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ABSTRACT

Distributionally Robust Optimization in Sequential Decision Making

by

Hideaki Nakao

Chair: Siqian Shen

Distributionally robust optimization (DRO) is an effective modeling paradigm for

making optimal decisions under uncertainty, where distributional information about

the random parameters in a problem of interest is hardly available at the time when

decisions are made. DRO encompasses conventional modeling approaches such as

stochastic programming and robust optimization for decision making under uncer-

tainty. The former requires perfect or near-perfect knowledge about the statistics of

the random parameters for accurate decision making, while the latter only assumes

that the supports of the random parameters are known, which often leads to overly

conservative solutions. DRO overcomes these concerns by optimizing the expected

value or a risk measure of the worst-case distribution in a set of distributions where

the true distribution is contained with high probability. In this dissertation, we ap-

ply the DRO techniques to various types of sequential decision-making models and

explore the capability of the new models for producing reliable and also economic

decisions under different settings of data-decision interactions.

In Chapter II, we consider a distributionally robust variant of a partially observ-

able Markov decision process (POMDP), where the transition-observation probabili-
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ties are uncertain. We assume that these parameters differ over time and are revealed

at the end of each time step. We construct an algorithm to find an optimal policy by

iteratively updating the upper and lower bounds of the value function. We demon-

strate the use of distributionally robust POMDP in an application of epidemic control

when the probability of true infection status is unknown as well as prevention and/or

intervention decisions have to be made sequentially and robustly with updated infor-

mation. In Chapter III, we derive a Wasserstein distance to bound between the true

and an empirical distribution when the states and actions of a dynamic sequential

decision-making process are finite. We further apply the approach to a regret-based

reinforcement learning problem that uses the principle of optimism under uncertainty,

and compare the empirical performance of the optimal solution to our model with the

conventional approach by testing instances of an ambulance dispatch problem. Fi-

nally, in Chapter IV, we focus on a multistage mixed-integer stochastic programming

model, and employ a dual decomposition algorithm for solving a distributionally ro-

bust variant of the model. We analyze the numerical performance through instances

of a transmission expansion problem in power systems under the uncertainty of loads

and renewable generation capabilities.

Overall, the contributions of this dissertation are threefold. First, we develop

mathematical models of various distributionally robust sequential decision making

problems, some of which involve discrete decision variables and are generally NP-

hard. Second, we derive efficient solution algorithms to solve the proposed models

via relaxation and decomposition techniques. Third, we evaluate the performance

of solution approaches and their results via extensive numerical experiments based

on epidemic control, healthcare, and energy applications. The models and solution

algorithms developed in this work can be used by practitioners to solve a variety

of sequential decision making problems in different business contexts, and thus can

generate significant societal and economic impacts.
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CHAPTER I

Introduction

Sequential decision making arises in many engineering problems including trans-

portation, energy, healthcare operations management, finance, and medicine. The

most challenging aspect of sequential decision making is the presence of data and

system uncertainties whose values are revealed to the decision maker (DM) gradu-

ally and iteratively over time. Due to the increasing number of combinations of the

possible outcomes in the future, obtaining an optimal decision that overlooks all the

potential scenarios is often a very difficult task. In this thesis, we focus mainly on two

approaches. The first is the Markov Decision Processes (MDP) approach, where the

model is restricted to have finite states that evolve according to a Markov process,

i.e., the probability for transitioning to the state in the next time period is only de-

pendent on the current state-and-action pair. Because of this assumption/restriction,

there exist some efficient ways for calculating the future expected reward. The second

approach we focus on is the multistage stochastic programming approach, which in-

volves continuous or discrete states and actions. The uncertain parameters are often

driven by exogenous random variables, and modeling endogenous uncertainty is quite

challenging. In this chapter, we will introduce the general mathematical formulations

of sequential decision-making processes for different approaches.

The traditional literature in optimization under uncertainty commonly assumes
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that the full knowledge of underlying true distributions of uncertain parameters. How-

ever, in practice, there are situations where only a small amount of data is available

to fully characterize the statistics of the uncertain parameters when decisions need to

be made. For example, only a few samples of parameters about a system of interest

may be given to the DM initially. The data can then be used to construct a set of

distributions, namely the ambiguity set, which contains the true distribution with

high probability. In distributionally robust optimization (DRO), the decisions are

made against the worst-case expected value or a certain risk measure of the objective

function over all possible distributions characterized by the ambiguity set. We will

describe the concept and general models of DRO in Section 1.3.

1.1 Markov Decision Processes

In this section, we briefly introduce formulations of MDP and partially observable

Markov decision processes (POMDP).

1.1.1 Formulating Markov Decision Processes

A finite horizon MDP is a 5−tuple (S,A, P a
t , R

a
t , T ), where

• S is a set of states, finite;

• A is a set of actions;

• P a
t (s, s′) is the probability of transitioning from state s ∈ S at time t to s′ ∈ S

at time t+ 1 by taking action a ∈ A at time t;

• Ra
t (s) is an immediate reward for taking an action a ∈ A at time t;

• T is the total number of periods in the overall time horizon.

The objective for the decision maker (DM) is to find a policy that maximizes the

cumulative expected reward. This can be obtained by solving the Bellman equation

2



(Puterman, 2014):

Vt(s) = max
a∈A

[
Ra
t (s) +

∑
s′∈S

P a
t (s, s′)Vt+1(s′)

]
, ∀s ∈ S, t ∈ [T − 1], (1.1)

where [·] := {1, 2, . . . , ·}, and

VT (s) = RT (s), ∀s ∈ S. (1.2)

1.1.2 Partially Observable Markov Decision Processes

A finite horizon POMDP is a 7−tuple (S,A, P a
t , R

a
t ,Ω, O

a
t , T ), where S, A, P a

t , R
a
t , T

are the same as MDP, and

• Ω is a set that contains all possible observations;

• Oa
t (s
′, o) is a conditional probability of observation o ∈ Ω given a state s′ ∈ S

at time t+ 1 and action a ∈ A at time t.

The sufficient statistic of POMDP is a belief bt ∈ ∆(S), where ∆(·) is a probability

simplex of ·. That is, it is sufficient to maintain the DM’s subjective probability of

the state which the system is in, rather than keeping all the sequence of the actions

and observations to come up with an optimal policy. We can consider the belief as

an information state (Kumar and Varaiya, 2015), since it can be iteratively updated

with incoming data of action and observation:

bbt,a,ot+1 (s′) :=

∑
s∈S P

a
t (s, s′)Oa

t (s
′, o)bt(s)∑

s′′∈S
∑

s∈S P
a
t (s, s′′)Oa

t (s
′, o)bt(s)

, ∀s′ ∈ S. (1.3)

Here, bbt,a,ot+1 is the posterior probability after taking an action a and observing an

outcome o, when the prior probability is bt.

3



The optimal policy is obtained by solving

Vt(bt) = max
a∈A

[∑
s∈S

Ra
t (s)bt(s) +

∑
o∈Ω

∑
s′∈S

∑
s∈S

P a
t (s, s′)Oa

t (s
′, o)bt(s)Vt+1

(
bbt,a,ot+1

)]
,

(1.4)

for all bt ∈ ∆(S) and t ∈ [T − 1], and

VT (bT ) =
∑
s∈S

RT (s)bT (s).

The value function is piecewise-linear and convex (PWLC) with respect to the

belief state (Smallwood and Sondik , 1973), but the exact solution of the optimal

policy is known to be highly intractable to obtain (Papadimitriou and Tsitsiklis ,

1987). Recent developments that use approximation algorithms for solving POMDPs

are summarized in Shani et al. (2013).

1.2 Optimization under Uncertainty with Full Distributional

Information

1.2.1 Stochastic Programming

We first introduce the basic concepts of stochastic programming, as an approach

that is ubiquitously used for optimization under uncertainty when distributional in-

formation is fully known to the DM. We let x be the decision variable, and assume

that the feasible region X ⊆ Rn is non-empty, for ease of exposition. We are interested

in solving a problem of the form

min
x∈X

h(x, ξ), (1.5)

4



where ξ is an uncertain parameter. This is an ill-posed problem, since we cannot

minimize the random outcome h(x, ξ) when the value of ξ is uncertain. Instead, we

consider a certain function of the random variables ξ:

min
x∈X

% (h(x, ξ)) , (1.6)

Typically, the expected value is chosen for %:

min
x∈X

E [h(x, ξ)] , (1.7)

When the DM is risk-averse, we use a different function that puts more weight on the

realizations of random objective having greater values. We may be interested in the β-

quantile of the objective value, namely the value-at-risk (VaR). However, conditional

value-at-risk (CVaR) (Rockafellar and Uryasev , 2002) is often used instead of VaR

due to its convex property. CVaR is the mean value of the realizations of the objective

value that are greater than the value of the VaR, and is an upper bound approximation

of VaR. It also satisfies other desirable properties of risk measures described in Artzner

et al. (1999). It is formulated as

min
x∈X ,α∈R

α +
1

1− β
E
[
[h(x, ξ)− α]+

]
, (1.8)

where [a]+ = max{0, a}. Here, α is the VaR, and the second term in the objective

function represents the conditional average of the margins above α.

For continuously distributed random parameter ξ, the computation of the ex-

pected value is often a difficult task since it requires integrating the objective func-

tion and the full knowledge of the probability distribution of the uncertain ξ. To

circumvent this, a sample average approximation (SAA) algorithm is employed and

we briefly describe its steps as follows. Suppose that ξ follows a distribution F and
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has a support Ξ. We take N identically and independently distributed (i.i.d.) samples

from the distribution F and set Ξ̂ =
{
ξ1, . . . , ξN

}
as the sample set. Then, (1.7) is

approximated as

min
x∈X

1

N

N∑
s=1

h(x, ξs). (1.9)

By the Law of Large Numbers, the optimal objective value converges pointwise w.p.

1 to the true expected value, and so does the optimal solution under some regularity

conditions (Shapiro et al., 2009).

1.2.2 Two-stage Stochastic Programming

In two-stage stochastic programs, some decisions are made before the values of un-

certain parameters are revealed (i.e., here-and-now decision variables), and afterward

(i.e., wait-and-see variables). Benders decomposition (Birge and Louveaux , 2011) is

a well-known technique that exploits the sparsity of the constraints in the large-scale

linear optimization problem. A generic formulation of a two-stage stochastic program

is given by

min
x

c>x+
1

N

N∑
s=1

Q(x, ξs) (1.10a)

s.t. Ax ≥ b, (1.10b)

x ∈ Rn1
+ , (1.10c)

where for each scenario s ∈ [N ], we let ξs = (qs,W s,T s,hs) and define

Q(x, ξs) = min
y

(qs)> y (1.11a)

s.t. W sy = hs − T sx, (1.11b)

y ∈ Rn2
+ . (1.11c)

6



We apply strong duality to the second-stage problem and obtain

Q(x, ξs) = max
π

π> (hs − T sx) (1.12a)

s.t. π>W s ≤ qs. (1.12b)

Suppose that for a feasible x obtained from solving (1.10), the problem (1.11) is fea-

sible. Then, Q(x, ξs) ≥ π> (hs − T sx) holds for all π-values that satisfy (1.12b).

Because the feasible region (1.12b) is a polyhedron, it is sufficient to consider the

extreme points of (1.12b). If for a given x from (1.10), (1.11) is infeasible, then there

exists an extreme ray r which the objective value of (1.12) increases indefinitely. To

suppress this, we add a constraint r> (hs − T sx) ≤ 0 for all extreme rays. In prac-

tice, only a subset of these constraints are necessary to obtain the optimal solution x

to (1.10). In the Benders decomposition algorithm, the first-stage problem is approx-

imated from below as a relaxed master problem, and these constraints are added as

needed from iteratively solving the second-stage problem (1.12). The master problem

is

min
x,θ

c>x+
1

N

N∑
s=1

θs (1.13a)

s.t. Ax ≥ b, (1.13b)

x ∈ Rn1
+ , (1.13c)

θs ≥ (π̂s)> (hs − T sx) , ∀π̂s ∈ Vs, s = 1, . . . , N, (1.13d)

(r̂s)> (hs − T sx) ≤ 0, ∀r̂s ∈ Rs, s = 1, . . . , N. (1.13e)

Here, Vs is a subset of extreme points of (1.12b), where new points are added when

a solution (x?,θ?) is discovered and scenario s of the second stage problem is feasible

with θs? < Q(x?, ξs). This is called the optimality cut. Similarly, Rs is a subset

of extreme rays of (1.12b), where new rays are added when a solution (x?,θ?) is

7



infeasible for scenario s of the second stage problem. This is called the feasibility cut.

A special case where for any first-stage feasible solution x, the second-stage prob-

lem is feasible for all scenarios is called the relatively complete recourse problem and

feasibility cuts are not needed in this case.

1.2.3 Multistage Stochastic Programming

A multistage stochastic program is a generalization of the aforementioned two-

stage stochastic program with K stages (K ≥ 2). It is formulated as

min
x1

c>1 x1 + E [Q2(x1, ξ2)] (1.14)

s.t. x1 ∈ X1, (1.15)

where

Qk(xk−1, ξk) := min
xk

c>k xk + E [Qk+1(xk, ξk+1)] (1.16a)

s.t. Wkxk = hk − Tkxk−1, (1.16b)

xk ∈ Rnk , (1.16c)

for all k = 2, . . . , K − 1, and

QK(xK−1, ξK) := min
xK

c>KxK (1.17a)

s.t. WKxK = hK − TKxK−1, (1.17b)

xK ∈ RnK . (1.17c)

The algorithm works very similarly to the two-stage stochastic problems, although

there is a notion of scenario trees in the multistage case to cause the “curse of di-

mensionality” issue in computation. When the uncertain parameters are stage-wise

8



independent, the computation can be greatly reduced using stochastic dual dynamic

programming (SDDP) (Pereira and Pinto, 1991).

1.3 Distributionally Robust Optimization

For ease of exposition, we focus on the case where the objective function is piece-

wise linear and convex (PWLC), i.e.,

min
x∈X

E
[

max
`=1,...,L

ξ>` x

]
. (1.18)

Here, we use the same notation of the decision variable x ∈ X , and ξ` is one of the

random cost vectors associated with decision x.

Different from the stochastic programming approaches reviewed in Section 1.2,

here we do not assume sufficiently many data, i.e., only a small number of samples is

available to the DM, and therefore it is difficult to justify the use of the sample aver-

age approximation. Using a robust optimization method by constructing a bounded

support ignores statistical information that can be obtained from data if not the

full knowledge about the true distribution, and often leads to an overly conservative

solution. DRO generalizes these approaches by constructing a set of distributions,

namely the ambiguity set, using data and thus become data-driven. Then, we opti-

mize for the worst-case expected value of the objective among all the distributions in

the ambiguity set:

min
x∈X

max
F∈D

EF
[

max
`=1,...,L

ξ>` x

]
. (1.19)

Here, F is a distribution and D is an ambiguity set. Below, we introduce some of the

ambiguity sets that can yield a tractable reformulation of (1.19).
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1.3.1 Moment-based Ambiguity Set

Let ξ = (ξ1 . . . , ξL), and suppose that the support Ξ is bounded and convex. We

let µ̂ and Σ̂ be the sample mean and covariance matrix of N data samples. Let γ1 and

γ2 be some functions of N and a small probability δ given in Delage and Ye (2010).

Then, with probability at least 1− δ, the true distribution contains in an ambiguity

set

D =

 F ∈M

P(ξ ∈ Ξ) = 1

(E[ξ]− µ̂)> Σ̂−1 (E[ξ]− µ̂) ≤ γ1

E
[
(ξ − µ̂) (ξ − µ̂)>

]
� γ2Σ̂

 , (1.20)

where M is a set of probability measures. The first condition indicates that the

uncertain parameter must lie inside the support Ξ, and the second condition restricts

the true mean to be inside an ellipsoid characterized by the sample covariance matrix

Σ̂. The third condition requires the difference of the right-hand-side (RHS) matrix

and the left-hand-side (LHS) matrix to be positive semidefinite. This gives a condition

on the proximity of the events to the sampled average µ̂ in terms of the sampled

covariance matrix Σ̂.
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The DRO problem (1.19) can be expressed as

min
x∈X

max
F

∫
Ξ

(
max

`=1,...,K
ξ>` x

)
F (ξ) dξ (1.21a)

s.t.

∫
Ξ

F (ξ) dξ = 1, (1.21b)

∫
Ξ

 Σ̂ (ξ − µ̂)

(ξ − µ̂)> γ1

F (ξ) dξ � 0, (1.21c)

∫
Ξ

(ξ − µ̂)(ξ − µ̂)>F (ξ) dξ � γ2Σ̂, (1.21d)

F ∈M. (1.21e)

The constraint (1.21c) is by Schur complement. This problem involves an infinite

number of variables F (ξ), but under some regularity conditions, one can use strong

duality to obtain a reformulation of (1.21):

min
x,Q,q,r,t

r + t (1.22a)

s.t. r ≥ ξ>` x− ξ>Qξ + ξ>q, ∀ξ ∈ Ξ, ` = 1, . . . , L, (1.22b)

t ≥
(
γ2Σ̂ + µ̂µ̂>

)
•Q+ µ̂>q +

√
γ1

∣∣∣∣∣∣Σ̂1/2(q + 2Qµ̂)
∣∣∣∣∣∣

2
, (1.22c)

Q � 0, (1.22d)

x ∈ X , (1.22e)

where • is a Frobenius product operation. There are infintiely many constraints

in (1.22b) as it needs to be considered for all ξ ∈ Ξ, which renders the problem

intractable. To solve (1.22), we employ a cutting-plane-based decomposition algo-

rithm by relaxing this set of constraints and add cuts as needed. Given solutions
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(x?,Q?, q?, r?), we solve the following problem for all ` = 1, . . . , L:

max
ξ

s` (1.23a)

s.t. s` ≤ ξ>` x? − ξ>Q?ξ + ξ>q?, (1.23b)

ξ ∈ Ξ. (1.23c)

If the solution (s?` , ξ
?) satisfies s?` > r?, then it indicates that there exists ξ? such that

it violates (1.22b), and therefore we add a cut

r ≥ ξ?`>x− ξ?>Qξ? + ξ?>q (1.24)

to (1.22) until a certain precision is satisfied.

1.3.2 Wasserstein-based Ambiguity Set

The 1-Wasserstein distance between two distributions P and Q is formally defined

as follows:

W (P,Q) = inf
Π

∫
Ξ2

||ξ1 − ξ2||Π(dξ1, dξ2) (1.25a)

s.t Π is a joint distribution with marginals P and Q. (1.25b)

1-Wasserstein distance is also known as the earth mover’s distance (Villani , 2008;

Gao and Kleywegt , 2016), where the cost to move a unit probability mass from ξ1 to

ξ2 is given by some norm ||ξ1−ξ2||. The formulation (1.25) has a dual form (Esfahani

and Kuhn, 2018)

W (P,Q) = sup
f∈L


∫
Ξ

f(ξ)P (dξ)−
∫
Ξ

f(ξ)Q(dξ)

 , (1.26)
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where L is the Lipschitz set

L = {f : ||f(ξ1)− f(ξ2)|| ≤ |ξ1 − ξ2|} . (1.27)

The N samples are used to construct an empirical distribution F̂ , and the true

distribution F is expected to have a small Wasserstein distance from F̂ . In fact, when

the true distribution is light-tailed, i.e., there exists a such that

A := EP [exp (‖ξ‖a)] =

∫
Ξ

exp (‖ξ‖a)P(dξ) <∞. (1.28)

Then, with probability at least 1 − δ, the Wasserstein distance between F and F̂ is

less than

εN(δ) :=


(

log(c1δ−1)
c2N

)1/max{m,2}

if N ≥ log(c1δ−1)
c2(

log(c1δ−1)
c2N

)1/a

if N <
log(c1δ−1)

c2

 , (1.29)

where m is the dimension of ξ, and c1, c2 are some constants that only depend on

a, A, and m (Fournier and Guillin, 2015). We can therefore define an ambiguity

set having a finite Wasserstein distance from the empirical distribution, namely the

Wasserstein ball:

D =
{
F ∈M : W (F, F̂M) ≤ εN(δ)

}
. (1.30)

For simplicity, suppose that the support Ξ is a polytope

Ξ =
{
ξ ∈ Rm : ξ>E ≤ d>

}
. (1.31)
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The DRO model (1.19) can be reformulated as

min
x,λ,s,ν

λεN(δ) +
1

N

N∑
i=1

si (1.32a)

s.t. ξi`
>x+ (d> − ξi>E)νik ≤ si, ∀i = 1, . . . , N, ` = 1, . . . , L, (1.32b)

||Eνi` − I`x|| ∗ ≤ λ, ∀i = 1, . . . , N, ` = 1, . . . , L, (1.32c)

νi` ≥ 0, ∀i = 1, . . . , N, ` = 1, . . . , L, (1.32d)

x ∈ X ⊆ Rn, (1.32e)

where I` is a zero matrix of size RnL×n, except for the `th block which is an identity

matrix.
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The rest of the dissertation is outlined as follows.

Chapter II is joint work with Dr. Siqian Shen and Dr. Ruiwei Jiang. This

chapter considers a distributionally robust variant of POMDP which was introduced

in Section 1.1.2. It also considers an ambiguity set related to the one introduced in

Section 1.3.1.

Chapter III is joint work with Dr. Siqian Shen. I would also like to acknowledge

Dr. Ruiwei Jiang and Dr. Cong Shi for constructive discussions on the theory of

Wasserstein distance and concentration inequality. This chapter considers a slightly

different variant of MDP introduced in Section 1.1.1, and uses a discrete version of

the Wasserstein-based ambiguity set introduced in Section 1.3.2.

Chapter IV is joint work with Dr. Kibaek Kim and Dr. Siqian Shen. I would also

like to express my gratitude to Dr. Miao Yu for the discussions on the application

in the transmission expansion problem. This chapter is related to Section 1.2 and

considers the Wasserstein-based ambiguity set introduced in Section 1.3.2.

Finally, the conclusion is given in Chapter V.
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CHAPTER II

Distributionally Robust Partially Observable

Markov Decision Process

2.1 Introductory Remarks

Partially Observable Markov Decision Processes (POMDPs) are useful for mod-

eling sequential decision making problems, where a decision maker (DM) is only able

to obtain partial information about the present state of a system of interest. Similar

to the Markov Decision Processes (MDPs), the transition probabilities in between the

states of the system depend on the current state and the action chosen by the DM.

In addition, POMDPs are accompanied with a set of observation outcomes that are

realized probabilistically given the DM’s action and the state into which the system

has transitioned. Different from MDPs where the DM is able to directly observe

the current state of the system, in POMDPs the DM can only view an observation

instead of the true state. Applications of POMDPs include clinical decision making,

inventory control, machine repair, epidemic intervention and many more (Cassandra,

1998; Hauskrecht and Fraser , 2000; Treharne and Sox , 2002).

A general objective in sequential decision making is to devise a policy of taking

dynamic actions to maximize (minimize) the expected value of the cumulative reward

(cost). In MDPs, the DM gains a reward (or pays a cost) for each action made on a
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state of the system. In POMDPs, since the DM has no access to the true state, she

is uncertain about the reward (cost) received. Instead, the DM retains her belief of

the present state based on past actions and observations, and anticipates an expected

value of the reward (or the expected cost) based on the belief. The DM’s belief is

represented by a probability mass associated with each state of the system, which

is a sufficient statistic of the history of past actions and observations (Kumar and

Varaiya, 2015, Chapter 6.6). Since a policy is a function of the past actions and

observations, this property is useful to compactly represent an increasing sequence of

information.

In POMDPs, a critical assumption is that the exact transition and observation

probabilities are known to the DM for each action-state combination. In practice,

there may exist estimation errors about either the transition or observation probabil-

ity values, to handle which, Rasouli and Saghafian (2018) builds an uncertainty set of

probabilities and develops an exact algorithm for the problem of maximizing the ex-

pected reward in the worst-case realization of the unknown probabilities in POMDPs.

We will numerically compare actions of robust POMDP (see Osogami (2015)) with

decision policies of DR-POMDP and POMDP in Section 2.6.

In this chapter, using bounded moments, we construct an ambiguity set of the

unknown joint distribution of the transition-observation probabilities, in which the

true joint distribution lies with high probability. We consider a distributionally robust

optimization framework of POMDPs (called DR-POMDP) to seek an optimal policy

against the worst-case distribution in the ambiguity set, when realizations of the

transition and observation probabilities in each decision period are generated from

this distribution. Moreover, we allow transition-observation probabilities to vary

in different decision periods, and assume that at the end of each period, the DM

can gather side information to infer the true values of the transition-observation

probabilities realized in that period, even these values were unknown to the DM when
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decisions were made. Admittedly, it is rather restrictive to have this assumption where

the transition-observation probabilities can be observed retrospectively. However,

there exist a wide range of applications where the underlying dynamics are understood

and can be simulated to produce unknown parameters (i.e., transition-observation

probabilities) once values of some exogenous parameters are gained after the decisions

are made. For example, Mannor et al. (2016) justify the electric power system as one

case where the system performance can be reliably simulated when environmental

factors, such as wind and solar radiation levels, are known. In Section 2.3, we provide

a few examples to further illustrate and justify this assumption and in Section 2.6,

we conduct numerical tests on dynamic epidemic control problem instances, which

satisfy the assumption.

In distributionally robust optimization (DRO), we seek solutions to optimize the

worst-case objective given by possible distributions contained in an ambiguity set.

Compared with robust optimization that accounts for the worst-case objective out-

come given by all possible realizations of uncertain parameters in an uncertainty

set, optimal solutions to DRO models are less conservative and can be adjusted

through the amount of data/information we have. Delage and Ye (2010) develop

a moment-based ambiguity set, considering a set of distributions with an ellipsoidal

condition on the mean and a conic constraint on the second-order moment, to derive

tractable reformulations of several distributionally robust convex programs. Stan-

dardization of ambiguity sets via conic representable sets is proposed by Wiesemann

et al. (2014). Zymler et al. (2013) consider tractable reformulations of DR chance-

constrained programs using moment-based ambiguity set. Other types of ambiguity

sets used in DRO models bound the φ-divergence (Ben-Tal et al., 2013; Jiang and

Guan, 2016) or Wasserstein distance (Esfahani and Kuhn, 2018; Gao and Kleywegt ,

2016) in between possible distributions to a nominal distribution. In this chapter, we

also use a moment-based ambiguity set where the moment information is bounded via
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conic constraints. We establish the Bellman equation for DR-POMDP and prove the

piecewise-linear-convex property of the value function, using which we further develop

efficient computational algorithms and demonstrate the efficacy of the DR-POMDP

model by testing epidemic control problem instances with diverse parameter settings.

The remainder of the chapter is organized as follows. In Section 2.2, we review

the most relevant POMDP, robust MDP/POMDP, and DRO literature. In Section

2.3, we formally present DR-POMDP and provide a few examples to show possible

applications. In Section 2.4, we formulate the Bellman equation and show that the

value function is piecewise linear convex under general moment-based ambiguity sets

described in Yu and Xu (2016). In Section 2.5, we develop an approximation al-

gorithm for DR-POMDP based on a distributionally robust variant of the heuristic

value search iteration algorithm. In Section 2.6, we demonstrate the computational

results of solving DR-POMDP on randomly generated instances of a dynamic epi-

demic control problem, and compare it with POMDP and robust POMDP through

different out-of-sample tests. Section 2.7 concludes the chapter and presents future

research directions.

2.2 Literature Review

Although strong modeling connections exist in between MDP and POMDP, tech-

niques applied to solve MDP models where the states are discrete, are not directly

applicable to solving POMDP since belief states are continuous. Smallwood and

Sondik (1973) show that the value function of POMDP is piecewise linear convex

(PWLC) with respect to the belief state, and derives an exact algorithm to find an

optimal policy. The exact algorithm, which keeps a set of vectors for characterizing

the value function, is intractable as the search space increases exponentially over peri-

ods. Pineau et al. (2003) propose a point-based value iteration (PBVI) algorithm by

only keeping characterizing vectors for a subset of belief states, and thus maintains a

19



lower bound of the true value function that aims to maximize the reward. The PBVI

algorithm is polynomial in the number of states, observations, and actions, and the

error induced by taking a subset of belief states is shown to be convergent if the subset

is sampled densely in the reachable set of belief states. Smith and Simmons (2004)

develop a heuristic search value iteration (HSVI) algorithm to derive an upper bound

of the value function via finding the reachable set through simulation. Smith and

Simmons (2004) show that HSVI is guaranteed to terminate after the gap between

the upper and lower bounds converges within a certain threshold.

The research on robust MDP is motivated by possible estimation errors of tran-

sition matrices and how they may have a significant impact to the solution quality

(see, e.g., Abbad and Filar (1992); Abbad et al. (1990)). In Wiesemann et al. (2013),

the authors show probabilistic guarantees for solutions to robust MDPs by building

an uncertainty set using fully observable history. By construction, their robust pol-

icy achieves or exceeds its worst-case performance with a certain confidence. Nilim

and El Ghaoui (2005) consider robust control for a finite-state, finite-action MDP,

where uncertainty on the transition matrices is described by particular uncertainty

sets such as likelihood regions or entropy bounds, and the authors present a robust

dynamic programming algorithm for solving the problem. Iyengar (2005) analyzes

a robust formulation for discrete-time dynamic programming where the transition

probabilities are uncertain and ambiguously known, and shows that it is equivalent

to stochastic zero-sum games with perfect information. Delage and Mannor (2010)

argue that robust MDP models may produce over-conservative solutions, as they do

not incorporate the distributional information of uncertain parameters. Then Xu and

Mannor (2012) present a distributionally robust MDP model, where the ambiguity

set is characterized by a sequence of nested sets, each having a confidence level to

guarantee that the true value is in the set with a certain probability. Yu and Xu (2016)

generalize the distributionally robust MDP to include multi-modal distributions and
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the information of mean and variance. Yang (2017) proposes a distributionally robust

MDP model by building an ambiguity set of distributions on transition probability

using a Wasserstein ball centered around a nominal distribution. The use of Wasser-

stein ball ambiguity set results in a Kantorovich-duality-based convex reformulation

for distributionally robust MDP.

Saghafian (2018) presents a modeling framework of ambiguous POMDP (called

APOMDP), which generalizes the robust POMDP in Rasouli and Saghafian (2018).

APOMDP optimizes over the α-maxmin expected utility, resulting in a policy that

can achieve the intermediate performance of the worst case and the best case in the

uncertainty set of parameters. Saghafian (2018) describes conditions under which

the value function of APOMDP is PWLC. Meanwhile, Rasouli and Saghafian (2018)

consider a general setting of robust POMDP, where the DM may not be able to

obtain the exact transition-observation probabilities even after taking actions at the

end of each period. In this case, the sufficient statistic is no longer a single belief

state, but a collection of belief states, and the expected reward up to the current

period must be taken into account to realize a policy that is robust in terms of the

entire cumulative expected reward. The authors also derive an exact algorithm for

robust POMDP where the uncertainty set is discrete. Here we note that robust

POMDP with a continuous uncertainty set is computationally challenging even in a

very simple setting. Moreover, Osogami (2015) formulates a robust counterpart for

POMDP, where the transition-observation matrix is assumed to lie in a fixed support

within the probability simplex. The realized transition-observation probability values

are assumed to be observable to the DM at the end of each decision period, similar

to the setting in this chapter. While the value function for the standard POMDP

can be described by a PWLC function, the value function of the robust POMDP

is not necessarily piecewise linear, as there are possibly infinitely many supporting

hyperplanes. The authors derive an efficient algorithm based on PBVI to approximate

21



the exact solution, and discusses a method to conduct a robust belief update.

2.3 Problem Description

Figure 2.1 depicts the sequence of events that occur during one decision period.

In a distributionally robust setting, we consider another agent (the “nature”), who

chooses a distribution µ of the transition-observation probabilities from a pre-assumed

ambiguity set. The DM expects that the nature may access to the same information

as the DM and acts adversarially against the DM’s action a taken at the beginning

of each period. Therefore, the distribution µ is expected to lead to the worst-case

expected reward. Next, the joint transition-observation probability p is realized from

the distribution µ. The state makes a transition according to p, and the observation

outcome z is shown. Finally, the DM obtains the values of z and p at the end of the

period.

Figure 2.1: Sequence of events during one decision period in a DR-POMDP

We denote S as the set of states, A as the set of actions, and Z as the set of obser-

vation outcomes. For all (s, s′, z, a) ∈ S2 ×Z ×A, we define pas(s
′, z) = Pr(s′, z|s, a)

as the probability of transitioning between (s, s′) and observing z, given action a. For

(s, a) ∈ S×A, let ras be the reward for taking action a at state s. For all s ∈ S, a ∈ A,

we define a vector of probabilities pas = (pas(s
′, z), (s′, z) ∈ S × Z)> and assume that

the Cartesian product (pas, ras) is a member of a set Xas ⊆ ∆(S × Z) × R, where

∆(·) is a probability simplex of set ·. We denote pa = (pas(s
′, z), (s, s′, z) ∈ S2×Z)>

and ra = (ras, s ∈ S)> for all a ∈ A. We assume that (pas, ras) follows a distribution
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µas, which is unknown but is included in an ambiguity set Das ⊆ P(Xas), where P(·)

represents a set of all probability distributions with support ·. Furthermore, the set of

distributions is rectangular with respect to the set of actions A and the set of states

S, i.e., the overall ambiguity set is D =
⊗

a∈A
s∈S

Das. This assumption is analogous to

the (s, a)-rectangularity in Wiesemann et al. (2013). The above conditions increase

the conservativeness of the model in general. In Section A.1, we discuss a relaxation

of the a-rectangularity assumption for DR-POMDP.

Below we describe several examples in which the above settings of DR-POMDP

can be justified, and therefore our approach can be applied to optimize corresponding

policies. The key is to justify whether the DM can obtain the true value of p using

side information at the end of each decision period. In Section 2.6, we also numerically

show that our approach can produce quite stable reward in out-of-sample simulation

tests even we add noise to the true p-value obtained at the end of each period and

thus the assumption is relatively weak.

First, consider dynamic epidemic surveillance and control. During a flu season, the

number of weekly visits of patients who show influenza-like illness (ILI) symptoms is

reported to the public. The number of ILI patients divided by the total population,

called the ILI rate, is frequently used to estimate the prevalence of an epidemic.

For example, Rath et al. (2003) studies a two-state MDP model (i.e., epidemic vs.

non-epidemic) and shows that the ILI rate follows a Gaussian and an exponential

distribution for the epidemic and non-epidemic state, respectively; Le Strat and Carrat

(1999) uses ILI rate to predict influenza epidemics through a hidden Markov model.

The hidden states correspond to the current epidemic level, which is unobservable

to the DM due to incubation period and patient arrival latency. Different epidemic

levels also cause different probabilities of the population visiting healthcare providers,

which will then be reflected in ILI rate.

Arguably, the transition probabilities and ILI rates are dependent on government
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control policies, such as restricting travels, stopping mass gatherings, and so on. These

decisions often have to be made before knowing the true transition matrix and obser-

vation probabilities between ILI rate and the true epidemic state. The DR-POMDP

seeks a policy to minimize the worst-case expected cost (e.g., the total infected count,

death toll, etc.) and at the end of each decision period, side information such as hu-

midity, antigenic evolution of the virus, and population travels in the past period can

be used to infer the true transition and ILI-rate observation probabilities (see, e.g.,

Du et al., 2017). Note that the side information is not available at the beginning of

each decision period when the DM takes an action, but can be collected at the end

of each period.

Another example arises in clinical decision-making such as deciding prostate can-

cer treatment plans (Zhang and Denton, 2018), where different treatment plans can

probabilistically vary cancer conditions (i.e., states) of a patient. The true state of a

cancer patient is hard to know but can be inferred probabilistically from belief states.

Using DR-POMDP, a doctor’s objective is to provide treatment and inspection as

needed in order to minimize the maximum expected quality-adjusted life years for

each patient under ambiguously known transition-observation probabilities. Accord-

ing to Zhang and Denton (2018), the detection of prostate-specific antigen (PSA),

has a varying accuracy rate depending on the patient’s condition. After treatment in

each period, the doctor can utilize the PSA information to infer the true transition

and observation probabilities happening to the patient and update her belief to make

treatment plans for the next period.

One can also consider planning production or maintaining inventory in highly

seasonal industries such as agriculture (Treharne and Sox , 2002), where system states

correspond to market trends in each decision period. The trend makes a transition

according to a probability mass function that is unknown to the DM and each trend

is associated with a certain distribution of demand that the DM aims to satisfy. For

24



a certain product, the market transition probability and the demand distribution

are correlated with climate factors, such as temperature and precipitation, which are

uncertain to the DM when she makes a production plan and thus using DR-POMDP,

the goal is to minimize the maximum demand loss due to distributional ambiguity.

After each period, the DM observes the realized temperature and precipitation and

also the true demand, to identify the true value of p.

2.4 Optimal Policy for DR-POMDP

We derive an optimal policy for DR-POMDP when the DM can obtain the value of

transition-observation probability at the end of each decision period. In Section 2.4.1,

we formulate DR-POMDP as an optimization problem and construct the Bellman

equation to derive the optimal policy. In Section 2.4.2, we show that the value function

satisfying the Bellman equation is PWLC. Finally, in Section 2.4.3, we consider the

infinite-horizon case, and demonstrate that the value function converges under the

Bellman update operation.

2.4.1 Distributionally Robust Bellman Equation

We formulate a dynamic game involving two players: The DM selects a ∈ A

and then the nature selects µa =
⊗

s∈S µas from the ambiguity set Da =
⊗

s∈S Das

to minimize the expected reward given the DM’s action a. Let at, ptat , z
t be the

action, transition-observation probability outcome, and observation during decision

period t. We denote Ht as the set of all possible histories up to period t, and denote

ht =
(
a1,p1

a1 , z1, . . . , at−1,pt−1
at−1 , z

t−1
)

as a history in Ht. The DM’s objective is

to find an optimal policy of selecting an action a ∈ A based on the history from

t = 1 to T , i.e., finding the best policy π = (π1, . . . , πT−1) with πt : Ht → A.

We denote the set of all such policies as Π, and define an extended history h̃t =(
a1,p1

a1 , z1, . . . , at−1,pt−1
at−1 , z

t−1, at
)
∈ H̃t, on which the nature bases its decision for
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choosing µat . The nature’s objective is to find the best policy (from the nature’s

perspective) γ = (γ1, . . . , γT−1), with γt : H̃t → Dat to minimize the expected reward.

Similarly, we denote the set of all the nature’s policies as Γ.

Rasouli and Saghafian (2018) point out that the sufficient statistic for robust

POMDP is no longer a single belief state, but a set of belief states. Moreover, they

discuss that the set of belief states by itself cannot be used to construct an optimal

policy since there exists uncertainty for the reward accumulated in the past, associated

with each of the belief states. Because of the uncertainty in the expected reward, the

DM must consider a belief state that achieves the smallest expected reward both in

the past and the future, posing great challenge for optimization. We claim that a

similar observation holds true for the distributionally robust case. However, when

the DM can obtain the value of transition-observation probability at the end of each

decision period, the ambiguity of the belief state, as well as the expected reward

diminishes and the single belief state becomes a sufficient statistic for DR-POMDP,

which can also be used to characterize the optimal policy.

Let the belief state in period t be (bts, s ∈ S) = bt ∈ ∆(S). Given action

a, transition-observation probability pa, and observation outcome z, the sufficient

statistic for the history ht+1 = (ht, a,pa, z), or the belief state in period t+ 1 is given

by

bt+1 = f(b, a,pa, z) =

∑
s∈S Jzpasbs∑

s∈S 1>Jzpasbs
, (2.1)

where 1 represents a vector of ones having the length |S|; Jz ∈ R|S|×(|S|×|Z|) is a matrix

of zeros and ones that projects the vector pas to a vector pasz = (pas(s
′, z), s′ ∈ S)>,

whose entries correspond to the outcome z. That is, pasz = Jzpas, ∀a, s, z. Note

that the belief state cannot be updated using (2.1) and will not be a sufficient statistic

of the history of past actions and observations if we do not have the true values of
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pas.

With slight abuse of notation, let π be a policy that maps belief states to the

actions, i.e., πt : ∆(S)→ A for all t ∈ {1, . . . , T −1}. Similarly, let γt : ∆(S)×A →

Dat for all t ∈ {1, . . . , T −1}. Note that the nature’s policy is dependent on the belief

state since the nature acts adversarial to the DM.

Remark II.1. Note that the deterministic policy is optimal since the nature is able to

access to the same information as the DM, plus the action that the DM has performed.

This does not hold true when the nature is not able to perfectly access to the DM’s

immediate action.

Given the nature’s choice of distribution µa, the expected value of the instanta-

neous reward given belief state b and action a is denoted as E(pa,ra)∼µa
[
b>ra

]
, where

“∼” expresses the relation between random variables and probability distributions.

Let β ∈ (0, 1] be a discount factor. The objective of the DM is to find a policy

to maximize the minimum cumulative discounted expected reward given all possible

policies (i.e., distributions of transition-observation probabilities) by the nature. That

is, DR-POMDP aims to solve

max
π∈Π

min
γ∈Γ

E

[
T−1∑
t=1

βtbt
>
rtat

]
(2.2a)

s.t. at = πt(bt), ∀t ∈ {1, . . . , T − 1} (2.2b)

µtat = γt(bt, at), ∀t ∈ {1, . . . , T − 1} (2.2c)

(ptat , r
t
at) ∼ µtat , ∀t ∈ {1, . . . , T − 1} (2.2d)

(st+1, zt) ∼ ptatst , ∀t ∈ {1, . . . , T − 1} (2.2e)

bt+1 = f(bt, at,ptat , z
t), ∀t ∈ {1, . . . , T − 1} (2.2f)

where the terminal reward is zero without loss of generality. The initial belief state
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is given as b. Alternatively, we denote the problem (2.2) as

max
π∈Π

min
γ∈Γ

E

[
T−1∑
t=1

βtbt
>
rtat

∣∣∣∣∣ b1 = b

]
. (2.3)

Here we omit all the constraints in (2.2) for presentation simplicity.

To solve (2.2), we propose to use dynamic programming, and derive the Bellman

equation below.

Proposition II.2. Denote πt:T−1 = (πt, πt+1, . . . , πT−1) and γt:T−1 =

(γt, γt+1, . . . , γT−1) as sequences of policies from t to T − 1. Let Πt:T−1 and Γt:T−1 be

the sets of all policies πt:T−1 and γt:T−1, respectively. Consider the value function in

period t as

V t(b) = max
πt:T−1∈Πt:T−1

min
γt:T−1∈Γt:T−1

E

[
T−1∑
n=t

βn−tbn>rnan

∣∣∣∣∣ bt = b

]
. (2.4)

Then,

V t(b) = max
a∈A

min
µa∈Da

E(pa,ra)∼µa

[∑
s∈S

bs

{
ras + β

∑
z∈Z

1>JzpasV
t+1 (f (b, a,pa, z))

}]
.

(2.5)

Proof. We first isolate the term associated with period t inside the expectation of

(2.4) as follows.

V t(b) = max
πt:T−1∈Πt:T−1

min
γt:T−1∈Γt:T−1

E

[
bt
>
rtat + β

T−1∑
n=t+1

βn−(t+1)bn>rnan

∣∣∣∣∣ bt = b

]
.

Given at = πt(b), pta = pπt(b), z
t = z, the probability of observing z is

∑
s∈S

bs1
>Jzpπt(b)s.
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Thus, we can calculate the expectation conditioned on the values of at, pta, z
t in the

value function as:

V t(b) = max
πt:T−1∈Πt:T−1

min
γt:T−1∈Γt:T−1

E(pπt(b)
,rπt(b)

)∼µπt(b)

[∑
s∈S

bsr
t
πt(b)s

+
∑
z∈Z

∑
s∈S

bs1
>Jzpπt(b)sE

[
T−1∑
n=t+1

βn−(t+1)bn>rnan

∣∣∣∣∣ bt = b, at = πt(b),pta = pπt(b), z
t = z

]}]

= max
πt:T−1∈Πt:T−1

min
γt:T−1∈Γt:T−1

E(pπt(b)
,rπt(b)

)∼µπt(b)

[∑
s∈S

bs

{
rtπt(b)s

+β
∑
z∈Z

1>Jzpπt(b)sE

[
T−1∑
n=t+1

βn−(t+1)bn>rnan

∣∣∣∣∣ bt+1 = f
(
b, πt(b),pπt(b), z

)]}]
,

where the second equality is due to rearranging the terms and the fact that b is an

information state. Because policies beyond period t do not affect (ptat , r
t
at), we have

V t(b) = max
a∈A

min
µa∈Da

E(pa,ra)∼µa

[∑
s∈S

bs

{
ras + β

∑
z∈Z

1>Jzpas

× max
πt+1:T−1∈Πt+1:T−1

min
γt+1:T−1∈Γt+1:T−1

E

[
T−1∑
n=t+1

βn−(t+1)bn>rnan

∣∣∣∣∣ bt+1 = f (b, a,pa, z)

]}]

= (2.5).

The final equality follows the definition of V t+1. This completes the proof.

Following Proposition II.2, the policies optimal to (2.3) can be determined by

recursively solving (2.5) from period T to t = 1.

Now define two functions:

U t(b, a, µa) = E(pa,ra)∼µa

[∑
s∈S

bs

{
ras + β

∑
z∈Z

1>JzpasV
t+1 (f (b, a,pa, z))

}]
, (2.6)

Qt(b, a) = min
µa∈Da

U t(b, a, µa). (2.7)

The solution to the Bellman equation provides the optimal action given belief state

b. That is, an optimal action for the DM in period t is

arg max
a∈A

Qt(b, a),
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whereas the optimal distribution chosen by the nature, under belief state b and the

DM’s action a, is

arg min
µa∈Da

U t(b, a, µa).

2.4.2 Properties of Distributionally Robust Bellman Equation (2.5)

We consider an ambiguity set based on mean absolute deviation of transition-

observation probabilities as described below. We refer the readers to Section A.2 for

a more general ambiguity set that can also involve ambiguity in the reward, and the

mean values are on an affine manifold with conic representable support. The same

property here holds for DR-POMDP with the general ambiguity set and we omit the

details for presentation simplicity.

Suppose that the expected value of the deviation of the transition-observation

probability from its mean value p̄as is at most cas. Then for all a ∈ A and s ∈ S, the

unknown distribution µas satisfies Epas∼µas [|pas − p̄as|] ≤ cas, which is reformulated

as:

E(pas,ũas)∼µ̃as [ũas] = cas,

µ̃as

 ũas ≥ pas − p̄as, 1>pas = 1

ũas ≥ p̄as − pas, pas ≥ 0

 = 1.

Here, ũas ∈ R|S|×|Z| denotes a vector of auxiliary variables, and µ̃as is a joint

distribution of (pas, ũas). This notation is introduced to differentiate from µas, which

represents the true distribution of pas. The ambiguity set for distribution µ̃as is
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therefore

D̃as =

µ̃as
pas
ũas


∣∣∣∣∣∣∣
E(pas,ũas)∼µ̃as [ũas] = cas

µ̃as

(
X̃as
)

= 1

 , (2.8)

while the support X̃as for (pas, ũas) is given by

X̃as =


pas
ũas

 ∈ R|S|×|Z|+

RL

∣∣∣∣∣∣∣∣∣∣
ũas ≥ pas − p̄as

ũas ≥ p̄as − pas

1>pas = 1

 . (2.9)

For ambiguity sets and supports respectively defined in terms of (2.8) and (2.9),

we show that the value function is convex with respect to the belief state b for each

decision period.

Theorem II.3. For all a ∈ A and s ∈ S, let the ambiguity set and support be (2.8)

and (2.9), respectively. For all t ∈ {1, . . . , T}, there exists a set Λt of slopes such that

the value function can be expressed as follows.

V t(b) = max
α∈Λt

α>b. (2.10)

A detailed proof of Theorem II.3 is shown in Section A.3. Following this result,

having provided the values of a and αaz, the inner minimization in (A.14) can be

solved efficiently using linear programming. The issue, however, is that there are

possibly infinitely many elements in Conv (Λt+1), and even if there are finitely many,

the number of supporting hyperplanes α inside Λt increases exponentially as the value

functions are calculated from period t = T to t = 1. We describe in Section 2.5 a

heuristic search value iteration (HSVI) algorithm for efficiently computing optimal

policies in DR-POMDP.
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2.4.3 Case of Infinite Horizon

We show that the PWLC property of the value function can be extended to the

case with infinite horizon. We prove the result by following the Banach fixed point

theorem (see, e.g., Puterman (2014)), and show that by repeatedly updating the value

function in (2.5), it converges to a unique function corresponding to the optimal value

V ∗ of the infinite-horizon DR-POMDP problem.

Theorem II.4. The operator L defined as

LV (b) = max
a∈A

min
µa∈D̃a

E(pa,ra)∼µa

[∑
s∈S

bs

(
ras + β

∑
z∈Z

1>JzpasV (f(b, a,pa, z))

)]
(2.11)

is a contraction for 0 < β < 1.

We refer the readers to a detailed proof provided in Section A.3. Theorem II.4

suggests that by employing the exact algorithm discussed in the finite horizon case,

starting from any initial value function, the value function V converges to an optimal

function V ∗ with rate β by iteratively performing the Bellman operator L. Therefore,

we can use the same solution approach to be discussed in Section 2.5 for handling

both finite-horizon and infinite-horizon cases of DR-POMDP.

2.5 Solution Method

We present a variant of the HSVI algorithm proposed in Smith and Simmons

(2004) (originally for solving POMDP) for efficiently computing upper and lower

bounds for DR-POMDP. We maintain a set of finite number of hyperplanes ΛV ,

where the resulting PWLC function V bounds the true value function from below.

We also maintain a set of points ΥV whose elements are (b, v), which is a combination

of a belief b and an upper bound v of the true value function at the belief b. Therefore,

the resulting PWLC function V bounds the value function from above. The upper

bound v corresponding to a belief b is obtained through sampling. The sampling
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follows a greedy strategy to close the gap between the upper bound V and the lower

bound V for the belief points that are reachable from the initial belief.

Algorithm 1 Heuristic Search Value Iteration (HSVI)

1: Input: initial belief state b0, tolerance ε
2: Initialize: V , V (see details in Section 2.5.1)
3: while V (b0)− V (b0) > ε or time limit is reached do
4: DR-BoundExplore(b0, 0) (see details in Algorithm 2)
5: end while
6: Output: V , V

Algorithm 1 presents the main algorithmic steps in HSVI, where the details of

Step 4 are later provided in Algorithm 2. During Step 4, one sample path of DM,

the nature’s action and the observation outcomes are greedily selected, and then the

bounds are updated using Bellman equations. Figure 2.2 demonstrates how the lower

bound of the value function can be described as the maximum of the lower bounding

hyperplanes, and the upper bound can be described as a convex hull of the upper

bounding points. Figure 2.3 illustrates an example of how newly discovered bounding

hyperplanes and points can be used to locally update the bounds.

In Section 2.5.1, we explain how the upper and lower bounds of the value func-

tion are initialized (i.e., the details for Step 2), and in Section 2.5.2, we present an

exploration strategy to close the gap to a pre-determined tolerance level. Finally, in

Section 2.5.3, we discuss how the value functions are updated given a belief state b.

2.5.1 Initialization

Recall the ambiguity set and support defined in (2.8) and (2.9), respectively. In

the initialization step, we compute the lower bound for the true value function by

taking the best action for obtaining the worst-case expected reward in each decision
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Figure 2.2: An example of upper- and lower-bounds of a value function

Figure 2.3: An example of updated upper- and lower-bounds
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period. That is, for each action a, we solve

Ra =
∞∑
t=0

βt min
s∈S

min
µas∈Das

E(pas,ras)∼µas [ras] =
1

1− β
min
s∈S

min
µas∈Das

E(pas,ras)∼µas [ras] .

In the case of mean absolute deviation based ambiguity set (2.8), the second minimiza-

tion is trivial as ras is fixed. The minimum value for all s ∈ S is computed by enumer-

ation. We then define an initial lower bounding hyperplane α′s = maxa∈ARa, ∀s ∈ S

and set ΛV = {α′}, where α′ = (α′s, s ∈ S)>.

The upper bound for the true value function is obtained by considering full ob-

servability of the system and computing the MDP for the best-case scenario in the

ambiguity set. Let V MDP ∈ R|S| be a value function for the distributionally-optimistic

MDP. It satisfies

V MDP
s = max

a∈A
max

µas∈Das
E(pas,ras)∼µas

[
ras + βV MDP>

∑
z∈Z

Jzpas

]
, ∀s ∈ S.

To solve this, we take a linear programming approach by formulating

min
V MDP

1>V MDP (2.12a)

s.t. VMDP
s ≥ max

µas∈Das
E(pas,ras)∼µas

[
ras + βV MDP>

∑
z∈Z

Jzpas

]
, ∀a ∈ A, s ∈ S. (2.12b)
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In the case of ambiguity set (2.8), model (2.12) becomes

min
ρ,κ,V MDP

1>V MDP (2.13a)

s.t. V MDP
s −c>asρas − p̄>asκ1

as + p̄>asκ
2
as − σas ≥ ras, ∀s ∈ S, a ∈ A (2.13b)

β
∑
z∈Z

Jz
>V MDP − κ1

as + κ2
as − 1σas ≤ 0, ∀s ∈ S, a ∈ A (2.13c)

κ1
as + κ2

as − ρas = 0, ∀s ∈ S, a ∈ A (2.13d)

κ1
as, κ

2
as ∈ R|S|×|A|+ , σas ∈ R ρas ∈ R|S|×|A|, ∀s ∈ S, a ∈ A (2.13e)

V MDP ∈ R|S|. (2.13f)

After the optimal solution is discovered, we initialize ΥV =
{(
es, V

MDP
s

)
, ∀s ∈ S

}
,

where es is a column vector with 1 in the element corresponding to s and zero else-

where. Overall, the initialization step consists of solving a polynomial number of

convex optimization problems.

To obtain V (b), we solve

max
{
α>b | ∀α ∈ ΛV

}
by enumerating all the values of α>b. To obtain V (b), we consider a convex combina-

tion of points (bi, vi) ∈ ΥV , and find a point (b, v) so that v is the smallest attainable

value. That is, we let wi be a weight corresponding to a point (bi, vi) and solve

v = min

 ∑
i∈[|ΥV |]

wivi

∣∣∣∣∣ ∑
i∈[|ΥV |]

wibi = b,
∑

i∈[|ΥV |]

wi = 1, wi ≥ 0, ∀i ∈ [|ΥV |]

 , (2.14)

where [N ] denotes the set {1, . . . , N} for some integer N .
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2.5.2 Forward Exploration Heuristics

The forward heuristics follow from the HSVI algorithm from Smith and Simmons

(2004), where the selection of a suboptimal action leads to lowering the upper bound

of the value function, eventually being replaced by another action having higher upper

bound. Then, the scenario of the observation is chosen such that the expected value of

the gap is the highest in the child node. This process is repeated until the discounted

value of the gap is smaller than a tolerance. The algorithmic steps described in this

section are based on a greedy sampling strategy to close the gap between the upper

and lower bounds of the value function. Samples in the simulation are branched by

the DM’s actions a, the nature’s distribution choices µa, and their outcomes z and

pa.

We consider the following function:

UV (b, a, µa) = E(pa,ra)∼µa

[∑
s∈S

bs

{
ras + β

∑
z∈Z

1>JzpasV (f (b, a,pa, z))

}]
.

We can obtain UV and UV by letting V = V and V = V , respectively.

First, we select the DM and nature’s decision pair (a∗, µ∗a∗). The gap between UV

and UV at belief state b is

UV (b, a∗, µ∗a∗)− UV (b, a∗, µ∗a∗)

= E(pa∗ ,ra∗ )∼µa∗

[∑
s∈S

bs

(
ra∗s + β

∑
z∈Z

1>Jzpa∗sV (f(b, a∗,pa∗ , z))

)]

− E(pa∗ ,ra∗ )∼µa∗

[∑
s∈S

bs

(
ra∗s + β

∑
z∈Z

1>Jzpa∗sV (f(b, a∗,pa∗ , z))

)]

= βE(pa∗ ,ra∗ )∼µ∗
a∗

[∑
s∈S

bs
∑
z∈Z

1>Jzpa∗s
(
V (f(b, a∗,pa∗ , z))− V (f(b, a∗,pa∗ , z))

)]
.

(2.15)

Here we describe a greedy strategy to select the branches. For a given action a, we
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define µ∗a = argminµa∈D̃aUV (b, a, µa). Then, we let a∗ = argmaxa∈AUV (b, a, µ∗a). We

therefore have

V (b)− V (b) = max
a∈A

min
µa∈D̃a

UV (b, a, µa)−max
a∈A

min
µa∈D̃a

UV (b, a, µa)

≤ max
a∈A

UV (b, a, µ∗a)−max
a∈A

UV (b, a, µ∗a)

≤ UV (b, a∗, µ∗a∗)− UV (b, a∗, µ∗a∗). (2.16)

This greedy strategy ensures that a suboptimal decision pair (a∗, µ∗a∗) gets replaced

by better ones as updating the value functions reduces the gap.

To achieve the gap ε at the initial state b0, the condition for the gap at depth level

t starting from the initial one is only εβ−t, which can readily be seen from (2.15) and

(2.16). We define the difference of the gap and the required condition as the excess

uncertainty, which is

excess(b, t) = V (b)− V (b)− εβ−t.

Using (2.16) and applying the identity (2.15), we have

excess(b, t) ≤ βE(pa∗ ,ra∗ )∼µ∗
a∗

[∑
s∈S

bs
∑
z∈Z

1>Jzpa∗sexcess(f(b, a∗,pa∗ , z), t+ 1)

]
. (2.17)

Next, we greedily choose (z∗, p∗a∗) so that the quantity associated to the pair in RHS

of (2.17) has the maximum expected value, i.e.,

(z∗,p∗a∗) ∈ arg max
z∈Z, pa∗∈Xa∗

µ∗a∗(pa∗)×
∑
s∈S

bs1
>Jzp

∗
a∗sexcess(f(b, a∗,pa∗ , z), t+ 1). (2.18)

Note that because the worst-case distribution under ambiguity set (2.8) is a point mass

distribution, obtaining p∗a∗ is trivial. Algorithm 2 describes the detailed algorithmic

steps. In the HSVI approach, Algorithm 2 is called recursively to make decisions
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on which branch to choose in the next depth level t + 1. After the simulation is

terminated, the updates on the lower and upper bounds are made for the belief states

that are discovered through the simulation.

Algorithm 2 DR-BoundExplore(b, t)

1: Input: belief state b, depth level t
2: if V (b)− V (b) > εβ−t then
3: (µ∗a, ∀a ∈ A)← argminµa∈DaUV (b, a, µa)
4: a∗ ← argmaxa∈AUV (b, a, µ∗a)
5: z∗,p∗a∗ ← argmaxz∈Z, pa∗∈Xa∗µ

∗
a∗(pa∗) ×

∑
s∈S bs1

>Jzp
∗
a∗s ×

excess(f(b, a∗,pa∗ , z), t+ 1)
6: DR-BoundExplore(f(b, a∗,p∗a∗ , z

∗), t+ 1)
7: ΛV ← ΛV ∪DR-backup(b,ΛV ) (see the details in Algorithm 3)
8: ΥV ← ΥV ∪DR-update(b,ΥV ) (see the details in Algorithm 4)
9: end if

2.5.3 Local Updates

In this section, we describe the details of DR-backup and DR-update steps in

Algorithm 2. We first illustrate how the lower bound is updated in DR-backup. For

each a ∈ A, we solve the two inner maximization problems in (A.13) provided a and

b, where we set Λt+1 = ΛV . The convex hull of ΛV is therefore,

Conv (ΛV ) =

 ∑
i∈[|ΛV |]

wiαi

∣∣∣∣∣ ∑
i∈[|ΛV |]

wi = 1, αi ∈ ΛV , w
i ≥ 0, i ∈ [|ΛV |]

 . (2.19)

Thus, we combine the two inner maximization problems in (A.13) as

max
ρa,κ1

a,κ
2
a,σa

∑
s∈S

c>asρas +
∑
s∈S

bsras +
∑
s∈S

(
−p̄>asκ1

as + p̄>asκ
2
as + σas

)
(2.20a)

s.t. βbs
∑
z∈Z

∑
i∈[|ΛV |]

wiazJz
>αiaz + κ1

as − κ2
as − 1σas ≥ 0, ∀s ∈ S (2.20b)

∑
i∈[|ΛV |]

wiaz = 1, ∀z ∈ Z (2.20c)

wiaz ∈ R+, ∀i ∈ [|ΛV |], z ∈ Z (2.20d)

(A.12c), (A.12d), (A.13b).
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We denote the optimal solutions to (2.20) using a superscript ?, and let the optimal

dual solutions associated with constraints (2.20b) be p̂?as. For each action a ∈ A, we

can generate a lower bounding hyperplane

α′ =

(
ras + β

∑
z∈Z

α?>az Jzp̂
?
as, s ∈ S

)>
, (2.21)

whereα?az =
∑

i∈[N ] w
i?
azα

i
az. We present the detailed algorithmic steps in Algorithm 3.

Algorithm 3 DR-backup(b,ΛV )

1: Input: belief b, lower bounding hyperplanes ΛV

2: for ∀a ∈ A do
3: solve (2.20) for action a
4: L(a)← α′ (calculated using (2.21))
5: end for
6: Output: argmaxα∈Lα

>b

Next, we discuss how to update the upper bound and describe the algorithmic

steps of DR-update in Algorithm 4. Combining (A.13) and the dual representation

of (2.14), for each a ∈ A, we solve

max
ρa,κ1

a,κ
2
a,σa

∑
s∈S

c>asρas +
∑
s∈S

bsras +
∑
s∈S

(
−p̄>asκ1

as + p̄>asκ
2
as + σas

)
(2.22a)

s.t. βbs
∑
z∈Z

Jz
>ϕaz + βbs

∑
z∈Z

ψazJz
>1 + κ1

as − κ2
as − 1σas ≥ 0, ∀s ∈ S (2.22b)

bi>ϕaz + ψaz ≤ vi, ∀z ∈ Z, i ∈ [|ΥV |]

(2.22c)

ϕaz ∈ R|S|, ψaz ∈ R, ∀z ∈ Z, i ∈ [|ΥV |]

(2.22d)

(A.12c), (A.12d), (A.13b).

Here ϕaz and ψaz are the dual variables associated with the two sets of constraints,∑
i∈[|ΥV |]

wibi = b,
∑

i∈[|ΥV |]
wi = 1, respectively. The maximum objective value

among all a ∈ A is added to ΥV .

Remark II.5. The complexity of the related algorithm presented in Smith and Sim-
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Algorithm 4 DR-update(b,ΥV )

1: Input: belief b, upper bounding points ΥV

2: for ∀a ∈ A do
3: Q(a)←(optimal objective value of (2.22) for action a)
4: end for
5: Output: (b,maxa∈A{Q(a)})

mons (2004) is based on the finiteness of the scenario tree up to a tolerance level ε. In

the DR-HSVI algorithm, the scenario tree is not finite as the nature is able to choose

from a continuous ambiguity set of distributions, and therefore the scenario tree has

an infinite number of elements. Later we numerically demonstrate the convergence

of the DR-HSVI algorithm in Section 2.6 for different combinations of parameter

choices.

2.6 Numerical Studies

We test DR-POMDP policies for dynamic epidemic control (Sections 2.6.1 and

2.6.2), and compare the results of a two-state epidemic control problem with the ones

given by POMDP and robust POMDP (Section 2.6.1.1). We vary parameter choices

to test the robustness and sensitivity of DR-POMDP policies (i) under various types

of ambiguity sets used in the in-sample tests (Sections 2.6.1.2, 2.6.1.3) and (ii) given

certain noise added to the transition-observation probability value obtained at the end

of each decision period in out-of-sample tests (Sections 2.6.1.4, 2.6.1.5). In Sections

2.6.2.1 and 2.6.2.2, we increase the sizes of the two-state influenza epidemic con-

trol instances in Section 2.6.1, demonstrate the algorithmic convergence, and present

computational time results of using POMDP and DR-POMDP for solving larger-scale

epidemic control instances.

41



2.6.1 Two-state Influenza Epidemic Control Problem

We study the problem of influenza epidemic control mentioned in Section 2.3. In

the base setting, we consider two states, epidemic (E) and non-epidemic (N), and

four actions as a ∈ {Level 0, Level 1, Level 2, Inspection}. Here Level 0 corresponds

to the minimum disease prevention and intervention plan, e.g., doing nothing, while

Level 2 corresponds to the most restrictive strategy. The “Inspection” action refers

to the same disease-control strategy as the Level 0 action, except that the DM pays

extra cost to improve the observation of disease spread to obtain more accurate ILI

rate.

For actions a ∈ {0, 1, 2}, the transition probability matrix is given by

0.99− 0.1a 0.01 + 0.1a

0.3− 0.1a 0.7 + 0.1a

 . (2.23)

When a = 0 (i.e., the DM does nothing), the above transition probabilities follow

studies on influenza epidemics (see, e.g., Le Strat and Carrat (1999)). The setting

of the matrix (2.23) indicates that higher-level actions (i.e., more restrictive control

strategies) will lead to greater chances that an epidemic state turns into non-epidemic

and that a non-epidemic state remains itself. The transition probability for a =

‘Inspection’ (‘I’) is the same as the one for a = 0. The observation outcome is the

ILI rate, calculated as the number of ILI patients per 1000 population. For actions

a ∈ {0, 1, 2}, we follow Rath et al. (2003) and assume that the ILI rate follows a

Gaussian distribution with mean value µE = 2 − 0.5a and variance VarE = 30 − µ2
E

for s = ‘Epidemic’ (‘E’), and with mean µN = 0.2−0.05a and variance VarN = 2−µ2
N

for s = ‘Non-epidemic’ (‘N’). We discretize the observation outcome into five levels

as {(−∞, 0], (0, 1/3], (10/3, 20/3], (20/3, 10], (10,∞)}. For a = ‘I’, the probabilities

of observing the five outcomes are {0.01, 0.1/3, 0.1/3, 0.1/3, 0.89} when s = ‘E’, and
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the ILI rate follows the same distribution as the one of a = 0 if s = ‘N’, to model

the situation where more careful inspection action can result in more ILI patients

showing up. The rewards for each action-state combination are presented in Table

2.1, reflecting the negative number of total infections minus the effort paid for different

actions in different states.

Table 2.1: Reward setting for each state-action pair

State/Action Level 0 Level 1 Level 2 Inspection
Epidemic −100 −50 −25 −110

Non-epidemic 0 −20 −40 −20

When implementing the HSVI algorithm in Section 2.5 for solving DR-POMDP,

we set the discount factor β = 0.95 and the gap tolerance ε = 1.0. The computation

is terminated when the gap between the upper and lower bounds is less than ε, at

the initial states b0
E = 0.5, b0

N = 0.5. We code the algorithm in Python and execute

all the tests on a computer with Intel Core i5 CPU running at 2.9 GHz and 8 GB of

RAM. We solve all the linear programming models using the Gurobi solver. Note that

the complexity of computing the lower bound is linear in the number of elements in

ΛV , and the complexity of computing the upper bound is polynomial in the size of set

ΥV as we need to solve linear programs. Both |ΛV | and |ΥV | increase monotonically,

but most elements in the two sets are dominated by others. We follow a heuristic

to prune all the dominated elements whenever the number of elements increases by

10%.

2.6.1.1 Policy Comparison

We compare DR-POMDP policies with the ones by POMDP and robust POMDP

via cross testing. We randomly generate ten samples of the transition probability

for Level 2 action (i.e., a = 2) and epidemic state (i.e., s = ‘E’), by keeping all the

values the same as the base setting in (2.23) but letting the probability p2(N |E) =
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0.99−0.1×2+0.1×x, where x follows a standard Normal distribution. (We make sure

that 0 ≤ p2(N |E) ≤ 1 and re-sample if not.) For all three approaches, the mean value

of the ten samples is used as the nominal transition probability. For robust POMDP,

the maximum L1 norm from the mean defines an uncertainty set centered around the

nominal probability. For DR-POMDP, we use the mean absolute deviation to define

the ambiguity set.

Table 2.2: Estimated median values of the cross-tested rewards

Nature’s policy
DM’s policy POMDP(std) DR-POMDP(std) Robust(std)

POMDP −541.22 (1.08) −609.63 (0.93) −597.06 (2.19)
DR-POMDP −559.02 (0.95) −589.93 (0.92) −594.30 (1.31)

Robust −570.16 (1.44) −585.99 (1.22) −597.75 (1.18)

Table 2.3: Estimated five-percentile values of the cross-tested rewards

Nature’s policy
DM’s policy POMDP(std) DR-POMDP(std) Robust(std)

POMDP −656.99 (2.39) −696.34 (1.34) −711.14 (1.43)
DR-POMDP −669.26 (2.35) −677.87 (1.95) −705.61 (1.60)

Robust −689.26 (1.78) −691.77 (2.07) −698.93 (2.19)

We implement the DM’s optimal polices given by different approaches in out-of-

sample environments where the nature follows the settings of POMDP, DR-POMDP,

and robust POMDP to realize the transition probabilities in each period. The number

of simulated instances is 5000 each. We report the estimated value of the median and

the 5-percentile values of the reward in each case in Tables 2.2 and 2.3, respectively

using Harrell-Davis quantile estimator (Harrell and Davis , 1982). We also include

the standard deviation of the estimator. Note that the 5-percentile of the reward is

equivalent to the 95-percentile of the cost, indicating the tail (worse) performance

of different policies. Therefore, Tables 2.2 and 2.3 indicate that POMDP has the

smallest reward when the nature agrees with the DM to pick the nominal transition

probabilities at each decision period, but it can lead to much worse reward (both
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in terms of the mean value and tail performance) if the transition probabilities are

realized as the worst-case (in robust POMDP) or from the worst-case distribution (in

DR-POMDP). On the other hand, the performance of DR-POMDP solutions is quite

stable and robust under all out-of-sample circumstances but the tail performance is

worse than the mean results. Lastly, the robust POMDP policy yields worse mean

value and tail performance when the true environment is POMDP or DR-POMDP.

2.6.1.2 Results of Varying Ambiguity Set Sizes

We first only consider an ambiguity in the transition-observation probabilities of

Level 0 action and epidemic state. We build the ambiguity set based on the mean

absolute deviation such that Epas∼µas [|pas − p̄as|] ≤ cas for a = 0 and s = ‘E’, where

p̄as ∈ ∆(S ×Z) is the mean value of given probability samples and cas ∈ R|S×Z|. We

let cas be c · 1 for some c ∈ R and vary the values of c in our tests to vary the size of

the ambiguity set.

We vary c = 0.03, 0.06, 0.09 for DR-POMDP and also compute the POMDP policy

using p̄as as the transition-observation probabilities for all a and s, which corresponds

to a special case of DR-POMDP with c = 0.00. Figure 2.4 depicts the upper bound

(dashed line) and the lower bound (solid line) of the value functions of POMDP

and DR-POMDP, as well as optimal actions corresponding to different beliefs of the

epidemic. The region of the belief in red (horizontal shade) corresponds to Level 0

action, blue (dotted shade) to Level 1 action, green (cross shade) to Level 2 action,

and white (diagonal shade) to Inspection action. Because the ambiguity is in the

transition-observation probabilities related to a = 0, in all the subfigures, as compared

to POMDP, the DR-POMDP policy relies less on Level 0 action and replaces it with

the ‘Inspection’ action when the belief of epidemic is relatively higher. When the belief

increases further, both DR-POMDP and POMDP agree on implementing Level 1 or

Level 2 action. As the ambiguity set size increases (i.e., c increases), the DR-POMDP
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0.0 0.2 0.4 0.6 0.8 1.0
Belief of epidemic

700

675

650

625

600

575

550

525

500

Re
wa

rd
 V

t(b
)

(c) DR-POMDP (c = 0.06)
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(d) DR-POMDP (c = 0.09)

Figure 2.4: Value functions for different ambiguity-set sizes. Solid line: lower bound,
dashed line: upper bound. Corresponding actions: Level 0 – (red, horizontal), Level
1 – (blue, dot), Level 2 – (green, cross), Inspection – (white, diagonal)
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policy becomes more conservative and shifts to the ‘Inspection’ action earlier, even

in relatively low belief of epidemic.

2.6.1.3 Results of Multiple Ambiguities

Next, we increase the number of action-state pairs that have distributional ambi-

guity in the transition-observation probabilities. We use c = 0.05 for all ambiguity

sets and vary the number of action-state pairs among {2, 3, 4, 5}. In Figure 2.5a,

action-state pairs (Level 0, E) and (Level 0, N) have ambiguous probability distribu-

tions and then we add pairs (Level 1, E), (Level 1, N), and (Level 2, E) one by one

in the subsequent Figures 2.5b, 2.5c, 2.5d.

We observe that the reward becomes smaller as we increase the number of action-

state pairs with distributional ambiguity. This is because the worst-case scenario

is considered jointly for all action-state pairs and the DR-POMDP policy aims to

achieve a conservative reward outcome. Moreover, the belief range where Level 1

action is taken becomes smaller as we consider the distributional ambiguity in the

transition-observation probabilities associated with a = 1. The ‘Inspection’ action

also replaces the Level 0 action as we increase the number of ambiguity sources.

2.6.1.4 Solution Robustness under Different Ambiguity Sets

We simulate the DR-POMDP policies on instances with an initial state ‘E’ chosen

with probability 50%. We use different sizes of ambiguity sets for the nature to choose

the worst-case distributions in the in-sample computation. Specifically, we consider

c = 0.03, 0.06, 0.09 to compute DR-POMDP policies using the ambiguity setting

in Section 2.6.1.2 and then vary c′ = 0.00, 0.03, 0.06, 0.09 to change the nature’s

ambiguity set size for testing each DR-POMDP policy.

Figure 2.6 presents the statistics of the reward, including mean, standard devia-

tion, 5-percentile and 95-percentile values, by implementing the DR-POMDP policies
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Figure 2.5: Value functions for increasing number of action-state pairs with distribu-
tional ambiguity. Solid line: lower bound, dashed line: upper bound. Corresponding
actions: Level 0 – (red, horizontal), Level 1 – (blue, dot), Level 2 – (green, cross),
Inspection – (white, diagonal)
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(b) DR-POMDP (c = 0.06)
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Figure 2.6: Statistics of the reward (mean, standard deviation, 5-percentile, 95-
percentile) obtained by implementing DR-POMDP policies in in-sample tests under
different ambiguity sets used by the nature.
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in in-sample tests when the nature uses different sizes of ambiguity sets to choose the

worst-case distribution for the transition-observation probabilities. We observe that

DR-POMDP policies are robust and not sensitive to the ambiguity set size change,

especially in the mean, worst and best reward values.

2.6.1.5 Solution Sensitivity under Noise Added to the Realized Transition-

Observation Probabilities

We argue that our assumption about the true transition-observation probabilities

being accessible at the end of each decision period is relatively weak, by testing the

DR-POMDP policies in out-of-sample scenarios while adding noise to the p-value

obtained at the end of each period. Specifically, when the DM takes Level 0 action,

the transition probability of switching from an epidemic state to a non-epidemic state

follows p0(N |E) = 0.99 + e · x, where e ∈ {0.0, 0.1, 0.2, 0.3}, and x follows a standard

Normal distribution. (We ensure that 0 ≤ p0(N |E) ≤ 1 and re-sample if not.)

Figure 2.7 presents the statistics of the reward, including mean, standard devia-

tion, 5-percentile and 95-percentile values, by implementing the DR-POMDP policies

in out-of-sample scenarios under varying p-values obtained at the end of each decision

period. Similar to the previous section, we compare the reward statistics with the

case when e = 0.0, i.e., the case when the DM can fully access the true p-value at

the end of each period. For different ambiguity sets (c = 0.03, 0.06, 0.09), the DR-

POMDP solutions are not sensitive to the perturbation of p-values obtained at the

end of each period as we increase the noise. Moreover, all the statistics are within

less than 2.5% differences from the results of e = 0.0, indicating that our assumption

about the necessity of using side information to obtain the true p-value at the end of

each period is not strong.
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(a) DR-POMDP (c = 0.03)
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(b) DR-POMDP (c = 0.06)
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Figure 2.7: Statistics of the reward (mean, standard deviation, 5-percentile, 95-
percentile) obtained by performing DR-POMDP policies in out-of-sample tests with
noisy p-values.
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2.6.2 Large-scale Dynamic Epidemic Control Problem

We demonstrate the algorithmic convergence and compare the computational-

time difference for larger-sized instances when applying the HSVI algorithm. We

increase the problem size and instance diversity by extending the previous two-state

model. Specifically, we consider people who are susceptible to infection and people

who have recovered, so that we can model the variation and dynamics in the infection

rate. We utilize the SIR compartmental model in epidemiology (see Hethcote, 2000;

Harko et al., 2014), where S, I, R represent the susceptible, infected and recovered

population ratios, respectively. These quantities can be modeled using differential

equations:

dS(t)

dt
= −a1I(t)S(t),

dI(t)

dt
= a1I(t)S(t)− a0I(t),

dR(t)

dt
= a0I(t),

where a0 is the rate of recovery, and a1 is the average number of contacts per person

per time. In this problem setting, we assume that these quantities can be controlled

by the DM. We discretize the time horizon and consider discretized states S̃, Ĩ, R̃.

Furthermore, we take a first-order approximation and define the transition probabil-

ities such that they satisfy

E
[
S̃t+1|S̃t

]
= S̃t − a1Ĩ

tS̃tdt,

E
[
Ĩ t+1|Ĩ t

]
= Ĩ t + a1Ĩ

tS̃tdt− a0Ĩ
tdt,

E
[
R̃t+1|R̃t

]
= R̃t + a0Ĩ

tdt.

We further assume that the states can only transition to its neighboring states, and

the quantity of S̃ cannot increase. (Similarly, the quantity of R̃ cannot decrease.) We
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assume dt = 1 in the subsequent discussion.

The DM is able to make an imperfect observation of the state Ĩ t. The outcome

of the observation is typically less than or equal to the true state Î, and the accuracy

depends on the quality of the test. We assume that the observation outcome follows

a Normal distribution with mean a2× Î (with a2 being a parameter that the DM can

control) and standard deviation 0.25× Î, and is further discretized by allocating the

probability mass to the closest discrete observation outcome.

Moreover, the DM can implement certain epidemic control policies to vary a1 ∈

[0.1, 1.0] and a2 ∈ [0, 1], and we fix a0 = 0.25. Choosing a low value of a1 results

in high cost due to its economic impact for a strict measure, and choosing a high

value of a2 results in high cost due to operating an expensive test process. We set the

goal to minimize the number of infected people and preventing it from exceeding the

treatment capacity, which is set as 0.2% of the overall population. Each percentage

of population being infected will result in 10 units of cost, while 15 units of cost is

incurred when the total infection is more than treatment capacity. Varying one unit

of the a1- and a2-values costs 10 and 3 units, respectively. Additionally, when the

total infection is more than 0.5% of the population, a reward = 20 will be given for

performing the most strict measure in a1. Therefore,

ras =


−1000× Ĩ − 10× (1.0− a1)− 3× a2, if Î < 0.002

−2500× Ĩ − 10× (1.0− a1)− 3× a2, if Î ≥ 0.002,

+ 20 if Î ≥ 0.005 and a1 is the lowest value.

where a ∈ {a1, a2} and s ∈ {S̃, Ĩ , R̃}.
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2.6.2.1 Computational Time for Varying Numbers of States

Let Ĩ = 0.001 and 0.005, representing the ‘Non-epidemic’ state and ‘Epidemic’

state, respectively. We consider the following discretization schemes for the states S̃:

{0.90, 0.95}, {0.50, 0.70, 0.90, 0.95}, and {0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 0.95}.

In the numerical experiment, we only consider ambiguities in the action a1 = 1.0,

corresponding to implementing the least strict control policy for reducing the infection

rate. We set the radius of the ambiguity set as c = 0.02. Thus, the different problem

sizes are (s4, a4, z3, u8), (s8, a4, z3, u16), and (s16, a4, z3, u32). We set the initial

belief to be totally in the non-epidemic state, and allow a tolerance ε = 1.0. The

computational time limit is 3600 seconds.
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Figure 2.8: Dynamic epidemic control problem instance (s4, a4, z3, u8). Solid line:
lower bound, dashed line: upper bound

In Figures 2.8, 2.9, 2.10, we depict how the upper bound and lower bound of

POMDP (c = 0.00) and DR-POMDP (c = 0.02) policies converge as functions of time

for the above three problem sizes, respectively. We observe that the computational

time for POMDP does not correlate with the number of states. When the number of

states are 4 and 8, the corresponding instances take about 150 seconds to converge,

as compared to the instances having 16 states take about 14 seconds to converge.
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Figure 2.9: Dynamic epidemic control problem instance (s8, a4, z3, u16). Solid line:
lower bound, dashed line: upper bound
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Figure 2.10: Dynamic epidemic control problem instance (s16, a4, z3, u32). Solid line:
lower bound, dashed line: upper bound
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On the other hand, the computational time for DR-POMDP increases as the number

of states and ambiguity sets increase. We also point out that the value function for

DR-POMDP evaluated at b0 is lower than that of POMDP, which is expected since

DR-POMDP is more conservative.

2.6.2.2 Computation Time for Varying Uncertainty Sizes

We change the number of ambiguity sets and compare their solutions and com-

putation time. The states are S̃ ∈ {0.50, 0.70, 0.90, 0.95} and Ĩ ∈ {0.001, 0.005},

and actions are (a1, a2) ∈ {(0.1, 0.1), (0.1, 1.0), (1.0, 0.1), (1.0, 1.0)}. We increase the

number of actions that are associated with ambiguity sets from 1 to 4. Since there

are 8 states in total, the number of ambiguity sets are 8, 16, 32, and 64, respectively.

The results are shown in Figure 2.11. The solution time are 614, 625, 1012, 1497

seconds, respectively and increase as the number of ambiguity sets increases. The op-

timal objective values are −62.64, −64.58, −71.71, −72.99, respectively, and decrease

monotonically.

2.7 Concluding Remarks

In this chapter, we developed new models and algorithms for POMDP when the

transition probability and the observation probability are uncertain, and the prob-

ability distribution is not perfectly known. We presented a scalable approximation

algorithm and numerically compared DR-POMDP optimal policies with the ones of

the standard POMDP and robust POMDP, in both in-sample and out-of-sample tests.

Although due to the more complicated model and problem settings, DR-POMDP is

much harder to solve, it produces more conservative and robust results than POMDP.

It is also not sensitive to the misspecified ambiguity set and true transition-observation

probability values obtained at the end of each decision period.

In the future research, we aim to solve DR-POMDP when the outcomes of the
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(a) DR-POMDP (s8, a4, z3, u8)
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(b) DR-POMDP (s8, a4, z3, u16)
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(c) POMDP (s8, a4, z3, u32)
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(d) DR-POMDP (s8, a4, z3, u64)

Figure 2.11: Dynamic epidemic control problem instances with varying number of
ambiguity sets. Solid line: lower bound, dashed line: upper bound

57



transition-observation probabilities are not observable to the DM at the end of each

time. In such a case, the value function is dependent on a set of belief states, where the

characterization of the value function becomes much more challenging. We are also

interested in designing randomized policy or time-dependent policy for DR-POMDP

when we relax the condition that the nature is able to perfectly observe the DM’s

action, or when the nature is not completely adversarial. We will compare the per-

formance of different types of policies on diverse instances.
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CHAPTER III

Finite Sample Wasserstein Distance Bounds with

an Application in Reinforcement Learning

3.1 Introductory Remarks

In this chapter, we discuss a theoretical development of the Wasserstein-based

ambiguity set. As introduced in Section 1.3.2, a Wasserstein distance is defined as the

minimum cost to transform one distribution to another, where the cost is determined

by a distance measure between two events on a sample space. A Wasserstein ball is

a set of distributions that are centered around a nominal distribution and having a

Wasserstein distance bounded by a fixed quantity. When the nominal distribution is

the sample distribution, we are interested in a bound which can guarantee that the

true distribution is included in the Wasserstein ball with high probability. When the

support of the random variable is continuous and the distance measure between the

events are given by a norm, the bound which guarantees with probability at least 1−δ

is given by (1.29). However, this formulation involves constants c1 and c2 that cannot

be easily estimated (Ji and Lejeune, 2018). In this chapter, we focus specifically on

discrete distributions and derive Wasserstein distance bounds that can be computed

with ease compared to the continuous case.

We use a Wasserstein-based formulation of regret minimization algorithm for re-
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inforcement learning as an application of our result. In reinforcement learning, we

assume that the transition probabilities for MDP are unknown, but the information

will be collected throughout the process. The DM maintains an empirical distribution

of the transition probabilities, based on the counts of transitions that occurred for

each action at each state. We consider an ambiguity set surrounding the empirical

distribution, and choose actions based on the distribution that will perform the best

out of all the distributions in the ambiguity set. This is in contrast to the DRO

where the worst-case distribution is considered. This is due to the balancing of explo-

ration and exploitation of the uncertain transition probabilities, and thus taking the

best-case distribution enables lowering the upper-confidence bound on the reward. In

determining the policy, it is crucial to have a theoretical guarantee of the probability

that the true distribution lies within the assumed ambiguity set. Our result on the

theoretical bound of the Wasserstein distance is useful in this particular situation.

There is also an advantage in using the Wasserstein ball ambiguity set for rein-

forcement learning. While most approaches (e.g., Jaksch et al. (2010)) use ambiguity

sets based on total variational distance, the Wasserstein-based ambiguity set is more

general and can utilize the domain knowledge of the states. For example, if the states

represent locations on a space such as grids, then it is more likely to transit to a state

that is geometrically closer. Wasserstein distance is able to model certain penalties

for moving the distribution to a geometrically distant location, so it is more suitable

than total variational distance, where the distances between different pairs of states

are uniformly distributed.

Our contribution in this chapter is twofold.

1. We derive concrete Wasserstein distance bounds between the true and empirical

distributions with a probabilistic guarantee.

2. We apply the Wasserstein distance bounds to a reinforcement learning problem.
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The rest of this chapter is organized as follows. In Section 3.2, we introduce the

Wasserstein-ball ambiguity set and derive a finite confidence interval for Wasserstein

distance. In Section 3.3, we introduce average-reward MDP and regret-based rein-

forcement learning. In Section 3.3.4, we provide a description of the algorithm and

the performance guarantee. In Section 3.4, we demonstrate the computational perfor-

mance of the Wasserstein-based ambiguity set using a simple numerical example of an

ambulance dispatching problem. Finally, we provide concluding remarks in Section

3.5.

3.2 Wasserstein-based Ambiguity Set

In this section we will first introduce the preliminaries on Wasserstein ball ambi-

guity set. Then, we derive two types of Wasserstein distance bounds in Sections 3.2.2

and 3.2.3.

3.2.1 Preliminaries

We first discuss the formulation of the Wasserstein-ball ambiguity set. Consider

discrete events x ∈ X , where X is finite, and suppose that it takes cost d(x, x′) to

move a unit of probability mass from event x to event x′. Then, the Wasserstein

distance of order 1 from distribution p to distribution q is

W (p, q) = min
∑
x∈X

∑
x′∈X

d(x, x′)κx,x′ (3.1a)

s.t.
∑
x′∈X

κx,x′ = p(x), ∀x ∈ X , (3.1b)

∑
x∈X

κx,x′ = q(x′), ∀x′ ∈ X , (3.1c)

κx,x′ ≥ 0, ∀x, x′ ∈ X , (3.1d)
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where κ can be interpreted as a joint distribution with marginals p and q as described

in constraints (3.1b) and (3.1c).

Let us introduce the definition of empirical distribution for a multinomial distri-

bution on a set of events X .

Definition III.1. Let x̂1, . . . , x̂N be i.i.d. samples of random variables from a finite

set X with true distribution p. We define the empirical distribution as

p̂N =
1

N

N∑
i=1

δx̂i , (3.2)

where δx is a distribution which takes value 1 at x ∈ X and 0 otherwise.

The Wasserstein ball ambiguity set is defined as the set of all distributions having

a Wasserstein distance that is less than or equal to θ from an empirical distribution

p̂N . That is,

D(p̂N , θ) = {p ∈ ∆(X ) | W (p, p̂N) ≤ θ} . (3.3)

In the following sections, we obtain bounds for the probability where the Wasser-

stein distance between the true and the empirical distributions are less than or equal

to θ. That is, we are interested in estimating the value

P [p ∈ D(p̂N , θ)] . (3.4)

This analysis can also be used in determining the value of θ with a fixed confidence

level.

3.2.2 L1 Distance Bound

We have the following relation between the Wasserstein distance and the weighted

L1 norm of the distribution.
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Lemma III.2 (Villani (2008), Theorem 6.15). For some arbitrary x0 ∈ X , the

Wasserstein distance between distributions p and q are bounded as follows:

W (p, q) ≤
∑
x∈S

d(x0, x)|p(x)− q(x)|, (3.5)

where d(x0, x) is a cost to transport a unit probability mass from state x0 to x.

Let us define d∗ = minx∈X maxx′∈X d(x, x′), which is a quantity corresponding to

the smallest worst-case cost for transporting a unit probability mass from state x

to x′. Lemma III.2 immediately leads to the relation with the L1 distance of the

probability measure

||p− q||1 :=
∑
x∈X

|p(x)− q(x)|. (3.6)

Corollary III.3. The Wasserstein distance between distributions p and q are bounded

by

W (p, q) ≤ d∗||p− q||1. (3.7)

We provide two probability bounds for the L1 distance between the true and the

empirical distributions. The first one is described in the following theorem.

Theorem III.4 (Weissman et al. (2003), Theorem 2.1). Let X be the cardinality

of X . The probability that the L1 distance between the true distribution p and the

empirical distribution p̂N deviates more than θ is bounded by

P [||p− p̂N ||1 ≥ θ] ≤
(
2X − 2

)
e−Nθ

2/2. (3.8)

This leads to the following remark:

Remark III.5. Using Corollary III.3 and Theorem III.4, the Wasserstein distance is
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bounded by

θ = d∗

√
2

N
log

(
2X − 2

δ

)
≈ d∗

√
2X

N
log

(
2

δ
1
X

)
, (3.9)

with probability at least 1− δ.

The second bound is one of our contributions in this chapter.

Theorem III.6. The probability that the L1 distance between the true distribution p

and the empirical distribution p̂N deviates more than θ is bounded by

P [||p− p̂N ||1 ≥ θ] ≤
(
eNθ2/2

X − 1

)X−1

e−Nθ
2/2 (3.10)

The proof is immediate from the two lemmas we introduce below.

Lemma III.7 (Csiszar-Kullback-Pinsker inequality). The L1 distance of distribution

is bounded by the following:

||p− q||1 ≤
√

2D(p||q), (3.11)

where

D(p||q) :=


∑

x∈X p(x) log p(x)
q(x)

, if p� q

+∞ otherwise

, (3.12)

is a Kullback-Leibler divergence with p� q indicating that p is absolutely continuous

with respect to q.

Lemma III.8 (Agrawal (2020), Theorem I.2). The probability that the relative en-

tropy between the true distribution p and the empirical distribution p̂N deviates more
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than ε is bounded by

P [D(p̂N ||p) ≥ ε] ≤
(
eNε

X − 1

)X−1

e−Nε, (3.13)

if ε > X−1
N

.

We are rather interested in the value of θ that achieves the concentration inequal-

ity. The following corollary provides the criteria.

Corollary III.9. Let w−1(y) be the inverse transformation of the fucntion

w(z) = ze−z, z ≥ 1. (3.14)

Define

θ =

√
2(X − 1)

N
w−1

(
1

e
δ

1
X−1

)
. (3.15)

Then with probability at least 1−δ, the empirical distribution satisfies ||p− p̂N ||1 ≤ θ.

Proof. From Lemma III.8, the following inequality holds with probability at least

1− δ.

D(p̂N ||p) ≤
(X − 1)

N
w−1

(
1

e
δ

1
X−1

)
. (3.16)

Then, we substitute to (3.11), which provides a bound for ||p− p̂N ||1.

We conclude this section by providing the bound for the Wasserstein distance in

the following remark.

Remark III.10. Define

θ = d∗

√
2(X − 1)

N
w−1

(
1

e
δ

1
X−1

)
. (3.17)
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Then the empirical distribution satisfies W (p, p̂N) ≤ θ with probability at least 1− δ.

Note, however, that this criterion ignores most of the information contained in d

as only d∗ is used, and bound can be very conservative.

3.2.3 Weighted L1 Distance Bound

We formulate an alternative bound that includes information of d. First, we

introduce the following lemma on the bounds of weighted L1 distance.

Lemma III.11 (Bolley and Villani (2005), Theorem 2.1, Weighted Csiszar-Kull-

back-Pinsker inequality). For all α > 0,

∑
x∈X

d(x0, x)|p(x)− q(x)| ≤
√

2

α

(
1 + log

∑
x∈X

eαd
2(x0,x)q(x)

)1/2√
D(p||q). (3.18)

The following proposition gives a criterion for the bound θ.

Proposition III.12. Let θ be a bound which satisfies

θ ≥
√

1 + log
∑

x∈X e
αd2(x0,x)p(x)

α

√
2 (X − 1)

N
w−1

(
1

e
δ

1
X−1

)
, (3.19)

for some x ∈ X and α > 0. Then with probability at least 1 − δ, the empirical

distribution satisfies W (p, p̂N) ≤ θ.

Proof. For simplicity, we denote

Kq
x0,α

= log
∑
x∈X

eαd
2(x0,x)q(x). (3.20)

Combining Lemma III.2 and Lemma III.11,

W (p, p̂N) ≤
√

2

α
(1 +Kp

x0,α)D(p̂N ||p), (3.21)
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for some x0 ∈ X and α > 0.

Thus, by substituting (3.16), if

θ ≥
√

1 +Kp
x0,α

α

√
2 (X − 1)

N
w−1

(
1

e
δ

1
X−1

)
, (3.22)

W (p, p̂N) ≤ θ is satisfied with probability at least 1− δ.

Note, however, this bound involves a quantity Kp
x0,α

which we are not able to

obtain. We would like to substitute it with an empirical K p̂N
x0,α

, but it is subject to

some deviation from the true quantity. We, therefore, take a distributionally robust

optimization approach to get the worst-case value of Kp
x0,α

to be conservative and

then replace the RHS of (3.22) by a valid lower bound.

Let us introduce a set of distributions p characterized by the inverse-Kullback-

Leibler divergence.

Definition III.13. A set of distributions p centered around the empirical distribution

p̂N with radius ε is defined as

Db(p̂N , ε) := {p ∈ ∆(X ) | D(p̂N ||p) ≤ ε} . (3.23)

For simplifying the notation, we define

ε =
X − 1

N
w−1

(
1

e
δ

1
X−1

)
. (3.24)

Now, we present the main result of this chapter in the following theorem, which

provides a value for θ with a probabilistic guarantee.
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Theorem III.14. For some x ∈ X and α > 0, let

θ ≥

√√√√√1 + sup
p∈Db(p̂N ,ε)

log
∑
x∈X

eαd
2(x0,x)p(s)

α

√
2 (X − 1)

N
w−1

(
1

e
δ

1
X−1

)
. (3.25)

Then with probability at least 1− δ, the empirical distribution satisfies W (p, p̂N) ≤ θ.

Proof. If D(p̂N ||p) ≤ ε holds, then Kp
x0,α
≤ supp∈Db(p̂N ,ε). Therefore, the inequality

√
2

α
(1 +Kp

x0,α)D(p̂N ||p) ≤

√√√√ 2

α

(
1 + sup

p∈Db(p̂N ,ε)
Kp
x0,α

)
D(p̂N ||p) (3.26)

holds. We obtain (3.25) by substituting the above inequality to (3.19).

The first square root term of the RHS of (3.25) is dependent on x0 and α, which

we have the freedom to choose. We solve the following to lower the value of θ.

inf
x0∈X ,α>0

√√√√√1 + sup
p∈Db(p̂N ,ε)

log
∑
x∈X

eαd
2(x0,x)p(x)

α
. (3.27)

We introduce the following theorem which describes the complexity of the opti-

mization problem.

Theorem III.15. The problem (3.27) can be solved in polynomial time.

Proof. Notice that Kp
x0,α

= log
∑

x∈X e
αd2(x0,x)p(x) is a convex function of α, since it

can be interpreted as the cumulant generating function of random variable with real-

izations d2(x0, x) with probability p(x). Then, since taking the supremum for p over

a convex set does not change the convexity of a convex function, so supp∈Db(p̂N ,ε) K
p
x0,α

is convex. Now, let us suppose f(z) is convex and consider
√
f(z)/z. This is not a
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transformation that preserves convexity, but the sublevel set

{
z ∈ domf |

√
f(z)/z ≤ t

}
(3.28)

is convex for all t ∈ R, indicating that
√
f(z)/z is quasiconvex. Thus, the objective

function of (3.27) is quasiconvex in α (see, e.g., Boyd et al. (2004)). Thus, a one-

dimensional search algorithm such as golden section search is able to determine the

optimal α in polynomial time.

The evaluation of the inner supremum can also be done in polynomial time. No-

tice that the optimal solution does not change after moving the supremum into the

logarithm. That is, we solve

sup
p

∑
x∈X

eαd
2(x0,x)p(x) (3.29a)

s.t.
∑
x∈X

p̂N(s) log
p̂N(s)

p(s)
≤ ε (3.29b)

∑
x∈X

p(s) = 1, p ∈ RX+ , (3.29c)

for a given α, which is a problem with a linear objective and a convex feasible region,

which has a polynomial time complexity.

Finally, we perform this optimization for all x0 ∈ X , and choose the lowest value.

Rather than iterating over all x0 ∈ X to obtain the optimal solution, we can

formulate a heuristic algorithm by considering the following remark.

Remark III.16. For a given x0 ∈ X , the limit of the objective of (3.27) when α→∞

is bounded by maxx∈X d(x0, x). Thus, by selecting x0 = arg min
x∈X

maxx′∈X d(x, x′), we
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recover the bound in (3.17), since

lim
α→∞

√√√√√1 + sup
p∈Db(p̂N ,ε)

log
∑
x∈X

eαd
∗2
p(s)

α
= lim

α→∞

√
1 + αd∗2

α
= d∗. (3.30)

3.3 Applications in Regret-based Reinforcement Learning

In Sections 3.3.1–3.3.3, we introduce some preliminaries for regret-based reinforce-

ment learning. Then, in Section 3.3.4, we present the regret bound for the case where

the Wasserstein-ball ambiguity set is used.

3.3.1 Average Reward Markov Decision Processes

Recall that S is a set of states, A is a set of actions, and r(s, a) is a reward for

taking action a ∈ A at state s ∈ S. Let St and At be a random state and action

values at time t. We are interested in finding a policy π : S → ∆(A) such that it

maximizes the average reward given by

lim sup
T→∞

1

T

T∑
t=1

Eπ [r(St, At) | S1 = s] , (3.31)

which is the time average reward in the long run initializing from state s. The optimal

gain is the optimal objective value with respect the policy and the initial state, defined

as

ρ∗ := max
s∈S

sup
π

lim sup
T→∞

1

T

T∑
t=1

Eπ [r(St, At) | S1 = s] . (3.32)

Throughout this chapter, we assume that the MDP is strongly connected, i.e., for any

pairs of states s and s′, there exists a policy such that the probability for reaching s′

from s eventually is nonzero. This guarantees the existence of the optimal solution

in (3.32). The connectivity of the MDP can also be described by the diameter. Let
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us denote the MDP as M = (S,A, p, r). The diameter of the MDP is defined as

D(M) = max
s 6=s′

min
π∈ΠDM

Eπ [min{t ≥ 1 : St = s′} | S1 = s]− 1, (3.33)

where ΠDM is a set of all policies that are deterministic and memory-less. The

definition comes from the minimum expected amount of time it takes to reach between

the worst combination of states s and s′. For strongly connected MDP, D(M) is finite.

When the transition probabilities p(s′|s, a) are known, the optimal policy can be

found by solving the Bellman optimality equations

ρ+ v(s) = max
a∈A

(
r(s, a) +

∑
s′∈S

p(s′|s, a)v(s′)

)
, ∀s ∈ S. (3.34)

Here, the optimal solution of ρ is the optimal objective value of (3.32), and v(s) is

the differential value function indicating the relative advantage of the starting state

s. The Bellman equation (3.34) can be reformulated as a linear program below.

min ρ (3.35a)

s.t. ρ+ v(s) ≥ r(s, a) +
∑
s′∈S

p(s′|s, a)v(s′), ∀s ∈ S, a ∈ A. (3.35b)

The optimal policy is gained by taking the optimal solutions of the dual variables

associated with constraints (3.35b), and we denote the dual variables as π(s, a). For

each s ∈ S, any a ∈ A having π(s, a) > 0 is optimal. If such action a ∈ A does not

exist, then any action a ∈ A is optimal.

3.3.2 Optimism in the Face of Uncertainty

For notational convenience, we denote p(·|s, a) as psa. We consider a case where the

transition probabilities psa are not fully known, and characterize a policy of optimism

in the face of uncertainty (Tewari and Bartlett , 2008; Jaksch et al., 2010). Here,
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we let Psa(p̂sa, θsa) be an ambiguity set constructed from sample average p̂sa, and a

distance (or divergence) measure θsa. The optimistic policy assumes that it takes a

best-case distribution of psa out of all possible distributions in Psa.

For each state s ∈ S, the corresponding distributionally optimistic Bellman equa-

tion is formulated as

v(s) = max
a∈A

{
r(s, a) + max

psa∈Psa(p̂sa,θsa)

∑
s′∈S

psa(s
′)v(s′)

}
. (3.36)

In Jaksch et al. (2010), the ambiguity set Psa is based on a total variational

distance, and in Filippi et al. (2010), it is based on a Kullback-Leibler divergence. In

the chapter, we formulate the case when the ambiguity set is Wasserstein-based.

3.3.3 Regret-based Reinforcement Learning

A cumulative regret is a difference between the cumulative reward that is obtained

and the cumulative reward that would have been obtained if the DM knew all the

parameters of the MDP. At time T , this can be expressed as

Tρ∗ −
T∑
t=1

r(St, At), (3.37)

and the goal is to find a policy that minimizes the bound of regret.

Tewari and Bartlett (2008) consider a generalization of index policies using an

optimistic linear programming algorithm, and achieve a regret bound that is asymp-

totically logarithmic in T steps. However, the bound is also known to be exponential

in the number of states. Jaksch et al. (2010) solve this by proposing an algorithm

UCRL2, showing that the upper bound of the regret is Õ(D|S|
√
|A|T ), where D is

the diameter of MDP. Jaksch et al. (2010) also prove that the lower bound of the

regret is Ω(
√
D|S||A|T ). Azar et al. (2017) propose an algorithm with upper bound

Ω(
√
H|S||A|T ) for a finite horizon MDP, where the MDP is repeated over again
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whenever the horizon H is reached.

In contrast to the theoretical work done in the literature above, we are interested

in a problem assuming that some knowledge of the system is known as a form of

transportation cost d.

3.3.4 Algorithm for Reinforcement Learning with Wasserstein Ball Am-

biguity Set

We extend the UCRL2 algorithm in Jaksch et al. (2010); Lattimore and Szepesvári

(2020). The empirical distribution at step t is given by

p̂tsa(s
′) =

∑t
u=1 I (Su = s, Au = a, Su+1 = s′)

max {1, N t
sa}

, (3.38)

where N t
sa =

∑n
u=1 I (Su = s, Au = a) is the count of the realization of the state-action

pair (s, a).

We define the sets of transition probabilities for each state-action pair (s, a) as

Ctsa =
{
psa ∈ ∆(S) | W (p̂sa, psa) ≤ min{θ1t

sa, θ
2t
sa}
}
, (3.39)

where

θ1t
sa = d∗

√
2

max {1, N t
sa}

log

(
2|S|15|S||A|t7

δ

)
, (3.40)

and

θ2t
sa =

√√√√√1 + sup
p∈Db(p̂tsa,ε)

log
∑
s∈S

eα
?d2(s?0,s)p(s)

α?

√√√√ 2 (|S| − 1)

max {1, N t
sa}

w−1

(
1

e

(
δ

15|S||A|t7

) 1
|S|−1

)
.

(3.41)

Lemma III.17. With probability at least 1 − δ
15t6

, the true MDP satisfies psa ∈ Ctsa
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for all state-action pair (s, a) up to stage t.

We dissect the time steps into episodes where the next episode begins when a

visit to a state-action pair (s, a) doubles. That is, we define the beginning of the first

episode as τ1 = 1, and the beginning of the (k + 1)th episode as

τk+1 = 1 + min
{
t : N t

StAt ≥ 2N τk−1
StAt

}
. (3.42)

At each episode, we update the policy. LetMk be the set of plausible MDP at episode

k. If the true MDP M is in Mk, the optimistic solution ρ̃k is greater than or equal

to ρ∗. Furthermore, The cumulative regret is bounded by

R̂T =
T∑
t=1

(ρ? − r(St, At)) ≤
K∑
k=1

∑
t∈Ek

(ρ̃k − r(St, At)) . (3.43)

For all k, we have

ρ̃k = r(St, At)− vk(St) +
∑
s′∈S

p̃kStAt(s
′)vk(s

′), ∀t ∈ Ek, (3.44)

where p̃ksa is the optimistic distribution at episode k. Thus, the regret for any single

episode is bounded by

R̂T ≤
K∑
k=1

∑
t∈Ek

(ρ̃k − r(St, At))

=
K∑
k=1

∑
t∈Ek

(
−vk(St) +

∑
s′∈S

p̃kStAt(s
′)vk(s

′)

)

=
K∑
k=1

∑
t∈Ek

(
−vk(St) +

∑
s′∈S

pStAt(s
′)vk(s

′)

)

+
K∑
k=1

∑
t∈Ek

∑
s′∈S

(
p̃kStAt(s

′)− pStAt(s′)
)
vk(s

′). (3.45)
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The first term of the RHS of the last equality can be bounded by

K∑
k=1

(
D(M) +

∑
t∈Ek

(E [vk(St+1)|St]− vk(St+1))

)
, (3.46)

where we have used the fact that v(s′) − v(s) ≤ D(M) for all s, s′ ∈ S. Using

Azuma-Hoeffding inequality, Jaksch et al. (2010) showed that (3.46) can be bounded

by

KD(M) +D(M)

√
T

5

2
log

(
8T

δ

)
(3.47)

with probability at least 1 − δ
12T 5/4 . Furthermore, the number of episodes K can be

bounded by |S||A| log2

(
8T
|S||A|

)
, and therefore the first term of (3.45) can be bounded

by

D(M)

√
T

5

2
log

(
8T

δ

)
+D(M)|S||A| log2

(
8T

|S||A|

)
, (3.48)

with probability at least 1− δ
12T 5/4 .

The second term of the RHS of (3.45) can be bounded by

K∑
k=1

D(M)

2

∑
t∈Ek

∑
s′∈S

∣∣p̃kStAt(s′)− pStAt(s′)∣∣ , (3.49)

which is bounded by

K∑
k=1

D(M)

2

∑
t∈Ek

√
2

max
{

1, N τk−1
StAt

} log

(
2|S|15|S||A|t7

δ

)

≤
K∑
k=1

D(M)

2

√
2 log

(
2|S|15|S||A|T 7

δ

)∑
t∈Ek

√
1

max
{

1, N τk−1
StAt

}
=

K∑
k=1

D(M)

2

√
2 log

(
2|S|15|S||A|T 7

δ

)∑
s∈S

∑
a∈A

Nsa(k)√
max

{
1, N τk−1

sa

} , (3.50)
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where Nsa(k) is the total count of state-action pair (s, a) at episode k. The first

inequality is by substituting t with T , and the second equality is due to the definition

of Nsa(k). We further use the inequality

2 log

(
2|S|15|S||A|T 7

δ

)
≤ 14|S| log

(
2|A|T
δ

)
, (3.51)

and

K∑
k=1

∑
s∈S

∑
a∈A

Nsa(k)√
max

{
1, N τk−1

sa

} ≤ (
√

2 + 1)
∑
s∈S

∑
a∈A

√
NT
sa

≤ (
√

2 + 1)
√
|S||A|T . (3.52)

Therefore, the second term of (3.45) can be bounded by

D(M)

2

√
14|S| log

(
2|A|T
δ

)
(
√

2 + 1)
√
|S||A|T (3.53)

Combining (3.48) and (3.53), the regret is bounded by

R̂T ≤D(M)

√
T

5

2
log

(
8T

δ

)
+D(M)|S||A| log2

(
8T

|S||A|

)

+
D(M)

2

√
14|S| log

(
2|A|T
δ

)
(
√

2 + 1)
√
|S||A|T , (3.54)

with probability at least 1− δ
6T 5/4 ≥ 1− δ. The upper bound of the cumulative regret

can be simplified to 34D(M)|S|
√
|A|T log

(
T
δ

)
.
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3.4 Computational Study

3.4.1 Ambulance Dispatching Problem

We consider a reinforcement learning variant of the optimal ambulance dispatching

problem introduced in Jagtenberg et al. (2017). In this problem, there exists a set

V of demand locations, and the task is to dispatch an ambulance from a set B of

ambulances. Incidents occur at demand locations according to a Poisson distribution

with a certain rate. When an ambulance arrives at the incident location, it takes a

random amount of time to provide a service and decide whether a patient needs to

be taken to a hospital. If the patient does not require immediate care, the ambulance

becomes idle. Otherwise, the ambulance drives to the nearest hospital from H ⊂ V ,

and takes a random amount of time to serve at the hospital before becoming idle.

Here, we assume that τij, which is the time it takes to drive between i, j ∈ V is

deterministic and known. The objective of this problem is to minimize the average

response time and serve as many incidents as possible.

The state s is represented as a tuple

(
Locacc, idle1, . . . , idle|B|

)
, (3.55)

where Locacc ∈ V ∪ {0} represents a location of an incident that occurred in the

previous time steps. The location 0 is a dummy node indicating that no incidents

have ocurred. The element idlei ∈ {true, false} represents whether an ambulance i is

idle or not. We denote Locacc(s) and idlei(s) to indicate the value of the corresponding

element for a given state s.

The set of actions is given by A = B ∪ {0}, which is either dispatching an am-

bulance a ∈ B, or a dummy action 0 indicating that no action is taken. There are

certain restrictions for an action to be taken. For example, an ambulance that is

not idle cannot be dispatched, an idle ambulance must be dispatched if an incident
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occurred, and actions cannot be taken if there are no incidents.

The transition probabilities psa(s
′) are formulated as a product of two probabil-

ities p1(s′) and p2
sa(s

′), which are probabilities that an incident occurs at Locacc(s
′),

and probabilities that certain ambulances become available. Here, we have made a

Markovian assumption such that the rate at which the incident occurs is independent

of the previous realizations, and incidents that are not served immediately are lost.

We let the overall incidence rate be λc, and define a fraction dv for all v ∈ V .

Then,

p1(s′) =


λcdLocacc(s′) if Locacc(s

′) ∈ V

1− λc otherwise.

(3.56)

For tractability, we assume that the ambulances become idle following a geometric

distribution with a fixed parameter 1
rc

. This reflects the random travel time and

the random service time averaged across all ambulances and the incidents. We also

assume that the busy ambulances don’t immediately become idle. In this case, p2
sa(s

′)

becomes

p2
sa(s

′) =
∏
i∈B

pca(idlei(s), idlei(s
′)), (3.57)

where if ambulance i is idle and the decision is to dispatch ambulance i, then

pca(idlei(s), idlei(s
′)) =


1 if idlei(s

′) = false

0 if idlei(s
′) = true

. (3.58)
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If ambulance i is busy, then

pca(idlei(s), idlei(s
′)) =


rc if idlei(s

′) = true

1− rc if idlei(s
′) = false

. (3.59)

A cost is generated when there is an incident but there are no idle ambulances,

or the ambulances are dispatched but the travel time is long. We convert this to a

reward maximization problem and normalize it so that reward 1 is gained when there

are no incidents, and a reward 1− τij/M is gained for dispatching ambulance at node

i to incident and node j. M is a normalization term indicating the worst-case travel

time.

The major between the original formulation in Jagtenberg et al. (2017) and the

reinforcement learning formulation is that the rates at which the incidents occur are

unknown. However, we can postulate that the rates are correlated geographically: i.e.,

the closer demand locations have similar incident rates, possibly due to the amount

of traffic, age distributions, etc. Because of the construct of the states, we are also

familiar with the neighboring relations of the states. For example, the probability that

all the busy ambulances become idle at the same time is low. We can incorporate this

background knowledge to distance measure between the states. Under this setting,

we can justify the use of a Wasserstein-based ambiguity.

3.4.2 Experimental Design and Setup

We scatter 10 incident locations in a unit square plane, of which 2 of them are

also hospital locations. We plot the configuration in Fig. 3.1, where the orange dots

represent hospital locations. We assign one ambulance to each hospital, making it a

44 state and 3 action MDP. The probability that an incident occurs is 25%, and the

rate for each location are distributed unevenly in Fig. 3.1. The rate is higher for the

locations that are close to the lower-left corner of the square. The probability that
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the ambulance becomes idle is 20%.

The distance between two locations is given by the Manhattan distance, i.e., the

L1 norm. We use the Manhattan distance as the distance of the states and multiply

with a constant term 0.1 when the transition probability is nonzero.

Figure 3.1: Incident locations (blue: incident locations, orange: hospitals and incident
locations)

3.4.3 Computational Results

3.4.3.1 Regret

We tested three reinforcement learning algorithms over 1,000,000 steps. The cu-

mulative regret is shown in Fig. 3.2 and the average regret is shown in 3.3. The

blue line corresponds to the using (3.9) as the distance bound and the orange line

corresponds to using (3.25) as the distance bound. The green line corresponds to the

conventional UCRL2 algorithm (Jaksch et al., 2010) using a total variational distance.

We note that the performance of Wasserstein bound (3.25) outperforms the bound
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Figure 3.2: Cumulative regret

Figure 3.3: Average regret
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(3.9) and the total variational distance, indicating the advantage of using all the

information of the state distances and Wasserstein ball ambiguity set.

3.4.3.2 Bounds θ

We plot how the Wasserstein distance bounds change as the number of samples

increases. The bounds are compared between (3.9), (3.25), and the case where the

bound (3.25) is used, but not optimized over α. We find that the optimization over

Figure 3.4: Bounds

α is necessary to obtain a stronger Wasserstein distance bound.

3.5 Concluding Remarks

In this chapter, we derived concrete Wasserstein distance bounds for true and

empirical distributions when the set of events are finite. We then applied the result

in a reinforcement learning application, where the notion of optimism in the face of

uncertainty matches the concept of ambiguity sets. In the future, we will improve

the computational efficiency of the algorithm as problems with similar structures are
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being solved repeatedly as the information is gained over time.
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CHAPTER IV

Multistage Distributionally Robust Mixed-integer

Programming under the Wasserstein Ambiguity

Set

4.1 Introductory Remarks

Multistage stochastic programming extends the two-stage stochastic programming

formulation where there are more than two sequences of decisions to be made. The

sequences of realized random variables are expressed using a scenario tree which in-

creases exponentially in size as the number of stages increases. The basic approach for

solving multistage stochastic programming is nested Benders decomposition, which

extends the Benders decomposition algorithm used in two-stage stochastic program-

ming (Gassmann, 1990; Birge and Louveaux , 2011). It begins with a relaxed for-

mulation and alternates between the forward pass which chooses a sample path in

the scenario tree and the backward pass which generates valid cuts to strengthen the

relaxation. Stochastic dual dynamic programming (SDDP) (Pereira and Pinto, 1991)

further assumes that the scenarios are stage-wise independent, allowing a more effi-

cient algorithm where the generated cuts can be shared across different sample paths

having the common future realization of uncertain variables. However, these two

methods are only applicable for cases where the variables are continuous. Recently,
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Zou et al. (2019) propose stochastic dual dynamic integer programming (SDDiP)

which solves problems that have binary state variables by utilizing a stronger set of

cuts derived from a particular reformulation of the problem. Meanwhile, Philpott

et al. (2018) and Duque and Morton (2020) consider a distributionally robust variant

of SDDiP, where Philpott et al. (2018) assume ambiguity sets based on χ2 distance

centered around a nominal distribution, and Duque and Morton (2020) assume am-

biguity sets based on Wasserstein distance. Furthermore, Yu and Shen (2020) extend

distributionally robust SDDiP to cases where the random variables are endogenous,

i.e., dependent on the previous decisions, using moment-based ambiguity sets.

In this chapter, we discuss a dual decomposition approach to multistage distribu-

tionally robust programming. Carøe and Schultz (1999) develop a dual decomposition

formulation for two-stage stochastic programming by taking a Lagrangian relaxation

of the non-anticipativity constraints. The main advantage of this approach is that it is

able to handle mixed-integer variables and the subproblems can be solved in parallel.

Recently, Kim (2020) apply dual decomposition method to two-stage distributionally

robust mixed-integer programming. This chapter extends the dual decomposition

techniques in Kim (2020) to the case of multistage stochastic programming, and

further implement a branch-and-bound algorithm to obtain an optimal solution.

In Section 4.2, we introduce the notations and the problem formulation of the

multistage distributionally robust program. In Section 4.3, we present the determin-

istic equivalent formulation of multistage distributionally robust program which is

used to derive the Lagrange dual formulation in Section 4.4. We present the algo-

rithmic formulation in Section 4.5. In Section 4.6, we discuss the application of dual

decomposition algorithm to a transmission expansion problem. Finally, we note our

concluding remarks in Section 4.7.
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4.2 Preliminaries

4.2.1 Notations

We let [N ] be a set of integers {1, . . . , N}. Consider arbitrary sets Ξk indexed by

k ∈ [K], where each elements are denoted by ξk. For indices 1 ≤ i ≤ j ≤ K, we

define Ξi:j as Ξi × Ξi+1 × · · · × Ξj. We denote the elements of Ξi:j by ξi:j, which is

equivalent to (ξi, ξi+1, . . . , ξj). When i > j, we define Ξi:j := ∅.

4.2.2 Wasserstein Ambiguity Set

Define a set of probability measures on support Ξ as

M(Ξ) :=

P ∈M :

∫
Ξ

dP (ξ) = 1

 , (4.1)

where M is a set of all nonnegative measures P : Ξ → R+. Let {ξ̂1, . . . , ξ̂N} be the

set of empirical observations with probability estimates p̂1, . . . , p̂N , where p̂s > 0 for

all s ∈ [N ]. The Wasserstein ball ambiguity set is

P :=


P ∈M(Ξ) :

∫
Ξ

∑N
s=1 u

s(ξ)||ξ̂s − ξ||dξ ≤ ε,∫
Ξ
us(ξ)dξ = p̂s, ∀s ∈ [N ],∑N
s=1 u

s(ξ) = P (ξ), ∀ξ ∈ Ξ,

us(ξ) ≥ 0, ∀ξ ∈ Ξ, s ∈ [N ]


, (4.2)

where ε is the Wasserstein distance limit.

4.2.3 Problem Statement

In this section, we introduce several models of distributionally robust multistage

mixed-integer program. For notational simplicity, we assume that the first stage is

subject to a deterministic variable ξ1 ∈ Ξ1, where the cardinality of Ξ1 is 1.
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We first formulate the stage-wise independent case where the ambiguity set is

independent of any previous realizations. We will focus on this formulation through-

out this chapter. However, we note that the dual decomposition method can be

extended to the stage-wise dependent ambiguity set without difficulty. Subsequently,

we assume relatively complete recourse to simplify the argument.

4.2.3.1 Stage-wise independent case

The stage-wise independent case of distributionally robust multistage stochastic

mixed-integer programming can be stated as

min
x1∈X1

{
c>1 (ξ1)x1 + max

P2∈P2

Eξ2∼P2 [Q2(x1, ξ2)]

}
, (4.3)

where

Qk(xk−1, ξk) := min
xk∈Xk

c>k (ξk)xk + max
Pk+1∈Pk+1

Eξk+1∼Pk+1
[Qk+1(xk, ξk+1)] (4.4a)

s.t. Wk(ξk)xk ≥ hk(ξk)− Tk(ξk)xk−1, (4.4b)

for all k = 2, . . . , K − 1, and

QK(xK−1, ξK) := min
xK∈XK

c>K(ξK)xK (4.5a)

s.t. WK(ξK)xK ≥ hK(ξK)− TK(ξK)xK−1. (4.5b)

Here, Xk ⊆ Rnk can be mixed-integer sets. The ambiguity sets are
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Pk+1 :=


Pk+1 ∈M(Ξk+1) :

∫
Ξk+1

∑Nk+1

s=1 usk(ξk+1)||ξ̂sk+1 − ξk+1||dξk+1 ≤ εk+1,∫
Ξk+1

usk(ξk+1)dξk+1 = p̂sk+1, ∀s ∈ [Nk+1],∑Nk+1

s=1 usk(ξk+1) = Pk+1(ξk+1), ∀ξk+1 ∈ Ξk+1,

usk(ξk+1) ≥ 0, ∀ξk+1 ∈ Ξk+1, s ∈ [Nk+1]


.

(4.6)

4.2.3.2 Stage-wise dependent ambiguity set

A more general case where the ambiguity sets, as well as the costs and constraints,

are dependent on realizations of scenarios in the previous stages are modeled as

min
x1∈X1

{
c>1 (ξ1)x1 + max

P2∈P2(ξ1)
Eξ2∼P2 [Q2(x1, ξ1:2)]

}
, (4.7)

where

Qk(xk−1, ξ1:k) := min
xk∈Xk(ξ1:k)

c>k (ξ1:k)xk + max
Pk+1∈Pk+1(ξ1:k)

Eξk+1∼Pk+1
[Qk+1(xk, ξ1:k+1)]

(4.8a)

s.t. Wk(ξ1:k)xk ≥ hk(ξ1:k)− Tk(ξ1:k)xk−1, (4.8b)

for all k = 2, . . . , K − 1, and

QK(xK−1, ξ1:K) := min
xK∈XK(ξ1:K)

c>K(ξ1:K)xK (4.9a)

s.t. WK(ξ1:K)xK ≥ hK(ξ1:K)− TK(ξ1:K)xK−1. (4.9b)

Given samples
(
ξ̂ξ1:k,s
k+1 , s ∈ [N ξ1:k

k+1]
)

from Ξξ1:k

k+1, the stage-wise dependent ambigu-
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ity set is

Pk+1(ξ1:k) :=


P ξ1:k
k+1 ∈M(Ξξ1:k

k+1) :

∫
Ξ
ξ1:k
k+1

∑N
ξ1:k
k+1

s=1 usk(ξk+1)||ξ̂ξ1:k,s
k+1 − ξk+1||dξk+1 ≤ εξ1:k

k+1,∫
Ξ
ξ1:k
k+1

usk(ξk+1)dξk+1 = p̂ξ1:k,s
k+1 , ∀s ∈ [N ξ1:k

k+1],∑N
ξ1:k
k+1

s=1 usk(ξk+1) = P ξ1:k
k+1(ξk+1), ∀ξk+1 ∈ Ξξ1:k

k+1,

usk(ξk+1) ≥ 0, ∀ξk+1 ∈ Ξξ1:k
k+1, s ∈ [N ξ1:k

k+1]


.

(4.10)

A particularly interesting case is when ξ2, . . . , ξK is an i.i.d. random variable

sampled from a common support Ξ, and consider a setting where we learn about the

distribution over time. Suppose we have N initial samples at stage one, which we

denote as ξ̂ :=
{
ξ̂1, . . . , ξ̂N

}
. Then, at stage k ≥ 2, we have N + k − 2 samples of ξ.

At stage k+ 1, we have samples (ξ̂, ξ2:k), where ξ2:k are realizations that are observed

during as the stages progress. The ambiguity sets are expressed as

Pk+1(ξ̂, ξ2:k) :=


P ξ2:k
k+1 ∈M(Ξ) :

∫
Ξ

∑N+k−1
s=1 usk(ξk+1)||ξ̂s − ξk+1||dξk+1 ≤ εN+k−1,∫

Ξ u
s
k(ξk+1)dξk+1 = 1

N+k−1 , ∀s = 1, . . . , N + k − 1,∑N+k−1
s=1 usk(ξk+1) = P ξ2:k

k+1(ξk+1), ∀ξk+1 ∈ Ξ,

usk(ξk+1) ≥ 0, ∀ξk+1 ∈ Ξ, s = 1, . . . , N + k − 1

ξ̂s = ξs−N+1, ∀s = N + 1, . . . , N + k − 1


,

(4.11)

where the radius of the Wasserstein ball εN+k−1 are given in Esfahani and Kuhn

(2018) which becomes smaller as the number of samples increases.

The decisions based on ambiguity sets (4.11) are conservative at the beginning of

the time horizon, but get progressively accurate as the data are collected. However,

due to the immense difficulty of solving multistage stochastic programs in general, we

have not been able to find any practical application concerning this type of problem.
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4.3 Deterministic Equivalent Formulation

We present the deterministic formulation of multistage DRMIP. The deterministic

formulation is the first step in deriving the decomposition scheme using Lagrangian

duality. To reduce the min-max structure of the problem in (4.3), we use the following

duality property of the Wasserstein-based ambiguity set:

Lemma IV.1 (Kim (2020)). For any random variable f(ξ) ∈ R, the strong duality

property holds for the following problem:

max
P∈P

EP [f(ξ)]. (4.12)

Furthermore, its dual is given as the following semi-infinite program:

min
α≥0,βs

εα +
N∑
s=1

p̂sβs (4.13a)

s.t.
∥∥∥ξ̂s − ξ∥∥∥α + βs ≥ f(ξ) ∀ξ ∈ Ξ, s ∈ [N ]. (4.13b)

We now present the deterministic formulation of (4.3).

90



Proposition IV.2. The multistage DRMIP (4.3) can be reformulated as

min c>1 (ξ1)x1(ξ1) + ε2α1(ξ1) +

N2∑
s=1

p̂s2β
s
1(ξ1) (4.14a)

s.t.
∥∥∥ξ̂sk − ξk∥∥∥αk−1(ξ1:k−1) + βsk−1(ξ1:k−1) ≥ c>k (ξk)xk(ξ1:k) + εk+1αk(ξ1:k)

+

Nk+1∑
s′=1

p̂s
′

k+1β
s′

k (ξ1:k), ∀ξ1:k ∈ Ξ1:k, s ∈ [Nk], k = 2, . . . , K − 1, (4.14b)

∥∥∥ξ̂sK − ξK∥∥∥αK−1(ξ1:K−1) + βsK−1(ξ1:K−1) ≥ c>K(ξK)xK(ξ1:K),

∀ξ1:K ∈ Ξ1:K , s ∈ [NK ], (4.14c)

Tk(ξk)xk−1(ξ1:k−1) +Wk(ξk)xk(ξ1:k) ≥ hk(ξk), ∀ξ1:k ∈ Ξ1:k, k = 2, . . . , K,

(4.14d)

xk(ξ1:k) ∈ Xk, ∀ξ1:k ∈ Ξ1:k, k = 1, . . . , K (4.14e)

αk(ξ1:k) ≥ 0, ∀ξ1:k ∈ Ξ1:k, k = 1, . . . , K − 1, (4.14f)

βsk(ξ1:k) ∈ R, ∀s ∈ [Nk+1], ξ1:k ∈ Ξ1:k, k = 1, . . . , K − 1. (4.14g)

Proof. Problem (4.3) can be rewritten as the following semi-infinite program:

min c>1 (ξ1)x1 + q1 (4.15a)

s.t. q1 ≥ EP2

[
c>2 (ξ2)x2(ξ2) + max

P3∈P3

EP3 [Q3(x2(ξ2), ξ3)]

]
, ∀P2 ∈ P2 (4.15b)

T2(ξ2)x1 +W2(ξ2)x2(ξ2) ≥ h2(ξ2), ∀ξ2 ∈ Ξ2, (4.15c)

x1 ∈ X1, q1 ∈ R, (4.15d)

x2(ξ2) ∈ X2, ∀ξ2 ∈ Ξ2. (4.15e)
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Using Lemma IV.1, constraint (4.15b) can be rewritten as

q1 ≥ ε2α1 +

N2∑
s2=1

p̂s22 β
s2
1 , (4.16a)

∥∥∥ξ̂s22 − ξ2

∥∥∥α1 + βs21 ≥ c>2 (ξ2)x2(ξ2) + max
P3∈P3

EP3 [Q3(x2, ξ3)] ∀ξ2 ∈ Ξ2, s2 ∈ [N2],

(4.16b)

where α1 ∈ R+ and βs21 ∈ R, for all s2 ∈ [N2]. This results in a reformulation

min c>1 (ξ1)x1 + ε2α1 +

N2∑
s=1

p̂s2β
s
1 (4.17a)

s.t.
∥∥∥ξ̂s2 − ξ2

∥∥∥α1 + βs1 ≥ c>2 (ξ2)x2(ξ2) + max
P3∈P3

EP3 [Q3(x2(ξ2), ξ3)] ,

∀ξ2 ∈ Ξ2, s ∈ [N2], (4.17b)

T2(ξ2)x1 +W2(ξ2)x2(ξ2) ≥ h2(ξ2), ∀ξ2 ∈ Ξ2, (4.17c)

x1 ∈ X1, (4.17d)

x2(ξ2) ∈ X2, ∀ξ2 ∈ Ξ2, (4.17e)

α1 ≥ 0, (4.17f)

βs1 ∈ R, ∀s ∈ [N2], (4.17g)
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which is equivalent to

min c>1 (ξ1)x1 + ε2α1 +

N2∑
s=1

p̂s2β
s
1 (4.18a)

s.t.
∥∥∥ξ̂s2 − ξ2

∥∥∥α1 + βs1 ≥ c>2 (ξ2)x2(ξ2) + q2(ξ2), ∀ξ2 ∈ Ξ2, s ∈ [N2], (4.18b)

q2(ξ2) ≥ EP3

[
c>3 (ξ3)x3(ξ2:3) + max

P4∈P4

EP4 [Q4(x3(ξ2:3), ξ4)]

]
, ∀ξ2 ∈ Ξ2, P3 ∈ P3,

(4.18c)

T2(ξ2)x1 +W2(ξ2)x2(ξ2) ≥ h2(ξ2), ∀ξ2 ∈ Ξ2, (4.18d)

T3(ξ3)x2(ξ2) +W3(ξ3)x3(ξ2:3) ≥ h3(ξ3), ∀ξ2:3 ∈ Ξ2:3, (4.18e)

x1 ∈ X1, (4.18f)

x2(ξ2) ∈ X2, q2(ξ2) ∈ R, ∀ξ2 ∈ Ξ2, (4.18g)

x3(ξ2:3) ∈ X3, ∀ξ2:3 ∈ Ξ2:3, (4.18h)

α1 ≥ 0, (4.18i)

βs1 ∈ R, ∀s ∈ [N2], (4.18j)

where we have substituted the maximization problem with respect to P3 using Lemma
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IV.1. Repeating this substitution process until the terminal stage K yields

min c>1 (ξ1)x1 + ε2α1 +

N2∑
s=1

p̂s2β
s
1 (4.19a)

s.t.
∥∥∥ξ̂s2 − ξ2

∥∥∥α1 + βs1 ≥ c>2 (ξ2)x2(ξ2) + ε3α2(ξ2) +

N3∑
s′=1

p̂s
′

3 β
s′

2 (ξ2),

∀ξ2 ∈ Ξ2, s ∈ [N2], (4.19b)∥∥∥ξ̂sk − ξk∥∥∥αk−1(ξ2:k−1) + βsk−1(ξ2:k−1) ≥ c>k (ξk)xk(ξ2:k) + εk+1αk(ξ2:k)

+

Nk+1∑
s′=1

p̂s
′

k+1β
s′

k (ξ2:k), ∀ξ2:k ∈ Ξ2:k, s ∈ [Nk], k = 3, . . . , K − 1, (4.19c)

∥∥∥ξ̂sK − ξK∥∥∥αK−1(ξ2:K−1) + βsK−1(ξ2:K−1) ≥ c>k (ξK)xK(ξ2:K),

∀ξ2:K ∈ Ξ2:K , s ∈ [NK ], (4.19d)

T2(ξ2)x1 +W2(ξ2)x2(ξ2) ≥ h2(ξ2), ∀ξ2 ∈ Ξ2, (4.19e)

Tk(ξk)xk−1(ξ2:k−1) +Wk(ξk)xk(ξ2:k) ≥ hk(ξk), ∀ξ2:k ∈ Ξ2:k, k = 3, . . . , K,

(4.19f)

x1 ∈ X1, (4.19g)

xk(ξ2:k) ∈ Xk, ∀ξ2:k ∈ Ξ2:k, k = 2, . . . , K (4.19h)

α1 ≥ 0, (4.19i)

αk(ξ2:k) ≥ 0, ∀ξ2:k ∈ Ξ2:k, k = 2, . . . , K − 1, (4.19j)

βs1 ∈ R, ∀s ∈ [N2], (4.19k)

βsk(ξ2:k) ∈ R, ∀s ∈ [Nk+1], ξ2:k ∈ Ξ2:k, k = 2, . . . , K − 1. (4.19l)

By simplifying the notation using the convention that Ξ1 is a singleton set, we

have (4.14). This completes the proof.

We use (4.14) to derive the dual decomposition formulation in the following sec-

tions.
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4.4 Lagrangian Dual of DRMSMIP

In this section, we first derive the Lagrangian dual of problem (4.3), which does

not assume any form of ambiguity sets. We then formulate the Lagrangian dual of

problem (4.14) where the ambiguity sets are Wasserstein-based and compare the two

forms of Lagrangian duals.

4.4.1 Lagrangian dual for general ambiguity set

Proposition IV.3. The Lagrangian dual of problem (4.3) is given by

max

∫
Ξ1:K

D′(µ1:K(ξ1:K), ξ1:K)dξ1:K (4.20a)

s.t.

∫
Ξ2:K

µ1(ξ1:K)dξ2:K = c1(ξ1), (4.20b)

∫
Ξk+1:K

µk(ξ1:K)dξk+1:K = P ξ1
2 (ξ2)P ξ1:2

3 (ξ3) · · ·P ξ1:k−1

k (ξk)ck(ξk),

∀ξ1:k ∈ Ξ1:k, k = 2, . . . , K, (4.20c)

P ξ1:k

k+1 ∈ Pk+1, ∀ξ1:k ∈ Ξ1:k, k = 2, . . . , K − 1, (4.20d)

where the subproblems are

D′(µ1:K(ξ1:K), ξ1:K) := min
K∑
k=1

µ>k (ξ1:K)xk (4.21a)

s.t. Wk(ξk)xk ≥ hk(ξk)− Tk(ξk)xk−1, ∀k = 2, . . . , K,

(4.21b)

xk ∈ Xk, ∀k = 1, . . . K. (4.21c)

Proof. Using min-max inequality and repeatedly exchanging the minimization and
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maximization, the following problem bounds the original problem (4.3) from below.

max
P
ξ1:k−1
k ∈Pk+1,
∀ξ1:k∈Ξ1:k
k=2,...,K

min
x1(ξ1)∈X1

c>1 (ξ1)x1(ξ1) + E
P
ξ1
2

[Q′2(x1(ξ1), P1:K , ξ1:2)] , (4.22)

where

Q′k(xk−1(ξ1:k−1), P1:K , ξ1:k)

:= min
xk(ξ1:k)∈Xk

c>k (ξk)xk(ξ1:k) + E
P
ξ1:k
k+1

[
Q′k+1(xk(ξ1:k), P1:K , ξ1:k+1)

]
(4.23a)

s.t. Wk(ξk)xk(ξ1:k) ≥ hk(ξk)− Tk(ξk)xk−1(ξ1:k−1), (4.23b)

and

Q′K(xK−1(ξ1:K−1), P1:K , ξ1:K)

:= min
xK(ξ1:K)∈XK

c>K(ξK)xK(ξ1:K) (4.24a)

s.t. WK(ξK)xK(ξ1:K) ≥ hK(ξK)− TK(ξK)xK−1(ξ1:K−1).

(4.24b)

Notice that all the maximization with respect to the unknown probability P
ξ1:k−1

k is

combined at the beginning of (4.22). By aggregating the multistage formulation to a

96



single optimization problem, we obtain an equivalent form:

max
P
ξ1:k−1
k ∈Pk+1,
∀ξ1:k∈Ξ1:k
k=2,...,K

min c>1 (ξ1)x1(ξ1) +
K∑
k=2

E
P
ξ1
2

[
E
P
ξ1:2
3

[
· · ·E

P
ξ1:k
k

[
c>k (ξk)xk(ξ1:k)

]
· · ·
]]

(4.25a)

s.t. Wk(ξk)xk(ξ1:k) ≥ hk(ξk)− Tk(ξk)xk−1(ξ1:k−1),

∀ξ1:k ∈ Ξ1:k, k = 2, . . . , K, (4.25b)

xk(ξ1:k) ∈ Xk, ∀ξ1:k ∈ Ξ1:k, k = 1, . . . , K. (4.25c)

After simplifying the objective function and introducing the non-anticipativity con-

straints to (4.25), we obtain

max
P
ξ1:k−1
k ∈Pk+1,
∀ξ1:k∈Ξ1:k
k=2,...,K

min E
P
ξ1
2

[
E
P
ξ1:2
3

[
· · ·E

P
ξ1:K
K

[
K∑
k=1

c>k (ξk)xk(ξ1:k)

]
· · ·

]]
(4.26a)

s.t. xk(ξ1:k) = x̆k(ξ
′
1:K), ∀(ξ1:k, ξ

′
1:K) such that ξ1:k = ξ′1:k, k = 1, . . . , K

(4.26b)

Wk(ξk)x̆k(ξ1:K) ≥ hk(ξk)− Tk(ξk)x̆k−1(ξ1:K),

∀ξ1:K ∈ Ξ1:K , k = 2, . . . , K, (4.26c)

x̆k(ξ1:K) ∈ Xk, ∀ξ1:K ∈ Ξ1:K , k = 1, . . . , K. (4.26d)

The constraints (4.26c) are now disjunctive for each sample path ξ1:K . After sub-

stituting the expectation with integration the Lagrangian formulation of (4.26) is
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therefore,

min
K∑
k=1

∫
Ξ1:K

P1:K(ξ1:K)c>k (ξk)xk(ξ1:k)dξ1:K

+
K∑
k=1

∫
Ξ1:K

µ>k (ξ1:K) (x̆k(ξ1:K)− xk(ξ1:k)) dξ1:K (4.27a)

s.t. Wk(ξk)x̆k(ξ1:K) ≥ hk(ξk)− Tk(ξk)x̆k−1(ξ1:K), ∀ξ1:K ∈ Ξ1:K , k = 2, . . . , K,

(4.27b)

x̆k(ξ1:K) ∈ Xk, ∀ξ1:K ∈ Ξ1:K , k = 1, . . . , K, (4.27c)

where P1:K(ξ1:K) = P ξ1
2 (ξ2)P ξ1:2

3 (ξ3) · · ·P ξ1:K−1

K (ξK).

Notice that the objective function of (4.27) can be rewritten as

K∑
k=1

∫
Ξ1:K

(P1:K(ξ1:K)ck(ξk)− µk(ξ1:K))> xk(ξ1:k)dξ1:K

+
K∑
k=1

∫
Ξ1:K

µ>k (ξ1:K)x̆k(ξ1:K)dξ1:K . (4.28)

Therefore, to guarantee the finiteness of problem (4.27), the following must hold for

each xk(ξ1:k):

∫
Ξk+1:K

(P1:K(ξ1:K)ck(ξk)− µk(ξ1:K)) dξk+1:K = 0. (4.29)

Otherwise, xk(ξ1:k) can be changed indefinitely to minimize (4.27). Thus, we move

(4.29) to initial maximization problem, and the statement of the proposition follows.

Due to the multiplication of probabilities P
ξ1:k−1

k (ξk) in (4.20c), it is not trivial to

solve (4.20) for a general ambiguity set Pk. In the next section, we start from (4.14)
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to formulate the Lagrangian dual for the Wasserstein ball ambiguity set.

4.4.2 Lagrangian Dual for Wasserstein Ball

We consider a formulation equivalent to (4.14) by considering non-anticipativity

constraints corresponding to xk(ξ1:k), αk(ξ1:k), β
s
k(ξ1:k).

Proposition IV.4. The Lagrangian relaxation of the deterministic formulation (4.14)

using scenario decomposition is given by

zWLD := max

∫
Ξ1:K

DW (µ̄1:K(ξ1:K), ν̄1:K(ξ1:K), ū1:K(ξ1:K), ξ1:K)dξ1:K (4.30a)

s.t.

∫
Ξ2:K

µ̄1(ξ1:K)dξ2:K = c1(ξ1), (4.30b)

∫
Ξk+1:K

µ̄k(ξ1:K)dξk+1:K = 0, ∀ξ1:k ∈ Ξ1:k, k = 2, . . . , K, (4.30c)

∫
Ξ2:K

ν̄1(ξ1:K)dξ2:K = ε2, (4.30d)

∫
Ξk+1:K

ν̄k(ξ1:K)dξk+1:K = 0, ∀ξ1:k ∈ Ξ1:k, k = 2, . . . , K − 1, (4.30e)

∫
Ξ2:K

ūs1(ξ1:K)dξ2:K = p̂s2, ∀s ∈ [N2], (4.30f)

∫
Ξk+1:K

ūsk(ξ1:K)dξk+1:K = 0,

∀ξ1:k ∈ Ξ1:k, s ∈ [Nk+1], k = 2, . . . , K − 1, (4.30g)

µ̄k(ξ1:K) ∈ Rnk , ∀ξ1:K ∈ Ξ1:K , k = 1, . . . , K, (4.30h)

ν̄k(ξ1:K) ∈ R, ∀ξ1:K ∈ Ξ1:K , k = 1, . . . , K − 1, (4.30i)

ūsk(ξ1:K) ∈ R, ∀ξ1:K ∈ Ξ1:K , s ∈ [Nk+1], k = 1, . . . , K − 1, (4.30j)
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where the subproblems are

DW (µ̄1:K(ξ1:K),ν̄1:K(ξ1:K), ū1:K(ξ1:K), ξ1:K)

:= min
K∑
k=1

µ̄>k (ξ1:K)x̆k +
K−1∑
k=1

ν̄k(ξ1:K)ᾰk +
K−1∑
k=1

Nk+1∑
sk+1=1

ū
sk+1

k (ξ1:K)β̆
sk+1

k

(4.31a)

s.t.
∥∥∥ξ̂sk − ξk∥∥∥ ᾰk−1 + β̆sk−1 ≥ c>k (ξk)x̆k + εk+1ᾰk

+

Nk+1∑
s′=1

p̂s
′

k+1β̆
s′

k , ∀s ∈ [Nk], k = 2, . . . , K − 1, (4.31b)

∥∥∥ξ̂sK − ξK∥∥∥ ᾰK−1 + β̆sK−1 ≥ c>K(ξK)x̆K , ∀s ∈ [NK ], (4.31c)

Tk(ξk)x̆k−1 +Wk(ξk)x̆k ≥ hk(ξk), ∀k = 2, . . . , K, (4.31d)

x̆k ∈ Xk, ∀k = 1, . . . , K, (4.31e)

ᾰk ≥ 0, ∀k = 1, . . . , K − 1, (4.31f)

β̆sk ∈ R, ∀s ∈ [Nk+1], k = 1, . . . , K − 1. (4.31g)
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Proof. Using non-anticipativity constraints, (4.14) can be formulated as

min c>1 (ξ1)x1(ξ1) + ε2α1(ξ1) +

N2∑
s2=1

p̂s22 β
s2
1 (ξ1) (4.32a)

s.t. xk(ξ1:k) = x̆k(ξ
′
1:K), ∀ (ξ1:k, ξ

′
1:K) such that ξ1:k = ξ′1:k, k = 1, . . . , K (4.32b)

αk(ξ1:k) = ᾰk(ξ
′
1:K), ∀ (ξ1:k, ξ

′
1:K) such that ξ1:k = ξ′1:k, k = 1, . . . , K − 1

(4.32c)

βsk(ξ1:k) = β̆sk(ξ
′
1:K), ∀ (ξ1:k, ξ

′
1:K) such that ξ1:k = ξ′1:k,

s ∈ [Nk+1], k = 1, . . . , K − 1 (4.32d)∥∥∥ξ̂sk − ξk∥∥∥ ᾰk−1(ξ1:K) + β̆sk−1(ξ1:K) ≥ c>k (ξk)x̆k(ξ1:K) + εk+1ᾰk(ξ1:K)

+

Nk+1∑
s′=1

p̂s
′

k+1β̆
s′

k (ξ1:K), ∀ξ1:K ∈ Ξ1:K , s ∈ [Nk], k = 2, . . . , K − 1, (4.32e)

∥∥∥ξ̂sK − ξK∥∥∥ ᾰK−1(ξ1:K) + β̆sK−1(ξ1:K) ≥ c>K(ξK)x̆K(ξ1:K),

∀ξ1:K ∈ Ξ1:K , s ∈ [NK ], (4.32f)

Tk(ξk)x̆k−1(ξ1:K) +Wk(ξk)x̆k(ξ1:K) ≥ hk(ξk), ∀ξ1:K ∈ Ξ1:K , k = 2, . . . , K,

(4.32g)

x̆k(ξ1:K) ∈ Xk, ∀ξ1:K ∈ Ξ1:K , k = 1, . . . , K, (4.32h)

ᾰk(ξ1:K) ≥ 0, ∀ξ1:K ∈ Ξ1:K , k = 1, . . . , K − 1, (4.32i)

β̆sk(ξ1:K) ∈ R, ∀s ∈ [Nk+1], ξ1:K ∈ Ξ1:K , k = 1, . . . , K − 1. (4.32j)

Let µ̄k(ξ1:K) ∈ Rnk , ν̄k(ξ1:K) ∈ R, and ū
sk+1

k (ξ1:K) ∈ R be the Lagrangian multipliers

corresponding to the nonanticipativity constraints (4.32b), (4.32c), and (4.32d). The
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Lagrangian formulation is

min c>1 (ξ1)x1(ξ1) + ε2α1(ξ1) +

N2∑
s=1

p̂s2β
s
1(ξ1)

+
K∑
k=1

∫
Ξ1:K

µ̄>k (ξ1:K) (x̆k(ξ1:K)− xk(ξ1:k)) dξ1:K

+
K−1∑
k=1

∫
Ξ1:K

ν̄k(ξ1:K) (ᾰk(ξ1:K)− αk(ξ1:k)) dξ1:K

+
K−1∑
k=1

Nk+1∑
sk+1=1

∫
Ξ1:K

ū
sk+1

k (ξ1:K)
(
β̆
sk+1

k (ξ1:K)− βsk+1

k (ξ1:k)
)
dξ1:K (4.33a)

s.t. (4.32e)–(4.32j).

Using similar steps as Propopsition IV.3, the Lagrangian multipliers are subject to

(4.30b)–(4.30g) to guarantee the finiteness of (4.33). The Lagrangian dual function

is threfore,

min

∫
Ξ1:K

(
K∑
k=1

µ̄>k (ξ1:K)x̆k(ξ1:K) +
K−1∑
k=1

ν̄k(ξ1:K)ᾰk(ξ1:K)

+
K−1∑
k=1

Nk+1∑
sk+1=1

ū
sk+1

k (ξ1:K)β̆
sk+1

k (ξ1:K)

)
dξ1:K

(4.34a)

s.t. (4.32e)–(4.32j),

which can be decomposed for each ξ1:K .

We demonstrate that problem (4.30) can be transformed to problem (4.20).

Theorem IV.5. Problem (4.30) is equivalent to (4.20) when the ambiguity sets are

Wasserstein ball ambiguity sets.

Proof. We eliminate β̆
sk+1

k . Let us define r̆skk as the nonnegative slack of the constraints
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(4.31b) and (4.31c). Then,

β̆skk−1 = −
∥∥∥ξ̂skk − ξk∥∥∥ ᾰk−1 + c>k (ξk)x̆k + εk+1ᾰk + r̆skk +

Nk+1∑
sk+1=1

p̂
sk+1

k+1 β̆
sk+1

k ,

∀k = 2, . . . , K − 1, (4.35)

β̆sKK−1 = −
∥∥∥ξ̂sKK − ξK∥∥∥ ᾰK−1 + c>K(ξK)x̆K + r̆sKK . (4.36)

This can be simplified to

β̆
sk+1

k = −
∥∥∥ξ̂sk+1

k+1 − ξk+1

∥∥∥ ᾰk + c>k+1(ξk+1)x̆k+1 + r̆
sk+1

k+1

+

K∑
j=k+2

 Nk+2∑
sk+2=1

· · ·
Nj∑
sj=1

j∏
i=k+2

p̂sii

((
εj −

∥∥∥ξ̂sjj − ξj∥∥∥) ᾰj−1 + c>j (ξj)x̆j + r̆
sj
j

) ,

(4.37)

= −
∥∥∥ξ̂sk+1

k+1 − ξk+1

∥∥∥ ᾰk + c>k+1(ξk+1)x̆k+1 + r̆
sk+1

k+1

+
K∑

j=k+2

( Nj∑
sj=1

p̂
sj
j

((
εj −

∥∥∥ξ̂sjj − ξj∥∥∥) ᾰj−1 + c>j (ξj)x̆j + r̆
sj
j

)

×
Nk+2∑
sk+2=1

· · ·
Nj−1∑
sj−1=1

j−1∏
i=k+2

p̂sii

)
, (4.38)

= −
∥∥∥ξ̂sk+1

k+1 − ξk+1

∥∥∥ ᾰk + r̆
sk+1

k+1 +

K∑
j=k+1

c>j (ξj)x̆j

+

K∑
j=k+2

Nj∑
sj=1

p̂
sj
j

((
εj −

∥∥∥ξ̂sjj − ξj∥∥∥) ᾰj−1 + r̆
sj
j

)
, (4.39)
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for all k = 1, . . . , K − 2. Then,

K−1∑
k=1

Nk+1∑
sk+1=1

ū
sk+1

k (ξ1:K)β̆
sk+1

k =

K∑
k=2

k−1∑
j=1

Nj+1∑
sj+1=1

ū
sj+1

j (ξ1:K)

 c>k (ξk)x̆k

−
K−1∑
k=1

Nk+1∑
sk+1=1

ū
sk+1

k (ξ1:K)
∥∥∥ξ̂sk+1

k+1 − ξk+1

∥∥∥ ᾰk
+

K−1∑
k=2

k−1∑
j=1

Nj+1∑
sj+1=1

ū
sj+1

j (ξ1:K)

 Nk+1∑
sk+1=1

p̂
sk+1

k+1

(
εk+1 −

∥∥∥ξ̂sk+1

k+1 − ξk+1

∥∥∥) ᾰk
+

K∑
k=2

Nk∑
sk=1

ūskk−1(ξ1:K)r̆skk

+
K∑
k=3

k−2∑
j=1

Nj+1∑
sj+1=1

ū
sj+1

j (ξ1:K)

 Nk∑
sk=1

p̂skk r̆
sk
k (4.40)

We substitute this to (4.31a). Now, since ᾰk ≥ 0,

ν̄1(ξ1:K)−
N2∑
s2=1

ūs21 (ξ1:K)
∥∥∥ξ̂s22 − ξ2

∥∥∥ ≥ 0, (4.41a)

ν̄k(ξ1:K) +

k−1∑
j=1

Nj+1∑
sj+1=1

ū
sj+1

j (ξ1:K)

 Nk+1∑
sk+1=1

p̂
sk+1

k+1

(
εk+1 −

∥∥∥ξ̂sk+1

k+1 − ξk+1

∥∥∥)

−
Nk+1∑
sk+1=1

ū
sk+1

k (ξ1:K)
∥∥∥ξ̂sk+1

k+1 − ξk+1

∥∥∥ ≥ 0, ∀k = 2, . . . , K − 1, (4.41b)

otherwise, the solution is unbounded. Furthermore, since r̆skk ≥ 0,

ūs21 (ξ1:K) ≥ 0, ∀s2 ∈ [N2], (4.42a)

ū
sk+1

k (ξ1:K) +

k−1∑
j=1

Nj+1∑
sj+1=1

ū
sj+1

j (ξ1:K)

 p̂
sk+1

k+1 ≥ 0, ∀sk+1 ∈ [Nk+1], k = 2, . . . , K − 1.

(4.42b)
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Thus, the subproblems are equivalent to

DW ′(µ̄1:K(ξ1:K),ū1:K(ξ1:K), ξ1:K)

:= min µ̄>1 (ξ1:K)x̆1 +
K∑
k=2

µ̄>k (ξ1:K) +

k−1∑
j=1

Nj+1∑
sj+1

ū
sj+1

j (ξ1:K)

 c>k (ξk)

 x̆k

(4.43a)

s.t. (4.31d), (4.31e),

and problem (4.30) is

max

∫
Ξ1:K

DW ′(µ̄1:K(ξ1:K), ū1:K(ξ1:K), ξ1:K)dξ1:K (4.44a)

s.t. (4.30b), (4.30c),∫
Ξ2:K

N2∑
s2=1

ūs21 (ξ1:K)
∥∥∥ξ̂s22 − ξ2

∥∥∥ dξ2:K ≤ ε2, (4.44b)

∫
Ξk+1:K

Nk+1∑
sk+1=1

ūsk+1

k (ξ1:K) +

k−1∑
j=1

Nj+1∑
sj+1=1

ū
sj+1

j (ξ1:K)

 p̂
sk+1

k+1

∥∥∥ξ̂sk+1

k+1 − ξk+1

∥∥∥ dξk+1:K

≤ εk+1

∫
Ξk+1:K

k−1∑
j=1

Nj+1∑
sj+1=1

ū
sj+1

j (ξ1:K)

 dξk+1:K , ∀ξ1:k ∈ Ξ1:k, k = 2, . . . ,K − 1,

(4.44c)∫
Ξ2:K

ūs21 (ξ1:K)dξ2:K = p̂s22 , ∀s2 ∈ [N2], (4.44d)

∫
Ξk+1:K

ū
sk+1

k (ξ1:K)dξk+1:K = 0, ∀ξ1:k ∈ Ξ1:k, sk+1 ∈ [Nk+1], k = 2, . . . ,K − 1,

(4.44e)

(4.42a), (4.42b), (4.30h), (4.30j),

where we have eliminated νk by using (4.41a) and (4.41b). Let us introduce variables
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vk(ξ1:K) ∈ R, defined as

vk(ξ1:K) =
k−1∑
j=1

Nj+1∑
sj+1=1

ū
sj+1

j (ξ1:K), ∀ξ1:K ∈ Ξ1:K , k = 2, . . . , K − 1, (4.45)

and variables w̄
sk+1

k (ξ1:K), defined as

w̄s21 (ξ1:K) = ūs21 (ξ1:K), ∀ξ1:K ∈ Ξ1:K , s2 ∈ [N2], (4.46a)

w̄
sk+1

k (ξ1:K) = ū
sk+1

k (ξ1:K) + p̂
sk+1

k+1 vk(ξ1:K), ∀ξ1:K ∈ Ξ1:K , sk+1 ∈ [Nk+1], k = 2, . . . , K.

(4.46b)
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Then we eliminate ū
sk+1

k (ξ1:K) from (4.44b)− (4.44e), (4.42a), (4.42b) and get

∫
Ξ2:K

N2∑
s2=1

w̄s21 (ξ1:K)
∥∥∥ξ̂s22 − ξ2

∥∥∥ dξ2:K ≤ ε2, (4.47a)

∫
Ξk+1:K

Nk+1∑
sk+1=1

w̄
sk+1

k (ξ1:K)
∥∥∥ξ̂sk+1

k+1 − ξk+1

∥∥∥ dξk+1:K

≤ εk+1

∫
Ξk+1:K

vk(ξ1:K)dξk+1:K , ∀ξ1:k ∈ Ξ1:k, k = 2, . . . , K − 1, (4.47b)

∫
Ξ2:K

w̄s21 (ξ1:K)dξ2:K = p̂s22 , ∀s2 ∈ [N2], (4.47c)

∫
Ξk+1:K

w̄
sk+1

k (ξ1:K)dξk+1:K = p̂
sk+1

k+1

∫
Ξk+1:K

vk(ξ1:K)dξk+1:K ,

∀ξ1:k ∈ Ξ1:k, sk+1 ∈ [Nk+1], k = 2, . . . , K − 1, (4.47d)

w̄
sk+1

k (ξ1:K) ≥ 0, ∀ξ1:K ∈ Ξ1:K , sk+1 ∈ [Nk+1], k = 1, . . . , K − 1, (4.47e)

vk(ξ1:K) ∈ R, ∀ξ1:K ∈ Ξ1:K , k = 2, . . . , K − 1, (4.47f)

v2(ξ1:K) =

N2∑
s2=1

w̄s21 (ξ1:K), ∀ξ1:K ∈ Ξ1:K . (4.47g)

vk(ξ1:K) =
k−1∑
j=1

Nj+1∑
sj+1=1

w̄
sj+1

j (ξ1:K)−
k−1∑
j=2

vj(ξ1:K), ∀ξ1:K ∈ Ξ1:K , k = 3, . . . , K − 1.

(4.47h)

The last two equalities (4.47g) and (4.47h) result in

vk(ξ1:K) =

Nk∑
sk=1

w̄skk−1(ξ1:K), ∀ξ1:K ∈ Ξ1:K , k = 2, . . . , K − 1, (4.48)

which we use to eliminate vk(ξ1:K) from (4.47).
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Let us define

w
sk+1

k (ξ1:k+1) :=

∫
Ξk+2:K

w̄
sk+1

k (ξ1:K)dξk+2:K , ∀ξ1:k+1 ∈ Ξ1:k+1, k = 1, . . . , K − 2,

(4.49)

wsKK−1(ξ1:K) := w̄sKK−1(ξ1:K), ∀ξ1:K ∈ Ξ1:K . (4.50)

Then, set of constraints (4.47) are equivalently,

∫
Ξ2

N2∑
s2=1

ws21 (ξ1:2)
∥∥∥ξ̂s22 − ξ2

∥∥∥ dξ2 ≤ ε2, (4.51a)

∫
Ξk+1

Nk+1∑
sk+1=1

w
sk+1

k (ξ1:k+1)
∥∥∥ξ̂sk+1

k+1 − ξk+1

∥∥∥ dξk+1 ≤ εk+1

Nk∑
sk=1

wskk−1(ξ1:k),

∀ξ1:k ∈ Ξ1:k, k = 2, . . . , K − 1, (4.51b)∫
Ξ2

ws21 (ξ1:2)dξ2 = p̂s22 , ∀s2 ∈ [N2], (4.51c)

∫
Ξk+1

w
sk+1

k (ξ1:k+1)dξk+1 = p̂
sk+1

k+1

Nk∑
sk=1

wskk−1(ξ1:k),

∀ξ1:k ∈ Ξ1:k, sk+1 ∈ [Nk+1], k = 2, . . . , K − 1, (4.51d)

w
sk+1

k (ξ1:k+1) ≥ 0, ∀ξ1:k+1 ∈ Ξ1:k+1, sk+1 ∈ [Nk+1], k = 1, . . . , K − 1. (4.51e)

These constraints can be classified into the following groups:

• Set of constraints for the first stage: (4.51a), (4.51c)

For notational convenience, we define

us21 (ξ1:2) := ws21 (ξ1:2), ∀ξ1:2 ∈ Ξ1:2. (4.52)
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The set of constraints corresponding to the first stage is

∫
Ξ2

N2∑
s2=1

us21 (ξ1:2)
∥∥∥ξ̂s22 − ξ2

∥∥∥ dξ2 ≤ ε2, (4.53a)

∫
Ξ2

us21 (ξ1:2)dξ2 = p̂s22 , ∀s2 ∈ [N2], (4.53b)

us21 (ξ1:2) ≥ 0, ∀ξ2 ∈ Ξ2, s2 ∈ [N2]. (4.53c)

We introduce variables P ξ1
2 (ξ2), ∀ξ2 ∈ Ξ2 and add constraints

N2∑
s2=1

us21 (ξ1:2) = P ξ1
2 (ξ2), ∀ξ2 ∈ Ξ2. (4.54)

Then, these set of constraints correspond to a Wasserstein ball ambiguity set

P2.

• Set of constraints for stages 2 to K: (4.51b), (4.51d)

Assume that for a given ξ1:k,
∑Nk

sk=1 w
sk
k−1(ξ1:k) > 0. Then define

u
sk+1

k (ξ1:k+1) :=
w
sk+1

k (ξ1:k+1)∑Nk
sk=1w

sk
k−1(ξ1:k)

, ∀ξk+1 ∈ Ξk+1. (4.55)

As a result, the set of constraints corresponding to stages 2 to K is

∫
Ξk+1

Nk+1∑
sk+1=1

u
sk+1

k (ξ1:k+1)
∥∥∥ξ̂sk+1

k+1 − ξk+1

∥∥∥ dξk+1 ≤ εk+1, (4.56a)

∫
Ξk+1

u
sk+1

k (ξ1:k+1)dξk+1 = p̂
sk+1

k+1 , ∀sk+1 ∈ [Nk+1], (4.56b)

u
sk+1

k (ξ1:k+1) ≥ 0, ∀ξk+1 ∈ Ξk+1, sk+1 ∈ [Nk+1]. (4.56c)
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Introducing variables P
ξ1:k−1

k (ξk), ∀ξk ∈ Ξk and adding constraints

Nk∑
sk=1

uskk−1(ξ1:k) = P
ξ1:k−1

k (ξk), ∀ξk ∈ Ξk, (4.57)

the set of constraints above results in being equivalent to a Wasserstein ambi-

guity set Pk.

When
∑Nk

sk=1w
sk
k−1(ξ1:k) = 0, the solution is trivially w

sk+1

k (ξ1:k+1) = 0, ∀ξk+1 ∈

Ξk+1, sk+1 ∈ [Nk+1].

This analysis gives rise to the following interpretation of the variables:

uskk−1(ξ1:k) = P
(
ξ̂skk , ξk

)
.

wskk−1(ξ1:k) = P
(
ξ̂skk , ξ1:k

)
,

w̄skk−1(ξ1:K) = P
(
ξ̂skk , ξ1:K

)
.

From (4.48) and using the definition of vk(ξ1:K), we have

k−1∑
j=1

Nj+1∑
sj+1

ū
sj+1

j (ξ1:K) =

Nk∑
sk=1

P
(
ξ̂skk , ξ1:K

)
= P (ξ1:K)

= P ξ1
2 (ξ2)P ξ1:2

3 (ξ3) · · ·P ξ1:K−1

K (ξK).

The subproblem is therefore,

min µ̄>1 (ξ1:K)x̆1 +
K∑
k=2

(
µ̄>k (ξ1:K) +

(
P ξ1

2 (ξ2)P ξ1:2

3 (ξ3) · · ·P ξ1:K−1

K (ξK)
)
c>k (ξk)

)
x̆k

(4.58a)

s.t. (4.31d), (4.31e).
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Let us further define

µ1(ξ1:K) := µ̄1(ξ1:K) (4.59a)

µk(ξ1:K) := µ̄>k (ξ1:K) +
(
P ξ1

2 (ξ2)P ξ1:2

3 (ξ3) · · ·P ξ1:K−1

K (ξK)
)
c>k (ξk) (4.59b)

The subproblem becomes

min
K∑
k=1

µ>k (ξ1:K)x̆k (4.60a)

s.t. (4.31d), (4.31e).

The constraints (4.30b) and (4.30c) are therefore,

∫
Ξ2:K

µ1(ξ1:K)dξ2:K = c1(ξ1), (4.61a)

∫
Ξk+1:K

µk(ξ1:K)dξk+1:K

=

∫
Ξk+1:K

P ξ1
2 (ξ2)P ξ1:2

3 (ξ3) · · ·P ξ1:K−1

K (ξK)dξk+1:Kc
>
k (ξk), ∀ξ1:k ∈ Ξ1:k, k = 2, . . . , K.

(4.61b)

By combining with the constraints P ξ1:k

k+1 ∈ Pk+1(ξ1:k), ∀ξ1:k ∈ Ξ1:k, k = 2, . . . , K−

1, the above formulation is equivalent to the formulation in Proposition IV.3.

This equivalent formulation gives a linearization scheme for (4.20):

Corollary IV.6. Assuming a Wasserstein ball ambiguity set (4.2), we can linearize
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(4.20) by

max

∫
Ξ1:K

D′(µ1:K(ξ1:K), ξ1:K)dξ1:K (4.62a)

s.t.

∫
Ξ2:K

µ1(ξ1:K)dξ2:K = c1(ξ1), (4.62b)

∫
Ξk+1:K

µk(ξ1:K)dξk+1:K = ck(ξk)P1:k(ξ1:k), ∀ξ1:k ∈ Ξ1:k, k = 2, . . . , K, (4.62c)

∫
Ξ2

N2∑
s2=1

ws21 (ξ1:2)
∥∥∥ξ̂s22 − ξ2

∥∥∥ dξ2 ≤ ε2, (4.62d)

∫
Ξk+1

Nk+1∑
sk+1=1

w
sk+1

k (ξ1:k+1)
∥∥∥ξ̂sk+1

k+1 − ξk+1

∥∥∥ dξk+1 ≤ εk+1P1:k(ξ1:k),

∀ξ1:k ∈ Ξ1:k, k = 2, . . . , K − 1, (4.62e)∫
Ξ2

ws21 (ξ1:2)dξ2 = p̂s22 , ∀s2 ∈ [N2], (4.62f)

∫
Ξk+1

w
sk+1

k (ξ1:k+1)dξk+1 = p̂
sk+1

k+1 P1:k(ξ1:k),

∀ξ1:k ∈ Ξ1:k, sk+1 ∈ [Nk+1], k = 2, . . . , K − 1, (4.62g)

Nk∑
sk=1

wskk−1(ξ1:k) = P1:k(ξ1:k), ∀ξ1:k ∈ Ξ1:k, k = 2, . . . , K, (4.62h)

w
sk+1

k (ξ1:k+1) ≥ 0, ∀ξ1:k+1 ∈ Ξ1:k+1, sk+1 ∈ [Nk+1], k = 1, . . . , K − 1, (4.62i)

where

D′(µ1:K(ξ1:K), ξ1:K) := min
K∑
k=1

µ>k (ξ1:K)xk (4.63a)

s.t. Wk(ξk)xk ≥ hk(ξk)− Tk(ξk)xk−1, ∀k = 2, . . . , K,

(4.63b)

xk ∈ Xk, ∀k = 1, . . . K. (4.63c)
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Note that this formulation is still computationally challenging due to the infinite

number of variables and constraints that exist in the problem. In the next section, we

describe the algorithmic approach by using a sample average approximation (SAA).

4.5 Algorithms

In this section, we discuss the algorithmic process for dual decomposition. We

consider an SAA approach, where Ñk i.i.d. random samples (ξ1
k, ξ

2
k, . . . , ξ

Ñk
k ) := Ξ̃Ñk

k ⊂

Ξk are used instead. Furthermore, we denote a sample path as ξ1:K := (ξi11 , . . . , ξ
iK
K ) ∈

Ξ̃Ñ1:K
1:K := Ξ̃Ñ1

1 × . . .× Ξ̃ÑK
K .
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The SAA reformulation of (4.62) given by

zLD =

max
∑

ξ1:K∈Ξ̃
Ñ1:K
1:K

D′(µ1:K(ξ1:K), ξ1:K) (4.64a)

s.t.
∑

ξ2:K∈Ξ̃
Ñ2:K
2:K

µ1(ξ1:K) = c1(ξ1), (4.64b)

∑
ξk+1:K∈Ξ̃

Ñk+1:K
k+1:K

µk(ξ1:K)− ck(ξk)P1:k(ξ1:k) = 0, ∀ξ1:k ∈ Ξ̃Ñ1:k
1:k , k = 2, . . . , K,

(4.64c)∑
ξ2∈Ξ̃

Ñ2
2

N2∑
s2=1

ws21 (ξ1:2)
∥∥∥ξ̂s22 − ξ2

∥∥∥ dξ2 ≤ ε2, (4.64d)

∑
ξk+1∈Ξ̃

Ñk+1
k+1

Nk+1∑
sk+1=1

w
sk+1

k (ξ1:k+1)
∥∥∥ξ̂sk+1

k+1 − ξk+1

∥∥∥− εk+1P1:k(ξ1:k) ≤ 0,

∀ξ1:k ∈ Ξ̃Ñ1:k
1:k , k = 2, . . . , K − 1, (4.64e)∑

ξ2∈Ξ̃
Ñ2
2

ws21 (ξ1:2) = p̂s22 , ∀s2 ∈ [N2], (4.64f)

∑
ξk+1∈Ξ̃

Ñk+1
k+1

w
sk+1

k (ξ1:k+1)− p̂sk+1

k+1 P1:k(ξ1:k) = 0,

∀ξ1:k ∈ Ξ̃Ñ1:k
1:k , sk+1 ∈ [Nk+1], k = 2, . . . , K − 1, (4.64g)

Nk∑
sk=1

wskk−1(ξ1:k)− P1:k(ξ1:k) = 0, ∀ξ1:k ∈ Ξ̃Ñ1:k
1:k , k = 2, . . . , K, (4.64h)

w
sk+1

k (ξ1:k+1) ≥ 0, ∀ξ1:k+1 ∈ Ξ̃
Ñ1:k+1

1:k+1 , sk+1 ∈ [Nk+1], k = 1, . . . , K − 1.

(4.64i)

This can be solved by using algorithms such as the proximal method (Kim and

Dandurand , 2018), or the trust-region method (Kim et al., 2019).

We follow Carøe and Schultz (1999) for the branch-and-bound algorithm, which is

114



a deterministic algorithm for obtaining an optimal solution. The dual decomposition

gives a lower bound to the optimal objective value, and the scenario solutions x̂(ξ1:K)

do not satisfy the non-anticipativity constraints unless the duality gap is zero. In the

following, we let I be the list of incumbent problems with zi being the lower bound

associated with problem Ii ∈ I. The algorithm is given in Algorithm 5.

Algorithm 5 Carøe and Schultz (1999) branch-and-bound algorithm

1: Initialize: I = {I1}, z̄ =∞, z1 = −∞
2: repeat
3: Select and delete problem Ii from I, and obtain the Lagrangian relaxation zLDi .
4: if zLDi < z̄ then
5: if All scenario solutions are identical then
6: Calculate the objective ẑi.
7: Update z̄ = min{z̄, ẑi}
8: Eliminate all problems in I with zi ≥ z̄.
9: else

10: Get the average value x̄ and use heuristics to obtain feasible solution x̄R.
11: Calculate the objective ẑi.
12: Update z̄ = min{z̄, ẑi}
13: Eliminate all problems in I with zi ≥ z̄.
14: Select an inconsistent variable x.
15: Create two new problems from Ii with the associated lower bound zLDi ,

and an additional constraint x ≤ bx̄c or x ≥ bx̄c+ 1. Add to I.
16: end if
17: end if
18: until I = ∅

4.6 Computational Study on Transmission Expansion Prob-

lem with Hydro Storage

The transmission Expansion Planning (TEP) problem aims to improve and up-

date the electricity transmission infrastructure to adapt to the changes of load and

generation in power systems by minimizing the cost of expanding existing transmis-

sion circuits for future operation. Recently in February 2021, there has been a massive

electricity generation failure in Texas, caused by a series of severe winter storms. This
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was in the tail scenario where the demand for electricity was high, but multiple gen-

eration facilities had failed due to frozen power equipment at the same time (Penney ,

2021). Another cause of the failure was because the power grid in Texas is isolated

from the the other two major national grids. Combining with the recent trend of

increasing risk in disasters caused by climate change (NOAA National Centers for

Environmental Information (NCEI), 2021), we are interested in a risk-aware planning

for the transmission expansion problem.

We refer to Romero et al. (2002) for the DC model formulation of the TEP prob-

lem. In addition, we consider the pumped hydroelectric energy storage system which

is able to store the excess energy and release it when it becomes necessary. This adds

an extra set of continuous state variables for the multistage stochastic model, which

makes it difficult to solve using SDDP or SDDiP methods.

4.6.1 Formulation

4.6.1.1 Notations

We consider an electric grid with n buses and define E as the set of all right-of-

ways connecting buses. Let S be the node-branch incidence matrix with dimension

n × |E|. Let T be the number of planning stages. For each right-of-way (i, j) ∈ E,

let n0
ij denote the initial number of lines between bus i and bus j and n̄ij be the

maximum number of lines allowed between bus i and bus j. For each line between

bus i and bus j, we denote the susceptance of the line by γij, the cost to add a

new line by cij and the maximum power flow by f̄ij. We use d to represent the

discount factor per quarter-year throughout the planning horizon. At some buses,

there are hydroelectric reservoirs that are able to generate electricity or store water

by consuming the power in the grid using a pump. For each reservoir location i, the

efficiency of the hydropower generation is given by ηGi, the efficiency of the pumping

process is given by ηPi, and the water that remains after evaporation per unit stage is
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given by ηtRi, which may change over time. The capacity of the reservoir i is denoted

as RCi and the initial reservoir level is denoted as RLi.

For simplicity, we treat the value of maximum power generationGi as deterministic

and fixed, while the load Di(ωt) is uncertain and changes over time.

Let xt = (xtijk, (i, j) ∈ E, k = 1, . . . , n̄ij)
> be a binary decision vector such that

xtijk = 1 if we decide to construct the k-th line in (i, j) right-of-way in stage t and

xtijk = 0 otherwise. Let gt ∈ Rn
+, θ

t ∈ Rn, DCt ∈ Rn
+ be recourse decision vectors, each

of dimension n, representing the power generation, voltage angle, and load curtailment

at each bus in stage t, respectively; f t ∈ R|E| is the vector of maximum power flow

on each of right-of-ways.

We let yt = (yti , i = 1, . . . , n)> be a decision vector corresponding to the reservoir

level at the end of stage t at bus i. The unit is the same as the one for the power

flow. At the beginning of the stage, the level of the reservoir i is ηtRiy
t−1
i . The decision

maker has the choice to process bGi of water and generate electricity, or consume bPi

of power to store water in the reservoir.

We present a summary of notations below.
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Parameters

n: number of buses in a given transmission network

E: set of all right-of-ways connecting buses

T : number of planning stages, i.e., the length of the planning

S: node-branch incidence binary matrix with size n× |E|

cij : cost of a line added to the i− j right-of-way ($)

γij : susceptance of the line between buses i and j

n0
ij : initial number of lines between buses i and j

n̄ij :
maximum allowable number of lines

that can be added to the i− j right-of-way

ptD: unit penalty for load curtailment in stage t

f̄ij : maximum power flow on i− j right-of-way per line

d: annual discount factor

ηGi: efficiency of hydropower generation at bus i

ηPi: efficiency of pumping process at bus i

ηtRi: rate of change of the water reservoir at bus i in stage t

RCi: maximum reservoir capacity at bus i

RLi: initial reservoir level at bus i

Gi: amount of maximum power generation at bus i

Dt (ωt)

= (Dt
i (ωt) , i = 1, . . . , n)

>
:

vector of the amount of stochastic load Dt
i (ωt)

at bus i in stage t with event ωt
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Decision Variables

xtijk ∈ {0, 1}:

binary variable indicating whether or not to install the kth

line of the i− j right-of-way in stage t, such that xtijk = 1 if

yes and xtijk = 0 otherwise.

yti ≥ 0: reservoir level at the end of stage t at bus i

Recourse Variables

gti ≥ 0: power generation at bus i in stage t

f tijk: power flow on the kth line of the i− j right-of-way in stage t

−π2 ≤ θ
t
i ≤ π

2 : voltage angle at bus i in stage t

DCti ≥ 0: load curtailment at bus i in stage t

btGi ≥ 0: power generation from reservoir at bus i

btP i ≥ 0: pumping quantity at bus i

4.6.1.2 Distributionally Robust Multistage Problem Formulation

The goal is to minimize the present value of the investment while minimizing the

expected penalty of load curtailment. The problem can be formulated as follows.

min
∑

(i,j)∈E

n̄ij∑
k=n0

ij

cijx
1
ijk + max

P2∈P2

Eξ2
[
Q2(x1, y1, ξ2)

]
(4.65a)

s.t. x1
ijk = 1 ∀(i, j) ∈ E, k = 1, . . . , n0

ij (4.65b)

x1
ijk ≤ x1

ij,k−1 ∀(i, j) ∈ E, k = n0
ij + 1, . . . , n̄ij (4.65c)

x1
ijk binary ∀(i, j) ∈ E, k = 1, . . . , n̄ij, (4.65d)

y1
i = RLi ∀i = 1, . . . , n. (4.65e)

In above formulation, the objective function (4.65a) minimizes the present value

of initial capacity expansion investment plus the expectation of future expenditure

Q2 starting in stage 2. Constraints (4.65b) set up the initial transmission lines that

we have. Constraints (4.65c) enforce that we plan the construction of lines from lower
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index to higher index on each right-of-way to avoid symmetric solutions. Constraints

(4.65d) enforce x1 being binary decision variables. Constraints (4.65e) initializes the

water level of the reservoir.

For all t = 2, . . . , T − 1, we have

Qt(x
t−1,yt−1, ξt) =

min dt−1

 ∑
(i,j)∈E

n̄ij∑
k=1

cij(x
t
ijk − xt−1

ijk ) +

n∑
i=1

ptDDC
t
i


+ max
Pt+1∈Pt+1

Eξt+1

[
Qt+1(xt, yt, ξt+1)

]
(4.66a)

s.t. Sf t + gt +DCt + ηG • btG − btP = Dt(ωt) (4.66b)

n0
ij∑

k=1

f tijk − γijn0
ij(θ

t
i − θtj) = 0 ∀(i, j) ∈ E (4.66c)

f tijk − γij(θti − θtj) ≤M(1− xt−1
ijk ) ∀(i, j) ∈ E, k = n0

ij + 1, . . . , n̄ij (4.66d)

f tijk − γij(θti − θtj) ≥ −M(1− xt−1
ijk ) ∀(i, j) ∈ E, k = n0

ij + 1, . . . , n̄ij (4.66e)

f tijk ≤ f̄ijxt−1
ijk ∀(i, j) ∈ E, k = 1, . . . , ntij (4.66f)

− f tijk ≤ f̄ijxt−1
ijk ∀(i, j) ∈ E, k = 1, . . . , ntij (4.66g)

0 ≤ gt ≤ G (4.66h)

0 ≤ DCt ≤ Dt(ωt) (4.66i)

− π

2
≤ θti ≤

π

2
∀i = 1, . . . , n (4.66j)

xtijk ≥ xt−1
ijk ∀(i, j) ∈ E, k = 1, . . . , n̄ij (4.66k)

xtijk ≤ xtij,k−1 ∀(i, j) ∈ E, k = 2, . . . , n̄ij (4.66l)

xtijk binary ∀(i, j) ∈ E, k = 1, . . . , n̄ij , (4.66m)

yti = ηtRiy
t−1
i + ηPib

t
P i − btGi ∀i = 1, . . . , n (4.66n)

0 ≤ yti ≤ RCi ∀i = 1, . . . , n (4.66o)

0 ≤ btGi ≤ ηtRiyt−1
i ∀i = 1, . . . , n (4.66p)

btP i ≥ 0 ∀i = 1, . . . , n (4.66q)
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Here, • is an element-wise multiplication of two vectors.

In above formulations, Qt(x
t−1, yt−1, ξt) computes the minimum discounted con-

struction and operational cost in stage t given the realization ξt = Dt(ωt) accordingly

to the objective function (4.66a). Constraints (4.66b) ensure flow balance in the

DC power flow system, which model Kirchhoff’s current law; constraints (4.66c) pro-

vide an expression of Ohm’s law for the equivalent DC network for original network

(without any expansion); constraints (4.66d) and (4.66e) express Ohm’s law for the

expanded DC network line by line and they require a sufficient large “big M” coeffi-

cient to ensure feasibility when xt−1
ijk = 0; constraints (4.66f) and (4.66g) ensure power

flow limits on transmission lines and transformers; constraints (4.66h) and (4.66i)

provide power generation and demand limits, respectively; constraints (4.66k) link

the expansion decision xt with xt−1 such that if the line was used in stage t − 1,

then it should also be used in stage t; constraints (4.66l) and (4.66m) are analogy to

constraints (4.65c) and (4.65d). Constraints (4.66n) dictate the change of reservoir

levels during the stage; constraints (4.66o) ensure reservoir levels do not exceed the

capacity; constraints (4.66p) ensure the power generation cannot exceed the available

quantity at the initial part of the stage; constraints (4.66q) ensure non-negativity of

the pump-back power.

Finally, for t = T , we have a similar formulation as model (4.66) except that we

do not need to plan the expansion. Therefore, for t = T , we omit the expansion cost

in objective function (4.66a) and constraints (4.66k)–(4.66m).

4.6.2 Numerical Instances

The Garver 6-bus system is a small size power system containing 6 buses and 15

transmission right-of-ways that can be added. The initial topology of the network is

given in Figure 4.1 and the initial detailed data are given in Tables 4.1 and 4.2. The

p.u. for reactance data considers a 100MW base.
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Table 4.1: Garver 6-bus bus data

BusID GenMax Load
1 150 80
2 0 240
3 360 40
4 0 160
5 0 240
6 600 0

Table 4.2: Garver 6-bus branch data

From To n0
ij Reactance f̄ij Cost

1 2 1 0.4 100 40
1 3 0 0.38 100 38
1 4 1 0.6 80 60
1 5 1 0.2 100 20
1 6 0 0.68 70 68
2 3 1 0.2 100 20
2 4 1 0.4 100 40
2 5 0 0.31 100 31
2 6 0 0.3 100 30
3 4 0 0.59 82 59
3 5 1 0.2 100 20
3 6 0 0.48 100 48
4 5 0 0.63 75 63
4 6 0 0.3 100 30
5 6 0 0.61 78 61
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Figure 4.1: The topology of Garver 6-bus system.

4.6.2.1 Parameter Settings

The load takes values between 0.5 and 1.5 times the value given in Table 4.1 in

the second stage. Then, the average load increases by 10% as t increases. We set

the annual discount rate at 5%, and choose the penalty of load curtailment ptD =

$104/MWh. The hydroelectric reservoir only exists at bus 3, with the initial level

being 50MW and the capacity being 200MW. The values ηGi, ηPi, ηRi are set to 0.9.

4.6.2.2 Heuristics in the Branch-and-bound method

For the heuristic solution providing an upper bound of the optimal objective

value, the binary variables xtijk corresponding to installing the lines are averaged

and rounded to the closest integer. However, we prioritize satisfying the constraints

requiring xtijk = 1 if xt−1
ijk = 1, and xtijk = 0 if xtijk−1 = 0. The reservoir level yi are

substituted with the maximum value among all the subproblem solutions ŷi(ξ1:T ).

The branching policy is a depth-first search, prioritizing variables in the earlier

stage. Additionally, increasing the lines (xtijk = 1) is prioritized over the other (xtijk =
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0) because the penalty for load curtailment is large.

4.6.3 Results

4.6.3.1 Solution Comparison

We focus on the case where there are 3 stages and 2 samples in each stage. We

assume that the total load values are random and assume that individual loads in

each bus have the same ratio as the standard load quantity in Table 4.1. Between

the first and the second stage, the samples of the load values are either 1.0 or 1.2

times of the standard value. Similarly, between the second and the third stage, the

samples of the load values are either 1.0 or 1.2 times the previous stage. Therefore, we

have four trajectories with the multipliers: [(1.0, 1.0), (1.0, 1.2), (1.2, 1.2), (1.2, 1.44)].

Notice that the scenarios are not stage independent. We vary the value of ε ∈

{1.0, 10.0, 50.0, 100.0} and compare the results. In Table 4.3, we present the ob-

jective value and the anticipated probability of each trajectory. As expected, the DM

anticipates a higher probability for the worst-case trajectory and is required to adjust

the decisions to install more lines.

Table 4.3: Cost and probabilities for each sample trajectories

ε (1.0, 1.0) (1.0, 1.2) (1.2, 1.2) (1.2, 1.44) Total
Obj. Prob. Obj. Prob. Obj. Prob. Obj. Prob. Obj.

1.0 160.0 24.7% 160.0 24.7% 245.5 25.0% 245.5 25.6% 203.3
10.0 190.0 21.7% 190.0 21.7% 218.5 28.3% 218.5 28.3% 206.1
50.0 190.0 8.6% 190.0 8.6% 218.5 41.4% 218.5 41.4% 213.6

100.0 209.0 0.0% 209.0 0.0% 218.5 0.0% 218.5 100.0% 218.5

4.6.3.2 Computation Time

We compare the computation time for three sets of instances. We used 2.20GHz,

2201 Mhz, Intel(R) Xeon(R) CPU E5-2630 v4 with 10 Core(s), 20 Logical Processors

on Windows Server 2012 R2, and implemented the algorithm with Julia 1.5 and
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Gurobi 9.1 using package DualDecomposition.jl (Kim et al., 2021). The first one is

the same setting as in the previous section, changing the value of ε. The second

test is changing the number of scenarios between {2, 3, 4} for a 3-stage problem with

ε = 10.0. Finally, we change the number of stages between {2, 3, 4, 5} with 2 scenarios

each and ε = 10.0. We report the computational time in Tables 4.4–4.6. When the

time limit is reached, we report the optimality gap when the solution was found.

Table 4.4: Computation time for different ε values

ε Time (s) Gap (%)
1.0 172.2 0.0

10.0 90.8 0.0
50.0 214.6 0.0

100.0 3141.5 0.0

Table 4.5: Computation time for different scenario numbers

Scenario per stage Time (s) Gap (%)
2 90.8 0.0
3 825.6 0.0
4 2456.6 0.0
5 3600.0 6.1

Table 4.6: Computation time for different stage numbers

Stages Time (s) Gap (%)
2 31.5 0.0
3 90.8 0.0
4 1926.2 0.0
5 3600.0 −

Over the three sets of instances, the increase of computation time for different

stage numbers is the fastest. There are 16 scenarios for a 5-stage 2-scenario problem,

and there are also 16 scenarios for a 3-stage 4-scenario problem. The former took a

longer time as the subproblems have more variables and constraints for longer stages.

Moreover, the number of scenarios increases exponentially. We also observe that it
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generally takes a longer period of time when the radius ε increases as there were more

variables to branch while running the algorithm.

4.7 Concluding Remarks

In this chapter, we formulated the dual decomposition method for multistage dis-

tributionally robust mixed-integer programming using a Wasserstein-based ambiguity

set. We implemented a branch-and-bound algorithm combined with dual decompo-

sition to solve a transmission expansion problem with hydro storage. In the future,

we would like to investigate methods to further speed up the dual decomposition

algorithm using the multistage structure of the problem.
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CHAPTER V

Conclusion

In this dissertation, we focused on three different approaches to combining se-

quential decision making with distributionally robust optimization. In Chapter II,

we proposed DRPOMDP and investigated the conditions where useful properties of

POMDPs, such as the convexity of the value function, can also be used for the dis-

tributionally robust case. We adapted the HSVI method using the convex property

of the value function to efficiently solve the infinite horizon problem. In Chapter

III, we proved new theoretical guarantees on the Wasserstein distance of true and

empirical distributions that are constructed from previously collected data. We then

applied the theoretical bound to the regret-based reinforcement learning problem and

empirically observed the advantage of using the Wasserstein distance based ambigu-

ity set over the total variational distance. In Chapter IV, we adapted the two-stage

distributionally robust MIP to the multistage stochastic MIP, extending the applica-

bility of the dual decomposition algorithm. We discovered the multistage variant of

the Wasserstein distance based ambiguity set, and implemented a branch-and-bound

algorithm to solve the problem to optimality.

In the future research, we plan to improve the efficiency of the algorithms where

problems with similar structures are solved repeatedly, and where data is provided

iterative and online. We anticipate real-world applications of these algorithms in a
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large-scale, complex systems in energy infrastructure planning.
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APPENDIX A

Distributionally Robust Partially Observable

Markov Decision Processes

A.1 Relaxation of a-rectangularity

In this section, we investigate a variant of DR-POMDP where we relax the rectan-

gularity condition of the ambiguity set in the actions. So far, we have only considered

the setting where the ambiguity set is rectangular in terms of the states in S and the

actions in A. This is known as (s, a)-rectangular set in the literature of Wiesemann

et al. (2013), who defined the term in the context of robust MDP. Ref. Wiesemann

et al. (2013) also considered s-rectangular set in robust POMDP, which is only rect-

angular in terms of the states S. This setting has randomized policy as the optimal

policy. We take a similar approach and formulate the Bellman equation:

V t(b) = max
φ∈∆(A)

min
µ∈D

EP∼µ

[∑
a∈A

φa
∑
s∈S

bs

(
ras + β

∑
z∈Z

JzpasV
t+1 (f (b, a,pa, z))

)]
, (A.1)
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where φa is the probability for selecting action a. We define the ambiguity set to be

D̃s =

µ̃s

ps

rs

ũs


∣∣∣∣∣∣∣∣∣∣
E(ps,rs,ũs)∼µ̃s [Fsps +Gsrs +Hsũs] = cs,

µ̃s (Xs) = 1

 , (A.2)

where ũs ∈ RQ is a vector of auxiliary variables, and

Xs =




ps

rs

ũs

 ∈
R|A|×|S|×|Z|

R|A|

RL

∣∣∣∣∣∣∣∣∣∣
Bsps + Csrs + Esũs �Ks ds

 . (A.3)

Here, Fs ∈ Rk×(|A|×|S|×|Z|), Gs ∈ Rk×|A|, Hs ∈ Rk×L, cs ∈ Rk, Bs ∈ R`×(|A|×|S|×|Z|),

Cs ∈ R`×|A|, Es ∈ R`×L, and ds ∈ R`.

The value function is also convex in the form (2.10), since for t < T ,

V t(b) = max
φ∈∆(A)

max
αaz∈Conv(Λt+1)
∀a∈A, z∈Z

∑
s∈S

bs min
(p̂s,r̂s, ˆ̃us)

φ>

(
β
∑
z∈Z

[(
α>azJaz

)>
, a ∈ A

]>
p̂s + r̂s

)

s.t. Fsp̂s +Gsr̂s +Hs
ˆ̃us = cs, ∀s ∈ S

Bsp̂s + Csr̂s + Es ˆ̃us �Ks ds, ∀s ∈ S

where Jaz ∈ R|S|×(|A|×|S|×|Z|) is a matrix of zeros and ones that maps ps to pasz.

For an exact algorithm, we solve the inner minimization problem for all φ ∈ ∆(A),

αaz ∈ Conv(Λt+1), ∀z ∈ Z, a ∈ A. The optimal objective is used for constructing

the set Λt, at each time step t.

A.2 General Ambiguity Set

In this section, we provide a general form of the ambiguity set where the mean

values are on an affine manifold, and the supports are conic representable. For all
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a ∈ A and s ∈ S, we define a non-empty ambiguity set

D̃as =

µ̃as

pas

ras

ũas


∣∣∣∣∣∣∣∣∣∣
E(pas,ras,ũas)∼µ̃as [Faspas +Gasras +Hasũas] = cas,

µ̃as (Xas) = 1

 , (A.4)

where ũas ∈ RL is a vector of auxiliary variables, and a support with a non-empty

relative interior

Xas =




pas

ras

ũas

 ∈
R|S|×|Z|

R

RL

∣∣∣∣∣∣∣∣∣∣
Baspas + Casras + Easũas �Kas das

 . (A.5)

Here, Fas ∈ Rk×(|S|×|Z|), Gas ∈ Rk×1, Has ∈ Rk×L, cas ∈ Rk, Bas ∈ R`×(|S|×|Z|),

Cas ∈ R`×1, Eas ∈ R`×L, and das ∈ R`. The symbol �Kas represents a generalized

inequality with respect to a proper cone Kas. We denote the marginal distribution

by µas =
∏

(pas,ras)
µ̃as, and also extend the definition to the ambiguity set so that

Das =
∏

(pas,ras)
D̃as =

⋃
µ̃as∈D̃as

∏
(pas,ras)

µ̃as. The auxiliary variables ũas are used

for “lifting” techniques, enabling the representation of nonlinear constraints to linear

ones.

A.3 Proofs of Theorems II.3 and II.4

First, we provide a detailed proof for Theorem II.3 below.

Proof. We show the result by induction. When t = T , V T (b) = 0 satisfies (2.10). For
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t < T , the inner problem Qt(b, a) described in (2.7) becomes

min
µ̃a∈P(X̃a)

E(pa,ũa)∼µ̃a

[∑
s∈S

bs

(
ras + β

∑
z∈Z

1>JzpasV
t+1 (f(b, a,pa, z))

)]
(A.6a)

s.t. E(pa,ũa)∼µ̃a [ũas] = cas, ∀s ∈ S (A.6b)

E(pa,ũa)∼µ̃a

[
I
(

(pas, ũas) ∈ X̃as
)]

= 1, ∀s ∈ S (A.6c)

for all a ∈ A. Here I(·) is an indicator function, such that if event · is true, it returns

value 1 and 0 otherwise. Associating the dual variables ρas and ωas with constraints

(A.6b) and (A.6c), respectively, we formulate the dual of (A.6) as

max
ρa,ωa

∑
s∈S

c>asρas +
∑
s∈S

ωas (A.7a)

s.t.
∑
s∈S

ũ>asρas +
∑
s∈S

ωas (A.7b)

≤
∑
s∈S

bs

(
ras + β

∑
z∈Z

1>JzpasV
t+1 (f(b, a,pa, z))

)
∀(pa, ũa) ∈ X̃a

ρas ∈ R|S|×|Z|, ωas ∈ R ∀s ∈ S. (A.7c)

Constraints (A.7b) are further equivalent to the following inequality with a minimiza-

tion problem on the right-hand side (RHS).

∑
s∈S

ωas ≤ (A.8a)

min
(pa,ũa)

∑
s∈S

bs

(
ras + β

∑
z∈Z

1>JzpasV
t+1 (f(b, a,pa, z))

)
−
∑
s∈S

ũ>asρas

s.t. ũas ≥ pas − p̄as ∀s ∈ S (A.8b)

ũas ≥ p̄as − pas ∀s ∈ S (A.8c)

1>pas = 1 ∀s ∈ S (A.8d)

pas ≥ 0 ∀s ∈ S. (A.8e)
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Substituting (2.10) for V t+1 and (2.1) for f(b, a,pa, z), we obtain

RHS of (A.8) = min
(pa,ũa)

∑
s∈S

bsras + β
∑
z∈Z

max
αaz∈Λt+1

[
α>az

∑
s∈S

Jzpasbs

]
−
∑
s∈S

ũ>asρas(A.9)

s.t. (A.8b)–(A.8e).

Since the objective of the maximization problem is linear in terms of αaz,∀z ∈ Z, the

optimal objective value does not change by taking the convex hull of Λt+1, denoted

as Conv (Λt+1). Bringing the maximization to the front, we have

(A.9) = min
(pa,ũa)

max
αaz∈Conv(Λt+1)

∀z∈Z

[∑
s∈S

bsras + β
∑
z∈Z

α>az
∑
s∈S

Jzpasbs−
∑
s∈S

ũ>asρas

]
(A.10)

s.t. (A.8b)–(A.8e)

The expression in the bracket is convex (linear) in (pa, ũa) for fixed αaz, z ∈ Z, and

concave (affine) in αaz, z ∈ Z given fixed values of (pa, ũa). Moreover, (A.8b)–(A.8e)

and Conv (Λt+1) are convex sets. The minimax theorem (see, e.g., Osogami (2015),

Du and Pardalos (2013)) ensures that the problem is equivalent to

(A.10) = max
αaz∈Conv(Λt+1)

∀z∈Z

min
(pa,ũa)

∑
s∈S

bsras + β
∑
z∈Z

α>az
∑
s∈S

Jzpasbs −
∑
s∈S

ũ>asρas (A.11)

s.t. (A.8b)–(A.8e)

We take the dual of the inner minimization by associating dual variables κ1
as, κ

2
as, σas

with constraints (A.8b)–(A.8d), respectively. We thus have the following equivalence:
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(A.11) = max
αaz∈Conv(Λt+1)

∀z∈Z

max
κ1
a,κ

2
a,σa

∑
s∈S

bsras +
∑
s∈S

(
−p̄>asκ1

as + p̄>asκ
2
as + σas

)
(A.12a)

s.t. βbs
∑
z∈Z

Jz
>αaz + κ1

as − κ2
as − 1σas ≥ 0, ∀s ∈ S (A.12b)

κ1
as + κ2

as + ρas = 0, ∀s ∈ S (A.12c)

κ1
as,κ

2
as ∈ R|S|×|Z|+ , σas ∈ R, ∀s ∈ S, (A.12d)

Due to (A.8), we substitute
∑

s∈S ωas in the objective function (A.7a) with (A.12).

As a result, the value function (2.5) is equivalent to

V t(b) = max
a∈A

max
αaz∈Conv(Λt+1)

∀z∈Z

(A.13a)

max
ρa,κ1

a,κ
2
a,σa

∑
s∈S

c>asρas +
∑
s∈S

bsras +
∑
s∈S

(
−p̄>asκ1

as + p̄>asκ
2
as + σas

)
s.t. (A.12b)–(A.12d)

ρas ∈ R|S|×|Z| ∀s ∈ S, (A.13b)

and after taking the dual of the most inner maximization problem, we have

V t(b) = max
a∈A

max
αaz∈Conv(Λt+1)

∀z∈Z

∑
s∈S

bs × Ξ(a,αaz ∀z ∈ Z, s), (A.14)

where

Ξ(a,αaz ∀z ∈ Z, s) = min
(pas,ũas)

β
∑
z∈Z

α>azJzpas + ras (A.15a)

s.t. cas ≥ pas − p̄as (A.15b)

cas ≥ p̄as − pas (A.15c)

1>pas = 1 (A.15d)

pas ≥ 0. (A.15e)
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Defining set Λt as

 (Ξ(a,αaz ∀z ∈ Z, s), s ∈ S)>

∣∣∣∣∣∣∣
∀a ∈ A,

∀αaz ∈ Conv (Λt+1) , ∀z ∈ Z

 ,

it follows that the above value function in (A.14) is of the form (2.10). Furthermore,

by induction, this is true for all t. This completes the proof.

The proof of Theorem II.4 is given as follows.

Proof. Consider two arbitrary value functions V1 and V2. Given belief state b, let

a?i = arg max
a∈A

min
µa∈D̃a

E(pa,ra)∼µa

[∑
s∈S

bs

(
ras + β

∑
z∈Z

1>JzpasVi (f(b, a,pa, z))

)]
,

for i = 1, 2, and for all actions a ∈ A, denote

µ?a,i = arg min
µa∈D̃a

E(pa,ra)∼µa

[∑
s∈S

bs

(
ras + β

∑
z∈Z

1>JzpasVi (f(b, a,pa, z))

)]

for i = 1, 2. First, suppose that LV1(b) ≥ LV2(b). Then,

0 ≤ LV1(b)− LV2(b)

= E(pa?1
,ra?1

)∼µ?
a?1 ,1

∑
s∈S

bs

ra?1s + β
∑
z∈Z

1>Jzpa?1sV1

(
f(b, a?1,pa?1 , z)

)
− E(pa?2

,ra?2
)∼µ?

a?2 ,2

∑
s∈S

bs

ra?2s + β
∑
z∈Z

1>Jzpa?2sV2

(
f(b, a?2,pa?2 , z)

)
≤ E(pa?1

,ra?1
)∼µ?

a?1 ,2

∑
s∈S

bs

ra?1s + β
∑
z∈Z

1>Jzpa?1sV1

(
f(b, a?1,pa?1 , z)

)
− E(pa?1

,ra?1
)∼µ?

a?1 ,2

∑
s∈S

bs

ra?1s + β
∑
z∈Z

1>Jzpa?1sV2

(
f(b, a?1,pa?1 , z)

)
= βE(pa?1

,ra?1
)∼µ?

a?1 ,2

[∑
s∈S

bs
∑
z∈Z

1>Jzpa?1s ×
(
V1

(
f(b, a?1, z,pa?1 )

)
− V2

(
f(b, a?1,pa?1 , z)

))]
. (A.16)

The inequality follows that we replace the nature’s optimal decision µ?a?1,1 for V1 by

µ?a?1,2, and replace the DM’s optimal solution a?2 for V2 by a?1. Then, by changing the
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difference between V1 and V2 to the absolute value of the difference, we have

(A.16) ≤ βE(pa?1
,ra?1

)∼µ?
a?1 ,2

[∑
s∈S

bs
∑
z∈Z

1>Jzpa?1s ×
∣∣∣V1

(
f(b, a?1,pa?1 , z)

)
− V2

(
f(b, a?1, z,pa?1 )

)∣∣∣]

≤ βE(pa?1
,ra?1

)∼µ?
a?1 ,2

∑
s∈S

bs
∑
z∈Z

1>Jzpa?1s sup
b′∈∆(S)

∣∣V1(b′)− V2(b′)
∣∣

= β sup
b′∈∆(S)

∣∣V1(b′)− V2(b′)
∣∣ .

The second inequality follows that we take the supremum for all belief states b′ ∈

∆(S), and the last equality is because E(pa?1
,ra?1

)∼µ?
a?1,2

[∑
s∈S bs

∑
z∈Z 1>Jzpa?1s

]
= 1.

The same result holds for the case where LV1(b) < LV2(b). Thus, for any belief

state value b, it follows that

|LV1(b)− LV2(b)| ≤ β sup
b′∈∆(S)

|V1(b′)− V2(b′)| ,

and therefore,

sup
b∈∆(S)

|LV1(b)− LV2(b)| ≤ β sup
b′∈∆(S)

|V1(b′)− V2(b′)| ,

yielding that L is a contraction under 0 < β < 1. This completes the proof.
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