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ABSTRACT

This dissertation is broadly about developing new personalized data-driven learning and 
optimization methods with theoretical performance guarantees for three important applica-

tions in healthcare operations management and medical decision-making. In these research 
problems, we are dealing with longitudinal settings, where the decision-maker needs to make 
multi-stage personalized decisions while collecting data in-between stages. In each stage, the 
decision-maker incorporates the newly observed data in order to update his current sys-tem’s 
model or belief, thereby making better decisions next. This new class of data-driven learning 
and optimization methods indeed learns from data over time so as to make efficient and 
effective decisions for each individual in real-time under dynamic, uncertain environ-ments. 
The theoretical contributions lie in the design and analysis of these new predictive and 
prescriptive learning and optimization methods and proving theoretical performance 
guarantees for them. The practical contributions are to apply these methods to resolve un-met 
real-world needs in healthcare operations management and medical decision-making so as to 
yield managerial and practical insights and new functionality.

In Chapter II, we focus on chronic diseases that are the leading cause of mortality and dis-

ability worldwide, requiring the surveillance and monitoring of each patient to assess disease 
progression and determine if an appropriate intervention for that individual is warranted. In 
many cases, it is a challenge to determine the most effective treatment. Even when a suitable 
treatment is identified, dosing it correctly remains a significant challenge because the proper 
dosage depends on the individual. This involves adaptively learning a personal-ized disease 
progression control model conditional on patient-specific contextual information. We 
formulate this as a new contextual multi-armed bandit under a two-dimensional control with a 
nested structure, which sequentially selects the best treatment and corresponding dosage based on 
contextual information. With the goal of minimizing disease progression risk, we develop a joint 
contextual learning and optimization algorithm that integrates the strength of contextual bandit 
with online convex optimization techniques. We prove that this algorithm admits a sub-linear 
regret, which is tight up to a logarithmic factor. We also derive some general technical results that 
are of independent interest. The effectiveness of our methodology is illustrated using case data on 
patients with type 2 diabetes. 

xiv



In Chapter III, we studied a fundamental class of online resource allocation problems, 
where a heterogeneous stream of patient referrals arrives one at a time with a declared 
urgency-based reward for receiving service from one of the heterogeneous providers. Upon 
arrival of a referral, the system chooses both a provider and a time for service over a multi-day 
horizon subject to provider capacity. For this problem, we developed a new class of online 
optimization algorithms based on a primal-dual approach, and called it the Heterogeneous 
Online Optimization Procedure with Budgeted Overtime (HOOP-BOT). The online policies 
derived by HOOP-BOT offer urgency-sensitive appointment visits for patients while achiev-

ing high utilization. They are robust to future information, easy-to-implement, and efficient to 
compute, allow for heterogeneity in both urgency-based rewards and service times, and admit 
a theoretical competitive ratio, guaranteeing the worst-case performance. Using data from a 
partner hospital, our online policies greatly outperform benchmark policies.

In Chapter IV, we study a coordinated clinic and surgery appointment scheduling problem 
in a surgical suite. Our aim is to provide timely access to care by coordinating clinic and 
surgery visits to ensure that patients can see a surgeon in the clinic and schedule their surgery 
within a maximum wait time target. There are different types of uncertainty including the 
number of appointment visits, whether a patient requires surgery, and surgery durations. We 
develop an Integrated Multi-stage Stochastic and Distributionally Robust Optimization 
(IMSDRO) methodology to determine the optimal clinic and surgery dates such that the 
access constraints are satisfied, and the overtimes are minimized. This approach integrates a 
multi-stage stochastic program with a distributionally robust optimization approach to 
simultaneously incorporate multiple types of uncertainties by including stochastic scenarios 
for appointment request arrivals and ambiguity sets for surgery durations. Several new 
transformations are introduced to turn the nonlinear program to a tractable one, and a 
constraint generation algorithm is developed to solve it. We propose a data-driven rolling 
horizon procedure to facilitate implementation. Using case data, we show that our approach 
significantly improves access delay times compared with the current practice.
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CHAPTER I

Introduction

The rapid growth of information and accessibility to big data provide an unprecedented

opportunity to shift toward personalized data-driven decision-making, thereby tailoring deci-

sions to individuals. In today’s era of personalization, every decision-maker needs to deploy

personalized data or contextual information to optimize the decisions and achieve better

outcome. For example, healthcare delivery presents many decision support opportunities for

personalized or precision treatment choices based on patient bio-markers and clinical his-

tory. In marketing, these same methods can increase the click-through rate through ads and

promotions tailored to the user’s demographics and interests. In these scenarios, it is often

the case that patients or customers will arrive sequentially; therefore, the decision-maker re-

quires to make a sequence of personalized decisions in real-time or online fashion and improve

these decisions with incremental information. These online personalized decision-making

paradigms (i) adaptively learn a statistical model that predicts a user-specific outcome for

each available decision as a function of the user’s observed contextual information, and (ii)

harness this model to make optimize personalized decisions for subsequent users.

This dissertation studies a fundamentally new way of thinking about online data-driven

decision-making, and presents significant advances to both theoretical and practical aspects

of this paradigm in the context of healthcare delivery systems and chronic disease treatment

management. We develop a set of new data-driven decision-making approaches, building

on statistical machine learning, online convex optimization, multi-armed bandit, stochastic

optimization, and distributionally robust optimization theories. They offer substantial op-

portunities to help and protect our communities from wide range of chronic diseases and

healthcare delivery systems. This dissertation is presented in a multiple manuscript format

as independent academic papers. We provide three distinct frameworks to facilitate the pre-

sentation of our online data-driven learning and optimization approaches. In the following,

we summarize each chapter and its contributions.
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Chapter II - Contextual Learning with Online Convex Optimization: Theory

and Applications to Chronic Diseases: Modeling disease progression based on real-

world data is a challenge due to patient-level heterogeneity, uncertain nature of the disease,

multiple potential interventions, irregularity and noise of tests. One must choose from mul-

tiple treatments available to control the disease progression. For each treatment, the dosage

selection is unique to that selected treatment, which makes the optimization of dosing more

complex. We call this the nested decision-making. For this setting, we develop a person-

alized medicine approach using a contextual multi-armed bandit to sequentially tailor the

treatment selection to each patient based on the bandit feedback of prior medical history

and biomarkers (i.e., contextual information). This requires a judicious trade-off between

selecting the hitherto best treatment (exploitation) and choosing an alternative treatment

to collect more information (exploration).

There is, however, a novel contribution to the literature in part because unlike most ban-

dit settings, we have a two-dimensional control with a nested structure, having dosage choice

nested under the treatment selection. Doctors choose a treatment for a patient and decide

on which dosage of the chosen treatment to prescribe. Inspired by this setting, we introduced

a new contextual multi-armed bandit (MAB) with a two-dimensional nested control. This

model can be seen as an extended MAB, where the decision-maker must opt for which arm to

pull (treatment) and how far to pull the selected arm (dosage). The difficulty lies in the fact

that the reward function is not jointly convex in these two decisions. To resolve this issue, we

proposed a joint contextual learning and optimization algorithm, which deploys a posterior

sampling approach to find the best treatment for an individual while performing stochas-

tic sub-gradient descent optimization procedure (S-SGD) to obtain the best corresponding

dosage. This integration of the contextual MAB with online convex optimization necessitates

the development of new high-probability concentration bounds. Indeed, we proved a perfor-

mance guarantee, a regret, for this algorithm. Deriving this regret involves bounding: (i)

estimation loss for estimating unknown parameters, (ii) contextual bandit loss for learning

the optimal treatment, and (iii) S-SGD sub-optimality loss for learning the optimal dosage

of each treatment. Adding these losses does not yield the regret; instead, we merged them

through a new bridging technique argument.

For societal impact and insight, we implemented our theory using data on high blood-

pressure (BP) patients. Doctors lack strong evidence on which medication and dosage to

prescribe for these patients to lower BP as little as possible while achieving a safe target.

Notably, our method outperforms the current practice to find the optimal regimen. Our

theory does allow for many other applications with two-dimensional decision-making arising

in operations management (e.g., joint assortment selection and pricing).
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Chapter III - Online Advance Scheduling with Overtime: A Primal-Dual

Approach: This chapter was motivated by a dramatic expansion of new outpatient space

being built for a partner hospital over the next couple of years. Accordingly, we addressed

the situations, where historical distributions for demand are either not available (e.g., new

service systems) or face unpredictable demand change. This needs building robustness and

online (real-time) allocation capability into online appointment platforms.

In this chapter, we study a fundamental online resource allocation problem in service

operations in which a heterogeneous stream of arrivals that varies in service times and

rewards makes service requests from a finite number of servers or providers. This is an online

adversarial setting in which nothing more is known about the arrival process of customers

(i.e., no knowledge of the arrival process). Each server has a finite regular capacity but can

be expanded at the expense of overtime cost. Upon arrival of each customer, the system

chooses both a server and a time for service over a scheduling horizon subject to capacity

constraints. The system seeks easy-to-implement online policies that admit a competitive

ratio (CR), guaranteeing the worst-case relative performance for these policies.

On the theoretical side, we propose online algorithms with theoretical CRs for the problem

described above. On the practical side, we investigate the real-world applicability of our

methods and models on appointment-scheduling data from a partner hospital. We develop

new online primal-dual approaches for making not only a server-date allocation decision for

each arriving customer, but also an overtime decision for each server on each day within a

horizon. We also derive a competitive analysis to prove a theoretical performance guarantee.

Our online policies are (i) robust to future information, (ii) easy-to implement and extremely

efficient to compute, and (iii) admitting a theoretical CR. Comparing our online policy with

the optimal offline policy, we obtain a CR that guarantees the worst-case performance of

our online policy. We evaluate the performance of our online algorithms by using real

appointment scheduling data from a partner hospital. Our empirical results show that the

proposed online policies perform much better than their theoretical CR, and also outperform

the pervasive first-come-first-served and nested threshold policies by a large margin.

Chapter IV - Coordinated and Priority-based Surgical Care: An Integrated

Distributionally Robust Stochastic Optimization Approach: This chapter is moti-

vated by a collaboration with Mayo Clinic that seek for achieving timely access to surgery.

Their limited surgical capacity along with inherent uncertainty in both arrival processes and

surgery times lead to barriers to both timely access to care and efficient resource utilization.

To tackle this issue, we introduced the idea of care coordination across different stages of

patient care to ensure proper follow-up treatments and prevent health complications.

In this chapter, we developed a new Integrated Multi-stage Stochastic Distributionally
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Robust Optimization (IMSDRO) methodology to achieve this care coordination. While

guaranteeing priority-based clinical and surgical access delay targets, this approach offers (i)

the optimal clinic date, and (ii) the optimal surgery date (the need for surgery is realized in

the clinic visit). The objective is to minimize the average of clinical and surgical overtimes.

To make the IMSDRO approach implementable in practice, we developed a data-driven

rolling horizon procedure. This allows practitioners to make optimal use of data that is

revealed as time progresses, and adjust their decisions on a rolling basis to use the realization

of uncertainty in arrivals, surgical need, and surgery duration. Our methodology is not

limited to a particular setting and can be applied to other service operations industries

where access to the service matters.

Using case data, Our coordinated stochastic-robust policy improves the surgical access

times by about 160%, on average, compared to the current policy used by our partner

hospital. Unlike the current policy that operates based on a first-come first-serve idea,

intuitively our policy often defers the surgery of low-priority patients in order to preserve

the near future capacity to serve high-priority patients that may arrive later. This approach

helps meet the desired service level with minimum overtime.

Chapter V - Conclusions and Future Research: The works presented in Chapters

II-IV make contributions into three important parts of personalized data-driven learning

and optimization with applications in management of chronic disease progression, online

appointment scheduling platforms, and healthcare delivery. In Chapter V, we summarize

some of our most important contributions. We also highlight areas of future research that

could expand on this work.
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CHAPTER II

Contextual Learning with Online Convex

Optimization: Theory and Applications to Chronic

Diseases 1

2.1 Introduction

Chronic diseases are reversible or irreversible conditions that are at risk of progression

throughout a long period of time (often years or decades). They place tremendous burdens on

patients, their carers, and the healthcare delivery system. Common chronic diseases include

diabetes, cancer, heart, and kidney diseases. They are the leading causes of mortality and

the largest sources of cost to the U.S. healthcare system, accounting for more than 80% of

the nation’s healthcare costs [57]. A better understanding of disease progression is essential

in early diagnosis and long-term treatment. However, modeling chronic disease progression

based on real-world evidence is a challenging task due to patient-level heterogeneity, uncer-

tain nature of chronic diseases, multiple potential interventions, and tests that may be noisy

and irregular in timing.

There are usually multiple treatments available to control the risk of chronic disease

progression. Even when a suitable treatment is identified, dosing it optimally remains a

significant challenge, because the correct dosage may be as important as the correct treatment

([105] and [21]). For example, for patients with warfarin, incorrect dosage may lead to

adverse outcomes, such as stroke (if the dose is too low) and internal bleeding (if the dose

is too high) ([35]). Effective dosing of a selected treatment should take into account both

over-dosing and under-dosing outcomes. Under-dosing results in poor disease control (e.g.,

uncontrolled progression and symptoms), while over-dosing incurs excessive side-effects (e.g.,

1Under Revision at Management Science as Keyvanshokooh, E., Zhalechian, M., Shi, C., Van Oyen, M.
P., Kazemian, P. (2020), Contextual Learning with Online Convex Optimization: Theory and Applications
to Chronic Diseases.
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kidney complications, anemia risk, bloating, toxicity, and diarrhea).

In spite of all the above-mentioned difficulties in modeling chronic disease progression,

the growing availability of patient-specific data from electronic medical records provides

medical professionals with easy access to more patient biomarkers and clinical history. This

supports a personalized treatment choice with a corresponding dosage that is optimized over

those patients who have been prescribed that treatment in the past. Unlike one-size-fits-all

medicine, personalized medicine tailors such decisions to individual patients based on their

demographic, medical history, clinical tests, and biomarkers (i.e., contextual information).

To develop a personalized approach in real-time, one can (i) adaptively learn a model that

predicts a patient-specific outcome for each available decision as a function of the patient’s

observed contextual information, and (ii) deploy such a predictive model for subsequent new

patients to optimally adjust treatment decision in a personalized way and corresponding

dosage decision that is optimized over the prior history of patients seen. We call this approach

the “joint contextual learning and optimization” approach.

In this setting, a sequential decision-making process with bandit feedback, often modeled

as a multi-armed bandit (MAB), is necessitated. This implies that clinicians only acquire

feedback from their selected treatment and dosage, and do not observe counterfactual from

other possible decisions that they could have made. This hurdle inspires a judicious trade-

off between exploration and exploitation. Doctors may select the hitherto best treatment

based on prior experience administrating that treatment to similar patients or extrapolation

from similar treatments (i.e., exploitation). Yet, such a decision could be sub-optimal since

it is made based on the predictions derived from a limited number of observed samples.

Alternatively, they may decide to collect more information on an alternative treatment that

is not presently seen as the best (i.e., exploration). Because this alternative may eventually

prove to be the best one, seeking this new information prevents doctors from locking into a

misperception caused by a lack of data. There is, however, a salient challenge in handling the

exploration-exploitation dilemma for disease management. Unlike most bandit settings, our

problem has a two-dimensional control with a nested structure, which includes (i) treatment

and (ii) dosage that is unique to the chosen treatment. Modeling this nested decision feature

spurs a new technical development in the MAB theory.

To date, a considerable number of studies have been done on predicting chronic dis-

ease progression risk and identifying the optimal treatment regimen by developing offline

statistical learning algorithms (see e.g., [30] and [164]). Both offline and online statistical

learning algorithms rely on historical data to obtain estimations; however, online statistical

learning algorithms leverage the advantage of adaptive learning. Balancing the exploration-

exploitation trade-off, they collect new information adaptively to learn as quickly as possible,
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rather than just waiting to use a large historical data set. Online statistical learning algo-

rithms take advantage of the current beliefs to make treatment regimen decisions (exploita-

tion) while learning more about poorly estimated treatment regimens (exploration). This

ensures that the treatment regimen is offered based on the particular needs of the individual,

and reduces the risk of offering a poorly understood treatment regimen to a large patient

population.

In light of all the above discussions, we will address the following two issues in this paper:

(i) how one can provide a personalized joint contextual learning and optimization approach

for chronic diseases, which adaptively learns a predictive model that is able to select both

treatment and dosage with the aim of reducing the disease progression risk, and (ii) how to

design this approach to provide a good performance guarantee. These questions motivate us

to integrate online learning and online convex optimization methods.

2.1.1 Main Results and Contributions

Our main contribution is the introduction of a new contextual multi-armed bandit model

with a two-dimensional nested control, and the development and analysis of a new joint

contexutal learning and optimization algorithm for it that we call the contextual bandit with

stochastic sub-gradient descent (S-SGD Bandit) algorithm. This algorithm makes a two-

dimensional nested decision (i.e., the best treatment and corresponding dosage) for each

individual given the observed contextual information. The objective is to reduce the disease

progression risk, which is a common way to quantify a chronic disease. Below, we shall

summarize our main results and contributions.

(1) Contextual multi-armed bandit with online convex optimization. The salient

feature of our method, in contrast to prior studies, is the integration of the contextual multi-

armed bandit and online convex optimization, which we shall elaborate below.

In our setting, based on the patient’s contextual information, the doctor needs to jointly

decide the treatment choice and its corresponding dosage. Inspired by this setting, we

introduce a new contextual MAB with a two-dimensional nested control (see §2.2). This

can be viewed as an extended MAB, where the decision-maker must select which arm to

pull (treatment) as well as how far to pull the selected arm (dosage). The difficulty lies in

the fact that the reward function is not jointly convex in these two decision variables. On a

high level, the proposed algorithm resolves this difficulty by deploying a posterior sampling

approach to find the best treatment for each individual while performing online stochastic

sub-gradient descent (S-SGD) for each selected treatment to obtain the best corresponding

dosage.

Most online learning algorithms in the literature do not capture the control with two
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levels of decision making; neither do they address nested decisions (e.g., [21], [22], [48], [67],

and [5]). Our integration of contextual MAB with online convex optimization necessitates

the development of new high-probability concentration bounds. First, we have two bandit

feedback models: a disease progression risk and a treatment-outcome metric. We leverage

properties of the reward function to unify our high-probability bounds for estimating the

unknown parameters of these two models, which yields an estimation loss (Proposition 1).

Second, we develop a high-probability bound on a contextual bandit loss incurred due to

learning the optimal treatment (Proposition 2). Third, to integrate the S-SGD optimization

procedure with contextual bandit, we derive a high-probability bound for S-SGD instead of

common almost-sure convergence results (Proposition 3). This bound for the sub-Gaussian

S-SGD is based on a martingale difference sequence argument due to dependence among

dosage decisions over time, and it is of independent interest beyond this paper. Lastly, unlike

most bandit settings, in practice patient feedback cannot be revealed immediately after a

treatment regimen is prescribed. For instance, the delay in observing patient feedback ranges

from two weeks to one month in our case study. We introduce an on the fly strategy for

both contextual bandit and S-SGD to deal with the delayed bandit feedback under stochastic

delay. This strategy updates the system based only on the realized information.

We derive a performance guarantee for the S-SGD Bandit algorithm using the notion

of Bayesian regret, which is cumulative expected loss of our online policy compared to the

clairvoyant optimal policy obtained under full information. Bounding the Bayesian regret

requires bounding (i) estimation loss incurred due to the online estimation of unknown

parameters (Proposition 1), (ii) contextual bandit loss for learning the optimal treatment

(Proposition 2), and (iii) S-SGD sub-optimality loss for learning the optimal dosage of each

treatment (Proposition 3). It is important to note that simply adding these three losses

does not obtain the final regret. Instead, we merge these three loss bounds via a new

bridging technique to yield a Bayesian regret Õ
(
(d + K)

√
T (1 +

√
Nmax)

)
, where d is the

context dimension, K is the number of arms, and Nmax is the maximum number of unrealized

feedbacks over T periods (Theorem II.1 and Corollary II.2). This regret is provably optimal

up to a logarithmic factor (see discussions in §2.4.2). In §2.4.2, we also discuss how our

regret bound improves the existing theoretical result on the both contextual and Lipschitz

bandits.

We extend this result on the online convex optimization case to the one that does not

necessarily have access to a gradient oracle at any point in the dosage decision space, which

is called bandit convex optimization (see §2.4.7). Thus, we also develop a high-probability

loss bound for Bandit SGD (B-SGD) (Proposition 4), and obtain a regret of Õ
(
T 3/4

)
for

another algorithm that we call the B-SGD Bandit algorithm, in which B-SGD is used instead
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of S-SGD (Proposition 5). In general, we observe that in terms of final regret, the contextual

bandit and estimation losses outweigh the S-SGD sub-optimality loss for the S-SGD Bandit

algorithm, whereas the B-SGD sub-optimality loss outweighs the contextual bandit and

estimation losses for the B-SGD Bandit algorithm.

(2) Application to chronic disease progression management for blood pressure

control. In collaboration with medical researchers, we assess our model/algorithm using

a recent ACCORD clinical trial data on high Blood Pressure (BP) patients with type 2

diabetes at high risk for cardiovascular disease in §2.5. Several medications should be in-

troduced in multiple stages, referred to as first-, second-, and third-line treatments. The

recommended course for the first two medications is fairly well established by clinical guide-

lines [14]. However, the clinical guidelines lack the third-line medication and its dosage.

Our goal is to learn the optimal third-line treatment regimen to minimize the risk of having

high systolic BP. We demonstrate that our methodology outperforms the existing clinical

practices and benchmark policies to find the optimal treatment regimen. We also obtain

four important clinical implications in §2.5.4.

(3) General contextual learning and optimization framework for personalized

decision-making. Although our joint contextual learning and optimization framework is

motivated by a fundamental medical decision-making problem, it delivers a general cutting-

edge method to many other applications with two-dimensional nested decision-making aris-

ing in operations management. They include joint pricing and assortment selection, joint

inventory control and pricing, and joint inventory control and vehicle routing, among others.

2.1.2 Literature Review

This work is relevant to two research domains and streams of literature discussed below.

Chronic disease progression control. Chronic diseases are becoming the most pressing

health issue worldwide, constituting a considerable portion of yearly deaths [122]. Semi-

nal works in disease progression modeling were published in the early 1990s (e.g., [77] and

[87]), but the field has flourished recently. To control disease progression, most models are

derived from average responses to treatment in patient populations. [164] presented a fused-

group Lasso model to predict the disease progression and select biomarkers predictive of the

Alzheimer’s progression. [156] proposed a probabilistic disease progression model using unsu-

pervised learning techniques to predict a continuous-time disease progression trajectory from

a set of patients’ records. [30] built offline statistical models (regularized linear regression,

random forests and support vector machines) based on historical data for advanced gastric

cancer to design new combination chemotherapy regimens. [155] introduced a recurrent neu-

ral networks model to predict the Alzheimer’s progression for a next visit. [138] developed a
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deep learning model for chronic disease progression, intervention recommendation and future

risk prediction. [31] presented an optimization-based machine learning method to identify

new targets of existing treatments to increase the treatable cancer patients.

Another trend is toward adaptive clinical trial design ([51] and [26]), which uses data

accumulated during a trial to decide whether the trial should be modified or stopped based

on conclusive evidence on the effectiveness of a treatment. For example, [49] and [50] studied

Bayesian adaptive trial designs under delayed outcome observations and multiple correlated

treatments, respectively. [103] optimized decisions about opening new test sites, setting the

patient recruitment rate, and stopping decisions at interim stages of an adaptive trial design.

[12] developed a Bayesian adaptive trial design to incorporate data from multiple outcomes.

Unlike our paper, this research stream has the goal of establishing the safety and effectiveness

that is expected to apply to the vast majority within a sub-population, satisfying specific

inclusion and exclusion criteria [99].

Several approaches have been proposed to identify personalized treatment regimens.

They include sequential multiple assignment randomized trials ([130] and [11]), stochas-

tic control theory ([84] and [97]), doubly robust estimation ([131] and [36]), Markov decision

processes ([9], [146], and [16]) and reinforcement learning ([139], [140], and [104]) to identify

the optimal personalized treatment regimen from historical data. While these methods rely

on offline observational data and cannot guide the data collection procedure, our work dif-

fers from these studies, in that it has adaptive data collection with each arriving patient to

adaptively modify aspects of the treatment regimen as soon as possible.

Multi-armed bandit. MAB is an online learning framework for making sequential decisions

over time when the effect of each action on the outcome is uncertain. The agent selects an

action at each step with the aim of maximizing the expected cumulative rewards of the

selected actions. The Upper Confidence Bound (UCB) and Thompson Sampling (TS) are

the two common algorithms for solving MAB. UCB is based on the principle of optimism

in the face of uncertainty and selects the action with the highest optimistic (upper bound)

estimate of the expected reward. TS is a randomized Bayesian algorithm, which assumes

that there is a prior distribution on the unknown parameter of the reward distribution. The

idea is to randomly sample from the posterior distribution of the reward of each action, and

then select the action with the highest sampled reward. Contextual MAB is an extension of

MAB in which the reward of each action depends on the context.

There has been a growing interest in the development of personalized medicine methods

using MAB. [8] formulated a MAB model to study how changing treatment decisions during

the course of a trial can achieve better health outcomes. [132] developed a continuous-

time MAB model to construct personalized treatments for chronic diseases by continuously
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monitoring patients’ states and infrequent health events, such as disease relapses and flare-

ups. [127] presented a non-stationary MAB model, which optimizes the selection of messages

that should be sent to each individual so as to improve physical activity and adherence. None

of these works consider contextual patient information for making decisions.

Turning to the theoretical literature on the contextual MAB, [15] introduced the first

algorithm for the linear contextual MAB. [53], [142], [52], and [1] improved this algorithm

by presenting other UCB-based algorithms. [68] designed a UCB-based algorithm for the

generalized linear contextual MAB, which was improved by [108]. [6] and [144] proposed

TS-based algorithms for the linear contextual MAB.

[76] presented the OLS bandit algorithm for a two-armed bandit with i.i.d. context

vectors. [21] presented the LASSO bandit for high-dimensional contexts. [22] developed an

exploration-free greedy algorithm for contextual MAB. [20] studied a contextual MAB with

cross-learning, where the learner also learns the reward that would have been achieved by

choosing the same action under different contexts. [48] proposed a tune sliding window-UCB

algorithm for the non-stationary MAB. [82] studied a general approach to analyze stochastic

linear MABs. Note that none of these studies have treated contextual MAB under a two-

dimensional control.

2.1.3 Paper Organization and General Notation

The remainder of this paper is organized as follows. We formulate the problem in §2.2

and introduce the proposed algorithm in §2.3. We carry out a non-asymptotic regret analysis

in §2.4. In §2.5, we provide a case study using type 2 diabetes mellitus data. Finally, we

conclude our paper in §2.6.

All vectors are column vectors. For any vector x ∈ Rn, xT denotes its transpose, and

[x]k presents its kth element. The Euclidean norm and weighted norm of the vector x are

‖x‖ =
√
xTx and ‖x‖M =

√
xTMx, respectively. The inner product of two vectors is defined

as 〈x, y〉 =
∑n

i=1 xiyi. The determinant of a matrix M is denoted by det(M), and I denotes

the identity matrix. For a symmetric positive definite matrix V , we define λmin as the

smallest eigenvalues of V . For two symmetric matrices V and M , V �M means that V −M
is positive semidefinite. We use 1(·) as the indicator function. The projection operator for

projection of a point x ∈ Rn onto a convex set C is defined by ProjC(x) , arg miny∈C ‖x− y‖.
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2.2 Contextual Multi-Armed Bandit with Two-Dimensional Con-

trol

We formally define the proposed contextual multi-armed bandit with a two-dimensional

control in the context of a personalized disease progression control system model in this

section. Consider a finite time horizon of length T . We define T = {1, . . . , T} as the set of

time periods.

Two-dimensional control and context. Unlike most bandit settings, we have a two-

dimensional control with a nested structure, which includes (i) treatment and (ii) dosage.

The doctors should choose a treatment from a set of possible treatments for a patient,

and also decide a corresponding dosage of the selected treatment. This can be viewed as

an extended multi-armed bandit problem where the decision maker must choose which arm

(treatment) to pull as well as how far to pull the selected arm (i.e., the dosage can be thought

of as how far to pull the selected arm). Indeed, each arm has a control (dosage) that affects

the arm’s performance.

There are two bandit feedbacks (main outcome and sub-outcome). In particular, in the

context of chronic diseases, we need to minimize the disease progression risk as the main

outcome, through optimizing both treatment and its corresponding dosage for an individual.

The disease progression risk often depends on a treatment and dosage effectiveness measure

that we shall call the treatment-dosage sub-outcome metric. For an example for this setting,

refer to the case study in §2.5.

We denote K = {1, . . . , K} to be the set of actions, and each action/treatment k ∈ K
corresponds to a K-dimensional action vector φAk (t), where the subscript k in φAk (t) corre-

sponds to the selected treatment (e.g., consider φAk (t) = (1k=A,1k=B,1k=C)T , where A, B,

and C are three different treatments, and only one of them is selected). Also, each action

k ∈ K corresponds to a K-dimensional dosage vector yk(t), where kth element belongs to

[∆LB
k ,∆UB

k ] and all other elements are zero.

At each time period t, we observe the contextual information associated with a patient.

Each patient t has a two-part context vector (φX (t), ψX (t)), where φX (t) ∈ Rd1 and ψX (t) ∈
Rd2 , which is picked by an oblivious adversary and does not necessarily come from any fixed

distribution. The difference between these two parts of the context is that φX (t) directly

affects the disease progression risk, while ψX (t) indirectly affects the disease progression

risk through its effect on the treatment-outcome metric. For instance, for patients with

chronic kidney disease, a part of the context (e.g., cholesterol and triglycerides) affects the

disease progression risk (main outcome) through its effect on blood pressure (sub-outcome),

and another part of the context (e.g., potassium and serum creatinine) affects the disease
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progression risk directly. We define Φk(t) := (φX (t)T , φAk (t)T )T as the feature vector, which

concatenates the context vector φX (t) and the action vector φAk (t). We define Ψk(t) :=

(ψX (t)T , φAk (t)T )T as another feature vector, which concatenates the context vector ψX (t)

and the action vector φAk (t) (see Figure 2.1). For ease of notation, we denote Υk(t) =

(Ψk(t)
T , yk(t)

T )T as the augmented feature vector, which includes the dosage vector as well.

Figure 2.1: The illustration of the personalized disease progression control system modeled
by a contextual multi-armed bandit with a two-dimensional control for making treatment
and corresponding dosage decisions.

Patient reward (disease progression risk). Choosing each action k yields an uncertain

binary reward Rk(t) (main outcome), where Rk(t) = +1 corresponds to success (i.e., the dis-

ease is not-progressed) and Rk(t) = −1 corresponds to failure (i.e., the disease is progressed).

If we choose action k ∈ K at time t, it yields an uncertain binary reward with the following

expected value:

E
[
Rk(t)

]
= σ

(
ΦT
k (t) · θ − fk

(
Ψk(t), yk(t); π

))
, (2.1)

where σ(·) : R → R+ is a logistic function, θ ∈ Rd1+K is the unknown (true) parameter

corresponding to the feature vector Φk(t), and fk is the dosage penalty function with the

unknown (true) parameter π ∈ Rd2+2K defined in (2.2). The error ξk(t) = Rk(t)− σ
(
ΦT
k (t) ·

θ − fk(Ψk(t), yk(t);π)
)

is a 1-sub-Gaussian variable (see Definition 1) conditional on all the

previous realized feature vectors, dosages, and rewards. The set Ht is the history of all the

observed information available at the beginning of time period t. We assume that there

are deterministic sets for Φk(t) and Ψk(t). Without loss of generality, we also assume that

‖Φk(t)‖ ≤ 1, ‖Ψk(t)‖ ≤ 1, ‖θ‖ ≤ cθ and ‖π‖ ≤ cπ.

Definition 1. A real-valued random variable ξ is λ-sub-Gaussian if E[etξ] ≤ eλ
2t2/2, ∀t ∈ R.

This definition implies that E[ξ] = 0 and Var[ξ] ≤ λ2. Many distributions are sub-

Gaussian, including any bounded and centered distribution, and Gaussian distribution.
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Dosage penalty function. When the decision-maker decides on a dosage of a selected

treatment k for a patient, there is often a trade-off between under-dosing outcome (e.g.,

poor disease control) and over-dosing outcome (e.g., side effects of medication). We model

this trade-off by a dosage penalty function fk(.) : Rd2+2K → R for each treatment k ∈ K as

follows:

fk
(
Ψk(t), yk(t); π

)
= αk

(
ΨT
k (t) · ω + yTk (t) · τ − q

)+

︸ ︷︷ ︸
over-dosing

+ βk

(
q −ΨT

k (t) · ω − yTk (t) · τ
)+

︸ ︷︷ ︸
under-dosing

,

(2.2)

where π = (ωT , τT )T ∈ Rd2+2K is the unknown (true) vector parameter corresponding to

the feature vector Ψk(t) and the dosage vector yk(t), respectively. Also, αk, βk ∈ R+ are

the known penalty rates for over-dosing and under-dosing, respectively, and q ∈ R+ denotes

the known threshold between over-dosing and under-dosing regions. This is the target for

the treatment-dosage sub-outcome that clinicians want to control for. For example, doctors

usually target a systolic BP of 120 mmHg under the intensive high BP therapy for patients

with type 2 diabetes (see §2.5).

Note that the dosage penalty function fk(.) evaluates how bad over-dosing or under-

dosing is for each patient. The stochasticity of this function comes from the uncertainty

in the feature information and an unknown parameter π. Although we know the structure

of the dosage penalty function, there is an unknown parameter π, which hinders us from

minimizing this function to find the optimal dosage. This issue is addressed in §2.4.5.

Treatment-dosage sub-outcome. If we choose a treatment k with corresponding dosage

yk(t) for patient t with feature information Ψk(t), it yields an uncertain treatment-dosage

sub-outcome Πk(t) with the following expected value:

E
[
Πk(t)

]
= ΨT

k (t) · ω + yTk (t) · τ, (2.3)

where π = (ωT , τT )T ∈ Rd2+2K is the unknown (true) vector parameter corresponding to the

feature vector Ψk(t) and the dosage vector yk(t), respectively. The error ζk(t) = Πk(t) −
ΨT
k (t) ·ω−yTk (t) ·τ is a λ-sub-Gaussian variable (see Definition 1) conditional on the previous

realized feature vectors, dosages, and treatment-dosage sub-outcomes.

Note that this metric can be measured at each patient visit in many practical settings.

For instance, for patients with type 2 diabetes (see §2.5), systolic blood pressure, which is

easily measured, can be presumed as a treatment-dosage sub-outcome, because maintain-

ing a normal systolic blood pressure is of paramount important for reducing the risk of

cardiovascular events and mortality.
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Furthermore, it should be pointed out that unlike most classical contextual MABs, we

incorporate delayed feedback for the treatment-dosage sub-outcome and reward. For example,

in our case study in §2.5, true patient feedback is often realized within two to four weeks on

average after prescribing a treatment with a specified dosage to a patient. We assume that

{D(t)}Tt=1 are i.i.d. non-negative random variables with mean µD that satisfy the following

regularity condition:

P
(
D(t)− µD ≥ m

)
≤ exp

(
− mp+1

2σ2
D

)
, (2.4)

for some p ≥ 0 and σD > 0. This assumption includes the most common delay patterns in

practice (e.g., D(t) is an exponential delay when p = 0 and D(t) is a sub-Gaussian delay

when p = 1).

The goal of our contextual bandit with two-dimensional control model is to maximize the

cumulative expected rewards (or the probability of preventing a disease progression) over a

finite horizon of length T under delayed feedback while learning the patient-specific rewards.

2.3 S-SGD Bandit Algorithm

We present the proposed joint learning and optimization algorithm for the above-described

model. This algorithm synergizes both the contextual bandit and online convex optimization

techniques and provides a personalized disease progression control system. We describe the

high-level intuition of the proposed algorithm in §2.3.1. In §2.3.2, we provide the detailed

steps.

2.3.1 Main Ideas of the S-SGD Bandit Algorithm

There are often several treatment options with different dosages for controlling the pa-

tient’s disease progression. However, there is uncertainty about the impact of each treatment

and its corresponding dosage on controlling disease progression. In the proposed algorithm,

patients can be characterized by a unique set of characteristics. The best treatment is then

selected based on these characteristics, and the corresponding dosage is optimized over the

prior history of patients seen.

We do not know the true distribution of patient rewards; hence, we need to learn the

distribution of unknown parameters θ and π while making treatment and dosage decisions

adaptively. We put some Gaussian prior distributions for these parameters based on some

prior beliefs. The initial results from a pilot study can be utilized to construct such reasonable

prior beliefs. In the next step, the algorithm provides an estimate for the expected reward
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(i.e., probability of avoiding disease progression) after observing the patient’s contextual

information. This estimate depends on these two unknown parameters, which need to be

learned based on the available information. The exploration-exploitation trade-off should

be addressed properly. For example, according to the parameter estimates in the early

stage, we may incorrectly conclude that one treatment with a corresponding dosage are

not an appropriate option for a patient with a certain medical history, and subsequently

may not be able to identify this incorrect belief without choosing a different treatment and

corresponding dosage for a very similar patient. Inspired by the idea of posterior sampling,

the algorithm assumes posterior distributions over the unknown parameters θ and π, and

then randomly samples from these distributions. The intuition behind this sampling is to

balance the exploration-exploitation trade-off. If the algorithm only uses the mean of the

posterior distribution in each time period as an estimate for the unknown parameters, it

exploits the current belief about the unknown parameter, and so there is no possibility for

exploring the alternative choices. However, there is no guarantee that the estimated value is

optimal. Thus, we add an exploration phase by taking a random sample from the posterior

distributions. We have an exploitation phase as well in which we choose the policy that

provides the maximum expected reward.

The algorithm leverages the new revealed feedbacks (i.e., whether the disease is progressed

as well as the treatment-dosage sub-outcome) to update the posterior distribution of the

unknown parameters and also the dosage of each treatment. In practice, unlike most bandit

settings, the patient feedback cannot be revealed immediately after a treatment with a

corresponding dosage are prescribed. For instance, in our case study in §2.5, the patient

feedback is realized from two to four weeks on average. The algorithm uses an on the fly

strategy to deal with the delayed feedback with stochastic delay. It employs the information

of the patient to whom a treatment with a specified dosage is already prescribed only if the

patient’s feedback is revealed up to the current time.

For dosage selection, the algorithm starts with a safe dosage from a range of possible

dosages for each treatment option. It then deploys an online stochastic sub-gradient descent

optimization procedure in which the dosage of each treatment is updated by leveraging only

the revealed patients’ feedbacks. This optimization procedure involves taking the (noisy)

derivative of the dosage penalty function for all patients with newly realized feedbacks. For

each such patient, this is obtained by checking whether the patient has an under-dosing or

over-dosing for the prescribed treatment. It should be noted that the treatment selection is

personalized, but there is a universal best dosage for each treatment that is learned over time.

Finally, by exploiting the new revealed feedbacks at each time period, the algorithm updates

the current belief about the posterior distributions of the unknown vector parameters θ and

16



π. This updating procedure is performed using an online Bayesian regression based on a

Laplace approximation (see Appendix F for details).

2.3.2 Description of TS-based S-SGD Bandit Algorithm

Initialization. Initialize a safe, arbitrary dosage vector yk(1) for each treatment k ∈ K,

where its kth element belongs to [∆LB
k ,∆UB

k ] and all other elements are zero. Initialize the

step size ηk.

Parameters. Let m1
` and (q1

` )
−1 be the mean and variance of the Gaussian prior distribution

for the `-th element of θ vector. Let u1 and (P 1)−1 be the mean and covariance matrix of

the Gaussian prior distribution for π vector. All these parameters can be initialized based

on some prior beliefs.

Main Loop. We proceed in time periods T = {1, . . . , T}, which correspond to epochs of

patient arrivals. There are six main steps in each time period t ∈ T , described below.

Step 1 (Context Information). Observe the context information (φX (t), ψX (t)) of

patient t.

Step 2 (Sampling). In this step, random samples are drawn from the posterior distri-

butions of parameters. These samples will be used in estimating the unknown parameters

in the next step.

(2a) Draw a sample [θ̃(t)]` from the posterior normal distribution [θ(t)]` ∼ N (mt
`, (q

t
`)
−1)

for each corresponding element ` ∈ {1, . . . , d1 +K} of the feature vector.

(2b) Draw a sample π̃(t) from the posterior normal distribution π(t) ∼ N (ut, (P t)−1) for

the corresponding feature and dosage vectors.

Step 3 (Policy Optimization and Implementation). Having the samples θ̃(t), and

π̃(t) = (ω̃(t), τ̃(t)), choose the treatment k(t) with the corresponding dosage yk(t) for patient

t, where

k(t) = arg max
k∈K

{
σ
(

ΦT
k (t) · θ̃(t)− fk

(
Ψk(t), yk(t); π̃(t)

))}
.

Step 4 (Feedback Observation). For each treatment k ∈ K, obtain Sk(t) as the set of

time-stamps with new realized feedbacks (i.e., rewards and treatment-dosage sub-outcomes)

at time period t, which is calculated by Sk(t) = Mk(t + 1) −Mk(t), where the set Mk(t)

contains the time-stamps with realized feedbacks by the end of time period t−1 corresponding

to treatment k.
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Step 5 (Online Stochastic Sub-Gradient Descent). Update and calculate the fol-

lowing:

(5a) Calculate ∇̃fk(s) = [τ̃(t)]k

(
αk1

{
Πk(s) > q

}
− βk1

{
Πk(s) < q

})
for each realized

treatment-dosage sub-outcome Πk(s) with time-stamp s ∈ Sk(t) at time period t for

each k ∈ K.

(5b) Obtain the next period’s dosage for each treatment k ∈ K by

[yk(t+ 1)]k = Proj[∆LB
k ,∆UB

k ]

(
[yk(t)]k − ηk

∑
s∈Sk(t)

∇̃fk(s)
)
.

Step 6 (Belief Updating). We leverage the patients’ bandit feedback (i.e., whether the

disease is progressed, and the treatment-dosage sub-outcome) whose time-stamp is in Sk(t)
for each treatment k to update the posterior distributions of θ and π vector parameters.

(6a) Solve the following optimization problem,

ρ̂ , arg max
ρ

1

2

d1+K∑
`=1

qt` ([ρ]` −mt
`)

2 +
∑
k∈K

∑
s∈Sk(t)

log
(
1 + e−Rk(s) (ρTΦk(s)−fk(Υk(s);π̃(t)))

)
.

(6b) Update the mean and variance of the posterior distribution for θ and π, respectively,

mt+1 = ρ̂, qt+1
` = qt` +

e−(ρ̂TΦk(t)−fk(Υk(t);π̃(t)))

(1 + e−(ρ̂TΦk(t)−fk(Υk(t);π̃(t))))2

(
[Φk(t)]`

)2

,∀` ∈ {1, . . . , d1 +K}

P t+1 = P t + Ψk(t) ·ΨT
k (t), et+1 = et +

∑
k∈K

∑
s∈Sk(t)

Ψk(s) · Πk(s), u
t+1 = (P t+1)−1et+1.

It is worth noting that the UCB-based S-SGD Bandit variant (Algorithm 2) of the above

proposed algorithm is presented in Appendix D.

2.4 Theoretical Performance Analysis and Discussions

We derive a non-asymptotic (i.e., finite-time) performance guarantee for the S-SGD Ban-

dit algorithm by proving a regret bound. We start by defining the performance measure in

§2.4.1. We then state the main theoretical result, and position it in the related literature in

§2.4.2. In §2.4.3, we provide a roadmap for our regret analysis, which is derived in §2.4.4,

§2.4.5, and §2.4.6. In §2.4.7, we extend our result to the bandit convex optimization and

present the regret of the B-SGD Bandit algorithm.
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2.4.1 Performance Measure

We evaluate the performance of the S-SGD Bandit algorithm in terms of the expected

regret (see Definition 2), where the expectation is taken over the prior distribution of reward

function. This is also called the Bayesian regret since it represents the Bayes risk ([142]

and [144]). The Bayesian regret has two main advantages: (i) it allows for any arbitrary

prior distribution for the unknown parameters, and (ii) it bridges between the TS and UCB

methods, which provides the opportunity to leverage some appealing theoretical properties

of UCB methods in deriving the Bayesian regret. Our benchmark is the clairvoyant optimal

policy, which knows the true parameters (i.e., it knows the expected reward and treatment-

outcome metric) and chooses the optimal treatment given each individual and the optimal

dosage for each prescribed treatment.

Definition 2 (Bayesian Regret). Given the unknown vector parameters θ and π, the T -time

period regret of our learning and optimization algorithm is defined by

Regret(T, θ, π) = E
[
OPT − ALG| θ, π

]
,

where OPT and ALG are the total rewards of the clairvoyant optimal policy and our on-

line policy, respectively, over T time periods. The conditional expectation is taken over the

random realization of the rewards given θ and π, and the random samples drawn from the

posterior distributions. Bayesian regret over the T time periods is then defined by

BayesianRegret(T ) = E
[
Regret(T, θ, π)

]
,

where the expectation is taken over the prior distributions of θ and π.

2.4.2 Main Theoretical Results

Below, we first state our main theoretical results and position them in the related liter-

ature.

Theorem II.1 (Bayesian Regret of the TS-based S-SGD Bandit Algorithm). The

Bayesian regret of the TS-based S-SGD Bandit algorithm over finite time horizon T is as

follows:

(a) under the immediate feedback (no delay) setting,

O
(√

T
(
(d1 +K) log

(
T/(d1 +K)

)
+ (d2 +K) log

(
T/(d2 +K)

)))
,
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(b) under the delayed feedback with stochastic delay setting,

O
(√

T (d1 +K)
(

log
(
T/(d1 +K)

)
+
√
Nmax log(Nmax/(d1 +K))

)
+

√
T (d2 +K)

(
log
(
T/(d2 +K)

)
+
√
Nmax log(Nmax/(d2 +K))

))
,

where K is the number of actions (treatments), d1 and d2 are the dimensions of context

vectors. Also, Nmax is the maximum number of unrealized feedbacks by the time period T ,

that is upper bounded by 2µD + σ̃
(√

2 log T +
√

2 log
(
1/δ
)

+ c′(σ̃
√

2 log T + 1)
)

+ c, with

probability 1− δ, where c = 2 σ̃2 log (2σ2
D + 1) + 1, c′ = 2 log(2σ2

D + 1), and σ̃ = σD
√
p+ 2.

Corollary II.2 (Regret of the UCB-based S-SGD Bandit Algorithm). The UCB-

based S-SGD Bandit algorithm has the regret of the same order as the Bayesian regret (The-

orem II.1).

Discussions of the Main Results. It is worthwhile positioning our theoretical results

(for the contextual multi-armed bandit with a two-dimensional decision space) in the related

literature.

First, we shall relate to the literature on linear contextual bandits with d-dimensional con-

text vectors (but with only one-dimensional decision space). [53] and [1] present UCB-based

policies with Õ(d
√
T ) worst-case regret bound, which is minimax optimal up to logarithmic

factors, as proved by [53] for infinite number of arms. [52] achieve a lower bound Ω(
√
dT )

for finite number of arms. [144] derive a Õ(d
√
T ) Bayesian regret bound for TS-based poli-

cies, which matches the regret bound of [53] for UCB-based policies. [6] and [2] obtain a

Õ(d3/2
√
T ) frequentist regret bound for a variant of TS-based policies, which is far from the

optimal rate by a factor of
√
d. [68] develop a O(d log3/2(T )

√
T ) regret bound for generalized

linear contextual bandits. We cannot replicate the algorithms and regret analyses of any of

these studies for our problem, which spurs new methodological innovations. This is because

we have (i) a two-dimensional decision space, and (ii) two bandit feedbacks. The highest

order term of our regret does not depend on delays and is tight (optimal) up to a logarithmic

factor compared to the lower bound of [53]. It is also within a factor
√
d of the lower bound

of [52]. The feedback delay impacts the second highest order term of the regret by a factor

of
√
Nmax log(Nmax), where Nmax is upper bounded by a logarithmic quantity in T .

Second, we shall also relate our paper to the literature on Lipschitz bandit with two-

dimensional decision space. Note that this line of literature does not consider contextual

information (while our setting does). Ignoring the contextual information, our problem can

be viewed as a two-dimensional Lipschitz bandit problem where one dimension is treatment,

and the other one is the corresponding dosage. For this two-dimensional Lipschitz bandit
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setting, [101] and [38] present online policies with the optimal regret of O
(
T 3/4

)
. However,

in our problem the treatment desicisons are discrete, and given a treatment, the reward

function is convex in the dosage level, and hence has a richer structure than the Lipschitz

bandit. The balk of our analysis is to utilize this richer structure to lower the regret from

O
(
T 3/4

)
to a regret of order O

(√
T log T

)
. To achieve this regret improvement, we obtain

high-probability bounds for estimation, contextual bandit, and S-SGD losses, and then merge

them through a new bridging technique.

We also note that our theoretical result applies to any general convex and sub-differentiable

dosage penalty function (e.g., news-vendor-like dosage function considered in our model) that

its gradient can be observed in each iteration, and our techniques can be used in other set-

tings.

2.4.3 Roadmap for Proving the Main Theoretical Result

We provide a road-map for proving the main theoretical result (Theorem II.1). We first

introduce the following notations for the expected reward function of any treatment k at

time period t under (i) estimated parameter (θ̂(t), π̂(t)) and a sub-optimal dosage yk(t), (ii)

true parameter (θ, π) and a sub-optimal dosage yk(t), and (iii) true parameter (θ, π) and the

optimal dosage y∗k, respectively:

V̂k(t) := σ
(

ΦT
k (t) · θ̂(t)− fk

(
Ψk(t), yk(t); π̂(t)

))
,

Vk(t) := σ
(

ΦT
k (t) · θ − fk

(
Ψk(t), yk(t); π

))
,

V∗k(t) := σ
(

ΦT
k (t) · θ − fk

(
Ψk(t), y

∗
k; π

))
.

The Bayesian regret can be then derived by the following bridging technique (see Figure

2.2):

BayesianRegret(T ) = E
[ T∑
t=1

(
V∗k∗(t)−Vk(t)

)]
= E

[ T∑
t=1

(
V∗k∗(t)−V∗k(t)

)
+

T∑
t=1

(
V∗k(t)− V̂k(t)

)
+

T∑
t=1

(
V̂k(t)−Vk(t)

)]
.

In the above decomposition, the first term reflects the loss due to finding the optimal treat-

ment (termed contextual bandit loss), the second term reflect the loss due to finding the

optimal dosage of a treatment (termed S-SGD sub-optimality loss), and the last one corre-

sponds to the online estimation of unknown parameters (termed estimation loss).

Figure 2.2 outlines the main steps of the regret analysis. Proposition 1 derives a high-
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probability confidence bound on the online estimation of the expected reward for each se-

lected treatment k at each time period t, which results in bounding the estimation loss

E
[∑T

t=1

(
V̂k(t)−Vk(t)

)]
. Proposition 2 develops a high-probability confidence bound on the

contextual bandit loss E
[∑T

t=1

(
V∗k∗(t)−Vk(t)

)]
incurred due to learning the optimal treat-

ment decision k∗. Lastly, a high-probability confidence bound on the S-SGD sub-optimality

loss E
[∑T

t=1

(
V̂k(t) − Vk(t)

)]
incurred due to finding the optimal dosage decision for any

treatment option k is obtained by using Propositions 3 and 1.

Figure 2.2: The outline for deriving the regret of the proposed joint contextual learning and
optimization algorithms (S-SGD and B-SGD Bandit algorithms).

2.4.4 Theoretical Results on Estimation and Contextual Bandit Losses

In this section, we first establish a high-probability bound on the estimation loss between

true and estimated expected reward or |Vk(t)−V̂k(t)| of each selected treatment k with any

dosage in Proposition 1. Using this result, Proposition 2 bounds the contextual bandit loss.

Proposition 1 (Estimation Loss for Expected Reward of each Treatment). For any

t and δ > 0, the following loss bound on the difference between the true and estimated

expected rewards under each selected treatment k holds with probability at least 1− 2δ:∣∣∣σ(ΦT
k (t) · θ − fk

(
Ψk(t), yk(t); π

))
− σ

(
ΦT
k (t) · θ̂(t)− fk

(
Ψk(t), yk(t); π̂(t)

))∣∣∣ (2.5)

≤ 1

2cσ
‖Φk(t)‖V −1

t

(√
2 log

(
det(Vt)1/2 det(γI)−1/2

δ

)
+

√
2(d1 +K)N(t) log

(
N(t)

d1 +K

)

+ κcθ

)
+

max{αk, βk}
2

‖Υk(t)‖U−1
t

(√
2λ2 log

(
det(Ut)1/2 det(νI)−1/2

δ

)
+

cψ

√
4(d2 + 2K)N(t) log

(
N(t)

d2 + 2K

)
+ ηcπ

)
,

where cσ = inf
θ,π,Φk(s),Υk(s)

∇σ
(
ΦT
k (s) · θ−fk

(
Υk(s); π

))
. Also, N(t) is the number of unrealized
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feedbacks when we are making a decision in time period t, which is sub-Gaussian and upper

bounded by 2µD + σ̃
√

2 log
(
1/δ
)

+ c with probability 1− δ, where c = 2 σ̃2 log (2σ2
D + 1) + 1

and σ̃ = σD
√
p+ 2.

Proof. Proof of Proposition 1: Assume that k is the treatment selected by the algorithm

for patient t. We decompose upper bounding the estimation loss (2.6) or |Vk(t) − V̂k(t)|,
which is the difference between the true and estimated expected rewards of patient t under

treatment k, into two parts:∣∣∣σ(ΦT
k (t) · θ − fk

(
Ψk(t), yk(t); π

))
− σ

(
ΦT
k (t) · θ̂(t)− fk

(
Ψk(t), yk(t); π̂(t)

))∣∣∣ (2.6)

≤
∣∣∣σ(ΦT

k (t) · θ − fk
(
Ψk(t), yk(t);π

))
− σ

(
ΦT
k (t) · θ̂(t)− fk

(
Ψk(t), yk(t);π

))∣∣∣︸ ︷︷ ︸
Part I

(2.7)

+
∣∣∣σ(ΦT

k (t) · θ̂(t)− fk
(
Ψk(t), yk(t); π

))
− σ

(
ΦT
k (t) · θ̂(t)− fk

(
Ψk(t), yk(t); π̂(t)

))∣∣∣︸ ︷︷ ︸
Part II

(2.8)

Part I (Estimation loss of parameter θ): We bound the loss (2.7) in two main steps:

(1) deriving an online estimation θ̂(t) for θ, and (2) developing a high-probability bound

for the difference between the true expected reward σ
(
ΦT
k (t) · θ − fk

(
Ψk(t), yk(t); π

))
and

the estimated expected reward σ
(
ΦT
k (t) · θ̂(t) − fk

(
Ψk(t), yk(t);π

))
for patient t under the

treatment k.

Step 1 (Online estimation of parameter θ): Recall that Rk(t) is the uncertain binary

reward related to the disease progression of patient t with the following expected value,

E[Rk(t)] = σ
(

ΦT
k (t) · θ − fk

(
Ψk(t), yk(t); π

))
.

In our setting, patient feedback cannot be realized immediately after a decision is made for

the patient. Indeed, true feedback is revealed with a stochastic delay. In the S-SGD Bandit

algorithm, the model parameters get updated on the fly. This implies that we use the

information of a patient to whom a treatment with a dosage was prescribed previously only

if her/his feedback is realized up to the current time. Thus, the estimator of θ exploits only

the realized context-feedback pairs in the history at time t. We denote M(t) = ∪
k∈K
Mk(t)

as the set of time-stamps with realized feedbacks by the end of time period t − 1, where

Mk(t) = {s | s ≤ t− 1, s + D(s) ≤ t− 1, k(s) = k}. Moreover, we denote N (t) = ∪
k∈K
Nk(t)

as the set of time-stamps with unrealized feedbacks by the end of time period t − 1, where

Nk(t) = {s | s ≤ t− 1, s+D(s) > t− 1, k(s) = k}.
Let Θ be the set of admissible parameters θ. We define θ̄(t) as the quasi-maximum

likelihood estimator of the parameter θ ∈ Θ at time period t. Given only the realized
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feedbacks in the history at time period t, the regularized log-likelihood function Lt(θ) can

be calculated for κ > 0 as:

Lt(θ) =
∑

s∈M(t)

[
Rk(s) log σ

(
ΦT
k (s) · θ − fk

(
Ψk(s), yk(s); π

))
+ (1−Rk(s)) log

(
1− σ

(
ΦT
k (s) · θ − fk

(
Ψk(s), yk(s); π

))) ]
− κ

2
‖θ‖2 .

Next, we need to find the maximum of Lt(θ) so as to obtain the quasi-maximum likelihood

estimator θ̄(t). The derivative of Lt(θ) with respect to the vector parameters θ as follows:

∇θLt(θ) =
∑

s∈M(t)

(
Rk(s)− σ

(
ΦT
k (s) · θ − fk

(
Ψk(s), yk(s); π

)))
Φk(s)− κθ,

Therefore, θ̄(t) is the unique solution of the estimating equation ∇θLt(θ) = 0. However, this

estimator might be outside of the admissible set Θ. To deal with this issue, we project θ̄(t)

back onto the set Θ, and derive the projected estimator θ̂(t) as follows:

θ̂(t) = arg min
θ∈Θ

∥∥ht(θ)− ht(θ̄(t))∥∥V −1
t
,

where ht(θ) =
∑t−1

s=1 σ
(
ΦT
k (s) · θ − fk

(
Ψk(s), yk(s); π

))
Φk(s) + κθ, and Vt =

∑t−1
s=1 Φk(s) ·

ΦT
k (s) + γI is the design matrix corresponding to the first t − 1 time-steps of the observed

features, where γ = κ/cσ ≥ 1 is a scalar constant.

Step 2 (High-probability bound for the estimation of θ): According to the Lipschitz

property of the logistic function σ(.), and the mean-value theorem for the vector-valued

functions, Lemma II.4 (see Appendix C) yields the following bound for each time period t:∣∣∣σ(ΦT
k (t) · θ − fk

(
Ψk(t), yk(t); π

))
− σ

(
ΦT
k (t) · θ̂(t)− fk

(
Ψk(t), yk(t);π

))∣∣∣
≤ 1

2cσ
‖Φk(t)‖V −1

t

∥∥ht(θ)− ht(θ̄(t))∥∥V −1
t
.

Next, we decompose the expression
∥∥∥ht(θ̂(t))− ht(θ)∥∥∥

V −1
t

on the RHS of above bound as
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follows:

∥∥ht(θ̄(t))− ht(θ)∥∥V −1
t
≤
∥∥∥ ∑
s∈M(t)

(
σ
(
ΦT
k (s) · θ̄(t)− fk

(
Ψk(s), yk(s); π

))
−

σ
(
ΦT
k (s) · θ − fk

(
Ψk(s), yk(s); π

)))
Φk(s) + κ(θ̄(t)− θ)

∥∥∥
V −1
t

+∥∥∥ ∑
s∈N (t)

(
σ
(
ΦT
k (s) · θ̄(t)− fk

(
Ψk(s), yk(s); π

))
− σ

(
ΦT
k (s) · θ − fk

(
Ψk(s), yk(s);π

)))
Φk(s)

∥∥∥
V −1
t

,

where the inequality holds by triangle inequality. Below, we bound each term on the right-

hand side of the above inequality, separately.

Section I: We first bound the first term on the right-hand side of the above inequality.

From ∇θLt(θ) = 0, we have the following over the set M(t) for each t:∑
s∈M(t)

σ
(
ΦT
k (s) · θ̄(t)− fk

(
Ψk(s), yk(s); π

))
Φk(s) + κ θ̄(t) =

∑
s∈M(t)

Rk(s) Ψk(s).

Consequently, we can derive the following bound for Section I:∥∥∥ ∑
s∈M(t)

(
σ
(
ΦT
k (s) · θ̄(t)− fk

(
Ψk(s), yk(s);π

))
−

σ
(
ΦT
k (s) · θ − fk

(
Ψk(s), yk(s); π

)))
Φk(s) + κ(θ̄(t)− θ)

∥∥∥
V −1
t

=

∥∥∥∥∥∥
∑

s∈M(t)

(
Rk(s)− σ

(
ΦT
k (s) · θ − fk

(
Ψk(s), yk(s); π

)))
Φk(s)− κθ

∥∥∥∥∥∥
V −1
t

≤

∥∥∥∥∥∥
∑

s∈M(t)

ξk(s) Φk(s)

∥∥∥∥∥∥
V −1
t

+ κ ‖θ‖V −1
t
≤

∥∥∥∥∥
t−1∑
s=1

ξk(s) Φk(s)

∥∥∥∥∥
V −1
t

+ κcθ, (2.9)

where the first equality holds since θ̄(t) is the unique solution of ∇θLt(θ) = 0. The

first inequality is by triangle inequality and knowing that ξk(t) = Rk(t) − σ
(
ΦT
k (t) · θ −

fk(Ψk(t), yk(t); π)
)
. The second inequality holds because ‖θ‖2

V −1
t
≤ λ−1

min(Vt) ‖θ‖2 ≤ ‖θ‖2

and ‖θ‖ ≤ cθ.

Moreover, recall that the error term ξk(t) is a conditionally 1-sub-Gaussian random vari-

able, and also Vt =
∑t−1

s=1 Φk(s) · ΦT
k (s) + γI, then

∑t−1
s=1 ξk(s) Φk(s) is a vector-valued

martingale (see Definition 3 in Appendix C). Accordingly, we can show that this martingale

stays close to zero with high probability. That is, for each time period t and δ > 0, with
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probability at least 1− δ, the following bound holds (see Theorem 1 in [1]):∥∥∥∥∥
t−1∑
s=1

ξ(s) Φk(s)

∥∥∥∥∥
V −1
t

≤

√
2 log

(
det(Vt)1/2 det(γI)−1/2

δ

)
. (2.10)

Section II: We have the following bound over the set N (t) for each time period t:∥∥∥∥∥∥
∑
s∈N (t)

(
σ
(
ΦT
k (s) · θ̄(t)− fk

(
Ψk(s), yk(s);π

))
− σ

(
ΦT
k (s) · θ − fk

(
Ψk(s), yk(s); π

)))
Φk(s)

∥∥∥∥∥∥
V −1
t

≤

∥∥∥∥∥∥
∑
s∈N (t)

Φk(s)

∥∥∥∥∥∥
V −1
t

≤
∑
s∈N (t)

‖Φk(s)‖V −1
t
≤

√
2(d1 +K)N(t) log

(
N(t)

d1 +K

)
. (2.11)

The first inequality holds because the logistic function implies
∣∣σ(x)− σ(y)∣∣ ≤ 1 for each x

and y, and the second one holds by triangle inequality. The third inequality is obtained using

Lemma II.5 (see Appendix C), whereN(t) = |N (t)|. Note thatN(t) =
∑t−1

s=1 1
{
s+D(s) ≥ t

}
is the random number of unrealized feedbacks when we are making a decision in time period

t. In Lemma II.6 (see Appendix C), by building a sequence of stopping times for the number

of realized feedbacks, we characterize the tail behavior of Nt, so that N(t) is sub-Gaussian

and N(t) ≤ 2µD + σ̃
√

2 log
(
1/δ
)

+ c with probability 1− δ, where c = 2 σ̃2 log (2σ2
D + 1) + 1

and σ̃ = σD
√
p+ 2.

Putting the high-probability bounds developed in Sections I and II together, Part I in

(2.7) can be bounded with probability at least 1− δ.
Part II (Estimation loss of parameter π): From §2.2, recall that Πk(t) is the uncertain

treatment-dosage sub-outcome with the following expected value,

E
[
Πk(t)

]
= ΨT

k (t) · ω + yTk (t) · τ.

Note that π = (ωT , τT )T , and let Υk(t) = (ΨT
k (t), yTk (t))T for the ease of notation. We define

π̄(t) as the maximum-likelihood estimator of π at time period t with the regularization

parameter η > 0. Since the linear model can be viewed as a generalized linear model with

the above linear link function, this estimator is the unique solution of ∇πUt(π) = 0, where:

∇πUt(π) =
∑

s∈M(t)

(
Πk(s)−ΥT

k (s) · π
)

Υk(s)− ηπ.

Let Λ be the set of admissible parameters π. To ensure that the estimated parameter π̄(t)

belongs to this admissible set, we define the projected estimator π̂(t), which projects π̄(t)
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back onto Λ as:

π̂(t) = arg min
π∈Λ

‖ gt(π)− gt(π̄(t))‖U−1
t
,

where gt(π) =
∑t−1

s=1

(
ΥT
k (s) · π

)
Υk(s) + ηπ, and Ut =

∑t−1
s=1 Υk(s) ·ΥT

k (s) + νI is the design

matrix corresponding to the first t− 1 time-steps of the observed features.

Next, we establish a high-probability bound for the loss due to the estimation of π. First,

Lemma II.4 (see Appendix C) for the linear vector-valued function g(.) derives the following

bound: ∣∣∣ΥT
k (t) · π −ΥT

k (t) · π̂(t)
∣∣∣ ≤ 2 ‖Υk(t)‖U−1

t
‖ gt(π)− gt(π̄(t))‖U−1

t
. (2.12)

Similar to Part I, we decompose the term ‖ gt(π)− gt(π̄(t))‖U−1
t

on the RHS of the above as

follows:

‖ gt(π)− gt(π̄(t))‖U−1
t
≤

∥∥∥∥∥∥
∑

s∈M(t)

(
ΥT
k (s) · π̄(t)−ΥT

k (s) · π
)

Υk(s) + η (π̄(t)− π)

∥∥∥∥∥∥
U−1
t︸ ︷︷ ︸

Section I

+

∥∥∥∥∥∥
∑
s∈N (t)

(
ΥT
k (s) · π̄(t)−ΥT

k (s) · π
)

ΥT
k (s)

∥∥∥∥∥∥
U−1
t︸ ︷︷ ︸

Section II

,

where the inequality holds by triangle inequality. Below, we bound each section separately.

Section I: We establish the following over the set M(t) for time period t with probability

1− δ:∥∥∥∥∥∥
∑

s∈M(t)

(
ΥT
k (s) · π̄(t)−ΥT

k (s) · π
)

Υk(s) + η (π̄(t)− π)

∥∥∥∥∥∥
U−1
t

≤

∥∥∥∥∥∥
∑

s∈M(t)

ζk(s) Υk(s)

∥∥∥∥∥∥
U−1
t

+ η ‖π‖U−1
t
≤

∥∥∥∥∥
t−1∑
s=1

ζk(s) Υk(s)

∥∥∥∥∥
U−1
t

+ η ‖π‖ ≤

√
2λ2 log

(
det(Ut)1/2 det(νI)−1/2

δ

)
+ η cπ.

The first inequality holds since π̄(t) is the unique solution of ∇πUt(π) = 0 and knowing that

ζk(t) = Πk(t) − ΥT
k (t) · π. The second inequality holds because ‖π‖2

U−1
t
≤ λ−1

min(Ut) ‖π‖2 ≤
‖π‖2. Recall that the error term ζk(t) is a conditionally λ-sub-Gaussian random variable,

then
∑t−1

s=1 ζk(s) Υk(s) is a vector-valued martingale. Consequently, the last inequality holds

with probability at least 1− δ for each time period t and δ > 0 (see Theorem 1 in [1]).
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Section II: We develop the following over the set N (t) for time period t:∥∥∥∥∥∥
∑
s∈N (t)

(
ΥT
k (s) · π̄(t)−ΥT

k (s) · π
)

Υk(s)

∥∥∥∥∥∥
U−1
t

≤ 2cψ
∑
s∈N (t)

‖Υk(s)‖U−1
t

≤ 2cψ

√
2(d2 + 2K)N(t) log

(
N(t)

d2 + 2K

)
.

The first inequality holds by triangle inequality and
∣∣Πk(s)

∣∣ ≤ cψ. The second inequality is

established using Lemma II.5 (see Appendix C).

Moreover, note that the dosage penalty function fk
(
Ψk(t), yk(t);π

)
is Lipschitz with

constant max{αk, βk} due to reverse triangle inequality | ‖x‖ − ‖y‖ | ≤ ‖x− y‖ for x, y ∈
Rn. Leveraging the Lipschitz property of the logistic function σ(.), the following confidence

bound can be established using the upper bound derived for (2.12) in Sections I and II with

probability at least 1− δ:∣∣∣σ(ΦT
k (t) · θ̂(t)− fk

(
Ψk(t), yk(t); π

))
− σ

(
ΦT
k (t) · θ̂(t)− fk

(
Ψk(t), yk(t); π̂(t)

))∣∣∣ (2.13)

≤ 1

4

∣∣∣fk(Ψk(t), yk(t);π
)
− fk

(
Ψk(t), yk(t); π̂(t)

)∣∣∣ ≤ max{αk, βk}
4

∣∣∣ΥT
k (t) · π −ΥT

k (t) · π̂(t)
∣∣∣

≤ max{αk, βk}
2

‖Υk(t)‖U−1
t

(√
2λ2 log

(
det(Ut)1/2 det(νI)−1/2

δ

)
+

cψ

√
4(d2 + 2K)N(t) log

(
N(t)

d2 + 2K

)
+ ηcπ

)
.

Therefore, plugging all the above-derived results of Part I established in (2.9)-(2.11) as well

as the result of Part II established in (2.13), into inequality (2.6) completes the proof.

Next, we bound the contextual bandit loss E
[∑T

t=1 (V∗k∗(t)−V∗k(t))
]

that is incurred

due to learning the optimal treatment decision k∗ using the result of Proposition 1.

Proposition 2 (Contextual Bandit Loss). For any δ > 0, the following bound on the total

loss over T time periods corresponding to the difference between the true expected reward

of the optimal treatment k∗ with the optimal dosage y∗k∗ , and the true expected reward of

a treatment k chosen by the proposed algorithm with the optimal dosage y∗k, holds with

probability at least 1− 2δ:

E
[ T∑
t=1

(
V∗k∗(t)−V∗k(t)

)]
≤ L(T, δ) +Q(T, δ) + 2Tδ, (2.14)
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where L(T, δ) and Q(T, δ) are defined respectively as

L(T, δ) =
1

cσ

√
2T (d1 +K) log

(
1 +

T

γ(d1 +K)

)
(√

(d1 +K) log

(
1 +

T

γ(d1 +K)

)
+ log

(
1

δ2

)
+

√
2(d1 +K)Nmax log

(
Nmax

d1 +K

)
+ κcθ

)
,

Q(T, δ) = max{αk, βk}

√
2T (d2 + 2K) log

(
1 +

T

ν(d2 + 2K)

)
(
λ

√
(d2 + 2K) log

(
1 +

T

ν(d2 + 2K)

)
+ log

(
1

δ2

)
+

cψ

√
4(d2 + 2K)Nmax log

(
Nmax

d2 + 2K

)
+ ηcπ

)
,

and Nmax = max1≤t≤T N(t) that is defined in Theorem II.1.

Proof. Proof of Proposition 2: To bound the total contextual bandit loss, we switch from

an upper-confidence bound argument to a TS-based one. Proposition 1 builds a confidence

set Ωt defined in (2.5), which contains the true parameters (θ, π) with probability at least

1− 2δ in each time period t. We define the following upper and lower bounds:

UBk(t) := min

{
1, max

(θ,π)∈Ωt
σ
(
ΦT
k (t) · θ − fk

(
Ψk(t), y

∗
k; π
))}

, (2.15)

LBk(t) := max

{
0, min

(θ,π)∈Ωt
σ
(
ΦT
k (t) · θ − fk

(
Ψk(t), y

∗
k; π
))}

. (2.16)

These quantities indicate the largest and smallest possible values for the expected reward

based on the history Ht, respectively. They are sequences of real-valued functions of Ht,

feature vectors Φk(t) and Ψk(t), and the optimal dosage vector y∗k. The contextual bandit
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loss is bounded by:

E
[ T∑
t=1

(
V∗k∗(t)−V∗k(t)

)]
=

T∑
t=1

E
[(
σ
(
ΦT
k∗(t) · θ − fk∗

(
Ψk∗(t), y

∗
k∗ ; π

))
− σ

(
ΦT
k (t) · θ − fk

(
Ψk(t), y

∗
k; π
)))]

=
T∑
t=1

E
[
E
[(
σ
(
ΦT
k∗(t) · θ − fk∗

(
Ψk∗(t), y

∗
k∗ ; π

))
− σ

(
ΦT
k (t) · θ − fk

(
Ψk(t), y

∗
k; π
)))∣∣∣∣Ht

]]

=
T∑
t=1

E
[
E
[(
UBk(t)− UBk(t) + σ

(
ΦT
k (t) · θ − fk∗

(
Ψk∗(t), y

∗
k∗ ; π

))
− σ

(
ΦT
k (t) · θ − fk

(
Ψk(t), y

∗
k; π
)))∣∣∣∣Ht

]]
=

T∑
t=1

E
[
E
[(
UBk(t)− σ

(
ΦT
k (t) · θ − fk

(
Ψk(t), y

∗
k; π
)))∣∣∣∣Ht

]]

+
T∑
t=1

E
[
E
[(
σ
(
ΦT
k∗(t) · θ − fk∗

(
Ψk∗(t), y

∗
k∗ ; π

))
− UBk∗(t)

)∣∣∣∣Ht

]]

=
T∑
t=1

E
[(
UBk(t)− σ

(
ΦT
k (t) · θ − fk

(
Ψk(t), y

∗
k; π
)))]

︸ ︷︷ ︸
Part I

+
T∑
t=1

E
[(
σ
(
ΦT
k∗(t) · θ − fk∗

(
Ψk∗(t), y

∗
k∗ ; π

))
− UBk∗(t)

)]
︸ ︷︷ ︸

Part II

,

where in the fourth equality, we use the fact that conditional on Ht, the optimal treat-

ment k∗ and the treatment k selected by the algorithm are identically distributed; thus,

E
(
UBk(t)|Ht

)
= E

(
UBk∗(t)|Ht

)
. Note that to derive the above decomposition, we leverage

the connection between TS based algorithms and UCB based algorithms ([144]). We then

separately bound each part of the last line of the above equation as follows.

Part I: Using the definition of the upper and lower bounds in (2.15) and (2.16), we have:

T∑
t=1

E
[(
UBk(t)− σ

(
ΦT
k (t) · θ − fk

(
Ψk(t), y

∗
k; π
)))]

≤
T∑
t=1

E
[(
UBk(t)− LBk(t)

)]
. (2.17)
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From Proposition 1, recall that for any t and δ > 0, the following bound holds:∣∣∣σ(ΦT
k (t) · θ − fk

(
Ψk(t), y

∗
k; π
))
− σ

(
ΦT
k (t) · θ̂(t)− fk

(
Ψk(t), y

∗
k; π̂(t)

))∣∣∣ ≤ Λk
t (δ) , (2.18)

with probability at least 1− 2δ, where

Λk
t (δ) =

1

2cσ
‖Φk(t)‖V −1

t

(√
2 log

(
det(Vt)1/2 det(γI)−1/2

δ

)

+

√
2(d1 +K)N(t) log

(
N(t)

d1 +K

)
+ κcθ

)
+

max{αk, βk}
2

‖Υk(t)‖U−1
t

(√
2λ2 log

(
det(Ut)1/2 det(νI)−1/2

δ

)

+ cψ

√
4(d2 + 2K)N(t) log

(
N(t)

d2 + 2K

)
+ ηcπ

)
.

Furthermore, we define the sequences UBk(t) and LBk(t) as follows:

UBk(t) := σ
(

ΦT
k (t) · θ̂(t)− fk

(
Ψk(t), y

∗
k; π̂(t)

))
+ Λk

t (δ) , (2.19)

LBk(t) := σ
(

ΦT
k (t) · θ̂(t)− fk

(
Ψk(t), y

∗
k; π̂(t)

))
− Λk

t (δ) . (2.20)

Since UBk(t) ≤ UBk(t) and LBk(t) ≥ LBk(t), UBk(t) − LBk(t) ≤ UBk(t) − LBk(t).

Taking the expectation on both sides of this inequality and summing over all periods yield

the following:

T∑
t=1

E
[(
UBk(t)− LBk(t)

)]
≤ 2

T∑
t=1

E[Λk
t (δ)]. (2.21)

Using a similar argument that we made in Part I of the proof of Corollary II.2 (see

Appendix B), the summation of expectations E[Λk
t (δ)] over T time periods on the RHS of
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(2.21) is bounded as:

T∑
t=1

E[Λk
t (δ)] ≤

1

2cσ

√
2T (d1 +K) log

(
1 +

T

γ(d1 +K)

)(√
(d1 +K) log

(
1 +

T

γ(d1 +K)

)
+ log

(
1

δ2

)
+

+

√
2(d1 +K)Nmax log

(
Nmax

d1 +K

)
+ κcθ

)
+

max{αk, βk}
2√

2T (d2 + 2K) log

(
1 +

T

ν(d2 + 2K)

)(
λ

√
(d2 + 2K) log

(
1 +

T

ν(d2 + 2K)

)
+ log

(
1

δ2

)

+ cψ

√
4(d2 + 2K)Nmax log

(
Nmax

d2 + 2K

)
+ ηcπ

)
.

Therefore, replacing the above bound into (2.21) and correspondingly (2.18), Section I is

then upper bounded with probability at least 1− 2δ.

Part II: Since σ
(
ΦT
k∗(t) · θ − fk∗

(
Ψk∗(t), y

∗
k∗ ; π

))
∈ [0, 1] and also UBk∗(t) ∈ [0, 1], we have:

T∑
t=1

(
σ
(
ΦT
k∗(t) · θ − fk∗

(
Ψk∗(t), y

∗
k∗ ; π

))
− UBk∗(t)

)
≤

T∑
t=1

1

(
σ
(
ΦT
k∗(t) · θ − fk∗

(
Ψk∗(t), y

∗
k∗ ; π

))
> UBk∗(t)

)
.

Taking the expectation from both sides results in the following:

T∑
t=1

E
[(
σ
(
ΦT
k∗(t) · θ − fk∗(Ψk∗(t), y

∗
k∗ ; π)

)
− UBk∗(t)

)]
≤

T∑
t=1

P

(
σ
(
ΦT
k∗(t) · θ − fk∗(Ψk∗(t), y

∗
k∗ ; π)

)
> UBk∗(t)

)
.

Next, according to the definitions of UBk(t) and LBk(t), and also using the high-probability

bound obtained in Proposition 1, we have the following high-probability bound:

P
(
LBk∗(t) ≤ σ

(
ΦT
k∗(t) · θ − fk∗ (Ψk∗(t), y

∗
k∗ ; π)

)
≤ UBk∗(t)

)
≥ 1− 2δ.
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Accordingly, we have the following result:

T∑
t=1

P

(
σ
(
ΦT
k∗(t) · θ − fk∗

(
Ψk∗(t), y

∗
k∗ ; π

))
> UBk∗(t)

)
=

T∑
t=1

P
(
σ
(
ΦT
k∗(t) · θ − fk∗

(
Ψk∗(t), y

∗
k∗ ; π

))
> UBk∗(t)

)
≤ 2Tδ.

In the above equality, LHS could not be less than RHS since UBk∗(t) ≤ UBk∗(t). The only

possible case for LHS to be greater than RHS is when UBk∗(t) < UBk∗(t) < 1, which is not

possible based on the definition of UBk∗(t). Thus, the equality holds since LHS and RHS

are always equal.

Finally, putting both bounds developed in Sections I and II together, we establish the

contextual learning loss bound, which completes the proof.

Remark. Note that the contextual learning loss in Proposition 2 is obtained under the

assumption of delayed feedbacks. If there were no delay in observing the patient’s feedbacks,

then we would not have those terms incorporating Nmax on the RHS of this bound. Therefore,

the terms incorporating Nmax represent the effect of delayed feedback on this contextual

learning loss.

2.4.5 Theoretical Results on Online Sub-Gaussian Stochastic Sub-Gradient De-

scent

Although we know the form of the penalty function in (2.2), there is an unknown pa-

rameter π, which hinders us from finding the optimal dosage of a given treatment. Further,

there is a stochastic delay in observing the noisy gradient of this function. We develop a

sub-Gaussian Stochastic Sub-Gradient Descent (S-SGD) procedure under stochastic delay

to find the optimal dosage. We prove that the loss due to the sub-optimality of dosage

(S-SGD sub-optimality loss) is bounded using a new high-probability regret bound. Since

this technical result is of independent interest beyond the scope of this paper, we state and

prove it with general sub-differentiable and convex functions.

Proposition 3 (High-Probability Regret Bound for Online Sub-Gaussian S-SGD).

Let {yi}ni=1 be a sequence obtained by the projected online S-SGD algorithm under stochastic

delay with respect to sub-differentiable and convex functions f(.) with a domain K, i.e.,

y1 ∈ K, yi+1 = ProjK

(
yi − η

∑
s∈Si

∇̃fs
)
, ∀i = 1, ..., n− 1,
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where Si = {s ∈ [n] | s+D(s)− 1 = i} is the set of iterations whose feedback appears at the

end of iteration i, D(s) is the stochastic non-negative delay, ∇̃fs ∈ ∂fs(ys) is a stochastic

sub-gradient of fs at ys, and η is the step size at each iteration. We make the following

assumptions:

1. Diameter of the domain K is bounded by a constant G, i.e., supy1,y2∈K ‖y1 − y2‖ ≤ G.

2. For each i = 1, ..., n − 1, conditional on yi, the stochastic sub-gradient ∇̃fi ∈ ∂fi(yi)
is a ρ-sub-Gaussian random vector with the second moment bounded by a positive

constant ξ2.

3. The stochastic delay D(s) satisfies the regularity condition (2.4), and D =
∑n

i=1 D(i).

If we choose η = G
ξ
√
n+D

, the following bound holds with probability at least 1− 2δ:

1

n

n∑
i=1

(
fi(yi)− fi(y∗)

)
≤
√

2G2ρ log(1/δ)

n
+

(√
1 + µD + p+1

√
σ2
D log(n/δ)

)
3Gξ√
n
, (2.22)

where y∗ = arg min
y∈K

∑n
i=1 fi(y).

Remark. The choice of η requires prior knowledge of the total delay D; however, one

can calculate D on the fly. That is, if there exist τ unrealized feedbacks at one iteration,

then D increases by exactly τ . Obviously, we have τ ≤ n and n ≤ D, so D doubles at most.

Thus, at the cost of slightly worse constants, we can use the doubling trick (i.e., setting a

budget on the unknown quantity and restarting the algorithm with a double budget when

the budget is depleted) to dynamically adjust η as D increases (see [45] for details).

Proof. Proof of Proposition 3: First, since there is a delay D(s) for each iteration s, the

feedback from iteration s is revealed at the end of iteration s + D(s) − 1, and so can be

exploited in iteration s+D(s). By convexity of f(.), we have the following for each realized

feedback:

fi(y
∗) ≥ fi(yi) + ∇̂fi(yi) (y∗ − yi), ∀i = 1, ..., n,

where ∇̂fi(yi) ∈ ∂fi(yi) =
{
g : fi(u) ≥ fi(yi) + gT (u − yi),∀u

}
, and ∂fi(yi) is the set

of all sub-gradients of fi(.) at yi. Using the above property, we establish the following
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decomposition:

1

n

n∑
i=1

(
fi(yi)− fi(y∗)

)
≤ 1

n

n∑
i=1

〈 ∇̂fi(yi), yi − y∗〉

=
1

n

n∑
i=1

〈 ∇̃fi, yi − y∗〉︸ ︷︷ ︸
Part I

+
1

n

n∑
i=1

〈 ∇̂fi(yi)− ∇̃fi, yi − y∗〉︸ ︷︷ ︸
Part II

. (2.23)

where ∇̃fi is a stochastic sub-gradient of fi at yi. We next bound each part on RHS of

(2.23), below.

Part I: First, rewrite that yi+1 = ProjK
(
ỹi+1

)
, where ỹi+1 = yi − η

∑
s∈Si ∇̃fs, for ease of

notation. We break the sum of sub-gradients used in one iteration and consider them one by

one. That is, for each s ∈ Si, we define Si,s = {q ∈ Si | q < s} and yi,s = yi − η
∑

q∈Si,s ∇̃fq.
Let smax be the last or maximum index in Si 6= ∅, by using the properties of projection

operator, we then have:

‖yi+1 − y∗‖2 ≤ ‖ỹi+1 − y∗‖2 =
∥∥∥yi,smax − η ∇̃smaxf − y∗

∥∥∥2

= ‖yi,smax − y∗‖
2 + η2

∥∥∥∇̃fsmax

∥∥∥2

− 2η 〈 ∇̃fsmax , yi,smax − y∗〉.

If we keep expanding the term ‖yi,smax − y∗‖
2 in the last expression in a similar fashion, we

will have the following for each iteration i:

‖yi+1 − y∗‖2 ≤ ‖yi − y∗‖2 + η2
∑
s∈Si

∥∥∥∇̃fs∥∥∥2

− 2η
∑
s∈Si

〈 ∇̃fs, yi,s − y∗〉,

which implies that

∑
s∈Si

〈 ∇̃fs, yi,s − y∗〉 ≤
1

2

(
‖yi − y∗‖2 − ‖yi+1 − y∗‖2

η
+ η

∑
s∈Si

∥∥∥∇̃fs∥∥∥2
)
.

We then decompose Part I in (2.16) into two parts, and apply the above inequality to
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establish:

n∑
i=1

〈 ∇̃fi, yi − y∗〉 =
n∑
i=1

∑
s∈Si

〈 ∇̃fs, ys − y∗〉 =
n∑
i=1

∑
s∈Si

(
〈 ∇̃fs, yi,s − y∗〉+ 〈 ∇̃fs, ys − yi,s〉

)
≤ 1

2

n∑
i=1

(
‖yi − y∗‖2 − ‖yi+1 − y∗‖2

η
+ η

∑
s∈Si

∥∥∥∇̃fs∥∥∥2

+ 2
∑
s∈Si

〈 ∇̃fs, ys − yi,s〉

)

≤ 1

2

n∑
i=1

(
‖yi − y∗‖2 − ‖yi+1 − y∗‖2

η
+ η ξ2 |Si|+ 2

∑
s∈Si

〈 ∇̃fs, ys − yi,s〉

)

≤
(
G2

2η
+
η

2
nξ2

)
+

n∑
i=1

∑
s∈Si

〈 ∇̃fs, ys − yi,s〉

≤ ξG
√
n+D + ξ

n∑
i=1

∑
s∈Si

‖ys − yi,s‖ . (2.24)

The second inequality is by
∥∥∥∇̃fs∥∥∥ ≤ ξ. To get the last inequality, the step size η = G

ξ
√
n+D

is used, and the delay expression
∑n

i=1

∑
s∈Si〈 ∇̃fs, ys−yi,s〉 is bounded by Cauchy-Schwartz

inequality.

In (2.24), ‖ys − yi,s‖ is the distance between the point ys (where the feedback ∇̃sf is

generated in iteration s) and the point yi,s (where this feedback is realized in iteration i and

used). This distance is about the sum of feedbacks realized and used in between, and the

number of such in-between realized feedbacks is closely related to the total delay. To see

this, using triangle inequality and the property of projection, we first have the following:

‖yi,s − ys‖ ≤ ‖yi,s − yi‖+ ‖yi − ys‖ ≤ ‖yi,s − yi‖+ ‖ỹi − ys‖ .

Similarly, if we keep expanding the second term as ‖ỹi − ys‖ ≤ ‖ỹi − yi−1‖ + ‖ỹi−1 − ys‖,
and take the sum over all iterations, we will have the following bound:

n∑
i=1

∑
s∈Si

‖yi,s − ys‖ ≤
n∑
i=1

∑
s∈Si

(
i−1∑
t=s

‖ỹt+1 − yt‖+ ‖yi,s − yi‖

)

≤
n∑
i=1

∑
s∈Si

η i−1∑
t=s

∑
p∈St

∥∥∥∇̃fp∥∥∥+ η
∑
q∈Si,s

∥∥∥∇̃fq∥∥∥


≤ ξ η
n∑
i=1

∑
s∈Si

(
i−1∑
t=s

|St|+ |Si,s|

)
≤ 2 ξ η

n∑
i=1

D(i) = 2 ξ η D. (2.25)

The second inequality is established by ỹi+1 = yi−ηi
∑

s∈Si ∇̃fs and yi,s = yi−ηi
∑

q∈Si,s ∇̃fq.
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The third one holds by
∥∥∥∇̃f∥∥∥ ≤ ξ. For the fourth inequality, consider one term

∑i−1
t=s |St|+

|Si,s| for fixed i and s ∈ Si, which counts the number of feedbacks realized between iterations

s and i− 1, plus the ones realized in iteration i whose points were selected before iteration

s. All these realized feedbacks were either generated before iteration s or between iterations

s and i. Consider one of these feedbacks. Let p be the iteration in which this feedback was

generated, and r be the iteration in which it is realized. We have either s < p < i or p < s,

but r ∈ {s, ..., i}. Similar to the argument made by [141], we then need to analyze two cases.

For s < p < i, there are at most i−s+1 = D(s) possible indices for p, so we have
∑T

s=1D(s)

feedbacks in total under this case. For p < s, it is easier to find the maximum possible indices

for s instead of p. For each fixed p, there are at most r− p+ 1 = D(p) possible indices for s

that are affected by p, so we have
∑T

p=1D(p) feedbacks in total under this case. Combining

these two cases together, we have
∑n

i=1

∑
s∈Si

(∑i−1
t=s |St|+ |Si,s|

)
≤ 2

∑n
i=1 D(i) in total.

Next, using the bounds developed in (2.24) and (2.25), we establish the following bound

for Part I:

n∑
i=1

∑
s∈Si

〈 ∇̃fs, ys − y∗〉 ≤ ξG
√
n+D + ξ

n∑
i=1

∑
s∈Si

‖ys − yi,s‖

≤ ξG
√
n+D + 2 ξ2 η D ≤ 3 ξG

√
n+D. (2.26)

Under assumption (2.4), we bound the total delay D =
∑n

i=1D(i) by applying a union

bound:

P (D ≥ t) = P

(
n∑
i=1

D(i) ≥ t

)
≤ P

(
n⋃
i=1

{
D(i) ≥ t

n

})

≤
n∑
i=1

P
(
D(i) ≥ t

n

)
≤ n exp

(
−m

p+1

σ2
D

)
,

where we choose t
n

= µD +m. If we then set the last expression of the above bound to δ and

solve for m, the total delay is bounded by D ≤ n(µD + p+1
√
σ2
D log(n/δ)) with probability

1 − δ. Therefore, plugging this bound in (2.26), we derive the following for Part I, which

holds with probability 1− δ:

1

n

n∑
i=1

∑
s∈Si

〈 ∇̃fs, ys − y∗〉 ≤

(√
1 + µD + p+1

√
σ2
D log(n/δ)

)
3Gξ√
n
. (2.27)

Part II: To bound part II on the right-hand side of (2.23), we first define a filtration Fi,
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which is a sigma-field Fi = σ
(
∇̃fs : s ∈ Si

)
for each iteration i, and then have the following:

E
[
〈 ∇̂fi(yi)− ∇̃fi, yi − y∗〉|Fi−1

]
= E

[
〈 ∇̂fi(yi)− ∇̃fi, yi − y∗〉|yi

]
= (yi − y∗)T · E

[(
∇̂fi(yi)− ∇̃fi

)
|yi
]

= 0.

In the above, the first equality is because of the projected online stochastic sub-gradient

descent step yi = ProjK
(
yi−1−η

∑
s∈Si−1

∇̃fs
)
, and the last equality is due to E

[
∇̃fi|Fi−1

]
=

∇̂fi(yi). So, the above result shows that the sequence
{
〈 ∇̂fi(yi)− ∇̃fi, yi − y∗〉|Fi−1

}
i

is a

martingale difference sequence (see Definition 4 in Appendix C).

Next, since ∇̃fi is a ρ-sub-Gaussian random variable (note that in Lemma II.3 in Ap-

pendix B, we show that this is the case for the dosage penalty function (2.2)), we have that

〈 ∇̂fi(yi)− ∇̃fi, yi − y∗〉 is a G2ρ-sub-Gaussian random variable as well. By using Azuma-

Hoeffding’s inequality for this sub-Gaussian martingale difference sequence (see Theorem II.8

in Appendix C), we have:

P

(
1

n

n∑
i=1

〈 ∇̂fi(yi)− ∇̃fi, yi − y∗〉 ≥ t

)
≤ exp

(
− nt2

2G2ρ

)
,

which implies that

1

n

n∑
i=1

〈 ∇̂fi(yi)− ∇̃fi, yi − y∗〉 ≤
√

2G2ρ log(1/δ)

n

holds with probability at least 1− δ.

Remark. The S-SGD high-probability bound in Proposition 3 is developed under as-

sumption of delayed feedbacks. If there were no delay in observing patient’s feedbacks, then

this loss bound would become
√

2G2ρ log(1/δ)/n+Gξ/
√
n with probability 1−δ. This high-

probability loss bound helps us bound the S-SGD sub-optimality loss of E
[∑T

t=1

(
V∗k(t) −

V̂k(t)
)]

in the Bayesian regret decomposition presented §2.4.3, which is related to learning

the optimal dosage of any selected treatment k (see proof of Theorems II.1 and Corollary

II.2).

2.4.6 Regret Analysis of the S-SGD Bandit Algorithm

In this section, we provide our theoretical result for deriving the Bayesian regret (Theorem

II.1) of the proposed algorithm. Our proof for deriving the regret (Corollary II.2) is in

Appendix B.
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Proof. Proof of Theorem II.1: We show how each term of the Bayesian regret decomposition

presented in §2.4.3 can be bounded using the results of Propositions 1, 2, and 3.

Part I (Contextual bandit loss): Proposition 2 developed a bound on the contextual

bandit loss E
[∑T

t=1 (V∗k∗(t)−V∗k(t))
]

(due to learning the optimal treatment k∗) with prob-

ability 1− 2δ.

Part II (S-SGD sub-optimality loss): We first decompose this loss as follows:

E
[ T∑
t=1

(
V∗k(t)− V̂k(t)

)]
(2.28)

= E
[ T∑
t=1

(
σ
(
ΦT
k (t) · θ − fk (Ψk(t), y

∗
k; π)

)
− σ

(
ΦT
k (t) · θ̂(t)− fk (Ψk(t), y

∗
k; π̂(t))

))
+

T∑
t=1

(
σ
(
ΦT
k (t) · θ̂(t)− fk (Ψk(t), y

∗
k; π̂(t))

)
− σ

(
ΦT
k (t) · θ̂(t)− fk (Ψk(t), y

∗
k; π)

))
+

T∑
t=1

(
σ
(
ΦT
k (t) · θ̂(t)− fk (Ψk(t), y

∗
k; π)

)
− σ

(
ΦT
k (t) · θ̂(t)− fk (Ψk(t), yk(t); π̂(t))

))]
.

The first term on RHS of (2.28) is bounded by Proposition 1 with probability 1 − 2δ

using a similar argument that we made in Part I of the proof of Corollary II.2 (see Appendix

B) as:

E
[ T∑
t=1

(
σ
(
ΦT
k (t) · θ − fk (Ψk(t), y

∗
k; π)

)
− σ

(
ΦT
k (t) · θ̂(t)− fk (Ψk(t), y

∗
k; π̂(t))

))]
≤ L(T, δ) +Q(T, δ)

2
,

where L(T, δ) and Q(T, δ) are defined in Proposition 2.

Using the Lipschitz property of the logistic function with constant 1/4 and the penalty

function with constant max{αk, βk}, the second term on RHS of (2.28) is bounded with

probability 1− δ as:

E
[ T∑
t=1

(
σ
(
ΦT
k (t) · θ̂(t)− fk (Ψk(t), y

∗
k; π̂(t))

)
− σ

(
ΦT
k (t) · θ̂(t)− fk (Ψk(t), y

∗
k; π)

))]
≤ max{αk, βk}

4
E
[ T∑
t=1

(
ΥT
k (t) · π −ΥT

k (t) · π̂(t)
)]
≤ Q(T, δ)

2
,

where the bound for (2.12) that we developed in the proof of Proposition 1 is used in the

above.
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The third term on RHS of (2.28) is bounded by Proposition 3 with probability 1− 2δ as:

E
[ T∑
t=1

(
σ
(
ΦT
k (t) · θ̂(t)− fk (Ψk(t), y

∗
k; π)

)
− σ

(
ΦT
k (t) · θ̂(t)− fk (Ψk(t), yk(t); π̂(t))

))]
≤ 1

4
E
[ T∑
t=1

(
fk (Ψk(t), y

∗
k; π)− fk (Ψk(t), yk(t); π̂(t))

)]
≤ P (δ, T )

√
T ,

where P (δ, T ) = 1
4
G
√

2ρ log(1/δ) + 3
4
ξG
√

1 + µD + p+1
√
σ2
D log(T/δ). Note that in above we

use Lemma II.3 (see Appendix B) in which we prove that the dosage penalty function (2.2)

has ρ-sub-Gaussian sub-gradients and the second moment of these sub-gradients is bounded

by ξ. Also, G is the diameter of the dosage decision space, and we have

y∗k = arg min
yk∈[∆LB

k ,∆UB
k ]

T∑
t=1

fk (Ψk(t), yk; π)

.

Inserting the above three high-probability bounds in (2.28), the following bound is ob-

tained with probability 1− 5δ to bound the S-SGD sub-optimality loss:

E
[ T∑
t=1

(
V∗k(t)− V̂k(t)

)]
≤ P (δ, T )

√
T +

L(T, δ)

2
+Q(T, δ).

Part III (Estimation loss): We bound the total estimation loss E
[∑T

t=1

(
V̂k(t)−Vk(t)

)]
with probability at least 1 − 2δ using Proposition 1 and applying a similar argument that

we developed in Part I of the proof of Corollary II.2 (see Appendix B) as follows:

E
[ T∑
t=1

(
V̂k(t)−Vk(t)

)]
≤ L(T, δ) +Q(T, δ)

2
.

Putting all the high-probability bounds that we established in the above three parts

together derives the following Bayesian regret:

BayesianRegret(T ) ≤ P (δ, T )
√
T + 2L(T, δ) +

5Q(T, δ)

2
+ 2Tδ,

which completes the proof when we set δ = 1/T in the above bound.
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2.4.7 Extension: Contextual Learning with Bandit Convex Optimization

In §2.4.5, we analyzed the proposed algorithm and developed online S-SGD to adaptively

optimize the dosage of each treatment (Proposition 3). We now generalize our theoretical

result to the case, where the decision-maker does not necessarily have access to a gradient

oracle at any point in the space. To this aim, we first develop a high-probability regret bound

for a sub-Gaussian Bandit Stochastic Gradient Descent (B-SGD) procedure (see Proposition

5 in Appendix B). We then derive the Bayesian regret of the B-SGD Bandit algorithm in

which we use B-SGD instead of S-SGD (see Algorithm 3 in Appendix E), below (see the

proof in Appendix B).

Proposition 4 (Bayesian Regret of the TS-based B-SGD Bandit Algorithm). The

Bayesian regret of the TS-based B-SGD Bandit algorithm is Õ
(
T 3/4(1 + µD)3/4

)
under de-

layed feedback, and Õ
(
T 3/4

)
under immediate feedback (no delay) over finite horizon T .

2.5 Case Study and Empirical Results

Our model and methodology are motivated by a pressing clinical question in regard with

managing risk of Cardiovascular Disease (CVD) in patients with Type 2 Diabetes Mellitus

(T2DM), namely the choice and appropriate dosage of Blood Pressure (BP)-lowering agents.

Using recent clinical trial data, we evaluate the performance of the S-SGD Bandit algo-

rithm compared with the physicians’ decisions made in the clinical trial and four benchmark

policies.

2.5.1 BP Control for T2DM Patients at High Risk for Cardiovascular Events

Background. T2DM is a chronic condition characterized by high sugar levels in blood

and affects the way the patient’s body metabolizes sugar or glucose (an important source

of fuel for the body). With T2DM, the patient’s body either resists the effects of insulin

(a hormone that regulates the movement of sugar into cells), or does not produce enough

insulin to maintain normal glucose levels [23]. High Blood Pressure (HBP), or hypertension

is a common condition in T2DM patients, where the blood is pumped through the heart and

blood vessels with excessive force. Over time, HBP tires the heart muscle and can enlarge

it. It substantially increases the risk of both macrovascular and microvascular complications

(e.g., stroke, retinopathy, neuropathy, peripheral vascular and coronary artery diseases) [14].

Treating and managing HBP is critical in preventing these and other diabetes complications.

According to new statistics by the American Heart Association, about 103 million U.S. adults

have HBP, contributing cause of death for more than 1,100 daily deaths and costing the
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nation $48.6 billion yearly [24].

BP is assessed using two measures. The top number is the systolic blood pressure (SBP),

which refers to the pressure inside the artery when the heart contracts and is pumping the

blood through the body. The bottom number is the diastolic blood pressure (DBP), which

refers to the pressure inside the artery when the heart is at rest and is filling with blood. The

most recent guidelines by the American Heart Association/American College of Cardiology

(AHA/ACC) identify an SBP/DBP of 120/80 mmHg as “normal” BP. They recommend a

target BP of 130/80 mmHg for patients with hypertension, and patients at high risk for CVD

may benefit from a more stringent target of 120/80 mmHg [160]. The American Diabetes

Association similarly recommends a tight BP target (e.g., 120/80 mmHg) for patients with

diabetes at high CVD risk [3].

Research Motivation and Question. There are a number of medication classes for

lowering BP; each class includes several different medications at various dosages. Treatment

of HBP usually starts with a single BP-lowering agent, and subsequent agents can be added

if the target is not met. In patients with T2DM at high risk for CVD, multiple-drug therapy,

often with three or four BP-lowering agents, is needed to achieve the BP target ([14] and

[3]).

There is a consensus about the choice of the first two lines of BP-lowering medications

based on their effectiveness in preserving renal function and reducing CVD risk. The first-

line medication class is Angiotensin-Converting Enzyme (ACE) inhibitors, or Angiotensin

II Receptor Blockers (ARBs) if the patient is unable to take an ACE. The second-line med-

ication class is Dihydropyridine (DHP) Calcium-Channel Blockers (CCB) or thiazide-type

diuretics ([3], [43], and [134]). Clinical guidelines, however, lack clarity on the third-line

medication, which many patients with T2DM will eventually need to achieve a controlled

BP.

In the case study, we thus focus on the third-line BP-lowering medication. Inspired by this

clinical question, our main research question is how joint online learning and optimization

algorithms can help medical professionals find the third-line medication and its dosage for

effective BP control in patients with T2DM at high risk of CVD. We consider SBP of 120

mmHg as the target based on the most recent clinical guidelines on BP control for these

patients [3].

Remark. Our methodology is more general than the version treated in the case study. To

illustrate a richer medical problem that can be addressed by our model, consider the T2DM

patients who are at elevated risk of Chronic Kidney Diseases (CKD). Having HBP may

damage the kidneys and deteriorate kidney function. CKD may eventually lead to kidney

failure requiring dialysis or a kidney transplant to maintain life. Glomerular filtration rate
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(GFR), estimated from age, sex, race, and a blood test [89], is used as a measure of patient’s

kidney function. If GFR is too low (often < 60 mL/min/1.73 m2), the patient has moderate

CKD. This implies that kidneys are not able to remove enough waste and extra fluid from

blood; thus, clinicians prescribe a BP-lowering medication (either an ACE-inhibitor, or an

ARB) that is known to have reno-protective effects ([13]). For this medical problem, the aim

is to keep GFR high (> 60 mL/min/1.73 m2) by recommending a BP-lowering medication

(all medications in the ACE-inhibitor and ARB classes) and its dosage. Accordingly, the

main outcome can be defined as whether GFR is greater than 60 or not, and the treatment-

dosage sub-outcome can be SBP. Our model could help doctors adaptively learn a treatment

regimen given the contextual patient information to control GFR through prescribing a BP-

lowering medication and its dosage. Since we lack data on CKD, our case study instead

focuses on choosing medications for patients with T2DM at high risk of CVD.

2.5.2 Data Description and Problem Formulation

The Action to Control Cardiovascular Risk in Diabetes (ACCORD) Blood Pressure (AC-

CORD BP) clinical trial studied whether lowering SBP to 120 mmHg (intensive therapy)

versus 140 mmHg (standard therapy) reduces major cardiovascular events. These were de-

fined as nonfatal myocardial infarction, nonfatal stroke, or death from cardiovascular causes

captured in 4,700 patients with T2DM at high CVD risk. Patients treated with intensive

SBP therapy experienced fewer major cardiovascular events (hazard ratio, 0.88), though it

did not reach statistical significance after 4.7 years mean follow-up time (95% confidence

interval for hazard ratio, 0.73-1.06) [78].

ACCORD enrolled 10,251 patients with T2DM at high risk for CVD. Of those, 4,733

participants were randomly assigned to either intensive or standard BP control (ACCORD

BP) to study the effects of intensive versus standard therapy on diabetes related outcomes.

We focus on 2,012 patients of these with a total of 29,447 visits in ACCORD BP that were

assigned to intensive therapy. For such patients, BP was measured every month for 4 months

and once every 2 months thereafter, but additional visits occurred as needed to monitor and

assure appropriate implementation of the study intervention. The intensive BP therapy

targets a SBP of 120 mmHg. Whenever SBP was not on the target, the trial called for either

the medication dose to be titrated to a very precise (continuous) dosage, or the addition of

one or more medications.

In consultation with medical researchers and clinicians at Harvard Medical School, we

included 62 covariates that are believed to be relevant to the task of finding the right BP

medication and dosage. Those include the following:
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• Demographics: Age, gender, and race group.

• Pre-existing conditions: History of CVD, and cigarette smoking in the last 30 days.

• Measurements: SBP, DBP, heart rate (HR), glycosylated hemoglobin (HbA1c), to-

tal cholesterol, triglycerides, very low/low/high density lipoprotein (VLDL, LDL, and

HDL), fasting plasma glucose (FPG), alanine aminotransferase (ALT), potassium,

serum creatinine (SCr), estimated glomerular filtration rate (eGFR), weight, and height.

• Medications and dosages2: ACE-inhibitor (benazepril, lisinopril, and ramipril), ARB

(candesartan and valsartan), CCB-DHP (felodipine and amlodipine), CCB non-DHP

(diltiazem), Beta-Blocker (metoprolol), Diuretic (chlorthalidone and HCTZ), Loop Di-

uretic (furosemide), Alpha-Beta Blocker (carvedilol), Alpha Blocker (terazosin), Va-

sodilator (hydralazine), and Sympatholytic (reserpine). The dosage of each prescribed

medication is also available.

• Adherence to medications: Percentage of the time that the patient adhered to each

prescribed medication with a specified dosage since their last visit.

As described in §2.5.1, to achieve the SBP target of 120 mmHg, doctors initially pre-

scribed a first-line medication from the ACE-inhibitor, or ARB classes. Next, they often

prescribed a second-line medication from the CCB-DHP, or CCB non-DHP classes. Nonethe-

less, many patients require additional BP-lowering medications to achieve the target BP, and

clinical guidelines are not specific on the choice of third-line medication. Table 2.1 shows

the list of all third-line medication classes in the clinical trial and their medications with

their possible dosage ranges. A doctor must select one of these medications with a specified

dosage in order to achieve the SBP target for an individual.

Contextual bandit with a two-dimensional control model. We formulate the problem

of finding an appropriate third-line BP-lowering medication and its dosage as a contextual

MAB with a two-dimensional control problem, which is defined by the following elements:

(a) Arms (first decision): As listed in Table 2.1, we have 8 possible medications that can

be treated as our first decision variable (an 8-armed contextual bandit problem).

(b) Dosage (second decision): Each of the 8 medications in Table 2.1 has a pre-specified

range of possible dosages, which is continuous because they titrated these dosages

finely.

2Note that the names inside the parentheses are the medication names and the names outside the paren-
theses are the medication class. We may have more than one medication from each medication class, as well.
We also have the particular dosage information of each prescribed medication.
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Medication class Medication name Dosage range
Beta-Blocker Metoprolol [25, 200]

Diuretic HCTZ [12.5, 25]
Diuretic Chlorthalidone [7.5, 25]

Loop Diuretic Furosemide [10, 80]
Alpha-Beta Blocker Carvedilol [3.125, 25]

Alpha blocker Terazosin [1, 10]
Sympatholytic Reserpine [0.125, 0.345]

Vasodilator Hydralazine [25, 100]

Table 2.1: The list of all medication classes with their medication names in each class and
corresponding possible dosage ranges that can be used as the third-line medication to control
the SBP target.

(c) Contextual information: There are 62 patient-specific covariates described above.

(d) Treatment-dosage sub-outcome: This metric is SBP. Doctors measure SBP based on the

average of three measurements using an automated device. The threshold parameter

q is 120.

(e) Expected reward: This includes only the dosage penalty function that needs to be

minimized. It can be measured by how much SBP is greater or less than the threshold

of 120.

It is worth noting that evaluating online algorithms retrospectively on the observational

data is a challenging task, because it requires access to counterfactuals in some scenarios.

For instance, assume that our online algorithm chooses “Chlorthalidone” as a third-line

medication for a patient, while the third-line medication prescribed for the patient in the

data set is “Terazosin.” In such a scenario, we need to know the feedback associated with

prescribing “Chlorthalidone” to the patient to be able to evaluate our online algorithm’s

performance. To deal with this issue, we estimate the counterfactuals associated with the

treatment-dosage sub-outcome using all the observational data. Specifically, we fit a linear

regression model to predict the treatment-dosage sub-outcome corresponding to each of the 8

medications, and use this estimation in our performance evaluation analysis. We also require

the optimal dosage of each medication for our algorithm’s evaluation. We find the optimal

dosage of each medication by minimizing the sum of penalty functions over the patients who

were prescribed this medication. Note that the unknown coefficients of penalty functions are

estimated using a linear regression over all the data.
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2.5.3 Evaluation and Empirical Results

Using the ACCORD BP, we evaluate the performance of our algorithms compared to four

benchmark policies and the physicians’ decisions made in the trial. We use two performance

measures: cumulative regret and distribution of success rate. The cumulative regret measures

the difference between the (expected) cumulative rewards of the clairvoyant optimal policy

and our algorithm. The distribution of success rates describes the distribution of the total

success rate by the end of the time horizon. The success event is defined as having a SBP

level of between 115 and 125 mmHg. We conduct an additional analysis to assess the impact

of delayed feedback on our performance measures. Lastly, we compare our algorithms with

benchmarks in terms of medication decisions.

Since we have a two-dimensional control feature, we cannot directly compare our algo-

rithm with most bandit algorithms in the literature. We consider 10 random permutations

of our data set and compare the following algorithms together:

(a) TS-SGD algorithm: This is the TS-based S-SGD Bandit algorithm described in §2.3.2.

(b) UCB-SGD algorithm: This is the UCB-based S-SGD Bandit algorithm (see Appendix

D).

(c) Fixed-dosage algorithms: They do not involve dosage optimization; rather each uses a

fixed (low/average/high) dosage for a selected medication, and the medication decision

is made by a contextual TS algorithm. We denote them by TS-LowDos, TS-AvgDoc,

and TS-HighDos.

(d) TS-TwoDim algorithm: This policy considers an arm for each pair of treatment (one

of the 8 medications in Table 2.1) and dosage (grouped as being either low, average,

or high). This is indeed a 24-armed bandit, and a contextual TS is used to make

medication-dosage decisions.

Note that the reason why we have chosen the low, average, and high dosages in our

benchmarks is that these dosage selection policies are very common in medical practice.

In particular, the high complexity of selecting an optimal dosage based on unique patient

characteristics is a barrier; thus, doctors usually employ these dosage for a selected treatment,

rather than optimizing the dosage.

Cumulative Regret. Figure 2.3 illustrates the cumulative regret of each algorithm as a

function of time period. To exclude the impact of delayed feedback on our comparison, we

first assumed that patients’ feedback is realized immediately after prescribing a treatment

with a dosage. For each of the above algorithms, Alg-ND refers to an algorithm under no
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delayed feedback. As seen in Figure 2.3a, our TS-SGD-ND is the fastest learning one followed

by UCB-SGD-ND across all time periods. TS-TwoDim-ND and TS-AvgDos-ND have the

next best performance. Among the fixed-dosage policies, the average, high, and low ones

are ordered in decreasing performance. Figure 2.3a illustrates the importance and effect

of optimizing the dosage decision on the cumulative regret. Even though all these policies

deploy either TS or UCB for choosing medication, only TS-SGD-ND and UCB-SGD-ND

have an optimization procedure for finding the best dosage. Hence, having a systematic

online optimization procedure for optimizing the dosage decision can help clinicians make

more informed decisions for treating chronic diseases.

(a) Different online algorithms under no delay. (b) TS-SGD algorithm under delay and no delay.

Figure 2.3: Performance evaluation of different online learning algorithms in terms of cumu-
lative regret.

Effect of Delayed Feedback. In practice, the delay in observing patient feedback in

ACCORD BP ranges from two weeks to one month. We introduced an on the fly strategy in

our algorithms to deal with this delayed feedback. It exploits the information of the patients

for whom a treatment with a specified dosage are already prescribed and their feedback is

revealed up to the current time. Figure 2.3b compares the cumulative regret of our TS-

SGD under no delay feedback and delayed feedback. As expected, TS-SGD-ND outperforms

TS-SGD, because it leverages the information to which we do not have access in practice.

Distribution of Success Rate. Figure 2.4 illustrates the distribution of the success rate

for different algorithms over 500 time periods with 10 random permutations of data. We

evaluate the success at every patient visit by checking whether the predicted SBP is between

115 and 125 mmHg for the selected medication and dosage. We observe that TS-SGD and

UCB-SGD achieve a median success rate of 80% and 77%, respectively, whereas the four

benchmark policies have significantly a lower median success rate of around 71%. For the

ACCORD BP trial, all permutations yield a 72% median success rate. This observation
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highlights the benefits of making dosage decisions adaptively and optimally through our

online optimization procedure.

Figure 2.4: Distribution of success rate for different online learning algorithms over 500 time
periods.

Next, we evaluate and compare the algorithms in terms of percentages of both success

and failure decisions in choosing the best medication and its dosage. Here, we look at the last

visit of every patient and check whether the predicted SBP is between 115 and 125 mmHg

at the last visit. Table 2.2 presents the percentages of both success and failure rates for

the ACCORD BP trial, our proposed algorithms (TS-SGD and UCB-SGD), TS-TwoDim,

and three fixed-dosage algorithms (TS-AvgDos, TS-LowDos, and TS-HighDos). We find

that our algorithms (TS-SGD and UCB-SGD) have higher success and lower failure rates in

making medication and dosage decisions compared to what the doctors did in the trial. For

example, TS-SGD makes a successful medication and dosage decision 80.25% of the times

(i.e., in 80.25% of the visits, SBP will be between 115 and 125 mmHg), in contrast to the

71.26% success rate achieved in the trial.

Trial TS-SGD UCB-SGD TS-TwoDim TS-AvgDos TS-LowDos TS-HighDos

Success 71.2% 80.2% 78.7% 73.5% 72% 71.5% 71.7%
Failure 28.7% 19.7% 21.2% 26.4% 27.9% 28.4% 28.2%

Table 2.2: The percentages of both success and failure in the BP ACCORD trial and online
learning algorithms in choosing successful medications and dosages (i.e., success is defined
as having 115 ≤ SBP ≤ 125 mmHg).

Medication Decisions. We next analyze how our algorithms make decisions compared to

the medications offered in the ACCORD BP trial and benchmark policies. To this aim, we

divide the data set into two subsets, including (i) success data subset: the data points at

which a medication and its dosage were prescribed in the trial such that it resulted in having
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115 ≤ SBP ≤ 125 mmHg; and (ii) failure data subset: the data points at which a medication

and its dosage were prescribed such that it resulted in having a SBP out of the range of

115-125 mmHg. We run our algorithms on the whole data set and analyze the results for

both success and failure data subsets separately.

Figure 2.5: The frequency of selected medications over the success data subset with the
policies ordered left to right (ACCORD Trial, TS-AvgDos, TS-HighDos, TS-LowDos, TS-
TwoDim, and TS-SGD).

Figure 2.6: The frequency of selected medications over the failure data subset with the
policies ordered left to right (ACCORD Trial, TS-AvgDos, TS-HighDos, TS-LowDos, TS-
TwoDim, and TS-SGD).

Figures 2.5 and 2.6 illustrate the frequency of medications chosen in the ACCORD BP

trial, the four benchmarks, and TS-SGD for the visits in success and failure data subsets,

respectively (see Tables 2.5 and 2.6 in Appendix G for the percentages). The key observation

from this analysis is that for the success data subset, our algorithm (TS-SGD) behaves

similarly to the trial in choosing medications. For example, both the trial and TS-SGD

choose “Chlorthalidone” and “HCTZ” more often than other medications in the success

49



data subset. In particular, “Chlorthalidone” was selected 39.7% (38.5%) of the times, and

“HCTZ” was selected 44.4% (47.3%) of the times by TS-SGD (the trial). However, in the

failure data subset, TS-SGD chooses medications differently from what was done in the trial

for half the medications. For example, TS-SGD chooses “Chlorthalidone” and “Reserpine”

more often than other medications in the failure data subset, which is quite different than

the medications selected in the trial. In particular, “Chlorthalidone” was selected 55.2%

(37.8%) of the times, “Reserpine” was selected 31.4% (1.2%) of the times, “HCTZ” was

selected 6.9% (33.4%) of the times, and “Furosemide” was selected 1.8% (16%) of the times

under TS-SGD (the trial).

We next investigate how TS-SGD may achieve success (i.e., a predicted SBP of 115-125

mmHg) by suggesting a different BP-lowering medication in patient visits, where the clinical

trial has failed (i.e., patient had a SBP out of 115-125 mmHg). To this aim, we focus on

a subset of patient visits in which the clinical trial failed and TS-SGD suggests a different

medication. We then assess whether the different medication selected by TS-SGD results in

a success. TS-SGD deviates from the trial’s medication selections in 38.1% of the cases in

the failure data subset. Within this group, Table 2.3 shows the distribution of medication

choices TS-SGD made to convert the failure decisions in the trial into predicted successes

by selecting alternative medications.

Reserpine Chlorthalidone Metoprolol Furosemide Terazosin Carvedilol Hydralazine HCTZ

28.2% 43% 2.5% 8.2% 3.5% 2.4% 1.8% 10.4%

Table 2.3: The distribution of different medications selected by TS-SGD conditioned on the
successful outcomes when tested on the subset of failure data in which clinicians erroneously
predicted success.

We obtain the insight that, as a result of modifying the decisions in the cases, where

BP control was not achieved in the trial that occurred 28.7% of the times (see Table 2.2),

38.1% of these failures were avoided according to our TS-SGD algorithm. Note that TS-SGD

has also a success rate of 97.2% over the success data subset. This gives the insight that

TS-SGD did very well in the cases for which the trial outcome was achieved. Putting these

together, the total success rate of TS-SGD reaches 80.2%. This reflects a predicted relative

improvement of 12.6% with respect to the success rate of 71.2% in the trial.

2.5.4 Clinical Insights and Discussion

We discuss four important clinical insights from our analysis below.

First, in the current practice of treating and managing HBP, physicians usually deploy

a trial-and-error approach to select a third-line medication and its dosage. These decisions

are highly informed by the physician’s expertise and experience of administrating various
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medications and dosages, because the current guidelines do not inform the choice of the

third-line medication, which many T2DM patients require to achieve the target BP. Instead,

our (joint) contextual learning and optimization framework provides a systematic decision

support tool for optimizing the medication and dosage decisions for these patients. Our

empirical results shown in Figures 2.3 and 2.4 and Table 2.2 suggest that choosing dosage

decisions adaptively and optimally following an online optimization procedure may improve

clinical decisions for the HBP therapy. Of course, with offline data, offline methods can

perform at least as well; however, we are using the data in an online manner to give insight

into the potential performance of online learning and control.

Second, our results in Figures 2.5 and 2.6 as well as Tables 2.5 and 2.6 suggest that further

attention should be given to “Chlorthalidone”, “Reserpine”, “Furosemide”, and “HCTZ” (in

decreasing order of discrepancy from the choice made in the trial) to (i) better understand

the precise characteristics of patients that lead to the failures/successes in achieving the SBP

target and (ii) confirm if the choices of the TS-SGD algorithm are indeed better. For the suc-

cess data subset, our algorithm matches the trial in choosing “Chlorthalidone” and “HCTZ”

more often than other medications, which we take as strong evidence that the TS-SGD al-

gorithm has face validity. However, in the failure data subset of Table 2.6, “Furosemide”,

and “HCTZ” are used less frequently by our algorithm than in the trial; thus, it is critical to

investigate why physicians used them more frequently in the trial than our algorithms. Fur-

ther research should examine if our algorithm’s confidence in prescribing “Chlorthalidone”

and “Reserpine” more frequently bears out in clinical practice. We acknowledge that there

is uncertainty around the true outcomes with model-suggested medications, because we lack

data on treatments not selected in the trial (for obvious reasons).

Third, we show in Table 2.3 that for the failure data subset, TS-SGD improves HBP

management by alternative medication selections at the proper dosage and converts the

failures into successes, defined as 115 ≤ predicted SBP ≤ 125 mmHg, in 38.1% of the cases.

We also find that for these successful cases, “Chlorthalidone” and “Reserpine” are selected for

43% and 28.2% of the times, respectively. These are not far off from the average percentage

of the times they were selected by TS-SGD over the entire failure data subset, which gave

55.2% and 31.4%, respectively, in Table 2.6.

Fourth, our empirical results provide medical professionals with critical insights into the

effect of different third-line medications on achieving the BP target of 120 mmHg for patients

with type 2 diabetes. To find the right medication and its corresponding dosage to achieve

BP control, instead of a trial-and-error approach that is common in everyday clinical practice,

our decision support tool provides an optimized medication and dosage considering all key

contextual variables of a given individual. Personalizing BP treatment, in particular for
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patients with diabetes who are at increased risk of cardiovascular and microvascular events,

can improve outcomes and result in cost containment by averting some of these costly events.

2.6 Conclusion

We introduced a new contextual multi-armed bandit model with a two-dimensional nested

control, and proposed the first joint contextual learning and optimization algorithm for it.

For this algorithm, we provided a rigorous analytical performance analysis that involves

several new technical ideas integrating the strength of contextual bandit and online convex

optimization in a seamless fashion. Although our model and algorithm were motivated by a

fundamental medical decision-making problem, they can also be applied to a wide range of

other operation problems (e.g., joint inventory and pricing/vehicle routing) in which there

are two levels of decision-making process.

Our algorithm/model fills a fundamental and important gap in the medical decision-

making literature. We illustrated our algorithm’s practical relevance by evaluating it on a

critical chronic disease problem of controlling high blood pressure for patients with type 2

diabetes. We addressed a key need in current clinical guidelines of blood pressure manage-

ment, namely that they do not inform the choice and dosage for the third-line BP-lowering

medication to maintain the target SBP of 120 mmHg. In §2.5.3, we found that despite the

losses due to online learning, our algorithm achieved 12% higher success rate than the clini-

cal trial achieved. In §2.5.4, we provided four important insights in treating and managing

HBP. In visits for which the trial did not achieve the SBP target, the alternative medica-

tions that were successfully selected most often by our algorithm were “Chlorthalidone” and

“Reserpine” in 43% and 28.2% of cases, respectively. Similarly, “HCTZ” and “Furosemide”

exhibited this pattern but were used less frequently. These medications deserve further study,

because lacking access to counterfactual outcomes for these cases prevents us from forming a

statistically strong conclusion, as is often the case in online learning, particularly in health-

care applications. Our findings also suggest that in almost 29% of cases, the medication and

dosage choices made in the clinical trial were not effective. While our algorithms largely

agreed with the medications used in the clinical trial for cases with successful BP control,

we were able to identify promising alternatives for cases that did not achieve the BP control

in the clinical trial.

52



2.7 Appendix

2.7.1 Appendix A: Summary of Major Notation

Table 2.4 summarizes the major mathematical notation used in the manuscript.

Notation Description
t ∈ T index of time periods (correspond to epochs of patient arrivals).
k ∈ K index of actions (or treatments/medications).
φX (t) patient t’s context that directly affects disease progression risk.
ψX (t) patient t’s context that affects disease progression risk via treatment-outcome metric.
φAk (t) action vector of patient t.
yk(t) dosage vector corresponding to treatment k ∈ K for patient t.
∆LB
k the lower bound for a dosage of treatment k ∈ K.

∆UB
k the upper bound for a dosage of treatment k ∈ K.

Φk(t) feature vector of patient t that directly affects the disease progression risk.
Ψk(t) feature vector of patient t that affects the disease risk via treatment-outcome metric.
Υk(t) feature-dosage vector of patient t including the feature Ψk(t) and dosage yk(t) vectors.
Πk(t) treatment–outcome metric of patient t.
ζk(t) the error term of the treatment–outcome metric of patient t for treatment k.
Rk(t) reward (probability of not having disease progression) of patient t for treatment k.
ξk(t) the error term of the reward of patient t for treatment k.
q the target for the treatment-outcome metric.
αk, βk weighs for the over-treatment and under-treatment, respectively.
π true parameter in the online linear regression for treatment–outcome metric.
π̃(t) sampled π at time period t from the posterior distribution.
π̄(t) estimated π at time period t from linear regression for treatment–outcome metric.
π̂(t) projected π̄(t) onto the admissible set Λ at time period t.
θ true vector parameter in logistic regression for disease progression risk.

θ̃(t) sampled θ at time period t from the posterior distribution.
θ̄(t) estimated θ at time period t from logistic regression for disease progression risk.

θ̂(t) projected θ̄(t) onto the admissible set Θ at time period t.
Ht history of observed information at the beginning of time period t.
mt
i mean of the Gaussian posterior distribution for the i-th element of θ at time period t.

(qti)
−1 variance of the Gaussian posterior distribution for the i-th element of θ at time period t.

ut mean of the Gaussian posterior distribution of π at time period t.
(P t)−1 variance of the Gaussian posterior distribution of π at time period t.

∇̃fk(t) stochastic (noisy) sub-gradient of function f at time period t for treatment k.
D(t) The stochastic delay in observing the feedback of patient t.
UBk(t) Upper bound on the disease progression risk for treatment k at time period t.
LBk(t) Lower bound on the disease progression risk for treatment k at time period t.

Table 2.4: Summary of major notation in the manuscript.
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2.7.2 Appendix B: Omitted Theoretical Results and their Proof

Proof. Proof of Corollary II.2: Similar to the decomposition that we introduced in §2.4.3 for

the Bayesian regret, we can have the following decomposition for the regret:

Regret(T, θ, π) =
T∑
t=1

(
V∗k∗(t)−V∗

k̃
(t)
)

+
T∑
t=1

(
V∗
k̃
(t)− V̂k̃(t)

)
+

T∑
t=1

(
V̂k̃(t)−Vk̃(t)

)
,

where k̃ is the treatment chosen by the UCB-based S-SGD Bandit algorithm (see Algorithm

2 in Appendix D) at time period t and k∗ is the optimal treatment. We next show how each

term of the above regret decomposition can be bounded below.

Part I (Contextual bandit loss): Consider the term (V∗k∗(t) −V∗
k̃
(t)) as the loss corre-

sponding to the difference between the true expected rewards of the optimal treatment k∗

and the treatment k̃ chosen by the algorithm at time period t. Similar to the decomposition

proposed by [68], we have the following decomposition for this loss:

σ
(

ΦT
k∗(t) · θ − fk∗

(
Ψk∗(t), y

∗
k∗ ; π

))
− σ

(
ΦT
k̃

(t) · θ − fk̃
(
Ψk̃(t), y

∗
k̃
; π
))

(2.29)

≤ σ
(

ΦT
k∗(t) · θ − fk∗

(
Ψk∗(t), y

∗
k∗ ; π

))
− σ

(
ΦT
k∗(t) · θ̂(t)− fk∗

(
Ψk∗(t), y

∗
k∗ ; π̂(t)

))
(2.30)

+ σ
(

ΦT
k∗(t) · θ̂(t)− fk∗

(
Ψk∗(t), y

∗
k∗ ; π̂(t)

))
− σ

(
ΦT
k̃

(t) · θ̂(t)− fk̃
(
Ψk̃(t), y

∗
k̃
; π̂(t)

))
(2.31)

+ σ
(

ΦT
k̃

(t) · θ̂(t)− fk̃
(
Ψk̃(t), y

∗
k̃
; π̂(t)

))
− σ

(
ΦT
k̃

(t) · θ − fk̃
(
Ψk̃(t), y

∗
k̃
; π
))
. (2.32)

In Proposition 1, we derived a high-probability estimation bound on the difference be-

tween the true and estimated expected rewards of any treatment k. We denote this high-

probability bound on the RHS of (2.5) by Λk
t (δ). Therefore, the first term (2.30) and the last

term (2.32) in the above loss decomposition are bounded by Λk∗
t (δ) and Λk̃

t (δ) for treatments

k∗ and k̃, respectively. We then bound the second term (2.31) as follows:

σ
(

ΦT
k∗(t) · θ̂(t)− fk∗

(
Ψk∗(t), y

∗
k∗ ; π̂(t)

))
− σ

(
ΦT
k̃

(t) · θ̂(t)− fk̃
(
Ψk̃(t), y

∗
k̃
; π̂(t)

))
= σ

(
ΦT
k∗(t) · θ̂(t)− fk∗

(
Ψk∗(t), y

∗
k∗ ; π̂(t)

))
+ Λk∗

t (δ)

− σ
(

ΦT
k̃

(t) · θ̂(t)− fk̃
(
Ψk̃(t), y

∗
k̃
; π̂(t)

))
− Λk∗

t (δ)

≤ σ
(

ΦT
k̃

(t) · θ̂(t)− fk̃
(
Ψk̃(t), y

∗
k̃
; π̂(t)

))
+ Λk̃

t (δ)

− σ
(

ΦT
k̃

(t) · θ̂(t)− fk̃
(
Ψk̃(t), y

∗
k̃
; π̂(t)

))
− Λk∗

t (δ)

= Λk̃
t (δ)− Λk∗

t (δ) . (2.33)
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In the above inequality, we deploy the fact that the treatment k̃ selected by the algorithm has

the largest upper-confidence bound compared to other treatments. Now, if we plug (2.33)

in the second term (2.31), apply Proposition 1 for the terms (2.30) and (2.32), and then

sum over all patients arriving over T time steps, we establish the following bound on the

contextual bandit loss:

T∑
t=1

(
V∗k∗(t)−V∗

k̃
(t)
)
≤ 2

T∑
t=1

Λk̃
t (δ) , (2.34)

where

Λk̃
t (δ)

=
1

2cσ
‖Φk̃(t)‖V −1

t

(√
2 log

(
det(Vt)1/2 det(γI)−1/2

δ

)
+

√
2(d1 +K)N(t) log

(
N(t)

d1 +K

)

+ κcθ

)
+

max{αk̃, βk̃}
2

‖Υk̃(t)‖U−1
t

(√
2λ2 log

(
det(Ut)1/2 det(νI)−1/2

δ

)

+ cψ

√
4(d2 + 2K)N(t) log

(
N(t)

d2 + 2K

)
+ ηcπ

)
.

The following root-squared expression in Λk̃
t (δ) can be further simplified by the following

algebra:

2 log

(
det(Vt)

1/2 det(γI)−1/2

δ

)
= 2 log

(
det(Vt)

1/2
)

+ 2 log

(
det(γI)−1/2

δ

)
,

where Vt =
∑t−1

s=1 Φk̃(s) · ΦT
k̃

(s) + γI ∈ R(d1+K)×(d1+K) is a positive definite matrix. Then,

trace(Vt) is equal to the sum of its eigenvalues, and det(Vt) is product of its eigenvalues.

Thus, by using the inequality of arithmetic and geometric means i.e., 1
n

n∑
i=1

xi ≥ n

√
n∏
i=1

xi, and
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‖Φk(t)‖ ≤ 1, we have:

det(Vt) =

d1+K∏
i=1

λi ≤

(
1

d1 +K

d1+K∑
i=1

λi

)d1+K

=

(
1

d1 +K
trace (Vt)

)d1+K

=

(
1

d1 +K

(
t−1∑
s=1

‖Φk̃(s)‖
2 + trace (γI)

))d1+K

=

(
1

d1 +K

(
t−1∑
s=1

‖Φk̃(s)‖
2 + γtrace (I)

))d1+K

≤
(

1

d1 +K
(t+ γ(d1 +K))

)d1+K

=

(
γ +

t

d1 +K

)d1+K

, (2.35)

where λi is the ith eigenvalue of the matrix Vt.

The above implies that 2 log
(
det(Vt)

1/2
)
≤ (d1 +K) log

(
γ + t

d1+K

)
, and so we have:

2 log

(
det(Vt)

1/2 det(γI)−1/2

δ

)
= 2 log

(
det(Vt)

1/2
)

+ 2 log

(
det(γI)−1/2

δ

)
≤ (d1 +K) log

(
γ +

t

d1 +K

)
+ 2 log

(
det(γI)−1/2

)
+ 2 log

(
1

δ

)
≤ (d1 +K) log

(
1 +

t

γ(d1 +K)

)
+ log

(
1

δ2

)
. (2.36)

A similar bound can be derived for the third root-squared term in Λk̃
t (δ). Furthermore,

the summation of norms of feature vectors can be upper bounded using Lemma II.7 (see

Appendix C) as:

T∑
t=1

‖Φk̃(t)‖
2
V −1
t
≤ 2 log

(
det(VT+1)

det(γI)

)
.

Note that in (2.35), we derived det(VT+1) ≤
(
γ + T

d1+K

)d1+K

, and det(γI) = γ(d+K1) det(I) =

γ(d+K1). Therefore, we establish the following using Cauchy-Schwartz inequality:

T∑
t=1

‖Φk̃(t)‖V −1
t
≤
√
T

√√√√ T∑
t=1

‖Φk̃(t)‖
2
V −1
t
≤
√
T

√
2(d1 +K) log

(
1 +

T

γ(d1 +K)

)
. (2.37)

A similar bound can be derived for
∑T

t=1 ‖Υk̃(t)‖U−1
t

as well. Finally, to complete the proof,
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if we plug (2.36) and (2.37) in (2.34), we obtain the following bound:

2
T∑
t=1

Λk̃
t (δ) ≤ 1

cσ

T∑
t=1

‖Φk̃(t)‖V −1
t

(√
(d1 +K) log

(
1 +

T

γ(d1 +K)

)
+ log

(
1

δ2

)

+

√
2(d1 +K)Nmax log

(
Nmax

d1 +K

)
+ κcθ

)
+ max{αk, βk}

T∑
t=1

‖Υk̃(t)‖V −1
t(

λ

√
(d2 + 2K) log

(
1 +

T

ν(d2 + 2K)

)
+ log

(
1

δ2

)

+ cψ

√
4(d2 + 2K)Nmax log

(
Nmax

d2 + 2K

)
+ ηcπ

)

≤ 1

cσ

√
2T (d1 +K) log

(
1 +

T

γ(d1 +K)

)(√
(d1 +K) log

(
1 +

T

γ(d1 +K)

)
+ log

(
1

δ2

)

+

√
2(d1 +K)Nmax log

(
Nmax

d1 +K

)
+ κcθ

)

+ max{αk, βk}

√
2T (d2 + 2K) log

(
1 +

T

ν(d2 + 2K)

)
(
λ

√
(d2 + 2K) log

(
1 +

T

ν(d2 + 2K)

)
+ log

(
1

δ2

)

+ cψ

√
4(d2 + 2K)Nmax log

(
Nmax

d2 + 2K

)
+ ηcπ

)
= L(δ, T ) +Q(δ, T ),

where L(T, δ) and Q(T, δ) are defined in Proposition 2.

In the above derivation, Nmax = max1≤t≤T N(t) is the maximum number of unrealized

feedbacks by the time period T . Applying Lemma II.6 (see Appendix C), Nmax is upper

bounded by 2µD + σ̃
(√

2 log T +
√

2 log
(
1/δ
)

+ c′(σ̃
√

2 log T + 1) + c
)

, with probability

1− δ, where c = 2 σ̃2 log (2σ2
D + 1) + 1, c′ = 2 log(2σ2

D + 1) and σ̃ = σD
√
p+ 2.

Plugging the above bound in (2.34), the following high-probability bound is obtained on

the contextual bandit loss with probability 1− 2δ:

T∑
t=1

(
V∗k∗(t)−V∗

k̃
(t)
)
≤ L(δ, T ) +Q(δ, T ).

Part II (S-SGD sub-optimality loss): Similar to our procedure that we developed in Part
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II of the proof of Theorem II.1, the S-SGD sub-optimality loss is bounded with probability

1− 5δ as:

T∑
t=1

(
V∗
k̃
(t)− V̂k̃(t)

)
≤ P (δ, T )

√
T +

L(T, δ)

2
+Q(T, δ),

where P (δ, T ) = 1
4
G
√

2ρ log(1/δ) + 3
4
ξG
√

1 + µD + p+1
√
σ2
D log(T/δ).

Part III (Estimation loss): We bound the estimation loss
∑T

t=1

(
V̂k̃(t) − Vk̃(t)

)
with

probability at least 1 − 2δ using Proposition 1 and applying a similar argument that we

developed in Part I of the proof of Corollary II.2 (see Appendix B) as follows:

T∑
t=1

(
V̂k̃(t)−Vk̃(t)

)
≤ L(T, δ) +Q(T, δ)

2
.

Finally, putting all the three established high-probability bounds together, the following

bound holds on the regret:

Regret(T, θ, π) ≤ P (δ, T )
√
T + 2L(T, δ) +

5Q(T, δ)

2

=
G

4

(√
2ρ log(1/δ) + 3ξ

√
1 + µD + p+1

√
σ2
D log(T/δ)

)
√
T

+
2

cσ

√
2T (d1 +K) log

(
1 +

T

γ(d1 +K)

)(√
(d1 +K) log

(
1 +

T

γ(d1 +K)

)
+ log

(
1

δ2

)

+

√
2(d1 +K)Nmax log

(
Nmax

d1 +K

)
+ κcθ

)

+
5 max{αk, βk}

2

√
2T (d2 + 2K) log

(
1 +

T

ν(d2 + 2K)

)
(
λ

√
(d2 + 2K) log

(
1 +

T

ν(d2 + 2K)

)
+ log

(
1

δ2

)

+ cψ

√
4(d2 + 2K)Nmax log

(
Nmax

d2 + 2K

)
+ ηcπ

)

= O

(
√
T (d1 +K)

(
log
(
T/(d1 +K)

)
+
√
Nmax log(Nmax/(d1 +K))

)
+

√
T (d2 + 2K)

(
log
(
T/(d2 + 2K)

)
+
√
Nmax log(Nmax/(d2 + 2K))

))
,
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which completes the proof when we set δ = 1/T .

Lemma II.3 (Sub-Gaussian Stochastic Sub-gradient). For the penalty function (2.2),

there exists a positive constant ξ such that we have the following:

1. The stochastic sub-gradient ∇̃fk defined in Step (5b) is ρ-sub-Gaussian.

2. The second moment of the stochastic sub-gradient ∇̃fk is bounded by ξ2, i.e.,

E
[
∇̃f 2

k

]
≤ ξ2 where ξ = max(αk,−βk)

√
E
[
[τ̃ ]2k

]
.

Proof. Proof of Lemma II.3: Recall that we use the following patient-specific dosage penalty

function:

fk
(
Ψk, yk; π

)
= αk

(
ΨT
k · ω̃ + yTk · τ̃ − q

)+

+ βk

(
q −ΨT

k · ω̃ − yTk · τ̃
)+

,

and its sub-gradient with respect to the kth element of yk is calculated as follows:

∇̃fk = [τ̃ ]k

[
αk · 1

(
ΨT
k · ω̃ + yTk · τ̃ > q

)
− βk · 1

(
ΨT
k · ω̃ + yTk · τ̃ < q

)]
.

Part I: We shall prove that the sub-gradient ∇̃f is ρ-sub-Gaussian. Using Taylor’s series

expansion, we have the following:

E
[

exp
(
s ∇̃fk

)]
= 1 + s E

[
|∇̃fk|

]
+
s2 E

[
|∇̃fk|2

]
2!

+
∞∑
m=3

sm E
[
|∇̃fk|m

]
m!

,

which implies that we have:

∞∑
m=3

sm E
[
|∇̃fk|m

]
m!

s2
=

E
[

exp
(
s ∇̃fk

)]
− s E

[
|∇̃fk|

]
−
s2 E

[
∇̃f 2

k

]
2

− 1

s2
,

which converges to 0 as s→ 0 by using L’Hôspital’s rule. This means that:

∞∑
m=3

sm E
[
|∇̃fk|m

]
m!

s2
= o(s2).
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Moreover, we note from the sub-gradient that |∇̃fk| ≤ max(αk,−βk) [τ̃ ]k. Now consider:

E
[

exp
(
s ∇̃fk

)]
≤ 1 +

∞∑
m=2

sm E
[
|∇̃fk|m

]
m!

= 1 +
s2 E

[
|∇̃fk|2

]
2!

+
∞∑
m=3

sm E
[
|∇̃fk|m

]
m!

≤ 1 +
s2 (max(αk,−βk))2

2!
E
[
[τ̃ ]2k

]
+
∞∑
m=3

sm (max(αk,−βk))m

m!
E
[
[τ̃ ]mk

]
≤ 1 +

s2 (max(αk,−βk))2

2!
E
[
[τ̃ ]2k

]
+ o(s2).

On the other hand, we know that for any ρ ≥ 0, we have the following:

exp

(
s2 ρ2

2

)
= 1 +

s2 ρ2

2
+ o(s2).

Therefore, if we choose ρ such that ρ2 > (max(αk,−βk))2 E
[
[τ̃ ]2k

]
, then for all s > 0, we

have:

E
[

exp
(
s ∇̃fk

)]
≤ exp

(
s2 ρ2

2

)
,

which shows that sub-gradient ∇̃fk is a ρ-sub-Gaussian random variable (see Definition 1 in

§2.2).

Part II: We also show that the sub-gradient ∇̃f has a bounded second moment. Since

|∇̃fk| ≤ max(αk,−βk) [τ̃ ]k, then we have E
[
∇̃f 2

k

]
≤ ξ2 where ξ = max(αk,−βk)

√
E
[
[τ̃ ]2k

]
.

Proposition 5 (High-Probability Regret Bound for Online Sub-Gaussian B-SGD).

Let {yi}ni=1 ∈ Rd be a sequence obtained by the projected online B-SGD algorithm under

stochastic delay with respect to convex and L-Lipchitz functions f(.) with a domain K, i.e.,

y1 ∈ K, yi+1 = ProjKϑ

(
yi − η

∑
s∈Si

g̃s

)
, ∀i = 1, ..., n− 1,

where g̃s = d
ϑ
fs(ys + ϑus) us is an approximate stochastic gradient of fs at ys, us is a

random unit vector sampled from the Euclidean sphere S = {u ∈ Rd | ‖u‖ = 1}, ϑ > 0 is a

perturbation parameter, η is step size at each iteration, Si = {s ∈ [n] | s+D(s)− 1 = i} is

the set of iterations whose feedback appears at the end of iteration i, and D(s) is stochastic

delay. We make the following assumptions:
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1. Diameter of the set K is bounded by a constant G, i.e., supy1,y2∈K ‖y1 − y2‖ ≤ G.

The absolute value of the function at any point is bounded by a constant C, i.e.,

supy∈K |f(y)| ≤ C.

2. The set K contains the Euclidean ball B = {y ∈ Rd | ‖y‖ ≤ 1} centered at the zero

vector.

3. The setKϑ is the Minkowski set corresponding to the setK, defined byKϑ = {y | 1
(1−ϑ)

y ∈
K}.

4. The stochastic delay D(s) satisfies the regularity condition (2.4), and D =
∑n

i=1 D(i).

If we choose the step sizes η = G
d(n+D)3/4

, the following bound holds with probability at least

1− 2δ:

n∑
i=1

(
E
[
fi(yi + ϑui)

]
− fi(y∗)

)
≤ dG

2

(
1 + 5C2 +

8L

d

)(
1 + µD + p+1

√
σ2
D log(n/δ)

)3/4

n3/4

+G

√
2dC log(1/δ)

(
1 + µD + p+1

√
σ2
D log(n/δ)

)3/4

n3/4,

where y∗ = arg min
y∈K

∑n
i=1 fi(y).

Proof. Proof of Proposition 5: First, note that [69] propose the following:

g̃ =
d

ϑ
f(y + ϑu) u

as a stochastic gradient estimator of f at y, where ϑ > 0 is a perturbation parameter, and u is

a random unit vector randomly selected from the Euclidean sphere S. Stoke’s theorem shows

that g̃ is an unbiased gradient estimator of the ϑ-smoothed version f̂(y) = Ev∈B
[
f(y + ϑv)

]
of any convex (not necessarily differentiable) function f , where v is randomly selected from

the Euclidean ball B = {v ∈ Rd | ‖v‖ ≤ 1} (see Lemma 2.1 of [69]). This implies for ϑ > 0:

Eu∈S
[
f(y + ϑu)u

∣∣ y] =
ϑ

d
∇f̂(y) =

ϑ

d
∇Ev∈B

[
f(y + ϑv)

]
,

where S = {u ∈ Rd | ‖u‖ = 1} is the Euclidean sphere centered at the zero vector.

Given that the value of the function f is bounded by a constant C at any point, we have:

‖g̃‖ =

∥∥∥∥dϑ f(y + ϑu) u

∥∥∥∥ ≤ d

ϑ
C.
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Using a similar argument as we developed in Lemma II.3, we can prove that the gradient

estimator g̃ is ρ-sub-Gaussian and its second moment is bounded by E
[
‖g̃‖2 ] ≤ ρ2, where

ρ = d
ϑ
C. Also, the ϑ-smoothed version f̂ is a good approximation of f , because for y ∈ K:∣∣∣f̂(y)− f(y)

∣∣∣ =
∣∣∣ Ev∈B

[
f(y + ϑv)

]
− f(y)

∣∣∣
≤ Ev∈B

[
|f(y + ϑv)− f (y)|

]
≤ Lϑ Ev∈B

[
‖v‖

]
≤ Lϑ, (2.38)

where the equality is by definition of f̂ , the first inequality is by Jensen’s inequality, the

second inequality is due to f being L-Lipschitz, and the last inequality holds because v ∈ B.

Moreover, note that we project onto the shrunken set Kϑ = {y | 1
(1−ϑ)

y ∈ K} instead of

the original set K to avoid moving outside of the set K when we add the random sampling

from the Euclidean sphere S. For these two sets K and Kϑ, we have the following properties:

• Property 1: The shrunken set Kϑ is convex for any 0 < ϑ < 1.

• Property 2: ∀y ∈ Kϑ, Bϑ(y) = {x | x = y + ϑu} ⊆ K, i.e., all balls of radius

ϑ around points y ∈ Kϑ are contained in K, because K is convex and uB ⊆ K, so

Kϑ + ϑuB ⊆ (1− ϑ)K + ϑK = K.

• Property 3: ∀y ∈ K, ∃yϑ ∈ Kϑ such that ‖yϑ − y‖ ≤ ϑG, where G is the diameter of

K.

Now, let y∗ = arg miny∈K
∑n

i=1 fi(y), and y∗ϑ = ProjKϑ(y∗). Denote f̂i(yi) = Evi∈B
[
fi(yi+

ϑvi)
]

for shorthand, where f̂i(yi) is the ϑ-smoothed version of fi(yi) at yi. Also, let xi =

yi + ϑui. We can then bound the regret of the B-SGD as follows:

n∑
i=1

(
E
[
fi(xi)

]
− fi(y∗)

)
≤

n∑
i=1

(
E
[
fi(xi)

]
− fi(y∗ϑ)

)
+ ϑnLG

≤
n∑
i=1

E
[
fi (yi)

]
−

n∑
i=1

fi (y
∗
ϑ) + 2ϑnLG

≤
n∑
i=1

E
[
f̂i (yi)

]
−

n∑
i=1

f̂i (y
∗
ϑ) + 4ϑnLG. (2.39)

The first inequality is by Property 3 and f being L-Lipschitz, the second inequality is estab-

lished by |fi (xi)− fi (yi) | ≤ L ‖xi − yi‖ ≤ ϑL. Also, note that since the set K contains the

Euclidean ball, the diameter G of this set is greater than 1 (so 2ϑnL ≤ 2ϑnLG). The third

inequality is by (2.38).
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In (2.39),
∑n

i=1 E
[
f̂i (yi)

]
−
∑n

i=1 f̂i (y
∗
ϑ) is indeed equal to the high-probability regret of

implementing the high-probability S-SGD algorithm on the functions f̂ and over Kϑ under

stochastic delay. In Proposition 3, we develop the following high-probability bound with

probability 1− δ:

n∑
i=1

E
[
f̂i (yi)

]
−

n∑
i=1

f̂i (y
∗
ϑ) ≤ G2

2η
+
η

2
nξ2 + 2ξ2ηD +

√
2G2ρ log(1/δ)n, (2.40)

where ξ = ρ = d
ϑ
C. Plugging the high-probability bound (2.40) into (2.39), we can establish

the following high-probability bound with probability 1− δ:

n∑
i=1

(
E
[
fi(xi)

]
− fi(y∗)

)
≤

n∑
i=1

E
[
f̂i (yi)

]
−

n∑
i=1

f̂i (y
∗
ϑ) + 4ϑnLG

≤ G2

2η
+
ηn

2

(
dC

ϑ

)2

+ 2ηD

(
dC

ϑ

)2

+ 4ϑnLG

+G

√
2

(
dC

ϑ

)
log(1/δ)n

≤ dG

2

(
(n+D)3/4 +

C2n

(n+D)1/4
+

4C2D

(n+D)1/4
+

8Ln

d(n+D)1/4

)
+G

√
2dC log(1/δ)(n+D)1/4n

≤ dG

2

(
1 + 5C2 +

8L

d

)
(n+D)3/4 +G

√
2dC log(1/δ)(n+D)3/4,

where we set η = G
d(n+D)3/4

and ϑ = 1
(n+D)1/4

in the second inequality. To get the last

inequality, we replace both n and D with (n+D) in the third inequality.

In Proposition 3, we establish a high-probability bound on the total delay D =
∑n

i=1D(i)

under (2.4) by D ≤ n(µD + p+1
√
σ2
D log(n/δ)) with probability 1 − δ. Thus, the high-

probability regret bound, which holds with probability 1− 2δ, is as follows:

n∑
i=1

(
E
[
fi(xi)

]
− fi(y∗)

)
≤ dG

2

(
1 + 5C2 +

8L

d

)
(n+D)3/4 +G

√
2dC log(1/δ)(n+D)3/4

≤ dG

2

(
1 + 5C2 +

8L

d

)(
1 + µD + p+1

√
σ2
D log(n/δ)

)3/4

n3/4

+G

√
2dC log(1/δ)

(
1 + µD + p+1

√
σ2
D log(n/δ)

)3/4

n3/4,

It is worth noting that when there is no delay in observing feedbacks, the above high-
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probability regret becomes the following with probability 1− 2δ:

n∑
i=1

(
E
[
fi(xi)

]
− fi(y∗)

)
≤

n∑
i=1

E
[
f̂i (yi)

]
−

n∑
i=1

f̂i (y
∗
ϑ) + 4ϑnLG

≤ G2

2η
+
η

2
nξ2 +

√
2G2ρ log(1/δ)n+ 4ϑnLG

≤ G2

2η
+
ηn

2

(
dC

ϑ

)2

+G

√
2

(
dC

ϑ

)
log(1/δ)n+ 4ϑnLG

≤ dG

2

(
1 + C2 +

8L

d

)
n3/4 +G

√
2dC log(1/δ)n3/4,

where we set η = G
dn3/4 , and ϑ = 1

n3/4 in the third inequality.

Proof. Proof of Proposition 4: Recall the Bayesian regret decomposition in §2.4.3. We

bound each part of it for the TS-based B-SGD Bandit algorithm (Algorithm 3 in Appendix

E) below.

Part I (Contextual bandit loss): To bound the contextual bandit loss, we follow our

approach in the Part I of the proof of Theorem II.1 where we used Proposition 2. Accordingly,

the following bound for the contextual bandit loss holds with probability 1− δ:

E
[ T∑
t=1

(
V∗k∗(t)−V∗k(t)

)]
≤ 1

cσ

√
2T (d1 +K) log

(
1 +

T

γ(d1 +K)

)
(√

(d1 +K) log

(
1 +

T

γ(d1 +K)

)
+ log

(
1

δ2

)

+

√
2(d1 +K)Nmax log

(
Nmax

d1 +K

)
+ κcθ

)
+ T δ = L(T, δ) + Tδ.

It is worth noting that since the structure of the penalty function f is unknown in §2.4.7,

there is no need to learn the parameter π using an online linear regression (that we had in

Theorem II.1). Therefore, we only need to include the loss we incurred due to learning the

parameter θ in the above bound using an online logistic regression. In particular, we use the

high-probability bound that we developed in Part I of the proof of Proposition 1.

Part II (B-SGD sub-optimality loss): Since we use the B-SGD procedure instead of the

S-SGD in our algorithm (Algorithm 3), we bound the second term E
[∑T

t=1

(
V∗k(t)− V̂k(t)

)]
as follows.

To this aim, we first decompose it using the Lipschitz property of the logistic function,
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which is Lipschitz with constant 1/4:

E
[ T∑
t=1

(
V∗k(t)− V̂k(t)

)]
= E

[ T∑
t=1

σ
(
ΦT
k (t) · θ − fk (Ψk(t), y

∗
k)
)
− σ

(
ΦT
k (t) · θ̂(t)− fk (Ψk(t), yk(t))

)]
≤ 1

4

(
E
[ T∑
t=1

(
fk
(
Ψk(t), yk(t)

)
− fk

(
Ψk(t), y

∗
k

))]
︸ ︷︷ ︸

Part I

+E
[ T∑
t=1

(
ΦT
k (t) ·

(
θ − θ̂(t)

))
︸ ︷︷ ︸

Part II

])
. (2.41)

First, we can establish the following high-probability bound for Part I that holds with

probability 1− 2δ for the general dosage penalty function that we developed in Proposition

5:

E
[ T∑
t=1

(
fk (Ψk(t), yk(t))− fk (Ψk(t), y

∗
k)
)]
≤ S(δ, T )T 3/4,

where S(δ, T ) = G
4

(
1 + 5C2 + 8L

2

(
1 + µD + p+1

√
σ2
D log(T/δ)

)3/4
+

√
2C log(1/δ)

(
1 + µD + p+1

√
σ2
D log(T/δ)

)3/4
1/T 3/4

)
,

and also y∗k = arg minyk∈[∆LB
k ,∆UB

k ]

∑T
t=1 fk (Ψk(t), yk).

Second, we use Lemma II.4 (see Appendix C) as well as Part I of the proof of Proposition

1 to bound Part II of (2.41). Hence, it is bounded with probability at least 1− δ as follows:

E
[ T∑
t=1

(
ΦT
k (t) ·

(
θ − θ̂(t)

))]
≤ 2

cσ

T∑
t=1

‖Φk(t)‖V −1
t

∥∥ht(θ)− ht(θ̄(t))∥∥V −1
t

≤ 2

cσ

√
2T (d1 +K) log

(
1 +

T

γ(d1 +K)

)
(√

(d1 +K) log

(
1 +

T

γ(d1 +K)

)
+ log

(
1

δ2

)
+

√
2(d1 +K)Nmax log

(
Nmax

d1 +K

)
+ κcθ

)
= 2L(δ, T ),

where the second inequality is by a similar argument made in Part I of the proof of Corollary

II.2.

Inserting the above two bounds in (2.41), the following is obtained with probability at
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least 1− 3δ:

E
[ T∑
t=1

(
V∗k(t)− V̂k(t)

)]
≤ S(δ, T )T 3/4 +

L(δ, T )

2
.

It is worth noting that in above derivation we convert the high-probability S-SGD bound that

we developed in Proposition 5 on the general dosage penalty function into a corresponding

high-probability bound on the expected reward.

Part III (Estimation loss): We bound the total estimation loss of E
[∑T

t=1

(
V̂k(t) −

Vk(t)
)]

with probability at least 1− δ using Proposition 1 as follows:

E
[ T∑
t=1

(
V̂k(t)−Vk(t)

)]
≤ 1

2cσ

√
2T (d1 +K) log

(
1 +

T

γ(d1 +K)

)
(√

(d1 +K) log

(
1 +

T

γ(d1 +K)

)
+ log

(
1

δ2

)
+

√
2(d1 +K)Nmax log

(
Nmax

d1 +K

)
+ κcθ

)

=
L(δ, T )

2
.

Note that here there is no parameter π and thus, we do not have any estimation loss for

that.

Finally, putting all the above bounds developed in Parts I, II, and II together, we can

establish the following bound on the Bayesian regret of the TS-based B-SGD Bandit algo-

rithm:

BayesianRegret(T ) ≤ S(δ, T )T 3/4 + 2L(δ, T ) + Tδ = Õ
(
T 3/4

(√
1 + µD

)3/4
)
,

which completes the proof where we set δ = 1/T .

2.7.3 Appendix C: Known Results

In this Appendix, we provide some key known results and definitions from the related

literature. For completeness, we provide the readers with self-contained and more expository

versions of their original proofs and results.

Lemma II.4 (Initial Upper-Bound on Expected Reward). For any time period t, the

following upper bound on the difference between the true and estimated expected rewards
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holds (Adopted from Proposition 1 in [68]):∣∣∣σ(ΦT
k (t) · θ − fk

(
Ψk(t), yk(t); π

))
− σ

(
ΦT
k (t) · θ̂(t)− fk

(
Ψk(t), yk(t);π

))∣∣∣
≤ 1

2cσ
‖Φk(t)‖V −1

t

∥∥ht(θ)− ht(θ̄(t))∥∥V −1
t
.

Proof. Proof of Lemma II.4: Let S ⊂ Rn be an open set and also ω1, ω2 ∈ Rn. Consider

a vector-valued function F : S → Rn, and assume that it is continuously differentiable.

According to the mean-value theorem for vector-valued functions, there exist ω̄ = λ ω1 +

(1− λ) ω2, where 0 < λ < 1 such that:

F (ω2)− F (ω1) =

( 1∫
0

∇F (ω̄) dλ

)
(ω2 − ω1).

To use the mean-value theorem for the following continuously differentiable vector-valued

function,

ht(θ) =
t−1∑
s=1

σ
(
ΦT
k (s) · θ − fk

(
Ψk(s), yk(s); π

))
Φk(s) + κθ,

let θ0 = λ θ + (1− λ) θ̂(t) with 0 < λ < 1. Then, we have the following gradient vector:

∇ht(θ0) =
t−1∑
s=1

∇θ0σ
(
ΦT
k (s) · θ0 − fk

(
Ψk(s), yk(s); π

))
Φk(s) · ΦT

k (s) + κI.

LetHt(θ
0) =

∫ 1

0
∇ht(θ0) dλ. Recall cσ = inf

θ,π,Φk(s),Ψk(s),yk(s)
∇σ
(
ΦT
k (s)·θ−fk

(
Ψk(s), yk(s); π

))
>

0, and γ = κ/cσ ≥ 1. This implies Ht(θ
0) � cσ Vt � 0, where Vt =

∑t−1
s=1 Φk(s) · ΦT

k (s) + γI

is the design matrix corresponding to the first t− 1 time-steps of the observed features Φk.

Therefore, Ht(θ
0) is a positive definite and non-singular matrix. According to the mean-value

theorem, we then have:

ht(θ)− ht(θ̂(t)) = Ht(θ
0) ·
(
θ − θ̂(t)

)
⇒
(
θ − θ̂(t)

)
= H−1

t (θ0) ·
(
ht(θ)− ht(θ̂(t))

)
.
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Therefore, we can derive the following bound for each time period t:∣∣∣σ(ΦT
k (t) · θ − fk

(
Ψk(t), yk(t); π

))
− σ

(
ΦT
k (t) · θ̂(t)− fk

(
Ψk(t), yk(t);π

))∣∣∣
≤ 1

4

∣∣∣ΦT
k (t) · θ − ΦT

k (t) · θ̂(t)
∣∣∣

=
1

4

∣∣∣ΦT
k (t) ·H−1

t (θ0) ·
(
ht(θ)− ht(θ̂(t))

) ∣∣∣
≤ 1

4
‖Φk(t)‖H−1

t (θ0)

∥∥∥ht(θ)− ht(θ̂(t))∥∥∥
H−1
t (θ0)

≤ 1

4 cσ
‖Φk(t)‖V −1

t

∥∥∥ht(θ)− ht(θ̂(t))∥∥∥
V −1
t

, (2.42)

where the first inequality holds by the Lipschitz property of the logistic function, which is

Lipschitz with constant 1/4. The equality holds by the mean-value theorem. In the second

inequality, we use |aT · M · b| ≤ ‖a‖M ‖b‖M where ‖a‖M =
√
aTMa. Next, recall that

Ht(θ
0) � cσ Vt � 0 ⇒ H−1

t (θ0) � 1
cσ
V −1
t , which implies that the inequality ‖x‖H−1

t (θ0) ≤
1√
cσ
‖x‖V −1

t
holds for each vector x ∈ Rd. This is used in the last inequality above.

Next, the projected estimator is obtained by θ̂(t) = arg minθ∈Θ

∥∥ht(θ)− ht(θ̄(t))∥∥V −1
t

.

Therefore, we can obtain the following decomposition for each time period t:∥∥∥ht(θ)− ht(θ̂)∥∥∥
V −1
t

=
∥∥∥ht(θ)− ht(θ̄(t)) + ht(θ̄(t))− ht(θ̂(t))

∥∥∥
V −1
t

≤
∥∥ht(θ)− ht(θ̄(t))∥∥V −1

t
+
∥∥∥ht(θ̄(t))− ht(θ̂(t))∥∥∥

V −1
t

≤ 2
∥∥ht(θ)− ht(θ̄(t))∥∥V −1

t
.

Note that the first inequality holds by the triangle inequality, and the second inequality is

by definition of the projected estimator θ̄(t).

Plugging the above result into (2.42) completes the proof.

Lemma II.5 (Upper-Bound on Summation of a Subset of Feature Vectors). Let

{Φ(t)}∞t=1 be a sequence of vectors in Rd+K such that ‖Φ(t)‖ ≤ 1. Define Φ(0) = 0 and

Vt =
∑t−1

s=0 Φ(s) ΦT (s). If there exists an integer m such that λmin(Vm+1) ≥ 1, then the

following bound holds almost surely for all n > 0 (Adopted from Lemma 2 in [108]):

m+n∑
t=m+1

‖Φ(t)‖V −1
t
≤

√
2n (d+K) log

(
m+ n

d+K

)
.
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Proof. Proof of Lemma II.5: From Lemma 11 of [1], we have the following:

m+n∑
t=m+1

‖Φ(t)‖2
V −1
t
≤ 2 log

(
det(Vm+n+1)

det(Vm+1)

)
≤ 2 (d+K) log

(
trace(Vm+1) + n

d+K

)
− 2 log

(
det(Vm+1)

)
≤ 2 (d+K) log

(
m+ n

d+K

)
Note that trace(Vm+1) =

∑m
t=1 trace

(
Φ(t) ΦT (t)

)
=
∑m

t=1 ‖Φ(t)‖2 ≤ m since ‖Φ(t)‖ ≤ 1, and

also we have that det(Vm+1) =
∏d+K

j=1 λj ≥
(
λmin(Vm+1)

)(d+K) ≥ 1 since λmin(Vm+1) ≥ 1.

Using Cauchy-Schwartz inequality yield the following:

m+n∑
t=m+1

‖Φ(t)‖V −1
t
≤

√√√√n
m+n∑
t=m+1

‖Φ(t)‖2
V −1
t
≤

√
2n (d+K) log

(
m+ n

d+K

)
.

Lemma II.6 (Tail Characterization of N(t)). Consider a sequence of i.i.d. non-negative

random variables {D(t)}Tt=1 with mean µD that satisfies the regularity condition (2.4). Define

a random variable N(t) =
∑t−1

s=1 1
{
s+D(s) ≥ t

}
. Then, we have the following:

(a) N(t) is a sub-Gaussian random variable and N(t) ≤ 2µD + σ̃
√

2 log
(
1/δ
)

+ c for each

time period t, with probability 1− δ.

(b) For the maximal quantity Nmax = max1≤t≤T N(t), we have that Nmax ≤ 2µD +

σ̃
(√

2 log T +
√

2 log
(
1/δ
)

+ c′(σ̃
√

2 log T + 1)
)

+ c with probability 1− δ,

where c = 2 σ̃2 log (2σ2
D + 1) + 1, c′ = 2 log(2σ2

D + 1) and σ̃ = σD
√
p+ 2 (Adopted from

Proposition 1 in [165]).

Lemma II.7 (Upper-Bound on the Summation of Feature Vectors). For the total

summation of feature vectors Φk(t) ∈ Rd+K over T time steps, the following inequality holds

almost surely (Adopted from Lemma 9 in [53]):

T∑
t=1

‖Φk(t)‖2
V −1
t
≤ 2 log

(
det(VT+1)

det(γI)

)
,

where Vt is the design matrix at time step t.
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Proof. Proof of Lemma II.4: First, recall that the design matrix Vt ∈ R(d+K1)×(d+K1) corre-

sponding to the first t− 1 time-steps of the observed features is defined as:

Vt =
t−1∑
s=1

Φk(s) · ΦT
k (s) + γI.

So, the determinant of VT+1 = VT + Φk(T ) · ΦT
k (T ) is obtained as follows:

det(VT+1) = det
(
VT + Φk(T ) · ΦT

k (T )
)

= det
(
V

1/2
T

(
I + V

−1/2
T Φk(T ) · ΦT

k (T ) V
−1/2
T−1

)
V

1/2
T−1

)
= det (VT ) det

(
I +

(
V
−1/2
T Φk(T )

)(
V
−1/2
T Φk(T )

)T)
= det (VT )

(
1 + ‖Φk(T )‖2

V −1
T

)
= det (γI)

[
T∏
t=1

(
1 + ‖Φk(t)‖2

V −1
t

)]
. (2.43)

Note that the fourth equality holds because all the eigenvalues of a matrix of the form

(I + xxT ) where x ∈ Rn are one except the one eigenvalue, which is 1 + ‖x‖2. Also, the last

equality is obtained by recursion. Taking the logarithm of (2.43) from both sides results in

the following:

T∑
t=1

log
(

1 + ‖Φk(t)‖2
V −1
t

)
= log

(
det(VT+1)

det(γI)

)
.

Using the inequality x ≤ 2 log(1 + x) for any 0 ≤ x ≤ 1 along with the above result, we

have:

T∑
t=1

min
{

1, ‖Φk(t)‖2
V −1
t

}
≤ 2

T∑
t=1

log
(

1 + min
{

1, ‖Φk(t)‖2
V −1
t

})
≤ 2

T∑
i=1

log
(

1 + ‖Φk(t)‖2
V −1
t

)
= 2 log

(
det(VT+1)

det(γI)

)
.

Since ‖Φk(t)‖2
V −1
t
≤ λ−1

min(Vt) ‖Φk(t)‖2 ≤ λ−1
min(Vt) (note we assumed ‖Φk(t)‖ ≤ 1) and

λmin(Vt) ≥ 1, then we have ‖Φk(t)‖V −1
t
≤ 1. Accordingly, the following bound holds, which
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completes the proof:

T∑
t=1

‖Φk(t)‖2
V −1
t
≤ 2 log

(
det(VT+1)

det(γI)

)
.

The following standard results and definitions in this Appendix are stated without any

proof, and we refer interested readers to the chapter 2 of [152] for their detailed arguments.

Definition 3 (Martingale). A sequence of random variables {Xi}∞i=1 is said to be a mar-

tingale sequence adapted to some other sequence of random variables {Zi}∞i=1 if we have the

following:

1. Xi is a measurable function of Z1, Z2, · · · , Zi for each i.

2. E
[
Xi+1|Z1, Z2, · · · , Zi

]
= Xi, i.e., Xi+1 is centered around Xi.

3. E
[
|Xi|

]
<∞ for each i.

Definition 4 (Martingale Difference Sequence). Assume that {Xi}∞i=1 is a martingale

sequence adapted to {Zi}∞i=1 and define the random variable Di = Xi −Xi−1, then {Di}∞i=1

is called a martingale difference sequence adapted to {Zi}∞i=1.

Definition 5 (Sub-Gaussian Martingale). {Di}∞i=1 is said to be a σ2-sub-Gaussian mar-

tingale difference sequence adapted to {Zi}∞i=1 if the following inequality holds almost surely:

E
[

exp (λDi) |Z1, Z2, · · · , Zi−1

]
≤ exp

(
λ2 σ2

2

)
, for all λ ∈ R.

Theorem II.8 (Azuma-Hoeffding for Sub-Gaussian Martingale Difference Se-

quence). Assume that {Di}∞i=1 is a σ2-sub-Gaussian martingale difference sequence adapted

to {Zi}∞i=1, then the following inequalities hold:

P
( n∑
i=1

Di ≥ t
)
≤ exp

(
− t2

2nσ2

)
, for all t ≥ 0.

P
( n∑
i=1

Di ≤ −t
)
≤ exp

(
− t2

2nσ2

)
, for all t ≥ 0.
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2.7.4 Appendix D (Algorithm 2): UCB-based S-SGD Bandit Algorithm

In this appendix, we present the UCB-based S-SGD Bandit algorithm. Note that the

theoretical performance of this algorithm is provided in Corollary II.2.

Initialization. Choose an arbitrary dosage vector yk(1) for each treatment k ∈ K, where

its kth element belongs to [∆LB
k ,∆UB

k ] and other elements are zero. Initialize the step size

ηk.

Main Loop. We proceed in time periods T = {1, . . . , T} with the following steps.

Step 1 (Context Information). Observe the context information (φX (t), ψX (t)) of patient

t.

Step 2 (Parameter Estimation). Estimate the marginal effect of actions π̂(t) according

to:

π̂(t) =
( ∑
s∈M(t)

ΥT
k (s) ·Υk(s) + ηI

)−1( ∑
s∈M(t)

ΥT
k (s) · Πk(s)

)
,

and also estimate the marginal effects of context θ̄(t) according to:∑
s∈M(t)

(
Rk(s)− σ

(
ΦT
k (s) · θ̄(t)− fk

(
Υk(s); π̂(s)

)))
· Φk(s)− κθ̄(t) = 0.

If θ̄(t) ∈ Θ, then θ̂(t) = θ̄(t), otherwise project θ̄(t) by:

θ̂(t) = arg min
θ∈Θ

∥∥∥∥∥∥ht(θ)−
∑

s∈M(t)

Rk(s) · Φk(s)

∥∥∥∥∥∥
V −1
t

.

Step 3 (Policy Optimization and Implementation). Choose the treatment k(t) along

with the corresponding dosage yk(t) for patient t, where

k(t) = arg max
k∈K

{
σ
(

ΦT
k (t) · θ̂(t)− fk

(
Υk(t); π̂(t)

))
+ λ1(t) ‖Φk(t)‖V −1

t
+ λ2(t) ‖Υk(t)‖U−1

t

}
,

where λ1(t) = 1
2cσ

(√
(d1 +K) log

(
1 + t

γ(d1+K)

)
+ log

(
1
δ2

)
+

√
2(d1 +K)N(t) log

(
N(t)
d1+K

)
+κcθ

)
, and also λ2(t) =

max{αk,βk}
2

(
λ

√
(d2 + 2K) log

(
1 + t

ν(d2+2K)

)
+ log

(
1
δ2

)
+ cψ

√
4(d2 + 2K)N(t) log

(
N(t)
d2+2K

)
+ ηcπ

)
.

Step 4 (Feedback Observation). For each treatment k ∈ K, obtain the set Sk(t)
as the set of time-stamps with new realized feedbacks (i.e., rewards and treatment-dosage

sub-outcomes) at time period t, which is calculated by Sk(t) = Mk(t + 1) −Mk(t), where

the set Mk(t) contains the time-stamps with realized feedbacks by the end of time period

t− 1 corresponding to treatment k.
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Step 5 (Online Stochastic Sub-Gradient Descent). Update and calculate the fol-

lowing:

(5a) Obtain ∇̃fk(s) = [τ̂(t)]k

(
αk1

{
Πk(s) > q

}
− βk1

{
Πk(s) < q

})
for each new realized

treatment-dosage sub-outcome Πk(s) with time-stamp s ∈ Sk(t) at period t for each

treatment k.

(5b) Obtain the next period’s dosage for each treatment k ∈ K by

[yk(t+ 1)]k = Proj[∆LB
k ,∆UB

k ]

(
[yk(t)]k − ηk

∑
s∈Sk(t)

∇̃fk(s)
)
.

2.7.5 Appendix E (Algorithm 3): TS-based B-SGD Bandit Algorithm

In this appendix, we present the TS-based B-SGD Bandit algorithm. Note that the

theoretical performance of this algorithm is provided in Proposition 4.

Initialization. Initialize a safe, arbitrary dosage vector yk(1) for each treatment k ∈ K,

where its kth element belongs to [∆LB
k ,∆UB

k ] and other elements are zero. Initialize the step

size ηk.

Parameters. Let m1
` and (q1

` )
−1 be the mean and variance of the Gaussian prior distribution

for the `-th element of θ vector. These parameters can be initialized based on some prior

beliefs.

Main Loop. We proceed in time periods T = {1, . . . , T} with the following steps.

Step 1 (Context Information). Observe the context information (φX (t), ψX (t)) of

patient t.

Step 2 (Sampling). Draw a random sample [θ̃(t)]` from the posterior normal distribu-

tion of [θ(t)]` ∼ N (mt
`, (q

t
`)
−1) for each corresponding element ` ∈ {1, . . . , d1 + K} of the

feature vector.

Step 3 (Policy Optimization and Implementation). Having the sample vector θ̃(t),

choose the treatment k(t) with the corresponding dosage yk(t) for patient t, where

k(t) = arg max
k∈K

{
σ
(

ΦT
k (t) · θ̃(t)− fk

(
Ψk(t), yk(t)

))}
.

Step 4 (Feedback Observation). For each treatment k ∈ K, obtain Sk(t) as the

set of time-stamps with new realized feedbacks at time period t, which is calculated by

Sk(t) = Mk(t + 1) −Mk(t), where the set Mk(t) contains the time-stamps with realized

feedbacks by the end of time period t− 1 corresponding to treatment k.

Step 5 (Online Bandit SGD). Update and calculate the following:
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(5a) Calculate g̃k,s = uk(s)
ϑ

fk
(
yk(s)

)
with time-stamp s ∈ Sk(t) at time period t for each

treatment k ∈ K, where uk(s) is a random unit number and 0 < ϑ < 1.

(5b) Calculate the next period’s dosage for each treatment k ∈ K by

[yk(t+ 1)]k = ProjΩk

(
[yk(t)]k − ηk

∑
s∈Sk(t)

g̃k,s

)
+ ϑ uk(t),

where Ωk = {y | 1
(1−ϑ)

y ∈ [∆LB
k ,∆UB

k ]}, uk(t) is a random unit number, and 0 < ϑ < 1.

Step 6 (Belief Updating). We leverage the patients’ bandit feedback whose time-

stamp is in Sk(t) for each treatment k to update the posterior distribution of θ vector

parameter.

(6a) Solve the following optimization problem,

ρ̂ , arg max
ρ

1

2

d1+K∑
`=1

qt` ([ρ]` −mt
`)

2 +
∑
k∈K

∑
s∈Sk(t)

log
(
1 + e−Rk(s) (ρTΦk(s)−fk(yk(s);π̃(t)))

)
.

(6b) Update the mean and variance of the posterior distribution for θ as follows:

mt+1 = ρ̂, qt+1
` = qt` +

e−(ρ̂TΦk(t)−fk(yk(t);π̃(t)))

(1 + e−(ρ̂TΦk(t)−fk(yk(t);π̃(t))))2

(
[Φk(t)]`

)2

, ∀ ` ∈ {1, . . . , d1 +K}.

2.7.6 Appendix F: Belief Updating with Bayesian Inference

We explain the general idea of online Bayesian logistic and linear regressions. We use them

in Step (6) of the proposed algorithm to adaptively update the belief about the unknown

parameters.

Consider a training data set D = {(xi, yi)}ni=1, where xi ∈ Rd is a feature vector and yi ∈
{−1,+1} (failure, success) is a response variable. Assume that the success/failure probability

is a parameterized function P(y = ±1|x) = σ(y ·θTx) with unknown parameter θ ∈ Rd, where

the link function is chosen as the logistic function σ(u) = 1
1+exp(−u)

. With the assumption that

training labels are independently generated given θ, the likelihood is P(D|θ) =
∏n

i=1 σ(yi ·
θTxi). The estimate of θ can be found by maximizing the likelihood P(D|θ), or equivalently

minimizing the regularized negative log-likelihood under l2 regularization (to avoid over-

fitting) with parameter κ > 0:

min
θ
−

n∑
i=1

log(σ(yi · θTxi)) +
κ

2
‖θ‖ .
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It can be proved that this regularized log-likelihood function is concave in θ for logistic

regression. Consequently, various optimization methods (e.g., Newton’s and gradient decent

algorithms) can be used for solving it. However, we have a sequential setting in our problem.

If we want to update our estimator for a set of new realized data at each iteration, we should

re-optimize the above problem using all the previous realized data, which is computationally

inefficient.

To deal with this hurdle, we adopt a Bayesian approach to perform a recursive update

for the estimator with each set of new realized data. Consider a prior P(θ) for the parameter

θ, we apply the Bayes’ theorem to obtain the posterior P(θ|D) = P(D|θ)P(θ)
P(D)

∝ P(D|θ)P(θ).

Unfortunately, exact Bayesian inference for the above linear classifier is not tractable since

the evaluation of the posterior involves a product of sigmoid functions. We can either use

Markov Chain Monte Carlo methods [83], or analytic approximations to the posterior [149].

We apply the Laplace approximation, which deploys a Gaussian approximation to the

posterior. This can be obtained by finding the mode of the posterior distribution and then

fitting a Gaussian distribution centered at that mode (see Chapter 4 of [33]). In particular,

define the logarithm of the unnormalized posterior distribution:

Ψ(θ|m,Q,D) = logP(D|θ) + logP(θ). (2.44)

Since the logarithm of a Gaussian distribution is a quadratic function, we use a second-

order Taylor series to Ψ in (2.44) around its MAP (maximum a posterior) solution θ̂ =

arg maxθ Ψ(θ|m,Q,D):

Ψ(θ) ≈ Ψ(θ̂)− 1

2
(θ − θ̂)T H (θ − θ̂), (2.45)

where H is the Hessian of the negative log posterior evaluated at θ̂ i.e., H = −∇2Ψ(θ)|θ=θ̂.
By exponentiating both sides of (2.45), we can observe that the Laplace approximation

results in a normal approximation to the posterior i.e., P(θ|D) ≈ N (θ|θ̂,H−1).

For Gaussian priors P(θ) = N (θ|m,Q), we have the following from (2.44):

Ψ(θ|m,Q,D) = −1

2
(θ −m)T Q−1 (θ −m) +

n∑
i=1

log
(
σ(yi · θTxi)

)
, (2.46)

and the Hessian H evaluated at θ̂ is obtained as H = Q−1 +
∑n

j=1
e−〈θ̂,xj〉(

1+e−〈θ̂,xj〉
)2 xj xTj .

Starting from a Gaussian prior N (θ`|m1
` , (q

1
` )
−1) with mean m1

` and variance (q1
` )
−1 for

each ` ∈ {1, . . . , d}, the Laplace approximated posterior is N (θ`|mt
`, (q

t
`)
−1) after the tth
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iteration. Recently, [159] proposed an online Bayesian logistic regression algorithm that

finds the MAP solution (2.44) to the posterior after observing a set of new realized data

St = {(xj, yj)}mj=1 at iteration t by solving the following optimization problem (via a one-

dimensional bisection search method):

θ̂ = arg max
θ

1

2

d∑
`=1

qt` ([θ]` −mt
`)

2 +
∑
j∈St

log
(
1 + e−yj 〈θ,xj〉

)
.

The updated mean is then mt+1 = θ̂ and the inverse variance of each weight θ` is given by

the curvature at the mode as qt+1
` = qt` +

∑
j∈St

e−〈θ̂,xj〉(
1+e−〈θ̂,xj〉

)2 ([xj]`)2
for each ` ∈ {1, . . . , d}

(see [159] for details).

To conduct the Bayesian inference for online linear regression, we have the same issue as

described for the online logistic regression above. [6] proposed a Bayesian inference procedure

to update the posterior distribution in online linear regression. In particular, consider P t =

Id +
∑t−1

i=1 xi x
T
i and ut = (P t)−1

(∑t−1
i=1 xi yi

)
, where xi ∈ Rd is a feature vector and yi is a

response variable. Then, if the prior for parameter π at time t is given by N (ut, (P t)−1),

then the posterior distribution for π at time t + 1 is N (ut+1, (P t+1)−1), which is derived as

follows:

P(π|yt) ∝ P(yt|π)P(π)

∝ exp
{
− 1

2

(
(yt − πTxt)2 + (π − ut)TP t(π − ut)

)}
∝ exp

{
− 1

2

(
y2
t + πT xt x

T
t π + πT P t π − 2πT xt yt − 2πT P t ut

)}
∝ exp

{
− 1

2

(
πT P t+1 π − 2πT P t+1 ut+1

)}
∝ exp

{
− 1

2

(
π − ut+1

)T
P t+1

(
π − ut+1

)}
∝ N (ut+1, (P t+1)−1).

2.7.7 Appendix G: More Empirics on Selection of Third-line Medication

Tables 2.5 and 2.6 report the percentages of all different medications selected by the

physicians in the ACCORD BP trial and our online learning algorithms for the success and

failure data subsets, respectively.
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The trial TS-SGD TS-AvgDos TS-LowDos CTS-HighDos TS-TwoDim

Reserpine 0.8% 1.2% 6.9% 3.4% 7.2% 2.53%
Chlorthalidone 38.5% 39.7% 33.8% 33.6% 33.9% 35.02%

Metoprolol 8.3% 10.3% 25.7% 28% 23.9% 14.33%
Furosemide 2.3% 2.2% 0.7% 2.4% 1.6% 3.2%
Terazosin 1.6% 1.4% 1% 4.9% 4.1% 2.4%
Carvedilol 0.5% 0.4% 1% 2.1% 3.3% 4.05%

Hydralazine 0.7% 0.4% 1% 0.7% 1.3% 0.53%
HCTZ 47.3% 44.4% 30.1% 25% 24.8% 37.95%

Table 2.5: The percentages of medications selected in the ACCORD BP trial and by the
online learning algorithms for the trial’s success data subset.

The trial TS-SGD TS-AvgDos TS-LowDos CTS-HighDos TS-TwoDim

Reserpine 1.2% 31.4% 30.5% 26.7% 50.1% 47.1%
Chlorthalidone 37.8% 55.2% 60.6% 58.5% 46.4% 48.8%

Metoprolol 8.7% 1.6% 1.5% 2.2% 0.3% 0.8%
Furosemide 16% 1.8% 1.1% 1.6% 0.4% 0.6%
Terazosin 0.8% 1.4% 1.5% 3.5% 0.5% 0.9%
Carvedilol 1.2% 0.7% 1.8% 2.4% 0.5% 0.5%

Hydralazine 0.9% 1% 1.6% 3% 1.1% 0.6%
HCTZ 33.4% 6.9% 1.4% 2% 0.6% 0.8%

Table 2.6: The percentages of medications selected in the ACCORD BP trial and by the
online learning algorithms for the trial’s failure data subset.
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CHAPTER III

Online Advance Scheduling with Overtime: A

Primal-Dual Approach 1

3.1 Introduction

We study a fundamental online resource allocation problem in the context of outpa-

tient healthcare scheduling in which a heterogeneous stream of patient or customer re-

quests/referrals arrives one at a time with a declared reward for receiving service from one

of a finite number of heterogeneous servers/providers. This is an online adversarial setting

in which there is no knowledge about the future arrival process of customers. Our objective

is to develop efficient and effective online algorithms that are robust to the arrival process.

Upon arrival of each customer (e.g., patient, ad, job), the system chooses in real-time both

a server (e.g., clinician, advertiser, machine) and a date for service over a horizon subject

to capacity constraints without knowing any information of the subsequent incoming cus-

tomers in the future. Customers have heterogeneous capacity requirements and rewards.

Each server/provider has a finite regular capacity but can be expanded at the expense of

overtime cost. For human servers, shifts and work schedules dictate the regular capacity.

However, overtime decisions cannot be ignored in most service systems due to the uncertain

arrival process and the fact that urgent and unpredictable events happen from time to time.

We shall call this Online Scheduling with Budgeted Overtime under Adversarial Arrivals

(OS-BOAA) problem.

We develop new online algorithms for making not only a server-date allocation decision

for each incoming customer but also an overtime decision for each server on each day within

a scheduling horizon. The goal is to maximize the total reward less the total overtime cost.

Our proposed online algorithms are (i) both easy-to-implement and extremely efficient to

1Keyvanshokooh, E., Shi, C., Van Oyen, M. P. (2020), Online Advance Scheduling with Overtime: A
Primal-Dual Approach. Manufacturing & Service Operations Management.
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compute, and also (ii) admit a theoretical worst-case performance guarantee. To make them

more valuable in applications (e.g., healthcare operations), we extend our approach to a

rolling horizon online scheduling setting.

An algorithm is called online if at all points in time, exogenous future information is

unknown and the algorithm has to make adaptive decisions based on current and past infor-

mation. In contrast, an offline algorithm (hypothetically) knows all future arrival informa-

tion in advance and therefore, represents a level of performance that is the theoretical best

case. A natural goal is to create near-optimal policies that perform “relatively well”, regard-

less of the actual realizations of the arrival process. We investigate our problem under the

paradigm of competitive analysis. In the competitive analysis, no prior knowledge is given

about the sequence of arrivals, nor are they assumed to follow any predictable pattern. Our

online algorithms’ performance is stated as a fraction of an optimal performance achieved

when knowing the entire arrival stream a priori. For r ≤ 1, if an algorithm can guarantee

that this fraction is at least r for every instance of customer sequence, then it is said to

achieve a competitive ratio of r. Our algorithms are very effective and efficient in devising

robust online policies that can be implemented without any information about the evolution

of future demands. Moreover, our empirical study shows that the proposed online policy

performs much better than its theoretical worst-case performance guarantee.

3.1.1 Motivating Applications

The described online resource allocation problem is directly relevant to many fundamental

applications in operations research and management science. We illustrate some applications

below.

Service Scheduling. In service systems such as healthcare delivery systems, the servers

may correspond to surgeons, clinicians, physicians, nurse practitioners, technicians, etc. The

customers are patients whose requests for service are received over time. Upon their arrival

to outpatient clinics or hospitals, patients with different urgency levels must be able to obtain

a clinic or surgery appointment while servers should also be kept available for future possible

higher urgency patients. The servers are often extensible in the sense that they can be utilized

for longer than the normal available time, but with a cost of overtime. Typically, they have a

planned utilization time (e.g., a capacity of 8 hours per day), beyond which overtime begins

to accrue. If no capacity is available within the planned working hours of servers for serving

the request, overtime is used to serve patients and alleviate the excess workload of healthcare

delivery system. Hence, the addition of an overtime decision is important to appointment

scheduling as another layer of operational decisions.
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Online Advertising. In online advertising, the servers corresponding to advertisers,

and the capacity of each server is associated with the advertiser’s budget. When a user

browses a web-page, an impression request is sent to the ad platform (e.g., Google, Yahoo,

Microsoft). Ad impressions arrive sequentially and randomly over time. Each impression,

depending on its features, requests a known non-negative bid (value) from each advertiser.

Upon arrival of an impression request, the ad platform must allocate it immediately and

irrevocably to an advertiser for displaying an ad. The advertising platform then earns the

bid, and the budget of the advertiser is often depleted by the same amount. The goal is to

maximize the total reward (revenue) of all allocations subject to a budget constraint without

knowing future impression requests. Advertisers choose a limited daily budget based on their

advertising goals. When the budget is limited, their ads might not be shown as frequently as

they would like. However, considering an additional budget that is analogous to our model’s

overtime can help get their ads displayed on highly profitable days that have high viewing

traffic, and are therefore expensive days to advertise.

Make-To-Order (MTO) Flexible Manufacturing. With servers corresponding to

manufacturing cells (or machines, plants), customers request varying and possibly unique

products over time. Manufacturing may start only after a request is received. A flexibility

structure governs which cells can produce which types of requests. Clearly, the naive strategy

of always accepting a product request as long as the capacity is available is myopic and sub-

optimal, because higher value product may be turned away when capacity is exhausted. The

firm must decide whether to accept or reject a request (without knowing the future requests)

and, if accepted, allocate it to a feasible cell on a day within the horizon. Particularly when

orders are tied to long-term customers with urgent jobs, the firm may be better off utilizing

overtime capacity in order to avoid delaying or rejecting jobs and therefore losing customers

and market share.

Our models and algorithms can be tailored to other applications such as revenue man-

agement (e.g., room/seat allocation in hotels/airlines), the airline industry (e.g., the online

arrival process of customers who purchase tickets), online auctions (e.g., eBay in which the

arrival of bidding customers for an auction can be properly modeled using our online frame-

work), online retailers (e.g., the real-time orders that Amazon receives and must be filled

quickly), and call-center operations.

In the above-mentioned applications, uncertainty about future demand poses a major

challenge that makes the resource allocation problem very complex. Most traditional resource

allocation models assume that the underlying probability distribution of customer arrivals

is fully or at least partially known as a priori knowledge. There exist many approaches

for solving such optimization problem under uncertainty. Stochastic optimization, where
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Figure 3.1: The number of patient request arrivals to two physicians over different days in
a clinic of our partner health system. The arrival process is non-stationary and does not
follow any clear pattern (see case study in §3.6).

probabilistic distributions characterize uncertain parameters, is an approach that has been

widely applied. However, in many practical settings, it is unrealistic to expect that the

distribution of customer arrivals can be precisely characterized. Misspecification of this

distribution could lead to meaningless results as well.

In many service systems, the demand is highly unpredictable or cannot be learned a

priori due to unforeseeable components such as traffic spikes and a competitor’s change of

strategy. In healthcare systems, we may set up a new appointment scheduling system for a

clinic/hospital and lack sufficient data to precisely estimate the arrival distribution. Figure

3.1 shows high variability and uncertainty in the number of patient arrivals to two physicians

over time in a medical clinic of our partner health system (see the case study in §3.6). In

online advertising, an unpredictable breaking news story could flood the ad platform with

impression requests from news websites. The stream of impression requests is then non-

stationary and does not follow any clear pattern. Hence, more conservative approaches are

needed. A popular conservative approach is robust optimization, where the uncertainty is

characterized by an uncertainty set, rather than distribution. Although arguably more robust

than stochastic optimization, it again depends heavily on the structure of the uncertainty

set. In this paper, we make no assumption about the arrival distribution and exploit online

optimization as the most robust approach to optimization under uncertainty, which is more

appropriate for sequential decision making problems where a priori assumption about the

structure of the problem data uncertainty is not available and/or not reliable.
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3.1.2 Main Results and Contributions

Our main results and contributions are summarized as follows.

We propose an online algorithm (Algorithm 1) for the OS-BOAA problem. We shall call

it Heterogeneous Online Optimization Procedure with Budgeted OverTime (HOOP-BOT).

Our proposed online policy is (i) robust to future information, (ii) easy-to-implement and

extremely efficient to compute, (iii) allows for heterogeneity in both rewards and service re-

quirements, and (iv) admits a theoretical competitive ratio (CR) (see Definition 6). Theorem

III.1 gives the CR of the proposed algorithm. In particular, the ratio of service requirement

per request to total capacity Rmax → 0, the CR becomes r = 1/(1 + θ∗) where we find

a closed-form expression for the coefficient θ∗ (see Theorem III.1 for details). When the

reward is proportional to the service requirement for each customer, the worst-case CR is

r ≥ e−1
e+
√
e
' 0.4, regardless of input parameters. In addition, as the maximum overtime cost

dmax decreases to 0, r improves to (1− 1
e
) ' 0.633 at the rate of O(1/dmax). Theorem III.2

states that no algorithm can achieve a better CR than (1− 1
e
) ' 0.633.

For practical implementation purposes, we also extend our online algorithms to a rolling

horizon setting (Algorithm 2), which enables practitioners to make allocation-overtime deci-

sions for every incoming customer and each server on each day in a rolling horizon fashion.

We shall call it Rolling Heterogeneous Online Optimization Procedure with Budgeted Over-

Time (R-HOOP-BOT).

Our OS-BOAA problem is closely related to the online Adwords problem with concave

rewards, and the proposed online algorithms are based on online primal-dual methods. In

this regard, the closest studies to ours are [39], [58], and [47]. In the following, we summarize

our high-level approaches and techniques, and also discuss the major departures of this paper

from prior literature.

(1) Incorporating overtime decisions. Besides making the usual allocation decision

for each customer, our model makes an overtime or capacity expansion decision for each

server on each day over a scheduling horizon. In many applications such as healthcare

operations, overtime cannot be ignored due to uncertain arrivals and the fact that urgent

and unpredictable events happen from time to time. Thus, it is important to leave some

flexibility for these events by means of capacity expansion (at the expense of incurring some

overtime cost). The current online scheduling algorithms have not incorporated overtime

decisions in their decision-making (see [158, 148, 70, 157], and references therein).

Closely related to our model with overtime decisions, [58] and [47] generalize the online

primal-dual method of [39] for the online Adwords problem with concave rewards where the

objective function is assumed to be monotonically non-decreasing concave. They derive a

parametric CR of r ≥ F where a numeric value for F is calculated by solving a set of differ-
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ential equations for each problem instance. The non-decreasing monotonicity assumption is

crucial for their technical CR analysis because through this assumption, they ensure that (i)

dual solution obtained by their online algorithm is feasible in each iteration, and (ii) the set

of differential equations has a solution for each instance, and so a CR is derived. However,

this monotonicity assumption is clearly violated in our setting with overtime. Hence, we

cannot replicate their algorithm and competitive analysis, which spurs new methodological

innovations.

(2) Multiple multiplicative rules for obtaining dual prices of capacity con-

straints. Our algorithms use online primal-dual frameworks of [41]. The introduction of

the overtime decision (or capacity expansion) makes the competitive ratio analysis of the

HOOP-BOT (Algorithm 1) invariably harder compared to the existing online algorithms in

the literature.

The main departure from prior works is that the dual typically has a single price, while

our online primal-dual method has two different dual prices due to the addition of overtime.

So, the existing results of [41] and [39] do not extend into our setting with overtime. Conse-

quently, to resolve this difficulty and solve the online linear program (LP), we develop three

multiplicative updating rules for computing dual prices of capacity constraints including (i)

one for the non-overtime case, (ii) one for the transition from the non-overtime to overtime

case, and (iii) one for the overtime case (see Figure 3.3 for these three cases). This new idea

requires a different proof strategy for deriving the CR of the proposed online primal-dual

paradigm (see Lemmas III.3 and III.4, as well as Propositions 6, 7, 8, and 9). In other words,

there are two parameters θ1 and θ2 corresponding to two multiplicative updating rules such

that one parameter for the non-overtime case tilts the CR up, and the other one for the over-

time case tilts the CR down. Thus, we introduce a balancing point, which is the min-max

value between these two parameters (see Figure 3.4 for calculating the balancing point), and

derive closed-form expressions for these parameters. Moreover, the HOOP-BOT (Algorithm

1) obtains a feasible dual solution but an almost feasible primal solution. To compute the

competitive ratio, we need to construct a feasible primal solution from this almost feasible

primal solution, and next bound the ratio of their objective values (see Proposition 9).

(3) Applicability to real-world healthcare operations practices. Since this re-

search was conducted in collaboration with a partner health system, a particular emphasis

has been put on real-world applicability of our proposed methods. We test the validity of

our methods and measure their impact using actual data (see §3.6). To this aim, we evaluate

the empirical performance of our online policies by comparing to two common benchmarks:

(i) First-Come-First-Served (FCFS) policy and (ii) Nested Threshold Policy with Overtime

(NTPO). We develop NTPO, which is a more sensible class of policies than FCFS policy and
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based on the idea of protecting urgent patients with some pre-specified threshold levels to

reserve capacity a priori and serving them with overtime (if necessary). Our empirical results

illustrate that the proposed online policies work consistently well over a range of parameter

choices, and they outperform the FCFS and NTPO policies by a large margin in terms of

both the empirical CR and the number of days a patient is deferred.

For practical implementation purposes, our model is generalized in two ways. First,

we extend our online algorithms to a rolling horizon paradigm. Most online algorithms

either accept or reject a customer upon his/her arrival. But, in most healthcare settings,

rejection would not be a suitable outcome of serving a patient. To deal with this issue,

we cast a rejection as a deferred decision. Specifically, suppose we cannot or choose not to

accommodate an incoming patient within a scheduling horizon with respect to her/his arrival

day. Then, we defer making an allocation decision until the next day in the R-HOOP-BOT

(Algorithm 2). We investigate the importance of having a rolling horizon framework on real

data (see §3.6.3 of the case study).

Second, to model more practical scenarios, our model allows customers to have hetero-

geneity not only in service requirements but also in reward/urgency values which might be

different than the service requirements. This is in contrast to the current literature surveyed

below (e.g., [39] have homogeneous reward values and service requirements), making the com-

petitive analysis of online algorithms challenging (see §3.4). In healthcare, reward/urgency

values can be a vector indicating how the reward/urgency depends on the provider with

whom the appointment is made. This feature allows us to set the reward to zero for patients

who should not be seen by a particular physician while being set to higher values for the

most appropriate physicians. This can help create an appointment scheduling system where

physicians spend more time “practicing at the top of their license” as we allocate each patient

to the most appropriate physician [143]. This relatively new term captures the idea that it is

ideal for physicians to service the most skilled interventions for which they are trained and

licensed.

3.1.3 Related Literature

Our work is related to three research domains and streams of literature, namely, online

Adwords problem, online primal-dual approach, and appointment scheduling problem.

Online Adwords Problem. Our models are related to works on the online Adwords or

bipartite matching problem. In this problem, one set of nodes is known and corresponds to

the set of finite servers. Demand requests arise one at a time and correspond to the second

set of nodes. When a demand node arrives, its adjacency to the server nodes is revealed

with its edge weights. The arriving demand needs to be matched irrevocably to an available
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server (if any). The objective is to maximize the total value of the matching. There is no

overtime assumption that is modeled. This problem has been studied under different online

input models. Customer arrival models broadly belong to two categories: stochastic models

and adversarial models.

There is a stream of studies about the stochastic models. The main studies include

[100], [75], [18], [65], [94], and [117] with random permutation assumption, [66], [19], and

[90] with known i.i.d arrival distribution, and [59] with unknown i.i.d arrival distribution.

Stochastic online algorithms either (i) depend heavily on a precise forecast for the arrival

patterns of incoming customers using a vast amount of historical data, or (ii) assume that

arrival pattern can be perfectly learned as we observe the sequence of incoming customers.

Hence, these online algorithms are not able to react quickly to sudden changes in the arrival

pattern. This is particularly the case in a new market or when a known system or market is

in a period of upheaval. Instead, the adversarial model has the key advantage of being robust

to any change in the arrival process because it does not exploit any forecast or learning tool.

Thus, the distribution of arriving demands can fluctuate over time.

Developing online algorithms for the adversarial models is typically more challenging due

to having no prior assumption on the arrival pattern (see [95] and [4]). Under the adversarial

setting, our paper is closely related to the online Adwords problem introduced by [126]. They

develop a 0.633-competitive algorithm based on a trade-off revealing LP technique. [39] then

propose a classical primal-dual paradigm for this problem and derive the same CR. [58] and

[47] generalize the work of [39] in which the objective function is assumed to be monotonically

non-decreasing concave. The key differences between these works and ours were discussed

in §3.1.2.

Online Primal-Dual Approach. The main theoretical tool employed is the primal-dual

framework. This method is a powerful algorithmic scheme that has proved to be extremely

applicable in a wide range of problems in the area of approximation algorithms (see [161]).

These applications include inventory control problem [107], single-machine scheduling prob-

lem [81] and capacitated facility location problem [42].

The primal-dual scheme has been extended to the setting of online algorithms ([41]).

The basic idea is that the LP and its dual program guide the decisions made by the online

algorithm. Specifically, it simultaneously constructs online both (feasible or almost feasible)

primal and dual solutions. This online scheme has applications in make-to-order production

systems, routing, machine load balancing, and packing-covering problems (see [40] and [41]).

Our paper is closely related to [39], which design online primal-dual algorithms with CR of

0.633 for the online Adwords problem. Our online primal-dual method departs from this

study (see discussions in §3.1.2).
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Appointment Scheduling Problem. Appointment scheduling is a ubiquitous oper-

ation in service systems, especially in healthcare operations. Comprehensive surveys are

provided by [79], and [7]. Recently, much progress has been made (see e.g., [46], [118], [119],

[162], [109], and [112]). Here, we present the ones that we believe are the most relevant to

our work.

A part of the literature considers multi-day scheduling, in which patients are dynamically

assigned to appointment days (e.g., [110]). According to [116], allocation scheduling and

advance scheduling are the two main paradigms for multi-day scheduling. In allocation

scheduling, the number of patients to be served today is determined, and the rest of the

patients are added to a waitlist (see e.g., [157], [88], [17], and [72]). Among these works,

[157] is the only study that develops a 2-competitive online algorithm, for scheduling arriving

patients in the context of allocation scheduling with cancellation. Recently, more works have

focused on advance scheduling paradigm, in which patients are scheduled into future days at

the time of their arrival (see e.g., [150], [73], [137], [80], and [64]). Our work is an advance

scheduling model as well.

Perhaps the closest scheduling works to ours are [158], [148], and [70]. [158] develop

a 0.5-competitive online algorithm for advance scheduling, and their model is useful when

the patient preferences are revealed before determining appointment day. [148] propose a

0.321-competitive online algorithm for the advance reservation of service with the goal of

maximizing the total expected capacity utilization. [70] develop a 0.5-competitive online

algorithm for choosing an assortment of services to display to arriving customers. How-

ever, our paper significantly departs from these online algorithms (see §3.1.2 for a detailed

discussion on critical differences between these papers and ours).

3.1.4 Organization

The rest of this paper is organized as follows. In §3.2, we present our model, discuss

the offline optimization problem, and define the performance measure. In §3.3, we present

our main algorithm and results. In §3.4, we present the competitive analysis. In §3.5, we

extend our online algorithms to a rolling horizon paradigm. In §3.6, we implement our online

algorithms on appointment-scheduling data obtained from a medical clinic of our partner

health system. In §3.7, we conclude the paper and presents some avenues for future research.

3.2 Online Scheduling Problem with Overtime

We describe the general problem statement for the OS-BOAA problem, present the offline

optimization problem, and introduce the performance measure (competitive ratio).
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3.2.1 The Problem Statement

We study an online resource allocation problem with budgeted overtime in an adversarial

setting in the sense that there is no prior knowledge about the distribution of the number

of customer arrivals on a given time span such as a day. Furthermore, we consider an online

setting, which means that the service requests are handled as they arrive, and allocation

decisions are provided in an online fashion without information on future requests. Unlike

most prior studies (see e.g., [72]), we do not require the scheduler to wait until the end of each

day and then make batch-type allocation decisions for all arrivals on that day. Instead, as

soon as a customer request is received, the scheduler makes an instantaneous and irrevocable

allocation decision for this customer. We use the terms patient and customer interchangeably.

Figure 3.2: Decision process for making real-time server-date allocation decision by a cen-
tralized scheduler in the online scheduling problem with budgeted overtime under adversarial
arrivals.

On the first day of a T -period horizon, when customer requests arrive sequentially to the

system (e.g., a medical clinic), the system either accepts or rejects each customer as they

arrive. If we accept a customer, we should make a scheduling decision immediately; that is,

we assign this customer to (i) a specific server/provider and (ii) a service date within the

T -period scheduling horizon. Customers request service but do not ask for specific dates ex-

plicitly. In §3.5, we extend our proposed online algorithms to have a rolling horizon approach

in which the rejection decision turns into a decision to defer service, meaning that we either

cannot or choose not to accommodate this incoming customer within the scheduling horizon

with respect to her/his arrival day. Instead, we delay making the scheduling decision for this

customer until the next day, and the option to defer is again allowed on each subsequent day.

Figure 3.2 illustrates the decision process for making online server-date allocation decision

for each customer with the option to defer this decision.

We use [n] = {1, . . . , n} and [m] = {1, . . . ,m} to denote the set of n servers/providers

87



and the set of m customers/patients, respectively. Note that n is known a priori, but m

is not. The scheduling horizon has T days, indexed by t ∈ [T ] = {1, 2, . . . , T}. Customers

arrive sequentially on the first day of the horizon, i.e., t = 1, and we schedule their service

on any day t ∈ [T ]. For each day t ∈ [T ], each server i ∈ [n] has a limited regular capacity

Bi,t ∈ R+ (e.g., a clinician may be required to work for 8 hours per day as her/his regular

schedule), and also a limited overtime budget Ui,t ∈ R+ (e.g., a clinician may work maximum

4 hours overtime if an emergency arises). For each server i ∈ [n], let di ∈ R+ denote its (per-

unit-of-time) overtime cost. Note that servers correspond to clinicians (physicians/physician

assistants) in our case study in §3.6.

For each arriving customer j ∈ [m], we need information that includes his/her (i) service

time and (ii) (urgency-based) reward. The service time and the reward of each customer

j ∈ [m] could be heterogeneous for each server i ∈ [n]. Stochasticity in service time and

reward is not considered in our analysis, but we incorporate that into our sensitivity analysis

in §3.6.2. Let bi,j ∈ R+ denote the service time of customer j if the customer is assigned to

server i and ci,j ∈ R+ denote the (urgency-based) reward of customer j if this customer is

assigned to server i. Their dependency is permitted for generality, allowing us to discourage

or encourage certain pairings. Both vectors bj = (b1,j, . . . , bn,j) and cj = (c1,j, . . . , cn,j) are

not known a priori, and are only realized upon arrival of each customer j. Indeed, when

cast as a optimization problem, one can see that the constraints are not given up front, and

they are revealed one by one corresponding to each customer. However, we add an almost

innocuous assumption that there exists a γmin > 0 (and the scheduler knows the value),

which is the minimum ratio between the reward and service requirement. More precisely, we

assume ci,j/bi,j ≥ γmin for each i ∈ [n] and j ∈ [m]. One can think of this as analogous to

knowing a lower bound on the minimum wage. This assumption allows us to assume that,

without loss of generality, ci,j/bi,j ≥ 1 for each i ∈ [n] and j ∈ [m], since we can uniformly

scale the units of ci,j and di by multiplying a constant 1/γmin for all i and j. This unit

transformation will not affect the CR.

Upon arrival of customer j, the scheduler immediately chooses both a provider and a day

over the scheduling horizon without knowing the subsequent arrivals. That is, we need to

make a binary decision yi,j,t ∈ {0, 1} for allocating an incoming customer j to a server i ∈ [n]

on day t ∈ [T ]. If server i ∈ [n] on day t ∈ [T ] is allocated to customer j, exactly bi,j units

of server i must be provided, and the reward earned is ci,j. In case that the regular capacity

runs out, the scheduler may choose to schedule overtime as long as it does not exceed the

remaining overtime capacity. Let vi,t be the overtime committed for server i ∈ [n] on day

t ∈ [T ]. Our online algorithm makes both an allocation decision for each incoming customer

and an overtime decision for each server on each day. The objective is to maximize the
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cumulative reward less the cumulative overtime cost.

To ease our presentation, we introduce some key notation as follows. We let

γmax = max
i,j
{ci,j/bi,j} , γmin = min

i,j
{ci,j/bi,j} ,

dmax = max
i
{di}, dmin = min

i
{di},

Rmax = max
i,j,t
{bi,j/Bi,t}, α = (1 +Rmax)1/Rmax . (3.1)

Note that γmax is the maximum ratio of reward to service requirement among all i and j, and

Rmax is the maximum ratio of service requirement per request to its total capacity among

all i and j and t. We will repeatedly use these quantities throughout the paper.

3.2.2 Offline Optimization Model with Overtime

We first formulate an offline optimization model (P ) where the full information of all

incoming customers/patients for the OS-BOAA problem is given a priori.

Primal Problem (P ):

max
y,v

T∑
t=1

n∑
i=1

m∑
j=1

ci,jyi,j,t −
T∑
t=1

n∑
i=1

divi,t (3.2)

s.t.
T∑
t=1

n∑
i=1

yi,j,t ≤ 1, ∀j ∈ [m] (3.3)

m∑
j=1

bi,jyi,j,t ≤ Bi,t + vi,t, ∀i ∈ [n], t ∈ [T ] (3.4)

vi,t ≤ Ui,t, ∀i ∈ [n], t ∈ [T ] (3.5)

vi,t ≥ 0, yi,j,t ∈ {0, 1}, ∀i ∈ [n], t ∈ [T ], j ∈ [m]. (3.6)

Constraint (3.3) ensures that each customer is allocated to one server-date and constraint

(3.4) limits the capacity of each server on each day. Constraint (3.5) limits the overtime

capacity of each server on each day. If we relax the binary constraints to continuous ones

in (P ), we obtain a natural LP relaxation of (P ). We take the dual of this LP relaxation,

by defining the dual variables zj, xi,t and ui,t corresponding to constraints (3.3), (3.4) and

(3.5), respectively:
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Dual Problem (D):

min
x,u,z

T∑
t=1

n∑
i=1

(Bi,txi,t + Ui,tui,t) +
m∑
j=1

zj (3.7)

s.t. bi,jxi,t + zj ≥ ci,j, ∀i ∈ [n], t ∈ [T ], j ∈ [m] (3.8)

xi,t − ui,t ≤ di, ∀i ∈ [n], t ∈ [T ], j ∈ [m] (3.9)

xi,t, ui,t, zj ≥ 0, ∀i ∈ [n], t ∈ [T ], j ∈ [m]. (3.10)

Next, we develop an online algorithm based on a primal-dual approach which admits a perfor-

mance guarantee in order to solve the online version of the model (P ) and its corresponding

dual model (D). We use the offline model (P ) as a benchmark to evaluate the performance

of the proposed online primal-dual algorithms.

3.2.3 Performance Measure

Competitive analysis is the most widely used method for evaluating the performance of

online algorithms [34]. It considers the relative performance between an online algorithm

and an optimal offline algorithm under the worst-case input instance. An online algorithm

addresses a sequential decision-making problem, where individual model inputs are received

in an online fashion, and an immediate decision on each successive input must be made at

the time the input is received without taking future inputs into account. Once a decision

is made regarding an individual input, it cannot be revoked. On the other hand, an offline

algorithm treats the entire input sequence as given in advance and then optimizes.

Under the assumption of a maximization problem, let ΩALG denote the set of all possible

input sequences of customer arrivals to an online algorithm ALG, and let ω = (j1, j2, · · · ) ∈
ΩALG be a sample path of customer arrivals. An offline algorithm knows the whole arrival

input ω = (j1, j2, · · · ) at time zero, but at any time t an online algorithm only knows the

realization of all the arrivals prior to t. Let ZALG(ω) denote the objective value achieved by

the online algorithm ALG for the input ω ∈ ΩALG, and ZOPT (ω) be the objective value of

an optimal offline algorithm.

Definition 6 (Competitive Ratio).

• If for any problem instance ω = (j1, j2, · · · ) ∈ ΩALG, ZALG(ω) ≥ r . ZOPT (ω) where

0 ≤ r ≤ 1, then the online algorithm ALG is called r-competitive.
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• The (asymptotic) competitive ratio of the online algorithm ALG is then defined as:

r = inf
ω∈ΩALG

{
ZALG(ω)

ZOPT (ω)

}
.

• Larger competitive ratios imply better online algorithms for maximization problem.

Thus, the competitive ratio of an online algorithm is a guarantee on a certain level of

performance.

3.3 Online Algorithm for Online Scheduling with Overtime

We consider the online version of (P ) in which the information of each customer (including

service time and reward parameters) is only revealed sequentially upon arrival. We develop

an online primal-dual algorithm to solve the online version of (P ). The customers sequentially

arrive to the system on the first day t = 1 and an irrevocable allocation decision is made

upon each arrival.

Algorithm 1 Online Primal-Dual Algorithm for Online Scheduling with Overtime (HOOP-
BOT)

1: Initially set the dual prices xi,t, vi,t = 0, ui,t = 1; ∀i ∈ [n], t ∈ [T ].
2: for each arriving customer j do
3: Assign customer j to server i∗ on day/slot t∗ such that (i∗, t∗) = arg max

i∈[n],t∈[T ]

{
ci,j − bi,j ·

xi,t
}

.
4: if (ci∗,j − bi∗,j · xi∗,t∗) ≥ 0 then
5: Set zj ← ci∗,j − bi∗,j · xi∗,t∗ and yi∗,j,t∗ ← 1;
6: if 0 ≤ xi∗,t∗ < di∗ then

7: Set xi∗,t∗ ← xi∗,t∗
(

1 +
bi∗,j
Bi∗,t∗

)
+ θ1

( ci∗,j
Bi∗,t∗

)
[Updating Rule (I)].

8: if xi∗,t∗ > di∗ then set xi∗,t∗ ← di [Updating Rule (II)].
9: else:

10: Set ui∗,t∗ ← ui∗,t∗
(

1 +
bi∗,j

Bi∗,t∗ + Ui∗,t∗

)
+ θ2

( c̄i∗,j
Bi∗,t∗ + Ui∗,t∗

)
[Updating

Rule (III)].
11: Set xi∗,t∗ ← ui∗,t∗ + di∗ and vi∗,t∗ ← vi∗,t∗ + bi∗,j.

12: else:
13: Set yi,j,t, ← 0, zj ← 0; ∀i ∈ [n], t ∈ [T ].

91



3.3.1 Description of the Online Primal-Dual Algorithm 1 (HOOP-BOT)

We provide a high-level description of the HOOP-BOT (online primal-dual Algorithm

1). The dual prices xi,t and ui,t are initialized at zero and one, respectively. Upon arrival of

a customer j, an optimization problem (acceptance/rejection criterion) in Step 3 is solved

to figure out which server-date (i∗, t∗) to allocate this customer. If we accept serving the

customer, we either use the regular capacity (Steps 6-8) or the overtime of server-date (i∗, t∗)

(Steps 9-11). If we assign customer j to regular capacity, we update the dual price xi∗,t∗ of

regular capacity. So, its value is gradually updated by the incrementally increasing updating

rule (I), and if the updated quantity xi∗,t∗ becomes greater than di∗ , we set it to di∗ by using

the updating rule (II). However, if we use overtime to serve customer j, then we update the

dual price ui∗,t∗ of overtime by the incrementally increasing updating rule (III) and update

the dual price xi∗,t∗ by adding di∗ to the updated price ui∗,t∗ . Figure 3.4 shows a graphical

presentation of how the dual price xi∗,t∗ is gradually constructed by using the proposed

multiplicative updating rules (I), (II) and (III) as customers sequentially arrive into the

system. In the online Algorithm 1, the coefficient c̄i,j is defined as c̄i,j = ci,j − di bi,j. Note

that θ1 and θ2 in multiplicative updating rules (I) and (II) are two coefficients that need to

be determined.

3.3.2 Main Results of the Online Primal-Dual Algorithm 1 (HOOP-BOT)

We present our main theoretical result of the HOOP-BOT for solving the online schedul-

ing problem with budgeted overtime under adversarial arrivals and discuss it below.

Theorem III.1 (Competitive Ratio Analysis of the HOOP-BOT). With the param-

eters α, Rmax, dmax, and γmax defined in (3.1), the online primal-dual Algorithm 1 (HOOP-

BOT) admits the following competitive ratio

r =
1− 2γmaxRmax

1 + θ∗
,

where

θ∗ =
(1 +Rmax)(ζ + λ) +

√
(1 +Rmax)2(ζ + λ)2 + 4(1 +Rmax)(α− (1 +Rmax))ζλ

2(α− (1 +Rmax))
,

(3.11)

λ = max
(

maxi,j

{ci,j
bi,j
− di

}
, 0
)
, and ζ = min (dmax, γmax).
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In particular, when Rmax → 0, the competitive ratio simplifies to r = 1/(1 + θ∗∗) where

θ∗∗ =
(ζ + λ) +

√
(ζ + λ)2 + 4(e− 1)ζλ

2(e− 1)
. (3.12)

It is worthwhile pausing to discuss the interpretations and implications of Theorem III.1.

Proportional Case and Discussion of Results. While our results hold for the general

case, for ease of presentation, we interpret our theoretical results using a special case where

the reward is proportional to the amount of service requirement for each customer, i.e.,

ci,j = k bi,j for all i, j for some fixed integer constant k > 0. This special case is a rough

simplification and holds in settings in which the reward rate per usage duration is the same

across different servers (e.g., all service providers work at the same hourly rate). In this case,

we can readily transform the optimization problem and the online primal-dual Algorithm 1

into equivalent ones with re-definitions of ci,j ← bi,j and di ← di/k. By this transformation,

we have γmax = 1, λ = max(1− dmin, 0), and ζ = min (dmax, 1).

We can interpret the resulting competitive ratio r and gain practical intuition as follows.

The competitive ratio r depends on the scale factorRmax, which is the largest ratio of a service

requirement per request to the total regular capacity on any day in the scheduling horizon.

Rmax is a scale factor that reflects the size of a service system relative to a single service, and

the value of Rmax is determined by how large the scale of a service operation is. The system

approaches a fluid model in a sense that service requirements become infinitesimal relative

to capacity, as Rmax goes to zero. This can apply if the capacity refers to an entire service

department or medical clinic.

On the one hand, when the scale of a service operation is large, then Rmax is typically

small. For example, if a centralized system schedules 10 identical providers with each having

8 working hours, and each service takes 1 hour on average, then Rmax = 1/80, which is very

small. Our theoretical result asserts that as Rmax → 0, the worst-case competitive ratio is

r =
1

1 + θ∗∗
≥ e− 1

e+
√
e
' 0.4.

Moreover, as dmax → 0, the competitive ratio r improves to (1 − 1
e
) ' 0.633 at the rate of

O(1/dmax). Note that even for the special case of the model without overtime, no online

algorithms can achieve a competitive ratio better than (1− 1
e
) ' 0.633 (see [92]).

On the other hand, when the scale of a service operation is small, we still have meaningful

results. For example, if specialist clinic schedules only one provider having 8 working hours,

and each visit takes 1 hour on average, then Rmax = 1/8, which is not small. When Rmax =

1/8, the theoretical worst-case competitive ratio is r ≥ 0.253. However, we show that the
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empirical performance is much better in our numerical study conducted in §3.6 (where we

use the the value of Rmax = 1/8 and the empirical r is high as shown in Tables 3.2 and 3.5).

Methodologically, the online primal-dual Algorithm 1 develops new ideas as follows.

1. The introduction of the overtime (or capacity expansion) decision makes the compet-

itive analysis of HOOP-BOT (online Algorithm 1) challenging, and as discussed in

§3.1.2, the analyses used in [58], [39] and [47] cannot be extended to our online setting.

To resolve this difficulty, we develop three multiplicative updating rules for calculating

the dual prices of the capacity constraints: (i) the non-overtime case, (ii) the transition

from the non-overtime to overtime case, and (iii) the overtime case (see Figure 3.3 for

our proof strategy using different updating rules). This is unlike typical applications of

the primal-dual approach, which have a single updating rule for constructing the dual

prices of capacities. Having multiple updating rules requires introducing a “switching

price” (see Definition 7) to figure out when a server/provider should switch from the

use of regular capacity to overtime. It also helps to bound the ratio of changes in dual

and primal values, so this ratio does not blow up (see Proposition 6).

2. Another important consideration in our proof strategy is that we need to determine

two coefficients θ1 and θ2 corresponding to multiplicative updating rules (I) and (III),

respectively. The CR depends on both coefficients. The key observation is that the

coefficient θ1 for the non-overtime case tilts the CR up, and the coefficient θ2 for the

overtime case tilts the CR down. This motivates introducing a “balancing point” θ∗

which is the min-max value θ∗ = min(max(θ1, θ2)) between these two coefficients (see

Lemmas III.3 and III.4, and Proposition 8). This idea results in a new proof strategy

for deriving the CR, and we (i) show that a unique coefficient can be obtained for θ∗ and

the CR depends only on θ∗; and (ii) calculate a closed-form expression for computing

the coefficient θ∗ (see Figure 3.4). Note that when θ = θ1 is used in the CR, it means

that there is infinite capacity (i.e., Ui,t = ∞) on the amount of overtime each server

may have on each day.

3. The HOOP-BOT (online Algorithm 1) obtains a feasible dual solution but an almost

feasible primal solution at each iteration. To compute the CR, we need to construct a

feasible primal solution from this almost feasible primal solution and bound the ratio

of their objective values (see Proposition 9). This step in the proof of deriving the CR

is crucial because the HOOP-BOT accepts the last customer while there is not enough

regular capacity or overtime for serving this customer.

4. Our theoretical result is also independent of the size of the overtime budget. The
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implication is that if the overtime is strictly not allowed in some stringent scenarios,

our algorithms can handle this case. Also, if the overtime is abundant, the optimal

offline policy presumably does much better than our online policy, but we are not losing

much. Unlike previous studies in which they have homogeneous rewards and capacity

requirement, we remove this highly restrictive limitation. Allowing heterogeneity in

both rewards and capacity requirements of servers enables us to model much more

practical online resource allocation problems.

In addition to our main result (Theorem III.1) on the lower bound for the CR of the

HOOP-BOT, we also prove an upper bound for the CR of any online algorithm that can be

developed for the OS-BOAA problem. In Theorem III.2, by suitably adapting the worst-case

examples of [95] and [126] to our setting, we show that an upper bound of (1−1/e) ' 0.633.

Theorem III.2 (Upper Bound for the CR). The competitive ratio of any randomized

online algorithms is at most (1− 1/e) ' 0.633 for the OS-BOAA problem.

The proof of Theorem III.2 is provided in Appendix B. Admittedly, there exists a small

gap between the developed lower bound for the competitive ratio of our online algorithm

and the upper bound for the competitive ratio of any online algorithm. We tend to believe

that our online algorithm could potentially admit a better lower bound. In the current

competitive analysis, we compute a balancing point θ∗ involving θ1 and θ2, which works well

given the current logic flow. However, this balancing point is not necessarily optimal (in

terms of jointly optimizing over θ1 and θ2), which could potentially result in a small loss in

the competitive ratio. There could be a better proof strategy of determining an optimal θ∗

that further smooths the transition from the region using regular capacity (parameterized

by θ1) and the region of using overtime (parameterized by θ2). Also, there might be a

tighter upper bound as a result of some “better” bad instance. Both questions spur new

methodological development, and we shall leave them for future research.

3.4 Competitive Analysis of Algorithm 1 (HOOP-BOT)

We analyze the HOOP-BOT (online Algorithm 1) for solving the online version of the

model (P ) with budgeted overtime under adversarial arrivals. The proposed online Algorithm

1 is based on a primal-dual paradigm which maintains a set of dual variables that guides

the primal solution. The evolution of the primal solution in turn determines how the dual

variables are progressively updated. Let f
(j)
P and g

(j)
D be the primal and dual objective

function values at iteration j, and (y
(j)
i,j,t, v

(j)
i,t ) and (x

(j)
i,t , u

(j)
i,t , z

(j)
j ) denote the primal and

dual solutions for each server-date (i, t) at iteration j, respectively. As a road-map, the

95



competitive analysis of the online primal-dual Algorithm 1 is divided into the following four

main parts:

(1) In each iteration j, the ratio ∆g
(j)
D /∆f

(j)
P of changes in the dual and primal objective

function values is upper-bounded by either (1 + θ1) or (1 + θ2) (see Definition 7 and

Proposition 6).

(2) The dual solution obtained by online Algorithm 1 is always feasible (see Proposition

7).

(3) The primal solution obtained by online Algorithm 1 is almost feasible (see Lemmas

III.3 and III.4, and Proposition 8).

(4) We derive the competitive ratio of online Algorithm 1 (see Proposition 9).

Before proceeding with the competitive analysis of online Algorithm 1, we first define a

“switching price” for each server-date (i, t) upon arrival of a patient j as follows.

Definition 7 (Switching Price). For patient j, Pj(i, t) =
(Bi,t di − θ1 ci,j

Bi,t+bi,j

)
is called a switching

price for dual price xi,t of regular capacity for server-date (i, t) after which the overtime of

server-date (i, t) is used to serve patients if patient j is allocated to server-date (i, t).

According to online Algorithm 1, the dual price xi,t of regular capacity of server-date

(i, t) is increasing as patients are allocated to server-date (i, t). The switching price for

each server-date (i, t) then determines when the server should start using overtime to serve

patients.

Proposition 6 (Bound on Dual-Primal Change Ratio). At each iteration j of the online

Algorithm 1, the ratio ∆g
(j)
D /∆f

(j)
P of changes in the dual and primal objective function

values is upper-bounded by either (1 + θ1) or (1 + θ2) depending on the value of switching

price and whether regular capacity or overtime is used to serve patient j, respectively.

Proof. Proof of Proposition 6: Assume that patient j is allocated to server-date (i, t) by the

acceptance criterion in Step 4 of online Algorithm 1. We now bound the ratio of ∆g
(j)
D /∆f

(j)
P

at each iteration j where either ∆f
(j)
P = ci,j if regular capacity is used to serve patient j,

or ∆f
(j)
P = c̄i,j = ci,j − dibi,j if overtime is used to serve patient j, and ∆g

(j)
D = Bi,t∆x

(j)
i,t +

Ui,t∆u
(j)
i,t + z

(j)
j for different cases of updating dual prices xi,t, ui,t and zj. As introduced by

Definition 7, we have a critical value of xi,t or switching price Pj(i, t) for any patient j such

that if we update the dual price xi,t by the multiplicative updating rule (I), we achieve a
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new xi,t value which is greater than di + 1. If we use the multiplicative updating rule (I) at

iteration j for updating xi,t and have the following:

x
(j)
i,t = x

(j−1)
i,t

(
1 +

bi,j
Bi,t

)
+ θ1

( ci,j
Bi,t

)
> di,

then x
(j−1)
i,t > Pj(i, t) =

(Bi,t di − θ1 ci,j
Bi,t+bi,j

)
. We use this switching price Pj(i, t) to investigate the

ratio ∆g
(j)
D /∆f

(j)
P in the following three cases depending on which multiplicative updating

rule is used:

Case 1: Assume 0 ≤ x
(j−1)
i,t < Pj(i, t) at iteration j; we then increase xi,t multiplica-

tively by using the updating rule (I) as x
(j)
i,t = x

(j−1)
i,t (1 +

bi,j
Bi,t

) + θ1(
ci,j
Bi,t

), and have

∆f
(j)
P = ci,j and the following:

∆g
(j)
D = Bi,t

(( bi,j
Bi,t

)
x

(j−1)
i,t + θ1

( ci,j
Bi,t

))
+ (ci,j − bi,jx(j−1)

i,t ) ≤ (1 + θ1) ci,j.

Thus, ∆g
(j)
D ≤ ∆f

(j)
P (1 + θ1) for iteration j.

Case 2: Assume Pj(i, t) ≤ x
(j−1)
i,t < di at iteration j, we then set the dual price x

(j)
i,t =

di by using the updating rule (II), and have ∆f
(j)
P = ci,j and the following:

⇒ ∆g
(j)
D = Bi,t

(
di − x(j−1)

i,t

)
+ ci,j − bi,jx(j−1)

i,t

⇒ ∆g
(j)
D ≤ Bi,tdi + ci,j − (Bi,t + bi,j)

(
Bi,t di − θ1 ci,j

Bi,t + bi,j

)
≤ (1 + θ1) ci,j.

Thus, ∆g
(j)
D ≤ ∆f

(j)
P (1 + θ1) for iteration j.

Case 3: Assume x
(j−1)
i,t ≥ di at iteration j, we then start increasing multiplicatively

the overtime dual price u
(j)
i,t by using the multiplicative updating rule (III) and also

increasing the dual price x
(j)
i,t by x

(j)
i,t = u

(j)
i,t + di such that:

∆u
(j)
i,t = u

(j)
i,t − u

(j−1)
i,t , ∆x

(j)
i,t = x

(j)
i,t − x

(j−1)
i,t = (u

(j)
i,t + di)− (u

(j−1)
i,t + di) = u

(j)
i,t − u

(j−1)
i,t .

Hence, we have ∆u
(j)
i,t = ∆x

(j)
i,t in this case. Then, we have ∆f

(j)
P = c̄i,j and the

following:

∆g
(j)
D = (Bi,t + Ui,t)

(
bi,ju

(j−1)
i,t

Bi,t + Ui,t
+

θ2 c̄i,j
Bi,t + Ui,t

)
+
(
ci,j − bi,j(u(j−1)

i,t + di)
)
≤ (1 + θ2)c̄i,j.
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Thus, ∆g
(j)
D ≤ ∆f

(j)
P (1 + θ2) for iteration j.

Therefore, the dual-primal change ratio ∆g
(j)
D /∆f

(j)
P is upper-bounded by either (1 + θ1)

or (1 + θ2) depending on whether regular capacity or overtime is used to serve patient j,

respectively.

Proposition 7 (Dual Feasibility Guarantee). The online primal-dual Algorithm 1 obtains a

dual feasible solution (x
(j)
i,t , u

(j)
i,t , z

(j)
j ) for each server-date (i, t) at each iteration j.

Proof. Proof of Proposition 7: At each iteration j, the online Algorithm 1 sets the dual price

zj = ci,j − bi,jxi,j which is ≥ 0 due to the acceptance criterion at Step 4. So, constraint (3.8)

is satisfied. Also, constraint (3.9) is always satisfied because when the regular capacity is

used, the online Algorithm 1 makes sure that xi,t ≤ di and ui,t = 1, and when the overtime

capacity is used, the online Algorithm 1 makes sure that xi,t = ui,t + di.

We next prove that the online primal-dual Algorithm 1 provides an almost feasible primal

solution (y
(j)
i,j,t, v

(j)
i,t ) at each iteration j. It is clear that the constraint (3.3) is always satisfied.

To prove the almost feasibility of the primal solution, assume that the dual price xi,t is

updated at iterations j = 1, 2, . . . , K0, K1, K1 + 1, . . . , K2 where updates in iterations j =

1, 2, . . . , K0 are done by using the multiplicative updating rule (I) for non-overtime case,

update in iteration j = K1 is done by using the updating rule (II) for transition from non-

overtime case to overtime case, and updates in iterations j = K1 + 1, . . . , K2 are done by

using the multiplicative updating rule (III) for overtime case. Figure 3.3 guides our proof

strategy for proving almost feasibility of primal solution, and shows how the multiplicative

updating rules (I), (II) and (III) are used to update the dual price xi,t initialized at zero.

Note that x
(K0)
i,t is the last value of xi,t obtained by the multiplicative updating rule (I). If we

used the multiplicative updating rule (I) again on this value x
(K0)
i,t , we would get the value

x̃
(K1)
i,t = x

(K0)
i,t

(
1 +

bi,j
Bi,t

)
+ θ1

(
ci,j
Bi,t

)
,

which may exceed di. Thus, we set x
(K1)
i,t = di by the updating rule (II). Note that x

(K2)
i,t is

the last value of xi,t obtained by the multiplicative updating rule (III).

Lemma III.3 (Primal Almost-Feasibility for Regular Capacity Usage Only). Given that the

regular capacity Bi,t of server-date (i, t) is used up on iteration K1, the coefficient θ1 in the

multiplicative updating rule (I) needs to set θ1 = ζ
(α−1)

, where ζ = min (dmax, γmax) such that
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Figure 3.3: Proof strategy for primal almost feasibility: updating multiplicative schemes (I),
(II) and (III) for constructing the dual price xi,t for the capacity of server-date (i,t) over
different iterations.

the following statements hold simultaneously depending on overtime cost di and γmax:

If

K1∑
j=1

bi,j yi,j,t > Bi,t, then x̃
(K1)
i,t > di, for each i ∈ [n] where di ≤ γmax. (3.13)

If

K1∑
j=1

bi,j yi,j,t > Bi,t, then ci,K1 − bi,K1 x̃
(K1)
i,t < 0, for each i ∈ [n] where di > γmax.

(3.14)

Proof. Proof of Lemma III.3: From the multiplicative updating rule (I) for updating the

dual price xi,t and ci,j ≥ bi,j, we have the following for the value of x
(j)
i,t at any iteration

j = 1, ..., K0:

x
(j)
i,t = x

(j−1)
i,t

(
1 +

bi,j
Bi,t

)
+ θ1

(
ci,j
Bi,t

)
⇒

(
x

(j)
i,t + θ1

)
≥
(
x

(j−1)
i,t + θ1

)
α

(
bi,j
Bi,t

)
,

where we use the technical inequality 1
m

ln(1 + m) ≥ 1
n

ln(1 + n) for any 0 ≤ m ≤ n ≤ 1.

Using the above updating formula recursively until we reach the initial value x
(0)
i,t = 0, we

have:

(
x̃

(K1)
i,t + θ1

)
≥
(
x

(0)
i,t︸︷︷︸
0

+ θ1

)
α

K1∑
j=1

(
bi,j
Bi,t

)
⇒ x̃

(K1)
i,t > (α− 1) θ1. (3.15)

The last inequality is due to the definition of K1 such that
∑K1

j=1

(
bi,j
Bi,t

)
yi,j,t > 1 and yi,j,t = 1
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for j = 1, 2 . . . , K1. Now, for (3.13) and (3.14) to hold, by (3.15), it suffices to have

(α− 1) θ1 ≥ di for each i ∈ [n] where di ≤ γmax;

(α− 1) θ1 ≥
ci,j
bi,j

for each i ∈ [n] where di > γmax,

where the first condition implies that we accept to serve a patient by using overtime, and

the second condition implies that we reject a patient.

So, an appropriate choice is to set θ1 = ζ
(α−1)

where ζ = min (dmax, γmax).

Remark. By Lemma III.3, the coefficient θ1 is determined such that when the regular

capacity of server-date (i, t) is used up, depending on overtime cost di and γmax, either no

more patients are allocated to server-date (i, t), or additional patients have to be served by

overtime from now on if they are allocated to server-date (i, t). Next, Lemma III.4 implies

that when both regular and overtime capacities are used up, no further patients can be

served.

Lemma III.4 (Primal Almost-Feasibility for Regular plus Overtime Capacity Usage). Sup-

pose that the capacity of server-date (i, t) is expanded at overtime cost. When both reg-

ular and overtime capacities (Bi,t, Ui,t) are used up on iteration K2, then both coefficients

in multiplicative updating rules (I) and (III) are obtained by the “balancing point” θ∗ =

minθ1(max(θ1, θ2)) defined in (3.22) such that not only statements (3.13) and (3.14) hold,

but also the following statement holds:

If

K2∑
j=1

bi,j yi,j,t > Bi,t + Ui,t, then ci,K2 − bi,K2 x
(K2)
i,t < 0, for each i ∈ [n]. (3.16)

In particular, the balancing point θ∗ is obtained by the closed-form expression (3.11).

Proof. Proof of Lemma III.4: We need to find appropriate θ1 and θ2 such that all statements

(3.13), (3.14) and (3.16) hold simultaneously. From the multiplicative updating rule (III)

for updating the dual price ui,t, we have the following relation for any iteration j = K1 +
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1, · · · , K2:

u
(j)
i,t = u

(j−1)
i,t

(
1 +

bi,j
Bi,t + Ui,t

)
+ θ2

(
c̄i,j

Bi,t + Ui,t

)
⇒ u

(j)
i,t ≥ u

(j−1)
i,t

(
1 +

bi,j
Bi,t + Ui,t

)
+ βi θ2

(
bi,j

Bi,t + Ui,t

)
⇒
(
u

(j)
i,t + βiθ2

)
≥
(
u

(j−1)
i,t + βiθ2

)(
1 +

bi,j
Bi,t + Ui,t

)
⇒
(
u

(j)
i,t + βiθ2

)
≥
(
u

(j−1)
i,t + βiθ2

)
ᾱ

(
bi,j

Bi,t+Ui,t

)
,

where βi = minj

{
c̄i,j
bi,j

}
, ᾱ = (1 + R̄max)

1/R̄max in which R̄max = maxi,j,t{bi,j/(Bi,t + Ui,t)}. If

we use the above recursion for iterations K1 + 1 until K2, then we have the following (note

ᾱ ≥ α because h(x) = (1 + x)(1/x) is a decreasing function in x):

⇒
(
u

(K2)
i,t + βiθ2

)
≥
(
u

(K1)
i,t + βiθ2

)
α

K2∑
j=K1+1

(
bi,j

Bi,t+Ui,t

)
.

From Step 11, we set the dual price xi,t = ui,t + di, and therefore we have the corresponding

recursion for the dual price xi,t:

(
x

(K2)
i,t − di + βiθ2

)
≥
(
x

(K1)
i,t − di + βiθ2

)
α

K2∑
j=K1+1

(
bi,j

Bi,t+Ui,t

)
(3.17)

where x
(K1)
i,t = di. Next, we multiply (3.15) obtained in Lemma III.3 and (3.17) together,

which gives

(
x̃

(K1)
i,t + θ1

)(
x

(K2)
i,t − di + βiθ2

)
≥ βi θ1 θ2 α

K2∑
j=1

(
bi,j

Bi,t+Ui,t

)
. (3.18)

Then, due to the definition of K2 such that
∑K2

j=1

(
bi,j

Bi,t+Ui,t

)
yi,j,t > 1 and yi,j,t = 1 for

j = 1, 2 . . . , K2, we can rewrite (3.18) as:(
x̃

(K1)
i,t + θ1

)(
x

(K2)
i,t − di + βiθ2

)
≥ βi θ1 θ2 α. (3.19)

Next, we find an upper bound for dual price x̃
(K1)
i,t . Note that x̃

(K1)
i,t is obtained if x

(K0)
i,t is

updated by the updating rule (I) and PK0(i, t) ≤ x
(K0)
i,t ≤ di. Applying the multiplicative

updating rule (I) on the dual price x
(K0)
i,t at iteration K1, we obtain an upper bound of

di

(
1 +

bi,K1

Bi,t

)
+ θ1

(
ci,K1

Bi,t

)
for x̃

(K1)
i,t . Replacing the dual price x̃

(K1)
i,t with this upper bound
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in (3.19), we obtain the following:

x
(K2)
i,t ≥ βi θ1 θ2 α(

1 +
bi,K1

Bi,t

)
di +

(
1 +

ci,K1

Bi,t

)
θ1

− βi θ2 + di. (3.20)

In order to have ci,K2 − bi,K2 x
(K2)
i,t < 0, or x

(K2)
i,t >

ci,K2

bi,K2
, we require to have the following:

⇒ βi θ1 θ2 α(
1 +

bi,K1

Bi,t

)
di +

(
1 +

ci,K1

Bi,t

)
θ1

− βi θ2 + di >

(
ci,K2

bi,K2

)

⇒ θ2 ≥

(
maxj

{ci,j
bi,j

}
− di

)
βi


(

1 +
bi,K1

Bi,t

)
(θ1 + di)

(α− 1) θ1 − di −
(
bi,K1

Bi,t

)
(θ1 + di)



⇒ θ2 ≥ max
i∈[n]

{(maxj

{ci,j
bi,j

}
− di

)
βi


(

1 +
bi,K1

Bi,t

)
(θ1 + di)

(α− 1) θ1 − di −
(
bi,K1

Bi,t

)
(θ1 + di)

}

⇒ θ2 = λ

(
(1 +Rmax) θ1 + (1 +Rmax) ζ

(α− (1 +Rmax)) θ1 − (1 +Rmax) ζ

)
,

where ζ = min (dmax, γmax) and λ = max
(

maxi,j

{ci,j
bi,j
−di
}
, 0
)
. Note βi = minj

{
ci,j
bi,j
− di

}
≥

1 whenever the overtime is used for serving a patient. That is because when the overtime

is required, the acceptance criterion becomes (ci,j − bi,j (ui,t + di)) ≥ 0, and also ui,t ≥ 1,

then we have (ci,j − dibi,j − bi,j) ≥ 0 or βi ≥ 1. So, we replace βi by its lower bound in the

formula of θ2. Clearly, the coefficient θ2 is a function of the coefficient θ1, i.e., θ2 = g(θ1) as

shown by the above equation.

Figure 3.4 shows θ2 = g(θ1) as a function of θ1. First note that if we plug θ1 = 1
(α−1)

ζ

obtained by Lemma III.3 in θ2, it yields a negative θ2. Thus, we choose max(θ1, θ2), cor-

responding to the bold lines in Figure 3.4, to make sure that all statements (3.13), (3.14)

and (3.16) hold simultaneously. So, all θ values on max(θ1, θ2) (i.e. the bold line in Figure

3.4) present the set of plausible θ values to choose from. Among all such plausible values,

we want the smallest coefficient by θ∗ = minθ1(max(θ1, θ2)), which leads to a tighter CR.

This is because if we decrease θ from θ∗ over the bold line, this tilts the CR up, and if we

increase θ from θ∗ over the bold line, this tilts the CR down (noting that the CR is inversely

proportional to (1 + θ), see Proposition 9). Thus, we introduce a balancing point θ∗, which

is the min-max value between these two cases, and provides a robustness. More precisely,

we find θ∗ which is the intersection between g(θ1) and θ1 as shown in Figure 3.4. We set
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Figure 3.4: Illustration of the balancing point θ∗: finding the unique coefficient θ∗ =
min(max(θ1, θ2)) as a function of θ1 and θ2 coefficients. The bold line presents the set of
plausible θ values to choose from. If we decrease θ from θ∗ over the bold line, this tilts the
CR up, and if we increase θ from θ∗ over the bold line, this tilts the CR down. So, θ∗ is the
balancing or max-min point between these two extremes.

θ2 = g(θ1) = θ1, and solve for θ1 to find the balancing point θ∗:

(α− (1 +Rmax)) θ2
1 − (1 +Rmax)(ζ + λ) θ1 − (1 +Rmax) ζ λ = 0. (3.21)

⇒ θ∗ =
(1 +Rmax)(ζ + λ) +

√
(1 +Rmax)2(ζ + λ)2 + 4(1 +Rmax)(α− (1 +Rmax)) ζ λ

2(α− (1 +Rmax))
.

(3.22)

So, if the coefficient θ∗ is chosen for θ2 in updating rule (III), then the statement (3.16)

holds.

Proposition 8 (Primal Almost-Feasibility Guarantee). The online Algorithm 1 obtains an

almost primal feasible solution (yi,j,t, vi,t) for each server-date (i, t) and customer j.

Proof. Proof of Proposition 8: The proof of Proposition 8 directly follows Lemmas III.3 and

III.4.

We are now ready to derive the competitive ratio of the HOOP-BOT (online primal-

dual Algorithm 1). To this aim, we need to first construct a feasible primal solution from

the almost-feasible solution of the primal and then bound the ratio of this primal objective

function value and the optimal objective function value of an oracle that knows the entire

arrival stream.
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Proposition 9 (Competitive Ratio). Let f̃P be the primal objective value of the feasible

solution obtained by converting the almost feasible solution of online Algorithm 1, and f ∗

be the primal objective value of an optimal offline policy, then the CR of the HOOP-BOT

(Algorithm 1) is:

r =
f̃P
f ∗
≥ 1− 2γmaxRmax

1 + θ∗
. (3.23)

In particular, when Rmax → 0, the coefficient θ∗ is simplified to θ∗∗ in (3.12), and r = 1
1+θ∗∗

.

Proof. Proof of Proposition 9: We have proved in Proposition 6 that either ∆g
(j)
D /∆f

(j)
P ≤

(1 + θ1) in the case of using the multiplicative updating rules (I) and (II), or ∆g
(j)
D /∆f

(j)
P ≤

(1 + θ2) in the case of using the multiplicative updating rule (III) happens in each iteration

j. Since gD =
∑K2

j=1 ∆g
(j)
D and fP =

∑K2

j=1 ∆f
(j)
P , we have the following in general:

gD
fP
≤ (1 + θ∗) where θ∗ is given in (3.22). (3.24)

Note that when there is infinite capacity (i.e., Ui,t =∞) on the amount of overtime each

server may have on each day, we then replace θ∗ with θ1 in (3.24). As shown in Lemmas

III.3 and III.4, and Proposition 8, the HOOP-BOT (online Algorithm 1) obtains a feasible

dual solution but an almost feasible primal solution. To compute the CR, we take care of

infeasibility of the primal solution by converting it into a feasible solution. Let fP and gD

denote the primal and dual objective values obtained by the online Algorithm 1 and f̃P

denote the objective value of the feasible solution obtained by converting the almost feasible

solution of the algorithm, and f ∗ denote the objective value of an optimal offline policy. By

weak duality, we have f ∗ ≤ gD, and then we can write the competitive ratio r as follows:

r =
f̃P
f ∗
≥ f̃P
gD

=
f̃P
fP
· fP
gD

=
f̃P/fP
gD/fP

. (3.25)

We know gD/fP ≤ (1 + θ∗) from (3.24), but need to find the tightest lower bound for

the ratio f̃P/fP by constructing a feasible primal solution from the almost feasible primal

solution.

For this purpose, assume y =
(
y

(1)
i,1,t, ..., y

(m)
i,m,t

)
; v =

(
v

(j)
i,t , j = 1 · · ·m

)
,∀i ∈ [n], t ∈ [T ] is

an almost feasible primal solution obtained by online primal-dual Algorithm 1. We tweak this

solution to make a feasible primal solution ỹ =
(
ỹ

(1)
i,1,t, ..., ỹ

(m)
i,m,t

)
; ṽ =

(
ṽ

(j)
i,t , j = 1 · · ·m

)
,∀i ∈

[n], t ∈ [T ] where ỹ
(1)
i,1,t = y

(1)
i,1,t, ..., ỹ

(m)
i,m,t = y

(m)
i,m,t but ỹ

(K1)
i,K1,t

≤ y
(K1)
i,K1,t

, and ỹ
(K2)
i,K2,t

≤ y
(K2)
i,K2,t

, and

also ṽ
(K2)
i,t ≤ v

(K2)
i,t for ∀i ∈ [n], t ∈ [T ]. Indeed, we obtain a feasible solution (ỹ, ṽ) by
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only changing the value of y
(K1)
i,K1,t

, y
(K2)
i,K2,t

and v
(K2)
i,t of the solution obtained from the online

Algorithm 1.

Next, we compute the objective function ratio of the almost feasible primal solution (ỹ, ṽ)

to the feasible primal solution (y, v) for each server-date (i, t):

f̃ i,tP
f i,tP

=

m∑
j=1

ci,j ỹ
(j)
i,j,t − di ṽ

(j)
i,t

m∑
j=1

ci,j y
(j)
i,j,t − di v

(j)
i,t

(3.26)

=

(
m∑
j=1

ci,j y
(j)
i,j,t − di v

(j)
i,t

)
− ci,K1 y

(K1)
i,K1,t

+ ci,K1 ỹ
(K1)
i,K1,t

− ci,K2 y
(K2)
i,K2,t

+ ci,K2 ỹ
(K2)
i,K2,t

+ di bi,K2(
m∑
j=1

ci,j y
(j)
i,j,t − di v

(j)
i,t

)
(3.27)

= 1 −
ci,K1 (y

(K1)
i,K1,t

− ỹ(K1)
i,K1,t

) + ci,K2 (y
(K2)
i,K2,t

− ỹ(K2)
i,K2,t

)− di bi,K2(
m∑
j=1

ci,j y
(j)
i,j,t − di v

(j)
i,t

) (3.28)

≥ 1 −
ci,K1 (y

(K1)
i,K1,t

− ỹ(K1)
i,K1,t

) + ci,K2 (y
(K2)
i,K2,t

− ỹ(K2)
i,K2,t

)(
m∑
j=1

(ci,j − bi,j di) y(j)
i,j,t

) (3.29)

= 1−

(
ci,K1

bi,K1

)
bi,K1

(
y

(K1)
i,K1,t

− ỹ(K1)
i,K1,t

)
m∑
j=1

(
c̄i,j
bi,j

)
bi,jy

(j)
i,j,t

−

(
ci,K2

bi,K2

)
bi,K2

(
y

(K2)
i,K2,t

− ỹ(K2)
i,K2,t

)
m∑
j=1

(
c̄i,j
bi,j

)
bi,jy

(j)
i,j,t

(3.30)

≥ 1−
(
ηi
βi

)(bi,K1

(
y

(K1)
i,K1,t

− ỹ(K1)
i,K1,t

)
m∑
j=1

bi,j y
(j)
i,j,t

+
bi,K2

(
y

(K2)
i,K2,t

− ỹ(K2)
i,K2,t

)
m∑
j=1

bi,j y
(j)
i,j,t

)
(3.31)

where ηi = maxj

{
ci,j
bi,j

}
.

Since
(
y

(K1)
i,K1,t
−ỹ(K1)

i,K1,t

)
is either 1 if

∑K1

j=1 bi,jy
(j)
i,j,t > Bi,t or 0 otherwise, and

(
y

(K2)
i,K2,t
−ỹ(K2)

i,K2,t

)
is either 1 if

∑K2

j=1 bi,jy
(j)
i,j,t > Bi,t + Ui,t or 0 otherwise, we can write (3.31) as follows:

f̃ i,tP
f i,tP
≥ min

i,t

{
1−

(
ηi
βi

)(bi,K1

(
y

(K1)
i,K1,t

− ỹ(K1)
i,K1,t

)
m∑
j=1

bi,jy
(j)
i,j,t

+
bi,K2

(
y

(K2)
i,K2,t

− ỹ(K2)
i,K2,t

)
m∑
j=1

bi,jy
(j)
i,j,t

)}
= 1− 2γmaxRmax

(3.32)
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where γmax = maxi
{
ηi
}

. Therefore, f̃P/fP ≥ mini,t
(
f̃ i,tP /f

i,t
P

)
= 1− 2γmaxRmax. Finally, by

using the result of Proposition 6 that gD/fP ≤ (1 + θ∗), we have

r =
f̃P
f ∗
≥ f̃P
gD

=
f̃P
fP
· fP
gD

=
f̃P/fP
gD/fP

=
1− 2γmaxRmax

1 + θ∗
. (3.33)

In particular, when Rmax → 0, the coefficient θ∗ is simplified to θ∗∗ in (3.12), and r =
1

1+θ∗∗
.

Remark. When there is no overtime for servers, or di > γmax for all i ∈ [n], then the

bound for the objective function ratio of the almost feasible primal solution (ỹ, ṽ) to the

feasible primal solution (y, v) becomes f̃P/fP ≥ 1 − γmaxRmax as there is only one almost

feasible solution in this case. The constant in the competitive ratio is θ∗ = θ1 = ζ
(α−1)

, and

thus the competitive ratio is r = 1−γmaxRmax

1+θ1
= 1 − 1/e, which recovers the classical result

(without overtime).

3.5 Online Scheduling Problem with a Rolling Horizon Approach

So far, the scheduler has a T -day horizon, within which to schedule incoming customers.

A horizon of T implies that all accepted patients are seen within T days. To make this

setting practical, we extend the HOOP-BOT (online Algorithm 1) into a setting in which

every day we “roll the horizon forward one day” so that at day t, the horizon is modified to

t + T days because we add a fresh day to the calendar every day. It can be thought of as

creating a nested duplicate of the problem in the next period. If we accept a customer who is

referred on day t, it means that we assign her/him to a server on an appointment day within

the scheduling horizon {t, t+ 1, · · · , t+ T}. However, the rejection decision now becomes a

deferred decision. This means that if we are not able to accommodate this customer within

the scheduling horizon of T days with respect to her/his arrival day, we defer making the

scheduling decision until the next day (although deferring is again allowed on the next or

any subsequent day), and treat this as a new arrival for the next day.

From a real-world perspective, the medical clinic does not need to call the patient back

until a scheduling decision is made for the patient. It is only deferred patients who cannot be

promised an appointment date up front; rather they are required to wait for a call-back on

the day on which they are accepted, and their appointment date and a server are provided

(usually some days into the future). Call-backs are a practical and common method for

specialty outpatient care and surgical services. For example, when there is a referral, in

many settings, the specialist clinic takes some time to determine the visit appointment dates

available and to call the patient back to set up an appointment. In our experience, up front
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patient rejections are frowned upon in hospital care networks. So, this approach gives those

who would have been rejected on the previous day a greater chance to be assigned/served,

which improves throughput. Our numerical study reveals significant benefits from building

this rolling horizon feature into the online algorithms, which allows for increased variability

buffering of the demand process. The R-HOOP-BOT (Algorithm 2) is the natural rolling

horizon extension of the HOOP-BOT. For the connection to real healthcare practice, see

§3.6.3.

Algorithm 2 Online Algorithm for Online Scheduling with a Rolling Horizon (R-HOOP-
BOT)

1: Initially set the dual prices xi,t, vi,t = 0, ui,t = 1; ∀i ∈ [n], ; t = t1, t2, ..., T .
2: for each arriving customer j on day t1 do
3: Assign customer j to server i∗ on day/slot t∗ such that (i∗, t∗) = arg max

i∈[n],t∈[T ]

{
ci,j − bi,j ·

xi,t
}

.
4: if (ci∗,j − bi∗,j · xi∗,t∗) ≥ 0 then
5: Set zj ← ci∗,j − bi∗,j · xi∗,t∗ and yi∗,j,t∗ ← 1;
6: if 0 ≤ xi∗,t∗ < di∗ then

7: Set xi∗,t∗ ← xi∗,t∗
(

1 +
bi∗,j
Bi∗,t∗

)
+ θ1

( ci∗,j
Bi∗,t∗

)
[Updating Rule (I)].

8: if xi∗,t∗ > di∗ then set xi∗,t∗ ← di [Updating Rule (II)].
9: else:

10: Set ui∗,t∗ ← ui∗,t∗
(

1 +
bi∗,j

Bi∗,t∗ + Ui∗,t∗

)
+ θ2

( c̄i∗,j
Bi∗,t∗ + Ui∗,t∗

)
[Updating

Rule (III)].
11: Set xi∗,t∗ ← ui∗,t∗ + di∗ and vi∗,t∗ ← vi∗,t∗ + bi∗,j.

12: else:
13: Set yi,j,t, ← 0, zj ← 0; ∀i ∈ [n], t ∈ [T ].

14: Set xi,T+1 = 0, ∀i ∈ [n]; t1 ← t1 + 1 ; T ← T + 1, and Go to Step 2.

Proposition 10. The online Algorithm 2 preserves the competitive ratio of Algorithm 1.

Proof. Proof of Proposition 10: The proof is omitted as it is similar to that of Theorem

III.1.

3.6 Case Study: Empirical Results and Practical Insights

We develop a system model and provide numerical results to evaluate the empirical

performance of our proposed HOOP-BOT and R-HOOP-BOT (online Algorithms 1 and 2)

using real healthcare appointment scheduling data. Our models/algorithms and case study
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are intentionally of a general nature so they can apply to either destination medical centers

or typical hospitals.

3.6.1 Data Description and Experiment Setup

We create a model that is driven by recent data on appointment visits of patients from a

medical clinic of our partner health system. The clinic offers appointment visits to provide

diagnosis, consultation, and procedures (e.g., bladder cancer, kidney stones, prostate cancer,

micro-surgical urology, kidney cancer). The medical clinic operates five days a week from

8:00 am to 5:00 pm and is staffed with 16 providers: 10 physicians (MDs) and 6 physician

assistants (PAs). These providers have different “skills” or “sub-specialties”, including (i)

oncology (Onco), (ii) endoscopy (Endo), (iii) general, (iv) neurourology and pelvic recon-

structive surgery (NPR), and (v) andrology (Andro). Table 3.1 presents the specialty/sub-

specialty and availability of each provider at our partner medical clinic on each working day

of a week. Furthermore, each patient has a type/class that is based on their chief complaint

and/or diagnoses as well as the nature of the visit, which includes new patients, return visit

patients, patients for procedure, patients for biopsy, etc.

Monday Tuesday Wednesday Thursday Friday
PA1 (General) MD4 (NPR) MD7 (NPR) PA3 (Endo) PA6 (Onco)
MD1 (Andro) MD5 (General) MD8 (Endo) PA1 (General) MD9 (General)
MD2 (Onco) PA2 (General) MD9 (General) PA6 (Onco) PA4 (NPR)
MD3 (NPR) PA6 (Onco) MD2 (Onco) MD10 (NPR) PA3 (Endo)
PA5 (NPR) PA3 (Endo) PA3 (Endo) MD9 (General) MD2 (Onco)

Table 3.1: The availability of 10 physicians (MDs) and 6 physician assistant (PAs) of a
medical clinic from our partner health system over five working days of a week along with
their specialty/sub-specialties.

Our data set contains about 5021 appointment visits for which we can identify (i) the

diagnoses or chief complaint of the patient, (ii) the date that the patient is referred to the

medical clinic to make an appointment so that the arrival process is aligned with when

requests come in, (iii) the patient’s service time, and (iv) the provider (an MD or PA de-

pending on the service type needed) the patient was allocated to. The process for setting

urgency rewards is beyond the scope of our paper, but our approach requires the medical

clinic to determine the urgency reward vector cj for each incoming patient j based on the

patient’s diagnoses or chief complaint included in the data set. Our formulation allows us to

use urgency reward parameters to incentivize shorter waits (access delays) for more urgent

patients.

The number of patients who arrive to request an appointment on each day in the med-
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ical clinic is shown in Figure 3.5. It can be seen that the arrival pattern of patients has

high variability and non-stationarity (particularly toward the end), which implies high un-

certainty. This makes it very interesting to investigate the potential benefits of our proposed

online appointment scheduling algorithms that do not know anything about the future arrival

pattern.

Figure 3.5: The total number of patient arrivals on each day in the medical clinic of our
partner health system. The arrival pattern of patients into the medical clinic has highly
variability and non-stationarity.

3.6.2 Empirical Performance of the HOOP-BOT

First, we evaluate the empirical performance of the HOOP-BOT (online Algorithm 1)

by simulating random instances sampled from the real data and conducting a sensitivity

analysis of the CR as service times and overtime costs are varied. Second, we investigate the

impact of ignoring stochasticity in service times on the CR of the HOOP-BOT.

Empirical competitive ratio analysis of the HOOP-BOT. This first study fo-

cuses only on the oncology service, which provides many urgent service visits within our

partner medical clinic. Per the clinic’s scheduling guideline, patient requests in the oncol-

ogy service should be scheduled within 5 days of arrival. We simulate random problem

instances for scheduling this specific service type for the HOOP-BOT (online Algorithm 1).

For this analysis, we consider a non-rolling horizon problem in which the patient requests

arrive sequentially on the first day of a 5-day week and must be scheduled within this 5-day

scheduling horizon. In contrast, our next study in §3.6.3 will evaluate the R-HOOP-BOT,
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where patients may arrive on every day, and the algorithm may choose to defer the unac-

cepted patients to the next day. Table 3.1 indicates that there are two providers (one MD

and one PA) in the medical clinic, serving oncology appointments. To evaluate the empirical

performance of the HOOP-BOT, we implement it on a range of test instances with respect

to the matrices for service times b and overtime costs d.

Test

type

Performance

measure

Overtime cost scenarios d = (d1, d2)

(0, 1/3) (0, 2/3) (0, 1) (1, 2) (2, 3) (2, 4) (3, 4) (3, 5) (4, 5) (6, 8) (10, 14)

b
Empirical r 0.956 0.932 0.846 0.924 0.816 0.793 0.763 0.736 0.678 0.668 0.623

Overtime cost

Reward
0.156 0.218 0.083 0.078 0.051 0 0 0 0 0 0

1.5b
Empirical r 0.915 0.856 0.815 0.783 0.733 0.713 0.607 0.588 0.557 0.549 0.536

Overtime cost

Reward
0.248 0.098 0.078 0.088 0.112 0 0 0 0 0 0

2b
Empirical r 0.823 0.691 0.721 0.688 0.702 0.654 0.591 0.552 0.539 0.536 0.525

Overtime cost

Reward
0.287 0.212 0.152 0.225 0 0 0 0 0 0 0

2.5b
Empirical r 0.765 0.717 0.699 0.637 0.635 0.635 0.576 0.549 0.528 0.531 0.515

Overtime cost

Reward
0.152 0.119 0 0 0 0 0 0 0 0 0

3b
Empirical r 0.705 0.689 0.667 0.627 0.627 0.581 0.527 0.527 0.544 0.512 0.482

Overtime cost

Reward
0.078 0 0 0 0 0 0 0 0 0 0

Table 3.2: The empirical competitive ratios and the overtime cost over reward ratios obtained
by implementing the HOOP-BOT (online Algorithm 1) for different values of service time b
and overtime cost (d1, d2) scenarios.

Recall that the urgency/reward value vector cj = (c1,j, . . . , cn,j) for each patient j must

identify the relative urgency of each service provider assignment. This urgency value is in

part determined by the type of visit needed, which is specified by the chief complaint and/or

diagnoses included in our data for that patient and requires expert judgment from clinical

practice. It can be adjusted to reflect the relative preference of having one provider (e.g.,

MD in this case) perform the service as opposed to another (e.g., PA in this case). The

dependency of each patient’s urgency/reward value on different providers is permitted for

generality in order to discourage or encourage particular provider-patient pairings/matchings

in our online algorithms. The clinic may set the reward to zero for patients who should not be

seen by a particular provider while using higher values for the most appropriate providers. It

also helps create an appointment scheduling system for a clinic/hospital in which physicians

spend more time “practicing at the top of their license.” It is worth noting that we can also

address “continuity of care” issues in our proposed online policies. For example, out of all the

providers qualified to serve a patient, perhaps only 1 or 2 have previously treated the patient

and can, therefore, be assigned higher rewards to encourage those pairings/matchings. In our

analysis, the service times are set based on the operations of our partner clinic. In particular,
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the service times for the various visit types of each provider may vary. The base/nominal

service time vectors are b = (10, 20, 30, 50) for PA6 and b = (15, 30, 45, 60) for MD2 in

minutes in our data set. As is common practice, providers attempt to match the nominal

visit lengths (or at least not fall behind schedule), and patient waiting and overtime occur

when the appointment visits take longer than planned for.

One goal is to evaluate the empirical performance of the proposed online policy by the

HOOP-BOT in comparison to the optimal offline policy. Further, we wish to gain insight

into the sensitivity of service time lengths and overtime penalties, so we conduct a sensitivity

analysis for the impact of service time and overtime cost on the CR of the proposed online

policy. To this aim, we scale each provider’s nominal b uniformly by the factors of 1.5, 2, 2.5

and 3 to create five different test instances (see “Test type” column in Table 3.2). Further-

more, we consider eleven scenarios for the overtime cost of the PA6 and MD2 (see “Overtime

cost scenarios (d1, d2)” columns in Table 3.2). We report (i) the empirical competitive ratio

r and (ii) the ratio of overtime cost over the total reward as the two performance measures

of the HOOP-BOT for each instance in Table 3.2. Note that we choose not to conduct a

sensitivity analysis on the urgency rewards c, because they must be fixed numbers for each

patient and chosen carefully by the medical clinic to induce the right prioritization of pa-

tients. The ranges are c ∼ uniform[120, 155] for emergent patients, c ∼ uniform[45, 95] for

urgent patients, and c ∼ uniform[10, 25] for elective patients.

We have several observations and insights from the computational results in Table 3.2.

First, our proposed online policies perform significantly better than the theoretical perfor-

mance guarantee and are close to optimal in many cases. Note that the optimal offline

solution used in the competitive analysis is not achievable in reality, so our performance

is even better than these numbers suggest. Second, when the per-unit-time overtime cost

is low, the online policies perform near optimally, but as the per-unit-time overtime cost

increases, the empirical CR decreases. This is also consistent with our theoretical results.

In fact, as overtime cost increases, there is less effective capacity, and so the optimal offline

policy has an increased advantage because it can achieve careful “bin-packing.” Third, when

the service time requirement is short, the online policies perform near optimally. As the

service time requirement increases, the empirical CR decreases. This insight is not only con-

sistent with our theoretical results but also intuitive in the sense that when we increase the

service requirement, our online algorithms will have less flexibility in making the allocation

and overtime decisions, resulting in a lower CR.

Impact of stochasticity in service time on competitive ratio. One of the as-

sumptions in the OS-BOAA problem is that the service time requirements of patients are

deterministic (see §3.2.1). Also, our theoretical performance guarantees do not consider
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stochastic service times. To evaluate the impact of ignoring likely stochasticity in service

times, we apply a certainty equivalent approach in which the scheduling decisions made by

the HOOP-BOT using mean service times and performance is evaluated on stochastic service

times.
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95% Confidence Interval for Competitive Ratios for Different Variablity in Service Time.

95% Confidence Interval for Competitive Ratios (CR)

Figure 3.6: Illustration of impact of ignoring stochasticity in service time on CR of the
HOOP-BOT: %95 confidence intervals obtained for CRs of 1000 sample paths of stochastic
service times corresponding to each cv. The blue circles are the mean of CRs and the CR
for cv = 0 is obtained for the deterministic service times.

To this aim, we consider b + ε where b is the base service time, and ε ∼ N(0, σ(ε))

is a random noise with σ(ε) = cv × b, and cv is the coefficient of variation. We gener-

ate 1000 sample paths for the stochastic service times of patients for each value of cv ∈
{1

4
, 1

2
, 3

4
, 1, 11

4
, 11

2
, 13

4
, 2}, simulate the online policy derived by the HOOP-BOT (online Al-

gorithm 1) on these sample paths, and calculate a 95% confidence interval for the resulting

CRs corresponding to each cv value. Note that to calculate the CR, the optimal offline policy

is obtained by solving the expected primal problem (P) where the expected service times are

used. According to Jensen’s inequality, this results in an upper bound for the CR.

Figure 3.6 illustrates the impact of ignoring stochasticity in service times on the CR of

the HOOP-BOT for varying levels of service time variability. Note that the CR for cv = 0

is for the case of deterministic service times. The first insight is that even though the CRs

become worse in the case of stochastic service times, the proposed online policy is fairly

robust with respect to stochasticity in service time. Second, as the value of cv increases, we

have more variability in the competitive ratio of the online policy.
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3.6.3 Empirical Performance of the R-HOOP-BOT (Rolling Horizon)

First, we assess the empirical performance of the R-HOOP-BOT (Algorithm 2) by com-

paring it with two benchmarks on real data from our partner health system. Second, we

investigate the effect that a rolling horizon framework and deferring scheduling decisions

have on the amount of delay in serving patients for several proposed policies.

Assessing performance of different scheduling policies in healthcare practice.

We analyze and evaluate our proposed online policy and some benchmark policies as follows.

• Online Policy: This is our proposed online policy obtained by the R-HOOP-BOT with

a 5-day-rolling horizon.

• First-Come First-Served Policy (FCFS): This is a pervasive and easy-to-implement

policy for many service systems. In this policy, every incoming patient is allocated to

the server with the earliest availability within the scheduling horizon as long as his/her

requirements can be met with remaining capacity of that provider (which is the sum

of regular and overtime capacity on each day). This policy is blind to urgency.

• Nested Threshold Policy with Overtime (NTPO): We have designed this new policy,

which is based on the idea of protecting more urgent provider-patient pairs with some

pre-specified thresholds to reserve capacity a priori, and also serving them with over-

time if necessary afterward. This idea is drawn from the airline revenue management.

The details follow.

Clearly, the FCFS policy matches every incoming patient to the first available server-

date and does not consider any reasonable match between the patient and the server. So,

we compare our online algorithms with a more sensible class of policies to evaluate better

the performance of our proposed online framework. We shall call it Nested Threshold Policy

with Overtime (NTPO) and construct it as follows. Let cUB and cLB be upper and lower

quantities for the possible values of the reward/urgency ci,j. We uniformly partition the

range [cLB, cUB] of possible urgencies into three equal sections by using two reward/urgency

thresholds c1 and c2 to create three urgency classes. These classes are the (i) emergent class

or class 1 if c2 ≤ ci,j ≤ cUB, (ii) urgent class or class 2 if c1 ≤ ci,j ≤ c2, and (iii) elective class

or class 3 if cLB ≤ ci,j ≤ c1. Let k(i, j) denote the class of patient j if served by provider i.

The class of a patient could be different for each server, which enables the incorporation of

practicing at the top of license and continuity of care issues.

We divide the regular capacity Bi,t and overtime Ui,t of each server-date (i, t) into three

capacity buckets by defining two protection levels ρ1 and ρ2, and reserve a percentage of the
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capacity for each of three buckets. Class 1 patients can exploit all three buckets, class 2

patients can be served by buckets 2 and 3, and class 3 patients can be served only by bucket

3 of each server. The priorities of buckets are decreasing from bucket 1 to bucket 3 for class

1 patients, so they are first allocated to the reserved capacity of bucket 1 if possible. If there

is no capacity in bucket 1, then reserved bucket 2 capacity is used and, if the reserved bucket

2 capacity is used up, then the class 1 patient is served from bucket 3. If even the overtime

capacity of bucket 3 is used up, then the patient is deferred, and a slot is allocated on the

earliest day at which capacity can be found. We have the analogous priority rule for serving

class 2 patients by buckets 2 and 3. The other indices and parameters of the NTPO are

given in Table 3.3.

Parameters of the Nested Threshold Policy with Overtime (NTPO).
b : The index b ∈ {1, 2, 3} denotes the capacity bucket of each server-date (i, t).
k(i, j) : The index k(i, j) ∈ {1, 2, 3} denotes the class of a patient j if served by server i.
Bb
i,t : The remaining regular capacity of server-date (i, t) in bucket b.

U b
i,t : The remaining overtime capacity of server-date (i, t) in bucket b.

Lb(i, t, j) : Binary parameter equal to 1 if b ≥ k(i, j) and Bb
i,t ≥ bi,j, and 0 otherwise.

Qb(i, t, j) : Binary parameter equal to 1 if b ≥ k(i, j) and U b
i,t ≥ bi,j, and 0 otherwise.

Table 3.3: The definitions of the parameters and indices used in the nested threshold policy
with overtime.

The binary parameters Lb(i, t, j) and Qb(i, t, j) determine whether (i) server-date (i, t)

has enough regular or overtime capacity in bucket b to serve patient j, respectively, and

also (ii) bucket index b is greater than or equal to the class index k(i, j) of patient j.

Consequently, we define the two sets Mj = {(i, t) |
∑3

b=k(i,j) L
b(i, t, j) ≥ 1, t ∈ T} and

Nj = {(i, t) |
∑3

b=k(i,j) Q
b(i, t, j) ≥ 1, t ∈ T} for each incoming patient j. These are the set

of all servers that can serve patient j in one of their regular or overtime buckets, respectively.

Algorithm 3 presents the NTPO for the OS-BOAA problem.

Before comparing our online policies with the above benchmarks, we need to carefully

adjust the protection levels ρ1 and ρ2 for the NTPO. We conduct a sensitivity analysis on

different pairs of ρ1 and ρ2 to find which pair maximizes total reward in the class of all nested

threshold policies with overtime. As reported in Table 3.4, (ρ1, ρ2) = (0.4, 0.2) are the best

protection levels for our case study. Note that the urgency/reward thresholds c1 and c2 are

set by the medical clinic, but for our reward model described in §3.6.2, (c1, c2) = (100, 30)

were used.

We consider the 5-day-rolling horizon version of the OS-BOAA problem and compare the

empirical and theoretical performance of our online policies obtained by the R-HOOP-BOT

(online Algorithm 2), with the ones of FCFS and NTPO benchmarks using a 5-day horizon

that is rolled forward for 20 days. All these scheduling policies set a visit date and a provider
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Algorithm 3 Nested Threshold Policy with Overtime (NTPO).

1: Initially set reward thresholds c1 and c2, and protection levels ρ1 and ρ2.
2: for each arriving customer j on day t1 do
3: if Mj ∪Nj 6= ∅ then
4: Choose (̃i, t̃) with the earliest availability from the set Mj ∪Nj.
5: if

∑3
b=k(̃i,j) L

b(̃i, t̃, j) ≥ 1 then

6: Allocate j to b̃ = arg minb∈{k(̃i,j),...,3}{ b | Lb(̃i, t̃, j) = 1} of (̃i, t̃).
7: else:
8: Allocate j to b̃ = arg minb∈{k(̃i,j),...,3}{ b | Qb(̃i, t̃, j) = 1} of (̃i, t̃).

9: Update remaining capacity Bb
ĩ,t̃

and overtime capacity U b
ĩ,t̃

of (̃i, t̃).

10: else:
11: Do not allocate patient j and defer decision for patient j into next day.

12: Set t1 ← t1 + 1 ; T ← T + 1, and Go to Step 2.

(ρ1,ρ2) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 45,312 51,521 35,125 60,202 41,425 39,234 26,124 45,148 32,215

0.2 35,451 42,119 55,102 67,325 38,423 28,961 53,226 48,156 -

0.3 65,934 72,452 78,325 80,923 75,125 71,568 69,328 - -

0.4 78,436 92,974 87,624 82,124 75,875 68,245 - - -

0.5 74,265 89,911 78,218 67,327 59,145 - - - -

0.6 64,281 80,127 75,347 79,126 - - - - -

0.7 65,111 57,122 60,217 - - - - - -

0.8 48,272 50,347 - - - - - - -

0.9 27,546 - - - - - - - -

Table 3.4: Finding the best set of protection levels ρ1 and ρ2 for the nested threshold policy
with overtime by implementing the NTPO (Algorithm 3) on the real data from our partner
medical clinic, and calculating the total objective function for each pair. Numerically, (0.4,
0.2) are the best protection levels ρ1 and ρ2 in our case study.
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Overtime Cost d 2d 3d 4d 5d 6d 7d

Avg Empirical r 0.932 0.894 0.742 0.792 0.695 0.652 0.636

Theoretical r 0.634 0.535 0.463 0.408 0.365 0.329 0.301

Empirical r of NTPO 0.573 0.517 0.429 0.382 0.335 0.301 0.276

Empirical r of FCFS 0.342 0.356 0.332 0.297 0.253 0.262 0.231

Table 3.5: Empirical Performance Evaluation of the Online Policy: The average empirical
and theoretical competitive ratios of the online policies obtained by the R-HOOP-BOT
(online Algorithm 2) and their comparison with the empirical competitive ratios of FCFS
and NTPO policies on the real appointment-scheduling data from the partner medical clinic
for different values of per-unit-time overtime costs.

for each patient and make overtime decisions for each provider on each date while deferring

patients that cannot be served within regular capacity or overtime. Recall that rejecting a

patient is not an option. While some patients that are deferred will eventually be served,

some will not be served within the horizon (25 days in our experiment), which may be

thought of as a form of rejection. We report the average empirical CRs of all these policies,

along with the theoretical CR of the online policy for different per-unit-time overtime costs

in Table 3.5. The average empirical CRs are obtained by taking the average of CRs of all

the days over 20 days of “rolling” forward the problem. That is, each day of the week was

captured in a separate problem with the day’s arrivals coming on the first day with the four

remaining days in a week to serve the arrivals. These are connected as the horizon rolls

forward one day at a time beginning from the prior day’s state.

The computational results in Table 3.5 suggest that the online policy obtained by the

R-HOOP-BOT (Algorithm 2) not only typically performs close to the optimal offline policy,

but also outperforms the two benchmarks of the FCFS and NTPO by a large margin on

our data set. Compared to FCFS and NTPO, the average percentage improvements of the

proposed online policy over the seven cases are 160% and 96%, respectively, in terms of

CR. We explain the poor performance of FCFS as occurring because it spends too much

time serving non-urgent visits and leaves urgent cases undone at the end of the horizon.

Even in the NTPO, which cares about the class of patients and accordingly reserves some

part of regular and overtime budgets for each class a priori, the empirical performance is

worse than both empirical and theoretical performances of our online policies. The good

performance of the online policy can be explained as a result of paying close attention to the

urgency/reward value of each arriving patient, computing the dual price of every server-day

pair for this patient and then optimizing the server-date selection.

Analysis of patient deferment with different urgencies. We compare the perfor-
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Figure 3.7: The histogram and fitted distributions on the number of days patients in each of
three urgency classes are deferred until an allocation decision is made by the online policy
obtained by the R-HOOP-BOT on the real data.

mance of the online policy obtained by the R-HOOP-BOT with the NTPO in terms of the

number of days patients are deferred, as well as the percentage of rejections for different

urgency classes of patients in the rolling horizon framework. We use the online policy and

the NTPO on the real data from our partner medical clinic, and graph the number of days

patients in each of three urgency classes are deferred until an admissible allocation date is

found.

Performance Measure
Online Policy NTPO Policy

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3

Mean 1.131 3.612 5.521 1.211 7.752 10.921

Std. Deviation 1.204 1.212 2.345 1.018 2.364 4.453

Percentage of Rejection 1.251% 2.421% 5.261% 4.432% 9.612% 12.142%

Table 3.6: Empirical Performance Evaluation of the Online Policy: (i) the mean, and stan-
dard deviation for the number of days patients are deferred until an allocation decision is
made, and (ii) the percentage of rejection decisions made by the online policy and NTPO
policy for each of three urgency classes.

Figures 3.7 and 3.8 illustrate the histograms and fitted distributions on the number of

days patients are deferred in each of these classes, and Table 3.6 reports the related statistics

for these results. These histograms report fractions of days because we used actual arrival

times of patients in the data in our computations. While the online policy has no classes,
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we sort the patients according to the classes as defined above to form classes for the NTPO

policy. We observe that (i) the online policy obtained by the R-HOOP-BOT outperforms

the NTPO in terms of both mean and standard deviation for the number of deferred days

(with very similar results for class 1), and (ii) it offers a much lower percentage of rejections,

which implies higher throughput. Note that in this analysis, we ignore the result of the FCFS

policy, because it does not distinguish between urgency classes while making the scheduling

decisions, so all have a similar access delay distribution.
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Figure 3.8: The histogram and fitted distributions on the number of days patients in each
of three urgency classes are deferred until an allocation decision is made for them by the
NTPO policy on the real data. Note that the x axis is much longer than the one in Figure
3.7.

3.7 Conclusion and Future Directions

In this paper, we study an important class of online scheduling problem with budgeted

overtime in which the model has no knowledge about the pattern or underlying distribution

of the arrival process. Upon arrival of a customer, the system makes an instantaneous and

irrevocable allocation decision for this customer, without knowing any information on sub-

sequent customers. We adopt a primal-dual approach to develop new effective and efficient

online algorithms to make for every arriving patient on every day in the horizon not only a

date-server allocation decision but also a decision of whether or not to use overtime to serve

the patient. The proposed online policies (i) are robust to future uncertain information, (ii)

are easy to implement and extremely efficient to compute, (iii) allow for heterogeneity in

both reward and service requirement by a server, and (iv) admit a theoretical performance
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guarantee. Comparing our online policy with the optimal offline policy, we obtain a compet-

itive ratio which guarantees the worst-case performance of our proposed online policy. For

practical settings, we extend our online algorithm to a rolling horizon paradigm.

A particular emphasis of this paper has been put on the real-world applicability of our

proposed methods. The online resource allocation problem studied in this work is not only

investigated through a theoretical lens but also from the perspective of healthcare operations.

We evaluate the empirical performance of our online algorithms by using real appointment-

scheduling data from a healthcare clinic of our partner health system. Our computational

results show that the proposed online policies perform much better than their theoreti-

cal worst-case performance guarantee and extremely well compared to the pervasive FCFS

scheduling heuristic and a new policy we term the nested threshold policy.

There are several limitations in our current model that could spur future research. First,

we do not consider stochasticity in the service time requirement in our theoretical analysis

(even though we investigate it empirically). Thus, it would be interesting to see if one can

design an online algorithm that can handle stochastic service times and obtain a CR. Second,

the rolling horizon extension is myopic and not optimal. It would be interesting to study

the full-blown dynamic optimization problem and establish meaningful theoretical results.

Third, in practice, patient no-shows and cancellations happen from time to time. No-shows

do not impact the model at the daily level (only time of day). The current methodology does

not incorporate cancellations, and we leave it for future research. Lastly, there is a small

gap between our lower and upper bounds for the competitive ratio of our online algorithms,

so it is not tight. Thus, whether the proposed online primal-dual algorithms admit a tighter

lower bound or there is a tighter upper bound for any online algorithm remains a question

for future research.
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3.8 Appendix

3.8.1 Appendix A: Summary of Major Notation

Table 3.7 summarizes the major mathematical notation used in the manuscript.

Notation Description
i index of servers/providers.
t index of periods/days.
j index of customers/patients.
bi,j service time of customer j if served by server i.
ci,j reward or urgency value of customer j if served by server i.
Bi,t regular capacity of server i on day t.
Ui,t overtime capacity of server i on day t.
di overtime cost of server i.
yi,j,t binary decision for allocating customer j to server i on day t.
vi,t overtime decision for server i on day t.

γmax = maxi,j

{
ci,j
bi,j

}
max ratio of reward to service requirement among all i and j.

γmin = mini,j

{
ci,j
bi,j

}
min ratio of reward to service requirement among all i and j.

dmax = maxi{di} max overtime cost among all i.
dmin = mini{di} min overtime cost among all i.

Rmax = maxi,j,t

{
bi,j
Bi,t

}
max ratio of service requirement per request to total capacity.

α = (1 +Rmax)1/Rmax coefficient in the competitive ratio.

Table 3.7: Summary of major notation in the OS-BOAA problem and the competitive
analysis.

3.8.2 Appendix B: An Upper Bound of Online Algorithms for the OS-BOAA

problem

We first prove a technical result that will be used in the proof of Theorem 2.

Lemma III.5. The following inequality holds true.

1− 5

N
≤

q∑
j=1

( 1

N + 1− j
)
≤ 1, where q = N −

⌈
N

e

⌉
. (3.34)
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Proof. Proof of Lemma III.5. To prove (3.34), we use the integral test for estimating sum of

a decreasing series as follows:

q∑
j=1

( 1

N + 1− j

)
=

N∑
x=1+dN/ee

1

x
≤

N∫
N/e

1

x
dx = 1.

5

N
+

q∑
j=1

( 1

N + 1− j

)
>

1

N + 5
+

1

N + 4
+ · · ·+ 1

N + 1
+

q∑
j=1

( 1

N + 1− j

)

≥
N+6∑

x=2+dN/ee

1

x
≥

N+6∫
2+N/e

1

x
dx >

N+6∫
(N+6)
e

1

x
dx = 1.

This completes the proof.

Proof. Proof of Theorem 2: According to Yao’s minimax principle, the expected revenue

of a randomized online algorithm on the worst-case arrival input is no better than the one

for a worst-case probability distribution over the arrival inputs, of the deterministic online

algorithm that performs best against that distribution. Thus, to derive an upper bound

r on the performance of randomized online algorithms, it suffices to provide a distribution

over worst-case inputs such that any deterministic online algorithm achieves at most r of the

optimal offline policy in expectation. Consider an arbitrary deterministic online algorithm,

denoted ALG, and evaluate its performance on the worst-case input generated as follows.

Assume that the set of resources R =
{

(i, t) | i ∈ [n], t ∈ [T ]
}

have N = n×T resources,

and each has both regular and overtime capacities. We can think of 2N resources including N

resources denoted by r1, r3, ..., rK with only regular capacity of Bk = 1 for k ∈ {1, 3, ..., K},
and N resources denoted by r̂2, r̂4, ..., r̂L with only overtime capacity of Uk = 1/2 for k ∈
{2, 4, ..., L} such that L + K = 2N . Next, consider all inputs derived from the above input

by taking random permutation of the 2N resources, so taking a uniform distribution u over

N regular resources, and a uniform distribution ũ over N overtime resources. Formally,

with σ(.) denoting a permuted order, pick a random permutation σ(r1), σ(r3), ..., σ(rK) of N

regular resources and a random permutation σ̃(r̂2), σ̃(r̂4), ..., σ̃(r̂L) of N overtime resources.

Patients arrive in 2N iterations, with 1/ε number of patients in each iteration. Let

Sj denote the set of patients at iteration j ∈ {1, 2, ..., 2N}. The patients arrive in it-

erations in the order S1,S2, ...,S2N . For patients Sj, where j ∈ {1, 3, ..., K}, resources

σ(r1), σ̃(r̂2), σ(r3), ..., σ̃(r̂j−1) and σ̃(r̂j+1), σ̃(r̂j+3), ..., σ̃(r̂L) have reward 0, but resources σ(rj),

σ(rj+2), ..., σ(rK) have reward ε. However, for patients Sj, where j ∈ {2, 4, ..., L}, resources

σ(r1), σ̃(r̂2), σ(r3), ..., σ̃(r̂j−1) and σ(rj+1), σ(rj+3), ..., σ(rK) have reward 0, but resources

121



σ̃(r̂j), σ̃(r̂j+2), ..., σ̃(r̂L) have reward ε/2.

Without loss of generality, let us index patients served by regular resources by j ∈
{1, ..., N}, patients served by overtime resources by j ∈ {N + 1, ..., 2N}, resources with

regular capacities by k ∈ {1, ..., N}, and resources with overtime capacities by k ∈ {N +

1, ..., 2N}. Clearly, the allocation of the optimal offline policy for any permutation σ and σ̃

yields the total reward OPT = 3N
2

by allocating patients Sj to resource σ(j) if 1 ≤ j ≤ N ,

and resource σ̃(j) if N + 1 ≤ j ≤ 2N . The goal is to bound the expected total revenue of

the deterministic algorithm ALG over inputs from distributions u and ũ. Let Zj,k denote

the fraction of patients from Sj that is allocated to resource k. Then, we have the following:

Eσ(Zj,σ(k)) =

 1
N+1−j , if j ≤ k ≤ N

0, if k < j or k ≥ N + 1
(3.35)

for patients in iterations j ∈ {1, ..., N}, and

Eσ̃(Zj,σ̃(k)) =

 1
2N+1−j , if j ≤ k ≤ 2N

0, if k < j
(3.36)

for patients in iterations j ∈ {N + 1, ..., 2N}. Thus, the expected revenue obtained

by each resource at the end is either min
{

1,
k∑
j=1

(
1

N+1−j

)}
for resources k ∈ {1, ..., N} or

min
{

1
2
, 1

2

k∑
j=N+1

(
1

2N+1−j

)}
for resources k ∈ {N + 1, ..., 2N}.

Using (3.35) and (3.36), the expected total revenue of all regular and overtime resources

obtained by the ALG can be bounded as follows:

ALG =
N∑
k=1

Eσ

[
k∑
j=1

Zj,σ(k)

]
+

2N∑
k=N+1

Eσ̃

[
k∑
j=1

Zj,σ̃(k)

]

≤
N∑
k=1

min

{
1,

k∑
j=1

( 1

N + 1− j

)}
+

2N∑
k=N+1

min

{
1

2
,
1

2

k∑
j=N+1

( 1

2N + 1− j

)}
. (3.37)

We first bound the first statement in (3.37) by using the proven technical result (3.34)

as follows:
N∑
k=1

min

{
1,

k∑
j=1

( 1

N + 1− j

)}
≤

q∑
k=1

k∑
j=1

1

N + 1− j
+

N∑
k=q+1

1

<

q∑
k=1

k∑
j=1

1

N + 1− j
+

N∑
k=q+1

( 5

N
+

q∑
j=1

1

N + 1− j

)
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=
N∑

k=q+1

5

N
+

q∑
k=1

k∑
j=1

1

N + 1− j
+

N∑
k=q+1

q∑
j=1

1

N + 1− j

< 5 +

q∑
j=1

q − j + 1

N + 1− j
+ (N − q)

q∑
j=1

1

N + 1− j

= 5 + q < 5 +
(

1− 1

e

)
N.

Using the same argument but with q′ = 2N −
⌈
N
e

⌉
, we can bound the second expression

in (3.37), which results in an upper-bound of 5 +
(

1− 1
e

)
N
2

. As the expected total revenue

of the optimal offline policy is OPT = 3N
2

, and the expected total revenue of the ALG is

bounded above by 10+
(

1− 1
e

)
3N
2

when both regular and overtime resources are considered,

so ALG cannot be r-competitive for any r < e
e−1

.
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CHAPTER IV

Coordinated and Priority-based Surgical Care: An

Integrated Distributionally Robust Stochastic

Optimization Approach 1

4.1 Introduction

In a typical service system, it is inevitable that waiting times or delays will be experienced

by the customers/clients because of the inherent uncertainty in both arrival processes and

service times. In healthcare settings, a long waiting time to receive care is not only an

annoyance, but it can also deteriorate health outcomes due to adverse events and increase

healthcare costs because of the potential need for additional/more complicated procedures

[109, 54, 133]. Timely access to care is an essential feature of any high-quality and modern

healthcare delivery system [93]. We define “access delay” (or access to care) as the number

of days between the day a patient’s appointment request/referral is received by a medical

center and his/her appointment day with a provider. Access delay can be mitigated by

efficiently matching the available resource capacity to patient demand. This is, however,

challenging given the inherent and various sources of uncertainty within any healthcare

delivery system [124]. Currently, the U.S. is experiencing an increase in demand for medical

care due to an aging and growing population, which is outpacing the growth of healthcare

providers [121]. This limited capacity along with sharply increasing demand leads to barriers

to adequate access to care, and also highlights the importance of efficient utilization of

resources, including providers and operating rooms. In this context, coordination of patient

care throughout the course of treatment and across various clinic and surgery visits helps

ensure that patients receive appropriate follow-up treatments without enduring long waiting

1Under Revision at Production and Operations Management as Keyvanshokooh, E., Fattahi, M.,
Kazemian, P., Van Oyen, M. P. (2020), Coordinated and Priority-based Surgical Care: An Integrated
Distributionally Robust Stochastic Optimization Approach.
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times that can undermine their health condition.

This research is motivated by our collaborations with multiple healthcare institutions that

desire to achieve timely access to surgery in their specialized surgical units. Patients with

various acuity levels are referred to these surgical units either by their primary care physicians

or by other hospital units. These patients first require a clinic consultation appointment

with a surgeon, which then may need to be followed by a surgical procedure in the operating

room. The decision of whether a patient requires a surgery is made during the patient’s

clinic consultation visit along with details of the surgery. In this paper, we develop a new

optimization-based approach to coordinate clinic and surgery appointment scheduling for

such surgical units such that all patients with various acuity levels can be offered a clinic

consultation visit and a surgical time (if surgery is needed) within a pre-defined target time

window that is clinically safe for them to wait using the minimum overtime possible. We

call this the Coordinated clinic and surgery Appointment Scheduling (CAS) problem.

It is also worth noting that variability in appointment request arrival numbers and surgery

durations can cause excessive patient waiting times and poor utilization of healthcare re-

sources or high overtime. Unlike prior research that assumes the probability distribution

of surgery duration is known (e.g., [55], [56], [63] and [60]), our contribution is to consider

how distributional robustness can be achieved using a model where only marginal informa-

tion including mean, variance and range on surgery duration is used. Creating an accurate

probability distribution for surgery duration, which can depend on the surgery type as well

as the surgeon performing the surgery, requires a large amount of historical data. In many

healthcare settings, however, a wide range of surgeries, limited numbers of cases of each

type, and surgeons changing over time result in insufficient historical data to accurately esti-

mate surgery duration distributions for each combination of surgery-surgeon type. Further,

it might be impossible to fit distributions tailored to the surgeon and the surgery type for

some of the less common procedures. For example, as reported by [115], for approximately

half of scheduled cases in the U.S. on any weekday, only five or fewer cases of the same surgery

type (narrowly defined) and by the same surgeon have been performed. This motivates our

interest in a robust scheduling policy that could perform relatively well against a class of

surgery duration distributions satisfying only the above described moment (marginal) in-

formation in the CAS problem. This paper also incorporates the more traditional Poisson

arrival process model. We assume there is usually enough historical data on appointment

requests from which stochastic scenarios for the number of patient appointment requests can

be made [63].

Methodologically, we advance the literature by integrating the multi-stage stochastic pro-

gramming and distributionally robust optimization approaches such that the uncertainty in
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the number of patient appointment requests/referrals and surgery durations are modeled by a

scenario tree and a moment-based ambiguity set, respectively. We call this new approach the

Integrated Multi-stage Stochastic and Distributionally Robust Optimization (IMSDRO). The

IMSDRO approach (i) specifies the optimal clinic date, (ii) determines the optimal surgery

date with the same surgeon who performed the clinic visit (given surgery is needed), and (iii)

minimizes and balances the clinic and surgery overtimes of surgeons while incorporating the

uncertainty in appointment request arrival and surgery durations. The IMSDRO approach

guarantees that the pre-defined priority-based clinical and surgical access delay targets are

met for all patients. Clinical and surgical overtimes are used, as needed, to achieve these

predefined priority-based access delay targets.

The scope of this paper is limited to the following two main aims. (i) We develop an

optimization-based model to address the type of coordinated care problem with hard access

delay constraints (by optimizing overtime) in a dynamic scheduling manner that allows for a

finite scheduling horizon that can be recursively rolled forward so that it addresses real-world

operational needs. (ii) Another key objective is to introduce a proof of concept for a new

methodology to integrate multi-stage stochastic programming with distributionally robust

optimization to concurrently deal with different types of uncertainty. The proof of concept

is given by a case study motivated by a partner surgical hospital which seeks to meet access

delay targets and guarantee service within a safe target time window, in particular for acute

patients.

4.1.1 Related Literature

Our work is related to multiple research areas, namely, appointment scheduling, health-

care coordination, distributionally robust optimization, and stochastic programming.

Appointment scheduling and healthcare coordination. There is a growing litera-

ture on appointment scheduling in healthcare operations with surveys provided by [44], [79],

[123], and [7]. Some of the recent papers include [147], [109], [106], [54], [154], [128], [111],

and [113].

[80] define two access delay types. Direct access delay is the time between the patient’s

arrival to the clinic on the day of her appointment and the time the doctor sees her; in-

direct access delay is the time between the patient’s appointment referral and the time of

her scheduled appointment. Most works have concentrated on direct waiting times and far

fewer considered indirect waiting times. [137] propose a Markov decision process (MDP) to

develop policies that minimize the number of patients that do not get a single appointment

by a clinically determined maximum wait time target. [80] study an MDP under patients’

preference for a clinic to decide how to manage access to its slots when patients can choose
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between a single same-day or future appointment. [114] present an MDP under no-show

and cancellation to allocate each patient a single appointment date within a specific horizon.

[145] extend the work of [137] to require a sequence of appointment visits (with certain dura-

tion) for each patient while reducing access delays. They assume multiple identical therapy

machines and are thus able to model total capacity by aggregating individual capacities of

machines, unlike our paper. [151] consider a deterministic number of chemotherapy patients

with multiple visits over time and formulate an optimization model to minimize access delay

from their earliest start dates. [74] study a similar model to that of [137] and consider differ-

ent patient types that require different levels of access to a single appointment. [60] develop

an MDP under no-shows where patients undergo a series of assessments before being eligible

for a surgery.

Our paper belongs to the stream of research on indirect access time. There are a number

of key differences between the above papers and ours. First, we consider multiple non-

identical surgeons as scarce resources as opposed to [145], which models either one single

resource or multiple identical resources that are aggregated. Second, they assume that each

patient needs either one (e.g., [137], [80], [114], and [74]) or multiple visits (e.g., [145], [151],

and [60]), and these are all assumed to be known at the time of receiving the request.

But, in our problem, each patient requires a clinic visit, which may or may not be followed

by a surgery, and the need for surgery is realized at the clinic visit. Third, we do not

consider no-shows and cancellations because they rarely occur in the settings of our highly

specialized partner clinics. Fourth, an important goal of our study is to achieve timely access

to care using access delay targets and model uncertainty in surgery duration, which are not

considered in [60] and [145].

We address healthcare coordination in the sense of setting appointments for pairs of

sequential visits that together achieve timely access to care. We found only two articles

in this regard. [154] propose a coordinated pre-operative scheduling approach to evaluate

patients’ conditions prior to surgery. They model a two-station stochastic network, where

each clinic may be staffed by multiple parallel providers and patients see the first available

one. They give a myopic scheduling policy due to their complex setting. [98] use a simulation

approach to evaluate their proposed heuristic policies for coordinating clinic and surgery

visits. Our work develops optimization models rather than heuristics for determining the

clinic and surgery visit decisions, and mathematically models uncertainty in both surgery

duration and arrival process. This provides a general approach to a broader range of systems

and parameters because heuristics do not readily extend to new settings.

Stochastic programming and distributionally robust optimization. As an al-

ternative to MDP approaches and simulation to address uncertainty, two-stage stochastic
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programming is usually employed to formulate appointment scheduling operational problems

that incorporate uncertainty (see e.g., [55], [120], [25], and [135]). However, the uncertainty

in stochastic parameters such as demand is often realized progressively, and the decision

at each stage should be a function of the observed feedback outcomes up to that stage.

Multi-stage stochastic programming (MSSP) is a more suitable approach for modeling such

a setting (see e.g., [63]), which is the case in our paper.

Surgery durations across different patient classes and surgeons are not usually homo-

geneous; thus, it is challenging to characterize their exact probability distributions. To

overcome this issue, distributionally robust optimization (DRO) approaches have recently

received more attention. They optimize the worst-case performance over an ambiguity set,

which represents a class of probability distributions with specified moment information.

[102] formulate a DRO model in which an ambiguity set is used to include all distributions

of service times with common mean and covariance and derive a semidefinite programming

relaxation. [118] consider a similar problem except that service durations are independently

distributed, and reformulate their DRO model as a conic program. However, their for-

mulation requires the assumption that service durations could take on negative values. [91]

consider a single-server DRO scheduling problem given a fixed sequence of appointments with

ambiguous no-shows and service durations and derive mixed-integer nonlinear programs.

There are key differences between the above papers and ours. First, the focus of their

DRO models is not on real-world settings; however, we develop a DRO formulation for an

appointment scheduling problem with realistic features motivated by our partner hospital.

Second, we develop a new approach which integrates a DRO model with an MSSP model to

incorporate different types of uncertainty as well. Third, we leverage a set of transformations

to turn our non-linear program into a tractable one, which can be efficiently solved by a new

constraint generation algorithm.

The decisions made by most decision making under uncertainty approaches are often not

implementable in practice. Rolling horizon type algorithms are usually developed to deal

with this issue. For example, the rollout method for approximate dynamic programming

([27], [28] and [29]), Monte Carlo search tree method for reinforcement learning ([37], [71],

and [129]) and rolling-horizon policies for MDPs ([86] and [10]) are three main applications

of this idea. However, we extend the idea of rolling horizon into our IMSDRO approach as a

way of adapting to the effect of uncertainty in the novel case of MSSP integrated with DRO.

4.1.2 Main Contributions and Focus

Below, we summarize the major contributions of this paper to the existing literature.

(1) Integrated multi-stage stochastic and distributionally robust optimization.
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We believe that methodologically this paper is the first to develop an integrated multi-stage

stochastic and distributionally robust optimization approach to simultaneously model two

different types of uncertainties, namely the uncertainty in arrival process and the uncertainty

in service time. While arrivals are often approximated by a Poisson process in operations

models, in many services such as healthcare, the service time can depend greatly on what

type of service is provided and by whom [79]. In the context of a specialized surgical unit,

several types of surgeries may be offered by a number of surgeons, making it challenging

to elicit a complete probability distribution of surgery duration for all surgery type-surgeon

combinations. Hence, a DRO approach that only relies on limited distributional information

(e.g., mean, standard deviation, and range) combined with an MSSP model to model the

arrival process is extremely valuable. In this paper, we first develop an MSSP model that

defines the decisions to be made at each stage as a function of the observed outcomes up

to that stage and models the uncertainty around appointment request arrivals by a Poisson

process from which we can take enough random samples to make a scenario tree. We integrate

this MSSP model with a DRO approach, which makes no assumption on the exact probability

distribution of surgery duration. Instead, it describes a moment-based ambiguity set, which

captures a class of distributions with specified moment information. The exact formulation

derived by the IMSDRO approach is not tractable. We leverage a set of transformations to

turn this non-linearity into an approximate model that contains an embedded mixed-integer

linear program in its constraints. We develop a new constraint generation algorithm that

generates effective scenario cuts through this embedded optimization problem, to efficiently

solve the model. Our IMSDRO methodology is flexible and can be applied to other service

operations in which different types of uncertainty are to be modeled simultaneously. Our

transformations can also be used for many other DRO models to turn them into tractable

ones.

(2) Data-driven rolling horizon procedure. Since the decisions obtained by the

IMSDRO approach are scenario dependent, they are not readily implementable in practice.

We propose a data-driven rolling horizon procedure (RHP), which provides a framework to

(i) make the decisions of the IMSDRO approach implementable in real practices, and (ii)

empirically evaluate the performance of the scheduling policies obtained by the IMSDRO

approach. The main advantage of the RHP is that it allows practitioners to make use of the

latest information that is revealed as time unfolds and adjust their decisions by dynamically

utilizing the realization of uncertain parameters. This RHP resolves the critical limitation

of traditional stochastic programming policies, which are only valid for a limited number of

scenarios. While the rolling horizon idea is, in general, similar to that of a rollout policy

for constrained dynamic programs, a Monte Carlo search tree in reinforcement learning,
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and rolling-horizon MDPs, implementation of a data-driven rolling horizon procedure in the

context of IMSDRO is novel.

(3) Healthcare coordination for timely access delay. This paper presents a class of

scheduling policies that aim to coordinate clinic consultation and surgical appointments in a

specialized surgical setting to accommodate patients of different acuity/priority levels within

a predefined priority-based time window. The need to consider care coordination has been

raised by [123] and emphasized by the recent survey of [7]. To the best of our knowledge,

this paper is the first work to date that uses optimization approaches to study and model the

impact of clinic and surgery appointment coordination to accommodate priority-based access

delay targets. In §4.6, we demonstrate that coordinating clinic and surgery appointments in

a specialized surgical unit using our new IMSDRO methodology can significantly improve

surgical access delay for patients with acute conditions. We show that there is a trade-off

between meeting access delay targets and incurring overtime. This allows decision makers

to define a set of access delay targets that results in acceptable surgeon overtime. Although

our work is motivated by healthcare, our models, methodology, and insights can also be

extended to the general appointment-based service systems. We discuss several important

practical implications and insights from our work in §4.7.

4.2 Problem Statement

In this section, we present the description and specifications of the CAS problem. This

new problem is motivated by a real-world healthcare scheduling application in our collabo-

rating hospitals.

Surgeons offer both clinic consultation and surgical procedures. There are a

number of surgeons who work in two clinic and surgery teams. The set of surgeons is denoted

by K where each surgeon is presented by k ∈ K. Each period is typically a day. We use the

terms day and period interchangeably. On any given day, one team sees patients in the clinic

while the other team performs surgery in the operating rooms (ORs). Each surgeon switches

between clinic and surgery teams on the following day and maintains his/her own clinical

and surgical calendars. This is called an every-other-day operating calendar for surgeons.

The system allows both clinical and surgical overtimes along with the regular clinical and

surgical capacities for surgeons. Each surgeon k ∈ K has a regular clinical capacity of Uk
m

on clinic day m, and a regular surgical capacity of V k
n on surgery day n. These details can

be easily modified to accommodate other healthcare settings.

Patients from different classes/types. There are different classes of patients whose

requests are received by the surgical clinic. The set of patient classes is denoted by Γ where
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each patient class is presented by a tuple γ = (φ, ν) ∈ Γ, where φ is the referral type

(i.e., local or remote) and ν is the indications of disease (e.g., colon cancer, rectal prolapse,

ulcerative colitis, diverticulitis, etc). Patients are referred either by other hospital units

or by their primary care physicians to the surgical clinic to consult with a surgeon and

evaluate the need for a surgery. When the surgical clinic receives an appointment request,

the patient’s electronic health records reveal the indication of disease as well as whether

the patient is locally or remotely referred. The referral type and the indication of diseases

together determine a patient’s class. We use the terms request and referral interchangeably.

Each appointment request first requires a clinic consultation appointment with a surgeon,

which then may need to be followed by a surgery with a probability rγ for each class γ. A

patient class determines the probability rγ that a patient will need a surgery. The surgery

probability helps approximate the required surgery workload in the future. The decision of

whether a patient requires a surgery is made during the patient’s clinic visit. If a surgery is

required, we assume that it has to be performed by the same surgeon who visited the patient

at the clinic visit. This feature captures the continuity of care between patient-surgeon and

is often preferred by patients since the patient has already established some trust and a

relationship with the surgeon.

Various types of uncertainty. In light of the availability of historical data and the

inherent uncertainty of the system, there are three types of uncertainty. The first is the total

number of appointment requests received from each patient class in each period, which is

realized at the end of the period. The second is whether a given patient requires a surgery or

not, which is revealed at the clinic visit. If a surgery is needed, the third type of uncertainty

concerns the surgery duration.

We know the probability distribution for the number of appointment requests made by

each patient class in each period from which a set S of stochastic scenarios (indeed a sce-

nario tree) is generated to model the existing uncertainty in appointment request arrivals.

We represent such uncertainty by Dsγ,t, which is the set of class γ ∈ Γ patients whose request

is received on any day t under scenario s ∈ S (see §4.3.1). Nonetheless, we have limited

distributional information on the distribution of surgery duration dγ,k for each patient class

γ ∈ Γ and surgeon k ∈ K pair. There is usually a wide range of patient classes served by

several different surgeons, which leads to having only a limited number of cases/examples for

each patient class-surgeon combination. This makes it hard to fit distributions tailored to

each surgeon and patient class pair, because individual surgeons may perform many surgery

types with small annual volumes (see discussion in §4.1). A moment-based ambiguity set is

employed to incorporate all such distributions with a common mean, standard deviation,

and support (see §4.3.2). We employ a multi-stage decision-making setting as well because
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Figure 4.1: The illustration of sequence of events, timing of different uncertainty realizations
and proactive clinic and surgery scheduling decisions made for each patient request in the
surgical clinic.

the uncertainty in parameters is progressively realized in each period. We then develop an

integrated optimization-based approach, denoted above as the IMSDRO approach, combin-

ing an MSSP model with a DRO approach to simultaneously model all types of uncertainty.

The goal is to find an optimal clinic and (if needed) surgery visit date for each patient with

minimum overtimes for surgeons such that class-specific access delay targets are met for

patients. We denote the clinical and surgical overtimes of surgeon k ∈ K on clinic day m

and surgery day n under scenario s ∈ S by qkm,s and okn,s, respectively.

Clinical and surgical decisions. Figure 4.1 illustrates the sequence of events and

decisions, surgical and clinical access delays and timing of uncertainty realizations in the

CAS problem. At the end of each period, the uncertainty about the number of appointment

requests/referrals received on that period is realized and the clinic appointments for those

patients are scheduled at the end of that period. The clinic visit day is promised at the

end of the arrival day and is denoted by xk,mp,γ,t,s, which is whether a class γ patient p ∈ Dsγ,t
whose request was received on any day t under scenario s, has clinic visit on day m with

surgeon k. The next decision, the day of surgery, is made on the clinic appointment day.

After completing the clinic visit, it becomes known whether the patient requires a surgery.

If the patient needs a surgery, we schedule a surgery appointment, which must be with the

same surgeon with whom she/he had the clinic visit. The surgery decision is denoted by

yk,nγ,t,m,s, which is the number of class γ patients whose requests were received on any day t

under scenario s and had clinic visit on m, and we choose surgery day n with surgeon k.

After the realization of surgery need and duration, we calculate two auxiliary variables of

the clinical and the surgical overtimes qkm,s and okn,s of surgeons, respectively.

Timely access to care. To ensure that patients are granted timely access to care, we

place hard constraints on the allowable time intervals during which a patient may have clinic

and surgery visits safely. For each patient class γ, we define a parameter called WTCγ or
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“minimum wait time target for the clinic visit of a patient class γ patient.” For example, in

our case study (see §4.6), the value of this parameter only depends on φ as it was appropriate

to assume the wait time to clinic is determined based on whether the patient is referred locally

or remotely to our partner hospital’s hospital. In particular, for the local referral, WTCγ is

zero because the patient is physically at or around the surgical clinic. But, for the remote

referral, we allow a minimum of WTCγ days (5 days in the case study) from when a patient

referral is received until her/his clinic visit so as to give the patient time to make travel

arrangement to the surgical clinic. We also define another important parameter called WTSγ

or “maximum wait time target to surgery visit.” This can be thought of as the maximum

wait time that the patient’s surgery, if needed, can be safely postponed from the time of

patient referral. Our methodology ensures that all patients are offered at least one surgery

visit within their WTSγ. Based on the recommendation of our partner clinic, we define a

parameter CSGγ or “minimum gap between clinic and surgery visits of a class γ patient.”

This corresponds to the minimum required number of days between the patient’s clinic and

surgery visits. While this can be zero, some surgeries require a period of preparation prior

to the surgery. WTCγ, WTSγ and CSGγ are set by the surgical clinic in our case study,

but can be easily modified in other settings.

According to the above-defined parameters, if we receive a referral on any period t from

patient class γ, we define (i) the earliest time ECγ,t = t + WTCγ, and the latest time

LCγ,t = t + WTSγ − CSGγ for setting the clinic appointment, and (ii) the earliest time

ESγ,t = t+WTCγ + CSGγ and the latest time LSγ,t = t+WTSγ for choosing the surgery

appointment (if needed) for this patient. In our approach, both clinic and surgery appoint-

ments are scheduled within these clinical and surgical target time windows that depend on

the appointment request period. This requirement on each patient’s flow pathway adds

significant complexity to the CAS problem. Figure 4.2 depicts the allowable target time

windows for having the clinic and surgery (if needed) appointments for a typical patient

from class γ whose appointment request is received on any period t.

4.3 Integrated Multi-stage Stochastic and Distributionally Ro-

bust Optimization Methodology

Analytics Overview. In this section, the IMSDRO methodology for the CAS problem

described in §4.2 is presented. In §4.3.1, we first assume that the surgery duration is deter-

ministic and develop a Multi-stage Stochastic Mixed-Integer Program (MS-MIP) in which

a scenario tree is exploited to model the uncertainty in the number of patient appointment

requests on each period. In §4.3.2, we then extend this MS-MIP model to account for un-
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Figure 4.2: The illustration of minimum Wait Time for Clinic visit (WTC), minimum Clinic
to Surgery visits Gap (CSG), maximum Wait Time to Surgery visit (WTS) for a patient
whose request is received on any period t.

certainty in the surgery duration by developing a DRO approach that uses an ambiguity set

constructed based on the empirical mean, standard deviation, and support of the surgery

duration. Given that the resulting formulation is not tractable, we deploy a set of approxima-

tions based on the structural properties and a scenario cut-generating model, which results

in an approximate tractable reformulation (IMSDRO-APRX).

4.3.1 Multi-stage Stochastic Mixed-Integer Program Model

We define three horizons (see Figure 3 for details) for the CAS problem: (i) current

scheduling horizon L, (ii) current arrival horizon T , and (iii) past arrival horizon U . Through

using this modeling approach, we account for initial steady-state clinical and surgical work-

loads. The current scheduling horizon L is the set of periods from current period t0 until

period te, over which we decide the clinic and surgery appointment dates for patients. There

are two types of patient arrival horizons: (i) the “current” arrival horizon T is the set of

periods from current period t0 until period tb for new patient request arrivals, which is the

first portion of the current scheduling horizon, and (ii) the “past” arrival horizon U is the set

of periods from period 1 until period t0−1 for past patient request arrivals over the previous

scheduling horizon. The reason for defining the set U is twofold. First, the clinic visit of a

patient whose request has been already received in U may happen on any period (day) in

T , so we may still need to make a surgery visit decision. Second, the surgery visit of the

patients whose request is received in U may happen on any period in T and they consumes

surgery capacity during the horizon T . Because of the access wait time targets to surgery,

|L| = |T |+ maxγ{WTSγ} is the required length of current scheduling horizon. Note that t0

and tb (tb = t0 + |T | − 1) are specified by the surgical clinic to determine the first and last

periods for new patient request arrivals, and te = t0 + |T |+ maxγ{WTSγ}.
A multi-stage stochastic program allows us to have several decision layers, where random

outcomes are progressively realized, and the clinical and surgical decisions should be adapted
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Figure 4.3: The illustration of arrival horizon U for patient request arrivals in the previous
scheduling horizon, arrival horizon T for patient request arrivals in the current scheduling
horizon, and current scheduling horizon L.

to this process. In general, a T -stage stochastic program includes a sequence of stochastic

parameters ξ1, ξ2, · · · , ξT−1 with a discrete support. A scenario is a realization of these

stochastic parameters, and a scenario tree represents the progressive observation of random

parameters. To model stochasticity in the number of appointment request arrivals as a

scenario tree, a set of scenarios S with a countable size S = |S| is defined. The corresponding

scenarios’ probabilities are π1, π2, · · · , πS, and a realization of the stochastic parameters for

scenario s ∈ S is presented by (ξst0 , ξ
s
t0+1, · · · , ξstb) where ξst = (Dsγ,t : γ ∈ Γ) is a realization

for the number of requests on period t ∈ T over different classes under scenario s ∈ S,

and Dsγ,t is the stochastic set of class γ patients whose service request/referral is received

in period t ∈ T under scenario s ∈ S. Noting that ξst0 is the same (deterministic) for all

scenarios s ∈ S because it is the number of appointment requests in the current period t0

of the arrival horizon T . Moreover, we define D̃γ,t as the deterministic set of class γ ∈ Γ

patients whose request was already received on day t ∈ U . Formally, we have the following

stochasticity assumption for the number of appointment requests in the CAS problem.

Assumption 1 (Stochasticity Assumption). There is full distributional information for the

number of patient appointment requests in every period over the current arrival horizon

T . Such uncertainty is modeled by a stochastic process ξ with a realization of stochastic

parameters presented by (ξst0 , ξ
s
t0+1, · · · , ξstb) with a probability πs under scenario s ∈ S, where

ξst = (Dsγ,t : γ ∈ Γ) is a realization for the number of patient appointment requests on period

t ∈ T under scenario s ∈ S.

In an MSSP, a policy should be non-anticipative, meaning that the decisions made at

each stage must not be dependent on the future realization of stochastic parameters. There

are two common ways for formulating an MSSP [61]. In the first, an MSSP is formulated as

a sequence of nested two-stage stochastic programs in which non-anticipativity is implicitly

imposed. In the second (used in this paper), a set of non-anticipativity constraints (NAC) is

explicitly modeled.

Figure 4.4 (left-hand side) shows an example of a scenario tree with four stages and
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Figure 4.4: (LHS): An illustration of a scenario tree for the number of appointment request
arrivals of 2 patient classes in a 4-stage MSSP with 4 scenarios where in each node (i, j) shows
the number of appointment request arrivals of patient classes 1 and 2 at each stage t and
scenario s, and (RHS): the corresponding scenario fan with four scenario bundles required
for this 4-stage MSSP. The dashed ovals covering the nodes present NACs.

four scenarios for the CAS problem with two classes. In each scenario node, there is a

realization (|Ds1,t|, |Ds2,t|) where |Ds1,t| and |Ds2,t| are the number of class 1 and 2 appointment

requests that are received on period t ∈ T , respectively. For example, D2
1,3 = {1, 2, 3} and

D2
2,3 = {1, 2} are for the node at stage three and scenario two. Figure 4.4 (right-hand side)

is an alternative representation of the scenario tree, which is called scenario fan, where the

individual scenarios observed in the particular stages are aggregated over all periods to form

four scenarios. However, this scenario fan is not permissible. If we solve the CAS problem for

each of the scenarios, the solution found might not be feasible for the overall problem because

they imply decisions that anticipate future uncertain events. Thus, we need to enforce NACs

to have permissible decisions. The dashed ovals covering the nodes represent NACs. For

example, since all four scenarios have the same realizations at stage 1, they share the same

scenario bundle, and so a NAC is imposed to guarantee that the same surgical and clinical

decisions are made at all nodes in this scenario bundle. This is the same for scenarios 1 and

2 on period t = 1, scenarios 3 and 4 on period t = 2, and scenarios 3 and 4 on period t = 3.

The other notations are given in Table 4.1. Tilda (∼) is used to distinguish decisions x

and y from parameters x̃, ỹ, and z̃. In decisions x and y, the subscript indices are the given

information, and superscript indices show the decisions. For example, in xk,mp,γ,t,s, the given

information is the type γ patient p whose request is received on period t under scenario

s, and then we make the decision about clinic date m and surgeon k. Also, decision ŷ

is similar to decision y except it applies only to arrivals on current period t0, which is

deterministic (hence no dependence on scenario). We use bold notations whenever some

indices of parameters/variables are removed.
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The proposed MS-MIP model for the CAS problem is presented as follows, noting that

the surgery duration dγ,k is assumed to be deterministic in this formulation.

Indices

t, m, n
: Day indices (t is used for the day that an appointment request is received, and
m and n are used for a clinic day and a surgery day, respectively.)

γ : Patient class index, γ = (φ, ν) ∈ Γ (φ is the referral type and ν is the disease indications).
k : Surgeon index, k ∈ K.
p : Patient index, p ∈ Dsγ,t.
s : Scenario index, s ∈ S.

Deterministic and Stochastic Parameters
Uk
m : Total clinical capacity of surgeon k ∈ K on clinic day m ∈ L.
V k
n : Total surgical capacity of surgeon k ∈ K on surgery day n ∈ L.
cγ : Clinic duration of a patient class γ ∈ Γ.
dγ,k : Surgery duration of a patient class γ ∈ Γ performed by surgeon k ∈ K.
Dsγ,t : Set of class γ ∈ Γ patients whose request is received on day t ∈ T under scenario s ∈ S.

D̃γ,t : Set of class γ ∈ Γ patients whose request is already received on day t ∈ U .
πs : Probability of occurrence of scenario s ∈ S.
rγ : Surgery probability of a class γ ∈ Γ patient.

x̃k,mp,γ,t
: Binary parameter equal to 1 if a class γ ∈ Γ patient p whose request was received
on day t ∈ U has clinic visit on day m ∈ T \{t0} with surgeon k ∈ K, and zero otherwise.

z̃kγ,t
: The number of class γ ∈ Γ patients whose request is received on day t ∈ U ∪ {t0}, and has
clinic visit on day t0 with surgeon k ∈ K, and also needs surgery.

ỹk,nγ,t,m
: The number of class γ ∈ Γ patients whose request is received on day t ∈ U , and has
clinic visit on day m ∈ U , and surgery visit on day n ∈ T with surgeon k ∈ K.

Stage Decision Variables

xk,mp,γ,t,s
: Binary variable equal to 1 if a class γ ∈ Γ patient p whose request is received on day t ∈ T
under scenario s ∈ S has clinic visit on day m ∈ L with surgeon k ∈ K, and 0 otherwise.

yk,nγ,t,m,s
: The number of class γ ∈ Γ patients whose requests are received on day t ∈ U ∪ T under
s ∈ S, and have clinic visit on m ∈ T \{t0}, and surgery visit on n ∈ L with surgeon k ∈ K.

ŷk,nγ,t,t0
: The number of class γ ∈ Γ patients whose requests are received on day t ∈ U ∪ {t0}, and
have clinic visit on day t0, and surgery visit on n ∈ L with surgeon k ∈ K.

qkm,s : Clinical overtime of surgeon k ∈ K on the clinic day m ∈ L under s ∈ S.
okn,s : Surgical overtime of surgeon k ∈ K on the surgery day n ∈ L under s ∈ S.

Table 4.1: The description of indices, parameters and decisions of the MS-MIP model for
the CAS problem.

Objective function. The objective (4.1) of the MS-MIP model is to minimize the

expected total clinical and surgical overtimes of all surgeons over the scheduling horizon and

scenarios.

min
∑
s∈S

∑
k∈K

πs

(∑
m∈L

qkm,s +
∑
n∈L

okn,s

)
. (4.1)

Constraints for access delay to clinic appointments. Constraints (4.4)-(4.5) below

guarantee that the clinic visit decision or xk,mp,γ,t,s for each class γ patient whose request is

received on any day t under scenario s should be an available date between the earliest clinic

time ECγ,t = t + WTCγ and the latest clinic time LCγ,t = t + WTSγ − CSGγ (see Figure
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4.2 for the feasible clinic range).

xk,mp,γ,t,s = 0, ∀γ ∈ Γ, t ∈ T , s ∈ S, p ∈ Dsγ,t, k ∈ K,

m ∈
[
t0, t+WTCγ − 1

]
∪
[
t+WTSγ − CSGγ + 1, te

]
. (4.2)

t+WTSγ−CSGγ∑
m=t+WTCγ

∑
k∈K

xk,mp,γ,t,s = 1, ∀γ ∈ Γ, t ∈ T , s ∈ S, p ∈ Dsγ,t. (4.3)

xk,mp,γ,t,s = 0, ∀γ ∈ Γ, t ∈ T , s ∈ S, p ∈ Dsγ,t, k ∈ K,m = t0, · · · , t+WTCγ − 1. (4.4)

t+WTSγ−CSGγ∑
m=t+WTCγ

∑
k∈K

xk,mp,γ,t,s = 1, ∀γ ∈ Γ, t ∈ T , s ∈ S, p ∈ Dsγ,t. (4.5)

xk,mp,γ,t,s = 0, ∀γ ∈ Γ, t ∈ T , s ∈ S, p ∈ Dsγ,t, k ∈ K,m = t+WTSγ − CSGγ + 1, · · · , te.
(4.6)

Constraints for access delay to surgery appointments. Constraints (4.7)-(4.9)

state that the surgery of each patient is performed by the same surgeon who performed the

associated clinic visit, and the surgery visit for each patient should be within a clinically

safe range of days (see Figure 4.2 for the feasible surgery range). More explicitly, the class γ

patients whose requests are received on either day t ∈ U or day t ∈ T , and have clinic visit

on day m ∈ T could have their surgery visit on any day between m+CSGγ and t+WTSγ.

We denote the surgery visit decisions by yk,nγ,t,m,s and ŷk,nγ,t,t0 for patients whose clinic visit is

any day m ∈ T \{t0} and the current day t0, respectively.

rγ

( ∑
p∈D̃γ,t

x̃k,mp,γ,t

)
≤

t+WTSγ∑
n=m+CSGγ

yk,nγ,t,m,s, ∀γ ∈ Γ, t ∈ U ,m ∈ T \{t0}, k ∈ K, s ∈ S. (4.7)

rγ

( ∑
p∈Dsγ,t

xk,mp,γ,t,s

)
≤

t+WTSγ∑
n=m+CSGγ

yk,nγ,t,m,s, ∀γ ∈ Γ, t ∈ T ,m ∈ T \{t0}, k ∈ K, s ∈ S. (4.8)

z̃kγ,t ≤
t+WTSγ∑

n=t0+CSGγ

ŷk,nγ,t,t0 , ∀γ ∈ Γ, t ∈ U ∪ {t0}, k ∈ K. (4.9)

Note that the constraints (4.7) are for the class γ patients D̃γ,t whose request is received

in the previous arrival horizon U (so they are already in the system) and their clinic visits

are denoted by parameter x̃k,mp,γ,t, and their surgery is being made on one day in the current

horizon T . However, the constraints (4.8) are for the class γ patients Dsγ,t whose request is
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received in the current arrival horizon T under scenario s and their clinic visits are denoted

by xk,mp,γ,t,s. In both constraints (4.7) and (4.8), the clinic appointment of patients may happen

on any day over horizon T \{t0}, so their surgery need is specified by a surgery probability

rγ as their clinic visit has not happened yet. The constraints (4.9) are for the patients

denoted by parameter z̃kγ,t whose request is received on any day in horizon U ∪ {t0} (so they

are already in the system), but unlike the constraints (4.7)-(4.8), their clinic visit is on the

current day t0, and hence their surgery need is realized.

Clinical and surgical capacity constraints. Constraints (4.10)-(4.11) below restrict

the amount of clinical and surgical workloads (both regular capacity and overtime) for each

surgeon k ∈ K on each day n ∈ L, respectively, over the scheduling horizon for the CAS

problem.∑
γ∈Γ

cγ

(∑
t∈U

∑
p∈D̃γ,t

x̃k,mp,γ,t +
∑
t∈T

∑
p∈Dsγ,t

xk,mp,γ,t,s

)
≤ Uk

m + qkm,s, ∀m ∈ L, k ∈ K, s ∈ S. (4.10)

∑
γ∈Γ

dγ,k

(∑
t∈U

∑
m∈U

ỹk,nγ,t,m +
∑
t∈T

∑
m∈T \{t0}

yk,nγ,t,m,s +
∑

t∈T ∪{t0}

ŷk,nγ,t,t0

)
≤ V k

n + okn,s, (4.11)

∀n ∈ L, k ∈ K, s ∈ S.

Non-anticipativity constraints. In any given stage over the scheduling horizon, the

decision maker cannot foresee the future outcomes of the total number of appointment re-

quests; therefore, the clinic and surgery decisions must satisfy NACs. This indicates that

these decisions in a given stage t are identical for each pair (s, s′) of scenarios with a common

ancestor node in that stage (see Figure 4.4). If two scenarios s and s′ share the same history

of random parameters ξs and ξs
′

up to stage t, then the decisions made at stage t are the

same among all scenarios placed in the same scenario bundle. Constraints (4.12)-(4.13) are

the corresponding NAC for the CAS problem.

xk,mp,γ,t,s = xk,mp,γ,t,s′ , ∀k ∈ K, γ ∈ Γ,m ∈ L, t ∈ T , p ∈ Dsγ,t, (4.12)

s, s′ ∈ S, (ξst0+1, · · · , ξst ) = (ξs
′

t0+1, · · · , ξs
′

t ).

yk,nγ,t,m,s = yk,nγ,t,m,s′ ,∀k ∈ K, γ ∈ Γ,m ∈ T \{t0}, t ∈ T ∪ U , n ∈ L, (4.13)

s, s′ ∈ S, (ξst0+1, · · · , ξst ) = (ξs
′

t0+1, · · · , ξs
′

t ).

Note that we do not require defining the NACs for the other variables qkm,s and okn,s. The

reason is because these auxiliary decisions are calculated directly from decisions xk,mp,γ,t,s and

yk,nγ,t,m,s by the constraints (4.10)-(4.11), and thereby preserving the non-anticipativity for

them automatically.
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Other constraints. Constraints (4.14)-(4.17) define the binary and non-negativity re-

strictions on the clinic and surgery appointment decisions, and clinical and surgical overtimes,

respectively.

xk,mp,γ,t,s ∈ {0, 1}, ∀k ∈ K,m ∈ L, γ ∈ Γ, t ∈ T , p ∈ Dsγ,t, s ∈ S. (4.14)

yk,nγ,t,m,s ≥ 0, ∀k ∈ K,m ∈ T \{t0}, γ ∈ Γ, t ∈ U ∪ T , n ∈ L, s ∈ S. (4.15)

ŷk,nγ,t,t0 ≥ 0, ∀k ∈ K, n ∈ L, γ ∈ Γ, t ∈ U ∪ {t0}. (4.16)

qkm,s, o
k
n,s ≥ 0, ∀k ∈ K,m, n ∈ L, s ∈ S. (4.17)

Remark (Patient-centered Care). It is worth noting that the proposed MS-MIP model

(4.1)-(4.17) has been developed to be patient-centered by putting hard constraints on access

delay targets, thus guaranteeing full service (i.e., clinic and surgery appointments) within

a predefined priority-based safe interval (see Figure 4.2). It is, however, inevitable to em-

ploy clinical and surgical overtime on some days in order to attain this goal, and the best

scheduling policy is thus the one that achieves such service level with the minimum pos-

sible clinical and surgical overtime. In general, there is a trade-off between access delay

targets and surgeon overtime. The tighter the access targets, the higher the overtime. In

Appendix C, we develop an alternative formulation for the CAS problem, that strikes a

balance between meeting access delay targets and incurring clinical and surgical overtime.

This alternative model allows decision makers to set penalties on violating access targets

and incurring surgeon overtime.

4.3.2 Integrated Multi-stage Stochastic and Distributionally Robust Model

In this section, we extend the MS-MIP model (4.1)-(4.17), by incorporating ambigu-

ous distributional information for surgery duration of each patient class and surgeon pair.

Surgery duration is usually highly variable (see discussions in §4.1); however, there is of-

ten little uncertainty in clinic duration (e.g., in our partner hospitals, the clinic visits are

scheduled in 15-minute time slots). The uncertainty in surgery duration is modeled by using

an ambiguity set that is constructed based on the empirical mean, standard deviation, and

support of the surgery duration. More precisely, besides the Stochasticity Assumption 1,

another important assumption in the IMSDRO is as follows.

Assumption 2 (Ambiguity Assumption). There is ambiguous distributional information about

the surgery duration of each patient class and surgeon pair. The variation in the surgery du-

ration within each patient class and surgeon pair is insignificant. This limited distributional

information includes two stochastic moments (i.e., mean and standard deviation), and the
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support. A moment-based ambiguity set is used to model such uncertainty in the surgery

duration.

From the Assumption 2, the surgery duration vector d = (dγ,k : γ ∈ Γ, k ∈ K) for

different classes and surgeons has an unknown probability distribution P with a polyhedral

support set Θ as follows:

Θ =
{
d ∈ R|Γ|×|K|+ : dLBγ,k ≤ dγ,k ≤ dUBγ,k , ∀γ ∈ Γ, k ∈ K

}
, (4.18)

where dLB and dUB ∈ R|Γ|×|K|+ denote the lower and upper bound vectors for the surgery

duration d, respectively. Such lower and upper bounds can be computed from available

historical data.

Definition 8 (Marginal Moment-based Ambiguity Set). Given a set of |L| observations

of surgery duration d, denoted by {dl}l∈L where dl ∈ R|Γ|×|K|+ , a moment-based ambiguity

set Φ(µ,σ,Θ) is defined for the probability distribution P using the marginal mean vector

µ ∈ R|Γ|×|K|+ and standard deviation vector σ ∈ R|Γ|×|K| of these realizations of surgery

durations as follows:

Φ(µ,σ,Θ) :=
{
P :∫

Θ

dP (d) = 1, (4.19a)

∫
Θ

dγ,k dP (d) = µγ,k, ∀γ ∈ Γ, k ∈ K (4.19b)

∫
Θ

d2
γ,k dP (d) = µ2

γ,k + σ2
γ,k, ∀γ ∈ Γ, k ∈ K

}
. (4.19c)

Φ(µ,σ,Θ) is the set of all plausible surgery distributions that satisfy constraints (4.19a)-

(4.19c). The constraint (4.19a) ensures that this ambiguity set contains only plausible prob-

ability distributions over the polyhedral support set Θ. The constraints (4.19b)-(4.19c) limit

such probability distributions to have marginal first and second distributional moments being

equal to those of the observed surgery durations. This moment-based ambiguity set satisfies

all candidate distributions whose marginal means and standard deviations match µγ,k and

σγ,k, respectively, for each pair of patient class γ ∈ Γ and surgeon k ∈ K.

We are now ready to develop the IMSDRO model for the CAS problem, which is derived

based on both Assumptions 1 and 2. The integrated model combines the MS-MIP model

(4.1)-(4.17) with a DRO approach such that we can handle different types of uncertainty

in one optimization model. We formulate this integrated model as the following min-max
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problem:

ZIMSDRO = min
x,y,ŷ,q

∑
s∈S

πs

{∑
k∈K

∑
m∈L

qkm,s + max
P∈Φ(µ,σ,Θ)

EP
[
fs(ys, ŷ,d)

]}
(4.20a)

s.t. (xs, ys, ŷ, qs) ∈ Rs, ∀s ∈ S (4.20b)

where EP is the expectation taken over the probability distribution P , and the feasible

region Rs is defined by constraints (4.4)-(4.10) and (4.12)-(4.17) for each individual sce-

nario s ∈ S. Given the surgery appointment decisions ys and ŷ, and a realization of ran-

dom variable d, fs(ys, ŷ,d) is defined by
∑

n∈L
∑

k∈Kmax
{

0,
∑
γ∈Γ

dγ,k

( ∑
t∈U

∑
m∈T \{t0}

ỹk,nγ,t,m +∑
t∈T

∑
m∈T \{t0}

yk,nγ,t,m,s +
∑

t∈T ∪{t0}
ŷk,nγ,t,t0

)
− V k

n

}
.

Intuitively, fs(ys, ŷ,d) is the cumulative surgical overtimes of all surgeons over the

scheduling horizon. The objective function of the IMSDRO model (4.20a)-(4.20b) then

implies that we are making the clinic and surgery appointment decisions, and clinical and

surgical overtimes decisions so as to minimize the expected clinical overtimes plus the worst-

case expected surgical overtimes of all surgeons over the set of plausible surgery duration

distributions P ∈ Φ(µ,σ,Θ). The distributionally robust part seeks the worst-case distri-

bution P of d for which EP
[
fs(ys, ŷ,d)

]
is maximized.

Our next step is to reformulate the min-max IMSDRO model (4.20a)-(4.20b) into a

tractable reformulation using the moment-based ambiguity set Φ(µ,σ,Θ). To this aim, we

first analyze the inner maximization problem in the IMSDRO model (4.20a)-(4.20b). For

any fixed surgical decisions ys and ŷ, and the uncertain realization vector d, we consider

the following moment problem:

max
P∈Φ(µ,σ,Θ)

EP
[
fs(ys, ŷ,d)

]
. (4.21)

The decision variable in the moment problem (4.21) is the probability measure P in the

ambiguity set Φ(µ,σ,Θ). To analyze this problem, we first expand this moment problem,

which helps convert the min-max IMSDRO model (4.20a)-(4.20b) into an equivalent single-

level minimization problem.

Remark. The min-max IMSDRO model (4.20a)-(4.20b) with the moment problem (4.21)

has a special structure, which is useful for many operational problems in which fs(ys, ŷ,d)

has the form of cumulative maximization values. So, our methodologies can be used for a

broad range of settings.
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Proposition 11 (Reformulation of the min-max IMSDRO Model). Under the moment-based

ambiguity set Φ(µ,σ,Θ) for the probability distribution P of the surgery duration charac-

terized by the constraints (4.19a)-(4.19c), the “min-max” IMSDRO model (4.20a)-(4.20b)

can be reformulated as the following equivalent “minimization” problem,

ZIMSDRO = min
x,y,ŷ,q,δ,α,β

∑
s∈S

πs

{∑
k∈K

(∑
m∈L

qkm,s +
∑
γ∈Γ

(
µγ,k α

k
γ,s + (µ2

γ,k + σ2
γ,k) β

k
γ,s

))
+ δs

}
(4.22a)

s.t. δs ≥ max
d∈Θ

{
fs(ys, ŷ,d)−

∑
γ∈Γ

∑
k∈K

dγ,k α
k
γ,s −

∑
γ∈Γ

∑
k∈K

d2
γ,k β

k
γ,s

}
, ∀s ∈ S

(4.22b)

(xs, ys, ŷ, qs) ∈ Rs, ∀s ∈ S (4.22c)

δs ∈ R, αs, βs ∈ R|Γ|×|K|, ∀s ∈ S, (4.22d)

where δs ∈ R, and αs,βs ∈ R|Γ|×|K| are dual variables for constraints (4.19a)-(4.19c), respec-

tively.

Structural properties. The proof of Proposition 11 is provided in Appendix A.1. The

reformulation (4.22a)-(4.22d) of the IMSDRO model obtained in Proposition 11 is still non-

linear due to the maximization expression on the right-hand side of the constraint (4.22b).

To obtain a tractable reformulation, we first attain a characterization of the overtime func-

tion fs(ys, ŷ,d) by converting it into an equivalent minimization linear program (LP) with

the help of the surgical overtime definition for each surgeon (see the LP (4.34a)-(4.34c) in

the proof of Proposition 12 in Appendix A.2). We formulate its dual problem in order to

merge it with the maximization over d ∈ Θ in the constraint (4.22b), and then reformulate

the resulting problem based on the special structural properties, including (i) the surgery

duration d has a polyhedron-shaped support Θ, and (ii) the dual variables for the fs(ys, ŷ,d)

problem is bounded below and above by zero and one.

Proposition 12 (Reformulation of surgical overtime function). For any fixed and feasible

value of ys, ŷ, αs, βs, xs, and qs vectors and δs under scenario s ∈ S in the minimization

problem (4.22a)-(4.22d), the value of the maximization problem on the right hand side of

constraint (4.22b), i.e., Ψs(ys, ŷ,αs,βs) = maxd∈Θ

{
fs(ys, ŷ,d) −

∑
γ∈Γ

∑
k∈K dγ,kα

k
γ,s −
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∑
γ∈Γ

∑
k∈K d

2
γ,kβ

k
γ,s

}
, is equivalent to the following problem under each scenario s ∈ S:

Ψs(ys, ŷ,αs,βs) = max
λs∈Λs

∑
γ∈Γ

∑
k∈K

{
max

dLBγ,k ≤ dγ,k ≤ d
UB
γ,k

(∑
n∈L

{∑
t∈U

∑
m∈T \{t0}

ỹk,nγ,t,m+ (4.23)

∑
t∈T

∑
m∈T \{t0}

yk,nγ,t,m,s +
∑

t∈T ∪{t0}

ŷk,nγ,t,t0

}
· λkn,s dγ,k − αkγ,s dγ,k − βkγ,s d2

γ,k

)
−
∑
n∈L

V k
n λ

k
n,s

}
,

where feasible region Λs is a polyhedron given by Λs = {λs ∈ R|K|×|L| : 0 ≤ λkn,s ≤ 1,∀k ∈
K, n ∈ L} for each scenario s ∈ S, and λkn,s is the dual variable associated with surgical

overtime constraints.

The proof of Proposition 12 is provided in Appendix A.2.

Discrete approximations. We next analyze the inner-maximization problem (4.24)

embedded in Ψs(ys, ŷ,αs,βs) for each pair of class γ ∈ Γ and surgeon k ∈ K and compute

its optimal solution based on the structure of the polyhedron-shaped support Θ defined by

the set (4.18):

max
dLBγ,k ≤ dγ,k ≤ d

UB
γ,k

(∑
n∈L

{∑
t∈U

∑
m∈T \{t0}

ỹk,nγ,t,m +
∑
t∈T

∑
m∈T \{t0}

yk,nγ,t,m,s (4.24)

+
∑

t∈T ∪{t0}

ŷk,nγ,t,t0

}
· λkn,s dγ,k − αkγ,s dγ,k − βkγ,s d2

γ,k

)
.

The inner-maximization problem (4.24) is a concave quadratic program. However, find-

ing a closed-form solution for this problem over dγ,k is not trivial because the optimal

value of dγ,k depends on its coefficients in the inner-maximization problem (4.24) (which

are themselves variables in the problem (4.23)). Even if the closed-form optimal solution

for dγ,k is incorporated into the objective function (4.23), it becomes non-linear because we

obtain a quadratic expression in λkn,s. To overcome this issue, we approximate the inner-

maximization problem (4.24) using a piece-wise linear function with equal length pieces.

This is a common technique in optimization [163]. We define a set of H + 1 segment points

Υγ,k = {d̃γ,k(i)}Hi=0 for the surgery duration of each patient class γ ∈ Γ and surgeon k ∈ K
pair, where d̃γ,k(i) = (1− i

H
) dLBγ,k + ( i

H
) dUBγ,k , i ∈ {0, · · · , H} is the ith segment point in the

set Υγ,k for each patient class γ ∈ Γ and surgeon k ∈ K pair.

The inner-maximization problem (4.24) then reduces to the following approximation

problem of finding the maximum over H + 1 different quantities for each (γ, k) pair under
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each scenario s:

max
i=0,··· ,H

{(∑
n∈L

{∑
t∈U

∑
m∈T \{t0}

ỹk,nγ,t,mλ
k
n,s +

∑
t∈T

∑
m∈T \{t0}

yk,nγ,t,m,sλ
k
n,s (4.25)

+
∑

t∈T ∪{t0}

ŷk,nγ,t,t0λ
k
n,s

})
d̃γ,k(i)− αkγ,s d̃γ,k(i)− βkγ,s d̃γ,k(i)2

}
.

Note that choosing a large number of segment points for each (γ, k) pair models the

support of the surgery duration distribution more precisely, thereby increasing the precision

of the estimation made by the approximation problem (4.25) for the inner-maximization

problem (4.24); however, this comes at the cost of more computational time. In §4.6.4, we

investigate how different choices of segment points affect the solution quality and computa-

tional time. We demonstrate that our approach results in a more accurate objective function

approximation as the number of segment points increases while computational time grows

slower than linearly.

If we insert the approximation problem (4.25) into the optimization problem (4.23)

derived in Proposition 12 under each scenario s ∈ S, it yields an approximation called

Ψ̃s(ys, ŷ,αs,βs) for the problem (4.23). In Theorem IV.1, we find an equivalent mixed-

integer linear program for the approximation problem Ψ̃s(ys, ŷ,αs,βs) by leveraging McCormick-

type constraints [125].

Theorem IV.1 (Scenario cut-generating problem). Under each scenario s ∈ S, the op-

timization problem (4.23) is approximated by the following mixed-integer linear program

(MILP):

Ψ̃s(ys, ŷ,αs,βs) = max
τ ,η,λ

χs(ys, ŷ,αs,βs; τs,ηs,λs) (4.26a)

s.t.
H∑
i=0

ηkγ,i = 1, ∀γ ∈ Γ, k ∈ K (4.26b)

τ kn,s,γ,i − λkn,s − ηkγ,i ≥ −1, ∀γ ∈ Γ, k ∈ K, n ∈ L, i = 0, · · · , H (4.26c)

τ kn,s,γ,i − λkn,s ≤ 0, ∀γ ∈ Γ, k ∈ K, n ∈ L, i = 0, · · · , H (4.26d)

τ kn,s,γ,i − ηkγ,i ≤ 0, ∀γ ∈ Γ, k ∈ K, n ∈ L, i = 0, · · · , H (4.26e)

τ kn,s,γ,i ≥ 0, ηkγ,i ∈ {0, 1}, 0 ≤ λkn,s ≤ 1, ∀γ ∈ Γ, k ∈ K, n ∈ L, i = 0, · · · , H (4.26f)

where the objective function χs(ys, ŷ,αs,βs; τs,ηs,λs) is defined for each scenario s ∈ S as
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follows:

∑
γ∈Γ

∑
k∈K

H∑
i=0

{∑
n∈L

(∑
t∈U

∑
m∈T \{t0}

ỹk,nγ,t,m +
∑
t∈T

∑
m∈T \{t0}

yk,nγ,t,m,s +
∑

t∈T ∪{t0}

ŷk,nγ,t,t0

)
d̃γ,k(i) τ

k
n,s,γ,i

(4.27)

− αkγ,s d̃γ,k(i) ηkγ,i − βkγ,s d̃γ,k(i)2 ηkγ,i

}
−
∑
k∈K

∑
n∈L

V k
n λkn,s.

The proof of Theorem IV.1 is provided in Appendix A.3. The important implication of

Theorem IV.1 is that it prevents having an embedded MILP model on the right-hand side

of the constraints (4.22b) by recognizing which scenario cuts must be added to replace the

nonlinear constraints (4.22b). Using the results of Theorem IV.1, we can approximate the

IMSDRO model (4.22a)-(4.22d) as follows:

Z̃IMSDRO = min
x,y,ŷ,q,δ,α,β

∑
s∈S

πs

{∑
k∈K

(∑
m∈L

qkm,s +
∑
γ∈Γ

(
µγ,k α

k
γ,s + (µ2

γ,k + σ2
γ,k) β

k
γ,s

))
+ δs

}
(4.28a)

s.t. δs ≥ Ψ̃s(ys, ŷ,αs,βs), ∀s ∈ S (4.28b)

(xs, ys, ŷ, qs) ∈ Rs, ∀s ∈ S (4.28c)

δs ∈ R, αs, βs ∈ R|Γ|×|K|, ∀s ∈ S. (4.28d)

Remark. The minimization problem (4.28a)-(4.28d) is an approximation of the IMS-

DRO model (4.22a)-(4.22d). We shall call it the IMSDRO-APRX model. Although IMSDRO-

APRX model (4.28a)-(4.28d) has a linear objective function with continuous and binary

variables, due to the right-hand side of constraints (4.28b), which includes an embedded

optimization problem (4.26a)-(4.26f), this model is not an MILP that is solvable by off-the-

shelf MILP solvers (such as Gurobi and Cplex). In §4.4, we develop a constraint generation

algorithm, which is based on iteratively generating constraints (4.28b) for each individual

scenario s ∈ S, as needed, to efficiently solve the IMSDRO-APRX model.

4.4 Constraint Generation Algorithm

In this section, we describe a new constraint generation algorithm for solving the IMSDRO-

APRX model, which exploits the structure of the embedded MILP Ψ̃s(ys, ŷ,αs,βs) to gen-

erate effective scenario cuts. The main idea of this algorithm is explained as follows. The
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algorithm starts by solving the IMSDRO-APRX model without having any of the constraints

(4.28b). At each iteration, the algorithm solves a relaxed master problem (RMP) to obtain

a solution (xs,ys, ŷ, qs, δs,αs,βs). Given this solution, it then solves what we call the sce-

nario cut-generating problem Ψ̃s(ys, ŷ,αs,βs) or (4.26a)-(4.26f). If ŷ,ys,αs, and βs do

not satisfy δs ≥ Ψ̃s(ys, ŷ,αs,βs), the scenario cut-generating problem returns scenario

cuts in the form of (4.29b) back to RMP and the algorithm proceeds to next iteration. If

(xs,ys, ŷ, qs, δs,αs,βs) is optimal, the algorithm then terminates. The RMP at the Rth

iteration is formulated as follows,

Z̃RMP = min
x,y,ŷ,q,δ,α,β

∑
s∈S

πs

{∑
k∈K

(∑
m∈L

qkm,s +
∑
γ∈Γ

(
µγ,k α

k
γ,s + (µ2

γ,k + σ2
γ,k) β

k
γ,s

))
+ δs

}
(4.29a)

s.t. δs ≥ χs(ys, ŷ,αs,βs; τ
(r)
s ,η(r)

s ,λ(r)
s ), ∀s ∈ S, r = 1, · · · , R− 1 (4.29b)

(xs, ys, ŷ, qs) ∈ Rs, ∀s ∈ S (4.29c)

δs ∈ R, αs, βs ∈ R|Γ|×|K|, ∀s ∈ S, (4.29d)

where the superscript r is used to denote all the iterations up to the current itera-

tion R, and the solution of the scenario cut-generating problem (4.26a)-(4.26f) at the rth

iteration is denoted by (τ (r)
s ,η(r)

s ,λ(r)
s ) for each scenario s ∈ S. The linear function

χs(ys, ŷ,αs,βs; τ
(r)
s ,η(r)

s ,λ(r)
s ) in the constraints (4.29b) is represented by the expression

(4.27) with (τs,ηs,λs) = (τ (r)
s ,η(r)

s ,λ(r)
s ) for each scenario s ∈ S. These scenario cuts are

iteratively derived by passing the current solution (x(R)
s ,y(R)

s , ŷ(R), q(R)
s , δ

(R)
s ,α(R)

s ,β(R)
s ) of

the RMP to the scenario cut-generating problem, and checking whether it satisfies (4.28b).

If not, we add the corresponding scenario cut to the RMP for each scenario s. The details

of the constraint generation algorithm are presented in Algorithm 4.

Our algorithm is similar to the L-shaped decomposition methods [32], where a large-scale

stochastic model is solved by decomposing it into a master problem and sub-problems, and

feasibility and optimality cuts are added once needed. The difference is our algorithm can

be viewed as a row generation algorithm, because new constraints are added throughout a

scenario cut-generating MILP. Note that the total number of scenario cuts that are being

passed back to the RMP at each iteration is not necessarily equal to the total number of

scenarios. Indeed, for only violated scenarios, Algorithm 4 passes back their correspond-

ing scenario cuts to the RMP. In §4.6.4, we compare multi-cut and single-cut versions of

Algorithm 4 for the CAS problem.

Theorem IV.2. The constraint generation Algorithm 4 converges to an optimal scheduling
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Algorithm 4 Constraint Generation Algorithm for Solving the IMSDRO-APRX Model

1: Initialize iteration number R = 0, a positive tolerance ε, and also set the scenario
parameters Terminate(s)← true for each scenario s ∈ S.

2: Step I: Solve the Relaxed Master Problem (RMP).
3: while (∃ at least one Terminate(s)← true for a scenario s ∈ S) do
4: Set R← R + 1, and Terminate(s)← false for each scenario s ∈ S.

5: Solve the RMP to get optimal solution (x(R)
s ,y(R)

s , ŷ(R), q(R)
s , δ

(R)
s ,α(R)

s ,β(R)
s ) for all

s ∈ S.
6: Step II: Cut-Generating Subroutine.
7: for each scenario s ∈ S do
8: Solve the scenario cut-generating problem Ψ̃s(y

(R)
s , ŷ(R),α(R)

s ,β(R)
s ).

9: Obtain the optimal solution (τ (R)
s , η(R)

s , λ(R)
s ).

10: Step III: Add Scenario Cuts to the RMP.
11: if δ

(R)
s < (1− ε) χs(y(R)

s , ŷ(R),α(R)
s ,β(R)

s ; τ (R)
s , η(R)

s , λ(R)
s ) then

12: Add a scenario cut δs ≥ χs(ys, ŷ,αs,βs; τs,ηs,λs) to the RMP for scenario
s ∈ S.

13: Set Terminate(s)← true for scenario s ∈ S.

14: Step IV: Return the optimal policy.
15: Return (x(R)

s ,y(R)
s , ŷ(R), q(R)

s , δ
(R)
s ,α(R)

s ,β(R)
s ) for each s ∈ S as the optimal policy.

policy for the IMSDRO-APRX model in a finite number of iterations.

The proof of Theorem IV.2 is provided in Appendix A.4.

4.5 Data-Driven Rolling Horizon Procedure

In general, the scheduling policy obtained from solving the IMSDRO-APRX model is not

readily implementable for the real-world CAS problems because it is scenario dependent and

does not allow for information gained over time to be used. Indeed, the critical limitation of

scenario-based stochastic programs is that their optimal policy is only valid for a limited set

of scenarios. To resolve this issue, we develop a new data-driven Rolling Horizon Procedure

(RHP) to (i) make the scheduling policy implementable in practice, and (ii) evaluate the

optimal scheduling policy empirically. In other words, it allows practitioners to make use

of the latest data that is revealed as time progresses, and adjust their decisions in a rolling

horizon framework. By using this data-driven RHP, we dynamically observe the realization of

the uncertain parameters in one period and update the scenario tree for the following periods.

The main goal is to evaluate the outcomes of implementing the optimal clinical/surgical

decisions over a scheduling horizon on a rolling basis.

In our proposed data-driven RHP, one sample path, denoted by ω, is drawn from the

historical data (see §4.6). This sample path includes the realized number of patient appoint-
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Figure 4.5: The illustration of the data-driven rolling horizon procedure for solving the
IMSDR-APRX model with an arrival horizon of T = {t0, · · · , tb} on every stage (day) for
the CRS problem.

ment requests, the realized patients’ surgery need, and the realized surgery durations over

an arrival horizon of T = |T | periods (days). For implementation of a scheduling policy in

the current period t0 ∈ T , given a scenario tree for the number of appointment requests over

periods t0 + 1, · · · , t0 + T − 1 and an ambiguity set for the surgery duration, we solve the

T -stage IMSDRO-APRX model with an arrival horizon of T periods in which the uncertain

parameters for period t0 are known based on the realized path ω. We then implement the

obtained optimal policy only for the current period t0 and update the number of patients

who need clinic and surgery appointments over t0 + 1, · · · , t0 + T − 1 periods, as well as the

remaining clinical and surgical capacities. We repeat this procedure, and “roll the patient

arrival horizon forward one day” by adding a new period to the calendar at every step, so

that at the following period t0 + 1, the arrival horizon includes period t0 + 2 to period t0 +T .

Note that the length of the arrival horizon is always T periods (see Figure 4.5). By drawing

enough realized sample paths, we can estimate the average clinical and surgical overtimes of

surgeons over all sample paths, and compare this objective function obtained by the data-

driven RHP with the IMSDRO-APRX model’s objective function value (with no rolling)

(see §4.6.2). The data-driven RHP provides a framework that makes the decisions made by

the IMSDRO approach implementable in practice.

The details of the data-driven RHP are presented in Algorithm 5. Here, IMSDRO-

APRX(i,ω) represents the problem in which the first period of the arrival horizon is day i,

and its data is based on the sample path ω on the realization of arrival number (Dγ,i(ω)),
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Algorithm 5 Data-driven Rolling Horizon Procedure for the IMSDRO-APRX Model

1: Step I: Initialization. Consider a sample path ω for realized number of appointment
requests (Dγ,i(ω)), realizations of surgery duration (dγ,k(ω)), and the realized surgery
requests (z̃kγ,i(ω)) for periods i ∈ T = {t0, · · · , tb}, and start at the beginning of arrival
horizon (i.e., period i = t0).

2: Step II: Solve the IMSDRO-APRX model for each period i.
3: for each arrival period i ∈ T = {t0, · · · , tb} do
4: Consider a scenario tree with |T | − 1 time periods.
5: Solve IMSDRO-APRX(i,ω) beginning with period i and parameters Dγ,i(ω) and
z̃kγ,i(ω).

6: Given the following implementable decisions in period i for sample path ω,

xk,mp,γ,i(ω), where k ∈ K, γ ∈ Γ,m ∈ L, p ∈ Dγ,i(ω), and i is an arrival day,

x̃k,ip,γ,t, where k ∈ K, γ ∈ Γ, t ∈ U , p ∈ D̃γ,t, and i is a clinic day,

ŷk,nγ,t,i(ω), where k ∈ K, γ ∈ Γ, t ∈ U ∪ {i}, and n ∈ L, and i is a clinic day

ỹk,iγ,t,m, where k ∈ K, γ ∈ Γ, t ∈ U ,m ∈ U , and i is a surgery day,

calculate clinic and surgery overtimes (qki (ω), oki (ω)) in period i for each k ∈ K asfollows:

qki (ω) =

(∑
γ∈Γ

(∑
t∈U

∑
p∈D̃γ,t

cγ · x̃k,ip,γ,t +
∑
t∈T

∑
p∈Dsγ,t

cγ · xk,ip,γ,i(ω)
)
− Uk

i

)+

oki (ω) =

(∑
γ∈Γ

(∑
t∈U

∑
m∈T \{i}

dγ,k(ω) · ỹk,iγ,t,m +
∑

t∈U∪{i}

dγ,k(ω) · ŷk,iγ,t,i(ω)
)
− V k

i

)+

.

7: Update the horizons U , T , and L, and the following parameters for the next period
i+ 1:

x̃k,m−1
p,γ,t−1 ← x̃k,mp,γ,t, for t < i, m > i.

x̃k,m−1
p,γ,t−1 ← xk,mp,γ,t(ω), for t = i, m > i.

ỹk,n−1
γ,t−1,m−1 ← ŷk,nγ,t,i(ω), for t < i, m = i, n > i.

ỹk,n−1
γ,t−1,m−1 ← ỹk,nγ,t,m, for t < i, m ≤ i, n > i.

8: Step III: Calculate the objective function for the sample path ω.

Q(ω) =

tb∑
i=t0

Qi(ω), where Qi(ω) =
∑
k∈K

(
qki (ω) + oki (ω)

)
.
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surgery needs (z̃kγ,i(ω)) for i ∈ T = {t0, · · · , tb}, and surgery durations (dγ,k(ω)) for each

patient class and surgeon. This sample path provides the related data for the new arrival

horizon T . Note that the next period, i + 1, becomes the first period after rolling forward

one period, and the constraint generation Algorithm 4 is used to solve IMSDRO-APRX(i,ω)

again. After the T -stage IMSDRO-APRX(i,ω) model is solved, an i-th stage decision is

implemented and new information is obtained, we roll forward (i.e., shift the time window)

to solve another T -stage IMSDRO-APRX model with the uncertainty determined by the

implemented i-th stage decision and by an observation of sample path ω only for i-th stage.

It is worth noting that the scenario tree that is considered in step 4 can be updated at each

iteration i using the scenario generation and reduction algorithm illustrated in Appendix B,

to capture any possible seasonality or trend in the data.

4.6 Case Study: Empirical Results and Managerial Insights

We populate our models and algorithms with appointment scheduling data from a highly

specialized surgical clinic of a partner hospital. We provide numerical results to evaluate the

performance of our models and algorithms compared to current practice of the surgical clinic.

Our models and algorithms can be applied to similar settings in destination medical centers

or typical hospitals to coordinate clinic and surgery visits given predefined priority-based

access delay targets.

4.6.1 Experiment Setup

Appointment requests are received throughout the day either from other units within the

same or nearby hospitals or from remote healthcare facilities. Each patient request asks for

a clinic consultation appointment with one of the surgeons. Some patients may require a

surgical procedure; this is determined during the patient’s clinic consultation appointment.

Appointment request forms include information on (i) the referral type, i.e., either local or

remote referral, and (ii) the indication of disease, which can be one of the 12 possible medical

conditions.

The surgical clinic is currently scheduling appointment requests with the surgeon who has

the earliest clinic consultation availability. However, this policy has resulted in long wait time

to surgery, which is particularly troubling for patients with acute conditions. Furthermore,

it has been observed that some surgeons end their surgical day early on some days and very

late on other days. Our models are designed to guarantee that all patients will be offered a

clinic consultation and a surgical appointment (if needed) within a time window that is safe

for them to wait. Our models minimize the clinical and surgical overtime incurred to provide
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such access service level considering the uncertainty in request arrival and surgery duration

and reduce the surgeon’s end of day variability by leveraging our IMSDRO approach.

We consider five patient priority classes/types; class 1 includes the most acute and urgent

conditions, whereas class 5 is assigned to patients who only need a clinic appointment for

follow-up/consult or those who do not need a surgery in the near future. Each priority

class corresponds to a maximum wait time to surgery WTSγ, except class 5 that does not

require a surgery. Clinic to surgery gap CSGγ is another parameter that depends on patient

priority class. The minimum wait time for clinic visits (WTCγ), however, depends only on

the referral type. For local referrals (i.e., the patient is physically at the hospital or in the

same region), WTCγ is zero, whereas for remote referrals, we assume WTCγ is five business

days from the day the request is received to give the patients at least one week to make

travel arrangements. Table 4.2 shows WTCγ, CSGγ and WTSγ values in days for different

patient priority classes/types.

Class WTC CSG WTS

1 0 or 5 0 5
2 0 or 5 1 7
3 0 or 5 2 10
4 0 or 5 3 18
5 0 or 5 NA NA

Table 4.2: The values of Wait Time to Clinic (WTC), Clinic to Surgery Gap (CSG), and
Wait Time to Surgery (WTS) in terms of number of days from our partner surgical hospital.

The probability of requiring a surgery procedure depends on the patient class. The

surgical clinic under study performs about 400 surgeries per month. This corresponds to

a rate of about 60 appointment requests per business day. Each clinic appointment takes

15 minutes in length; in other words, clinic days are divided into 15-minute time slots and

each consultation appointment takes one slot. The surgical clinic has eight surgeons (i.e.,

|K| = 8). These 8 surgeons are divided into two teams taking alternating turns between

the clinic and the operating room (OR) from one day to another (i.e., on a given day, four

surgeons are seeing patients in the clinic and four surgeons are performing surgeries in the

OR). Therefore, each surgeon separately maintains both a clinical and a surgical calendar.

The specialized surgical unit we model in our case study does have access to dedicated ORs

as well as to a number of swing ORs that they can use, if needed. Thus, operating room

capacity can be flexible, if needed.

Surgery duration dγ,k depends on both patient class and the specific surgeon who performs

the operation. Recall that patient class γ is a tuple of two elements: referral type and

indication of disease. We assume surgery duration is independent of referral type but depends
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on the indication of disease. Therefore, given 8 surgeons and 12 disease indications, we

consider 96 indication-surgeon pairs to define surgery duration. For each indication-surgeon

combination, we employ the empirical surgery mean, standard deviation and support of past

surgeries to construct the ambiguity sets for surgery duration. Appendix B elaborates on

our approach for both generating the ambiguity set for the surgery duration and the scenario

tree for the number of patient referrals. All algorithms are coded in Python 2.7.10 and the

models are solved using Gurobi 5.6.3. The computations are performed on a Windows 7

machine with Core i7-2600M CPU at 3.40 GHz with 16 GB of memory.

4.6.2 Assessing the Performance of Different Scheduling Policies

We evaluate our stochastic-robust policy against four benchmark policies in terms of

clinical and surgical overtimes (i.e., objective function) as well as clinical and surgical access

times using the RHP proposed in §4.5. These four policies are summarized below.

• Stochastic-robust policy. This policy is obtained by solving the IMSDRO-APRX

model (4.28a)-(4.28d), in which the uncertainty in the surgery duration is modeled

by an ambiguity set, and the uncertainty in the number of appointment requests is

modeled by a scenario tree.

• Stochastic policy. This policy is obtained by solving the MS-MIP model (4.1)-

(4.17), in which the uncertainty in the number of appointment requests is modeled by

a scenario tree, and the surgery durations are set to their empirical mean values.

• Deterministic policy. This scheduling policy is obtained by solving the deterministic

version of the MS-MIP model (4.1)-(4.17), in which both surgery durations and the

number of appointment requests are set to their empirical mean values.

• Current policy. This heuristic policy mimics the current/existing policy used by the

surgical clinic. As discussed above, for each appointment request, this policy suggests

the surgeon with the earliest clinic appointment availability. On the clinic appointment

date, if the patient requires a surgery, it offers the earliest surgical appointment with

the same surgeon.

The only stochastic element of the deterministic policy is the Bernoulli random variable

governing whether the clinic visit reveals that a surgery is needed. Compared to this policy,

the Poisson arrival process is added in the stochastic policy using a scenario tree. The

stochastic-robust policy is the most realistic policy, building on the stochastic policy to

incorporate the ambiguity set of surgery duration. To further evaluate our results, we deploy
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two other instances A and B of the CAS problem in addition to our case study (base case).

The differences between the case study and these instances are (i) the number of surgeons

is 4 (instance A) and 10 (instance B) as opposed to 8 (case study), and (ii) the number of

scenarios for arrival is 20 (instance A) and 10 (instance B) as opposed to 14 (case study).

Other parameters of test instances A and B are similar to the case study.

Evaluation of Objective Function Values (Overtime). For this analysis, 60 sample

paths of a length 5 working weekdays for the arrival horizon are randomly drawn that include

the realized (i) number of patient appointment referrals, (ii) surgery needs, and (iii) surgery

durations. For each sample path, the RHP (Algorithm 5) is deployed to implement the

above policies that are obtained by solving the IMSDRO-APRX, MS-MIP and deterministic

models. We consider a 5-day arrival horizon and roll the horizon forward to cover 5 days.

Finally, we calculate the mean (Z̃) and standard deviation (σ̃) of the objective functions

(clinical and surgical overtimes) over all sample paths as the output of the data-driven RHP

to assess the policies. Note that we start our analyses with long-run average system state

and further use a 10-day burn-in period so that our results and findings are not affected by

the initial system status.

The empirical results for our case study (base case) as well as test instances A and

B are reported in Table 4.3. The optimal objective values (Z∗) are calculated by solving

the IMSDRO-APRX, MS-MIP and deterministic models (without using the RHP). The

maximum (Z̃max) and the mean (Z̃) objective value and the standard deviations (σ̃) are the

maximum, the mean and the standard deviation, respectively, of the true objective function

values obtained by using the data-driven RHP on the 60 sample paths described above. The

out-of-sample stability error is calculated as follows:

Out-of-sample Stability Error =
|Mean objective value (Z̃)− Optimal objective value (Z∗)|

Optimal objective value (Z∗)
.

We do not include the current policy in this analysis. This is because the current policy

does not incorporate the access target constraints in its decision, and there is no optimal

objective value for this policy. We do, however, incorporate it in the clinical and surgical

access times analyses below.

As reported in Table 4.3, the optimal objective function value of the stochastic-robust

policy is slightly larger (2.9% more overtime) than the stochastic policy. This is because the

stochastic-robust policy adds significant uncertainty to the surgery duration by considering

a whole range of possibilities for the probability distribution of the surgery duration and

optimizes the worst-case performance as opposed to the stochastic policy that only considers

the surgery duration mean and optimizes the mean performance. Also, the deterministic
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Statistics
Stochastic-Robust

Policy
Stochastic

Policy
Deterministic

Policy

The case study:
Optimal objective value (Z∗) 4,451 4,325 4,311

Mean objective value (Z̃) 4,317 4,525 4,788

Max objective value (Z̃max) 5,285 5,389 5,528
Standard deviation (σ̃) 378 416 445
Out-of-sample error 3.10% 4.42% 9.96%
Test instance A:
Optimal objective value (Z∗) 6,375 6,211 6,125

Mean objective value (Z̃) 6,254 6,348 6,633

Max objective value (Z̃max) 6,835 6,992 7,025
Standard deviation (σ̃) 656 712 695
Out-of-sample error 1.93% 2.16% 7.66%
Test instance B:
Optimal objective value (Z∗) 2,274 2,175 2,165

Mean objective value (Z̃) 2,199 2,257 2,379

Max objective value (Z̃max) 2,868 2,912 3,012
Standard deviation (σ̃) 295 318 342
Out-of-sample error 2.99% 3.63% 9.00%

Table 4.3: The out-of-sample stability analysis of the stochastic-robust, stochastic, and
deterministic policies in terms of objective function in the case study, and test instances A
and B without and with the RHP Algorithm 5. Numbers are the total clinical and surgical
overtime aggregated over all 8 surgeons and the 5-day horizon.
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policy has the smallest optimal objective function value, because it optimizes for a single

scenario in which the number of patient referrals and surgery durations are both set to their

empirical means.

However, when we simulate and exploit these scheduling polices for the 60 sample paths,

we observe from Table 4.3 that the stochastic-robust policy yields both the smallest mean

objective function value (i.e. the lowest surgeon mean overtime) and the smallest variability

around the overtime (i.e. the lowest standard deviation) relative to the stochastic and

deterministic policies. In particular, the mean objective function value (i.e., overtime) of

the stochastic-robust policy is 4.6% and 9.8% less than the stochastic and deterministic

policies, respectively. This observation illustrates that even though the stochastic-robust

policy hedges against the worst-case and makes more conservative decision strategies, the

worst-case situation may not necessarily occur for all possible surgeries in practice. This

can subsequently leads to a smaller overtime mean and variability for the stochastic-robust

policy relative to the other policies. Limiting the variability is of paramount importance

in healthcare appointment scheduling as having consistent performance allows the surgical

clinic to better plan for and manage their resources. On the other hand, the stochastic

policy makes scheduling decisions based on the surgery duration mean scenario; therefore,

it results in a more compact schedule compared to the stochastic-robust policy. However,

the surgery duration mean scenario does not necessarily happen for all possible surgeries in

practice, which subsequently leads to more overtime relative to the stochastic-robust policy.

The deterministic policy has the poorest performance with respect to both mean objective

value and variability. This is because it deploys a policy that was optimized for only one

single scenario of patient arrival mean and surgery duration mean, for many sample paths.

Results are similar for the test instances A and B.

Moreover, the out-of-sample stability [96] guarantees that the mean objective function

value Z̃ obtained from implementing the optimal scheduling policy by using the data-driven

RHP is approximately the same as the optimal objective value Z∗ of the stochastic models.

As reported in Table 4.3, the stochastic-robust policy has the smallest out-of-sample stability

error (3.10%) compared to the stochastic policy (4.42%) and the deterministic policy (9.96%)

in the case study and similarly in the two test instances A and B. The small difference

between the mean objective function value and the optimal objective value further confirms

the validity and reliability of the IMSDRO-APRX model as a reasonable approximation

method.

To further assess the stochastic-robust, stochastic, and deterministic policies, we imple-

ment the RHP for the described policies by solving the models with a 5-day arrival horizon

and roll the horizon forward to cover 10 days. Note that our approach is not limited to
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Figure 4.6: The comparison of the stochastic-robust, stochastic, and deterministic policies
over 10 business days implemented by the RHP in terms of mean, 25%-QT and 75%-QT
cumulative overtimes for the case study.

a 10-day roll-out window and one may continue rolling the horizon forward for as long as

needed. We use this roll-out window for demonstration only. Figure 4.6 graphs the cumu-

lative clinic and surgery overtime of these policies (aggregated over all 8 surgeons) over 10

business days for the case study. From Figure 4.6, we observe that the stochastic-robust

policy is meaningfully better than both the stochastic and deterministic policies in terms

of both cumulative overtime mean and variability, and this is consistent through the end

of the horizon. Therefore, the stochastic-robust policy offers an excellent performance with

a much lower variability, which is critical for implementation in everyday practice. Results

were similar for test instances A and B and are not shown here.

Evaluation of Clinical and Surgical Access Times. In the next analysis, we com-

pare the scheduling policies in terms of the clinical and surgical access times. To this aim,

we define a new performance metric for earliness or tardiness that is “the number of days

between the scheduled clinic and surgery appointment date and the maximum wait time

target date.” We call it the access measure with respect to the target. Since there are dif-

ferent patient classes with various access delay target windows, this metric helps us better

understand how much earlier or later, with respect to the maximum wait target, the policies

schedule the appointments. The negative (positive) value implies how much earlier (later) a

policy schedule the clinic and surgery appointment with regard to the maximum wait target.

In this analysis, we use the RHP for implementing the stochastic-robust, stochastic, and

deterministic policies obtained by solving the IMSDRO-APRX, MS-MIP and deterministic

models, respectively. Note that the current policy is also included in this analysis; it assigns
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new appointment requests to the surgeon with the earliest availability. We calculate this ac-

cess earliness or tardiness measure with respect to the target for each patient whose referral

is received within the roll-out window for the case study as well as the test instances A and

B. We compute the mean, worst-case, and standard deviation (SD) of these access measures.

Statistics
Clinical Access Measure with respect to the Target Surgical Access Measure with respect to the Target

Stochastic-Robust
Policy

Stochastic
Policy

Deterministic
Policy

Current
Policy

Stochastic-Robust
Policy

Stochastic
Policy

Deterministic
Policy

Current
Policy

The case study:
Mean −2.42 −2.67 −2.97 −4.55 −2.78 −2.83 −2.97 4.65
Worst-case 0 0 0 0 0 0 0 7
SD 0.89 1.12 1.21 1.69 1.07 1.15 1.18 1.47
Test instance A:
Mean −1.78 −1.85 −1.97 −3.25 −1.85 −1.93 −2.25 8.85
Worst-case 0 0 0 0 0 0 0 11
SD 0.76 0.89 0.91 1.49 0.76 0.93 0.98 1.28
Test instance B:
Mean −2.98 −3.12 −3.25 −4.96 −3.52 −3.75 −3.98 3.85
Worst-case 0 0 0 0 0 0 0 5
SD 1.16 1.21 1.47 2.01 1.28 1.55 1.62 1.85

Table 4.4: The statistical performance comparison of the different scheduling policies in
terms of mean, worst-case, and SD for the clinical and surgical access measures with respect
to the maximum wait target (in days) for the case study, as well as the test instances A
and B of the CAS problem. The numbers are calculated over all patients whose referrals are
received in the 5-day horizon.

Table 4.4 demonstrates empirical results of comparing various policies in terms of clin-

ical and surgical access measures with respect to the target. We summarize the system

performance by averaging across all patient classes. We observe that the stochastic-robust,

stochastic, and deterministic policies all yield negative clinical and surgical access delay

measures. This is because the three policies are able to grant the predefined priority-based

access targets to all patients. However, the current policy performs quite differently. While

it performs better than the other three policies in terms of providing early access to a clinic

consultation appointment, it often fails to provide the crucial surgical appointment within

the safe time window, thus compromising health outcomes especially for acute patients.

We next graph the daily mean of surgical access measures with respect to the maximum

wait target by the day of referral arrival over 10 days for the case study in Figure 4.7. Again,

we summarize the system performance by averaging over all patient classes.

From Figure 4.7, it can be observed that the current policy consistently yields signif-

icantly higher wait time to surgery compared to all other polices. This implies a major

drawback of the current policy that patients often need to wait a long time to receive a sur-

gical appointment, which can deteriorate their condition. The other three policies, however,

uniformly provide on-time (often early) access to surgical procedure.

In conclusion, our coordinated stochastic-robust policy obtains the lowest overtime with
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Figure 4.7: The comparison of the surgical access measure with respect to the maximum
wait target (averaged across patient classes) by the day of referral arrival obtained by the
stochastic-robust, stochastic, deterministic and current policies over the 10-day horizon by
the RHP.

the smallest variability while respecting both clinical and surgical access limits (through

imposing the clinical and surgical access constraints (4.4)-(4.9)) so that it finds safe clinical

and (if needed) surgical appointments within the target window.

4.6.3 Access Delay versus Overtime Trade-off Analysis

As emphasized in §4.3, the IMSDRO-APRX model ensures patient-centered care by pro-

viding 100% service level in terms of granting access targets to all patients while optimizing

the overtime. However, in Appendix C, we formulate an alternative IMSDRO-APRX model

that establishes a trade-off between meeting access delay targets and incurring overtime.

This is a multi-objective optimization model, which minimizes (i) the expected penalty due

to not meeting clinical and surgical access delay targets (weighted by w1), and (ii) the max-

imum expected penalty due to incurring overtime (weighted by w2). Here, we investigate

this balance through implementing the RHP by the stochastic-robust policy obtained from

solving the alternative IMSDRO-APRX model.

We calculate the cumulative overtime mean of each surgeon, and the mean of surgical

access measures with respect to the maximum wait target by each day. We consider three

possible scenarios: (i) the “stochastic-robust policy (access priority)”, which puts a large

penalty on not meeting the access delay targets (w1 = 50, w2 = ε), (ii) the “stochastic-

robust policy (overtime priority)”, which puts a large penalty on the overtime incurred

(w1 = ε, w2 = 50), and (iii) the “stochastic-robust policy (trade-off)”, which aims at striking
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a balance between these two objectives (w1 = 40, w2 = 10). Figure 4.8 demonstrates the

results for the case study.
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(a) Cumulative overtime mean of each surgeon.
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Figure 4.8: The illustration of trade-off between not meeting access delay targets and incur-
ring overtime for the case study. The cumulative surgeon overtime mean and surgical access
delay mean with respect to the target are obtained by three different stochastic-robust poli-
cies over a 10-day roll-out window by the RHP for the case study.

As seen in Figure 4.8, while the stochastic-robust policy (access priority) has the highest

cumulative overtime mean per surgeon, it provides the patients with the fastest surgical

access compared to the other two stochastic-robust polices.

It is also worth noting that the stochastic-robust policy (access priority) yields a surgical

access measure mean of -2.1 days with respect to the maximum wait target (i.e., 2.1 days

earlier than the deadline). This is about 55% better than the current policy, which yields a

surgical access measure mean of 4.65 days (see Table 4.4). This occurs because unlike the

current policy, which is a heuristic, the stochastic-robust policy (access priority) solves an

optimization model to make appointment decisions.

These observations suggest that the alternative IMSDRO-APRX model proposed in Ap-

pendix C is a valuable model that allows decision makers to establish a trade-off between

access tardiness and surgeon overtime.

4.6.4 Sensitivity Analysis Results

In this section, we conduct in-sample stability and sensitivity analyses on the importance

of care coordination, the probability of needing a surgical procedure, number of days in

an arrival horizon, and number of intervals for segment points for the support of surgery

duration distribution. Moreover, we compare the single versus multi-cut versions of the

constraint generation algorithm.
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In-sample Stability Analysis. There are two essential criteria, including (i) in-sample

and (ii) out-of-sample stability, to evaluate the efficiency of a scenario tree construction

method ([96]). In §4.6.2, we show that the out-of-sample errors are 3.10% (case study),

1.93% (test instance A) and 2.99% (test instance B). In here, we evaluate the in-sample

stability. If |J | scenario trees ξj, j ∈ J are generated by using our scenario tree construction

method (see Appendix B), and we then solve the IMSDRO-APRX model for each of these

scenario trees to calculate the optimal decision vector x∗j with objective function f(x∗j , ξj)

for scenario tree j ∈ J , then in-sample stability implies f(x∗j , ξj) ≈ f(x∗u, ξu), ∀j, u ∈ J . To

evaluate the in-sample stability, we generate different scenario fans with 100 scenarios for the

number of appointment requests by the Latin Hypercube Sampling method. Then, a forward

scenario construction approach is applied to construct a scenario tree by using different values

for the parameter ζrel (see Appendix B). Recall that ζrel represents a reduction scale of the

scenario tree compared with the scenario fan. For each instance with different scenario trees

and various values of ζrel, the in-sample stability error is calculated by:

In-sample Stability Error =
Max of objective values−Min of objective values

Average of objective values
× 100%.

The number of scenarios decreases as the value of ζrel increases.

Test Instance
ζrel = 0.8 ζrel = 0.7

# of Scenarios Objective fun. in-sample error # of Scenarios Objective fun. in-sample error

The case study 7 4,625

4.64%

13 4,545

3.29%
8 4,561 14 4,451
10 4,474 15 4,478
11 4,687 17 4,578

Test instance A 9 6,625

3.03%

17 6,488

2.21%
10 6,737 18 6,536
11 6,536 20 6,421
13 6,585 22 6,485

Test instance B 10 2,265

1.99%

17 2,254

1.85%
11 2,235 19 2,289
13 2,280 20 2,247
14 2,280 21 2,265

Table 4.5: The in-sample stability analysis: Illustration of the empirical results of in-sample
stability analysis for the scenario tree construction approach used for the case study, and
test instances A and B.

Table 4.5 shows the empirical results of the in-sample stability analysis for the case

study, and test instances A and B. The difference between the objective function values with

different scenario trees is smaller (i.e., smaller in-sample error) when ζrel is set to 0.7. More

importantly, the lack of any substantial difference between the optimal objective function

values indicates a very good in-sample stability of our scenario tree construction approach.

Importance of Care Coordination. In the case study, about one in three appointment
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requests will end up requesting a surgical procedure after the clinic consultation appointment.

Therefore, the expected probability of needing surgery is 0.33, based on which we draw

the sample paths. To assess the importance of care coordination, we implement the RHP

for the case study under two scenarios: (i) considering the surgery need, and (ii) ignoring

the possibility of surgery need for patients. We then investigate how the stochastic-robust

policy performs under these two scenarios by calculating the mean and variability of the

cumulative overtime values over 10 days for one surgeon. Figure 4.9 illustrates the results

for the comparison of considering versus ignoring the surgery need.
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Figure 4.9: The importance of care coordination: a comparison of cumulative overtime
means for the stochastic-robust policy in the case study under ignoring versus considering
the surgery need over 10 days.

In Figure 4.9, the blue curve only considers the already booked surgeries over the next

periods; it ignores the likelihood of future possible surgeries. On the other hand, the red

curve does take the probability of future surgeries into account when making appointment

scheduling decisions. As seen in Figure 4.9, the stochastic-robust policy performs significantly

better (i.e., less overtime) when the probability of future surgeries are taken into account.

In particular, the stochastic-robust policy considering surgery probabilities yields a daily

overtime mean of 90 minutes for a surgeon, which is about 26% better (less overtime) than

the stochastic-robust policy ignoring the probability of surgeries with a daily overtime mean

of 122 minutes for a surgeon. It is worth noting that, in our case study, we defined the

“regular time” to be 6 hours per day for each surgeon. This is, of course, a conservative way

of defining the regular versus overtime. However, given that the objective function minimizes

overtime, defining a conservative regular time allows the model to be mindful of scheduling

appointments beyond 6 hours per day. Therefore, a mean overtime of 90 minutes observed

162



in Figure 4.9 implies that the surgeons will work, on average, 7.5 hours per day under the

stochastic-robust policy that considers future surgery needs. To sum up, we demonstrate that

the idea of care coordination can help to achieve less overtime by considering the uncertainty

around future surgery needs.

Sensitivity Analysis on the Surgery Probability. In our approach, we model the

need for a surgical procedure through a Bernoulli random variable. This assumption is

made by others as well (see e.g., [153] and [98]). We evaluate this modeling choice by a

sensitivity analysis on the surgery probability with respect to both surgical overtimes and

surgical access time delays. Figure 4.10 illustrates how the surgical overtime and average

surgical access time delay change as the surgery probability alters. We observe that as the

surgery probability increases, we require more surgical overtime while the surgical access

delay increases.
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Figure 4.10: The sensitivity analysis around the surgery probability with respect to (a)
surgical overtime, and (b) surgical access measure (negative values indicate earliness, i.e.,
the model grants access to surgery within the maximum wait time target for each patient.)

Importance of Number of Days in the Arrival Horizon. In the case study, we

consider a 5-day arrival horizon. In other words, we consider the uncertainty around the

number of appointment requests and the surgery durations of the next 5 days when making

appointment scheduling decisions. In this analysis, we investigate how the number of days

considered in the arrival horizon affects the quality of the stochastic-robust policy. Figure

4.11 demonstrates the performance of the stochastic-robust policy by computing the cumu-

lative overtime mean for a surgeon obtained from solving the IMSDRO-APRX model by

using the RHP for 10 days in our case study. We consider three different arrival horizons

with T = |T | = 3, 5 and 7 days.

From Figure 4.11, we observe that as the number of days in the arrival horizon increases,

the performance of the stochastic-robust policy gradually improves (i.e., less overtime is
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Figure 4.11: Importance of the number of days for the arrival horizon T : the performance
of the stochastic-robust policies with T = 3, 5, and 7 days in terms of cumulative overtime
mean per surgeon over 10 days for the case study obtained by solving the IMSDRO-APRX
model by using the RHP.

incurred) as we roll forward in the arrival horizon. The longer the arrival horizon, the less

myopic the policy. This is because longer-term uncertainty about the number of patient

appointment requests and surgery duration is taken into account when the stochastic-robust

policy makes the clinical and surgical decisions for patients. As seen in Figure 4.11, reducing

the length of arrival horizon from 5 to 3 days increases the overtime mean per surgeon by

about 15 minutes on day 10. However, increasing the length of arrival horizon from 5 to 7

days only reduces the overtime mean per surgeon by 6 minutes on day 10 (the cumulative

overtime means are 1050, 900 and 840 minutes by day 10, for T = 3, 5 and 7, respectively,

which are equivalent to 105, 90 and 84 minutes per surgeon per day). This suggests that

while in general including additional days in the arrival horizon is helpful, increasing the

horizon from 5 to 7 days has little benefit and may not worth the additional computational

burden.

Analysis of Support Discretization for the Surgery Duration. In §4.3, we refor-

mulated the objective function (4.24) into a piece-wise linear function with H equal intervals

through discretizing the support set [dLBγ,k , d
UB
γ,k ] of the surgery distribution dγ,k for each pair

of class γ ∈ Γ and surgeon k ∈ K into H + 1 segment points Υγ,k = {d̃γ,k(i)}Hi=0. Here,

we provide sensitivity analysis results on varying the number of segment points and inves-

tigate the trade-off between the solution quality and the computational time of solving the

IMSDRO-APRX model. Intuitively, when the number of segment points H increases, it re-

sults in achieving a more precise approximation for the objective function, but with a longer

computational time.
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Test instance
# of segment

points
Objective fun.

# of
Iterations

CPU time

The case study 5 4,625 7 1,014
10 4,451 9 1,345
20 4,375 13 2,116

Test instance A 5 6,757 6 1,546
10 6,421 10 2,005
20 6,235 15 2,643

Test instance B 5 2,389 5 1,189
10 2,265 8 2,115
20 2,218 16 2,954

Table 4.6: The sensitivity analysis on the number of segment points and how it impacts
the objective function value, computational time, and the number of iterations for the case
study and the test instances A and B.

Table 4.6 reports the objective function value, computational time (in seconds), and the

number of iterations required for solving the IMSDRO-APRX model for the case study and

test instances A and B with various number of segment points for the surgery duration. As we

increase the number of segment points for the surgery duration (so the support of the surgery

duration is approximated more accurately), we obtain a more precise approximation of the

objective function with a larger number of iterations. It also requires a longer computational

time; however, note that it grows slower than linearly. As we can see in Table 4.6, by doubling

the number of segment points (i.e., increasing it from 5 to 10 and from 10 to 20), the objective

function value alters by less than 5% in the case study. Results are similar for test instances

A and B. Table 4.6 demonstrates that our choice of using 10 segment points as the default

in the case study is appropriate.

Comparison of Single versus Multi-Scenario Cuts. In §4.4, we developed a con-

straint generation algorithm with multi-scenario cuts for solving the IMSDRO-APRX model,

in which the cut-generating problem (4.26a)-(4.26f) obtains at most one scenario cut per sce-

nario and passes it back to the RMP (4.29a)-(4.29d). Similar to the L-shaped decomposition

methods, our algorithm can have two versions: (i) a multi-cut version in which multiple cuts

are added to the RMP (at most one cut per scenario); and (ii) a single cut version in which

one aggregated cut is added to the RMP.

In this part, we introduce the single cut version of the proposed constraint generation

algorithm, which is similar to Algorithm 4, except that it passes back one aggregated cut in
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the form of (4.30b) to the following RMP (4.30a)-(4.30d) at each iteration:

Z̄RMP = min
x,y,ŷ,q,δ,α,β

∑
s∈S

πs

{∑
k∈K

(∑
m∈L

qkm,s +
∑
γ∈Γ

(
µγ,k α

k
γ,s + (µ2

γ,k + σ2
γ,k) β

k
γ,s

))}
+ Π

(4.30a)

s.t. Π ≥
∑
s∈S

πs χs(ys, ŷ,αs,βs; τ
(r)
s ,η(r)

s ,λ(r)
s ), ∀r = 1, · · · , R− 1 (4.30b)

(xs, ys, ŷ, qs) ∈ Rs, ∀s ∈ S (4.30c)

δs ∈ R, αs, βs ∈ R|Γ|×|K|, ∀s ∈ S. (4.30d)

We next compare the empirical performance of single versus multi-scenario cut versions

of the proposed constraint generation algorithm. To this aim, we generate 10 random in-

stances of the CAS problem with different number of surgeons, number of patient classes,

and number of scenarios. Each instance is specified by a tuple (|K|,|Γ|,|T |,|S|) denoting the

number of surgeons, patient classes, days in the arrival arrival, and scenarios for patient

appointment requests, respectively. We then solve the IMSDRO-APRX model for each of

these instances by using both multi-cut and single-cut versions of the constraint generation

algorithm (Algorithm 4). Table 4.7 indicates the number of iterations (“# of Iterations”) for

them until the algorithm converges to the optimal policy as well as the CPU time in seconds

for each instance. Note that the instance numbers 5, 8 and 9 refer to the test instance A,

the case study and the test instance B, respectively.

Instance
Number

(|K|, |Γ|, |T |, |S|) multi cuts single cut
# of Iterations CPU time # of Iterations CPU time

1 (4, 12, 4, 8) 5 654 9 1,177
2 (4, 12, 5, 10) 7 1,021 12 1,897
3 (4, 12, 5, 15) 8 1,254 18 2,257
4 (4, 24, 5, 15) 6 1,578 13 2,957
5 (4, 24, 5, 20) 10 2,005 20 3,609
6 (8, 12, 5, 8) 4 755 13 1,177
7 (8, 24, 5, 10) 6 1,176 13 2,215
8 (8, 24, 5, 14) 9 1,345 15 2,421
9 (10, 24, 5, 10) 8 2,115 16 3,484
10 (10, 24, 5, 15) 7 2,321 13 3,752

Table 4.7: The comparison of the multi-cut and single-cut versions of the constraint gen-
eration Algorithm 4 for different instances of the CAS problem in terms of the number of
iterations and CPU time in seconds.

Table 4.7 demonstrates that we are able to solve a range of suitable instances for the

IMSDRO-APRX model within a reasonable number of iterations. We also observe that

since the multi-cut version offers more information about the feasible region, we require fewer
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number of iterations compared to the single-cut version. The average number of iterations

for the multi-cut version was 6, while it was 14 for the single-cut version. Moreover, the

single-cut version takes more CPU time compared to the multi-cut version.

4.7 Practical Implications and Insights

In §4.6, we demonstrated the application of our IMSDRO approach to coordinate clinic

and surgery visits in a highly specialized surgical unit. We showed that our model can provide

access to surgery within a safe time frame, especially for acute patients who will most suffer

from a long wait time, while minimizing the overtime. We summarize the insights and

practical implications below.

First and foremost, surgical divisions that offer surgical procedures after a clinic con-

sultation appointment should consider leveraging optimization algorithms that coordinate

the clinic and surgery appointments when scheduling new appointments. Simple heuristic

scheduling protocols, such as scheduling new appointment requests with the surgeon who

has the earliest availability (i.e., the “current policy” in our case study), often result in

prolonged wait times for patients with acute conditions like cancer. The lengthy wait times

to receive a surgical procedure may result in adverse events and poor patient outcomes. In

contrast, through minimizing the overtime, our proposed coordinated stochastic-robust pol-

icy achieved both clinical and surgical access targets, which were stratified into five classes

based on patients’ acuity level. Simple heuristics, including the one used by our partner hos-

pital, may allocate clinic and surgery appointment dates for a patient several days beyond

the acceptable wait time target windows. This is not clinically safe for patients and may

lead to additional complications. The success of our algorithmic, optimization-based method

indicated that it is not always effective to offer the earliest available appointment slot to a

new patient as commonly done in current policy. If the patient has an acute condition,

consideration of the likelihood of surgery and availability of providers is key to ensure timely

access to surgery.

Moreover, even though our model considered overtime to meet the priority-based access

to care targets, our empirical results showed that the mean overtime per surgeon is around

90 minutes. It should be noted that we defined the regular time for surgeons as 6 hours per

day in the case study. Thus, the mean overtime of 90 minutes per day means that a typical

day for surgeons last 7.5 hours, on average. We also demonstrated that our stochastic-robust

policy achieves the lowest overtime and the smallest variability among the four policy we

investigated, while respecting both clinical and surgical access limits. The average workday

of 7.5 hours, together with granting access targets of the stochastic-robust policy, confirm
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that the appointment scheduling plans obtained from our IMSDRO approach are feasible

and implementable in practice. Our optimization models provide generality over a broader

range of operation systems and parameters than most heuristics, which do not readily extend

to new settings. Our analytic approach allows the administration to modify the parameters

of the system to find an acceptable optimal policy. For instance, if the amount of overtime

suggested by our model is not desirable, the administration can relax the priority-based

access targets to reduce the required overtime. If new surgeons are hired or new procedures

are offered, the model can be easily extended to accommodate the new conditions.

Modeling care coordination in our coordinated stochastic-robust policy results in better

utilization of scarce resources, including surgeon time and operating rooms. We saw in Figure

4.9 that the policy that takes uncertain future surgeries into consideration outperforms the

policy that ignores the uncertainty of the need for surgery (26% less overtime). Moreover,

we demonstrated in multiple ways that the stochastic-robust policy achieves much lower

variability in surgeon overtime and patient access time compared to alternative policies. This

is extremely important in healthcare setting since avoiding extreme scenarios and achieving

a reliable performance will allow the hospital management to better control patient flow and

manage their resources and processes.

Our research promotes patient-centered care by stratifying patients into different priority

classes based on what is known about the patient at the time the patient referral is received

(e.g., the indication of disease), which are then translated into appropriate and safe maxi-

mum wait time targets. Surgical divisions should also take the uncertainty in appointment

request arrival, surgical demand, and surgery durations into account when scheduling clinic

consultation and surgery appointments. Our models provide a creative way to do so using

data that are commonly available in the patient’s electronic health records and the clinic’s

datasets, and do not rely on assumptions on the probability distribution of surgeries. Fur-

ther, the proposed data-driven rolling horizon procedure introduces an innovative way of

making use of the latest data that is revealed as time progresses, and adjusting the decisions

in practice for stochastic optimization problems.

Furthermore, we provided two optimization models derived by our IMSDRO approach.

The focus of the first (main) one was on ensuring patient-centered care by providing 100%

service level in terms of meeting access delay targets to all patients while minimizing the

surgeon overtime. This was the model that our partner hospital preferred. The second opti-

mization model considered two competing objectives, namely, meeting access delay targets

and incurring overtime. As illustrated in Figure 4.8, this model allows decision makers to

establish a trade-off between providing timely access to care to patients and asking surgeons

to work overtime hours.
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Our coordinated stochastic-robust policy improves the surgical access times by about

160%, on average, compared to the current policy used by our partner hospital (see Table

4.4). Intuitively, this is because our methods take into account the wait time target windows

as well as various inherent sources of uncertainty, including the number of appointment

requests, probability of surgery need, and surgery duration while coordinating clinic and

surgery appointments. Also, the current policy ignores the valuable indication of disease

that is available in the patient’s electronic health records when a new appointment request

is received. Unlike the current policy that operates based on a first-come first-serve idea,

intuitively our model often defers the surgery of low-priority patients in order to preserve

the near future capacity to serve high-priority patients that may arrive later. This approach

helps meet the desired service level with minimum overtime.

Although our work is motivated by healthcare, our models and insights can also be applied

to other service industries. For example, there are IT service companies with contracts

that incorporate service level agreements to maintain the IT infrastructure for many client

companies. [136] describe client-specific priority levels specified in these agreements as well as

deadlines for the completion of a client’s service request in response to a failure. To efficiently

utilize human resources and meet the various service level agreements, the IT company must

schedule a date to work on an arriving service request. It may be possible to resolve the

service request in that first visit; however, the first service may be used as a triage phase to

identify when the problem is time-consuming and requires a larger effort to be scheduled for

a later date so that this job does not delay other higher priority requests. This operational

approach is analogous to the problem here, which has distinct experts providing one or

two phases of service with a goal of completing the work within the deadline by effectively

scheduling service activities. Because there are many different types of jobs/issues that the

company addresses using their experts (or teams), estimating the full distribution of service

time for each job is not practical. Thus, a robust approach is beneficial. Note that in many of

such problems, the job must be completed within the time window specified in the contract

even if some overtime is required. In this case, a model similar to the one considered in our

paper that guarantees pre-defined service levels is appropriate. In some cases it might be

possible to complete the job with some delay to reduce the amount of overtime needed. If

this is the case, a revised model formulation such as the one we provide in the appendix can

strike a balance between job completion delay and personnel overtime.
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4.8 Conclusion, Limitations, and Future Research

In this paper, we studied a new class of appointment scheduling problems called the “co-

ordinated clinic and surgery appointment scheduling” in which patients are stratified into

patient classes, with limits on the allowable access delay from request to appointment dates.

We introduced the concept of care coordination in the sense of setting appointments for pairs

of sequential clinic and (if needed) surgery visits that together achieve timely access to care.

Methodologically speaking, our integrated multi-stage stochastic and distributionally robust

optimization (IMSDRO) is the first optimization approach that can jointly incorporate dif-

ferent types of uncertainty in the number of patient appointment requests by a scenario tree,

and in surgery durations by a moment-based ambiguity set for distributional robustness. Us-

ing the special structure of the CAS problem, we proposed a constraint generation algorithm

for efficiently solving this problem. We then developed a new data-driven rolling horizon

procedure to implement the decisions made by the IMSDRO approach in practice. This

allows healthcare practitioners to make efficient use of data that is obtained as time unfolds,

and so adjust their decisions in a rolling horizon framework. In a sense, our methods/models

can be applied in an online (or real-time) fashion. We tested the validity of our mod-

els/algorithms in a case study of scheduling clinic consultation and surgery appointments,

and demonstrated that a significant improvement could be achieved if our partner hospital

were to switch from the current heuristic scheduling protocol to our proposed policies. We

provide several practical insights from our empirical analysis as well.

This study has a few limitations. In our models, we do not consider patient no-shows

and cancellations as well as the potential seasonality in demand as they rarely happen in

our highly-specialized partner surgical suites. Patient preferences are also not part of our

models and algorithms. Clearly, in many health care environments, the patient can prioritize

the selection of the provider with whom they feel most comfortable. Our scope is; however,

limited to the important class of environments in which the patients typically accept the

provider offering the earliest access. Moreover, the allocation of resources including operating

rooms to surgeons is not the main focus in our paper. Finally, given that a tractable system

state can be defined, approximate or robust dynamic programming approaches may be used

to solve the CAS problem. These ideas could be promising future research directions in the

area of appointment scheduling.
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4.9 Appendix

4.9.1 Appendix A: Technical Proofs for the Analytical Results.

A.1. Proof of Proposition 11

Proof. When the probability measure P ∈ Φ(µ,σ,Θ) defined by the polyhedral support set

(4.18), we can explicitly rewrite the moment problem (4.21) under each individual scenario

s ∈ S as follows:

max
P∈Φ(µ,σ,Θ)

EP
[
fs(ys, ŷ,d)

]
= max

P

{∫
Θ

fs(ys, ŷ,d) dP (d)

}
(4.31)

s.t. constraints (4.19a)− (4.19c),

as a linear program maximizing over all plausible distributions P in the set Φ(µ,σ,Θ), and

with the expectation of the function fs(ys, ŷ,d) taken over this distribution as the objective

function. Since all ys, ŷ, and d vectors are input parameters to the moment problem (4.21),

and it contains the continuous decision variable P and linear constraints (4.19a)-(4.19c), we

can take the dual of linear program (4.31) by associating the dual variable vectors δs ∈ R,

αs ∈ R|Γ|×|K| and βs ∈ R|Γ|×|K| with the constraints (4.19a)-(4.19c), respectively, for each

individual scenario s ∈ S. Thus, its dual is a semi-infinite linear program as follows:

min
δ,α,β

δs +
∑
γ∈Γ

∑
k∈K

µγ,k α
k
γ,s +

∑
γ∈Γ

∑
k∈K

(µ2
γ + σ2

γ,k) β
k
γ,s (4.32a)

s.t. δs +
∑
γ∈Γ

∑
k∈K

dγ,k α
k
γ,s +

∑
γ∈Γ

∑
k∈K

d2
γ,k β

k
γ,s ≥ fs(ys, ŷ,d), ∀d ∈ Θ. (4.32b)

Using the strong duality theorem, we next substitute the inner maximization moment

problem (4.21) with (4.32a)-(4.32b) in the min-max IMSDRO model (4.20a)-(4.20b), and

merge the minimization objective (4.32a) with the minimization objective in the IMSDRO

model (4.20a)-(4.20b) to obtain a reformulation of the min-max IMSDRO model (4.20a)-
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(4.20b) under the ambiguity set Φ(µ,σ,Θ) as

min
x,y,ŷ,q,δ,α,β

∑
s∈S

πs

{∑
k∈K

∑
m∈L

qkm,s + δs +
∑
γ∈Γ

∑
k∈K

µγ,k α
k
γ,s +

∑
γ∈Γ

∑
k∈K

(µ2
γ,k + σ2

γ,k) β
k
γ,s

}
(4.33a)

s.t. δs +
∑
γ∈Γ

∑
k∈K

dγ,k α
k
γ,s +

∑
γ∈Γ

∑
k∈K

d2
γ,k β

k
γ,s ≥ fs(ys, ŷ,d), ∀d ∈ Θ, s ∈ S (4.33b)

(xs, ys, ŷ, qs) ∈ Rs, ∀s ∈ S (4.33c)

δs ∈ R, αs, βs ∈ R|Γ|×|K|, ∀s ∈ S. (4.33d)

However, the reformulation (4.33a)-(4.33c) of the IMSDRO model is still intractable since

constraint (4.33b) is a semi-infinite constraint, meaning that it should be satisfied for any

possible realization of d from the polyhedral support set Θ in (4.18). To obtain a tractable

reformulation, since constraint (4.33b) should be satisfied for all realization of d ∈ Θ, it

should be satisfied for the worst-case possible value of d ∈ Θ. Hence, we move all the terms

which contain d to the right-hand side of constraint (4.33b) to obtain the minimization

reformulation (4.22a)-(4.22d), which completes the proof.

A.2. Proof of Proposition 12

Proof. For each individual scenario s ∈ S, we can derive the following simple equivalent

linear program (LP) for the function fs(ys, ŷ,d) using the surgical overtime definition for

surgeons as follows:

fs(ys, ŷ,d) = min
o

∑
k∈K

∑
n∈L

okn,s (4.34a)

s.t.okn,s ≥
∑
γ∈Γ

dγ,k

(∑
t∈U

∑
m∈T \{t0}

ỹk,nγ,t,m +
∑
t∈T

∑
m∈T \{t0}

yk,nγ,t,m,s +
∑

t∈T ∪{t0}

ŷk,nγ,t,t0

)
− V k

n ,

∀k ∈ K, n ∈ L (4.34b)

okn,s ≥ 0, ∀k ∈ K, n ∈ L. (4.34c)

Next, we take the dual formulation of the LP (4.34a)-(4.34c) by associating dual variables
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λkn,s ∈ R+ to the constraints (4.34b) as follows for each individual scenario s ∈ S:

fs(ys, ŷ,d) = max
λs

∑
k∈K

∑
n∈L

{∑
γ∈Γ

dγ,k

(∑
t∈U

∑
m∈T \{t0}

ỹk,nγ,t,m (4.35a)

+
∑
t∈T

∑
m∈T \{t0}

yk,nγ,t,m,s +
∑

t∈T ∪{t0}

ŷk,nγ,t,t0

)
− V k

n

}
λkn,s

s.t. 0 ≤ λkn,s ≤ 1, ∀k ∈ K, n ∈ L. (4.35b)

We then substitute the dual problem (4.35a)-(4.35b) into the maximization problem

Ψs(ys, ŷ,αs,βs) on the right hand side of the constraints (4.22b), which results in the

following equivalent problem:

Ψs(ys, ŷ,αs,βs) = max
d∈Θ

{
max
λs∈Λs

∑
k∈K

∑
n∈L

{∑
γ∈Γ

dγ,k

(∑
t∈U

∑
m∈T \{t0}

ỹk,nγ,t,m +
∑
t∈T

∑
m∈T \{t0}

yk,nγ,t,m,s+

(4.36)∑
t∈T ∪{t0}

ŷk,nγ,t,t0

)
− V k

n

}
· λkn,s −

∑
γ∈Γ

∑
k∈K

dγ,k α
k
γ,s −

∑
γ∈Γ

∑
k∈K

d2
γ,k β

k
γ,s

}
.

Swapping the order of maximizations in (4.36) does not affect the optimal solution because

the polyhedron-shaped support set Θ of d is a compact and bounded set. Thus, as we have

a separable structure for the polyhedron-shaped support set Θ of d, we can maximize the

objective function (4.36) first over λs ∈ Λs, and then over d ∈ Θ, separately as follows:

Ψs(ys, ŷ,αs,βs) = max
λs∈Λs

{
max
d∈Θ

{∑
γ∈Γ

∑
k∈K

(∑
n∈L

{∑
t∈U

∑
m∈T \{t0}

ỹk,nγ,t,m +
∑
t∈T

∑
m∈T \{t0}

yk,nγ,t,m,s

(4.37)

+
∑

t∈T ∪{t0}

ŷk,nγ,t,t0

}
· λkn,sdγ,k − αkγ,sdγ,k − βkγ,sd2

γ,k

)}
−
∑
k∈K

∑
n∈L

V k
n λ

k
n,s

}
.

Next, given the fact that the polyhedron-shaped support set Θ of d is defined by inde-

pendent lower and upper bounds in each dimension of γ ∈ Γ and k ∈ K pair (see (4.16)), the

inner maximization problem over d ∈ Θ in the problem (4.37) is a separable optimization

problem by the patient class γ ∈ Γ and surgeon k ∈ K indices. We can separate this inner

max problem in the problem (4.37) into |Γ| × |K| maximization problems, each of them is

over the interval dLBγ,k ≤ dγ,k ≤ dUBγ,k , and make a summation over the indices γ ∈ Γ and

k ∈ K, which results in the optimization problem (4.23) and completes the proof.

A.3. Proof of Theorem IV.1
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Proof. For each pair of patient class γ ∈ Γ and surgeon k ∈ K, we define binary variables

ηkγ,i ∈ {0, 1} corresponding to each segment point d̃γ,k(i), i = 0, · · · , H such that ηkγ,i = 1

if the ith segment point d̃γ,k(i) in the set Υγ,k = {d̃γ,k(i)}Hi=0 yields the maximum value for

the problem (4.25) and ηkγ,i = 0 otherwise. Consequently, the approximation problem (4.25)

for the given y,α, and β decisions is equivalent to the following problem for each pair of

patient class γ ∈ Γ and surgeon k ∈ K under scenario s ∈ S:

max
η

{(
H∑
i=0

(∑
n∈L

{∑
t∈U

∑
m∈T \{t0}

ỹk,nγ,t,m +
∑
t∈T

∑
m∈T \{t0}

yk,nγ,t,m,s (4.38a)

+
∑

t∈T ∪{t0}

ŷk,nγ,t,t0

}
λkn,s

)
d̃γ,k(i)− αkγ,s d̃γ,k(i)− βkγ,s d̃γ,k(i)2

)
ηkγ,i

}

s.t.
H∑
i=0

ηkγ,i = 1, (4.38b)

ηkγ,i ∈ {0, 1}, ∀i = 0, · · · , H. (4.38c)

To ensure that exactly one of the segment points d̃γ,k(i), i ∈ {0, · · · , H} is selected

for each pair (γ, k) to maximize the objective function of problem (4.25), we require the

constraints (4.38b). Note that each set of segment points Υγ,k = {d̃γ,k(i)}Hi=0 for each pair of

class γ and surgeon k is a Specially Ordered Set of Type 1 (SOS1), containing binary variables

that sum to one (see constraints (4.38b)). When the segment point d̃γ,k(i
′) maximizes (4.25),

i.e., ηkγ,i′ = 1, the objective function of (4.38a) gets the value of
H∑
i=0

( ∑
n∈L

{∑
t∈U

∑
m∈T \{t0}

ỹk,nγ,t,m+∑
t∈T

∑
m∈T \{t0}

yk,nγ,t,m,s +
∑

t∈T ∪{t0}
ŷk,nγ,t,t0

}
λkn,s d̃γ,k(i) − αkγ,s d̃γ,k(i) − βkγ,s d̃γ,k(i)2

)
and other ηkγ,i

variables are zero for i ∈ {0, · · · , H}, i 6= i′.

Furthermore, we see that there is a bi-linear expression λkn,sη
k
γ,i in the objective function

(4.38a) for the given y, ŷ,α, and β decisions. However, we can reformulate these bi-linear

terms by adding some McCormick type inequalities because ηkγ,i is a binary variable and

we have lower and upper bounds, i.e., 0 ≤ λkn,s ≤ 1, for the variable λkn,s based on the

polyhedron set Λs defined in Proposition 12. To do so, we define auxiliary variables τ kn,s,γ,i

such that τ kn,s,γ,i = λkn,s η
k
γ,i for all i ∈ {0, · · · , H}, and γ ∈ Γ. To remove theses bi-linear

terms in objective function (4.38a), we need to add the McCormick type constraints (4.26c)-

(4.26e) [125], and τ kn,s,γ,i ≥ 0, which guarantee that τ kn,s,γ,i = λkn,s η
k
γ,i for all i ∈ {0, · · · , H},

k ∈ K and γ ∈ Γ. More precisely, when the binary variable ηkγ,i = 1, constraints (4.26c)-

(4.26d) make sure that 0 ≤ λkn,s ≤ 1, and when ηkγ,i = 0, constraints (4.26e) and τ kn,s,γ,i ≥ 0

guarantee that λkn,s = 0. Thus, there exists an equivalence relation between the bi-linear
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term τ kn,s,γ,i = λkn,s η
k
γ,i and constraints (4.26c)-(4.26d), and τ kn,s,γ,i ≥ 0.

Next, if we do the change of variables τ kn,s,γ,i = λkn,s ηkγ,i in the objective function

(4.38a), and replace it in the objective function (4.23), we obtain the objective function

χs(ys, ŷ,αs,βs; τs,ηs,λs) is defined for each scenario s ∈ S defined by (4.27). Therefore,

using the approximation of (4.24) with the problem (4.38a)-(4.38c) and the McCormick type

constraints (4.26c)-(4.26e), and τ kn,s,γ,i ≥ 0, we are able to approximate the optimal objec-

tive function value of the maximization problem Ψs(ys, ŷ,αs,βs) in (4.23) by the MILP

(4.26a)-(4.26f).

A.4. Proof of Theorem IV.2

Proof. We need to prove two things, which include that (i) the scenario cuts derived by the

scenario cut-generating problem Ψ̃s(ys, ŷ,αs,βs) or (4.26a)-(4.26f) for solving the IMSDRO-

APRX model are valid, and (ii) finitely many scenario cuts suffice to reach a feasible solution

that satisfies constraints (4.28b).

(i) For any value of (ys, ŷ,αs,βs) satisfying constraints (4.29c) and (4.29d), the opti-

mization problem Ψs(ys, ŷ,αs,βs) can be approximated by Ψ̃s(ys, ŷ,αs,βs) according to

the result of Theorem IV.1, and so the scenario cuts (4.29b) are valid.

(ii) The scenario cut-generating problem Ψ̃s(ys, ŷ,αs,βs) is not dependent on the values

of ys, ŷ, αs, βs. The number of binary variables of the problem Ψ̃s(ys, ŷ,αs,βs) is limited

to |H|×|Γ|×|K|, and for any value for binary variables that satisfy
H∑
i=0

ηkγ,i = 1, the feasible

region of this optimization problem is a polyhedron with finite extreme points. Therefore,

the maximum number of scenario cuts corresponding to the extreme points of the feasible

region of Ψ̃s(ys, ŷ,αs,βs) for any value of binary variables are limited.

Therefore, the constraint generation Algorithm 4 terminates after finite number of iter-

ations.

4.9.2 Appendix B: Scenario Tree and Ambiguity Set Construction Approach.

One often starts from a full description of stochastic random variable (the number of pa-

tient referrals in the CAS problem). Solving an stochastic model with such a full description

of a stochastic random variable is however next to impossible. We therefore need a scenario

construction algorithm to translate the full representation of the stochastic variable into a

set of discrete realizations (i.e., scenarios) of that stochastic variable. To adequately repre-

sent the appointment request stochastic process, we need to generate a sufficient number of

scenarios; that is, the set of scenarios needs to cover the most plausible realizations of the

stochastic process. This often requires a very large number of scenarios, typically generated

by a scenario construction algorithm. However, the computational burden of solving such a
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stochastic model with a large number of scenarios is extremely high and for practical pur-

poses often impossible. To avoid such intractability, a scenario reduction algorithm is then

deployed so as to reduce the cardinality of the set of scenarios. In general, the goal of a

scenario construction algorithm is to minimize the error caused by the approximation of the

true stochastic process with a scenario tree.

In this Appendix, we first explain our approach along with an example for how we

generate a scenario tree for the number of patient arrivals in B.1, B.2 and B.3. In B.4,

we pinpoint how a scenario generation and reduction can be evaluated. Finally, in B.5, we

explain our method on how we generate an ambiguity set for the surgery duration.

B.1. Scenario Reduction Heuristics

We consider a T -dimensional stochastic process ξ = {ξt}Tt=1 with a distribution function F

and a finite support for the number of patient appointment requests over T days. This finite

support is presented by S discrete scenarios through supp(ξ) = {ξ(1), ξ(2), · · · , ξ(S)} where

ξ(s) = {ξ(s)
t }Tt=1 for s ∈ S = {1, · · · , S}. The corresponding scenario probability is denoted

by πs and
∑S

s=1 πs = 1. Assume P is the distribution function of another T -dimensional

stochastic process ξ̃ = {ξ̃t}Tt=1. Let supp(ξ̃) = {ξ̃(1), ξ̃(2), · · · , ξ̃(S′)} where ξ̃(s′) = {ξ̃(s′)
t }Tt=1,

and S ′ be the number of discrete scenarios with corresponding scenario probabilities π̃s′ for

s′ ∈ S ′ = {1, · · · , S ′} and
∑S′

s′=1 π̃s′ = 1.

The Kantorovich distance DT (F, P ) between the above-mentioned stochastic processes

F and P is the optimal solution of the following linear transportation problem:

DT (F, P ) = min
ρ

{
S∑
s=1

S′∑
s′=1

ρs,s′ · d|T |(ξ(s), ξ̃(s′)), (4.39)

s.t.
S∑
s=1

ρs,s′ = πs′ ,
S′∑
s′=1

ρs,s′ = π̃s, ρs,s′ ≥ 0, ∀s ∈ S,∀s′ ∈ S ′
}
,

where dt(ξ
(s), ξ̃(s′)) =

∑t
υ=1 || ξ

(s)
υ − ξ̃(s′)

υ ||, t ∈ T = {1, · · · , T}, and ||.|| is a norm function

over RT . Thus, d|T |(ξ
(s), ξ̃(s′)) is total distance between scenarios s and s′.

If we assume that P is a reduced distribution function of F , its discrete support then

includes scenarios ξ̃(s′) = {ξ̃(s′)
t }Tt=1, s′ ∈ {1, · · · , S}\del(S) where del(S) is the set of deleted

scenarios from the original scenario set S. For a pre-specified set del(S) ⊂ S, the Kantorovich

distance between stochastic processes F and P can be calculated by the following expression:

DT (F, P ) =
∑

s∈ del(S)

πs · min
s′ /∈ del(S)

{
d|T |(ξ

(s), ξ̃(s′))
}
. (4.40)
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Moreover, the scenario probabilities π̃s′ , s
′ /∈ del(S) for the reduced set of scenarios

{ξ̃(s′)}s′ /∈ del(S) are given by π̃s′ = πs′ +
∑

s∈dels′ (S) πs, where dels′(S) = {s ∈ del(S) : s′ =

s′(s)}, and also s′(s) ∈ arg mins′ /∈del(S) d|T |(ξ
(s), ξ̃(s′)) for each scenario s ∈ del(S) is a selec-

tion from the the index set of nearest scenarios to the scenario ξ(s) for all s ∈ del(S). The

optimal set del(S) of deleted scenarios with cardinality κ = |del(S)| is obtained by solving

the following scenario reduction problem:

min
{ ∑
s∈ del(S)

πs · min
s′ /∈ del(S)

d|T |(ξ
(s), ξ̃(s′)) s.t. del(S) ⊂ S = {1, · · · , S}, κ = S − L

}
, (4.41)

where L = S − κ is the number of remaining scenarios after reduction.

[62] proved the NP-hardness of the scenario reduction problem (4.41) by showing its

equivalence to the set covering problem. However, this problem can be solved efficiently for

two special cases of κ = 1 (i.e., deleting one scenario), and κ = S − 1 (i.e., keeping one

scenario). They proposed two heuristics called backward scenario reduction and forward

scenario selection algorithms for solving the reduction problem efficiently. In the backward

reduction, optimal deletion of one scenario is recursively repeated until deleting κ = S − L
scenarios while in the forward selection, optimal selection of one scenario is recursively done

until achieving L scenarios.

B.2. Scenario Tree Construction Approach

In §4.6.1, Latin Hypercube Sampling (LHS) method [85] is used to construct a set of dis-

crete scenarios for the corresponding multivariate stochastic parameters (number of patient

requests) as a scenario fan. We then convert this scenario fan into a scenario tree, and use

forward selection method to obtain an appropriate number of scenarios [62].

Let F be the probability distribution for a scenario fan of multivariate stochastic param-

eters, then each scenario s ∈ S = {1, · · · , S} is presented by ξ(s) = {ξ(s)
0 , ξ

(s)
1 , · · · , ξ(s)

T } with

probability πs. Since all scenarios are the same at the first node, i.e., ξ
(1)
0 = ξ

(2)
0 = · · · = ξ

(S)
0

in the scenario fan, the total number of nodes is S × T + 1, where T = |T |, in the scenario

fan. The goal of scenario tree construction is to generate a scenario tree with probability

distribution Fζ based on the scenario fan in which the number of scenarios is reduced, and

also the Kantorovich distance between F and Fζ is less than a pre-specified value ζ (i.e.,

DT (F, Fζ) ≤ ζ).

To this aim, the forward scenario reduction is used at each period t ∈ {1, · · · , T},
and successive clustering of scenarios is then exploited to convert a scenario fan into a

scenario tree. To construct a scenario tree with DT (F, Fζ) ≤ ζ, at each period t, ζt

is considered for implementing forward scenario reduction under the criterion
∑T

t=1 ζt ≤
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ζ. This means that at each period t, maximal reduction strategy is applied such that∑
s∈ del(S) πs · mins′ /∈ del(S) dt(ξ

(s), ξ̃(s′)) ≤ ζt, where the distance between two scenarios ξ(s)

and ξ̃(s′) is calculated by dt(ξ
(s), ξ̃(s′)) =

∑t
υ=1 || ξ

(s)
υ − ξ̃(s′)

υ || at each period t, and ξ̃ is the

reduced version of ξ after implementing the reduction strategy.

Furthermore, we use ζ = ζrel · ζmax where 0 < ζrel < 1 is a constant parameter, which

presents a scale for the amount of reduction in the scenario fan, and ζmax is the optimal

distance between probability distribution of scenario fan and one of its scenarios with prob-

ability one. To generate the scenario tree, at each period t, ζt is then computed by the

following relation:

ζt =
ζ

T + 1

(1

2
+ δ

(
1− t

T + 1

))
, ∀t, (4.42)

where δ ∈ [0, 1] is a constant parameter, which is set to one in our implementation.

B.3. Illustration of Generating a Scenario Tree for the Number of Patient Re-

ferrals

In this section, we explain the details along with an example on how we generate a

scenario tree for the number of appointment referrals that will be used in the IMSDRO-

APRX model as well as the MS-MIP model. For each patient class, we first fit a Poisson

probability distribution over the number of appointment referrals from that patient class.

The LHS method is then used to generate a set of discrete scenarios for the corresponding

multivariate stochastic parameters as a scenario fan. It is essential to efficiently reduce the

number of scenarios in order to avoid computationally intractable stochastic programs. We

then deploy a forward scenario tree construction heuristic to convert the scenario fan into a

scenario tree, and so reduce the number of generated scenarios (see §B.2 for details). The

strategy is to modify the fan of scenarios via bundling scenarios, which produces scenario

trees with fewer scenarios than initial scenario fans.

The process of scenario tree construction for the number of appointment referrals in

the CAS problem is illustrated by Figure 4.12 step by step. The number of final scenarios

depends on a constant parameter ζrel between zero and one, that represents a scale for the

reduction amount compared with the scenario fan. To construct a scenario tree for our

case study, an initial scenario fan with 100 scenarios (the most left tree in Figure 4.12) is

generated for the stochastic parameters over an arrival horizon of T = |T | = 5 periods (note

that in our case study we have five business days as the arrival horizon T ), and the scenario

tree construction approach is then implemented with ζrel = 0.7. Finally, a scenario tree with

14 scenarios (the most right tree in Figure 4.12) is obtained. It should be mentioned that

by increasing the reduction scale ζrel, the number of obtained scenarios decreases, so the

information loss increases. However, as the number of scenario decrease, we have a better
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Figure 4.12: Illustration of scenario tree construction procedure for the number of appoint-
ment referrals in our case study over an arrival horizon of T = |T | = 5 business days. We
start with a scenario fan of 100 scenarios (the most left tree), and then turn it into a scenario
tree of 14 scenarios (the most right tree).

computational tractability for solving the multi-stage stochastic program. Therefore, there

is a trade-off between the number of scenarios and computational tractability. In §6.4, we

evaluate the efficiency of this scenario construction algorithm in generating a scenario tree

for the number of appointment referrals for our case study and two other random instances

of our CAS problem. In particular, we find that ζrel = 0.7 is a good value for the reduction

scale. Refer to §6.4 for details.

B.4. Evaluation of a Scenario Construction Algorithm.

There are two main criteria in the literature of stochastic programming [96] by which

the efficiency of a scenario construction algorithm can be evaluated to ensure that there is

not too much loss of information while constructing an adequate scenario tree. They include

(i) in-sample stability and (ii) out-of-sample stability. Due to the random nature of most

scenario construction algorithms (such as the LHS that we used), different scenario trees

will be obtained with the same input if we apply a scenario construction algorithm multiple

times. Then, the in-sample stability guarantees that if several scenario trees are constructed

with the same input, the optimal objective function values of their corresponding stochastic

optimization models with these scenario trees are the same approximately. In other words, if

the objective function value does not change too much, we can claim the in-sample stability.

We have done this analysis in the subsection “In-sample Stability Analysis” (see Table 4.5)

in §4.6.4. Further, the out-of-sample stability guarantees that the objective function value

obtained from implementing the scheduling policy by using our data-driven rolling-horizon
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procedure should be close to the optimal objective function of the stochastic model. Indeed,

the out-of-sample stability ensures that the true objective value obtained from any simulation

procedure (e.g., the data-driven rolling horizon algorithm in our paper) is close to the optimal

objective value of the stochastic program. This analysis is performed in the subsection

“Evaluation of Objective Function Values (Overtime)” in §4.6.2 (see Table 4.3).

B.5. Ambiguity Set Generation for Surgery Durations.

We follow the procedures in the appointment scheduling literature ([55], and [91]) to

generate ambiguity sets for the generation of surgery durations in the sample paths for

the RHP (Algorithm 5), so that we can simulate the reality. In order to consider the

distributional robustness for the surgery duration, we assume that the surgery duration

can follow three classes of probability distributions: normal, gamma, and log-normal, each

of which can be specified by their means and standard deviations. In each CAS problem

instance for the IMSDRO-APRX model, we sample realizations (d1
γ,k, d

2
γ,k, · · · , dMγ,k) for each

class γ ∈ Γ and surgeon k ∈ K pair. In each of M realizations for patient class γ and surgeon

k ∈ K pair, we first select randomly a distribution among normal, gamma, and log-normal,

and then obtain a random surgery duration from that distribution with the known mean

and standard deviation.

4.9.3 Appendix C: Alternative Optimization Model to Balance Overtime and

Access Delay

In both the problem statement in §4.2 and the IMSDRO formulation in §4.3, we have

assumed that (i) all patients must obtain one clinic appointment date and (if needed) one

surgery appointment date within their wait time target windows, and (ii) overtime are de-

ployed as needed to accommodate the clinical and surgical capacities. In this appendix, we

relax these assumptions by trying to balance the trade-off between patients’ access delays

and surgeon overtimes.

To this aim, we propose an alternative optimization model for the CAS problem in which

we assume no clinical and surgical overtimes for the surgeons and they only have regular

clinical and surgical capacities; however, there is a penalty for the case when we cannot meet

the clinical and surgical wait time targets for patients. In particular, we incur a clinic penalty

of uk,mp,γ,t,s ≥ 0 for each class γ ∈ Γ patient p ∈ Dsγ,t whose request is received on day t ∈ T
under scenario s ∈ S and has a clinic appointment visit on m > t + WTSγ − CSGγ (recall

that the safe range for clinic appointment visit is m ∈
[
t + WTCγ, t + WTSγ − CSGγ

]
).

Moreover, we incur a surgery penalty of vk,nγ,t,m,s ≥ 0 for class γ ∈ Γ patients whose requests

are received on day t ∈ U ∪T under s ∈ S, and have clinic visit on m ∈ T \{t0}, but surgery
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visit on n > t+WTSγ with surgeon k ∈ K. We have a similar surgery penalty ek,nγ,t,t0 ≥ 0 for

class γ ∈ Γ patients whose requests are received on day t ∈ U ∪{t0}, and have clinic visit on

current day t0, but surgery visit on n > t+WTSγ with surgeon k ∈ K (recall that the safe

range for surgery appointment visit is n ∈
[
t+WTCγ, t+WTSγ −CSGγ

]
). We summarize

the new notations in Table 10. The other notations are as before (see Table 4.1).

Multi-stage stochastic model. With these three new penalty decisions variables, the
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MS-MIP model (4.1)-(4.17) is turned into the following optimization model:

min
∑
s∈S

πs
∑
k∈K

∑
γ∈Γ

(∑
m∈L

∑
t∈T

∑
p∈Dsγ,t

uk,mp,γ,t,s +
∑
m∈L

∑
t∈U∪T

∑
n∈L

vk,nγ,t,m,s +
∑
n∈L

∑
t∈U∪{t0}

ek,nγ,t,t0

)
(4.43a)

s.t. xk,mp,γ,t,s(m− t−WTSγ + CSGγ) ≤ uk,mp,γ,t,s, ∀γ ∈ Γ, t ∈ T , s ∈ S, p ∈ Dsγ,t, k ∈ K,m ∈ L,
(4.43b)

yk,nγ,t,m,s(n− t−WTSγ) ≤ vk,nγ,t,m,s, ∀γ ∈ Γ, t ∈ T ∪ U , s ∈ S, k ∈ K,m ∈ T \{t0}, (4.43c)

ŷk,nγ,t,t0(n− t−WTSγ) ≤ ek,nγ,t,t0 , ∀γ ∈ Γ, t ∈ U ∪ {t0}, k ∈ K, n ∈ L, (4.43d)

xk,mp,γ,t,s = 0, ∀γ ∈ Γ, t ∈ T , s ∈ S, p ∈ Dsγ,t, k ∈ K,m ∈
[
t0, t+WTCγ − 1

]
, (4.43e)

te∑
m=t+WTCγ

∑
k∈K

xk,mp,γ,t,s = 1, ∀γ ∈ Γ, t ∈ T , s ∈ S, p ∈ Dsγ,t, (4.43f)

rγ

( ∑
p∈D̃γ,t

x̃k,mp,γ,t

)
≤

te∑
n=m+CSGγ

yk,nγ,t,m,s, ∀γ ∈ Γ, t ∈ U ,m ∈ T \{t0}, k ∈ K, s ∈ S, (4.43g)

rγ

( ∑
p∈Dsγ,t

xk,mp,γ,t,s

)
≤

te∑
n=m+CSGγ

yk,nγ,t,m,s, ∀γ ∈ Γ, t ∈ T ,m ∈ T \{t0}, k ∈ K, s ∈ S,

(4.43h)

z̃kγ,t ≤
te∑

n=t0+CSGγ

ŷk,nγ,t,t0 , ∀γ ∈ Γ, t ∈ U ∪ {t0}, k ∈ K, (4.43i)

∑
γ∈Γ

cγ

(∑
t∈U

∑
p∈D̃γ,t

x̃k,mp,γ,t +
∑
t∈T

∑
p∈Dsγ,t

xk,mp,γ,t,s

)
≤ Uk

m, ∀m ∈ L, k ∈ K, s ∈ S, (4.43j)

∑
γ∈Γ

dγ,k

(∑
t∈U

∑
m∈U

ỹk,nγ,t,m +
∑
t∈T

∑
m∈T \{t0}

yk,nγ,t,m,s +
∑

t∈T ∪{t0}

ŷk,nγ,t,t0

)
≤ V k

n ,∀n ∈ L, k ∈ K, s ∈ S,

(4.43k)

uk,mp,γ,t,s ≥ 0, ∀γ ∈ Γ, t ∈ T , s ∈ S, p ∈ Dsγ,t, k ∈ K,m ∈ L, (4.43l)

vk,nγ,t,m,s ≥ 0, ∀γ ∈ Γ, t ∈ T ∪ U , s ∈ S, k ∈ K,m ∈ T \{t0}, (4.43m)

ek,nγ,t,t0 ≥ 0, ∀γ ∈ Γ, t ∈ U ∪ {t0}, k ∈ K, n ∈ L, (4.43n)

(4.12)− (4.13), (4.14)− (4.17). (4.43o)

The objective function (4.43a) is to minimize the expected penalties due to not meeting

clinical and surgical wait time targets for patients. Constraints (4.43b)-(4.43d) along with

constraints (4.43l)-(4.43n) are the related constraints for making the penalty decisions uk,mp,γ,t,s,

vk,nγ,t,m,s and ek,nγ,t,t0 . Constraints (4.43e)-(4.43f) and (4.43g)-(4.43i) determine the clinic and
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surgery appointment visits, respectively. Constraints (4.43j)-(4.43k) restricts the regular

clinical and surgical capacities of surgeons on each day, respectively. Similar to the MS-MIP

model (4.1)-(4.17), we assume that the surgery durations are deterministic in the above

MS-MIP model (4.43a)-(4.43o).

Stage Decision Variables

uk,mp,γ,t,s
: Clinical penalty if a class γ ∈ Γ patient p whose request is received on day t ∈ T
under scenario s ∈ S, has clinic visit on day m > t+WTSγ − CSGγ with surgeon k ∈ K.

vk,nγ,t,m,s

: Surgical penalty if class γ ∈ Γ patients whose requests are received on day t ∈ U ∪ T
under s ∈ S and have clinic visit on m ∈ T \{t0}, have surgery visit on day
n > t+WTSγ with surgeon k ∈ K.

ek,nγ,t,t0
: Surgical penalty if class γ ∈ Γ patients whose requests are received on day t ∈ U ∪ {t0},
and have clinic visit on day t0, have surgery visit on n > t+WTSγ with surgeon k ∈ K.

Table 4.8: The description of new notations used by the MS-MIP model (4.43a)-(4.43o) of
the CAS problem.

Integrated multi-stage stochastic and distributionally robust model. To model the

uncertainty in surgery durations presented by the moment-based ambiguity set Φ(µ,σ,Θ)

in (4.19a)-(4.19c), we deploy the IMSDRO approach described in §4.3.2, to MS-MIP model

(4.43a)-(4.43o). The resulting IMSDRO model is formulated as follows:

Z̄IMSDRO = min
x,y,ŷ,u,v,e

{
w1

(∑
s∈S

πs
∑
k∈K

∑
γ∈Γ

(∑
m∈L

∑
t∈T

∑
p∈Dsγ,t

uk,mp,γ,t,s +
∑
m∈L

∑
t∈U∪T

∑
n∈L

vk,nγ,t,m,s

(4.44a)

+
∑
n∈L

∑
t∈U∪{t0}

ek,nγ,t,t0

))
+ w2

(∑
s∈S

πs max
P∈Φ(µ,σ,Θ)

EP
[
fs(ys, ŷ,d)

])}
,

s.t. (xs, ys, ŷ, us, vs, e) ∈ Os, ∀s ∈ S (4.44b)

where Os is the feasible region defined by the constraints (4.43a)-(4.43j) and (4.43l)-(4.43o).

The objective function (4.44a) is obtained by removing constraints (4.43k) from the MS-

MIP model (4.43a)-(4.43o) and adding its worst-case expected value over the set of plausible

surgery duration distributions P ∈ Φ(µ,σ,Θ) into the objective function, which results in

the min-max IMSDRO model (4.44a)-(4.44b).

An important feature of IMSDRO model (4.44a)-(4.44b) compared with IMSDRO model

(4.20a)-(4.20b) is that two parts of the objective functions (4.44a) weighted by w1 and w2 are

in fact two conflicting objectives. The first part weighted by w1 is to minimize the expected

penalties incurred due to not meeting the clinical and surgical wait time targets for patients,

and the second one weighted by w2 is to minimize the maximum penalties incurred due to

not satisfying the regular surgical capacities of surgeons. Indeed, it is the case that either
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we can meet the clinical and surgical wait time targets for patients, or we can make regular

capacities for surgeons.

Following the steps of IMSDRO approach described in Propositions 11 and 12 and Theo-

rem IV.1, the min-max IMSDRO model (4.44a)-(4.44b) can be approximated by the following

optimization model:

˜̄ZIMSDRO = min
x,y,ŷ,u,v,e,δ,α,β

{
w1

(∑
s∈S

πs
∑
k∈K

∑
γ∈Γ

(∑
m∈L

∑
t∈T

∑
p∈Dsγ,t

uk,mp,γ,t,s +
∑
m∈L

∑
t∈U∪T

∑
n∈L

vk,nγ,t,m,s

+
∑
n∈L

∑
t∈U∪{t0}

ek,nγ,t,t0

))
+ w2

(∑
s∈S

πs
∑
γ∈Γ

∑
k∈K

(
µγ,k α

k
γ,s + (µ2

γ,k + σ2
γ,k) β

k
γ,s

)
+
∑
s∈S

πsδs

)}
,

(4.45a)

s.t. δs ≥ Ψ̃s(ys, ŷ,αs,βs), ∀s ∈ S (4.45b)

(xs, ys, ŷ, us, vs, e) ∈ Os, ∀s ∈ S (4.45c)

δs ∈ R, αs, βs ∈ R|Γ|×|K|, ∀s ∈ S. (4.45d)

The above IMSDRO-APRX model (4.45a)-(4.45d) can be solved by the constraint gen-

eration Algorithm 4 described in §4.4.
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CHAPTER V

Conclusions and Future Research

5.1 Summary and Conclusions

This dissertation developed different personalized data-driven learning and optimization

methods for different applications, including chronic disease management, online appoint-

ment scheduling platforms, and healthcare delivery systems.

Chapter II introduced a new personalized disease progression control model with a two-

dimensional nested control, and proposed the first contextual learning and optimization

algorithm for it. For this algorithm, we provided a rigorous analytical performance analysis

that involves several new technical ideas integrating the strength of contextual bandit and

online convex optimization in a seamless fashion. Although our model and algorithm were

motivated by a fundamental medical decision-making problem, they can also be applied to a

wide range of other operation problems (e.g., joint inventory and pricing/vehicle routing) in

which there are two levels of decision-making process. We illustrated our algorithm’s practi-

cal relevance by evaluating it empirically on a critical chronic disease problem of controlling

high blood pressure for patients with Type 2 Diabetes Mellitus (T2DM) at high risk for CVD.

Our algorithm/model fills an important gap in current clinical guidelines of blood pressure

management, namely that they do not inform the choice and dosage for the third-line BP-

lowering medication to maintain the target SBP of 120 mmHg. Our empirical results provide

medical professionals with critical insights into the effect of different third-line medications

on achieving the BP target of 120 mmHg for patients with T2DM at high risk for CVD. In-

stead of a trial-and-error approach to find the right medication and its corresponding dosage

to achieve BP control, which is common in everyday clinical practice, our decision support

tool provides an optimized medication and dosage considering all key contextual variables

of a given individual. Personalizing BP treatment, in particular for patients with diabetes

who are at increased risk of cardiovascular and microvascular events, can improve outcomes

and result in cost containment by averting some of these costly events.
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Chapter III studied an important class of online scheduling problem with budgeted over-

time in which the model has no knowledge about the pattern or underlying distribution of

the arrival process. Upon arrival of a customer, the system makes an instantaneous and

irrevocable allocation decision for this customer, without knowing any information on sub-

sequent customers. We adopt a primal-dual approach to develop new effective and efficient

online algorithms to make for every arriving patient on every day in the horizon not only a

date-server allocation decision but also a decision of whether or not to use overtime to serve

the patient. The proposed online policies (i) are robust to future uncertain information, (ii)

are easy to implement and extremely efficient to compute, (iii) allow for heterogeneity in

both reward and service requirement by a server, and (iv) admit a theoretical performance

guarantee. Comparing our online policy with the optimal offline policy, we obtain a compet-

itive ratio which guarantees the worst-case performance of our proposed online policy. For

practical settings, we extend our online algorithm to a rolling horizon paradigm. A particular

emphasis of this paper has been put on the real-world applicability of our proposed methods.

The online resource allocation problem studied in this work is not only investigated through

a theoretical lens but also from the perspective of healthcare operations. We evaluate the

empirical performance of our online algorithms by using real appointment-scheduling data

from a healthcare clinic of our partner health system. Our computational results show that

the proposed online policies perform much better than their theoretical worst-case perfor-

mance guarantee and extremely well compared to the pervasive FCFS scheduling heuristic

and a new policy we term the nested threshold policy.

Chapter IV studied a new class of appointment scheduling problems called the coordi-

nated clinic and surgery appointment scheduling” in which patients are stratified into patient

classes, with limits on the allowable access delay from request to appointment dates. We

introduced the concept of care coordination in the sense of setting appointments for pairs of

sequential clinic and (if needed) surgery visits that together achieve timely access to care.

Methodologically speaking, our integrated multi-stage stochastic and distributionally robust

optimization (IMSDRO) is the first optimization approach that can jointly incorporate dif-

ferent types of uncertainty in the number of patient appointment requests by a scenario tree,

and in surgery durations by a moment-based ambiguity set for distributional robustness. Us-

ing the special structure of the CAS problem, we proposed a constraint generation algorithm

for efficiently solving this problem. We then developed a new data-driven rolling horizon

procedure to implement the decisions made by the IMSDRO approach in practice. This

allows healthcare practitioners to make efficient use of data that is obtained as time unfolds,

and so adjust their decisions in a rolling horizon framework. In a sense, our methods/models

can be applied in an online (or real-time) fashion. We tested the validity of our mod-
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els/algorithms in a case study of scheduling clinic consultation and surgery appointments,

and demonstrated that a significant improvement could be achieved if our partner hospital

were to switch from the current heuristic scheduling protocol to our proposed policies. We

provide several practical insights from our empirical analysis as well.

5.2 Future Research

In summary, we addressed three major areas surrounding data-driven learning and opti-

mization; however, several more avenues of research, with both methodological contribution

and practical impact, can be conducted to build on this thesis.

Unlike the setting of our problem in Chapter II, a patient often has to be treated se-

quentially over multiple stages. For such setting, dynamic treatment regimes (DTR) provide

a multi-stage personalized framework of distinct decision rules that determines a treatment

decision at each stage given the patient’s evolving condition. While most literature focuses

on learning the optimal DTR from offline historical data, a promising future direction is to

develop adaptive online reinforcement learning (RL) algorithms that achieve near-optimal

regret for DTRs in online settings, without access to historical data. The next future research

is to develop online RL algorithms that learn the optimal DTR while leveraging any imper-

fect and confounded offline historical data available. They are useful in ongoing monitoring

of patient’s condition and just-in-time interventions.

There are some limitations in the proposed models in Chapter III that could spur future

research. First, we do not consider stochasticity in the service time requirement in our

theoretical analysis (even though we investigate it empirically). Thus, it would be interesting

to see if one can design an online algorithm that can handle stochastic service times and

obtain a CR. Second, the rolling horizon extension is myopic and not optimal. It would be

interesting to study the full-blown dynamic optimization problem and establish meaningful

theoretical results. Third, in practice, patient no-shows and cancellations happen from time

to time. No-shows do not impact the model at the daily level (only time of day). The

current methodology does not incorporate cancellations, and we leave it for future research.

Lastly, there is a small gap between our lower and upper bounds for the competitive ratio

of our online algorithms, so it is not tight. Thus, whether the proposed online primal-dual

algorithms admit a tighter lower bound or there is a tighter upper bound for any online

algorithm remains a question for future research.

This study in Chapter IV has a few limitations. In our models, we do not consider

patient no-shows and cancellations as well as the potential seasonality in demand as they

rarely happen in our highly-specialized partner surgical suites. Patient preferences are also

187



not part of our models and algorithms. Clearly, in many health care environments, the

patient can prioritize the selection of the provider with whom they feel most comfortable.

Our scope is; however, limited to the important class of environments in which the patients

typically accept the provider offering the earliest access. Moreover, the allocation of resources

including operating rooms to surgeons is not the main focus in our paper. Finally, given

that a tractable system state can be defined, approximate or robust dynamic programming

approaches may be used to solve the CAS problem. These ideas could be promising future

research directions in the area of appointment scheduling.
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[38] Sébastien Bubeck, Rémi Munos, Gilles Stoltz, and Csaba Szepesvári. X-armed bandits.
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