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ABSTRACT

Evidence from Genome Wide Association Studies (GWAS) has provided us with

insights into human phenotypes by identifying genetic variation statistically asso-

ciated with diseases and complex traits. However, the functional consequences of

these genetic variants remain unknown in many cases, especially for those in the

non-coding regions of the human genome.

My dissertation focuses on single nucleotide polymorphisms (SNPs) as the most

common genetic variation type. I define some SNPs as regulatory SNPs that can alter

the transcription factor binding affinities within the DNA sequences of regulatory

elements. This change affects downstream gene expression and plays a role in disease

progression and trait development. Characterizing genome-wide regulatory variants

is particularly challenging because the gene regulatory network is dynamic across

various cell types and environmental conditions. In addition to the DNA sequence

context, the gene regulatory network relies on epigenetic factors, such as chromatin

accessibility, histone modification, and chromatin looping.

In this dissertation, I applied computational approaches to predict regulatory

variants by incorporating sequence information and functional genomics annotations

from various high-throughput assays. In chapter 2, I developed a computation tool,

SURF, to prioritize the regulatory variants within promoters and enhancers with

clinical relevance. These variants were validated by massively parallel reporter as-

says and used as an unbiased test set in CAGI5 “Regulation Saturation” challenge.

xi



My algorithm achieved the best performance in this challenge compared to other

participant groups.

In chapter 3, I extended SURF to TURF, a computational tool to predict tissue-

specific functions of regulatory variants and provide a more robust prediction on

genome-wide non-coding regions. By leveraging tissue-specific genomic annotations

of tissues from the same organ, I also calculated TURF organ-specific scores covering

most ENCODE project organs. Many of the GWAS traits showed enrichment of reg-

ulatory variants prioritized by TURF scores in their relevant organs, which indicates

that these regulatory variants are likely to be involved in the trait developments and

can be a valuable source for future studies.

In chapter 4, to enable the quick annotation on non-coding variants for the sci-

entific community, I designed some major updates to an online tool, RegulomeDB.

With the user’s input of query variant, RegulomeDB returns the evidence from di-

verse functional genomics assays that overlaps the variant’s position, displayed with

interactive charts and a genome browser view. The new probabilistic score derived

from SURF was also integrated into the query system. To further provide functional

hypotheses to putative regulatory variants, I finally explored the pipeline to assign

their target genes with evidence from eQTL studies and Hi-C experiments.

Together, my dissertation developed computational tools for broad community

use on prioritizing and assigning target genes to regulatory variants in non-coding

regions of the human genome.
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CHAPTER I

Introduction

Characterizing the functional consequences of variants in the non-coding regions is

a challenge in human genetics. In this dissertation, I applied computational methods

to address this challenge. I first developed a computational tool to predict regulatory

variants with training data from massively parallel reporter assays, and I extended

it to predict tissue-specific function. I also designed a user-friendly online tool to

enhance the use for the scientific community. Finally, I explored computational

pipelines to assign target genes of the putative regulatory variants.

In this chapter, I will first describe the biological mechanism of regulatory ele-

ments and regulatory variants. I will then discuss the high-throughput functional

genomics assays and the statistical analyses to map genome-wide regulatory elements

and regulatory variants. Next, I will summarize the strategies and limitations of cur-

rent computational tools to predict regulatory variants. Finally, I will discuss the

computational approaches to assign the target genes to putative regulatory variants

by 3D conformation assays.

1.1 Cis-regulatory elements and regulatory variants

This dissertation focuses on the cis-regulatory elements in the non-coding regions

of human genome. These regulatory elements can be defined as enhancers, promot-

1
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ers, insulators, and silencers based on their effects on gene expression level. The

transcription factors (TFs) each recognize short DNA sequences (i.e., motifs) to bind

with the regulatory elements and regulate their target genes expression [1]. The

functional linkage between various TFs and their target regulatory elements is called

‘gene regulatory network’. A growing amount of evidence shows that the dynamics

of gene regulatory networks contribute significantly to diverse biological processes,

including development, differentiation, and disease progression, emphasizing the im-

portance of systematically characterizing the regulatory elements [1]. A large part of

the challenge of deciphering gene regulatory networks comes from the fact that it not

only relies on the DNA sequence (TF motif) itself but also depends on the chromatin

factors such as chromatin accessibility, histone modification, and chromatin looping.

These epigenetic factors vary a lot among cells and individuals. I will discuss the

assays for genome-wide scanning on those chromatin factors in the following section.

In addition to characterizing regulatory elements, it is even harder to interpret

the functional consequences of genetic variation within the regulatory elements. My

dissertation focuses on predicting the functional consequences of the single nucleotide

polymorphisms (SNPs) in regulatory elements, which is the most common type of

genetic variation. SNPs can alter the TF binding sites, thus changing the binding

affinity and further affecting downstream gene expression regulation, which are re-

ferred to as regulatory variants (or more specifically regulatory SNPs) (Figure 1.1).

Numerous examples of regulatory SNPs are found to be associated with disease sus-

ceptibility, and some are validated to play an essential role in disease progression.

For example, an SNP at the 1p13 cholesterol locus creates a TF binding site on

minor alleles and alters the SORT1 gene expression level in liver, eventually increas-

ing the risk for myocardial infarction [2]. As discussed before, predicting regulatory
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Figure 1.1: Schematic of potential mechanisms for a regulatory single nucleotide polymorphism
(SNP) exerting effects on downstream gene expression. The A allele binds with a
transcription factor (TF), which is an activator in this case. A genotype change from A
to T will possibly 1) decrease TF binding affinity and downregulate gene expression; 2)
increase TF binding affinity and upregulate gene expression; 3) create a novel binding
site with another TF that affects other downstream gene expression.

variants involves incorporating regulatory sequence information with the chromatin

factors. Furthermore, due to the dynamic of the gene regulatory network, evaluating

the chromatin factors in cell type/tissue-specific context will provide more accurate

prediction in studying diseases or traits relevant to particular cell types/tissues.

1.2 Functional genomics assays to identify genome-wide regulatory ele-
ments

With the extensive application of next-generation sequencing, various functional

genomics assays are available to characterize genome-wide regulatory elements from

different aspects (Figure 1.2).

1.2.1 DNase I hypersensitive sites sequencing (DNase-seq) and DNase footprints

DNase I hypersensitive sites (DHS) are the genomic regions that show hypersen-

sitivity to the cleavage by DNase I endonucleases [4], thus representing a more open

and loose structure of chromatin. DNase I hypersensitive sites sequencing (DNase-

seq) is a technique to identify DHS on the whole genome, which combines traditional
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Figure 1.2: Examples of high-throughput functional genomics assays characterizing genome-wide
regulatory elements from diverse aspects. Figure adapted from Ecker et al. 2012 [3].

DNase I footprinting and next-generation sequencing [5, 6]. The DHS are also in-

terpreted as open chromatin regions accessible to proteins, including transcription

factors (TF) to regulate gene transcription. DNase-seq has been a powerful assay

to map genome-wide open chromatin regions among different cell types and treat-

ment condition. ATAC-seq, as a more recently developed assay, offers an alternative

way to map open chromatin regions based on the hyperactive Tn5 transposase [7].

ATAC-seq performs similar to DNase-seq in terms of sensitivity and specificity but

requires fewer starting cell numbers and fewer preparation steps.

DNase footprints are a short fragment within a DHS that TFs bind that is pro-

tected by the digestion of DNase I. Traditionally, the DNase footprints were identified

by running on a polyacrylamide gel [8].They now can be located on a genome-wide
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scale by mapping the ‘dips’ in the middle of DNase-seq data signals. Several compu-

tational tools are available for this purpose. Some tools use the sequence information

from TF motifs to assign the binding TFs for each DNase footprint [9, 10, 11, 12],

while other tools only map the broad set of TF binding sites [13, 14, 15].

1.2.2 Chromatin Immunoprecipitation sequencing (ChIP-seq)

In contrast to DNase-seq mapping of open chromatin regions, Chromatin Im-

munoprecipitation sequencing (ChIP-seq) can pinpoint the binding sites of a specific

TF. ChIP-seq relies on crosslinking proteins to DNA first, following by chromatin

fragmentation. An antibody specific to a protein, such as a TF, is used in the im-

munoprecipitation step to bind and isolate the protein. Finally, the DNA fragments

bound with the protein on the whole-genome are identified with next-generation se-

quencing techniques. In addition to TF, ChIP-seq can also identify the binding sites

of histone modifiers, where a second crosslinker is sometimes needed since they bind

more dynamically to chromatin [16].

The main limitation for ChIP-seq is the reliance on antibodies as a large portion

of TFs do not have efficient antibodies. Tagging the protein of interest is a way to

compensate for this limitation. However, careful design is needed to avoid the inter-

ruption of expression [17]. Meanwhile, the variation of antibody quality can lead to

batch effects that require detailed control experiments. Furthermore, the application

of ChIP-seq on cell types with low cell numbers is still challenging, especially for a

transcription factor that does not have abundant binding sites on the genome.

Computational approaches have been applied to extract regulatory patterns from

regions identified by ChIP-seq assays. I will introduce the two applications relevant

to my dissertation here:

Position weight matrix (PWM)
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A position weight matrix describes a TF binding preference, referred to as TF

motif, by showing the frequencies of each base (A, C, G or T) on each position

of the TF binding sequences [18]. The information content calculated from PWM

represents the deviation from a uniform distribution of the four bases on each TF

motif position. In some early studies, the TF binding sites were mostly identified

from SELEX (systematic evolution of ligands by exponential enrichment) data [19].

More recently, PWMs are also computed by the TF binding sites from ChIP-seq

data. Several databases collect these PWMs from various sources. For example,

JASPAR curates a non-redundant set of PWMs from over 700 human TFs [20].

Despite the wide use of PWMs, one caveat is that the binding frequencies mea-

sured from PWMs might not be sufficient to predict the underlying binding affinities.

Therefore, predicting TF binding sites by mapping PWM to the genome could po-

tentially miss some true binding sites in underrepresented cell types. Moreover,

the effects of variants on TF binding affinity could not be fully represented by the

information content. Some computational tools were developed to overcome such

limitations [21].

Chromatin state annotations

The combinations of chromatin modifications are found to be associated with

certain regulatory elements, such as H3K4me3 associated with promoters, H3K4me1

and H3K27me3 associated with enhancers, and H3K9me3 associated with heterochro-

matin regions [22]. The chromatin modification patterns relating to various regula-

tory elements have been learned by applying computational approaches to histone

mark ChIP-seq data. One of the most widely-used tools is chromHMM, which is

based on a multivariate hidden Markov model. The primary chromHMM model in-

fered 15 chromatin states from the observed patterns on 7 histone marks and named
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these chromatin states based on different gene transcript activities, such as enhancer,

active transcription start site and quiescent/low state. The chromatin state annota-

tions from chromHMM are available for the 127 tissues in the Roadmap Epigenomics

Project. Segway is another example that models histone mark patterns with gaus-

sian mixture models [23, 24]. Noticeably, the chromatin states inferred from such

tools are defined based on the prior biological knowledge of histone marks, which

could contain some incorrect assignment for certain genomic regions.

1.2.3 Massively parallel reporter assay (MPRA)

In addition to techniques directly sequencing the regulatory elements, massively

parallel reporter assay (MPRA) provides another functional measurement by assess-

ing the effect on transcriptional activities from regulatory elements such as enhancers

and promoters. MPRA relies on a library of plasmids that link all candidate regu-

latory sequences with a unique barcode and a reporter gene (GFP, LaZ, or others).

The reporter vectors are then introduced into the cell lines or tissues of interest.

The functional consequences of regulatory sequences can be assessed by counting the

number of RNAs versus DNAs with their corresponding barcodes. Moreover, with

saturation mutagenesis techniques, thousands of sequences with point mutations or

small indels on regulatory elements can be synthesized in parallel with labeling by

barcodes. Thus, MPRA can identify the functional consequences of thousands of

mutant variants within the regulatory elements at one experiment.

MPRA was first applied by Patwardhan et al. in 2009 for studies on three bacte-

riophage promoters in vitro. More studies on genome-wide regulatory sequences were

performed later in HepG2, GM12878, and K562 cell lines [25, 26]. Meanwhile, ex-

periments on a limited number of promoters and enhancers, but with every possible

point mutation on tested regulatory sequences were also conducted [27]. In detail,
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Kircher and collaborators assessed 17,500 single nucleotide variants in 9 promoters

and 5 enhancers with clinical relevance [28, 29, 26]. In addition to the limitation

on tested cell types and genomic regions, another caveat for MPRA is that as a

plasmid-based assay, the query sequences are removed from their genomic context.

Therefore, the effects of chromosomal environment and enhancer-promoter looping

is ignored in the MPRA experiments.

1.2.4 3D conformation assays

The regulatory elements can exert regulatory effects on their target genes across

distances of kilobases, or even megabases in some cases, which rely on the spatial fold-

ing of chromosomes and chromatin looping [30, 31]. To map the three-dimensional

conformation of chromosomes, genomic assays, including 3D conformation capture

(3C), 3C-based technologies (4C,5C, and Hi-C), and chromatin-interaction analy-

sis by paired-end-tag sequencing (ChIA-PET) have been developed [32, 33, 34, 35].

These assays have revealed chromosome 3D structures, such as topologically associ-

ated domains (TADs) with A/B compartments [36], and chromatin loops including

enhancer-promoter interactions in a variety of human cells [34]. The experimental

and computational approaches to identify those 3D structures will be discussed in

more detail in this chapter’s final section.

Despite the progress in developing various 3D conformation assays, the lack of

benchmarks for assay performance has made it challenging to compare observations

from different assays. The 4D nucleome project was launched to overcome this prob-

lem [37]. Moreover, efforts are being made to increase the resolution while reducing

experimental noises by extending the Hi-C technology [38]. Meanwhile, single-cell

Hi-C is another direction to advance the understanding of the heterogeneity of 3D

conformation in cells, especially for cancer cells [39].
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1.2.5 Functional genomics data from large consortia

While each of the functional genomics assays described previously characterized

regulatory element landscape on various aspects, integrating the results from those

assays will further enhance the understanding of regulatory elements. Large consor-

tia have produced a vast number of datasets from diverse assays on human tissues or

cell lines. Typical examples include the Encyclopedia of DNA elements (ENOCDE)

project [40] and the Roadmap Epigenomics project [41]. The Roadmap project fo-

cused on samples taken directly from human tissues and cells. In contrast, the

ENCODE project initially focused on human cells grown in culture and recently

broadened coverage to primary human tissues and cells [40]. Up to now, over 6,000

ChIP-seq and DNase-seq datasets in human cells and tissues are available through

the ENCODE data portal. Meanwhile, the 4D Nucleome (4DN) aims to develop

experimental and computational approaches to measure genome conformation [37].

Genome-wide chromatin interaction maps from assays including Hi-C and ChIA-PET

are available through the 4DN data portal.

One benefit from those large consortia is that uniform processing pipelines are

being used. Therefore, we can compare the TF binding profiles and actively tran-

scribed genes in diverse cell types and treatment conditions, which has significantly

broadened our understanding of the gene regulatory networks in biological processes,

such as differentiation, development and disease progression.

1.3 Statistical analyses to map genome-wide regulatory variants

Whole-genome sequencing has enabled genotyping genome-wide variants in large

populations. Statistic models are widely applied in associating the genetic variation

with variation from other high-throughput sequencing data or disease phenotypes to
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map regulatory variants. Some typical applications are described in this section.

1.3.1 Quantitative trait loci (QTLs)

Quantitative trait loci (QTLs) are genome regions where genetic variation is sta-

tistically associated with variation in a quantitative trait [42]. The correlation is

modeled by regressing the quantitative trait on variant genotypes, usually assuming

additive allele effects. The most extensively conducted analysis is eQTLs, where the

variants associated with gene expression levels from RNA-seq are mapped on the

whole genome. However, identifying the causal variants from eQTLs is challenging

because of the genetic correlation among variants, which is known as linkage dise-

quilibrium (LD). Moreover, the presence of multiple causal variants within a locus

requires a careful design in multiple testing correction. Several fine-mapping ap-

proaches are available to overcome this challenge [43, 44, 45], but they may still fail

to detect the true causal variant when it is a rare variant or in high LD with many

non-causal variants. Nonetheless, eQTL studies have increased our knowledge about

the gene regulatory networks in diverse cell types and tissues. The largest eQTL

datasets of human tissues come from the GTEx (The Genotype-Tissue Expression)

project [46, 47]. To date, the GTEx project characterized genetic associations in 838

individuals over 49 human tissues, where a total of over four million variants are dis-

covered associated with 20,000 genes. These eQTLs provide an invaluable resource

for comparing gene regulatory networks across various tissues and assigning target

genes to tissue-specific regulatory variants.

In addition to gene expression level, the quantitative trait can also be chromatin

accessibility from DNase-seq or ATAC-seq, known as dsQTLs or caQTLs. dsQTLs

were first identified in 70 Yoruba lymphoblastoid cell lines (LCL), which are shown

enriched with TF binding sites [10]. More recently, caQTLs were called in 100 LCL
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British samples [48] and more broadly in 1000 individuals from 10 diverse human

populations [49]. As ATAC-seq being continuously generated, identifying caQTLs

from more cell types or populations will be interested.

1.3.2 Allelic analysis on sequencing reads from ChIP-seq and RNA-seq

While QTLs require several samples to discover the association in genetic varia-

tion, allelic analysis on the two chromosomes within an individual provides another

approach to measure the association. In this case, the quantitative trait can be the

sequencing reads from TF ChIP-seq or RNA-seq around heterozygous sites within an

individual. The allele-specific TF binding (ASB) variants or allele-specific gene ex-

pression (ASE) variants can be identified, which are the putative regulatory variants

showing variation in TF binding affinity or gene expression. The main advantage

of such an approach is the natural controls within an individual, thus avoiding the

normalization step when comparing different individuals. However, identifying such

regulatory variants is restricted by the number of available heterozygous SNPs in

each individual. Also, the computational cost is relatively high in the alignment

process to avoid mapping bias to the maternal and paternal genome since the allelic

analysis with a limited number of reads is more sensitive to such bias. Previous

studies have identified thousands of ASB and ASE variants, mainly in LCL samples

[50, 51, 52, 53, 54, 55]. Noticeably, some tools further leverage the allelic imbalance

from allelic analysis on RNA-seq reads to refine mapping for eQTL studies [56].

1.3.3 Genome-wide association studies (GWAS)

Another example of the quantitative trait is the disease risk or trait. Genome-

wide association studies (GWAS) have discovered thousands to millions of genetic

variations associated with diseases and traits, including schizophrenia [57], inflamma-
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tory bowel disease [58], body mass index [59], and many others. A massive number

of novel risk loci of those diseases and traits have been identified successfully, lead-

ing to follow-up studies further explaining the underlying biological mechanisms.

Moreover, GWAS results can guide identifying the individuals at high risk of certain

diseases, thus having wide application in precision medicine. GWAS Catalog data

portal contains a curated collection of GWAS and their results, including more than

70,000 variant-trait associations up to now [60].

Despite the success in understanding certain diseases, many of the associations

between variants and traits remain unexplained, especially for those ∼90% variants

in the non-coding regions [61]. The major difficulty comes from the linkage disequi-

librium among variants, as discussed previously for QTL studies. As a result, GWAS

does not necessarily pinpoint the disease causal variant, and it is more challenging

for complex traits involving a large number of genes. In such cases, the GWAS loci

typically have small effect sizes, and the causal variants are even harder to be iden-

tified if they are rare variants. Moreover, the ethnic differences in disease risks are

overlooked in many of the current GWAS results. These limitations can be improved

with a larger sample size and more diverse populations.

1.4 Computational tools to predict regulatory variants

Many computational tools are available to predict regulatory variants in non-

coding regions with different scoring schemes to leverage the evidence from functional

genomics assays and association studies (Table 1.1). They are widely used to refine

the functional regulatory variants from a list of candidates from association studies,

such as GWAS.
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Table 1.1: Commonly-used computational tools for prioritizing regulatory variants in non-coding
regions

1.4.1 Overlapping functional genomics annotations with query variant position

The most straightforward strategy to annotate non-coding variants is intersecting

the functional annotations of regulatory elements with the query variant position.

The query variants can then be scored or prioritized with the emphasis on specific
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evidence from empirical knowledge. For example, RegulomeDB 1.1 provides a rank-

ing score for each query variant from a manually designed decision tree [62]. It

emphasizes the evidence from eQTLs and DNase footprints along with other an-

notations, including open chromatin regions and sequences matching TF motifs. In

addition, the details of each hit on functional annotation are available through a web-

site interface. Another widely-used computational tool is HaploReg v4 [63], which

incorporates functional genomics annotations with the map of haplotype blocks. In

this way, the variants in linkage disequilibrium (LD) with the query variant including

itself will be annotated. It is typically useful for query variants from GWAS as it is

affected by LD blocks. HaploReg website also presents a summarized table of avail-

able evidence on query variants. One benefit of such a straightforward strategy is

that the results are usually easy to interpret. However, extra filtering steps will need

to be done manually to prioritize the candidate variants according to the annotation

results.

1.4.2 Application of machine learning techniques

Other than simple intersections and empirical pipelines, machine learning tech-

niques have been widely used. By incorporating functional genomics annotations in

a more unbiased way, they provide more accurate and robust predictions on query

variants with continuous scores. For example, supervised machine learning meth-

ods, including support vector machine (SVM) and random forest, are used in tools

such as gkm-SVM [64], FATHMM-MKL [65], and GWAVA [66]. More recently, deep

learning methods are also applied in many tools, which will be discussed in detail

in the following section. Such supervised machine learning models require a prela-

beled training set. The variation in the source of training set among tools leads to

different targets of predictions. These predictions can be grouped into three main
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categories: 1) Disease risk predictors; 2) Fitness consequence predictors; 3) Regula-

tory function predictors. Their typical sources of training set are 1) Pathogenic or

disease-related variants from HGMD database [67] or GWAS studies; 2) Deleterious

versus neutral variants from evolutionary studies; 3) Functional regulatory variants

from eQTLs or reporter assays. Other tools applied unsupervised or semi-supervised

methods to learn inherent patterns within the training data, which is less common

[68, 69]. Compared to predictions on an organism level, only a few tools provided

cell type/tissue-specific scores and mostly relied on the epigenetic data from the

Roadmap Epigenomics Project in 127 tissues [68, 69, 70, 71].

1.4.3 Deep learning in predicting regulatory variants

Deep learning is a rapidly evolving field in prioritizing regulatory variants. Con-

trary to standard machine learning methods, deep learning models can automatically

learn more complicated patterns with less handcrafting. Following the successful ap-

plication in natural-language processing, deep learning has been applied in mining

regulatory grammars from DNA sequences to predict the functional consequences of

non-coding variants. For example, DeepSEA trained a convolutional neural network

to predict 919 functional genomics features, including TF binding, open chromatin,

and histone mark profiles, across various cell types in the training set [72]. Then the

919 predictors were adapted to predict variant effects on regulatory function. One

significant benefit of this multitasking model is that the predictive features on se-

quence patterns can be learned jointly and shared when predicting diverse chromatin

profiles. The same team has extended their work to learn features on gene expression

levels and predict regulatory variants in autism spectrum disorder [73]. Meanwhile,

deep learning was also applied in predicting pathogenic variants in human diseases

from population sequencing [74] .



16

One major limitation of the deep learning method is that it requires a large

training set. Also, careful curation on confounders and data bias is needed to avoid

the overfitting problem. Despite high accuracy, it is often hard to interpret deep

learning results since the essential features cannot be easily extracted compared to

traditional machine learning methods. Some interpretation tools such as DeepLift

[75] and LIME [76] overcome this problem to some extent, while more studies are

still required.

1.4.4 Challenges for current computational tools

Due to the diverse source of training data, the existing computational tools tend

to capture various characteristics of functional regulatory elements. As a result, the

scores from those tools show inconsistent performance across test sets on pathogenic,

neutral, or regulatory variants from a previous study [77]. These differences should

be taken into account to choose appropriate tools. Moreover, the lack of a gold

standard makes it hard to compare performance across different tools, even for those

in the same category of target predictor. For predicting functional regulatory vari-

ants, which is the focus of my dissertation, it is common to use test variants from

eQTLs, dsQTLs, and MPRA when evaluating performance. However, the QTLs are

not necessarily the variants causing regulatory variation, and MPRA experiments

are limited in the variation of tested cell types and genomic regions. A more thor-

ough comparison is needed as the number of experimentally validated variants is

increasing. Thus, the potential overfitting problem on well-studied cell types/tissues

can then be more carefully examined. Also, predicting regulatory variants with cell

type/tissue-specific function is a growing interest in specific disease or trait research.

On the other hand, it is also challenging to retrieve and integrate functional

genomics annotation from numerous assays through large consortia, including EN-
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CODE, Roadmap, and GTEx. Manual curations and computational pipelines are

required to make maximum usage of those resources from diverse tissues and cell

types. Moreover, a user-friendly interface is also preferred in addition to the algo-

rithm itself to facilitate the research from a broad community.

1.5 Assigning target genes based on chromatin 3D structures

The spatial distance between the regulatory elements and downstream genes pro-

vides a more meaningful measurement than the traditional linear distance from chro-

mosome coordinates to assign target genes for putative regulatory variants. Tech-

nologies based on Chromosome Conformation Capture (3C), such as Hi-C, have

significantly advanced our understanding of chromatin 3D structures. In Hi-C ex-

periments, chromatin is crosslinked, then digested, and re-ligated so that the DNA

fragments physically close in the 3D organization of the genome will form ligation

products [78]. The Hi-C heat map represents the interaction frequency of genomic

regions, usually in 10kb to 1Mb bins. I will discuss two chromatin structures from

Hi-C heat maps (Figure 1.3).

Figure 1.3: Schematic of topologically associating domains (TADs) and chromatin loop identified
from Hi-C heat map. A) Two TADs with high intradomain interaction frequencies but
low interdomain interaction frequencies. B) A simplified Hi-C heat map containing a
chromatin loop structure, representing by a corner dot. Figure adapted from Chang,
Ghosh, and Noordermeer 2020 [79].



18

1.5.1 Topologically associating domains (TADs)

Topologically associating domains (TADs) were discovered in Hi-C heat map [80]

(Figure 1.3A), where the interaction frequencies between DNA sequences within

domains are relatively higher than the frequencies outside domains. While initially

defined in low resolution (40kb), technique improvements have been made to increase

the resolution and discovered finer-scale structures, such as subTADs [79].

The biological function of TADs tends to be context-dependent and remains un-

clear in many cases. Nevertheless, it is believed that TADs serve as gene regula-

tion units, enriched with coregulated gene clusters and enhancer-promoter pairs [79].

A large proportion of the boundaries of the TADs bind with the CTCF protein

(CCCTC-binding factor). However, CTCF binding disruption does not impact a

higher-order chromatin structure, which is called a compartment [81]. Two types

of compartments were found from the low-resolution Hi-C heatmap: A compart-

ment contains mainly actively transcribed genes while B compartment consists of

gene-poor lamina-associated domains (LADs) [33]. More recently, higher-resolution

Hi-C heat maps further partitioned the two compartments into at least six smaller

subcompartments marked by various combinations of histone modifications [34].

1.5.2 Chromatin loops

The corner dot structures in the Hi-C heat map represent long-range looping in-

teractions (Figure 1.3). The loop domains on the boundary of TADs are driven by

CTCF and cohesion complex, which are responsible for establishing the TADs. While

inside the TADs containing actively transcribed genes, a large fraction of the loop

domains represents the strong contacts of enhancer-promoter pairs. These looping

interactions are useful to assign target genes for regulatory elements. However, addi-
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tional information such as histone modifications is needed to annotate the regulatory

elements in the loop domains.

Meanwhile, promoter-capture Hi-C is developed to more specifically capture the

interactions between enhancers and promoters in diverse cell types/tissues [82, 83].

Also, chromatin interaction analysis with paired-end tag sequencing (ChIA-PET)

can map long-range looping interactions with the enrichment step for chromatin

complex containing a specific protein, for example the RNA Polymerase II from

transcription-initiation complex to identify the enhancer-promoter pairs.

In summary, the TADs and chromatin loops identified from 3D conformation

assays measure long-range genomic interactions, including the interactions between

regulatory elements and target genes. Therefore, incorporating tissue-specific TADs

and chromatin loops is useful for understanding the functions of regulatory variants.

However, incorporating such datasets can be challenging since they are from various

sources involving different cell types and processing steps.



CHAPTER II

Predicting Non-coding Variant Effects in Disease-Associated
Promoters and Enhancers from MPRA Experiments

2.1 Abstract

Here we present a computational model, SURF (Score of Unified Regulatory Fea-

tures), that predicts functional variants in enhancer and promoter elements. SURF

is trained on data from massively parallel reporter assays and predicts the effect

of variants on reporter expression levels. It achieved the top performance in the

Fifth Critical Assessment of Genome Interpretation “Regulation Saturation” chal-

lenge. We also show that features queried through RegulomeDB, which are direct

annotations from functional genomics data, help improve prediction accuracy beyond

transfer learning features from DNA sequence-based deep learning models. Some of

the most important features include DNase footprints, especially when coupled with

complementary ChIP-seq data. Furthermore, we found our model achieved good

performance on predicting allele-specific transcription factor binding events. As an

extension to the current scoring system in RegulomeDB, we expect our computa-

tional model to prioritize variants in regulatory regions, thus help the understanding

of functional variants in noncoding regions that lead to disease.

20
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2.2 Introduction

Evidence from Genome Wide Association Studies (GWAS) has provided us with

insights into human phenotypes by identifying variation statistically associated with

diseases [84]. However, GWAS is confounded by linkage disequilibrium when iden-

tifying the causal variants. Thus, it is desirable to extend these studies beyond as-

sociation to an understanding of biological impact. Unfortunately, determining the

function of these variants remains a major challenge, especially for single-nucleotide

polymorphisms (SNPs) in non-coding regions of the genome, where most of these

GWAS variants fall [85].

The advent of functional genomics assays has assisted us in mapping disease

causative SNPs from GWAS. By intersecting the position of variants with regu-

latory elements identified from these assays, computational tools have been devel-

oped to prioritize SNPs in non-coding regions [86] . Tools such as RegulomeDB

[62], GWAS3D [87], and HaploReg [63] have reduced time-consuming experiments

for validation. Machine learning methods have been widely applied to integrate the

annotations from functional genomics assays in a more sophisticated way, and thus

produce more robust and accurate predictions [88]. More recently, the rapid develop-

ment of deep learning techniques has enabled mining in high-dimensional sequences

data. Some examples include DeepSEA [72], DeepBind [89], DanQ [90], Define [91],

and Basenji [92]. However, since data sets used for training in those algorithms

vary, comparisons across different models can become a problem considering there

is currently no gold-standard for evaluation [86].

One independent method for evaluating the performance of these tools is through

the use of massively parallel reporter assays (MPRA) wherein libraries that are de-
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rived from PCR-based saturation mutagenesis have been applied to test the effect

of variants in a putative regulatory region. These assays can measure the functional

effect of variants on the expression level of a reporter construct in a high-throughput

manner allowing for rapid testing of large numbers of variants. Kircher and collabo-

rators performed MPRA for 17,500 single nucleotide variants (SNVs) in 9 promoters

and 5 enhancers with clinical relevance [28, 29, 26]. This dataset allows for an unbi-

ased comparison of computational tools used for variant prioritization and was used

in this manner for the Fifth Critical Assessment of Genome Interpretation (CAGI5)

“Regulation Saturation” challenge. Participants were asked to predict the functional

effects of variants in these regulatory regions as measured by the reporter expression.

We present a machine learning-based computational framework, SURF (Score

of Unified Regulatory Features), which combines features from RegulomeDB and

DeepSEA, to predict the effect of variants on expression in promoters and enhancers.

Our model achieved the top performance in the CAGI5 “Regulation Saturation”

challenge. We also demonstrate that direct features from functional genomics data

improve the prediction accuracy in addition to features from DNA sequence-based

deep learning models.

2.3 Methods

2.3.1 Datasets in CAGI5 Regulation Saturation Challenge

The Regulation Saturation Challenge assessed 17,500 SNVs in 5 human disease

associated enhancers (IRF4, IRF6, MYC, SORT1, ZFAND3) and 9 promoters (F9,

GP1BB, HBB, HBG, HNF4A, LDLR, MSMB, PKLR, TERT) in a massively parallel

reporter assay (Figure 2.1A). The MPRA libraries were derived from saturation

mutagenesis of regulatory regions up to 600bp length, with a random change rate of

1 per 100 bases.
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Figure 2.1: Workflow of SURF. A) The effect of variants in promoters and enhancers was tested
through massively parallel reporter assays (MPRA). B) Effect size modeled from re-
gression for each variant was provided with 25% of data (white area) used for training
and 75% of data (grey area) hidden from participants. C) A multiclass random forest
model is trained by combining features from RegulomeDB and DeepSEA on training
data. D) Prediction of variants with significant effects (circled points) is made from
random forest models.

Approximately 25% of all measured SNVs were used for training (4,650 SNVs in

total), and the remaining 75% of the data were held from competitors and used for

testing by an independent assessor. The count of transcribed RNA and DNA of

the transfected plasmid library was modeled by applying multiple linear regression

(Figure 2.1B). The coefficients (“effect size”) and re-scaled p-values (“confidence

score”) from regression were provided in the training set. The SNV with a confidence

scores greater or equal to 0.1 (i.e. p-value of 1 × 10−5) was defined as “has an

expression effect”.

2.3.2 Tasks in CAGI5 Regulation Saturation Challenge

For each variant in testing set, the participants were asked to submit predic-

tion of effect of the variant in one of the three cases: repressive, activating, or no
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effect (“Direction”), and the probability of a correct assignment of the prediction

(“P_Direction”). The participants also needed to submit a prediction of the confi-

dence score for each variant, as well as the standard error of the prediction (“SD”).

2.3.3 Model training

For each variant in training and test data, we created features from functional ge-

nomics data retrieved from RegulomeDB [62]. We also used sequence-based features

from DeepSEA [72]. We further trained a random forest model to predict direction

of variant effects and confidence score (Figure 2.1).

The first six features were created by querying each variant through RegulomeDB

(Boyle et al. 2012). All ENCODE data represented in RegulomeDB is from the 2012

freeze and subsequent publication. We assigned binary values to represent if the

position of the queried variant overlaps the following functional genomics regions:

1. Transcription factor (TF) binding site

TF ChIP-seq peaks were from ENCODE data.

2. Open chromatin site

DNase-peaks were from ENCODE data.

3. TF motifs

TF motif matches were called using positional weight matrices (PWM) from Reg-

ulomeDB. Positional weight matrices were from TRANSFAC [93], JASPAR CORE

[94], UniPROBE [95] and Jolma et al [96].

4. Matched TF motif

TF motif matches were obtained as described in feature 3, but further requiring

the PWM motif matching with a TF binding peak of the same TF from ChIP-seq

in the same position.

5. DNase footprint
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DNase footprints were called by combining PWMs and DNase-seq data sets. We

used footprint calls from [97], Pique-Regi et al [98] and Piper et al [13].

6. Matched DNase footprint

DNase footprints were obtained as described in feature 5, but further requiring the

PWM motif matching with a TF binding peak from ChIP-seq in the same position.

We also included additional numeric features:

7. ChIP-seq signal

We calculated the maximum TF ChIP-seq signal from feature 1 for each position

in the regulatory regions.

8. Maximum information content change of TF motif

For each variant, we calculated the information content change of PWMs called

in feature 3 and took the one with maximum absolute value.

9. Maximum information content change of matched TF motif

For each variant, we calculated the information content change of matched PWMs

called in feature 4 and took the one with maximum absolute value.

10. DeepSEA scores

We passed a vcf file of all variants through DeepSEA model to predict chromatin

effects of each mutation on 919 functional genomics features, including chromatin

accessibility, TF binding and histone modification. We used the difference between

reference and alternative alleles of those 919 functional genomics features in our

model. We also included the functional significance score for each variant, which

considers chromatin effects as well as evolutionary conservation.

A random forest model was trained to make predictions for both direction of effects

and confidence scores. Specifically, we used the R package randomForest version 4.6-

12 with ntree=500 [99]. For direction prediction, we first classified training data
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from all studied regulatory regions into three groups using the following criteria:

1. Repressive (-1): confidence greater than or equal to 0.1 and effect size smaller

than 0 (736 in total).

2. Activating (+1): confidence greater than or equal to 0.1 and effect size greater

than 0 (374 in total).

3. No effect (0): confidence smaller than 0.1 (3,540 in total).

We then trained three binary classifiers for each label with a random forest model

and predicted the label with the highest probability. We assigned “P_Direction”

column with the prediction probability from the model. In order to generate a

confidence prediction, we trained a random forest regression model on confidence

scores and calculated the standard deviation of predictions from 500 trees in “SD”

column.

2.3.4 Performance evaluation

Group performance was evaluated on correlation coefficients and the area under

the receiver operating characteristic (AUROC). Pearson and Spearman correlation

coefficients were calculated for predicted direction and effect size from MPRA on

variants in test set in the same way as the assessors. Three categories of AUROC

were assessed: variants with positive effects versus negative effects, variants with pos-

itive effects versus all variants, and variants with negative effects versus all variants.

Predicted directions were treated as labels and effect sizes were used as probability

scores. To increase the sensitivity of model comparisons, we also provided continu-

ous value predictions as requested by the assessors, which are a transformation from
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“P_Direction”:

Direction′ =



P_Direction if Direction=1

−P_Direction if Direction=-1

1− P_Direction if Direction=0 and D−1 < D+1

P_Direction− 1 if Direction=0 and D−1 > D+1

where Di is the probability of class i(i = −1, 0,+1) from random forest model.

Pearson correlation with continuous predictions were reevaluated among top three

methods by the assessors (Table 2.2).

2.3.5 Allele-specific transcription factor (TF) binding analysis

Allele-specific TF binding sites were defined as variants that result in stronger

binding of a TF to one allele at heterozygous sites in an individual. We applied

AlleleDB pipeline to call allele-specific TF binding sites using ChIP-seq data down-

loaded from ENCODE project [52]. 1,814 allele-specific binding sites were called

in GM12878 cell line from 76 TFs at an FDR of 5%. To test the performance of

our binary classifier trained on CAGI5 data, we also built a control set including

10,783 variants having equal ChIP-seq read counts on two alleles at heterozygous

sites. For all 48,630 heterozygous sites, we calculated the allelic ratio defined by the

ratio between number of ChIP-seq reads from the allele with stronger binding affinity

and total number of reads from two alleles. For cases where multiple TFs shared a

heterozygous variant, we took the maximum ratio.

2.4 Results

2.4.1 SURF outperforms other groups in CAGI5 Regulation Saturation Challenge

SURF combines features from RegulomeDB, which directly intersects variants

with functional genomics annotations, and DeepSEA, which generates transfer learn-
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ing features from genomics assays. For assessment, both Pearson and Spearman

correlation coefficients were calculated for predicted direction and effect size from

MPRA on test data. To examine how false positive rate changes with true positive

rate, the area under the receiver operating characteristic (AUROC) was also calcu-

lated (Table 2.1). Overall, we were close to group 7 on correlation coefficients, and

we outperformed all groups in terms of all three categories of AUROC, especially in

the case when distinguishing between variants with positive and those with negative

effects on expression level. In addition, we note that it is generally easier to predict

negative effects compared with positive effects, which might because there were more

examples with negative effects in training set.

Table 2.1: Correlation and AUROC for predicting direction of variant effects across all participated
groups. The best submission of each group was selected and the best performance of
each category is bolded. AUPRC and correlation with continuous prediction scores were
calculated.
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2.4.2 Model performance in different enhancers and promoters

We assessed our performance in each of the 5 enhancers and 9 promoters (Fig-

ure 2.2). Continuous value predictions were used for calculating Pearson correlation

with effect sizes. We observe no evident difference in performance between enhancers

and promoters, but predictions on enhancers are more consistent in terms of AU-

ROC performance. Also, our model performance has no strong association with cell

types. The four regions in HEK293T (HNF4A, MSMB, TERT and MYC) have a

wide range of performance. Overall, we predicted most accurately in regions of:

MYC (HEK293T), PKLR (K562) and HBB (HEL_92.1.7). Interestingly, the cell

line HEL_92.1.7 has no corresponding functional genomics data from the ENCODE

project. In addition, ZFAND3 data is from mouse pancreatic beta cell lines (MIN6).

These imply our model is able to predict these effects from the available data in

other cell types.
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2.4.3 Features from RegulomeDB provide complementary information to DeepSEA
scores

We next analyzed the predictive importance of RegulomeDB features. We calcu-

lated Pearson correlation of features and absolute value of effect sizes in test data

(Figure 2.3A). All features have positive correlation, which is consistent with the fact

that the variants in functional regulatory elements have a higher chance of affect-

ing the expression level downstream. Among all binary features from RegulomeDB,

features such as matched TF motif and matched DNase footprint have the high-

est correlation coefficients, which indicates that integrating sequence information

with evidence from functional genomics data directly into one feature assists pre-

diction accuracy. We further examined two of the most predictive features in the

region of MYC enhancer, where we achieved the best AUROC compared with other

enhancers and promoters. As shown in Figure 2.3B, these two features from Reg-

ulomeDB, DNase footprint and matched DNase footprint, are largely in agreement

with the position of variants leading to significant change of gene expression beyond

DeepSEA scores.

2.4.4 Predicting allele-specific TF binding events

To test the generality of our model, we next evaluated how SURF performs on

predicting allele-specific TF binding events identified from ChIP-seq data. We col-

lected 1,848 variants associated with allele-specific binding in GM12878 cell line, and

then generated prediction scores using the binary classifier we trained from variants

with no effects versus the rest of the variants in CAGI5 training set. Overall, our

model is able to predict allele-specific binding events with a fairly good performance

(AUROC=0.6218; AUPRC=0.2298). We further relaxed our thresholds to examine

the performance on a wider spectrum of allelic ratio, which is defined by the ratio
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Figure 2.3: Features from RegulomeDB facilitate prediction. A) Pearson correlation of features
from RegulomeDB and absolute value of effect sizes from MPRA in test data. B) A
region of the MYC enhancer in HEK293T cell line showing measured MPRA data with
SNVs having significant effect circled. Two binary features from RegulomeDB (DNase
footprint and DNase footprint with matched TF ChIP-seq peak) show agreement with
the position of these variants. DeepSEA scores also identify some of the functional
variants in this enhancer.

between number of ChIP-seq reads from the allele with stronger binding affinity and

total number of reads from two alleles. We found a significant difference in predic-

tion scores for heterozygous sites showing balanced (allelic ratio smaller than 0.6)

and imbalanced (allelic ratio equal or larger than 0.9) TF binding affinity (Figure

2.4, p-value = 9.735e-311 from a t-test).

2.5 Discussion

Understanding the function of variants in noncoding regions remains a major chal-

lenge to interpret results from GWAS studies. The CAGI5 Regulation Saturation

challenge has provided a valuable dataset for developing prediction models on regu-

latory variants leading to significant effects on expression level. Here we described
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Figure 2.4: Boxplot of prediction scores for heterozygous sites showing balanced and imbalanced
TF binding affinity from two alleles. Allelic ratio is calculated by the number of ChIP-
seq reads from the allele with stronger binding affinity divided by total number of reads
from two alleles.

our model, SURF, based on our existing resource RegulomeDB, that achieves the

top performance in this challenge. However, one limitation of the evaluation with

AUROC is that the imbalance rate was different across groups, which makes it hard

to compare. A more accurate comparison is the correlation between continuous pre-

diction scores and effect sizes from MPRA, which is shown in Table 2.2 but only

available from three groups.

We found that the direct annotations from functional genomics data queried

through RegulomeDB enables the improvement of prediction beyond the transfer

learning features from the DeepSEA model. One possible reason to explain the im-

provement is that the chromatin features from underrepresented cell types in deep

learning model are compensated by direct annotations from RegulomeDB. Thus,

continued working on RegulomeDB resource, including updates and expansion of

available data from ENCODE project, will enable us to develop prediction models

with better accuracy. For example, 3D chromatin interaction data illustrating loops

between enhancers and promoters can be used to assign target genes of variants in

regulatory elements. In addition, ATAC-seq as an alternative method for study-
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Table 2.2: AUPRC for predicting direction of variant effects across all participated groups and
Pearson correlation with continuous scores. Only the first three groups have available
scores.

ing chromatin accessibility will potentially give us complementary information to

DNase-seq.

Furthermore, instead of obtaining general features through all available cell types

in RegulomeDB as we did in this challenge, it is possible to query features in a cell

type-specific way to improve performance. Although a previous study suggests that

limiting features to be cell type specific does not increase prediction accuracy for

MPRA data [100], it is worth exploring further whether this is due to the limitation

of MPRA to capture cell type-specific activity. Another strategy is to integrate cell

type-specific features with a generic model trained with all available cell types, thus

taking advantage of a sufficient set of training data as well as a retention of cell

type-specific information.

The initial premise behind the development and scoring in the RegulomeDB tool

was that functional genomics data is key to understanding and prioritizing variants
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that may be disrupting transcription factor binding and thus having a direct effect

on gene expression. We have shown that these data have aided our model to perform

well on MPRA training data and improve the ability to predict allele-specific TF

binding events. Multiple studies have successfully applied RegulomeDB to infer

regulatory variants in cancer genomes [101, 102], and continued work is needed with

the increasing availability of cancer whole genome data. Encouraged by these results,

we are currently developing a newer version of RegulomeDB, which will provide all

the features we used in this challenge, including the allelic scores such as information

content change of TF motifs. We will also make our prediction scores available to

general users, thus to help research on prioritizing non-coding variants in various

contexts.

2.6 Publication

The study in this chapter has been published in Human Mutation journal [103]:

Dong, S., & Boyle, A. P. (2019). Predicting functional variants in enhancer and

promoter elements using RegulomeDB.



CHAPTER III

Prioritization of Regulatory Variants with Tissue-Specific
Function in the Non-coding Regions of Human Genome

3.1 Abstract

Understanding the functional consequences of genetic variation in the non-coding

regions of the human genome remains a challenge. We introduce here a compu-

tational tool, TURF, to prioritize regulatory variants with tissue-specific function

by leveraging evidence from functional genomics experiments, including over three

thousand functional genomics datasets from the ENCODE project provided in the

RegulomeDB database. TURF is able to generate prediction scores at both organ-

ism and tissue/organ-specific levels for any non-coding variant on the genome. We

present that TURF has an overall top performance in prediction by using validated

variants from MPRA experiments. We also demonstrate how TURF can pick out the

regulatory variants with tissue-specific function over a candidate list from associate

studies. Furthermore, we found that various GWAS traits showed the enrichment

of regulatory variants predicted by TURF scores in the trait-relevant organs, which

indicates that these variants can be a valuable source for future studies.

35
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3.2 Introduction

Characterizing the biological impact of variation in the non-coding regions of the

human genome remains a challenge in the interpretation of human diversity. Genome-

wide association studies (GWAS) have identified millions of genetic variants that are

associated with diverse disease traits [60]. Most of these variants (∼90%) map to

the non-coding regions of human genome [61]. Due to the lack of understanding of

these regulatory elements within non-coding regions, it is important to assess the

functional consequences of these disease-related variants from GWAS.

To facilitate studies of non-coding genomic regions, large consortia, including

ENCODE [104, 105] and the Roadmap Epigenomics projects [41] have defined the

human regulatory landscape using high-throughput functional genomics assays. For

example, DNase-seq locates open chromatin regions in the genome [5], while ChIP-

seq identifies chromatin modification patterns and transcription factor (TF) binding

sites within regulatory elements [106, 107, 108]. With further incorporation of variant

genotypes into these methods, variants associated with differential TF binding and

chromatin states have been described [109, 50]. In addition, massively parallel re-

porter assays (MPRA) identify regulatory variants that affect gene expression levels

directly [25, 26, 29]. These studies demonstrate that a significant number of variants

drive regulatory state variation across the population, and potentially explain the

diversity in disease risk and phenotype observed from GWAS studies.

Computational tools have helped prioritize regulatory variants in non-coding re-

gions by leveraging knowledge from functional genomics assays. Prediction scores

of functional probability for variants are available from tools including RegulomeDB

[62], GWAS3D [87], HaploReg [63], DeepSEA [72], DeepBind [89], DanQ [90] and
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Basenji [92]. The process of narrowing down a candidate list of variants using these

prediction scores can reduce time-consuming validation experiments. However, most

current computational tools overlook the uniqueness of gene regulatory networks

found within different tissues by only providing a prediction score at an organism

level. This can be misleading for research groups focused on tissue-specific functional

variants. New tools have recently become available that provide tissue-specific pre-

diction scores, such as FUN-LAD [68], GenoNet [70], cepip [57] and GenoSkyline

[69]. However, they mainly utilize epigenetic data from the Roadmap Epigenomics

project making it hard to leverage their results against other tissues not included

in the Roadmap project [41]. The ENCODE project currently houses thousands

of ChIP-seq and DNase-seq datasets in over 200 tissues and cell types, including

those from Roadmap project, that can further increase the scale and accuracy of

tissue-specific function prediction.

Here we introduce a computational tool, TURF (Tissue-specific Unified Regula-

tory Features), that prioritizes regulatory variants in the non-coding regions of the

human genome. TURF is built on our RegulomeDB framework to allow for easy

delivery of our predictions as well as constant updates in the functional annota-

tions across the human genome. We extend our previous algorithm SURF [103] to

predict tissue-specific functional variants in addition to the tool’s original generic

context at an organism level. To construct a high-quality training set, we called

7,530 allele-specific TF binding (ASB) single nucleotide variants (SNVs) in 6 cell

lines from over 600 ChIP-seq datasets. We then trained a random forest model using

features from functional genomic annotations across all available tissues from EN-

CODE. This classifier greatly improves the robustness of RegulomeDB v1.1 ranking

scores and surpasses other top-performing tools on an independent MPRA dataset.
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We then incorporated annotations of histone marks and open chromatin regions in

a particular tissue to train a separate random forest model and obtain a final tissue-

specific score. The tissue-specific score leverages information from other tissues,

as well as retaining the uniqueness of individual tissues. Moreover, we extended

the tissue-specific scores to organ-specific scores in the 51 organs with available ge-

nomics data from the ENCODE project. The pre-calculated organ-specific scores for

all GWAS SNVs from the GWAS Catalog are available at https://github.com/Boyle-

Lab/RegulomeDB-TURF and TURF is currently being integrated into RegulomeDB

v2.0.

3.3 Methods

3.3.1 Training dataset generation

We identified 7,530 allele-specific transcription factor (TF) binding (ASB) SNVs in

6 cell lines (GM12878, HepG2, A549, K562, MCF7 and H1hESC), which are defined

as variants that result in stronger binding of a TF to one allele at heterozygous sites

in an individual (Table 3.1). The AlleleDB protocol was used to call ASB SNVs [52].

Table 3.1: Number of allele-specific TF binding (ASB) training SNVs in 6 cell lines.
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The SNVs in GM12878 and H1hESC were obtained from the 1000 Genome Project

[110] and NCBI GEO database (accession number: GSE52457) separately. For

the other four cell lines, variants were called from their whole genome sequencing

data (data accessible at NCBI SRA database with accession numbers: DRX015191,

SRX2598759, SRX285595 and SRX1705314) by HaplotypeCaller from the Genome

Analysis Toolkit (GATK) v3.6 following GATK’s Best Practices [111]. Their diploid

personal genomes were constructed using vcf2diploid v0.2.6 to avoid alignment bi-

ases favoring reads containing reference alleles by mapping to maternal and paternal

genomes separately [50]. Copy number variation regions with a read depth of < 0.5

or > 1.5 called from CNVnator v0.3.3 [112] were filtered out.

The AlleleDB pipeline was run on 864 ChIP-seq datasets in the 6 cell lines from

the ENCODE project. In addition to the standard steps in AlleleDB, our ASB set

was refined by performing beta-binomial tests only within reads overlapping their

corresponding TF binding peaks called from the same ChIP-seq dataset. In total,

7,530 ASB SNVs were identified from 638 ChIP-seq datasets.

The ASB SNVs were treated as positive examples in our random forest model.

To generate a comparable negative set, we included SNVs from three sources: 1.

The 55,611 non-allelic TF binding SNVs, defined by having equal ChIP-seq read

counts on two alleles at heterozygous site. 2. The closest variants from each of the

SNVs in positive set and outside ChIP-seq peaks (6,373 unique variants in total).

3. A randomly selected set of 1000 genome variants scoring no hits on functional

annotations from RegulomeDB v1.1. Those three negative sets were combined and

weighted equally in our model.
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3.3.2 Building random forest models

For TURF generic scores, seven binary and eight numeric features were created

for each variant in the training set (Table 3.2). The seven binary features represent if

the variant position overlaps corresponding functional genomic regions by querying

RegulomeDB 2.0. Custom scripts were written to retrieve annotations from the

RegulomeDB web server. The maximum information content change from PWM

was calculated based on the query. Quantiles and variations in ChIP-seq signals

pre-calculated from all available bigwig files in ENCODE and prediction scores from

DeepSEA were also incorporated. A random forest model was trained to make

predictions on the probability of a query variant being functional. The scikit-learn

0.20.3 python package was used to train the random forest model, setting the number

of trees to 500.

For TURF tissue-specific scores, a separate random forest model was built with 7

binary tissue-specific features (see feature list in Table 3.2). When training with each

ASB cell line, the ASB SNVs in the corresponding cell line were labeled as positive

variants, while the other variants were labeled as controls. The scikit-learn 0.20.3

python package was used, setting the class_weight option as ‘balanced’.

3.3.3 Generic scores performance assessment

We evaluated our generic model performance on an independent dataset from

an MPRA assay in GM12878 [26]. The labels of the MPRA variants (435 positive

variants, 2670 control variants) and prediction scores from DeepSEA [72] and regBase

were downloaded from regBase database [77]. The performance of different tools was

assessed on the Area Under ROC Curve (AUROC) and the Area Under Precision-

Recall Curve (AUPR).
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Table 3.2: Feature list in random forest models

3.3.4 Tissue-specific scores performance assessment

The tissue-specific model’s performance was evaluated first on three MPRA datasets

in GM12878 (E116), HepG2 (E118) and K562 (E123). The labels for the MPRA vari-
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ants were obtained from GenoNet (He et al. 2018). The authors labeled the MPRA

variants in GM12878 from Tewhey et al. 2018 [26] with a slightly different criteria

than regBase [77], resulting in 293 positive variants and 2772 control variants. The

MPRA variants in HepG2 and K562 were from [25], where 524 positive variants and

1439 control variants were in HepG2, and 339 positive variants and 1361 control vari-

ants were in K562. The same evaluation process as described in GenoNet [70] was

used to compare TURF to other available tools, including DeepSEA [72], CADD [88]

and GenoSkyline [69]. In detail, we calculated AUROC, AUPR and the correlation

coefficient using 1000 replicates of 4:1 random partition of each MPRA dataset. For

the divided five parts, four parts were used for training while the remaining part was

used for testing.

When evaluating performance with allele-specific TF binding SNVs, pre-calculated

scores from GenoNet [70] and GenoSkyline [69] were downloaded.

3.3.5 Extension to organ-specific scores

The mapping from tissues and cell types (i.e. biosamples) to organ names was

downloaded from the ENCODE website. When generating organ-specific prediction

scores, we combined the annotations from functional genomics data in all biosamples

belonging to the corresponding organ. 51/55 organs had available ChIP-seq data of

histone marks and DNase-seq data to generate organ-specific scores.

3.3.6 Organ-specific significance scores

We calculated organ-specific significance scores relative to a background set from

GWAS variants. The GWAS variants were downloaded and assigned to their mapped

traits from the GWAS Catalog [60]. SNVs on chromosomes 1-22 and chromosome X

were the only ones considered for the organ-specific scoring. Linkage disequilibrium
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(LD) expansion was performed by including SNVs from the 1000 genome project

that are in strong LD (R2 threshold of 0.6, precalculated R2 values downloaded from

gs://genomics-public-data/linkage-disequilibrium) with any GWAS SNV. To convert

each organ-specific score to a significance score, we calculated the portion of GWAS

variants with a greater score in the corresponding organ and did a negative log10

transformation on to the portion.

3.3.7 Organ-specific scores enrichment of GWAS traits

In the enrichment analysis, we focused on the GWAS traits with the enrichment

of regulatory variants, which have at least 20 GWAS SNVs and at least 5% of the

LD-expanded GWAS SNVs in the trait that have TURF generic scores no less than

0.8 (400 traits in total).

To test the enrichment of organ-specific regulatory variants, each GWAS trait

set was first sampled with an equal sized background set from all GWAS SNVs

from any trait. Subsequent LD expansion was performed on both the trait set and

background set (with a stricter R2 threshold of 0.8). To reduce the dependencies

across SNVs within each set, the SNVs were pruned on each organ individually so

that no two SNPs were within 1MB of each other in the same set. Each SNV in

decreasing order on organ-specific score was considered, and only retained a SNV if

there was no other SNV within 1Mb. After the pruning process, the P value was

computed from the Mann–Whitney U test for each organ-trait combination, with

the alternative hypothesis as SNVs in the trait set have greater organ-specific scores

than the background set. This test was repeated by sampling 100 versions of the

background set and a total of 100 P values were obtained for each organ-trait pair.

159 traits had at least one organ passing multiple test correction with an FDR of

5%, applied with the Holm-Sidak test from the python package statsmodels v0.12.1.
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To define top organ for each trait, overall high scores of the trait were compared

to other organs. The negative log-transformed P values from U test were used to

compute the z-score of each organ over all 51 organs. The mean z-scores over 100

iterations for each organ-trait pair were calculated and hierarchical clustering on the

51 organs was performed using the ward linkage method. The final heatmap only

shows organ-trait pairs with a z-scores mean higher than 0 and passing multiple test

correction (FDR threshold of 5%).

3.4 Results

3.4.1 Overview of the TURF algorithm

TURF prioritizes non-coding variants with both generic scores and tissue-specific

scores (Figure 3.1). It first uses a random forest model built by training on features

from functional genomics annotations in all available tissues and cell types from the

ENCODE project [104]. It uses a similar feature set to our previously successful

algorithm SURF (Dong and Boyle 2019), including binary features retrieved from

the original RegulomeDB ranking scheme and prediction scores from DeepSEA [72].

Furthermore, it includes continuous signals from ChIP-seq assays to increase the

resolution of the algorithm (see features list in Table 3.2). Generic scores from

the first random forest model predict whether the query variant is functional in

any human tissue. Tissue-specificity is further predicted by using a separate random

forest model trained on functional genomic annotation features only from a particular

tissue. To avoid data availability bias for different tissues, TURF takes advantage

of DNase-seq and well-studied histone mark ChIP-seq data that cover most tissues.

By combining the probability score from the second random forest model with the

generic score from the first model, the resulting tissue-specific score predicts the

probability of the query variant being functional in a specific tissue.
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Figure 3.1: Overview of TURF algorithm. TURF generic score predicts the probability of a query
variant being functional in any tissue from the first random forest, which used features
of functional genomics annotations from all available tissues. By further incorporat-
ing annotations from a given tissue, a tissue-specific prediction score is computed by
multiplying generic score with the prediction score from a second random forest model

3.4.2 TURF generic score improves the performance of RegulomeDB v1.1 ranking
score

TURF improves on the original heuristic ranking score in RegulomeDB v1.1 by

providing a probabilistic score generated from a random forest model. By replacing

the single empirical decision with sets of decision trees, the model avoids issues caused

by excessive reliance on only a few functional genomic annotations. To develop a
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training set for the model, we generated a set of variants with high confidence func-

tional confidence through identification of 7,530 allele-specific transcription factor

binding (ASB) single nucleotide variants (SNVs) in six cell lines (GM12878, HepG2,

A549, K562, MCF7 and H1hESC) by reprocessing 864 ChIP-seq datasets from the

ENCODE project using AlleleDB v2.0 [52]. ASB SNVs were called if different TF

binding affinity with a single nucleotide change at heterozygous sites was observed.

We defined a background set using non-allele-specific TF binding SNVs as well as a

set of variants outside TF binding regions (see methods).

We evaluated the TURF generic score performance on an independent and orthog-

onal dataset from a massively parallel reporter assay (MPRA) [26]. This dataset was

also utilized as a test set in a previous paper [77], where the authors found DeepSEA

scores provided the best prediction model for calling variants functional in tissues.

TURF outperformed DeepSEA scores on this MPRA test set with a larger AUROC

and the same AUPR (Figure 3.2).
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Figure 3.2: TURF generic scores performance on test data from massively parallel reporter assay
(MPRA) in GM12878. Performance was evaluated by Area Under ROC Curve (AU-
ROC) and Area Under Precision-Recall Curve (AUPR). 435 positive variants vs 2670
control variants were called in this MPRA validated dataset.



47

To compare with the original ranking score from RegulomeDB v1.1, we calculated

TURF generic scores for all common SNPs from dbSNP153 [113]. The SNPs that

originally scored in the highest category, which was largely dominated by eQTL

evidence, now show a wider range of scores that better predicted their functionalities,

while the overall trend was unchanged (Figure 3.3).

Figure 3.3: Boxplot of TURF generic scores VS RegulomeDB ranking scores on 10,422,004 common
SNVs from dbSNP153. X axis represents the original ranking scores from RegulomeDB
v1.1, y axis represents the TURF generic scores from random forest model.

3.4.3 TURF tissue-specific scores performance on MPRA data in three cell lines

We further evaluated TURF tissue-specific predictions with MPRA datasets from

three cell lines (GM12878, HepG2 and K562) using the same strategy as He et al.

[70]. Tissue-specific predictions by TURF had the best performance in GM12878 ver-

sus other top performing computational tools (Figure 3.4A and Table 3.3). TURF

also has the top AUROC in HepG2 with the second largest AUPR (0.571 compared

to 0.572 from GenoNet) and the largest AUPR in K562. Noticeably, the tissue-

specific features in the second random forest model have significantly improved the
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performance of the TURF generic scores. Among all tissue-specific features, open

chromatin regions from DNase-seq in the corresponding cell lines are the most im-

portant predictors in all three MPRA datasets. Tissue-specific DNase footprints

and active histone marks, including H3K4me2, H3K4me3 and H3K27ac, also play

essential roles in variant prediction (Figure 3.5).
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Figure 3.4: Tissue-specific predictions performance comparisons. Each plot shows the AUPR (area
under the precision recall curve) on x axis and the AUROC (area under the receiver
operating characteristics curve) on y axis. The size of each point represents the pearson
correlation. (A) Performance on MPRA data in three cell lines (GM12878: 693 positive
variants, 2772 control variants; HepG2: 524 positive variants, 1439 control variants;
K562: 339 positive variants, 1361 control variants). (B) Performance on allele-specific
transcription factor binding SNVs (see the number of variants in Table 3.1.

Table 3.3: Comparison of performance on tissue-specific predictions for MPRA variants.
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Figure 3.5: Pearson correlation of labels and tissue-specific features in three MPRA datasets (E116:
GM12878; E118: HepG2; E123: K562). Blue bars represent positive correlations while
red bars represent negative correlations.

3.4.4 TURF tissue-specific predictions on allele-specific TF binding (ASB) SNVs

Despite the power of using MPRA datasets as training sets, they are currently

limited in terms of the number of tested variants and the variety of tissues. To obtain

a more robust tissue-specific model, we called allele-specific TF binding (ASB) SNVs

from 6 cell lines. When trained on ASB SNVS, our tissue-specific models greatly

outperformed other methods (Figure 3.4B and Table 3.4). Among the tissue-specific

features, DNase-seq peaks and several active histone marks, such as H3K4me2 and

H3K27ac, were important predictors of tissue-specific functional variants, similar to

what was observed in the MPRA datasets (Figure 3.6). However, DNase footprints
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show more variation in feature importance ranking within the 6 cell lines. This

indicates the diversity of DNase-seq data quality in different cell lines, and suggests

that utilization of a more robust model to compensate for this variation is needed

when extending to other tissues not used in the training data.

Table 3.4: Comparison of performance on tissue-specific predictions for ASB SNVs.

We then trained an ensemble tissue-specific model using the average predictions

from 6 models with feature weights individually learnt from 6 ASB cell lines. The

histone mark features were restricted to 5 histone marks that ranked high in fea-

ture importance, and had available datasets covering most tissues (i.e. H3K27ac,

H3K36me3, H3K4me1, H3K4me3 and H3K27me3). The ensemble model outper-

formed the individual tissue-specific models when predicting ASB SNVs (Figure 3.4B

and Table 3.4). Moreover, this ensemble model trained on ASB SNVs performed bet-

ter than most of the other tools when tested on the previous independent MPRA

datasets in all three cell lines. The exception was GenoNet, which used labels from

the MPRA datasets in their training step (Table 3.4). Predictions were computed

from this ensemble tissue-specific model on the ASB SNVs in 6 cell types and most

exhibited the highest prediction scores in their corresponding functional cell line

(Figure 3.7). However, HepG2 ASB SNVs had the least enrichment of high HepG2-

specific scores, perhaps due to DNase-seq noise in the dataset as only 25% were in
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Figure 3.6: Pearson correlation of labels and tissue-specific features in 6 ASB datasets. Blue bars
represent positive correlations while red bars represent negative correlations.

DNase peaks. Some H1hESC ASB SNVs had high scores in K562 and MCF7, imply-

ing that a many stem cell regulatory variants are involved in regulation of pathways

in differentiated cell lines.

3.4.5 Extension of TURF tissue-specific scores to organ-specific scores

To expand the scale of prediction for TURF, we leveraged tissue-specific func-

tional genomic annotations of tissues belonging to the same organ and generated
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line in each column. ASB SNVs have overall the highest tissue-specific scores in their
functional cell line.

combined organ-specific scores across 51 organs. We were able to recover the organ-

specific function of some well-studied regulatory variants in specific genomic loci with

TURF scores. For example, TURF’s organ-specific scoring was able to pick out the

regulatory SNP rs12740374 that affects liver-specific SORT1 gene expression levels in

the 1p13 cholesterol locus [2] (Figure 3.8). The liver-specific function of rs12740374

was also validated in HepG2 MPRA assays [27]. The position of rs12740374 over-

laps several active histone mark peaks from ChIP-seq (H3K27ac, H3K4me3 and

H3K4me1) and DNase peaks in liver tissues. These multiple lines of genomics evi-

dence prioritized rs12740374 as the top SNP for liver-specific scores within a list of
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candidates from previous association studies. In addition to liver, rs12740374 has a

high significance score in other organs relevant with cholesterol metabolism, such as

adipose tissue and gonad. As another example, TURF also detected a regulatory

SNP at the GATA4 locus in the heart (Figure 3.9) that was initially discovered in a

genome-wide association scan on 466 bicuspid aortic valve cases [114].
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Figure 3.8: Organ-specific significance scores of variants in the 1p13 cholesterol locus. rs12740374
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Figure 3.9: Organ-specific scores of variants in the GATA4 locus. rs118065347 has the top organ-specific score in heart compared to other candidate
SNPs found through genome-wide association scan on bicuspid aortic valve cases. rs118065347 was shown to have hear-specific regulatory
functionality from a previous study [114].
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3.4.6 TURF organ-specific scores prioritize genetic variants associated with traits in
relevant organs

We examined TURF organ-specific scores on variants identified from genome-wide

association studies (GWAS) using the GWAS Catalog portal [60]. GWAS variants

were found to be enriched in regulatory elements of non-coding regions [115, 22]. We

tested the enrichment of putative regulatory variants prioritized by TURF scores for

a variety of traits. For each trait, the top organ with the highest z-score showed

the most significant enrichment of organ-specific regulatory variants relative to the

background set from all traits within the GWAS catalog, as well as 50 other organs

with the same trait (Figure 3.10 and see full plot in Figure 3.11).

The top enriched organs from diverse traits were consistent with current trait-

relevant organ knowledge. For example, many immune system related diseases, such

as autoimmune disease, celiac disease and chronic lymphocytic leukemia, showed

a high enrichment for regulatory variants functional in immune-related organs, in-

cluding immune organ, spleen, and lymph node. Traits of immune cells, such as

leukocyte, eosinophil and platelet, were also enriched in immune organs. Cardiac

traits, including PR interval, which is a measurement in electrocardiography, and

coronary artery disease, were enriched in heart and arterial blood vessel. Enrich-

ment in the colon and immune-related organs was demonstrated for Crohn’s disease

and ulcerative colitis, both inflammatory bowel diseases. Furthermore, several traits

of measurement were enriched for organs involved in relevant metabolic pathways,

such as cholesterol measurement in liver, apolipoprotein A1 measurement in small

intestine [116], renin-angiotensin system (RAS) use measurement in adrenal gland,

and alcohol consumption measurement in exocrine gland (i.e. salivary gland). Of

note, the enrichment of variants in some traits could be affected by cofactors, such as
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Figure 3.10: Enrichment of regulatory variants with high organ-specific scores over variants associ-
ated with diverse traits (z-scores cutoff at 1.7). The z-scores of organs (column) for a
given trait (row) are shown. The organ with the highest z-score for each trait is shown
in additional columns on left. Only organ-trait pairs with z-scores higher than 0 and
passing multiple test correction (FDR threshold of 5%) are shown. Traits with top
z-scores < 1.7 were ignored in this plot. See full plot in Figure 3.11.

gender for body height enrichment within the vagina and ovary. Also, some organs

seem to share similarities in gene regulatory networks, partly due to overlapping

of tissues, or tissues with similar functions across different organs. This explains a

mixture of brain and optic traits enriched in either brain or eye, as the optic nerve

gene expression pattern was found to be similar to brain tissue [117].

The most enriched organ for potential regulatory variants provides new directions



57

for understudied diseases or traits. For instance, drugs of calcium channel blockers

were found to increase the risk of pancreatic cancer in post-menopausal women [118],

while the underlying mechanisms remain unclear. Interestingly, pancreas was the

top organ for the calcium channel blocker use measurement trait, which indicates an

enrichment of putative regulatory variants functional in pancreas. Thus, additional

studies on top variants prioritized by TURF pancreas-specific scores may help further

explain the association between pancreatic cancer risk and the use of calcium channel

blocker drugs. Similar workflow can be applied to other diseases, such as Alzheimer’s

disease in immune organs, to determine the causal variants in non-coding regions.

3.5 Discussion

In this study, we developed TURF, a computational tool that prioritizes variants

in non-coding regions. Evidence was incorporated from various functional genomic

assays to produce robust predictions that were verified via MPRA assays in both

generic and tissue-specific contexts. The workflow was designed to identify regula-

tory variants from association studies with tissue/organ-specific regulatory function.

Moreover, we found GWAS variants were enriched with regulatory variants predicted

by TURF organ-specific scores in trait-related organs.

To balance between prediction accuracy and data availability, we trained TURF

on ASB SNVs identified from ChIP-seq to determine the weight of features in a

tissue-specific context, then extended the scale of annotation to an organ-specific

level. The TURF tissue-specific scores leverage information gained from other tis-

sues while retaining the uniqueness of the gene regulatory network in individual

tissues. We were able to prioritize putative organ-specific regulatory variants across

51 organs in diverse pathways. A number of computational tools have been de-
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veloped recently for similar purposes however, most focus on genomic assays and

tissues from the Roadmap project [70, 69]. This makes it difficult to utilize their

results for tissues not included in the Roadmap project. As an alternative, we took

advantage of over 3,000 genomic assays in more than 200 tissues and cell types avail-

able from the ENCODE project, expanding the annotation scope and enhancing the

robustness of our predictions. Most relevant organs of various GWAS traits were

recovered from the organ-specific scores, including some well-studied traits, such as

LDL cholesterol measurement and immune diseases. These results were mirrored

in active histone marks using epigenomics data from the Roadmap project [22]. In

addition, we observed novel organ-trait pairs, including pancreas in calcium channel

blocker use measurement, which can help elucidate underlying disease mechanisms.

As more functional genomics datasets are generated, our algorithm is flexible allow-

ing for addition of new tissues by querying histone mark and DNase features within

the new tissue and then computing new tissue/organ-specific scores.

Despite the large scale of annotation utilizing the 51 ENCODE organs, further

refinement of the organ terms and the tissues assigned to each organ is possible. Some

traits in 3.8 showed enrichment in non-relevant organs, such as household income in

the bipolar neuron. This could be partly due to cofactors within individual GWAS

samples, but can also imply an imbalance in the number of genomic datasets across

diverse organs as the bipolar neuron (i.e. ear) only contains one ENCODE biosample.

Due to the limitation of data availability, we only used 7 tissue-specific binary features

when building the second random forest model. With more functional genomics data

being generated, especially those targeting more histone marks, we can expand our

feature set and generate a wider spectrum of prediction scores. The organ-specific

scores can then be normalized across different organs to eliminate bias from data
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availability. The organ-specific scores for a variant will be more comparable over a

list of interested organs.

We used MPRA data to validate our method as these assays provide more direct

evidence of variants affecting gene expression than other association analyses, such

as eQTLs, which can be affected by variants that are in strong linkage equilibrium.

However, we could only test our model in three MPRA cell lines when comparing

performance to other tools. We found one tool used MPRA data labels causing

overfitting when tested on ASB SNVs. We built an ensemble model trained on SNVs

from 6 cell lines to avoid the overfitting. With more MPRA data becoming available

in the future, we can provide a more thorough comparison of performance and further

refine our model by including training variants from more cell types or more types

of assays.

Overall, TURF is able to prioritize regulatory variants with either generic or

tissue-specific functions. We expect our tool to enhance future studies on functional

consequences of regulatory variants associated with diseases from GWAS. The organ-

specific scores generated here will be incorporated into the RegulomeDB database

soon, making it a useful tool for broad communities.

3.6 Publication

The manuscript of the work in this chapter has been submitted and is accessible

in bioRxiv [119]:

Dong, S., & Boyle, A. P. Prioritization of regulatory variants with tissue-specific

function in the non-coding regions of human genome.
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Figure 3.11: Enrichment of regulatory variants with high organ-specific scores over variants associ-
ated with diverse traits (full plot). The z-scores of organs (column) for a given trait
(row) are shown. The organ with the highest z-score for each trait is shown in addi-
tional columns on left. Only organ-trait pairs with z-scores higher than 0 and passing
multiple test correction (FDR threshold of 5%) are shown.



CHAPTER IV

RegulomeDB 2.0: An Online Tool for Non-Coding Variant
Annotation

4.1 Abstract

Nearly 90% of the disease-associated variants called from GWAS are located in

non-coding regions of the human genome. The functional consequences of those vari-

ants remain underexplored in many cases. We developed the RegulomeDB database

to address this challenge by providing functional annotations and ranking scores on

query variants from users’ input. For each query variant, RegulomeDB intersects its

position with the evidence from functional genomics experiments, such as ChIP-seq

and DNase-seq assays. In this work, we released a new version of the RegulomeDB

web server. We have incorporated interactive charts and genome browser views to

present more intuitive functional annotations to users. In addition, we extended

the annotations by including new datasets, such as those from ENCODE phase 3

and eQTLs from the GTEx project. We also integrated a new probabilistic scoring

scheme to provide more robust and accurate predictions than the previous rank-

ing scores. We demonstrate these updates as RegulomeDB 2.0 and illustrate the

annotations from the web server’s new interface (http://regulomedb.org).

61
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4.2 Introduction

Understanding the biological impact of variants in the non-coding regions of the

human genome is a main challenge. Nearly 90% of the disease risk-associated single

nucleotide polymorphisms (SNPs) identified from genome-wide association studies

(GWAS) are in non-coding regions. And similarly, only 25% of Mendelian disease

patients have had their mutations in protein coding regions [120]. The abundance of

disease-associated variants in non-coding regions makes it desirable to extend these

studies to understand functional consequences.

The annotations from functional genomics assays can provide additional infor-

mation for variants called from GWAS. For example, when studying a specific SNP

identified in a GWAS study, although it has not been recorded in the literature,

the regulatory nucleotides in linkage disequilibrium annotated from TF ChIP-seq

assays may implicate genes and pathways that contribute to the development of dis-

eases. More broadly, the annotation of non-coding variants requires integrating mul-

tiple layers of functional information, including putative regulatory elements broadly

identified from high-throughput sequencing datasets (e.g. DNase-seq, ChIP-seq, and

ATAC-seq).

Despite the benefit of incorporating functional genomics evidence when examining

non-coding variants, the lack of available annotation tools limits the use of such data.

The majority of resources for clinical purposes has been focused on coding regions

as an application to exome sequencing data [121, 122], which consists only <5% of

human variation (International HapMap Consortium 2005; 1000 Genomes Project

Consortium et al; International HapMap Consortium et al). More recently, whole-

genome sequencing has become more common with less cost and large projects such
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as NIH’s AllofUs [123], the European ‘1+ Million Genomes’ initiative [124], and the

Million Vets Program [125]. This shift from exome to genome leaves a gap in our

knowledge as there are many fewer tools accessible for researchers and clinicians to

annotate non-coding variants.

We have previously built the RegulomeDB v1.1 database for annotating variants in

non-coding regions. Intersecting the query variants with evidence from various func-

tional genomics experiments provides users with regulatory information and ranking

scores for all input variants to prioritize putative functional variants [62]. In this

work, we updated the RegulomeDB web server to display the query results more

intuitively with interactive charts and the genome browser views. We also reworked

our pipelines to enable efficient search against numerous genomic regions. We ex-

panded the database to including newly generated data from ENCODE phase 3 and

the eQTLs from the GTEx project. Also, we provide a new probabilistic score for

each query variant in addition to the original ranking score [103].

4.3 Methods

4.3.1 Data collection and processing

Genetic variants The information of genetic variants was retrieved from dbSNP153

[113], including the positions and allele frequencies. The linkage disequilibrium (LD)

was calculated on genotype information from 1000 Genomes Project in five super

populations (AFR, AMR, EAS, EUR, and SAS) (gs://genomics-public-data/linkage-

disequilibrium).

eQTLs The eQTLs from the GTEx project across 49 human tissues were collected.

We performed LD expansion by including variants in strong LD with evariants from

eQTLs results (R2 threshold of 0.8). The evariant-egene pairs with the corresponding

tissue were parsed to the database.
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PWM matching We downloaded the PWMs (position weight matrices) of 722

non-redundant TF motifs from JASPAR 2020 database [20].The kmers matching

to TF motifs were called by TFM P-value with a threshold at 4−8 for each PWM.

Bowtie was used to map the kmers on genome to determine the final PWM matching

positions for the TF motifs [126]. The information content from each PWM was also

integrated into the database and used as one feature to calculate the probabilistic

score.

Epigenomes The epigenomic data from ENOCDE was directly retrieved from the

ENOCDE portal, including the newly generated data from phase 3 (Table 4.1).

Table 4.1: Statistics on database content. Number of datasets under each data type includes all
experiments across different treatment condition and biosamples. The bolded data types
were updated ones in RegulomeDB 2.0, other statistics were obtained from [62].

Precalculated scores We calculated the ranking scores and the new probabilis-

tic scores from SURF for common variants from dbSNPs. We also calculated the

functional significance score from DeepSEA [72] for all possible biallelic variants on

genome regions within the union set of DNase peaks from various conditions and

biosamples, due to the limitation of computational time for the whole genome. We

implemented the score into the back-end of database to allow rapid queries in future.
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4.3.2 Database and web server design

RegulomeDB annotates a variant by intersecting its position with genomic inter-

vals identified from a massive number of experiments and computational approaches.

The database directly integrates the datasets from ENCODE portal through a lim-

ited mirror of the ENCODE system (https://github.org/ENCODE-DCC/regulome-

encoded). The genomic intervals are stored in an Amazon S3 bucket with BED

formatted files associated with JSON objects containing the information of source ex-

periments and computational pipelines. These BED files are then indexed in Elastic-

search (https://www.elastic.co/) as in integer range to enable efficient search against

a query position. In total, over 830M genomic intervals are indexed in Elasticsearch.

After each search, the JSON objects associated with the intersected intervals are

returned and passed on to generate ranking scores from RegulomeDB 1.1 and new

probabilistic scores from SURF [103]. The query results are displayed with a web

interface containing drawing charts and interaction figures, which can be customized

by users.

4.4 Results

4.4.1 Usage and interface

The RegulomeDB 2.0 web server accepts any query variant on the whole genome,

mainly designed for querying single nucleotide variants approximately up to 500

at one input (Figure 4.1). The input query variant can be in three formats: 1)

rsID from dbSNP153; 2) chromosome position for a single nucleotide variant; 3)

chromosome position for a chromosome region. In the third case, all variants on

the chromosome region at >1% allele frequency from dbSNP153 will be queried.

The database then intersects the variant(s) position with the genomic intervals of
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annotations from functional genomics experiments and returns a sortable summary

table of variant scores (Figure 4.2). The new probabilistic score is integrated into the

summary table, which further prioritizes the variants with the same ranking scores.

In addition, a dbSNP rsID will link to the query variant if it exists.

By clicking on any field of a row in the score table, a more detailed information

page on genomic evidence is shown for the variant of interest. The top of the page

(Figure 4.3) shows some basic information on the variant position, scores, and allele

frequencies from dbSNP153. While on the bottom is the initial summary section on

genomic annotations’ hits (Figure 4.4). Since a single query can hit up to 2,000 re-

sults, the initial summary section is divided into 5 data types, including transcription

factor binding sites from ChIP-seq, chromatin states from chromHMM, chromatin

accessibility from DNase-seq, PWM matching, and QTLs. Furthermore, a genome

browser section is also available to assist variant interpretation.

Each of the six sections can be clicked to display more details on the genomic

hits from specific assays, such as the biosample of DNase peaks and the transcrip-

tion factors of ChIP-seq peaks (Figure 4.5). The chromatin state tab shows the

chromHMM state for each of the 127 tissues from Roadmap Epigenomics Project

(Figure 4.6). Furthermore, the genome browser tab provides an interaction view for

exploring the gene transcripts along with DNase-seq and ChIP-seq peaks near the

variant of interest (Figure 4.7).

4.5 Discussion

The RegulomeDB 2.0 web server provides a user-friendly tool to annotate and

prioritize variants in non-coding regions. The update of our pipeline in processing

BED formatted files makes it straightforward to integrate new datasets from func-
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Figure 4.1: The RegulomeDB landing page and interface. Users can input rsIDs, variant coordi-
nates, or coordinate ranges. The input of a coordinate ranges will score all common
variants within the range.

Figure 4.2: The initial sortable summary table of ranks and new probabilistic scores for all query
variants.

tional genomics data. Currently, we have annotations mapped to genome assembly

hg19, and we will update them for GRCh38 once all mapped files are ready. We will

also integrate new genomic annotations on CRCh38, including the DNase footprints
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Figure 4.3: The summary page of a query variant (part 1). The scores and allele frequencies are
shown at the top, and a localized region of the genome is shown in the diagram by
finding the 10 nearest common SNPs (MAF > 0.05). The query SNP is shown in red.

called from a new pipeline TRACE [9] on the latest ENCODE DNase-seq reads and

chromatin states predicted from SEGWAY [24] and ChromHMM [127]. In addition

to the current data types, we will incorporate 3D chromatin structures, such as chro-

matin loops between promoters and enhancers and topologically associated domains

(TADs), to provide users with more information on the underlying mechanisms for

putative regulatory variants.

We also plan to add new features to the web server, including the tissue-specific

function and target gene assignment. In detail, we will calculate the tissue/organ-

specific scores from TURF (reference) for each query variant, which needs parsing

genomic intervals from histone modification ChIP-seq data in addition to the current

set of genomic annotations. We will group the genomic evidence of each query variant

based on the underlying organ, which can be retrieved directly from the JSON object
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Figure 4.4: The summary page of a query variant (part 2). The genomic evidence is divided into 5
data types, in addition to the genome browser to assist in variant interpretation.

associated with each experiment. On the other hand, we plan to provide functional

hypotheses to the putative regulatory variants by assigning target genes. We will use

three strategies: 1) the nearest genes to the regulatory variant; 2) the egene mapped

to the regulatory variant if it is in the eQTL dataset; 3) the genes within the same

TAD of the regulatory variant. These two new features will greatly help researchers

study the functional consequences of regulatory variants associated with disease or

trait in specific tissues/organs.
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A

B

Figure 4.5: The views under chromatin accessibility and ChIP data tabs. The biosamples from
DNase-seq assays (A) and the transcription factors from ChIP-seq assays (B) are
shown.Each Dataset or File shown in the tables can be clicked to show more infor-
mation on the corresponding experiment.
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Figure 4.6: The view under chromatin state tab. It shows the chromatin states for each of 127
biosamples from Roadmap Epigenomes Project. Bar graphs display the enrichment of
the query variant in each state.

4.6 Publication

The work described in this chapter is being prepared for publication. I will be one

of the co-first authors. This work is done in collaboration with Michael Cherry’s lab in

Stanford University. Yunhai Luo and Benjamin C. Hitz curated data and integrated

the ENCODE portal into the database. Emma R. O’Neill designed the interface for

the web server. My contribution involved data curation and new probabilistic score

integration.
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Figure 4.7: The view under genome browser tab. It shows an example variant (the yellow line) near
the transcription start site of NDUFS5. Several tracks from ChIP-seq assays are shown
here, with both signals from bigwig file and peak regions from bed files. The tracks can
be filtered by assay names, biosamples and/or TF targets.



CHAPTER V

Assigning Target Genes for Regulatory Variants with eQTL
Studies and 3D Conformation Annotations

5.1 Abstract

Assigning the target genes to putative regulatory variants can provide functional

hypotheses and help understand their functions. However, it is challenging because

the target genes can be hundreds of kilobases apart from the regulatory elements in

the linear distance on the same chromosome. The interactions between regulatory

elements and target genes are brought through chromatin looping, which can be

mapped by 3D conformation assays such as Hi-C. In addition, association studies

such as eQTL analysis also detect such regulation but in an indirect way. In this

study, I explored the computational pipelines to assign target genes to ASB SNVs

with evidence from Hi-C and eQTL studies in a tissue-specific manner. I present an

example of the target gene (UGT2B4) assigned to an ASB SNV (rs7438135) that

might help explain the regulatory network involved in lung cancer progression and

treatment. The coordination of Hi-C data in various tissues is needed to apply this

pipeline in a more general context in the future.

73
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5.2 Introduction

The regulatory variants in non-coding regions can be prioritized by leveraging ev-

idence from functional genomics experiments. Despite recent advances in predicting

regulatory variants with computational tools, major challenges remain in interpreting

underlying mechanisms for putative regulatory variants. Assigning the target genes

to regulatory variants can provide vital information to understand further their func-

tional consequences and association to diseases or traits. One strategy is to assign

the gene of which transcription start site is the closest to the regulatory variant in

the linear distance on the same chromosome. However, this is an overly simplified

model in many cases. The looping between enhancers and promoters can bring the

regions up to hundreds of kilobases within spatial proximity. Moreover, the gene

regulatory network is dynamic across various cell types and treatment conditions.

Therefore, tissue-specific genomic information additional to the linear distance on

chromosomes is essential to assign the correct target genes to regulatory variants.

The 3D conformation assays such as Hi-C and Chromatin Interaction Analysis

with Paired-End Tag (ChIA-PET) have yielded genome-wide chromatin interaction

maps [32, 33, 34, 35]. The topologically associating domain (TAD) is a functional

structure identified from Hi-C heat maps [80]. These ∼100kb regions are believed

to represent gene regulation units since the interaction frequencies between genomic

regions within domains are significantly higher than the frequencies outside domains

[128]. Therefore, target genes can be assigned to regulatory variants with the assump-

tion that they should locate within the same TAD to accomplish regulatory functions.

Meanwhile, chromatin loops are also useful for defining target genes, which represent

the long-range chromatin interactions such as promoter-enhancer pairs. The looping
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between promoters and enhancers can be identified from the corner dot structures

in Hi-C heatmap. Annotations from histone modifications can be incorporated to

define the regulatory elements within loop domains. Furthermore, there are assays

that more directly capture promoter-enhancer loops, such as ChIA-PET enriched for

RNA Polymerase II and promoter-capture Hi-C.

In addition to the assays mapping interaction between genomic regions, associa-

tion analysis between variant genotypes and quantitative traits from genomic experi-

ments can also help identify target genes to regulatory variants. For example, eQTLs

are genomic loci where the genetic variation is statistically associated with variation

in gene expression levels, referred to as evariant-egene pairs. Thus, the egenes can be

viewed as potential target genes for those evariants. Noticeably, since eQTL studies

are confounded by linkage disequilibrium (LD), the leading evariants are often not

the causative variants. Therefore, it is necessary to extend the annotation beyond

leading evariants by combining LD structures. Numerous datasets on eQTLs and

LD structures are available from the Genotype-Tissue Expression (GTEx) project

[46, 47]. Up to now, the GTEx project has identified eQTLs in 838 individuals over

49 human tissues, involving over 20,000 genes and 4,000,000 variants. Meanwhile,

large consortia, including the 1000 genome project, have identified genome-wide vari-

ants with their genotypes and allele frequencies across diverse populations, which are

useful in defining LD structures.

As one example of putative regulatory variant, allele-specific transcription fac-

tor (TF) binding (ASB) variants show variation in TF binding affinity across two

chromosomes on the heterozygous sites within an individual. Thus, they are the can-

didate regulatory variants affecting TF occupancy, which can be identified through

the imbalance on the number of TF ChIP-seq reads mapping to two alleles. Rather
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than a simple binomial test on the number of reads from two chromosomes, more

factors need to be considered to identify ASB variants, such as the bias from mapping

to reference genome, the aneuploidy in cancer cells, and the variation from technical

effects. Previous studies have applied statistical approaches such as Beta Binomial

models to overcome some of the problems. Thousands of ASB variants in more than

30 cell types have been identified [50, 51, 52, 53, 54, 55]. However, the functions of

those variants are underexplored, especially in a tissue-specific context.

In this study, I explored the workflow to assign target genes to regulatory variants

by incorporating evidence from TADs and eQTLs. I used the ASB SNVs called from

over 600 ChIP-seq datasets in 6 cell lines as an example set of putative regulatory

variants. I showed that tissue-specific genomic information can provide functional

hypotheses on the ASB SNVs, which can also help refine functional variants relevant

to specific pathways.

5.3 Methods

5.3.1 Identification of allele-specific TF binding (ASB) SNVs

The details on calling ASB SNVs were described in Chapter 3 (3.3.1). Briefly,

7,530 ASB SNVs were identified in 6 cell lines from over 600 TF ChIP-seq datasets.

The genotypes of variants in each cell line were called from whole-genome sequencing

datasets by HaplotypeCaller from the Genome Analysis Toolkit (GATK) v3.6 [111].

The copy number variation regions called from CNVnator v0.3.3 were removed from

this analysis [112]. The AlleleDB pipeline was sued to call ASB SNVs with a Beta

Binomial model. The personal genomes on paternal and maternal alleles were built

to avoid the bias from mapping to the reference genome. Meanwhile, 55,611 non-

ASB SNVs were also called from the definition that there are equal ChIP-seq read

counts on the two alleles at heterozygous sites.
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5.3.2 Cell type-specific TADs from Hi-C experiments

Four of the ASB cell lines (GM12878, K562, A549, and H1hESC) have available

TADs called from Hi-C experiments in their corresponding cell types in hg19 genome

assembly (Table 5.1). The TADs regions were downloaded from 3D genome browser

[129], which were uniformly called by the same pipeline from Dixon et al. in all cell

types [80].

Table 5.1: TADs in four ASB cell lines.

5.3.3 Tissue-specific eQTLs from the GTEx project

eQTLs in 49 human tissues are available through the GTEx project. The most

relevant tissue in GTEx was mapped to each ASB cell line, except for the stem

cell line H1hESC (Table 5.2). LD expansion was performed to extend the target

genes from egenes to the variants that are in strong linkage with evariants. The

precalculated R2 values in the EUR population were downloaded from gs://genomics-

public-data/linkage-disequilibrium. On average, each evariant has 1.5 variants in

strong LD from 1000 genome project with R2 threshold of 0.8 (Table 5.3).

5.3.4 Tissue-specific genes

The list of genes with tissue-specific functions was downloaded from a previous

paper [130]. The authors compared the gene regulatory networks of TFs and target

genes in 38 tissues from GTEx project. The genes in tissue-specific nodes were
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Table 5.2: The relevant GTEx tissues for each ASB cell line.

Table 5.3: The number of unique eSNVs from the GTEx project after LD expansion.

identified as genes with tissue-specific functions. Noticeably, the genes can have a

multiplicity greater than one, which means they have similar functions in a subset

of the 38 tissues, but the function is still distinct from other tissues.

5.4 Results

5.4.1 Comparison of the target genes for ASB SNVs from three approaches

Three approaches were applied to assign target genes for ASB SNVs in 6 cell lines:

1) The gene with the nearest transcription start site (TSS) from the query variant; 2)

The gene(s) within the same TAD as the query variant; 3) the egene(s) from eQTL

studies where the evariant is in strong LD with the query variant (Figure 5.1). These

approaches were all performed in a tissue-specific manner, where only the TADs and

eQTLs from corresponding cell types/tissues were used.

The overlapping across target genes from three approaches is shown in Figure

5.2. Overall, the TADs approach assigned the largest number of target genes to ASB
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1) Nearest TSS
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3) eQTLs + LD structures

query variant*

r2 > 0.8

Figure 5.1: Three approaches for target gene assignment. Genes with dashed borders will be as-
signed as target genes of the query variant with the following three approaches: 1) The
gene with the nearest transcript start site (TSS). 2) The gene within the same topolog-
ically associating domain (TAD). 3) The egene from eQTL studies of which the eSNP
is in strong linkage disequilibrium (LD) with the query variant.

SNVs, with an average of 10 target genes to each ASB SNV. This large number of

target genes is primarily due to the low resolution on some of the Hi-C experiments

in early studies. While this can indicate high false positive rates, it can still be

useful when a low false negative rate is preferred to return all possible target genes.

Furthermore, around 5% to 10% of the target genes called from nearest TSS are not in

the same TADs as the query variants, which implies the importance of considering

the boundaries of TADs when predicting target genes. Most of the target genes

called from eQTLs are not the nearest genes to the query variants. In summary, this

comparison emphasizes the importance of incorporating genomic information other

than the linear distance on chromosomes to assign target genes.

5.4.2 Target gene assignment provides functional hypothesis on ASB SNVs

The target genes assigned to regulatory variants can help explain the underlying

mechanisms on how they involve in relevant pathways. For example, rs7438135 is an
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Figure 5.2: Comparison of target genes assigned from three approaches (Nearest TSS, TADs, and
eQTLs) on ASB SNVs. Only the four cell lines with available TADs information are
shown here.

ASB SNV called in A549, a lung cancer cell line. rs7438135 shows different binding

affinity on two alleles in a TF ChIP-seq experiment targeting FOSL2 treated with

dexamethasone. Dexamethasone is widely used in cancer patients’ treatment to sup-

press the growth of non-small cell lung cancer. However, the underlying mechanisms

remain unclear. Previous studies found dexamethasone is likely to induce apoptosis

of A549 cells via the TGF-β1/Smad2 pathway [131], which is regulated by FOSL2

[132].
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UGT2B4 was assigned to rs7438135 as the target gene by incorporating evidence

from both TADs and eQTLs (Figure 5.3). The UGTs (UDP-glucuronosyltransferase

enzymes) were found to affect cancer progression and drug resistance [133], includ-

ing UGT2 as one of the four families of UGT. UGT enzymes are highly expressed

in tissues such as liver and intestine, but the UGT subfamily members also have

tissue-specific expression in many other tissues, including UGT2B4 in lung [134].

The regulation of UGTs involves multiple signal pathways and TFs across various

tissues. Therefore, the potential regulation between FOSL2 and UGT2B4 found in

this case can help explain how the regulatory variant rs7438135 might be functional

in regulating UGT enzyme expression in lung cancer cells, which might be further

involved in cancer progression and drug resistance.

5.4.3 Tissue-specific functions of ASB SNVs

Some of the target genes assigned to ASB SNVs have tissue-specific expression in

corresponding cell lines, such as CD37 in K562 and UGT2B4 in A549. It indicates

that the corresponding ASB SNVs can have tissue-specific regulatory functions. A

previous study on DNase footprints shows that tissue-specific activity spectra of open

chromatin regions is negatively correlated with the frequency of allele imbalance for

the heterozygous sites within regions [135]. In other words, this could indicate that

the sites with allele-specific regulatory patterns are more likely to have tissue-specific

functions. To test if this is true for ASB SNVs, the ratio of target genes with tissue-

specific expression was compared between ASB and non-ASB SNVs (Figure 5.4).

However, similar ratios were found for SNVs in GM12878 and K562. The ASB SNVs

in A549 show a higher ratio of tissue-specific genes than non-ASB SNVs, but only

four target genes were assigned in this case. The results here are limited by the

number of assigned target genes in each cell line. Also, the ASB SNVs were called
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Figure 5.3: An example of target gene assignment on an ASB SNV by incorporating TADs and
eQTLs evidence. The ASB SNV (rs7438135) called from A549 cell line is predicted to
regulate a downstream gene UGT2B4. This gene in the same TAD from A549. The
egene from eQTL studies in lung tissue is associated with an eSNP (rs7375178), which
is in strong LD with rs7438135.

with a stringent threshold for extreme imbalance ratio between two alleles. Further

studies on ASB SNVs involving a broader spectrum of imbalance ratios might lead

to more solid conclusions.

5.5 Discussion

This study presented a workflow to incorporate tissue-specific genomic information

from Hi-C and eQTL studies for target gene assignment. While the analysis here was

performed on ASB SNVs, it can be generally applied for other putative regulatory

variants, such as variants from GWAS studies, to understand their tissue-specific

functions.
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Figure 5.4: The ratio of genes with tissue-specific functions over target genes of ASB SNVs in three
cell lines. The target genes were assigned to ASB SNVs by incorporating information
from TADs and eQTLs.

The TADs regions used in this study have relatively low resolutions (∼40kb).

With more Hi-C datasets in higher resolutions being generated, the TADs with

finer structures can be defined. The 4D Nucleome (4DN) project has released many

datasets from 3D conformation assays across various tissues and cell types. Efforts

are needed to coordinate TADs annotations from different experiments and apply

them in the corresponding tissue context. Chromatin loops identified from Hi-C and

ChIA-PET can also be used to assign target genes, assuming that the regulatory vari-

ant and target gene are within the two ends of the loop structures. Moreover, as a

higher-order chromatin structure, the compartments can also be useful information

for target gene assignment. The two compartments with distinct gene transcrip-

tion activities were identified previously [33], while more recent studies combining

annotations from histone modifications further partitioned them into six smaller sub-

compartments.

The target genes were assigned from eQTL studies with a threshold of R2 > 0.8,

which can be overly stringent. A looser threshold of 0.6 was tried, which includes 20%

more variants with assigned egenes after LD expansion. However, since the measure-
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ment of R2 is largely dependent on allele frequency of the paired variants, using a

strict threshold on R2 might not be the most appropriate approach. Studies have

been performed to partition the whole genome into LD blocks based on patterns in

R2 or D′ values [136]. Assigning target genes in the same LD block with the query

variant can be a more robust way to incorporate the LD structure. The variety of

LD structure across populations also needs to be considered when applying to in-

dividual samples other than the cell lines in this study. Furthermore, QTLs from

other quantitative traits relevant to gene regulatory activity can be incorporated

with the same scheme as in eQTLs, such as the caQTLs associated with chromatin

associability measured from ATAC-seq experiments [48]. Since caQTL data are cur-

rently available in limited cell types (lymphoblastoid and T cells), here I propose a

computational method to leverage knowledge from caQTLs and eQTLs in different

tissues. I borrowed the idea from TWAS that tissue-specific gene expression profile

can be imputed based on genotypes [137] (Figure 5.5). Thus, the expression profile

of individuals from caQTL studies can be imputed in various tissues with available

eQTL datasets, for example the 49 human tissues from GTEx project. The correla-

tion analysis between gene expression levels and ATAC-seq reads can be performed

to identify the tissue-specific regulatory variants within ATAC-seq peaks.

On the other hand, some of the ASB SNVs in this study might have tissue-

specific functions involved in specific biological pathways. Comparisons of target

gene expression between two alleles could help further understand their functional

consequences. This comparison will need a phased genome with known genotypes of

variants on each allele, which is available for cell lines such as GM12878.

In summary, more efforts in computational approaches are needed to incorporate

genomic information involving the coordination of data from various resources. As-
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signing target genes to regulatory variants in a tissue-specific context can contribute

the understand their functions in specific biological pathways and further explain

their roles in disease progression.

Figure 5.5: A proposed computational method to leverage knowledge from caQTLs and eQTLs in
different tissues to identify tissue-specific regulatory variants within ATAC-seq peaks.
The tissue-specific expression profile in eQTL tissues is imputed for caQTL individuals,
following by correlation analysis between caPeak ATAC-seq reads and imputed gene
expression level in each tissue. Figure adapted from [137].



CHAPTER VI

Conclusions and Future Directions

6.1 Summary

The main aim of my dissertation was to apply novel computational approaches

to predict regulatory variants and provide functional hypotheses in the non-coding

regions of human genome. I first developed a computational tool to predict the

regulatory variants in 14 disease-associated enhancer and promoter regions, which

achieved the best performance in CAGI5 challenge. I further extended this tool to

predict tissue-specific functions of genome-wide regulatory variants. I calculated the

prediction scores over 51 organs on approximately 80 million variants, which will

be invaluable for future studies. I also designed the main updates of an online tool

RegulomeDB to provide a user-friendly platform for quick annotation on non-coding

variants. Finally, I explored a pipeline to assign target genes to putative regulatory

variants with tissue-specific information from eQTL studies and Hi-C experiments.

In Chapter 2, I developed a computational tool, SURF, in the CAGI5 challenge.

The challenge provided an unbiased comparison of computational tools for predicting

regulatory variants with experimentally validated variants. Variants tested from

MPRA experiments were used, including 17,500 SNVs in 9 promoters and 5 enhancers

relevant to diseases. The ‘true set’ of regulatory variants were those show significant

86
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effects on reporter gene expression levels from the MPRA datasets.

I trained random forest models using features including those binary ones retrieved

from RegulomeDB old ranking scores, as well as additional numerical scores from

ChIP-seq signals, PWMs, and prediction scores from DeepSEA using deep learn-

ing methods. In this way, the empirical tree from RegulomeDB ranking scores was

replaced with sets of decision trees, including expanded features. The new probabilis-

tic scores from SURF showed better performance in predicting regulatory variants

compared to other participant groups. We found the binary features from direct

functional genomics annotations provided complementary information compared to

the transfer learning features from the DeepSEA model. This fact suggests the

importance of incorporating direct annotations, especially for the cell types under-

represented in deep learning models.

One of the limitations in this study comes from the evaluation method, which

mainly depended on AUROC. Adding a comparison on AUPR and correlation could

improve the evaluation. Furthermore, although thousands of variants were included,

they were limited by the variety of genomic regions. Thus, the models trained here

might be biased to the genomics features on those specific regions and not be appli-

cable for predicting genome-wide regulatory variants.

To extend the prediction of SURF, I further developed TURF in chapter 3. The

extension was mainly on two aspects: 1) TURF provides a more robust predic-

tion on a genome-wide scale; 2) TURF offers predictions of regulatory variants in a

tissue-specific context. The first extension was achieved by training on regulatory

variants covering a wider range of genomic regions. I called ASB SNVs in 6 cell lines

from more than 600 ChIP-seq datasets, which are the putative regulatory variants.

The mapping bias from aligning to the reference genome was corrected by building
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personal genomes. Also, the copy number variation or aneuploidy regions were elim-

inated from the analysis. A total of 7,530 ASB SNVs were identified. In addition to

training, those ASB SNVs can also lead to the following analysis to understand their

regulatory functions and potential relationship to specific diseases or traits.

The second extension was relied on adding tissue-specific genomic features to the

prediction models. The histone marks, the DHS, and DNase footprints were the most

useful features to predict tissue-specific functions of regulatory variants. The final

TURF tissue-specific scores leverage the regulatory patterns from other tissues by

multiplying with TURF generic scores, while retaining the uniqueness of individual

tissues by the tissue-specific features. I built an ensemble model to compensate for

the variation from different cell lines in the training set. I also leverage the tissue-

specific functional genomics annotations of tissues from the same organ to generate

prediction scores covering most organs in ENCODE project.

Both the generic and tissue-specific scores from TURF presented overall better

performance comparing to other state-of-the-art computational tools. I calculated

TURF organ-specific prediction scores over 51 organs on the SNVs identified from

GWAS studies and 1000 genome project, including approximately 80 million SNVs

in total. I showed the ability to use TURF organ-specific scores to pick out the regu-

latory variants, which were validated to have organ-specific functions from previous

studies. Moreover, many of the traits from GWAS Catalog displayed enrichment of

organ-specific regulatory variants over the GWAS variants in their relevant organs.

This enrichment indicates that the putative regulatory variants prioritized by TURF

scores in the trait-relevant organs are likely to be involved in the corresponding traits.

Following functional analysis on those regulatory variants might reveal underlying

mechanisms for traits that are less-studied. Despite the GWAS variants, TURF can
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be applied to any candidate list of variants on the whole genome and prioritize those

with tissue/organ-specific functions. Furthermore, the TURF pipeline directly re-

trieves the functional genomics annotation and the organ terms from the ENCODE

data portal. It will be easy to add new annotations or organs to the pipeline as more

datasets are being released from ENCODE.

Due to the limited number of MPRA datasets, the performance from other com-

putational tools was compared to TURF in only three cell lines. A more thorough

comparison will be preferred with more MRRA datasets being available. In addition,

the organ groups need to be refined to generate more intuitive annotations. More

sophisticated normalization methods can be explored to correct the data availability

imbalance across organs and apply to the background set for queries in different

scenarios.

In chapter 4, I designed some main updates to RegulomeDB, which is an online

tool for annotating non-coding variants with functional genomics evidence and pre-

diction scores. We updated the RegulomeDB web server to display the query results

with interactive charts grouped into six categories. These charts shown on the ini-

tial results page give users a quick and clear summary of the functional genomics

annotations from different experiments to further explore their functions. We also

expanded the data source in RegulomeDB database to include ENCODE phase 3

data and eQTLs from GTEx. The pipeline to generate prediction scores from SURF

was also incorporated. The SURF scores are shown on the results page with the

original ranking scores.

Future updates on RegulomeDB include integrating TURF scores into the system.

The results page will have the option only to show tissue/organ-specific functional

genomics annotations. Moreover, the data source for annotation will be further
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expanded to include TADs from Hi-C experiments. Thus, users will have more

references to make functional hypotheses on their query variants.

Finally, I explored the pipeline to assign target genes to ASB SNVs called from

chapter 3 to help explain their functions and associations to disease progression. I

compared the target genes assigned from three approaches, including the nearest

genes on linear distance, the genes within the same TAD, and the genes from eQTL

studies associated with an eSNP. The assignment was done in a tissue-specific man-

ner. I found that the ‘nearest genes’ often have small overlapping with the genes

from TADs or eQTLs evidence, emphasizing the need to incorporate tissue-specific

genomic information from chromatin structure and association studies on gene ex-

pression levels. Using those two approaches, I presented an example of the target

gene (UGT2B4) assigned to an ASB SNV (rs7438135) from lung cancer cells with

the treatment of dexamethasone. Previous studies have shown that the expression of

UGT2B4 is associated with lung cancer progression and drug resistance, which relies

on the regulation from TFs in a lung-specific context. Further functional studies on

the regulatory relationship between rs7438135 and UGT2B4 might help explain the

underlying mechanism in lung cancer.

While the ASB SNVs were used as an example set, this workflow can be applied

to other putative variants. Pipelines on incorporating TADs from Hi-C experiments

covering more tissues are needed to annotate variants in a more general context. The

LD structure can also be incorporated into the annotation from eQTLs in a more

robust way other than a strict threshold on R2 values.
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6.2 Future directions

6.2.1 Refining TURF prediction algorithm

The feature set used in TURF generic scores can be categorized into four groups:

1) Binary features of direct annotations from functional genomics assays. 2) Quan-

tiles describing the ChIP-seq signal profiles over various biosamples. 3) PWM match-

ing and information content change capturing the sequence information on TF mo-

tifs. 4) Prediction score from DeepSEA trained from deep learning techniques. New

features from each of the four groups can be explored.

1) Annotations from ATAC-seq might provide complementary information com-

pared to DNase-seq.

2) The quantiles are currently only calculated from 200 ChIP-seq experiments from

ENCODE phases 1 and 2 due to computation time limitations. It is unclear if adding

more experiments will improve the prediction performance or the 200 experiments

are already representative to describe the ChIP-seq profiles. It is also possible to

add quantiles of DNase-seq signals to the feature set. Moreover, the signals were

extracted from each position on the genome in base resolution. Some other tools

used ’valley scores’ to describe the signal pattern over nearby bases, which could be

more informative than the signal in a single base. Also, the interpretation of this

feature set needs to be explored more.

3) The main limitation of this feature set is that the PWM matching regions were

aligned to the reference genome. While this captures most TF motifs, it is likely to

miss the regions where a variant on the alternative allele creates a new TF binding

site. This limitation can be solved using a looser threshold on selecting the kmers

matching to each PWM or doing an additional mapping step with the alternative

genotype of each query variant, which can be time-consuming. Furthermore, PWM
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has been found not the best way to represent the TF binding affinity for each position

on the motif. The SNP effect matrix from a recent paper that predicts TF binding

affinity changes on SNPs can be used as a substitute for the PWM features [21].

4) DeepSEA scores were used as a typical model using deep learning methods. The

advantage is that the regulatory grammars in various cell types from different assays

were learned simultaneously. The functional consequence of each query variant is

represented by a functional score combining all those regulatory grammars. However,

the regulatory grammar patterns based on DNA sequences might be failing to capture

the regulatory network in all cell types, especially for those underrepresented ones.

In TURF, the direct annotations help detect features in less-studied cell types and

interpret the model, while the scores from deep learning capture more consensus

regulatory grammars involving a massive number of assays. It is possible to retrain

the DeepSEA score with more experiments and make it more suitable for the TURF

algorithm.

On the other hand, annotations from histone mark ChIP-seq and DNase-seq assays

were used in the tissue-specific part, selected based on data availability and impor-

tance in feature ranking. More histone marks can be incorporated in the future as

data being available. In addition, although the chromatin structure information in

this dissertation was used in assigning target genes, it is possible to incorporate this

tissue-specific feature set. The ratio of variants overlapping TADs was compared be-

tween positive versus negative training sets. However, no significant difference was

found. The comparison was limited by the resolution and number of Hi-C experi-

ments. Finer structures from TADs with histone mark information might be able

to distinguish ASB and non-ASB SNVs, which can be used as additional features to

predict tissue-specific functions.
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Furthermore, it is also possible to incorporate validated variants from assays other

than ChIP-seq into the training step to refine the TURF prediction algorithm. For

example, the assays directly measuring regulatory activities, including MPRA and

STAR-seq, can be incorporated. A framework that learns complementary informa-

tion from different assays will need to be explored.

6.2.2 Incorporating TURF scores and target gene assignment to RegulomeDB

Other than the updates on data resources, we plan to add two new features to the

RegulomeDB web server. The first is to incorporate TURF organ-specific scores. It

is relatively straightforward since the organ terms can be retrieved from the JSON

file currently associated with each experiment. In the initial results page for query

variant, the interactive charts on underlying functional genomic evidence will be

able to show specific tissues/organs. The heatmap of TURF scores for all query

variants across 51 organs (as shown in Figure 3.8) will also be shown on the results

page, which will be useful for the study of regulatory variants in specific pathways

or diseases. The normalization of organ-specific scores was done by comparing them

to the background set from all GWAS variants after LD expansion. However, the

normalized scores relative to the query set from user input might also be useful to

show.

The target gene assignment was performed on SNV variants in chapter 5, but we

plan to perform this analysis for all query variants through RegulomeDB uniformly.

Some challenges need to be addressed. The first is to integrate TADs regions from Hi-

C experiments. These data are mainly available from the 4DN project, but additional

processing steps will be required for those experiments not already called TADs

regions. In addition, annotations need to be organized in a tissue-specific manner,

which will involve manual curation to map to the relevant tissues in RegulomeDB.
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This manual curation is also necessary to integrate eQTLs from GTEx tissues. More

broadly, it is often challenging to incorporate the functional genomics information

from different projects, which involves various cell lines and human tissues. Ontology

analysis could help map between those samples.

6.2.3 Extending prediction to other genetic variations

While this dissertation focuses on SNVs, other genetic variations also play roles in

regulatory functions. Perhaps it is most straightforward to extend TURF prediction

to the variation of short insertions and deletions (indels). The simplest way might

be using the current random forest model in the TURF algorithm. The binary fea-

tures can still be generated by overlapping the query indel position to corresponding

functional genomics evidence. In contrast, the numerical features can be obtained by

taking the average or maximum over the values on all query indel positions. How-

ever, this scheme might be biased on the indels’ length, especially for the binary

features. Meanwhile, a different training set including indels might be needed to

build a computational tool more adjusted to predicting regulatory indels.

6.2.4 ASB SNVs

The comparison of features in ASB and non-ASB SNVs has revealed some in-

teresting patterns. For example, the ASB SNVs have a higher ratio of overlapping

repressive histone marks relative to the non-ASB SNVs. One hypothesis is that the

two alleles overlapping some of the ASB SNVs have different chromatin states. One

allele is associated with active histone marks and has TF binding on the ASB SNV,

while the other allele is associated with repressive histone marks and depleted on

TF bindings. I tried to verify this hypothesis by performing allele-specific map-

ping on histone mark ChIP-seq reads but did not obtain definite conclusions, partly
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due to the low coverage of some experiments. However, other functional studies on

the ASB SNVs overlapping repressive histone marks might uncover the underlying

mechanisms on how the allele-specific chromatin states are formed.

On the other hand, the hypothesis on the ASB SNVs are more enriched with

tissue-specific functions was tested in chapter 5. This hypothesis is based on a pre-

vious observation that the tissue-specific activity spectra of DHS sites are negatively

correlated with the frequency of allele imbalance for the heterozygous sites within

the DHS [135]. However, the analysis in chapter 5 was limited by the number of

target genes and the spectrum of allele imbalance ratio involved in the test. Further

studies that overcome those two limitations might reveal new findings on the function

of ASB SNVs.

6.3 Concluding remarks

In this dissertation, I developed computational tools to predict genome-wide reg-

ulatory variants in the non-coding regions of human genome. I developed machine

learning models based on the scoring scheme from RegulomeDB v1.1, but signifi-

cantly extended the annotation scale and improved prediction performance. The

TURF algorithm (chapter 3) is able to provide tissue-specific prediction scores on

a variety of tissues, which can be widely used to prioritize regulatory variants from

association studies, such as GWAS. In the future, we plan to incorporate TURF

into the RegulomeDB web server, as well as the pipeline in assigning target genes

to putative regulatory variants (chapter 5). We hope this platform can have broad

applications to guide researches on both known and de novo non-coding variants in

various contexts including the precision treatment from clinical-relevant variants.
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