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ABSTRACT

This thesis focuses on personalization, word representations, and longi-

tudinal dialog. We first look at users expressions of individual preferences.

In this targeted sentiment task, we find that we can improve entity extraction

and sentiment classification using domain lexicons and linear term weighting.

This task is important to personalization and dialog systems, as targets need

to be identified in conversation and personal preferences affect how the system

should react. Then we examine individuals with large amounts of personal con-

versational data in order to better predict what people will say. We consider

extra-linguistic features that can be used to predict behavior and to predict the

relationship between interlocutors. We show that these features improve over

just using message content and that training on personal data leads to much

better performance than training on a sample from all other users. We look not

just at using personal data for these end-tasks, but also constructing personal-

ized word representations. When we have a lot of data for an individual, we

create personalized word embeddings that improve performance on language

modeling and authorship attribution. When we have limited data, but we have

user demographics, we can instead construct demographic word embeddings.

We show that these representations improve language modeling and word as-

sociation performance. When we do not have demographic information, we

show that using a small amount of data from an individual, we can calculate

similarity to existing users and interpolate or leverage data from these users

xii



to improve language modeling performance. Using these types of personal-

ized word representations, we are able to provide insight into what words vary

more across users and demographics. The kind of personalized representations

that we introduce in this work allow for applications such as predictive typing,

style transfer, and dialog systems. Importantly, they also have the potential to

enable more equitable language models, with improved performance for those

demographic groups that have little representation in the data.
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CHAPTER 1

Introduction

The work described in this thesis relates to conversational systems, personalization, and
longitudinal dialog data. We aim to better understand conversational behavior, what makes
language different for different individuals, and how personalized models can be applied.
We gather data from surveyed individuals, Reddit, and personal text messages to perform
experiments. This research is motivated by applications to dialog systems, though experi-
ments implement only parts of full dialog systems.

A large portion of recent research in natural language processing focuses on dialog
systems that allow us to interface with computers in spoken or written language. Often,
these are task-oriented settings where a system is built to assist a user in accomplishing a
task such as booking a flight or ordering food. Other research examines how to build more
general conversational systems that can converse with users on any topic. Many types
of dialog data exist, varying the number of participants, human or machine, whether the
language is scripted, spontaneous, or constrained, and whether it is spoken or written. If one
trains a dialog system on any or all of these corpora, the resulting system will predict and
understand language patterns common to the whole, but likely will not capture and retain
patterns of specific individuals. How then can we create personalized dialog systems? A
wealth of data exists in peoples text messages, that is not often used in this research. We
construct a corpus from this type of data and made tools to make the extraction process
easier, facilitating future research.

In this thesis, we focus mainly on non-task-oriented conversations between humans in
various settings and over time spans on the order of years in order to examine aspects of
human communication and use this information to model behavior in conversations. These
models can be applied to the personalization of conversational systems and help create
systems that have an individual personality. This is opposed to methods in NLP in general,
that are trained on data gathered from many people. In the general approach, biases from
these many humans who produced the data are aggregated into a single corpus. We look
not only at personal conversations in text messages, but also at public forum posts and
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individuals who post frequently and have been active for many years. Previous work has
tried learning representations of such individuals, their language, and how to personalize
systems to individuals who have little data. This previous work mainly (1) learns single
vector representations of speakers that are appended or added to word vectors, (2) requires
social network graph structures to find additional speakers from which to augment data,
and (3) uses data sets which have very few utterances per user.

We first experiment with a sentiment analysis application. Many automated conversa-
tional systems are linked to a user or customer database which stores information about that
individual. For instance, a class recommendation dialog system may know which classes a
student took, and when they took them, but does not know how the student liked the classes.
This information is important to be able to identify in order to provide higher quality rec-
ommendations to the student. This motivates us to study the problem of targeted sentiment
analysis, to identify the targets of sentiment in an utterance and value of the sentiment
expressed toward them.

We then move to personal text-message conversations exchanged between pairs of in-
dividuals and analyze the differences between individuals and properties of their conver-
sations over time. We derive linguistic, psycholinguistic, time, communication-based, and
speaker-based features and show that they can be used for predicting the next utterance in a
conversation, the response time, and for classifying attributes of speakers. Using personal
data and a combination of these features, we show improved performance over models that
do not use these features or use a same-sized random sample of data from other individuals.

Next, we study how differences in an individual’s word usage leads to different word
representations when generating word embeddings. Using public forum data, we examine
the differences in word representations and which types of words vary more across indi-
viduals and thus are more important to model for the downstream task of predicting the
next word in a conversation given a dialog history and part of a response. We build off of
previous work to generate embeddings using information about the speaker and the context
together to leverage additional data for the generation of these embeddings.

When we do not have a lot of data for a given speaker, for instance, when an individual
is new to a given platform, we may want to model their language using what we know
about similar speakers. We investigate two methods to solve this problem. The first is to
find similar individuals by using a similarity metric. This can be done by looking at the
errors of an authorship attribution classifier trained on a set of existing users or by training
a language model to learn a user embedding as an additional input. We hope to show that
using a language model trained on the clusters of existing speakers allows us to model a
new individuals language more accurately than a model trained on all data. Second, we
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hope to learn word representations for individuals given their demographics. By learning
jointly a matrix of word embeddings and a matrix of demographic embeddings, we can
compose embeddings (e.g. by adding an age vector to a gender vector to a generic vector
for a word) and show that these serve as an approximation of a new individual’s word
representations.

The work contained in this thesis shows how personal and longitudinal conversations
between individuals can be used to understand the differences in conversational behavior,
an individuals sentiment expressions, and the relationship between speakers. We look at
how to generate personalized word representations, and more accurately model a person’s
language. Using recent approaches to modeling language and words using neural networks
we address these problems in order to further the creation of personalized language pro-
cessing systems.

1.1 Research Questions

1. Can we predict an individual’s behaviors, sentiments, and relationships from
their conversations?

We address this question with two types of data. The first are statements made by
students about their classes and instructors and is discussed in Chapter 3. We build
models to extract the entity targets of sentiment expressions and the polarity of the
sentiment expressed toward those targets. We then look at personal data in Chapters
4 and 5 and show how using an individual’s conversational data allows us to bet-
ter predict what people will say, when they will say it, and the relationship between
speakers. We present a series of analyses of the data regarding the time messages are
sent, the similarity of the style between individuals, the content of messages, psy-
cholinguistic categories of words, and graph-based features derived from how often
speakers in the dataset mention each other. We also provide tools to make it easier
to extract and analyze personal data from multiple online platforms and perform the
same experiments.

2. Can we improve the prediction of what people will say by using personalized
word representations from an individual or from a composition of demographic
representations?

We develop both personalized word embeddings for an individual, in Chapter 6 and
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demographic embeddings for a set of demographic attributes, in Chapter 7. In place
of generic embeddings we can use personalized word representations, representa-
tions from their demographics, if they are known, or a combination of the two. We
then use a language model to predict what individuals will say given these represen-
tations of words as input. We discuss which types of words have the most different
representations across individuals and demographics and the resulting differences in
perplexity. These words are thus more important for personalized models to accu-
rately represent.

3. How does the amount of data from a new individual, what we know about them,
and ability to measure the similarity of individuals affect how well we can pre-
dict what a new individual will say?

Given a new individual for which we have little data, we can find similar individuals
from which to model their language using known demographics, which we define
as categorical variables, or we can use the text they have written to measure their
similarity to existing clusters. We cluster individuals by learning a user embedding
as an additional input to a language model, or by training an authorship attribution
model on the set of existing users and using the confusion matrix rows to represent
points in a high dimensional space. We then look at the effect of the amount of data
we have on our ability to model their language. Experiments related to these limited
data settings are discussed in detail in Chapter 7.

1.2 Thesis Outline

In the next chapter we describe previous work related to the work in this thesis. It contains
work on sentiment analysis, which relates to the understanding of a specific individuals
preferences. It mentions dialog systems, for which there has been a wealth of research in
recent years, including some work on personalization, though non-dialog work on person-
alization is also covered. We discuss recent work on language modeling, as it relates to
predicting what someone will say. We cover word embeddings, and strategies for low-data
settings.

Chapter 3 covers work done on targeted sentiment analysis, whose purpose was to
be implemented in a dialog system that could provide advice to undergraduate students
planning what courses to take next semester. We extract sentiment targets from student
comments and identifying the sentiment expressed towards them.
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In Chapters 4 and 5 we examine text messages from a small set of individuals who each
have a very large number of personal messages. We extract features for predicting conver-
sational behavior and the relationship between speakers. We perform various analyses to
derive features useful for these tasks and include a deeper dive into the authors data.

Then, in chapter 6, we consider using large personal corpora for developing personal-
ized word embeddings that could be helpful not only for modeling language, but for many
other possible downstream tasks. We discuss which types of words are more personal and
are thus more important for personalized systems to model. In the process, we examine
configurations of low compute LSTM language models for using these personalized em-
beddings to predict user text.

Lastly, in Chapter 7, we examine a scenario where we want to develop a personalized
model, or word representations for an individual, but we do not have a lot of data for
that individual. We augment an individuals data with data from similar individuals and
how to determine similarity given some known attributes, such as demographics, or latent
variables, or similarity metrics derived from writing we do have from them.
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CHAPTER 2

Related Work

This section covers work in fields most closely related to the work presented in this thesis
including sentiment analysis, discourse and dialog, language modeling, word embeddings,
authorship profiling and attribution, learning from limited data, and social media. Within
each subsection, we discuss how each area relates to personalization. More generally,
personalization has been extensively applied to marketing, webpage layout, product and
news recommendation, query completion, and dialog [29, 40]. Personalization is at the
core of this thesis and is an important aspect of emerging language processing systems,
as we move away from large models trained on data from a huge number of individuals,
toward specialized models that work for individuals or whose performance is optimized for
a particular group of users [43].

2.1 Sentiment Analysis

Most work in sentiment analysis is done at one of three levels: document level, sentence
level, and aspect level. These three levels of granularity are ordered from coarsest to finest,
with the finer granularity tasks being less well studied. In general, an opinion can be rep-
resented by the following quintuple, (ei,ai j,ooi jkl,hk, tl) [203]. The value ei here represents
the ith entity and ai j represents the aspect j of this entity. The kth holder of the opinion
is represented by hk and the time, l, that the opinion is expressed is given by tl. Given the
entity, aspect, holder, and time, one can reason about an opinion orientation ooi jkl. This
is usually a positive, negative, or neutral value, although occasionally a larger number of
sentiment values are used (e.g., very positive, very negative).

Targeted sentiment is a relatively more recent sentiment task, with contributions fo-
cused primarily on settings with scarce resources [133, 204]. The work by Mitchell et al.
(2013) introduced pipeline and joint model types and compared the performance of these
models using a new set of Tweets. Pipeline models first extract sentiment targets and then
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as a second step classify sentiment toward each entity, as opposed to joint models which
attempt to solve both tasks simultaneously. The pipeline models have seen more success in
recent work [76].

There were two follow-up papers to Mitchell et al. (2013) from the same research
group [204, 205]. The first of these papers worked on improving the three models used
in Mitchell et al. (2013) including the pipeline, joint, and collapsed models. They show
some improvements but the pipeline mode, which is most similar to ours, does not greatly
differ in performance. The latter paper used different neural network models on a com-
bination of three data sets. Two of these data sets are derived from Twitter (including
Mitchell’s) and the last is derived from MPQA. More recent work in this area has applied
neural architectures to Mitchell et al.’s (2013) Twitter data, namely stacked LSTMs [107]
and transformers [76] to further improve performance on this task. Both of these studies
specifically address the issue of assigning multiple sentiments to an entity when the en-
tity contains multiple tokens. Unlike this work, we avoid this complication by classifying
sentiment for each labeled entity span, rather than for each token in the text.

The next most closely related work to ours are the tasks of sentiment slot filling and
aspect-based sentiment analysis. Slot filling is the task of discovering information about a
named entity and storing it in a knowledge source [179]. The 2013 Text Analysis Confer-
ence (TAC) had two similar tasks, which were slot filling and temporal slot filling [178].
For the slot filling task, systems had to determine the correct value for a set of slots for peo-
ple and organizations. People contained slots such as “date of birth”, “age”, or “spouse”,
while organizations contained slots such as “website”, “founded by”, and “country of head-
quarters”. For the task of temporal slot filling, a system must determine two time ranges,
representing the range of times that a given fact is known to be true. Sentiment slot filling
is the task of taking a query opinion holder and orientation and returning the set of entities
that satisfy this condition. In terms of the quintuple we use to represent sentiment, these are
related tasks because although slot filling and temporal slot filling are not exactly sentiment
tasks, they are concerned with the entity, aspect, and time values. The sentiment slot filling
task is concerned with the entity, orientation, and opinion holder.

Aspect-based sentiment analysis has been the focus of recent SemEval tasks as well
as a TAC task [41, 151, 152]. The 2014 sentiment task was continued in 2015, and again
in 2016. Researchers submitted a variety of models to evaluate the sentiment of aspects
on sets of reviews for laptops, restaurants, and hotels. The highest scoring systems in the
SemEval 2015 Task 12 used maximum entropy and support vector machine (SVM) mod-
els with bag of words (BoW), verb and adjective lemmas, bigrams after verbs, negation
terms, punctuation, point-wise mutual information scores, part of speech tags, and other
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features [109, 209]. The results presented were marked as either constrained or uncon-
strained systems. Unconstrained systems were allowed to use data outside the training data
provided, while constrained systems could not. The top two scoring models were uncon-
strained but the top scoring constrained system used Brown clusters in addition to other
features. These are counts of how many words in the sentence belong to semantic clusters
of words derived in previous work [65]. Other entries used similar features with several
entries using SVM models and a single entry that relied on an unsupervised model.

2.2 Discourse and Dialog

Dialog systems research has grown in recent years and examines methods for construct-
ing systems that can hold conversations with a user, either for some particular purpose or
end-goal, or for general purpose conversation. There is also a body of research related to
discourse analysis and dialog that seeks to understand the meaning of utterances in conver-
sation and the effect of context on their meaning [60].

Discourse analysis approaches have been used to examine language to reveal social
behavior patterns. Discourse structure has been applied to chat communication to iden-
tify and visualize message content and interaction structures [71]. This work focused on
visualizing aspects such as conversation complexity, overlapping turns, distance between
messages, turn changes, patterns in message production and references. In addition, it also
proposed graph-based methods for showing coherence and thread patterns during the mes-
saging interaction. Other work inferred social structures in chat-room conversations, using
heuristics based on participants’ references, message response time, and dialog sequences
and represented social structure using graph-based methods [184]. Similarly, other work
looked at extracting networks of biographical facts from speech transcripts that characterize
the relationships between people and organizations [84].

Speaker behavior in instant messaging services has been widely studied for tasks such
as dialog act tagging and discourse analysis. Studies have attempted to classify messages
into actions, such as ‘greet’, ‘accept’, or ‘reject’ for online messaging, customer service
interactions, and many other settings [44,80]. Other work has focused on the understanding
of speakers, and detecting the emotion they are expressing [116].

Many dialog corpora exist. Recent work on building task-oriented and end-to-end dia-
log systems has used corpora from Twitter [175] and specific types of chatrooms, such as
the Ubuntu chat corpus [111]. The construction of such datasets is motivated by the desire
to have more useful dialog systems. Although much can be learned from these corpora,
systems often also require commonsense reasoning to be effective [177]. One of the most
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relevant corpora to our work is the NUS SMS corpus, which contains publicly released text
messages, however the authors could not collect messages received, restricting their analy-
sis [22]. Switchboard, a corpus of about 2,400 phone conversations covering 70 topics, has
been one of the most widely examined [55].

Recent work has looked at the quality of generated dialog responses and questioned au-
tomatic evaluation metrics [138]. Dialog systems trained to maximize response likelihood
tend to favor short and vague responses that are applicable to a wide number of circum-
stances. More recent work attempts to encourage these systems to generate more diverse
responses by modified objective functions and adversarial learning [48, 208]. Recent work
has also focused more on personalization. Most of this work is in the open-domain set-
ting, though some does focus on goal-oriented systems [112]. Goal-oriented dialog has
used demographics (i.e. age, gender) to condition system response generation, showing
that this relatively coarse grained personalization improves system performance [85]. A re-
cent open-domain study constructs an artificial dataset of personas containing random facts
about the persona like ‘I love the beach’ or ‘I am on a diet now’ [207]. Crowd workers are
then paired together and asked to have a conversation as if they were a person with those
persona attributes. This is not the most realistic scenario, and the resulting dataset does not
have a large volume of data per user, though it has led to other work in this area, which
has attempted to construct more realistic corpora [121]. It has also led to personalization
techniques which use meta-learning in order to quickly adapt to new users [114]. Previous
work had not used meta-data about personas and had used movie scripts and a set of tweets
with a small number of tweets per user [106].

2.3 Language Modeling

Many language models exist and recent work has greatly increased the performance of gen-
eral language models and language model pretraining for downstream tasks. Past work has
often used language models for speech recognition and translation, but in our work, we use
them to evaluate word embeddings. Work on ELMo uses bidirectional language models to
pretrain encoders that can provide contextualized word embeddings for downstream tasks.
The input text is fed into the pretrained language model and hidden layers can be weighted
for specific downstream tasks [148]. The work on BERT improves upon this by training the
model while masking tokens in the input as a new way of pretraining that allows the model
to learn from both the right and left contexts at the same time [33]. While transformer based
models such as GPT-2 now dominate transfer learning, LSTMs continue to be competitive
in language modeling without massive compute resources [25,37,108,123–125,127,159].
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These large transformer models bring additional complications. Fine-tuning models in
low data settings is known to be difficult and highly variable [36]. Similar transformer
models have been used for controlled generation. One of these models, Grover, was devel-
oped for news generation and conditioned on meta-data including domain, date, authors,
and headline [201]. No ablation is performed, and though it would be interesting to com-
pare to a transformer method that conditions on authors alone, we opted for a model that
is faster and cheaper to train (Grover-Mega was trained for two weeks and cost around 25k
USD [201]). Additionally, when fine-tuning models for new users, little data is available.
Contextualized embedding models often require a large amount of data to train effectively
and recent work has shown that they are competitive with static embeddings in [9]. Our
ideas in Chapters 6 and 7 are orthogonal to this prior work and our findings may apply to
transformers as well, but these remain open questions.

One of the recent state of the art language models is that of Merity et al. (2018) [127,
128]. This language model uses an ASGD weight-dropped (AWD-LSTM) architecture
which takes advantage of recent advances in regularization. Many subsequent models were
based on the AWD-LSTM, notably, FRAGE, which along with the Mogrifier LSTM obtain
substantial improvements over AWD-LSTM [56]. The authors of FRAGE observe that rare
and frequent words occur in different subregions of the embedding space, even when they
are semantically similar and add a component to their system to discriminate between rare
and frequent words jointly while training. The Mogrifier LSTM is a modification to the
LSTM architecture that conditions the input on the recurrent cell state and achieve state-of-
the-art results on several language modeling tasks [124]. In this thesis, we are concerned
with improving language models with personal information and are not aiming for state-
of-the-art performance on general datasets. We find that the AWD-LSTM is relatively
fast to run (can be trained on a single GPU in a day) and that higher performing models
tend to be slower, though the Mogrifier LSTM code was not available as of the time of
experimentation. We therefore find the AWD-LSTM suitable for our experiments.

When personalizing, it is often the case that little or no data is available for a new
user. This relates to work on fine-tuning models trained on larger data sets and to the
cold-start problem. Recent work has explored training a model to predict what data will
be most informative for fine-tuning [5]. The similarity metrics that we derive are used to
select data for fine-tuning in one of our methods of leveraging similar user data, however
we consider indivisible sets of data grouped by author. The cold start problem is a well-
known problem in recommendation systems. A great amount of previous work addressed
how to recommend items to new users, about whom the system has little or no history,
often with a focus on matrix factorization methods [210]. One study approached language
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modeling as a cold-start problem, in that they had no writing from a user, though they had
a social network, from which they interpolated language models from users linked in their
social graph, though for some applications this network may not exist, or may also provide
little data as a new user may have few connections [77]. Personalized language models
have also been used for query auto-completion by using factored recurrent RNN cells and
learned single-vector user representations [81].

King and Cook (2020) considered interpolating, fine-tuning, and priming language
models as methods of personalization [93]. They also analyzed model adaptation for
models trained on users with similar demographic factors, inspired by previous work, that
showed that these demographic factors could help model a variety of natural language pro-
cessing tasks, and found that personalized models perform better than those adapted from
similar demographics [113]. Other work on interpolating models for personalization has
examined related topics, with a focus on handling OOV tokens [170].

2.4 Word Embeddings

A vast amount of work has been done on word embeddings. We focus on learning and
applying embeddings, and then, of particular relevance to this thesis, we discuss the biases
embeddings learn and methods for learning “user” embeddings.

2.4.1 Learning Embeddings

Much previous work in natural language processing has analyzed the usefulness of word
representations of varying sparsity, dimensionality, interpretability, and computational costs.
Two of the most salient of which are relevant to this work are word2vec and GloVe [130,
146]. Word2vec is a shallow neural network usually trained in one of two settings. The
skip-gram architecture is trained on word pairs occurring within a prespecified distance
from each other, taking one word as input and trying to predict the other, while the continu-
ous bag-of-words setup uses the neighbors of an unknown word to predict that word. Many
optimization techniques are usually applied to word2vec to speed up training. Being able
to quickly train a shallow network allows researchers to apply it to larger datasets and learn
higher quality representations. These can be extracted from the model from the input layer,
or if a normal softmax function is used, they can be combined from the same-sized weight
matrices at each layer. GloVe is another unsupervised method that derives word represen-
tations from factoring the co-occurrence matrix of terms in a corpus. They formulate the
least squares regression over this matrix to enforce that words are not weighted to heavily
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as a result of their frequency. This objective is similar to singular value decomposition used
in latent semantic analysis [31]. Resulting embeddings can be used for the same tasks as
word2vec and show competitive performance.

Many techniques for embedding words can be applied to other structures as well.
Node2vec is an algorithm for learning distributed representations of nodes in a graph by
performing biased random walks over the nodes and feeding the sequences to a skip-gram
architecture [61]. Other work has examined learning word embeddings jointly with vector
representations of users, also using a graph structure, provided by the social network [202].

There has been work in specializing word embeddings, by incorporating external knowl-
edge. This is done either by modifying the skip-gram objective function to jointly learn
word representations and enforce certain relationships between the words [92] or by a sec-
ond optimization to adjusted the pretrained embeddings, called retrofitting [53]. This usu-
ally involves knowledge that words should be closer together (e.g. synonyms), that words
should be farther apart (e.g. antonyms), and that to some degree the original embedding
space should be preserved.

Specializing word embeddings can be thought of in different formulations, depending
on the type of data that is available, and the desired output. Work on geographically situ-
ated language has learned word embeddings from tweets with geotags by jointly learning
a general word embedding matrix from all data, and a state-specific matrix of the same
dimensions for each state. This is done by summing the general matrix output and the
state matrix embeddings, choosing the state matrix by the geotag of the text and only up-
dating that state-specific matrix during backpropagation [11]. Other work has looked at
aligning word vectors learned in different embedding spaces by learning a projection based
on known seeds, that should be the same in both spaces. The idea is that one embedding
space can benefit from another trained on different data and has been shown to be effective
across embedding spaces in different languages [86] and for fine-tuning from one domain
to another [16].

Some work has attempted to learn word embeddings specific to groups of individuals
who share a common attribute [50]. This work learns word embeddings for male and female
speakers who live in the USA and India using a skip-gram architecture that learns a separate
matrix for each location and gender. They learn embeddings on data from Google Blogger,
and explore using them for word association tests. Related work learns personalized word
embeddings using two methods. One retrains a word2vec model on each individual’s data,
while the other keeps the original trained skip-gram layers and inserts a user-adaptive layer
in the middle that is tuned to an individual. The models show comparable performance on
a sentence completion task [110].

12



Various subword encodings exist, including character-level and byte-pair encodings,
which have been shown to improve language model results and our work could be extended
to these encodings [168]. Other work has examined subword embeddings from unigram
language models that often outperform byte-pair encoding [18]. Word-level embeddings
are easier to interpret in the analyses we perform and to apply to downstream tasks we
consider.

A recent framework to learn user embeddings was built on the sentence embeddings
generated by BERT [197]. By using the learned user embeddings to predict gender, detect
depression and classify MBTI personality, they concluded that their embeddings incorpo-
rate intrinsic attributes of users. In our work, user embeddings are learned in a different
approach, and we focus on how to use similarity calculated from user embeddings to build
better language models.

2.4.2 Applying Embeddings

Word vectors are frequently used in downstream tasks and recent work has shown that their
effectiveness depends on domain similarity [9,149]. For language modeling, previous work
explored random and pretrained embeddings and found improvements, but did not consider
tying and freezing [94]. In-domain data is also useful for continuing to train contextual
embedding models before fine-tuning [62,64], and for monolingual pretraining in machine
translation [10, 135, 158]. This does not cover the interactions between freezing and tying
we consider.

Tying input and output embedding matrices in language models has consistently in-
creased performance while reducing the number of model parameters [79, 155]. The im-
provement is thought to be because otherwise only one input embedding is updated each
step and the gradient has to propagate a long way through the model to reach it. Subsequent
work has explored more advanced forms of tying, recognizing that the role of the input and
output matrices are not exactly the same [141]. This asymmetry has been found in the ac-
tual embedding spaces learned and shown to have a negative effect on performance [32,47].
These observations match the patterns we observe and provide theoretical justification for
not tying embeddings when possible.

Part of learning and using embeddings involves handling rare words, which remain
challenging even for large transformer models [165]. Recent work has explored copying
mechanisms and character based generation [89], with some success. This thesis focuses
on English, though for other languages, inflectional morphology and other factors may
impact the effectiveness of approaches discussed later chapters [24, 172]. Our work is also
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complementary to concurrent work on producing rare words as output [142].

2.4.3 Embedding Bias

Some of the recent work on embeddings has revealed and attempted to remove or mitigate
racial, gender, religious, and other biases [17, 118]. An adversarial approach was applied
while learning word embeddings to separate the denotation and connotation spaces [187].
The bias in our corpora and embeddings have a societal impact and risks exclusion and
demographic misrepresentation [74]. This means that users of certain regions, ages, or
genders may find natural language technologies more difficult to use. For instance, when
using standard corpora for POS tagging, previous work has found that models perform
significantly lower on younger people and ethnic minorities [73]. Similarly, results on
text-based geotagging show best results for men over 40 [143].

Similar results are starting to be found in embeddings produced by contextual embed-
ding methods [100, 120]. We focus on non-contextual embedding methods because of
their computational efficiency, which is crucial if many separate representations are being
learned. Additionally, there may not be a large amount of available data for underrep-
resented groups and these contextualized models require billions of tokens for training.
Recent work has also shown that static embeddings are competitive with contextualized
ones in some settings [9].

2.4.4 User Embeddings

The closest work to ours is an exploration of demographic-specific word embedding spaces [50].
They trained word embeddings for male and female speakers who live in the USA and In-
dia using skip-gram architectures that learn a separate word matrix for each demographic
group (e.g., male speakers from the USA).

Another line of work used discrete [72] or continuous values [113] to learn speaker
embeddings: a single vector for each user. The speaker embedding is appended to the input
of the recurrent or output layer, and trained simultaneously with the rest of the model. This
idea applies to any contextual information type and was introduced as a way to condition
language models on topics learned by topic modeling [132]. It has since been used as
a way of representing users in tasks such as task-oriented and open-domain dialog [106,
195], information retrieval based on book preferences [3], query auto-completion [81],
authorship attribution [39], sarcasm detection [95], sentiment analysis [202], and cold-start
language modeling [77].
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2.5 Authorship Attribution

Classic authorship attribution is the task of determining which of a fixed set of users is the
author of a given text [176]. We intend to test our personalized word representations on this
task specifically, though authorship attribution has several related tasks. These include the
task of authorship verification, where the classifier determines if a document is written by a
given author or not, it’s related formulation as authorship clustering, author profiling, where
the task is to automatically determine certain characteristics or attributes of authors such
as their age, gender, personality, or native language, and the task of author obfuscation,
where the goal is to alter a piece of writing to mask the original author’s identity [7,19,87].
Annual shared tasks are hosted by PAN and researchers compete for the best performance
on digital forensics and stylometric tasks [153].

Early work on this task used lexical features like word frequencies and word n-grams [96,
176]. Recent approaches to authorship attribution include using character n-gram convo-
lutional neural networks on tweets [173], syntactic trees encoded with convolutional net-
works [206], topic models on texts of various levels of formality [169], and a model that
attends to syntactic and structural information to create document representations [82]. One
study, for which we employ a similar model in Chapter 7, uses neural networks to model
similarity between users and predict authorship [51].

2.5.1 Author Profiling

There have been many studies focusing on inferring author’s characteristics from their writ-
ing, including their gender, age, educational, cultural background, personality, political af-
filiation, and native language [2, 67, 96]. This work has considered linguistic features to
capture lexical, syntactic, structural, and style differences between individuals [96]. The
language of Facebook users has been analyzed to identify aspects such as gender, age,
and personality by looking at group differences on language usage in words, phrases, and
topics [167]. Other work has derived useful information from Twitter profiles, such as
Bergsma [13] who focused on gender classification using features derived from usernames,
and Argamon [6] who found differences in part of speech and style when examining gender
in the British National Corpus. Work in this area has used also used topical, and character-
level features and includes comprehensive research analyzing and comparing the applica-
tion of these features [34].

Some data, such as tweets, can be collected in such a way to capture a useful graph
structure, where neighbors can be used to boost performance over textual features [2].
Rao [161] looked at classifying gender, age (older or younger than 30), political leaning,
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and region of origin (north or south India) as binary variables using a few hundred or
a few thousand tweets from each user. They used the number of followers and follow-
ing users as network information to look at frequency of tweets, replies, and retweets as
communication-based features but found no differences between classes. Hutto [78] an-
alyzed sentiment, topic focus, and network structure in tweeting behavior to understand
aspects such as social behavior, message content and following behavior.

2.6 Social Media

We use social media data with demographic attributes inferred from user posts. Prior work
has explored extraction or prediction of attributes such as age, gender, region, and political
orientation [160, 161]. Work on analyzing the demographics of social media users also
includes race/ethnicity, income level, urbanity, emotional stability, personality traits [122],
and life satisfaction [23, 38]. Every social media program has different biases in how data
is crawled and the population of active users. Recent work has examined how to use demo-
graphics in analysis of social media while ensuring populations are well represented [186].

One particularly relevant study presented a corpus of Reddit users with personality
information as well as some demographics for a subset of users [52]. Unlike our approach,
which is based on text content, they extract information from Reddit flairs, a type of user
tag. Out of their set of 10,295 users, 2,253 are also in our set of users (22% of theirs, 0.5%
of ours) that have one or more demographic labels, confirming the speculation in their
paper that extracting demographics from text is a complementary approach that captures
more information about users in their data. Other work has used Reddit posts to identify
users who were diagnosed with depression [198] and to construct personas for personalized
dialog agents [121].
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CHAPTER 3

Individual Preferences

In order to understand personal preferences, we address the task of targeted sentiment as a
means of understanding the sentiment that students hold toward courses and instructors, as
expressed by students in their comments. We introduce a new dataset consisting of student
comments annotated for targeted sentiment and describe a system that can both identify
the courses and instructors mentioned in student comments, as well as label the students’
sentiment toward those entities. Through several comparative evaluations, we show that
our system outperforms previous work on a similar task.

3.1 Introduction

Sentiment analysis is the computational study of people’s opinions or emotions; it is a
challenging problem that is increasingly being used for decision making by individuals
and organizations [140]. There is a significant body of research on sentiment analysis,
addressing entire documents [1], including blogs [4, 54] and reviews [20, 199]; sentences
[137,200] or otherwise short spans of texts such as tweets [97,139]; and phrases [183,196].
More recent work has also addressed the task of aspect sentiment [101, 151, 181], which
aims to address the sentiment toward attributes of the target entity, such as the service in a
restaurant [164], or the camera of a mobile phone [21].

In this chapter we address the task of targeted sentiment, defined as the task of iden-
tifying the sentiment (positive, negative) or lack thereof (neutral) that a writer holds to-

ward entities mentioned in a statement. Targeted sentiment had been only recently intro-
duced as a task, to our knowledge with contributions from only two research groups at
the time our experiments were performed, that focused primarily on settings with scarce
resources [133, 204]. While previous work on data sets such as product reviews can give
an accurate measure of sentiment toward products (as explicit targets of the opinions being
expressed in the reviews), some corpora include additional challenges. Targeted sentiment
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addresses the challenge of identifying entities in running text (e.g., Twitter, student com-
ments, utterances in a conversation), and attributing separate sentiment to each mentioned
entity.

Unlike Mitchell et al. (2013), we do not use an artificially balanced data set. Instead we
collected all the utterances from students who talked about whichever entities they chose.
While we do limit the types of entities to only classes or instructors, we do not limit the
specific entities themselves and students can talk about any entities that are relevant to their
previous educational experience. Our method is also somewhat different in that we do not
evaluate subjectivity: all the entities are assigned a positive, negative, or neutral sentiment,
and there are no entities without sentiment.

In our work, we focus on an application-driven task, namely that of understanding
students’ sentiment towards courses and instructors as expressed in their comments. As an
example, consider the statement:

(1) I thought that natural language processing with professor Welch was a

great class.

We want to recognize the targets “natural language processing” (a course) and “Welch”
(an instructor), as well as a positive sentiment toward the course, and a neutral sentiment
toward the instructor. We approach targeted sentiment as a pipeline of two tasks: (1) entity
extraction, which aims to identify the entities of interest (in our case, courses and instruc-
tors); and (2) entity-centered sentiment analysis, which classifies the sentiment (positive,
negative, neutral) held by the student writer toward those entities.

Section 3.2 describes the data used for our experiments. Section 3.3.1 shows how en-
tities are extracted from text for use in targeted sentiment analysis, and Section 3.3.2 de-
scribes how the sentiment held toward these entities is classified. An overall evaluation of
our system and comparison with previous work are presented in Section 3.4, followed by a
discussion and conclusions in Section 3.5.

3.2 Dataset

As we are not aware of any dataset consisting of statements describing courses and in-
structors, and the sentiment that the writers (students) have toward them, we collected our
own dataset. We extracted sentences from a Facebook student group where students de-
scribe their experience with classes in the Computer Science department at the University
of Michigan, as well as from a survey run with students in the same department. The final
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data set consists of 1,042 utterances written by both graduates and undergraduates, describ-
ing both classes and instructors that the students had/interacted with. Table 3.1 shows three
statement examples drawn from our dataset.

Student utterance Annotation

I thought that introductory program-
ming concepts was a difficult class and
I did not like it.

〈class name=introductory programming con-
cepts, sentiment=negative〉

Professor Williams is my favorite
teacher that I’ve had so far.

〈instructor name=Williams,
sentiment=positive〉

I took CS 203 last Winter. Davis was
teaching and I thought the class was
excellent.

〈class name = CS 203, sentiment=positive〉
〈instructor name=Davis, sentiment=neutral〉

Table 3.1: Sample student utterances from our dataset along with annotations.

All the utterances were first manually annotated by one of the authors to identify courses
and instructors. As often done in entity extraction methods, we identify entities using an
I(nside) O(utside) B(eginning) model. For instance, given the text “I am enrolled in CS
445.”, and assuming the entity to be extracted is a course name, the annotation would
include the following labels “IO amO enrolledO inO CSB 445I .”, indicating that CS is at the
beginning of the course name, 445 is inside a course name, and all the other tokens are
outside the course name.

Classes can be mentioned by department and class ID as in “CS 484,” by ID alone as in
“484,” or by name as in “introduction to artificial intelligence” or “intro to AI.” Instructors
are mentioned by name, but could be mentioned by first, last, or first and last names. In
total, the 1,042 utterances include 976 class mentions and 256 instructor mentions, for a
total of 1,232 entities.

The perceived sentiment toward each entity was also manually labeled by one of the
authors as either positive, negative, or neutral. When no explicit sentiment is expressed to-
ward an entity, it is assumed to be neutral. If no sentiment is evident from a given utterance,
it is assumed to be neutral. Table 3.1 shows the annotations for the three sample utterances
from our dataset.

To calculate inter-annotator agreement for the identification of entities, a second anno-
tator labeled 100 utterances from the data set, containing 1,263 tokens. Of these, 1,067
were mutually labeled as not being part of any entity. Of the remaining 196 tokens, 2%
were not in agreement. Including all tokens, agreement was measured as 0.987 using Co-
hen’s kappa. These two percent were two instances where the human judges disagreed
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on whether or not a sequence of tokens was a course name (i.e., an entity that needed to
be annotated) or simply a course description. For example, in the sentence “I believe that
databases are a crucial part of computer science and 520 was interesting,” while “databases”
is part of the class name, one annotator decided that the word was simply a description of
the content of the course and not an entity.

To calculate inter-annotator agreement for sentiment annotations, a second annotator
individually labeled all 1,232 entities. The agreement between the two annotators was
measured at 77.7%, which gives a Cohen’s kappa of 0.661 considered to be good agree-
ment. Agreement was calculated as the percentage of entities for which both annotators
assigned the same label. Of the annotator disagreements, 10.7% were neutral-negative
disagreements, 11.2% neutral-positive disagreements, and 0.2% positive-negative.

3.3 Targeted Sentiment Analysis

We address this task as a pipeline of two steps. We first identify the target entities (i.e.,
courses and instructors), followed by a classification held by the student writer toward
those entities. In the following, we describe and evaluate the method used for each step,
and compare the results obtained against the state-of-the-art.

3.3.1 Entity Extraction

As mentioned before, we use an IOB model to identify entities in the text. We therefore
apply a classification process to every token in the input text. For each token, we build a
feature vector, using the following features:
Core features. These include the current word, the case and part-of-speech of the current
word, the previous two words; features are also derived from the two words neighboring
the current word, which are computed the same way as for the current word.
Lexicons. We record the presence/absence of words in two custom lexicons: one consisting
of the professor names gathered from the University of Michigan; the second one including
all the words used in the names of the classes offered in the Computer Science department
at the same university. The lexicon features are generated for the current word as well as
each neighboring word.
Professor titles. We use a list of titles, such as “Dr.” or “Prof.” to assist with the identifi-
cation of professor names. The list was compiled manually, and consists of 15 tokens. A
feature is generated to indicate whether a token belongs to this list or not. 38% of utterances
in the corpus contain professor titles.
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Sequence. Students often use a subset of the words in a class name to refer to it. The
sequence feature is a binary feature that indicates whether the current word is inside a
course or an instructor name sequence, where the courses and instructor names are drawn
from the two lexicons described above.
Acronym. The acronym feature is another binary feature that indicates if the input token is
an acronym of any class or instructor names in the lexicons. It takes the first letters of each
of the words in a name and checks to see if the token matches the concatenated string of
first letters for an entry in the lexicon. It subsequently checks if the removal of any number
of letters, while retaining order, matches the given token. For instance, “AI” and “ITAI”
both match “Introduction to Artificial Intelligence”.
Nearest entity. Sometimes class or instructor names are misspelled, and for such cases
lexicon features may not be effective. We create a feature that checks if the current token
has an edit distance less than three to a word in a class or instructor name in the lexicons. If
a match is found, the feature is set to a value of “C” (course) or “I” (instructor) respectively.
If no token exists, the feature is set to “N”.

As a machine learning algorithm, we use a conditional random field, as it has been
previously shown to be highly effective for such entity extraction tasks [203]. We run a set
of 67-33 train-test splits using stratified sampling. Table 3.2 shows the F-measure results
obtained by our system, which makes use of all the features described above, for each of
the four token types (B and I for courses and instructors). For comparison, we also show
the results obtained with a basic setting, when only the core features are used, as well as the
results obtained with a state-of-the-art entity extraction system available from the Stanford
NLP group [42], which we have retrained using our corpus. Using our system, we see a
statistically significant improvement over the core baseline for all four tokens (p < 0.01).
We also find a statistically significant improvement over the Stanford system for IC and BI

(p < 0.01) but no significant difference for the other two token types.1

To gain a better understanding of the role played by each of the features considered,
we also perform feature ablation, with results for the individual feature sets shown in Table
4.4. We also show the base feature set for comparison.

Interestingly, while lexicon features show the greatest improvement, the titles feature
does not show any improvement over the base features. It is possible that this feature ends
up being subsumed by the neighboring words, included in the base features. The sequence,
acronym, and nearest entity features are all based on the provided lexicons so it is not
surprising that sequence and nearest entity features work well. Among them, the acronym

1Throughout this chapter, we measure the statistical significance of our results by using a paired t-test
with Bonferroni correction using the same 67-33 train-test splits.
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System BC IC BI II

Our system 0.945 0.881 0.922 0.901

Baseline (core features) 0.940* 0.849* 0.863* 0.841*
Stanford (Finkel et al., 2005 [42]) 0.944 0.848* 0.896* 0.908

Table 3.2: F-score figures for the identification of I and B tokens, for course (C) and in-
structors (I), where * indicates a that our system has a statistically significant improvement
for the given token (p < 0.01)

feature appears to be less useful simply because many class names are not commonly abbre-
viated. The most frequently abbreviated name is “AI” for “artificial intelligence”. Classes
are more often referred to by a subset of the words in the class name, which is a case cov-
ered by the sequence feature. This is why we see an improvement in I tokens for classes,
whereas the instructor I tokens do not show an improvement for these features. There are
also fewer I instructor tokens overall in the corpus, which could make it harder to learn the
importance of these features.

Since classes can be identified by an ID number (e.g., “490”) or by a name (e.g. “Ma-
chine Learning”) we can examine the BC token in more detail. If we separate the BC token
into a token for class IDs and a token for class name words, we find that the improvement
using the lexicon, sequence, and nearest entity features is statistically significant only for
the class name words (p < 0.01). There is no statistically significant improvement for the
ID tokens by themselves, which is not surprising given that the identification of such IDs
(most of the times consisting of numbers) is an easy task.

Features BC IC BI II

Baseline (core features) 0.940 0.849 0.863 0.841

Lexicons 0.944* 0.875* 0.915* 0.896*
Titles 0.940 0.851 0.861 0.839
Sequence 0.945* 0.871* 0.858 0.832
Acronym 0.940 0.848 0.860 0.835
Nearest entity 0.944* 0.865* 0.910* 0.895*

Table 3.3: Feature ablation for the identification of I and B tokens, for courses (C) and
instructors (I). A feature that provides results significantly better than the base feature set
is indicated with * (p < 0.01)

We also run an entity-based evaluation, where we use the IOB tokens to construct full
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class and instructor names. This is done by finding the B tokens that have the correct
following sequence of I tokens. If any of the B or I tokens are missing, or are of the wrong
type, the entity is not counted as correct. Table 3.4 shows the precision, recall, and F-score
obtained by our system for the extraction of instructor and class entities, and compares our
results with those obtained with the Stanford entity extraction system.

Our system Stanford [42]

Set Precision Recall F-score Precision Recall F-score

Instructors 0.833 0.888 0.859 0.711 0.802 0.754
Classes 0.920 0.899 0.910 0.886 0.867 0.876
Both 0.900 0.897 0.900 0.845 0.853 0.849

Table 3.4: Precision, Recall and F-score measures for the identification of class and in-
structor entities

3.3.2 Entity-Centric Sentiment Analysis

Once the entities of interest are identified, the next step is to determine the sentiment held
by the writer (student) toward those entities. This is performed as a classification task using
three classes: positive, negative, and neutral. For each candidate entity, we build a feature
vector using one of the following configurations:
Weighted bag-of-word. The default model is constructed using unigram counts. The first
step is to extract a set of the words that exist in the training set. Using this vocabulary
set, counts are constructed for every utterance. These counts are weighted based on their
distance, in number of tokens, to the target entity in the statement. For each occurrence of
each word, the feature is computed by

∑
i∈I 1/die, where I is the set of occurrences of that

word and d is the distance (in words) to the target entity e.
Tree weighted n-grams. A sentence is not linear in nature. A sentence contains clauses
and phrases that can be grouped into a tree structure. Consider the sentence “I thought that
CS 203 was going to be good, but it was awful”. In this sentence “CS 203” is the target
entity and we find that a positive sentiment word “good” is closer (using linear distance in
number of tokens) to the entity than the negative sentiment word “awful,” which represents
the actual sentiment toward the entity. If we construct a constituency parse tree from this
sentence, and calculate the distance as the number of hops between nodes in the tree, then
the negative sentiment word is actually closer to the entity word. For each word in an
utterance, we calculate this feature as the number of edges in the parse tree between that
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word and the target entity. For instance, for the example shown in Figure 3.1, the distance
between “awful” and the target entity “203” is six, while the distance between “good” and
“203” is eight.

Figure 3.1: Example sentence, “I thought that CS 203 was going to be good, but it was
awful”, showing the parse tree weighting for counts using the number of node hops between
a given word and the target entity.

Weighted sentiment lexicons. We also implement a feature based on the presence/absence
of words from two sentiment lexicons: Bing Liu’s lexicon [75], and the MPQA lexicon
[163] [196]. These are two of the most commonly used lexicons in recent sentiment work,
and contain 6,789 and 8,222 words respectively, labeled as positive, negative, or neutral.
For each word in the utterance, we now generate four features: one simply reflecting the
weight of the word (calculated as described before, as a distance to the target entity), and
the other three reflecting whether the word appears as a positive, negative, or neutral word
in any of the lexicons; these three latter features are again represented as weighted distance
scores.

We use an SVM classifier, with a grid search for the SVM cost and gamma parameters
performed using three-fold cross validation on the training set. Training and test splits
contained approximately 67% and 33% of the data respectively, stratified as mentioned
in Section 3.3.1, such that the two entity types (instructor or class) and each of the three
sentiment class labels are roughly evenly spread across the train, development, and test
sets.

Table 3.5 shows the results obtained with our sentiment analysis system. Note that
all the experiments are run on the gold standard set of entities (i.e., manually annotated
entities). For comparison, we also report a majority baseline, calculated as the percentage
of instances in the entire data set that are neutral, as well as the inter-annotator agreement,
as described in Section 3.2.

We also include the result obtained by using the Stanford sentiment analysis tool [174].
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We do not retrain this model on our own data, as this would require additional node level
annotation for the parse tree of each utterance; instead, we use their sentence level senti-
ment analysis, which assigns an integer score of 0-4 to each sentence, ranging from “very
negative” to “very positive”. We assign the sentence level scores to each entity contained
within that sentence. The five values can be mapped to the three values used in our data
set in a number of ways, but the way that maximizes the accuracy over our entire data set
maps 0 to our “negative,” 1 and 2 to our “neutral,” and 3 and 4 to our “positive.”

Feature Accuracy

Our system 69.5%

Majority baseline 52.8%
Stanford (Socher et al., 2013 [174]) 62.3%
Annotator agreement 77.7%

Table 3.5: Sentiment accuracies for our system compared to a majority baseline, the Stan-
ford sentiment analysis tool using recursive neural tensor networks, and the inter-annotator
agreement.

For a deeper analysis, Table 3.6 shows the results obtained by our various features.

Feature Accuracy

Weighted bag-of-words 67.9%
Tree weighted n-grams 65.6%
Weighted sentiment lexicon 69.5%*

Table 3.6: Sentiment accuracies of different feature models where * indicates a feature
whose difference from the default linear weighted bag-of-words is a statistically significant
improvement (p < 0.01).

3.4 Overall Evaluation and Discussion

In the previous section, we described the methods used for each of the two stages of tar-
geted sentiment analysis, along with results obtained at each stage. We now perform an
overall evaluation of this task, and compare our system with previous methods for targeted
sentiment analysis.

First, we evaluate the correctness of the sentiment at the entity level, where an entity
is marked as correct only if both the entity and the writer’s sentiment toward that entity
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are correct. Table 3.7 shows the precision, recall, and F-score obtained for instructor and
classes individually, and for all the entities together, assuming: (1) ground truth identifica-
tion of the entities (i.e., manual annotations); and (2) automatic annotation of the entities
using our system from Section 3.3.1.

Entities Precision Recall F-score

Ground Truth Instructors 0.643 0.643 0.643
Ground Truth Classes 0.710 0.710 0.710
Ground Truth Both 0.695 0.695 0.695

Extracted Instructors 0.581 0.578 0.580
Extracted Class 0.571 0.599 0.585
Extracted Both 0.573 0.600 0.586

Table 3.7: Micro-averaged Precision, Recall, and F-score for full targeted sentiment analy-
sis, for both courses and instructors, using ground truth or automatically identified entities.

Second, we compare the results of our system with previous work by Mitchell et al.
(2013) [133]. In their work, the authors use a dataset consisting of 2,350 English tweets
containing 3,577 volitional entities, which include PERSON and ORGANIZATION enti-
ties. They evaluate the performance of the sentiment on entities by checking only the “B”
token from the IOB annotation to see if the associated sentiment is correct. If so, it is
counted as a true positive. Note that this is less constrained than our evaluation, which also
requires that the subsequent I tokens be correct.

In order to allow for a comparison between our system and theirs, we train our pipeline
model on their data, by using the same ten-fold cross validation that the authors provided.
Note that for this comparison, in the entity extraction step of our system we do not use the
lexicon, professor title, acronym, sequence, or nearest entity features because of their do-
main specificity (these features are specifically aimed at finding sentiment toward courses
and instructors, and are not expected to be useful on a dataset of general Twitter data).
The results of this comparison are shown in Table 3.8. Mitchell et al. (2013) examine tar-
geted sentiment with only volitional entities and do not use “neutral” as a class for targeted
sentiment. For these reasons we include the second and third rows in Table 3.8.

Additionally, because previous work had purposefully not used certain features so that
their method could be applied to low resource languages, we also show the performance
of the system when we remove the part-of-speech features from our entity extraction step.
Note that some of the previous work used accuracy, while other work used F-score; we
therefore report both.
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We also compare our system to Zhang et al. (2015), who use a neural network model
and report their F-score performance on the same corpus [204]. They perform two eval-
uations, one that uses only positive/negative sentiment, and one that includes the neutral
class. We find that our model is comparable when part-of-speech tags are excluded, but
outperform the neural models when they are included.

Method Accuracy F-score

Our system 68.3% 0.687
Our system, positive/negative sentiment only 68.6% 0.664
Our system, volitional entities, positive/negative sentiment only 70.8% 0.703
Our system, no part-of-speech features 28.9% 0.393

(Mitchell et al., 2013 [133]) 30.8% NA
(Zhang et al., 2015 [204]) NA 0.401
(Zhang et al., 2015 [204]) positive/negative sentiment only NA 0.279

Table 3.8: Accuracy and F-score for different versions of our system, as compared to pre-
vious work.

Discussion. There are a number of errors that are made by our system. Some of the errors
come simply from fully or partially missing entities in the first stage of the pipeline. For
instance, we found that the named entity recognition fails on some professor names, mainly
because some professors use names other than those listed in the online resources that we
used to generate our lexicons. A few other less common errors included recognizing first
and last names as separate people, and combining class names listed after each other, e.g.
“natural language processing and compilers.”

Another batch of errors have correctly recognized entities, but incorrectly classified
sentiment. The most common of these cases is incorrectly assigning the neutral class to an
entity; the classifier may be somewhat bias toward this class given that it is assigned to 52%
of entities in the corpus. Another error involves having multiple entities in a sentence and
assigning the sentiment expressed to the wrong entity. For example, in the sentence “I think
that John Smith was an interesting teacher in natural language processing”, positive senti-
ment is incorrectly assigned to “natural language processing.” Another type of error comes
from unresolved pronouns. In the utterance, “John Smith taught the data mining class that I
took. He was an amazing teacher and I wish that he would teach machine learning,” “John
Smith” is classified as having neutral sentiment, rather than positive; coreference resolu-
tion could help if we reweighted the features taking into account the correct pronoun set as
entity words.
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3.5 Conclusions

We addressed the task of targeted sentiment analysis in the context of understanding the
sentiment that students hold toward courses and instructors. We introduced a new anno-
tated dataset, collected from students at the University of Michigan, and proposed new
features for the extraction of entities and the classification of the sentiment toward these
entities. We performed evaluations of each of the two stages in our pipeline model, and
showed that both our entity extraction method and the entity-centric sentiment analysis
have performance that is competitive with the state-of-the-art. Moreover, in an overall
evaluation of our pipeline, we showed that our system exceeds the performance of two
previously proposed systems for targeted sentiment analysis [133, 204].

Through several feature ablation analyses, we found that lexicon features play an im-
portant role in this task. Further investigation of the use of such lexicons, as well as that of
more advanced representations of domain-specific knowledge such as knowledge-graphs
may yield stronger results.

The work described in this chapter was part of the Sapphire Project2 and was used in the
construction of a dialog system for undergraduate academic advising. The work described
in this chapter was originally published in [190, 191].

2http://sapphire.eecs.umich.edu/
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CHAPTER 4

Conversational Behavior

In order to look at how personal preferences affect conversational behavior, we need a
source of personal conversations. In this chapter, we obtain and study personal messaging
data from SMS and social media platforms. We explore the use of longitudinal dialog
data for two dialog prediction tasks related to conversational behavior: next message, and
response time prediction. We show that a neural model using personal data that leverages a
combination of message content, style matching, time features, and speaker attributes leads
to the best results on conversational behavior prediction, with error rate reductions of up to
15% compared to a classifier that relies exclusively on message content and to a classifier
that does not use personal data. We then delve deeper into a single individual’s data in
order to perform a more in-depth analysis.

4.1 Introduction

Most dialog research provides an overall view of speakers’ language and interaction behav-
iors based on data from recorded spoken conversations, movie scripts, social network mes-
saging, forums, instant messaging, and audio subtitles [12, 27, 28, 83, 105]. These corpora
contain a diverse set of speakers. Thus, the developed models are not tailored to individual
speakers, who might have preferences and behaviors different than the consensus trends.

In this work, we address discourse analysis in personal dialog data. In particular, we
seek to explore what can be learned from personal messaging history by analyzing lan-
guage usage and communication patterns. We conduct our analyses over a large set of
conversations obtained from the instant messaging history of several individuals. The con-
versation set contains 1.3 million messages from a five-year time span. We label speaker
social relations using seven categories – gender, school, work, relationship status, family,
age, and cultural background. We then use psycholinguistic-inspired analysis to analyze
language usage within groups in these categories. We use the insights from these analyses
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Participant Other All

Total Messages 690,767 647,026 1,340,338
Average Unique Messages 63,039 62,907 123,568
Total Tokens 4,992,575 5,069,745 10,062,320
Average Unique Tokens 19,023 23,265 32,195
Average Tokens / Message 7.23 7.83 7.52

Table 4.1: Distribution of messages and tokens (words, punctuation, emoticons) in conver-
sations. Unique averages are computed at the participant level.

to derive features that represent the message content, messaging frequency and messaging
timing. We also derive several features to capture interaction behaviors, including word
usage and language matching across conversational groups. We use these features in com-
bination with standard word embeddings to conduct two classification tasks: (1) predicting
the next message in the conversation (based on the most common utterances); and (2) pre-
dicting the message response time. For both tasks, models with our features and trained on
personalized data perform best.

4.2 Dataset

To enable our experiments, we invited individuals to contribute their personal messaging
history for a study on personal longitudinal data.1 To ensure data privacy, we recruited
participants who could run our code on their own computers, keeping message content
private and sharing only aggregate statistics with us. We recruited eight participants and
provided them with detailed instructions on how to prepare the data and run the scripts.

We define the following conversation units: A message consists of all the text written by
a participant in a conversation right before they press the send key. A turn change occurs
when the author of the current message differs from the participant in the previous message.
Note that a turn can be composed of multiple messages. We define a conversation as a
sequence of turns between two individuals. Message response time is the amount of time
that has passed between a message from a user and the previous turn change. On these
platforms conversations continue indefinitely, but shifts in response time can indicate when
a synchronous exchange has ended.

All messages sent and received by participants via Google Hangouts, iMessage, and
Facebook Messenger are considered, covering a range of short message service systems.

1The study was approved by the Institutional Review Board (IRB) at the University of Michigan.
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Figure 4.1: Distribution of number of messages and tokens between the (P) participants
and their conversation partners (O) in our dataset.

Figure 4.2: Shared attributes between participants and their conversation partners

The data spans a decade and contains about 1.3 million messages,2 but we focus on a five
year span containing the majority of messages: 2012 to 2017. We also exclude multi-party
conversations and conversation partners with fewer than 100 messages. This leads to a final
set of 508 interlocutor pairs and contains all the messages from conversations held between
the participants and other individuals during 2012-2017. Table 4.1 shows corpus statistics.
The data contains slightly more sent messages than received, but sent messages are slightly
shorter.

Annotation of Social Interaction Categories

To enable our analyses, each participant manually labeled their conversation partners with
seven attributes that describe their social relationship. We chose attributes that they were
likely to know about the people they converse with and may impact the way they write.
The attributes are defined as follows:

Family: The participant and the other speaker are related.

2There may be some overlap if participants spoke to each other though we cannot quantify it because we
do not have access to the raw data.
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Table 4.2: Two examples of five-message context windows (ctx1 and ctx2) in our dataset.

Message Number Time Message

ctx1msg0 15:45:06 Participant: Wanna grab coffee?
ctx1msg1 15:45:20 Author: yeah
ctx1msg2 15:45:25 Participant: Sweet!!!!
ctx1msg3 15:45:29 Participant: Meet in the lobby?
ctx1msg4 15:45:52 Author: okay

ctx2msg0 12:21:00 Participant: Perfect!!
ctx2msg1 15:56:22 Participant: Wanna go to get Thai?
ctx2msg2 16:01:18 Participant: I’ll take it you’re sleeping lol
ctx2msg3 16:19:59 Author: Yeah
ctx2msg4 16:20:08 Author: I mean yeah I was sleeping

Romantic Relationship: The participant and the other speaker’s relationship was at some
point not platonic.
Relative Age: The participant is older, younger or the same age (±1.5 years) as the

speaker.
Childhood Country: The participant grew up in the same country as the other speaker.
Same Gender: The participant is the same gender as the other speaker.
School: The participant and the other speaker met while attending school.
Work: The participant and the other speaker know each other because they worked to-

gether.

These attributes and their values are used during the analyses and experiments presented
throughout this chapter. We analyze aggregate statistics of our corpus including total mes-
sages and tokens exchanged, the distribution of attributes, and message production across
time.

4.2.1 Message and Speaker Distributions

Figure 4.1 shows the distribution of messages and tokens across participants. The leftmost
plot shows participants had from a few thousand to a few hundred thousand messages.
Distributions are similar for participants and their partners across the number of messages,
tokens, and unique messages. The distribution of unique tokens differs, providing some
evidence for variation in writing, as each value for O is based on a set of individuals, while
each value for P is based on one individual (the participant). The average number of tokens
per message ranges from 5-12 with the exception of one outlier, whose messages were
significantly longer.
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Figure 4.3: Distribution of messages over time. Months are grouped by season. Totals per
season are listed in the inner circles with bars from 85k to 115k messages.

We also examine the distribution of speaker attributes over conversation partners and
across participants. Figure 4.2 shows this by representing the values ‘yes’ (school, work,
romantic, family) or ‘same’ (gender, age, childhood country) for each attribute. For in-
stance, the gender plot shows that the median proportion of conversation partners of the
same gender as the participant is 54%. Note that while age takes three values the plot
shows only Relative Age=same. The range is similar for older conversation partners but
ranges from 11-37% for those who are younger.

4.2.2 Message Production Across Time

To explore messaging behavior over time, we analyze message exchange trends during
conversations based on the time they were sent and speaker response time.

Figure 4.3 presents the distribution of messages over various periods of time: hour of
the day, day of the week, season of the year, and across years. Looking at the distribution
over months and seasons (middle circle), there is a slight increase during autumn. Looking
at the distribution over hour of the day (top left graph), there is an increase until midnight
and then a dip in the morning. Looking at the distribution over days of the week (top right
graph), there is a decrease as the weekend approaches. This may be instant messaging
complementing real-life communication, picking up when real-life communication slows
down (beginning of the week) and dropping down when real-life communication picks up
(end of the week). Finally, looking at the distribution across years (bottom left graph), there
is a peak in late 2015, which might be related to life events, such as starting a new job or
starting school.

Figure 4.3 also shows the distribution of message response times with a log-log scale
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(bottom right). The graph shows that usually responses occur within a half-hour interval,
though there are many up to a day apart, and some a year or more apart.

4.3 Model

During our experiments, we use a bidirectional long-short term memory network (BiL-
STM) as our baseline model. We use a sequence of five utterances to define a dialog
context window.3 The input for our model is the first four messages in the context window,
in which all utterances are concatenated but one token is used to represent the beginning
of an author utterance and another token is used to represent the beginning of any other
speaker’s utterance. The last utterance in the window is the message for which we perform
a classification. We use the same implementation to incorporate additional features. For
the BiLSTM at time t we use the following standard LSTM equations [68, 166]:

it = σ(Wiiwt + bii + Whiht−1 + bhi) (4.1)

ft = σ(Wi f wt + bi f Wh f ht−1 + bh f ) (4.2)

gt = tanh(Wigwt + big + Whcht−1 + bhg) (4.3)

ot = σ(Wiowt + bio + Whoht−1 + bho) (4.4)

ct = ft � ct−1 + it �gt (4.5)

ht = ot � tanh(ct) (4.6)

Where wt is a message embedding obtained with the GloVe model. We use a projection
layer q with an output dimension equal to the number of classes. To encode the other sets
of features we use the equation for z. For each message of length m we obtain the output
as follows:

p = Wphhm + bp (4.7)

z = Wzhz + bz (4.8)

q = Wq(p+z)(p⊕ z) + bq (4.9)

The model architecture is shown in Figure 4.4. To encode other feature sets, we use

3Context window size is fixed in our experiments but future work could explore prediction accuracy as a
function of this variable.
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another fully-connected layer whose output is concatenated with the LSTM output. In the
baseline case the feature encoders are not used and the context encoding is passed directly
to a classifier or fully-connected layer, from which the softmax of the output gives us a
message prediction or response time.

Hyper-parameters for the network, including hidden layer sizes, learning rate, and num-
ber of epochs, were tuned on a validation set. For message and response time predictions
we tune hidden size in multiples of two from 64 to 512. In our models that use one or more
feature encoders, the concatenated ρ vector is used for decoding. The feature encoder sizes
t will vary depending on which feature set is being encoded. The word embedding inputs
to the context encoder are 300 dimensional.

4.4 Features

Our features are inspired by the group and message production analyses above as well as
linguistic aspects in conversational analysis. Personality of the speaker would be a relevant
feature but is not feasible for us to obtain ground truth as it would require each speaker to
take a personality test. Future work could attempt to gather this data or use a pretrained
model for extracting personality from documents [115]. We define several linguistic, time,
frequency, and interaction features:

Word Embeddings: We obtain word vector representations for each message using the
GloVe Common Crawl pre-trained model [146]. We chose GloVe over other frequently
used off-the-shelf embeddings because its training data is more similar to our data and
we observed a higher token coverage rate than embeddings such as word2vec trained on
GoogleNews [131].
Speaker Attributes: These features aim to represent the relationship(s) between the par-
ticipant and their conversation partner. We derive binary features representing the seven
attributes listed in Section 4.2 for the current conversation partner. If all messages in the
context window belong to the participant this vector contains only zeros. When we are pre-
dicting one of the seven speaker attributes this feature set represents the values of the other
six attributes. Note that we cannot use this feature when training joint speaker attribute
models.
Frequency: This set of features attempts to capture the message frequency patterns ob-
served in Figure 4.3. Our features include the number of messages exchanged between
conversation participants in the past day, week, month, and from all time. The vector also
includes a list of binary values representing the turn change sequence in the context win-
dow.
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Time: During our analyses we observed important differences in message timing across
the day of the week, month, season, and year. To capture these, we define a set of features
including the time elapsed during the first four messages in the context window, the num-
ber of seconds between each of the first four messages, and the day, month, year, season
(winter, fall, summer, spring), and hour of the day of the last message.
LIWC: To capture the semantic categories of text we use the Linguistic Inquire and Word
Count (LIWC) lexicon. For each speaker, we calculated normalized counts for the 73 cate-
gories. The feature set includes the vectors obtained from messages of individual conversa-
tion participants, the cosine similarity between them, and the vector sum of both speakers.
Style Matching: To incorporate information about how the interaction between the partic-
ipant and their conversation partners changes over time, we calculated the degree to which
the speakers match each others language. We use the Linguistic Style Matching (LSM)
metric [57], which quantifies to what extent one speaker’s language matches the language
of another using eight linguistic markers4 from the LIWC dictionary [180]. Specifically,
we calculate LSM over the last hundred messages exchanged and the difference in LSM
from the beginning to the end of the context window.

4.5 Predicting Conversational Behavior

We consider two prediction tasks related to conversation: 1) predicting the next message
in a conversation, and 2) predicting message response times. Our experiments are con-
ducted on context-windows consisting of one message written by a participant and the four
preceding messages. Table 4.2 shows two examples of context-windows.

For each participant, we sample random contexts for training and testing. A separate
personalized model is trained for each participant and evaluated on the same participant’s
test data. For comparison with our personalized models, we also train and evaluate models
on general data. For each participant, the data for the general model is sampled randomly
from all other participants’ data. For both the general and personalized models the test data
is the same. This allows us to measure the impact of having a user-specific model.

4.5.1 Prediction of Next Message in the Conversation

In this task, we must predict which of a small set of messages will occur next in a con-
versation. This is similar to services like Google’s Smart Reply,5 which suggests potential

4These are types of function words; quantifiers, conjunctions, adverbs, auxiliary verbs, prepositions, arti-
cles, personal pronouns and impersonal pronouns

5https://allo.google.com/
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Figure 4.4: The model architecture encodes a context window as a sequence of tokens w1
to wn using a BiLSTM. The encoding is then used in combination with our other feature sets
for classification by taking the softmax over q. In the case of speaker attribute decoding,
separate classifier is used for each speaker attribute.

responses to email and text messages [88]. We structure the task as a multi-label classifi-
cation problem. We use the top five most frequent utterances sent by each participant as
classes. The classes vary slightly but typically include values like ‘yes’, ‘haha’, ‘okay’,
‘oh’, and ‘nice’. We also include an additional category ‘other’, which is a random sample
of 1% of the messages sent by the participant (other than the most common five).

During feature extraction, we take the last message in the context window as the label
to be predicted and use the previous four messages to generate features as described above.
For instance, for the first example in Table 4.2 we assign the label ‘okay’, as it appears
in the most common set, but for the second example we assign the label ‘other’, as this
message is not one of the five most frequent messages.

4.5.2 Prediction of Message Response Time

In this task, we predict the time till the next message. This kind of information can be used
to make conversational agents, such as Microsoft’s XiaoIce, feel more natural.6 We address
this task as a four-class classification problem, where messages are categorized based on
their response time as: (1) the response occurs within 90 seconds of the timestamp of
the previous message; (2) between 90 seconds and 10 minutes; (3) more than 10 minutes
but less than a day; and (4) longer than a day. For this task, the fifth message in the
context window is used to determine the label, and the previous four messages are used to
generate features. For example, the response time labels for the context windows shown in
Table 4.2 are determined by the time elapsed between msg3 and msg4, which fall into the
first category, i.e., the response occurred in under 90 seconds.

6https://blogs.microsoft.com/ai/xiaoice-full-duplex/

37



Next Message Response Time

Majority Class 32.5 65.8
General Message Embedding 38.0 68.0
General All Features 39.0 70.5
Personal Message Embedding 45.5 69.6
Personal All Features 48.3 73.4

Table 4.3: Prediction results averaged across participants. The majority baseline is com-
pared to models that use embeddings only and a model which uses all features under a
general and personal training setting.

The total number of utterances per person (P+O) ranges from 15,000 to 336,000. Two
people had too few common utterances for the common utterance prediction task and were
excluded from these experiments. Perhaps not surprisingly, we notice that there is a large
overlap in common utterances across speakers. The utterance ‘yes’ is in the top two most
frequent utterances for all speakers, and laughter (‘haha’) appears in the top two in six of
the eight participants. We also consider general and personalized models for this task, with
data prepared in the same way as in the message prediction task.

4.5.3 Results

The results for both prediction tasks are shown in Table 4.3. We use an average of 9,500
context windows for next message prediction and 88,000 for response time. We use 80%
of the data for training, and 10% for validation and testing respectively. The results show
that across the participants in our study, our neural model with all features and personal
data performs best, improving over the classifiers that use only message embeddings or
classifiers that do not use personal data.7

In follow up analysis, we found that as the number of messages in an individual’s
dataset increased, the percentage that were short also increased. These messages tend to be
fast and close together, leaving less room for improvement on the response time task. Fu-
ture work could explore the relationship between the number of messages in an individual’s
dataset and the accuracy of models trained on their data.

We also perform an ablation using data from the participant with the largest number
of messages. Table 4.4 shows the results. For the next message prediction task, the time,
LIWC, and frequency features give the largest improvement, increasing classification accu-
racy by 3.5% over the baseline message embeddings model. For response time predictions,

7The next message task excludes two participants who had too few messages.
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Next Message Response Time

Majority Class 34.0 61.9
Message Embedding 46.5 64.4
Message Embedding + Time 47.0 67.5
Message Embedding + LIWC 47.6 64.4
Message Embedding + Style 46.7 64.4
Message Embedding + Freq 47.6 64.8
Message Embedding + Attributes 46.9 64.5
All Features 50.0 68.0

Table 4.4: Ablation results shown for each feature type and compared to a model that uses
all features, as well as baselines obtained using the majority class or message embeddings
only.
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Figure 4.5: Author’s positive and negative emotion words over time shows an increase in
positivity from 2012 to the end of 2017.

the previous response times are the most useful feature. However, we find that the com-
bined features give an improvement of 3.6%, or a 10% error reduction. The next most
useful features are the speaker attributes and the frequency of past communication.

4.6 Deeper Dive into Personal Longitudinal Dialog Data

Since personal information from the study participants might contain private information
our initial analyses are conducted on aggregated metrics across participants. However,
because one of the participants is also the author of this thesis we are able to use their
subset of 450 thousand messages to illustrate how the analyses and features proposed in
this work can provide important insights into personal communication behaviors.
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Figure 4.6: Normalized LIWC count differences between groups for the cognitive, emo-
tion and social word categories. Group differences are represented by rows. The color scale
shows larger differences in word percentages with lighter colors representing a higher pro-
portion in the first group and darker colors representing a higher proportion in the second
(using the groups defined in Section 4.2). Statistically significant differences are shown
with * for p<0.1, ** for p<0.05, and *** for p<0.01. Significance is tested using an un-
paired t-test over the set of people with Holm-Bonferroni correction [70].

4.6.1 Language Usage Patterns

We examine language usage across the groups the author interacts with using the LIWC
word categories over five years of their conversation history. This analysis can reveal pat-
terns on salient language in conversations with the different groups and provide information
about the nature of their relationship. For instance, in Figure 4.5 we look at the change in
positive and negative words over time and find a steady increase in positive word usage over
time and a relatively constant usage of negative words. This finding is consistent with pre-
vious studies reporting that with increasing age, individuals use more positive words [145].

To look into salient word categories used while talking to different groups, we plot the
use of LIWC classes across the seven groups for the general, emotion, concerns and moti-

vation dimensions as shown in Figure 4.6. From this plot, we observe interesting patterns.
For instance, conversations with coworkers and school mates are more cognitive in nature.
Also, conversations with younger people show more positive emotion, while conversations
outside work express more anger. Moreover, conversations happening between coworkers
do not include topics such as death, home and leisure, which are more personal in nature.

Another valuable piece of information are the topics discussed during the conversation,
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Topic Sample Words

Communication phone, email, send, number, text, message, internet, chat
Positive Affect lol, haha, yeah, like, good, just, nice, dude, fun, man, pretty
Negative Affect don’t, know, feel, people, weird, mean, really, talk, bad
Entertainment game, play, picture, video, buffy, buy
Food & Time going, home, eat, work, food, time, today, gonna, cool, want
Planning go, come, tomorrow, party, tonight, weekend, think, cool, home
Sharing Media youtube, like, good, music, new, make, imgur, site
Read & Write read, paper, write, learning, book, think, interesting, learn, language
Travel pizza, food, airport, russian, english, mom, cat, eat, ‘restaurant’
Living & Money ‘city’, car, buy, live, pay, house, drive, places, money, ‘hometown’

Table 4.5: Manually labeled LDA topics extracted from heuristically segmented conversa-
tions. Sample words were chosen from the top 20 highest probability words for each topic.
Words in quotes represent tokens replaced for clarity and anonymity.

which can help to better understand the author interests and habits. We use Latent Dirichlet
Allocation (LDA) [14] to analyze the topics frequently discussed during the messaging
history. LDA is applied at conversation level and conversations are obtained by splitting
the messages based the time elapsed between the speakers’ messages.8 The topics obtained
from 23,970 conversations are shown in Table 4.5.9 The topics include expressing positive
and negative feelings (Positive Affect, Negative Affect), activities (Sharing Media, Reading

and Writing, Food and Time, Entertainment), Planning, and Travel.
The ‘Travel’ topic has words for food, pets, and family, as traveling often includes vis-

iting family and pets, and going out to dinner. Conversations are often about shared media,
or activities, such as reading, writing, computing, or entertainment (sample words include
games, and references to the TV show Buffy the Vampire Slayer). The ‘begin/end/sleep’
category includes greetings, and things said at the end of conversations (as sometimes con-
versations end when one person is going to sleep).

4.7 Conclusions

In this chapter, we studied a corpus of personal conversations consisting of the instant
messaging history from eight individuals. The analyses were conducted over 1.3 million
messages written over a five-year time span.

8We consider that a new conversation starts when the time elapsed between messages from both parties is
longer than five hours. This number was obtained empirically by testing different segmentation values.

9We extract 10 topics, with the number of topics being selected based on the choice of topics in previous
work.
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We developed several linguistic features inspired by conversational and interaction be-
haviors we observed in the longitudinal data. Our features include message content, style
matching, time features, and speaker attributes. These features were used to address two
classification tasks: predicting common messages and message response times. While the
most common utterances and distribution of response times vary across speakers, we found
that a classifier that relies on a combination of all proposed features and uses personal
data leads to error reductions of up to 15% compared to classifiers that exclusively rely on
message content or are trained on messages randomly selected from other speakers in the
corpus.

Our code is publicly available10 so that others may perform similar analyses and ex-
periments on their own personal longitudinal data or other data, to discover patterns in
messaging behavior and train models for dialog prediction tasks. This work was originally
published in [193].

10https://github.com/cfwelch/longitudinal_dialog
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CHAPTER 5

Relationship Between Interlocutors

An important detail of personalization concerns the nature of the relationship between in-
terlocutors. The way we speak to others depends on how well we know them, past inter-
actions, whether it is a professional relationship or not, and many other factors. In this
chapter, we examine a large dialog corpus obtained from the conversation history of a sin-
gle individual with 104 conversation partners. The corpus consists of half a million instant
messages, across several messaging platforms. We focus our analyses on seven speaker
attributes, each of which partitions the set of speakers, namely: gender; relative age; family
member; romantic partner; classmate; co-worker; and native to the same country. In ad-
dition to the content of the messages, we examine conversational aspects such as the time
messages are sent, messaging frequency, psycholinguistic word categories, linguistic mir-
roring, and graph-based features reflecting how people in the corpus mention each other.
We present two sets of experiments predicting each attribute using (1) short context win-
dows; and (2) a larger set of messages. We find that using all features leads to gains of
9-14% over using message text only.

5.1 Introduction

People spend a significant amount of time using social media services such as instant mes-
saging to communicate and keep in touch with others. Over time, conversation history can
grow quickly, thus becoming an abundant source of personal data that provides the oppor-
tunity to study an individual’s communication patterns and social preferences. Analyzing
conversations from a single individual rather than conversations from multiple individuals
can enable identification of social behaviors that are specific to that individual. Moreover,
longitudinal analyses can help us better understand an individual’s social interactions and
how they develop over time.

In this work we look further at the collection of personal conversations of this thesis’
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author. These messages are from over a five-year span, consisting of nearly half a million
messages shared with 104 conversation partners. We focus our analyses on seven speaker
attributes: a ternary attribute for relative age (younger, older, or same age); and six binary
attributes reflecting whether somebody is the same gender; a family member; a roman-
tic partner; a classmate; a co-worker; and a native of the same country. We explore the
classification of speaker attributes, i.e, the group(s) the speaker belongs to, using a variety
of linguistic features, message and time frequency features, stylistic and psycholinguistic
features, as in the previous chapter, with one additional set of graph-based features. In addi-
tion, we examine the performance increase gained by using six of the attributes as features
to try to classify the seventh.

We analyze linguistic variation in messages exchanged between the author and the other
speakers. We also conduct analyses that look at speaker interaction behaviors, considering
aspects such as time, messaging frequency, turn-taking, and linguistic mirroring. Next, we
apply graph-based methods to model how people interact with each other by representing
people as nodes and speaker mentioning each other as directed edges. We then apply
clustering methods to identify groups that naturally occur in the graph. Finally, we conduct
several classification experiments to quantify the impact of features derived from these
analyses on our ability to determine who a speaker is.

Identifying speaker attributes has important applications within the areas of personal-
ization and recommendation [49, 161]. While a large number of conversations that occur
online are short, such as interactions on Twitter, there are also many social media platforms
where personal dialog may span thousands of utterances. For this reason, we conduct eval-
uations at the level of small context windows, as well as at the speaker level using a large
set of messages from each speaker. To the best of our knowledge, this is the first study
on speaker attribute prediction using personal longitudinal dialog data that focuses on one
person’s dialog interactions with many other speakers.

5.2 Dataset

We use a corpus of text messages from the author’s personal conversations on Google
Hangouts, Facebook Messenger, and SMS text messages. The message set contains nearly
half a million messages from conversations held between the author and 104 individuals.
Aggregate statistics describing the corpus are shown in Table 5.1.

We use the seven speaker attributes described in Chapter 4 that describe the relationship
between the author and their conversation partner. Table 5.2 shows the distribution of
people and messages for each attribute in the dataset.
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Author Others All

Total Messages 237,300 216,766 454,066
Unique Messages 165,536 168,041 326,243

Total Tokens 1,370,916 1,602,607 2,973,523
Unique Tokens 38,937 48,005 68,985

Average Tokens / Message 5.78 7.39 6.55

Table 5.1: Distribution of messages and tokens (words, punctuation, emoticons) in the
conversations between the author and other individuals.

Table 5.2: Distribution of speakers and messages in the corpus by speaker attributes (% of
corpus). The values for Age represent ‘younger’, ‘older’, and ‘same age’, while the values
for the other attributes represent ‘yes’ and ‘no’.

Romantic Relative Childhood
Family Relationship Age Country Gender School Work

Y/N Y/N Y/O/S Y/N Y/N Y/N Y/N

%Speakers 6/94 9/91 26/30/44 78/20 51/49 62/38 33/67
%Messages 8/92 22/78 24/24/52 88/11 53/47 75/25 54/46

5.3 Message Content

We start by exploring linguistic differences in the messages exchanged between the author
and each of the groups defined by the seven attributes described above. We obtain the
most dominant semantic word classes [156] in messages exchanged with people sharing
each attribute using the LIWC [180] lexicon, which contains psycholinguistic categories of
words. The top ten dominant classes for each attribute-value pair are shown in Table 5.3.

Not surprisingly, the ‘Family=Yes’ group talks more about family and home than the
‘Family=No’ group. Interestingly, people who are not family members seem to use more
emotion related words. Word categories related to feelings are also very dominant for
the ‘Romantic Relationship=Yes’, ‘Relative Age=Same’, ‘Childhood Country=Same’ and
‘Gender=No’ groups; however they seem to focus on negative emotions such as anxiety
and sadness. In fact, those two are in the top three classes for conversations with romantic
partners ‘Romantic Relationship=Yes’, which also includes death words. This suggests
that more serious conversations occur between the author and this group as compared to
the ‘Romantic Relationship=No’ group (although, words related to death are also often
used in hyperbole, e.g. “I didn’t eat lunch and I’m dying”).

Several of the attributes clearly separate the set of speakers into those who speak about
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Table 5.3: Dominant LIWC word classes for each attribute/value pair. The top ten classes
are listed for each attribute in decreasing order.

Attribute Top Classes

Family Yes: Family, Money, Home, Swear, Death, Leisure, Filler,
Anger, Female, Health
No: Anxious, Insight, Feel, Risk, Sad, Positive Emotion, Non-
fluencies, Causality, Affect, Work

Romantic
Relationship

Yes: Anxious, Death, Sad, Feel, Body, Filler, You, Family, Per-
ception, Health
No: Swear, Female, Money, Friend, Anger, She-He, Work,
Leisure, Informal, Male

Relative Age Younger: Netspeak, Ingest, Swear, Friend, Biological, Home,
Anger, Informal, Body, Leisure
Same: Female, Swear, Anger, She-He, Anxious, Negative
Emotion, Friend, Sad, Negate, Money
Older: See, We, Work, Number, Article, Home, Perception,
Space, Motion, Relativity

Childhood
Country

Same: Death, Family, Anger, Swear, Feel, Female, Negative
Emotion, Body, Anxious, Health
Other: We, Work, You, Male, Focus Future, Social, Affiliation,
Friend, Assent, Time

Gender Yes: Money, Female, Swear, Work, Friend, Netspeak, She-He,
Article, Power
No: Sad, Anxious, Family, Health, Death, Body, Biological,
Negative Emotion, Ingest, Home

School Yes: Work, Non-fluencies, Insight, Risk, Anxious, Quantify,
Focus Past, Causality, Tentative, Compare
No: Family, Money, Health, Home, Netspeak, Death, Swear,
Leisure, Biological, Anger

Work Yes: Work, Article, Number, We, Non-fluencies, Quantify,
Compare, Insight, Achievement, Assent
No: Family, Health, Money, Death, Anger, Swear, Anxious,
Home, Biological, Sad

work and those who do not. People who talk the most about work are those who grew up
in other countries (‘Childhood Country=Other’), people from work (‘Work=Yes’), people
older than the author (‘Relative Age=Older’), people with the same gender (‘Gender=Yes’)
and people from school (‘School=Yes’). However, there are some differences between
these groups which can be seen mostly in the family, health, time, and gender specific
words they use.

People from school use more words referring to the past, while people from other coun-
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tries focus more on the future. Interestingly, people not from work (‘Work=No’) and the
people not from school (‘School=No’) are very similar, and both use a lot of family, health,
and money words. The similarity of these two attributes is also interesting in that people
from work (‘Work=Yes’) and/or school (‘School=Yes’) use more quantifying words (e.g.
sampling, percent, average) and disfluencies (e.g. umm, hmm, sigh). We also see that those
who grew up in other countries use more male words, while speakers that are the same age,
from the same country, or of the same gender use more female words.

5.4 Groups Over Time

To understand the role that time has in the author’s interactions with different groups we
look at patterns in message volume over different intervals. Most notably, we find interac-
tion differences given the day of the week, and the hour of the day. In Figure 5.1 we plot
the attribute/value pairs that differ the most from the trend over all people, marked ‘All’.
The difference was calculated as the sum of differences on each of the seven days of the
week and each of the 24 hours of the day.

We see that the overall trend for the day-of-week plot (top) is that there are more con-
versations during the first days of the week. The number of conversations drops until
Sunday where it jumps back up and peaks on Monday. Throughout the week, most of the
conversations occur between family members and people that grew up in other countries
(co-workers mainly). In contrast, there are many more conversations with people outside
of work on the weekend.

The hour-of-day plot (bottom) indicates that most of the interactions happen between
9AM and 6PM. Though this is a trend aggregated over all days in the corpus it shows that
the author is least likely to be talking to people in the 7-8AM range. The author tends to
speak more to people later in the day, with a peak at midnight. People who grew up in other
countries converse more with the author during the day. The dominant ‘Work’ category for
‘Childhood Country=Other’ in Table 5.3 shows this trend, as this group may converse with
the author more about work during work hours. We also find that family members speak
to the author more during the day and romantic partners speak to the author more after
midnight but before noon.

5.5 Conversation Interaction

Linguistic mirroring is a behavior in which one person subconsciously imitates the linguis-
tic patterns of their conversation partner. Increased linguistic mirroring can be an indicator
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Figure 5.1: Distribution of messages over time. The top shows the distribution over the day
of the week and the bottom shows hour of the day. The groups shown are those that vary
the most from the aggregate trend over all speakers.

of an individual building rapport with others and thus forming better interpersonal relation-
ships. We study linguistic mirroring in our dataset to analyze how relationships change
over time. We calculate linguistic style matching (LSM) as the similarity of the normalized
counts of nine types of function words [57], as the main metric for our analyses. In Fig-
ure 5.2 we show style matching over the first 5,000 messages with people in five specific
groups. The trend here is cumulative over these messages. We also tried plotting a slid-
ing window, but the trend was much harder to see because style matching fluctuates over
time. We see that although the general trend is to match language style more over time,
this trend levels off after 3k messages, potentially because at this point relationships start
to consolidate, however, in interactions with many individuals, the relationship is already
well established.

Next, we examine interactions between groups of people by constructing a graph where
nodes represent speakers and edges between nodes represent speakers mentioning each
other. Speakers who mention each other also tend to know each other. They might mention
another person when planning to meet up with others or when talking about an interaction
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Figure 5.2: Language mirroring as a function of the number of messages exchanged within
groups. The left figure shows the mirroring cumulatively over the first 5,000 messages
averaged over people in each of the listed groups. The right figure shows these numbers
averaged over a sliding window with the shaded region representing the interquartile range.

they had with this person in the past. We clustered the graph of people using Louvain
clustering [15] to maximize the modularity of the network. This gave four clusters, one
of which only contained two people. The remaining clusters roughly evenly split the set
of people. The top twenty most frequent conversation partners are shown in Figure 5.3.
Interestingly, the clusters resemble groups of speakers that the author spoke most to at
three periods of time contained in the corpus i.e, conversations before attending graduate
school (Cluster 3), the beginning of graduate school (Cluster 2), and later in graduate school
(Cluster 1). We also see that people who spoke to the author more at a particular time were
also more likely to know each other.

5.6 Model and Features

Using the messages in a conversation between two speakers, we wish to be able to identify
the value of each of the speaker attributes of whom the author is conversing with. In order to
do this, we can encode part of the conversation and additional features as before in Chapter
4, and output the value of an attribute. In this setup, the size for both the feature encoders
and attribute decoders were manually tuned in preliminary experiments, however, due to
the computational requirements of our evaluation, we use a smaller LSTM hidden size of
64.

We use the same size context windows as Chapter 4 (see 4.2 for examples). As before,
the context window messages are concatenated with speaker tokens between utterances to
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Figure 5.3: Speaker references for the top 20 conversation partners. The graph shows
interactions with people from different groups: high school (rectangles), college (triangles),
graduate school (rounded rectangles), family members (circles), and other people (ellipses).
Shading is proportional to how long ago the author met the person. Edges below a threshold
of 25 mentions are removed. Note that the clustering uses all 104 people, but only 20 are
shown here.

represent either the author, or the other speaker, and fed into a BiLSTM. The model con-
catenates the BiLSTM output with encoded feature vectors, to be passed to an attribute
decoder. A separate decoder is used for each speaker attribute and has k outputs, where
k is two for every case except ‘relative age’, which has three possible values. We use the
same features as the previous chapter, which include word embeddings from GloVe Com-
mon Crawl, and vectors representing the LIWC categories of words, timing of messages,
frequency of communication, and style matching, but also include one additional feature
based on conversation interaction.

Graph-based: Our graph-based features use the training set of messages to generate a
graph where nodes represent people and weighted, directed edges represent how often one
person mentions another person when speaking to the participant. This graph is used to
generate features by finding the shortest path between users where edge weights are smaller
when they have more mentions. We then use the adjacency matrix to find the shortest paths
between nodes and use each row as a feature set, representing a speaker i conversing with
this person. Given a graph of mentions, where Mi, j represents how often person i mentions
person j, we compute weights using the following equation:

Wi, j = 1−
wmax−Mi, j

wmax−wmin

Intuitively, if we assume that people who know each other better mention each other more
often, and that the probability of people knowing each other is transitive, then a vector in
this matrix represents how relatively well a given speaker knows each other speaker.
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5.7 Experiments

Using the features described in Section 4.4 we run experiments using leave-one-speaker-out
cross validation. We take the 104 speakers in our dataset and hold out all context windows
containing dialog with one of the speakers as a test set and use the rest for training and
validation with a 90% and 10% split. This means that we train and tune parameters on
context windows from all 103 other speakers and update the model based on its predic-
tions on each individual context window. During test time we examine the context-level
and speaker-level accuracy. Context-level accuracy is calculated by macro-averaging the
context window accuracy over all speakers. To calculate accuracy at speaker level, we first
obtain the attribute prediction at context-window level for the held-out speaker and assign
the attribute value most frequently predicted by the classifier.

We run experiments using a baseline model which only uses word embeddings and
compare it to a model that uses all of our features. Additionally, we perform an ablation
to examine the effectiveness of each feature set for predicting each speaker attribute by
running the model using the word embeddings plus one of the other feature sets at a time.
While we vary the number of feature encoders we use (see Figure 4.4), each model always
uses one attribute decoder. The loss for each model is calculated as the cross-entropy loss
for that model’s attribute decoder.

Since this evaluation is computationally expensive we run our experiments on a subset
of the original corpus. Thus, we obtain a sample of 27,316 context windows, distributed as
evenly as possible, from each speaker in the dataset to ensure that all people and attributes
are represented. Experiments using this dataset took 3-4 days to run on a cluster with 12
NVIDIA GeForce GTX TITAN X GPUs.

During our experiments we consider single attribute models, which use only one at-
tribute decoder, and joint models, which learn to predict all attributes at the same time
using all decoders. In the single attribute setting we train a separate model for each at-
tribute and calculate the cross-entropy loss for the decoder, while in the joint case we take
the sum of the losses for all decoders.

5.8 Results

The results obtained for each attribute, when using different combinations of features are
shown in Table 5.4 and Table 5.5. The first table shows accuracies at the person-level
while the latter shows performance macro-averaged over context-windows. Overall, the
combination of all features improves the prediction performance for all the attributes over
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Rom. Relative Child.
Family Rel. Age Country Gender School Work

Baselines

Majority Class 94.2 91.3 44.2 77.9 51.0 61.5 67.3
Emb 94.2 91.3 45.2 79.8 86.5 73.1 80.8

Single Attribute Decoder Ablation

Emb + Time 94.2 91.3 44.2 79.8 85.6 76.0 85.6
Emb + LIWC 94.2 91.3 46.2 80.8 82.7 73.1 84.6
Emb + Style 94.2 91.3 49.0 78.8 86.5 76.0 85.6
Emb + Frequency 94.2 91.3 44.2 80.8 83.7 75.0 86.5
Emb + Graph 93.3 91.3 43.3 77.9 80.8 76.0 87.5

Single Attribute Decoder All Features vs Joint Decoder Models

All Features 92.3 91.3 45.2 81.7 76.0 76.9 83.7
Joint + Emb 94.2 91.3 48.1 78.8 85.6 71.2 83.7
Joint + All 92.3 91.3 51.9 84.6 77.9 75.0 84.6

Single Attribute Decoder with Attribute Features

Emb + Attributes 94.2 91.3 48.1 87.5 83.7 73.1 84.6
All + Attributes 93.3 91.3 50.0 88.5 78.8 78.8 85.6

Table 5.4: Results are shown for the accuracy per person using leave-one-speaker-out cross
validation. Individual models learn to classify each attribute in all cases except for the
two ‘Joint’ rows, which jointly classify attributes. Feature ablations are shown for each
of the single feature types, and compared to the model that uses all features, as well as the
baselines obtained using the majority class or message embeddings (Emb) only. Additional
improvements are shown when training single attribute classifiers and using the other six
attributes as features.

a baseline model that only uses word embeddings, with the exception of the gender at-
tribute. The largest context-window level improvements are obtained for the Relative age,
Childhood country, Gender and Work attributes. The largest speaker-level improvements
are similar with the addition of School and without Gender.

Although in some cases the accuracy of attribute prediction at speaker-level is not im-
proved by the different set of features, we still observe an improvement on the prediction
accuracy at the context window level. For instance, the Family and Romantic attributes
improve by 2.1% and 6% respectively. We also see that the Gender attribute improves up
to 6.8% by this metric.

Using the other six speaker attributes as features to classify the seventh proved to be
beneficial in all cases. The graph features also proved useful for all attributes showing
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Rom. Relative Child.
Family Rel. Age Country Gender School Work

Baselines

Majority Class 94.2 91.3 44.2 77.9 51.0 61.5 67.3
Emb 92.0 86.0 39.2 75.7 63.7 64.6 69.5

Single Attribute Decoder Ablation

Emb + Time 91.7 86.8 40.5 77.4 63.4 64.4 73.1
Emb + LIWC 91.9 86.4 39.6 76.7 62.6 63.8 69.4
Emb + Style 92.0 86.0 38.9 76.2 62.8 65.1 69.2
Emb + Frequency 91.3 87.9 39.2 76.0 62.4 65.5 71.3
Emb + Graph 92.1 86.2 41.7 76.9 61.4 67.2 73.3

Single Attribute Decoder All Features vs Joint Decoder Models

All Features 92.0 88.1 42.7 78.9 61.2 67.0 76.0
Joint + Emb 93.9 90.9 43.4 78.0 64.2 65.5 69.3
Joint + All 92.1 90.2 47.2 80.8 61.8 68.7 78.4

Single Attribute Decoder with Attribute Features

Emb + Attributes 92.6 86.4 41.5 84.1 68.6 72.7 78.4
All + Attributes 92.0 88.2 44.3 85.7 67.1 74.3 83.4

Table 5.5: Accuracy on context windows macro-averaged over speakers. The individual,
joint, single attribute, and baseline models are defined the same way as in Table 5.4.

gains of up to 6.7% in speaker-level performance and up to 7% in context-window level
performance. The frequency features gave the biggest performance increase to the Roman-

tic, Childhood country, and Work attributes. Time features improve performance most on
Romantic, Gender, School, Work.

The overall trend we found in Section 5.5 showed that the most distinct groups when
looking at language mirroring were ‘Family=Yes’ and ‘Romantic=Yes’. However, we
found that the language mirroring features that we used, which use a sliding window, were
most useful for Relative age, School, and Work. Similarly, LIWC features help for Relative

age and Work, but they also improve prediction performance for Childhood country and
Gender.

At the speaker level, classification is more difficult and we do not see improvement for
all attributes when using the additional features or joint decoders. However, at the context-
window level we found that joint decoders improved over single attribute decoders in all
cases, though using the additional features did not help for Romantic, Family, and Gender.
When using single attribute decoding with the other attributes as features we found even

53



higher performance for four of the attributes. Interestingly, Gender still does not benefit
from using extra features and simply knowing the values of the other speaker attributes
gives the best result. The lowest accuracy overall is obtained for relative age, this can
be partly explained by the lower baseline as compared to the other attributes, which is
influenced by the fact that it has three possible values instead of two.

5.9 Conclusions

In this chapter, we addressed the task of classifying the attributes of an individual based on
their conversations in a longitudinal dataset. We conducted analyses of several interaction
aspects, including message content, speaker groups over time, and interaction during the
conversation. We developed a bidirectional LSTM architecture that, in addition to message
content, includes a variety of features derived from our analyses, covering the time-stamp of
the messages, messaging frequency, psycholinguistic word categories, linguistic mirroring,
and graph-based representations of interactions between people. Additionally, to account
for scenarios where some attributes are known, we present experiments that evaluate the
use of the other six speaker attributes when classifying the seventh.

Our experiments evaluated the accuracy of predictions at the context-window level,
which used only a sequence of five messages for message content, as well as at the speaker
level using a larger set of context windows from each speaker. We observed improvements
in speaker level accuracy up to 8.7% and up to 13.9% accuracy on context windows. We
explored the usefulness of each feature with an ablative study and compared two different
methods of decoding. For the case of predicting someone’s relative age or whether or not
they are a co-worker, classmate, or native from the same country, we see improvement at
both levels. Our evaluations show improvement over a system that only uses one of these
features at a time, as well as over a baseline system that relies exclusively on message
content.

To the best of our knowledge, this is the first study on speaker attribute prediction using
personal longitudinal dialog data that focuses on one persons’ interactions with many users.
The code used to extract the conversations from social media, to interactively annotate
speakers, and to perform the experiments presented in this chapter is publicly available,1

so others can conduct analyses on their own data. This work was originally published
in [194].

1https://github.com/cfwelch/longitudinal_dialog
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CHAPTER 6

Personalized Word Representations

In the previous two chapters, we saw the benefit of personalized data and showed how
training models on personal data was more effective than training on data from random
individuals. In this chapter, we examine how to learn word embeddings using personal
data. Using these embeddings we can look at differences in word representations across
people and further explore language prediction.

6.1 Introduction

Word embeddings have become ubiquitous in natural language processing applications.
Usually, embeddings are trained from a large corpus of news or web data that contains
writing from many sources and authors [130, 146]. These embeddings capture syntactic
and semantic properties of the language of all authors who contributed to this corpus. In
this chapter, we introduce personalized word embeddings, and examine their value for
language modeling and authorship attribution.

Multi-source corpora provide large volumes of data, but they may not lead to the ideal
representations for individuals. For instance, the word “hometown” may have a different
representation for different individuals. For some, it may relate to words such as “hills,”
“trees,” and “family,” whereas for others may be more strongly connected to “ocean,”
“beach,” and “friends.” These personalized representations differ among individuals, and
also differ from a more generic representation that often tends to capture words that are
semantically related at concept level, such as “city,” “town,” or “place.”

In this chapter, we explore the idea of personalized word embeddings. We explore
differences in personalized word representations using a corpus of English Reddit posts
that contains a large number of posts per author. We use the embeddings to initialize a lan-
guage model and show that personalization leads to better results than generic embeddings,
and explore how embeddings differ across individuals, and which types of words capture
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personal meaning the most.
Through exploring the use of personalized embeddings for language modeling, we

make additional contributions regarding the initialization of language models using pre-
trained embeddings. Many NLP applications, such as biomedical data and technical sup-
port, have 10-100 million tokens of in-domain data and limited computational resources
for learning from it. How should we train a language model in this scenario? Recent
work has focused on (1) small constrained datasets, such as the Penn Treebank [119] and
WikiText-103 [129], and (2) vast resources with billions of words from the web used to
train enormous models with significant computational requirements [159]. This leaves a
gap: when a substantial amount of in-domain data is available, but computational power is
limited. We show that for our target setting in English, initializing and freezing input em-
beddings using in-domain data can improve language model performance by providing a
useful representation of rare words, and this pattern holds across several different domains.
In the process, we show that the standard convention of tying input and output embeddings
does not improve perplexity when initializing with embeddings trained on in-domain data.

We explore how initializing word embeddings using in-domain data can improve lan-
guage modeling in English. Testing all valid configurations of weight tying, embedding
freezing, and initialization, we find that the standard configuration is not optimal when rare
words are present. Instead, the best approach is to initialize with in-domain data, untie the
input and output, and freeze the input.

To understand this difference, we run a series of experiments to measure the impact of
changing (a) the threshold for replacing rare words with a special symbol; (b) the source
of data for initialisation; (c) the amount of training data for the language model; and (d)
the hyperparameters for both the baseline and our proposed approach. We find that the
improvement comes from improved representation of rare words. These findings are con-
firmed through experiments on four additional domains, with similar trends.

We also compare our approach to an n-gram language model and a large-scale trans-
former model. We find that if a large-scale transformer is inappropriate either for com-
putational or modeling reasons, it is best to train an LSTM-based language model with as
much data as possible and initialize the embeddings on all available in-domain data. In this
chapter, we apply this LSTM-based approach to personalized language modeling.

One motivation for this work is personalized text generation, and its application to text
auto-completion, speech recognition, and translation. In systems where a user types a text
input, such as a phone keyboard, it can be used to suggest future words to the user so
that text can be entered more quickly. Another application of personalized embeddings
is dialog systems, where the systems could be trained to produce text that follows the
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style of certain professionals (e.g., counselors, advisors). In addition, one can measure
cooperation in dialog by the similarity of speaking style, suggesting that building a system
that can match the style of an individual may lead to a more successful system. Finally,
such personalized word representations and the applications they enable can bring about
a better understanding of the personalized models that can be built and used by the large
companies that collect and store a significant amount of personal data.

6.2 Personalized Word Embeddings

Definition. Personalized word embeddings are vector representations of words derived
from the text produced by a single author. We use the text produced by a Reddit user s in
their posts Cs to create their word embeddings. We apply the method described below to
this set and produce an embedding matrix, Cs 7→W |V |×k

s , where V is the vocabulary and k

represents the embedding dimension.

Joint Learning of Personal and Generic Word Embeddings. We jointly learn a generic
embedding matrix and an embedding matrix for each author, inspired by Bamman et
al. (2014) [11]. Each matrix W ∈ R|V |×k has a row for each vocabulary word and a k-
dimensional vector for each embedding. The hidden layer is calculated as h = wᵀWgeneric +

wᵀWs where w represents the one-hot encoding of a word and s represents an author. This
is a modified skip-gram architecture [130], which sums two terms so that back-propagation
updates the generic matrix and a author-specific matrix. It allows the generic matrix to
benefit from all data while learning author-specific deviations in the same space.

We use the set of messages from all 100 speakers to generate embeddings for all words
that occur at least five times across all users. This yields a vocabulary of 177 thousand
words. We learn 100-dimensional embeddings with an initial learning rate of 0.025 and a
window size of five, using L2 regularization due to the increased number of parameters.

Dataset. We use data for the 100 most active users1 in a corpus collected from Reddit.2

These users have from 49k to 249k posts, with 73k on average. Posts contain 29 tokens
on average and come from 3.6k subreddits. The largest fraction (18.6%) belong to the

1We excluded users that appear on a public list of bots (https://www.reddit.com/r/
autowikibot/wiki/redditbots) or who appear to be automated based on manual inspection, as
well as posts from the counting subreddit (https://www.reddit.com/r/counting), as these posts
are mostly single numbers.

2https://www.reddit.com/r/datasets/comments/3bxlg7/i_have_every_
publicly_available_reddit_comment/
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User Example Use Nearest Neighbors

A doctors think this is bad for her
health ...

preventative, insurance, reform, medical, ed-
ucation

B it is usually bad for your health ... professional, mental, conduct, experiences,
online

All N/A medical, preventative, insurance, safety,
healthcare

Table 6.1: Nearest neighbors of “health” for two personalized embedding spaces and the
generic space.

subreddit AskReddit; the next two largest are blog and politics with 4.8% and 4.7% of the
posts respectively.

We use the set of messages from all 100 authors to generate embeddings for all words
that occur at least five times (across all users). This yields a vocabulary of 177k words.
We learn 100-dimensional embeddings with an initial learning rate of 0.025 and a window
size of five, using L2 regularization due to the increased number of parameters (tuned in
preliminary experiments). Using this method, we learn 101 embeddings for each word – a
generic representation, and a separate representation for each user.

Reddit users have been found to be primarily male, young adults (under 30), located
in the USA and primarily identify as christian or atheist [188]. It is possible that results
presented in this chapter do not generalize to populations that differ significantly from the
population of Reddit users. Future work may consider isolating the effects of topics and
style by modeling subreddits for comparison though in this work we consider a personal-
ized embedding as a representation that may capture both.

6.3 Differences Across Individual Word Representations
and Usages

Individuals use the same word in different ways in different contexts. Examining these
differences can give insight into individual topic and style preferences, or their word as-
sociations. To illustrate these differences, in Table 6.1, we show different ways that two
users in our dataset use the word “health.” Although these words may be used in similar
contexts, the meaning of, and topics associated with these words is often different for each
user, which affects the words we would expect to come after it. These preferences are
reflected in the top neighbors for the word “health” for each user.
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Figure 6.1: Relationship between embedding similarity and distribution of word categories
across most dissimilar words showing the five grouped POS tags, nouns (NN, NNS, NNP,
NNPS), adjectives (JJ, JJR, JJS), verbs (VBD, VBG, VBN, VBP, VBZ, VB), adverbs (RB,
RBR, RBS), prepositions and subordinating conjunctions (IN), with the highest frequency
and the four LIWC categories with the highest concentration in the set of dissimilar words
(i.e. function, relativity, social, and cognitive process (CogProc) words). We use a sliding
window through the most dissimlar words where 100% means the window contains the
most dissimilar of all words. We also include the distribution of words which have No
LIWC category assigned (No LIWC). The y-axes are scaled separately for each sub-plot
and the sliding window on the x-axis shows word types ordered by average dissimilarity
across embedding spaces. Top row groups words by their part-of-speech and bottom groups
words by LIWC categories. We show average and interquartile range for values calculated
across all users. Dashed horizontal lines show the average percentage of words that fall
into each category when the window is slid over a randomly shuffled list rather than the
sorted one.
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To gain a deeper understanding of these differences, we analyze personal and generic
embeddings for specific word groups based on the Linguistic Inquiry and Word Count
(LIWC) lexicon [144] and part-of-speech tags. This analysis can help us understand what
types of words tend to have different representations across users and are therefore more
personal in nature. We part-of-speech tag the messages with the Stanford CoreNLP tag-
ger [117, 182]. For each word in the vocabulary, we assign a tag if the tagger gives the
same tag at least 95% of the time, otherwise the word is ignored. LIWC categories are
looked up in the lexicon that contains words and word stems and a word may have multiple
categories, in which case it counts toward each.

We look at the proportion of word types in the 5k most dissimilar words for each user.
We define word similarity as the cosine distance between a word’s generic embedding and
its author-specific embedding. Note that theses are unique words and that the x-axis is the
percentage of the way through the 5k dissimilar words, with the most dissimilar at 100%.
We break this into subsets and look at how the distribution changes as we approach the
most dissimilar words. A visualization is provided in Figure 6.1. We have added horizon-
tal dashed lines to show the average number of words for each category when the words
are random, rather than the most dissimilar. We find the set of most dissimilar words
includes more function words, words relating to space and time (Relativ), cognitive pro-
cesses (CogProc), and social words, as well as more adjectives and nouns. This suggests
that these types of words may tend to have more personal usage than other types. These
results are consistent with prior work that has found function words are effective for recog-
nizing style and measuring style similarity [57] and for authorship attribution [8, 46, 134].
Though there are about a thousand occurrences of function words in the window of most
dissimilar words, the three that occur most frequently are become, near, and minus. The
concreteness of the words that accompany these words varies. The word become can refer
to anything that is changing and can refer to physical objects, emotions, or ideas. Near can
refer to physical proximity, but also in assessing any value (e.g. “anywhere near”, “nowhere
near”). Similarly, the word minus can refer more concretely to subtracting a quantity but
can also refer to the similarity of concepts (e.g. “it’s like X minus the Y”).

6.4 Low Compute Language Modeling with In-Domain
Initialization

Normally, language models are initialized randomly, but in order to leverage the embed-
dings we learned, we propose initializing the language model’s word embeddings with
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vectors trained on additional in-domain data. To make this most effective, we make two
other key changes to training. First, we prevent embeddings from shifting during training.
Without this, the embedding space could become inconsistent as vectors for words seen in
training shift while those for words seen only in the additional data stay the same. Second,
we do not tie the weights of the input embeddings and final output layer. To understand
the impact of these factors, we train models with every valid combination of weight tying,
freezing, and pretraining.3

We use AWD-LSTM language model from previous work as our baseline [127, 128].
It is an autoregressive language model that had state-of-the-art results by combining regu-
larization techniques, has been widely used, and can be trained in under a day on a single
GPU (without fine-tuning). Although more recent models can achieve better perplexities
on standard benchmarks [25, 124], we find that not all models have code available or that
they take far more time to run than Merity et al. (2018)’s model.

We are interested in experimenting with personalized embeddings, but for exploring the
ideal low compute language modeling scenario, we experiment with several other domains.
First, we train embeddings using GloVe on Gigaword. We use an embedding size of 400
and rare word cutoff of 5, the same as in the original AWD-LSTM model and GloVe respec-
tively.4 All other GloVe hyperparameters were set as specified in the original GloVe paper
and trained using the released code. For our main evaluation, we consider two versions
of the Penn Treebank. Std is the standard version used in language modeling, with words
of frequency less than five converted to UNK, all words lowercase, numbers replaced with
a special symbol, and punctuation removed. Rare has the same preprocessing but with-
out replacement of rare words.5 All of the hyperparameters were simultaneously varied,
sampling all uniformly at random. We selected the final set based on validation perplex-
ity. Following Dodge et al. (2019), we report the mean and variance as a function of the
number of hyperparameter trials [35]. The result is shown in the following plot, where the
orange line is the baseline and our approach is the blue line:

3Note, for frozen output embeddings the bias is not frozen.
4We ran experiments with 200 dimensional embeddings and found the same trends, but all results were

slightly worse.
5 The script to generate our Rare data from the LDC release is available at: http://jkk.name/

emnlp20lm/.
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Table 6.2 shows the results, with icons to concisely describe the different configura-
tions.6 Looking first at the standard evaluation set, we can see the value of pretrained
embeddings by considering pairs where the only difference is whether the embeddings are
random or pretrained. Pretrained embeddings are better in all but one case (comparing
the fourth last and second last rows), and there the difference is only 0.5. As for freezing
the pretrained input embeddings, keeping all other aspects the same, it is always better to
freeze them. When we untie the embeddings it does increase the number of parameters.

There are also four clear sections of performance in the table: (a) frozen random output
embeddings; (b) frozen pretrained output embeddings; (c) frozen random input embed-
dings; (d) various configurations. These results have an asymmetry. Freezing the output
embeddings consistently leads to poor performance, even with pretrained embeddings pre-
trained. In contrast, freezing with pretrained input embeddings leads to some of the best
results. We expected freezing with random initialisation to perform poorly, but the drop
is modest for input freezing and dramatic for output freezing. This suggests that the two
embedding matrices are serving different purposes in the model. The results do support
the practice of tying when the input embeddings are random, but the benefit is half as large

6 Dice Icon by Andrew Doane from the Noun Project. Fire and Snowflake Icons by Freepik from
www.flaticon.com.
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when they are pretrained.
For the dataset with rare words we see mostly the same trends. The exception is the

bottom six rows. Once rare words are present, random initialisation of the input embed-
dings is considerably worse than pretraining (third last row). Again, there is an asymmetry
between input and output, with the top five models all using pretrained input embeddings,
but only three of them using pretrained output embeddings. Tying is also no longer the best
approach, with the top three models not tying. Our proposed approach, using pretrained
untied embeddings and freezing the input, has the best results.

The only difference between Std and Rare is the lack of UNKs in Rare. This impacts
5.1% of tokens in the validation set (33% of types). While our pretrained embeddings do
not cover all of these rare words, they do cover most. The vocabulary from Gigaword that
we build vectors for covers 99.5% of the validation word tokens in Std (98% of word types),
and 98.8% of the validation word tokens in Rare (84% of word types).

6.5 When and Why Does Pretraining Help?

To understand the strengths and limitations of this new approach, we consider a series
of experiments, each probing a specific variable. To simulate our target scenario, we
use 44 million words of Wall Street Journal data from the North American News Cor-
pus (NANC) [58]. This provides enough data for pretraining, training, validation, and test
sets all in the exact same domain (not even varying the newspaper). We apply similar
preprocessing as in the previous section, but break the data down into articles rather than
sentences and keep rare words.

We compare the six best configurations from Table 6.2. In all cases, output embeddings
are not frozen, so we leave out the symbol. We use only one symbol for pretraining/random
because both embeddings are the same in most cases. The exceptions have to indicate
pretrained input and random output.

Standard approach.
Our approach, but with random output embeddings and without freezing.

Standard approach + pretraining.
Our approach, but without freezing.

Our approach.

Our approach, but with random output embeddings.
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Embeddings Dev PPL
Tied Input Output Std Rare

680 1120

(a)
680 1120
680 431
220 372
218 360

121 202

(b)
95.0 170
91.3 147
90.7 136
90.7 136

(c)
82.2 143
81.4 142

65.3 120
64.1 113
62.5 105

(d)
61.7 98.5
61.6 97.1
61.3 112
61.1 98.1
59.8 98.7

= Tied parameters = Untied parameters
= Frozen in training = Unfrozen in training
= Random init. = Pretrained init.

Table 6.2: Perplexity on the PTB for all valid combinations of weight tying, freezing, and
pretraining. Results are sorted by perplexity on Std and shown to three significant figures.
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Train Domain
Config NANC Cord IRC Reddit Wiki

106 135 41.3 186 206
103 125 41.1 166 174
97.2 121 39.8 154 142
95.7 111 39.2 152 141
90.8 109 37.3 146 144
90.5 112 37.6 152 161

Table 6.3: Results for various domains. All other results in this section are for NANC.

Other Domains Show the Same Pattern. First we consider varying the domain to make
sure this is not an artifact of news data. Table 6.3 shows results on Covid-19 research [185],
Ubuntu IRC chat [99], Reddit, and Wikipedia, tokenized with either Scispacy [136] or
Stanza [157]. Pretraining consistently helps, while freezing is best on all but Wikipedia.
Our approach is consistently either the best or very close to the best.

The Improvement is Due to Rare Words. To probe the impact of rare words, we explore
replacing them with UNK (using the same UNK symbol as used in embedding pretraining).
We consider four variations, each constructed in two steps. First, we make a list of the
words in the original training set and how many times each one occurs. Second, we make
modified versions of the training and validation sets, replacing words with UNK if their
count in our list is lower than K. For this step, any word that does not appear in our list
is treated as if it has a count of zero. We consider K = 0, 1, 2 and 5. K is 0 for all other
experiments in this section, which means that no words are replaced with UNK. When K is
1, 2, and 5, the introduction of UNKs means all words in the validation set are seen during
language model training.

Table 6.4 shows a clear trend: the benefit of our approach grows as more rare words are
present (i.e., K is smaller). Note, it may seem odd that perplexity is higher when K=1 than
when K=0 since we have removed rare words. This is probably because when K is 1 there
are UNKs in the validation set but not in the language model training set.

Table 6.5 shows statistics about rare words in the datasets. 71-83% of word types in
the training sets occur fewer than five times, but most of these appear frequently in the
pretraining sets (compare the first column with the second last column). The same pattern
occurs for word tokens. Comparing the statistics for the training set and the pretraining set,
the percentage of rare word types is fairly consistent while the percentage of rare tokens
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Train Frequency Cutoff
Config 0 1 2 5

106 106 70.6 55.4
103 104 72.5 56.8

97.2 99.9 68.1 54.1
95.7 97.8 70.2 56.0
90.8 92.1 66.5 54.5
90.5 91.5 65.8 54.0

UNK Types Dev 0% 13% 21% 33%
UNK Tokens Dev 0% 2.3% 3.4% 5.5%
UNK Types Train 0% 0% 40% 68%
UNK Tokens Train 0% 0% 1.4% 4.1%

Table 6.4: Varying the minimum frequency to not be converted into an UNK. The top half
shows language model perplexity. The bottom half shows the percentage of word tokens
and types that are replaced with UNK in each case.

Train Pretrain Train in Pre
Dataset Type Tok Type Tok Type Tok

PTB 73 5.3 77 0.11 14 1.3
NANC 71 4.8 63 0.49 13 0.63
Sci 78 6.3 85 1.2 23 1.6
IRC 83 4.2 90 1.3 37 1.4
Reddit 81 6.1 86 0.69 15 0.71
Wiki 78 7.3 78 0.36 5.6 0.43

Table 6.5: Percentage of word types and tokens that occur five times or fewer in each
dataset. The last two columns are the percentage of types/tokens in the training set that
occur five or fewer times in the pretraining set. For PTB the pretraining set is Gigaword (as
used in Table 6.2).
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Pretraining Source
Train NANC Gigaword GloVe
Config 43M 5B 6B 42B

97.2 90.9 93.1 93.3
103 99.3 98.3 99.5
95.7 90.0 91.2 93.6
90.8 90.6 91.1 91.5
90.5 90.7 90.7 91.9

Table 6.6: Varying similarity and size of pretraining data. Dataset size is shown below the
name of each dataset.

consistently goes down.

Pretraining Data Needs to be from a Similar Domain. We would expect that the ef-
fectiveness of pretraining will depend on how similar the data is. Table 6.6 shows results
with different embeddings, and indicates the number of words used in pretraining. We see
that the value of additional data depends on the domain. Gigaword is also news text and
is able to improve performance. The larger GloVe datasets use Wikipedia and Common-
Crawl data, which is a poorer match and so does not improve performance. For GloVe
we did have to change the embedding dimensions from 400 to 300, which may impact
performance slightly.

The Effect Persists When Language Model Training Data is Increased. So far we
have only used the additional in-domain data for pretraining. In this experiment, we expand
the training set for the language model. We try two variations, one where the data is an exact
domain match (NANC) and one where it is also news, but from different newspapers and
from a different year (Gigaword). Table 6.7 shows that as we increase the amount of data
our approach and the variant with random output embeddings continue to do best, but the
margin shrinks between them and the standard approach. Note, however, that these results
are with hyperparameters tuned for the baseline configuration. With tuning the 0.7 gap
between our proposal and the baseline for 4xNANC widens to 6.6.

Hyperparameter Tuning Further Improves Results. All of the previous experiments
were slightly tipped in favour of the baseline as we used the hyperparameters from [128].
We do not have the resources to tune for every condition, so instead we focus on a final set
of experiments with the 4xNANC condition from Table 6.7. We run 37 configurations with
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Train NANC WSJ Gigaword
Config 1x 2x 4x 1x 2x 4x

106 81.0 67.5 106 92.5 86.3
103 83.3 68.7 99.3 91.7 87.2

97.2 80.4 67.8 90.9 88.6 85.7
95.7 80.0 68.1 90.0 86.4 85.5
90.8 73.7 66.8 90.6 84.8 82.5
90.5 72.9 66.1 90.7 83.8 83.7

Table 6.7: Expanding the language model training set.

Figure 6.2: Hyperparameter search results with one point for each configuration. The line
separates where our approach is better (left) or worse (right).
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randomly sampled hyperparameters, using the same configurations for the baseline and our
proposed approach (see the supplementary material for details). Figure 6.2 shows that our
approach is even stronger after tuning, with a score that is 6.6 better than the baseline.
Comparing the baseline and tuned hyperparameters, some shifted substantially more than
others: the learning rate was halved; word dropout was halved; and the number of layers
was increased from 3 to 4. The other parameters shifted by 15-30%.

Initialization Without Additional Data This experiment considers a variation where we
pretrain the embeddings only on the PTB (i.e., there is no additional pretraining data). LM
uses the embeddings produced by training a baseline model (i.e., train an LM, then reset
all parameters except the embeddings and train again).

Tie Input Pretraining Method Val PPL

GloVe 64.5

GloVe 66.2
LM 61.7

61.3

GloVe 60.5

LM 60.3

LM 59.4

While pretraining on the training data improves performance here, the improvement
does not persist through the finetuning stage.

Test Results Confirm Our Observations. Using the best configuration we train the
baseline and our proposed approach using 8xNANC (the most our GPU could support).
We compare to an n-gram language model trained on all of the NANC data [66], and a
transformer based model trained on a massive dataset, GPT-2 [159]. While GPT-2 cannot
be retrained in a low-compute scenario, it can be used. We compare to GPT-2 without
fine-tuning. We evaluate byte-pair encoding (BPE) separately because with BPE tokeni-
sation models have additional information when predicting the second or later piece of a
token [126].

Table 6.8 shows that for word-level prediction, our approach improves over the baseline
and an n-gram language model. BPE breaks up rare words, leading to no improvement over
the baseline and while we do better than the 112m parameter GPT-2, we do not do as well as
the 774m parameter one (both untuned). Overall, this indicates that for users who require
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Words BPE
Model Dev Test Dev Test

N-Gram 92.3 95.0 56.7 55.3
GPT-2 (112m) - - 46.4 43.8
Baseline AWD-LSTM 52.8 53.5 37.8 36.7
Our approach 49.0 49.4 38.3 37.2
GPT-2 (774m) - - 32.5 33.7

Table 6.8: Final results, training with 8xNANC.

word-level scores and have limited computational resources our approach is an effective
way to use additional data when training LSTM language models.

6.6 Language Modeling with Personalized Embeddings

To use our personalized embeddings, we modify the architecture to take as input the con-
catenation of the personalized user-specific embedding and the generic embedding for each
word. We use the same hidden layer sizes and drop-out rates as in their original AWD-
LSTM experiments, but untie the weights of the encoder and decoder, and verified that
this gave better performance in preliminary experiments. Embedding dropout is a type of
dropout that randomly removes entire word vectors from the input, rather than dimensions,
and scales the remaining embeddings by 1

1−e , where e represents the embedding dropout
probability [45]. In our setting, we copy the mask and apply it to both generic and person-
alized embeddings.

The embeddings are trained on all available user data, but the more computationally
expensive language models are not. We use a subsample of our dataset with 1,000 posts
for each user and an 80/10/10 split for training, validation, and testing. The same splits are
used for generic and personalized models, varying only the embedding layer.

To measure the ability of our models to predict the next word, we use two metrics: (1)
mean reciprocal rank (MRR), calculated as one divided by the rank of the correct word
choice in the descending list of next word probabilities and averaged over all instances, and
(2) perplexity.

Single User Embeddings. We also consider an approach in which just one vector is learned
for each user (rather than one for each user-word pair). This is an approach widely used in
previous work [95, 106]. This user vector is concatenated to the generic word embedding.

The results in Table 7.6 suggest that using the combined personalized and generic em-
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LM Attribution
Model MRR PPL MRR Accuracy

Merity et al. (2018) 0.364 65.53 0.452 34.8%
Single User Vectors 0.361 66.70 0.450 34.9%
Personalized Embeddings 0.371 62.43 0.462 36.1%

Table 6.9: Results for Language Modeling (LM) and Authorship Attribution. Personalized
word embeddings significantly improve performance (permutation test, p < 0.0001).

beddings improves performance significantly over single vector user representations and
over generic embeddings. We note that the number of parameters of the LSTM input is
not the same when comparing the baseline Merity et al. (2018) model to the other cases.
We ran an additional experiment doubling the size of the embeddings for the baseline and
found that the perplexity improved to 64.21, although the personalized embeddings still
significantly outperformed this baseline.

We can also analyze the accuracy when predicting words belonging to particular parts
of speech and LIWC categories. Our intuition is that a model that uses personalized word
embeddings would be better at predicting words belonging to the four LIWC categories
whose words are most distant from the generic space. Table 6.10 shows that for almost all
categories, the personalized word embeddings lead to the best performance, although for
relativity words, single user vectors performs slightly better and for drives, our methods do
not outperform the baseline.

6.7 Authorship Attribution

We also use a language model trained with personalized word embeddings to perform the
task of authorship attribution.7 We build a language model for each author using a sample
of 10k posts for training and 1k for validation. We then hold out another sample of 1k posts
to use for authorship attribution. The language models for all authors are separately run on
the held out set, and the model with the lowest perplexity is then chosen as the assigned
author. Table 7.6 shows there is a statistically significant improvement for our personalized
embeddings method. This is a difficult task with 100 classes, so the accuracy is low, but
the MRR suggests that the correct author is usually in the top 3 model choices.

7Note that we do not consider datasets such as [90] because they do not provide the volume of data
needed for our approach and our goal is to compare generic and personalized embeddings, not to set a new
state-of-the-art.
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Part-of-Speech Merity et al. (2018) Single User Personalized Word
Vectors Embeddings

DT 19.1 19.4 18.9
IN 30.9 34.2 30.7
JJ 703.6 708.2 681.2

NN 632.5 621.4 597.7
PR 23.4 23.7 22.6
RB 146.6 148.7 143.7
VB 65.4 65.8 62.1

PUNCT 10.9 11.1 10.2
OTHER 72.6 73.9 70.2

LIWC Merity et al. (2018) Single User Personalized Word
Category Vectors Embeddings

Affect 88.3 85.6 82.7
Biology 93.9 95.7 92.4

Cognitive Process 73.4 75.8 73.3
Drives 69.8 75.0 70.7

Function 68.8 71.2 67.6
Informal 35.3 36.0 35.3

Perception 95.9 90.7 85.4
Relativity 28.7 28.1 28.5

Social 48.7 48.9 46.7

Table 6.10: Perplexity results broken down by the type of target word (top showing part-
of-speech and bottom showing high-level LIWC category), with the best result in bold.
OTHER includes all other unlisted part-of-speech tags.
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6.8 Limitations and Ethical Considerations

Our work in this chapter treats an individual user’s style as determined by both the subject
matter as well as the way that it is expressed. Previous work has treated these as separate
aspects of an individual’s language [26, 57] and although we did analyze function word
usage, further work could explore how well personalized language is captured by testing
on held-out subreddits or otherwise more carefully controlling the distribution of topics
during training.

In applying our method to text prediction systems, users may experience unintended
negative effects. For instance, embeddings may become unintentionally biased toward
language that becomes inappropriate when later suggested in another context. Additionally,
users who are learning a language may bias embeddings toward improper language use,
reinforcing errors and making it more difficult for the user to learn the language. It may
be appropriate to use our embeddings if users consent and are made aware of the possible
consequences of doing so.

It is possible that our method could be used for authorship attribution and surveillance
of individuals online [176]. Such an application risks potential discrimination, coercion,
and threats to intellectual freedom [162]. Personalized language models could also be used
to develop a tool that tells the user who their writing most resembles, or if their writing
resembles their past writing, with the objective of obfuscating the author’s identity [154].
A tool like this could also be used maliciously to impersonate a particular author. Although
we believe the difficulty of this task currently makes these minor risks, we advocate against
the use of our methods for these tasks.

Our method requires more computation and memory than the baseline method we com-
pared to. The additional computation is relatively small, as learning the embeddings takes
around 3 hours using 30 threads on a machine with 16 Intel Xeon Silver 4108 CPUs. The
memory required to store embeddings for N users is N + 1 times the amount of storage
required by a generic matrix only.

6.9 Conclusion

In this chapter, we explored personalized word embeddings. Using a large corpus of
Reddit posts, we generated personalized word embeddings for 100 individuals, and per-
formed analyses of the differences between personalized and generic embeddings for spe-
cific groups of words. We showed that using personalized word embeddings to initialize a
language model improves perplexity over a model that uses generic word embeddings, or a
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model that only learns single vectors for each user as has been frequently done in previous
work. We showed that initializing embeddings with vectors trained on in-domain data can
improve performance by providing better representations for rare words and that this effect
persists even as more in-domain data is used to train the language model. Our work also
suggests that standard model components like embedding tying should be retested as we
continue to explore the space of language modeling. Further, we showed that the embed-
dings can be used to improve performance on authorship attribution. We cannot release
the data due to licensing restrictions but our code is available online with instructions for
how to obtain and process the data in order to support future work on personalization. This
work was originally published in [189, 192].
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CHAPTER 7

Personalization with Limited Data

The previous chapter explored the production of personalized word representations by us-
ing large quantities of written text from each individual. In this chapter, we look at how to
model an individual’s language when not as much text is available. We attempt this with
two different methods. The first is an explicit modeling of the differences between speakers
using demographic variables. These values can be used to group speakers who may speak
in similar ways and gives us a way to find related data for a given individual. Second, if a
small amount of initial text is available for a new user, we can use that data to find similar
users. Our task is then to determine which similarity metric to use and, once we have de-
termined which users are similar, how to leverage data from these similar users in order to
construct a personalized language model for the new user. Both methods use data related
to a given individual’s writing to assist in personalized language modeling.

7.1 Introduction

As discussed in previous chapters, word embeddings are used in many natural language
processing tasks as a way of representing language. These embeddings capture syntactic
and semantic properties of the language of all individuals who contributed to the corpus.
However, they are unable to account for user-specific word preferences (e.g., using the same
word in different ways across different contexts), particularly for individuals whose usage
deviates from the majority. These individual preferences are reflected in the word’s nearest
neighbors. The example from the previous chapter, in Table 6.1 shows the way two users
use the word “health” and the word’s five nearest neighbors in their respective personalized
embedding spaces. The word is used in similar contexts, where contextual embeddings
may give similar representations, but it has different salient meanings in the personal space
of each user. User A tends to talk more about preventative care and insurance, while user
B tends to talk about people’s experiences affecting their mental health.
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The typical approach in natural language processing (NLP) is to use one-size-fits-all
language representations, which do not account for variation between people. This may
not matter for people whose language style is well represented in the data, but could lead
to worse support for others [100, 120, 143]. While the way we produce language is not
a direct consequence of our demographics or any other grouping, it is possible that by
tailoring word embeddings to a group we can more effectively model and support the way
they use language.

A static representation of a word’s meaning is limited, as meaning varies given context
and extra-linguistic information. Hofmann et al. (2020) find that in some contexts “test-
ing” refers to seeing if a device works and “sanitation” refers to a pest control issue, while
in another context both refer to conditions of the COVID-19 pandemic [69]. Garimella et
al. (2017) look at location and gender and how they affect associations with words like
“health” and many other stimulus words like “stack”– does it make you think of books or
pancakes? Similarly, “wicked” may mean “evil” or may function as an intensifier depend-
ing on where you live [11].

These factors all contribute to word representations that determine word associations
and thus affect how language models predict what someone will say next. In this chapter,
we refer to personalized language modeling as the task of constructing a language model
for an individual that captures these effects and better predicts what that individual will
say. This task has applications to predictive text, authorship attribution, and can be used to
model the style of an individual or profession (e.g. therapist, counselor) for dialog systems.

Additionally, personalized embeddings can be useful for applications such as predictive
typing systems that auto-complete sentences by providing suggestions to users, or dialog
systems that follow the style of certain individuals or professionals (e.g., counselors, ad-
visors). They can also be used to match the communication style of a user, which would
signal cooperation from a dialog agent.

To implement and evaluate our proposed method, we build a large corpus of Reddit
posts from 61,981 users for whom we extract self-reported values of up to four demo-
graphic properties: age, location, gender, and religion. We examine differences in word
usage and association captured by the demographics we extracted and discuss the limita-
tions and ethical considerations of using or drawing conclusions from this method. We
explore the value of compositional demographic word embeddings on two English NLP
tasks: language modeling and word associations. In both cases, we show that our proposed
embeddings improve performance over generic word representations.

Similarly, language models do not take into account the differences between individuals
and their language patterns, and are not optimized for personalized use. Approaches like
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fine-tuning can be used to tailor a pretrained model to an individual, but perform well only
when enough data is available, which is often not the case.

We propose compositional demographic word embeddings as a way of building per-
sonalized word embeddings by leveraging data from users sharing the same demographic
attributes (e.g., age: young, location: Europe). Our proposed method has the benefits of
personalized word representations, while at the same time being applicable to users with
limited or no data, as long as demographic information is available.

Then, we consider the case of users with a small number of available tokens and propose
ways to (1) find similar users in our corpus and (2) leverage data from similar users to build
a personalized language model for a new user. We hypothesize that data from similar
users should be able to outperform standard fine-tuning or tuning on a similar amount
of random data. We explore the trade-offs between the amount of available data from
existing users, the number of existing users and new users, and how our similarity metrics
and personalization methods scale. We then show an analysis to explore what types of
words our method predicts more accurately and are thus more important to consider when
applying personalization methods.

7.2 Demographic Embedding Models

We examine two methods for creating demographic embeddings. The first uses the joint
method discussed in Chapter 6, where we learn generic word representations, and separate
word embedding matrices for each demographic value [11]. We run this once for each
of our demographic attributes. Secondly, we want to see if we can instead learn a single
vector representation of each demographic value, rather than a separate vector for each
value for each word, as a more memory efficient representation of demographic shifts of
the meanings of words. We do this in a similar joint learning setup where we take an authors
text and construct skip-gram windows with knowledge of the demographic attributes of the
author. We sum the input word embedding with a vector representing the authors age (i.e.
young, old), with a location vector (e.g. USA, UK), with a religion vector (e.g. christian,
atheist), and with a gender vector (i.e. male, female), and use the resulting vector to predict
the output word.

7.3 Dataset

We use Reddit comments as in the previous chapter but also focus on finding speakers with
demographic information. The 100 authors discussed in the previous chapter can be used as
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anchor users from which we can calculate similarity to new users. For experiments on users
without demographic information, we experiment with two settings: In the small anchor
setting, there are 100 anchor users, each having 200k tokens as training data, 25k tokens
as validation data and 25k tokens as test data, and 50 new users, each having 2k tokens as
training data, and 25k tokens for each of validation and test. In the large anchor setting,
there are 10k anchor users and 100 new users, each having 2k tokens each for training
and validation and 20k tokens for test. We use anchor users to construct the personalized
language models and new users to validate and test our models.

Using Reddit comments is advantageous in that we are able to get a large amount of
data for each speaker which will allow us to compare a model trained on an individuals
text to models which only use their demographic information. The downside is that users
do not have profiles as they do on other social media websites and there are no categorical
fields from which to extract this information as other sites like Twitter and Blogger.

To resolve this, we manually come up with patterns to extract demographic information
from Reddit data. This has successfully been done in previous work to construct a set
of Reddit users who were diagnosed with depression [198] and to construct personas for
personalized dialog agents by extracting statements users make about themselves [121].

We use English Reddit comments as they are publicly available, are written by many
users, and span multiple years.1 We extract demographic properties of users from self-
identification in their text.

7.3.1 Finding Demographic Information

Reddit users do not have profiles with personal information fields that we could scrape.
Instead, we developed methods to extract demographic information from the content of
user posts.

In order to determine what kind of information we can extract about users, we per-
formed a preliminary analysis. We manually labeled a random sample of 132 statements
that users made about themselves. We specifically searched for statements starting with
phrases such as ‘i am a’ or ‘i am an’. In our sample: 36% clearly stated the user’s age, reli-
gion, gender, occupation, or location; 34% contained descriptive phrases that were difficult
to categorize like ‘i am a big guy’ or ‘i am a lazy person’; and 30% mentioned attributes
such as sexual orientation, dietary restrictions, political affiliations, or hobbies that were
rare overall.

1https://www.reddit.com/r/datasets/comments/3bxlg7/i_have_every_
publicly_available_reddit_comment/

78

https://www.reddit.com/r/datasets/comments/3bxlg7/i_have_every_publicly_available_reddit_comment/
https://www.reddit.com/r/datasets/comments/3bxlg7/i_have_every_publicly_available_reddit_comment/


Based on our analysis, we decided to focus on age, religion, gender, occupation, and
location as the main attributes.2 These were extracted as follows:
Age. We extracted the user’s age using a regular expression.3 During this process, we
found users that were matched to different ages due to the corpus covering user activity
across several years. In those cases, we removed users whose age difference was greater
than the time span of our corpus. Additionally, we excluded users who said they were less
than 13 years of age, as this violates the Reddit terms of service. We decided to split the
age into two groups, young and old at a threshold of 30, as this split was used in previous
work [161], and it gave a reasonable split for our data and the data we used for testing word
associations [50].
Gender. Gender was extracted by searching for statements referring to oneself as a ‘boy’,
‘man’, ‘male’, ‘guy’, for male, or ‘girl’, ‘woman’, ‘female’, ‘gal’, for female. Manual in-
spection revealed some users indicated that they were of both genders. In that case, if one
gender occurred less than one fifth of the time we took the majority of the reported gen-
der, otherwise we removed the user from our dataset. We acknowledge that this approach
excludes transgender, gender fluid, and a range of non-binary people, and may misgender
people as well (see § 7.11 for further discussion of these issues).
Location. To obtain location information, we searched for phrases such as ‘i am from’
and ‘i live in.’ Next, whenever either the next token is (1) tagged as a location by a named
entity recognizer [117], (2) a noun, or (3) the word ‘the’, we select all subsequent tokens
in the phrase as the user location. Manual inspection of matches showed that Reddit users
are not consistent in the granularity of reported location. Statements included cities, state,
province, country, continent, or geographical region. Based on the number of users per
country, we decided to merge some countries into region labels while leaving others sep-
arate. This resulted in the following set of regions: USA, Asia, Oceania, UK, Europe,
Canada. We further matched location statements to lexicons to resolve the location to one
of these regions, removing common relative location words.4 For larger population regions
of Canada and the USA, we match statements using state abbreviations, province names,
highest population cities, and in the USA we also match the capital cities. For other regions
we only match the highest population cities as there were too many cases to cover.
Religion. To extract religion, we searched for the five largest global religious populations,5

2We attempted to extract occupations, but found they were difficult to identify and group because there
are many different occupations, many ways of stating one’s occupation, and many ways to describe the same
occupation.

3.*?(i am|i\’m) (\\d+) (years|yrs|yr) old[ˆe].*?
4northern, western, eastern, southern, downtown, suburbs
5From https://www.adherents.com/, although note that since our study the domain name has

been hijacked by a payday loans service. The site is archived by the Library of Congress at https://www.

79

https://www.adherents.com/
https://www.loc.gov/item/lcwaN0003960/
https://www.loc.gov/item/lcwaN0003960/


counting ‘secular’, ‘atheist’, and ‘agnostic’ as one non-religious group. We used a regular
expression6 and filtered users who stated beliefs in more than one of these five groups.

7.3.2 Preprocessing

Reddit data can be noisy, containing URLs, structured content (e.g. tables, lists), Subreddit-
specific emoticons, generated, or deleted content. We first extract all posts for a each user
in our dataset. During this process we removed noisy posts following these rules: (1) it
contains more than 20 tokens but the average token length is less than 3; (2) it contains a
long token whose length is greater than 30; (3) it contains less than 8 tokens among which
more than 3 are URLs; (4) it contains more than 3 math related symbols, such as “|”, “+”
and “=”; (5) it contains coding related symbols like “{”, “}” and “( )” with only white
spaces in the parentheses; (6) it contains less than 5 tokens and the last token is ”*” (This
kind of post is usually a spelling correction to a previous post); (7) there are less than 4
unique tokens in every sequence of 8 adjacent tokens; (8) it contains hashtags, indicated
by: [ ] ( / / #; (9) it is a duplicate of another post in the user’s data; and (10) more than
60% of the characters are non-alphabetical. After the filtering step, we removed markup
for emojis and hyperlinks from the remaining posts (keeping the posts themselves). We
took these steps to ensure that we were capturing language used by the authors, rather than
reposts, collections of links, ASCII tables and art, equations, or code. Tokens that occur
fewer than 5 times are replaced with “UNK,” which results in a vocab size of 55k for the
small anchor set and 167k for the larger one. Additional examples are shown in Table 7.1.

7.3.3 Post-processing

The resulting dataset was further filtered to remove known bots.7 For the demographic
data we consider two subsets. First, the set of users for which all four attributes are known
(4Dem). With this set we perform ablation experiments on the number of known attributes
in a controlled manner. However, it is important to note that this set may not be rep-
resentative of most users on Reddit, as it focuses on users willing to divulge a range of
demographic attributes. Our second sample addresses this by including users for whom we
identify two or more of the demographic attributes (2+Dem). Statistics for these sets are
described in Table 7.2, along with the training, development, and test splits used for the
language modeling experiments.

loc.gov/item/lcwaN0003960/
6.*?(i am|i\’m) (a )?(christian | muslim | secular | atheist | agnostic | hindu | buddhist).*?
7https://www.reddit.com/r/autowikibot/wiki/redditbots
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Figure 7.1: Distribution of the four demographic attributes in our two datasets, showing
the set with all demographics known on the right and the random sample from those with
at least two known on the left.
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Rule Example

(1) it contains more than 20 tokens but the aver-
age token length is less than 3

” i ” ” ” ” w ” ” i ” ” l ” ” l ” ” ” ” n ” ”
e ” ” v ” ” e ” ” r ” ” ” ” g ” ” i ” ” v ” ”
e ”

(2) it contains a long token whose length is
greater than 30

(There is usually duplication inside
this kind of post)

(3) it contains less than 8 tokens among which
more than 3 are URLs

URL URL URL URL

(4) it contains more than 3 math related sym-
bols, such as “|”, “+” and “=”

before humanity , maybe 2 +2 = 5 . no
, before humanity 2 +2 = 4 did not exist
.

(5) it contains symbols like “{”, “}” and “( )”
with only white spaces in the parentheses

we specialize in ( ) ( ) ( ) ( ) ( ) ( ) ( )

(6) it contains less than 5 tokens and the last
token is ”*”

(This kind of post is usually a spelling
correction to a previous post)

(7) there are less than 4 unique tokens in every
sequence of 8 adjacent tokens

w , w , w , w , would n’t it be better
if we just bend over and follow their
rules ?

(8) it contains hashtags, indicated by: [ ] ( / / # [ ** if i were a rich man ... ** ] ( / /
#ggj )

(9) it is a duplicate of another post in the user’s
data
(10) more than 60% of the characters are non-
alphabetical.

Table 7.1: Examples of rules for filtering posts.

The distribution of demographic values for each of these sets is shown in Figure 7.1.
Looking at the set of all users in our data who have at least two known demographic at-
tributes (2+Dem), we find that 83% of the time location is unknown. Age and religion
are the next most frequently missing at 53% and 34% respectively. Gender is more likely
to be known than the other attributes: only 10% of users in this subset have an unknown
gender. In a manual evaluation of all our extracted attribute labels for the 100 users, we
found accuracies of 94% for location and gender, 78% for religion, and 96% for age.

In order to verify the accuracy of our demographic attribute assignment, we manually
annotated a sample of 100 users from the dataset. Our extraction of attributes with regular
expressions and rules was meant to have high-precision. It is likely that more attributes
marked ‘unknown’ by our extraction could be filled in upon manual inspection. We evalu-
ate the retrieved attributes for these 100 users by viewing the set of all posts that matched
our extraction rules and attempting to annotate age, religion, gender, and location. The
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Set Users Posts

All Reddit 13,213,172 1,430,935,783

2+Dem

Total 61,627 205,394,970
Training 34,110 50,000
Validation 9,190 10,000
Test 9,143 10,000

4Dem

Total 354 3,433,062
Test 354 10,000

Table 7.2: Statistics for two Reddit sets: with at least two demographic attributes (2+Dem),
or all four demographic attributes (4Dem). Training, development, test splits used in the
language modeling experiments are also shown. First row shows overall number of posts
and users from the entire set of Reddit posts.

Attribute Values Word Neighbors

Gender
Male

blush

blushing, smile, chortle, swoon, snicker, wince, chuckle,
blushes, smirk, guffaw

Female brow, eyeshadow, bronzer, nars, nyx, lipstick, mascara,
primer, concealer, highlighter

Age
Younger

health

regen, mana, aid, permanent, condition, treatment, men-
tal, preventative, benefits, medical

Older care, reform, healthcare, education, coverage, high-
deductible, socialized, medical, insurance, condition

Religion

Christian

embodying

exalting, creaturely, extols, mysteriousness, idolization,
magnanimity, asceticism, imbuing, unalterable, mortifi-
cation

Atheist
unionism, mercantilist, american, corporatocracy, un-
free, proletarian, environmentalist, wage-slavery, com-
munistic, free-marketeers

Location
USA

america

europe, country, canada, sweden, mexico, china, india,
africa, usa, britain

Canada original, tv, worst, hot, space, actual, body, home, move,
nation

Table 7.3: Examples of words with low overlap in nearest neighbors, showing how meaning
can differ across the values of a demographic attribute.
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annotation instructions were to identify the value of these four attributes based on the an-
notators interpretation of the text of the posts. Then, for cases where the extracted attribute
is not ‘unknown’, we calculate the percentage of times that they are the same. We get 94%
for location and gender, 78% for religion, and 96% for age. It should also be noted that
despite the annotators best efforts, it is not possible to know the actual ground truth values.

7.4 Generating Compositional Demographic Word Em-
beddings

We propose two methods for learning compositional demographic embeddings. The first
learns a generic embedding for each word and a vector representation of each demographic
attribute (including ‘unknown’). This is memory efficient, as we need only 19 vectors to
cover all of our attributes. In the second method, for each word we learn (a) a generic
embedding and (b) a vector for each demographic attribute. This is more expressive, but
requires twenty vectors for each word.

7.4.1 Demographic Attribute Vectors

In this approach we jointly learn a matrix for words and a separate vector for each demo-
graphic value. The word matrix W ∈R|V |×k has a row for each word in the vocabulary and a
k-dimensional vector for each embedding. The demographic values can be represented by
another matrix D ∈R|C|×k, where C is the set of all demographic values (e.g., male, female,
christian, USA). The hidden layer is calculated as h = Wᵀ

h (Ww +Cg +Cl +Cr +Ca) where
w represents the one-hot encoding of an input word and g, l,r,a represent the demographic
values of the speaker. This is a modified skip-gram architecture [130] with a hierarchical
softmax, which sums five terms so that back-propagation updates the word representation
as well as the demographic values.

We use posts from all users to train embeddings for words that occur at least five times
across all users. This yields a vocabulary of 503k words. We learn 100-dimensional em-
beddings with an initial learning rate of 0.025 and a window size of five.

7.4.2 Demographic Word Matrices

When learning demographic matrices we separately run our skip-gram model for each of
the demographic attributes (e.g., gender) and learn a generic word matrix WG ∈ R|V |×k and
a value specific word matrix for each value, v, of the given attribute, A, (e.g., male, female)
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Wv ∈ R|V |×k,∀v ∈ Av. This changes the hidden layer calculation to h = Wᵀ
h Gw + Wᵀ

h Wvw,
with hidden layer weights Wh, and the model then learns a generic word representation, in
matrix G, while learning the value specific impact on the meaning of that word.

Differences Across Demographic Embeddings. In order to understand what our em-
beddings capture, we examine words that have different representations across demograph-
ics. We can look at the nearest neighbors of a given query word across the embedding
spaces for different demographics. We perform this analysis on both the demographic ma-
trices and vectors, finding less variation in the neighbors when using demographic vectors,
making them less interesting. We show examples of words with low overlap in nearest
neighbors for demographic matrices in Table 7.3. These show the differences in word
meaning across groups.

7.5 Language Modeling

We first examine the usefulness of our embeddings by showing that they can help us better
model a user’s language. We consider two experiments. First, we focus on compositional
demographic embeddings and sample 50k posts from our corpus for training the language
model and 5k for each of validation and test. Next, we compare with a user-specific model
on a sample of our data with text from just 100 users who each have a large amount of data
available in our corpus, with an average of 3.2 million tokens per user.

In both experiments, we use the language model developed by Merity et al. (2018) [127,
128]. As discussed in Chapter 2, this model was recently state-of-the-art and has been the
basis of many variations. We modify it to initialize the word embeddings with the ones we
provide and to concatenate multiple embedding vectors as input to the recurrent layers. The
rest of the architecture is unaltered. We tried adding rather than concatenating and found
no improvement. We chose to concatenate the inputs with the intuition that the network
would learn how to combine the information itself.

We explored various hyperparameter configurations on our validation set and found
the best results using dropout with the same mask for generic and demographic-specific
embeddings, untied weights, and fixed input embeddings. Untying and fixing input embed-
dings is supported by concurrent work [192]. Each model is trained for 50 epochs. We use
the version from the epoch that had the best validation set perplexity, a standard metric in
language modeling that measures the accuracy of the predicted probability distribution.
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Model Type and Input Size 2+Dem 4Dem

Baseline, 100 123.8 124.6
Baseline, 500 125.1 126.1
Generic Words Only, 100 116.0 112.1
Generic Words Only, 500 115.8 112.6
Demographic Vectors, 200 116.7 113.0
Demographic Matrices
+ Age Only, 200 109.4 110.3
+ Gender Only, 200 109.4 109.9
+ Location Only, 200 109.7 112.9
+ Religion Only, 200 110.9 112.0
+ All Demographics, 500 107.7 109.1

Table 7.4: Perplexity on the demographic data. Our demographic-based approach im-
proves performance. The difference between the last row and generic words is significant
(p < 0.00001 with a permutation test).

7.5.1 Demographic Perplexity Evaluation

Table 7.4 shows results for our demographic personalization methods, which are designed
to handle new users for whom we have demographics but not much text data. The first
method, demographic vectors, performs no better than generic embeddings. This is sur-
prising since prior work has achieved success on a range of tasks with this kind of represen-
tation (see Chapter 2, Section 2.4.4). We suspect that for language modeling the variations
are too fine-grained to be captured by a single vector. However, demographic matrices do
improve significantly over generic embeddings. A model with all demographics improves
the most, but we also see improvements when only one demographic value is known.

The LSTM hidden layer size is the same across models, but the change in the input
size affects the total number of parameters. To control for this, we ran our baseline model
and model initialized with generic words with a larger input size, matching the number of
parameters in our best models. As shown in Table 7.4, this increase in parameters does not
improve performance.

7.5.1.1 Ablation Experiments

Table 7.4 shows results when using no demographics (top 4 rows), one demographic at a
time (rows 6-9) and all four demographics (row 10). Each attribute improves perplexity,
with age and gender improving it more than location and religion.

Additionally, we perform a breakdown of the performance of our demographic matrices
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2+Dem 4Dem
Att. Value 0D 4D 0D 4D

A
ge

Young 107.1 103.6 110.6 108.0
Old 115.1 111.1 114.0 112.0

Unknown 112.3 108.6 - -

L
oc

at
io

n

USA 108.5 105.7 108.1 105.1
Canada 135.7 132.6 110.0 107.6

Oceania 111.0 108.7 114.8 112.8
Europe 130.0 128.2 133.0 130.1

Asia 109.3 108.6 145.3 145.4
UK 115.3 113.5 96.9 96.9

Unknown 111.0 107.1 - -

R
el

ig
io

n

Christian 116.5 111.9 108.5 105.9
Atheist 106.4 103.2 112.7 109.9
Muslim 112.7 108.5 109.5 108.4

Hindu 122.4 115.6 158.1 159.5
Buddhist 114.1 111.7 116.4 114.1

Unknown 122.3 109.1 - -

G
en

de
r Male 113.5 109.2 115.2 112.6

Female 100.9 97.8 102.7 100.4
Unknown 122.3 118.5 - -

Table 7.5: Perplexity for language models with no demographics (0D) or with all four
demographic matrices (4D) with results broken down by demographic values.
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language model on each of the demographic groups. These results are shown in Table 7.5.
We do see worse performance on some minorities as compared to other groups for the same
model, although that is not always the case (gender, for instance, shows better perplexities
for female than for male, and Muslim shows lower perplexity than Christianity, which has
substantially more data). When we use the demographic word embeddings in our model,
we are able to improve performance for all demographic groups, including minorities.

We also find that the performance on the ‘unknown’ group increases in all cases with
our largest improvement on ‘unknown’ religion. The unknown is explicitly modeling peo-
ple in our dataset who have either (1) stated this demographic information with a value that
we model but not in a way that our regular expressions identify, (2) stated this demographic
information with a value that we do not model, or (3) have not stated this demographic in-
formation. In the second case, the effect is that it is useful to know which demographic
groups the speaker does not belong to. In the third case, it may be that not sharing this
particular piece of information (while sharing other personal information) says more about
what the speaker will tend to say.

7.5.2 Comparison with User Representations

For users with a lot of data, it is possible to train a user-specific model, with embeddings
that capture their unique language use. We would expect this to be better than our demo-
graphic embeddings, but also only be feasible for users with a lot of data. This experiment
compares our demographic approach with a user-specific approach.

We create a model for each user using the sample that has a large amount of data for
100 users (3.2 million tokens each on average) as done in concurrent work [189]. We tried
two approaches, user vectors and user matrices, which are analogous to our demographic
vectors and matrices. The difference is that rather than having a separate vector / matrix
for each demographic we have a separate vector / matrix for each user. Our split sizes for
language model experiments are the same as the demographic experiments.

Results. Table 7.6 shows results for generic embeddings, user vectors, user matrices, and
demographic matrices. We find that user vectors, as have been used widely in previous
work [95, 106], do not improve performance. Both our demographic and user matrices
improve performance over generic embeddings with comparable performance. While we
chose 100 users with a lot of data, they had less data than the amount used to train each
demographic specific model. The relationship between the amount of data, its similarity to
a user’s writing, and the effect on performance is an interesting open question.
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Model PPL

Generic Word Embeddings 63.94
User Vectors 68.98
User Matrices 61.69
Demographic Matrices 61.80

Table 7.6: Comparing our demographic-based approach with two user-specific ap-
proaches. Perplexities are generally lower than previous tables because the threshold for
rare words being made UNK was higher.

7.6 Demographic Word Associations

best oo3 oo10
Method India USA India USA India USA

C-SGM 0.09 0.03 0.14 0.07 0.19 0.10
Ours G 0.18 0.21 0.18 0.40 0.31 0.63

Ours G+D 0.17 0.19 0.16 0.39 0.32 0.64

best oo3 oo10
Method Male Female Male Female Male Female

C-SGM 0.13 0.16 0.20 0.20 0.25 0.26
Ours G 0.17 0.17 0.22 0.26 0.35 0.42

Ours G+D 0.18 0.20 0.22 0.27 0.37 0.45

best oo3 oo10
Method Younger Older Younger Older Younger Older

C-SGM - - - - - -
Ours G 0.18 0.18 0.19 0.26 0.31 0.42

Ours G+D 0.19 0.21 0.19 0.29 0.32 0.44

Table 7.7: Comparison of demographic-aware word association similarities for our embed-
dings using (G)eneric or (G)eneric+(D)emographic, and the best results of the two variants
of the composite skip-gram model (C-SGM) from Garimella et al. (2017). We show im-
proved results for USA, India, Male, and Female, and provide new results using age for
Younger than 30 and Older.
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As a second evaluation, we consider word associations, a core task in NLP that probes
the relatedness or similarity between words. Data is collected for the task by presenting a
stimulus word (e.g., cat) and asking people what other words come to mind (e.g., dog or
mouse). Earlier systems relied on resources such as WordNet to solve the task, but most
recent work has used word embeddings.

Data. For our evaluation, we use data from Garimella et al. (2017). They constructed a
word association dataset and experimented with learning separate word embedding matri-
ces for different demographic groups. To collect the data, they (1) asked crowd workers to
write one word associated with a single word prompt and (2) asked the workers their gen-
der, age, location, occupation, ethnicity, education, and income. Only gender and location
information was released, but the authors provided age information upon request.

Evaluation. As in prior work, we consider evaluation metrics defined in terms of: fw, the
number of people who listed word w for a stimulus; fmax, the highest fw across all words
chosen for a stimulus; and t, the number of participants given a stimulus.
best is fw divided by fmax, where w is the word in the embedding space closest to the
stimulus word; ooN (out-of-N) is

∑
fw/t for the N words in the embedding space closest to

the stimulus word; both are averaged over all stimulus words.
We consider two experiments. One directly matches Garimella et al. (2017), testing

each demographic group separately [50]. Since our interest is in compositionality, we also
introduce a setting where the data is split into eight disjoint sets, one for each combination
of the three attributes.

Models. Garimella et al. (2017) proposed two methods, which we merge by taking the
best result from either one. We considered only our demographic matrix embeddings as
they performed best on language modeling. For the experiment with separate demograph-
ics, we use the appropriate embeddings. For the experiment with combinations of demo-
graphics, we concatenate the embeddings. We also compare to concatenation of generic
embeddings learned for each attribute (this performs better than any individual generic
embedding).
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Results. Table 7.7 shows results on the single-demographic experiment. We achieve
higher performance, but that may come from the change in training dataset.8,9 Table 7.8
shows results on the multi-demographic setting. We include only the best pair (age and
gender) due to space. We have seen in earlier experiments that location does not per-
form as well as the other attributes and found the same trend here. Overall, composing
demographic-based representations helps, with a combination of all three attributes con-
sistently performing well on the oo3 metric, while having two helps on the best metric.
Generic embeddings only score the highest on one subset: Male, India, Young.

7.7 Experiments Without Demographic Information

Our method for constructing personalized language models consists of a similarity metric
and a method for leveraging similar user data to train a personalized language model. The
similarity metric measures which anchor users are most similar to a new user. That is,
given a set users (anchors), a new user (n), and a similarity function (sim), we compute
z = sim(n,anchors);z ⊂ anchors to get a set of similar users z. We explore three similarity
metrics and two methods of applying them to the construction of personalized models.

7.7.1 Calculating User Similarity

We explore three methods for measuring the similarity between users. Two of them, au-
thorship confusion and user embeddings, are derived from classifiers trained for other tasks,
while the third, perplexity-based similarity, is obtained from the performance of language
models on the new user. The user embedding method results in a vector space where we can
use cosine similarity to measure the distance between individuals. The perplexity directly
gives a distance between each pair and the authorship confusion vectors can be treated as a
vector of continuous values where each value represents the similarity to an anchor user.

Authorship Attribution Confusion (AA). Similarity can be measured from the confu-
sion matrix of an authorship attribution model. This model takes a post as input and en-
codes it with an LSTM [68]. The final state is passed to a feed-forward layer and then a
softmax to get a distribution over authors. We denote this model A, and A(U) as the class
distribution output by the model for a given utterance set. For a new user, we take their set

8 Their models are trained on 67.6m tokens of blog data, while ours are trained on 1,400m tokens of
Reddit data.

9 We see a larger gain for the US than the IN evaluation. This may be because in our data location is
unknown for many users and India is underrepresented (so much so that we aggregate it into all of Asia).
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of utterances, Un and pass them to our model A(Un) which will give us a confusion vector
of length K, one value for each author.

We train this model on the data from anchor users. Embeddings are initialized with
200d GloVe vectors pretrained on 6 billion tokens from randomly sampled Reddit posts [146].
Models are trained on an NVIDIA GeForce RTX-2080Ti GPU and take 2.5 hours for
K = 100 anchors with test accuracy of 42.88%, and 4 hours for K = 10,000 anchors with
test accuracy of 2.42%. These accuracies are reasonably high given the difficulty of the
task (Note that when K = 10,000 the majority class is 0.01%). The classifier does not have
to be high performing given our application to computing a user similarity metric.

We apply this model to each post in the training data from new users. The scores
produced by the model for each new post indicate which of the anchor users has the most
similar writing. The more frequently posts from a new user are predicted as coming from
a specific anchor user, the more similar this anchor user is to the new user.

User Embeddings (UE). We first train a language model with a user embedding layer on
the data from anchor users. The model is adapted from [128] with an added user embedding
layer. This token embedding layer is initialized with our pretrained GloVe vectors and
frozen during training. The output of the LSTM layer is concatenated to the user embedding
at each time step based on the author of the token at that time step. Our optimizer starts
with SGD and will switch to ASGD if there is no improvement in validation loss in the
past 5 epochs [150]. We removed continuous cache pointers to speed up training [59].
The model is trained on an NVIDIA GeForce RTX-2080Ti GPU. For K = 100 anchors, it
took 132 hours. The validation perplexity converges to 59.06 and test perplexity is 58.86.
When training with K = 10,000, we reduced the hidden LSTM size to 500, which reduced
training time to 112 hours. The validation perplexity converges to 88.71 and test perplexity
is 88.54.

The embeddings of anchor users can be obtained from the user embedding layer in
the trained model. To learn the embeddings of new users, we freeze all parameters of
the trained model except the user embedding layer. We train the model on the data from
each new user separately with the same training strategy. It takes 2 minutes to learn the
embedding of each new user. The average test perplexity is 66.67 when K = 100 and 90.48
when K = 10,000. For each pair of new user and anchor user, we use the cosine similarity
between two embeddings as the similarity.

Perplexity-Based (PPLB). Given N trained language models, one for each of N users,
we can then use the perplexity of one language model on another user’s data as a measure
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of distance. We could compare the word-level distributions, though this would be very
computationally expensive. In our experiments, we use the probability of the correct words
only, or the perplexity of each model on each new user’s data.

We take the large language model trained on all anchor users, as described in the user
embedding section and fine-tune it for each anchor user. This step is relatively inexpensive
and takes a few minutes per user for both of our anchor sets. We then measure the perplexity
of each model on the data of each new user. For this matrix of new×anchor perplexities, we
turn each row, representing a new user, into a similarity vector by computing 1− c−min(row)

max(row)

for each cell, c. This step is more expensive, taking close to 24 hours for K = 100 and
intractable given our hardware constraints in the K = 10,000 setting.

7.8 Leveraging Similar Users

Our three similarity methods provide a way to identify anchor users with the most relevant
data for a new user. In this section, we describe two methods to learn from that data to
construct a personalized model.

7.8.1 Weighted Sample Fine-tuning

Users who speak in a similar style or about similar content may be harder to distinguish
from each other and should then be more similar. For a given similarity metric, we compute
similar users and use data from these users to fine-tune a language model before fine-tuning
for the new user.

We compare to two baselines, (1) a model trained on all anchor users with no fine-
tuning and (2) a model trained on all anchor users that is fine-tuned on the new user’s data,
as is done in standard fine-tuning. Our method of weighted sample fine-tuning has two
steps. The first step is to fine-tune the model trained on all anchor users on a new set of
similar users, as determined by our chosen similarity metric. Then we fine-tune as in the
standard case, by tuning on the new user’s data.

7.8.2 Interpolation Model

Our interpolation model is built from individual language models constructed for each an-
chor user. It takes the predictions of each anchor user model and weights their predictions
by that anchor’s similarity to the new user. No model updates are done in this step, which
makes it immediately applicable, without requiring further training, even if the aggregation
of output from all anchor models is more resource intensive.
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#Sim. ∆ Perplexity ∆ Accuracy@1
Method Users UE AA PPLB UE AA PPLB

Weighted Fine-tuning 5 0.276 1.728 -0.627 0.159 0.155 0.148
Interpolation 100 -2.055 -2.415 -1.992 0.249 0.277 0.223
Interpolation 50 -2.163 -2.415 -2.043 0.260 0.277 0.204
Interpolation 25 -2.242 -2.415 -2.022 0.248 0.277 0.232
Interpolation 10 -2.286 -2.435 -2.183 0.235 0.260 0.249

Table 7.9: Difference in perplexity for our interpolated model and weighted fine-tuning
results on the small anchor set. The baseline metrics are subtracted from our model,
meaning that more negative perplexity and more positive accuracy are better. The baseline
perplexity average is 64.3 for a model that uses standard fine-tuning. Bold indicates best
performance.

#Sim. Users ∆ Perplexity Std.Dev.

Random 10 0.176 0.367
10 -0.354 0.659
20 -0.534 0.977
30 -0.673 1.080
40 -0.714 1.040
50 -0.803 1.127

100 -0.941 1.351
150 -0.986 1.560
200 -1.069 1.549

Table 7.10: Difference in perplexity for fine-tuning varying number of similar users on the
large anchor set, first fine-tuning on similar users, and second on the new user’s data, as
compared to a baseline that fine-tunes on new user data only with perplexity 89.7. Each
similar user has 2k tokens and each new user has 2k.

We also want to incorporate the predictions of the model fine-tuned on the new user
data with the predictions of models trained on similar anchor users. We define a set of
similar anchor users, σ, each of which has a similarity to the new user, n. We vary s for
each similarity function. The weight to give the new user fine-tuned model is η, and we
interpolate as follows for a given resulting probability pr, of a word, w:

pr(w|·) = ηpn(w|·) + (1−η)
∑
i∈σ

s(σi,n)pσi(w|·)
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7.9 Results

We divide our results into separate subsections for each of the anchor sets. On the small
anchor set we were able to perform more exploration of the weighted fine-tuning method,
as it does not scale as well to the large anchor set.

7.9.1 Small Anchor Set

In this section, we compare our weighted sample fine-tuning and interpolation approaches
to the more standard fine-tuning, where a large pretrained model is fine-tuned only on the
new user’s data. With no fine-tuning our language model achieves a perplexity of 67.6 and
when fine-tuning on the new user only, this perplexity drops to 64.3. For weighted fine-
tuning, we attempt to fine-tune the large pretrained model on 100 anchors using our two
step method, first fine-tuning on a million tokens from most similar users, and then fine-
tuning on new user data. Through tuning the number of similar users, we found 5 worked
best. For the interpolation model, we found more similar users improved accuracy, though
perplexity was slightly higher for ten similar users. Our interpolation model combines
predictions from similar anchor user language models. We have a language model fine-
tuned to each of our anchor users and for a given new user we predict words by weighting
the predictions of the models representing the most similar users.

Results in Table 7.9 show that our weighted sample fine-tuning is not able to outperform
the baseline for any of our three similarity metrics. Perplexity and accuracy results are
reported averaged over the test set users. We also tried fine-tuning with random user’s data
and found that this performance was better than no fine-tuning but worse than fine-tuning
on new user data only, showing that there is no added benefit from simply continuing to
fine-tune on all data.

For the interpolation model, we tune η (see Section 7.8.2) on a held-out set and use a
value of 0.7. The results show that the authorship attribution similarity performs best on
both metrics. We find that as the number of similar users increases it has little effect past
around ten similar users, as the similarity weights decrease and have a smaller effect.

It appears that having similar user data does not help the weighted fine-tuning model.
To further investigate this we looked at settings where the amount of training data is fixed,
but the source is either random, or a sample of similar user’s data. For each new user, we
build six datasets: a random dataset and five datasets consisting of data from top-k similar
anchor users for this new user where k is in {10, 20, 30, 40, 50}. Each of these datasets has
2m tokens. The random dataset is comprised of 20k tokens from each anchor user. For the
dataset built from the top-k similar users, we want the number of tokens selected from each
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#Similar 2k per Anchor
Users Perplexity Acc @1 Acc @3 Acc @5 Acc @10

10 -0.692 0.097 0.111 0.100 0.058
5 -0.615 0.091 0.103 0.090 0.049
4 -0.590 0.088 0.091 0.079 0.045
3 -0.553 0.084 0.087 0.072 0.039
2 -0.415 0.084 0.060 0.052 0.033
1 -0.006 0.047 0.016 0.002 -0.002

#Similar 6k per Anchor
Users Perplexity Acc @1 Acc @3 Acc @5 Acc @10

10 -11.726 0.497 0.697 0.723 0.718
5 -11.463 0.491 0.656 0.694 0.705
4 -11.287 0.486 0.650 0.677 0.684
3 -11.001 0.457 0.622 0.657 0.654
2 -10.604 0.439 0.588 0.602 0.617
1 -8.866 0.282 0.423 0.485 0.516

Table 7.11: Comparison of our interpolated user embedding similarity model on the large
anchor set to a standard fine-tuned baseline measured in perplexity and accuracy @N. We
show results for 2k and 6k tokens per anchor user, showing improved performance when
more data per anchor is available. Bold indicates best performance.

anchor user to be proportional to the similarity between the new user and each anchor user.
To do this, we normalize the three similarities by subtracting the minimum and dividing by
the maximum such that they are between zero and one.

For a given set of k users and similarity metric, we sort all anchor users in descending
order by their similarity to the new user and choose the top k anchor users. For the rank
1 anchor user a1, we choose the following number of tokens from the training data, where
s(·, ·) is the similarity between a pair of users:

na1 = 2000k ∗
s(newuser,a1)∑k
i=1 s(newuser,ai)

If na1 > 200k, we choose na1 = 200k. For the rank x anchor user ax, we choose

nax = (2000k−
x−1∑
j=1

na j)∗
s(newuser,ax)∑k
i=x s(newuser,ai)

tokens from their training data. If nax > 200k, we choose nax = 200k. We repeat this
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fuels, qaeda, zealand, inte, al., antonio, facto, neutrality, kong, differ, olds, custody, cruise,
obligation, arts, beck, guise, scrolls, vegas, mph, dame, conclusions, laden, pedestal,
throne, ck, charm, occasions, disorders, correctness, disposal, capita, hominem, floyd,
thrones, sarcastic, ghz, explorer, comprehension, standpoint, ambulance, noting, diego,
accusations, cares, forth, enforcement, amp, nukem, convicted

Table 7.12: Top 50 words for which our best model outperforms the baseline based on the
frequency of word correctly predicted normalized by the word’s total frequency.

procedure until the rank k anchor user. The ratio of similarities in this equation enforces
that the amount of data we select from each of the top-k similar users is proportional to
their similarity.

We then train a separate model on each dataset. The architecture of the model is the
same as what is described in Section 7.7.1 except that it does not have a user embedding
layer. It takes about 2.5 hours to train a model on a dataset on an NVIDIA Tesla V100
GPU. We then fine-tune the trained models on the training data of the new user, which
takes about one minute on average.

For a chosen similarity metric and number k, we average the test perplexity of the fine-
tuned models for all new users and subtract from it the average test perplexity of the fine-
tuned models trained on random datasets, whose average perplexity is 111.0. The results
are shown in Figure 7.2 with shaded areas indicating standard deviation. In the figure, the
lower a point is, the better the datasets built using the corresponding similarity metric and
number k is for training a language model for new users, which we infer is because the
weighted sample datasets are closer to the data from new users.

We see that in terms of similarity metrics, the user embedding is the best while perplexity-
based is the worst. As k increases, the performance first increases then decreases. The best
performance is achieved when using the similarities calculated with user embeddings and
using top 20 or 30 similar anchor users. After that, including more users has little effect, as
their similarity weights continue to decrease. The main takeaway from this experiment is
that although similar user data helps more than random data, the benefit does not transfer
to the larger fine-tuning scenario. This area may be worth further exploring for fine-tuning
strategies or for training data selection in applications where new models must be trained.

7.9.2 Large Anchor Set

In a set of only one hundred anchor users, it may be the case that existing users are not
similar enough to the new user to benefit from our approach. To test this idea we ran

98



10 20 30 40 50

−15

−10

−5

0

5

10

Number of Similar Users

∆
Pe

rp
le

xi
ty

(O
ur

s-
B

as
el

in
e)

Authorship Attribution
User Embedding
Perplexity-Based

Figure 7.2: Change in perplexity for varying number of similar users considered in
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Figure 7.3: Heat maps showing normalized similarity for each metric on our 100 author
anchor set.

additional experiments using the larger set of 10k anchor users and 100 new users.
Taking our most promising user embedding similarity metric from the weighted sample

fine-tuning, we tested this method’s performance varying the number of similar users. Our
results in Table 7.10 show a reduction in perplexity of 0.94 at 100 similar users and over
one point at 200 users. There is a logarithmic improvement with the number of similar
users considered, as we would expect more dissimilar users to be less informative. The
results in this table suggest that the anchor set must be diverse enough to contain similar
users to new users, in order to benefit from this method.

We also try the interpolation model with a larger set of anchor users. Our base model
is trained on 10k anchor users and 2k tokens from each anchor. We fine-tune this model to
each similar anchor user for weighting predictions. On a held-out set we tune η and find that
in this setting performance starts to drop after around 10 similar users. It is computationally
expensive to run each of the 10k models on each new user. The perplexity similarity metric
requires that all of these are run in order to determine similarity and thus is not scalable to
the large anchor user setting. The user embedding metric scales better because similarity
can be determined by tuning an existing language model on new user data. For ten similar
users we require 1,000 times fewer computations than we would to weight all 10k users.
We found that authorship attribution performed much worse in this setting, as the confusion
matrix becomes very sparse.

The results for our best similarity metric, user embeddings, are shown in Table 7.11.
On the left we see performance for our model on the larger set containing 2k tokens per
anchor user. For this analysis of our best, scalable model, we include accuracy @N, a
metric denoting the percentage of times the correct word was in the top-N most probable
choices. This is comparable to Table 7.10, where we used the same amount of data for the
weighted sample fine-tuning approach. On the right we see performance when the amount
of data per anchor user is tripled. The baseline and fine-tuned models all benefit from this
additional data, however we find that the difference in perplexity is much larger, as having
additional data will allow the models to learn more accurate similarity metrics. We also
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Metric 1 Metric 2 Pearson’s r Spearman’s ρ

UE AA 0.360 0.362
UE PPL 0.280 0.316
PPL AA 0.073 0.025

Table 7.13: Spearman and Pearson correlation coefficients for each pair of similarity met-
rics (User Embeddings (UE), Authorship Attribution (AA), and Perplexity (PPL)) com-
puted for each of our 100 anchor users similarity to each new user.

find that when tuning η it tends toward 0.6 when there are 2k tokens per anchor user but
0.3 when there are 6k. As the amount of data from the anchor users increases, the optimal
interpolation weights shift to weight the anchor user models more heavily than the model
fine-tuned on the new user. How the tuning of η could be done on a per-user basis, rather
than globally, is an interesting open question.

7.10 Analysis of Similarity and Personalized Words

7.10.1 Differences in Similarity Functions

We looked at the differences between our three similarity functions by plotting heat maps
shown in Figure 7.3. We find that the three metrics seem to capture different information
about the relationships between users. The user embedding metric leads to more evenly
distributed similarities, while the other two metrics seem to have outlier anchor users that
show stronger correlation with a subset of the new users. We compute the correlation
coefficients for Spearman’s ρ and Pearson’s r in Table 7.13. Interestingly, the perplexity
and authorship attribution metrics correlate much more strongly with the user embedding
metric than with each other. It is possible that the user embedding metric performs best in
our experiments because it contains more of the useful information from both of the other
metrics.

7.10.2 Personalized Words

We take the highest performing model using user embedding similarity trained on our large
anchor user set and compare it to our baseline model to look at which words are more accu-
rately predicted. By taking the number of times each word is correctly predicted by the best
model when the baseline was wrong and dividing by the total number of occurrences of that
word in our language modeling data, we can find words that have the highest normalized
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frequency of being improved by our model.
The top 50 words for which we see improvement are shown in Table 7.12. We see many

proper nouns in this set that are made up of two tokens. Many names can start with “San” or
“Las” and so we see “vegas”, “diego”, and “antonio”, in this list. Similarly, “new” precedes
“zealand” and other location names. The top word is “fuels”, which occurs often in the data
in conversation about “fossil fuels”, though there are also many others that mention other
kinds of fuels, or use “fuels” as a verb, as in “it fuels outrage”. We also see that units
such as “mph” or “ghz” are more accurately predicted. The units that one chooses may
be more common depending on where one lives, or in the case of “ghz” it may depend
more on the subject matter that a user is familiar with or tends to talk about. Other proper
nouns such as “game of thrones”, or “hong kong” vs. “donkey kong”, contain common
words, which individually may be hard to predict, but with knowledge of an individual’s
preferences could be predicted more accurately.

7.11 Limitations and Ethical Considerations

This work uses demographic information to modify language representation. This type of
work is encouraged by the numerous arguments outlined in [147], which demonstrate the
need for demographic data disaggregation in order to make decisions and build technolo-
gies that are equitable for all. We view our work as an initial investigation of differences in
language model performance across demographics and how technology can be improved
for the identified groups. Our results in Tables 7.4 and 7.5 show that using demographic
information can enable the development of language tools that improve performance for all
groups compared to simply training on all data.

Although we show that some language production aspects are correlated with demo-
graphic information, we do not believe the way we speak is a direct and only consequence
of one’s demographics, neither do we claim that this is the ideal information source for it or
that this will necessarily hold for populations sampled significantly differently than in our
study. As a consequence, it is possible that using demographics in embedding construc-
tion could accentuate bias, although this remains to be studied. Those that use our method
should account for this possibility.

Our study uses four demographic variables and only covers a subset of the potential
values of each demographic. For instance, we do not use the same granularity across loca-
tions, include all locations, religions, or gender identities. We simplify age into ranges. The
groups ‘secular’, ‘agnostic’, and ‘atheist’ are grouped into one broader group. Our sample
is further biased by the choice of platform as each platform contains text from different
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populations. Users in our sample are predominately young, male, atheist, and live in the
United States.

When using gender as a study variable, we followed the recommendations of Larson
(2017) [102]. Our “gender” extraction method does not refer to biological sex. After
running gender extraction patterns, users are assigned to either the ‘male’, ‘female’, or ‘un-
known’ label, meaning that on the basis of these phrases one’s gender identity is assumed
to be binary or to be a gender identity unknown to our model, which may include those
who are transgender, non-binary, or those who do not wish to disclose their gender. How-
ever, we are aware that the use of regular expressions for the extraction of demographic
attributes can lead to false positives and false negatives and that there exists a bias in using
these strategies, as populations that do not wish to be identified are less likely to explic-
itly make such statements. For transparency, our released code includes the scripts used to
assign demographic labels.

Above we discussed concerns for incorrect demographic assignment when develop-
ing models. There are also potential negative consequences when using these models in
a deployed system. Our embeddings can only be used when the demographics of a user
are known. This may be acceptable if the user voluntarily self-reports their demographics
with the understanding that they will alter the predictions they receive. However, if demo-
graphics are automatically inferred there is a risk of misattribution, which depending on
the application may have negative consequences.

A separate consideration is the environmental impact of this approach. Compared to the
standard method, our approach does involve training more models, but the cost of inference
is likely only marginally higher. We believe the additional cost in training is worth the
benefits to individual users.

Finally, we acknowledge that components of our method could potentially be used for
user profiling [160] and/or surveillance of target populations, thus exposing members of
underrepresented groups to harms such as discrimination and coercion and threatening in-
tellectual freedom [162]. Similarly, the language models could be used to generate text
in the style of a target population or at least to estimate the label distribution of a given
text, which would help obfuscate the identity of the author [154]. This obfuscation could
help hide an author’s identity in order to avoid surveillance or could be used maliciously
to infiltrate communities online. We advocate against the use of our methods for these or
other ethically questionable applications.
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7.12 Conclusions

In this chapter, we addressed the issue of language modeling in a low data setting where
a new user may not have enough data to train a personalized language model. We first
proposed a novel method of generating word representations by composing demographic-
specific word vectors. Through experiments on two core language processing tasks, lan-
guage modeling and word associations, we showed that demographic-aware word represen-
tations outperform generic embeddings. We also found that demographic matrices perform
much better than demographic vectors. Through several ablation analyses we showed that
word embeddings that leverage multiple demographic attributes give better performance
than those using single attributes. To support future work that can help model individuals
and demographics, our code is publicly available. Our data is not available due to licensing
restrictions but can be redownloaded and processed with our scripts. We hope this will sup-
port work on solutions for NLP applications and resources that can better serve minorities
and underrepresented groups.

When demographics are not available, we looked at how to find similar users based on
small samples of their writing. We considered three similarity metrics and two methods
of leveraging data from similar “anchor” users to improve the performance of language
modeling over a standard fine-tuning baseline, and showed how our results vary with the
amount of data available for anchor users. We found that the most easily scalable and
highest performing method was to use user embedding similarity and to interpolate similar
user fine-tuned models. Additionally, we provided an analysis of the kind of words that
our personalized models are able to more accurately predict. The demographic embedding
portion of this work was originally published in [188], while the work on weighted fine-
tuning and interpolation was in submission at the time of writing.
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CHAPTER 8

Conclusions

In this thesis, we developed methods for targeted sentiment analysis, prediction of conver-
sational behavior, including what someone will say, when they will respond, and aspects
of the relationship between interlocutors. We used new methods to construct word em-
beddings that are personalized to individuals, or to demographic groups, and showed how
to use them to improve language modeling, word association, and authorship attribution
tasks. Additionally, we explored the benefits of personal data over corpora constructed
from larger sets of people and what types of words are more relevant for personalization.
Now we will return to the research questions to discuss how each was addressed.

8.1 Revisiting the Research Questions

In the chapters of this thesis we explored several questions related to personalization of
word representations and longitudinal dialog. We started by looking at detecting personal
preferences through targeted sentiment analysis. We looked at how to detect the sentiment
these speakers expressed and how to resolve which entities this sentiment was being ex-
pressed toward. We then moved to personal longitudinal corpora to examine behaviors in
conversation including what people will say, when they will say it, and how the relation-
ship between interlocutors affects our predictions. In the last two chapters of the thesis,
we looked at constructing personalized representations of words, through personalized and
demographic word embeddings, as well as personalized language models. We moved from
building representations for individual speakers when a lot of data per individual is avail-
able, to when we do not have a lot of data per individual. In this case, we consider some
known attributes by which we can categorize individuals; demographics, as well as meth-
ods for determining the similarity of users when a small amount of writing is available. We
now return to the research questions outlined in the introduction to discuss how each has
been addressed.
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1. Can we predict an individuals behaviors, emotions, and relationships from their
conversations?

In Chapters 3-5, we looked at two types of data. We looked at statements made
by students about their classes and instructors as well as personal data showing how
an individual’s conversational data allows us to better predict what people will say,
when they will say it, and the relationship between speakers in these conversations.
We used student statements to detect entities and the sentiment expressed toward
them. The personal conversational data was used to predict the next common utter-
ance in a conversation, the response time behavior, and to predict certain attributes of
the interlocutors relationship. To this extent, we have answered this question, though
future work may explore conversational behaviors further, in a generative setting and
with more detailed response time prediction. The classes of relationships can be ex-
panded in future work, and sentiments can be explored further in more conversational
settings.

2. Can we better predict what people will say using personalized word representa-
tions from an individual or from a composition of demographic representations?

In Chapter 6, we looked at personalized word embeddings for an individual, and in
Chapter 7, we looked at demographic embeddings for four demographic attributes.
We showed that demographic embeddings outperformed standard word embeddings.
We used language models to predict what individuals will say, and studied how best
to initialize such models with our personalized embeddings. We examined which
words have the most different representations across individuals and demographics,
and which types of words have the highest perplexity reduction when leveraging
data from similar users. Future work could provide more insight into this question
by looking for ways to more effectively leverage information from similar users and
examining how to practically and efficiently apply these methods to transformer lan-
guage models.

3. How does the amount of data from a new user, what we know about them, and
ability to measure the similarity of users affect how well we can predict what a
new user will say?

In Chapter 7 of this thesis, we addressed how the data we have about a new user
affects our ability to predict their language. If we have demographic attributes, we
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can often benefit from demographic embeddings. Otherwise, using small amounts of
writing from the user, we can find similar users from which to build language models,
and interpolate them to more accurately predict the new users language. We found
that our similarity metrics capture information and that our user embedding similar-
ity metric allowed us to perform best. Future work could explore in more detail the
time compute trade-off of the options discussed here, for optimizing personalization
given a scenario of available information and compute resources.

8.2 Future Work

Personalized models discussed in this thesis have raised additional questions and leave
room for several directions of future work. Chapter specific limitations and ethical consid-
erations exist in Sections 6.8 and 7.11.

In Chapter 3, we discussed targeted sentiment analysis in order to develop a method to
extract individual user preferences from their utterances. However, this has yet to be tested
on natural conversational data. The extent to which the proposed techniques extend to other
domains is currently unknown.

Chapters 4 and 5 use personal longitudinal data while Chapters 6 and 7 use public
Reddit data. There are important differences in personal language when pragmatic factors
vary. For instance, Reddit users develop an identity on the platform where some users
may also know the true identity of an individual. The user may also make “throwaway”
accounts that provide anonymity and have been shown to exhibit language patterns that
differ significantly from the language use of other Reddit users [30, 103]. The differences
between personalized language use and modeling between public platforms with varying
degrees of anonymity and private discourse remain to be studied.

The experiments in Chapters 4 and 5 could be further expanded upon using techniques
from later chapters. For instance, personalized or demographic embeddings, or embed-
dings based on the speaker relationship annotations could improve performance. Also, the
language modeling task in Chapter 4 could be broadened to all exchanged language, which
may be more insightful in terms of resulting perplexities and further analysis. Some fea-
tures we used were derived from lexicons such as LIWC, and while combining these with
other features appeared to improve model performance, the analyses using LIWC are lim-
ited. Using word counts can give an inaccurate picture, and recent studies have shown, for
instance, that emotion word counts are not predictive of affect [98].

Work in Chapter 6 discusses authorship attribution with a result using the perplexities
of independently trained language models. Building upon this work, one could construct
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a model that jointly considers personalized embeddings in the author classification task
in order to improve accuracy. The relative difficulty of this task and the usefulness of
the proposed model in the context of state-of-the-art authorship attribution remains to be
seen. Some authorship attribution corpora could be used for this task, though they contain
significantly less text per author than the Reddit data in our experiments. This also raises
the question of how much data is needed for our personalized models to work well, or what
is the trade-off between data volume and the performance on language modeling as well
as downstream tasks. This is important to consider, as it is often the case that users have
little data to leverage for personalization and may lead to further interesting questions about
how efficiently model users or create user/personalized embeddings while minimizing the
required data volume. Meta-learning is an area of research that focuses on this issue and
could have important uses in personalization, as evidenced by early work bridging these
fields [114].

In Chapter 7, we build demographic embeddings for users who self-reported demo-
graphics and leveraged similar user data when they did not. Similar user data could possibly
be used as an alternative source from which to build personalized embeddings. Similarly,
the techniques for leveraging similar user data could be applied to users on the basis of their
self-reported demographics. Other work has tried variants of interpolated models and prim-
ing [93, 104, 171]. Priming language models entails showing it text from the new user and
taking that resulting hidden state of the model as it’s initialization. It would also be inter-
esting to explore how this method compares to our other methods and how the parameters
of priming affect performance (e.g. amount and type of priming data).

A body of recent work has examined how to find informative training examples at the
sentence or token level for fine-tuning pretrained language models [5, 63]. The authors
find that their methods can speed up training and results in higher performing language
models. With such implications, a future direction to pursue could be to take a model
like ELMo or BERT and fine-tune it to model an individual’s language, and in the process
elucidate which training examples are most informative (i.e. provide the largest benefit to
personalized models). An analysis of the most useful points (tokens or sentences) could
be insightful for learning what language is important to personalize. Alternatively, user
representations could be provided to the fine-tuning process in order to improve the se-
lection of informative examples, thus leading to improved fine-tuned, personalized models
and consequently, improved personalized embeddings.

Another idea that came up during our work was to build off of a kNN-LM, which finds
nearest neighbor words to a given context and weights the standard decoding based on
these neighbors [91]. Instead of finding neighbors just based on previous words in the
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context, we would also weight or embed user information in this space. We had considered
clustering similar data into sets to be used in personalization methods and the kNN-LM is
a way of treating each individual data point (i.e. post, sentence, or utterance) as a separate
set from which distance can be calculated to what a new user has said. These would be
interesting to compare to other ways of grouping, including posts grouped by time-window
or subreddit.

Finally, models that take situational context and personal identity into account together
should help improve personalized models in many contexts. A problem may arise when a
user often talks about one topic (e.g. makeup, beer, diet) but only to a specific audience.
In other contexts (e.g. a meeting at work), suggesting such words, although the model has
correctly learned their importance for a given user, may be inappropriate. A model that
incorporates audience or other pragmatic features may help the model avoid this issue. To
some extent the style of a user’s language may provide evidence that correlates with these
pragmatic features and it would be interesting to devise an experiment that provides insight
into the possible gains when explicitly incorporating the pragmatic features in the model.

8.3 Final Remarks

Throughout this thesis we have examined how to use personal, longitudinal, and conver-
sational data from Reddit, text messaging platforms, and newly collected data in order to
study the behaviors of individuals and to be able to better predict what people think and
how they will act. We look at how to improve natural language technologies for individuals,
which we believe is integral to the future directions of the NLP community. Much of work
up to this point has focused on large models trained on huge amounts of text written by
many people. As our field progresses it will be important to continue to develop techniques
for personalization that can be used to develop models for individuals rather than one-size-
fits-all. There are many directions in which to take this work and we hope that our methods
will help to serve as foundation for further discoveries in the areas of personalization and
conversational natural language technologies.
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[194] WELCH, C., PÉREZ-ROSAS, V., KUMMERFELD, J. K., AND MIHALCEA, R. Look
who’s talking: Inferring speaker attributes from personal longitudinal dialog. In
Proceedings of the 20th International Conference on Computational Linguistics and
Intelligent Text Processing (CICLing) (La Rochelle, France, 2019).

[195] WEN, T.-H., HEIDEL, A., LEE, H.-Y., TSAO, Y., AND LEE, L.-S. Recurrent neu-
ral network based language model personalization by social network crowdsourcing.
In Interspeech (2013), pp. 2703–2707.

[196] WILSON, T., WIEBE, J., AND HOFFMANN, P. Recognizing contextual polarity in
phrase-level sentiment analysis. In Proceedings of the conference on human lan-
guage technology and empirical methods in natural language processing (2005),
Association for Computational Linguistics, pp. 347–354.

[197] WU, X., LIN, W., WANG, Z., AND RASTORGUEVA, E. Author2Vec: A Framework
for Generating User Embedding. arXiv e-prints (Mar. 2020), arXiv:2003.11627.

[198] YATES, A., COHAN, A., AND GOHARIAN, N. Depression and self-harm risk as-
sessment in online forums. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing (Copenhagen, Denmark, Sept. 2017), As-
sociation for Computational Linguistics, pp. 2968–2978.

127



[199] YI, J., NASUKAWA, T., BUNESCU, R., AND NIBLACK, W. Sentiment analyzer:
Extracting sentiments about a given topic using natural language processing tech-
niques. In Data Mining, 2003. ICDM 2003. Third IEEE International Conference
on (2003), IEEE, pp. 427–434.

[200] YU, H., AND HATZIVASSILOGLOU, V. Towards answering opinion questions: Sep-
arating facts from opinions and identifying the polarity of opinion sentences. In
Proceedings of the 2003 conference on Empirical methods in natural language pro-
cessing (2003), Association for Computational Linguistics, pp. 129–136.

[201] ZELLERS, R., HOLTZMAN, A., RASHKIN, H., BISK, Y., FARHADI, A., ROES-
NER, F., AND CHOI, Y. Defending against neural fake news. In Advances in Neural
Information Processing Systems (2019), pp. 9054–9065.

[202] ZENG, Z., YIN, Y., SONG, Y., AND ZHANG, M. Socialized word embeddings. In
International Joint Conferences on Artificial Intelligence (IJCAI) (2017), pp. 3915–
3921.

[203] ZHANG, L., AND LIU, B. Aspect and entity extraction for opinion mining. In Data
mining and knowledge discovery for big data. Springer, 2014, pp. 1–40.

[204] ZHANG, M., ZHANG, Y., AND VO, D.-T. Neural networks for open domain tar-
geted sentiment. In Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP 2015) (2015).

[205] ZHANG, M., ZHANG, Y., AND VO, D.-T. Gated neural networks for targeted
sentiment analysis. In Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence, Phoenix, Arizona, USA. Association for the Advancement of Artificial
Intelligence (2016).

[206] ZHANG, R., HU, Z., GUO, H., AND MAO, Y. Syntax encoding with application in
authorship attribution. In Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing (Brussels, Belgium, Oct.-Nov. 2018), Association
for Computational Linguistics, pp. 2742–2753.

[207] ZHANG, S., DINAN, E., URBANEK, J., SZLAM, A., KIELA, D., AND WESTON, J.
Personalizing dialogue agents: I have a dog, do you have pets too? In Proceedings of
the 56th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers) (Melbourne, Australia, July 2018), Association for Computational
Linguistics, pp. 2204–2213.

[208] ZHANG, Y., GALLEY, M., GAO, J., GAN, Z., LI, X., BROCKETT, C., AND

DOLAN, B. Generating informative and diverse conversational responses via ad-
versarial information maximization. In Advances in Neural Information Processing
Systems (2018), pp. 1810–1820.

[209] ZHANG, Z., AND LAN, M. Ecnu: Extracting effective features from multiple se-
quential sentences for target-dependent sentiment analysis in reviews. SemEval-
2015 (2015), 736.

128



[210] ZHOU, K., YANG, S.-H., AND ZHA, H. Functional matrix factorizations for cold-
start recommendation. In Proceedings of the 34th international ACM SIGIR confer-
ence on Research and development in Information Retrieval (2011), pp. 315–324.

129


	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Introduction
	Research Questions
	Thesis Outline

	Related Work
	Sentiment Analysis
	Discourse and Dialog
	Language Modeling
	Word Embeddings
	Learning Embeddings
	Applying Embeddings
	Embedding Bias
	User Embeddings

	Authorship Attribution
	Author Profiling

	Social Media

	Individual Preferences
	Introduction
	Dataset
	Targeted Sentiment Analysis
	Entity Extraction
	Entity-Centric Sentiment Analysis

	Overall Evaluation and Discussion
	Conclusions

	Conversational Behavior
	Introduction
	Dataset
	Message and Speaker Distributions
	Message Production Across Time

	Model
	Features
	Predicting Conversational Behavior
	Prediction of Next Message in the Conversation
	Prediction of Message Response Time
	Results

	Deeper Dive into Personal Longitudinal Dialog Data
	Language Usage Patterns

	Conclusions

	Relationship Between Interlocutors
	Introduction
	Dataset
	Message Content
	Groups Over Time
	Conversation Interaction
	Model and Features
	Experiments
	Results
	Conclusions

	Personalized Word Representations
	Introduction
	Personalized Word Embeddings
	Differences Across Individual Word Representations and Usages
	Low Compute Language Modeling with In-Domain Initialization
	When and Why Does Pretraining Help?
	Language Modeling with Personalized Embeddings
	Authorship Attribution
	Limitations and Ethical Considerations
	Conclusion

	Personalization with Limited Data
	Introduction
	Demographic Embedding Models
	Dataset
	Finding Demographic Information
	Preprocessing
	Post-processing

	Generating Compositional Demographic Word Embeddings
	Demographic Attribute Vectors
	Demographic Word Matrices

	Language Modeling
	Demographic Perplexity Evaluation
	Ablation Experiments

	Comparison with User Representations

	Demographic Word Associations
	Experiments Without Demographic Information
	Calculating User Similarity

	Leveraging Similar Users
	Weighted Sample Fine-tuning
	Interpolation Model

	Results
	Small Anchor Set
	Large Anchor Set

	Analysis of Similarity and Personalized Words
	Differences in Similarity Functions
	Personalized Words

	Limitations and Ethical Considerations
	Conclusions

	Conclusions
	Revisiting the Research Questions
	Future Work
	Final Remarks

	Bibliography

