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Abstract 

Dimensions of early adversity, such as violence exposure and social deprivation, may 

have different effects associated with socioemotional functioning in the developing brain and 

different factors may be protective. This dissertation examined the downstream effects of 

childhood violence exposure and social deprivation in data from the Fragile Families and Child 

Wellbeing Study at birth, and ages 1, 3, 5, 9, and 15 years. Study one examined the association 

between violence exposure, social deprivation, and amygdala-prefrontal cortex white matter 

connectivity, a crucial circuit for emotion regulation. High violence exposure coupled with high 

social deprivation related to less amygdala–OFC white matter connectivity. Violence exposure 

was not associated with white matter connectivity when social deprivation was at mean or low 

levels (i.e., relatively socially supportive contexts). Therefore, social deprivation may exacerbate 

the effects of childhood violence exposure on the development of white matter connections 

involved in emotion processing and regulation. Conversely, social support may buffer against 

them. Study two investigated the association between violence exposure, social deprivation, and 

adolescent resting-state functional connectivity in two resting-state networks involved in 

socioemotional functioning (salience network, default mode network) using a person-specific 

modeling approach. Childhood violence exposure, but not social deprivation, was associated 

with reduced adolescent resting-state density of the salience and default mode networks. A data-

driven algorithm, blinded to childhood adversity, identified youth with heightened violence 

exposure based on resting-state connectivity patterns. Childhood violence exposure was 

associated with adolescent functional connectivity heterogeneity, which may reflect person-
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specific neural plasticity and should be considered when attempting to understand the impacts of 

early adversity on the brain. Study three examined whether school connectedness was protective 

against violence exposure and social deprivation when predicting symptoms of internalizing and 

externalizing psychopathology and positive function and if school connectedness was uniformly 

protective against both dimensions of adversity. Results suggest that school connectedness is 

broadly related to better outcomes and may confer additional protection against social 

deprivation. These findings highlight the important role that the school environment can play for 

youth who have been exposed to adversity in other areas of their lives. Additionally, the 

interactive effect of school connectedness with social deprivation, but not violence exposure, 

supports modeling risk and resilience processes using dimensional frameworks to better identify 

specific groups of youth that may benefit from interventions that boost social connectedness at 

school in future research. Overall, this dissertation provides evidence for the complex and 

person-specific ways through which risk and resilience relate to development and points to 

considerations for future research. This research has implications for understanding how 

dimensions of adversity affect the brain and behavior during development and what factors can 

be protective, which can inform future neuroscience-informed policy interventions.  
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Chapters 

Chapter 1: Introduction 

Early adversity is a potent and unfortunately common public health concern that has 

impacts on physical and mental health during childhood, adolescence, and throughout the 

lifespan (Green et al., 2010). Altered neural development is a hypothesized mechanism for the 

effects of early adversity (McLaughlin et al., 2014). This dissertation examines how childhood 

exposure to adversity shapes the adolescent brain using computationally sophisticated methods 

that more accurately assess neural development. Importantly, many children exposed to early 

adversity do not experience negative outcomes (Masten, 2001). Thus, this dissertation also aims 

to identify protective factors that promote resilience. This research has implications for 

understanding how dimensions of adversity affect the brain during development and what factors 

can be protective, which can inform future neuroscience-informed policy interventions. 

Adverse childhood experiences (ACEs) consist of a broad set of negative exposures 

during childhood including physical and sexual abuse, emotional and physical neglect, violence 

in the home and neighborhood, institutional rearing, and chronic poverty (Felitti et al., 1998; 

Hughes et al., 2017). According to recent statistics, approximately 58% percent of adolescents 

experience one ACE, 1 in 4 children experience some form of child maltreatment, and 

approximately 40% are exposed to violence in the home or neighborhood (Finkelhor et al., 2015; 

McLaughlin, Greif Green, et al., 2012; Sacks & Murphy, 2018). These statistics are particularly 

alarming due to the associations of experiences of early adversity with a whole host of negative 

physical health outcomes, such as metabolic syndrome, heart disease, autoimmune conditions, 

and some cancers, as well as mental health outcomes, such as increased risk for internalizing 
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disorders (i.e., anxiety and depression), externalizing disorder, and substance use disorders 

(Green et al., 2010; Nusslock & Miller, 2016). This increased risk is present in childhood and 

persists through adolescence into adulthood (Green et al., 2010). 

Exposure to early adversity impacts individual development in complex, 

multidimensional ways. Seminal theories of development and developmental psychopathology 

highlight the influence of the ongoing, reciprocal interactions between an individual and their 

environment, or context, throughout the lifespan in the development of adaptive and maladaptive 

outcomes (Bronfenbrenner & Morris, 2007; Cicchetti & Lynch, 1993; Masten & Cicchetti, 2010; 

Sameroff, 2010; Sroufe, 2009). Environmental risk and protective factors come from multiple, 

nested systems ranging from micro (e.g., parenting behaviors) to macro (e.g., societal attitudes 

and ideologies) (Bronfenbrenner & Morris, 2007). These contextual influences interact with 

individual-level biological and psychological variables to shape patterns of biological, socio-

emotional and cognitive development (Masten & Cicchetti, 2010; Sroufe, 2009; Wiggins & 

Monk, 2013). The complex and probabilistic way through which adversity impacts the individual 

explains the existence of multiple different approaches that attempt to shed light on how early 

adversity shapes development.  

The prevailing approach to studying early adversity has been the cumulative risk model 

(Evans et al., 2013; Felitti et al., 1998; Sameroff et al., 1987). In this approach, the number of 

ACEs that a person has experienced are tallied to create an index of cumulative risk across 

multiple domains. The hypothesized physiological mechanism through which adversity affects 

the brain and behavior is the body’s general stress response, including the hypothalamic-

pituitary-adrenal axis (HPA axis) (Evans & Kim, 2007; Koss & Gunnar, 2018). In the normal 

HPA axis response to stress, the hypothalamus releases corticotropin-releasing factor, which 
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binds to receptors in the pituitary gland releasing adrenocorticotropic hormone (ACTH). ACTH 

then binds to receptors in the adrenal gland which stimulates the release of cortisol, a commonly 

measured stress hormone (Hyman, 2009). The allostatic load model describes how this normal, 

healthy response to stress theoretically becomes harmful (McEwen, 1998). Allostasis is 

adaptation in the face of potentially stressful challenges which involves activation of neural, 

neuroendocrine and neuroendocrine‐immune mechanisms. These allostatic processes are 

adaptive in many cases. However, with chronic exposure to multiple ACEs, allostatic systems 

may either be overstimulated or not perform normally, which has been termed allostatic load, or 

the price of adaptation. Over time, chronic high allostatic load is posited to lead to the negative 

health outcomes associated with early adversity (McEwen, 1998).  

The cumulative risk framework has been instrumental in predicting which kids may be at 

an increased risk for negative outcomes and has underscored the importance of preventing 

exposure to early adversity when possible (Sameroff, 1999). However, it does not aim to identify 

the mechanism(s) through which early adversity can “get under the skin” and influence neural 

developmental (McLaughlin et al., 2014; Schilling et al., 2008). Additionally, there is 

considerable heterogeneity in the effect of early adversity on later physical and mental health 

outcomes (Hughes et al., 2017). Part of this heterogeneity in outcomes may be the result of 

treating all ACEs as the same and, perhaps, taking a more precise approach may help to parse not 

only the mechanisms of influence, but also the heterogeneity of effects. 

Focusing on specific types or categories of experience is another approach to studying 

early adversity which take steps towards identifying mechanisms of influence on neural 

development. There are multiple ways to do this. One approach is to investigate a single type of 

adversity. For example, child neglect is hypothesized to affect how the ventral striatum functions 
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(Hanson, Hariri, et al., 2015) and child abuse is posited to alter the structure and function of 

brain regions, such as the medial prefrontal cortex (PFC) (Kaufman et al., 2000). However, this 

does not account for the complex, co-occurring nature of adversities. Additionally, these 

categorical studies are often conducted with samples where participants are preselected based on 

exposure to extreme adversity (i.e., institutional rearing) or a history a trauma-related 

psychopathology (i.e., PTSD) (Hyde et al., 2020; Teicher & Samson, 2016). Research in these 

samples is necessary and important; however, findings may not be generalizable to populations 

who experience less extreme, but more common, exposures to adversity (e.g., low-income 

families) (Hyde et al., 2020; Thapar & Rutter, 2019). Another way is to look at multiple 

categories of risk simultaneously (Trentacosta et al., 2013). This approach is designed to address 

multiple sources of exposure to early adversity in a single individual, but categorical exposures 

are often linked to distinct mechanisms and may miss common mechanisms that exist across 

multiple types of experiences (McLaughlin et al., in press). An approach that may provide 

specific insight into distinct and relatively global mechanisms of influence and account for the 

co-occurring, multidimensional nature of early adversity is a dimensional model of adversity 

(McLaughlin et al., 2014).  

Theoretical Framework: Dimensional Model of Early Adversity 

Dimensional models of adversity are a relatively recent approach where the complex 

experiences of early adversity are broken down into core underlying dimensions that have at 

least partially distinct impacts of development (McLaughlin et al., in press). In the dimensional 

model of adversity and psychopathology (DMAP), one of the first and more prominent 

dimensional models, adversity is broken down into the two correlated, but separable, dimensions 

of threat and deprivation (McLaughlin et al., 2014). Threat is defined as experiences that pose a 
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threat to an individual’s physical integrity, and deprivation is defined as the absence of expected 

input and complexity in an individual’s environment (Sheridan & McLaughlin, 2014). The threat 

and deprivation dimensions in the DMAP approach are hypothesized to influence brain 

development through both distinct and potentially more global mechanisms. Hypothesized 

mechanisms through which dimensions of adversity affect neural development include global 

stress mechanisms, such as upregulation of the HPA-axis, similar to cumulative risk models. 

However, dimensions of adversity are also hypothesized to influence development in more 

specific ways through experience-driven plasticity (McLaughlin et al., in press; Nelson & 

Gabard-Durnam, 2020).  Threat is posited to influence the development of neural structure and 

function involving fear-learning and emotion regulation circuits including regions such as the 

amygdala, hippocampus, and ventromedial PFC. Alternatively, deprivation is posited to influence 

regions of the brain that are responsible for integrating complex social and cognitive stimuli 

including the PFC, superior/inferior parietal cortex, and superior temporal cortex (McLaughlin et 

al., 2014; Sheridan & McLaughlin, 2014). This theoretical framework emphasizes that, although 

these are theoretically distinct dimensions, these experiences frequently co-occur, so it is 

important to include both simultaneously in models predicting effects on the brain and behavior. 

Additionally, the DMAP framework acknowledges that these are likely not the only dimensions 

of early adversity and hypothesize that unpredictability of the environment may be another 

(McLaughlin et al., in press, 2014).  

In work building on the DMAP approach, two dimensions of adversity, violence exposure 

and social deprivation, have been proposed to alter neural structure and function, cortisol 

function, and behavior in distinct ways (Hein et al., 2020; Peckins et al., 2019). The constructs 

included in these dimensions aim to account for multiple levels of proximity to the individual 
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(i.e., home, neighborhood) to more comprehensively index exposure (Figure 1.1.) 

(Bronfenbrenner & Morris, 2007; Sameroff, 2010). The violence exposure dimension, which is 

similar to the threat construct in DMAP, includes experiences of abuse, exposure to intimate 

partner violence in the home, and community violence (Hein et al., 2020). Social deprivation is a 

more specific construct than the general deprivation dimension in DMAP which includes 

experiences of neglect, a lack of intimate partner support for the mother in the home, and a lack 

of neighborhood cohesion (Hein et al., 2020). Social deprivation is posited to influence areas of 

the brain involved in reward processing, such as the ventral striatum (Hanson, Hariri, et al., 

2015; Hein et al., 2020). Violence exposure in childhood, but not social deprivation, has been 

associated with a blunted amygdala response to threatening stimuli, a reduced habituation, or 

adaptation, of the amygdala’s response to threatening stimuli, and blunted cortisol reactivity 

following a socially evaluated cold pressor task in adolescence (Hein et al., 2020; Peckins et al., 

2019). This blunted amygdala response and cortisol reactivity diverges from extant literature on 

child abuse and general early adversity research which has largely found increased amygdala and 

cortisol reactivity with early adversity (for amygdala meta-analysis see Hein & Monk, 2016; for 

cortisol review see Koss & Gunnar, 2018). However, that may be due to differences in sample 

composition because the youth in both of these studies were exposed to relatively high levels of 

disadvantage. Previous research in samples exposed to higher levels of chronic adversity has 

found similar blunted amygdala reactivity (Gard et al., 2017; Holz et al., 2017). Additionally, the 

disparate findings may be due to a moderating variable in the environment, such as social 

support. Childhood social deprivation has been associated with blunted ventral striatum, an area 

of the brain involved in reward processing, to happy faces, a socially rewarding stimulus in 

adolescence (Hein et al., 2020). It has also been shown to moderate the association between 
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violence exposure and adolescent cortisol reactivity such that, when social deprivation is high, 

compared to mean and low levels of social deprivation, the cortisol response is even more 

blunted (Peckins et al., 2019). Interestingly, the observed changes in brain function correlated 

with both violence exposure and social deprivation do not relate to adolescent psychopathology 

(Hein et al., 2020) suggesting that these neural changes may not necessarily be detrimental for 

adolescent outcomes.   

Previous work examining the dimensional effects of childhood violence exposure and 

social deprivation on adolescent outcomes has provided important and useful insights, but also 

identify directions for future research. This work shows that childhood violence exposure and 

social deprivation are associated with differences in brain functions in single regions of interest 

(ROIs) and the stress response in distinct ways. Additionally, it shows that violence exposure and 

social deprivation can interact to predict adolescent outcomes meaning that the environment of 

adversity is likely unique for each individual and that multiple factors influence how adversity 

“gets under the skin”. We do not know; however, how these dimensions of adversity influence 

how different regions of the brain are connected and communicating with each other. Given the 

lack of associations between the neural correlates of violence exposure and social deprivation 

and psychopathology, we also do not know what factors are promoting resilience and are helping 

the teens adapt to their environment of adversity. Perhaps given the interaction seen in Peckins et 

al. (2019), where low levels of social deprivation buffered against the effects of violence 

exposure, social support may play a role. This dissertation examines how childhood exposure to 

violence is associated with white matter connectivity between the amygdala and PFC, regions of 

the brain involved in socioemotional function and emotion regulation, and how social 

deprivation may influence observed associations (study 1). Additionally, this dissertation 
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examines how violence exposure and social deprivation are associated with differences in 

resting-state functional connectivity using a person-specific modeling approach which helps 

account for the unique way the individual is affected by the environment of adversity (study 2). 

Lastly, this dissertation aims to determine what factors may be protective against these 

dimensions of adversity to help promote resilience (study 3).   

Theoretical Framework: The Brain as a System 

Traditionally, the neural impact of early adversity has been evaluated by quantifying the 

task-dependent activation of a single ROI, such as the amygdala or the correlation of activation 

in a pair of ROIs, for example, the amygdala and the subgenual anterior cingulate cortex (ACC)  

(for review see McCrory et al., 2017). These methods are effective in identifying individual and 

group differences in localized areas of the brain, but these functional specialization approaches 

do not provide information on how different regions communicate and how that communication 

affects neural function (Stevens, 2009). The brain is a system where regions of the brain do not 

act in isolation, but rather interact with each other to influence perception, emotion, and 

cognition (Pessoa, 2018). The interconnections between elements of a system, in this case 

between neural ROIs, yield critical information about its purpose and function and may be more 

defining of the system than the elements themselves (Meadows, 2008). Thus, studying the 

connections between regions of the brain and how they are functionally communicating provides 

valuable information that is more than the sum of individual ROIs.  

Neural connectivity can be studied at multiple scales which each provide unique insight 

into the brain. Analyses of full systems and reductionist approaches provide complimentary 

information and are characterized by their own strengths and weaknesses (Meadows, 2008).  A 

more precise focus on the interconnections between a small number of ROIs can be studied with 
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more depth, while a focus on the connections within larger networks or the whole brain, provides 

a wider breadth of understanding about how the brain is structured and functions. Thus, the 

analysis of patterns of integration and interactions of networks of ROIs, on multiple scales, may 

provide a better representation of underlying neural activity than any single scale alone (Menon, 

2011). 

Connectivity between regions of the brain can be studied using several modalities. Two 

such modalities are diffusion magnetic resonance imaging (dMRI) to assess white matter 

connectivity and resting-state functional MRI (fMRI) to examine spontaneous, non-directed 

functional connectivity (Huettel et al., 2009). Each of these methods provide unique but 

complementing information regarding how regions of the brain are communicating.  

White Matter Connectivity  

White matter in the brain consists largely of myelinated axons (Le Bihan et al., 2001). 

When myelin, a fatty-sheath, coats axons, electrical action potentials travel at a more rapid pace, 

thus facilitating communication between neurons and, at a larger level, regions of the brain 

(Nave & Werner, 2014). This makes differences in white matter connectivity relevant for 

understanding neural function. Previous work has found that white matter connectivity between 

two regions of the brain is related to how those regions function (Goetschius et al., 2019; Hein et 

al., 2018; Swartz et al., 2013).  

White matter connectivity can be measured using multiple approaches which each have 

strengths and weaknesses. Traditional tractography analysis, such as deterministic tractography, 

utilizes diffusion tensor imaging data to estimate white matter tracts based on diffusion tensors or 

metrics such as fractional anisotropy (FA) (Sherbondy et al., 2008). However, the specificity at 

which this task can be accomplished is not at the axonal level but rather is limited to voxel level 
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analyses. This leaves a degree of uncertainty in the estimated white matter connectivity that is 

not accounted for (Barbas, 2015; Behrens et al., 2007). While still limited to the voxel level, 

probabilistic tractography accounts for that uncertainty by creating a probability density function 

at each voxel that quantifies the probability of the white matter connectivity between a seed 

region and the rest of the brain (Behrens et al., 2007). Additionally, traditional tractography 

methods largely focus on large white matter bundles, such as the uncinate fasciculus. This 

provides important information regarding larger white matter tracts; however, it obscures the 

variation of white matter between specific structures (i.e., between the amygdala and specific 

regions of the PFC) which can give nuanced insight into the structure of the brain (Goetschius et 

al., 2019). Last, traditional tractography methods such as tract-based spatial statistics (TBSS) 

only analyze white matter that is common across all included participants in a “group mean FA 

skeleton” (S. M. Smith et al., 2006). This is a conservative approach to analyzing dMRI data that 

has advantages; however, it does not allow for the analysis of individual heterogeneity of white 

matter connectivity in the same way that probabilistic tractography does. Probabilistic 

tractography tracts white matter connectivity at the subject level, so the length and specific 

trajectory of white matter tracts are free to vary across individuals (Behrens et al., 2007), making 

probabilistic tractography potentially better able to model person-specific heterogeneity in white 

matter. This dissertation uses probabilistic tractography to map white matter connectivity 

between the amygdala and multiple regions of the PFC (study 1) – a circuit which underlies 

emotion processing and regulation (Phelps & LeDoux, 2005) that is posited to be influenced by 

exposure to early adversity (Gee et al., 2013).   

Resting State Functional Connectivity  
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 Resting state functional connectivity (rsFC) examines neural activity in a non-goal 

directed state in terms of the integration and segregation of networks posited to underlie sensory, 

cognitive, emotive, and motor processes (Biswal et al., 2010; Finn et al., 2015). Analysis of rsFC 

is a powerful tool for understanding the human brain for multiple reasons. First, task-related 

increases in brain metabolism are generally small compared to the amount of energy used while 

the brain is at rest (Raichle & Mintun, 2006). Thus, studying rsFC may provide a richer source of 

variation in neural activity that is consuming much of the metabolic resources used by the brain 

(Fox & Greicius, 2010). Additionally, the relatively low cognitive demand and short duration of 

time in the scanner necessary for rsFC analyses make it a more feasible method for widespread 

use, including in pediatric and clinical populations (Fox & Greicius, 2010; Uddin & Menon, 

2010). Last, rsFC networks have been reliably identified (Finn et al., 2015), even in children 

(Supekar et al., 2009; Thomason et al., 2011), are posited to be related to the functional 

architecture of the brain (Stevens, 2009), have been useful in predicting behavioral outcomes, 

such as general intelligence (e.g. Finn et al., 2015), and may be helpful in predicting the presence 

of psychopathology, such as depression (e.g. Greicius et al., 2007).  

Much of the work with task-based fMRI focuses on group averages. Although this is 

helpful for examining gross trends in activation, the brain’s functional organization varies in 

meaningful ways across the individual. Resting-state functional connectivity network analysis 

are capable of detecting person-specific modulations in the BOLD signal (Finn et al., 2015; 

Gates et al., 2014), highlighting the utility of using these networks as a tool for studying the 

individual. This dissertation focuses on two networks which have previously been associated 

with early adversity: the default mode network (DMN) and the salience network (SN) (study 2). 
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A description of these networks can be found below and their modulations in the context of early 

adversity can be found in the subsequent section.  

 Salience Network. The salience network is a neural network including the dorsal ACC, 

dorsolateral PFC, orbitofrontal cortex, insular cortex, and limbic structures such as the amygdala, 

substantia nigra, and ventral tegmental area (Menon, 2011; Seeley et al., 2007).  It is involved in 

identifying and integrating relevant emotional, reward, interoceptive, and autonomic input to 

guide behavior. Through interaction with default mode and the central executive networks, the 

salience network acts in response to novel stimuli to transmit relevant information to other areas 

of the brain (Uddin, 2017a). 

 Default Mode Network. The default mode network is the most widely studied rsFC 

network and includes the posterior cingulate cortex, medial prefrontal cortex, hippocampus, 

angular gyrus, and the medial temporal lobe and is associated with self-referential introspective 

activity (Menon, 2011). This task-negative network is generally attenuated during cognitive 

tasks, typically in relation to the cognitive demands of the task. The DMN has also been linked 

to internal thought and memory retrieval, social-cognitive processes, reward-based decision 

making, and emotion regulation (Etkin et al., 2011; Menon, 2011; Rangel et al., 2008). 

A Network Neuroscience Approach to Early Adversity 

Swanson and Lichtman (2016, p. 197) in a review of network neuroscience state that, 

“the greatest challenge today is extracting knowledge and understanding of nervous system 

structure-function architecture from vast amounts of data.” This statement highlights the 

complexity of getting an accurate picture of how the human brain works, but it can be argued 

that an even greater challenge is to understand how that structure-function architecture is shaped 

by the external social context within which the individual develops. Research on how early 
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adversity affects neural networks is a growing literature that includes work focused on both 

individual networks and whole brain functional connectivity. This dissertation is focused largely 

on socioemotional function, thus the network research reviewed here will focus on networks and 

interconnections associated with socioemotional function (i.e., emotion processing and 

regulation and reward processing).  

Much of the socioemotional work on the association between early adversity and white 

matter in the brain has focused on the uncinate fasciculus – the major bundle of white matter 

connecting, among other regions, the PFC and subcortical regions (Olson et al., 2015). This 

work, although limited, has found that early adversity is related to weaker “structural integrity” 

of the uncinate fasciculus (UF) as measured using fractional anisotropy (FA) (Eluvathingal et al., 

2006; Govindan et al., 2010; Hanson, Knodt, et al., 2015; Ho et al., 2017; M. J. Kim et al., 2019). 

Interestingly, this white matter connectivity has been shown to moderate associations between 

early adversity and internalizing disorders, such that in individuals with higher UF “structural 

integrity”, there is not an association between early life stress and anxiety (M. J. Kim et al., 

2019). Other white matter tracts of interest include the corpus callosum, inferior and superior 

longitudinal fasciculi. Research on these tracts has also largely found decreased “structural 

integrity” in individuals exposed to higher amounts of early adversity (Bick et al., 2015; Choi et 

al., 2012; Huang et al., 2012). Relatively little research on the association between early 

adversity and white matter connectivity has utilized more precise methods of white matter 

tracking, such as probabilistic tractography. One exception is a study focusing on child poverty 

that found decreased white matter connecting regions of the brain involved in socioemotional 

function, such as the amygdala and prefrontal cortex (D.-J. Kim et al., 2019). 
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Comparatively more research has focused on the effects of early adversity on rsFC. 

Connectivity involving SN has been a focus of rsFC research on early adversity. In individuals 

with exposure to child maltreatment, increased connectivity has been observed within the 

salience network, potentially reflecting an exaggerated salience attributed to typical events 

(Thomason & Marusak, 2017). This modulation in the SN has been related to psychopathology, 

such as anxiety disorders, and may partially explain the increased vulnerability for the 

development of anxiety disorders in youth exposed to childhood maltreatment (Marusak, Etkin, 

et al., 2015; McCrory et al., 2017; Uddin, 2017b). Enhanced SN segregation (increased 

connectivity within the SN) has also been associated with blunted reward sensitivity, a 

behavioral trait seen in the child maltreatment literature and may contribute to increased latent 

vulnerability for anxiety disorders, substance use, and depression (Marusak, Etkin, et al., 2015; 

McCrory et al., 2017). Early adversity has been shown to alter functional connectivity of limbic 

structures in the salience network, such as the amygdala, and the prefrontal cortex which 

mediated associations with internalizing disorders in adolescents (Herringa et al., 2013) and 

adults (Cisler et al., 2013). 

The DMN is another target for research examining the impact of early adversity. In adults 

exposed to child maltreatment, the DMN has exhibited altered connectivity including decreased 

segregation of DMN nodes and attenuated deactivation of the DMN during demanding cognitive 

tasks (Philip, Sweet, Tyrka, Price, Bloom, et al., 2013; Philip, Sweet, Tyrka, Price, Carpenter, et 

al., 2013). Impaired DMN deactivation is associated with major depression, which may provide 

insight into why early adversity is associated with an increased vulnerability for depression 

(McCrory et al., 2017; Menon, 2011).  Decreased integration of the SN and DMN has been 

found in both children and adults exposed to early life adversity, which may reflect an inabili1ty 
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to disengage attention from salient stimuli leading to an increased vulnerability for the 

development of psychopathology (Marusak, Martin, et al., 2015; Teicher et al., 2014; Thomason 

& Marusak, 2017). Previous work has found that this disruption may be driven by the anterior 

and posterior insula (Marusak, Etkin, et al., 2015; McCrory et al., 2017; Menon, 2011).  

Extant research aimed at understanding how early adversity affects white matter and 

functional connectivity is limited in multiple ways. First, much of the work has used 

retrospective reports of early adversity in cross-sectional studies (i.e., Hanson, Knodt, et al., 

2015; Marusak, Etkin, et al., 2015).  Second, relatively few studies of neural correlates of early 

adversity, let alone the neural connectivity correlates, have been done in samples experiencing 

higher levels of chronic adversity (for examples of work in samples with higher levels of 

adversity, see Gard et al., 2017; Hein, 2019; Holz et al., 2017). Last, no previous work on either 

structural or functional network connectivity has used the dimensional approach to early 

adversity which may better capture the heterogeneity of early adversity. This dissertation aims to 

address these gaps by examining how two dimensions of adversity, violence exposure and social 

deprivation, are prospectively associated with differences in white matter (study 1) and 

functional connectivity (study 2) using data from a longitudinal sample of youth who come from 

largely disadvantaged environments.   

 An understanding of how early adversity affects the structure and function of neural 

circuits can help create neuroscience-informed policies and interventions. Although effects of 

early adversity are frequently discussed in terms of their effects on physical and mental health 

outcomes, the mechanism through which they work may be neural (Dufford et al., 2019; Farah, 

2018). With an appropriate research design, understanding neural correlates of early adversity 

can lead to the identification of neural mechanisms driving behavioral change. These 



 16 

mechanisms can provide targets to help design and measure the efficacy of interventions (Farah, 

2018). Neural markers can be more sensitive predictors than behavioral ones which may aid in 

early identification of those at risk for negative outcomes (Pavlakis et al., 2015).  Additionally, 

evidence for differences in neural circuits based on exposure to early adversity that complement 

behavioral findings provide converging evidence for how the environment affects the brain 

(Farah, 2018). Multiple sources converging bolsters findings and provides more support for 

specific theories and interventions. The benefits of neuroimaging research are often discussed in 

terms of differences in single regions of the brain; however, as previously discussed, this may 

oversimplify the complexity of the brain. Thus, early adversity-related differences in neural 

circuits and networks may be of even more benefit to interventions and policy because they more 

accurately model the complex brain (Dufford et al., 2019).  

 An important caveat to discuss when studying the neural correlates of early adversity is 

that differences in the brain are not necessarily reflective of deficits or a “broken brain” 

(Tolwinski, 2019). The brain is remarkably plastic, so alterations in neural circuitry may reflect 

adaptations to the environment that improve outcomes in certain situations and promote 

resilience (McEwen, 2016; Teicher et al., 2016). Additionally, it is possible that differences in the 

brain that are associated with negative outcomes can be compensated for with environmental 

interventions and support. This is particularly the case if identified early in development when 

the brain is more plastic highlighting importance of research studying the effects of early 

adversity on development (McEwen, 2012, 2016).  

Resilience to Early Adversity 

Across the lifespan, both risk and protective factors interact within the individual to shape 

development (Cicchetti, 2010). These factors exist at multiple levels within the individual and 
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their environment (i.e., home, community, culture) and are person-specific as evidenced by 

multifinality in developmental outcomes in response to adversity (Cicchetti & Lynch, 1993; 

Cicchetti & Rogosch, 1996; Hughes et al., 2017). Contributing to individual differences in these 

effects is resilience, or having positive outcomes in the context of adversity (Masten, 2001).  

Factors promoting resilience include individual characteristics such as adaptable temperament, a 

positive view of the self, and hopefulness for the future. Outside of the individual, environmental 

factors such as high neighborhood quality, effective schools, and good health care seem to be 

protective. In addition, many aspects of the individual’s social relationships appear to promote 

positive outcomes suggesting that the presence of social support is a strong predictor of 

resilience (Ceballo & McLoyd, 2002; Ozbay et al., 2007; Wright et al., 2013).  

School connectedness, or how safe, happy, and secure a child feels in their school 

environment, is an aspect of social support that has been linked not only to improved academic 

outcomes, but also overall improved adaptive function (C. E. Foster et al., 2017). School 

connectedness as a buffer is rooted in the risk and resilience framework, which posits that factors 

that promote developmental competency may also promote resilience to early adversity (Luthar 

et al., 2000). Previous research has found connectedness to school to be protective against 

violence in the neighborhood (Hardaway et al., 2012). Additionally, it has been posited to 

compensate for lower support in other areas of a youth’s life (e.g., the home or neighborhood) 

(Loukas et al., 2010). School connectedness may be a particularly advantageous target for 

interventions because it is a potentially socially modifiable factor (H. Foster & Brooks-Gunn, 

2009; McNeely et al., 2002). 

Protective factors can work through different processes that are defined based on who 

they are protective for and how that protection differs across risk level (Luthar et al., 2000) 
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(Figure 1.2). They can be promotive, meaning that they promote positive outcomes for everyone 

in all situations (Sameroff, 2010). This would be observed statistically as a main effect of a 

certain factor. Additionally, these relationships can be more complex involving interactions 

between multiple variables. For example, a protective variable can be protective-stabilizing, 

where, in the context of increasing risk, having a certain attribute present results in no decrease 

in rates of the positive outcome (H. Foster & Brooks-Gunn, 2009; Luthar et al., 2000). 

Conversely, a protective variable can be protective but reactive, where it promotes positive 

outcomes, but less so as environmental risk or stress increases (Luthar et al., 2000; Proctor, 

2006). Lastly, factors can be protective-enhancing, where having that attribute is associated with 

more positive outcomes as risk increases (Luthar et al., 2000). The different ways that protective 

factors can promote resilience highlight the multidimensional nature of adversity and the need to 

study them in multiple contexts and on multiple outcomes.   

Current research on resilience, including the extant literature on the protective effects of 

school connectedness, is limited. First, it often takes a deficit approach, meaning that it is 

focused on alleviating or avoiding negative outcomes rather than promoting positive outcomes in 

a strengths-based perspective (Masten & Cicchetti, 2016). Additionally, we know that the 

environment of adversity is complex; however, much of the research on resilience treats 

adversity as either a single construct or focuses on a single category of adversity. Both of these 

methods may oversimplify the impact of early adversity and may obscure protective factors that 

more selectively promote resilience. This dissertation aims to overcome both of those limitations 

by examining how two dimensions of adversity, violence exposure and social deprivation, 

predict both positive and negative developmental outcomes and how school connectedness may 

influence those associations (study 3).  
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Specific Aims of this Dissertation 

The purpose of this dissertation is to understand how early adversity shapes the brain and 

behavior and what factors in the environment protect against adversity. Much of the research 

examining this question has been done in white, middle-class samples using retrospective reports 

of early adversity (Dufford et al., 2019; Falk et al., 2013). More research is needed which 

prospectively asks these questions in samples that include families living in socioeconomically 

disadvantaged contexts, who are more at risk for exposure to violence and social deprivation 

(McLaughlin, Costello, et al., 2012; McLoyd, 1998). 

All three chapters in this dissertation use data from the Fragile Families and Child 

Wellbeing Study (FFCWS) (Reichman et al., 2001). The FFCWS is a population-based sample 

of approximately 5000 children born in large US cities, with an oversample of non-marital births 

which led to inclusion of a large proportion of low-income and minority families (Reichman et 

al., 2001). These sample characteristics make the FFCWS an appropriate sample to examine how 

early adversity prospectively shapes development. In the FFCWS, data were collected from the 

mother, father (if available), the primary caregiver (most frequently the mother), and the focal 

child at the birth of the focal child, and again when the child was 1, 3, 5, 9, and 15 years of age 

through a combination of in-home and phone visits (Public Data Documentation for FFCWS, 

2019). Variables used to measure early exposure to two dimensions of adversity, violence 

exposure and social deprivation, were calculated from FFCWS data from waves at ages 3, 5, and 

9 years (Figure 1.1). At age 15, a subsample of 237 teens and their families from Detroit, Toledo, 

and Chicago, came to University of Michigan to participate in the Study of Adolescent Neural 

Development (SAND Subsample). Informed consent was provided by the parent/legal guardian 
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and informed assent from the subject (UM IRBMED: HUM00074392). Diffusion (dMRI - white 

matter connectivity) and resting-state MRI data were collected during this visit. 

Study 1 (Chapter 2): Childhood violence exposure and social deprivation predict 

adolescent amygdala-orbitofrontal cortex white matter connectivity [SAND Subsample] 

Aim 1: Determine whether childhood violence exposure is associated with adolescent 

amygdala-PFC (orbitofrontal and dorsomedial PFC) white matter function.  

Aim 2: Determine whether childhood exposure to social deprivation moderates the 

association between violence exposure and adolescent white matter.  

Study 2 (Chapter 3): Neural sequelae of early adversity: Childhood violence exposure 

predicts patterns of adolescent resting-state connectivity [SAND Subsample] 

Aim 1: Determine if childhood exposure to violence or social deprivation are associated 

with network density of the salience and default mode networks in adolescence. 

Aim 2: Determine if childhood exposure to violence or social deprivation are associated 

with node degree for 4 nodes in the salience network and 3 nodes in the default mode 

network (per hemisphere) in adolescence.  

Aim 3: Determine if data driven subgroups can be identified in the adolescent resting-

state MRI data and if subgroup membership is associated with childhood violence 

exposure or social deprivation.  

Study 3 (Chapter 4): School connectedness as a protective factor against childhood 

exposure to violence and social deprivation: Evidence of resilience and risk from a 

longitudinal sample [Full FFCWS Sample] 
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Aim 1: Determine whether childhood exposure to violence and social deprivation 

predicts child or adolescent internalizing and externalizing psychopathology and 

adolescent positive function. 

Aim 2: Determine whether school connectedness at either age 9 or 15 moderates 

observed associations between childhood dimensions of adversity and behavioral 

outcomes.  
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Figure 1.1: Violence exposure and social deprivation conceptual figure 

Composite scores for these dimensions were created from data collected from the FFCWS study 

waves at ages 3, 5, 9. 

  

Violence Exposure 

Social Deprivation 
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Figure 1.2: Protective processes conceptual figure 

Hypothetical plots representing the different definitions of protective processes.  
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Chapter 21: Childhood Violence Exposure and Social Deprivation Predict Adolescent 

Amygdala-Orbitofrontal Cortex White Matter Connectivity 

 

Childhood adversity is common and predicts a host of negative mental and physical 

health outcomes (Sacks & Murphy, 2018). Such experiences also shape the neural circuitry 

underlying emotion processing and regulation (Hein & Monk, 2017). Here, we examined a 

predominantly low-income sample of adolescents who have been followed since birth to better 

understand how specific dimensions of early adversity prospectively shape adolescent white 

matter connectivity between the amygdala and subregions of the prefrontal cortex (PFC), as well 

as the association between this white matter and amygdala reactivity during socioemotional 

processing. 

Examining dimensions of adversity, that are modeled separately from socioeconomic 

status, may elucidate how complex experiences influence the brain and may contribute to 

negative consequences (Amso & Lynn, 2017; McLaughlin et al., 2014). Previous research 

highlighted two core dimensions – threat and deprivation – that have roots in neurobiological 

research (McLaughlin et al., 2014). Further, behavioral research using this dimensional 

framework found that modeling the dimensions as cumulative exposure compared to a binary 

incidence variable (i.e., whether the person had experienced threat or deprivation) better 

predicted child outcomes (Wolf & Suntheimer, 2019). The present study examined two similar 

dimensions: (1) violence exposure and (2) social deprivation. Violence exposure is characterized 

 
1 Chapter 2 corresponds to Goetschius et al., 2020 published in Developmental Cognitive Neuroscience 
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by witnessing or being the victim of home and community violence. Social deprivation is 

defined as a lack of home and community emotional support (Hein, 2019). These dimensions 

exist on continua: violence exposure ranges from low (i.e., safety) to high and social deprivation 

from low (i.e., high levels of home/neighborhood support) to high (i.e., lack of support). 

Violence exposure is posited to alter regions of the brain involved in fear learning and emotion 

regulation, including the amygdala and PFC (McLaughlin et al., 2014). Compounding the stress 

of violence exposure, co-occurring social deprivation may exacerbate the effects of violence 

exposure and, conversely, low social deprivation (i.e., social support) may act as a buffer 

(Sheridan et al., 2018; Sonuga‐Barke et al., 2010).  

Diffusion MRI (dMRI) work in this area is limited and has yielded mixed results 

(McLaughlin et al., 2019). Moreover, to date, the potential effects of different types of adversity 

(i.e., threat versus deprivation) on white matter connectivity have not been investigated 

simultaneously within the same analyses to understand how these complex exposures shape the 

brain.  Retrospective reports of early social deprivation (i.e., neglect) have been associated with 

decreased strength of structural connections between the amygdala and PFC (Hanson, Knodt, et 

al., 2015; Ho et al., 2017). Additionally, one study found that retrospective reports of threat, 

specifically, trauma were associated with increased strength of the uncinate fasciculus (Gur et al., 

2019), the major bundle of white matter connecting the PFC and subcortical regions (Olson et 

al., 2015). However, reported studies have also found null effects of threat, deprivation, or mixed 

exposures on the fronto-amygdala white matter (Bick et al., 2015; Dennison et al., 2016; Park et 

al., 2016). The vast majority of existing dMRI work examining adversity, though not all (D.-J. 

Kim et al., 2019), has used diffusion tensor imaging (DTI) (Hanson, Knodt, et al., 2015; Ho et 

al., 2017) which measures bundles of white matter in aggregate. Much of the DTI literature on 
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adversity has focused on the uncinate. However, DTI does not permit precise mapping of white 

matter tracts between specific structures, such as the amygdala and particular PFC subregions.  

Probabilistic tractography uses dMRI to precisely map white matter tracts between 

structures (Behrens et al., 2007).  This method, in a smaller subset of the current sample, showed 

that amygdala white matter connectivity with the orbitofrontal cortex (OFC – Brodmann’s Area 

(BA) 47, 11), dorsomedial PFC (BA10), and subgenual cingulate (BA25) was greater than 

amygdala white matter connectivity with other PFC regions, such as the dorsal anterior cingulate 

and dorsolateral PFC (Goetschius et al., 2019). Non-human primate studies also provide support 

for specific amygdala connectivity with the OFC, dmPFC, and subgenual cingulate (Ray & Zald, 

2012; Zikopoulos et al., 2017). Additionally, our previous work revealed that adolescents with 

less white matter connectivity between the amygdala and the OFC (right BA47, left BA11) and 

dmPFC (bilateral BA10), but not the dorsolateral PFC, anterior cingulate, or subgenual cingulate, 

showed greater amygdala activation to threatening faces (Goetschius et al., 2019). Thus, the 

OFC, dmPFC, and subgenual cingulate seem to be well-connected via white matter to the 

amygdala. Additionally, amygdala–OFC and amygdala–dmPFC connectivity may play an 

important role in emotion processing and regulation; however, the effect of dimensional 

adversity on this white matter has not yet been examined.  

Building on Goetschius et al. (2019), we used probabilistic tractography to assess 

whether violence exposure across childhood (ages 3, 5, 9 years) predicted adolescent (15-17 

years) amygdala–PFC white matter connectivity with a focus on OFC, dmPFC, and subgenual 

cingulate subregions in a longitudinal, sample with a substantial representation of African 

American and low-income participants — populations that are underrepresented in neuroimaging 

research (Falk et al., 2013). We also examined whether the degree of social deprivation in 
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childhood predicted adolescent amygdala–PFC white matter microstructure through interaction 

with violence exposure. We hypothesized the following: childhood violence exposure would be 

associated with adolescent amygdala–PFC white matter connectivity; and the interaction 

between childhood violence exposure and social deprivation would be associated with white 

matter connectivity such that the effects of high violence exposure would be buffered by 

decreasing social deprivation. In addition, because Goetschius et al. (2019) was conducted on a 

smaller subsample (N = 141) of the data used in the present study, and utilized a different 

diffusion data cleaning pipeline, we attempted to reproduce the associations observed between 

amygdala–PFC white matter connectivity and amygdala activation in the current, full sample (N 

= 152).  

Materials & Methods 

These hypotheses, variables, and analyses were preregistered with the Open Science 

Framework (https://osf.io/spguw) and the data will be available on the NIMH Data Archive 

(https://nda.nih.gov/edit_collection.html?id=2106). Prior to preregistering these hypotheses, we 

had examined the diffusion MRI data on the 141 participants (Goetschius et al., 2019). In this 

analysis, we examined how the probability of amygdala–PFC white matter connectivity 

predicted amygdala reactivity to threatening faces; however, we had not evaluated any 

associations between the early environment and diffusion MRI data.  

Participants 

One hundred eighty-three adolescents (15-17 years) sampled from the Detroit, MI, 

Toledo, OH, and Chicago, IL sites of the Fragile Families and Childhood Wellbeing Study 

(FFCWS) were included in the present study (see Table 2.1 for sample demographics and 

exclusion criteria). The FFCWS is a population-based sample of children born in large US cities, 

https://osf.io/spguw
https://nda.nih.gov/edit_collection.html?id=2106
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with an oversample of non-marital births (~3:1) (Reichman et al., 2001). When weighted, the 

FFCWS represents children born at the turn of the century in American cities of 200,000 or 

more. When not weighted (as here), given the oversample for non-marital births, the sample 

represents mostly low-income, urban families. Given the demographics and sample sizes in 

Detroit, Toledo and Chicago (Hein et al., 2018), a majority of the sample identified as African 

American. FFCWS families were interviewed at the birth of the focal child, and again when the 

child was 1, 3, 5, 9, and 15 years of age. The University of Michigan Medical School IRB 

approved this study (UM IRBMED: HUM00074392). Informed consent was obtained from the 

parent/legal guardian for both their participation and their teen’s participation and informed 

assent from the adolescent. These data overlap with prior work from our research group: fMRI 

and dMRI data, but no environmental data (Goetschius et al., 2019; Hein et al., 2018); violence 

exposure and social deprivation composites, but no MRI (Peckins et al., 2019). 

Behavioral Measures 

Childhood Violence Exposure and Social Deprivation Composite Scores 

Violence exposure and social deprivation were assessed using composite scores 

calculated using data from the Fragile Families and Child Wellbeing study at ages 3, 5, and 9 

years. Both constructs included primary caregiver or mother report of experiences that directly 

(i.e., child physical and emotional abuse, child physical and emotional neglect) and indirectly 

(i.e., intimate partner emotional, physical, or sexual violence against mother, intimate partner 

support for mother, community violence, community support) affect the child. The primary 

caregiver was primarily a biological parent or family member. One participant’s primary 

caregiver was not a relative. No participants were in the foster care system. We considered 

violence exposure to exist on a continuum where higher scores represented more violence 
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exposure, and lower scores represented more safety. We considered social deprivation to exist on 

a continuum where higher scores (e.g., where the child experienced either more neglect or 

witnessed less social support for their mother or less neighborhood social cohesion) 

approximated deprivation and lower scores (e.g., where the child experienced less neglect or 

witnessed more social support for their mother or more neighborhood social cohesion) 

approximated social support. Our approach of including experiences with varying levels of 

proximity to the child across multiple time points allowed us to comprehensively assess the 

child’s cumulative, dimensional exposure to violence and social deprivation across childhood as 

has been done in previous research (Hein, 2019; McLaughlin & Sheridan, 2016). With this 

approach, we did not unpack the effect of proximal versus distal experiences, the effect of the 

developmental timing of exposures; however, those are important future research directions. 

These composite scores were first utilized in previous work from our group (Hein, 2019). All 

items at each time point were weighted equally. See Appendix 1 for specific items and the scales 

that they come from.  

To calculate composite scores, the Z scores (zero-centered) for each of the childhood 

experiences (child abuse, exposure to intimate partner violence, community violence, child 

neglect, lack of romantic partner support, lack of neighborhood social cohesion) were summed 

for each of the childhood experiences within a cumulative dimension (violence exposure and 

social deprivation) (Song et al., 2013) and then divided by the number of childhood experiences 

within a dimension for each participant, thus maximizing the number of participants and the 

diversity of the sample by minimizing drop out due to missing data at any given wave. This 

means that a score of 0 is approximately average for the sample for that dimension. Scores 

greater than 0 represent higher than average violence or social deprivation and scores below 0 
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represent low violence or low social deprivation (i.e., social support). We then mean-centered the 

scores for violence exposure and social deprivation and created an interaction term (Hein, 2019). 

In our sample, violence exposure and social deprivation were correlated at r(181) = 0.50, t = 

7.69, p < 0.001, but the variance inflation factor (VIF) was 1.326 (Figure 2.1, Table 2.2). VIF 

reflects how much the estimated regression coefficients are increased due to collinear 

independent variables. Cutoffs are typically between 5–10, therefore, based on the VIF reported 

here, the multicollinearity of violence exposure and social deprivation was low (Craney & 

Surles, 2002; Sheather, 2009).   

Gender Identification (Faces) fMRI Task 

During fMRI data collection, participants completed an event-related emotional faces 

task in which they were instructed to identify to the gender of emotional faces displaying one of 

five emotions: fearful, happy, sad, angry, neutral. Details of the task are in the Appendix 1 (and 

see Goetschius et al., 2019; Hein et al., 2018). Participants who achieved less than 70% accuracy 

on the Faces Task were excluded (N = 15). Average task accuracy was 94.74%.  

Covariates 

To address potential confounds, the present analyses adjusted for race/ethnicity, maternal 

education at birth, and maternal marital status at birth. We controlled for maternal marital status 

at birth due to the oversampling of non-marital births in the FFCWS study (Reichman et al., 

2001). Additionally, we adjusted for adolescent pubertal development, adolescent internalizing 

psychopathology and adolescent life stress to ensure that observed effects were not driven by 

these adolescent factors. Adolescent internalizing psychopathology was assessed using a multi-

method, multi-informant latent factor score constructed from the following measures: (1) K-

SADS (Kaufman et al., 1997) clinician report of past and current symptoms of dysthymia, social 
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phobia, generalized anxiety disorder, major depression, and phobia and (2) parent and child 

report on the Mood and Feelings Questionnaire (Angold et al., 1987), Child Depression 

Inventory (Helsel & Matson, 1984), and the Screen for Child Anxiety Related Disorders 

(Birmaher et al., 1997) (See Appendix 1 and Hein, 2019 for more detail including the CFA fit 

statistics). Current life stress was used as a covariate in the present analyses and was measured 

using the Adolescent Life Events Scale (adapted for Shaw et al., 2003 from Farrell et al., 1998 

and Masten et al., 1994). This scale assesses the experience of common adolescent stressful life 

events in the past year. Descriptive statistics for all covariate variables are in Table 2.2. See 

Appendix 1 for more information on how covariates were measured. All analyses were done with 

and without covariates.  

MR Measures - Adolescence 

MR images were acquired using a GE Discovery MR750 3T scanner with an 8-channel 

head coil located at the UM Functional MRI Laboratory. Head movement was minimized 

through: (a) instructions to the participant and (b) padding and pillows placed around the head, 

which are well-tolerated, yet limit motion. These procedures have been outlined in previous work 

(Goetschius et al., 2019; Hein et al., 2018).  

T1-weighted gradient echo images were taken before the functional scans using the same 

field of view (FOV) and slices as the functional scans (TR = 9.0 seconds, TE = 1.8 seconds, TI = 

400 ms, flip angle = 15, FOV = 22 cm; slice thickness = 3 mm; 256 x 256 matrix; 40 slices). 

DMRI data were collected using a spin-echo EPI diffusion sequence (scan parameters: TR 

7250ms, Minimum TE, 128x128 acquisition matrix, 22 cm FOV, 3 mm thick slices (no gap), 40 

slices acquired using an alternating-increasing order, b value = 1000 s/mm2, 64 non-linear 

directions, five b=0s/mm2 T2 images (b0) acquired). Functional MRI (fMRI) T2*-weighted 
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BOLD images were acquired using a reverse spiral sequence (Glover & Law, 2001) of 40 

contiguous axial 3 mm slices (TR = 2000 ms, TE = 30 ms, flip angle = 90, FOV = 22 cm, voxel 

size = 3.44mm x 3.44mm x 3mm, sequential ascending acquisition).  

Slices were prescribed parallel to the AC-PC line (same locations as structural scans). 

Images were reconstructed into a 64x64 matrix. Slices were acquired contiguously, which 

optimized the effectiveness of the movement post-processing algorithms. Images were 

reconstructed off-line using processing steps to remove distortions caused by magnetic field 

inhomogeneity and other sources of misalignment to the structural data, which yields excellent 

coverage of subcortical areas of interest. 

dMRI Processing  

Diffusion images were converted from DICOM to NIFTI format using MRIcron 

(dcm2niix – 2MAY2016) for offline analysis using MRtrix (v.3.0.R3) (Veraart et al., 2016) and 

the FSL (v. 5.0.9) FMRIB's Diffusion Toolbox (FDT) (v. 3.0) (Jenkinson et al., 2012) (see 

Appendix 1 for more processing details).  

DMRI data were then processed using probabilistic tractography in FSL. This involved 

building a distribution of diffusion parameters at each voxel using bedpost (Hernández et al., 

2013) and estimating the probability of amygdala–PFC white matter connectivity for 4 PFC 

ROIs bilaterally (8 total) using probtrackx (Hernandez-Fernandez et al., 2016) (Appendix 1). 

Those ROIs were BA10, BA11, BA25, and BA47 and they were selected due to a previous 

stronger likelihood of amygdala white matter connectivity in our previous work (Goetschius et 

al., 2019). ROIs, including both seed amygdalae (AAL Atlas) and target PFC regions (TD 

Brodmann’s Areas) were created from masks in WFU PickAtlas (Maldjian et al., 2003). The 

maximum-likelihood of amygdala–PFC connectivity was then extracted for each individual from 
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a group-level peak (6mm sphere around peak point) identified for each ROI (Greening & 

Mitchell, 2015) (details in Appendix 1). The MNI coordinates (x,y,z) for the peak for each target 

are as follows: BA10 (left: -30, -4, -14; right: 32, -2, -12), BA11 (left: -30, -4, -14; right: 32, -2, -

14), BA25 (left: -16, 0, -14, right: 18, 0, -14), BA47: (left: -30, -4, -14; right: 34, 0, -20).  

In the present study, we did not use waypoint or termination masks in the probabilistic 

tractography analysis. Thus, we cannot guarantee that streamlines did not cross the midline or 

enter the temporal pole. However, this does not appear to be the case for the measured 

connections here based on the average streamline images (Supplemental Figure 2.1 in Appendix 

1).  

The dMRI processing approach used (i.e., from bedpostx through data extraction) was 

identical to a previously reported analysis; however, the present study’s sample size was larger 

(N=152 with both usable fMRI and dMRI data compared to N=141) because the dMRI data were 

processed for artifacts using a different, more reliable, and automated method that allowed us to 

retain more subjects (Andersson et al., 2017; Andersson & Sotiropoulos, 2016; Veraart et al., 

2016). Due to the increased sample size and different dMRI cleaning method, we needed to 

reproduce the associations with amygdala activation seen in Goetschius et al. (2019).  

 fMRI Processing  

First-level statistical analyses for functional activation were performed using the general 

linear model implemented in SPM12. For each participant, conditions were modeled with the 

SPM12 canonical hemodynamic response function. Incorrect trials were modeled as a separate 

condition and were not included in subsequent analysis. A statistical image for each condition 

contrast in the Faces Task at each voxel was generated. Mean activation was extracted for both 

the left and right amygdala using MarsBaR (v. 0.44) (Brett et al., 2002) from the contrast image 
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representing a combination of threat (fear + anger) trials vs. baseline (Goetschius et al., 2019; 

Hein et al., 2018). ROI masks used in the extraction were created using the left and right 

amygdala from the AAL Atlas in WFU Pickatlas (Maldjian et al., 2003).  

Statistical Analysis 

Preregistered Analyses  

To determine how childhood exposure to violence and social deprivation at ages 3, 5, and 

9 years were associated with amygdala–PFC white matter connectivity, we performed eight 

multiple regression analyses – one for each amygdala-PFC target pair (bilateral BA10, BA11, 

BA25, BA47). In each regression analysis, we first ran the analysis without any covariates. Then, 

we controlled for a list of preregistered covariates, including participant gender (male or female), 

race (African American, Caucasian, or Other), maternal education at birth, maternal marital 

status at birth). Additionally, in a separate analysis, we controlled for three variables that we did 

not pre-register, pubertal status, current life stress, and the internalizing disorders latent factor 

score (Hein, 2019), in addition to the preregistered covariates, though none of these variables 

changed the overall effect. We used a Bonferroni-corrected significance threshold based on those 

eight ROIs (p<0.05/8 tests per hemisphere = 0.0063). To interpret significant interactions, simple 

slope and regions of significance analyses were conducted to determine the nature of the 

interaction and ensure that the interaction was within our observable data using methods outlined 

by Preacher et al., (2006).   

Our main preregistered analysis plan proposed a structural equation model (SEM) where 

childhood dimensions of early adversity predicted internalizing psychopathology in a way that 

was mediated by amygdala–PFC white matter connectivity. We did not continue with this 

analysis plan when white matter connectivity was not significantly associated with internalizing 
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psychopathology (Appendix 2). Thus, we proceeded with our secondary analysis plan to examine 

the pieces of the SEM using multiple regression, including the violence exposure x social 

deprivation interaction. We did not have adequate statistical power to perform a moderated-

mediation model to examine the interaction in a larger SEM framework given the likely small 

effect size (Preacher et al., 2007).  

Non-preregistered Analyses  

Due to the use of an automated diffusion MRI data cleaning and artifact detection method 

which increased sample size, we reproduced the associations between amygdala–PFC white 

matter connectivity and amygdala activation that were previously reported where amygdala–

OFC (right BA47, left BA11) and amygdala–dmPFC (bilateral BA10) white matter connectivity 

was associated with amygdala reactivity (Goetschius et al., 2019). To do this, we performed eight 

regressions predicting ipsilateral amygdala activation to threat faces from amygdala–PFC white 

matter connectivity – one for each amygdala-PFC target pair (bilateral BA10, BA11, BA47, 

BA25). In these regressions, we used a Bonferroni-corrected significance threshold (p=0.05/8 

tests=0.0063).  

Results 

Probabilistic tractography was used to estimate the white matter connecting the amygdala 

with all eight PFC targets (bilateral BA10, BA11, BA25, BA47). For a visual representation, see 

figure 2.2. 

Violence Exposure x Social Deprivation predicted right hemisphere amygdala–OFC white 

matter connectivity  

The interaction between violence exposure and social deprivation significantly predicted the 

probability of right hemisphere amygdala–BA47 (OFC) white matter connectivity (Table 2.3). 
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This association held when adjusting for our pre-registered covariates (gender, race, maternal 

education at birth, and maternal marital status at birth) ( =-0.319, p=0.004) and non-

preregistered covariates (pubertal status, current life stress, and internalizing psychopathology in 

addition to the preregistered covariates) ( =-0.317, p=0.005). Contrary to our preregistered 

hypotheses, there were no main effects of violence exposure or social deprivation. To better 

understand the interaction in the context of our data, simple slopes and regions of significance 

are plotted in Figure 2.3. Simple slopes analysis revealed that when social deprivation was 0.78 

or greater, violence exposure and probability of white matter were inversely related ( = -0.29, p 

= 0.048). When social deprivation was 1 standard deviation below the mean, there was no 

association between violence exposure and amygdala–OFC white matter connectivity ( = 0.02, 

p = 0.209). Thus, in our data, at relatively high values of social deprivation, violence exposure 

was related to a lower likelihood of amygdala–OFC connectivity, suggesting that violence 

exposure had the greatest association with amygdala–OFC white matter connectivity when social 

deprivation was also high. 

Violence Exposure x Social Deprivation predicted right hemisphere amygdala–dmPFC 

white matter connectivity  

The interaction between violence exposure and social deprivation significantly predicted 

the probability of right hemisphere amygdala–BA10 (dorsomedial prefrontal cortex - dmPFC) 

white matter connectivity ( =-0.268, p=0.011). This interaction, however, did not remain 

significant when controlling for the demographic covariates ( =-0.185, p=0.091) (Supplemental 

Table 2.3 in Appendix 2). There were no main effects of violence exposure or social deprivation 

on right hemisphere amygdala–BA10 white matter connectivity.  
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Greater amygdala–OFC and amygdala–dmPFC white matter connectivity was related to 

attenuated amygdala reactivity 

We reproduced results from previous analyses (Goetschius et al., 2019). The probability 

of amygdala white matter connectivity significantly predicted ipsilateral amygdala activation to 

threatening (fearful and angry) faces for the four PFC regions where it was previously related 

(bilateral BA10, left BA11, right BA47), even when adjusting for the specified covariates, using 

a hemisphere Bonferroni-corrected significance level (0.05/8 = 0.0063) such that increased 

probability of white matter was associated with decreased amygdala activation (Table 2.4). 

Additionally, amygdala–PFC white matter connectivity was not related to amygdala reactivity in 

regions where it had not been related in our previous report (right BA11, bilateral BA25, left 

BA47) (Supplemental Table 2.10 in Appendix 2).   

Null findings  

Violence exposure, social deprivation, or their interaction did not significantly predict the 

likelihood of left hemisphere amygdala–BA10 white matter connectivity, left hemisphere 

amygdala–BA47 white matter connectivity, bilateral amygdala–BA11 white matter connectivity, 

or bilateral amygdala–BA25 white matter connectivity (Supplemental Tables 2.4-2.9 in 

Appendix 2).  

Discussion 

Using an open science framework and preregistered hypotheses, the present study 

examined how two dimensions of adversity - violence exposure and social deprivation - were 

associated with structural connectivity between the amygdala and OFC in the right hemisphere, a 

critical circuit for emotion processing and regulation. Whereas, contrary to our hypotheses, there 

were no main effects of the two dimensions on white matter connectivity, the interaction of 
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violence exposure and social deprivation at ages 3, 5, and 9 prospectively predicted the degree of 

right amygdala–OFC white matter connectivity in adolescence. Specifically, the combination of 

more violence exposure and more social deprivation in childhood prospectively predicted less 

amygdala–OFC white matter connectivity in adolescence; however, violence exposure was not 

associated with white matter connectivity when social deprivation was at mean or low levels 

(i.e., when children were in relatively socially supportive contexts). Thus, social deprivation may 

exacerbate the effects of childhood violence exposure on the development of white matter 

connections whereas social support may act as a buffer. This interaction remained even after 

adjusting for gender, race, pubertal development, current internalizing psychopathology, current 

life stress, maternal marital status at birth, and maternal education at birth. Importantly, the work 

was conducted in a well-sampled cohort of adolescents with high rates of poverty and a large 

proportion of African Americans, groups that are understudied in neuroimaging research (Falk et 

al., 2013).  

As a secondary objective, we reproduced in an expanded, overlapping sample 

(Goetschius et al., 2019) the finding that increased amygdala–OFC and amygdala–dmPFC white 

matter connectivity was associated with attenuated amygdala-reactivity to threat faces. This 

association remained after adjusting for gender, race, pubertal development, current internalizing 

psychopathology, current life stress, maternal marital status at birth, and maternal education at 

birth. When considered in conjunction with the violence exposure by social deprivation 

interaction, these findings suggest that early adversity shapes white matter connections that 

modulate the amygdala, a structure involved in threat processing (Phelps & LeDoux, 2005).  

The association between violence exposure and decreased amygdala–OFC white matter 

connectivity in the context of social deprivation builds on prior work (for review, see 
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McLaughlin et al., 2019). Extant dMRI research indicates that child maltreatment or trauma are 

generally, but not exclusively (Gur et al., 2019), associated with both weaker structural 

connectivity within the uncinate fasciculus (Govindan et al., 2010; Hanson, Knodt, et al., 2015; 

Ho et al., 2017) and weaker global structural connectivity, including within the OFC (Puetz et al., 

2017). Additionally, consistent with the present findings, fMRI work found that violence 

exposure is associated with altered amygdala activation (Hein, 2019; McCrory et al., 2011) and 

amygdala–PFC functional connectivity (Herringa et al., 2013; Kaiser et al., 2018). Further, 

neural tract tracer research in nonhuman primates revealed that stress affects amygdala–OFC 

structural connections via increased levels of dopamine (Zikopoulos et al., 2017) and that 

amygdala–OFC connections serve as a primary inhibitory pathway for amygdala function (Ray 

& Zald, 2012). Last, research examining the cortisol response to a social stressor in this sample 

found a similar interaction where the effect violence exposure was exacerbated by high social 

deprivation (Peckins et al., 2019). Taken together with the increased specificity provided by the 

current study, childhood violence exposure, when combined with social deprivation, may act as a 

potent stressor that is associated with decreased white matter in adolescence between the 

amygdala and the OFC. Expanding on the current DMAP model, our results suggest that the 

effect of violence exposure (a specific subtype of threat) on fronto-amygdala white matter may 

depend on the concurrent degree of social deprivation or support. 

Extant literature is consistent with the right hemisphere-specific effects of the present 

study. Amygdala–OFC structural connections are posited to play a role in automatic emotion 

regulation (Phillips et al., 2008) with right hemisphere connections being more heavily involved 

in fear extinction learning (Gottfried & Dolan, 2004). Further, in healthy adults, greater right 

hemisphere amygdala–OFC functional connectivity has been observed in response to 
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unpredictable threat (Gold et al., 2015), supporting the potential inhibitory role of the structural 

connections observed here.  

In addition to the exacerbating effects of social deprivation and violence exposure, the 

present findings indicate that low social deprivation (i.e., social support) may exert a “protective-

stabilizing” (Proctor, 2006) effect against the negative behavioral sequelae of violence exposure 

(H. Foster & Brooks-Gunn, 2009; Ozer, 2005). Consistent with the idea of a protective-

stabilizing factor, the present study found that social support was associated with a lessening of 

the negative association between violence exposure and amygdala–OFC connectivity that was 

observed in the context of social deprivation (i.e., low social support). The present findings 

suggest that policies aimed at boosting social support for youth in high violence environments 

may lessen the effect of violence exposure on a primary neural circuit for emotion regulation.  

Similar to the interaction in the amygdala–OFC connectivity, we found a violence 

exposure-social deprivation interaction when predicting right hemisphere amygdala-dmPFC 

(BA10) connectivity. However, the association was not significant when adjusting for the 

demographic covariates. BA47, the OFC ROI used, is rostrally bordered by the dmPFC (Petrides 

& Pandya, 2002), and neighboring cortical regions are often connected (Bullmore & Sporns, 

2012). Thus, amygdala-dmPFC tracts may pass through the OFC, explaining the weaker 

association with the dmPFC.  

Importantly, in contrast to our hypotheses, there were no main effects of childhood 

violence exposure or social deprivation on adolescent amygdala–OFC, amygdala-dmPFC, or 

amygdala–subgenual cingulate connectivity. Thus, it may not be fruitful to consider dimensions 

of adversity in isolation and out of context of other salient ecological variables (McLaughlin & 

Sheridan, 2016). Rather, in order to construct a more complete picture of how early adversity 
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influences the brain, it is important to measure and model the effects of multiple dimensions that 

have been established to impact development. 

The present study had limitations worth noting. First, due to the population-based 

sampling methodology used in the FFCWS, youth were not preselected based on their ability or 

willingness to participate in an MRI study, a common procedure in many neuroimaging studies. 

Thus, 41 participants of the available sample were ineligible or refused to complete the dMRI 

scan. Although it is a limitation that our full sample could not participate, the group of excluded 

participants does not differ from the included participants on demographic factors. A second 

limitation is that due to demographics of the current sample, our findings may not generalize to 

more affluent, rural, or other race/ethnic populations. Third, due to changes in the FFCWS 

questionnaire at year 15, we were unable to control for current life stress using the composite 

scores we created for ages 3, 5, and 9 years (Hein, 2019). To compensate, we used a life stress 

scale to control for current stress and found that it did not impact our main findings, suggesting 

that the effects were unique to childhood, rather than adolescent, adversity. Additionally, the 

FFCWS study did not collect data between ages 9 and 15, so it was not possible to prospectively 

account for exposures during this important developmental period. Fifth, human neuroimaging 

methods precluded us from determining how white matter may influence the direction of 

signaling between the amygdala and OFC. Consistent with models from non-human primate 

neural tract tracer research (Ray & Zald, 2012; Zikopoulos et al., 2017), we posit that the OFC 

inhibits the amygdala; however, the influence may be bidirectional. Last, previous research 

identified white matter tracts outside of those preregistered in the present study connecting the 

amygdala and PFC that may be shaped by early adversity (Choi et al., 2012; Huang et al., 2012; 

Jackowski et al., 2008). Additionally, although the present work used Brodmann’s Areas for ROI 
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selection, previous work has used different anatomical parcellations. Future research examining 

potential effects of violence exposure and its interaction with social deprivation on additional 

pathways and using more precise anatomical parcellations would help to better understand how 

early adversity shapes the brain.  

Results from the present study clarify possible directions for future research. Although 

longitudinal environmental data was a strength of the present study, we only had imaging data at 

one timepoint. Future research with longitudinal MRI data (Casey et al., 2018) may be able to 

better examine potential directional relations between dimensional early adversity and the brain 

by charting trajectories of development. Additionally, future research could characterize possible 

effects of other dimensions of adversity. We conceptualized violence exposure and social 

deprivation as composites made up of multiple timepoints in development and sources of 

exposure to create a cumulative assessment of dimension exposure to violence and social 

deprivation during childhood. However, it is likely that the proximity of exposure to the child 

and its developmental timing influence the magnitude of its effect (Dunn et al., 2013). Future 

research could work to break down the composites for each dimension to determine the 

importance of source and timing of exposure. Last, the items included in the dimension 

encompassing social deprivation – social support do not include all potential sources of social 

support. Future research should work to account for additional sources of social support (i.e., 

school connectedness) which may influence white matter.  

Conclusions 

Exposures related to early adversity are complex and can be broken down into 

dimensions which may affect brain development in different ways. The present study shows, for 

the first time, that two dimensions of childhood adversity, violence exposure and social 
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deprivation, interact to predict adolescent white matter connecting right hemisphere amygdala–

OFC which is involved in socio-emotional function. High childhood violence exposure together 

with high social deprivation led to a lower probability of amygdala–OFC white matter in 

adolescence and, based on the negative correlation between amygdala–OFC white matter 

connectivity and amygdala reactivity, potentially less OFC regulation of the amygdala to threat. 

This association was not present with low social deprivation (i.e., social support), potentially 

implicating social support as a neuroprotective factor.   
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Table 2.1: Participant exclusions and demographics  

 

Reasons for Exclusions 

Reason Number Excluded-Right Number Excluded-Left 

No dMRI Data 41 41 

Preprocessing outliers > 5% in diffusion 

data1 

1 1 

No probabilistic tractography model 

convergence 

5 5 

Less than 70% of voxels in PFC masks 1 1 

Statistically influential outlier2 6 6 

Poor fMRI data3  31 31 

Demographic Characteristics – Included vs. Full Sample Comparison 

 Right Hemisphere Sample 

(N=183) 

Left Hemisphere Sample 

(N=183) 

Full Sample (N=237) 

Age M = 15.85 yrs | SD = 0.52 yrs M = 15.85 yrs | SD = 0.53 yrs M = 15.88 yrs | SD = 

0.54 yrs 

Puberty M = 3.25 | SD = 0.58 M = 3.26 | SD = 0.59 M = 3.24 | SD = 0.59 

Gender F = 98 | M = 85  F = 99 | M = 84 F = 125 | M = 112 

Race African American: 132 

Caucasian: 26 

Other: 25 

 

African American: 133 

Caucasian: 26 

Other: 24 

 

African American: 170 

Caucasian: 34 

Other: 33 

 

Annual 

Income 

$4,999 or less: 23 

$5,000 to $19,999: 31 

$20,000 to $39,999: 54 

$40,000 to $69,999: 33 

$70,000 or more: 28 

Not Report/Missing: 14 

$4,999 or less: 22 

$5,000 to $19,999: 31 

$20,000 to $39,999: 54 

$40,000 to $69,999: 33 

$70,000 or more: 28 

Not Report/Missing: 15 

$4,999 or less: 28 

$5,000 to $19,999: 41 

$20,000 to $39,999: 66 

$40,000 to $69,999: 46 

$70,000 or more: 35 

Not Report/Missing: 21 
1These outlier slices were detected using the automated diffusion MRI cleaning method from MRtrix (v.3.0.R3).  

Slices with an average intensity four or more standard deviations lower than predicted by eddy's Gaussian process 

model were marked as outlier slices and replaced with model predictions.  
2The same number of participants were excluded in each hemisphere due to being a statistical outlier on their 

violence exposure and social deprivation composite scores; however, only one of the participants is an outlier in both 

hemispheres.  

  
3These participants are only excluded for the analyses looking at the association between amygdala–PFC white 

matter connectivity and amygdala activation. This is due to no functional MRI data (N=6), artifacts in the data 

(N=7), less than 70% accuracy on the Faces task (N=15), or less that 70% of voxels included in the amygdala mask 

(N=3) 
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Table 2.2: Descriptive statistics for the main continuous predictor variables and covariates 

 

  

Predictor Mean (SD) Minimum - Maximum 

Violence Exposure1 0.04 (0.53) -0.82 – 2.17 

Social Deprivation1 0.03 (0.50) -0.76 – 2.67 

Internalizing Psychopathology2 0.02 (0.42) -0.60 – 1.29 

Current Life Stress3 10.13 (5.35) 0 – 25 

Maternal Education4 2.13 (1.03) 1 – 4 
1 To calculate composite scores, the Z scores (zero-centered) for each of the childhood experiences were 

summed for each of the childhood experiences within a dimension (violence exposure and social 

deprivation) and then divided by the number of childhood experiences within a dimension for each 

participant.  
2 This variable is a multi-method, multi-informant latent factor that is constructed from the following 

measures: (1) K-SADS clinician report of past and current symptoms of dysthymia, social phobia, 

generalized anxiety disorder, major depression, and phobia and (2) parent and child report on the Mood and 

Feelings Questionnaire, Child Depression Inventory, and the Screen for Child Anxiety Related Disorders. 
3 This variable is the sum of all of the items from the Adolescent Life Events Scale (ALES). 
4 This is a self-report categorical variable with the following response options: 1 - less than high school, 2 - 

high school or equivalent, 3 - some college/technical school, 4 - college or graduate school 
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Table 2.3: Stepwise regression predicting right amygdala–BA47 white matter 

 

These additive models show the base model with only covariates, the R2 change when adding the 

non-significant main effects of violence exposure and social deprivation, and then the R2 change 

when adding the significant interaction between violence exposure and social deprivation when 

predicting right amygdala–BA47 white matter connectivity. 
Predictor b b 

95% CI 

[LL, UL] 

beta beta 

95% CI 

[LL, UL] 

Fit Difference 

(Intercept) 0.14 [0.02, 0.25]     

Race_12 0.00 [-0.04, 0.05] 0.02 [-0.19, 0.23]   

Race_22 -0.01 [-0.04, 0.03] -0.03 [-0.24, 0.18]   

Gender 0.01 [-0.02, 0.04] 0.04 [-0.16, 0.24]   

Pubertal Status 0.02 [-0.01, 0.05] 0.10 [-0.07, 0.26]   

Maternal Education 0.00 [-0.02, 0.03] 0.03 [-0.16, 0.22]   

Maternal Marital 

Status 

-0.00 [-0.00, 0.00] -0.10 [-0.26, 0.06]   

Current Life Stress -0.00 [-0.02, 0.01] -0.07 [-0.23, 0.10]   

Internalizing 

Psychopathology 

-0.01 [-0.05, 0.02] -0.08 [-0.25, 0.09]   

     R2   = .022  

     95% 

CI[.00,.03] 

 

       

(Intercept) 0.14 [0.02, 0.25]     

Violence Exposure -0.00 [-0.03, 0.02] -0.01 [-0.19, 0.18]   

Social Deprivation 0.01 [-0.02, 0.03] 0.04 [-0.14, 0.22]   

Race_12 0.00 [-0.04, 0.05] 0.01 [-0.20, 0.23]   

Race_22 -0.01 [-0.04, 0.03] -0.04 [-0.25, 0.18]   

Gender 0.01 [-0.02, 0.04] 0.04 [-0.16, 0.24]   

Pubertal Status 0.02 [-0.01, 0.05] 0.09 [-0.08, 0.26]   

Maternal Education 0.00 [-0.02, 0.03] 0.03 [-0.16, 0.23]   

Maternal Marital 

Status 

-0.00 [-0.00, 0.00] -0.10 [-0.26, 0.07]   

Current Life Stress -0.00 [-0.02, 0.01] -0.06 [-0.23, 0.11]   

Internalizing 

Psychopathology 

-0.01 [-0.05, 0.02] -0.08 [-0.25, 0.09]   

     R2   = .023 ΔR2   = .001 

     95% 

CI[.00,.01] 

95% 

CI[-.01, .01] 

       

(Intercept) 0.14 [0.03, 0.26]     

Violence Exposure 0.01 [-0.02, 0.04] 0.07 [-0.12, 0.25]   

Social Deprivation 0.02 [-0.01, 0.05] 0.13 [-0.06, 0.32]   

Interaction1 -0.04* [-0.08, -0.01] -0.26 [-0.44, -0.08]   

Race_12 0.01 [-0.03, 0.06] 0.07 [-0.15, 0.28]   

Race_22 -0.01 [-0.04, 0.03] -0.05 [-0.26, 0.16]   

Gender 0.01 [-0.02, 0.04] 0.04 [-0.16, 0.24]   

Pubertal Status 0.02 [-0.01, 0.05] 0.09 [-0.08, 0.26]   

Maternal Education 0.00 [-0.02, 0.03] 0.03 [-0.17, 0.22]   
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Maternal Marital 

Status 

-0.00 [-0.00, 0.00] -0.09 [-0.25, 0.07]   

Current Life Stress -0.00 [-0.02, 0.01] -0.05 [-0.21, 0.12]   

Internalizing 

Psychopathology 

-0.02 [-0.05, 0.01] -0.09 [-0.25, 0.08]   

     R2   = .069 ΔR2   

= .046** 

     95% 

CI[.00,.09] 

95% 

CI[-.01, .11] 

       

Note. A significant b-weight indicates the beta-weight and semi-partial correlation are also significant. b 

represents unstandardized regression weights. beta indicates the standardized regression weights. LL and 

UL indicate the lower and upper limits of a confidence interval, respectively. 

* Significant predictor using a Bonferroni corrected threshold (p<0.05/8 tests = 0.0063) 

** indicates p < .01. 
1Interaction between Violence Exposure/Victimization and Social Deprivation 
2Dummy coded variables represented 3 category race variable (African American, Caucasian, Other) 
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Table 2.4: Regression results from amygdala-prefrontal cortex white matter connectivity 

predicting ipsilateral amygdala activation to threat faces adjusting for covariates. 

 B SEB  t p 

Model: R. Amygdala Activation (Threat) ~ R. Amygdala-BA47 White Matter Connectivity 

RAmy_BA47* -2.578 0.706 -0.290 -3.651 <0.001 

Internalizing 0.184 0.146 0.115 1.261 0.209 

Pubertal Status 0.068 0.120 0.059 0.570 0.569 

Gender 0.177 0.150 0.131 1.182 0.239 

Race_11 -0.030 0.204 -0.016 -0.149 0.882 

Race_21 -0.013 0.160 -0.009 -0.082 0.935 

Current Life Stress 0.017 0.011 0.139 1.614 0.110 

Maternal Education -0.083 0.057 -0.124 -1.467 0.145 

Maternal Marital Status 0.096 0.146 0.055 0.655 0.514 

F(9, 139) = 2.746, p = 0.005, R2 = 0.151 

Model: R. Amygdala Activation (Threat) ~ R. Amygdala-BA10 White Matter Connectivity 

RAmy_BA10* -4.105 1.363 -0.249 -3.013 0.003 

Internalizing 0.141 0.147 0.088 0.957 0.340 

Pubertal Status 0.048 0.122 0.042 0.396 0.692 

Gender 0.154 0.142 0.114 1.015 0.332 

Race_11 -0.067 0.207 -0.036 -0.325 0.746 

Race_21 0.024 0.164 0.016 0.148 0.883 

Current Life Stress 0.020 0.011 0.163 1.881 0.062 

Maternal Education -0.089 0.058 -0.133 -1.542 0.125 

Maternal Marital Status 0.156 0.147 0.091 1.061 0.290 

F(9, 139) = 2.238, p = 0.023, R2 = 0.127 

Model: L. Amygdala Activation (Threat) ~ L. Amygdala-BA10 White Matter Connectivity 

LAmy_BA10* -12.567 3.165 -0.322 -3.970 <0.001 

Internalizing 0.175 0.130 0.122 1.342 0.182 

Pubertal Status 0.006 0.104 0.006 0.054 0.958 

Gender 0.077 0.131 0.065 0.590 0.556 

Race_11 0.072 0.176 0.043 0.406 0.685 

Race_21 0.119 0.140 0.091 0.864 0.389 

Current Life Stress 0.012 0.009 0.112 1.287 0.200 

Maternal Education -0.071 0.049 -0.120 -1.436 0.153 

Maternal Marital Status 0.032 0.128 0.021 0.253 0.801 

F(9, 140) = 2.789, p = 0.005, R2 = 0.152 

Model: L. Amygdala Activation (Threat) ~ L. Amygdala-BA11 White Matter Connectivity 

LAmy_BA11* -6.743 1.871 -0.290 -3.604 <0.001 

Internalizing 0.129 0.130 0.090 0.991 0.323 

Pubertal Status 0.062 0.106 0.062 0.587 0.558 

Gender 0.158 0.132 0.132 1.192 0.235 

Race_11 0.066 0.178 0.039 0.368 0.713 

Race_21 0.103 0.139 0.079 .743 0.458 

Current Life Stress 0.017 0.009 0.156 1.813 0.072 

Maternal Education -0.078 0.050 -0.132 -1.556 0.122 
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Maternal Marital Status -0.010 0.130 -0.007 -0.80 0.936 

F(9, 140) = 2.463, p = 0.012, R2 = 0.137 

* significant at p<0.0063 (Bonferroni corrected significance level for 8 tests) 
1Dummy coded variables represented 3 category race variable (African American, Caucasian, 

Other) 
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Figure 2.1:  Association between violence exposure and social deprivation.  

To calculate composite scores, the Z scores (zero-centered) for each of the childhood experiences 

were summed for each of the childhood experiences within a dimension (violence exposure and 

social deprivation) and then divided by the number of childhood experiences within a dimension 

for each participant. In our sample, violence exposure and social deprivation were correlated at 

r(181) = 0.50, t = 7.69, p < 0.001, but the VIF was 1.326.  
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Figure 2.2: White matter tracts from the left and right amygdalae  

For illustrative purposes, the Brodmann’s Area (BA) masks used as targets are superimposed on 

the brain in different colors: BA10 (green), BA11 (blue), BA25 (yellow), BA47 (red).   
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Figure 2.3: Simple slopes plot for VExSD interaction predicting white matter 

Plot illustrating the interaction between childhood violence exposure and social deprivation (ages 

3, 5, 9) in predicting the probability of white matter connectivity between the amygdala and 

orbitofrontal cortex (OFC – Brodmann’s Area 47) in the right hemisphere (adolescence).  

The continuous moderator (social deprivation) has been plotted at a +/- 1 standard deviation (SD) 

interval. A Johnson-Neyman interval shows that violence exposure and white matter connectivity 

are significantly, inversely correlated when social deprivation = 0.78 and greater. The range of 

social deprivation values (zero-centered where 0 is the mean) in the data are [-0.76 2.67]. This 

figure illustrates that at relatively high values of social deprivation, violence exposure and 

likelihood of amygdala–OFC connectivity are negatively correlated. Rug plots depict real data 

points along axes. 
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Chapter 32: Association of Childhood Violence Exposure with Adolescent Neural Network 

Density 

Early adversity is an unfortunately common and detrimental public health issue. Adverse 

childhood experiences (ACEs) negatively impact physical and mental health, and effects likely 

persist into adulthood (Finkelhor et al., 2015; Green et al., 2010; Nusslock & Miller, 2016). Early 

adverse environments have underlying dimensions, such as violence exposure (e.g., 

neighborhood violence) and social deprivation (e.g., neglect) (Hein, 2019; McLaughlin et al., 

2014), which have distinct neural correlates related to emotion, fear, and reward processing 

(Goetschius, Hein, Mitchell, et al., 2020a; McLaughlin et al., 2014). For instance, violence 

exposure and social deprivation are associated with blunted amygdala and ventral striatum 

reactivity, respectively (Hein, 2019). However, it is unclear how these dimensions affect neural 

circuitry. ACEs (not measured dimensionally) are associated with alterations in resting-state 

functional connectivity (rsFC) of the salience network (SN; task-positive network, including the 

anterior insula, involved in identifying and integrating salient input (Uddin, 2017a)) and the 

default mode network (DMN; task-negative network, including the inferior parietal lobule, 

linked to internal thought, memory, and social-cognitive processes (Menon, 2011)) (Marusak, 

Etkin, et al., 2015; Marusak, Martin, et al., 2015; van der Werff et al., 2013), but inferences are 

limited by relatively small, homogeneous samples focused on few brain regions using 

retrospective reports of adversity (Falk et al., 2013). Thus, there are significant knowledge gaps 

 
2 Chapter 3 corresponds to Goetschius et al., 2020 published in JAMA Network Open 
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concerning the ways in which early violence exposure and social deprivation prospectively 

impact later functioning of neural circuits and how that varies across individuals. 

 Neural circuits are typically studied using a network framework, with key features 

including density (i.e., number of connections (Beltz & Gates, 2017)) and node degree (i.e., 

number of connections involving a specific brain region (Sporns, 2010)) (Power et al., 2010). 

Across development, network density increases between distal nodes and node degree increases 

for hub regions, such as the anterior insula (Fair et al., 2009). Understanding how early adversity 

relates to network density has significant potential for revealing how the environment affects 

brain development (Sporns, 2010). 

 These effects are likely to be person-specific because there is considerable variability in 

neural responses to environmental stress (Marder & Goaillard, 2006), and thus, mean-based 

analyses may not accurately reflect an individual’s circuitry (Molenaar, 2004). Indeed, data from 

recent neuroimaging projects, such as the Midnight Scan Club, have illustrated that the 

organization of an individual’s rsFC is unique and qualitatively different from the group average 

(Gordon et al., 2017). Moreover, consistent with behavioral studies of early adversity (Hughes et 

al., 2017), average estimates of adversity’s effects on the brain often have high variances (Gee et 

al., 2013; Hanson, Hariri, et al., 2015; Hanson, Nacewicz, et al., 2015). This begs the question of 

whether there is valuable information about individual differences and their etiology – important 

for eventual prevention and intervention – that is not being conveyed by mean-based 

conclusions.   

In the present study, we examined the association between dimensional indices of 

childhood exposure and individualized adolescent rsFC networks. We employed a large, 

longitudinal sample of adolescents with a substantial representation of African American and 
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low-income participants — who are often underrepresented in neuroimaging research (Falk et 

al., 2013)– and a person-specific rsFC approach that detects only meaningful connections among 

brain regions while identifying subgroups of participants that share network features (GIMME) 

(Gates et al., 2010; Lane et al., 2019). We hypothesized that childhood violence exposure and 

social deprivation would be associated with person-specific indices of SN and DMN density, 

respectively. This study was pre-registered (https://osf.io/mrwhn/), and the data will be openly 

available (https://nda.nih.gov/edit_collection.html?id=2106). 

Materials & Methods 

Participants were from the FFCWS, a population-based cohort study of children born in 

large US cities, with an oversample of non-marital births as well as a large proportion of families 

of color with low resources (Reichman et al., 2001). This study followed STROBE (acronym in 

Table 3.1) reporting guidelines. In the FFCWS, data were collected from the primary caregiver 

(94% biological mother) and focal child at their birth and at ages 1, 3, 5, 9, 15 years through in-

home visits and phone calls (Public Data Documentation | Fragile Families and Child Wellbeing 

Study, 2019). Data for the violence exposure and social deprivation composites, which have been 

previously reported (Goetschius, Hein, Mitchell, et al., 2020a; Hein, 2019; Peckins et al., 2019), 

came from surveys collected at ages 3, 5, and 9. During Wave 6 (when focal child was 

approximately age 15), 237 teens from Detroit, Toledo, and Chicago participated in a 

supplementary visit where rsFC data were collected. RSFC data and their association with early 

adversity have not been previously published. Due to the representative sampling of the FFCWS, 

youth were not preselected based on their willingness to participate in an MRI study, a common 

procedure in neuroimaging. This led to missing or incomplete MRI data (N=54), but the included 

https://osf.io/mrwhn/
https://nda.nih.gov/edit_collection.html?id=2106
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sample did not statistically differ from the recruited sample (Appendix 3 and Supplemental Table 

3.1).  

Participants & Procedure 

 Participants were 175 adolescents aged 15-17 years. Teens and their primary caregiver 

came to a university lab and completed questionnaires regarding the focal child’s current life 

stress, pubertal development, and other demographic variables. During an MRI scan, eight 

minutes of data were collected while teens were instructed to remain still and focus on a white 

fixation cross on a black screen. This study was approved by the University IRB. Participants 

provided informed consent or assent. 

Childhood Violence Exposure and Social Deprivation Measures 

Violence exposure and social deprivation were each operationalized by composite z-

scores calculated from FFCWS data at ages 3, 5, and 9; thus, 0 is the approximate mean. Both 

constructs included primary caregiver report of experiences that directly (i.e., physical abuse) 

and indirectly (i.e., community support) affect the child (Appendix 3). Violence exposure was 

operationalized as physical or emotional abuse directed at the child, exposure to intimate partner 

violence, and witnessing or being victimized by community violence. Social deprivation was 

operationalized as emotional or physical neglect, lack of romantic partner support for the mother, 

and lack of neighborhood cohesion (Hein, 2019). To reflect a comprehensive assessment of 

cumulative, dimensional childhood exposure to violence and social deprivation, both constructs 

included experiences with several levels of proximity to the child (e.g., home, neighborhood) at 

multiple ages (Hein, 2019; McLaughlin & Sheridan, 2016).  

Covariates 
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 To address potential confounds, sensitivity analyses adjusted for gender, race, pubertal 

development (Carskadon & Acebo, 1993), adolescent life stress (Farrell et al., 1998; Masten et 

al., 1994; Shaw et al., 2003), maternal education at birth, and maternal marital status at birth 

(Reichman et al., 2001) (Appendix 3).  

Neuroimaging Measures 

MR Acquisition. MR data were acquired using a GE Discovery MR750 3T scanner with 

an 8-channel head coil. Head movement was minimized through instructions to the participant 

and padding placed around the head. Functional T2*-weighted BOLD images were acquired 

using a reverse spiral sequence (Glover & Law, 2001) of 40 contiguous axial 3 mm slices 

(Appendix 3).  

Imaging Data Analysis. Preprocessing was primarily conducted in FSL (v.5.0.7) (Beltz 

et al., 2019; Jenkinson et al., 2012). Structural images were skull-stripped and segmented. 

Functional images were skull-stripped, spatially smoothed, registered to subject-specific 

structural and MNI space, and corrected for motion using MCFLIRT (Jenkinson et al., 2002) and 

ICA-AROMA (Pruim et al., 2015). Nuisance signal from white matter and CSF was removed. 

Data were high-pass filtered. As an additional precaution against motion-related artifacts, 

participants with an average relative framewise displacement (FD) greater than 0.5mm (prior to 

motion preprocessing) were excluded (N=4) (Appendix 3).   

Participant-specific time series (235 functional volumes) from seven ROIs per 

hemisphere (14 total) were extracted. ROIs and their locations were selected using Neurosynth 

(Yarkoni et al., 2011) and preregistered. Five bilateral ROIs defined the SN: amygdala, insula, 

dACC, and dlPFC. Three bilateral ROIs defined the DMN: IPL, PCC, and MTG (Table 3.1 for 
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acronyms). ROIs were 6.5mm spheres around central coordinates (Supplemental Table 3.2 in 

Appendix 2) linearly adjusted for participant brain volume.  

 GIMME. Subgrouping GIMME (S-GIMME; v0.5.1) (Gates et al., 2010, 2017; Lane et 

al., 2019) in R (v3.5.1) was used for rsFC analyses (Supplemental Figure 3.1 in Appendix 3). 

Beginning with an empty network, S-GIMME fits person-specific unified structural equation 

models (Gates et al., 2010) in a data-driven manner by using Lagrange multiplier tests (Sörbom, 

1989) to add directed connections among ROIs that are contemporaneous (occurring at the same 

functional volume) or lagged (occurring at the previous volume, including autoregressives), and 

that apply to the group-level (everyone in the sample), subgroup-level (everyone in a data-

derived subsample), or individual-level (unique to an individual). Importantly, S-GIMME is a 

sparse mapping approach in which only connections that account for a significant amount of 

variance are added to each participant’s network until the model fits the data well according to 

standard fit indices (RMSEA≤0.05; SRMR≤0.05; CFI≥0.95; NNFI≥0.95) (Brown, 2006; Gates 

& Molenaar, 2012). During model generation, connections that have become non-significant 

with the addition of new connections are pruned. S-GIMME uses a community detection 

algorithm (Walktrap) to detect subgroups of participants and determine their shared connectivity 

patterns. S-GIMME has been described and validated in large-scale simulations and applied to 

empirical data (Gates et al., 2014, 2017; Gates & Molenaar, 2012; Price et al., 2017). Network 

density and node degree of only the contemporaneous connections were extracted from person-

specific S-GIMME networks, as lagged connections control for sequential dependencies (e.g., 

hemodynamic response function) (Gates et al., 2010; S. M. Smith, 2012). 

Statistical Analysis 
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Inferential analyses were completed in R (v3.5.1) and examined whether childhood 

adversity statistically predicted adolescent neural network features. First, binary logistic 

regression was used to statistically predict S-GIMME-detected subgroup membership from 

childhood violence exposure and social deprivation. Second, multiple regression was used to 

statistically predict density (i.e., number of connections) within the SN, within the DMN, and 

between the SN and DMN from childhood violence exposure and social deprivation. Third, 

multiple regression was used to statistically predict node degree (i.e., number of connections 

involving a specified node) for each of the 14 ROIs from violence exposure and social 

deprivation using a Bonferroni-corrected significance threshold (p<0.004). In follow-up 

sensitivity analyses, covariates were added to all regressions to assess the robustness of observed 

effects.  

Results 

Analyses included 175 15-17-year-olds (Mage=15.88, SD=0.53; 56% female; 73% African 

American). All person-specific resting state networks fit the data well, according to average 

indices: RMSEA=.06, SRMR=.05, CFI=.93, NNFI=.96 (individual indices in Appendix 5). 

Group-level connections were detected within and between the SN and DMN (Figure 3.1a), two 

subgroups of participants with subgroup-level connections were identified (Figures 3.1b, 3.1c), 

and all person-specific maps contained individual-level connections (Mindividual_connections =11.61, 

SD=5.32). Final maps revealed that the first subgroup (N=42; Figure 3.1b, 3.1d) was 

qualitatively homogeneous with 27 subgroup-level connections and few individual-level 

connections (Mindividual_connections =5.60, SD=3.19), and that the second subgroup (N=133; Figure 

3.1c, 3.1e) was qualitatively heterogeneous, with 8 subgroup-level connections and many 
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individual-level connections (Mindividual_connections =13.50, SD=4.36). Possible extreme outliers or 

overfit models did not impact results (Appendix 4). 

Violence Exposure was Associated with Neural Subgroup Membership 

 Violence exposure was associated with subgroup membership (b=1.12, p=0.030). With a 

unit increase in violence exposure, participants were 3.06 times more likely to be classified in the 

larger, heterogeneous subgroup (Table 3.2). In sensitivity analyses, the odds ratio was 2.54 

(Supplemental Table 3.6 in Appendix 4). On average, members of the heterogeneous subgroup 

experienced higher levels of childhood violence exposure (M=0.09, SD=0.53) than those in the 

homogenous subgroup (M=-0.15, SD=0.43). Social deprivation was not associated with 

subgroup membership (Table 3.2). 

Violence Exposure was Associated with Density Within the SN and between the SN and 

DMN 

 Childhood violence exposure was related to reduced density (i.e., sparsity) in the person-

specific maps ( =-0.25, p=0.005) (Figure 3.2). Specifically, violence exposure was associated 

with sparsity within the SN (=-0.26, p=0.005) and between the SN and DMN (=-0.20, 

p=0.023) (Table 3.3A), including in sensitivity analyses (Supplemental Table 3.3 in Appendix 4). 

Violence exposure was not associated with DMN density, and social deprivation was not related 

to network metrics (Table 3.3A).   

Violence Exposure was Associated with Node Degree for Left IPL and Right Insula  

 Childhood violence exposure was related to reduced node degree for the right insula (=-

0.29, p=0.001) and left IPL (=-0.26, p=0.003) using a Bonferroni-corrected significance 

threshold (Tables 3.3B and Supplemental Table 3.4 in Appendix 4), including in sensitivity 
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analyses (Supplemental Table 3.5 in Appendix 4). There were no significant associations with 

social deprivation.  

Discussion 

 Results from a predominantly under-studied and under-served sample with high rates of 

poverty revealed that childhood violence exposure, but not social deprivation, was associated 

with adolescent neural circuitry. Data-driven analyses identified a subset of teens with 

heterogeneous patterns of connectivity (i.e., few shared and many individual connections) in two 

key neural networks associated with salience detection, attention, and social-cognitive processes 

(i.e., the SN and DMN) (Menon, 2011; Uddin, 2017a). This subgroup of teens was exposed to 

more violence in childhood than the other subgroup, whose patterns of neural connectivity were 

relatively more homogeneous (i.e., had many connections in common), suggesting that violence 

exposure may lead to more person-specific alterations in neural circuitry. Beyond subgroups, 

network density within the SN and between the SN and DMN was sparse for teens with high 

violence exposure, likely due to few connections involving the right insula and the left IPL. 

These effects could not be accounted for by social deprivation, in-scanner motion, race, gender, 

pubertal development, current life stress, or maternal marital status or education at birth. 

Findings regarding the neural network subgroups are noteworthy because the community 

detection algorithm within GIMME detected rsFC patterns in the brain from exposures that 

occurred at least 6 years earlier. Moreover, high childhood violence exposure in the subgroup 

characterized by neural heterogeneity likely reflects the person-specific effects of early adversity 

on the brain and suggests that research on the developmental sequelae of ACEs must consider 

individual differences in neural compensatory responses to stress (Marder & Goaillard, 2006). 

Although it important to replicate these findings in other samples, S-GIMME has reliably 



 62 

classified subgroups in empirical data (Gates et al., 2017; Price et al., 2017), and there is 

evidence from simulations that modeling connections at the subgroup-level, in addition to the 

group-level, improves the validity and reliability of results (Gates et al., 2017). 

Considering the sample as a whole, results also suggest that violence exposure is 

associated with blunted connectivity within the SN and between the SN and DMN. As expected, 

the observed reduced SN density in teens with heightened childhood violence exposure differs 

from typical developmental patterns that show stronger rsFC within SN nodes and increased 

density of connections with hub regions, such as the anterior insula, as the brain matures (Fair et 

al., 2009; Menon, 2011).  It is difficult, however, to align the present findings with previous work 

that showed increased SN rsFC in trauma-exposed youth (Marusak, Etkin, et al., 2015; Marusak, 

Martin, et al., 2015) because those samples were small, used different metrics of connectivity, 

and had different sample compositions. Moreover, the current sample was likely experiencing 

chronic adversity and research from animal models of chronic stress propose that, over time, the 

body’s stress response (e.g. HPA-axis reactivity) becomes blunted or habituated to typical 

stressors (McCarty, 2016). Previous research on HPA-axis reactivity in this sample revealed a 

blunted cortisol response in teens exposed to heightened childhood violence exposure (M. K. 

Peckins et al., 2019), and work in other high-risk samples shows blunted activation of the 

amygdala, a SN node, to threatening stimuli (Gard et al., 2017; Holz et al., 2017). The present 

study expands this notion to the function of threat detection neural circuits, and future research 

should examine whether this is compensatory or even adaptive. 

Beyond density, childhood violence exposure was associated with reduced node degree of 

the right anterior insula and left IPL. These results are consistent with the extant literature 

because the right anterior insula in the SN facilitates shifting between the DMN and central 
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executive network (Sridharan et al., 2008), which contributes to higher-level executive function 

(Menon, 2011). Moreover, early life stress has been linked to insular connectivity within the SN 

(Marusak, Etkin, et al., 2015), DMN (specifically the left IPL, which plays a role in working 

memory (Philip et al., 2016)), and other neural ROIs (Teicher et al., 2014). These results also 

illuminate differences in the way that the anterior insula is integrated within and between neural 

networks in youth exposed to violence in their homes and neighborhoods using longitudinal data 

from a population-based sample.   

This study represents a person-specific approach to the neuroscientific investigation of 

the sequelae of early adversity. Past research on early adversity and rsFC assumes that the same 

connectivity patterns characterize all, or a majority of participants, but if this assumption is 

violated (as is likely the case in studies of diverse populations and biopsychosocial phenomena), 

then results may not accurately describe any individual(Eavani et al., 2015; Molenaar, 2004). 

The presence of group- and subgroup-level connections in the current study suggests that there 

was some consistency in the connections within and between the SN and DMN, aligning with an 

assumption of homogeneity that is prevalent in rsFC research, but the large number of 

individual-level connections, especially in adolescents with high early violence exposure, show 

that there was also notable heterogeneity that required person-specific analyses to accurately 

reflect rsFC, encouraging future research using person-specific modeling approaches.   

Interestingly, all significant findings concerned violence exposure, and there were no detected 

links between social deprivation and rsFC. This set of results could indicate that social 

deprivation has a less salient influence on patterns of spontaneous neural fluctuations. Some 

studies have identified links between social deprivation and functional connectivity, but they 

concerned extreme, non-normative deprivation (i.e., previous institutionalization)(Chugani et al., 
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2001; Gee et al., 2013). This deprivation may be qualitatively different from deprivation 

operationalized in this study, and it may operate through different mechanisms. Additionally, 

because a hypothesis driven approach to node selection was taken in this study, it is possible that 

deprivation is associated with rsFC of SN or DMN nodes not measured here, with other networks 

(e.g., central executive), or in different populations (e.g., with extreme or heightened variability 

of deprivation). It is also tenable that there are other dimensions of adversity that would have 

differential associations with rsFC (e.g., those linked to emotionality), which future research 

should explore. Nonetheless, these findings present evidence for dimensional frameworks of 

adversity(Hein, 2019; Sheridan & McLaughlin, 2014) because there were distinct neural 

correlates for violence exposure. 

Limitations 

 Based on the demographics of the sample (e.g., 72% African American, born in 

Midwestern cities), it is not clear how findings will generalize beyond low-income, urban, 

African American youth; nonetheless, the present work is vital because these populations are 

often underrepresented in neuroimaging research and underserved by the medical 

community(Falk et al., 2013). Resting-state fMRI was only collected at a single occasion in 

adolescence; thus, it is unclear if connectivity patterns reflect stable or changing neural features. 

Nor is it possible to know the direction of association (e.g., whether neural differences pre-date 

exposure to adversity). Violence exposure and social deprivation composites were derived from 

parent-reports. Exposures between the FFCWS collection waves at ages 9 and 15 could not be 

accounted for in this study. Due to changes in the FFCWS questionnaire at year 15, current 

adversity could not be controlled using the composite scores created for earlier ages (Hein, 

2019). To compensate, a life stress scale was used as a covariate (that did not impact 
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associations). The ecology of poverty-related adversity is complex, and thus, there are 

unmeasured variables that may explain these associations or contribute to cascades of risk (e.g., 

parental psychopathology). 

Conclusions 

In a prospective, longitudinal study, childhood violence exposure, but not social 

deprivation, was associated with person-specific differences in how the adolescent brain 

functions in regions involved in salience detection and higher-level cognitive processes. These 

differences were potent enough that a data-driven algorithm, blind to child adversity, grouped 

youth with heightened violence exposure together based on the heterogeneity of their neural 

networks, suggesting that the impact of violence exposure may have divergent and personalized 

associations with functional neural architecture. Findings have implications for understanding 

how dimensions of adversity affect brain development, which can inform future neuroscience-

based policy interventions. 
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Table 3.1: Table of frequently used acronyms 

ACE Adverse Childhood Experience 

CFI Confirmatory Fit Index 

dACC Dorsal Anterior Cingulate Cortex 

dlPFC Dorsolateral Prefrontal Cortex 

DMN Default Mode Network 

FFCWS Fragile Families and Child Wellbeing Study 

IPL Inferior Parietal Lobule 

MTG Medial Temporal Gyrus 

NNFI Non-Normed Fit Index 

PCC Posterior Cingulate Cortex 

RMSEA Root Mean Square Error of Approximation 

ROI Region of Interest 

rsFC Resting State Functional Connectivity 

SN Salience Network 

STROBE 
Strengthening the Reporting of Observational Studies in 

Epidemiology 

S-GIMME Subgrouping Group Iterative Multiple Model Estimation 

SRMR Standard Root Mean Residual 
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Table 3.2: Logistic regression results for subgroup membership 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Logistic regression results for association between violence exposure and social 

deprivation and subgroup membership (heterogeneous or homogeneous subgroup) 

while controlling for motion.   

Predictor b SE 
Odds 

Ratio 

Odds Ratio 

95% CI 

[LL, UL] 

(Intercept) 0.55 0.32 1.73 [0.90, 3.22] 

Violence Exposure* 1.12 0.52 3.06 [1.17, 8.92] 

Social Deprivation -0.49 0.46 0.61 [0.25, 1.54] 

Motion1* 7.96 3.59 2860.05 [6.33, 8236598] 

* Significant predictor of subgroup membership 
1Motion indicated by mean relative framewise displacement 
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Table 3.3: Regression results for network density and node degree 

Regression results for association between dimensional exposure to adversity and (A) network 

density (i.e., number of connections modeled by network) and (B) node degree (i.e., the sum of 

the modeled connections involving each node). For space, only significant nodes are reported 

here. Results for all nodes are in the Appendix 4.  

 

Predictor b 

b 

95% CI 

[LL, UL] 

beta 

beta 

95% CI 

[LL, UL] 

r Fit 

Total Density 

(Intercept) 41.88 [40.57, 43.19]     

Violence Exposure* -3.08 [-5.20, -0.96] -0.25 [-0.41, -0.05] -.12  

Social Deprivation 1.81 [-0.28, 3.91] 0.15 [-0.05, 0.30] .06  

Motion 1* 12.98 [3.55, 22.40] 0.21 [0.06, 0.37] .17*  

R2   = .075 

95% CI[.01,.15] 

Salience Network Density 

(Intercept) 15.92 [15.47, 16.37]     

Violence Exposure* -1.09 [-1.82, -0.36] -0.26 [-0.43, -0.08] -.11  

Social Deprivation 0.65 [-0.08, 1.37] 0.15 [-0.02, 0.32] .07  

Motion 1* 5.17 [1.91, 8.43] 0.24 [0.09, 0.39] .20  

R2   = .088 

95% CI[.02,.16] 

Density Between Salience & Default Mode Networks 

(Intercept) 16.03 [15.32, 16.74]     

Violence Exposure* -1.33 [-2.48, -0.19] -0.20 [-0.38, -

0.03] 

-.07  

Social Deprivation 0.76 [-0.37, 1.90] 0.12 [-0.06, 0.29] .06  

Motion 1* 8.58 [3.48, 13.67] 0.25 [0.10, 0.40] .23  

R2   = .079 

95% CI[.01,.15] 

Default Mode Network Density 
(Intercept) 9.93 [9.50, 10.36]     

Violence Exposure -0.66 [-1.35, 0.03] -0.17 [-0.35, 0.01] -.13  

Social Deprivation 0.40 [-0.28, 1.09] 0.10 [-0.07, 0.28] .00  

Motion 1 -0.77 [-3.85, 2.30] -0.04 [-0.19, 0.12] -.06  

R2   = .024 

95% CI[.00,.07] 

B.       

Predictor b b 

95% CI 

[LL, UL] 

beta beta 

95% CI 

[LL, UL] 

r Fit 

Left Inferior Parietal Lobule Degree 

(Intercept) 7.33 [6.98, 7.68]     

Violence Exposure** -0.85 [-1.41, -0.28] -0.26 [-0.44, -

0.09] 

-.17  

Social Deprivation 0.49 [-0.07, 1.05] 0.15 [-0.02, 0.33] .03  

Motion 1 1.16 [-1.35, 3.68] 0.07 [-0.08, 0.22] .03  

R2   = .050 
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95% CI[.00,.11] 

Right Insula Degree 

(Intercept) 7.72 [7.48, 7.96]     

Violence Exposure** -0.65 [-1.04, -0.26] -0.29 [-0.47, -

0.12] 

-.16  

Social Deprivation 0.42 [0.03, 0.80] 0.19 [0.01, 0.36] .06  

Motion 1 1.38 [-0.36, 3.12] 0.12 [-0.03, 0.27] .08  

R2   = .067 

95% CI[.01,.14] 

Note. b represents unstandardized regression weights. beta indicates the standardized regression 

weights. r represents the zero-order correlation. LL and UL indicate the lower and upper limits of a 

confidence interval, respectively. 

* indicates significant predictor of network density at p<0.05.  

** indicates significant predictor of node degree at a Bonferroni corrected p<0.05/14 nodes (p<0.004).  
1Motion indicated by mean relative framewise displacement prior to motion correction 

 

 

  



 70 

Figure 3.1: S-GIMME connectivity results 

A) Connections fit at the group-level (i.e., statistically meaningful for  75% of sample); B) 

Subgroup-level connections for first, relatively homogenous (i.e., many shared, common paths), 

algorithm-detected subgroup (N=42); C) Subgroup-level connections for second, comparatively 

heterogenous (i.e., few common paths), algorithm-detected subgroup (N=133); D) Individual-

level connections for illustrative participant in first subgroup which shows relatively fewer 

individual level paths; E) Individual-level connections for illustrative participant in second 

subgroup which shows comparatively more individual level paths. All connections are directed 

and contemporaneous. Red nodes are part of the salience network. Blue nodes are part of the 

default mode network. 

 

E.
D.
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Figure 3.2: Association between violence exposure and network density 

Association between childhood violence exposure and reduced network density (i.e., number of 

connections modeled for each individual).  
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Chapter 4:  School Connectedness as a Protective Factor Against Childhood Exposure to 

Violence and Social Deprivation: A Longitudinal Study of Adaptive and Maladaptive 

Outcomes 

 

Recent data from the Center for Disease Control and Prevention (CDC) show that over 

60% of adults have experienced at least one adverse childhood experience (ACE) with close to 

25% of  adults reporting exposure to three or more ACEs (Merrick et al., 2018). On average, 

exposure to early adversity is associated with an increased risk for poor mental and physical 

health outcomes across the lifespan (Green et al., 2010; Nusslock & Miller, 2016). However, 

many children display resilience to early adversity and do not go on to develop poor outcomes 

(Masten et al., 2004). Multiple environmental factors, including those outside of the home, such 

as connectedness to school, have been posited to promote resilience (Barber & Olsen, 1997). The 

present study examined child and adolescent connectedness to school as protective against 

childhood exposure to early adversity. Consistent with prominent calls in the field (Masten & 

Cicchetti, 2016), this study is precise in its measure of two dimensions of adversity that index 

multiple levels of environmental exposure and examines resilience in terms of both the absence 

of negative outcomes and the presence of positive outcomes.  

Though a wealth of literature has examined the effects of either specific adversities (e.g., 

abuse, harsh parenting) or the cumulative effects of adversity broadly (i.e., cumulative risk 

research), dimensional models of adversity propose that the complex experiences of early 

adversity can be broken down into core underlying dimensions that influence neural and 

behavioral development through both distinct, specific, and more common, global mechanisms 
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(McLaughlin et al., in press; McLaughlin & Sheridan, 2016).  In the dimensional model of 

adversity and psychopathology (DMAP), one of the first and more prominent dimensional 

models, adversity is broken down into threat and deprivation (McLaughlin et al., 2014). We have 

specifically adapted these constructs to examine the dimensional correlates of violence exposure 

and social deprivation on child and adolescent functioning. Violence exposure, similar to the 

threat construct in DMAP, includes experiences of abuse, exposure to intimate partner violence 

in the home, and community violence (Hein et al., 2020). Social deprivation, which differs from 

the DMAP dimension of deprivation, includes experiences of neglect, a lack of support in the 

home, and a lack of a sense of cohesion and support in the neighborhood (Hein et al., 2020). 

These dimensions are conceptually and statistically distinct (Hein et al., 2020; Lambert et al., 

2017; McLaughlin et al., 2014; Miller et al., 2018). For example, research has shown that 

violence exposure is specifically linked to differences in areas of the brain involved in fear-

learning and emotion processing, while social deprivation has been related to differences in areas 

involved in social reward processing (Hein et al., 2020; McLaughlin et al., 2019). However, 

these dimensions coexist, are likely correlated, and interact with each other to create a unique 

environment of adversity for each individual (Goetschius, Hein, Mitchell, et al., 2020b; 

McLaughlin & Sheridan, 2016). Thus, it is important to assess exposure to both dimensions 

simultaneously.  

Early Adversity & Resilience   

Equally important to our understanding of how early adversity shapes development is 

understanding what factors help youth do well even when exposed to adverse environments. 

Resilience is defined as having positive outcomes in the context of adversity and research on the 

effects of early adversity has shown that “resilience is common” (Masten, 2001). Protective 
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factors that promote resilience to adversity can be internal factors, such as positive self-

perception, or external factors, such as social support in the home reflected by quality of 

attachment or parenting (Luthar, Crossman, & Small, 2015; Masten, 2001). In the present study, 

we examine the protective effects of an extrafamilial source of social support – school 

connectedness.   

Protective processes can differ depending on risk processes and domain of function 

(National Research Council (US) & Institute of Medicine (US) Board on Children, Youth, and 

Families, 2001), thus it is necessary to examine resilience effects not only in the context of 

multiple dimensions of childhood adversity, but also multiple outcomes. As outlined briefly 

above, evidence supports that dimensions of adversity shape development in ways that are at 

least partially distinct, but there is a lack of work empirically testing protective processes within 

this dimensional framework. Of equal importance to modeling the complexity of adversity in the 

study of resilience is the selection of outcomes. Much of the research on resilience to early 

adversity has focused on factors that mitigate negative function, such as symptoms of 

psychopathology; however, it is important to determine whether specific factors promote 

adaptive function using a strengths-based approach (Luthar et al., 2015; Masten & Cicchetti, 

2016). Positive function (Kern et al., 2016), as measured in the present study, indexes qualities 

such as optimism and perseverance, two qualities that promote positive outcomes (Chen & 

Miller, 2012). However, successful adaptation can exist simultaneously with maladaptive factors 

(Luthar et al., 2015). Thus, to gain greater understanding of protective processes, it is important 

to evaluate factors in terms of both the presence of adaptive and the absence of maladaptive 

outcomes.  

School Connectedness as Hypothesized Protective Factor 
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Youth spend a majority of their day at school and thus their experiences there play a large 

role in both socioemotional development and resilience (Masten & Cicchetti, 2016; Roeser, 

Eccles, & Sameroff, 2000). Connectedness to school, defined as a youth’s sense of belonging or 

closeness with others at their school, has been associated with positive adolescent outcomes 

including reduced emotional distress, suicidality, violence, and substance use (Bond et al., 2007; 

Brookmeyer et al., 2006; Kalu et al., 2020; Resnick et al., 1997). This extrafamilial source of 

social support is posited to promote socioemotional function through the creation of supportive 

relationships with teachers and peers (Loukas et al., 2006). School connectedness as a buffer is 

rooted in the risk and resilience framework, which posits that factors that promote developmental 

competency may also promote resilience to early adversity (Luthar et al., 2000).  

The school environment is a salient source of protective factors for a number of reasons. 

First, school context factors, such as connectedness, have been shown to buffer against the 

detrimental effects of cumulative, unidimensional adversity constructs as well as specific 

exposures, such as neighborhood violence and negative family relations (Hardaway et al., 2012; 

Lensch et al., 2020; Loukas et al., 2010; Markowitz, 2017). Additionally, social support in the 

school environment may compensate for low social support in other domains, such as in the 

home (Barber & Olsen, 1997; H. Foster & Brooks-Gunn, 2009). Last, school connectedness is a 

potentially socially modifiable factor, making it an attractive target for interventions (H. Foster & 

Brooks-Gunn, 2009; McNeely et al., 2002). 

There are number of limitations, however, in previous research examining the protective 

effects of school connectedness. Most studies have focused solely on either externalizing 

behaviors, such as conduct disorder (Klika et al., 2013; Loukas et al., 2010), or internalizing 

behaviors (Lensch et al., 2020; Markowitz, 2017). Given the high comorbidity of internalizing 
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and externalizing disorders in children (Caron & Rutter, 1991; G. T. Smith et al., 2020), 

surprisingly little research has examined the protective effects of school connectedness against 

early adversity when predicting internalizing and externalizing simultaneously (Hardaway et al., 

2012). There is also a lack of work examining the buffering effects of school connectedness 

when predicting positive function. In addition to addressing these limitations, the present study 

adds to this area of research by examining school connectedness as a contributor to resilience in 

the context of a dimensional model of adversity.  

The Present Study 

 In the present study, we examined whether childhood exposure to two dimensions of 

early adversity (composite across ages 3, 5, 9), violence exposure and social deprivation, 

predicted latent variables indexing child (Age 9) and adolescent (Age 15) internalizing and 

externalizing symptoms (4 separate variables) and adolescent positive function in youth from the 

Fragile Families and Child Wellbeing Study (FFCWS), a longitudinal birth cohort study. We 

hypothesized that both violence exposure and social deprivation would predict increased 

internalizing and externalizing symptoms and decreased positive function. Additionally, we 

tested whether connectedness to school in either childhood or adolescence was protective against 

early adversity and whether this differed across dimensions of adversity or by the outcome 

examined (i.e., internalizing symptoms, externalizing symptoms, or positive functioning) using a 

latent variable moderation approach. We did not have specific hypotheses regarding whether 

protective effects of school connectedness would be stronger for one dimension of adversity than 

another; however, given the multidimensional nature of resilience, we did not assume it would be 

uniformly protective.  

Methods 
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Sample 

 In the present study, we used data from the FFCWS, a population-based, longitudinal, 

birth-cohort study of approximately 5000 children born between 1998 and 2000 and their parents 

across 20 U.S. cities. The FFCWS oversampled for non-marital births at an approximately 3:1 

ratio (Reichman et al., 2001). When weighted, the FFCWS is representative of children born at 

the turn of the century in American cities of 200,000 or more. When not weighted (as here), 

given the oversample for non-marital births, the sample represents mostly low-income, urban 

families. FFCWS families were interviewed at the birth of the focal child, and again when the 

child was 1, 3, 5, 9, and 15 years of age through a combination of in-person interviews and 

phone surveys.  

 Analyses in the present study use data from 3246 families primarily from the mother and 

primary caregiver interviews at ages 3, 5, 9, and 15 and the focal child interviews at ages 9 and 

15. Over the 3 waves where we used data from the primary caregiver survey (ages 3, 5, 9), an 

average of 96% of respondents were mothers. Therefore, for parsimony, we refer to responses 

from mothers and primary caregivers as maternal reports. Families were excluded if they were 

missing data from all included variables from the year 3, 5, 9, and 15 waves (N=1167). Full 

information maximum likelihood (FIML) estimation was used to account for missing data in 

participants who were not missing all variables but were missing individual items (Kline, 2015; 

Muthén & Muthén, 1998). See Table 4.1 for sample demographic information.  

 Previous work has separately examined dimensional models of adversity (Miller et al., 

2020) and school connectedness (Kalu et al., 2020) in the FFCWS sample. However, the present 

study differs from that research in marked ways and is also the first to study them together. Our 

dimensions of violence exposure and social deprivation and the method for measuring them are 
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distinct from previous work. Additionally, the work examining the beneficial effects of school 

connectedness in the FFCWS sample only used data from girls in the wave at age 15 data, rather 

than the full sample at both ages 9 and 15 as is done in the current study. Previous work in a 

subsample of the FFCWS data from our lab has related childhood exposure to violence and 

social deprivation to the brain using functional and diffusion MRI (Goetschius, Hein, 

McLanahan, et al., 2020; Goetschius, Hein, Mitchell, et al., 2020b; Hein et al., 2020) and to the 

stress hormone, cortisol (Peckins et al., 2019). This research used the same composite scores but 

was done in a subsample of the FFCWS (N=237) that participated in a supplemental study that 

collected, among other things, neuroimaging and hormone data. Examining the protective effects 

of school connectedness on positive and negative adolescent function within a dimensional 

framework of adversity in the FFCWS dataset is a novel contribution to the literature. 

Measures 

Childhood Violence Exposure and Social Deprivation Composite Scores 

Violence exposure and social deprivation were assessed using composite scores 

calculated using data from the Fragile Families and Child Wellbeing study at ages 3, 5, and 9 

years. Both constructs included the maternal report of experiences that directly (i.e., child 

physical and emotional abuse, child physical and emotional neglect) and indirectly (i.e., intimate 

partner emotional, physical, or sexual violence, intimate partner support, community violence, 

community support) affect the child. Our approach of including experiences with varying levels 

of proximity to the child across multiple time points allowed us to comprehensively assess the 

child’s cumulative, dimensional exposure to violence and social deprivation across childhood as 

has been done in previous research (Hein et al., 2020; McLaughlin & Sheridan, 2016). These 

composite scores were first utilized in previous work from our group (Hein et al., 2020).  
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Childhood Exposure to Violence. Included in this composite was the maternal report of 

child physical and emotional abuse based on items from the Parent-Child Conflict Tactics Scale 

(Straus et al., 1998) that have been used in previous research (Font & Berger, 2015; Hunt et al., 

2017). Five items were used to assess physical abuse including, “hit him/her on the bottom with 

a hard object” and “shook him/her” and five items were used to assess emotional abuse including 

whether the parent/caregiver has “sworn or cursed at,” or “called him/her dumb or lazy or some 

other name like that.” Each item was rated on a 7-point Likert scale ranging from “never 

happened” to “more than 20 times.” Maternal report of the child’s exposure to or victimization of 

violence in the neighborhood (S. Zhang & Anderson, 2010) was also included in the composite. 

This was measured using the maternal report of the child witnessing or being the victim of 

beating, attacks with a weapon, shootings, and killings (witness only) on a 5-point Likert scale 

ranging from “never” to “more than 10 times.” At age 9, the mother was not asked about whether 

the child had witnessed killings or if they had been the victim of a shooting, so these items were 

only included for ages 3 and 5 years.  Lastly, we included maternal report of intimate partner 

violence (IPV) (physical-2 items, emotional-3 items, or sexual-1 item) in the home at each wave 

(Hunt et al., 2017). Each item was rated on a 3-point Likert scale ranging from “never” to 

“often.” Physical IPV items included “he slapped or kicked you” and “he hit you with his fist or 

a dangerous object.” Emotional IPV items included “he tried to isolate you from family and 

friends,” and “he tried to prevent you from going to work and/or school.” The sexual IPV was 

“he tried to make you have sex or do sexual things you didn’t want to do.”  The child’s exposure 

to IPV against the mother was coded as missing for a given wave if the child did not live with 

their mother at least 50% of the time.  
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Childhood Exposure to Social Deprivation. Included in this composite was maternal 

report of child physical and emotional neglect based on items from the CTS-PC (Straus et al., 

1998) that have been used in previous research (Font & Berger, 2015; Hunt et al., 2017). Four 

items from the CTS-PC were used to assed physical neglect including whether the parent was 

ever “so drunk or high that you had a problem taking care of your child.” One item, whether the 

parent was “ever so caught up in your own problems that you were not able to show or tell your 

child that you loved him/her,” was used to assess emotional neglect. These items from the CTS-

PC were reported on the same 7-point Likert scale as the items in the violence exposure 

composite. Maternal report of social cohesion in the neighborhood was also included in this 

composite (reverse coded such that higher scores corresponded to lower cohesion) (Donnelly et 

al., 2016; Morenoff et al., 2001). This included 4 items, such as “this is a close-knit 

neighborhood,” rated on a 5-point Likert scale ranging from “strongly agree” to “strongly 

disagree.” Lastly, we included maternal report of the level of intimate partner support for each 

wave using six items, such as “how frequently (the current romantic partner) expresses love and 

affection (for the mother),” that were rated on a 3-point Likert scale ranging from “never” to 

“often” (Manuel et al., 2012). This was also reverse coded such that higher scores corresponded 

to less support. Child exposure to the mother’s intimate partner support was coded as missing for 

a given wave if the child did not live with their mother at least 50% of the time. 

Composite Score Calculation. To calculate composite scores, the Z scores for each of 

the childhood experiences (child abuse, exposure to intimate partner violence, community 

violence, child neglect, lack of romantic partner support, lack of neighborhood social cohesion) 

were summed for each of the childhood experiences within a dimension (violence exposure and 

social deprivation) (Song et al., 2013) and then divided by the number of childhood experiences 
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within a dimension for each participant, thus maximizing the number of participants and the 

diversity of the sample by minimizing drop out due to missing data at any given wave. In our 

sample, violence exposure and social deprivation were correlated at r = 0.400 with a variance 

inflation factor (VIF) of 1.191. VIF reflects how much the estimated regression coefficients are 

increased due to collinear independent variables. Cutoffs are typically between 5–10, therefore, 

based on the VIF reported here, the multicollinearity of violence exposure and social deprivation 

was low (Craney & Surles, 2002; Sheather, 2009). 

Internalizing Symptoms 

 Child Internalizing Symptoms. Child (age 9) internalizing symptoms were measured 

using maternal report on 28 items from the Child Behavior Checklist (CBCL) (Achenbach & 

Edelbrock, 1983). These items came from three subscales; “anxious/depressed” (i.e., “Child cries 

a lot”), “withdrawn/depressed” (i.e., Child enjoys very little), and “somatic complaints” (i.e., 

“Child has nightmares”).  These items were rated on a three-point Likert scale ranging from 1- 

“not true” to 3- “very true or often true.” Four items from these subscales were not included due 

to very low endorsement (less than 20 responses for a category) which resulted in correlations 

with other items which exceeded +/-0.985 due to one or more zero cells.  

Adolescent Internalizing Symptoms. Adolescent internalizing symptoms in the FFCWS 

were measured at age 15 using teen-report on five items for depression and five items for 

anxiety. The items for depression were from the Center for Epidemiologic Studies Depression 

Scale (CES-D) (Radloff, 1977) and include statements such as, “I feel I cannot shake off the 

blues, even with help from my family and my friends.” Teens responded with their degree of 

agreement based on the last four weeks on a four-point Likert scale ranging from 1- “strongly 

agree” to 4- “strongly disagree.”   The items for anxiety were adapted from the Brief Symptom 
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Inventory 18 (BSI-18) (Derogatis & Savitz, 2000) and include statements such as , “I have spells 

of terror or panic.” Teens responded on a four-point Likert scale ranging from 1- “strongly agree” 

to 4- “strongly disagree.” Items corresponding to both depression and anxiety were reverse coded 

such that higher values represented more internalizing symptoms. 

Externalizing Symptoms 

 Child Externalizing Symptoms. Child (age 9) externalizing symptoms were measured 

using maternal report on 25 items from the Child Behavior Checklist (CBCL) (Achenbach & 

Edelbrock, 1983). These items came from two subscales; “rule-breaking behavior” (i.e., “Child 

lacks guilt”) and “aggressive behavior” (i.e., “Child argues a lot”). These items were rated on a 

three-point Likert scale ranging from 1- “not true” to 3- “very true or often true.” Ten items from 

these subscales were not included due to very low endorsement (less than 20 responses for a 

category) which resulted in correlations with other items which exceeded +/-0.985 due to one or 

more zero cells.  

Adolescent Externalizing Symptoms. Adolescent externalizing symptoms were 

measured at age 15 using teen-report of delinquency (6 items), impulsivity (6 items), and 

substance use (5 items). The items for delinquency were adapted from the National Longitudinal 

Study of Adolescent Health (Add Health - (Harris, 2013) and included items such as “painted 

graffiti or signs on private property/public spaces.” Items were rated on a four-point Likert scale 

ranging from 1- “never” to 4- “5 or more times.” Seven items from the delinquency scale were 

not included due to very low endorsement (less than 20 responses for a category) which resulted 

in correlations with other items which exceeded +/-0.985 due to one or more zero cells. The 

items for impulsivity were adapted from the dysfunctional impulsivity items on Dickman’s 

Impulsivity scale (Dickman, 1990), and included items such as, “I will often say whatever comes 
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into my head without thinking first.” Items were rated on a four-point Likert scale ranging from 

1- “strongly agree” to 4- “strongly disagree.” Impulsivity items were reverse coded so that higher 

scores represented increased impulsivity to match the delinquency scale. The items for substance 

use were binary variables (yes/no) indexing cigarette use, alcohol use (more than 2 drinks 

without parents), marijuana, illegal drugs other than marijuana, and taking prescription drugs 

without a prescription.  

Adolescent Positive Function 

Adolescent positive function was measured at age 15 using teen-report on 20-items 

adapted from the EPOCH Measure of Adolescent Wellbeing (Kern et al., 2016). These items 

make up five subscales representing perseverance (i.e., “I finish whatever I begin”), optimism 

(i.e., “I am optimistic about my future”), connectedness (i.e., “When something good happens to 

me, I have people who I like to share the good news with”), happiness (i.e., “I feel happy”), and 

engagement (i.e., “when I do an activity, I enjoy it so much that I lose track of time”). Teens 

responded with their degree of agreement to the items based on the last 4 weeks on a four-point 

Likert scale ranging from 1- “strongly agree” to 4- “strongly disagree.” These items were 

recoded so that higher values represented more positive function.  

School Connectedness  

School connectedness was measured in the FFCWS via self-report at ages 9 and 15 years 

based on questions developed for the Panel Study on Income Dynamics Child Development 

Supplement (PSID-CDS) (The Panel Study of Income Dynamics Child Development Supplement: 

User Guide for CDS-III, 2010). The focal child was asked if they “feel close to people at 

school,” “feel like part of school,” are “happy to be at school,” and “feel safe at school.” At age 

9, children responded on a five-point Likert scale with the frequency that they felt the above 
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questions ranging from “0 - not once in the past month” to “4 - every day.” At age 15, teens 

responded on a five-point Likert scale with the degree of agreement with the same statements 

ranging from “0 - strongly agree” to “4 - strongly disagree.” The Age 15 school connectedness 

items were reverse coded so that higher scores represented more connectedness to be consistent 

with the Age 9 items.  

Covariates  

Focal child sex at birth, self-reported race/ethnicity at age 15 (dummy coded – African 

American, Caucasian, Latinx, Other), and average income-to-needs ratio across the study waves 

were used as covariates in robustness checks. Self-reported race/ethnicity was coded using a set 

of 3 dummy coded variables to represent the following groups: African American, Caucasian, 

Hispanic/Latinx, and Other. The average income-to-needs ratio (referred to as poverty ratio in the 

FFCWS data) is calculated by taking the average of (
ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑖𝑛𝑐𝑜𝑚𝑒

𝑝𝑜𝑣𝑒𝑟𝑡𝑦 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
) across the six study 

waves. The poverty threshold accounts for household size and composition as well as inflation; 

however, it does not differ geographically (U.S. Census Bureau, 2020).  

Statistical Analysis 

 Analyses for the present study were done in a combination of R (v4.0.2) and Mplus 

(v.8.4-Muthén & Muthén, 1998-2017). Data were cleaned in R and were prepared for analysis in 

Mplus using the MplusAutomation package (v.0.7-3) (Hallquist & Wiley, 2018). The fit of the 

measurement and structural models were assessed using accepted fit indices: RMSEA, CFI, TLI, 

and SRMR (Hu & Bentler, 1999).  The X2 value of these model are reported but were not 

interpreted since X2 is likely inflated by the large sample size and thus the significant value 

cannot be taken as an indicator of poor fit (Schermelleh-engel et al., 2003). To account for the 

multisite design of the FFCWS, all measurement and structural models were clustered by city at 
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baseline and estimated using Taylor-series linearization using Type = Complex in Mplus. Cluster 

effects could not be accounted for in the same way in the moderation models because they 

required a different analysis type that allows for random slopes and models heterogeneity in the 

residual variance (Muthén & Muthén, 1998). 

Measurement Model 

 Latent variables were created using item level indicators to measure school 

connectedness at age 9, school connectedness at age 15, internalizing symptoms at 9, 

externalizing symptoms at 9, internalizing symptoms at age 15, externalizing symptoms at age 

15, and positive function at age 15 (a single latent variable though there are subscales), in Mplus. 

We used the WLSMV estimator because we had categorical as indicators of the latent factors 

(Kline, 2015). Items were excluded if they did not have a standard YX loading of at least 0.4 

(Kline, 2015). Standardized coefficients () are effect size estimates (Kline, 2015) and all factor 

loadings reported in the present study are standardized.  

Main Effects Models 

 We tested a model that estimated the main effects of childhood violence exposure, 

childhood social deprivation, and child and adolescent school connectedness on our predicted 

outcomes. It is tenable that internalizing symptoms, externalizing symptoms, or positive function 

could influence how connected teens feel to school rather than how it specified in our 

hypothesized model. Therefore, we also ran a reverse effects model where the outcome variables 

predicted school connectedness at the same time point (e.g., age 9 internalizing symptoms 

predicting age 9 school connectedness) and compared model fit and path estimates. All path 

estimates reported in the present study are standard YX estimates. We used the WLSMV 
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estimator because we had categorical variables included the latent variables (Kline, 2015). 

Models controlled for the demographic covariates listed above.  

Moderation Models 

 Two moderation models were run. The first tested whether school connectedness at either 

age 9 or age 15 moderated the association between childhood violence exposure and 

internalizing and externalizing symptoms (age 9 and 15) or the association between childhood 

social deprivation and internalizing and externalizing symptoms.  The second tested whether 

school connectedness at either age 9 or 15 moderated the association between childhood violence 

exposure and adolescent positive function or the association between childhood social 

deprivation and adolescent positive function. All moderation models were tested in Mplus using 

a latent variable moderation approach (Maslowsky et al., 2015). In this approach, interaction 

terms are created from an observed (i.e., social deprivation composite score) and a latent variable 

(i.e., school connectedness at age 9) using the XWITH option along with ANALYSIS 

TYPE=RANDOM which allows for random slopes that model heterogeneity in the residual 

variance (Muthén & Muthén, 1998). We used the MLR estimator, because the WLSMV 

estimator cannot be used with TYPE=RANDOM, and the Monte Carlo option for numerical 

integration with 10000 randomly generated integration points (Muthén & Muthén, 1998). The fit 

of these moderation models was assessed using a Satorra-Bentler scaled chi-square difference 

test (TRd) using the log likelihood values for the main effects model verses the interaction model 

(Satorra & Bentler, 2010). This was done because the traditional global fit indices are not 

produced in Mplus when the analysis TYPE=RANDOM. Models controlled for demographic 

covariates.  
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Simple Slopes Analysis. To interpret significant interactions, simple slope and regions of 

significance analyses were conducted to determine the nature of the interaction and ensure that 

the interaction was within our observable data using methods outlined by Preacher et al, (2006). 

This was done in R using factor scores extracted from Mplus. Factor scores were extracted from 

measurement models containing all of the latent variables in the model (e.g., school 

connectedness at age 9, school connectedness at age 15, and adolescent positive function). 

Interactions were plotted using the interactions (v1.1.1) toolbox in R (Long, 2019).  

Results 

 Descriptive statistics for and zero-order correlations between childhood exposure to 

violence and social deprivation as well as the factor scores representing child and adolescent 

school connectedness, internalizing and externalizing psychopathology, and adolescent positive 

function are in Table 4.2.  

Measurement Model 

The final measurement model using CFA to fit the Age 9 School Connectedness, Age 15 

School Connectedness, Age 9 Internalizing Symptoms, Age 15 Internalizing Symptoms, Age 9 

Externalizing Symptoms, Age 15 Externalizing Symptoms and Age 15 Positive Function items to 

their respective factors fit the data well (Table 4.3 - RMSEA: 0.010, RMSEA 95% CI 0.009-0.010, 

CFI = 0.935, TLI = 0.933, SRMR = 0.064, X2(4928) =6619.97). During the process of fitting the 

CFA model, we discovered that three items from the internalizing subscales of CBCL did not 

load well with the other items with standard factor loadings below the 0.4 threshold. These items 

were excluded in the final measurement model. Additionally, we discovered that the engagement 

subscale of the positive function (EPOCH) scale (4 items) did not load well with the rest of the 

items from the other four subscales with standard factor loadings well below 0.4. Therefore, we 
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excluded the items from the engagement subscale from further analyses. All factor loadings in 

the final measurement model had standard YX estimates of greater than 0.4.  

Main Effects Models 

The main effects model testing the main effects of childhood violence exposure, 

childhood social deprivation, and child and adolescent school connectedness on our predicted 

outcomes fit the data well (RMSEA=0.009, 95% CI 0.008-0.010, CFI = 0.928, TLI = 0.926, 

SRMR = 0.065, X2(5602) =7094.661 - Figure 4.1). In this model, childhood violence exposure 

predicted greater internalizing symptoms (age 9: =0.154, SE=0.030, p<0.001; age 15: =0.061, 

SE=0.018, p=0.001), greater externalizing symptoms (age 9: =0.256, SE=0.021, p<0.001; age 

15: =0.148, SE=0.012, p<0.001), and lower positive function at age 15 (=-0.031, SE=0.041, 

p=0.029). Childhood social deprivation also predicted greater internalizing symptoms (age 9: 

=0.212, SE=0.023, p<0.001; age 15: =0.079, SE=0.025, p=0.002) and externalizing symptoms 

at age 9 (=0.128, SE=0.019, p<0.001) but not age 15. Social deprivation also predicted lower 

positive function at age 15 (=-0.127, SE=0.022, p<0.001). School connectedness at age 9 

predicted lower age 9 internalizing (=-0.141, SE=0.021, p<0.001) and externalizing (=-0.157, 

SE=0.029, p<0.001) symptoms, but did not predict age 15 internalizing symptoms, externalizing 

symptoms, or positive function. School connectedness at age 15 predicted lower age 15 

internalizing (=-0.371, SE=0.016, p<0.001) and externalizing (=-0.289, SE=0.020, p<0.001) 

symptoms as well as greater adolescent positive function (=0.567, SE=0.020, p<0.001).    

 The reverse effects model where the outcomes at age 15 (internalizing symptoms, 

externalizing, symptoms, and positive adolescent function) predicted school connectedness at 

age 15 and the outcomes at age 9 (internalizing and externalizing symptoms) predicted school 

connectedness at age 9 fit the data worse than our hypothesized model (RMSEA=0.017, 95% CI: 
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0.016-0.017, CFI = 0.751, TLI = 0.745, SRMR = 0.115, X2(5611) =10745.500) and the 

standardized path estimates were lower suggesting that our hypothesized model may be a better 

fit for the data.   

 As a check, structural models were run separately for age 9 (RMSEA=0.010, 95% CI: 

0.009-0.011, CFI = 0.950, TLI = 0.948, SRMR = 0.059, X2(2808) =3712.128) and for age 15 

(RMSEA=0.021, 95% CI: 0.020-0.022, CFI = 0.897, TLI = 0.891, SRMR = 0.083, X2(1336) 

=3301.428) and path estimates were similar. The only difference was that there was a main effect 

of age 9 school connectedness (=0.178, SE=0.017, p<0.001) when age 15 school connectedness 

was not in the model.  

Moderation Models 

A latent variable moderation model which included the interaction between school 

connectedness at 15 and early adversity (violence exposure and social deprivation) was initially 

tested for both for sets of outcomes; however, the moderation paths including school 

connectedness at age 15 were non-significant. In order to retain a more parsimonious model, 

those paths were removed in the final model.  

Child and Adolescent Internalizing and Externalizing Symptoms as Outcome 

This latent variable moderation model showed a significant interaction between social 

deprivation and child school connectedness (age 9) when predicting child externalizing 

symptoms (=0.073, SE=0.036, p=0.043 - Figure 4.2).  This moderation model fit the data better 

than the main effects model without interactions based on a Satorro-Bentler Scaled Chi-Square 

Difference Test (TRd=18.765, df=8, p=0.016) and better than the moderation model with the 

school connectedness at age 9 and social deprivation interaction path predicting child 

externalizing symptoms set to 0 (TRd=6.515, df=1, p=0.011).  
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A simple slopes analysis revealed that at all conditional levels of age 9 school 

connectedness that were tested (+1 standard deviation (SD), mean, -1 SD), social deprivation 

was positively correlated with externalizing symptoms at age 9 (Figure 4.3). However, when 

school connectedness was high (+1 SD), the slope of this association was steeper (b=0.162, 

p<0.001) and the intercept was lower (intercept=-0.193) than when school connectedness was at 

mean (b=0.123, p<0.001, intercept=-0.001) or low (b=0.0784, p=0.005, intercept=0.196) levels. 

For ease of interpretation of these intervals, all variables were scaled such that the mean was 0 

and SD was 1. An evaluation of Johnson-Neyman intervals showed that the interaction was 

significant until social deprivation was 2.56 SD above the mean and when school connectedness 

was greater than -1.55 SD below the mean. This suggests that school connectedness at age 9 was 

protective against social deprivation but that the protective effects diminished when social 

deprivation was moderately high (+2.56 SD). Additionally, when school connectedness at age 9 

was low (-1.55 SD), it was not protective against social deprivation.  

Adolescent Positive Function as Outcome 

 This latent variable moderation model showed a significant interaction between social 

deprivation and school connectedness at age 9 when predicting adolescent positive function (=-

0.051, SE=0.026, p=0.045), even when accounting for the main effects of school connectedness 

at age 9, school connectedness at age 15, social deprivation, violence exposure, and the 

interaction between violence exposure and school connectedness at age 9 (Figure 4.4). This 

moderation model fit the data better than the main effects model based on a Satorro-Bentler 

Scaled Chi-Square Difference Test (TRd=7.088, df=2, p=0.029) and better than the moderation 

model with the school connectedness at age 9 and social deprivation interaction set to 0 

(TRd=6.603, df=1, p=0.010).  
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 A simple slopes analysis revealed that at all conditional levels of age 9 school 

connectedness that were tested (+1 SD, mean, -1 SD), social deprivation was negatively 

correlated with positive adolescent function (Figure 4.5). However, when school connectedness 

was high (+1 SD), the slope of this association was steeper (b=-0.150, p<0.001) and the intercept 

was higher (intercept=0.209) than when school connectedness was at mean (b=-0.112, p<0.001, 

intercept=-0.001) or low (b=-0.075, p=0.002, intercept=-0.210) levels. An evaluation of Johnson-

Neyman intervals showed that the interaction was significant until social deprivation was 2.83 

SD above the mean and when school connectedness was greater than -1.41 SD below the mean. 

For ease of interpretation of these intervals, all variables were scaled such that the mean was 0 

and SD was 1. Similar to the interaction predicting externalizing symptoms at age 9, school 

connectedness at age 9 was protective against social deprivation when predicting positive 

adolescent function; however, it became less protective as social deprivation becomes more 

extreme. Additionally, when school connectedness at age 9 was very low (-1.41 SD), it was not 

protective against social deprivation.  

Discussion 

 In the present study, we examined whether school connectedness was protective against 

childhood exposure to violence and social deprivation based on multiple indices of child and 

adolescent function in a longitudinal sample of close to 4,000 youth from the Fragile Families 

and Child Wellbeing Study. We found that both child and adolescent school connectedness were 

correlated with better concurrent outcomes (i.e., higher positive outcomes, lower negative 

outcomes), even when accounting for the detrimental effects of violence exposure and social 

deprivation. Additionally, we found that child school connectedness (age 9) specifically 

interacted with childhood social deprivation, but not violence exposure, to moderate the 
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association with child externalizing symptoms and adolescent positive function. An analysis of 

simple slopes for both interactions suggested that child school connectedness was a protective 

but reactive factor against social deprivation, meaning that school connectedness was protective 

against social deprivation, but that it became less protective as social deprivation became more 

extreme (Luthar et al., 2000; Proctor, 2006).   

Both child and adolescent school connectedness were promotive of contemporaneous 

outcomes in all youth, regardless of their childhood exposure to violence or social deprivation.  

Additionally, school connectedness at age 9 was a protective but reactive buffer against social 

deprivation when predicting age 9 externalizing symptoms and even six years later when 

predicting positive function. Protective but reactive effects confer protection against a risk factor, 

but the buffering effect diminishes with increasing stress (Luthar et al., 2000). This pattern of 

results suggests that the protective effect of age 9 school connectedness is reduced over time and 

with increasing stress, which is consistent with previous work showing a decreasing promotive 

effect size over time for late adolescent school connectedness (Markowitz, 2017).  The residual 

protective effect of age 9 school connectedness on positive function six years later supports 

previous work positing that social connections and support at school can compensate for other 

areas of social deprivation (H. Foster & Brooks-Gunn, 2009) and it extends that work by 

showing that those connections seem to enhance adolescent self-reports of  perseverance, 

optimism, connectedness, and happiness. 

Our results are consistent with the literature highlighting the protective effects of school 

connectedness (Brookmeyer et al., 2006; Hardaway et al., 2012; Kalu et al., 2020; Markowitz, 

2017), but expand on it in four key ways. First, we utilized two multi-context measures of 

adversity that prospectively indexed a child’s exposure to both violence and social deprivation at 
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varying levels of proximity to the child (i.e., self, home, neighborhood) and at multiple time 

points (ages 3, 5, 9 years). Second, we included measures of school connectedness and outcomes 

at two time points (age 9 and 15 years). This allowed us to gain insight into the longitudinal 

effects of school connectedness because we were able to assess how school connectedness can be 

correlated with better outcomes at the same timepoint, but also in the future, while still 

controlling for the effects of contemporaneous school connectedness. Third, we examined the 

protective effects of school connectedness at an earlier age (9 years) than previous research 

studies. Last, we operationalized resilience in terms of enhanced positive function in addition to 

reduced negative function (i.e., internalizing and externalizing symptoms) which supports 

examining protective processes in terms of multiple domains of function (National Research 

Council (US) & Institute of Medicine (US) Board on Children, Youth, and Families, 2001). 

Results from the present study underscore the important role that the school environment 

can play for youth who have been exposed to adversity in other areas of their lives.  They also 

underscore the enduring effect of positive social connections. School-aged children and 

adolescents spend a majority of their day at school (Roeser et al., 2000), and thus, it is critical to 

help them develop strong social connections at school, especially those who are exposed to 

violence and social deprivation in their homes and neighborhoods. Previous research has shown 

that school connectedness is improved through social support and encouragement in school 

involvement from teachers, school counselors, peers, and parents, as well as through 

involvement in school-sponsored extracurricular activities (Daly et al., 2010).  However, more 

research is needed to determine effective interventions to promote school connectedness because 

there are systematic disparities in school connectedness and climate based on race-ethnicity, 

gender, and socioeconomic status (Liu et al., 2020; Voight et al., 2015). Promoting school 
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connectedness may be particularly salient for African American boys who experience disparate 

treatment at school, including disproportionately high levels of suspensions and expulsions 

(Thomas & Stevenson, 2009) and systematically lower expectations for academic attainment 

(Wood et al., 2007). Additionally, Latinx youth are the largest ethnic minority in the U.S.; 

however, the rate of degree attainment in Latinx high school students is systematically lower and 

has been linked to academic discrimination (Alfaro et al., 2009). These troubling trends highlight 

the importance of identifying processes that promote factors, such as school connectedness, that 

improve academic and socio-emotional outcomes in at-risk youth (Liu et al., 2020).  

Results from the present study support modeling adversity in terms of their core 

underlying dimensions which relate to development in both distinct and overlapping ways 

(McLaughlin & Sheridan, 2016). We found that both violence exposure and social deprivation 

predicted childhood symptoms of psychopathology. However, violence exposure distinctly 

predicted adolescent externalizing symptoms and social deprivation, more strongly predicted 

reduced adolescent positive function. These findings are largely consistent with previous 

research modeling the effects of adversity using the DMAP framework, including work done 

with the FFCWS sample, which found that threat (similar to our violence exposure) was 

associated with both internalizing and externalizing symptoms (Miller et al., 2018, 2020). We are 

unaware of any prior research examining links between dimensions of adversity and positive 

function.  The predictive effect of social deprivation suggests that there may be a specific 

mechanism linking the lack of expected social input in the home and neighborhood environment 

with teen self-reports of low perseverance, optimism, connectedness, and happiness.  

Findings related to social deprivation in the present study are complementary but not 

identical to those found in previous research using the DMAP framework. This may be due to 
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varying definitions of deprivation. Deprivation constructs have largely encompassed two areas: 

cognitive, which indexes information about a lack of cognitive enrichment of the child’s 

environment (e.g., age-appropriate toys, books, measures of SES - Lambert et al., 2017; Miller et 

al., 2018); and social, which indexes information about a lack of expected social input in the 

child’s environment as was done in the present study. Previous work has explicitly or implicitly 

operationalized deprivation as either cognitive deprivation, social deprivation, or both. 

Behavioral correlates of these differing definitions suggest that deprivation may be two 

dimensions rather than one. Deprivation, when indexed by both cognitive and social deprivation, 

has been linked to increased internalizing and externalizing symptoms (Miller et al., 2020). 

However, when deprivation is indexed strictly as cognitive deprivation, it is associated 

selectively with increased externalizing symptoms (Miller et al., 2018), suggesting that perhaps 

cognitive deprivation is related to a higher risk for externalizing psychopathology and, consistent 

with our findings, social deprivation may be a greater risk factor for internalizing 

psychopathology. Future work using dimensional models of adversity should more directly test 

whether social and cognitive deprivation form two separate dimensions in addition to violence 

exposure/threat. Additionally, future work comparing the neural correlates of differing 

definitions of deprivation may provide insight into if there are diverging neural mechanisms 

underlying cognitive and social deprivation.  

We found that social connections at school can promote resilience broadly, but that 

protective effects also manifest in more specific ways through interaction with social deprivation. 

This highlights the importance of studying protective factors within a dimensional model of 

adversity and suggests that school connectedness may work through multiple mechanisms to 

influence function. A benefit of employing dimensional models of adversity is that it is possible 
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to test specific hypotheses regarding how variation in core aspects of childhood adversity relate 

to outcomes with the idea that particular dimensions are likely to impact development through 

specific neurobiological mechanisms (McLaughlin et al., 2014). By examining protective 

processes within a dimensional model of adversity, we were able to identify that social 

connections at school protected against, and may make up for, a lack of expected social input 

elsewhere (H. Foster & Brooks-Gunn, 2009), while also promoting outcomes overall. Future 

research should test whether the compensatory effects of school connectedness operate through 

distinct neurobiological mechanisms compared to the general promotive effects.  Additionally, 

future research should examine if school connectedness is protective against other dimensions of 

adversity, such as cognitive deprivation or environmental instability (Ellis et al., 2009; Miller et 

al., 2018), which would provide additional insight into the mechanisms through which school 

connectedness promotes resilience.  

The present study had limitations. First, there was a six-year gap between FFCWS data 

collection waves at ages 9 and 15. We would be able to better understand these protective 

associations and how the strength of school connectedness at age 9 changes over time if we had 

information about the children and their families during this gap. Second, we did not have a 

comparable index of positive function at age 9 to test whether school connectedness at age 9 is 

also correlated with positive function. Third, the violence exposure and social deprivation 

composites were derived from maternal reports. Data regarding childhood adversity from sources 

outside the home, such as social workers and teachers, would make our composites more 

comprehensive. Last, the environment of adversity is complex; thus, there are likely unmeasured 

variables that may influence these associations or contribute to cascades of risk.  

Conclusion 
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 The present findings suggest that school connectedness is a robust protective factor 

against exposure to early adversity in youth from the FFCWS in terms of both positive and 

negative metrics of child and adolescent function. Social connections at school may compensate 

for a lack of expected social support and input in the home and neighborhood to help reduce 

externalizing symptoms and promote positive adaptive function. Consistent with previous 

research, our results highlight the important role that the school environment can play for youth 

who have been exposed to adversity in other areas of their lives. Additionally, the interactive 

effect of school connectedness with social deprivation, but not violence exposure, supports 

modeling risk and resilience processes using dimensional frameworks to better identify specific 

groups of youth that may benefit from interventions that boost social connectedness at school.  
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Table 4.1: Demographic characteristics 

Demographic characteristics of the sample.   

 Overall 

(N=3246) 

Child’s Sex at Birth  

Female 1585 (48.8%) 

Male 1661 (51.2%) 

Adolescent Race-Ethnicity – Self-report at Age 15  

African American 1592 (49.0%) 

Caucasian 587 (18.1%) 

Latinx 808 (24.9%) 

Other 259 (8.0%) 

Average Income-to-Needs Ratio1 Across All Study Waves  

Mean (SD) 2.11 (2.10) 

Median [Min, Max] 1.46 [0.120, 21.2] 

Maternal Marital Status at Child's Birth  

Married 785 (24.2%) 

Not Married 2443 (75.3%) 

Missing 18 (0.6%) 

Maternal Education at Child's Birth  

Less than high school 1025 (31.6%) 

High school or equivalent 1030 (31.7%) 

Some college or technical school 821 (25.3%) 

College or graduate school 365 (11.2%) 

Missing 5 (0.2%) 

1 Income-to-needs ratio variable is referred to as the poverty ratio in the FFCWS dataset. 
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Table 4.2: Descriptive statistics and zero-order correlations  

Means, standard deviations, and zero-order correlations with confidence intervals of the variables of the interest. 

 

Note. M and SD are used to represent mean and standard deviation, respectively. Values in square brackets indicate the 95% 

confidence interval for each correlation. The confidence interval is a plausible range of population correlations that could have caused 

the sample correlation (Cumming, 2014). ** indicates p < .01. 

Variable M SD 1 2 3 4 5 6 7 8 

           
1. Violence Exposure 0.01 0.53                 

2. Social Deprivation 0.00 0.53 .40**               

      [.37, .43]               

3. School Connectedness  

(Age 9) 
-0.05 0.77 -.05** -.06**             

      [-.09, -.02] [-.09, -.02]             

4. School Connectedness  

(Age 15) 
-0.04 0.78 -.14** -.13** .16**           

      [-.17, -.10] [-.16, -.10] [.12, .19]           

5. Internalizing Symptoms 

(Age 9) 
0.08 0.82 .20** .26** -.12** -.07**         

      [.16, .23] [.22, .29] [-.15, -.08] [-.11, -.04]         

6. Externalizing Symptoms 

(Age 9) 
0.05 0.88 .34** .24** -.15** -.12** .60**       

      [.30, .37] [.21, .28] [-.19, -.11] [-.16, -.08] [.58, .62]       

7. Internalizing Symptoms 

(Age 15) 
0.03 0.87 .08** .12** -.09** -.31** .14** .13**     

      [.05, .12] [.08, .15] [-.13, -.05] [-.34, -.28] [.11, .18] [.09, .16]     

8. Externalizing Symptoms 

(Age 15) 
0.04 0.91 .19** .11** -.08** -.26** .08** .24** .42**   

      [.16, .23] [.08, .15] [-.12, -.05] [-.29, -.23] [.05, .12] [.21, .28] [.39, .45]   

9. Positive Function 

(Age 15) 
-0.02 0.89 -.04* -.11** .13** .42** -.12** -.09** -.50** -.27** 

      [-.08, -.01] [-.14, -.08] [.09, .16] [.39, .45] [-.16, -.08] [-.12, -.05] [-.53, -.48] [-.30, -.24] 



 100 

Table 4.3: Measurement model factor loadings 

Standard factor loading values for the latent variable measurement model. All factor loadings were 

significant at p<0.001. Items were excluded if loading <0.4 or if very low endorsement (less than 20 

responses per category). Model was clustered by city at birth. 

Latent Variable Item 
Standard YX 

Factor Loading 
School Connectedness K5E1A: Felt part of school 0.684 

Age 9 K5E1B: Felt close to people at school 0.586 

 K5E1C: Happy to be at school 0.753 

 K5E1D: Felt safe at school 0.766 

School Connectedness K6B1A1: Feel close to people at school 0.663 

Age 15 K6B1B1: Feel part of school 0.772 

 K6B1C1: Happy to be at school 0.772 

 K6B1D1: Feel safe at school 0.637 

Internalizing Symptoms P5Q3M: Cries a lot 0.644 

Age 9 P5Q3AB: Fears certain animals/situations/places 0.463 

 P5Q3AD: Fears might do something bad 0.628 

 P5Q3AF: Feels/complains no one loves him/her 0.745 

 P5Q3AH: Feels worthless/inferior 0.820 

 P5Q3AR: Nervous movements or twitches 0.643 

 P5Q3AV: Too fearful or anxious 0.689 

 P5Q3AX: Feels too guilty 0.753 

 P5Q3BQ: Self-conscious or easily embarrassed 0.570 

 P5Q3CK: Talks about killing self 0.845 

 P5Q3DB: Worries 0.533 

 P5Q3E: Enjoys verry little 0.475 

 P5Q3AO: Would rather be alone than with others 0.593 

 P5Q3BK: Refuses to talk 0.641 

 P5Q3BO: Secretive, keeps things to self 0.639 

 P5Q3CU: Underactive, slow moving, lacks energy 0.651 

 P5Q3DA: Withdrawn, doesn’t get involved with others 0.713 

 P5Q3AS: Has nightmares 0.576 

 P5Q3AU: Constipated, doesn’t have bowel movements 0.524 

 P5Q3AZ: Overtired without good reason 0.754 

 P5Q3BB1: Aches or pains without medical cause 0.649 

 P5Q3BB2: Headaches without medical cause 0.506 

 P5Q3BB5: Rashes/skin problems without medical cause 0.436 

 P5Q3BB6: Stomachaches without medical cause 0.610 

 P5Q3BB7: Vomiting without medical cause 0.618 

Externalizing Symptoms P5Q3X: Doesn’t feel guilty after misbehaving 0.618 

Age 9 P5Q3AA: Breaks rules  0.744 

 P5Q3AL: Hangs around with others who get in trouble 0.642 

 P5Q3AP: Lies or cheats 0.712 

 P5Q3BI: Prefers being with older kids 0.421 

 P5Q3BZ: Steals at home 0.749 

 P5Q3CJ: Swears or uses obscene language 0.768 

 P5Q3C: Argues a lot 0.611 

 P5Q3O: Cruel, bullies, shows meanness to others 0.774 

 P5Q3R: Demands a lot of attention 0.644 

 P5Q3S: Destroys own things 0.774 

 P5Q3T: Destroys things belonging to others 0.781 

 P5Q3U: Disobedient at home 0.726 

 P5Q3V: Disobedient at school 0.710 

 P5Q3AJ: Gets in many fights 0.765 
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 P5Q3BC: Physically attacks people 0.832 

 P5Q3BN: Screams a lot 0.730 

 P5Q3CF: Stubborn, sullen, irritable 0.745 

 P5Q3CG: Sudden changes in mood/feelings 0.762 

 P5Q3CH: Sulks a lot 0.718 

 P5Q3CI: Is suspicious 0.692 

 P5Q3CN: Teases a lot 0.678 

 P5Q3CO: Temper tantrums or hot temper 0.772 

 P5Q3CQ: Threatens people 0.860 

 P5Q3CW: Unusually loud 0.655 

Internalizing Symptoms K6D2AG1: Nervous or shaky inside 0.773 

Age 15 K6D2AI1: Feel fearful 0.587 

 K6D2D1: Spells of terror or panic 0.643 

 K6D2J1: Feel tense or keyed up 0.563 

 K6D2T1: Suddenly scared for no reason 0.685 

 K6D2AC1: Feel depressed 0.878 

 K6D2AK1: Feel so restless I can’t sit still 0.543 

 K6D2C1: Cannot shake off the blues even with help 0.616 

 K6D2N1: Feel sad 0.820 

 K6D2X1: Feel life is not worth living 0.768 

Externalizing Symptoms K6D2A1: Don’t spend enough time thinking before act 0.508 

Age 15 K6D2P1: Say/do things without considering consequences 0.675 

 K6D2R1: Plans don’t work because haven’t gone over 0.550 

 K6D2Z1: Make up mind without taking time to consider 0.551 

 K6D2AB1: Say whatever comes into mind 0.572 

 K6D2AJ1: Get into trouble because don’t think before act 0.753 

 K6D61C: Taken something from store without paying  0.902 

 K6D61D: Gotten into a serious physical fight 0.644 

 K6D61E: Hurt someone badly enough for medical care 0.628 

 K6D61K: Stolen something worth less than $50 0.861 

 K6D61L: Taken part in group fight 0.583 

 K6D61M: Were loud/rowdy/unruly in public place 0.472 

 K6D401: Smoked entire cigarette 0.656 

 K6D481: Drank alcohol more than twice without parents 0.554 

 K6F631: Ever tried marijuana 0.597 

 K6F681: Ever tried illegal drugs other than marijuana 0.625 

 K6F741: Ever used prescription drugs (not prescribed) 0.681 

Positive Function K6D2B1: Love life 0.755 

Age 15 K6D2F1: Am a cheerful person 0.672 

 K6D2G1: Have friends that I really care about 0.444 

 K6D2I1: Keep at my schoolwork until I am done  0.497 

 K6D2K1: Make plans and stick to them 0.556 

 K6D2L1: People in my life who really care about me 0.724 

 K6D2M1: Finish whatever I begin 0.564 

 K6D2O1: Think good things are going to happen to me 0.568 

 K6D2S1: Feel happy 0.866 

 K6D2V1: Am a hard worker 0.592 

 K6D2W1: Believe that things will work out 0.643 

 K6D2Y1: Have someone who will be there if I have problem 0.659 

 K6D2AA1: Have a lot of fun 0.721 

 K6D2AE1: In uncertain times I expect the best 0.467 

 K6D2AF1: Have person to share good news with 0.615 

 K6D2AH1: Optimistic about my future 0.484 

1 Item was reverse coded 
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Figure 4.1: Diagram of the main effects model including school connectedness   

Model controlled for average income-to-needs ratio, race-ethnicity, and sex and was clustered by 

city at birth. 

  

Path estimates shown are StandardYX estimates. To make this figure more readable, only paths 

significant at p<0.05 are shown, but all were modeled. P-values of all paths are p<0.01 except 

where reported otherwise. Correlations between all outcome latent variables are not shown to 

simplify the figure but are modeled and are all significant at p<0.01.  
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Figure 4.2: Diagram of latent moderation model predicting psychopathology 

Diagram of the latent variable moderation model showing that school connectedness at age 9 

moderates the association between social deprivation (ages 3, 5, 9) and externalizing symptoms 

(ages 9). Model controlled for average income-to-needs ratio, race-ethnicity, and sex. 

Note: Path estimates shown are StandardYX estimates. To make this figure more readable, only 

paths significant at p<0.05 are shown. All paths, including all 4 interaction paths, are retained in 

the model even though they are not shown. Including age 15 school connectedness and 

symptoms of psychopathology does not change the results of this model.  
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Figure 4.3: Simple slopes plot for SCxSD interaction predicting externalizing symptoms 

Plot illustrating the interaction between childhood social deprivation (ages 3, 5, 9) and school 

connectedness at age 9 in predicting childhood externalizing symptoms (age 9). For ease of 

interpretation, all variables have been centered and z-scored so that the mean is 0 and the 

standard deviation (SD) is 1. The dashed line represents mean levels of social deprivation. 

School connectedness has been plotted at mean and +/- 1 SD. An evaluation of Johnson-Neyman 

intervals shows that, in this sample, the interaction was significant until social deprivation was 

very high (+3.22 SD) and when school connectedness was greater than -1.55 SD. This suggests 

that school connectedness at age 9 also had a protective but reactive association with social 

deprivation when predicting externalizing symptoms at age 9, meaning that school 

connectedness was protective against social deprivation but that the protective effects diminished 

when social deprivation was extreme. Additionally, when school connectedness at age 9 was low 

(-1.55 SD), it was not protective against social deprivation. The range of school connectedness at 

age 9 in this sample was [-3.31, 1.59] and the range of social deprivation values was [-2.77, 

7.54].   
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Figure 4.4: Diagram of latent moderation model predicting positive function  

Diagram of the latent variable moderation model showing that school connectedness at age 9 

moderates the association between social deprivation (ages 3, 5, 9) and positive adolescent 

function (age 15). Model controlled for average income-to-needs ratio, race-ethnicity, and sex. 

Note: Path estimates shown are StandardYX estimates. To make this figure more readable, only 

paths significant at p<0.05 are shown. All paths, including all both interaction paths, are retained 

in the model even though they are not shown. Including age 15 school connectedness does not 

change the results of this model. 
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Figure 4.5: Simple slopes plot for SCxSD interaction predicting positive function 

Plot illustrating the interaction between childhood social deprivation (ages 3, 5, 9) and school 

connectedness at age 9 in predicting adolescent positive function (age 15). For ease of 

interpretation, all variables have been centered and z-scored so that the mean is 0 and the 

standard deviation (SD) is 1. The dashed line represents mean levels of social deprivation. 

School connectedness has been plotted at mean and +/- 1 SD. An evaluation of Johnson-Neyman 

intervals shows that, in this sample, the interaction was significant until social deprivation was 

very high (+2.77) and when school connectedness was greater than -1.27. This suggests that 

school connectedness at age 9 had a protective but reactive association with social deprivation 

when predicting positive adolescent function, meaning that school connectedness was protective 

against social deprivation but that the protective effects diminished when social deprivation was 

extreme. Additionally, when school connectedness at age 9 was low (-1.27 SD), it was not 

protective against social deprivation. The range of school connectedness at age 9 in this sample 

was [-3.26, 1.46] and the range of social deprivation values was [-2.77, 7.54].   
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Chapter 5: General Discussion 

Early adversity is a potent and unfortunately common public health concern that 

increases the risk of negative physical and mental health outcomes during childhood, and this 

risk persists throughout the lifespan (Green et al., 2010). Research has shown that experiences of 

adversity can be distilled down to core underlying dimensions that have at least partially distinct 

effects on neural and behavioral development (McLaughlin et al., 2014; Miller et al., 2018). This 

dissertation examined how two such dimensions, violence exposure and social deprivation, 

related to alterations in neural architecture and function, as well as behavioral outcomes. 

Importantly, many children exposed to early adversity do not experience negative outcomes 

(Masten, 2001). However, there is a lack of work empirically testing protective processes within 

this dimensional framework. Thus, a second objective of this dissertation was to examine how 

protective factors buffered against adversity and whether this differed across dimensions of 

adversity or by the outcome examined. This research has implications for understanding how 

dimensions of adversity affect the brain and behavior during development and what factors can 

be protective, which can inform future neuroscience-informed policy interventions. 

Summary 

Study 1. Dimensions of adversity may differentially shape emotion-based neural 

circuitry, such as the white matter linking the amygdala with regions of the PFC (Etkin et al., 

2015; McLaughlin et al., 2014; Swartz et al., 2014). Using a preregistered analysis plan, this 

chapter showed that childhood violence exposure and social deprivation interacted to predict the 

probability of adolescent right hemisphere amygdala–OFC white matter connectivity. High 
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violence exposure with high social deprivation related to less amygdala–OFC white matter 

connectivity. Violence exposure was not associated with white matter connectivity when social 

deprivation was at mean or low levels (i.e., relatively socially supportive contexts). Therefore, 

social deprivation may exacerbate the effects of childhood violence exposure on the development 

of white matter connections involved in emotion processing and regulation. Conversely, social 

support may buffer against them.  

Study 2. Dimensional exposure to early adversity may also differentially shape 

functional networks in the brain, such as the salience and default mode networks (Marusak, 

Etkin, et al., 2015; McLaughlin et al., 2019). Observed effects of adversity on functional 

networks are likely to be person specific because there is considerable variability in neural 

responses to environmental stress (Marder & Goaillard, 2006). Chapter 3 used a person-specific 

approach to modeling resting-state functional networks (GIMME) and a pre-registered analysis 

plan to show that childhood violence exposure, but not social deprivation, was associated with 

reduced adolescent resting-state density of the salience and default mode networks in the SAND 

sample. A data-driven algorithm, blinded to childhood adversity, identified youth with 

heightened violence exposure based on resting-state connectivity patterns. Childhood violence 

exposure appears to be associated with adolescent functional connectivity heterogeneity, which 

may reflect person-specific neural plasticity and should be considered when attempting to 

understand the impacts of early adversity on the brain. 

Study 3. School connectedness, a construct indexing supportive school relationships, has 

been posited to promote resilience (Barber & Olsen, 1997; Hardaway et al., 2012). Consistent 

with prominent calls in the field (Masten & Cicchetti, 2016), this study was precise in its 

measure of two dimensions of adversity which index multiple levels of environmental exposure 
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and it examines resilience in terms of both the absence of negative outcomes and the presence of 

positive function. Results from this chapter showed that child and adolescent school 

connectedness were promotive of concurrent outcomes, even when accounting for the 

detrimental effects of violence exposure and social deprivation. Additionally, child school 

connectedness had a protective but reactive association (Luthar et al., 2000) with social 

deprivation, but not violence exposure, when predicting child externalizing symptoms and 

adolescent positive function.  These findings highlight the important role that the school 

environment can play for youth who have been exposed to adversity in other areas of their lives. 

Additionally, the interactive effect of school connectedness with social deprivation, but not 

violence exposure, supports modeling risk and resilience processes using dimensional 

frameworks to better identify specific groups of youth that may benefit from interventions that 

boost social connectedness at school in future research. 

Considerations 

 The research discussed in this dissertation provides evidence of dimensional effects of 

risk and resilience on neural and behavioral indices of socio-emotional function, but also 

highlights considerations for future research.  

 Timing Effects. All three studies in this dissertation examined the cumulative effects of 

childhood exposure to violence and social deprivation on developmental outcomes. However, 

future work should determine how the timing of exposure impacts its effect on development. 

Evidence for experience-driven plasticity suggests that plasticity driven by environmental 

experience is influenced by the timing, quality, and intensity of those experiences (Gottlieb, 

2007; Kolb & Gibb, 2014; McLaughlin et al., in press). Indeed, previous work has found 

evidence for differential effects of neighborhood adversity on adolescent and early adult 
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corticolimbic function (Gard et al., 2021). This research found specific effects of neighborhood 

disadvantage in early childhood and adolescence on amygdala reactivity and PFC reactivity, 

respectively, suggesting that there may be sensitive periods or periods of heightened 

neuroplasticity that differ across the brain and lead to more specific effects (Hyde et al., 2020).  

More work is needed to determine whether there are specific developing timing effects of 

violence exposure and social deprivation on the neural and behavioral correlates of 

socioemotional function measured in this discussion. Progress towards that end can be made with 

the existing SAND data. However, given that the first timepoint of neuroimaging data collected 

in this sample was in adolescence (discussed in more detail below) and that there is a gap in 

information about the child’s environmental exposures from approximately ages 9 to 15 years, 

conclusions about timing effects may still be limited.  Data from the longitudinal Adolescent 

Behavioral and Cognitive Development® (ABCD) study (Casey et al., 2018), may be able to 

address how exposure to adversity shapes neural development in adolescence since there would 

baseline information about neural structure and function from childhood (Age 9-10). ABCD data 

would still be limited; however, in drawing conclusions about neural and behavioral correlates of 

early childhood adversity since the first study wave does not occur until preadolescence and thus 

all reports of early adversity would be retrospective. Additionally, there are qualitative 

differences between the samples in the SAND/FFCWS and ABCD studies that may hinder direct 

comparisons (sample considerations discussed in more detail below). Future studies should be 

designed to prospectively assess how developmental timing impacts the effects of adversity 

using dimensional frameworks in samples with adequate representation of marginalized 

populations (i.e., low-income families or families of color) who likely experience more adversity 

(Falk et al., 2013; Hyde et al., 2020).  
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 Causal Effects. Studies 1 and 2 found evidence of longitudinal associations between 

dimensions of adversity and neural connectivity; however, given that there is only a single 

timepoint of imaging data in the SAND study, it is not possible to determine causal effects of the 

environment on the brain or vice versa.  Additionally, the brain is plastic, and measures of neural 

structure and function are not static, particularly during childhood, adolescence, and early 

adulthood when there are times of explosive neural development (Giedd et al., 1999; Richmond 

et al., 2016). Therefore, we do not know how the patterns of associations observed in studies 1 

and 2 differed earlier in development or how they will continue to change as the teens transition 

to early adulthood and beyond. Of further interest would be change over time in these patterns of 

association and how longitudinal trajectories of neural structure and function are shaped by 

adversity and how that corresponds to socioemotional function (Hyde, 2015; Wiggins & Monk, 

2013).  

Links between Brain and Behavior. Surprisingly absent from studies 1 and 2 were links 

between neural correlates of adversity and behavioral outcomes, specifically psychopathology. 

This could be for a number of reasons which should be the focus of additional research. First, the 

adversity-related differences in white matter and resting-state function connectivity could be 

reflective of adaptation and could promote resilience (Lipina & Evers, 2017; Varnum & 

Kitayama, 2017). Evidence for this potential explanation comes from study 1 where the effects 

of violence exposure were conditional upon social deprivation. Only in teens with high violence 

exposure and high social deprivation, a relatively small portion of the sample, was there an 

association with white matter connectivity suggesting that low social deprivation, or relative 

social support, could be protective. Results from study 2 showing that violence exposure was 

related to more individual heterogeneity in resting-state functional connectivity also provide 
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evidence of potential neural adaptation to adversity. This individual heterogeneity may reflect a 

tuning of neural circuits to the environment that promote stability of network function in the 

context of violence and threat in the environment (Marder & Goaillard, 2006; Varnum & 

Kitayama, 2017). Additionally, although we did not examine neural correlates in study 3, the 

theory that the adversity-related differences in brain structure and function may be adaptive 

could be tested in future research by determining whether they relate to the measure of positive 

function and wellbeing used in study 3 (EPOCH - Kern et al., 2016)  An important consideration 

related to resilience and adaptation as an explanation; however, is that protective processes can 

differ by risk process and by domain of function (National Research Council (US) & Institute of 

Medicine (US) Board on Children, Youth, and Families, 2001). Therefore, it is also tenable that, 

although the adversity-related neural correlates we observed did not relate to internalizing 

psychopathology, they may relate to differences in other domains of function.   

A second possible explanation for the lack of association between the observed neural 

correlates of adversity and psychopathology is the way in which psychopathology was measured 

in this dissertation. Similar to adversity, psychopathology can be considered to be dimensional, 

rather than categorical, with two dimensions being internalizing and externalizing 

psychopathology (Hyde, 2015). Hypotheses for studies 1 and 2 focused only on how neural 

correlates of adversity were associated with internalizing psychopathology (i.e., depression and 

anxiety). However, given the high comorbidity of internalizing and externalizing 

psychopathology in youth (Caron & Rutter, 1991; G. T. Smith et al., 2020; Wiggins et al., 2015), 

perhaps study 1 and study 2 should have tested for associations with both dimensions of 

psychopathology simultaneously as was done in Study 3. Alternatively, perhaps a better way to 

measure broad maladaptive function associated with psychopathology would be to use “p-
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factor,” which is hypothesized to be an overall latent risk for distress and overall 

symptomatology across both internalizing and externalizing psychopathology (Hyde, 2015; G. T. 

Smith et al., 2020). It is tenable that the adversity-related neural correlates would be related to 

higher order associations indexed by a transdiagnostic “p-factor” (Hyde, 2015). An important 

direction for future research using dimensional models of adversity would be to test whether 

dimensions of adversity better predict specific dimensions of psychopathology or if exposure to 

adversity more generally increases risk for psychopathology using “p-factor.” 

Similarly, a third potential explanation for why we did not observe strong links between 

the brain and behavior in this dissertation may be that the dimensional framework generally, or 

the dimensions that we used specifically, do not correspond to neural correlates that relate to 

behavior. Critics of dimensional models of adversity posit that the distinctions made between 

dimensions are social in nature and thus are not likely to have distinct, meaningful effects on the 

brain and subsequent psychopathology (K. E. Smith & Pollak, 2020). Although this is a 

possibility, evidence does exist linking neural correlates within dimensional models of adversity 

to behavior (e.g., Sheridan et al., 2017). Additionally, systematic reviews and meta-analyses have 

found evidence for the specific effects of dimensional exposure to threat or deprivation on 

biological metrics (e.g., brain structure and function, cellular aging) which have corresponded to 

differences in behavior, including indices of psychopathology (Colich et al., 2020; McLaughlin 

et al., 2019). With that in mind, it is tenable that either the dimensions or neural correlates we 

studied were not meaningfully linked with behavior, but that other dimensions or other indices of 

neural structure or function would be.  

A last and less optimistic alternative would be that the associations between neural 

correlates of adversity and psychopathology will develop later as this sample transitions to early 
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adulthood. Life course theory suggests that key transitions, such as the transition to adulthood, 

are times of stress and individual life trajectories can be shaped by supportive relationships and 

by social capital that provides resources in the transition to post-secondary education or the labor 

force (Elder & Shanahan, 2006; McLoyd et al., 2015).  Social resources are especially important 

for socioeconomically disadvantaged or marginalized youth for whom they may be limited by 

systematic mechanisms of inequality (McLoyd et al., 2015). Interestingly, rates of 

psychopathology in the SAND teens were approximately equal to or below national averages 

(Table 5.1); however, the rates for the SAND parents/guardians (92% biological mothers) were 

generally higher than the national average, particularly for depressive disorders and PTSD 

(Kessler et al., 2005; Merikangas et al., 2010). With the transition to adulthood, we may see 

heterotypic continuity in the link between adversity-related neural correlates and 

psychopathology outcomes where the same process, or neural correlate, may relate to different 

outcomes at different developmental stages (Angold et al., 1999; Hyde, 2015). The neural 

correlates observed in study 1 and study 2 may be adaptive in the short term, or in the teen’s 

current context (Hyde et al., 2020; Varnum & Kitayama, 2017), but it will important to continue 

to follow these teens to determine if that remains the case as they transition to adulthood.  

Generalizability. A strength of the SAND subsample and the larger FFCWS sample is 

that it includes substantial representation of marginalized populations, specifically African 

American youth and their families. For example, the SAND subsample is approximately 70% 

African American, which makes it largely different from other large neuroimaging samples 

(though see Brody et al., 2017; Shaw et al., 2012 for other examples). However, this may impact 

how the results compare to the extant literature and highlights the limits of generalizability of 

results based on sample composition. Previous work in the SAND sample has found adversity-
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related neural correlates that do not entirely match existing trends in the literature (e.g., threat 

relates to attenuated rather than heightened amygdala reactivity (Hein et al., 2020; Hein & Monk, 

2017). Similarly, study 2 in this dissertation found that violence exposure was related to reduced 

salience network density, which is not directly in line with results of resting-state functional 

connectivity studies showing adversity-related increases in salience network connectivity (e.g., 

Marusak, Etkin, et al., 2015). This may be due to meaningful differences in sample 

demographics or systematic differences in the experience of adversity (e.g., chronic vs. acute). 

For example, research in other high-risk samples found similar blunting of amygdala reactivity 

(Gard et al., 2017; Holz et al., 2017) and work examining the HPA-axis response to stress has 

found that experiences of chronic stress, or adversity, relate to blunting of the stress response 

(McCarty, 2016). Additionally, the representation of different racial, ethnic, and gender identities 

as well as the systematic differences in their experiences contribute to the complex associations 

between context, biology, and behavior and it is important to consider how these factors may 

impact how research findings are interpreted and may generalize (Hyde et al., 2020). Last, 

discussions regarding generalizability of results are not complete without considering the 

importance of thoughtful, representative sampling in the first place. In order to be able to more 

fully understand complex associations between adversity, the brain, and behavior, the research 

questions must be asked in well-powered studies where there is substantial representation of the 

communities to which we want the results to generalize (Davis‐Kean & Jager, 2017; Falk et al., 

2013; Hyde et al., 2020).  

Integrative Themes 

 There are three integrative themes that guided the research reported in this dissertation 

which merit discussion that center around how to model risk, resilience, and their neural 
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correlates. A fourth integrative theme that guided this dissertation is the importance of open 

science to support the transparency and reproducibility of psychological research.  

Dimensional Models of Adversity and Resilience. All three data chapters in this 

dissertation provide evidence and support for breaking adversity down into core, underlying 

dimensions that have at least partially distinct effects on brain and behavioral development 

(McLaughlin et al., in press, 2014). Findings from studies 1 and 2 isolate white matter and 

functional neural correlates of violence exposure. In contrast, although social deprivation 

moderated the association between violence exposure and the brain in study 1, it did not seem to 

be related to the neural indices we examined in distinct ways. Additionally, study 3 provided 

initial support for extending dimensional models to include protective processes that may have 

both global and more specific buffering effects. In each of these three studies, modeling risk and 

resilience within a dimensional framework yielded specific results which help to identify 

mechanisms explaining how risk factors influence developmental outcomes with the goal of 

ultimately improving both theory and evidence-based interventions (Hyde, 2015; McLaughlin et 

al., in press).  

Importance of Neural Connectivity. A central tenet of this dissertation was modeling the 

brain using methods that index connectivity because the brain is a complex system of interacting 

regions (Pessoa, 2018; Rubinov & Sporns, 2010). The use of connectivity or network models, 

such as those in studies 1 and 2, help to provide a more comprehensive picture of how adversity 

gets under the skin which may not be picked up when examining individual ROIs, including how 

the brain may compensate or adapt to environmental adversity (Blair & Raver, 2012; Varnum & 

Kitayama, 2017). Additionally, this dissertation took a multimodal neuroimaging approach to 

modeling neural connectivity by measuring both white matter and resting-state functional 
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connectivity; two methods which provide complementary but distinct insights into the brain 

(Honey et al., 2007; Rubinov & Sporns, 2010). White matter connectivity (study 1) is posited to 

index longer-term exposures since axonal myelination is a process that occurs gradually across 

development (de Prado Bert et al., 2018; Mackey et al., 2012). In contrast, resting-state 

functional connectivity (study 2), may be more sensitive to short-term, concurrent exposures in 

addition to picking up on patterns of experience-dependent plasticity that reflect a history of co-

activation (Gabard-Durnam et al., 2016; Guerra-Carrillo et al., 2014).  Of note, research has not 

systemically tested if there are differential links between the timing of environmental exposures 

and diffusion and resting-state functional MRI. However, this is an interesting avenue for future 

longitudinal neuroimaging research. The understanding of associations between dimensional 

exposure to adversity and the structure and function of neural circuits gained from this research 

will hopefully help build and improve existing theoretical models and ultimately help create 

neuroscience-informed policies and interventions (Farah, 2018).  

Heterogeneous Individual Response to the Environment. Results from this 

dissertation, as well as the discussion of the first two integrative themes, provide evidence 

suggesting that individuals are unique and their interaction with the environment results in 

nuanced and probabilistic associations between adversity, the brain, and behavior (Cicchetti & 

Blender, 2004; Hyde et al., 2020; Wiggins & Monk, 2013).  In study 2, we see increased 

heterogeneity of functional connectivity in teens with more childhood exposure to violence. This 

may be because individuals do not respond to environmental stressors in uniform ways, likely 

because people do not compensate for stress in uniform ways (Marder & Goaillard, 2006). This 

concept is thoroughly discussed in theoretical models of developmental psychopathology which 

emphasize that risk and protective factors operate within complex, multi-level systems 
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(Bronfenbrenner & Morris, 2007; Cicchetti & Toth, 2009; Hyde, 2015; Sameroff, 2010). There 

are multiple, interacting, mechanistic pathways that connect environmental adversity with 

individual brain and behavioral outcomes (Hankin, 2012; Hyde et al., 2020). This is most clearly 

evident in studies of resilience where individuals with similar risk factors end up with different 

outcomes (multifinality - Cicchetti & Rogosch, 1996). In these studies, such as study 1 and study 

3, we see conditional and indirect effects which are more likely than large main effects to explain 

how exposure to adversity gets under the skin and affects the individual (Hyde, 2015). Consistent 

with that idea is that the extant literature has not identified strong, main effects of environmental 

adversity in either brain or behavioral outcomes, but rather effects that are much more 

heterogeneous and variable (Hughes et al., 2017; McLaughlin et al., 2019). Dimensional models 

of adversity and resilience attempt to account for the heterogeneity of the environment and 

models of neural connectivity work to better characterize the heterogeneous, dynamic system 

that is the brain. However, a final, and critically important, set of factors that contribute to these 

nuanced associations is the systematic differences in unmeasured influences resulting from 

systems of oppression that marginalized communities experience (Chetty et al., 2020; Lipina & 

Evers, 2017; Rivas‐Drake et al., 2014).  

The presence of nuanced and probabilistic associations between adversity, the brain, and 

behavior highlights the need to incorporate statistical methods that are capable of picking up the 

dynamic interactions between context, biology, and behavior within an individual (Beltz et al., 

2016; Howard & Hoffman, 2018; Molenaar, 2004). Moving forward, research in this domain 

must balance the parsimony provided by variable-centered models with the specificity provided 

by person-centered and person-specific approaches to build theoretical models that are 

representative of the individual but have the potential to be generalized. Methods that bridge 
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nomothetic and idiographic inferences, such as GIMME (used in study 2), can help identify 

associations that are more generalizable (e.g., to the full sample or to subgroups) in addition to 

those that are largely unique to the individual (Beltz & Gates, 2017; Gates et al., 2014; Gates & 

Molenaar, 2012). Person-centered analysis approaches, such as latent profile analysis and data-

driven cluster analysis, can also help identify subgroups within a sample and give insight into 

how associations differ within and between groups (Howard & Hoffman, 2018). It is likely a 

combination of variable-centered, person-centered, and person-specific analyses is necessary to 

develop and test models that explain how environmental adversity and individual neural and 

behavioral outcomes are associated across development.  

Importance of Open Science. One last integrative theme that has guided the work 

reported in this dissertation has been the importance of open science in psychological research. 

Studies 1 and 2 in this dissertation has preregistered aims, hypotheses, variables, and analytic 

plans (Study 1: https://osf.io/spguw; Study 2: https://osf.io/mrwhn). While the final analyses did 

end up being slightly different from the preregistered plan, especially for Study 1, preregistering 

these studies helped to increase transparency about what was specifically hypothesized and what 

was exploratory (Nosek et al., 2018; Simmons et al., in press). Preregistration is not always the 

best fit for some research questions or methods. For example, it is difficult, though admittedly 

not impossible, to preregister all of the iterative potential pathways in structural equation models 

that may arise depending on how models fit the data (e.g., study 3). However, in those and all 

cases, open science practices can and still should be incorporated which promote transparent, 

reproducible research practices. For example, the code for the statistical analyses done for all 

three studies reported in this dissertation are publicly available (https://github.com/lgoetschius) 

as are the neuroimaging analysis pipelines used to process the white matter 

https://osf.io/spguw
https://osf.io/mrwhn
https://github.com/lgoetschius
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(https://github.com/lgoetschius/ProbabilisticTractography_On_Flux) and resting-state functional 

(Beltz et al., 2019) connectivity data. Future work should incorporate open-science practices 

through publicly available code as well as pre-registration or registered reports where 

appropriate.  

Future Directions & Conclusions 

 The research in this dissertation presents evidence for how two dimensions of childhood 

adversity, violence exposure and social deprivation, predict differences in adolescent neural 

structure and function, as well as how protective factors, such as school connectedness, buffers 

against these dimensions. However, it also points to a few avenues of future research that have 

not already been discussed. One necessary direction for future research is to strengthen the 

measurement of dimensions of adversity. Similar to dimensional models of psychopathology 

(Caron & Rutter, 1991; Hyde, 2015), dimensional models of adversity are only as strong as the 

measures used to operationalize and quantify them (McLaughlin et al., in press). Currently, much 

of the research using dimensional models of adversity, this dissertation included, have used 

measures of environmental adversity that are not designed to isolate specific dimensions, but 

rather are pieced together from separate measures in existing datasets that measure specific 

exposures (e.g., child abuse, child neglect, community violence, etc.) (McLaughlin et al., in 

press). Future work should utilize principles from psychometric theory to build questionnaires 

that are designed to measure dimensions of adversity and should also work to include more 

objective measures in addition to data from multiple sources within and outside of the families 

we are working with (e.g., social workers, teachers). A second, related direction for future 

research is the consideration of additional dimensions. Results from study 3 and a discussion of 

how they fit into the larger literature suggest that social and cognitive deprivation may be two 

https://github.com/lgoetschius/ProbabilisticTractography_On_Flux
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separate dimensions. Future work should directly test this hypothesis using both behavioral and 

neuroimaging data to determine if they have distinct effects. Additionally, recent theoretical work 

has posited that unpredictability or instability of the environment may be another dimension of 

adversity (Ellis et al., 2009; McLaughlin et al., in press). Future work should directly test this as 

well and determine its unique effect in models that contain the other dimensions. 

A third important direction for future research will be to account for the influence of 

genetic and epigenetic factors. Previous work suggests that genetic and epigenetic factors 

contribute to the nuanced and probabilistic associations between adversity, the brain, and 

behavior through conditional and indirect effects (Dunn et al., 2019; Gard et al., 2017; Holz et 

al., 2016; Hyde, 2015). Additionally, a recent meta-analysis robustly linked the dimension of 

threat, but not deprivation, to accelerated cellular aging using data about telomere length and 

epigenetic clocks designed to quantify aging using markers of DNA methylation (Colich et al., 

2020). This meta-analysis had limitations, including that it used post-hoc estimates of threat and 

deprivation for the included studies and that it collapsed across all indices of cellular aging rather 

than examining distinct effects of adversity on epigenetic clock estimates and telomere length. 

This second limitation is particularly problematic due to research that has found low correlations 

between telomere length and metrics from different epigenetic clocks, suggesting that they may 

work through distinct biological processes (Belsky et al., 2018). However, the results of this 

meta-analysis, as well as other work linking genomics with environmental adversity and the 

brain, provide strong evidence for the need to consider and account for links between 

environmental adversity and measures of genomics within dimensional models of adversity.  

 Overall, the goal of this dissertation has been to help understand how early adversity may 

shape neural and behavioral development and what may help buffer against it. Throughout this 
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work, my goal has been to keep the families who participated in the SAND and FFCWS studies 

in mind, especially when framing research questions and interpreting results. It has been 

important to always remember that I am analyzing data about exposure to adversity and stress 

from real people and to be sensitive to that when working on this important topic. Further, I hope 

I have communicated that, although we should do everything we can to prevent people from 

living in high-risk environments and experiencing adversity, exposure to it does not lead to a 

“broken brain” that condemns people to poor outcomes (Hyde et al., 2020; Varnum & Kitayama, 

2017). Rather, I hope it brings attention to the societal inequalities that perpetuate the cycle of 

poverty and keep families living in high-risk environments (Hyde et al., 2020; Lipina & Evers, 

2017; Oliver et al., 2006; Roberts & Rizzo, 2020; Rothstein, 2017). Additionally, I hope that the 

work on the promotive and protective effects of school connectedness underscores the 

importance of providing schools with the resources and support necessary to create environments 

where all students feel connected. It is my ultimate goal that the research reported in this 

dissertation can eventually help the people from the statistics I reported at the very beginning of 

this dissertation. The approximately 58% percent of adolescents who experience at least one 

ACE, the 1 in 4 children who experience some form of child maltreatment, and the 

approximately 40% are exposed to violence in the home or neighborhood (Finkelhor et al., 2015; 

McLaughlin, Greif Green, et al., 2012; Sacks & Murphy, 2018). We still have a long way to go.  
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Table 5.1: Rates of teen and parental psychopathology in SAND 

In this table, rates from the SAND teens and their mothers are reported alongside national rates. 

 

Adolescent Psychopathology1 

Diagnosis* SAND Rate (Count) National Rate2 

ADHD 16% (39) 12.8% 

Conduct Disorder 8% (19) 6.8% 

Generalized Anxiety Disorder 3% (6) 2.3% 

Major Depressive Disorder or Dysthymia 16% (39) 11.9% 

Oppositional Defiant Disorder 8% (20) 12.6% 

Post-Traumatic Stress Disorder 3% (7) 5.2% 

Social Phobia 8% (18) 9.1% 

Specific Phobia 5% (11) 19.5% 

Substance Use Disorder 1% (3) 6.4% 

Maternal3 Psychopathology4 

Diagnosis* SAND Rate (Count) National Rate5 

Generalized Anxiety Disorder 4% (9) 7.1% 

Major Depressive Disorder 38% (91) 20.2% 

Obsessive Compulsive Disorder 3% (7) 3.1% 

Panic Disorder 8% (19) 6.2% 

Persistent Depressive Disorder 13% (30) 3.1% 

Post-Traumatic Stress Disorder 14% (33) 9.7% 

Social Phobia 10% (23) 13.0% 

Specific Phobia 15% (35) 15.8% 

Substance Use Disorder <1% (2) 7.5% 

 

Notes: 
1 Diagnosed using K-SADS-PL (Kaufman et al., 1997) 
2 National rates for teens come from the lifetime rates reported by 13-18-years-olds on the NCS-

A (Merikangas et al., 2010) 
3 92% of parents or guardians at SAND visit were mothers, so we called this maternal 

psychopathology for parsimony 
4 Diagnosed using SCID for DSM5 (First, 2015) 
5 National rates for moms come from estimates of lifetime prevalence in women reported in the 

NCS-R (Kessler et al., 2005) 

* Includes past and current diagnoses and “not otherwise specific” diagnoses 
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Appendices 

Appendix 1: Chapter 2 Supplemental Methods 

Violence Exposure and Social Deprivation Composites 

Childhood Exposure to Violence. Included in this composite was the primary 

caregiver’s report of child physical and emotional abuse based on items from the Parent-Child 

Conflict Tactics Scale (Straus et al., 1998) that have been used in previous research (Font & 

Berger, 2015; Hunt et al., 2017). Five items were used to assess physical abuse including, “hit 

him/her on the bottom with a hard object” and “shook him/her” and five items were used to 

assess emotional abuse including whether the parent/caregiver has “sworn or cursed at,” or 

“called him/her dumb or lazy or some other name like that.” Each item was rated on a 7-point 

Likert scale ranging from “never happened” to “more than 20 times.” The primary caregiver’s 

report of the child’s exposure to or victimization of violence in the neighborhood (Zhang & 

Anderson, 2010) was also included in the composite. This was measured using the primary 

caregiver’s report of the child witnessing or being the victim of beating, attacks with a weapon, 

shootings, and killings (witness only) on a 5-point Likert scale ranging from “never” to “more 

than 10 times.” At age 9, the primary caregiver was not asked about whether the child had 

witnessed killings or it they had been the victim of a shooting, so these items were only included 

for ages 3 and 5 years.  Lastly, the child’s mother reported on intimate partner violence (IPV) 

(physical-2 items, emotional-3 items, or sexual-1 item) in the home at each wave (Hunt et al., 

2017). Each item was rated on a 3-point Likert scale ranging from “never” to “often.” Physical 

IPV items included “he slapped or kicked you” and “he hit you with his fist or a dangerous 

object.” Emotional IPV items included “he tried to isolate you from family and friends,” and “he 
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tried to prevent you from going to work and/or school.” The sexual IPV was “he tried to make 

you have sex or do sexual things you didn’t want to do.”  The child’s exposure to IPV against the 

mother was coded as missing for a given wave if the child did not live with their mother at least 

50% of the time.  

Childhood Exposure to Social Deprivation. Included in this composite was the primary 

caregiver’s report of child physical and emotional neglect based on items from the CTS-PC 

(Straus et al., 1998) that have been used in previous research (Font & Berger, 2015; Hunt et al., 

2017). Four items from the CTS-PC were used to assed physical neglect including whether the 

parent was ever “so drunk or high that you had a problem taking care of your child.” One item, 

whether the parent was “ever so caught up in your own problems that you were not able to show 

or tell your child that you loved him/her,” was used to assess emotional neglect. These items 

from the CTS-PC were reported on the same 7-point Likert scale as the items in the violence 

exposure composite. The primary caregiver’s report of social cohesion in the neighborhood was 

also included in this composite (reverse coded such that higher scores corresponded to lower 

cohesion) (Donnelly et al., 2016; Morenoff et al., 2001). This included 4 items, such as “this is a 

close-knit neighborhood,” rated on a 5-point Likert scale ranging from “strongly agree” to 

“strongly disagree.” Lastly, the child’s mother reported on the level of intimate partner support 

for each wave using six items, such as “how frequently (the current romantic partner) expresses 

love and affection (for the mother),” that were rated on a 3-point Likert scale ranging from 

“never” to “often” (Manuel et al., 2012). This was also reverse coded such that higher scores 

corresponded to less support. Child exposure to the mother’s intimate partner support was coded 

as missing for a given wave if the child did not live with their mother at least 50% of the time.  

Covariates 
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Adolescent/Current Internalizing Disorders. To ensure that any observed effects were 

not driven by internalizing symptoms, a multi-method, multi-informant latent factor that indexed 

internalizing symptoms was used a covariate. It was constructed from the following measures: 

(1) K-SADS (Kaufman et al., 1997) clinician report of past and current symptoms of dysthymia, 

social phobia, generalized anxiety disorder, major depression, and phobia and (2) parent and 

child report on the Mood and Feelings Questionnaire (Angold et al., 1987), Child Depression 

Inventory (Helsel & Matson, 1984), and the Screen for Child Anxiety Related Disorders 

(Birmaher et al., 1997). A CFA of this model in the data had acceptable fit (Hein, 2019), with a 𝜒 

2 of 38.558 (p = 0.011), a CFI of 0.936, a TLI of 0.862, and a RMSEA of 0.059 (Hu & Bentler, 

1999). 

To determine if amygdala–PFC white matter connectivity was a mediator between 

dimensions of childhood adversity and internalizing psychopathology, we calculated the 

correlations between white matter connectivity and internalizing psychopathology for each 

amygdala-PFC target pair. There were no significant associations (Supplemental Table 2.1); 

therefore, we determined that an analysis of indirect effects would not be appropriate – it was 

then that internalizing psychopathology was added as a covariate in all analyses. 

Supplemental Table 2.5.1: Internalizing psychopathology & white matter correlation 

Supplemental Table 2.1 

 

Correlation between internalizing psychopathology and the probability of amygdala 

white matter connectivity with four Brodmann’s Areas (BAs)(bilaterally) in the PFC. 

Region r t p 

Left BA10 0.117 1.584 0.115 

Left BA11 0.022 0.298 0.766 

Left BA25 0.070 0.937 0.350 

Left BA47 0.044 0.589 0.557 

Right BA10 0.022 0.299 0.765 

Right BA11 0.000 0.005 0.996 

Right BA25 0.083 1.115 0.267 

Right BA47 0.050 0.670 0.504 
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Adolescent/Current Life Stress. Current life stress was used as a covariate in the 

present analyses and was measured using the Adolescent Life Events Scale (adapted for Shaw et 

al., 2003 from Farrell et al., 1998 and Masten et al., 1994). This scale assesses the experience of 

common adolescent stressful life events in the past year.  

Race. Race was used a covariate in all analyses and was a set of two dummy-coded 

variables based on three race categories reported by the teen on the Multigroup Ethnic Identity 

Measure (MEIM - (Roberts et al., 1999)): African American (Hispanic and Non-Hispanic), 

White/Caucasian, and Other. Other included Hispanic, Asian, multi-racial participants, Native 

American, and Unknown/Not Reported (see Table 2.1). If teen report was not available (n = 12), 

then parent report was used.  

Pubertal Development. Self-report of pubertal status was used as a covariate in the 

present analyses and was collected using the child report of the pubertal development scale 

(Petersen et al., 1988) which asks both boys and girls about growth spurt in height, pubic hair, 

and skin change; facial hair growth and voice change in boys only; and breast development and 

menarche in girls only (see Table 2.1). When adolescent report pubertal data was not available 

(N=6), parent report was used. Pubertal development scores reported by parents were not 

significantly different from those reported by the adolescent (t (5.76) =-0.93, p=0.39).  

Maternal Covariates at Birth. We used two maternal covariates at birth– self-report of 

maternal marital status at birth (yes/no) and of maternal education at birth (1 - less than high 

school, 2 - high school or equivalent, 3 - some college/technical school, 4 - college or graduate 

school).   

Functional MRI Task – Gender Identification (Faces Task) 
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During fMRI data collection, participants completed an implicit emotion task in which 

they were instructed to attend to the gender of emotional faces from the NimStim set (Tottenham 

et al., 2009) and respond to the gender of the face (Swartz et al., 2014). A trial consisted of a 

500 ms fixation cross followed by a face presented for 250 ms. A black screen then appeared for 

1500 ms, during which participants indicated the gender of the face by pressing a button (thumb 

for male, index finger for female). Total trial duration was 2250 ms with an inter-trial interval 

that was jittered and ranged from 2000 to 6000 ms at intervals of 2000 ms. There were 100 total 

trials with 20 trials of each of the following emotions: happy, sad, angry, fearful, neutral. There 

were equal numbers of males and female faces and an equal number of faces from individuals 

identified as White/Caucasian-American and Black/African American. 

Diffusion MRI Processing 

Raw diffusion MRI data were denoised using MRtrix. Denoised data were then corrected 

for motion, eddy-current, and signal dropout using dwipreproc in MRtrix, which utilizes eddy 

from FSL (v.5.0.11)(Andersson & Sotiropoulos, 2016). Intra-volume motion was corrected using 

slice-to-volume correction. Mean and standard deviation of the movement parameters as well as 

their correlations with violence exposure and social deprivation can be found in Supplemental 

Table 2.2. All correlations between environmental variables and movement parameters were not 

statistically significant. Slices with an average intensity four or more standard deviations lower 

than predicted by eddy's Gaussian process model were marked as outlier slices and replaced with 

model predictions (Andersson et al., 2016). Participants with more than 5% of slices replaced 

were excluded (N=1). Across included participants, 0.00% to 4.35% of slices were replaced 

(median 0.43%). Mean and standard deviation of the percentage of outlier slices as well as the 

correlation between percentage of outlier slices and our environmental variables can be found in 
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Supplemental Table 2.2. The ten images with the most slices replaced were visually inspected to 

ensure that no abnormal artifacts were introduced during preprocessing. As an additional quality 

check, we calculated the percentage of non-zero voxels for each seed and target mask (using 

fslstats) and excluded participants (N=1) who did not have data for at least 70% of the voxels.  

Supplemental Table 2.5.2: Correlation of environmental measures with movement 

Supplemental Table 2.2 

 

Means, standard deviations, and correlations with confidence intervals between the environmental 

measures (Violence Exposure and Social Deprivation) and the movement metrics from the diffusion 

MRI data.   

Variable M SD Violence Exposure Social Deprivation 

     

Violence Exposure 0.04 0.53   

      

Social Deprivation 0.03 0.50 .50**  

    [.38, .60]  

      

Outliers Percentage 0.61% 0.65% .13 .07 

    [-.02, .27] [-.07, .22] 

      

X Rotation (degrees) 0.00 0.37 -.02 -.05 

    [-.16, .13] [-.20, .09] 

      

Y Rotation (degrees) 0.00 0.14 .05 -.01 

    [-.10, .19] [-.16, .13] 

      

Z Rotation (degrees) -0.11 0.17 -.00 .10 

    [-.15, .14] [-.05, .24] 

      

X Translation (mm) -0.02 0.16 -.06 .05 

    [-.20, .09] [-.10, .19] 

      

Y Translation (mm) -0.01 0.13 -.02 -.04 

    [-.16, .13] [-.18, .11] 

      

Z Translation (mm) -0.01 0.30 .02 .09 

    [-.12, .17] [-.06, .23] 

          
Note. M and SD are used to represent mean and standard deviation, respectively. Values in square brackets 

indicate the 95% confidence interval for each correlation. The confidence interval is a plausible range of 
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population correlations that could have caused the sample correlation (Cumming, 2014). * indicates p < .05. 

** indicates p < .01. 

 

Following preprocessing, bedpostx (bedpostx_gpu: (Hernández et al., 2013) was 

performed using the standard settings (number of fibers modeled per voxel = 2, multiplicative 

factor weight = 1, burn in = 1000) to build up a distribution of diffusion parameters using 

Markov Chain Monte Carlo sampling at each voxel (Behrens et al., 2007). The diffusion data 

were then registered using FLIRT (Jenkinson et al., 2002; Jenkinson & Smith, 2001) to allow for 

the linear transformation between diffusion, standard, and structural space. 

FSL's probtrackx2 (nsamples per voxel = 5000; nsteps per sample = 2000; step length = 

0.5mm; curvature threshold = 0.2; fibthresh = 0.01; distthresh = 0.1) (probtrackX2_gpu: 

(Hernandez-Fernandez et al., 2016) was used to estimate the probability of white matter 

connectivity between the prefrontal cortex and the amygdala (Behrens et al., 2007; Behrens, 

Johansen-Berg, et al., 2003; Behrens, Woolrich, et al., 2003; Eickhoff et al., 2010; Johansen-Berg 

et al., 2004). In this analysis, the amygdala, defined using masks created using WFU Pick Atlas 

(v 3.0.5b) (Maldjian et al., 2003), was the seed region and eight Brodmann's Areas (BA) were 

specified as the target regions. Those ROIs were BA10, BA11, BA25, and BA47 and they were 

selected due to a previous stronger likelihood of amygdala white matter connectivity in our 

previous work (Goetschius et al., 2019). Individual masks were made for the included regions for 

each hemisphere using WFU Pick Atlas. Eight separate probabilistic tractography analyses were 

run in each participant’s native diffusion space for the anatomical regions in each hemisphere. 

Only ipsilateral connections between the amygdala and PFC regions were targeted in this 

analysis because neural tracer studies in non-human primates suggest that first order amygdala 

connections are primarily ipsilateral (Ghashghaei et al., 2007).  
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Following the individual probabilistic tractography analyses, the resulting amygdala 

images representing the probability of white matter connectivity with the specified PFC targets 

were transformed to MNI space for further analysis. Prior to the group-level analysis, each of the 

individual amygdala images were divided by the total number of samples per voxel (5000) which 

scaled the probability value at each voxel to a range between 0 and 1. Based on the group-level 

analysis outlined in Greening and Mitchell (Greening & Mitchell, 2015), an average amygdala 

image was created for each amygdala-PFC target pair using fslmaths (FMRIB, Oxford, UK) and 

the peak voxel in that image was identified. This peak voxel represents the maximum probability 

of white matter connectivity between the amygdala and the specified PFC region. This peak, 

selected at the group level, was used for all participants. The MNI coordinates (x,y,z) for the 

peak for each target are as follows: BA10 (left: -30, -4, -14; right: 32, -2, -12), BA11 (left: -30, -

4, -14; right: 32, -2, -14), BA25 (left: -16, 0, -14, right: 18, 0, -14), BA47: (left: -30, -4, -14; 

right: 34, 0, -20).  A 6mm sphere mask was then created centered around the peak voxel. Once 

each of the amygdala-target peak voxel masks were created, the average probability of 

connectivity for each mask was extracted at the individual participant level. This extracted value 

represents the maximum likelihood estimate of probability for each of the 8 amygdala-target 

pairs (Goetschius et al., 2019). 

Identifying Statistical Outliers 

Statistical outliers were excluded from multiple regression analyses based on the 

standardized residuals with a cutoff based on Cook’s Distance. This was done separately for each 

hemisphere in order to retain data from more participants (N=6 in the right hemisphere and N=6 

in the left hemisphere) using diagnostic plots, including a Q-Q Norm plot, created using the stats 
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package (https://www.rdocumentation.org/packages/stats/versions/3.5.1) in R (v.3.5.1). Only one 

of the six outliers was present in both hemispheres.  

The final sample was slightly different in the right vs. left hemisphere. See Table 2.1 for a 

comparison of sample demographics in the included versus full samples. The included sample 

for both the left and right hemispheres did not differ statistically from the full sample on age 

(Left Hemisphere: t(396.31) = 0.30, p=0.765; Right Hemisphere: t(398.04) = 0.32, p=0.750), 

puberty (Left Hemisphere: t(392.68) = -0.33, p=0.739; Right Hemisphere: t(394.16) = -0.15, 

p=0.882), gender (Left Hemisphere: : 2(1) = 0.020, p = 0.887; Right Hemisphere: 2(1) = 

0.000, p = 0.987), race (Left Hemisphere: 2(2) = 0.044, p = 0.978; Right Hemisphere: 2(2) = 

0.000, p = 0.999), or annual income (Left Hemisphere: 2(5) = 0.155, p = 0.999; Right 

Hemisphere: 2(5) = 0.002, p = 0.999).  

Checks for Statistical Assumptions  

To confirm that our data conforms to the assumptions required for linear regression, we 

performed multiple checks of the model residuals. Only the checks for the regression model 

predicting right amygdala–BA47 white matter connectivity from violence exposure, social 

deprivation, and violence exposure x social deprivation (including covariates) are reported here 

since those were the main results from the present study; however, checks were done for all 

regression models. First, we confirmed that the mean of the model residuals was approximately 

equivalent to zero (Mresiduauls = 0.00000000000000005935, t(182) = 0.0000), p = 1). Next, we ran 

a Durbin-Watson test to confirm that our residuals were not autocorrelated (DW = 1.917, p = 

0.265). Then, we confirmed that our X variable of interest (violence exposure x social 

deprivation) was not correlated with the model residuals, t(181) = 0.000, p =1. Additionally, we 

tested for multicollinearity in our X variables by calculating the variance inflation factor (VIF). 
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The maximum VIF for all X variables (including covariates) was 2.03 (one of the two dummy-

coded variable for race/ethnicity) with the VIF for a majority of variables being below 2, a 

relatively conservative cutoff (Sheather, 2009). Based on these checks, we concluded that our 

data conformed to the assumptions of linear regression. 
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Supplemental Figure 5.1: Individual White Matter Streamlines 

Supplemental Figure 2.1: Individual streamlines of participants with the highest and lowest composite scores. Images are taken from 

the peak voxel per participant. Images thresholded at 1000 streamlines.  

  Lowest Violence Highest Violence 
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Appendix 2: Chapter 2 Supplemental Results 

Supplemental Table 2.5.3: Regression results predicting right amygdala-BA10 white matter 

Supplemental Table 2.3 

Stepwise regression results showing that violence exposure, social deprivation, and their interaction do not predict right amygdala–

BA10 white matter connectivity when accounting for covariates. 

  

Predictor b 

b 

95% CI 

[LL, UL] 

beta 

beta 

95% CI 

[LL, UL] 

Fit Difference 

(Intercept) 0.06 [-0.00, 0.12]     

Race_12 -0.00 [-0.03, 0.02] -0.04 [-0.25, 0.16]   

Race_22 0.02* [0.00, 0.04] 0.21 [0.00, 0.41]   

Gender 0.00 [-0.02, 0.02] 0.00 [-0.20, 0.20]   

Internalizing 

Psychopathology 
0.00 [-0.01, 0.02] 0.05 [-0.11, 0.21]   

Pubertal Status -0.00 [-0.01, 0.01] -0.00 [-0.19, 0.18]   

Current Life Stress -0.00 [-0.00, 0.00] -0.06 [-0.21, 0.10]   

Maternal Education -0.01 [-0.01, 0.00] -0.14 [-0.30, 0.03]   

Maternal Marital Status -0.00 [-0.02, 0.01] -0.04 [-0.20, 0.12]   

     R2   = .073  

     95% CI[.00,.12]  

       

(Intercept) 0.06 [-0.00, 0.12]     

Violence Exposure -0.00 [-0.02, 0.01] -0.02 [-0.20, 0.16]   

Social Deprivation -0.00 [-0.02, 0.01] -0.04 [-0.22, 0.14]   

Race_12 -0.00 [-0.03, 0.02] -0.03 [-0.24, 0.17]   

Race_22 0.02* [0.00, 0.04] 0.22 [0.01, 0.43]   
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Gender -0.00 [-0.02, 0.02] -0.00 [-0.20, 0.19]   

Internalizing 

Psychopathology 
0.01 [-0.01, 0.02] 0.05 [-0.11, 0.22]   

Pubertal Status -0.00 [-0.01, 0.01] -0.01 [-0.20, 0.18]   

Current Life Stress -0.00 [-0.00, 0.00] -0.06 [-0.22, 0.10]   

Maternal Education -0.01 [-0.01, 0.00] -0.15 [-0.31, 0.02]   

Maternal Marital Status -0.00 [-0.02, 0.01] -0.04 [-0.20, 0.13]   

     R2   = .076 ΔR2   = .002 

     95% CI[.00,.11] 95% CI[-.01, .02] 

       

(Intercept) 0.06 [0.00, 0.12]     

Violence Exposure 0.00 [-0.01, 0.02] 0.02 [-0.16, 0.21]   

Social Deprivation 0.00 [-0.01, 0.02] 0.02 [-0.17, 0.20]   

Interaction1 -0.01 [-0.03, 0.00] -0.15 [-0.33, 0.02]   

Race_12 -0.00 [-0.03, 0.02] -0.00 [-0.21, 0.21]   

Race_22 0.02* [0.00, 0.04] 0.21 [0.00, 0.42]   

Gender -0.00 [-0.02, 0.02] -0.00 [-0.20, 0.19]   

Internalizing 

Psychopathology 
0.01 [-0.01, 0.02] 0.05 [-0.11, 0.22]   

Pubertal Status -0.00 [-0.01, 0.01] -0.02 [-0.21, 0.17]   

Current Life Stress -0.00 [-0.00, 0.00] -0.06 [-0.22, 0.10]   

Maternal Education -0.01 [-0.01, 0.00] -0.14 [-0.30, 0.03]   

Maternal Marital Status -0.00 [-0.02, 0.01] -0.04 [-0.21, 0.12]   

     R2   = .092 ΔR2   = .016 

     95% CI[.00,.12] 95% CI[-.02, .05] 

       
Note. A significant b-weight indicates the beta-weight and semi-partial correlation are also significant. b represents unstandardized regression 

weights. beta indicates the standardized regression weights. LL and UL indicate the lower and upper limits of a confidence interval, respectively. 

* indicates p < .05. ** indicates p < .01. 
1Interaction between Violence Exposure/Victimization and Social Deprivation 
2Dummy coded variables represented 3 category race variable (African American, Caucasian, Other) 
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Supplemental Table 2.5.4: Regression results predicting left amygdala-BA10 white matter 

Supplemental Table 2.4 

 

Stepwise regression results showing that violence exposure, social deprivation, and their interaction do not predict left amygdala—

BA10 white matter connectivity.  

  

Predictor b 

b 

95% CI 

[LL, UL] 

beta 

beta 

95% CI 

[LL, UL] 

Fit Difference 

(Intercept) 0.01** [0.01, 0.01]     

Violence Exposure -0.00 [-0.01, 0.00] -0.02 [-0.20, 0.15]   

Social Deprivation -0.00 [-0.01, 0.01] -0.01 [-0.18, 0.16]   

     R2   = .001  

     95% CI[.00,.01]  

       

(Intercept) 0.01** [0.01, 0.01]     

Violence Exposure 0.00 [-0.01, 0.01] 0.00 [-0.17, 0.18]   

Social Deprivation 0.00 [-0.00, 0.01] 0.03 [-0.15, 0.21]   

Interaction1 -0.00 [-0.01, 0.00] -0.12 [-0.29, 0.05]   

     R2   = .012 ΔR2   = .011 

     95% CI[.00,.05] 95% CI[-.02, .04] 

       

Note. A significant b-weight indicates the beta-weight and semi-partial correlation are also significant. b represents unstandardized 

regression weights. beta indicates the standardized regression weights. LL and UL indicate the lower and upper limits of a confidence 

interval, respectively. 

* indicates p < .05. ** indicates p < .01. 
1Interaction between Violence Exposure/Victimization and Social Deprivation 
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Supplemental Table 2.5.5: Regression results predicting left amygdala-BA11 white matter 

Supplemental Table 2.5 

 

Stepwise regression results showing that violence exposure, social deprivation, and their interaction do not predict left amygdala—

BA11 white matter connectivity.  

 Predictor b 

b 

95% CI 

[LL, UL] 

beta 

beta 

95% CI 

[LL, UL] 

Fit Difference 

(Intercept) 0.02** [0.02, 0.02]     

Violence Exposure -0.00 [-0.01, 0.01] -0.06 [-0.23, 0.11]   

Social Deprivation -0.00 [-0.01, 0.01] -0.00 [-0.17, 0.17]   

     R2   = .004  

     95% CI[.00,.03]  

       

(Intercept) 0.02** [0.02, 0.02]     

Violence Exposure -0.00 [-0.01, 0.01] -0.04 [-0.22, 0.14]   

Social Deprivation 0.00 [-0.01, 0.01] 0.03 [-0.15, 0.21]   

Interaction1 -0.01 [-0.01, 0.00] -0.09 [-0.26, 0.08]   

     R2   = .010 ΔR2   = .006 

     95% CI[.00,.04] 95% CI[-.02, .03] 

       

Note. A significant b-weight indicates the beta-weight and semi-partial correlation are also significant. b represents unstandardized 

regression weights. beta indicates the standardized regression weights. LL and UL indicate the lower and upper limits of a confidence 

interval, respectively. 

* indicates p < .05. ** indicates p < .01. 
1Interaction between Violence Exposure/Victimization and Social Deprivation 
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Supplemental Table 2.5.6: Regression results predicting left amygdala-BA25 white matter 

Supplemental Table 2.6 

Stepwise regression results showing that violence exposure, social deprivation, and their interaction do not predict left amygdala—

BA25 white matter connectivity.  

Predictor b 

b 

95% CI 

[LL, UL] 

beta 

beta 

95% CI 

[LL, UL] 

Fit Difference 

(Intercept) 0.08** [0.08, 0.09]     

Violence Exposure 0.00 [-0.02, 0.02] 0.01 [-0.16, 0.19]   

Social Deprivation 0.00 [-0.02, 0.02] 0.00 [-0.17, 0.17]   

     R2   = .000  

     95% CI[.00,1.00]  

       

(Intercept) 0.08** [0.08, 0.09]     

Violence Exposure 0.00 [-0.02, 0.02] 0.02 [-0.16, 0.20]   

Social Deprivation 0.00 [-0.02, 0.03] 0.01 [-0.18, 0.19]   

Interaction1 -0.00 [-0.03, 0.02] -0.02 [-0.19, 0.15]   

     R2   = .001 ΔR2   = .000 

     95% CI[.00,1.00] 95% CI[-.01, .01] 

       

Note. A significant b-weight indicates the beta-weight and semi-partial correlation are also significant. b represents unstandardized 

regression weights. beta indicates the standardized regression weights. LL and UL indicate the lower and upper limits of a confidence 

interval, respectively. 

* indicates p < .05. ** indicates p < .01. 
1Interaction between Violence Exposure/Victimization and Social Deprivation  
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Supplemental Table 2.5.7: Regression results predicting left amygdala-BA47 white matter 

Supplemental Table 2.7  

Stepwise regression results showing that violence exposure, social deprivation, and their interaction do not predict left amygdala—

BA47 white matter connectivity.  

Predictor b 

b 

95% CI 

[LL, UL] 

beta 

beta 

95% CI 

[LL, UL] 

Fit Difference 

(Intercept) 0.02** [0.02, 0.03]     

Violence Exposure -0.00 [-0.01, 0.00] -0.09 [-0.26, 0.08]   

Social Deprivation 0.00 [-0.00, 0.01] 0.09 [-0.09, 0.26]   

     R2   = .008  

     95% CI[.00,.04]  

       

(Intercept) 0.02** [0.02, 0.03]     

Violence Exposure -0.00 [-0.01, 0.00] -0.09 [-0.26, 0.09]   

Social Deprivation 0.01 [-0.00, 0.01] 0.10 [-0.09, 0.28]   

Interaction1 -0.00 [-0.01, 0.01] -0.03 [-0.19, 0.14]   

     R2   = .008 ΔR2   = .001 

     95% CI[.00,.04] 95% CI[-.01, .01] 

       

Note. A significant b-weight indicates the beta-weight and semi-partial correlation are also significant. b represents unstandardized 

regression weights. beta indicates the standardized regression weights. LL and UL indicate the lower and upper limits of a confidence 

interval, respectively. 

* indicates p < .05. ** indicates p < .01. 
1Interaction between Violence Exposure/Victimization and Social Deprivation  
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Supplemental Table 2.5.8: Regression results predicting right amygdala-BA11 white matter 

Supplemental Table 2.8 

 

Stepwise regression results showing that violence exposure, social deprivation, and their interaction do not predict right amygdala—

BA11 white matter connectivity.  

Predictor b 

b 

95% CI 

[LL, UL] 

beta 

beta 

95% CI 

[LL, UL] 

Fit Difference 

(Intercept) 0.08** [0.07, 0.09]     

Violence Exposure -0.02 [-0.04, 0.01] -0.12 [-0.29, 0.05]   

Social Deprivation 0.00 [-0.02, 0.02] 0.01 [-0.16, 0.18]   

     R2   = .013  

     95% CI[.00,.05]  

       

(Intercept) 0.08** [0.07, 0.09]     

Violence Exposure -0.01 [-0.04, 0.01] -0.10 [-0.27, 0.07]   

Social Deprivation 0.01 [-0.02, 0.03] 0.04 [-0.14, 0.22]   

Interaction1 -0.01 [-0.04, 0.02] -0.07 [-0.24, 0.10]   

     R2   = .017 ΔR2   = .004 

     95% CI[.00,.06] 95% CI[-.01, .02] 

       

Note. A significant b-weight indicates the beta-weight and semi-partial correlation are also significant. b represents unstandardized 

regression weights. beta indicates the standardized regression weights. LL and UL indicate the lower and upper limits of a confidence 

interval, respectively. 

* indicates p < .05. ** indicates p < .01. 
1Interaction between Violence Exposure/Victimization and Social Deprivation 
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Supplemental Table 2.5.9: Regression results predicting right amygdala-BA25 white matter 

Supplemental Table 2.9 

 

Stepwise regression results showing that violence exposure, social deprivation, and their interaction do not predict right amygdala—

BA25 white matter connectivity.  

  

Predictor b 

b 

95% CI 

[LL, UL] 

beta 

beta 

95% CI 

[LL, UL] 

Fit Difference 

(Intercept) 0.09** [0.08, 0.10]     

Violence Exposure -0.01 [-0.03, 0.01] -0.08 [-0.25, 0.09]   

Social Deprivation -0.00 [-0.03, 0.02] -0.01 [-0.18, 0.16]   

     R2   = .007  

     95% CI[.00,.04]  

       

(Intercept) 0.09** [0.07, 0.10]     

Violence Exposure -0.01 [-0.04, 0.01] -0.09 [-0.26, 0.08]   

Social Deprivation -0.00 [-0.03, 0.02] -0.03 [-0.21, 0.15]   

Interaction1 0.01 [-0.02, 0.04] 0.04 [-0.13, 0.22]   

     R2   = .009 ΔR2   = .001 

     95% CI[.00,.04] 95% CI[-.01, .01] 

       

Note. A significant b-weight indicates the beta-weight and semi-partial correlation are also significant. b represents unstandardized 

regression weights. beta indicates the standardized regression weights. LL and UL indicate the lower and upper limits of a confidence 

interval, respectively. 

* indicates p < .05. ** indicates p < .01. 
1Interaction between Violence Exposure/Victimization and Social Deprivation 
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Supplemental Table 2.5.10: Amygdala-PFC white matter & amygdala activation   

Supplemental Table 2.10 

 

Amygdala-prefrontal cortex white matter connectivity does NOT predict ipsilateral amygdala activation to threat faces 

 B SEB  t p 

Model:  L. Amygdala Activation (Threat) ~ L. Amygdala-BA25 White Matter Connectivity 

L. Amygdala – BA25  -0.210 0.750 -0.023 -0.280 0.780 

F(1, 150) = 0.079 p = 0.780, R2 = 0.000 

Model:  L. Amygdala Activation (Threat) ~ L. Amygdala-BA47 White Matter Connectivity 

L. Amygdala – BA47 -3.935 1.820 -0.174 -2.162 0.032 

F(1, 150) = 4.674, p = 0.032, R2 = 0.030 

Model:  R. Amygdala Activation (Threat) ~ R. Amygdala-BA11 White Matter Connectivity 

R. Amygdala – BA11 -1.027 0.765 -0.109 -1.342 0.182 

F(1, 150) = 1.802, p = 0.182, R2 = 0.012 

Model:  R. Amygdala Activation (Threat) ~ R. Amygdala-BA25 White Matter Connectivity 

R. Amygdala – BA25 -1.012 0.766 -0.107 -1.321 0.188 

F(1, 150) = 1.746, p = 0.188, R2 = 0.012 

Note: No models were significant at p<0.0063 (Bonferroni-corrected significance level for 8 tests) 
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Appendix 3: Chapter 3 Supplemental Methods 

Supplemental Participant Information 

Five hundred and six families from Detroit, Toledo, and Chicago area who had 

participated in the FFCWS were contacted. Of the 506 FFCWS families contacted, 237 families 

participated in SAND data collection, and 183 of those families had teens who were eligible and 

completed the neuroimaging tasks. 54 teens either were not eligible (i.e., braces, etc.) to 

complete the neuroimaging portion of the study (N=28) or did not complete the full protocol 

(N=26).  

Families that agreed to participate in SAND data collection did not differ from families 

that refused or were unreachable on annual household income at the six waves of the FFCWS (ps 

= .11 - .84). However, nonparticipation was associated with mother reports of community 

violence exposure when adolescents were ages 3, 5, and 9 (χ2 = 6.72, df = 1, p < .05, V = .12). 

Sixty-three percent of all mothers from families that participated in SAND endorsed at least one 

form of community violence when adolescents were ages 3, 5, or 9 compared to 51.10% of 

families that did not participate. Within the Detroit, Toledo, and Chicago subsamples, mothers’ 

self-report of race/ethnicity at the time of the child’s birth did not differ between mothers who 

did and did not participate in SAND (ps = .13-.49). However, mothers’ self-report of 

race/ethnicity at the time of the child’s birth differed between the SAND sample and the larger 

FFCWS (χ2 = 86.32, df = 3, p < .01, V = .13). The majority of mothers who participated in 

SAND data collection identified as Black/African American (75%), and also included mothers 

identifying as White/Caucasian (16%), Hispanic (6%), and other (3%). In the FFCWS, 46% of 
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mothers identified as Black/African, 21% identified as White/Caucasian, 29% identified as 

Hispanic, and 4% as other.  

Of the 183 SAND teens with resting-state MRI data, three participants were excluded due 

to artifacts in the functional or structural MRI data, four participants had excessive motion (as 

defined by average relative framewise displacement greater than 0.5mm), and one person had 

signal dropout in the areas of the brain included in the present analysis. The sample included for 

the neuroimaging analyses did not differ from the full SAND sample (ps 0.670 - 0.997) 

(Supplemental Table 3.1). This information has also been reported in other work from our group 

(Hein, 2019; Peckins et al., 2019). 

MRI Acquisition 

Structural MRI Acquisition. T1-weighted gradient echo images were taken before the 

functional scans using the same field of view (FOV) and slices as the functional scans (TR = 

12ms, TE = 5ms, TI = 500ms, flip angle = 15°, FOV = 26cm; slice thickness = 1.4mm; 256 x 

192 matrix; 110 slices, voxel size = 1mm x 1mm x 1mm). These methods are described in 

previous research using this sample (Goetschius et al., 2019). 

Resting State MRI Acquisition. Slices were prescribed parallel to the AC-PC line (same 

locations as structural scans). Images were reconstructed into a 64x64 matrix (TR=2000 ms, 

TE=30 ms, flip angle=90, FOV=22 cm, voxel size=3.44mm x 3.44mm x 3mm, bottom-up 

interleaved). Slices were acquired contiguously, which optimized the effectiveness of the 

movement post-processing algorithms. Images were reconstructed off-line using processing steps 

to remove distortions caused by magnetic field inhomogeneity and other sources of misalignment 

to the structural data, which yields excellent coverage of subcortical areas of interest. These 
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methods are identical to those described in previous task-based fMRI research using this sample 

(Goetschius et al., 2019). 

Imaging Data Analysis 

MRI Preprocessing. Anatomical images were homogeneity-corrected using SPM2, then 

skull-stripped (f=0.25) using the Brain Extraction Tool (BET) in FSL (version 5.0.7) (Jenkinson 

et al., 2012; S. M. Smith, 2002). The functional imaging data then had the following 

preprocessing steps applied: removal of large temporal spikes in k-space data (> 2 std dev), field 

map correction and image reconstruction using custom code in MATLAB; noise from cardiac 

and respiratory motion were removed using RETROICOR, and slice-timing correction using 

SPM8 (Wellcome Department of Cognitive Neurology, London, UK; 

http://www.fil.ion.ucl.ac.uk). Additionally, the first 10 volumes of functional data were removed 

to ensure the stability of signal intensity. Lastly, the structural images were segmented into gray 

matter, white matter, and CSF using FSL’s FAST(Y. Zhang et al., 2001).  

Following these initial preprocessing steps, the resting state functional data underwent 

further preprocessing using FEAT (FMRI Expert Analysis Tool) Version 6.00, part of FSL 

(FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl). Registration to high resolution structural 

and/or standard space images was carried out using FLIRT(Jenkinson et al., 2002; Jenkinson & 

Smith, 2001). The following pre-statistics processing was applied: motion correction using 

MCFLIRT(Jenkinson et al., 2002); non-brain removal for the functional images using BET(S. M. 

Smith, 2002); spatial smoothing using a Gaussian kernel of FWHM 6.0mm; grand-mean 

intensity normalization of the entire 4D dataset by a single multiplicative factor. ICA-

AROMA(Pruim et al., 2015) was used to remove motion-related artifacts in the data. Nuisance 

http://www.fil.ion.ucl.ac.uk/
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signal derived from the white matter and cerebrospinal fluid (CSF) were regressed out of the data 

and then the data was high-pass filtered to remove signal below 0.01Hz.  

Violence Exposure and Social Deprivation Composite Scores 

The procedure creating these composite scores were first utilized in previous work from 

our lab (Hein, 2019) and has been used previously in research on cortisol reactivity in this 

sample(Peckins et al., 2019). Data for these composite scores come from primary caregiver 

report on survey measures at 3, 5, 9 years.  

Childhood Exposure to Violence. Included in this composite was the primary 

caregiver’s report of child physical and emotional abuse based on items from the Parent-Child 

Conflict Tactics Scale(Straus et al., 1998) that have been used in previous research (Font & 

Berger, 2015; Hunt et al., 2017). Five items were used to assess physical abuse including, “hit 

him/her on the bottom with a hard object” and “shook him/her” and five items were used to 

assess emotional abuse including whether the parent/caregiver has “sworn or cursed at,” or 

“called him/her dumb or lazy or some other name like that.” Each item was rated on a 7-point 

Likert scale ranging from “never happened” to “more than 20 times.” The primary caregiver’s 

report of the child’s exposure to or victimization of violence in the neighborhood(S. Zhang & 

Anderson, 2010) was also included in the composite. This was measured using the primary 

caregiver’s report of the child witnessing or being the victim of beating, attacks with a weapon, 

shootings, and killings (witness only) on a 5-point Likert scale ranging from “never” to “more 

than 10 times.” At age 9, the primary caregiver was not asked about whether the child had 

witnessed killings or it they had been the victim of a shooting, so these items were only included 

for ages 3 and 5 years. Lastly, the child’s mother reported on intimate partner violence (IPV) 

(physical-2 items, emotional-3 items, or sexual-1 item) in the home at each wave (Hunt et al., 
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2017). Each item was rated on a 3-point Likert scale ranging from “never” to “often.” Physical 

IPV items included “he slapped or kicked you” and “he hit you with his fist or a dangerous 

object.” Emotional IPV items included “he tried to isolate you from family and friends,” and “he 

tried to prevent you from going to work and/or school.” The sexual IPV was “he tried to make 

you have sex or do sexual things you didn’t want to do.” The child’s exposure to IPV against the 

mother was coded as missing for a given wave if the child did not live with their mother at least 

50% of the time. We considered violence exposure to exist on a continuum in which high scores 

represent violence exposure and low scores represent safety.  

Childhood Exposure to Social Deprivation. Included in this composite was the primary 

caregiver’s report of child physical and emotional neglect based on items from the CTS-

PC(Straus et al., 1998) that have been used in previous research (Font & Berger, 2015; Hunt et 

al., 2017). Four items from the CTS-PC were used to assed physical neglect including whether 

the parent was ever “so drunk or high that you had a problem taking care of your child.” One 

item, whether the parent was “ever so caught up in your own problems that you were not able to 

show or tell your child that you loved him/her,” was used to assess emotional neglect. These 

items from the CTS-PC were reported on the same 7-point Likert scale as the items in the 

violence exposure composite. The primary caregiver’s report of social cohesion in the 

neighborhood was also included in this composite (reverse coded such that higher scores 

corresponded to lower cohesion). The items were selected based on previous research in the 

FFCWS linking neighborhood cohesion and adolescent mental health (Donnelly et al., 2016) and 

were adapted from previous neighborhood research (Morenoff et al., 2001). This included 4 

items, such as “this is a close-knit neighborhood,” rated on a 5-point Likert scale ranging from 

“strongly agree” to “strongly disagree.” Lastly, the child’s mother reported on the level of 
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intimate partner support for each wave using six items, such as “how frequently (the current 

romantic partner) expresses love and affection (for the mother),” that were rated on a 3-point 

Likert scale ranging from “never” to “often” (Manuel et al., 2012). This was also reverse coded 

such that high scores represent low support. Child exposure to the mother’s intimate partner 

support was coded as missing for a given wave if the child did not live with their mother at least 

50% of the time. We considered social deprivation to exist on a continuum in which high scores 

(e.g., the child experienced either high neglect or witnessed low social support for their mother 

or low neighborhood social cohesion) represent deprivation and low scores (e.g., the child 

experienced little neglect or witnessed high social support for their mother or high neighborhood 

social cohesion) represent social support. 

Composite Score Calculation. To calculate composite scores, the Z scores for each of 

the childhood experiences (i.e., child abuse, exposure to intimate partner violence, community 

violence, child neglect, lack of romantic partner support, lack of neighborhood social cohesion) 

were summed for each of the childhood experiences within a dimension (i.e., violence exposure 

and social deprivation) (Song et al., 2013) and then divided by the number of childhood 

experiences within a dimension for each participant, thus maximizing the number of participants 

and the diversity of the sample by minimizing drop out due to missing data at any given wave. 

This procedure has been previously described (Hein, 2019).  

In an exploratory attempt to characterize the sample, we examined the abuse and neglect 

subscales of the Conflict Tactics Scale (CTS). We found that averaged across ages 3, 5, and 9 

years, the focal children experienced greater than 3 of the 10 abuse categories (M=3.67, 

SD=1.61, range: 0-10) and less than 1 of the 5 neglect categories (M=0.19, SD=0.37, range: 0-4) 

in the CTS scale.  
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Covariates 

With the exception of mean framewise displacement, all covariates have been previously 

described (Goetschius et al., 2019; Hein, 2019; Peckins et al., 2019). 

Current Life Stress. Current life stress was measured using the Adolescent Life Events 

Scale (adapted(Shaw et al., 2003) from (Farrell et al., 1998; Masten et al., 1994)). This scale 

assesses the experience of common adolescent stressful life events in the past year.  

Race. Race was operationalized as a set of two dummy-coded variables based on three 

race categories reported by the teen: African American (Hispanic and Non-Hispanic), 

White/Caucasian, and Other. Other included Hispanic, Asian, multi-racial participants, Native 

American, and Unknown/Not Reported (Supplemental Table 3.1). If teen report was not 

available (N = 12), then parent report was used.  

Pubertal Development. Self-report of pubertal status was assessed using child report of 

the Pubertal Development Scale (Petersen et al., 1988) that measures growth spurt in height, 

public hair, and skin change in boys and girls; facial hair growth and voice change in boys only; 

and breast development and menarche in girls only (Supplemental Table 3.1). When adolescent 

report was not available (N=8), parent report was used. Pubertal development scores reported by 

parents were not significantly different from those reported by the adolescent (t(9.04)=-0.74, 

p=0.48).  

Maternal Covariates at Birth. Maternal self-report of marital status at birth (yes/no) 

and education at birth (1 - less than high school, 2 - high school or equivalent, 3 - some 

college/technical school, 4 - college or graduate school) was assessed. 
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Framewise Displacement. Framewise displacement (FD) is a metric that evaluates 

motion in the scanner and is the average of rotation and translation parameter differences(Power 

et al., 2012). FD was quantified using fsl_motion_outliers (FSL v.5.0.7).  

Sensitivity Analyses 

Extreme Outliers. Predictor variables (i.e., violence exposure and social deprivation) 

were checked for extreme outliers, which were considered to be individuals with a value less 

than Q1 - 2.2*Interquartile Range (IQR) or greater than Q3 + 2.2*IQR (Hoaglin & Iglewicz, 

1987). Four individuals were considered to be extreme outliers. Analyses were run with and 

without these participants, and inferences did not change. Thus, the participants were not 

excluded in order to retain as much data as possible.  

Protecting Against Model Overfitting. To protect against model overfitting, the psi 

matrices for each individual were examined – these matrices summarize the variance that was 

not explained for each network node for each participant. Participants were flagged (N=26 or 

14.8%) if they had a psi value greater than 1. To ensure that these participants were not driving 

effects, all analyses were run with and without participants with high psi values, and inferences 

did not change. Thus, the participants were not excluded in order to retain as much data as 

possible.  
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Supplemental Table 5.11: Participant demographics  

Supplemental Table 3.1 

 

Participant Demographics 

Included vs. Full Sample Comparison 

 
Included Sample (N=175) Full Sample (N=237) 

Statistically 

Different? 

Age M = 15.88 yrs | SD = 0.53 M = 15.88 yrs | SD = 0.54 
No. t(379.27) = 0.10, 

p=0.918 

Puberty M = 3.25 | SD = 0.58 M = 3.24 | SD = 0.59 
No. t(377.67) = 0.30, 

p=0.770 

Gender F = 98 | M = 77 F = 125 | M = 112 
No. 2(1) = 0.18, 

p = 0.670 

Race 

African American: 127 

Caucasian: 26 

Other: 22  

African American: 170 

Caucasian: 34 

Other: 33  

No. 2(2) = 0.40, 

p = 0.820 

Annual 

Income 

$4,999 or less: 22 

$5,000 to $19,999: 29 

$20,000 to $39,999: 50 

$40,000 to $69,999: 33 

$70,000 or more: 28 

Not Report/Missing: 13 

$4,999 or less: 28 

$5,000 to $19,999: 41 

$20,000 to $39,999: 66 

$40,000 to $69,999: 46 

$70,000 or more: 35 

Not Report/Missing: 21 

No. 2(5) = 0.34, 

p = 0.997 
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Supplemental Table 5.12: MNI Coordinates for ROIs 

 

Supplemental Table 3.2  

 

MNI coordinates for ROIs.  

Region MNI Coordinates Network 

Left Hemisphere 

Insula -34 20 -4 Salience 

Amygdala -24 -6 -16 Salience 

Dorsal Anterior Cingulate Cortex 0 46 6 Salience 

Dorsolateral Prefrontal Cortex -46 12 34 Salience 

Inferior Parietal Lobule -42 -52 48 Default Mode 

Posterior Cingulate Cortex -4 52 48 Default Mode 

Medial Temporal Gyrus -62 -26 -18 Default Mode 

Right Hemisphere 

Insula 36 20 -4 Salience 

Amygdala 24 -2 -16 Salience 

Dorsal Anterior Cingulate Cortex 4 26 28 Salience 

Dorsolateral Prefrontal Cortex 52 12 34 Salience 

Inferior Parietal Lobule 46 -52 48 Default Mode 

Posterior Cingulate Cortex 8 -52 28 Default Mode 

Medial Temporal Gyrus 58 -16 20 Default Mode 

Note: ROIs were selected based on their inclusion in either the Salience or Default Mode 

networks according to the NeuroSynth database (search terms were “Salience Network” and 

“Default Mode,” respectively). Additionally, the MNI coordinates for all ROIs were 

preregistered with the Open Science Framework.  
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Supplemental Figure 5.2: S-GIMME analytical steps 

Supplemental Figure 3.1:  Flowchart of the S-GIMME analytical steps
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Appendix 4: Chapter 3 Supplemental Results 

 

Supplemental Table 5.13: Regression results for network density 

Supplemental Table 3.3 

 

Regression results for network density. 

Predictor b 

b 

95% CI 

[LL, UL] 

beta 

beta 

95% CI 

[LL, UL] 

r Fit 

Total Density 

(Intercept) 47.20 [38.30, 56.11]     

Violence Exposure* -2.81 [-5.01, -0.60] -0.23 [-0.41, -0.05] -.13  

Social Deprivation 1.51 [-0.63, 3.65] 0.12 [-0.05, 0.30] .06  

Motion 1* 13.24 [3.52, 22.96] 0.21 [0.06, 0.37] .17  

Gender -2.22 [-4.65, 0.21] -0.18 [-0.37, 0.02] -.08  

Race_12 0.90 [-2.17, 3.98] 0.06 [-0.15, 0.28] -.08  

Race_22 3.16 [-0.61, 6.94] 0.18 [-0.03, 0.39] .16  

Pubertal 

Development 
-1.37 [-3.44, 0.69] -0.13 [-0.32, 0.06] -.03  

Current Life Stress3 -0.08 [-0.24, 0.09] -0.07 [-0.22, 0.08] -.07  

Maternal Education4 -0.08 [-1.10, 0.93] -0.01 [-0.18, 0.15] .03  

Maternal Marital 

Status4 
-0.29 [-2.80, 2.23] -0.02 [-0.18, 0.15] -.08  

R2   = .122 

95% CI[.00,.17] 

Salience Network Density 

(Intercept) 17.37 [14.22, 20.52]     

Violence Exposure* -1.01 [-1.79, -0.23] -0.24 [-0.42, -0.05] -.12  

Social Deprivation 0.59 [-0.17, 1.34] 0.14 [-0.04, 0.32] .06  

Motion 1* 4.97 [1.54, 8.41] 0.23 [0.07, 0.39] .20  

Gender -0.33 [-1.19, 0.53] -0.07 [-0.27, 0.12] -.01  

Race_12 0.24 [-0.85, 1.33] 0.05 [-0.17, 0.26] -.06  

Race_22 0.78 [-0.56, 2.11] 0.12 [-0.09, 0.34] .12  

Pubertal 

Development 
-0.37 [-1.10, 0.36] -0.10 [-0.29, 0.09] -.07  

Current Life Stress3 -0.00 [-0.06, 0.06] -0.01 [-0.16, 0.14] -.03  

Maternal Education4 -0.05 [-0.40, 0.31] -0.02 [-0.18, 0.14] .02  

Maternal Marital 

Status4 
-0.31 [-1.19, 0.58] -0.06 [-0.22, 0.11] -.09  

R2   = .106 
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95% CI[.00,.15] 

Density Between Salience & Default Mode Networks 

(Intercept) 18.74 [13.95, 23.53]     

Violence Exposure* -1.33 [-2.51, -0.14] -0.20 [-0.39, -0.02] -.09  

Social Deprivation 0.65 [-0.50, 1.80] 0.10 [-0.08, 0.28] .06  

Motion 1* 8.55 [3.33, 13.78] 0.26 [0.10, 0.41] .22  

Gender -1.07 [-2.37, 0.24] -0.16 [-0.35, 0.04] -.04  

Race_12 0.28 [-1.37, 1.94] 0.04 [-0.18, 0.25] -.07  

Race_22 1.47 [-0.56, 3.51] 0.15 [-0.06, 0.37] .14  

Pubertal 

Development 
-0.79 [-1.90, 0.33] -0.13 [-0.32, 0.06] -.07  

Current Life Stress3 -0.05 [-0.14, 0.04] -0.08 [-0.23, 0.07] -.09  

Maternal Education4 -0.01 [-0.56, 0.54] -0.00 [-0.17, 0.16] .01  

Maternal Marital 

Status4 
0.40 [-0.95, 1.75] 0.05 [-0.12, 0.21] -.01  

R2   = .122 

95% CI[.00,.17] 

Default Mode Network Density 

(Intercept) 11.09 [8.18, 14.01]     

Violence Exposure -0.47 [-1.19, 0.25] -0.12 [-0.31, 0.06] -.12  

Social Deprivation 0.27 [-0.43, 0.97] 0.07 [-0.11, 0.25] .01  

Motion 1 -0.29 [-3.46, 2.89] -0.01 [-0.17, 0.15] -.06  

Gender* -0.82 [-1.62, -0.03] -0.20 [-0.40, -0.01] -.19  

Race_12 0.38 [-0.62, 1.39] 0.08 [-0.14, 0.30] -.07  

Race_22 0.91 [-0.32, 2.15] 0.16 [-0.06, 0.38] .15  

Pubertal 

Development 
-0.22 [-0.89, 0.46] -0.06 [-0.26, 0.13] .09 

 

Current Life Stress3 -0.02 [-0.08, 0.03] -0.06 [-0.22, 0.09] -.05  

Maternal Education4 -0.03 [-0.36, 0.31] -0.01 [-0.18, 0.15] .05  

Maternal Marital 

Status4 
-0.38 [-1.20, 0.44] -0.08 [-0.25, 0.09] -.13 

 

R2   = .079 

95% CI[.00,.11] 
Note. A significant b-weight indicates the beta-weight and semi-partial correlation are also significant. 

b represents unstandardized regression weights. beta indicates the standardized regression weights. r 

represents the zero-order correlation. LL and UL indicate the lower and upper limits of a confidence 

interval, respectively. 

* indicates significant predictor of network density  

1Motion is measured using mean relative framewise displacement 
2Dummy coded variables represented 3 category race variable (African American, Caucasian, Other) 
3Current life stress is measured using the Adolescent Life Events Scale 
4Maternal variable at the child’s birth  
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Supplemental Table 5.14: Non-significant node degree regression results 

Supplemental Table 3.4 

 

Node degree for ROIs that were not significantly associated with violence exposure or social 

deprivation using the Bonferroni-corrected significance threshold.  

Predictor b 

b 

95% CI 

[LL, UL] 

beta 

beta 

95% CI 

[LL, UL] 

r Fit 

Left Amygdala Degree 

(Intercept) 2.87 [2.55, 3.20]     

Violence Exposure -0.60 [-1.13, -0.07] -0.19 [-0.36, -0.02] -.04  

Social Deprivation 0.30 [-0.23, 0.82] 0.09 [-0.07, 0.26] .07  

Motion 1 6.04 [3.69, 8.40] 0.37 [0.23, 0.52] .34  

R2   = .143 

95% CI[.05,.23] 

Left Dorsal Anterior Cingulate Cortex Degree 

(Intercept) 6.47 [6.15, 6.79]     

Violence Exposure -0.35 [-0.87, 0.17] -0.12 [-0.30, 0.06] -.08  

Social Deprivation 0.18 [-0.34, 0.69] 0.06 [-0.12, 0.24] .01  

Motion 1 0.61 [-1.70, 2.92] 0.04 [-0.11, 0.20] .02  

R2   = .011 

95% CI[.00,.04] 

Left Dorsolateral Prefrontal Cortex Degree 

(Intercept) 6.96 [6.53, 7.40]     

Violence Exposure -0.62 [-1.33, 0.08] -0.16 [-0.34, 0.02] -.12  

Social Deprivation 0.34 [-0.36, 1.04] 0.09 [-0.09, 0.26] -.00  

Motion 1 -0.57 [-3.71, 2.56] -0.03 [-0.18, 0.13] -.05  

R2   = .020 

95% CI[.00,.06] 

Left Anterior Insula Degree 

(Intercept) 6.02 [5.76, 6.28]     

Violence Exposure -0.50 [-0.93, -0.08] -0.21 [-0.39, -0.03] -.12  

Social Deprivation 0.26 [-0.17, 0.68] 0.11 [-0.07, 0.28] .02  

Motion 1 1.38 [-0.52, 3.27] 0.11 [-0.04, 0.27] .08  

R2   = .037 

95% CI[.00,.09] 

Left Medial Temporal Gyrus Degree 

(Intercept) 6.03 [5.62, 6.45]     

Violence Exposure -0.55 [-1.21, 0.12] -0.15 [-0.32, 0.03] -.06  

Social Deprivation 0.65 [-0.01, 1.31] 0.17 [-0.00, 0.35] .09  

Motion 1 -0.68 [-3.65, 2.29] -0.04 [-0.19, 0.12] -.04  

R2   = .026 

95% CI[.00,.07] 

Left Posterior Cingulate Cortex Degree 

(Intercept) 8.40 [8.03, 8.76]     

Violence Exposure -0.61 [-1.21, -0.01] -0.18 [-0.36, -0.00] -.11  

Social Deprivation 0.35 [-0.24, 0.94] 0.11 [-0.07, 0.28] .02  

Motion 1 0.78 [-1.87, 3.44] 0.05 [-0.11, 0.20] .02  

R2   = .024 
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95% CI[.00,.07] 

Right Amygdala Degree 

(Intercept) 4.05 [3.80, 4.29]     

Violence Exposure 0.00 [-0.40, 0.40] 0.00 [-0.16, 0.16] .13  

Social Deprivation 0.05 [-0.34, 0.45] 0.02 [-0.14, 0.18] .11  

Motion 1 5.38 [3.60, 7.16] 0.43 [0.29, 0.57] .43  

R2   = .188 

95% CI[.08,.28] 

Right Dorsal Anterior Cingulate Cortex Degree 

(Intercept) 7.39 [7.13, 7.64]     

Violence Exposure -0.40 [-0.81, 0.01] -0.17 [-0.35, 0.00] -.08  

Social Deprivation 0.12 [-0.28, 0.53] 0.05 [-0.12, 0.23] .02  

Motion 1 3.01 [1.19, 4.83] 0.25 [0.10, 0.40] .22  

R2   = .069 

95% CI[.00,.14] 

Right Dorsolateral Prefrontal Cortex Degree 

(Intercept) 6.38 [6.08, 6.68]     

Violence Exposure -0.39 [-0.87, 0.09] -0.14 [-0.32, 0.03] -.03  

Social Deprivation 0.40 [-0.08, 0.88] 0.15 [-0.03, 0.32] .10  

Motion 1 1.71 [-0.45, 3.86] 0.12 [-0.03, 0.28] .12  

R2   = .033 

95% CI[.00,.09] 

Right Inferior Parietal Lobule Degree 

(Intercept) 5.45 [5.15, 5.75]     

Violence Exposure -0.49 [-0.97, 0.00] -0.18 [-0.36, 0.00] -.16  

Social Deprivation 0.06 [-0.42, 0.54] 0.02 [-0.15, 0.20] -.07  

Motion 1 0.43 [-1.74, 2.59] 0.03 [-0.12, 0.19] -.01  

R2   = .026 

95% CI[.00,.08] 

Right Medial Temporal Gyrus Degree 

(Intercept) 4.69 [4.42, 4.96]     

Violence Exposure 0.14 [-0.30, 0.57] 0.05 [-0.12, 0.22] .18  

Social Deprivation 0.26 [-0.17, 0.69] 0.10 [-0.07, 0.27] .19  

Motion 1 3.46 [1.53, 5.39] 0.27 [0.12, 0.41] .30  

R2   = .11 

95% CI[.03,.19] 

Right Posterior Cingulate Cortex Degree 

(Intercept) 3.99 [3.67, 4.30]     

Violence Exposure -0.29 [-0.80, 0.22] -0.10 [-0.28, 0.08] -.12  

Social Deprivation -0.25 [-0.76, 0.25] -0.09 [-0.26, 0.09] -.11  

Motion 1 1.88 [-0.39, 4.15] 0.13 [-0.03, 0.28] .08  

R2   = .032 

95% CI[.00,.09] 

Note. A significant b-weight indicates the beta-weight and semi-partial correlation are also significant. b 

represents unstandardized regression weights. beta indicates the standardized regression weights. r 

represents the zero-order correlation. LL and UL indicate the lower and upper limits of a confidence 

interval, respectively. 

*Significant at a Bonferroni-corrected threshold of p = 0.004 (p=0.05/14 tests) 
1Motion is measured using mean relative framewise displacement 

 

 



 159 

Supplemental Table 5.15: Node density adjusted for covariates 

Supplemental Table 3.5 

 

Node density adjusted for covariates 
Predictor b b 

95% CI 

[LL, UL] 

beta beta 

95% CI 

[LL, UL] 

r Fit 

Left Inferior Parietal Lobule 

(Intercept) 9.14 [6.79, 11.49]     

Violence Exposure* -0.75 [-1.33, -0.17] -0.23 [-0.42, -0.05] -.17  

Social Deprivation 0.36 [-0.20, 0.93] 0.11 [-0.06, 0.29] .03  

Motion 1 1.27 [-1.29, 3.84] 0.08 [-0.08, 0.24] .03  

Gender -0.04 [-0.09, 0.00] -0.15 [-0.30, 0.01] -.13  

Race_12 -0.37 [-0.91, 0.18] -0.13 [-0.32, 0.06] -.09  

Race_22 -0.71 [-1.36, -0.07] -0.21 [-0.41, -0.02] .17  

Pubertal Development 0.30 [-0.51, 1.11] 0.08 [-0.14, 0.29] .03  

Current Life Stress3 0.85 [-0.15, 1.84] 0.18 [-0.03, 0.39] -.14  

Maternal Education4 -0.09 [-0.35, 0.18] -0.05 [-0.22, 0.11] .00  

Maternal Marital Status4 -0.09 [-0.75, 0.57] -0.02 [-0.19, 0.14] -.07  

R2   = .117 

95% CI[.00,.16] 

Right Insula 

(Intercept) 8.44 [6.83, 10.06]     

Violence Exposure* -0.64 [-1.04, -0.24] -0.28 [-0.46, -0.11] -.17  

Social Deprivation 0.4 [0.06, 0.84] 0.20 [0.03, 0.37] .06  

Motion 1 1.28 [-0.48, 3.04] 0.11 [-0.04, 0.27] .08  

Gender -0.00 [-0.03, 0.03] -0.02 [-0.17, 0.13] -.05  

Race_12 -0.36 [-0.73, 0.02] -0.18 [-0.36, 0.01] -.10  

Race_22 -0.26 [-0.70, 0.19] -0.11 [-0.30, 0.08] -.01  

Pubertal Development 0.01 [-0.54, 0.57] 0.01 [-0.21, 0.22] -.14  

Current Life Stress3 0.58 [-0.11, 1.27] 0.18 [-0.03, 0.39] .21  

Maternal Education4 0.17 [-0.01, 0.36] 0.15 [-0.01, 0.31] .17  

Maternal Marital Status4 0.15 [-0.30, 0.61] 0.05 [-0.11, 0.22] -.07  

R2   = .149 

95% CI[.02,.20] 

Note. A significant b-weight indicates the beta-weight and semi-partial correlation are also significant. b 

represents unstandardized regression weights. beta indicates the standardized regression weights. r 

represents the zero-order correlation. LL and UL indicate the lower and upper limits of a confidence 

interval, respectively. 

*Significant predictor of node degree adjusting for covariates.  
1Motion is measured using mean relative framewise displacement 
2Dummy coded variables represented 3 category race variable (African American, Caucasian, Other) 
3Current life stress is measured using the Adolescent Life Events Scale 
4Maternal variable at the child’s birth 
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Supplemental Table 5.16: Logistic regression results adjusted for covariates 

Supplemental Table 3.6 

 

Logistic regression results adjusted for covariates 

Predictor b SE Odds Ratio 

Odds Ratio 

95% CI 

[LL, UL] 

(Intercept) -0.20 1.82 0.82 [0.02, 32.70] 

Violence Exposure 0.93 0.54 2.54 [0.92, 7.87] 

Social Deprivation -0.38 0.47 0.68 [0.27, 1.77] 

Motion 1 7.32 3.54 1516.93 [3.58, 4284250.00] 

Gender 0.57 0.50 1.77 [0.67, 4.77] 

Race_12 -0.58 0.71 0.56 [0.11, 2.02] 

Race_22 -1.13 0.80 0.32 [0.06, 1.46] 

Pubertal Development 0.14 0.41 1.16 [0.50, 2.59] 

Current Life Stress3 0.05 0.04 1.06 [0.98, 1.14] 

Maternal Education4 0.07 0.20 1.07 [0.72, 1.61] 

Maternal Marital Status4 0.05 0.49 1.05 [0.39, 2.72] 
1Motion is measured using mean relative framewise displacement 
2Dummy coded variables represented 3 category race variable (African American, 

Caucasian, Other) 
3Current life stress is measured using the Adolescent Life Events Scale 
4Maternal variable at the child’s birth 
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Appendix 5: Chapter 3 Supplemental Data 

 

Supplemental Table 5.17: Chapter 3 supplemental data 

Table 3.7 

Supplemental Data 

 

Model fit for each individual participant. Connections were not added to individual models when 2 out of the 4 fit 

indices met the following thresholds: RMSEA ≤0.05; SRMR ≤0.05; CFI ≥0.95; NNFI ≥0.95. 

 

 χ2 df npar RMSEA SRMR NNFI CFI 

1 337.464 215 219 0.0493 0.0498 0.9468 0.9698 

2 460.4917 232 202 0.0649 0.0434 0.919 0.9503 

3 442.6814 227 207 0.0637 0.0493 0.9176 0.9505 

4 369.3483 230 204 0.0509 0.0497 0.9395 0.9632 

5 356.2464 224 210 0.0502 0.0499 0.9424 0.9658 

6 422.89 230 204 0.0599 0.0472 0.9367 0.9615 

7 400.1407 228 206 0.0568 0.0469 0.9183 0.9507 

8 395.4893 229 205 0.0557 0.0493 0.9342 0.9602 

9 472.9349 228 206 0.0678 0.0485 0.9261 0.9554 

10 349.8288 222 212 0.0496 0.0511 0.9436 0.9668 

11 446.6057 229 205 0.0637 0.0492 0.9183 0.9505 

12 505.731 218 216 0.0751 0.0491 0.9157 0.9514 

13 417.9443 221 213 0.0617 0.0485 0.9263 0.9569 

14 451.117 227 207 0.065 0.049 0.9287 0.9572 

15 405.1967 229 205 0.0573 0.0486 0.9292 0.9571 

16 377.3698 228 206 0.0529 0.0486 0.952 0.971 
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17 375.7425 200 234 0.0613 0.0485 0.9211 0.9583 

18 418.1664 219 215 0.0623 0.0482 0.9139 0.9501 

19 362.0274 218 216 0.0531 0.0485 0.9154 0.9512 

20 489.3867 233 201 0.0686 0.0484 0.9203 0.9509 

21 355.5109 230 204 0.0483 0.0547 0.9471 0.9678 

22 381.252 231 203 0.0527 0.0492 0.9311 0.9579 

23 359.1018 209 225 0.0554 0.0499 0.9229 0.9574 

24 366.8721 232 202 0.0498 0.0526 0.9266 0.9549 

25 422.4284 226 208 0.0609 0.0466 0.9175 0.9507 

26 482.5072 234 200 0.0674 0.0461 0.9201 0.9505 

27 357.8082 220 214 0.0517 0.0498 0.935 0.9621 

28 441.1115 227 207 0.0635 0.0455 0.9184 0.951 

29 415.5675 213 221 0.0638 0.0496 0.9249 0.9577 

30 435.3762 225 209 0.0632 0.0469 0.9164 0.9502 

31 459.8657 216 218 0.0695 0.049 0.9279 0.9588 

32 404.2475 215 219 0.0613 0.0476 0.9241 0.9569 

33 363.5178 222 212 0.0522 0.0446 0.9168 0.9511 

34 394.4465 217 217 0.0591 0.0498 0.9381 0.9645 

35 512.738 221 213 0.0751 0.0461 0.9164 0.9511 

36 419.0826 227 207 0.0601 0.0496 0.9189 0.9513 

37 391.933 225 209 0.0563 0.0438 0.9204 0.9526 

38 355.2865 226 208 0.0494 0.053 0.9259 0.9557 

39 431.6301 221 213 0.0638 0.0487 0.9246 0.9559 

40 363.5577 232 202 0.0492 0.0502 0.9342 0.9596 

41 418.9789 216 218 0.0634 0.0494 0.9146 0.9512 

42 370.4016 221 213 0.0537 0.0496 0.9307 0.9595 

43 357.6225 219 215 0.052 0.0497 0.9424 0.9666 

44 364.269 218 216 0.0535 0.05 0.9169 0.9521 

45 404.6379 213 221 0.062 0.048 0.9374 0.9647 

46 481.5645 215 219 0.0728 0.0443 0.9148 0.9515 

47 360.3157 225 209 0.0507 0.0493 0.9179 0.9511 

48 435.7415 217 217 0.0656 0.045 0.9164 0.952 

49 387.1817 225 209 0.0555 0.0459 0.9177 0.951 
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50 428.6833 229 205 0.061 0.0489 0.9352 0.9608 

51 414.8962 233 201 0.0578 0.0424 0.9191 0.9501 

52 395.9013 212 222 0.0609 0.0447 0.9125 0.9509 

53 532.6246 221 213 0.0776 0.047 0.9148 0.9502 

54 416.5936 221 213 0.0615 0.0434 0.9152 0.9504 

55 434.5957 208 226 0.0682 0.0497 0.9131 0.9522 

56 418.6393 236 198 0.0575 0.0485 0.9256 0.9535 

57 351.4741 222 212 0.0499 0.0499 0.9385 0.9639 

58 398.2812 236 198 0.0542 0.0476 0.9511 0.9695 

59 355.4745 228 206 0.0489 0.0483 0.922 0.953 

60 471.3257 231 203 0.0667 0.0487 0.9262 0.9549 

61 343.2778 206 228 0.0534 0.0495 0.9509 0.9732 

62 431.6664 210 224 0.0672 0.0408 0.915 0.9528 

63 432.934 225 209 0.0628 0.0465 0.9186 0.9516 

64 341.8362 219 215 0.049 0.0512 0.9526 0.9726 

65 395.5717 226 208 0.0566 0.0472 0.9167 0.9502 

66 445.6803 225 209 0.0647 0.05 0.9164 0.9502 

67 481.0292 219 215 0.0715 0.0441 0.9148 0.9506 

68 388.5093 217 217 0.0581 0.0445 0.9165 0.9521 

69 385.9336 210 224 0.0598 0.0411 0.9142 0.9524 

70 422.1714 227 207 0.0606 0.0487 0.9353 0.9612 

71 372.7023 236 198 0.0498 0.0488 0.9441 0.9651 

72 435.3817 223 211 0.0638 0.0498 0.9187 0.952 

73 368.3488 216 218 0.0549 0.0491 0.9404 0.9659 

74 379.8688 207 227 0.0597 0.0478 0.9274 0.9602 

75 460.2895 214 220 0.0701 0.0496 0.9288 0.9597 

76 524.4858 217 217 0.0778 0.0436 0.9139 0.9506 

77 356.5818 230 204 0.0485 0.057 0.9345 0.9602 

78 428.9118 232 202 0.0602 0.0498 0.9278 0.9557 

79 424.6102 226 208 0.0613 0.0497 0.9229 0.9539 

80 404.0907 216 218 0.061 0.0439 0.9171 0.9526 

81 408.21 214 220 0.0623 0.0496 0.9218 0.9557 

82 337.0235 216 218 0.0489 0.052 0.9491 0.9709 
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83 416.4031 218 216 0.0624 0.0437 0.9179 0.9527 

84 473.7268 228 206 0.0679 0.0442 0.919 0.9511 

85 388.1109 233 201 0.0533 0.0494 0.9487 0.9684 

86 378.0401 221 213 0.0551 0.0492 0.9245 0.9559 

87 472.1856 218 216 0.0706 0.0499 0.9155 0.9512 

88 417.637 233 201 0.0582 0.0498 0.9384 0.962 

89 383.6733 230 204 0.0534 0.0481 0.9293 0.957 

90 397.4964 222 212 0.0581 0.0476 0.9174 0.9515 

91 358.8544 229 205 0.0492 0.0538 0.9407 0.9641 

92 515.0297 237 197 0.0708 0.0479 0.9228 0.9516 

93 339.9077 222 212 0.0476 0.0624 0.9418 0.9658 

94 408.5504 209 225 0.0639 0.041 0.9114 0.951 

95 549.3469 226 208 0.0782 0.0464 0.9165 0.9501 

96 376.8911 225 209 0.0537 0.0492 0.9351 0.9614 

97 440.472 221 213 0.0651 0.0471 0.9172 0.9516 

98 347.1012 222 212 0.0491 0.0489 0.948 0.9695 

99 381.2555 224 210 0.0548 0.048 0.9167 0.9506 

100 441.3668 230 204 0.0627 0.0499 0.925 0.9543 

101 407.0288 221 213 0.06 0.0495 0.9222 0.9545 

102 376.2155 216 218 0.0563 0.0464 0.9131 0.9503 

103 366.2102 223 211 0.0524 0.0497 0.9416 0.9656 

104 381.601 233 201 0.0522 0.0478 0.9242 0.9533 

105 457.7367 235 199 0.0636 0.048 0.9206 0.9506 

106 423.4817 214 220 0.0647 0.0492 0.9321 0.9616 

107 433.4452 227 207 0.0623 0.0468 0.92 0.952 

108 449.1592 228 206 0.0644 0.0496 0.9176 0.9503 

109 477.1445 227 207 0.0686 0.0496 0.9192 0.9515 

110 412.928 223 211 0.0603 0.0486 0.9183 0.9518 

111 395.8876 234 200 0.0544 0.0491 0.9222 0.9519 

112 509.8378 202 232 0.0807 0.0494 0.9094 0.9516 

113 379.6696 224 210 0.0545 0.0485 0.9436 0.9666 

114 393.9832 229 205 0.0555 0.0488 0.9277 0.9562 

115 420.1125 231 203 0.0591 0.0487 0.9283 0.9562 
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116 461.147 216 218 0.0696 0.0436 0.9167 0.9524 

117 435.54 218 216 0.0653 0.047 0.9172 0.9522 

118 400.423 221 213 0.0589 0.0478 0.9294 0.9587 

119 405.4778 214 220 0.0618 0.0485 0.9135 0.951 

120 435.3515 229 205 0.0621 0.0492 0.9258 0.9551 

121 467.4572 219 215 0.0696 0.0495 0.9162 0.9515 

122 451.823 226 208 0.0653 0.0457 0.9193 0.9517 

123 444.5608 213 221 0.0682 0.0471 0.9164 0.9529 

124 360.8171 216 218 0.0535 0.0495 0.9209 0.9548 

125 428.2471 220 214 0.0636 0.044 0.9173 0.9519 

126 371.5123 213 221 0.0564 0.0456 0.928 0.9594 

127 374.1864 232 202 0.0512 0.0453 0.9215 0.9518 

128 410.7942 212 222 0.0633 0.0487 0.9291 0.9602 

129 480.7249 220 214 0.0712 0.048 0.9154 0.9507 

130 408.7257 224 210 0.0594 0.0437 0.9166 0.9506 

131 473.8235 209 225 0.0736 0.0416 0.9114 0.951 

132 344.6724 219 215 0.0495 0.0532 0.9407 0.9656 

133 430.6263 230 204 0.0611 0.0464 0.9211 0.952 

134 432.7567 231 203 0.0611 0.0487 0.9241 0.9536 

135 511.666 240 194 0.0696 0.0456 0.9231 0.9512 

136 435.3927 222 212 0.0641 0.0482 0.9176 0.9516 

137 360.0409 216 218 0.0534 0.0489 0.9322 0.9613 

138 390.6012 230 204 0.0546 0.0444 0.9307 0.9578 

139 411.2425 233 201 0.0572 0.0482 0.9352 0.9601 

140 441.3396 221 213 0.0653 0.049 0.9171 0.9515 

141 423.1329 221 213 0.0625 0.0455 0.9182 0.9522 

142 484.8995 218 216 0.0723 0.0422 0.9205 0.9542 

143 424.9599 220 214 0.0631 0.0485 0.9283 0.9583 

144 437.5468 233 201 0.0613 0.0492 0.9285 0.9559 

145 395.4005 228 206 0.056 0.0491 0.9282 0.9567 

146 430.6302 229 205 0.0613 0.0475 0.9205 0.9518 

147 505.7797 230 204 0.0716 0.0463 0.9206 0.9517 

148 380.6049 215 219 0.0574 0.0444 0.9155 0.9519 
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149 481.3911 226 208 0.0695 0.0499 0.9295 0.9579 

150 361.4001 220 214 0.0524 0.0465 0.9516 0.9718 

151 356.5355 227 207 0.0494 0.0513 0.9247 0.9548 

152 395.1945 227 207 0.0563 0.0483 0.9302 0.9581 

153 420.3603 223 211 0.0615 0.0499 0.9183 0.9518 

154 395.4 226 208 0.0566 0.0472 0.9178 0.9508 

155 422.053 233 201 0.0589 0.05 0.9216 0.9517 

156 361.1325 224 210 0.0511 0.0497 0.9329 0.9602 

157 443.7209 233 201 0.0622 0.0493 0.9204 0.9509 

158 419.7464 215 219 0.0638 0.0496 0.9331 0.962 

159 422.6659 226 208 0.061 0.0489 0.917 0.9504 

160 431.8286 228 206 0.0618 0.047 0.9181 0.9506 

161 456.3976 235 199 0.0635 0.0475 0.921 0.9509 

162 348.7459 222 212 0.0494 0.0498 0.9431 0.9666 

163 384.086 226 208 0.0547 0.0487 0.9244 0.9548 

164 450.2674 222 212 0.0663 0.0499 0.928 0.9577 

165 333.3395 216 218 0.0482 0.0516 0.932 0.9612 

166 418.5673 229 205 0.0595 0.0492 0.9204 0.9518 

167 398.5382 218 216 0.0595 0.0486 0.9348 0.9624 

168 353.7505 225 209 0.0495 0.0509 0.9235 0.9545 

169 415.5257 230 204 0.0587 0.0484 0.9317 0.9584 

170 402.5641 223 211 0.0587 0.0462 0.9209 0.9534 

171 384.9787 229 205 0.054 0.0478 0.939 0.963 

172 403.9139 215 219 0.0613 0.0494 0.9161 0.9523 

173 374.1356 226 208 0.0529 0.0491 0.9294 0.9578 

174 390.1415 216 218 0.0587 0.0488 0.935 0.9628 

175 434.5492 215 219 0.0661 0.048 0.9153 0.9518 
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Appendix 6: Data Processing and Analysis Code 

Study 1 

Information about and the scripts for the processing of the diffusion MRI data for this 

study are publicly available on GitHub 

(https://github.com/lgoetschius/ProbabilisticTractography_On_Flux). The data cleaning and 

statistical analysis code, including the graph visualizations, for this study are also publicly 

available on GitHub (https://github.com/lgoetschius/VE_SD_AmygdalaProbtrack).  

Visualizations of the white matter data were created using FSL (v.5.0.9), ITK-SNAP 

(v.3.6.0), and ParaView (v.5.8.0) based on a tutorial in Madan (2015). Figure 2.2 was created by 

overlaying 3D masks of the target regions (bilateral Brodmann’s Areas (BA) 10, 11, 25, 47) and 

a binarized and thresholded (threshold=1000 streamlines) mask of the averaged FDT_path image 

for all participants representing the probabilistic tractography streamlines for the left and right 

amygdala seed regions. Visualizations of the individual white mater streamlines (Supplemental 

Figure 2.1) was created using FSLeyes (0.31.2) (McCarthy, 2019) from the thresholded 

(threshold = 1000 streamlines) fdt_paths image with the right amygdala as the seed region for the 

individual participants with the highest and lowest violence exposure composite scores.  

Study 2 

Information about and the scripts for the processing of the resting state fMRI data for this 

study are publicly available on GitHub (https://github.com/lgoetschius/GIMME_Preprocessing) 

(Beltz et al., 2019). The data cleaning and statistical analysis code, including the graph 

https://github.com/lgoetschius/ProbabilisticTractography_On_Flux
https://github.com/lgoetschius/VE_SD_AmygdalaProbtrack
https://github.com/lgoetschius/GIMME_Preprocessing
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visualizations, for this study are also publicly available on GitHub 

(https://github.com/lgoetschius/VE_SD_GIMME_Analysis).  

Visualizations of the group, subgroup, and example individual connectivity maps (Figure 

3.1) were created using FSL (v.6.0.3), ITK-SNAP (v.3.6.0), and ParaView (v.5.8.0) based on a 

tutorial in Madan (2015). Figure 3.1 was created by overlaying 3D masks of the sphere masks for 

each node central coordinate (Supplemental Table 3.2). Arrows representing the group, subgroup, 

and example individual level paths were then added manually in Microsoft PowerPoint based on 

the output from the S-GIMME algorithm. 

Study 3 

The data cleaning, statistical analysis, and graph visualization code done using Mplus and 

R for this study are publicly available on GitHub 

(https://github.com/lgoetschius/VE_SD_SchoolConnectedness). Diagrams of the structural 

equation models (Figures 4.1, 4.2, 4.4) were created using the online Cacoo software (Nulab 

Inc.) based on the statistical output from Mplus.  

 

 

https://github.com/lgoetschius/VE_SD_GIMME_Analysis
https://github.com/lgoetschius/VE_SD_SchoolConnectedness
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