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ABSTRACT 

 

This thesis investigates the radar remote sensing of snow-covered terrain for estimation of 

snow equivalent water on global scale.  The importance and impact of this research stems from 

the fact that water from snowmelt is the major source of water for inland cities and agriculture 

during summer. This effort is focused on developing a physics-based model for snow and a fully 

coherent polarimetric scattering model for snow above ground. Both the physical model and the 

forward polarimetric scattering model present a significant improvement compared to the existing 

models for snowpack.  

Computer-generated snow media are constructed using 3-D spatial exponential correlation 

functions, along with Lineal-Path functions that serve to preserve the connectivity of the snow 

particles. A fully-coherent model is presented through the use of the Statistical S-matrix Wave 

Propagation in Spectral-Domain (SSWaP-SD) technique. The SSWaP-SD depends on the 

discretization of the medium into thin slabs.  Several realizations of a thin snow slab are solved 

numerically to form the statistics of the scattering matrix representing such a thin snow layer. For 

each thin slab of the snow-pack, a corresponding polarimetric N-port (representing different 

directions of scattering) S-matrix is generated. These S-matrices are cascaded using the SSWaP-

SD method to calculate the total forward and backward bistatic scattered fields in a fully coherent 

way. The SSWaP-SD, in conjunction with a Method of Moments (MoM) code based on the 

Discrete-Dipole Approximation (DDA), is chosen to leverage both the time-efficient computations 

of the DDA and the full-coherency of the SSWaP-SD method, simultaneously. In addition to the 



 
 

xiii 

MoM-DDA, a Finite Element Method (FEM) based on commercial software is used for cross-

comparison and validation.  The simulation results of the backscattering from an arbitrary thick 

snow layer are presented and validated with measurements. 

The underlying rough ground surface response is then estimated through both an analytical 

technique based on the Physical Optics (PO) method and a numerical solver based on MoM using 

a commercial full-wave solver. Finally, the complete response is then calculated by cascading the 

S-matrices representing the snow and the rough surface responses. The simulation results of the 

backscattering are presented using a Monte-Carlo process, which show very good agreement with 

measurements. 
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Introduction 

1.1. Background and Motivation 

Water is the single most precious resource that exists on our planet. It is everyone’s 

absolute responsibility to manage and keep such a vital element of   life. A substantial amount of 

water is stored in the form of snow, especially during the winter season. Accurate estimation of 

snow accumulation plays a significant role in hydrology and the study of climate change, with 

direct relevance to   important applications such as flood forecasting [1], agriculture [2] and the 

management of water resources [3].  There is a substantial amount of water stored in the form of 

snow, especially during the winter season. The runoff from melting of snow is the main source of 

water during summer in many parts of the world with huge impact on billions of people living 

inland. Study of the water cycle and understanding its change due to the effects of global warming 

has been the subject of intense investigation for the past several decades.   Snow accumulated over   

mountainous terrain is measured by a parameter known as the Snow-Water Equivalent (SWE).  

The Snow-Water Equivalent is the hypothetical equivalent amount of water that results from an 

instantaneous complete melting of the snow pack [4]. The SWE is mathematically related to the 

snow depth and snow density as in (1.1) 

𝑆𝑊𝐸 =
𝑆𝑛𝑜𝑤 𝐷𝑒𝑝𝑡ℎ

𝑆𝑛𝑜𝑤 𝐷𝑒𝑛𝑠𝑖𝑡𝑦
  

(1.1) 

 



 
 

2 

While the snow density depends on the “type” and “age” of the snow [5] and the snow depth can 

vary greatly from hour to hour, due to settlement and compaction of the snow, the amount of water 

contained within the snow remains consistent. That is why scientists are more interested in the 

measurement of SWE than in the measurement of the snow depth. Because the supply of water 

during the spring and summer season is dependent on the amount of water stored in the snowpack 

during the winter months, snow water equivalent is used as the standard measure for characterizing 

snowpack water content.  

A snowpack is essentially formed by the accumulation of ice particles on the ground 

surface. The process of snow formation during a winter storm relies heavily on temperature, but 

not necessarily the temperature at the ground surface. There are basically two conditions for snow 
  

 

 

 

 

Figure 1.1 Winter Perception scenarios [4] for different atmospheric conditions: (a) the whole 

atmospheric layer is below freezing, (b) if a high-latitude layer is warmer than freezing, (c) if 

the atmospheric temperature is below freezing but the ground surface is at or above freezing, 

and (d) if everything is below freezing.  

 

 

(a) (b) (c) (d)



 
 

3 

to form: (1) the atmospheric temperature should be at or below freezing (0 degrees Celsius or 32 

degrees Fahrenheit), and (2) there should be a minimum amount of moisture in the air. If both 

conditions are satisfied, the winter storm produces snowflakes [6] that can reach the ground in the 

form of various types of precipitation depending on the temperature profile of the atmosphere. The 

various precipitation scenarios are summarized in Fig. 1.1 [7]. If the atmospheric temperature and 

the ground temperature are both below freezing, as in Fig. 1.1(a), the snow never melts and falls 

in the form of snowflakes that accumulate on the ground to form a snowpack. When present in a 

warmer-than-freezing high-altitude atmospheric layer, as in Fig. 1.1 (b), the snow melts into liquid 

form inside this high-temperature layer. Interestingly, this melting process creates partial 

evaporative cooling that brings the air temperature around the snowflakes into lower temperatures, 

thereby opposing the melting process. However, if the high-temperature layer is thick enough, the 

snowflakes would melt completely. But if there exists another below-freezing atmospheric layer 

between the warm layer and the ground, then the liquid droplets partially transform into solid to 

form sleet. Conversely, if the atmospheric temperature profile is mostly above freezing but the 

ground itself is below freezing, then frozen rain is produced as depicted in Fig. 1.1(c). Similarly, 

if both the ground and the atmospheric temperatures are above freezing, then this results in regular 

rain precipitation as in Fig. 1.1(d). As a general rule, however, snow will not form if the ground 

temperature is at 5 degrees Celsius (41 degrees Fahrenheit) or higher, according to the National 

Snow & Ice Data Center. 

The characteristics of the snowpack after a snowfall depend on the original form of the 

crystals and on the weather conditions present when the snow fell. For example, when a snowfall 

is accompanied by strong winds, the snow crystals are broken into smaller fragments that can 

become more densely packed. After a snowfall, snow may melt or evaporate, or it may persist for 

https://nsidc.org/cryosphere/glossary/term/snowfall
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long periods. If snow persists on the ground, the texture, size, and shape of individual grains will 

change even while the snow temperature remains below freezing, or they may melt and refreeze 

over time, and will eventually become compressed by subsequent snowfalls. Different snow types 

are depicted in Fig. 1.2 [7].  

Over the winter season, the snowpack typically accumulates and develops a complex 

layered structure made up of a variety of snow grains, reflecting the weather and climate conditions 

prevailing at the time of deposition as well as changes within the snow cover over time. An 

example of such snow accumulation is depicted in Fig. 1.3 for Iceland [8], where the left part of 

the photo is taken in the early summer and the right part was taken in the middle of the winter.  

  

 

 

 

Figure 1.2 Forms of different frozen precipitation [7]: (a) snowflakes, (b) sleet, (c) graupel, (d) 

hail and (e) hoarfrost.  

 

(a) (b) (c) (d) (e)
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An example of depicting the spatial distribution of snow-covered areas in the U.S. during 

winter of 2019-2020 is shown in Fig. 1.4. The snow accumulation map data is updated by NOAA 

on a daily basis. Figure 1.4(a) provides a map for a day in early winter (November), and Fig. 1.4 

(b) shows the map for a day in the middle of the winter season. As we can surmise from the maps, 

the vast majority of the U.S. (and especially, the northern part) is actually covered with snow.  To 

highlight the importance of the problem, we recite the information in [9] which states that 80% of 

the land in Eurasia and North America is covered with snow in the winter season which is 

equivalent to about 46.5 million 𝑘𝑚2 of the Northern hemisphere during the month of January. 

Even in August, about 3.8 million 𝑘𝑚2  remain covered in snow. Of course, the water contained 

  

 

 

 

Figure 1.3 A satellite image of Iceland [8] in a) late summer, showing ice-free landscape except 

for permanent ice fields, and b) the middle of winter, showing that the island country is almost 

completely covered in white snow and ice.  
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in the snowpack results in an equivalent amount of liquid water when melted during the 

spring/summer season. According to [10], the snow run-off contribution to the total streamflow is 

around 50-80% during late spring. Additionally, glaciers and permanent snow cover produces 

68.7% of the total fresh water of the global reserves [11], of which the Antarctic contributes 61.7%, 

Greenland contributes 6.68%, the Arctic Islands contributes 0.24%, and mountainous regions 

contribute 0.12%. To highlight how large the percentage of fresh water reserve produced by snow 

is, we can refer to the total amount of fresh water reserve produced by soil moisture, which is only 

0.05% of the total fresh water [12], compared to 68.7% for snow-covered areas.   

These numbers highlight how important it is to monitor and estimate the SWE accurately. 

Several sensing techniques have been proposed to estimate the distribution of SWE, both 

regionally and globally. In-situ measurement of SWE are usually performed by burying a sensor 

underneath the snow cover [13-17]. A common in-situ measurement technique is the snow-course 

which entails taking multiple samples of the snowpack at multiple locations. Over 2000 sites in 

  

 

 

 

 

Figure 1.4 A snow water equivalent map for the United States [7] in (a) November, 2020, and (b) 

February, 2019. 

(a) (b)
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the western U.S. use the snow-course measurement approach to monitor SWE [13]. Multiple 

samples of snow are taken using a snow tube inserted in the snowpack and weighed using a 

calibrated scale to give the SWE value for the snowpack at the location [14]. However, manual 

sampling of the snow is tedious, expensive, and time-consuming.  Alternatively, automatic SWE 

monitoring is achievable through the use of snow pillows (also known as SNOTEL). Over 800 

snow pillows are installed in the western part of the U.S. to continuously measure the SWE. A 

photograph of a typical sampling site is shown in Fig. 1.5 [15], which consists of snow pillow, 

snow depth sensor, equipment shelter, and telemetry radio equipment. A snow pillow is meant to 

measure the weight of the water inside a snowpack as a function of time [16]. The pillow is 

connected to a stilling well, as shown in Fig. 1.6, via a pipe. When the ground is bare, the liquid 

level inside the stilling well is measured and recorded. During winter precipitation, snow 

accumulation changes the pressure on the pillow which is then transferred to the stilling well via 

an underground hose. This pressure causes the level of the liquid in the stilling well to change 

accordingly and that change is directly related to the value of SWE, given the snow depth 

information from the snow depth sensor. Additionally, a snow probe can be used to measure the 

density and wetness level of the snow as well [17]. The snow probe consists of a coaxial cable-

based cavity resonator whose resonant frequency depends on the amount of snow present in the 

cavity. Moreover, acoustic-based sensors can be used as well to monitor the SWE [18], wherein a 

microphone is placed at a vertical distance away from the snowpack and the reflected mechanical 

vibration is then sensed by a loud speaker. 
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Figure 1.5 Typical SNOTEL site [16]. 

 

 

 

Figure 1.6 Snow pillow (SNOTEL) operation description. 
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 However, the disadvantage of in-situ techniques is that they can cover only specific 

locations. SWE can also be determined using LiDARs (Light Detection And Ranging) either via 

airborne sensors or using ground based instruments [19].  LiDAR is considered an accurate sensing 

technique to measure snow depth information for forested terrains by illuminating the scene of 

interest with a laser pulse and then recording the reflected pulses via a discrete-return receiver. 

When directed downwards towards the scene, the system detects discrete return times 

corresponding to the distances to, and therefore the heights of, individual obstacles. While this 

technique accurately captures returns from trees and largely-spaced elements, the ice-particles are 

closely-packed in the snow, requiring appropriate adjustment to the receiver system. A photon-

counting receiver system is used instead to measure the profile of the return photons [20], which 

is directly related to the number of scatterers inside the medium. Therefore, LiDAR can estimate 

the snow depth from the discrete return time and can estimate the density of the snow from the 

photon count profile, thereby providing an estimate of SWE from these two parameters using Eq. 

(1.1). However, the LiDAR technique suffer from high noise levels contributed by solar photons, 

particularly during daytime.  

In contrast to in-situ snow sensors, satellite-borne remote sensing sensors offer the ability 

to measure SWE at a global scale [21-22].  Both passive and active remote sensing techniques 

have been utilized to provide estimation of snow depth and SWE over large areas. The reader is 

referred to [23] for a detailed discussion of the basics of passive and active remote sensing 

techniques. A summary of these techniques is presented in section 1.2.2. It is worth noting that 

InSAR techniques are particularly useful in this regard because they can be used to map SWE with 

high resolution [24].  
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Determining SWE from radar remote sensing measurements remains a very challenging 

problem. The goal is to estimate SWE from the radar backscattering coefficient measured by an 

imaging radar system. Such a retrieval requires the application of a very precise solution of the 

inverse-scattering problem, which can be developed using a well-trained machine learning 

algorithm that uses a set of calibrated values of the backscattering coefficient defined at a set of 

different frequencies or incident angles [25-27]. Achievement of such high-accuracy inversion 

technique is impossible without the availability of a very accurate training set of radar data and 

corresponding SWE values, which is only made through a physics-based forward scattering model. 

The development of such accurate physics-based forward model is the main objective of this work.  

1.2. Recent Advances in Microwave Remote Sensing of Snow 

 Electromagnetic (EM) scattering from a random medium over a rough ground surface has 

been a major topic of interest in microwave remote sensing for many years. The combined volume 

scattering and surface scattering problem requires a solution that accounts for both attenuation and 

multiple scattering caused by the scatterers within the random medium and reflections by the 

underlying rough surface. Many remote sensing problems of interest consist of such composite 

scenarios [28-29], such as remote sensing of soil moisture in forested terrain and croplands as well 

as snow cover over ground surfaces. From a radar remote sensing perspective, the measured 

backscattering coefficient represents the full response of the system due to everything within the 

imaged pixel.  The measured backscattering coefficient can be decomposed into the individual 

scattering contributions from the volume and surface. However, such discrimination between the 

surface and volume scattering components, without considering the interaction between them is a 

major oversimplification. Accurate forward scattering models are needed to accomplish the task 
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of inverse scattering for retrieval of the physical parameters of both the rough surface and the 

random volume. 

A complete solution of the forward scattering problem is constructed from the output of 

four intermediary-steps: (1) computer-generation of a physics-based model for the snow samples 

and the underlying rough surface, (2) development of an accurate time-efficient numerical 

computation method for calculating electromagnetic scattering from the computer-generated 

samples of the snow, (3) solution for scattering from the rough surface, and (4) development of a 

coherent superposition technique to account for the snow and rough surface interactions.  

The composite scattering scenario from the snowpack over the rough surface is depicted in 

Fig. 1.7. There are multiple components that need to be considered in order to completely account 

for the full response of the backscattering coefficient including: (1) the air-snow interface, (2) the 

volumetric snow contribution, and (3) the snow-ground reflection.  A general form of the total 

backscattering could be written as  

𝜎𝑡𝑜𝑡𝑎𝑙
𝑜 = 𝜎𝑎𝑖𝑟−𝑠𝑛𝑜𝑤

𝑜 + 𝜎𝑠𝑛𝑜𝑤 𝑣𝑜𝑙𝑢𝑚𝑒
𝑜 + 𝜎𝑠𝑛𝑜𝑤−𝑔𝑟𝑜𝑢𝑛𝑑 

𝑜  (1.2) 

 

  

       

 

Figure 1.7 Electromagnetic scattering from Snowpack over rough ground. 
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where 𝜎𝑜 is the normalized backscattering coefficient. This equation may imply that the full 

scattering response from the snowpack can be obtained by direct superposition of the individual 

backscattering components, thereby simplifying the problem to solve for each component by itself 

and then adding the three contributions to obtain the total response. However, such an incoherent-

addition (adding powers instead of fields) does not account for the phase information. Instead, to 

accurately account for volume scattering by the densely-packed snow particles and their 

interaction with the underlying ground surface, a fully coherent model that accounts for phase is 

required. 

1.3. Modeling Snow’s Ice Particles 

Snow as a mixture of ice and air [30]. Among the many different approaches proposed for 

reconstructing 3-D volume of snow, two methods stand out as particularly worth considering. 

These are the densely-packed sticky particles method [31-32], and the Bi-continuous media 

method [33-34]. For the densely-packed particles method, the particles are assumed to be spherical 

in shape with a specific size and stickiness coefficient.  Using these two parameters, an iterative 

algorithm is used to randomly locate the spheres such that their spatial distribution satisfies the 

specified volume fraction 𝛷𝑣. An example of such a medium is shown in Fig. 1.8(a). On the other 

hand, the bi-continuous media method makes use of the fact that snow is actually a two-phase 

medium composed of ice and air and tries to implement the discontinuities between the two 

continuous media. This is realized through the summation of a large number of spatial standing 

waves with random wave numbers, initial phases, and directions. The mean value of the wave 

number dictates the average grain size and its distribution defines the autocorrelation function. 

Various types of statistical distributions including the Gamma distribution, the log-normal 
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distribution and the inverse Gamma distribution have been used and reported in literature [34]. An 

example of a 2D cut of the reconstructed snow medium using the bi-continuous medium method 

is depicted in Fig. 1.8(b). However, these models fail to guarantee the macroscopic connectivity 

of the ice particles. Since it is not realistic to have an ice particle being surrounded everywhere by 

air, the macroscopic connectivity of the ice particles should be invoked. The enforcement of the 

macroscopic connectivity is not only important from a realistic structural view point, but also from 

an electromagnetic point of view. The connected particles result in a more coherent representation 

of the medium, which means that the phases of the fields are estimated with better accuracy. This 

effect is more important at higher frequencies where the dimensions of inhomogeneities are 

comparable to the wavelength.  

 

 

 

Figure 1.8 An example of a reconstructed snow medium using (a) densely-packed sticky-particles 

[31], and (b) a bi-continuous medium [33].  
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1.4. Passive vs Active Remote Sensing of Snow 

For radar sensing of snow water equivalent, after the snow sample has been generated, an 

accurate numerical solver should be used to calculate the statistics of the forward and backward 

scattered fields. The choice of the operating frequency of the radar system is important because an 

electromagnetic wave propagating in the snow medium would not experience significant scattering 

by the ice particles unless its wavelength is comparable to or shorter than the dimensions of the 

particles. Hence, traditionally, either X- or Ku-band are used for radar remote sensing of snow 

because snow can produce considerable volume scattering at these wavelengths, thereby making 

it possible to use the measured response to obtain information about the snow depth and density. 

This is due to the fact that the average snow grain size is a considerable fraction of the wavelength 

at these frequencies. Also noting that the ice particles are densely packed, the application of a 

fully-coherent scattering method that accounts for multiple scattering interactions is mandatory. 

Several techniques have been reported in the literature for modeling radar remote sensing of 

snowpacks. We can categorize these techniques into empirical, semi-empirical, analytical, and 

numerical techniques. Empirical models depend on building a relationship between the parameters 

of the snow medium and the observed radar response. The main advantage of empirical models is 

that they are relatively fast to conduct and easy to process. The major drawback is that there is no 

guarantee that the same empirical model will be applicable globally under any various snow 

conditions. Analytical techniques do not have this limitations of the empirical approach, but they 

usually depend on approximate simplified models. The validity of the analytical models should be 

tested across different measurement campaigns to assess the applicability of the model under 

different snow conditions. The third category includes semi-empirical models, which usually are 

a hybrid mixture between the analytical technique and the empirical approach created by fitting 
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measured radar and snow data to the expressions provided by analytical techniques. Numerical 

techniques depend on solving Maxwell’s equations numerically, using either differential or 

integral forms. The main advantage of the numerical technique over the analytical techniques is 

that the numerical technique does not have to employ approximations to arrive at a solution. The 

major drawback of available numerical-solution techniques is that they are very time consuming 

because the medium under test is random, dense, and complicated. Hence, developing an accurate, 

time-efficient numerical technique –which is the major goal of this study– is the best option for 

modeling such a complicated medium like snow. In principle, the characterizations offered about 

these techniques are equally applicable to both passive and active remote sensing scenarios [35-

36]. 

Passive remote sensing relies on measuring the brightness temperature of the scene 

illuminated by the antenna pattern using a microwave radiometer [37]. The Brightness temperature 

is related to the physical temperature of the scene (or volume, in the case of snowpack) as well as 

its absorption and scattering properties. Two semi-empirical models commonly-used for relating 

the brightness temperature of snowpacks to snow water content are the HUT [38] (Helsinki 

University of Technology, also known as TKK) and the MEMLS [39] (Microwave Emission 

Model of Layered Snowpacks) models. The HUT model is a semi-empirical radiative transfer 

model that treats the whole snowpack as an equivalent homogenous medium, and has been 

demonstrated to lead to acceptable results at operating frequencies in the microwave spectrum 

(approximately up to Ku band ~ 15 GHz). In the HUT model, most of the power scattered by the 

snow particles travels in the forward direction, which may not provide an accurate description of 

scattering by ice particles when the wavelength of the electromagnetic wave travelling in the snow 

medium is comparable to the size of the particles. In MEMLS, the snowpack is represented by a 
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stack of horizontal layers of different thicknesses, snow densities, etc. The extinction coefficient 

of an individual slab is then calculated using empirical equations and used in the radiative-transfer 

equations to obtain the complete response. Other modeling approaches include the DMRT (Dense-

media Radiative Transfer) model [40] and the SFT (Strong Fluctuations Technique) [41-43]. Of 

course, from an imaging standpoint, the spatial resolution of a microwave radiometer is quite 

coarse compared with that of a synthetic aperture radar (SAR): hundreds of meters for an airborne   

radiometer and tens of kilometers for a satellite-borne radiometer, compared with a spatial 

resolution of only a few meters for both airborne and spaceborne SAR systems [44]. In view of 

the fact that snow-covered mountainous terrains can be highly heterogeneous and spatially varied, 

the high-resolution capability of SAR systems becomes a major advantage for using an active 

microwave sensor over its passive counterpart.    

The next question to consider is: which of the available theoretical models is the most 

appropriate for developing the accurate and computationally time-efficient numerical model that 

we seek in the present study? Some models, optimized specifically for active remote sensing of 

snow, depend on analytical approximations like the Foldy-Lax multiple scattering approximation 

for a densely-packed medium [45], which exploits the known T-matrix of a sphere to represent the 

ice particles. Such a method is computationally inefficient and fails to provide solutions for 

particles of arbitrary shape. Another approach is to analyze the scattering by the random snow 

medium by applying the radiative transfer equation, but the radiative transfer formulation [46] 

depends on the intensities of the scattered waves, and consequently it does not account for the 

information contained in the phase of the scattered field. The Dense Media radiative Transfer 

(DMRT) formulation is a partially-coherent technique with which a specified portion of the 

medium is analyzed numerically through the solution of Volume Integral Equations (VIE) to 
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estimate the extinction coefficient and the phase matrix accounting to the coherent near-field 

interactions between the ice particles. Then, the extinction coefficient and the phase matrix are 

inserted into the incoherent radiative transfer equations to estimate the far-field scattered field 

incoherently [47]. Another hybrid experimental/analytical technique was introduced in [48] where 

the parameters of the DMRT were estimated using empirical models.  Recently, the 

electromagnetic scattering from a snow layer over planar ground was reported [49] using the 

dyadic half space Green’s function. The method solves the volume integral equation through the 

Discrete-Dipole approximation (DDA) to estimate the scattered fields in a fully-coherent way. 

However, the maximum snow layer thickness is limited by the computation resources. Hence, 

there is a strong need and desire to develop a time-efficient, fully-coherent electromagnetic 

scattering computational tool for the snow cover over a rough surface and use it for mapping snow 

water equivalent (SWE) by airborne and spaceborne SAR systems. 

1.5. Scattering By a Rough Surface 

Electromagnetic scattering by a rough surface has been studied extensively over the past 

40 years. The rough surface usually is characterized by the following parameters: (1) the dielectric 

constant of the surface material, (2) the rms (root mean square) height of the surface (𝑠), (3) the 

autocorrelation function, and (4) the correlation length (𝑙𝑐). It is also important to note that from 

electromagnetic point of view, surface roughness (rms height and correlation length) is measured 

relative to the wavelength, so the same surface may appear smooth at a lower frequency but appear 

very rough at higher operating frequencies, which is why surface roughness usually is reported in 

terms of 𝑘𝑠  where 𝑘 = 𝜔/𝑐  is the free-space wavenumber. In a manner similar to the earlier 

discussion related to scattering by the snow volume, there exists many different scattering models 
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for rough surfaces, which include analytical, empirical, numerical, and hybrid methods. A very 

good summary of the various surface scattering techniques is available in [23], and a detailed 

discussion of how to implement them is presented in [50-51]. Analytical methods rely on the 

simplification of Maxwell’s equations under certain assumptions pertaining to the surface 

parameters. For a slightly-rough surface, where (𝑘𝑠 < 0.3, 𝑘𝑙 < 3), the Small Perturbation Method 

(SPM) [52] is applicable. In the SPM, the surface fields are expanded into a perturbation series 

with n terms, with n depending on the order of the approximation, and then these surface fields are 

used to solve a boundary value problem to obtain the scattered field. Recently, a second-order 

SPM was utilized to solve for a multi-layer rough surface as in [53].  

On the other hand, if the roughness scale is large compared to the wavelength but the 

surface can be considered to be smoothly-varying, then the Kirchhoff’s Approximation [54] can 

be made. Two types of approximation are used in practice, one for the case when 𝑘𝑠 > 3, and it is 

called the Geometric Optics (GO) [55] approximation, and the second is for when 𝑘𝑠 < 3, which 

is called the Physical Optics (PO) [56] approximation. Since the rough surface acts as a boundary 

between two different media, the solution for the scattered EM field is equivalent to solving the 

boundary value problem by applying the appropriate boundary conditions, namely imposing the 

continuity of the tangential electric and magnetic fields across the boundary. Consequently, we 

can end up with an integral equation for the scattered fields with the surface fields as the only 

unknowns. Using the assumption of gentle variation of the surface height function, we can simplify 

the integral and achieve a closed-form expression. Moreover, a realistic surface can be considered 

as a multi-scale roughness surface whose actual roughness distribution consists of the 

superposition of multiple different roughness profiles. To solve for the scattering from such a 

surface, the Two-Scale Model [57] is commonly used by representing the surface as a combination 
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of a small-scale surface that can be solved using SPM and a large-scale surface that can be solved 

using the KA method, and then the total normalized backscattering coefficient is calculated using 

the superposition of the small- and large- scale surfaces. However, if the surface does not satisfy 

the validity region of this technique, the results would be inaccurate. Alternatively, measured data 

can be used to build an empirical model. The Oh model [58] is the most-used empirical model 

when it comes to rough surface scattering. It describes the polarmetric backscattering coefficients 

(𝜎𝑣𝑣, 𝜎ℎℎ, 𝜎𝑣ℎ) using the measured data for different incidence angles and at different frequencies 

(L, C, and X bands). Another widely used empirical model is the Dubois model [59], which is 

basically a simplified version of the Oh model realized by neglecting the cross-pol component and 

optimizing the equations for a certain range of surface parameters, leading to simpler equations 

for 𝜎𝑣𝑣 and 𝜎ℎℎ. Both the analytical and empirical methods suffer from some of the simplifications 

used in their implementation. Alternatively, numerical-based scattering models can be used 

because they are more accurate and without the limitation of a specific region of validity, but they 

require more rigorous implementation techniques. One way to improve the accuracy of the 

analytical techniques is by using a hybrid numerical-analytical method such as the Improved 

Integral equation Model (I2EM) [60], which is one of the most-commonly used models. The I2EM 

computes the backscattering or the bistatic scattering coefficient for any arbitrary roughness 

profile. The main advantage of the I2EM is that it solves the integral equation and accounts for the 

effects of shadowing through a pre-defined shadowing function. For more accurate results, 

complete numerical methods should be used. Numerical computation of the scattered fields from 

a rough surface is a tough problem because the rough surface is usually assumed to be infinite in 

extent which requires either proper tapering of the input or the use of periodic boundary conditions 

in order to emulate the large extent of the rough surface. As mentioned earlier, we can come up 
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with an integral equation to solve for the unknown surface fields/currents using the Method of 

Moments (MoM). Usually, the MoM matrix is dense and it requires quite a bit of time to be filled 

and its inversion can be difficult. The Sparse-Matrix Canonical-Grid (SM-CG) [61-63] method is 

a time-efficient technique to solve for the scattered field from a rough surface by dividing the 

elements of the MoM matrix into near and far elements. For the far-elements, the Green’s function 

contained in the formulation is approximated so as to speed up its calculation and result in a sparse 

far-field matrix that requires less memory and consequently less simulation time. The SM-CG was 

initially used for only 2D problems, then it was extended to speed up a generalized 3-D form which 

is called the Numerical Maxwell Model in 3-D (NMM3D) [64-67]. Even though current numerical 

techniques, especially the NMM3D, provide very good accuracy, they are still hard to implement 

and time-consuming to build. For the snow problem central to this study, given all the advancement 

in the commercial computational EM tools available today (like HFSS, CST, FEKO, COMSOL, 

etc.), the question is: should we base our solution using these commercial tools or should we to 

develop codes of our own? The answer of this question will come in the following chapters. 

1.6. Dissertation Overview and Contributions 

The main objective of this thesis is to develop a complete forward scattering model for 

snowpack over a rough surface. An overview of the topics discussed in this thesis is portrayed in 

Fig.1.9. To accomplish the stated goal, four steps should be implemented: (1) reconstruction of the 

snow medium in 3-D space, (2) solving for scattering by the snow layer alone, (3) solving for 

scattering by the rough surface alone, and (4) combining the two previous responses in a phase-

coherent manner.  



 
 

21 

Chapter 2 discusses the physics-based reconstruction method of the computer generated 

samples. To redress the shortcomings of the existing reconstruction methods, we propose the use 

of the Lineal-path function together with a 3D spatial exponential correlation function to build the 

snow sample and assure the connectivity of the ice particles [68] in the reconstructed snow 

medium. The Lineal-Path function is the probability of finding a straight line (a chord) within the 

medium that connects two points [69] such that every single point along this line belongs to the 

same phase of the medium. An example of the reconstructed medium is shown in Fig. 2.10 [70]. 

Chapter 3 presents the computationally-tractable fully-coherent method used to solve for 

scattering by an arbitrarily-thick snow layer. We propose a 3-D generalized version of the 

Statistical S-matrix Wave Propagation in Spectral Domain (SSWaP-SD) technique. The SSWaP-

SD was used to analyze the long distance propagation in a 2-D sparse random medium, which 

offers a time-efficient simulation technique [71] that was inspired by a wave propagation technique 

used for propagation in foliage [72]. The SSWaP-SD depends on dividing the medium into 

horizontal slabs and representing each slab with an N-dimensional fully-polarmetric bistatic 
 

    
Figure 1.9 Overview of the topics that are covered in this dissertation.  
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scattering matrix that relates the forward and backward fields. The individual elements in the S-

matric are calculated by decomposing the scattered fields at the top and bottom plane into the 

corresponding plane waves [73] and obtaining the relation between the scattered and incident plane 

wave. The rough surface also is represented by a reflectivity matrix. These matrices are then 

cascaded coherently to give the total forward and backward scattering patterns.  

The numerical solver for a single snow-only slab is reported in Chapter 4. Each individual 

snow slab is solved numerically using both the Finite Element Method (FEM) and the MoM 

method [74]. The results of applying the two techniques are compared to one another and good 

agreement between them is observed. The main task of the solution method is to account for all 

the multiple interactions inside each slab, and then the cascading algorithm insures that the 

multiple interactions between the different slabs are all taken into account. With this approach, we 

execute a fully-coherent solver for the scattering from the snowpack. Moreover, using the 

assumption that each layer constitutes a statistically-homogenous medium, we can generate the 

statistics of the building block S-matrix and use it to emulate other slabs and calculate the scattering 

patterns for any arbitrary thickness of the snow layer [75]. 

Chapter 5 discusses how the rough surface reflectivity matrix [76] is calculated using both 

an analytical method based on a modified Physical Optics (PO) approximation [77] and a 

numerical solution based on MoM through a commercial full-wave software (CADFEFKO) [78]. 

Chapter 6 presents the results and validation of our model using two different measurement 

campaigns at X- [79] and Ku- [80] bands. In addition to the validation and results, we also report 

a statistical model for the snow slab and the rough surface which can be used as an initial step for 

the inversion algorithm. Lastly, conclusions are drawn and future work is listed.  
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 Reconstruction of Physics-Based Computer-Generated Snow Samples 

2.1 Introduction 

This chapter covers the proposed physics-based reconstruction method used to create 3-D 

computer-generated samples of the snow volume. The snow is a two-phase medium comprised of 

ice and air. The main purpose of this chapter is to describe how to reconstruct a 3-D matrix 

representing the connected ice particles in the air background. Preserving the macroscopic 

connectivity of the ice particles is essential for realistic reconstruction of the computer-generated 

samples. As discussed in the introduction chapter, many of the models reported in the literature 

fail to guarantee this important macroscopic property. Because it is not realistic to model the ice 

particle as surrounded everywhere with air, the macroscopic connectivity of the ice particles 

should be invoked. Enforcement of the macroscopic connectivity condition is not only important 

from a realistic structural view, but also from an electromagnetics point of view. The connected 

particles result in a more coherent representation of the medium, which means that the phases of 

the EM fields are estimated with better accuracy. This consideration is particularly important at 

the higher microwave frequencies where the sizes of the in-homogeneities are comparable with 

the EM wavelength.  
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 Our proposed reconstruction method rectifies the shortcoming of currently available 

reconstruction methods by enforcing a second-order clustering correlation function, in addition to 

the usual auto-correlation function commonly used in 3-D reconstruction .   

2.2 Proposed Reconstruction Method   

The snow medium can be visualized as a collection of connected ice particles in an air 

background. To reconstruct a snow sample with sufficient accuracy to satisfy the desired EM 

scattering environment, we should use a random process with certain parameters designed to   

match the measured statistics of the snow medium. To preserve a specific macroscopic 

characteristic, like the connectivity of particles in a two-phase dense random medium, our 

reconstruction process should include all the zeroth, first, and second order statistics of the spatial 

environment [81]. The zeroth-order statistic represents the average probability for finding an ice 

particle at any specified position in the medium, which is defined in terms of   the volume 

fraction 𝛷𝑣. The volume fraction of snow usually varies between 10% and 50%. Next, the first- 

order statistic refers to the Two-Point Correlation Function (TPCF) representing the joint 

probability of occurrence of two particles present simultaneously while separated by a specified 

distance. Microscopic observations indicate that the TPCF can be modeled as an exponential 

function with a correlation length (𝑙𝑐) whose value is proportional to   the average measured 

particle size (~ 0.5𝑚𝑚 [82] ~𝜆/40 at 14 GHz). The exact value of the factor relating 𝑙𝑐  to the 

grain size depends on   snow type (new, densified, hard, etc.) [83]. Even though the TPCF indicates 

the probability that two points, at specified locations, are located in the same phase (ice or air), it 

is still a point-to-point probability. In other words, there is no information included in the TPCF 

about the possible presence of other particles in between those two points. Therefore, a clustering 
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correlation function (second-order statistic) should be used in conjunction with the TPCF to 

achieve an accurate realization of the snow volume.  One example of such a clustering correlation 

function is the Lineal-Path correlation function which assigns a probability to finding a straight 

line (a chord) connecting two specified points such that all the other points of this line lay 

completely within the same phase (ice or air), as depicted in Fig. 2.1. Thus, the Lineal-Path 

function can be considered an indicator of how snow particles form clusters. It might also be 

visualized as a spatial filter to the autocorrelation function. Interestingly, the same method is used 

by civil engineers to model porous sand stone model [84]. The Lineal-Path function is given by 

the following form: 

𝑆𝑙(𝑟) = {
𝜙𝑣 (1 −

𝑟

𝑙𝑔
)                 𝑟 < 𝑙𝑔 

0                             𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

(2.1) 

where, 𝑆𝑙  is the spatial Lineal-Path function at location 𝑟 in the space under consideration, 𝜙𝑣 is 

the volume fraction, and 𝑙𝑔 is the average chord length. As shown in Eq. (2.1), the Lineal-Path 

function is defined by two parameters: (1) the volume fraction (𝜙𝑣), and (2) the average chord 

length (𝑙𝑔). Usually, the Lineal-path function is enforced iteratively by the simulated annealing 

algorithm wherein random chords are drawn into the system and the current Lineal-Path function 

 
 

 
Figure 2.1 Depiction of the difference between the Two-Point Correlation Function (TPCF) and 

the Lineal-Path function. 
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is evaluated and compared with the desired one. Then, the difference between the current and 

desired correlation function is minimized by shuffling the positions of some of the points 

iteratively until a specific accuracy is achieved [85].  

Instead of the iterative approach, we propose to apply a direct approach by using the Lineal-

Path function as a spatial filter for the Power Spectral Density (PSD) of the 3-D exponential 

function (TPCF). The complete process is demonstrated in Fig. 2.2. As a first step a 3-D Gaussian 

random number is generated, then the TPCF (3-D exponential) is enforced, then filtered using the 

Lineal-path correlation function and a volume fraction-based threshold is applied at the end. It is 

worth noting that the frequency-domain implementation of the process is much easier to execute 

than the spatial-domain implementation. The equivalence between the two domains is depicted in 

Fig. 2.2. After performing a Fourier transformation on each of the 3 initial blocks and multiplying 

their spectra together, application of the Inverse Fourier Transform (IFT) and assignment of the 

appropriate volume fraction leads to the desired result. Since the Lineal-Path function works as a 

spatial filter to smooth out the sharp discontinuities and improve the overall connectivity, the chord 

length (𝑙𝑔) is chosen to be longer than the average grain size (or, about 1.5 times the correlation 

length (𝑙𝑐 )). This reconstruction approach may cause the auto-correlation function to deviate 

 

 
Figure 2.2 The reconstruction random process of the snow medium.  
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slightly from the exact exponential fit, but it offers significant improvement on modeling the ice 

particles’ macroscopic connectivity for a specified value of the snow volume fraction. An example 

of the resultant auto-correlation function is shown in Fig 2.3. An x-direction cut for the auto-

correlation is shown using two realizations: (1) the exponential TPCF alone and (2) using the 

exponential TPCF in addition to the Lineal Path. As expected, the combined autocorrelation/lineal 

path function exhibits a small deviation from the exact exponential fit, as expected, but the 

connectivity of the particles is much better represented by the combined function, as demonstrated 

in Fig. 2.4 for a   16c𝑚 × 16c𝑚 × 3c𝑚 reconstructed snow sample with 𝜙𝑣= 0.5. The ice particles 

stick to each other forming clusters and these clusters are connected to each other to build the snow 

layers. In Fig. 2.4, even though the encircled particles appear to be floating and unconnected to 

others, they are actually connected to ice particles in other layers or in adjacent sections. The 

 

 
Figure 2.3 Spatial Auto-Correlation Function of the constructed snow medium versus distance. 

 

EXP TPCF ONLY
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aforementioned procedure was used to reconstruct many other realizations, the majority of which   

resulted in a similar behavior.  The procedure did not provide adequate realizations for snow 

volumes with very low volume fractions. In such situations, invoking the Lineal-path has less 

impact on the connectivity [86], necessitating that we enforce higher-order clustering correlation 

functions to obtain better overall connectivity of the particles in snow with small volume fractions.  

Another way to show how enforcing the Lineal-path function improves the overall 

connectivity is to show a 2-D cut of a reconstructed medium using the 3D exponential correlation 

function with and without the Lineal-path component. Such a comparison is shown in Fig. 2.5, 

significantly better macroscopic connectivity is realized by the combined correlation function 

approach (Fig. 2.5 (b)) compared to the sample reconstructed using the exponential correlation 

function without the Lineal-Path function (Fig. 2.5 (a)), where gray points are ice particles and 

black dots represent air-filled locations. It is worth noting here that the correlation length was set 

 

 

Figure 2.4 3D sample of reconstructed snow media with 50% volume fraction using both the 

exponential correlation and Lineal-path functions (Yellow denotes Ice and blue for Air). 
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to be the same while generating the two realizations. However, the application of the Lineal Path 

function makes the sample shown by Fig. 2.5 (b) appear as if its average grain size is larger due to 

the clustering and spatial filtering effects of the Lineal-path function.   

In addition, to examine the effect of the average chord length (𝑙𝑔) on the overall PSD of 

the reconstructed sample, we varied  𝑙𝑔  to be 0.1𝑚𝑚  and  0.8 𝑚𝑚  while keeping the volume 

fraction and the correlation length the same. Then, the overall PSD of the reconstructed samples 

in both cases are shown in Fig. 2.6.  

 

Figure 2.5 2D sample of reconstructed snow media with 40% volume fraction using (a) the 

exponential TPCF only, and (b) both the exponential TPCF and Lineal-path functions. Gray 

represents an ice particle and black is for air. 

(a) (b)
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Figure 2.6 The Power Spectral Density (PSD) of a reconstructed snow sample with volume 

fraction of 40%, correlation length (𝑙𝑐) of 0.5mm, and average chord length (𝑙𝑔) of (a) 0.1 𝑚𝑚 

and (b) 0.8 𝑚𝑚. 

(a)

(b)
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As anticipated, selecting  𝑙𝑔 to be 0.1 mm which is five times smaller than the correlation 

length have minimal effect on the overall reconstructed PSD as depicted in Fig. 2.6 (a) and mainly 

the 3D exponential TPCF is dominating the reconstruction process. However, selecting 𝑙𝑔 to be 

larger than the correlation length changes the PSD response of the overall reconstructed sample 

compared to the exponential case. As observed in Fig. 2.6 (b), the power contained in low 

frequency components are higher when both the Lineal-path and the exponential TPCF are used 

together compared to when the exponential TPCF is used alone. This is because that the Lineal-

path function works as a spatial filter that smooths out the un-realistic discontinuities in the 

medium that occurs at higher spatial-frequency. Such reasoning could be even further emphasized 

by the observation of the power in higher spatial-frequency component which is again minimized 

by using the Lineal-path on top of the exponential TPCF compared to using the TPCF alone as 

shown in Fig. 2.6 (b).     

To show the capability of our model to generate snow samples with different volume 

fractions, 2-D cuts with volume fractions of 30%, 40%, and 50% are depicted in Fig. 2.6 from left 

to right, respectively. In Fig. 2.7, the yellow points denote ice particles and the blue locations 

denote air.  
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2.3 Comparison with Measurement 

To evaluate the validity of our proposed model, we compared a 2-D sample of our 

reconstructed medium with a real snow sample [87] with equivalent parameters (volume fraction 

of 30% and average grain size of 0.5mm). Figure 2.8 (a) compares our model- reconstructed 

medium to the real snow sample shown in Fig. 2.8 (b). The two images exhibit a great deal of 

similarity. Additionally, an example of the 3-D reconstructed medium is shown in Fig. 2.8(a) and 

is qualitatively compared to snow samples measured by X-ray computed tomography [88] in Fig. 

2.8(b) and Fig. 2.8(d).  

 
Figure 2.7 2D samples of reconstructed snow media with (a) 30%, (b) 40%, and (c) 50% volume 

fraction (Yellow denotes Ice and blue for Air). 
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Figure 2.8 Microstructure image of 2D sample of (a) our reconstructed snow, and (b) real snow. 

 

 
Figure 2.9 A qualitative comparison between 3D samples of reconstructed (left) and measured 

(right) snow media with 50% volume fraction for two different grain sizes; 0.26 mm (top) and 

0.16 (bottom). 

 

(a) (b)

(a)                                   (b)

(c)                                   (d)
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2.4 Conclusions 

In this chapter, a new physics-based reconstruction method is used to generate 3-D 

computer samples of   snow media. The proposed technique uses a Lineal-path function as a spatial 

filter of the spectral domain of the medium, and it is generated by enforcing the 3-D exponential 

auto-correlation function. After applying both the Lineal-path and the auto-correlation functions, 

a volume fraction-based threshold is applied to form the 3-D matrix representing the snow sample. 

The reconstructed samples assure the necessary macroscopic connectivity of the ice particles. At 

the end, our reconstruction method uses 3 parameters to generate the snow sample: (1) the volume 

fraction (𝜙𝑣 ), (2) the correlation length (𝑙𝑐 ), and (3) the average chord length (𝑙𝑔 ). Several 

realizations are reported and compared to both 2-D and 3-D images of real snow volumes, showing 

very good resemblance and reconstruction.  
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Computationally-Tractable Full-Wave Electromagnetic Solver for Snow-

packs  

3.1. Introduction 

Over the past four decades, an extensive effort has been devoted towards the development 

of    solutions for full-wave electromagnetic propagation in a dense random medium. As discussed 

in the introductory chapter, several techniques have been implemented, either analytically, 

empirically, numerically, or a hybrid of the aforementioned list. While analytical solutions offer 

an easy and direct way to estimate the EM response, they usually incorporate simplifications that 

undermine their accuracy and applicability. In contrast, empirical models can be very accurate 

because they are based on measured data, but their applicability is limited to snow conditions 

similar to those of the snowpacks that had been measured and used to generate the empirical 

models. Thus, the validity of empirical models is not necessarily transferrable to snowpacks with 

different characteristics. Standard numerical methods are conceptually an attractive option because 

they rely on solving Maxwell’s equations, but in practice, they are usually computationally-

extensive and time-consuming. In this chapter, we present a time-efficient fully-coherent full-wave 

solver for a snowpack of arbitrarily thickness using a technique called the Statistical S-matrix 

Wave Propagation in Spectral Domain (SSWaP-SD) method.  
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3.2. Basic Structure of the SSWaP-SD Technique 

 The SSWaP-SD method is implemented in 3 basic steps: (1) discretizing the medium into 

slabs with a finite thickness and specified width, (2) representing each slab by an N-dimensional 

bi-static scattering matrix, and (3) cascading these matrices together to obtain the overall forward 

and backward scattered field. This process is summarized in Fig. 3.1. In our case, the medium 

inside the individual slabs can be either a layer of snow or the underlying rough surface. 

In order to discretize the medium correctly, the slab size should be chosen to be large enough 

to contain enough statistical and structural characteristics of the random medium and small enough 

to render the simulation time feasible. For simplicity, we denote the slab dimensions 𝑊𝑥 × 𝑊𝑦 ×

𝐿 as  𝑊𝑥 = 𝑊𝑦 = 𝑊𝑠 𝑜𝑟 𝑊𝑅𝑆  for snow and the rough surface, respectively. Of course, the 

 
Figure 3.1 Basic Procedure in SSWaP-SD technique. (a) Discretization of the random medium into 

N slabs. (b) Representing each slab with an S-matrix. 

 

(a) (b)
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dimensions L, 𝑊𝑠 , 𝑎𝑛𝑑 𝑊𝑅𝑆 should all be much larger than the correlation length of the medium. 

Ideally, the width would be chosen to be infinite in extent so as to give a realistic view of the snow 

sample, but that would make the problem computationally intractable. To reduce the errors due to 

edge effects for a finite-width slab, W can be chosen to be on the order of multiple hundreds of 

wavelengths, as proposed in [68], for both lateral dimensions, along with proper tapering of the 

incident wave. However, even with these constraints, the application of numerical technique 

remains computationally-impractical. To circumvent this issue, periodic boundary conditions are 

applied along the lateral directions to eliminate the diffraction effects at the slab boundaries.  

After the discretization, each snow slab is represented by a bistatic scattering matrix ([𝑆𝑛]) 

that relates the forward and backward scattered waves at the input and output planes, and the rough 

surface slab is represented by a reflectivity matrix  ([𝑅𝑅𝑆]), as depicted in Fig. 3.2. To better 

understand how to form the S-matrix of each individual slab, let us examine a general snow slab 

as in Fig. 3.2(a). Each slab is excited by a plane wave (acting as a port) entering the slab from one 

side and then the fields present in the slab are observed at the top and bottom layers of the slab. 

 
Figure 3.2 Representation of (a) snow slab with an N-dimensional polarimetric scattering matrix, 

(b) rough surface with a polarimetric reflectivity matrix. 

 

(b)

(a)
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These fields are then decomposed into plane-wave components by performing a 2-D FFT. 

Specifically, the ratio between the scattered field at a specific direction (i.e. port 𝑗) to the incident 

field at the prescribed direction (i.e. port 𝑖) represent an individual element (𝑆𝑗𝑖) in the complete 

S-matrix representing the slab. Then, we repeat the same process for all other directions. Generally, 

we can express the spatial transverse electric field at the 𝑛𝑡ℎ plane as follow:  

𝐸̅𝑡
𝑛(𝑥, 𝑦) = 𝐸𝑥

𝑛(𝑥, 𝑦) 𝑥̂ + 𝐸𝑦
𝑛(𝑥, 𝑦) 𝑦 ̂ (3.1) 

which can be transformed into the spectral domain by taking the Fourier transform: 

𝐸̃𝑡
𝑛(𝑘𝑥, 𝑘𝑦) = 𝐸̃𝑥

𝑛(𝑘𝑥 , 𝑘𝑦) 𝑥̂ + 𝐸̃𝑦
𝑛(𝑘𝑥, 𝑘𝑦) 𝑦 ̂ (3.2) 

For a plane wave propagating in the direction 𝑘̅ = 𝑘𝑥𝑥̂ + 𝑘𝑦𝑦̂ + 𝑘𝑧𝑧̂, and in accordance with 

Gauss’s law, the z-component of the field is represented by 

𝐸̃𝑧
𝑛(𝑘𝑥, 𝑘𝑦) = −

1

𝑘𝑧
(𝑘𝑥𝐸̃𝑥

𝑛(𝑘𝑥, 𝑘𝑦) + 𝑘𝑦𝐸̃𝑦
𝑛(𝑘𝑥, 𝑘𝑦)) 

(3.3) 

Hence, we need to determine only 𝐸𝑥
𝑛(𝑥, 𝑦) and 𝐸𝑦

𝑛(𝑥, 𝑦) to estimate the total field. To decompose 

the field into H and V polarizations [70], we start by writing down the horizontal and vertical unit 

vectors as follow 

ℎ̂ =
𝑧̂ × 𝑘̂

|𝑧̂ × 𝑘̂|
= −

𝑘𝑦

𝑘𝑡
𝑥̂ +

𝑘𝑥

𝑘𝑡
𝑦̂ 

𝑣 = ℎ̂ × 𝑘̂ =
𝑘𝑥𝑘𝑧

𝑘𝑡𝑘𝑜
𝑥̂ +

𝑘𝑦𝑘𝑧

𝑘𝑡𝑘𝑜
𝑦̂ −

𝑘𝑡

𝑘𝑜
𝑧̂ 

 

(3.4) 

and the decomposed H/V-polarized components in the spectral domain can be expressed 

as  𝐸̃𝑝
𝑛(𝑘𝑥, 𝑘𝑦) = 𝐸̃ 

𝑛(𝑘𝑥, 𝑘𝑦) ∙ 𝑝̂ , and p is either h or v. Explicitly, we can write 
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𝐸̃𝐻
𝑛(𝑘𝑥, 𝑘𝑦) = −

1

𝑘𝑡
(𝑘𝑦𝐸̃𝑥

𝑛(𝑘𝑥, 𝑘𝑦) − 𝑘𝑥𝐸̃𝑦
𝑛(𝑘𝑥, 𝑘𝑦)) 

𝐸̃𝑉
𝑛(𝑘𝑥, 𝑘𝑦) =

𝑘𝑜

𝑘𝑡𝑘𝑧
(𝑘𝑥𝐸̃𝑥

𝑛(𝑘𝑥, 𝑘𝑦) − 𝑘𝑦𝐸̃𝑦
𝑛(𝑘𝑥, 𝑘𝑦)) 

 

(3.5) 

where 𝑘̅𝑡 = 𝑘𝑥𝑥̂ + 𝑘𝑦𝑦̂, 𝑘𝑧
2 = 𝑘2 − 𝑘𝑡

2. The total field can be expressed as the sum of the two 

polarized components as  

𝐸̃ 
𝑛(𝑘𝑥, 𝑘𝑦) = 𝐸̃𝐻

𝑛(𝑘𝑥 , 𝑘𝑦) ℎ̂ + 𝐸̃𝑉
𝑛(𝑘𝑥, 𝑘𝑦) 𝑣 ̂ (3.6) 

Therefore, in general, by just taking the FFT for spatial fields, we can write the field as a 

combination between the two polarization and a summation (integration) over all the plane wave 

components 

𝐸𝑛
𝑝(𝑥, 𝑦) ≈ ∬ [𝑎𝑛

𝑝(𝑘𝑥, 𝑘𝑦) 𝑒𝑗(𝑘𝑥𝑥+𝑘𝑦𝑦)]

𝑘𝑜

𝑘𝑡=−𝑘𝑜

 𝑑𝑘𝑥𝑑𝑘𝑦                                    

+ ∬ [𝑏𝑛
𝑝
(𝑘𝑥, 𝑘𝑦) 𝑒𝑗(𝑘𝑥𝑥+𝑘𝑦𝑦)]

𝑘𝑜

𝑘𝑡=−𝑘𝑜

 𝑑𝑘𝑥𝑑𝑘𝑦 

 

 

(3.7) 

where 𝑎𝑛
𝑝 𝑎𝑛𝑑 𝑏𝑛

𝑝
denotes the spectral coefficients of a plane wave at the input of the 𝑛𝑡ℎ slab with 

transverse wave number 𝑘𝑡̅ propagating in the +z direction (inward) and –z (outward) direction. 

Since the FFT is taken for the fields on the top and bottom planes of the slab, the solution domain 

looks periodic in space which matches the assumption of periodic boundaries in the lateral 

dimensions. The spectral resolution is inversely proportional to the width, as Δ𝑘𝑥,𝑦 = 2𝜋/𝑊𝑥,𝑦 

and the maximum value of 𝑘𝑥,𝑦
𝑚𝑎𝑥 =

2𝜋

Δ𝑥,𝑦
 . Therefore, the wider the slab, the higher the spectral 

resolution. It is also worth mentioning that the integration limits in Eq. (3.7) theoretically extend 

from -∞ to ∞. However, in practice the limits are chosen such that |𝑘𝑡| ≤ 𝑘𝑜, so as to assure a real 

value for 𝑘𝑧. In other words, the propagating modes are only included in this expansion. Also, to 
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avoid singularities in the Green’s function, the slab dimensions 𝑊𝑥,𝑦 are chosen such that they are 

not multiple integer of the wavelength.  From Eq. (3.6), the total field is the vector sum of both the 

V and H polarizations, so Eq. (3.7) can be cast into four terms to represent the total field at the 

input plane of the 𝑛𝑡ℎ slab  

𝐸̅𝑛
𝑡𝑜𝑡𝑎𝑙(𝑟𝑡𝑛) ≈ ∬ {

(𝑎𝑛
𝑉(𝑘𝑡̅)𝑣 + 𝑎𝑛

𝐻(𝑘𝑡̅)ℎ̂)
+

(𝑏𝑛
𝑉(𝑘𝑡̅)𝑣 + 𝑏𝑛

𝐻(𝑘𝑡̅)ℎ̂)
}   𝑒𝑗(𝑘̅𝑡∙𝑟̅𝑡𝑛)

𝑘𝑜

𝑘𝑡=−𝑘𝑜

𝑑𝑘𝑡 

 

(3.8) 

where 𝑟̅𝑡𝑛 = 𝑥𝑛𝑥̂ + 𝑦𝑛𝑦̂ is the position vector at the input plane of the 𝑛𝑡ℎ slab. Similarly, the same 

procedure is applied at the output plane of the 𝑛𝑡ℎ slab so as to decompose the spatial field into 

the sum of a set of four spectral components, of which two are propagating inward the slab: 

(𝑎𝑛+1
𝑉 (𝑘𝑡̅), 𝑎𝑛+1

𝐻 (𝑘𝑡̅)), and the other two propagating outward from the slab: (𝑏𝑛+1
𝑉 (𝑘𝑡̅), 𝑏𝑛+1

𝐻 (𝑘𝑡̅)).  

In our simulation, Eq. (3.8) is discretized and the integration is replaced by a summation. Both W 

and L of the slab are chosen such that the difference between the total field in Eq. (3.8) and the 

numerically-acquired field distribution is within 1%. 

Consequently, the scattering matrix is filled by relating the calculated spectral coefficients 

to those of the incident plane wave, and since both might have different polarizations, a general 

form of the S-matrix that relates the 𝑝 polarized scattered fields to the 𝑞 polarized incident field is 

expressed as  

(
𝑏̅𝑛

𝑝

𝑏̅𝑛+1
𝑝 ) = (

𝑆1̿1
𝑝𝑞(𝑘𝑡

𝑖 , 𝑘𝑡
𝑠) 𝑆1̿2

𝑝𝑞(𝑘𝑡
𝑖 , 𝑘𝑡

𝑠)

𝑆2̿1
𝑝𝑞

(𝑘𝑡
𝑖 , 𝑘𝑡

𝑠) 𝑆2̿2
𝑝𝑞

(𝑘𝑡
𝑖 , 𝑘𝑡

𝑠)
) (

𝑎̅𝑛
𝑞

𝑎̅𝑛+1 
𝑞 ) 

(
𝑏̅𝑛

𝑝

𝑏̅𝑛+1
𝑝 ) = 𝑆̅̅

 
𝑝𝑞(𝑘𝑡

𝑖 , 𝑘𝑡
𝑠) (

𝑎̅𝑛
𝑞

𝑎̅𝑛+1 
𝑞 ) 

 

(3.9) 

Therefore, the total fully-polarized S-matrix representing each slab is explicitly calculated as in 

Eq. (3.10) 
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𝑺̿𝒏 =

(

 
 

𝑆1̿1
𝑉𝑉(𝑘𝑡

𝑖 , 𝑘𝑡
𝑠) 𝑆1̿2

𝑉𝑉(𝑘𝑡
𝑖 , 𝑘𝑡

𝑠)

𝑆2̿1
𝑉𝑉(𝑘𝑡

𝑖 , 𝑘𝑡
𝑠) 𝑆2̿2

𝑉𝑉(𝑘𝑡
𝑖 , 𝑘𝑡

𝑠)

𝑆1̿1
𝑉𝐻(𝑘𝑡

𝑖 , 𝑘𝑡
𝑠) 𝑆1̿2

𝑉𝐻(𝑘𝑡
𝑖 , 𝑘𝑡

𝑠)

𝑆2̿1
𝑉𝐻(𝑘𝑡

𝑖 , 𝑘𝑡
𝑠) 𝑆2̿2

𝑉𝐻(𝑘𝑡
𝑖 , 𝑘𝑡

𝑠)

𝑆1̿1
𝐻𝑉(𝑘𝑡

𝑖 , 𝑘𝑡
𝑠) 𝑆1̿2

𝐻𝑉(𝑘𝑡
𝑖 , 𝑘𝑡

𝑠)

𝑆2̿1
𝐻𝑉(𝑘𝑡

𝑖 , 𝑘𝑡
𝑠) 𝑆2̿2

𝐻𝑉(𝑘𝑡
𝑖 , 𝑘𝑡

𝑠)

𝑆1̿1
𝐻𝐻(𝑘𝑡

𝑖 , 𝑘𝑡
𝑠) 𝑆1̿2

𝐻𝐻(𝑘𝑡
𝑖 , 𝑘𝑡

𝑠)

𝑆2̿1
𝐻𝐻(𝑘𝑡

𝑖 , 𝑘𝑡
𝑠) 𝑆2̿2

𝐻𝐻(𝑘𝑡
𝑖 , 𝑘𝑡

𝑠))

 
 

 

 

(3.10) 

 

Similarly, for the slab containing the rough surface shown in in Fig. 3.2 (b), a reflectivity 

matrix is formed following the same procedure. However, only the input plane is of interest since 

we are only interested in the amount of reflected power from the rough surface for radar remote 

sensing applications. Again, a single element in the reflectivity matrix for a specific polarization 

state for a wave scattered in 𝑘𝑡
𝑠 due an incident wave with 𝑘𝑡

𝑖 direction is given by  

𝑅𝑅𝑆
𝑝𝑞(𝑘𝑡

𝑠, 𝑘𝑡
𝑠) = 𝑏𝑅𝑆

𝑝 (𝑘𝑡
𝑠)/𝑎𝑅𝑆

𝑝 (𝑘𝑡
𝑖)  (3.11) 

where 𝑎𝑅𝑆
𝑝  𝑎𝑛𝑑 𝑏𝑅𝑆

𝑞  denote the spectral coefficients of a plane wave in the -z (inward) and +z 

(outward) directions respectively. The full reflectivity matrix can be filled by repeating the 

previous process for different incident angles and polarization and the general form should look as 

in Eq. (3.12) 

𝑅̿𝑅𝑆 = (
𝑅̿𝑅𝑆

𝑉𝑉 𝑅̿𝑅𝑆
𝑉𝐻

𝑅̿𝑅𝑆
𝐻𝑉 𝑅̿𝑅𝑆

𝐻𝐻
) 

(3.12) 

 

After representing each snow slab with the corresponding scattering matrix and 

representing the rough surface with the reflectivity matrix, we are just left with only one remaining 

step, namely to cascade these layers together to calculate the bistatic scattering from the entire 

snow layer. The cascading algorithm is performed to get the backward scattered fields from the 

snowpack over the rough surface. A simple case of having only two snow slabs A and B over the 

rough surface is shown in Fig. 3.3. 
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In order to perform the cascading, we have two options: (1) to cascade Slabs A and B into 

Slab C and then cascade it with the reflectivity matrix, or (2) to cascade the reflectivity matrix of 

the rough surface with Slab B into a new load D, and then cascade load D with Slab A. To cascade 

the response of both slab A and B, each polarimetric component of the cascaded S-matrix 𝑆𝑐
𝑝𝑞

 is 

calculated in two steps as 

𝑆𝑐
𝑝𝑞 = 𝑆𝑎

𝑝𝑞𝑆𝑏
𝑞𝑞 + 𝑆𝑎

𝑝𝑝𝑆𝑏
𝑝𝑞

 (3.13) 

𝑤ℎ𝑒𝑟𝑒 𝑝, 𝑞 = 𝑣 𝑜𝑟 ℎ. For each of the previous two multiplications, the generalized n-port cascade 

connection is employed [71] through the following equations: 

𝑆1̿1
𝑐 = 𝑆1̿1

𝑎 + 𝑆1̿2
𝑎  𝑆1̿1

𝑏 (𝐼 ̿ − 𝑆2̿2
𝑎 𝑆1̿1

𝑏 )
−1

𝑆2̿1
𝑎  

𝑆2̿1
𝑐 = 𝑆2̿1

𝑏 (𝐼 ̿ − 𝑆2̿2
𝑎 𝑆1̿1

𝑏 )
−1

𝑆2̿1
𝑎  

𝑆1̿2
𝑐 = 𝑆1̿2

𝑎 𝑆1̿2
𝑏 + 𝑆1̿2

𝑎  𝑆1̿1
𝑏 (𝐼 ̿ − 𝑆2̿2

𝑎 𝑆1̿1
𝑏 )

−1
𝑆2̿1

𝑎  

𝑆2̿2
𝑐 = 𝑆2̿2

𝑏 + 𝑆2̿1
𝑏  (𝐼 ̿ − 𝑆2̿2

𝑎 𝑆1̿1
𝑏 )

−1
𝑆2̿2

𝑎 𝑆2̿1
𝑏  

 

 

(3.14) 

 
Figure 3.3 Cascading algorithm for multiple snow slabs over a rough surface. 
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where 𝐼 ̿  is the identity matrix. It is worth mentioning that the term between the brackets 

(𝐼 ̿ − 𝑆2̿2
𝑎 𝑆1̿1

𝑏 )
−1

accounts basically for the multiple reflections between the two slabs. The cascading 

algorithm accounts for the multiple reflections between different slabs in a coherent manner. 

However, to cascade the reflectivity matrix with slab B to form a new load D (reflection), we can 

use a generalized form of the output from a signal flow graph as in [76] 

𝑅̿ 
𝐷 = 𝑆1̿1

𝑏 + 𝑆1̿2
𝑏  𝑅̿𝑅𝑆

 (𝐼 ̿ − 𝑆2̿2
𝑏 𝑅̿𝑅𝑆

 )
−1

𝑆2̿1
𝑏  (3.15) 

Again, the term (𝐼 ̿ − 𝑆2̿2
𝑏 𝑅̿𝑅𝑆

 )
−1

 accounts for the multiple interactions between the snow layer and 

the rough surface. As shown from Eq. (3.13) and Eq. (3.14), it is more computationally demanding 

to cascade the snow slabs first and then include the rough surface response than to start by 

cascading the rough surface with the layer above it. Therefore, for an arbitrary number of snow 

slabs, it is preferable to start by loading the rough surface response into the slab above it and then 

loading the next slab above them, and so on.  

Thus the SSWaP-SD acts as a domain discretization technique [90-92], wherein the complex 

medium is discretized into simpler domains that are linked together in a coherent way so as to 

precisely account for the interactions between them. The cascading algorithm accounts for all the 

multiple scattering effects between the different slabs, leaving us with only one more task to do, 

namely to obtain a fully coherent estimate of the single slab scattering matrix. This can be realized 

by solving Maxwell’s equations numerically for the region inside the slab to obtain the single slab 

S- or the surface reflectivity matrix such that all multiple scattering contributions are included. The 

numerical solution for electromagnetic scattering from a single snow slab is discussed in chapter 

4 and the rough surface reflectivity matrix computation is reported in chapter 5. 
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3.3. Conclusion 

A fully-polarmetric fully-coherent time-efficient 3-D EM solver is presented through the 

SSWaP-SD technique. The method depends on decomposing the snowpack into thin slabs and 

representing each slab with an N-dimensional scattering matrix and representing the rough ground 

surface with a reflectivity matrix. Next, implementation of the cascading algorithm leads to the 

full response for the snowpack.   
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Numerical Model for Electromagnetic Scattering from a Snow Layer of 

Arbitrary Thickness 

4.1. Introduction 

This chapter describes the full-wave solution developed in this investigation for 

characterizing the scattering within the volume of a snow layer of arbitrarily thickness, 

independently of the underlying ground surface. After dividing the snow layer into a finite number 

of horizontal slabs, we apply a numerical technique to solve for the scattering matrix of each slab. 

Then we cascade the scattering matrices together to obtain the full scattering response for the entire 

snow layer. By treating the snow as a statistically homogenous medium, Monte-Carlo simulations 

are performed for a single slab of snow to form the statistics of the building-block S-matrix, which 

then are used along with a Pseudo-random generator to simulate the statistics of the other snow 

slabs.    

4.2. Single Slab Solution 

 Since the cascading algorithm accounts for the interactions between different slabs, the 

precise coherent estimation of the single slab S-matrix is of crucial importance to the overall 

accuracy of the SSWaP-SD method. To calculate the S-matrix, we needed to apply a numerical 

solution of Maxwell’s equations, so we considered two possible methods. The first method uses a 

Finite-Element Method (FEM)    commercial solver (namely, HFSS) and the other method relies 
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on writing a Method of Moment (MoM) code based on the DDA. For cross comparison, a snow 

slab with dimensions of 5𝜆 × 5𝜆 × 𝜆/4  (≈ 100𝑚𝑚 × 100𝑚𝑚 × 5𝑚 at 14 GHz), was simulated 

using the two techniques. These dimensions correspond to the maximum dimensions that HFSS 

can handle in a reasonable amount of simulation time. Comparison of the two methods is presented 

in the following sections. 

4.1.1 Finite Element Method Solution 

In order to solve for the scattered fields using HFSS (FEM-based solver), we first have to 

draw the random medium into HFSS. Because HFSS can accommodate only a few standard shapes 

or objects such as a rectangular box, a sphere, a cylinder, and a few others, we generated a polyline-

based importing algorithm to draw the random snow layer into HFSS through three steps. First, 2-

 
Figure 4.1 Samples of 2-D cuts of snow medium imported into HFSS using the polyline-based 

technique. 
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D horizontal cuts are selected from the 3-D sample, assuming that the medium remains statistically 

uniform between these cuts. The spacing between the adjacent cuts is selected to be the same as 

the vertical discretization of 𝜆/20. Second, the border points of each snow grain inside this 2-D 

cut are sorted and a closed polyline that tracks these points is drawn using a visual basic script. 

Four samples of these 2-D cuts with dimensions of 𝜆 × 𝜆  (at 14 GHz) are imported into HFSS and 

are shown in Fig. 4.1. Each 2-D cut is plotted with different color in Fig. 4.1 for better visibility.  

Finally, all the 2-D cuts are stacked vertically to form the 3D snow sample in HFSS. One 

realization of such a medium is shown in Fig. 4.2 with dimensions of  𝜆 × 𝜆 ×
𝜆

4
. A detailed 

explanation on the polyline-based is discussed in Appendix 1. After drawing the medium into 

HFSS, an adaptive meshing algorithm is used to generate a finely-discretized version of the 

medium. It generates a tetrahedron-based version of the actual structure which gives a fairly 

 
Figure 4.2 A sample of 3-D snow medium imported into HFSS with dimensions of 1𝜆 × 1𝜆 × 𝜆/4 

at 14 GHz. 
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accurate discretization of the medium. Periodic boundary conditions are applied to imitate the 

infinite width of the snow layer and the structure is excited with plane waves by assigning Floquet 

ports at the top and bottom surfaces of the slab. Since Floquet ports are not allowed to touch a non-

homogenous medium, we added a small air gab between the ports and the snow layer from both 

sides and we de-embedded the fields’ calculations to the top and bottom layer of the snow slab at 

the end. An example of the fields calculated at the input and output plane of the snow slab is 

depicted in Fig. 4.3. Figure 4.3 (a) shows the electric field at the input (top) and output (bottom) 

layers for the normal-incidence case  (𝜃𝑖 = 0, 𝜙𝑖 = 0). Figure 4.3 (b) shows an oblique incidence 

case with 𝜃𝑖 = 30, 𝑎𝑛𝑑 𝜙𝑖 = 60. After calculating the total field, we can compute the FFT and 

decompose the spatial fields into spectral components as discussed in Chapter 3.  Therefore, we 

can easily find the power scattered in a certain direction 𝑘𝑠 caused by an incident plane wave with 

propagation direction 𝑘𝑖.  

 
Figure 4.3 Example of calculated electric field at the input and output planes from HFSS for (a) 

𝜃𝑖 = 0,𝜙𝑖 = 0, and (b)  𝜃𝑖 = 30, 𝜙𝑖 = 60. 

 

Incident Wave ( )

Incident Wave ( )

(a) (b)
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Monte-Carlo simulation is carried out to calculate the statistical characteristics of the 

scattered fields. It is common practice to represent the scattered field in a random medium as in 

Eq. (4.1) 

𝐸(𝑟) = 𝐸𝑚(𝑟)  + 𝐸𝑓(𝑟)  (4.1) 

where, 𝐸𝑚 = ⟨𝐸(𝑟)⟩  is the main (coherent) field and 𝐸𝑓(𝑟)  is the fluctuating (incoherent) 

component.   For example, the average total (coherent + incoherent components) Power Spectral 

Density (PSD) of the backward propagating total field resulted is shown by the dashed red trace 

Fig. 4.4 for a normally- incident plane wave. In the K-space, the normal incidence direction is 

defined by 𝑘𝑥 = 𝑘𝑦 = 0 . The PSD has a peak (-0.39 dB) at directions 𝑘𝑥 = 𝑘𝑦 = 0  which 

indicates that the maximum coherent scattered power is in the normal direction which happens to 

be the specular direction in this specific case. Such a result is as expected since the coherent 

contribution from a scatterer propagates mostly along the forward and specular directions. Another 

 
Figure 4.4 The average Co-polarized total power spectral density of the scattered field over 20 

realizations using MOM-DDA and FEM-HFSS. 
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important observation to note is that the power of the coherent component far exceeds the power 

levels of all the fluctuating (incoherent) components.  One main factor responsible for why the 

power levels of the incoherent components are much lower than that of the coherent component is 

related to the fact that the slab is electromagnetically thin, which means that the slab does not 

contain enough scatterers to direct significant amount of the incident power to directions other 

than the coherent directions. Due to the huge difference between the coherent and incoherent 

components, we can expect that   numerical noise can adversely affect the accuracy of our estimate 

of the S-matrix. In remote sensing, we usually are particularly interested in observing the statistics 

of the incoherent component, so we need to enlarge the dimensions of the individual slabs.  The 

S-matrix of a single slab is formed by sweeping the excitation incidence angle and observing the 

scattered fields on the allowed points of the k-plane for each incidence angle. However, the 

simulation time for each angle in this case was around 7 hours and we need to repeat these 

calculations for many different angles, which renders the solution computationally expensive. Due 

to the long simulation time and the inevitable need to increase the slab dimensions, we aimed for 

another time-efficient numerical solution for the problem which is discussed in the coming section.   

4.1.2  Method of Moments Solution 

To address the shortcomings of the FEM-solver, we considered another numerical solver   

based on the solving the Volume Integral Equation (VIE) through the simplification of the Discrete 

Dipole Approximation (DDA). The DDA was initially introduced for computing the fields 

scattered from targets (media) with a complex nonhomogeneous dielectric constants [73], and was 

later applied to solve for scattering from thin snow layers [50]. The DDA depends on dividing the 

medium into electromagnetically small cubes. These cubes are then represented by dipoles whose 
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dipole moments are related through Green’s function to form the matrix equation. Before, we dive 

into the implementation details of the DDA, we should mention that it suffers from the staircase 

approximation due to the cubic-based discretization which might result in lower solution accuracy 

when compared to the tetrahedron-based FEM solver. However, the matrix equation resulting from 

the DDA can be solved iteratively and the solution can be accelerated using the FFT, leading to 

much shorter simulation time. Following the same analysis outlined in [47] to derive the DDA 

equation, we can start from the wave equation for an inhomogeneous medium  

∇ × ∇ × 𝐸̅ − 𝑘2𝐸̅ = 𝑘2(𝜖𝑟(𝑟) − 1)𝐸̅ (4.2) 

Where k is the free space propagation constant and 𝜖𝑟(𝑟) = 𝜖𝑖𝑐𝑒 ≈ 3.2 if 𝑟 ∈ 𝑉𝑖𝑐𝑒 and 𝜖𝑟(𝑟) = 1 

elsewhere. The right hand side of the equation can be regarded as the polarization current that 

excites the wave equation. Hence, the scattered field is calculated using the application of the 

periodic dyadic Green’s function over this polarization current, and since the total field is the sum 

of the incident and scattered fields, the scattered field can be determined by applying the Green’s 

function to the polarization current in Eq. (4.2). Then, the total field at a point r is given by Eq. 

(4.3). 

𝐸̅(𝑟) = 𝐸̅𝑖(𝑟) + 𝑘2 ∫ 𝐺̿𝑝(𝑟, 𝑟′)(𝜖𝑟(𝑟
′) − 1)𝐸̅(𝑟′)𝑑𝑟′

 

𝑉

 
 

(4.3) 

where 𝐸̅ is the total field, 𝐸̅𝑖 is the incident field, and 𝐺̿𝑝(𝑟, 𝑟′) is the periodic Green’s function. 

The second term in Eq. (4.3) represents the scattered field due to the polarization current of the ice 

inclusions inside the air background. This equation is the VIE that we need to solve. In order to 

numerically solve the VIE in Eq. (4.3), the domain is discretized into cubes with side length 𝑑 =

𝜆

32
 and each cube is replaced by a dipole whose dipole moment is given by 
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𝑝̅𝑚 = 𝑑3𝜖𝑜(𝜖𝑟𝑚
− 1)𝐸̅𝑚 (4.4) 

It is clear that only the ice occupied positions result in non-zero dipole moments. Therefore, we 

can rewrite a discretized form of the integral equation as    

𝑝̅𝑚 = 𝛼𝑚𝐸̅𝑚
𝑖 + 𝛼𝑚

𝑘2

𝜖𝑜
∑ 𝐺̿𝑝𝑚𝑛

𝑁𝑑

𝑚=1,𝑚≠𝑛

 . 𝑝̅𝑛 

 

(4.5) 

Where 𝑝𝑚 is the dipole moment of the 𝑚𝑡ℎ  dipole, 𝐺̿𝑝𝑚𝑛
= 𝐺𝑝

̿̿ ̿(𝑟𝑚, 𝑟𝑛), 𝑁𝑑 is the total number of 

dipoles, and 𝛼𝑚 is the polarizability at the 𝑚𝑡ℎ  location which is given by [47] as 

𝛼𝑚 = 𝑑3𝜖𝑜(𝜖𝑟𝑚
− 1) (𝐼 ̿ − 𝑘2 (𝜖𝑟𝑚

− 1) 𝑆̿)
−1

 (4.6) 

in which 𝑆̿ is the singular integral of the Green’s function and is given by 𝑆̿ = ∫ 𝐺̿𝑝(𝑟, 𝑟′)𝑑𝑟′ 

V0
, 

where 𝑟, 𝑟′  at point locations in V0 . The periodic Green’s function is used to implement the 

assumption that the snow is periodic along the lateral directions. It is important to mention here 

that the width of the slab (W) dictates the number of propagating Floquet modes.  By exploiting 

the translational invariant properties of the Green’s function, we end up with a MoM matrix in a 

Toeplitz form. Therefore, the Conjugate-Gradient (CG) iterative method can be used to solve the 

system of equations much faster than the direct solver. An FFT-based algorithm can be used in the 

matrix-vector multiplication inside the CG to speed it up significantly [74]. After solving the 

matrix equation, dipole moments are calculated. An example of the calculated dipole moments are 

given in Fig. 4.5 in an XY cut.  
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In Fig. 4.5(a), we show the magnitude of dipole moments for normal incidence case (𝜃𝑖 = 0), and 

in Fig 4.5(b) we show the dipole moments for 𝜃𝑖 =45 degrees. Then, the total field in the upper 

and lower planes are estimated and decomposed into plane waves. An example of the PSD of the 

total field is shown as the solid blue curve in Fig. 4.4 for a normally incident plane wave. As 

mentioned previously, the average PSD peaks (≈-0.01 dB) along 𝑘𝑥 = 0, so only a 𝑘𝑥 cut is shown 

for simplicity.  

 To further validate the implementation of our MoM code, we replaced the periodic Green’s 

function with the 3-D free-space Green’s function and used our code to calculate the scattering 

from a dielectric sphere with ka=4.5 and dielectric constant 𝜖𝑐 = 1.7866 − 𝑗0.266 and compared 

the MoM-DDA code results with the analytical Mie series [93]. The comparison is shown in Fig. 

 
Figure 4.5 The calculated dipole moments for (a) 𝜃𝑖 = 0, and (b) 𝜃𝑖 =45 degrees incidence angle 

at 9.5 GHz. 
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4.6. Figure 4.6 (a) shows the MoM-DDA HH component (solid blue) compared with the Mie series 

solution (dashed red). Similarly, Fig. 4.6 (b) shows the comparison for VV components. Both plots 

show good agreement with the analytical solutions. 

4.1.3 Comparison between MoM-DDA and FEM-HFSS Solutions 

Figure 4.3 shows good agreement for the coherent power when computed using the FEM-

HFSS and MoM-DDA techniques. Also, the results show almost a flat PSD in all directions except 

for the coherent direction. These results are as expected because the particle sizes are small relative 

to the wavelength. Along other directions (given by  𝑘𝑥 ≠ 0), however, large differences are 

observed between the power components of the total field.   This is attributed to both the incident 

field contribution and the electromagnetically-small thickness of the simulated layer which does 

not include a sufficient concentration of random particles to generate a significant amount of 

 
Figure 4.6 Validation of our MoM-DDA code against the Mie series solution for a sphere with 

ka=4.5. 
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incoherent scattered power. This leads to high vulnerability of the results to numerical noise, 

especially in directions where 𝑘𝑥 ≠ 0, and is the reason why there is a discrepancy between the 

MoM-DDA and the FEM-HFSS results. 

Comparison between the two techniques in terms of the required number of unknowns and 

simulation time is summarized in Table I. The number of unknowns depends mainly on the 

discretization algorithm used in the solution domain. The MoM-DDA discretizes the medium into 

cubic cells, while the FEM-HFSS uses an adaptive tetrahedron-based meshing algorithm. To 

assure a fair comparison, the snow layer dimensions are chosen to be the same for both methods. 

Although the solution domain is the same, the two techniques have a different number of unknowns 

due to the different meshing algorithms. More specifically, one cube can be discretized into up to 

12 tetrahedrons. Therefore, the simulation time for FEM-HFSS is much longer than for MoM-

DDA, but the adaptive meshing algorithm provides a better structural representation for the real 

snow medium.  

4.3. Arbitrarily-thick Snow Layer Response 

With the confidence gained from our code results realized by comparing the MoM-DDA 

solution to the solution using the FEM-based commercial solver (HFSS) [72], we increased the 

snow layer dimensions to be ( 16𝜆 × 16𝜆 × 1𝜆 (≈ 35𝑐𝑚 × 35𝑐𝑚 × 2𝑐𝑚  at 14 GHz) and 

simulated several samples with snow parameters summarized in Table 4-2.  

Table 4-1 Comparison between FEM-HFSS and MOM-DDA for the same slab dimensions 

Method Mesh Type Number of unknowns Simulation Time 

FEM-HFSS Tetrahedron-based ≈ 2,400,000 7 hours 

MoM-DDA Cubic-based ≈ 200,000 5 mins 

 
 

adsda 

 

Table 4-2 Snow medium parameters used in section 4.3Table 4-1 Comparison between FEM-

HFSS and MOM-DDA for the same slab dimensions 

Method Mesh Type Number of unknowns Simulation Time 

FEM-HFSS Tetrahedron-based ≈ 2,400,000 7 hours 

MoM-DDA Cubic-based ≈ 200,000 5 mins 
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Table 4-2 Snow medium parameters used in section 4.3 

Parameter Grain Size Snow Density Snow Depth 

Value 0.5 𝑚𝑚 0.48 𝑔/𝑐𝑚3 2 𝑐𝑚 
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As an example, the average (over 50 realizations) bistatic scattering in the backward 

direction in shown in Fig. 4.7 for an incidence angle of 40𝑜  (𝑘𝑥𝑖 = 0, 𝑘𝑦𝑖 = 0.6𝑘𝑜). As shown in 

the figure, there is a peak reflection along the specular direction which is indicated by the same 

 
Figure 4.7 The average incoherent Co-polarized bistatic scattering coefficients over 50 realizations 

using MOM-DDA with an incidence angle of 40𝑜. 
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transverse direction and the flipped normal direction (𝑘𝑥𝑠 = 𝑘𝑥𝑖 = 0, 𝑘𝑦𝑠 = 𝑘𝑦𝑖 = 0.6𝑘𝑜 , 𝑘𝑧𝑠 =

−𝑘𝑧𝑖). The figure shows only the propagating modes, and all the evanescent modes were masked 

out. It is also important to mention that there is a peak reflection in the backscattered direction 

which is defined as (𝑘𝑥𝑠 = −𝑘𝑥𝑖 = 0, 𝑘𝑦𝑠 = −𝑘𝑦𝑖 = −0.6𝑘𝑜 , 𝑘𝑧𝑠 = −𝑘𝑧𝑖). This peak reflection 

at the backscattering direction is due to the backscattering enhancement phenomenon. 

Interestingly, the bistatic scattered power distribution looks like a figure of 8 when observing the 

co-pol components (VV, and HH) as depicted by the dashed white shapes in Fig. 4.7. Most of the 

scattered power occurs along spectral directions that are inside the two white dashed ellipses. For 

the cross-pol components, the two ellipses are rotated by 90 degrees. These results are in agreement 

with the patterns reported in [47]. 

After repeating the same simulation for different incident angles at both polarizations, the 

full polarimetric S-matrix is formed. Then, different snow realizations are simulated to generate 

the statistics for each element in the S-matrix. Next, a pseudo random generator is used to create 

other samples for the corresponding S-matrices emulating the entire snowpack.   

4.4. Validation against Measured Data 

Using the previously described coherent cascading algorithm, we can calculate the statistics 

of the forward and backward scattered fields for any arbitrary thickness in a fully coherent way. 

After simulating 50 realizations of snow samples, we calculated the statistics of each element in 

the scattering matrix and then used them to generate the base information needed for a pseudo-

random generator, so as to create other samples of the snow slabs without repeating the 

computationally-demanding simulations. The approach is justified because the snow medium is 

assumed to be statistically homogeneous. The accuracy of our computational model is validated 
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using measured data [79, 80]. The measurement set in [79] was part of the NASA CLPX campaign. 

The campaign was held in Boulder, Colorado, USA, in February, 2003 over a period of several 

weeks. The measurements were performed using a Ku-band radar (15.5 GHz) at three different 

incidence angles, namely 20, 35, and 50 degrees. The reported ground truth data listed the snow 

depth as 90 cm over the entire measurement period. Figure 4.8 compares our model expectation 

(solid) to the measured data (dotted) for the Co- and Cross- Polarized backscattering coefficients 

for volume fraction 𝜙𝑣 = 50% at 15.5 GHz and snow depth of 90 cm.  

Even though Fig. 4.8 shows good agreement with the measured data, it is compared with 

only a single value of snow depth. Our model is then compared with measured data reported in 

[80], where an artificially generated snow medium was used. The use of artificial snow enables an 

easy change of the snow depth. Four different snow thicknesses were used as follow: 5, 20, 60, 

 
Figure 4.8 Backscattering coefficient versus angle at 15.5 GHz and the volume fraction (𝜙𝑣=50%) 

and snow depth of 90 cm.   

 



 
 

59 

and 102 cm. Figure 4.9 shows very good comparison between our computational model and the 

measured data. It is important to mention that the model response is in a better agreement for 

higher thicknesses of the snow layer. The rough surface underneath the snow layer contributes a 

non-negligible amount of scattered power for shallow snow layers. Moreover, the results show 

that the backscattering coefficient saturates after reaching a certain snow depth, which is found to 

be around 40 cm in the case of this example.  

Building on the confidence gained from our computational model, we changed the volume 

fraction and observed the forward and backward scattering response at 14 GHz, and the results are 

displayed in Figs. 4.10 and 4.11.  Figure 4.10 shows how the forward scattering power decreases 

 
Figure 4.9 Backscattered cross-section versus snow depth, the incident angle was chosen to be 40𝑜 

at 9.5 GHz. 
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with   increasing snow depth. Since the snow is a dense random medium, it scatters the incident 

power in all directions, including the forward direction. However, the forward scattering power 

attenuates rapidly inside the snow medium because it gets scattered along many different directions. 

The forward scattered power in Fig. 4.10 is directly proportional to the attenuation coefficient of 

the snow medium. We observe a dual-slope behavior in the forward scattering direction which 

indicates that the attenuation through the medium is dominated mainly by the incoherent 

component. This point is known as “Knee-point” and it appears to occur when the snow depth 

reaches approximately 40 cm. The dual-slope behavior is also observed for the backscattering 

response, which is expected due to the fact that most of the backscattered power is contributed by   

 
Figure 4.10 Co-Polarized Forward scattering cross-section versus snow depth for different volume 

fractions at 14 GHz, the incident angle was chosen to be 40𝑜. 

 



 
 

61 

the top layers, and the contributions from the lower layers become insignificantly small after 

exceeding a certain thickness of the random medium.  As expected, the higher the volume fraction, 

the greater is the attenuation in the forward direction and the knee-point occurs at shallower snow 

depths. Figure 4.11 shows that the higher is the volume fraction, the higher is the saturation level 

of the backscattering coefficient. Basically, greater volume fraction corresponds to a larger number 

of scatterers per unit volume, which results in a stronger backscatter response. 

To observe the role of the operating frequency, we swept the frequency from 8 GHz to 17 

GHz, which encompasses both X and Ku bands. The backscattering response versus frequency is 

shown in Fig. 4.12 for a 40-cm thick snow layer observed at an incidence angle of 40 degrees. As 

observed, increasing the frequency increases the magnitude of the backscattering coefficient for 

 
Figure 4.11 Co-Polarized Back-scattering cross-section versus snow depth for different volume 

fractions at 14 GHz, the incident angle was chosen to be 40𝑜. 
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the same snow depth. This is attributed to the increase in the snow particle size relative to the 

operating wavelength.  

4.5. Conclusion 

A Single slab of snow is solved numerically using the Method of Moments under the 

Discrete Dipole approximation and compared with a Finite Element Solver. After the MoM-DDA 

code is validated, it is used to build the statistics of the scattering matrix of a single snow slab that 

is then used as the building block to emulate the equivalent S-matrix of different slabs within the 

snow medium. The full response is calculated using the SSWaP-SD described earlier along with 

the results obtained from the single slab solution. This way, a fully-coherent time-efficient method 

is implemented to solve for the total forward and backward scattered fields from a snow layer of 

 
Figure 4.12 Backscattering coefficient versus frequency for 50% volume fraction, 40 degrees 

incidence angle and 50 cm snow depth. 
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arbitrary thickness. The model is validated against two different measurement campaigns and show 

very good agreement.  
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Computation of Reflectivity Matrix for a Rough Ground Surface 

5.1. Introduction 

As was noted in the previous chapter, the scattering contribution of the ground surface to 

the total scattering is non-negligible for shallow snow layers. In order to obtain the complete 

scattering response of the snowpack, the EM scattering by the underlying surface has to be taken 

into account. Fundamentally, there are two approaches available to formulate the reflectivity 

matrix representing the rough ground surface, namely through an analytical solution or the 

implementation of a numerical technique. The analytical solution is based on Physical Optics (PO) 

and the numerical solution is based on MoM-software.  

5.2. Analytical Solution 

 Traditionally, the scattered field from a rough surface is computed using the Physical 

Optics (PO) technique   under the tangent-plane approximation. The local surface fields are 

approximated from those of an infinite plane tangent to the surface at the local point. This is a 

good approximation when the radii of curvature at every point on the surface are large compared 

to the wavelength and the surface rms slope is small, wherein not much shadowing occurs and 

therefore multiple surface scattering is insignificant. In the PO approximation, both the coherent 

and incoherent powers can be calculated for a specified correlation profile. Generally speaking, 
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for a rough surface with a height profile 𝑧 = 𝑓(𝑥, 𝑦), the local normal to the surface at point (𝑥, 𝑦) 

is defined as follow:   

𝑛̂ =
∇(𝑧 − 𝑓(𝑥, 𝑦))

|∇(𝑧 − 𝑓(𝑥, 𝑦))|
=

−𝑓𝑥𝑥̂ − 𝑓𝑦𝑦̂ + 𝑧̂

√1 + 𝑓𝑥2 + 𝑓𝑦2
 

(5.1) 

where 𝑓𝑥 , 𝑓𝑦 are the partial derivatives with respect to x and y, respectively. It is also important to 

note that the tangent to the surface can be written as  

𝑡̂ =
𝑘̂𝑖 × 𝑛̂

|𝑘̂𝑖 × 𝑛̂|
 

(5.2) 

Following the derivation in [49] and using the Ewald-Oseen extinction theorem and some algebraic 

manipulation, we can reach the following expression for the field of the wave scattered along 

direction 𝑘̂𝑠 when excited by a plane wave travelling along direction 𝑘̂𝑖 

𝐸𝑠
̅̅ ̅(𝑟̅) =

𝑖𝑘0𝑒
𝑖𝑘0𝑟

4𝜋𝑟
(𝐼 ̿ − 𝑘̂𝑠𝑘̂𝑠) .∬𝐶̅(𝑓𝑥 , 𝑓𝑦) 𝑒𝑖𝑘𝑜(𝑘̂𝑖−𝑘̂𝑠).𝑟̅

′
𝑑𝑟′

 

𝑠

 
(5.3) 

where 𝐸𝑠
̅̅ ̅(𝑟̅) is the scattered field at a general point 𝑟̅, 𝑘0 is the free space wave number, and 

𝐶̅(𝑓𝑥, 𝑓𝑦) is given by  

𝐶̅(𝑓𝑥, 𝑓𝑦) = √1 + 𝑓𝑥2 + 𝑓𝑦2(𝐸𝑜 ∙ 𝑡̂) {
−[(𝑛̂ ∙ 𝑘𝑖̂)(1 − 𝑅𝑒) + (𝑛̂ ∙ 𝑘̂𝑠)(1 − 𝑅𝑒)] 𝑡̂

+(1 + 𝑅ℎ) (𝑛̂ × 𝑡̂) + (𝑛̂ ∙ 𝑘̂𝑖)(1 − 𝑅ℎ) (𝑘̂𝑠 × 𝑡̂)
} 

(5.4) 

where 𝐸𝑜 is the amplitude of the incident plane wave, and 𝑅𝑒 , 𝑅ℎ are the perpendicular and parallel 

Fresnel reflection coefficients, respectively. It is important to mention that the integral in Eq. (5.4) 

is often difficult to evaluate due to the complicated argument 𝐶̅(𝑓𝑥 , 𝑓𝑦) and the random phase term 

associated with it.  Under the approximation of a gentle surface roughness, the coefficient 𝐶̅(𝑓𝑥 , 𝑓𝑦) 

can be approximated by 𝐶̅(0,0), in which case we are left with the integration of the phase term I 
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𝐼0 = ∬  𝑒𝑖𝑘𝑜(𝑘̂𝑖−𝑘̂𝑠).𝑟̅
′

 

𝑠

𝑑𝑥′𝑑𝑦′ (5.5) 

Since the integrand is random, the value of 𝐼0 is random as well. Therefore, we can calculate the 

mean power (|〈𝐼0〉|2) and subtract it from the average total power (〈|𝐼0|2〉) to obtain the incoherent 

component. With appropriate change of variables and using the stationary phase approximation, 

we can express the incoherent component of 𝐼0 as follows:  

〈|𝐼0|2〉 − |〈𝐼0〉|2 = 2𝜋𝐴 ∫ 𝜌𝐽𝑜(𝑣𝑝𝜌)[𝑒−𝜎2(1−𝐶𝑟(𝜌 ))𝑣𝑧
2
− 𝑒−𝜎2𝑣𝑧

2
]𝑑𝜌

∞

0

 (5.6) 

where 𝐴 is the surface area,  𝑣̅ = 𝑣𝜌𝜌̂ + 𝑣𝑧𝑧̂ = 𝑘0(𝑘̂𝑖 − 𝑘̂𝑠), 𝐽𝑜 is the zeroth order Bessel function, 

𝜎 is the rms height of the surface, and 𝐶𝑟(𝜌 ) is the surface correction function. For a specific 

roughness profile, we can calculate the total incoherent bistatic scattering coefficient from Eq. 

(5.4) by plugging the results from Eq. (5.6). The general form is given be  

𝜎𝑝𝑞
0 (𝜃𝑠, 𝜙𝑠;  𝜃𝑖 , 𝜙𝑖) =

|𝑘𝑜|
2

4𝜋𝐴
|𝑝̂𝑠 ∙ 𝐶̅𝑞| [〈|𝐼0|2〉 − |〈𝐼0〉|2] (5.7) 

where 𝑝, 𝑞 = 𝑉 𝑜𝑟 𝐻 for the vertical and horizontal polarizations, respectively. We also should 

note that the solution given by Eq. (5.7) gives the average incoherent power only, not the fields, 

and additionally it is valid only in the far field region. An example of the computed co-pol bistatic 

scattering coefficient based on Eq. (5.7) is shown in Fig. 5.1 for a surface with rms height and 

correlation length of 0.35 cm and 2.09 cm, respectively, at incident angle 𝜃𝑖 = 40 𝑎𝑛𝑑 𝜙𝑖 = 0 and 

for a dielectric constant of 4.6 at 9.5GHz. It is observed that there are some directions along which 

no scattering occurs, which is due to terms in Eq. (5.7) which vanish when  𝜙𝑠 − 𝜙𝑖 = ±90°. The 

main drawback to use the formulation given by Eq. (5.7) is that it neglects phase information 

because deal with power instead of fields. However, this issue can be mitigated if we were to solve 

the integration in Eq. (5.4) without applying the stationary phase approximation.  
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Solving the integral in Eq. (5.4) can provide the scattered field directly. We note that at 

each point 𝑟′ on the rough surface, there is a random phase term associated with a complicated 

argument that changes accordingly. In order to evaluate the integral in Eq. (5.4), we first have to 

create a triangle-based mesh for the rough surface where we aim to evaluate the argument 𝐶̅(𝑓𝑥, 𝑓𝑦) 

and consequently the whole integrand. Given a point 𝑟′(𝑥′, 𝑦′, 𝑧′), we can easily find the local 

normal to the surface and the tangent by applying Eq. (5.1) and Eq. (5.2). The Fresnel reflection 

coefficient is then applied to these local points to calculate 𝑅𝑒 and 𝑅ℎ. Therefore, for a specific 

 
Figure 5.1 Bistatic scattering from a rough surface using the PO method. The surface has an rms 

height of 0.35 cm, correlation length of 2.09 cm, dielectric constant of 4.6, for an incidence angle 

of (𝜃𝑖 = 40, 𝜙𝑖 = 0) and operating frequency of 9.5GHz. 
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direction of observation  𝑘𝑠 , we can calculate the polarimetric components of the 

argument 𝐶̅(𝑓𝑥, 𝑓𝑦) , which leads to the following form for the integral 

𝐼𝑃𝑂
 = ∬(𝐶 

𝑉(𝑟′)𝑣 + 𝐶 
𝐻(𝑟′)ℎ̂) 𝑒𝑖𝑘𝑜(𝑘̂𝑖−𝑘̂𝑠).𝑟̅

′

 

𝑠

𝑑𝑥′𝑑𝑦′ 
(5.8) 

Each of the previous two components can then be solved numerically. To solve the integral 

numerically over the triangle, we have to perform the simplex to get the equivalent right-handed 

triangle in the transformed co-ordinates (𝛼, 𝛽, 𝛾). Next, we use the Gauss-quadrature method to 

evaluate the integral. The Gauss-quadrature method computes the integral by approximating it as 

a sum of weighted arguments calculated at the zeros of a Legendre-polynomial. For example, the 

polarimetric component of Eq. (5.8) can be expressed as  

𝐼𝑃𝑂
 𝑝 = ∬(𝐶 

𝑉(𝑟′)) 𝑒𝑖𝑘𝑜(𝑘̂𝑖−𝑘̂𝑠).𝑟̅
′

 

𝑠Δ

𝑑𝑟′ = ∬𝑓1(𝑟
′)𝑑𝑟′

 

𝑠Δ

≈ 𝐴𝑠Δ
∑𝑤(𝛼𝑖, 𝛽𝑖)𝑓1(𝛼𝑖, 𝛽𝑖)

𝑁

𝑖=1

 (5.9) 

We used a 7-point Gauss-quadrature for each triangle, together with the parameters listed 

in [77]. After evaluating the integral on a small triangle, we repeat the process for all the triangular 

elements in the mesh to estimate the integral over the entire rough surface area. Then we can 

calculate the scattered field from the rough surface in any desired direction (𝑘𝑠), which forms the 

reflectivity matrix as described before. It is also important to note that we then normalized the 

scattered field by dividing it by the square of the area of the rough surface, so as to compare it later 

to the backscattered coefficients resulting from other techniques.    

5.3. Numerical Solution 

For surface roughness conditions for which the PO approximation is not applicable, a full-

wave numerical solution must be used instead. To solve for the scattering by the rough surface 



 
 

69 

numerically, we utilize a MoM-based commercial software (CADFEKO) using the simulation 

setup depicted in Fig. 5.2.  

 

 
Figure 5.2 Simulation setup for rough surface scattering in CADFEKO using (a) square, (b) 

circular samples, and (c) circular sample with tapered edges. 

 

Dielectric 
Half-Space

(a)

Dielectric 
Half-Space

(b)

(a)

(b)

Dielectric 
Half-Space

Dielectric 
Half-Space

(c)



 
 

70 

CADFEKO is a MoM-based software that is widely used in antenna design. However, it 

offers the ability to choose between different types of Green’s functions the free-space Green’s 

function, a Green’s function suited for a half-space dielectric medium, and the periodic Green’s 

function. To perform the EM full-wave simulation using CADFEKO, we generate the rough 

surface profile using MATLAB, then we write an STL (Standard Triangle Language) file that 

includes the triangles representing the rough surface. The STL of the rough surface is then 

imported into the software and a half-space region is defined underneath it to emulate the infinite 

extent of the medium. The surface is then excited with set of plane waves and the far-field bistatic 

scattering is calculated accordingly for each of the plane waves to fill out a column in the S-matrix 

representing the rough surface response. This approach is reported by [94]. Monte Carlo 

simulations are performed to get the statistics of the S-matrix by repeating the calculations for 75-

100 realizations of the rough surface with the same statistics.  It is worth mentioning that when 

such a technique is used, the accuracy of its results may get degraded by edge diffraction effects.   

In order to minimize the edge effects, we change the sample size and cross-section geometry for 

each realization to reduce the coherent addition of the artificial scattering components resulting 

from the edge diffraction. Figure 5.2(a) shows a square sample with 6 𝜆 × 6 𝜆, Fig. 5.2(b) shows 

a circular sample with 5.5𝜆 diameter, and Fig. 5.2(c) shows a circular sample with 5.75𝜆 diameter 

with tapered edges as well.   

In order to show the effectiveness of tapering the edges on suppressing the edge effects, 

we changed the rough surface parameters and repeated the simulations for multiple realizations. 

This step is important as well in the retrieval algorithms for the underlying soil layer, especially 

for shallow snow layers.  For an inversion algorithm, the forward model must be run many times 

by varying the snow parameters as well as the rough surface parameters such as the rms surface 
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height and correlation length. The computed backscattering coefficient is shown   in Fig. 5.3 as a 

function of  𝑘𝑠 where 𝑘 =
2𝜋

𝜆
 and the wavelength is around 3.16 cm at 9.5 GHz for a rough surface 

with correlation length of 2.09 cm and a dielectric constant of 𝜖𝑔𝑛𝑑 = 4.6 − 𝑗0.1.  The incidence 

angle is 40 degrees. In order to show the role of minimizing the edge effects on the computed 

scattering coefficient, we computed the scattering by treating all realizations of the rough surface   

as squares with dimensions of 6𝜆 × 6𝜆 . The results are shown by the blue trace in Fig. 5.3. As we 

can see, the response exhibits large nonphysical fluctuations. However, after employing the edge- 

effect minimization technique described earlier, we obtain the relatively smooth responses shown   

in red and black traces. In Fig. 5.3, the dashed black curve is the result of changing the cross-

section from squares to circular in some of the realizations (Fig. 5.2(b)) and varying the size of 

 
Figure 5.3 Normalized backscattering coefficient from rough surface for different rms heights with 

incidence angle of 40 degrees.   
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each sample a little bit (diameter of the sample varies between 5.5 𝜆 to 6.25 𝜆). If, in addition, we 

incorporate tapered edges on top of that, we minimize the edge effect to the maximum extent, 

resulting in the dashed red curve.  

5.4. Validation of Results 

To validate the accuracy of our simulation techniques, the analytical and numerical 

techniques are compared in Fig. 5.4 against the Improved Integral equation Method (I2M) model 

and against measured data. The I2EM model is an integral equation-based model that takes   

shadowing effects into account through the application of a shadowing function. The measurement 

campaign reported in [79] was held in Brighton, Michigan, USA during March 1995. The results 

show good agreement between all four methods within a margin of few dBs. It is clear that 

applying the PO approximation by using (5.4) is more accurate than the analytical PO solution. It 

is also interesting to see that estimating the PO using (5.4) gives results that are more similar to 

those obtained using the integral equation based solvers (both I2EM and FEKO). Due to the 

complexity of the computational methods, we had to limit the extent of the surfaces for FEKO 

simulation to 6 𝜆 × 6 𝜆. However, these dimensions can be increased significantly for numerical 

PO solutions. 
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After obtaining the numerical solution for the field scattered by the rough surface, we then 

use it to form the reflectivity matrix in order to be able to cascade its response with the snow layer 

above it. However, it is important to note here that the slab width used for the snow, 𝑊𝑠, and for 

the rough surface, 𝑊𝑅𝑆, may not necessarily be the same, which leads to different   directions for 

the propagating plane waves. To help visualize what this means, we show in Fig. 5.5 the allowed 

propagation constants for 𝑊𝑠 = 16𝜆  as empty circles and for 𝑊𝑅𝑆 = 6𝜆  as dotted circles. 

Consequently, the scattering matrix for the snow layer and the reflectivity matrix for the rough 

surface are computed for different angles. Therefore, cascading them directly does not result in 

 
Figure 5.4 Cross-Comparison of backscattering coefficient of exponential rough surface between 

PO, I2M, FEKO, and measured data. 
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accurate results. Consequently for full-wave solutions, like the FEKO used in here, the sparse 

directions have to be interpolated in order to match the grid to the snow slabs. One way to work 

around this is to use the 6 𝜆 × 6 𝜆 FEKO samples to build a larger sample through the use of 

window functions. Specifically, we can build the spectral scattering behavior of a 16 𝜆 × 16 𝜆 

sample by multiplying a proper window function in space for each of the 6 𝜆 × 6 𝜆 and then 

combine their responses to obtain the output for a larger sample. It is important to mention that the 

window function should be chosen in such a way that it allows intersections between adjacent 

samples and assures the continuity of the surface at these intersection points.  

 

 

 
Figure 5.5 K-space and allowed k-values for a) snow slab with width of 16 𝜆, and b) rough surface 

with width of 6 𝜆. 
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An illustration on how to form a bigger sample (16 𝜆 × 16 𝜆 ) from the simulated samples 

(~ 6 𝜆 × 6 𝜆) is shown in Fig. 5.6. A 1-D version of the used window function is given as follow 

𝑤(𝑥) = {

1 |𝑥| < 𝑥𝑏

1/2[1 + cos𝛾(𝜋(𝑥 − 𝑥𝑎)/(𝑥 − 𝑥𝑏))] |𝑥𝑏| < |𝑥| < |𝑥𝑎|

0 |𝑥| > 𝑥𝑎

 

 

(5.2) 

where,  𝛾, 𝑥𝑎, 𝑎𝑛𝑑 𝑥𝑏 are chosen in a case by case basis since the width of our simulated samples 

ranges between 5.5 𝜆 𝑡𝑜 6.25 𝜆. An example of such window function is depicted in Fig. 5.7. 

 
Figure 5.6 A 1-D illustration on how to use the window function to build a rough surface of  16 𝜆 

length from 6 𝜆 samples. 

 

 
Figure 5.7 1-D example of the window function. 
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We should also mention that our window function is actually the 2-D version of the 

aforementioned case which could easily be expressed as in Eq. (5.3) 

𝑤(𝑥, 𝑦) = 𝑤(𝑥)𝑤(𝑦) (5.3) 

where 𝑤(𝑦) is written similar to 𝑤(𝑥) by replacing 𝑥 by 𝑦. This way, we can form the reflectivity 

matrix of the aggregated rough surface on the same K-space as the snow response and then we just 

have to cascade them as discussed in Chapter 3.  

 

5.5. Conclusions 

The rough surface underneath the snowpack is represented with a reflectivity matrix that 

is computed through both analytical (PO) and numerical (CADFEKO) solutions. The solution is 

validated by comparing the results with existing empirical and numerical models as well as 

measured data.  
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Snowpack Results and Discussions 

6.1. Comparison with Measured Data 

In this section, we present simulation results for a snow layer over a rough surface, which 

include the interaction of the scattering in the snow volume with the underlying surface. 

Traditionally, scattering by a snowpack is computed by incoherent addition of two separate 

components: (1) volume scattering by the snow layer as if it were over a smooth surface and (2) 

the scattering response of the underlying rough surface. In such an  incoherent addition approach,  

the backscatter response of the rough surface is calculated as if the snow layer were a perfectly 

homogeneous dielectric medium, allowing for simply adding the volume and surface scattering 

components using superposition ( 𝜎𝑡 = 𝜎𝑅𝑆𝑒
−2𝛼𝑑 + 𝜎𝑣 ). Incoherent addition of the powers 

assumes that the volume and surface scatterers do not interact with each other.  In contrast, the 

cascading algorithm introduced in this study does take into account the interaction between the 

volume and surface scatterers. Even though each component is computed separately, our 

representation of scattering in the form of   an S scattering matrix for the snow volume and a 

reflectivity matrix for the underlying surface serves to embed the coherency of the interactions 

between the two structures. Simulations for 3 snowpacks with thicknesses of  20, 60, and 102 cm, 

all over a rough surface, were performed at 9.5 GHz and the results are shown and compared to  

experimental measurements [79] in Fig. 6.1 (a), (b), and (c) respectively. 
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Figure 6.1 Backward scattering cross-section for snow-depth equals (a) 20 cm, (b) 60 cm, and (c) 

102 cm. 

 
 

Cross-Pol

Co-Pol

GND+20 cm Snow

Cross-Pol

Co-Pol

GND+60 cm Snow

(a)

(b)

Cross-Pol

Co-Pol

GND+102 cm Snow

(c)



 
 

79 

The ground-truth data specifies an average snow density of 0.48 𝑔/𝑐𝑚3 and an average 

particle diameter of 0.27 mm, which translates into a volume fraction of approximately 50%, a 

correlation length of 0.27 mm, and a chord size of 0.41 mm.   The rough surface has a correlation 

length of 2.09 cm, rms height of 0.35 cm and   a dielectric constant of 𝜖𝑔𝑛𝑑 = 4.6 − 𝑗0.1. The three 

figures in the left-hand column of Fig. 6.1 contain values for the backscattering coefficient 

computed using all components and interactions comprising the model developed in the present 

study ( shown in dashed black traces), along with the values measured experimentally ( shown in 

solid red) as reported in [73]. The right hand column in Fig. 6.1 contains plots of the individual 

co-polarized contributions contained in the model. The contribution of the rough surface is referred 

to as “Gnd” and is calculated using the modified FEKO method described earlier in Chapter 5. The 

snow-only response is calculated for cascaded snow layers with no ground plane at all. For the 20-

cm  results, we observe that  there is a noticeable difference between the SSWaP-SD for snow-

only and the SSWaP-SD for snow over the rough surface, which is because the snow thickness is 

relatively small, allowing for a considerable amount of power to reach the rough surface and 

bounce back up to the surface. In contrast, for the thick-snow layer of 102cm, there is no    

significant difference between the results computed for the backscattering from the snow layer 

with or without the contribution of the underlying ground surface. It is also worth noting that for 

the 20-cm case, the coherent cascading of the rough surface and the snowpack responses gives 

results that differ from those based on  the direct incoherent superposition of the individual 

response (compare solid red and dashed red traces in the top-left figure in Fig. 6.1). This is 

attributed to the interaction between the rough surface and the bottom snow layer. 
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The backscattering coefficient is plotted as a function of snow depth in Fig. 6.2. We observe 

a two-slope behavior in the backscattering response. This is attributed to the fact that the response 

of a thin snow layer is dominated by the contribution from the rough surface, but for a thicker 

layers there are enough random scatterers as to increase the attenuation through the layer down to 

the underlying surface and to simultaneously generate significant volume scattering to saturate the 

backscatter response and create a nonlinear slope with respect to the snow depth. In Fig. 6.2, we 

observe that for the shallow snow layer (20 cm), the difference between the model-computed 

backscattering coefficient and the measured value   is about 0.75 dB. In contrast, for the thicker 

snow layers, the difference between computed and measured values of the backscattering 

coefficient is   in the range of 0.15 dB.  

 

 
Figure 6.2 Backscattering cross-section versus snow-depth. 
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Additionally, our model is further validated against two other measured datasets reported in [95] 

at 9 and 16.6 GHz and the results are shown in Fig. 6.3 (a) and Fig. 6.3 (b), respectively. Both 

measured data were performed at 57 degrees of incidence angle but with slightly different ground 

truth snow parameters. In Fig. 6.3, we compare our model expectation (solid blue curve) to the 

measured data (dotted red circles) and the empirical model that has been reported [95] to best fit 

the measured data. The empirical model is given as follow  

𝜎0(𝑑𝐵) = 10 log(𝐶1 − 𝐶2 𝑒
−𝐶3𝜌𝑠𝑑) (6.1) 

where,  𝜌𝑠 is the snow density, d is the snow depth, and 𝐶1, 𝐶2, 𝑎𝑛𝑑 𝐶3 are the fitting parameters. 

Table 6-1 summarizes the values of these fitting parameters for each data set.  As expected the 

fitting parameters are highly dependent on the frequency and the snow parameters as well. As 

shown in Fig. 6.3 (a), there is a very good agreement with our model expectation and the measured 

data set at 9 GHz. However, when comparing our model expectations to the measured data at 16.6 

GHz as in Fig. 6.3 (b), there exist a good agreement about the saturation level of the backscattering 

coefficient at higher snow depths. On the other hand, at low snow depth, the level of accuracy is 

degraded due to the slight difference between our rough surface parameters to the ground truth 

surface roughness that has not been reported in [95].  

 

Table 6-1 Summary of the fitting parameters in Eq. (6.1) for the two measured data sets 

Data Set 𝐶1 𝐶2 𝐶3 

𝑓 = 9 𝐺𝐻𝑧 0.162 0.146 0.0199 

𝑓 = 16.6 𝐺𝐻𝑧 0.569 0.395 0.0487 
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Table 6-1 Summary of the fitting parameters in Eq. (6.1) for the two measured data sets 

Data Set 𝐶1 𝐶2 𝐶3 
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Figure 6.3 Validation of our model expectation of the normalized backscattering coefficient versus 

snow depth against measured data [95] at (a) 9 GHz, and (b) 16.6 GHz.  
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6.2. Phase Difference Statistics  

After validating the model against measured data, we can use our technique to look at 

another important parameter which is the co-polarized phase difference statistics of the snowpack. 

The term co-polarized phase difference represents the phase difference between the HH and VV 

components of the backscattering coefficient and is denoted by 𝜙 = 𝜙ℎℎ − 𝜙𝑣𝑣 .  The analytical 

formulation of how to calculate such a parameter is presented in the following sub-section. 

Afterwards, the statistics of our model data is presented and the co-polarized phase difference 

probability density function is calculated.  

6.2.1. Co-Polarized Phase Difference Statistics: Analytical Solution 

Fully polarimetric radar response of the snowpack is obtained by measuring both the 

magnitude and phase of each of the polarimetric component of the scattered field. However, most 

of the models and measurement campaigns report the backscattering coefficient only and neglect 

the measured phase information completely under the false impression that there are less 

information encapsulated in the phase. In fact, we can reach a closed form expression of the 

statistics, i.e. Probability Density Function (PDF), of the phase difference between the co-polarized 

components (HH, and VV) [96]. A fully polarimetric response of a target is characterized by its 

polarimetric scattering matrix that relates the scattered field to the incident field (𝐸̅𝑠 = 𝑆̿𝐸̅𝑖). Such 

a scattering matrix is expressed in Eq. (6.2) 

𝑆̿ = [
𝑆𝑣𝑣 𝑆𝑣ℎ

𝑆ℎ𝑣 𝑆ℎℎ
] 

(6.2) 

where each element in the scattering matrix is a complex quantity. Hence, statistically speaking 

each of the polarimetric components of the scattering matrix should be expressed in two random 
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variables (representing the real and imaginary parts). Each of the polarimetric scattering 

component (𝑆𝑝𝑞, 𝑝, 𝑞 = 𝑣, ℎ) consists of the sum of the individual contributions of the random 

scatterers within the random medium and their multiple scattering interactions as well. Since the 

number of random scatterer inside the illuminated region of the random medium is usually very 

large, the central limit theorem can be applied. Hence, we can reach the conclusion that the real 

and imaginary parts of 𝑆𝑝𝑞  are identically distributed, zero-mean Gaussian random variables. 

Therefore, we can express the co-polarized components in terms of four joint random variables as 

in Eq. (6.3) 

𝑆𝑣𝑣 = 𝑋1 + 𝑖 𝑋2 

𝑆ℎℎ = 𝑋3 + 𝑖 𝑋4 

 

(6.3) 

Observation of polarimetric data for various random media show that the cross-polarized 

components ( 𝑣ℎ, 𝑜𝑟 ℎ𝑣 ) are statistically independent of the co-polarized components. 

Consequently, we can express the cross-polarized component in terms of another two independent, 

yet Gaussian, random variables as in Eq. (6.4) 

𝑆𝑣ℎ = 𝑋5 + 𝑖 𝑋6 (6.4) 

It is again reasonable to assume 𝑋5  and 𝑋6  to be jointly Gaussian. Therefore, the statistical 

behavior of 𝑆𝑣ℎ can be obtained by getting the variance (𝜎𝑐
2) only in Eq. (6.5) 

𝑓𝑋5,𝑋6
(𝑥5, 𝑥6) =

1

2𝜋𝜎𝑐
2
𝑒

(−
𝑥5

2+𝑥6
2

2𝜎𝑐
2 )

 
 

(6.5) 

However, the co-polarized random variables are statistically-dependent on each other. Hence, the 

covariance matrix (𝐶) describes the joint probability density function between the four random 

variables of the co-polarized components in Eq. (6.3). Since 𝑋1, 𝑋2, 𝑋3, and 𝑋4 are Gaussian. Then 

C is expected to be a 4 × 4 symmetric matrix whose entries are expressed as [97] 
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𝜆𝑖𝑗 = 𝜆𝑗𝑖 = 〈𝑋𝑖 𝑋𝑗〉                   𝑖, 𝑗 ∈ {1,⋯ ,4} (6.6) 

Following the derivation in [98], we can relate the ensemble average Mueller matrix to the 𝜆𝑖𝑗 as 

in Eq. (6.7) 

〈𝑀〉 =

[
 
 
 
 
2𝜆11 2𝜎𝑐

2

2𝜎𝑐
2 2𝜆33

0 0
0 0

0 0
0 0

2𝜆13 + 2𝜎𝑐
2 2𝜆14

−2𝜆14 2𝜆13 − 2𝜎𝑐
2]
 
 
 
 

 

 

 

(6.7) 

where 〈𝑀〉 is the ensemble average of the Mueller matrix. The Mueller matrix 𝑀 can be easily 

written in terms of the polarimetric scattering matrix components as follows  

𝑀 =

[
 
 
 

|𝑆𝑣𝑣|
2 |𝑆𝑣ℎ|2

|𝑆ℎ𝑣|
2 |𝑆ℎℎ|2

𝑅𝑒[𝑆𝑣𝑣𝑆𝑣ℎ
∗ ] −𝐼𝑚[𝑆𝑣𝑣𝑆𝑣ℎ

∗ ]

𝑅𝑒[𝑆ℎ𝑣𝑆ℎℎ
∗ ] −𝐼𝑚[𝑆𝑣𝑣𝑆𝑣ℎ

∗ ]

2𝑅𝑒[𝑆𝑣𝑣𝑆ℎ𝑣
∗ ] 2𝑅𝑒[𝑆𝑣ℎ𝑆ℎℎ

∗ ]

2𝐼𝑚[𝑆𝑣𝑣𝑆ℎ𝑣
∗ ] 2𝐼𝑚[𝑆𝑣𝑣𝑆𝑣ℎ

∗ ]

𝑅𝑒[𝑆𝑣𝑣𝑆ℎℎ
∗ + 𝑆𝑣ℎ𝑆ℎ𝑣

∗ ] −𝐼𝑚[𝑆𝑣𝑣𝑆ℎℎ
∗ − 𝑆𝑣ℎ𝑆ℎ𝑣

∗ ]

𝐼𝑚[𝑆𝑣𝑣𝑆ℎℎ
∗ + 𝑆𝑣ℎ𝑆ℎ𝑣

∗ ] 𝑅𝑒[𝑆𝑣𝑣𝑆ℎℎ
∗ − 𝑆𝑣ℎ𝑆ℎ𝑣

∗ ] ]
 
 
 

 

 

 

(6.8) 

Therefore, measuring the complex polarimetric components 𝑆𝑝𝑞 enables us to estimate the Mueller 

matrix where its ensemble average lead to the full knowledge of the covariance matrix elements 

𝜆𝑖𝑗 as summarized in Eq. (6.9) 

𝜆11 =
〈𝑀11〉

2
, 𝜆11 =

〈𝑀22〉

2

𝜆13 =
〈𝑀33〉 + 〈𝑀44〉

4
, 𝜆14 =

〈𝑀34〉 − 〈𝑀43〉

4

 

 

(6.9) 

Hence, estimating the covariance matrix result in a full knowledge of the joint probability density 

function of the co-polarized random variables (𝑓𝑋1,⋯,𝑋4
(𝑥1,⋯ , 𝑥4)). Using the following change of 

variables 

𝑥1 = 𝜌1 cos𝜙𝑣𝑣 , 𝑥2 = 𝜌1 sin𝜙𝑣𝑣

𝑥3 = 𝜌2 cos𝜙ℎℎ , 𝑥4 = 𝜌2 sin𝜙ℎℎ
 

 

(6.10) 

We can reach an easier form of such a density function as given in Eq. (6.11) 
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𝑓𝜌1,𝜌2,𝜙𝑣𝑣,𝜙ℎℎ
(𝜌1, 𝜌2, 𝜙𝑣𝑣 , 𝜙ℎℎ) =

𝜌1𝜌2

4𝜋√Δ
𝑒(−

1
2
[𝑎1𝜌1

2+𝑎2𝜌2
2−2𝑎3𝜌1𝜌2])

 
 

(6.11) 

where Δ = (𝜆11𝜆33 − 𝜆13
2 − 𝜆14

2 )2 , 𝑎1 = 𝜆33/√Δ ,  𝑎2 = 𝜆11/√Δ , and 𝑎3 = [𝜆13 cos(𝜙ℎℎ −

𝜙𝑣𝑣) + 𝜆14 sin(𝜙ℎℎ − 𝜙𝑣𝑣)]/√Δ. In order to obtain the co-polarized phase difference statistics, 

we can integrate the density function in Eq. (6.11) over all the possible values of 𝜌1and 𝜌2 as 

follow   

𝑓𝜙𝑣𝑣,𝜙ℎℎ
(𝜙𝑣𝑣, 𝜙ℎℎ) = ∫ ∫ 𝑓𝜌1,𝜌2,𝜙𝑣𝑣,𝜙ℎℎ

(𝜌1, 𝜌2, 𝜙𝑣𝑣 , 𝜙ℎℎ)
∞

𝜌1=0

∞

𝜌2=0

𝑑𝜌1𝑑𝜌2  
 

(6.12) 

After some rigorous mathematical steps as reported in details in [98], we can end up with the 

following expression for the probability density function of the co-polarized phase difference (𝜙 =

𝜙ℎℎ − 𝜙𝑣𝑣)  

𝑓𝜙(𝜙) =
𝜆11𝜆33 − 𝜆13

2 − 𝜆14
2

2𝜋(𝜆11𝜆33 − 𝐷2)
{1 +

𝐷

√𝜆11𝜆33 − 𝐷2
[
𝜋

2
+ tan−1

𝐷

√𝜆11𝜆33 − 𝐷2
]}  

 

(6.13) 

where 𝐷 = 𝜆13 cos𝜙 + 𝜆14 sin𝜙 and 𝜆11, 𝜆33, 𝜆13, and 𝜆14 are all given in Eq. (6.9). Hence, using 

Eq. (6.13) leads to expectation of the probability density function of the co-polarized phase 

difference. It is worth noting that the phase difference is of more interest compared to the absolute 

phase since the measurement of the absolute phase of the scattering matrix elements 𝑆𝑝𝑞 is very 

challenging. 

6.2.2. Statistics of the Polarimetric Backscattering from Snowpack 

After examining the theoretical behavior of the polarimetric components of the scattering 

matrix 𝑆𝑝𝑞 , we can compare our model results to the analytical expressions we formulated in 

Section 6.2.1. First, we can look at the speckle statistics of the co-polarized scattering components 

expressed in Eq. (6.3) and examine their behavior. Figures 6.4 and 6.5 summarize the histograms 
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of the co-polarized components of the backscattering from a 2cm-thick snowpack with incident 

angle of 20 degrees, volume fraction of 50%, snow density of 0.48 𝑔𝑚/𝑐𝑚3 and at frequency of 

14.4 GHz using 60 realizations for the 𝑣𝑣 and ℎℎ components, respectively.  

 
Figure 6.4 Speckle statistics of the 𝑣𝑣 component of the scattering matrix. 

 

Figure 6.5 Speckle statistics of the ℎℎ component of the scattering matrix. 

 

(a)

(b) (d)

(c)

(a)

(b) (d)

(c)
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The histograms of our model 𝑣𝑣 component is shown in Fig. 6.4. The real and imaginary 

components fits a Gaussian (normal) distribution perfectly as depicted in Fig. 6.4 (a) and Fig. 6.4 

(b), respectively.  This matches the theoretical assumption we highlighted in expression the 

polarimetric scattering components statistically with zero-mean Gaussian random variables as in 

Eq. (6.3) and Eq. (6.4). Additionally, the statistics of 𝑆𝑣𝑣 magnitude matches a Rayleigh 

distribution so as expected and the phase statistics of 𝑆𝑣𝑣 matches a uniform distribution. Similar 

observation can be concluded for the 𝑆ℎℎ statistics as depicted in Fig. 6.5. We could also examine 

the statistics of the cross-polarized component 𝑆𝑣ℎ to assess the validity of Eq. (6.4) that again 

both the real and imaginary components should be zero-mean Gaussian variables. The results for 

the 𝑆𝑣ℎ statistics are reported in Fig. 6.6. Again, the same observations can be concluded that the 

histograms of real and imaginary parts match zero-mean normal (Gaussian) distribution and the 

magnitude and phase are fitting a Rayleigh and uniform distributions, respectively.  

 

 

Figure 6.6 Speckle statistics of the 𝑣ℎ component of the scattering matrix. 

 

(a)

(b) (d)

(c)
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   The major point of interest afterwards is the co-polarized phase difference statistics. We 

simulated 60 different realizations of 60cm-thick snowpacks with the same medium parameters as 

mentioned earlier in this section and estimated the polarimetric backscattering matrix using the 

SSWaP-SD technique. Then using Eq. (6.8), we calculated the Mueller matrix for each realization 

and then the ensemble average of the Mueller matrix is obtained. Afterwards, the covariance matrix 

elements 𝜆𝑖𝑗’s are calculated using Eq. (6.9) and the resulting ensemble average of the Mueller 

matrix. Finally, the 𝜆𝑖𝑗′𝑠 are substituted in Eq. (6.13) to obtain the co-polarized phase difference 

density function. A comparison of the histogram of our model data with the analytical expression 

is depicted in Fig. 6.7 as show a very good agreement.  

 

 

 

Figure 6.7 Co-polarized phase difference statistics of 60cm-thick snowpack.  

. 
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6.3. Discussions 

 Another interesting point that we can observe is the response of a shallow snowpack over a 

rough surface with variable complex dielectric constant.  The real part of the dielectric constant 

(𝜖𝑝) of the rough surface is swept from 4.5 to 10 with a fixed imaginary part of the dielectric 

constant 𝜖𝑝𝑝 = 0.016. The results of the backscattering coefficient are shown in Fig. 6.8. As we 

can see the higher is the dielectric constant, the higher is the backscattering coefficient as expected. 

We also swept the imaginary part of the ground dielectric constant (𝜖𝑝𝑝) from 0 to 20 and the 

results are reported in Fig. 6.9 while the real part 𝜖𝑝 is kept fixed at 4.6. The same observation 

could be made, since the difference between the surface and air is getting higher which lead to 

 
Figure 6.8 Backscattering cross-section versus the real part of ground dielectric constant (𝜖𝑝) for 

fixed imaginary part of the dielectric constant (𝜖𝑝𝑝 = 0.016). 
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higher reflection from the surface. It is important to highlight that the SSWaP-SD method allows 

us to get the full response for a snow layer over any rough surface without the need of re-simulating 

the snow layer over and over.  

 

 

 

 

 

 

 

 

 
Figure 6.9 Backscattering cross-section versus the imaginary part of ground dielectric constant 

(𝜖𝑝𝑝) for fixed real part of the dielectric constant (𝜖𝑝 = 4.6). 
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Conclusions and Future Work 

7.1. Summary and Conclusions 

The work in this thesis is focused on electromagnetic modeling for radar remote sensing 

from snow. A physics-based model is proposed to reconstruct the computer-generated samples of 

the snow through the implementation of both the Lineal-path function on top of the 3D exponential 

correlation function to ensure the macroscopic connectivity of the ice particles. The proposed 

reconstruction method is compared to both 2D and 3D sample images of real snow and show good 

resemblance. A fully-coherent time-efficient method is implemented to solve for the bistatic 

scattered fields from a snow layer with arbitrary thickness over rough surface. The technique 

exploits the SSWaP-SD approach as a time-efficient method to deal with the problem of the long-

distance propagation in a complex media based on discretizing the composite medium into slabs 

and represent each slab with an N-dimension fully-polarimetric scattering matrix in the spectral 

domain. The individual snow slab problem is addressed using MoM code based on the discrete 

dipole approximation. The rough surface is represented with a scattering matrix as well using both 

analytical (PO) and numerical (CADFEKO) solutions. The full response is acquired by cascading 

both S-matrices together and validated using two measurement campaigns at X and Ku band 

respectively.  
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7.2. Future Work 

 The proposed simulation setup has been carried over multiple times for different snow 

parameters (volume fraction, correlation length, chord length, snow depth), roughness profiles 

(correlation length, rms height), operating frequencies, and incidence/scatter angles in order to 

form a complete library that could be used to build an inversion algorithm. Trials to get to a simple 

inversion algorithm were performed as an initial step but led to the conclusion that a rigorous 

neural network model needs to be built in order to guess the medium parameters from the 

backscattering coefficients.  

On the other hand, higher order clustering functions could be used instead of the Lineal-

path function to handle cases when volume fraction is very low. Additionally, we can apply the 

SSWaP-SD to different complex media like vegetation or we can use the SSWaP-SD a 3D domain 

decomposition method to solve for electromagnetic interference in high speed integrated circuits.   
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Appendix 1 

 

Importing a Random Snow Sample into HFSS 

8.1. Purpose 

With all the recent advances of the EM computational methods, few commercial full-wave 

solvers are proven trust-worthy by the EM community. HFSS (or AnsysEM) is considered the 

most commonly-used 3-D EM solver by EM engineers. HFSS has been used extensively in many 

EM applications ranging from radiation to the scattering problems. However, using a commercial 

software to solve for scattering from a random medium is still very challenging. First issue relates 

to importing a sample of the random medium into HFSS which can be very challenging. This is 

due to the fact that HFSS offers the ability to draw/import only a few canonical objects such as 

sphere, box, cylinder, and some other objects. Additionally, most random media, such as snow, 

are infinite in extent. Hence, even if we were able to import/draw the medium into HFSS, a proper 

EM setup has to be performed in order to get accurate results in a feasible amount of time. The 

main objective of this appendix is to describe the process of importing a 3-D random medium 

structure from MATLAB into HFSS. 

8.2. Importing a Snow Sample into HFSS 

After using the proposed reconstruction method described in Chapter 4, we end up with a 

3-D connectivity matrix representation the locations of the ice particles in the air-filled 
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background. Therefore, we need to draw/import these ice particles into HFSS. First, let us concern 

ourselves by just one snow grain and try to draw its equivalent shape into HFSS, then Fig. 8.1 

depicts few scenarios of the imported snow grain. The brute-force scenario, not shown in Fig. 8.1, 

is to represent each ice particle by a dielectric box and then draw those boxes into HFSS. However, 

there are tremendous amount of ice-filled locations and importing such a huge number of boxes in 

HFSS takes quite a lot of time. Alternatively, we can still use a box-based import scheme where 

we just try to find the set of rectangular boxes that could be stacked horizontally to form the snow 

grain as depicted in Fig. 8.1 (a). To examine the total number of unknowns resulting in HFSS after 

its adaptive meshing algorithm is performed, we imported the snow grain in HFSS and surrounded 

 
Figure 8.1 Different scenarios to draw a single snow grain into HFSS.  

Boxes-Based Import United Boxes-Based Import PolyLine-Based Import

1 2 3

(a) (b) (c)
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it with a small air-filled box as depicted in Fig 8.1 (a). The resulting number of unknowns is 

reported in Table 8-1 to be 3352 which is considered to be a big number given that the actual snow 

sample consists of millions of these snow grains. Therefore, we can unite the boxes drawn in the 

first scenario together to remove the mesh elements in between as performed in scenario 2 in Fig. 

8.1 (b). The number of unknowns is reduced by half in this scenario compared to the first scenario. 

However, the snow grain geometry still suffers from the staircase approximation and the smallest 

step in the staircase dictates the smallest mesh element. It is also worth noting that, the importing 

time for the united boxes-based algorithm is a slightly higher than the first scenario importing 

algorithm. This is due to the fact that, HFSS takes additional time applying the Boolean operation 

to unite all the boxes. Hence, a polyline-based importing scheme is used as depicted in Fig. 8.1 

(c). The snow grain is represented by a polyline that tracks the border points of it and draw a closed 

surface that is then swept along the vertical direction to get the 3-D snow grain. As reported in 

Table 8.1, the polyline-based importing scheme is more efficient in terms of both the total number 

of unknowns and the importing time. Then, we just have to repeat this scheme for the rest of the 

snow grains.   

Another point is that the reconstructed snow sample as in Chapter 4 has been discretized 

with what we denote as the statistical discretization (must be much smaller than the correction 

length) which is quite smaller than the typical wavelength of EM waves used in radar remote 

Table 7-1 Comparison of the three importing scenarios 

Importing scheme Number of unknowns Importing time 

Box-based  3352 ~ 5 sec 

United boxes-based 1667 ~ 5.5 sec 

Polyline-based 1066 < 0.1 sec 
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sensing of snow. Therefore, we have to under-sample the medium which importing it into HFSS 

to end up with a computationally-tractable problem. Such under-sampling is depicted in Fig. 8.2.  

 The polyline-based importing algorithm of a single snow grain starts by getting the list of 

the border points. This step is implemented by modifying the built-in MATLAB function 

“visboundaries”. Then, we pick a point from the list as the starting point and draw a circle around 

it with a prescribed radius that is related to the EM discretization steps (𝜆/20). Afterwards, we 

pick our next point as the furthest point away from the center on the snow grain and drops the 

points in between as illustrated in Fig. 8.2. In order to better visualize the effect of the 

aforementioned under-sampling process, we plotted the same snow grain with and without the 

under-sampling in Fig. 8.3 (a) and Fig. 8.3 (b), respectively. After optimizing our polyline-based 

importing algorithm, we turn the closed polyline shaped snow grain into a visual basic script that 

can be run into HFSS to do the importing step automatically. Hence, we repeat the same procedure 

for each of the snow grains to get our 2-D snow cut imported into HFSS. As described in Chapter 

5, we then assume there is no change in the vertical direction for 𝜆/20 and stack different layers 

to form the 3-D snow sample. An example of two-stacked layers is shown in Fig. 8.4. 

 
Figure 8.2 Polyline-based importing algorithm with discretization step. 

Starting point
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Figure 8.4 A sample of 3-D snow imported into HFSS by stacking two 2-D cuts. 

  

 

Figure 8.4 Example of polyline-based imported snow sample consisting of two stacked layers. 

 

 

 
Figure 8.3 Illustration of the same snow grain imported (a) with, and (b) without the under-

sampling technique.  

 

(a) (b)
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