Figure 7.4, the runs that satisfy the pass set definition 

clearly reside along the region bounded between 0 and 0.04. Through iteratively defining the 

next parameter range for sampling (the purple range band along a portion of the x-axis on each 

subplot in Figure 7.4), we satisfy our termination criterion that 90% of the runs satisfy the pass 

set definition by iteration 6. CaliPro is able to find a range of values for each parameter that 

satisfies our test problem of relatively simple predatory-prey dynamics (Table 7.1). 
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Figure 7.4 Example 1 - Parameter Density Plots at each CaliPro iteration  
The density plots for pass (blue) and fail (red) parameter sets are shown for each parameter (columns) and at each 
iteration (rows). Ranges along the x-axis where the pass parameter density is larger than the fail parameter density 
suggest regions in parameter space where simulations are more likely to satisfy the pass set definition. The purple 
range band along the x-axis of each density plot denotes the region of parameter space identified by HDR (HDR 
coverage set at 0.85) that will become the parameter range for sampling in the next iteration. 6th iteration is not 
shown as sampling from the purple band along the x-axis in the fifth iteration results in a calibrated parameter space. 
 
Table 7.1 Initial and Calibrated Parameter Ranges for the predator-prey test case problem  
For each of the four parameters, the first iteration range was assigned to be much larger than the range of parameters 
used to create the synthetic dataset. Following five CaliPro iterations, the final sampling space was satisfactorily 
close to the synthetic data range, with 98% of model realizations lying with the minimum and maximum bounds of 
experimental datasets. 

Parameters Synthetic Data Range First Iteration Range CaliPro Final Range 

alpha 0.5-0.7 0.1-0.9 0.53 – 0.66 

beta 0.02-0.035 0.01-0.1 0.03 – 0.042 

sigma 0.6-0.9 0.1- 0.99 0.7 - 0.88 

delta 0.02-0.03 0.001-0.1 0.02 - 0.027 

 

7.4.2 Example 2: CaliPro identifies parameter ranges for ODE granuloma lesion 
model within non-human primate lung 
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For a larger example, we apply CaliPro to a system of 16 non-linear ODEs (see Granuloma ODE 

Equations in  

Appendix F) that capture bacterial, T cell, macrophage and cytokine dynamics within a single 

granuloma lesion that forms within a non-human primate (NHP) lung as an immune response to 

infection with Mycobacterium tuberculosis (46). As a roughly spherical mass of immune cells 

acting to contain bacteria to a local region within the lung, the granuloma is typically a few 

millimeters in size and is the hallmark of tuberculosis. We use CaliPro to explore parameter 

space of this more detailed non-linear ODE model with 108 parameters and identify parameter 

ranges that replicate NHP single granuloma experimental datasets.    

 

 

Figure 7.5 Example 2 - Single Granuloma ODE: CaliPro identifies calibrated parameter 
space using ADS 
500 model simulations are shown (blue lines) overlaid on experimental data (orange data points) for bacterial 
numbers (Bacterial Burden), total numbers of CD3+ T cells and total numbers of macrophages. The 5th, 50th, and 
95th percentiles of model simulations are shown as black lines. Termination criteria: 75% of runs must belong to 
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pass run set. Pass set definition: (All Iterations) Simulation values, at each timepoint, lie within the range bounded 
by an order of magnitude above the maximum experimental data point and an order of magnitude below the value of 
the minimum experimental data point for each experimental dataset. Additionally, for days 90-200, the simulation 
value for bacterial numbers cannot eclipse 36000.  In the final iteration, 91% of the 500 simulations belong to the 
pass run set, exceeding our termination criteria. 
 

Unlike Example 1 above, in this example we calibrate this system of ODEs to three separate 

experimental datasets, rather than a synthetic dataset, shown as orange data points across time in 

Figure 7.5.  There are 628 data points in the bacterial burden dataset and 26 data points in the T 

cell and macrophage dataset. Each separate data point represents experimental data generated on 

outcomes from an individual NHP granuloma.  Thus, while these datasets are not strictly 

temporal in nature, since the data are gathered at the time of NHP necropsy, the outcomes taken 

together can be treated as a single dataset, although it is a collection of data. 

 

We begin the CaliPro process on this system by defining our initial parameter range of values 

for 80 of the 108 parameters in the model. We determined initial parameter ranges by examining 

experimental values from literature as well as other previous models (12,47–54). It is important 

to note that values of some parameters were fairly well-constrained (e.g. extensive data in the 

literature gives rates of bacterial killing) while others are less so. The remaining 28 parameters 

are death or decay rates, ratios or weights for scaling, or other parameters that are constrained by 

the biology and are therefore not varied. We specify the pass set definition such that the 

simulations must fall within the range bounded by an order of magnitude on either side of the 

minimum and maximum experimental data point for every time point across each of the three 

experimental outcomes.  The experimental data range includes over four orders of magnitude, 

therefore our pass set definition was selected because it encapsulates the general behavior of the 

experimental datasets we are using for calibration, and will not remove simulations that are 

within the same order of magnitude as experimental data points. Additionally, we know that the 

long-term behavior of bacterial numbers in granulomas is fairly stable without intervention (55–

57), so we set an upper bound at 36000 bacteria for days 90-200.  If the simulation value for 

bacterial numbers eclipses this bound within those days, the simulation is immediately assigned 

as part of the fail run set.  We sample this initial parameter space to create 500 model simulations 

and show the simulation outcomes overlaid with experimental data (Figure 7.5).  Of this 

sampling, only 6.8% of the runs satisfy the pass set definition. We then use ADS to narrow the 
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parameter space and resample, finding that 46.8% of the runs satisfy the pass set definition 

during the second iteration. We iterate this process until the final iteration yields 91% of the total 

model runs belong to the pass run set, which is above our termination criterion of 75%. 

Additionally, the simulation outcomes are consistent with other information about this biological 

system: we know that bacterial levels of individual granulomas should peak prior to day 50, and 

should stabilize after day 100, whereas T cell and macrophage cell numbers should increase until 

they stabilize or drop around day 75 (55). Thus, CaliPro is able to simultaneously calibrate a 

complex, non-linear ODE system to a series of diverse experimental outcomes and calibration 

goals. 

 

7.4.3 Example 3: CaliPro identifies continuous parameter space for a transmission 
model of infectious disease without assigning likelihoods or informative priors 

 

In a review of Bayesian calibration approaches, Menzies et al. (28) present an ODE model of a 

generic sexually-transmitted disease that includes six state variables, representing non-

susceptible, susceptible, early diseased, late diseased, treated, and dead populations.  Eleven 

parameters govern the rates of transmission between these populations, and the model is 

evaluated for 30 years.  See Menzies et al. for a model schematic and further model details (28).  

The equations for this model are available in  

Appendix F.  

 

Additionally, the authors present three sets of “calibration targets”, or experimental datasets that 

are used to calibrate the model—disease prevalence, treatment volume, and average survival in 

years. Menzies et al. assign functions to approximate likelihoods of modeled outcomes to the 

original datasets and use an SIR technique to probe parameter space and calibrate the model to 

these targets (calibration technique and results recreated herein - Figure 7.6A). However, as 

Menzies et al. point out, care must be taken when deciding to approximate likelihoods, define 

summary statistics, or assign distributions to experimental outcomes (28). Additionally, we 

suggest that any approximations or estimations derived from low sample sizes may introduce 

unnecessary assumptions into the calibration process.  
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Therefore, in this example, we use CaliPro to calibrate their ODE model to the same calibration 

targets, but do not impose likelihoods nor assume any prior known distributions of the 

experimental datasets. Unlike Menzies et al., and in an effort to further test CaliPro, we set our 

initial parameter range to create a parameter space that is uninformative - we uniformly sampled 

each of the seven varied parameters according to an LHS scheme. These initial parameter ranges 

were assigned to the widest values that Menzies et al. selected when they sampled with normal 

(or beta) parameter distributions.  We generated 500,000 samples within this uninformative 

parameter space.  

 

 

Figure 7.6 Example 3 - Disease transmission: SIR and CaliPro calibrations  
A) We recreated the results of Menzies et al. (28) by using SIR to calibrate the ODE transmission model (individual 
model simulations shown as green lines and median trend line shown in black) to three experimental outcomes: 
disease prevalence, average survival (in years), and treatment volume. The average survival graph also shows the 
posterior distribution of average survival across all the parameter combinations. Experimental data are shown as 
black data points. B) Model simulation and experimental outcomes following CaliPro using HDR.  The 5th - 95th 
percentile is represented by the blue region (50th percentile – dark blue line). Termination criteria: 75% of runs must 
belong to pass run set. Pass set definition: (Iterations 1-3) For each time point, simulation values lie within 1.25 
times the maximum experimental data point and 0.75 times the value of the minimum experimental data point for all 
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calibration targets (Iteration 4) Changed the lower bound of pass set definition to be an exact match to the 
experimental data at each timepoint. 
 

Of these samples, we outline a pass set definition as simulations that include average survival, 

treatment volume, and disease prevalence outcomes within the range bounded by 75% of the 

minimum and 125% of the maximum experimental data point for every experimental time point 

across each of the three outcomes. This pass set definition was selected because it encapsulates 

the general behavior of the calibration targets. Following each iteration, we refine parameter 

space by defining the new parameter ranges for each parameter using HDR with a coverage of 

0.75 of the density created by the pass parameter set. After the first iteration, subsequent 

samplings generated 10,000 simulations (fewer samples were necessary to identify the pass run 

set). Following the third iteration, the distribution of the pass parameter set was trending toward 

the minimum values of the calibration target data for average survival time.  Thus, we adjusted 

the lower bound of our pass set definition to be an exact match to the experimental data at each 

timepoint for the fourth iteration. After four iterations, 97% of model simulations satisfy the 

parameter set definition.  Figure 7.6 shows the 95% confidence interval and median line of all 

the simulations in the calibrated parameter space. CaliPro is able to calibrate this model to the 

calibration targets outlined by Menzies et al. despite an uninformative prior and without 

assigning a likelihood function to the datasets. We propose that CaliPro is a useful calibration 

tool for a situation where the modeler is unable to assign priors or likelihoods (e.g. small sample 

sizes). 

 

7.4.4 Example 4: CaliPro successfully calibrates stochastic models: using an agent-
based model of granuloma outcomes as an example 

 

While CaliPro displays a promising ability to identify robust parameter space for ODE models 

of varying complexity, stochastic models are notoriously difficult to calibrate (28).  We posit that 

CaliPro is agnostic to model formulation and therefore unbothered by new complexities that 

stochastic models raise in traditional calibration settings. Thus, we apply CaliPro to a stochastic 

agent-based model of granuloma formation, GranSim. 
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GranSim is a two-dimensional hybrid agent-based model of granuloma formation during 

Mycobacterium tuberculosis infection. GranSim captures the environmental, cellular, and 

bacterial dynamics at the site of infection across molecular, cellular, and tissue-scale events. The 

spatial environment of this model is a 4 mm by 4 mm section of lung tissue.  Agents (cells) 

populate this environment and constitute various immune cells as well as bacteria. The cells 

interact with one another across time according to rules that dictate movement, speed, 

proliferation, and change of phenotype.  Chemokines and cytokines also exist on the lattice, but 

are represented as continuous values instead of individual agents, making the model a hybrid 

formulation.  As an established model, GranSim has been modified and calibrated across 15 

years extensively to data from the NHP model of tuberculosis (12,50–53,58–60) and see 

GranSim website for more details: http://malthus.micro.med.umich.edu/GranSim). Herein, we 

present a single calibration effort of this model using CaliPro.  

 

Our data for single granuloma formation is the same as the experimental data we used to 

calibrate the granuloma ODE model (example 2). However, for this calibration, we use bacterial 

numbers as the primary measure to sort pass and fail simulations, then use the immune response 

metrics (T cell and macrophage counts) and visual confirmation of granuloma formation (via 

agent-based model snapshots) as validation measures.  This adds a new spatial criterion that must 

be met in addition to the temporal dataset criteria.  

 

For comparison, we select the initial parameter ranges to be the same as a previous manual 

calibration effort performed in the lab – where 52 of 131 parameters in GranSim are varied 

within reasonable bounds according to values from literature and previous versions of the model 

(12,50–52). We sampled this parameter space 1000 times according to an LHS scheme with 

three replicates each to create 3000 unique in silico granulomas (Figure 7.7).  For the first 

iteration, we specified the pass set definition to include simulations where total bacterial numbers 

in the simulation were less than the maximum experimental value (36000) at day 85.  This pass 

set definition was selected because we wanted to isolate the simulations whose bacterial values 

decreased after peaking near day 40. After the first iteration, 62% of the runs satisfy the pass set 

definition. We refine the parameter space using the ADS method and resample to create another 

set of 3000 granulomas.  At iteration 2, we redefined our pass set definition so that simulations 
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must have less than 104 bacteria at day 175 – an additional criterion that was implemented so 

that simulation bacterial numbers remain stable across time. Of the 3000 simulations, 67.5% 

satisfy this new pass set definition. Again, we refined the parameter space using ADS, and 

resampled.  However, this time 83% of simulations satisfy the pass set definition, eclipsing our 

preset termination criteria of 75%.  As a validation step, we checked the immune response of 

these calibrated simulations to ensure the majority fell within the bounds created by the T cell 

and macrophage experimental data (Figure 7.7).  NHP granulomas have a distinct formation and, 

while there is variation, there are generally well-accepted spatial structures (55,61). So, as a 

secondary validation step, we manually inspected screenshots of the agent-based model to ensure 

that they recapitulated known granuloma spatial characteristics. This introduces modeler bias, 

however, with most experimental studies, assumptions and decisions are necessary. We are 

currently working on a way to automate visual discrimination of both simulated and 

experimental granulomas. Thus, CaliPro is able to calibrate a complex, stochastic and discrete 

hybrid model to a set of diverse experimental outcomes, calibration goals, and validation 

datasets. 
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Figure 7.7 Example 4 - agent-based model: CaliPro finds calibrated parameter space using 
ADS.  
Model simulations (blue lines) and experimental data (black data points representing total bacterial numbers, total 
Macrophage cell counts, and total CD3+ T cell counts) across time in days. The 5th, 50th, and 95th percentiles of 
model simulations are shown as dark blue lines for the final iteration. In simulations where bacterial burden 
sterilizes, the macrophage count drops below 10.  Termination criteria: 75% of runs must belong to pass run set. 
Pass set definition: (Iteration 1) Simulations with total bacterial numbers less than the maximum experimental value 
(36000) at day 85. (Iteration 2 & 3) Simulations with total bacterial numbers less than 104 at day 175. 
 

7.5 Discussion 
 

Increasingly, mathematical and computational models are utilized to interrogate complex 

biological systems, provide context to understand interactions, and make predictions.  Model 
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calibration is a crucial step that ensures models reasonably portray biological complexities in the 

real system and can thus make reliable inferences or predictions of future system state(s). 

However, traditional calibration approaches are not always appropriate for complex biological 

models due to one of two drawbacks: 1) many calibration approaches minimize an objective 

function in order to recapitulate only a single aspect of the experimental data (such as a median 

trend) or 2) Bayesian calibration techniques require specification of parameter priors and 

likelihoods of experimental data which cannot always be confidently assigned if there are low 

numbers of experimental samples or if distributions across samples are indistinguishable. As 

such, we have developed CaliPro, an iterative calibration protocol that utilizes parameter density 

estimation to refine model parameter spaces and to calibrate models to temporal biological 

datasets.  

 

By assigning model simulations to a pass or fail run set upon each sampling of parameter space, 

CaliPro provides an automated framework through which the goals of calibration are clearly 

defined and standardized.  Further, as the definition of pass vs. fail is a user-intensive step, the 

roles of both modelers’ expertise and biologists’ intuitions are more explicitly integrated into 

CaliPro. As such, specifying a pass set definition is perhaps the most crucial step in CaliPro. 

However, it can easily be defined by considering the acceptable criteria under which the modeler 

might be satisfied when calibration is considered complete. For example, there may be multiple 

calibration goals, as we outlined in Example 2, where model simulations must match the general 

dynamics outlined by the three separate experimental datasets.  Additionally, by imposing an 

upper-bound for bacterial numbers at later time points, we explicitly integrated the intuition of 

the biology into the calibration process.  We believe that CaliPro’s incorporation of explicit 

definitions of intuition are an important contribution of this method that is typically overlooked 

within other calibration procedures.  

 

Relatedly, the modeler can toggle the pass set definition according to bounds defined by the 

datasets available. If the datasets are sparse or are estimated across a wide range of studies, then 

a modeler can assign a pass set definition that is more lenient.  Conversely, if a modeler is certain 

that datasets represent an absolute maximum or minimum value that could ever be observed 

experimentally, then the modeler should define a very strict adherence to dataset(s).  Like others 
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(44), we tend to subscribe to the notion that a model likely captures more biological variability 

than the heterogeneity observed from the naturally limited sample sizes procured from 

experimental datasets. 

 

If CaliPro fails to identify a robust calibrated parameter space, the user should evaluate their 

input prior to attempting other methods of calibration. Primarily, we suggest evaluating the pass 

set definition. This is a crucial step within CaliPro, and as our results section shows, iteration 

successions do not require the same pass set definition.  In general, we have found the number of 

CaliPro iterations should have an inverse relationship with the leniency of the pass set definition. 

Thus, the pass set definition should become more strictly aligned with the experimental datasets 

as CaliPro progresses through iterations.   

 

The method of refining the model parameter space is another user input that can dictate the 

success of calibration.  HDR more quickly narrows parameter space between iterations.   If the 

range of experimental data is very narrow, HDR may be the correct choice (such as the predator-

prey model and transmission ODE model examples).  However, if the range of experimental data 

varies greatly within one time point, ADS might be the more appropriate choice.  In general, we 

suggest that modelers use ADS as this method accounts for information from all aspects of 

parameter space (pass and fail sets) whereas HDR only includes information from a subset of 

space (only pass sets).   

 

While we have shown that CaliPro works for both stochastic and deterministic models, CaliPro 

may not be the correct approach for every calibration situation. For example, there is a vast 

literature of calibration solutions targeted at recapitulating just one dynamic in a mathematically 

rigorous manner.  Further, CaliPro is only able to identify a parameter space where system 

outcomes recapitulate the dynamics of the experimental dataset. In the predator-prey model 

(Example 1), it is well-known that the system can exhibit chaotic behavior (62). However, 

because the synthetic experimental dataset for that example does not exhibit this chaotic 

behavior, CaliPro does not identify a parameter space that captures that system behavior.  More 

generally, when applying CaliPro to any modeling system, CaliPro is unlikely to find behavior 
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that exists outside the ranges of calibration datasets, and thus may “miss” potentially interesting 

behaviors that could be predictions of the model for other parameter ranges.   

 

Additionally, if the modeler is comfortable specifying likelihood functions to relate the model 

and experimental datasets in-hand, we suggest employing one of the suites of Bayesian 

calibration approaches, such as SIR. Further, in our experience, calibrating agent-based models 

that exhibit oscillations (such as agent-based models of predator-prey dynamics) with CaliPro is 

a difficult task.  Identifying the pass run set in such a situation is complicated as the timing of the 

oscillations may differ between model simulation and experimental data, resulting in a failed run 

even when frequency and peak-to-trough values of simulations and experiments are identical. 

For agent-based models that exhibit oscillations, one could perform a Fourier transform on 

simulation outcomes and compare to experimental data within the frequency domain to evaluate 

the model as one solution.  

 

In addition to enabling models to reasonably approximate biological processes, we believe a 

great strength of CaliPro is the potential to extend beyond the calibration protocol itself. In 

particular, the parameter density plots (as we showed in Figure 4) that are created for the pass 

and fail parameter sets within every iteration provide a large amount of information to the 

modeler.  In general, we advise using the parameter density plots as a quick and easy method to 

identify and focus on certain behavior in the model. For example, if a subset of runs exhibit 

interesting behavior near the end of a simulation, the modeler can consider this subset the pass 

run set and then compare the parameter densities of the pass parameter set to those of the fail 

parameter set – those that do not exhibit the behavior.  Moreover, after the final iteration, when 

the model has been calibrated to the experimental datasets, a modeler could use the parameter 

density plots (Figure 4) in order to identify the ideal prior distribution of each parameter (instead 

of uniform or normal) for future model simulations.  Finally, beyond the scope of this paper – 

but an important consideration for any calibration or modeling process – we believe the 

parameter density plots offer a possible method for identifying highly correlated parameters by 

isolating parameters whose density plots are near identical across model behavior (see (63) for an 

excellent framework to address parameter identifiability). 
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8 Conclusions and Future Directions 
 

8.1 Summary 
 

One quarter of the worldwide population is currently infected with Mycobacterium tuberculosis 

(Mtb), the causative agent of tuberculosis (TB) (1). In the context of the ongoing COVID-19 

pandemic, TB still represents a significant global burden and is the second-leading cause of 

global morbidity from an infectious agent (2). The ultimate weapon against TB would be a 

highly efficacious vaccine. Despite considerable effort and multiple large-stage clinical trials 

across the past two decades (3,4), a clinically effective vaccine has remained elusive.  

 

Identifying the various roles that T cells play in Mtb infection is critical to develop effective 

vaccines and host-directed therapies against TB.  Experimental studies have proven invaluable in 

characterizing the fundamental functions of T cells during Mtb infection.  However, the clinical 

failure of past vaccines developed using reductionist approaches suggests that a new approach is 

necessary to fully appreciate their role in TB.   

 

In this dissertation, we used a computational and mathematical modeling approach to integrate 

datasets across multiple scales and better understand the role of T cells in controlling Mtb 

infection at both the granuloma and whole-host scale.  We use computational modeling to 

compare T-cell responses between species following vaccination and utilized a model of 

granuloma formation to explain low levels of T cell exhaustion. Finally, we present a whole-host 

modeling framework that has implications for evaluating future vaccination or therapeutic 

strategies in TB.  The major conclusions of this dissertation are listed below, organized by main 

findings. 

 

8.1.1 The granuloma is a physical barrier that prevents T-cell exhaustion 
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T-cell functionality within a granuloma has been previously shown to be surprisingly low, 

wherein approximately 10% of T cells produce cytokines (5).  One hypothesis for the observed 

lack of T-cell function is T-cell exhaustion. T-cell exhaustion is a type of T-cell dysfunction 

characterized by a loss of effector functions and caused by chronic antigen stimulation (6,7).  In 

Chapter 2, we investigated the possibility of T-cell exhaustion within TB granulomas.  

 

Despite the potential for chronic antigen stimulation within a granuloma, T cells in NHPs 

experiments did not exhibit phenotypic markers of T-cell exhaustion.  Further, we used GranSim, 

a computational model of granuloma formation and function, to show that T-cell exhaustion is 

not present at high levels within in silico granuloma formation. We illustrate that chronic antigen 

stimulation, and therefore T-cell exhaustion, can only occur within the center of granulomas.  

We therefore predict that the structure of the granuloma itself prevents the potential of 

widespread T-cell exhaustion.  This prediction suggests that the structure of the granuloma may 

also prevent T-cell function, as the majority of T cells are located at the outer-most layers of the 

granuloma, far from infected macrophages within the center of the granuloma. Other work in our 

lab supported this hypothesis (8). 

 

8.1.2 Multi-functional CD8+ T cells prevent dissemination of bacteria throughout the 
lung 

 

The majority of granulomas that form following Mtb infection contain bacteria to an isolated 

environment within the lung (9). However, some granulomas are unable to control Mtb growth, 

leading to bacterial escape and spread elsewhere within the lung environment. These bacteria 

seed the growth of new granulomas and are associated with poor TB outcomes for hosts (9). In 

Chapter 3, we built MultiGran, a novel whole-lung model of multiple granuloma formation in the 

lungs to track and predict rates of dissemination.  We calibrate this multi-scale model to 

granuloma-scale datasets and then validate the model against whole-lung datasets. We perform 

sensitivity analysis to identify mechanisms that prevent dissemination events through the lungs 

across time.  We predict that the relative percentage of granuloma CD8+ T cells that can exhibit 

both cytotoxic and cytokine-producing functions is negatively correlated to the number of 

dissemination events across time.  This particular type of T-cell, known as a multi-functional 

CD8+ T cell, has been relatively understudied within TB literature (10).  Our work suggests that 
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this cell requires further study and offers potential to prevent the worst forms of TB disease.  We 

propose that future vaccination and therapeutic efforts should attempt to induce greater numbers 

of this particular cell type within granulomas. 

8.1.3 Prior BCG vaccination impacts the T-cell response to current vaccines 
 

The only licensed TB vaccine is not highly efficacious against adult forms of TB.  The vaccine, 

called Bacillus Calmette-Guérin (BCG), is widely used at birth to prevent TB disease in infants 

and children, but its efficacy amongst the adult population varies from 0-80% (11,12). A highly 

efficacious vaccine would be the ultimate weapon against the TB global epidemic. However, TB 

vaccine candidates have failed to be highly effective during large-scale clinical trials. H56 is a 

TB vaccine in phase II clinical trials that was previously shown to be effective in NHP studies 

(13).  

 

In Chapter 4, we use H56 as a case study to explore similarities and differences between human 

and NHP T-cell responses to vaccination.  We calibrated a two-compartment lymph node and 

blood ordinary differential equation model to the NHP and human T-cell response to ESAT6 and 

Ag85B antigens following vaccination with BCG and H56.  We demonstrate that NHP and 

human T-cell responses to the H56 vaccination were generally similar, with a few differences in 

rates of cell proliferation, differentiation and reactivation.  We additionally show that the 

secondary response of both species to Ag85B (an antigen present in both BCG and H56 

vaccines) upregulates differentiation to a central memory CD4+ T cell phenotype.  This 

prediction indicates that prior BCG vaccination will influence future vaccination efforts:  we 

suggest that the preclinical efficacy of any new TB vaccine candidates must be evaluated within 

the context of prior BCG vaccination, as the majority of the world has received BCG at birth 

(14).   

8.1.4 A whole-host model describes the multiscale immune response to Mtb 
 

In Chapter 5, we present a novel whole-host modeling platform.  By linking the models 

developed and utilized in Chapter 3 and Chapter 4, we developed a multi-scale model that tracks 

the formation of multiple granulomas, dissemination events within the lungs, and the adaptive 

immune response to Mtb infection across the lymph nodes, blood, and granulomas within a 

virtual host.  The model, called HostSim, was calibrated and validated against multiple NHP 
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datasets across granuloma and whole-host scales.  HostSim has the potential to be used within 

multiple realms of TB research. As shown in this thesis, it can be used as a tool to investigate 

basic questions about the immune response following Mtb infection or reinfection.  However, it 

has the potential to be used in epidemiological studies or as a tool to investigate therapeutics, 

antibiotic regimens, or vaccination strategies within a broader, personalized-medicine approach 

to TB care.  These later applications are further discussed within the future directions of this 

chapter. 

8.1.5 Biomarkers may be transient in TB 
 

Clinically, TB patients are often placed within one of two binary classifications: latent 

tuberculosis or active tuberculosis.  Latent tuberculosis (LTBI) cases are asymptomatic, 

potentially contagious individuals who harbor the bacteria yet show no outward signs of disease.  

Active TB cases exhibit the symptoms of TB disease (i.e. fever, night sweats, coughing, weight-

loss, etc.).  Much remains unknown about the biology that drives an individual towards LTBI or 

active TB outcomes, but many studies have attempted to identify biomarkers differentiating 

these two states (reviewed in (15–18)).   

 

In Chapter 5, we demonstrate the utility of mathematical and computational modeling 

approaches to act as a bridge to better understand events within a host that lead to empirically 

evident whole-host outcomes (such as LTBI or active TB).  We calibrate and validate HostSim to 

multiple datasets and find that early events in Mtb infection are predictive of clinical 

classifications over 100 days later.  Importantly, we predict that the relationship between blood 

immune cell numbers and numbers of cells in the lung may only be well-defined at early 

timepoints following infection.  When a patient presents in the clinic months or years later, cells 

in the blood may not reflect events occurring in the lung. As such, we predict that biomarkers in 

TB may not be generalizable to every patient, at every point in time. 

 

8.1.6 Protection against reinfection is dependent on resident memory T cells that wane 
across time 

 

Concomitant immunity is a paradoxical immune status wherein protection against pathogen re-

encounter coincides with an inability to clear the persistent, primary infection (19).   In TB, 
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concomitant immunity in NHPs is robust at relatively short timepoints between primary and 

reinfection (20). However, the mediators and longevity of a concomitant immune response in TB 

are unknown, although it is hypothesized that resident memory T cells (TRM) play a prominent 

role in preventing reinfection.  

 

In Chapter 6, we perform multiple sets of virtual reinfection studies across a population of 

HostSim virtual hosts. We predict TRM are the main drivers of a concomitant immune response 

in TB.  Further, we predict, for the first time, the lifespan of these cell populations in human 

lungs. We predict that protection against reinfection begins to wane with the loss of these cell 

populations across time (~3 years). However, in the absence of TRM, we still observed limited 

protection against active TB during reinfection, an outcome that was driven by high levels of 

circulating Mtb-specific T cells in the blood originating from primary infection. 

 

8.1.7 CaliPro can calibrate complex models to diverse biological datasets 
 

Calibrating mathematical and computational models to biological datasets can be a difficult task.  

In Chapter 6, we present a new protocol for calibrating complex models to multiple biological 

datasets across time.  We demonstrate the utility of this protocol, called CaliPro, to quickly 

calibrate deterministic or stochastic models to a robust parameter space wherein the vast majority 

of model runs will satisfy user-provided criteria for calibration. We comment on crucial aspects 

of the calibration process, including formalizing a modeler’s calibration goals within what we 

call the ‘pass set definition’.  We introduce a new method of refining and narrowing parameter 

space, called alternative density subtraction (ADS), which leverages information from both 

regions of parameter space where model runs match experimental data as well as regions of 

parameter space where model runs fail to match experimental data.  Finally, we postulate that 

CaliPro could be extended further as an analysis tool to isolate intriguing model outcomes.      

 

8.2 Future Directions 

8.2.1 Future directions in T-cell biology and memory 
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The immune response to Mtb is T-cell dependent. Throughout this dissertation, we have 

incorporated known and hypothesized functions of the T-cell mediated adaptive immune 

response into various mathematical and computational models.  As key takeaways, we have 

predicted the importance of two cell types, CD8+ multifunctional T cells and resident memory T 

cells, that could be further evaluated for therapeutic or vaccination efforts. 

 

However, much still remains unknown about T-cell biology.  In particular, there are two 

outstanding questions for T-cell biology in the context of Mtb infection.   First, what are the 

mechanisms that cause a T cell to set up residency within the lung?  Second, what are the 

characteristics of a memory T-cell pool across time? In Chapter 6, we model the establishment of 

resident memory T-cell populations in the lung phenomenologically due to a lack of evidence on 

how precisely T cells establish permanent residency in the lung (21–23).  However, future work 

could test various mechanisms of residency by asking questions such as ‘do TRMs differentiate 

from effector cells that enter the lung?’ or ‘are TRM truly a separate T cell with distinct 

functions or are they a type of highly specialized effector memory cell’? In order to model these 

scenarios, longitudinal datasets from cells in both lung and blood are required – datasets that are 

difficult to curate in NHPs or humans and can only be derived from parallel mice studies.  

However, as we showed in Chapter 6, even fundamental aspects of TRM biology (i.e., death 

rate) differ between primates and mice, limiting the utility of mice as an animal model for 

questions about TRM. In order to mechanistically model these cell populations, we need more 

experimental evidence of establishment in the lungs and the role(s) they play in clearing 

infection.   

 

Textbook immunology teaches that there are distinct subsets of T-cell memory that are generated 

and maintained across time.  However, recent work has suggested that T-cell memory subsets 

might not be independent. For example, in Sendai virus infection and lymphocytic 

choriomeningitis (LCMV) infection, the effector memory T-cell population plays a prominent 

role in executing a potent, effective recall response at earlier timepoints following primary 

infection, but the composition of the memory T-cell pool becomes primarily central memory at 

later timepoints (24,25). The paradigm of a dynamic memory T-cell pool has clear applications 

for vaccination, wherein vaccines may be protective shortly following vaccination, but could lose 
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efficacy across time if that efficacy is dependent on shorter lived memory cells or effector 

memory cell populations.  Modeling T-cell memory across time could better inform vaccine dose 

administration (i.e., when to administer a second dose) based on this emerging work. 

8.2.2 Future Directions for GranSim 
 

In Chapter 2, we added a functionality to GranSim that allowed us to make predictions about T-

cell exhaustion within tuberculosis lung granulomas.  Herein, I make three suggestions that could 

extend the utility of GranSim, not only regarding T-cell dynamics during infection, but when 

addressing broader questions related to dissemination or contagiousness.   

 

First, as shown in Chapter 2, the spatial structure of the granuloma is inherently related to the 

functionality of T cells.  This prediction has been validated by other work within the lab that 

showed granuloma structure not only prevents T-cell exhaustion, but also can inhibit proper T 

cell function at the site of infection (8). However, GranSim does not track multi-functional T 

cells within the granuloma, and instead assigns a single function to T cells (IFN-γ producing T 

cells or cytotoxic T cells or regulatory T cells).  In Chapter 4, we used a separate modeling 

framework to predict that multi-functional CD8+ T cells are crucial in preventing bacterial 

dissemination and escape from the granuloma environment.  Modeling multi-functional T-cells 

within the spatial modality of GranSim could further validate this prediction.  Furthermore, 

multifunctional CD8+ T cells have a relatively controversial role in TB and have been associated 

with both active TB, LTBI and vaccinated individuals (26–28).  Exploring the role of multi-

functional T cells within the spatial structure of a granuloma could potentially answer some long-

standing questions within the field about this cell as a potential correlate of protection.  

 

Second, airways and vasculature are important components of granuloma formation that provide 

physical constraints to collective lesion growth and cellular mobility.  In particular, as Mtb is a 

non-motile bacterium, airways offer a conduit for Mtb to reseed elsewhere within the lungs (9) or 

for transmission of disease to other individuals (29).  Additionally, bronchoalveolar lavage 

(BAL) fluid datasets could be used for calibration or validation of airway events in GranSim, as 

this is a type of dataset that can be acquired serially in either NHPs or humans (30). By isolating 

regions of the GranSim grid environment as airways, we could take a relatively easy first step 
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toward modeling how a granuloma may disseminate into the airways and further explore the 

complicated relationship between infection and infectiousness in TB. 

 

Finally, in other work during my time in graduate school, we published a pipeline for identifying 

sub-structures within in silico and in vivo granulomas using topological data analysis and 

graphical information systems (GIS) (31).  Briefly, we tested the ability of various machine 

learning algorithms to predict associations between granuloma structural patterns and 

uncontrolled or controlled bacterial growth outcomes (31).  This pipeline could be extended for 

the comparison and integration of novel datasets within GranSim. In particular, spatial 

transcriptomics (32) is a new technique that could generate unique datasets for direct comparison 

with GranSim’s cellular location and structure datasets. Pairing spatial transcriptomics from 

slices of NHP granulomas, GIS, topological data analysis, and agent-based modeling could 

provide fundamental understanding about granuloma structure across time and could better 

inform antibiotic design. 

8.2.3 Future Directions for HostSim  
 

8.2.3.1 Improvements to dissemination in HostSim 

 
In HostSim, we model dissemination events in a phenomenological way.  Dissemination is 

modeled as a probability based on the bacterial burden of a granuloma.  As currently modeled, 

the majority of dissemination events occur after day 50.  However, its known that dissemination 

events can also occur quite early within infection (9), an outcome not well-described by these 

first versions of HostSim.  One issue with capturing early dissemination is the lack of known, or 

even hypothesized, mechanisms that drive dissemination.  Current, ongoing work within the lab 

using GranSim shows that neutrophils are a potential vehicle of local dissemination 

(unpublished).  Neutrophils are cells that can respond at very early timepoints during infection, 

have the unique capacity for surviving within caseum, and are phagocytic cells that are unable to 

kill intracellular Mtb (33).  Consequently, this cell type is potentially an early instigator of local 

dissemination events. Translating those studies from GranSim to model neutrophils within 

HostSim could provide greater insight into local dissemination events at early timepoints.  
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Non-local dissemination events in HostSim could be modeled more mechanistically in two ways.  

The first, and perhaps most straightforward solution, is to add greater anatomical structure to the 

lung architecture of HostSim.  This added detail would not only provide physical structure to 

non-local dissemination but could lend greater insight into the relationship between individual 

granuloma outcomes and infectiousness during Mtb infection.  MRI and CT scans of the lungs 

provide information about airway location and vasculature within lungs (34).  By adding 

bronchial trees and airways, HostSim granuloma inoculation could become more mechanistic, 

and as granulomas develop, non-local dissemination could be an event triggered by granuloma 

growth into one of the airways. With this suggestion, I hypothesize that non-local dissemination 

events may be more related to granuloma location and size than granuloma CFU, although 

granuloma size and CFU are loosely associated (35). 

 

Second, lymph nodes have been identified as a relatively neglected site of infection within TB 

(36), and are thought to be both an origin and terminus of bacterial dissemination (37).  

Modeling lymph node granuloma formation is a natural next step in HostSim that not only 

provides mechanisms for non-local dissemination, but also provides another whole-host outcome 

for HostSim: extrapulmonary TB.  In Chapter 5, we note that HostSim only tracks three unique 

physiological compartments.  Should we wish to capture some of the worst forms of TB 

(extrapulmonary TB), modeling bacteria within the lung-draining lymph node is a good first 

step.        

8.2.3.2 Adding resolution to the blood compartment in HostSim  

 
In Chapter 5, we showed that immune cell counts in the blood compartment can be transiently 

indicative of ongoing events within the lung and eventually drive clinical outcomes at the whole-

host scale.  While NHP studies have shown that the blood is not consistently reflective of events 

within the lungs, association studies in humans tell another story. In particular, many association 

studies attempt to delineate LTBI from active TB based on cytokine profiles within the blood 

(15–18,38–46). These studies often offer contradictory evidence about the role of various 

cytokines and desperately require mechanistic analysis to provide clarity about which biomarkers 

may be relevant in a patient-specific manner (40).  Further, clinical trials of TB vaccine 

candidates often sample the blood at consistent time points in order to characterize cell function 
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and cytokine secretion within the blood (47).  These studies are indicative of the never-ending 

search for biomarkers of infection progression and correlates of protection within TB.  

 

Modeling cytokines within the blood compartment of HostSim would enable us to directly 

integrate this large set of human data into HostSim.  In Chapter 3, we showed the utility of 

modeling as a translational tool to compare NHP and human responses to a vaccine.  Modeling 

cytokines like TNF, IL-10, or IFN-γ would allow us to continue to use modeling in this capacity 

- as a tool to bridge the translational gap. Finally, we have previously published studies regarding 

the dynamic balance of pro-inflammatory and anti-inflammatory cytokines at the sites of 

infection during chronic disease (48).  By modeling cytokine dynamics within the blood 

compartment, we could test the hypothesis that this dynamic balance is intrinsically systemic 

(40), and not necessarily isolated to the sites of infection in TB. 

 

8.2.3.3 Integrating single cell sequencing datasets into HostSim 

 
A constant challenge in modeling is the integration of novel datasets that may not be perfectly 

suited for a given modeling platform.  As modelers, we are often forced to ask ourselves: should 

we transform the data (at some loss in resolution) in order to fit the conditions of the modeling 

framework or should we change the modeling technique?  For example, in this dissertation, we 

used several different modeling techniques in order to answer the scientific question at hand.  We 

used an agent-based model to answer questions about the spatial behavior of T cells in Chapter 2, 

then utilized a blood and lymph node model in Chapter 4 to answer questions about the 

magnitude and timing of T-cell response to TB vaccines, and finally, created whole-lung and 

whole-host models in order to answer questions at that scale in Chapter 3, Chapter 5 and Chapter 

6.  Each choice between model platforms depends on 1) the scientific question and 2) the 

available datasets to inform model development. 

 

Recently, our experimental collaborators published single cell profiling data (scRNA-Seq) on 

lung granulomas (49).  While spatial transcriptomics techniques offer comparisons to ABM 

platforms like GranSim (see above), single cell sequencing datasets offer excellent calibration 

targets for ODE models. Briefly, scRNA-Seq in this context provides counts, concentrations, or 
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percentages of cell types within a tissue sample at a given time point.  Similarly, the outcomes of 

HostSim granuloma ODEs are cell counts across time. Therefore, we can directly compare ODE 

outcomes to the single cell data across multiple time points. This new data can be paired with our 

flow cytometry datasets that have been used for calibration with CaliPro, as discussed in Chapter 

6.  I should note that the proposal to integrate scRNA-Seq datasets as calibration targets is 

accompanied with a bit of caution. Interpreting single cell data in this manner requires an 

inherent assumption: gene expression is suggestive of cellular function within a granuloma. 

8.2.3.4 Evaluating therapeutics using a virtual patient 
 

 

In Chapter 5, we presented a first-of-its kind whole-host modeling framework that tracks the 

immune response across lymph nodes, blood and individual granulomas in lungs following Mtb 

infection. As shown in this dissertation, HostSim can be used to identify cellular mechanisms that 

prevent the worst forms of TB and could therefore be evaluated as new therapeutic targets (such 

as multifunctional CD8+ T cells).  As a first step towards the development of a virtual 

tuberculosis patient, HostSim has the potential to evaluate therapeutic combinations or strategies 

against TB.  

 

In Chapter 4, we utilized the blood and lymph node compartments of HostSim to compare NHP 

and human responses to a TB vaccine called H56.  Our sensitivity analysis revealed the third 

H56 dose in humans was not significantly associated memory T cell counts across time.  While 

the relationship between memory T cell counts and vaccine efficacy is yet to be explored, this 

result suggests that the H56 dose administration regimen was not optimized to maximize T-cell 

memory generation.  Our analysis predicts that even a brute force comparison of multiple H56 

dose regimens in HostSim prior to clinical trials would have led to the selection of a better H56 

dose administration protocol.  By employing a virtual clinical trial approach prior to the actual 

clinical trial, resources and trial time could have been saved while still maximizing memory T 

cell magnitude across time. 

 

This idea to optimize vaccine dose administration is seldom mentioned within the literature.  In 

total, only three papers have been published on the topic (50–52). The authors call this process 

immunostimulation/immunodynamics (IS/ID), analogous to the process of 
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pharmacokinetics/pharmacodynamics (PK/PD) that analyzes the effects of drug dose 

administration. In particular, the TB vaccination field would benefit enormously from an IS/ID 

approach paired with HostSim as TB vaccine clinical trials are notoriously non-standardized 

from trial to trial, and it is difficult to compare trial results statistically (47). We showed in 

Chapter 4 that mathematical modeling is a tool that has the flexibility to compare non-standard 

protocols and lend insight into different mechanisms that may drive outcomes across studies. 

Should we include cytokines in the blood compartment of HostSim (as suggested above), 

HostSim quickly becomes an in silico platform for directly comparing and analyzing TB 

vaccines across non-standardized protocols and could inform dose selection, timing of 

administration and clinical trial design. In ongoing lab work, antibiotic regimens are being 

integrated for comparison and evaluation within the HostSim framework. 

 

8.2.4 Extending Model Development, Analysis and Calibration 

8.2.4.1 CaliPro v2.0 – a generalized calibration suite 

 
In Chapter 6, we demonstrate that CaliPro can calibrate simple, complex, deterministic or 

stochastic model formulations to biological datasets across time. CaliPro was intentionally 

conceived as a flexible calibration protocol such that the pass definition can be formalized in a 

manner fit for the modeler’s calibration specifications.   

 

Implementing a generalized coding framework for CaliPro would further extend this goal for a 

flexible calibration process.  There are several ways I propose generalizing CaliPro. First, I 

suggest extending our methods of redefining parameter space (ADS or HDR) to a multi-variate 

method that incorporates densities from multiple parameters. Currently these methods are 

applied on a 1D space (for each parameter), but more information about parameter identifiability 

or parameter dependencies could be harnessed by performing these methods across the 

multidimensional parameter space.   

 

Additionally, there are several ways that CaliPro could be generalized from a single calibration 

protocol to a become a suite of calibration tools.  Depending on the situation, a modeler may 

want to optimize model outcomes to recapitulate a single median line of the experimental data.  
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Should that be the case, CaliPro could offer that utility by including popular gradient descent 

optimization algorithms to search parameter space. Additionally, there are many Bayesian 

calibration techniques that employ more rigorous statistical comparisons between model 

outcomes and experimental datasets than CaliPro currently does.  If a modeler is comfortable 

with a potentially discontinuous parameter space, then they could instruct CaliPro to employ a 

method like Sample Importance Resampling.  Further, CaliPro could then be used to directly 

compare different calibration techniques, as offering techniques such as Sample Importance 

Resampling alongside ADS/HDR methods allows for head-to-head comparison of methods.  

Perhaps more importantly, if multiple methods agree on the same parameter space, then the 

modeler can be even more confident in their model structure, parameter space, and modeling 

assumptions prior to making predictions specific to their biological system of interest.    

 

8.2.4.2 Unifying machine learning and mechanistic modeling 

 
Machine learning is a powerful tool within biomedical sciences.  At minimum, machine learning 

algorithms provide a user with the ability to quickly derive patterns from datasets and use 

features within a dataset to predict outcomes of interest.  However, if the data is incomplete, 

sparse, or cannot fully capture the relationships between features and outcomes, it can fail to 

provide useful insights.  In precisely these circumstances, I suggest a hybrid approach wherein 

mechanistic modeling can be paired with machine learning, to ‘fill in the gaps’ and enhance the 

resolution of datasets by providing rules about known relationships for the biological problem at 

hand. Pairing machine learning and mechanistic modeling techniques, while rare, has provided a 

unique approach to resolve a set of problems within biomedical science (53).   

 

Conversely, machine learning could also be used to coarse-grain a sub-model within the larger 

modeling framework. As mechanistic models grow larger and build towards the ‘virtual patient’, 

some aspects of the modeling platform must be coarse-grained due to computational expense 

(54).  In this case, machine learning can offer a previously trained model that can quickly relate 

inputs from one scale to outputs at another scale and thereby coarse-grain the processes within 

scales that are not-of-interest.  For example, in GranSim a large computational cost is the 

diffusion process of cytokines.  If we trained a neural network (or other machine learning 
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algorithm) to a large dataset of diffusion values from previous GranSim runs, we may not need 

to run diffusion across every time step, for every simulation, as we do now.  Instead, the neural 

network acts as a type of ‘intelligent look-up table’ that can quickly and accurately predict the 

values of cytokines across the grid space from time step to time step.  A multiscale model of 

thrombus growth used a neural network in this manner to coarse grain platelet cell signaling (55). 

Of course, if the scientific question at-hand requires running diffusion (for example: how well do 

antibiotics diffuse through the granuloma?) other aspects of the model could instead be coarse-

grained.  

 

Despite the potential utility of this hybrid approach, it appears as though both machine learning 

and mechanistic modeling fields have developed in parallel.  Even if researchers do not adopt a 

hybrid approach that combines machine learning and mechanistic modeling, I argue for greater 

crosstalk and communication between fields. Model interpretability is an example of a common 

issue expressed in both fields, and both fields have employed similar-yet-distinct approaches to 

make ‘black-box’ models more interpretable.  In particular, sensitivity analysis in mechanistic 

modeling is analogous to feature importance in machine learning.  Both fields would benefit 

from evaluating the techniques utilized within the opposite field. While our lab has utilized 

surrogate models as a tool to perform antibiotic dose optimization studies (56), I propose using 

surrogate models as a method for analyzing the relationship between model parameters and 

model outcomes. For example, for any GranSim simulation, we can consider model parameters 

as the ‘features’ of our dataset and the binary outcome of granuloma sterilization (1 for 

sterilization, 0 for uncontrolled bacterial growth) as our prediction. Then, if we fit a random 

forest to this GranSim dataset, we could utilize a feature importance algorithm, like SHAP values 

(57), to identify the features (i.e. GranSim parameters) that were weighted most heavily in 

predicting whether that granuloma would sterilize or not.  This type of analysis could be paired 

with traditional sensitivity analysis approaches (such as PRCC (58)) to strengthen conclusions 

about important drivers in granuloma outcomes.  In this example, I have suggested pairing 

machine learning techniques with GranSim, as GranSim (particularly in 3D) can be 

computationally expensive, but this type of analysis could be incorporated within HostSim or any 

other modeling framework. 
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8.2.5 Future directions for TB vaccination – how can we develop a clinically effective 
vaccine?  

 

The final year of my dissertation was completed remotely due to the COVID-19 worldwide 

pandemic.  In November of 2020, less than one year after sequencing the SARS-CoV-2 genome, 

phase III clinical trial results were announced for two vaccine candidates that utilized a novel 

mRNA platform: both had greater than 90% efficacy (59,60).  This extraordinary achievement 

motivates an obvious comparison to TB, the other leading cause of death by infectious agent 

worldwide, that has no such clinically effective vaccine.  

 

In the wake of an extraordinarily successful COVID-19 vaccine effort, we are still left with 

several outstanding questions about TB vaccinology. In the course of my dissertation (2016-

2021), research in immunology has identified new memory T cell subsets (e.g., TRMs as a 

quick-responding adaptive immune cell), and research in vaccinology has discovered new 

platforms for dose administration (e.g., mRNA vaccines) and the TB research field will certainly 

incorporate these findings into the next-generation of vaccine candidates.  However, we are still 

left with a lack of broader context: How does vaccine dose impact immunogenicity? Which 

vaccine platform will work in TB? What if the ultimately successful vaccine strategy requires a 

heterologous approach, wherein the first dose targets memory cell phenotype A using an mRNA 

platform, but the second dose targets memory cell phenotype B using a viral vector platform?  

Should vaccines induce all memory T cell subsets? Or is just 2 enough? Does a highly effective 

and durable vaccine strike some balance between memory T cell phenotypes?   

 

These are the types of questions that are currently unanswerable in TB vaccine research, in part, 

due to the very long and expensive trials that are intrinsic to testing therapies for a chronic 

disease like TB. It is exactly these types of questions – ‘what if’ questions, timing questions, and 

comparisons of therapeutic strategies - that are ripe for mathematical and computational 

modeling in the form of virtual clinical trials.  In this dissertation, I have outlined the utility of 

mathematical and computational modeling in characterizing the role of T cells across multiple 

scales during Mtb infection. I have predicted the importance of two cell types, CD8+ 

multifunctional T cells and resident memory T cells, that can be further evaluated for therapeutic 

or vaccination efforts. Further, I have developed a whole-host modeling framework that offers 



 208 

the first step toward virtual clinical trials that might be able to address some of the above 

questions.  Moving forward, the TB vaccine field needs to embrace modeling and virtual clinical 

trials as a crucial step toward identifying a highly effective clinical vaccine against TB. 
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9 Appendices  
 

Appendix A Supporting Information for Chapter 2 
 

 

Table A.1 Parameter Table for in silico granuloma repositories.  
All ranges, with the exception of the exhaustionThreshold, were performed within the ranges outlined by previous 
versions of GranSim. Our methods section details how we assigned the ranges for the exhaustionThreshold.    
 

Parameter Name  Description  Range  Units  Ref  
growthExtMtbBound  Upper bound of 

number of 
external Mtb 
used in growth 
function   

[180,240]  Number of bacteria  (1-6)  

growthRateIntMtb  Fractional 
growth rate of 
intracellular 
bacteria  

[0.001,0.005]  Unitless  (1-6)  

growthRateExtMtb  Fractional 
growth rate of 
extracellular 
bacteria  

[0.001,0.003]  Unitless  (1-6)  

deathRateExtMtbCasea

ted  

Upper bound on 
the number of 
external Mtb 
used in growth 
function  

[1,2]  Number of bacteria  (1-6)  

Core          

estBoundFactorTNF  Adjustment for 
coarse grained 
internalized 
fraction estimate  

[0.4,0.5]  Unitless  (1-6)  

estBoundFactorIL10  Adjustment for 
coarse grained 
internalized 
fraction estimate  

[0.4,0.6]  Unitless  (1-6)  
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estConsRateTNF  Scaling Factor 
for coarse 
grained TNF 
dynamics  

[5e-4,9e-4]  Unitless  (1-6)  

estConsRateIL10  Scaling Factor 
for coarse 
grained IL10 
dynamics  

[2e-4,6e-4]  Unitless  (1-6)  

estIntPartitionTNF  Scaling Factor 
for coarse 
grained 
internalization of 
bound TNFR1   

[9,13]  Unitless  (1-6)  

nrKillingCaseation  Number of 
killings for a 
compartment to 
become caseated  

[7,13]  Number  (1-6)  

caseationHealingTime  Time it takes for 
a caseated 
compartment to 
heal  

[1700,2600]  Timesteps  (1-6)  

sourceDensity  Density of 
vascular sources 
on the gridspace  

[0.002,0.05]  Unitless  (1-6)  

diffusivityTNF  TNF diffusivity  [4e-08, 6e-08]  Cm^2/second  (1-6)  

diffusivityChemokines  Chemokine  
diffusivity   

[4e-08,6e-08]  Cm^2/second  (1-6)  

diffusivityIL10  IL10 diffusivity  [4e-08,6e-08]  Cm^2/second  (1-6)  

ChemokinekDeg  Chemokine  
degradation rate 
constant  

[0.0005,0.005]  1/second  (1-6)  

kDeg  TNF degradation 
rate constant  

[0.0005,0.005]  1/second  (1-6)  

Ikdeg  Degradation rate 
constant for IL10  

[0.0003,0.003]  1/second  (1-6)  

IC50ChemokineIL10  IC50 of IL10 
inhibition of  
chemokine 
secretion  

[1,10]  Molecules/mL  (1-6)  

thresholdApoptosisTN

F  

TNF threshold 
for TNF-induced 
apoptosis  

[1000, 5000]  Unitless  (1-6)  

kApoptosis  Rate of apoptosis 
happening  

[1e-07, 2e-6]  1/second  (1-6)  

saturationApoptosisTN

F  

Signal saturation 
of number of 
internal bound 
TNFR1 
Molecules  

[5000, 9000]  Molecules  (1-6)  
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minChemotaxis  Minimum of 
Chemotaxis 
sensitivity range  

[1, 50]  Molecules  (1-6)  

maxChemotaxis  Maximum of 
Chemotaxis 
sensitivity range  

[100,1000]  Molecules  (1-6)  

maxIL10Inhibition  Coarse grained 
TNF/IL10 dose 
dependence 
parameter beta  

[0.05, 0.3]  Log10(ng/mL)  (1-6)  

Mac           

initDensity  Initial density of 
macrophages on 
the  
gridspace  

[0.005,0.03]  Unitless  (1-6)  

movementRest  Time required 
for a resting 
macrophage to 
move one 
microcompartme
nt  

[1,10]  Timesteps  (1-6)  

movementAct  Time required 
for an activated 
macrophage to 
move one 
microcompartme
nt  

[10,50]  Timesteps  (1-6)  

movementInf  Time required 
for an infected 
macrophage to 
move one 
microcompartme
nt  

[100,200]  Timesteps  (1-6)  

dTNF  Secretion rate of 
TNF by a 
macrophage  

[1.3,1.7]  Molecules/second  (1-6)  

dCCL2  Secretion rate of 
CCL2 by a 
macrophage  

[4,8]  Molecules/second  (1-6)  

dCCL5  Secretion rate of 
CCL5 by a 
macrophage  

[4,8]  Molecules/second  (1-6)  

dIL10Act  Secretion rate of 
IL10 by an 
activated 
macrophage  

[0.2, 0.4]  Molecules/second  (1-6)  

halfSatIL10  Half saturation 
for  
TNF induction 
of IL10 in an 

[170,210]  Number/cell  (1-6)  



 217 

activated 
macrophage  

thresholdNFkBTNF  TNF threshold 
for NFkB 
activation  

[75,115]  Molecules  (1-6)  

kNFkB  Rate of NFkB 
activation  

[0.7e-5, 1e-5]  Fraction  (1-6)  

probKillExtMtbRest  Probability of a 
resting 
macrophage to 
kill extracellular 
bacteria   

[0.05, 0.3]  Unitless  (1-6)  

fKillExtMtbRest  Fractional 
increase of a 
resting 
macrophage to 
kill extracellular 
bacteria when  
STAT1 or NFkB 
pathways are on  

[0.3,0.5]  Unitless  (1-6)  

nrExtMtbNFkB  Number of  
extracellular 
bacteria for 
NFkB activation 
in an infected 
macrophage  

[150, 250]  Bacteria  (1-6)  

nrIntMtbCInf  Number of  
intracellular 
bacteria 
necessary for an 
infected 
macrophage to 
become 
chronically 
infected  

[8,12]  Bacteria  (1-6)  

nrIntMtbBurstCInf  Number of  
intracellular 
bacteria 
necessary for a 
chronically 
infected mac to 
burst 

[13,20]  Bacteria  (1-6)  

nrExtMtbUptakeAct  Number of  
extracellular 
bacteria an  
activated 
macrophage can 
uptake and kill  

[3,7]  Bacteria  (1-6)  
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Stat1ActivationTime  Time a 
macrophage is 
Stat1 activated  

[400,460]  Timesteps  (1-6)  

nfkbActivationTime  Time a 
macrophage is 
NFkB activated  

[13,17]  Timesteps  (1-6)  

Stat3ActivationTime  Time a 
macrophage is 
Stat3 activated  

[75,125]  Timesteps  (1-6)  

thresholdSTAT3IL10  Threshold of 
IL10 to IL10R1 
for STAT3 
signaling  

[5,15]  Unitless  (1-6)  

kSTAT3IL10  Rate constant of 
bound IL10 to 
IL10R1 for 
STAT3  
signaling  

[5e-4, 1.5e-3]  Unitless  (1-6)  

probHealCaseation  Rate constant for 
wound healing  

[0.005, 0.05]  Unitless  (1-6)  

T cell          

maxAge  Maximum age of 
a  
T cell  

[400,460]  Timesteps  (1-6)  

exhaustionThreshold  Threshold of  
Exposure Events 
for an individual 
T cell before it 
becomes 
exhausted  

[200, 10000]  

(5236 during 
generation of 2nd 

biorepository)  

Count  Estima

ted  

probMoveToMac  Probability of a 
T cell moving 
into a 
compartment 
already 
containing a 
macrophage  

[0.01, 0.2]  Unitless  (1-6)  

probMoveToTcell  Probability of a 
T cell moving 
into a 
compartment 
already 
containing 
another T cell  

[0.01, 0.2]  Unitless  (1-6)  
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maxDivisions  Maximum 
number  
of times a T cell 
can create a 
daughter cell   

[3,5]  Timesteps  (1-6)  

γ-producing T cells          

dTNF  Secretion rate of 
TNF by 
γproducing T 
cell  

[0.1, 0.2]  Molecules/second  (1-6)  

maxTimeReg  Time span 
during which a γ 
producing T cell 
remains 
downregulated  

[30,40]  Timesteps  (1-6)  

probApoptosisFasFasL  Probability of 
Fas/FasL 
induced 
apoptosis by a 
γproducing T 
cell  

[0.01,0.03]  Unitless  (1-6)  

probTNFProducer  Probability that a 
γproducing T 
cell can produce 
TNF  

[0.04, 0.1]  Unitless  (1-6)  

probIFNProducer  Probability that a 
γproducing T 
cell can produce 
IFNγ  

[0.3, 0.4]  Unitless  (1-6)  

probIFNMooreExtend  Probability a 
macrophage will 
be IFNγ/STAT1  
activated in the 
extended Moore 
Neighborhood.   

[0.2, 0.3]  Unitless  (1-6)  

Cytotoxic T cells          

dTNF  Secretion rate of  
TNF by a 
cytotoxic T cell  

[0.01, 0.02]  Molecules/second  (1-6)  

maxTimeReg  Time span 
during which a 
cytotoxic T cell 
remains 
downregulated  

[30,40]  Timesteps  (1-6)  
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probKillMac  Probability of a 
cytotoxic T cell  
killing a  
chronically 
infected  
mac  

[0.005, 0.015]  Unitless  (1-6)  

probKillMacCleanly  Probability of a 
cytotoxic T cell  
killing a  
chronically 
infected mac 
cleanly  

[0.6, 0.9]  Unitless  (1-6)  

probTNFProducer  Probability that a 
cytotoxic T cell 
is producing 
TNF  

[0.05, 0.09]  Unitless  (1-6)  

Regulatory T cells          

dIL10  Secretion of 
IL10 by a 
regulatory T  
cell  

[0.7, 0.8]  Molecules/second  (1-6)  

probTregDeactivate  Probability of 
successful 
downregulation 
by a regulatory T 
cell  

[0.01, 0.02]  Unitless  (1-6)  

factorDeactIL10  Factor when a 
regulatory T cell 
is making IL10 
to  
scale  
probTregDeactiv
ate  

[1,3]  Unitless  (1-6)  
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Appendix B Supporting Information for Chapter 3 
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Table B.1 Granuloma Ordinary Differential Equations  
*Note: in these equations m is the same as CD8MultiFunc in the text. m is defined as [ =
		(\]^_ + `)/b , where frac is the fraction of all new CD8+ T cells that are multifunctional. 
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Parameter 
name 

Min Max Units Ref Description 

Srm 0 0 1/day fit MR recruitment rate 
alpha4a 0.57 0.83 1/day [1], [2], fit Macrophage recruitment of MR 
w 0.29 0.33 -- [3], [2], fit Contribution of BI to MR activation 
w3 0.23 0.37 -- [1], [2], fit Max contribution of Th1 to MI apoptosis 
w2 1 1 -- [3], [2], fit Contribution of MI to MR recruitment 
Sr4b 650 750 1/day [1], [2], fit Falpha-dependent recruitment of MR 
f8 0.002 0.002 -- fit Ratio adjustment IL-10/Falpha on MR 

recruitment 
f9 0.6 0.6 -- fit Ratio adjustment Falpha/IL-10 
s4b 3210 4860 pg/ml [4], [2], fit Half saturation of Falpha on MR 

recruitment 
s4b1 6780 9410 pg/ml [1], [2], fit Half saturation of Falpha dependent Th1 

recruitment 
s4b2 5340 9420 pg/ml [4], [2], fit Half saturation of Falpha-dependent T0 

recruitment 
k4 0.074 0.17 1/day [3], [2], fit MA deactivation by IL-10 

s8 200 940 pg/ml [3], [2], fit Half saturation of IL-10 on MA 
deactivation 

k2 0.43 2.2 1/day [3], [2], fit MR infection rate 
c9 1190 7450 count [3], [2], fit Half saturation of BE on MR infection 
k3 0.04 0.04 1/day [3], [2], fit MR activation rate 
f1 150 150 -- [3], [2], fit Adjustment IL-4/IFNg 
s1 54 450 pg/ml [3], [2], fit Half saturation of IFNg-dependent MR 

activation 
Beta 1.00E+07 1.00E+07 1/pg [1], [2], fit Scaling factor of Falpha for MR activation 
c8 175370 363170 count fit Half saturation of BE and BI on MR 

activation 
nuMR 0.005 0.005 1/day [3], [2], fit MR death rate 
k17 0.1 0.3 1/day [3], [2], fit Max rate of MI bursting 
N 20 25 count [3], [2], [5], 

fit 
Carrying capacity of MI 

k14a 0.06 0.34 1/day [1], [2], fit T cell induced apoptosis of MI 
c4 400 880 -- [3], [2], fit Half saturation of Th1/MI ratio on MI 

apoptosis 
k14b 0.63 0.86 1/day [1], [2], fit Falpha induced apoptosis of MI 
k52 0.6 0.7 1/day [1], [2] Cytotoxic killing of MI 
w1 0.2 0.7 -- [1], [2], fit Max contribution of Th1 to cytotoxic 

killing 
c52 103290 246770 -- fit Half saturation of TC on MI killing 
cT1 35 35 -- fit Half saturation of Th1 on cytotoxic killing 
nuMI 0.0033 0.0033 1/day [3], [2], [5] MI death rate 
nuMA 0.17 0.17 1/day [3], [2], fit MA death rate 
alpha1a 0.03 0.55 1/day [6], [2], fit Macrophage recruitment of T0 
Sr1b 2E+04 5E+4 1/day [6], [2], fit Falpha dependent T0 recruitment 
alpha2 0.12 0.36 1/day [3], [2], fit Max growth rate of T0 
c15 2.75E+06 4.09E+06 -- [3], [2], fit Half saturation of MA on IFNg production 

by Th1 

k6 0.1 0.2 ml/(pg 
day) 

[3], [2], fit Max T0 to Th1 rate 
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f7 7 30 -- [1], [2], fit Effect of IL-10 on IFNg induced 
differentiation of T0 to Th1 

k7 0.25 0.64 ml/(pg 
day) 

[3], [2], fit Max T0 to Th2 rate 

f2 0.2 0.4 -- fit Adjustment IFNg/IL-4 
s2 400 900 pg/day fit Half saturation IL-4 
nuT0 0.22 0.22 1/day [3], [2], fit T0 death rate 
CD8MultiFunc 0.7 0.9 -- [1], [2], fit overlap between TC and T8 function 
alpha3a 0.4 0.8 1/day fit Macrophage recruitment of Th1 
Sr3b 15 80 1/day Fit Falpha dependent recruitment of Th2 
alpha3a2 0.22 0.75 1/day fit Macrophage recruitment of Th2 

Sr3b2 50 90 1/day fit Falpha dependent recruitment of Th2 
nuTg 0.24 0.75 1/day fit IFNg induced apoptosis of Th1 
c 270 690 pg/ml fit Half saturation IFNg on Th1 apoptosis 
nuT1 0.33 0.33 1/day [3], [2] Th1 death rate 
nuT2 0.33 0.33 1/day [3], [2] Th2 death rate 
alpha3ac 0.25 0.77 1/day fit Macrophage recruitment of TC and T8 
Sr3bc 14 26 1/day fit Falpha dependent recruitment of TC and 

T8 
nuTCg 0.45 0.83 1/day fit IFNg induced apoptosis of TC and T8 
cc 350 590 pg/ml [7], [2], fit Half saturation of IL on TC and T8 

apoptosis 
nuTC 0.3 0.3 1/day [1] TC death rate 
sg 2375 7340 pg/(ml 

day) 
fit IFNg production by cells 

c10 5.50E+05 6.35E+06 count [3], [2], fit Half saturation of Mtb on IFNg production 
by cells 

s7 590 820 pg/ml fit Half saturation of IL-12 on IFNg 
production by cells 

alpha5a 0.6 0.8 pg/day [1], [2], fit IFNg production by Th1 
c5a 315 630 1/ml fit Half saturation of MA on IFNg production 

by Th1 
alpha5b 0.15 0.58 pg/day [1], [2], fit IFNg production by T8 
alpha5c 0.08 0.35  pg/ml [1], [2], fit IFNg production by MI 
c5b 160 795 count fit Half saturation of MA on IFNg production 

by T8 
alpha7 0.012 0.16 pg/ml [3], [2], fit IFNg production by T0 

f4 1.5 1.5 -- [3], [2], fit Adjustment of IL-10/IL-12 on IFNg 
s4 270 890 pg/ml [3], [2], fit Half saturation of IL-12 on IFNg 
nuIG 6 9 1/day [3], [2], fit IFNg decay rate 
alpha23 0.004 0.004 pg/ml [1], [2], fit IL-12 production by MR 
c23 140 525 1/ml [1], [2], fit Half saturation of Mtb on IL-12 production 

by MR 
alpha8 0.38 0.80 pg/day [3], [2], fit IL-12 Production by MA 
s12 2330 3650 pg/(ml 

day) 
[1], [2], fit Cell production of IL-12 

c230 390 710 count Fit Half saturation of Mtb on IL-12 production 
by DC’s 

nuIL-12 1.1 1.1 1/day [3] IL-12 death rate 
s 170 650 pg/ml fit IL-10 effect on IL-12 production by MA 
s6 680 770 pg/ml Fit Half saturation of IL-10 self-inhibition in 

MA 
f6 0.35 0.35 -- [3] Adjustment IFNg on IL-10 
delta7 0.40 0.8 pg/ml fit IL-10 production by MA 
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alpha16 0.33 0.8 pg/day Fit, [5] IL-10 production by Th1 
alpha17 0.3 0.5 pg/day Fit, [5] IL-10 production by Th2 
alpha18 0.5 0.7 pg/day Fit, [5] IL-10 production by TC and T8 
nuIL-10 1.81 4.1 1/day [3], fit IL-10 decay rate 
alpha11 0.0033 0.073 pg/day [3], fit IL-4 production by T0 
alpha12 0.02 0.06 pg/day [3], fit IL-4 production by Th2 
nuIL-4 2.7 2.7 1/day [3] IL-4 decay rate 
alpha30 0.05 0.09 pg/(ml 

day) 
[1], fit Falpha production by MI 

alpha31 0.15 0.78 pg/(ml 
day) 

[1], fit Falpha production by MA 

beta2 12000 12000 1/pg [1], fit Scaling factor of Mtb for Falpha 
production by MA 

s10 100 300 pg/ml [1], fit Half saturation of IFNg on Falpha 
production by MA 

alpha32 0.2 0.3 pg/(ml 
day) 

fit Falpha production by Th1 

alpha33 0.2 0.3 pg/(ml 
day) 

Fit Falpha production by T8 

nuTNF 1.1 1.1 1/day [8] Falpha decay rate 
alpha19 0.87 1.27 1/day [3], fit BI replication rate 
alpha20 0.3 0.4 1/day [3], fit BE replication rate 
Nfracc 0.06 0.06 -- [3] Fraction BI released by T cell apoptosis of 

MI 
Nfraca 0.06 0.06 -- [3] Fraction BI released by TNF apoptosis of 

MI 
k15 0.0002 0.001 1/day [3], fit BE killing by MA 
k18 0.0001 0.0007 1/day [3], fit BE killing by MR 
nI 6.3E-05 8.3E-05 1/day [1], fit BI death rate 
nE 4.4E-09 6.65E-09 1/day [1], fit BE death rate 
Nfracd 0.001 0.001 -- fit Fraction of BI released by natural death of 

MI 
Table B.2 ODE model parameters that govern individual granuloma formation and growth 
across time.  
*For each disseminating granuloma, we allow for the option to sample each parameter from a subrange smaller than 
its parent’s ranges. We do this by using a fraction between 0 and 1 (inclusive) to determine the limits of the range. 
The fraction represents the percent of values between the parent’s value and either extrema (minimum and 
maximum) to include in the range. 0 means the range includes only the parent’s value; 1 means that the original 
range is used. References follow below. 
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Parameter name Value Units Ref Description 

diamMacs 20 microns (40) Diameter of Macrophage 

diamTCells 5 microns (40) Diameter of T cell 

dt 1 day ~ Agent time step 

Table B.3 Other parameters for size of granulomas and runtime execution.  
References follow Chapter 3 references 

 

 

 

Parameter name Min Max Units Reference Description 

DissemDistMean 107 100 um Fit, Based 
on data (1) 

Mean distance of local 
dissemination 

Lambda_Local 10FG 10F0 CFU/sec Fit, Based 
on data [1] 

Max probability of local 
dissemination 

CFU_Half_Local 10G 108 CFU Fit, Based 
on data [1] 

Value for half of max rate of local 
dissemination 

Lambda_NonLocal 10FG.I 10F0.I CFU/sec Fit, Based 
on data [1] 

Max probability of non-local 
dissemination 

CFU_Half_NonLocal 10G.I 108.I CFU Fit, Based 
on data [1] 

Value for half of max rate of non-
local dissemination 

TcellFracDonateMu 1/100 1/10 -- estimated Mean fraction of all of the parent 
granuloma’s T cells that move to 
the daughter granuloma during a 
local dissemination event 

TcellFracDonateSig 10FG 10F2 -- estimated Standard deviation from the mean 
fraction of all of the parent 
granuloma’s Tcells that move to the 
daughter granuloma during a local 
dissemination event 

Table B.4 Dissemination Parameters.  
These seven parameters dictate dissemination dynamics in MultiGran. Parameters were fit to barcode data or varied 
using Uncertainty Analysis to find an estimation. References follow below 
 

 
REFERENCES 
1.  Martin CJ, Cadena AM, Leung VW, Lin PL, Maiello P, Hicks N, et al.  Digitally Barcoding Mycobacterium 
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doi:10.1128/mbio.00312-17 
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Figure B.1 The rules of granuloma establishment and dissemination within MultiGran. 
Case 1 – Inoculation. Inoculation deposits bacteria in a specific lung region at position (xTrial, yTrail, zTrial). The 
black box designates inoculation region (row 1), wherein the specific within-lung region destined for inoculation is 
highlighted in green (row 2). The third row demonstrates successful inoculation of a single bacterium–the black box 
was sampled randomly until the sampled coordinates lie within the green region. Cases 2 and 3 define granuloma 
placement following dissemination. Case2 –non-local dissemination. When non-local dissemination occurs, a 
bacterium escapes a single granuloma (row 1) and can be placed in any region (shown in black in row 2) that 
encompasses the entire lung. The green highlighted region is the area in which the bacterial placement will be 
accepted. Row 3 shows three trial placements: two realizations of accepted bacterial placement (black arrows) and 
one unaccepted placement (red arrow) at (xTrial, yTrial, zTrial). Case 3– local dissemination. Local dissemination is 
the only form of granuloma placement which does not utilize random placement within a region of lung space. 
Rather, an infected macrophage from the parent granuloma is placed in a random direction away from the parent 
granuloma. Row 2 shows several options for granuloma infected macrophage placement. Note that the arrows are of 
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different length to represent our assumption that local dissemination likely follows a normal distribution with respect 
to parent granuloma location. Here, the green and black arrows show valid directions for the new placement for the 
infected macrophage, while red arrows show invalid directions. A new granuloma will begin to develop in the 
chosen (green) valid location (Row 3). Note that in both (A) and (B) bacteria, granulomas, and infected 
macrophages are not to scale. Lung image from Servier Medical Art. 
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Appendix C Supporting Information for Chapter 4 
Important terms: 

Immunogenicity Dataspace: The space defined by experimental results that contains the T-cell 

response to each antigen. 

Parameter Range: The range of values for a parameter that are biologically feasible and are 

assigned to represent values of the mechanism for which that parameter represents. Values (and 

ranges) are assigned according to biological observations, experimental results, or mathematical 

estimation. 

Parameter Space: The set of all combinations of parameter values for a particular model, as 

defined by the parameter ranges for each parameter. 

Uncertainty and Sensitivity Analysis: A series of techniques used to evaluate the influence a 

parameter has on model outcomes. Influence of individual mechanism can be assessed (see 

Methods for more details). 

Calibration: The process of varying parameters until the model behavior reaches a preferred end 

state or predetermined goal (usually the dataspace). 

Initial Conditions: The predefined initial values of each variable in a mathematical model prior to 

simulating the model. In this work, initial conditions were also varied during model calibration 

as initial condition could represent pre-existing immune memory cells. 

Radar Charts: A graphical visualization of multivariate data across multiple axis. We use radar 

charts to display the parameter space of our simulations. 

 

Description of lymph node and blood mathematical model  

This Appendix text describes the system of ordinary differential equations (ODEs) for CD4+ 

antigen-specific T cells dynamics.   

Measure units are cell count in the lymph compartment and cell/mm3 in the blood compartment.  

However, upon comparison to experimental data, we converted antigen-specific T cell units into 

percentages of total (specific and nonspecific) CD4+ T cells in the blood. The term α, represents 
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the volume of blood in μL and is used for scaling cells when they traffic between the blood 

compartment and the lymph compartment. All parameters are defined with units, values, and 

references provided in Table C.1.  

 

Lymph Node 

Antigen presentation and priming in lymph node compartment is driven by the following equation  

 
D1J&

D*
=	−µId!F  (0.1) 

which tracks antigen presenting cells (APCs) in the lymph node at any time during or after 

vaccination. If the number of APCs doesn’t increase (a vaccination event would be an example of 

increasing the APC population), the APC number decreases following an exponential decay, at the 

rate μ5.  

 

Naïve T cells (Eqn. (0.2)) represented by (<8
!-) are recruited to the lymph node at a rate (k1) 

dependent on cytokine production in the lymph node. Since we do not track cytokines in the lymph 

node model, we use APC also as a proxy for cytokine production (modeled as a Michaelis-Menten 

term in Eqn. (0.2)). Other terms included influx ( ) and efflux ( ), as well as mass action priming 

to precursor cells (k2). 

 
D->%(

D*
= 	5SeK=/;<- + e-/.?%:LU −	e-<??%:L − e-D/??J (0.2) 

eK=/;<- =	f0<8
M :

d!F

d!F + ℎA0
B 

e-D/??J =	f2<8
!-d!F 

e-<??%:L =	h2<8
!- 

e-/.?%:L =	h0<8
M 

 

Precursor CD4+ T cells (!8
!-) (Eqn. (0.3)) are generated through priming of antigen-specific naïve 

T cells (k2) as well as through re-activation of antigen-specific central memory T cells (k3); both 

processes are expressed as mass action terms. Proliferation is modeled as logistic growth. 

DJ>%(

D*
= Se-D/??J +	e&CD/??JU +	eK="%/? − eJD/??N − eJD/??&C − iO!8

!- (0.3) 

 

e&CD/??J =	fGF68
!-d!F 

1x 2x
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eK="%/? =	f8!8
!- j1 − k

!8
!-

l0
mn :

d!F

d!F + ℎA8
B 

eJD/??N =	fI!8
!- :

d!F

d!F + ℎAI
B 

eJD/??&C =	fO!8
!- j1 − :

d!F

d!F + ℎAI
Bn 

 

 

A Michaelis-Menten term based on antigen stimulation (APC levels) was used to adjust 

proliferation (k4) and differentiation rates (k5 and k6). The likelihood of precursor cells 

differentiating into effector cells is directly proportional to the amount of antigen stimulation (k5). 

The opposite assumption was applied to the likelihood of precursor cells differentiating into central 

memory (k6). A death term (μ6) ensured that the precursor population did not persist in the absence 

of infection. No precursor populations exit the lymph node.  

Effector CD4+ T cells are modeled in Eqn. (0.4), as o8
!-: 

 
DN>%(

D*
=	eJD/??N − eN<??%:L −	eND/??NC (0.4) 

eN<??%:L =	hGo8
!- 

eND/??NC =	fPo8
!- 

 

Terms in the equation include efflux to the blood ( ), and a linear differentiation to the effector 

memory T cell population (k7). We assumed that no effector T cells die in the lymph node (they 

can die in the blood). 

Similar to naïve cells, central memory T cells (Eqn. (0.5)) are recruited to the lymph node (k8) in 

addition to an influx rate ( ). Other terms include differentiation from precursor cells (k6), 

reactivation to precursor cells (k3) and efflux into the blood (x5). Given their relatively long 

lifespan compared to the length of the in-silico simulation (i.e., 200 days at most) we do not have 

a death term in Eqn. (0.5), as F68
!-:

 
   

D&C>%(

D*
= 	5SeK=/;<&C 	+ 	x8F68

MU + eJD/??&C −	e&CD/??J − e&C<??%:L        (0.5) 

3x

4x
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eK=/;<&C =	f6F68
M :

d!F

d!F +	ℎA6
B 

e&C/.?%:L =	x8F68
M 

e&C<??%:L =	xIF68
!- 

 

 

Effector memory cell formation is described in Eqn. (0.6), as o68
!-. A linear term captures the 

differentiation of CD4+ effector T cells into CD4+ effector memory (k7). The last term represented 

efflux to the blood ( ).  Due to the longevity of these cells, we did not introduce a death term in 

the lymph node. Like effector T cells, effector memory T cells do not enter the lymph node directly 

from the blood. 

 
DNC>%(

D*
=	eND/??NC − eNC<??%:L (0.6) 

eNC<??%:L =	xOo68
!- 

 

Blood  

For the blood compartment, we track 4 different T cell antigen-specific phenotypes. The antigen-

specific naïve CD4+ T cell blood population is modeled by Eqn. (0.7) (<8
M). We have terms for a 

constant source supplied from the thymus (multiplied by the antigen-specific frequency i.e. ) 

to track specific and non-specific cells, migration from the lymph node ( ), extra recruitment to 

the lymph node (k1), migration to the lymph node ( ), and death (μ8).  

 
D->?

D*
= 	)A-> +	5

F0e-<??%:L 	− 	eK=/;<- −	e-/.?%:L	–	i6<8
M 			(0.7) 

The values for  and �8 are chosen to maintain equilibrium in the total Naïve T cell populations 

(based on the initial conditions taken from the NHP blood data in previous work [1]). 

Eqn. (0.8) describes effector CD4+ T cells dynamics (o8
M) in the blood with two terms: migration 

from the lymph node ( ) and death (μ1).  

 
DN>?

D*
=	5F0eN<??%:L −	i0o8

M (0.8) 
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Central memory cells in the blood (Eqn. (0.9)) (F68
M) migrate from ( ) and to the lymph node (

). Central memory cells are not recruited to the site of infection. 

 
D&C>?

D*
=	5F0e&C<??%:L −	e&C/.?%:L −	eK=/;<&C (0.9) 

Effector memory cells in the blood (Eqn.(0.10)) (o68
M) are modeled by two terms: migration from 

the lymph node ( ) and death (μ2). Similar to effector cells these were recruited to the site of 

infection.  

 
DNC>?

D*
	= 	5F0eNC<??%:L −	i2o68

M (0.10) 

 

Non-antigen-specific CD4+ lymphocytes  

Our computational model similarly keeps track of non-specific T cells. However, non-antigen-

specific T cells do not respond to antigen, therefore, no priming occurs in any cell population and 

no precursor cells are generated. Also, since we assume neither effector nor effector memory T 

cells enter the lymph compartment from the blood, we do not model effector or effector memory 

cell populations within the lymph node compartment (as shown in Figure 2). The production of 

the non-specific effector cells was modeled as a source term in the blood compartment and was 

included to meet the assumption that the previous pre-infection data describes homeostasis. The 

equations for non-antigen-specific CD4+ T cells are shown below. Moreover, including non-

antigen-specific cells in the model makes model predictions more realistic due to the total cell 

numbers more accurately reflecting the actual numbers in blood. 

Naïve CD4+ non-antigen-specific (<.#8!- )

 

  (1.11) 

Central Memory CD4+ non-antigen-specific  - LN (F6.#8
!- ) 

  (1.12) 

Naïve CD4+ non-antigen-specific – Blood (<.#8M ) 

  (1.13) 

Effector CD4+ non-antigen-specific  - Blood  (o.#8M )
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  (1.14) 

As non Mtb-specific effector cells in the blood must be produced somewhere in the body, they are 

modeled as source and a death rate equal to that of their antigen-specific counterparts 

Central Memory CD4+ non Mtb-specific – Blood (F6.#8
M )

 

  (1.15) 

Effector Memory CD4+ non-antigen-specific  - Blood (o6.#8
M )

 

  (1.16) 
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ESAT6 Ag85B 
   

NHP Human NHP Human 

 

Parameter 

Name 

Description Units min max min max min max min max Reference 

alpha Conversion 

from  

Blood to 

LN 

uL 2803389 4203247 3238553 3957346 2805260 4201462 3239508 3957875 Estimated and 

[31-32] 

host_Ln Involved 

Lymph  

Nodes in 

host 

count 3 4 18 31 3 4 18 31 Estimated and 

[31-32] 

lambda frequency 

of specific 

 Naïve T 

cells in 

system 

count 0.0007 0.0010 0.0006 0.0010 0.0007 0.0010 0.0006 0.0010 Estimated and 

[31-32] 

hs1 Naïve 

CD4+ T cell 

recruitment 

half 

saturation 

count 14 21 26 31 14 21 26 31 Estimated from  

Uncertainty 

Analysis 

hs4 Precursor 

CD4+ T cell 

proliferation 

half 

saturation  

count 5 8 5 19 5 8 5 19 Estimated from  

Uncertainty 

Analysis 

hs5 Precursor 

CD4+ T cell 

differentiati

on half 

saturation  

count 374 561 56 93 10 50 56 93 Estimated from  

Uncertainty 

Analysis 

hs8 Central 

Memory 

CD4+ T cell 

recruitment 

half 

saturation 

count 6 9 46 56 6 9 46 56 Estimated from  

Uncertainty 

Analysis 



 237 

k1 Naïve 

CD4+ T cell 

recruitment 

rate 

day
-1

 0.85 1.28 0.35 0.59 0.85 1.28 0.35 0.59 Estimated from  

Uncertainty 

Analysis 

k2 Naïve 

CD4+ T cell 

priming rate 

day
-1

 0.048 0.071 0.050 0.100 0.005 0.020 0.050 0.100 Estimated from  

Uncertainty 

Analysis 

k3 Central 

Memory 

CD4+ T cell 

reactivation 

rate 

day
-1

 0.0091 0.0899 0.0116 0.0142 0.0009 0.0090 0.0101 0.0119 Estimated from  

Uncertainty 

Analysis 

k4 Precursor 

CD4+ T cell 

proliferation 

rate  

day
-1

 0.70 1.30 1.50 2.00 0.50 1.00 1.50 2.00 Estimated from  

Uncertainty 

Analysis 

k5 Precursor 

CD4+ T cell 

differentiati

on to 

effector T 

cell 

day
-1

 0.009 0.160 0.050 0.075 0.007 0.090 0.015 0.030 Estimated from  

Uncertainty 

Analysis 

k6 Precursor 

CD4+ T cell 

differentiati

on to central 

memory T 

cell 

day
-1

 0.0010 0.0100 0.0005 0.0010 0.0009 0.0250 0.0010 0.0020 Estimated from  

Uncertainty 

Analysis 

k7 Effector 

CD4+ T cell 

differentiati

on to 

effector 

Memory 

day
-1

 0.7 1.5 2.8 4.2 0.6 0.9 0.9 1.7 Estimated from  

Uncertainty 

Analysis 

k8 Central 

Memory 

CD4+ T cell 

recruitment 

rate 

day
-1

 0.19 0.19 0.10 0.34 0.19 0.19 0.05 0.14 Estimated from  

Uncertainty 

Analysis 
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mu1 Effector 

CD4+ T cell 

death rate 

day
-1

 0.07 0.10 0.10 0.67 0.07 0.10 0.07 0.67 Estimated from  

Uncertainty 

Analysis 

mu2 Effector 

memory 

CD4+ T cell 

death rate 

day
-1

 0.05 0.07 0.005 0.010 0.01 0.07 0.006 0.009 Estimated from  

Uncertainty 

Analysis 

mu5 APC death 

rate 

day
-1

 0.28 0.41 0.65 1.08 0.28 0.41 0.65 1.08 Estimated from  

Uncertainty 

Analysis 

mu6 Precursor 

CD4+  T 

cell death 

rate 

day
-1

 0.19 0.29 0.11 0.19 0.19 0.29 0.11 0.19 Estimated from  

Uncertainty 

Analysis 

mu8 Naïve 

CD4+ T cell 

death rate 

day
-1

 0.00039

3 

0.000393 0.000393 0.00039

3 

0.00039

3 

0.00039

3 

0.00039

3 

0.00039

3 

[32] 

rho1 Precursor 

Carrying 

Capacity 

count 3000000

00 

30000000

0 

3000000

00 

3000000

00 

3000000

00 

3000000

00 

3000000

00 

3000000

00 

[32] 

xi2 Naïve 

CD4+ 

Lymph 

Efflux 

day
-1

 1.0 1.5 0.8 0.9 1.0 1.5 0.8 0.9 Estimated and 

[31-32] 

xi3 Effector 

CD4+ 

Lymph 

Efflux 

day
-1

 3 4 1 1 3 4 1 1 Estimated and 

[31-32] 

xi5 Central 

Memory 

CD4+ 

Lymph 

Efflux 

day
-1

 1.7 2.6 0.3 0.3 1.7 2.6 0.3 0.3 Estimated and 

[31-32] 

xi6 Effector 

memory 

CD4+ 

Lymph 

Efflux 

day
-1

 2.0 3.1 4.0 5.0 2.1 3.1 2.0 5.0 Estimated and 

[31-32] 

xi1**** Naïve 

CD4+ 

day
-1

 0.25 0.54 0.03 0.05 0.25 0.54 0.03 0.05 
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Lymph  

Influx 

xi4**** Central 

Memory 

Lymph 

Influx 

day
-1

 0.446 0.956 0.009 0.017 0.452 0.959 0.009 0.017 

 

Sn4**** Thymic 

Output of 

Naive 

CD4+ T 

cells 

Cell/uL * 

day 

0.063 0.095 0.039 0.236 0.095 0.142 0.023 0.107 

 

Senc4**** frequency 

of 

nonspecific 

effector 

CD4+ T 

cells  

Cell/uL * 

day 

14.3 78.9 62.8 702.6 31.8 64.5 33.4 539.0 

 

Semnc4**** frequency 

of 

nonspecific 

effector 

memory 

CD4+ T 

cells  

Cell/uL * 

day 

0.063 10.278 0.007 0.215 0.034 20.499 0.003 3.169 

 

BlN4 frequency 

of Naïve 

CD4+ T 

cells in 

blood/LN 

cell/mm
3
 161 241 100 600 241 361 60 273 Estimated from  

Uncertainty 

Analysis 

BlCM4 Initial 

frequency 

of Central 

Memory 

CD4+ T 

cells in 

blood/LN 

cell/mm
3
 1 3 0.01 10.00 1 100 10 100 Estimated from  

Uncertainty 

Analysis 

BlCM4CogFra

ction 

Fraction of 

Central 

Memory 

CD4+ T 

unitless 0.001 0.002 0.001 0.003 0.001 0.002 0.002 0.003 Estimated from  

Uncertainty 

Analysis 
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cells that 

are antigen-

specific 

BlE4 Initial 

frequency 

of 

Nonspecific 

Effector 

CD4+ T 

cells  

cell/mm
3
 201 799 538 1095 446 668 359 875 Estimated from  

Uncertainty 

Analysis 

BlEM4 Initial 

frequency 

of Effector 

Memory 

CD4+ T 

cells  

cell/mm
3
 1 150 1 22 1 300 0.34 371 Estimated from  

Uncertainty 

Analysis 

BlEM4CogFra

ction 

Fraction of 

Effector 

Memory 

CD4+ T 

cells that 

are antigen-

specific 

count 0.002 0.003 0.003 0.007 0.002 0.003 0.003 0.007 Estimated from  

Uncertainty 

Analysis 

               

20% 

around 

median 

10% range 

around 

median 

20% 

around 

median 

10% 

range 

around 

median 

 

Table C.1 Parameter ranges for NHP and human ESAT6 and Ag85B fits.  
**** signifies that parameter ranges were based on other parameter values. As specified in Marino et al. 2016 Computation paper (see 
reference in main document [32]) red text marks parameters that have a parameter range which is narrower than 20% range around the 
median value (for NHPs) or less than 10% range around the median value (for humans) 
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Visual comparison of parameter ranges for simulation curves 

This appendix text presents the parameter ranges for human and NHP ESAT6 and Ag85b 

immunogenicity dataspaces. Figure C.1’s shows the radarcharts that visually display the 

parameter ranges.  Radarchart construction is outlined in the Methods section of the main paper. 

Briefly, this chart is to be read from left to right.  That is, the charts are constructed such that in 

the ESAT6 (or Ag85b) row, we can compare the parameter ranges that fit the NHP response 

(blue) to those that fit the Human response (red).  A small table is shown beneath the figure, to 

provide the reader with a legend for parameter names.   

While sensitivity and uncertainty analysis (discussed in Chapter 4) reveals the parameters that 

generally control responses to each antigen, it is important to broadly consider the differential 

parameter spaces whereupon these responses reside.  Uncertainty and sensitivity analysis 

suggested that parameters for Precursor cell proliferation (k4), differentiation (k5 and k6), 

recruitment rates of Naïve (k1) and Central Memory (k8), and half-saturation values (hs1-hs8) all 

played important roles in at least one of the three main blood T cell subtype outcomes.   

However, examination of Figure C.1’s charts allows for direct comparison of each species’ 

parameter ranges for each of these parameters.  These charts reveal that each species resides in a 

separate parameter space for the majority of these parameters.  Thus, despite the similar 

(revealed by uncertainty and sensitivity analysis) processes of each species, the parameters that 

dictate these processes actually differ in value. 
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Figure C.1 Radar charts reveal parameter space differences between species.  
Each parameter space is represented by a blue (NHP) or red (human) band, which represents the 
min and max parameter value for each model fit. Each chart displays parameter names around its 
outside boundary, at each axis.  Parameter names are ordered alphabetically starting with ‘hs1’ 
and ‘ending with xi6’. Points near the center of each axis represent a lower value whereas points 
near the outer edges of each axis represent larger values.  To compare parameter ranges across 
species, we calculated the minimum and maximum for each axis on the charts as the minimum 
and maximum value for each parameter across all species and antigen specific fits. It should be 
noted that in this type of visualization, the placement of each parameter along the polar 
coordinate system can influence the visualization and therefore, the conclusions.  In this work, 
I’ve ensured that each parameter does not change placement across individual radarcharts and 
each parameter is placed alphabetically.  However, one could choose to cluster all parameters 
with wide ranges near one another on the charts. Care should be exercised when visualizing 
parameter space using these charts.    
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Parameter Name Description 
hs1 Naïve CD4+ T cell recruitment half saturation 

hs4 Precursor CD4+ T cell proliferation half saturation  

hs5 Precursor CD4+ T cell differentiation half saturation  

hs8 Central Memory CD4+ T cell recruitment half saturation 

k1 Naïve CD4+ T cell recruitment rate 

k2 Naïve CD4+ T cell priming rate 

k3 Central Memory CD4+ T cell reactivation rate 

k4 Precursor CD4+ T cell proliferation rate  

k5 Precursor CD4+ T cell differentiation to effector T cell 

k6 Precursor CD4+ T cell differentiation to central memory T cell 

k7 Effector CD4+ T cell differentiation to effector Memory 

k8 Central Memory CD4+ T cell recruitment rate 

mu1 Effector CD4+ T cell death rate 

mu2 Effector memory CD4+ T cell death rate 

mu5 APC death rate 

mu6 Precursor CD4+ T cell death rate 
xi2 Naïve CD4+ Lymph Efflux 

xi3 Effector CD4+ Lymph Efflux 
xi5 Central Memory CD4+ Lymph Efflux 

xi6 Effector memory CD4+ Lymph Efflux 

Table C.2 Parameter names in radar charts.  
The leftmost column shows the name of each parameter. The rightmost column displays a short 
description of each parameter.   
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Appendix D Supporting Information for Chapter 5 
 
MultiGran Equations with the addition of Effector Memory T cells 
 
This model, composed of a system of 20 ODEs, captures bacterial, T cell, macrophage and 
cytokine dynamics within a single granuloma lesion. Below, we have listed equations, variable 
names and a brief explanation of the dynamics of each equation. Parameter symbols generally 
adhere to the following guidelines: ! parameters are growth rates. " parameters are rate constants 
involving other variables. # parameters are death or decay rates. $ parameters are half-saturation 
values. %& parameters are recruitment rate values to represent recruitment of cells from other 
areas of the body, for example. ' and ( parameters are scaling constants. 
 
Extracellular Bacteria concentrations within the granuloma are represented as )* across time. 
Extracellular bacteria can grow (+,-ℎ+20), or can be released when infected macrophages (./) 
undergo apoptosis from cytotoxic T cells (01) or TNF (2!). Activated macrophages (.3) or 
resting Macrophages (.4) can kill extracellular bacteria. 
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Intracellular Bacteria concentrations are represented as )! across time. )! happens in the model as 
resting macrophages (.") engulf extracellular bacteria at a rate of "2. Intracellular bacteria can 
die and can also become extracellular bacteria when infected macrophages undergo apoptosis. 
The intracellular bacterial growth term (beginning with α19) has been slightly modified from 
MultiGran (35) so it now follows logistic growth function with a carrying capacity (N) per 
infected macrophage (MI). 
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Resting Macrophages (.4) are recruited to the granuloma according to the number of activated 
Macrophages (.3), the number of infected macrophages (./) and the concentration of TNF 
(2!) in the granuloma. .4 can become activated or infected macrophages, or die. 
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Infected Macrophages (./) become infected when a resting macrophage engulfs extracellular 
bacteria ()*). ./ can burst when )/ growth exceeds carrying capacity (5) and can die through 
TNF- or cytotoxic T cell- mediated apoptosis. 
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Activated Macrophages (.3) become activated through resting Macrophages (.4) interactions 
with extracellular bacteria ()*) and IFN-γ (/6) in the granuloma. .3 can be de-activated by IL-
10 (/10) cytokines or die. 
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Primed CD4+ T cells (00) can proliferate at the site of the granuloma based on numbers of 
activated macrophages. Additionally, they are recruited to the site according to .!, .#, 2$ 
concentrations in the granuloma. Differentiation of primed cells to effector states is based on 
cytokine concentrations across the granuloma. Primed cells can die. 
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Effector Th1 T cells (01) are recruited to the granuloma according to ./, .3, and 2!. They are 
a differentiated T cell state originating from primed CD4+ T cells or effector memory CD8+ T 
cells. They can die from too much IFN-γ  (/6). 
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Effector Th2 T cells (02) are recruited to the granuloma according to .!, .#, and 2$. They are a 
differentiated T cell state originating from primed CD4+ T cells or effector memory CD4+ T 
cells. 
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Primed CD8+ T cells (080) can proliferate at the site of the granuloma based on numbers of 
activated macrophages. Additionally, they are recruited to the site according to ./, .3, 2! 
concentrations in the granuloma. Differentiation of primed cells to effector states is based on 
cytokine concentrations across the granuloma. Primed cells can die. 
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Effector CD8+ T cells (08) are recruited to the granuloma according to .!, .#, and 2$. They are 
a differentiated T cell state originating from primed CD8+ T cells or effector memory CD8+ T 
cells and can die from IFN-γ (/%). 
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Cytotoxic CD8+ T cells (0&) are recruited to the granuloma according to .!, .#, and 2$. They 
are a differentiated T cell state originating from primed CD8+ T cells or effector memory CD8+ 
T cells and can die from IFN-γ (/%). 
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CD4+ effector memory T cells (04!") can differentiate at the site of infection into effector cell 
states based on numbers of infected or activated macrophages. Additionally, they are recruited to 
the site according to 2$ concentrations in the granuloma. These cells can die at the site of 
infection. 
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CD8+ effector memory T cells (08!") can differentiate at the site of infection into effector cell 
states based on numbers of infected macrophages. Additionally, they are recruited to the site 
according to 2$ concentrations in the granuloma. These cells can die at the site of infection. 
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CD4+ non-specific T cells (04#$%) represent a generic class of T cells that do not respond to Mtb 
antigens but are recruited to the site according to 2$ concentrations in the granuloma. These cells 
do not perform effector functions within the granuloma and die at the site of infection. 
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CD8+ non-specific T cells (08#$%) represent a generic class of T cells that do not respond to Mtb 
antigens but are recruited to the site according to 2$ concentrations in the granuloma. These cells 
do not perform effector functions within the granuloma and die at the site of infection. 
 

!.4<	>?
!#

= DE4<	>? 3
4/

4/ + ℎ74<	>?
8 − ;9).	01.4<	>?	

 
TNF (2$) is an inflammatory cytokine in the granuloma and is secreted by .!, .#, 01, 0& and 08 
cells. It also decays in the granuloma. 
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IFN-γ (/%) is an inflammatory cytokine in the granuloma and is secreted by .!, .#, 00, 01, 080, 
0& and 08 cells. It also decays in the granuloma. 
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IL-12 (/12) is secreted by ." and .# cells before decaying in the granuloma. 
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8 + %4)3 3
7

7 + 6$#
8 − ;&#(6$"	

 
IL-10 (/10) is secreted by .!, .#, 01, 02, 0& and 08 before decaying in the granuloma. 
 

!6$#
!#

= K%()& +)3) *
7;

6$# + 5;6: + 7;
+ + %$;.$ + %$%." + %$4 3

., + .4
2I

8 − ;&#&6$#	

 
 
IL-4 (/4) is secreted by 00 and 02 before decaying in the granuloma. 
 

!6'
!#

= %$$.# + %$"." − ;&,6' 
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Blood and Lymph node equations 
 
This two-compartment model represents the dynamics of specific and non-specific T cells in the 
lymph node and blood following antigen presentation by antigen-presenting cells (APCs) in the 
lymph node. Measure units are cell counts in the lymph compartment and cell/mm3 in the blood 
compartment.  The term α represents the volume of blood in μL and is used for scaling cells 
when they traffic between the blood compartment and the lymph compartment.  
 
Lymph Node CD4+ T cells 
Antigen presentation and priming in lymph node compartment is driven by the following 
equation: 
 

 !"#$
!% =	−µ&3;1  (0.11) 

 
which tracks antigen presenting cells (APCs) in the lymph node at any time during or after 
infection. If the number of APCs doesn’t increase (a reinfection event would be an example of 
increasing the APC population), the APC number decreases following an exponential decay, at the 
rate μ5.  
Naïve T cells (Eqn. (0.2)) represented by (5'()) are recruited to the lymph node at a rate (k1) 
dependent on cytokine production in the lymph node. Since we do not track cytokines in the lymph 
node model, we use APC also as a proxy for cytokine production (modeled as a Michaelis-Menten 
term in Eqn. (0.2)). Other terms included influx ( ) and efflux ( ), as well as mass action priming 
to precursor cells (k2). 
 

 !)!"#
!% = 	!<=*+,-.) + =),/0123? −	=).00123 − =)!,00# (0.12) 

=*+,-.) =	"45'
5 @

3;1
3;1 + ℎB4

C 

=)!,00# =	"65'
()3;1 

=).00123 =	D65'
() 

=),/0123 =	D45'
5 

 
Precursor CD4+ T cells (;'()) (Eqn. (0.3)) are generated through priming of antigen-specific naïve 
T cells (k2) as well as through re-activation of antigen-specific central memory T cells (k3); both 
processes are expressed as mass action terms. Proliferation is modeled as logistic growth. 
!#!"#
!% = <=)!,00# +	=$7!,00#? +	=*+81,0 − =#!,009 − =#!,00$7 − #:;'

() (0.13) 
 

=$7!,00# =	";1.'
()3;1 

1x 2x
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=*+81,0 =	"';'
() E1 − G

;'
()

H4
IJ @

3;1
3;1 + ℎB'

C 

=#!,009 =	"&;'
() @

3;1
3;1 + ℎB&

C 

=#!,00$7 =	":;'
() E1 − @

3;1
3;1 + ℎB&

CJ 

 
 
A Michaelis-Menten term based on antigen stimulation (APC levels) was used to adjust 
proliferation (k4) and differentiation rates (k5 and k6). The likelihood of precursor cells 
differentiating into effector cells is directly proportional to the amount of antigen stimulation (k5). 
The opposite assumption was applied to the likelihood of precursor cells differentiating into central 
memory (k6). A death term (μ6) ensured that the precursor population did not persist in the absence 
of infection. No precursor populations exit the lymph node.  
Effector CD4+ T cells are modeled in Eqn. (0.4), as *'(): 
 
 !9!"#

!% =	=#!,009 − =9.00123 −	=9!,0097 (0.14) 
=9.00123 =	D;*'

() 
=9!,0097 =	"<*'

() 
 
Terms in the equation include efflux to the blood ( ), and a linear differentiation to the effector 
memory T cell population (k7). We assumed that no effector T cells die in the lymph node (they 
can die in the blood). 
Similar to naïve cells, central memory T cells (Eqn. (0.5)) are recruited to the lymph node (k8) in 
addition to an influx rate ( ). Other terms include differentiation from precursor cells (k6), 
reactivation to precursor cells (k3) and efflux into the blood (x5). Given their relatively long 
lifespan compared to the length of the in-silico simulation (i.e., 200 days at most) we do not have 
a death term in Eqn. (0.5), as 1.'

():
    

!$7!"#
!% = 	!<=*+,-.$7 	+ 	x'1.'

5? + =#!,00$7 −	=$7!,00# − =$7.00123        (0.15) 

=*+,-.$7 =	"=1.'
5 @

3;1
3;1 +	ℎB=

C 

=$7,/0123 =	x'1.'
5 

=$7.00123 =	x&1.'
() 

 
 

Effector memory cell formation is described in Eqn. (0.6), as *.'
(). A linear term captures the 

differentiation of CD4+ effector T cells into CD4+ effector memory (k7). The last term represented 
efflux to the blood ( ).  Due to the longevity of these cells, we did not introduce a death term in 
the lymph node. Like effector T cells, effector memory T cells do not enter the lymph node directly 
from the blood. 

3x

4x

6x
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 !97!"#
!% =	=9!,0097 − =97.00123 (0.16) 

=97.00123 =	x:*.'
() 

Blood CD4+ T cells 
 
For the blood compartment, we track 4 different T cell antigen-specific phenotypes. The antigen-
specific naïve CD4+ T cell blood population is modeled by Eqn. (0.7) (5'5). We have terms for a 
constant source supplied from the thymus (multiplied by the antigen-specific frequency i.e. ) 
to track specific and non-specific cells, migration from the lymph node ( ), extra recruitment to 
the lymph node (k1), migration to the lymph node ( ), and death (μ8).  

 !)!$
!% = 	KB)! +	!

>4=).00123 	− 	=*+,-.) −	=),/0123	–	#=5'
5 			(0.17) 

The values for  and μ8 are chosen to maintain equilibrium in the total Naïve T cell populations 
(based on the initial conditions taken from the NHP blood data in previous work (47)). 
Eqn. (0.8) describes effector CD4+ T cells dynamics (*'5) in the blood with two terms: migration 
from the lymph node ( ) and death (μ1).  
 
 !9!$

!% =	!
>4=9.00123 −	#4*'

5 (0.18) 
 
Central memory cells in the blood (Eqn. (0.9)) (1.'

5) migrate from ( ) and to the lymph node (
). Central memory cells are not recruited to the site of infection. 

 
 !$7!$

!% =	!>4=$7.00123 −	=$7,/0123 −	=*+,-.$7 (0.19) 
 
Effector memory cells in the blood (Eqn.(0.10)) (*.'

5) are modeled by two terms: migration from 
the lymph node ( ) and death (μ2). Similar to effector cells these were recruited to the site of 
infection.  
 !97!$

!% 	= 	!>4=97.00123 −	#6*.'
5 (0.20) 

 
Non-Mtb-specific CD4+ lymphocytes  
Our computational model similarly keeps track of non-specific T cells. However, non-Mtb-specific 
T cells do not respond to antigen, therefore, no priming occurs in any cell population and no 
precursor cells are generated. Also, since we assume neither effector nor effector memory T cells 
enter the lymph compartment from the blood, we do not model effector or effector memory cell 
populations within the lymph node compartment (as shown in Figure 2). The production of the 
non-specific effector cells was modeled as a source term in the blood compartment and was 
included to meet the assumption that the previous pre-infection data describes homeostasis. The 
equations for non-Mtb-specific CD4+ T cells are shown below. Moreover, including non-Mtb-
specific cells in the model makes model predictions more realistic due to the total cell numbers 
more accurately reflecting the actual numbers in blood. 

4N
sl

2x
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3x
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Naïve CD4+ non-Mtb-specific (5/?'() )

 
  (1.11) 

 
Central Memory CD4+ non-Mtb-specific  - LN (1./?'

() ) 

  (1.12) 

 
Naïve CD4+ non-Mtb-specific – Blood (5/?'5 ) 

  (1.13) 

Effector CD4+ non-Mtb-specific  - Blood  (*/?'5 )
 

  (1.14) 

 
As non Mtb-specific effector cells in the blood must be produced somewhere in the body, they are 
modeled as source and a death rate equal to that of their antigen-specific counterparts. 
 
Central Memory CD4+ non Mtb-specific – Blood (1./?'

5 )
 

  (1.15) 

 
Effector Memory CD4+ non-Mtb-specific  - Blood (*./?'

5 )
 

  (1.16) 

 
Lymph Node and Blood Mtb-specific T cells 
There are only slight differences in our modeling of CD8+ and CD4+ T cells.  Importantly, the 
priming of Mtb-specific naïve CD8+ T cells is impacted by cytokines released by activated CD4+ 
T cells in the lymph node. Again, as we do not directly model cytokine expression in the lymph 
nodes, this is modeled indirectly by a Michaelis-Menten term that includes activated CD4+ T 
effector cells and a weighted term for precursor CD4+ T cells. We display these equations below:  
 

  (1.17) 
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(1.18) 
 
Effector CD8+ T cells in lymph node   

 
!"!"#
!# =	#$%$&'( % )*

)*+,-$%
& − (.)&'( −	#$/)&'(      (1.19) 

 
 
Central Memory CD8+ T cells in lymph node  

 (1.20) 
 
Effector Memory CD8+ T cells in lymph node 

       (1.21) 
 
Naive CD8+ T cells in blood 

   (1.22) 
 
Effector CD8+ T cells in blood 

        (1.23) 
 
Central Memory CD8+ T cells in blood 
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   (1.24) 
Effector Memory CD8+ T cells in blood 

        (1.25) 
 
Lymph Node and Blood non-Mtb-specific CD8+ T cells 
Modeled in an identical approach as the CD4+ T cell pools that were non-Mtb-specific. 
 
Non-Mtb-specific Naive CD8+ T cells in lymph node  

     (1.26) 
Non-Mtb-specific Central Memory CD8+ T cells in lymph node  

   (1.27) 
Non-Mtb-specific Naive CD8+ T cells in blood 

 (1.28) 
Non-Mtb-specific Effector CD8+ T cells in blood 

         (1.29) 
Non-Mtb-specific Central Memory CD8+ T cells in blood 

  (1.30) 
Non-Mtb-specific Effector Memory CD8+ T cells in blood 

        (1.31) 
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Table D.1 Parameter table for granuloma model and lymph node & blood model 
 

Parameter Name 
Granuloma ODE 

Units Parameter Description Minimum 
Value 

Maximum 
Value 

Srm 1/day MR recruitment rate 0 0 

alpha4a 1/day Macrophage recruitment of MR 0.7 1.0 

beta 1/pg Scaling factor of Falpha for MR activation 8.65E+06 1.14E+07 

w N/A Contribution of BI to MR activation 0.26 0.36 

w3 N/A Max contribution of Th1 to MI apoptosis 0.2 0.8 

w2 N/A Contribution of MI to MR recruitment 0.9 1.2 

Sr4b 1/day Falpha dependent recruitment of MR 592 864 

f8 N/A Ratio adjustment I10/Falpha on MR recruitment 1.74E-03 2.25E-03 

f9 N/A Ratio adjustment Falpha/I10 0.523 0.673 

s4b pg/ml Half saturation of Falpha on MR recruitment 2920 5250 

k4 1/day MA deactivation by I10 0.08 0.17 

s8 pg/ml Half saturation of I10 on MA deactivation 244 1003 

k2 1/day MR infection rate 0.84 2.31 

c9 count Half saturation of BE on MR infection 1622 7868 

k3 1/day MR activation rate 0.034 0.045 

f1 N/A Adjustment I4/IGamma 126 165 

s1 pg/ml Half saturation of IGamma dependent MR 
activation 

83 479 

c8 count Half saturation of BE and BI on MR activation 1.64E+05 4.09E+05 

nuMR 1/day MR death rate 0.004 0.006 

k17 1/day Max rate of MI bursting 0.088 0.238 

N count Carrying capacity of MI 5 25 

k14a 1/day T cell induced apoptosis of MI 0.07 1.7 

c4 count Half saturation of Th1/MI ratio on MI apoptosis 397 951 

k14b 1/day Falpha induced apoptosis of MI 0.59 0.92 

k52 1/day Cytotoxic killing of MI 0.54 0.78 

w1 N/A Max contribution of Th1 to cytotoxic killing 0.22 0.74 

c52 count Half saturation of TC on MI killing 1.08E+05 2.51E+05 

cT1 count Half saturation of Th1 on cytotoxic killing 30 40 

nuMI 1/day MI death rate 0.003 0.004 

nuMA 1/day MA death rate 0.15 0.20 

alpha1a 1/day Macrophage recruitment of T0 0.08 0.57 

Sr1b 1/day F/alpha dependent T0 recruitment 25007 54088 

s4b2 pg/ml Half saturation of Falpha dependent T0 
recruitment 

4834 10175 

alpha2 1/day Max growth rate of T0 0.1 1 

c15 count Half saturation of MA proliferation of T0 5 25 
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k6 1/day Max T0 to Th1 rate 0.10 0.23 

f7 N/A Effect of I10 on IGamma induced differentiation 
of T0 to Th1 

8.2 32.3 

k7 1/day Max T0 to Th2 rate 0.24 0.61 

f2 N/A Adjustment IGamma/I4 0.2 0.4 

s2 pg/ml Half saturation I4 429 955 

nuT0 1/day T0 death rate 0.19 0.25 

m N/A Percentage overlap between TC and T8 0.68 0.90 

alpha3a 1/day Macrophage recruitment of Th1 0.39 0.82 

Sr3b 1/day Falpha dependent recruitment of Th2 19 83 

s4b1 pg/ml Half saturation of Falpha dependent Th1 
recruitment 

6131 10162 

alpha3a2 1/day Macrophage recruitment of Th2 0.25 0.79 

Sr3b2 1/day Falpha dependent recruitment of Th2 47.5 99.0 

nuTg 1/day Igamma induced apoptosis of Th1 0.290 0.762 

c pg/ml Half saturation Igamma on Th1 apoptosis 284 727 

nuT1 1/day Th1 death rate 0.28 0.37 

nuT2 1/day Th2 death rate 0.29 0.37 

alpha3ac 1/day Macrophage recruitment of TC and T8 0.25 0.80 

Sr3bc 1/day Falpha dependent recruitment of TC and T8 13 28 

nuTCg 1/day Igamma induced apoptosis of Tc and T8 0.46 0.90 

cc pg/ml Half saturation IFN-g on TC and T8 apoptosis 337 673 

nuTC 1/day TC death rate 0.26 0.33 

alpha30 pg/(ml*
day) 

Falpha production by MI 0.05 0.10 

alpha31 pg/(ml*
day) 

Falpha production by MA 0.19 0.82 

beta2 1/pg Scaling factor of Mtb for Falpha production by 
MA 

10466 13466 

s10 pg/ml Half saturation of Igamma on Falpha production 
by MA 

103 313 

alpha32 pg/(ml*
day) 

Falpha production by Th1 0.20 0.34 

alpha33 pg/(ml*
day) 

Falpha production by T8 0.18 0.33 

nuTNF 1/day Falpha decay rate 0.93 1.21 

sg pg/(ml*
day) 

Igamma production by dendritic cells (DCs) 2667 7944 

c10 count Half saturation of Mtb on Igamma production by 
DCs 

980813 6876625 

s7 pg/ml Half saturation of I12 on Igamma production by 
DCs 

538 883 

alpha5a pg/day Igamma production by Th1 0.54 0.87 

c5a count Half saturation of MA on Igamma production by 
Th1 

304 687 

alpha5b pg/day Igamma production by T8 0.18 0.60 
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alpha5c pg/day Igamma production by MI 0.12 0.36 

c5b count Half saturation of MA on Igamma production by 
T8 

235.8 846.6 

alpha7 pg/day Igamma production by T0 0.04 0.17 

f4 N/A Adjustment of I10/I12 on Igamma 1.30 1.67 

s4 pg/ml Half saturation of I12 on Igamma 285 810 

nuIG 1/day Igamma decay rate 5.448 9.693 

alpha23 pg/day I12 production by MR 0.003 0.005 

c23 pg/ml Half saturation of Mtb on I12 production by MR 157 525 

alpha8 pg/day I12 production by MA 0.38 0.86 

s12 pg/day Dendritic cell production of I12 2361 4061 

c230 count Half saturation of Mtb on I12 production by DCs 366 762 

nuI12 1/day I12 decay rate 0.93 1.24 

s pg/ml I10 effect on I12 production by MA 192 694 

delta7 pg/day I10 production by MA 0.38 0.85 

s6 pg/ml Half saturation of I10 self 587 859 

f6 N/A Adjustment Igamma on I10 0.30 0.39 

alpha16 pg/day I10 production by Th1 0.33 0.79 

alpha17 pg/day I10 production by Th2 0.28 0.53 

alpha18 pg/day I10 production by TC and T8 0.46 0.78 

nuI10 1/day I10 decay rate 1.80 4.53 

alpha11 pg/day I4 production by T0 0.01 0.06 

alpha12 pg/day I4 production by Th2 0.02 0.06 

nuI4 1/day I4 decay rate 2.37 3.09 

alpha19 1/day BI growth rate 0.82 1.36 

alpha20 1/day BE growth rate 0.25 0.43 

Nfracc N/A Fraction BI released by T cell apoptosis of MI 0.05 0.07 

Nfraca N/A Fraction BI released by TNF apoptosis of MI 0.05 0.07 

k15 1/day BE killing by MA 0.0003 0.0011 

k18 1/day BE killing by MR 0.0003 0.0008 

Nfracd N/A fraction of BI released during MI natural death to 
become BE 

0.0009 0.0011 

power N/A scaling factor 2 2 

nI 1/day BI death rate 5.95E-05 9.04E-05 

nE 1/day BE death rate 4.11E-09 7.41E-09 

Sr4Non 1/day TNFalpha dependent recruitment of CD4 non-
specific T cells 

156 504 

hs4Non pg/ml  half sat of TNFalpha dependent recruitment of 
CD4 non-specific T cells 

5 50 

mui4Non 1/day death rate of CD4 non-specific T cells 0.3 0.4 

Sr8Non 1/day TNFalpha dependent recruitment of CD8 non 153 509 
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hs8Non pg/day  half sat of TNFalpha dependent recruitment of 
CD8 non 

5 50 

mui8Non 1/day death rate of CD8 non-specific T cells 0.3 0.4 

Sr4EM 1/day TNFalpha dependent recruitment of CD4 EM T 
cells 

48 102 

hs4EM pg/ml half sat of TNFalpha dependent recruitment of 
CD4 EM T cells 

0.001 0.001 

mui4EM 1/day death rate of CD4 EM T cells 0.16 0.32 

k31 1/day differentiaton rate of CD4 EM T cells to Th1 cells 0.04 0.11 

k32 1/day differentiaton rate of CD4 EM T cells to Th2 cells 0.07 0.11 

Sr8EM 1/day TNFalpha dependent recruitment of CD8 EM T 
cells 

53 107 

hs8EM pg/ml half sat of TNFalpha dependent recruitment of 
CD8 EM T cells 

0.001 0.001 

mui8EM 1/day death rate of CD8 EM T cells 0.17 0.31 

k33 1/day differentiaton rate of CD8 EM T cells to cytotoxic 
CD8 T cells 

0.05 0.11 

k34 1/day differentiaton rate of CD8 EM T cells to Effector 
CD8 T cells 

0.05 0.11 

k99  1/day  killing rate constant of BI by TRM 0.3 0.8 

APCtimeStart day when APCs leave and enter the lymph node 5 28 

APCtimeEnd day APCs stop leaving granuloma 50 105 

APCleave N/A Percentage of infected macs considered APCs in 
granuloma 

5 25 

localDissemCFU
Half 

count half sat CFU for local dissemination events 6.98E+03 9.71E+03 

localDissemLamb
da 

N/A max probability of local dissemination 0.0005 0.025 

nonLocalDissem
CFUHalf 

count half sat CFU for non local dissemination 5.22E+03 1.06E+04 

nonLocalDissem
Lambda 

N/A max probability of non local dissemination 0.0001 0.005 

MR count Resting macrophages 0 0 

MI count Infected macrophages 1 1 

MA count Activated macrophages 0 0 

T0 count Primed CD4+ T cells 0 0 

T1 count Th1 cells 0 0 

T2 count Th2 cells 0 0 

T80 count Primed CD8+ T cells 0 0 

TC count Cytotoxic T cells 0 0 

T8 count Effector CD8+ T cells 0 0 

TNF pg/ml Tumour Necrosis Factor 0 0 

IFNG pg/ml interferon 0 0 

IL12 pg/ml Interleukin 0 0 

IL10 pg/ml Interleukin 0 0 

IL4 pg/ml Interleukin 0 0 
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BI count Intracellular Bacteria 1 1 

BE count Extracellular Bacteria 0 0 

CD4Non count Nonspecific CD4 T cells 0 0 

CD8Non count Nonspecific CD8 T cells 0 0 

EMCD4 count Effector Memory CD4 T cells 0 0 

EMCD8 count Effector Memory CD8 T cells 0 0 

Parameter Name 
(LN & Blood) 

Units Parameter Description Minimum 
Value 

Maximum 
Value 

alfa uL Conversion from Blood to LN 360000 360000 

host_Ln count Involved Lymph Nodes in Host 5 5 

lambda count frequency of specific Naive T cells in system 0.0001 0.0001 

hs1 count half sat of Naive CD4+ T cell recruitment 14 71 

hs10 count half sat of Naive CD8+ T cell recruitment 46 88 

hs11 count half sat of Naive CD8+ T cell priming 13 48 

hs13 count half sat of precursor CD8+ T cell proliferation 2684 4056 

hs14 count half sat of precursor CD8+ T cell differentiation 1904 4144 

hs17 count half sat of Central Memory CD8+ T cell 
recruitment 

66 403 

hs4 count half sat of Precursor CD4+ T cell proliferation 1319 4318 

hs5 count half sat of Precursor CD4+ T cell differentiation 1257 3719 

hs8 count half sat of Central Memory CD4+ T cell 
recruitment 

40 57 

k1 1/day Naive CD4+ T cell recruitment rate 0.12 0.47 

k10 1/day Naive CD8+ T cell recruitment rate 0.77 0.97 

k11 1/day Naive CD8+ T cell priming rate 0.00010 0.00023 

k12 1/day Central Memory CD8+ T cell reactivation rate 0.00012 0.00075 

k13 1/day Precursor CD8+ T cell proliferation rate 0.20 0.80 

k14 1/day Precursor CD8+ T cell differentiation to Effector 
rate 

0.25 0.74 

k15 1/day Precursor CD8+ T cell differentiation to CM rate 0.53 0.86 

k16 1/day Precursor CD8+ T cell differentiation to EM rate 0.16 0.82 

k17 1/day Central Memory CD8+ T cell recruitment rate 0.35 0.90 

k2 1/day Naive CD4+ T cell priming rate 0.33 0.87 

k3 1/day Central Memory CD4+ T cell reactivation rate 0.022 0.080 

k4 1/day Precursor CD4+ T cell proliferation rate 0.30 1.36 

k5 1/day Precursor CD4+ T cell differentation to effector T 
cell 

0.27 0.90 

k6 1/day Precursor CD4+ T cell differentiation to central 
memory T cell 

0.3 0.9 

k7 1/day Effector CD4+ T cell differentiation to EM 0.1 0.6 

k8 1/day Central Memory CD4+ T cell recruitment rate 0.026 0.070 

mu1 1/day Effector CD4+ T cell death rate 0.2 0.2 
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mu2 1/day Effector Memory CD4+ T cell death rate 0.04 0.04 

mu3 1/day Effector CD8+ T cell death rate 0.2 0.2 

mu4 1/day EM CD8+ T cell death rate 0.018 0.018 

mu5 1/day APC death rate 0.05 0.05 

mu6 1/day Precursor CD4+ T cell death rate 0.0005 0.0005 

mu7 1/day Precurosr CD8+ T cell death rate 0.015 0.015 

mu8 1/day Naive CD4+ T cell death rate 0.3 0.3 

mu9 1/day Naive CD8+ T cell death rate 0.05 0.05 

rho1 count Precursor Carrying Capacity 300000000 300000000 

Wp4 N/A Weight factor for Precursor CD4+ T cell in CD8+ 
T cell priming 

0.7355 0.7355 

xi11 1/day Central Memory CD8+ Lymph efflux rate 0.275 1.223 

xi12 1/day EM CD8 Lymph efflux rate 0.219 1.521 

xi2 1/day Naive CD4+ Lymph Efflux rate 2 5 

xi3 1/day Effector CD4+ Lymph Efflux rate 1 4 

xi5 1/day Central Memory CD4+ Lymph Efflux rate 1 4 

xi6 1/day Effector Memory CD4+ Lymph Efflux rate 3 4 

xi8 1/day naive CD8 lymph efflux rate 1 2 

xi9 1/day effector CD8 lymph efflux rate 2 4 

 
Table D.2 Effect size measure comparisons for Figure 5.6C.  
Vargha and Delaney’s A measure calculated pairwise between the three separate groups for 
differences between fold change of cell entry into lung. When A < 0.56, differences are 
considered small, if A> 0.71, the differences are considered to be large. Measure values are 
rounded to the nearest hundredth.  
 
 LTBI vs Active TB groups TB eliminator vs 

Active TB groups 
TB eliminator vs 

LTBI groups 
CD4+ Effector 
T cell  

0.9 0.91 0.54 

CD4+ Effector 
Memory T cell 

0.53 0.64 0.6 

CD8+ Effector 
T cell 

0.64 0.84 0.7 

CD8+ Effector 
Memory T cell 

0.52 0.67 0.65 

 
 
Table D.3 PRCC values for host-scale sensitivity analysis. 
Parameter Names Description PRCC values 
LN_k13 Precursor CD8+ T cell 

proliferation 
0.22 
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LN_k14 CD8+ Precursor 
differentiation rate to CD8+ 
Effector T cell 

-0.18 

LN_k4 Precursor CD4+ T cell 
proliferation 

0.32 

LN_k5 CD4+ Precursor 
differentiation rate to CD4+ 
Effector T cell 

-0.15 

 
 
Table D.4 PRCC values from granuloma-scale sensitivity analysis for active TB case. 
Parameter Names Description PRCC values 
w3 Max percentage contribution 

of Th1 cells to Fas-FasL 
apoptosis of MI 

-0.12 

s4b  0.13 
k2 MR infection rate 0.11 
c9 Half-sat of BE on MR 

infection 
-0.14 

k17 MI death rate due to BI 0.36 
N Carrying capacity of MI 0.26 
k14a Fas-FasL induced apoptosis 

of MI 
-0.17 

k14b TNF induced apoptosis of MI -0.15 
Sr1b TNF dependent recruitment 

of primed CD4+ T cells 
-0.21 

s4b2 Half-sat of TNF dependent 
recruitment of primed CD4+ 
T cells 

0.19 

k6 Max rate of primed CD4+ T 
cells differentiating to Th1 

-0.22 

k7 Max rate of primed CD4+ T 
cells differentiating to Th2 

0.11 

s2 Half-sat of IL-4 production -0.1 
c Half-sat of IFN-γ on Th1 

death 
-0.12 

alpha32 TNF produced by Th1 cells -0.24 
nuTNF Decay rate of TNF 0.12 
alpha7 IFN-γ production by primed 

CD4+ T cells 
-0.19 

s12 IL-12 production -0.19 
c230 Half-sat of BI on IL-12 

production 
0.19 

nuIL12 Decay rate of IL-12 0.13 
nuIL10 Decay rate of IL-10 -0.13 
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alpha11 IL-4 produced by primed 
CD4+ T cells 

0.26 

alpha20 BE growth rate 0.17 
k18 BE killing by MR -0.22 

 
Table D.5 PRCC values from granuloma-scale sensitivity analysis for TB eliminator case 
Parameter Names Description PRCC values 
k2 MR infection rate 0.11 
c9 Half-sat of BE on MR 

infection  
-0.14 

k17 MI death rate due to BI 0.22 
N Carrying capacity of MI 0.11 
k14a Fas-FasL induced apoptosis 

of MI 
-0.62 

c4 Half-sat of cytotoxic and Th1 
cells per MI on MI apoptosis 

0.17 

alpha11 IL-4 produced by primed 
CD4+ T cells 

0.11 

k18 BE killing by MR -0.12 
 

 
Figure D.1 Representative simulations for intra-compartment sensitivity analysis.  
A) CFU trajectories within a single TB eliminator host.  B) Minimum, median and maximum 
CFU trajectories for the TB eliminator host, re-simulated 500 times, varying only granuloma-
scale parameters.  C) CFU trajectories within a single active TB host.  D) Minimum, median and 
maximum CFU trajectories for the active TB host, re-simulated 500 times, varying only 
granuloma-scale parameters.   
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Appendix E Supporting Information for Chapter 6 
 
HostSim Equations with the addition of Resident Memory T cells 
 
The HostSim granuloma model equations are shown in full detail in Chapter 5. Briefly, the 
system of 20 ODEs captures intracellular and extracellular bacterial numbers, various 
macrophages, various T cells and pro- and anti-inflammatory cytokines across time.  In this 
Chapter, we add a resident memory T cell population (TRM) to reinfection granulomas: 
 

0@7 =	0@7(0)P!%&'%	 
 
where QA@7is the death rate of TRM and is assigned as 0.03, 0.0012, or 0.0001 cells/day, 
depending on the study.  0@7(0) = [1-10] and is sampled according to a Latin Hypercube 
sampling scheme, like other parameters in HostSim.  All other equations remain unchanged, 
except intracellular bacteria (BI), which now includes a term from interactions between 
macrophages and TRM cells that leads to intracellular bacterial death: 
 

!"&
!#

= 5LMM	NOLP#QRS	5ERI	TℎPU#NE	5 −	'5&7B(CD916 ∗ )& ∗ .X) ∗
"&
)&
		 

 
Where '5&7B(CD916 = [0.3, 0.8] bacteria/day consistent with rate constants of intracellular bacteria 
death from interactions with other T cells in HostSim, and identified via manual tuning to match 
the reinfection CFU dynamics of the NHP study by Cadena et al.   
 

 
Figure E.1 Histogram of Total Lung CFU in HostSim virtual population 500 hosts.  
Total lung CFU calculated by summing CFU across all granulomas in a host at day 200 
following primary infection.  Yellow represents hosts that are classified as TB eliminators (total 
Lung CFU < 1), dark blue represents hosts classified as active TB cases (total Lung CFU > 105) 
and green represents latently infected individuals (LTBI) - those that control infection. Across a 
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population of 500 hosts, 110 are classified as active TB cases, 366 are classified as LTBI, and 24 
are classified as TB eliminators.  This breakdown of responses across a virtual population of 500 
individuals represents our expected outcomes when calculating reduced risks of developing 
active TB following reinfection. 
 

 
Figure E.2 Percentages of active TB cases per study for TST+/TST- individuals.  
A) The percentage of TST+ individuals who develop active TB across time in the meta-analysis 
by Andrews et al. (ref 22 in Chapter 6). B) the percentage of TST- individuals who develop 
active TB across time.  Each data point is a single study, where the x-axis represents the length 
of the study. 
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Figure E.3 Blood T-cell counts delineate active TB and LTBI cases for each set of 
reinfection studies.  
Box-and-whisker plots show the distribution of TRM, Mtb-specific effector, effector memory 
and central memory T cells in the blood for hosts that were active TB, LTBI or TB eliminators 
following reinfection.  Dark blue=active TB, Green = LTBI, yellow=TB eliminator. Each 
column represents each set of the three reinfection studies; where the death rate of TRM cells 
from left to right is dTRM =0.03, dTRM =0.0012, and dTRM =0.0001 cells/day. 
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Appendix F Supplementary Material for Chapter 7 
 
Box 1: 
initial parameter ranges -- The widest range for each parameter that are biologically feasible, 
which includes all previous estimates that have been derived via experimental studies or other 
models.  
 
pass set definition – Modeler-defined rules that identify the set of model simulations that provide 
satisfying fits to the experimental datasets. In our examples, the pass set definition outlines a 
model simulation must pass within the bounds of the range of data points for each time point, 
across each dataset.  
 
pass run set – The set of model simulations that satisfy the pass set definition.  The fail run set is 
the set of model simulations that failed to satisfy the pass set definition.  
 
pass parameter range set – The set of parameter values corresponding to the model simulations 
that satisfy the pass set definition. The fail parameter range set is the set of parameter values for 
model simulations that failed to satisfy the pass set definition.  
 
termination criterion – The modeler sets this singular value between 0 and 100% that determines 
when calibration is complete.  CaliPro iterations continue until the percentage of total model 
runs that belong to the pass run set is greater than this value. We typically use 75% to 90%, as 
we prefer not to overfit to any given dataset.  
 
 
Example 1 Equations: predator-prey model 
All equations and parameters are included in the main body of the text for this two-equation 
model. Additionally, we provide a directory for download that includes all MATLAB scripts for 
running a fully automated version of CaliPro on this predator-prey model example. This includes 
model parameters, equations and execution. The webpage address where a reader can download 
the zipped directory is: http://malthus.micro.med.umich.edu/CaliPro 
 
Example 2 Equations: ODE granuloma lesion model 
As the second example, we apply CaliPro to a system of 16 ODEs that capture bacterial, T cell, 
macrophage and cytokine dynamics within a single granuloma lesion. These ODEs are the 
granuloma ODEs for the single granuloma model in MultiGran, the whole lung model that we 
presented in Chapter 3.  The full set of ODEs is listed in Appendix B.  
 
Example 3 Equations: transmission model of infectious disease  



 266 

The model used for this example was initially shown in Menzies et al. (ref 35 in main text). More 
information can be found in their original paper, but briefly, the model includes 6 states 
including non-susceptible individuals (N), susceptible individuals (S), early disease cases (E), 
late disease cases (L), treatment cases (T), and dead individuals (D). The number of individuals 
by state and year (t) is given by Nt, St, Et, Lt, Tt, respectively. Individuals enter the model as 
either non-susceptible or susceptible states, and transition between states to allow for infection (S 
to E) disease progression (E to L), treatment initiation (E and L to T), and death (all other states 
to D) via background and disease-specific mortality. μ parameters are death rates, λt is the force 
of infection based on contact rate, and α represents annual birth rate.  
 

Q5
QR

= +S − #55 
 

Q%
QR

= +(1 − S) − #5% − K%% 
  

Q*
QR

= K%% − (#5 − #9)* − &%9* − $* 
 

QT
QR

= $* − (#5 − #()T − &(T 

 
Q0
QR

= &%9* + &(T − (#5 − #A)0 
 

QU
QR

= #5(5 + % + * + T + 0 + #9* +	#(T +	#A0) 

 
Example 4 Model: agent-based model of granuloma formation 
GranSim is an agent-based model of granuloma formation during Mycobacterium tuberculosis 
infection that has been curated for approximately 15 years within our lab. For this model 
example, we execute a 2D version of GranSim representing 4mm by 4mm section of lung tissue 
that tracks molecular, cellular, and tissue-scale events. We host a website 
(http://malthus.micro.med.umich.edu/GranSim) devoted to GranSim’s development and rules. 
Interested readers can download model parameter sets and a model executable as well. 
 
 
 


