
Datacenter Architectures for the Microservices Era

by

Seyedamirhossein Mirhosseininiri

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2021

Doctoral Committee:

Professor Thomas Wenisch, Chair
Professor David Blaauw
Professor Trevor Mudge
Professor Satish Narayanasamy
Professor Josep Torrellas, University of Illinois at Urbana-Champaign

Seyedamirhossein Mirhosseininiri

miramir@umich.edu

ORCID iD: 0000-0001-6501-6087

© Seyedamirhossein Mirhosseininiri 2021

To the love of my life, Farnoosh.

ii

ACKNOWLEDGEMENTS

This thesis is the result of many years of hard work that simply would not have been

possible without the continuous support of many people. Undoubtedly, I could not have done

this without the unwavering support and mentorship from my advisor Professor Thomas

Wenisch. Tom gave me the freedom to pursue any research direction I was passionate

about and allowed me to integrate multiple topics into my research. I would also like to

particularly thank Professor Josep Torrellas, my original advisor at the University of Illinois

at Urbana-Champaign, who taught me a lot of technical and research-related concepts and

provided me with ample support, especially when I had to move from UIUC to Michigan. I

would also like to thank all my industry collaborators and mentors, especially Geoff Blake

from Amazon as well as Sameh Elnikety and Ricardo Bianchini from Microsoft Research

who I learnt a lot of concepts from about datacenters and cloud computing. Finally, I would

like to acknowledge my committee members, Professors David Blaauw, Trevor Mudge, and

Satish Narayansamy for their help and support throughout my PhD.

The past six years have been extremely difficult for me, given all the pressure and stress

induced by the Trump administration, and especially since I did not get to go home and

see my family since the last time we were together at the airport in Tehran. I would like to

thank my parents for their unconditional love and patience before and during this period,

and for encouraging me to pursue my dreams, and making sure that I never had to worry

about anything other than achieving my goals. Although this period was no easier for them

than it was for me, they remained more than supportive all the time and gave me hope and

encouragement every time I was about to give up.

iii

I would also like to thank many friends who were like family to me all these years,

including Pooyan Tirandazi, Hodjat Asghari Esfeden, Ali Rafei, Sajjad Najafi, Maryam

Ahmadi, Amirhossein Herandi, Morteza Soltani, Mohsen Karimnejad, Morteza Taiebat,

Mohsen Nabian, Brendan West, Harini Muthukrishnan, Akshitha Sriraman, Vaibhav Gogte,

Ofir Weisse, and many others. Finally, I am forever grateful to my best friend—my brother—

Antonio Franques who I was super lucky to have by my side all these years. I could not

imagine this period without his friendship, help, and support in every possible way.

Last but not least, I would like you to thank my dearest Farnoosh, my fiance, to whom I

dedicate this thesis. She has only recently joined my life but has made me happier than I

could ever imagine, in a way like all of these difficult years never happened. I am grateful to

her for the rest of my life and looking forward to a future full of love with her.

iv

TABLE OF CONTENTS

DEDICATION ii

ACKNOWLEDGEMENTS iii

LIST OF FIGURES viii

LIST OF TABLES xi

ABSTRACT xii

CHAPTER

I. Introduction . 1

1.1 Killer Microseconds . 2
1.2 µs-Scale Tail Latency . 3
1.3 Partial Service-Level Objectives 4
1.4 Mixed-Criticality Microservices 5

II. Duplexity: Enhancing Server Efficiency in the Face of
Killer Microseconds . 7

2.1 Introduction . 7
2.2 Motivation and Background . 11

2.2.1 Killer Microseconds 11
2.2.2 Simultaneous Multithreading 13

2.3 Duplexity . 16
2.3.1 Lender-cores . 18
2.3.2 Master-cores . 20
2.3.3 Summary . 24

2.4 Discussion . 25
2.5 Evaluation Methodology . 27
2.6 Efficiency Results . 31

2.6.1 Core Utilization . 31

v

2.6.2 Performance Density & Energy Efficiency 33
2.7 Performance & QoS Results . 35
2.8 Case Study: Interconnect Utilization Analysis 36
2.9 Related Work . 37
2.10 Conclusion . 40

III. The Queuing-First Approach for Tail Management of
Interactive Microservices . 41

3.1 Introduction . 41
3.2 Background and Methodology 44
3.3 The Queuing-First Approach . 46

3.3.1 Server Pooling . 48
3.3.2 Common-Case Service Acceleration 52
3.3.3 Discussion . 54

3.4 Conclusion . 56

IV. Q-Zilla: A Scheduling Framework and Core Microarchitecture for
Tail-Tolerant Microservices . 57

4.1 Introduction . 57
4.2 Background and Motivation . 60

4.2.1 Queuing Organizations 60
4.2.2 SITA Scheduling . 62

4.3 Express-Lane SMT . 63
4.4 Server-Queue Decoupled SITA 65

4.4.1 Adding Preemption and Ganging to SITA 65
4.4.2 Server-Queue Decoupling 66
4.4.3 Interruptible SQD-SITA 72

4.5 Core-Zilla Microarchitecture . 75
4.5.1 Hierarchical Scheduling 75
4.5.2 Automatic Load Adaptation 78

4.6 Discussion . 80
4.7 Evaluation Methodology . 82
4.8 Results . 84

4.8.1 SQD-SITA performance analysis 84
4.8.2 CoreZilla performance analysis 86
4.8.3 Impact of preemptions in ISQD-SITA 87

4.9 Related Work . 88
4.10 Conclusion . 91

V. Parslo: A Gradient Descent-based Approach for Partial SLO Alloca-
tion in Virtualized Cloud Microservices 92

5.1 Introduction . 92

vi

5.2 Background and Motivation . 94
5.2.1 SLOs and Auto-Scalers 94
5.2.2 Latency SLOs for Mircoservices 96
5.2.3 Optimal Partial SLO Allocation 97

5.3 Parslo: SLO Allocation . 100
5.3.1 Microservice Dependencies 103
5.3.2 Parallel Indexing and Sharding 104
5.3.3 Branching Paths . 107

5.4 Parslo: Calibration . 109
5.4.1 Offline Tail Estimation Model 111

5.5 Evaluation . 113
5.5.1 Chains of Microservices 113
5.5.2 DAGs of Microservices 115

5.6 Conclusion . 117

VI. µSteal: Preemptive Work and Resource Stealing for Mixed-Criticality
Microservices . 118

6.1 Introduction . 118
6.2 Background and Motivation . 120

6.2.1 A case for mixed-criticality microservices 120
6.2.2 Sharing instances . 122
6.2.3 Scheduling within an instance 124

6.3 The µSteal Framework . 126
6.3.1 Stealing-enabled scheduler 127
6.3.2 Tuning reservations . 129

6.4 Reservation Allocation During Load Spikes 131
6.5 Implementation and Methodology 135
6.6 Evaluation results . 137

6.6.1 Symmetric traffic . 137
6.6.2 Asymmetric traffic . 139
6.6.3 Load spikes . 140

6.7 Related Work . 143
6.8 Conclusion . 145

VII. Conclusion . 146

BIBLIOGRAPHY 148

vii

LIST OF FIGURES

Figure

2.1 (a) Effect of µs-scale stalls on a closed-loop system, (b) Cumulative
distribution of idle periods across various loads and service rates in an
M/G/1 server, and (c) Throughput when varying the number of SMT
threads for the FLANN workload on a 4-wide OoO core. 11

2.2 (a) Throughput of multi-threaded SPEC workload mixes for varying In-
O/OoO SMT threads on a 4-wide OoO core. (b) Probability of having at
least 8 ready threads under varying thread counts and stall rates. 19

2.3 Lender-core: 8-way InO Hierarchical SMT (HSMT). 20
2.4 (a) A naive master-core design where stateful micro-architectural com-

ponents are replicated across modes, (b) A Duplexity dyad composed of
a master-core and a lender-core, and (c) Layout of a Duplexity server
processor chip. 22

2.5 (a) Core utilization, (b) Normalized performance density, (c) Normalized
energy consumption, (d) Normalized 99% tail latency, (e) Normalized
iso-throughput 99% tail latency (f) Normalized system throughput (STP)
for batch threads. 32

2.6 Network BW (IOPS) utilization (%) per dyad. 37
3.1 (a) Normalized service- and sojourn-time 99th percentile tail in an M/M/1

queue, (b) normalized service- and sojourn-time 99th percentile tail in
an M/G/1 queue, (c) average % wait time in sojourn-time tail requests,
and (d) % of sojourn-time tail requests that are also in the service-time
tail. The M/G/1 queue has an exponential service time distribution but
incorporates 100× hiccups that occur in 0.1% of the requests. 47

3.2 Scale-out vs. scale-up queuing organizations. 49
3.3 Normalized service-time (light bars) and sojourn time (dark bars) tails of

an M/G/1 queue under different scenarios. (a) 70% load, 100× hiccups
affecting 0.1% of requests, (b) 70% load, 10× hiccups affecting 1% of
requests, and (c) 30% load, 100× hiccups affecting 0.1% of requests. . . . 50

3.4 Normalized sojourn time tail latency in an M/G/1 queue (100× hiccups
in 0.1% of requests) with various degrees of server pooling and CCSA. . . 53

4.1 Normalized 99th percentile tail latency of different queuing organizations
(16 dual-threaded cores). 61

viii

4.2 (a) Size-Interval Task Assignment (SITA); (b) SITA with incremental pre-
emption (Preemptive-SITA); and (c) SITA with Server Ganging (Ganged-
SITA). α and β represent cutoff points. L refers to task lengths. 62

4.3 A two-way Express-Lane SMT (ESMT) core. 63
4.4 (Step 1) The initial configuration of an SQD-SITA system with three lanes

and three servers, which are all initially allocated to lane 0, and (Step
2)/(Step 3)/(Step 4) when the first/second/third task reaches the first cutoff
point. 69

4.5 (Step 1) A valid configuration where each lane has at least one task and
is allocated a server; (Step 2a) S0 follows the SQD-SITA procedure and
joins lane 1 after finishing its task at lane 2; (Step 2b) S0 is allocated to
lane 0 instead of lane 1 to prioritize short tasks; and (Step 3b) either lane 1
or lane 2 starves due to shortage of servers, resulted by the lower-bound
violation in Step 2b. 71

4.6 A 4-way CoreZilla with three context queues. 77
4.7 Normalized 99th percentile latency at different loads for (a) Word Stem-

ming and (b) McRouter. 78
4.8 Normalized 99th percentile latency under various organizations for (a) 2,

(b) 4, and (c) 8 servers. 85
4.9 Normalized 99th percentile latency of CoreZilla and alternatives for (a) 2,

(b) 4, and (c) 8 hardware threads. 86
4.10 Average number of preemptions per request for different scheduling poli-

cies in various microservices. 88
5.1 The microservice DAG for a social network and a media service system

from [59]. 94
5.2 High-level operations of an auto-scaling framework. 95
5.3 (a) load-latency profile of a microservice, known as the “hockey-stick”

graph (λ : an arbitrary arrival rate; R: the response time corresponding to
λ ; α : zero-load latency; µ : maximum load; S: latency SLO; ρ : maximum
utilization without violating the SLO. (b) two different valid hockey-stick
graphs, based on an M/M/1 (red) and and M/G/1 queuing model with a
heavy-tailed service-time distribution (blue). (c) an invalid hockey-stick
graph. 96

5.4 (a) a chain of microservices, (b) dependencies across microservices, (c)
parallel indexing and sharding, (d) branching paths. 101

5.5 (a) marginal increase of Partial SLOs with Parslo. Final values match
the optimal partial SLOs found by exhaustive search. (b) incremental
reduction of total costs shown in linear, and (c) log scale. 101

5.6 (a) PDF and (b) CDF resulting from the sharding transformation on the
latency distribution of microservice exhibiting a 100µs mean latency with
an exponential latency distribution, and (c) the transformed hockey-stick
graph of a microservice with an M/M/1 queueing model. 106

5.7 (a) an arbitrary DAG of microservices, (b) converting the DAG into an
NFJ DAG; initial SLO allocations denoted on top of each node. 108

5.8 Parslo’s (a) online and (b) offline SLO budget calibration framework. . . 109

ix

5.9 Combining latency distributions of two chained microservices using con-
volution in Parslo’s offline tail estimation model. 112

5.10 Relative deployment costs of chains of two microservices with different
instance sizes and costs ahcieved by Parslo, compared to GrandSLAm
when SLOs are defind based on the average and the 99th percentile tail
latency for SLO of (a) 10× and (b) 3× the sum of zero-load latencies. . . 114

5.11 Relative deployment costs of microservice DAGs achieved by Parslo,
compared to the DAG-aware modified variant of GrandSLAm when SLOs
are defind based on the average and the 99th percentile tail latency when
SLO is (a) 3× and (b) 10×the sum of the zero-load latencies on the critical
path. 116

6.1 Speech recognition as a shared mixed-criticality microservice. 121
6.2 Maximum load supported by a microservice instance under different

latency SLOs. 122
6.3 An illustrative example showing the resource saving opportunity from

sharing instances across different deployments of a microservice with
different latency SLOs. 123

6.4 (a) A baseline mixed-criticality microservice deployment with multiple
request queues belonging to different classes shared across all cores, (b)
partitioning the cores across request classes, (c) partitioning augmented
by work/resource stealing, (d) preempting the youngest request from the
stealing class as performed by the µSteal scheduler. Note that µSteal
allocates a core reservation “count” to each class, rather than a fixed set of
cores, as shown in the figure. 125

6.5 Maximum load supported by each class under different reservation config-
urations, estimated by µSteal’s analytical reservation tuning tool. 135

6.6 Normalized total number of instances for for (a) speech recognition and
(b) image search microservices for deploying separate instances as well
as sharing the instances across deployments with different scheduling
policies. The arrival rates for both classes are equal and the latency SLOs
are denoted in (6T, 6T) format, wherein 6T means that the 99th percentile
tail latency target for the SLO is equal to 6× mean service time. 137

6.7 Normalized total number of instances for for (a) speech recognition and
(b) image search microservices for deploying separate instances as well
as sharing the instances across deployments with different scheduling
policies. The arrival rates for both classes are asymmetric wherein the first
request class accounts for 75% and the second request class accounts for
25% of the traffic. Latency SLOs are denoted in (20T, 6T) for the 99th

percentile tail latency target of the (first, second) request class. 139
6.8 (a) Normalized arrival rate and (b) normalized tail latency, when B’s load

doubles gradually. (c) Normalized arrival rate, and (d)/(e) normalized tail
latency, when B experiences a sudden 2× load spike (d) without and (e)
with the analytical reservation tuning mechanism of µSteal. 141

6.9 (a) Normalized arrival rate and (b) normalized tail latency (to the SLO
latency target) for a scenario where B’s load is tripled. 143

x

LIST OF TABLES

Table

2.1 Microarchitecture details of Duplexity 31
2.2 Area and clock frequencies of different design configurations 31
4.1 Microarchitecture details of ESMT . 83

xi

ABSTRACT

Modern internet services are shifting away from single-binary, monolithic services into

numerous loosely-coupled microservices that interact via Remote Procedure Calls (RPCs),

to improve programmability, reliability, manageability, and scalability of cloud services.

Computer system designers are faced with many new challenges with microservice-based

architectures, as individual RPCs/tasks are only a few microseconds in most microservices.

In this dissertation, I seek to address the most notable challenges that arise due to the

dissimilarities of the modern microservice-based and classic monolithic cloud services, and

design novel server architectures and runtime systems that enable efficient execution of

µs-scale microservices on modern hardware.

In the first part of my dissertation, I seek to address the problem of Killer Microsec-

onds, which refers to µs-scale “holes” in CPU schedules caused by stalls to access fast

I/O devices or brief idle times between requests in high throughput µs-scale microser-

vices. Whereas modern computing platforms can efficiently hide ns-scale and ms-scale

stalls through micro-architectural techniques and OS context switching, they lack efficient

support to hide the latency of µs-scale stalls. In chapter II, I propose Duplexity, a hetero-

geneous server architecture that employs aggressive multithreading to hide the latency of

killer microseconds, without sacrificing the Quality-of-Service (QoS) of latency-sensitive

microservices. Duplexity is able to achieve 1.9× higher core utilization and 2.7× lower

iso-throughput 99th-percentile tail latency over an SMT-based server design, on average.

In chapters III-IV, I comprehensively investigate the problem of tail latency in the context

of microservices and address multiple aspects of it. First, in chapter III, I characterize

the tail latency behavior of microservices and provide general guidelines for optimizing

xii

computer systems from a queuing perspective to minimize tail latency. Queuing is a major

contributor to end-to-end tail latency, wherein nominal tasks are enqueued behind rare,

long ones, due to Head-of-Line (HoL) blocking. Next, in chapter IV, I introduce Q-Zilla,

a scheduling framework to tackle tail latency from a queuing perspective, and CoreZilla,

a microarchitectural instantiation of the framework. Q-Zilla is composed of the Server-

Queue Decoupled Size-Interval Task Assignment (SQD-SITA) scheduling algorithm and

the Express-lane Simultaneous Multithreading (ESMT) microarchitecture, which together

seek to address HoL blocking by providing an “express-lane” for short tasks, protecting

them from queuing behind rare, long ones. By combining the ESMT microarchitecture

and the SQD-SITA scheduling algorithm, CoreZilla is able to improves tail latency over a

conventional SMT core with 2, 4, and 8 contexts by 2.25×, 3.23×, and 4.38×, on average,

respectively, and outperform a theoretical 32-core scale-up organization by 12%, on average,

with 8 contexts.

Finally, in chapters V-VI, I investigate the tail latency problem of microservices from

a cluster, rather than server-level, perspective. Whereas Service Level Objectives (SLOs)

define end-to-end latency targets for the entire service to ensure user satisfaction, with

microservice-based applications, it is unclear how to scale individual microservices when

end-to-end SLOs are violated or underutilized. I introduce Parslo as an analytical framework

for partial SLO allocation in virtualized cloud microservices. Parslo takes a microservice

graph as an input and employs a Gradient Descent-based approach to allocate “partial

SLOs” to different microservice nodes, enabling independent auto-scaling of individual

microservices. Parslo achieves the optimal solution, minimizing the total cost for the entire

service deployment, and is applicable to general microservice graphs.

In chapter VI, I study microservices that are shared across multiple end-to-end services,

and must satisfy varying latency requirements for different request classes. I argue that

sharing microservice instances across multiple services can reduce significantly the number

of instances, especially for deployments with highly asymmetric latency constraints. I

xiii

propose a request scheduling mechanism, called µSteal, which leverages preemptive work

and resource stealing to schedule the arriving requests from multiple request classes to

cores within an instance, seeking to maximize request throughput within an instance while

ensuring all request classes meet their latency target. µSteal reduces the total number of

instances required for several shared microservice deployments by 1.29× as compared to

deploying multiple, segregated instance pools across request classes.

xiv

CHAPTER I

Introduction

Modern internet services are shifting away from single-binary, monolithic services into

various loosely-coupled microservices, to enable rapid development, release, and frequent

updates of cloud software [58, 59, 185, 183]. Microservice–based services are implemented

as a Directed Acyclic Graph (DAG) composed of tens to hundreds of individual microser-

vices, wherein each microservice node of the DAG is independently deployed and scaled.

Microservice architectures have been adopted by major cloud-based companies, such as

Facebook, Netflix, and Linkedin, as they significantly improve programmability, reliability,

manageability, and scalability. For example, a Facebook news feed query may flow through

a chain of microservices, such as Sigma (a spam filter), McRouter (a protocol router), Tao (a

distributed social graph data store), and MyRocks (a user database) [183]. Computer system

designers are faced with many new challenges with microservice-based architectures, as

individual RPCs/tasks are only a few microseconds in most microservices [138, 9], exposing

the end-to-end performance to many system-level overheads that used to be insignificant in

conventional monlithic cloud architectures.

In this dissertation, I seek to address the most notable challenges that arise due to the

dissimilarities of the modern microservice-based and classic monolithic cloud services, and

design novel server architectures and runtime systems that enable efficient execution of

µs-scale microservices on modern hardware. I particularly focus on µs-scale microservices

1

in Chapters III-IV and seek to improve their performance and efficiency. With µs-scale

execution times of such microservice tasks, the I/O software stack’s latency becomes com-

parable to computation time and must be aggressively optimized through hardware/software

solutions. Furthermore, managing queuing delays and tail latency in case of short µs-scale

tasks is much harder than classic ms-scale monolithic applications due to the overheads

of task scheduling mechanisms—such as threading, synchronization, preemption, work

steering, etc. In chapters V-VI, I investigate the tail latency problem of microservices from

a cluster, rather than server-level, perspective. I first investigate how “partial” Service-Level

Objectives (SLOs) or latency requirements must be imposed on individual microservices—

given an end-to-end latency SLO—so each microservice may be scaled independently of

the others. Finally, I study mixed-criticality microservices, which need to satisfy varying

latency SLOs for multiple request classes originated from different end-to-end services, and

investigate how requests can be scheduled in such environments to maximize throughput

and efficiency while ensuring all request classes meet their SLO.

1.1 Killer Microseconds

We are entering an era of “killer microseconds” in data center applications [9]. Killer

microseconds refer to µs-scale “holes” in CPU schedules caused by stalls to access fast I/O

devices or brief idle times between requests in high throughput microservices. Whereas

modern computing platforms can efficiently hide ns-scale and ms-scale stalls through micro-

architectural techniques and OS context switching, they lack efficient support to hide the

latency of µs-scale stalls. Simultaneous Multithreading (SMT) is an efficient way to improve

core utilization and increase server performance density. Unfortunately, scaling SMT to

provision enough threads to hide frequent µs-scale stalls is prohibitive and SMT co-location

can often drastically increase the tail latency of cloud microservices.

In chapter II, I propose Duplexity [138], a heterogeneous server architecture that employs

aggressive multithreading to hide the latency of killer microseconds, without sacrificing

2

the Quality-of-Service (QoS) of latency-sensitive microservices. Duplexity provisions

dyads (pairs) of two kinds of cores: master-cores, which each primarily executes a sin-

gle latency-critical master-thread, and lender-cores, which multiplex latency-insensitive

throughput threads. When the master-thread stalls, the master-core borrows filler-threads

from the lender-core, filling µs-scale utilization holes of the microservice. I propose critical

mechanisms, including separate memory paths for the master-thread and filler-threads, to

enable master-cores to borrow filler-threads while protecting master-threads’ state from

disruption. Duplexity facilitates fast master-thread restart when stalls resolve and minimizes

the microservice’s QoS violation. The evaluation results demonstrate that Duplexity is able

to achieve 1.9× higher core utilization and 2.7× lower iso-throughput 99th-percentile tail

latency over an SMT-based server design, on average.

1.2 µs-Scale Tail Latency

Managing tail latency is a primary challenge in designing distributed microservices.

Queuing is a major contributor to end-to-end tail latency, wherein nominal tasks are enqueued

behind rare, long ones, due to Head-of-Line (HoL) blocking. In chapter III, I investigate the

tail latency problem in microservices and provide general guidelines for optimizing computer

systems from a queueuing perspective to minimize tail latency [139]. In particular, I propose

Server Pooling and Common-Case Service Acceleration (CCSA) as two key directions for

minimizing the queuing delays and tail latency in microservices. Server Pooling is the basis

of the framework introduced in the following chapter.

In chapter IV, I introduce Q-Zilla [141], a scheduling framework to tackle tail latency

from a queuing perspective, and CoreZilla, a microarchitectural instantiation of the frame-

work. On the algorithmic front, I first propose Server-Queue Decoupled Size-Interval Task

Assignment (SQD-SITA), an efficient scheduling algorithm to minimize tail latency for high-

disparity service distributions. SQD-SITA is inspired by an earlier algorithm, SITA, which

explicitly seeks to address HoL blocking by providing an “express-lane” for short tasks,

3

protecting them from queuing behind rare, long ones. But, SITA requires prior knowledge of

task lengths to steer them into their corresponding lane, which is impractical. Furthermore,

SITA may underperform an M/G/k system when some lanes become underutilized. In

contrast, SQD-SITA uses incremental preemption to avoid the need for a priori task-size

information, and dynamically reallocates servers to lanes to increase server utilization with

no performance penalty. Next, I introduce Interruptible SQD-SITA, which further improves

tail latency at the cost of additional preemptions. Finally, I describe and evaluate CoreZilla,

wherein a multi-threaded core efficiently implements ISQD-SITA in a software-transparent

manner at minimal cost. CoreZilla is based on my earlier microarchitectural proposal,

Express-lane Simultaneous Multithreading (ESMT) [140], which provides multiple physical

execution lanes in an SMT core for different classes of task sizes, to run on virtual hardware

contexts in an isolated manner, to prevent HoL blocking and minimize tail latency. By com-

bining the ESMT microarchitecture and the ISQD-SITA scheduling algorithm, CoreZilla

is able to improves tail latency over a conventional SMT core with 2, 4, and 8 contexts by

2.25×, 3.23×, and 4.38×, on average, respectively, and outperform a theoretical 32-core

scale-up organization by 12%, on average, with 8 contexts.

1.3 Partial Service-Level Objectives

Service Level Objectives (SLOs) impose bounds on the average or tail of the end-to-end

latency distribution in a cloud service, to ensure an acceptable level of service quality and

user satisfaction. Auto-scaling frameworks, such as Google’s Autopilot [171], continuously

monitor the response time of the incoming requests to a service and upsize or downsize

the service by increasing or decreasing the number of instances (VMs or containers) in the

virtual cluster to meet the latency SLO at minimal cost [164]. However, with microservice-

based applications, it is unclear which node in the microservice DAG needs to be scaled

when end-to-end latency SLOs are violated or under-utilized.

In Chapter V, I propose Parslo—a Gradient Descent-based approach to allocate partial

4

SLOs to different nodes of a microservice DAG under an end-to-end latency SLO. Parslo

isolates different microservice nodes within a DAG from one another and enables each

microservice to be scaled independently through its own auto-scaling framework. At a high

level, the Parslo algorithm breaks the end-to-end SLO budget into small “SLO units”, and

iteratively allocates one SLO unit to the best candidate microservice to achieve the highest

total cost savings until the entire end-to-end SLO budget is exhausted. Parslo achieves

the optimal solution, minimizing the total cost for the entire service deployment, and is

applicable to general microservice DAGs, which may include microservice dependencies,

branching path, as well as parallel indexing and sharding. My evaluation results demonstrate

that Parslo reduces service deployment costs by more than 6× in microservice-based

applications, compared to a state-of-the-art SLO allocation scheme.

1.4 Mixed-Criticality Microservices

A key property of microservice-based architectures is that common microservices may

be shared by multiple end-to-end cloud services. As an example, a speech-recognition

microservice may serve as one of the first nodes in the microservice graphs of a variety of

end-to-end services. However, given the dissimilarities in the orchestration and number

of nodes in the microservice graphs across services, as well as varying end-to-end latency

constraints, shared microservices may need to operate under differing latency constraints

for each end-to-end service. As a result, in existing systems, most providers either deploy

multiple instance pools for each latency constraint, or require all requests to needlessly meet

the most stringent constraint.

In Chapter VI, I make a case that sharing microservice instances across multiple services

can reduce significantly the number of instances, especially for deployments with highly

asymmetric latency constraints. That said, I show that instance sharing is only beneficial

if the arriving requests from each deployment class are scheduled intelligently across the

execution resources within an instance, to meet their varying latency requirements. I propose

5

a request scheduling mechanism, called µSteal, which leverages preemptive work and

resource stealing to schedule the arriving requests to cores within an instance of a mixed-

criticality microservice. µSteal provisions “core reservations” for each request class based

on their latency requirements, but allows a class to steal cores from other classes if the cores

would otherwise remain idle. Nonetheless, when a class requires its full reservation, µSteal

preempts stolen cores, returning them to their reserved class. µSteal employs a runtime

feedback controller augmented by a queuing theory-based analytical model to tune core

reservations across classes, seeking to maximize the request throughput within each instance

without violating any class’s latency constraint. My evaluation results show that µSteal

reduces the total number of instances required for several shared microservice deployments

by 1.29× as compared to deploying multiple, segregated instance pools.

6

CHAPTER II

Duplexity: Enhancing Server Efficiency in the Face of

Killer Microseconds

2.1 Introduction

We are entering the “killer microsecond” era in data center applications [9]. Due to

advances in processor, memory, storage, and networking technologies, events that stall

execution increasingly fall in a microsecond-scale latency range. Accesses to emerging

storage-class memories [1, 33, 47, 136, 192, 157, 106, 62], rack-scale memory disaggrega-

tion [119, 46, 151, 65, 2], 100+ gigabit network communication [15], and accelerator/GPU

micro-offloads [127, 22, 137] are example program activities that incur microsecond delays.

Lower latencies make it possible for data center architects to decompose monolithic

applications into a collection of loosely-coupled microservices that interact over high-

speed I/O to improve isolation, scalability, and maintainability [58]. Many cloud-based

companies, including Amazon [188], Netflix [193], Gilt [216], LinkedIn [189], and Sound-

Cloud [159] have adopted microservice architectures. Example microservices include

content caching [56, 54], protocol routing [118, 150], key-value lookup [92, 142], query

rewriting [8], or other steps performed across various application tiers [186]. Mid-tier

microservices are particularly interesting objects of study since (1) they deal with both

incoming and outgoing requests, (2) they must manage fan-out to leaf nodes and wait for

7

the responses, and (3) their computation typically takes only a few microseconds, which is

often shorter than the delay waiting for leaves to respond [187]. However, as a consequence

of shorter service times and higher throughputs, idle periods between requests also shrink to

microsecond scales, even under moderate load.

Whereas contemporary computing systems are effectively equipped with mechanisms to

hide nanosecond- and millisecond-scale stalls, they lack efficient support for microsecond-

scale stalls [9]. Nanosecond-scale stalls are effectively hidden by microarchitectural mech-

anisms, such as Out-of-Order (OoO) execution and deep memory hierarchies, but these

mechanisms are insufficient to hide microsecond-scale stalls. Conversely, operating systems

use context switching to hide millisecond-scale latencies, such as when accessing disk.

However, context switch overheads (5-20µs [114, 195]) are within the same latency orders

as microsecond-scale stalls, so they are not a plausible latency-hiding technique for the

microsecond regime.

Total cost of ownership (TCO)-conscious data center operators try to maximize perfor-

mance per dollar by maximizing performance density and energy efficiency (throughput

per unit area/power) [124, 107, 10]. Cycles wasted on microsecond-scale stalls or idle

periods erode execution efficiency and increase TCO. User-facing workloads, such as web

search, have strict latency objectives and time-varying load [10], thereby imposing the same

characteristics to their underlying microservices. Nonetheless, data centers have myriad

latency-insensitive scale-out applications (e.g., offline graph analytics) that can be flexibly

scheduled to fill utilization holes during off-peak loads. Thus, a common way to improve

server utilization is to co-locate latency-critical and batch workloads, allowing them to share

resources [122, 39, 131, 213, 224].

Simultaneous multithreading (SMT) has been proposed to co-locate latency-critical

and batch threads on the same core so that the batch threads fill the utilization holes

caused by brief I/O stalls or inter-request idle periods [220, 215]. Already today, scale-out

workloads deployed in data centers exhibit low CPU utilization due to lack of memory

8

level parallelism and front-end inefficiencies, calling for more SMT threads even in the

absence of microsecond-scale stalls [55, 94]. As batch workloads also adopt mechanisms

like storage-class memory or rack-scale disaggregation, these workloads, too, will incur

such stalls. As a consequence, even more SMT threads must be added to ensure that, at any

time, there are enough unstalled threads to fill a core’s available execution bandwidth—the

two threads offered by Intel’s Hyper-Threading are not nearly enough.

Unfortunately, scaling SMT microarchitecture to support many more threads is pro-

hibitive, due to high logic complexity, wire delay, limited register file (RF) capacity, and

cache pressure/thrashing among threads. Moreover, as previous studies have shown [122,

215, 28], some SMT thread co-locations can have catastrophic impact on the tails of latency-

critical threads, especially at high loads, due to contention for shared resources. To avoid

compromising the tail latency of critical threads due to SMT interference, we instead de-

sign Duplexity, a server architecture that seeks directly to address the killer-microsecond

challenge—to fill in the microsecond-scale “holes” in threads’ execution schedules, which

arise due to idleness and stalls, with useful execution, without impacting the tail latency of

latency-critical threads.

Duplexity is a heterogeneous server architecture that comprises two kinds of cores:

master-cores—optimized for latency-sensitive microservices, and lender-cores—optimized

for latency-insensitive throughput applications, which are arranged in pairs called dyads. Du-

plexity addresses microsecond-scale stalls by allowing master-cores to borrow threads from

the lender-core in their dyad. Master-cores build on the concept of morphable cores [101] to

switch between a single-threaded dynamically scheduled execution mode (when running the

latency-critical master-thread) and a multi-threaded mode with in-order issue per thread (to

fill in idle/stall periods with filler-threads). A key novel aspect of Duplexity is protection

of the master-thread’s micro-architectural state to maintain its QoS—filler-threads do not

disrupt the caches, branch predictor, and other state held by the master-thread. When

the master-thread becomes ready, Duplexity rapidly evicts filler-threads and grants the

9

master-thread exclusive use of the master-core.

Lender-cores employ a Hierarchical Simultaneous Multithreading (HSMT) architecture

to maintain a backlog of virtual contexts that time-multiplex the lender-core’s physical hard-

ware contexts, and from which the master-core may borrow. We develop new mechanisms to

support rapid transfer of virtual contexts into and out of the master-core. Overall, we seek to

maximize performance density and energy efficiency (by increasing filler-thread throughput)

while giving the master-thread nearly the performance it would enjoy running alone. Such

a cooperative composition of cores yields Duplexity, a unique server architecture that is

well-suited to the killer-microsecond era.

Our evaluation demonstrates that Duplexity can improve core utilization by 4.8× and

1.9×, and iso-throughput 99th-percentile tail latency by 1.8× and 2.7×, on average, over

a baseline OoO and an SMT-based server architecture, respectively. Duplexity is the first

server architecture that aims to improve server utilization in the presence of microsecond-

scale stalls and idle periods, without sacrificing QoS and tail latency of microservices. In

summary, we make the following contributions:

• We quantitatively explore the killer-microsecond challenge as it relates to the load of

latency-sensitive microservices and show that microsecond-scale stalls arise due to

both fast communication and brief idle periods.

• We show that conventional SMT is not a satisfactory solution as it may drastically

harm tail latencies of microservices and cannot be scaled to hide microsecond-scale

stalls.

• We propose Duplexity, a server architecture comprising highly multi-threaded and

morphable cores that can borrow threads to recover cycles lost to microsecond-scale

stalls and idle periods while providing isolation mechanisms to preserve QoS of

latency-critical microservices.

• We compare Duplexity to other server designs. Existing alternatives either compro-

10

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40

P
ro

b
ab

ili
ty

Idle period (us)

200k QPS-30% Load

200k QPS-50% Load

200k QPS-70% Load

1M QPS-30% Load

1M QPS-50% Load

1M QPS-70% Load

(a) (b) (c)

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N
o

rm
al

iz
e

d
 t

h
ro

u
gh

p
u

t
(I

P
C

)

Number of SMT threads

FLANN_NO_STALL (Baseline)

FLANN_9_1

FLANN_1_1

FLANN_10_10

Figure 2.1: (a) Effect of µs-scale stalls on a closed-loop system, (b) Cumulative distribution of idle
periods across various loads and service rates in an M/G/1 server, and (c) Throughput when varying
the number of SMT threads for the FLANN workload on a 4-wide OoO core.

mise tail latency of microservices or fail to fully recover the cycles lost to microsecond-

scale stalls.

2.2 Motivation and Background

We first motivate the problem space Duplexity seeks to address.

2.2.1 Killer Microseconds

With the advent of low-latency I/O in modern data centers, applications increasingly

access data with single-digit microsecond latencies. For example, with state-of-the-art data

center networking, a network round-trip at 40 Gbps can take only 2-4 µs [9]. At such

latencies, RDMA-based disaggregated-memory systems [119, 46, 2, 151, 65] are expected

to provide µs-scale remote memory accesses. Similarly, emerging memory technologies,

such as 3D XPoint, have comparable access latencies [83]. Intel Optane SSD is an example

low-latency storage device that builds upon 3D XPoint and enables 7-15 µs random block

access [69]. At the higher-end of the microsecond spectrum, raw Flash can be accessed

within tens of microseconds [191]. Fine-grain GPU/accelerator micro-offloads have similar

latencies [127, 22, 137]. As a consequence, µs-scale stalls are quickly becoming a primary

latency bottleneck, particularly as microservices replace monolithic data center applications.

Modern microarchitectures effectively hide ns-scale stalls caused by events like cache

misses using instruction level parallelism and deep memory hierarchies. Modern operating

11

systems effectively hide ms-scale stalls caused by events like disk I/O accesses through

context switches. However, existing mechanisms do not effectively hide µs-scale stalls

or idle periods. Single-threaded deep speculation mechanisms like branch prediction and

runahead execution [146] are not accurate enough to fill more than 10s of nanoseconds

with future instructions from a stalled thread, and are inapplicable to fill idle periods.

Similarly, prefetching techniques are at best able to hide the latency of cachable memory

accesses (rather than general µs-scale I/O) and are not applicable to idle periods [30, 5, 4,

205, 181, 180]. Context switches themselves incur µs-scale overheads [114, 195], and are

too expensive to amortize µs-scale stalls. Moreover, modern low-latency communication

mechanisms rely on OS bypass interfaces (precisely to avoid latency of deep OS software

stacks and their attendant caching inefficiencies) and hence are OS-transparent [90, 12, 151,

104, 162, 170, 103]. Alas, current warehouse-scale computers resort to spinning to maintain

low latency despite µs-scale stalls, wasting these CPU cycles. It is for this reason that

Google recently coined the term killer microseconds [9].

Killer microseconds due to stalls. We reason quantitatively about µs-scale stalls using

a simple model. We consider a single-job closed-loop model representing a period of

computation leading to a µs-scale stall event, such as a disaggregated memory access. The

modeled system alternates between periods of computation and stalls. During stalls, CPU

time is wasted, reducing utilization.

Figure 2.1(a) illustrates the utilization loss as we vary the length of stalls and the

computation time between them. When stalls are short (left edge of front axis), utilization

converges to 100%. So, for example, a DRAM-scale stall every few microseconds sacrifices

an insignificant fraction of utilization. Correspondingly, when the computation interval

between stalls is large (far edge of right axis), stalls reduce utilization only gradually.

However, when stalls and computation periods are of a similar order, utilization drops

precipitously, rapidly dropping towards 0% if stalls exceed the average computation interval

(near corner). This model implies that, as the distance between µs-scale stalls shrinks, a

12

worrying fraction of CPU time may go to waste. Such compute-to-communication ratios are

already being seen in mid-tier microservices that accept service-specific queries, fan them

out to leaf microservers that perform relevant computations on their respective data shards,

and then return the aggregated results [187].

Killer microseconds due to idleness. Utilization losses further mount due to idleness

for microservices operating in the microsecond regime, even at moderate offered loads. To

avoid long queuing delays, interactive services typically operate at 30-70% capacity [10].

Hence, idle periods are inherent. In ms-scale requests of monolithic services, idle periods

correspondingly occur at ms-scale (e.g., around 1ms for a web search leaf service with a

median service time around 4ms [133]). However, as faster I/O enables faster microservices,

idle period time scales also shift.

Most cloud applications exhibit high service time variability and heavy-tailed service

distributions [134, 71]. However, due to the memory-less property of Poisson request

arrivals, idle periods of all M/G/1 queuing systems follow an exponential distribution,

independent of the service distribution [72]; idle period duration is only a function of service

rate and load. Figure 2.1(b) depicts the cumulative distribution of idle-period durations for

M/G/1 microservices serving 200K and 1M Queries-per-Second (QPS) at offered loads of

30%, 50%, and 70% of capacity. As can be seen in the Figure, individual idle periods last

only a few microseconds. For example, 200K and 1M QPS services at 50% load average

idle periods of only 10µs and 2µs, respectively, despite being idle half the time. Existing

mechanisms cannot exploit such short idle periods (indeed, they are too short even for

hardware power management [132, 133, 121]).

2.2.2 Simultaneous Multithreading

Software/OS-based multi-threading is the typical approach for hiding millisecond-scale

I/O stalls and improving resource utilization when a thread is blocked or idle for lack of

work. However, software multi-threading is too coarse-grained to react at the microsec-

13

ond timescales of microservices. Simultaneous Multithreading (SMT), wherein each core

multiplexes instructions from multiple hardware contexts, can increase instruction through-

put and improve resource utilization. Several prior works use SMT to improve server

utilization [220, 215] and SMT is widely reported to be enabled in modern data centers [94].

Not enough SMT threads. Unfortunately, the number of SMT threads supported by

contemporary processors (typically, 2-4), is far too few to effectively hide frequent µs-

scale stalls. To demonstrate that such stalls call for far more SMT threads, we consider a

microservice benchmark based on FLANN [143], an open-source library for performing

fast approximate nearest neighbor searches in high-dimensional spaces. FLANN uses

Locality Sensitive Hashing (LSH) to perform k-nearest neighbor identification—a critical

microservice employed in content-based similarity search. After an LSH lookup, the

benchmark issues accesses to remote memory to retrieve remote objects indicated by the

lookup. We modify the gem5 [14] simulator to intercept the remote accesses issued by the

FLANN microservice and stall execution. The modified simulator draws stall durations

from an exponential distribution; we vary the mean stall duration as a parameter in our

experiments.

The computation FLANN performs between remote accesses varies with the number of

LSH tables, buckets, and probes used in FLANN’s lookup operation. We use these tuning

knobs to adjust the interval between remote accesses. By adjusting the mean of the stall

duration distribution and the interval between stalls, we model various killer microsecond

scenarios. We consider four compute-to-stall ratios (9:1, 10:10, and 1:1; all in microseconds;

denoted as FLANN-X-Y) and a configuration that does not stall (baseline). Note that while

single–cache-line (64B) RDMA accesses take roughly 1µs [15], since we investigate the

impact of stall durations on performance, we assume stalls to take 10µs and zero-latency

in two of our workloads. Since we seek to analyze throughput (rather than latency, QoS,

or queuing delays), in this experiment, we model a saturated queue of requests (i.e., 100%

load; no idle period between requests) to only stall for remote accesses.

14

We measure normalized throughput as a function of the number of SMT threads, from

one to 16. Figure 2.1(c) illustrates the resulting throughput on a 4-wide OoO superscalar

core (we scale only the number of threads; we do not scale microarchitecture resources

except provisioning additional architectural registers). The purpose of this experiment is to

identify how many SMT threads are needed to saturate the 4-way OoO core. In the baseline

with no stalls, 8 threads saturate the pipeline; more threads degrade performance due to

interference. However, the workload variants with µs-scale stalls require more threads

before performance gains level off. For example, the FLANN-9-1 workload (representing

a 1 µs stall every 10 µs, for a 90% effective utilization) peaks at 11 threads, while the

FLANN-1-1 (50% effective utilization) peaks at 15.

More threads increase interference and hurt QoS. Co-running latency sensitive

threads with others can severely degrade tail latency and violate QoS requirements due to

interference and cache pollution effects, even with only two SMT threads [28, 215, 122].

Nevertheless, we show that simply adding more threads is not a satisfying solution to fill

µs-scale stalls, even if the only objective is to maximize instruction throughput. Note that

in Figure 2.1(c) all three workloads with µs-scale stalls underperform the baseline. The

frequent stalls in the these workloads result in more cache misses, as threads evict one

another’s data as their executions interleave. This effect is most apparent in the gap between

the FLANN-10-10 and FLANN-1-1 workload: threads in both workloads are stalled 50%

of the time, and yet the 10× more frequent stalls of FLANN-1-1 lead to much lower total

throughput. Further note that the peak performance of FLANN-1-1 (at 15 threads) lags

the peak performance of the baseline (achieved at 8 threads) by 16%; adding more threads

cannot recover the throughput lost in FLANN-1-1’s µs-scale stalls.

Unfortunately, there are daunting impediments to scaling SMT threads per core. First,

more threads add L1 cache pressure. Cache capacity cannot increase without affecting cache

hit time, which penalizes single-thread performance. Second, adding threads complicates

fetch/dispatch/issue logic, prolonging its critical path and lowering clock frequency. Finally,

15

adding threads requires a larger register file to accommodate at least their architectural state.

Again, scaling up this structure inevitably impacts wire delay and clock frequency—an

effect we neglect in Figure 2.1(c) that would further exacerbate throughput loss. As a result,

scaling SMT cores beyond 8 threads is ineffective for hiding µs-scale stalls, even when

seeking only to maximize throughput.

2.3 Duplexity

We next present Duplexity—a server architecture that aims to fill in cycles lost to µs-

scale stalls or idle periods while preserving tail latency and QoS. Duplexity comprises two

kinds of cores: master-cores, optimized for latency-sensitive microservices and lender-

cores, optimized for latency-insensitive scale-out (batch) applications. Duplexity addresses

the killer microsecond challenge by borrowing “filler” threads from the lender-cores and

executing them on the master-cores during the µs-scale “holes” arising from I/O stalls and

idleness. To facilitate borrowing threads, master-cores and lender-cores are arranged in

pairs, called ‘dyads’, with data paths that allow filler-threads running on the master-core to

remotely access caches located at the lender-core. Master-cores build upon concepts from

morphable cores [101], allowing them to morph between a single-threaded dynamically

scheduled execution mode to execute their latency-sensitive master-thread, and a multi-

threaded in-order execution mode to execute latency-insensitive filler-threads, borrowed

from the lender-core. Lender-cores employ a Hierarchical Simultaneous Multithreading

(HSMT) architecture, wherein they maintain a backlog of latency-insensitive threads that

time-multiplex hardware contexts, from which the master-core may borrow. We integrate

these concepts with efficient mechanisms to support rapid thread-context transfer into

and out of the master-core and to protect the single latency-critical master-thread from

interference by filler-threads. Our key objectives are (1) to fill in idle/stalled periods in the

master-core with useful work from filler-threads, and (2) to minimize disruption, especially

tail latency increases, of the master-thread.

16

There is a renewed interest in using simple, in-order cores for scale-out workloads [120,

86, 123]. However, simple cores incur a higher ratio of tail-to-average latency at large scales,

and small configuration or parameter changes can result in large tail latency swings, making

it difficult to achieve performance stability [28]. As such, latency-sensitive microservices

with strict QoS targets are still typically run on OoO cores with advanced memory systems

rather than a sea of scale-out-optimized simple cores [81, 40]. This dichotomy motivates

the two operating modes of master-cores and our approach of coupling heterogeneous cores

in dyads to facilitate thread borrowing.

When executing the master-thread, a master-core operates as an n-way OoO processor,

with all execution resources dedicated to maximizing single-thread performance. However,

whenever the master-thread becomes idle or incurs a µs-scale stall, the core’s “morphing”

feature is activated, which partitions the issue queue and register file and deactivates OoO

issue logic to instead support InO issue of multiple filler-threads. The master-core then loads

register state for these filler-threads from the lender-core’s scheduling backlog and begins

their execution. When the master-thread returns (stall resolves or new work arrives), it evicts

the filler-threads, using hardware mechanisms that evacuate their register state as fast as

possible. Minimizing performance disruption of the master-thread is challenging. In a key

departure from prior work, we ensure that filler-threads cannot disrupt the cache state of

the master-thread. We provision a path from the master-core’s memory stage and front-end

to the lender-core’s caches; filler-threads access the memory hierarchy of the lender-core.

Hence, when the master-thread returns, there is little evidence the filler-threads were ever

there.

We first describe the microarchitecture of the lender-cores, as the master-core operates

much like a lender-core when it operates in the multithreaded mode. We then explain

our main contribution, the master-core, and how its microarchitecture enables adaptation

between modes.

17

2.3.1 Lender-cores

The goal of lender-cores is two-fold: (1) support efficient multithreading for latency-

insensitive scale-out workloads that nonetheless incur µs-scale stalls, and (2) lend threads

to the master-core while it is stalling or idle. As we demonstrated in Section 2.2.2, the key

requirement to hide µs-scale stalls is to provision more threads from which the lender-core

can schedule. However, if too many threads are co-scheduled on the core, they will interfere

with each other and may hurt performance. Hence, we suggest a Hierarchical Simultaneous

Multithreading (HSMT) architecture with two levels of virtual/physical contexts, similar to

Balanced Multithreading [197] and two-level warp scheduling in GPUs [148, 173]. Lender-

core’s datapath resembles an SMT core that supports as many threads as physical contexts,

and has similar area costs and clock frequency, but, when a thread occupying a physical

context faces a µs-scale stall, its architectural state is swapped with a ready virtual context

to improve utilization and throughput.

By limiting the number of active threads, the lender-core prevents performance degra-

dation or diminishing returns (as observed in Figure 2.1(c)) due to interference of many

threads, yet it virtually enables sufficient threads to hide µs-scale stalls. We find 8 threads

as the sweet spot for the number of physical contexts for three main reasons: First, as we

showed in Section 2.2.2, the core’s throughput saturates around 6-8 threads and may even

drop beyond 8 threads in the absence of µs-scale stalls. Even with stalls, due to interference,

the core is not able to match the throughput it achieves without stalls if many threads are

co-scheduled. Second, as illustrated in Figure 2.2(a) and shown by prior work [101, 79, 178],

the gap between OoO and InO issue vanishes at ∼8 threads. Hence, we can employ an InO

datapath to reduce precise state and pipeline flush complexity and avoid area/energy costs

of OoO structures, especially since the lender-core targets only latency-insensitive threads.

Finally, while up to 8-thread SMT designs are commercially available [172], building a core

with more than 8 physical SMT contexts may be impractical due to logic/wire complexity

and register file constraints.

18

0

0.2

0.4

0.6

0.8

1

8 12 16 20 24 28

P
 (

re
ad

y
th

re
ad

s>
=

8
)

Total number of threads

10% stall

50% stall

0.5

1.5

2.5

3.5

1 3 5 7

Th
ro

u
gh

p
u

t
(I

P
C

)

Number of SMT threads

Out-of-Order

In-Order

(a) (b)

Figure 2.2: (a) Throughput of multi-threaded SPEC workload mixes for varying InO/OoO SMT
threads on a 4-wide OoO core. (b) Probability of having at least 8 ready threads under varying thread
counts and stall rates.

We develop a simple analytic model to determine how many virtual contexts are needed

to fill eight physical contexts as a function of the fraction of the virtual thread stall time.

The distribution of ready threads is then given by a Binomial k ∼ Binomial(n,1− p), where

k represents the number of ready threads, n the number of virtual contexts, and p the

probability a thread is stalled. We plot P(k ≥ 8) as a function of n for two stall probabilities

in Figure 2.2(b). When threads are stalled only 10% of the time, 11 virtual contexts are

sufficient to keep the 8 physical contexts 90% utilized. However, when threads are 50%

stalled, 21 virtual contexts are needed. As a result, the number of required virtual contexts

may be different depending on the workload.

A lender-core’s microarchitecture is shown in Figure 2.3. The datapath is identical to an

8-threaded InO SMT. We note that this core is quite simple and area-efficient, since it does

not require any OoO execution logic. The lender-core’s front-end maintains a pointer to a

FIFO run queue in dedicated memory, which holds the state of all virtual contexts. When

a physical context stalls, its context is dumped to the tail of the run queue. Then, another

context’s architectural state is loaded from the run queue. The length of the run queue is not

limited by hardware, as the number of required virtual contexts may vary. OS/cluster-level

scheduling frameworks must provision enough threads to each lender-core to ensure the

core is fully utilized and threads do not starve.

19

In-Order
Issue

Queues
PC 0

PC 1

PC 2

PC 3

PC 4

PC 5

PC 6

PC 7

Virtual-contexts
run-queue PTR

Fetch

Instruction
Cache

In
stru

ctio
n

 B
u

ffer

FIFO 1

FIFO 2

FIFO 3

FIFO 4

FIFO 5

FIFO 6

FIFO 7

Data
Cache

Register
File

Select

Fu
n

ctio
n

al U
n

its

Frontend Backend

FIFO 0

Figure 2.3: Lender-core: 8-way InO Hierarchical SMT (HSMT).

Master-cores borrow threads from a lender-core by stealing a virtual context from the

head of its run queue. The master-core and lender-core in each dyad share the dedicated

memory region where virtual contexts are stored. Additional challenges arise when filler-

threads access memory; we defer discussion of these to Section 2.3.2.3.

2.3.2 Master-cores

As discussed in Section 2.2.2, co-running additional threads alongside a latency-sensitive

thread can drastically harm tail latency [122, 215, 28]. As such, many prior works reject

SMT for latency-critical applications (e.g., [122, 28]) and most server-optimized scale-out

processors, such as Cavium ThunderX [23] and Qualcomm Centriq [165], do not employ

multithreaded cores. However, in the microsecond regime, where threads frequently face

long stalls, SMT provides the most promising approach to recover the lost cycles.

This dichotomy motivates our design for master-cores, where we execute the master-

thread by itself, to preserve its tail latency, but multiplex several filler-threads during

20

master-thread stalls, to recover throughput. In master-thread mode, the master-core operates

as a single-threaded 4-wide OoO superscalar core, optimizing for single-thread performance

and minimal tail latency. In filler-thread mode, while the master-thread is stalled/idle, the

master-core switches from its single-threaded OoO issue mechanism to the InO HSMT

mechanism of a lender-core. It then multiplexes multiple filler-threads to use the available

issue bandwidth. Together, these modes maximize performance density and energy efficiency

by maximizing executed instructions.

2.3.2.1 From MorphCore to Master-core

Our master-core microarchitecture builds upon MorphCore [101]. MorphCore rests

on two insights: (1) a 6-8 way in-order SMT core can achieve better total throughput

than a single-threaded OoO core and (2) such an in-order core requires a subset of the

hardware mechanisms already present in an OoO core. MorphCore reuses most hardware

structures (instruction buffer, ALUs, RFs, load/store unit, etc.) in both execution modes.

In multi-threaded mode, it partitions instruction buffers, reservation station (into multiple

in-order issue queues), and the reorder buffer among threads, which all share functional unit

pipelines. It repurposes the core’s physical register file as architectural registers for each

thread. Finally, it disables register renaming, dynamic scheduling, and the load queue to

save energy. On a mode switch, MorphCore swaps the extra threads’ architectural registers

from a dedicated memory region using microcode.

We describe our master-core design by starting with MorphCore as an initial strawman

and successively addressing challenges that arise in the killer microseconds context. First,

we replace the conventional in-order SMT operating mode of MorphCore with the HSMT

architecture of the lender-cores, described in Section 2.3.1. Thus, when running filler-threads,

the master-core will have sufficient available virtual contexts to hide killer microsecond

stalls.

Second, we alter several aspects of how MorphCore transitions modes. The master-core

21

Master-thread mode

Master Thread

Filler
Threads

RF

RFI/D
caches

and
TLBs

I/D
caches

and
TLBs

Branch predictor

Branch predictor

...

Lender
core

Master
core

L1 Inst
$

L1 Data
$

L1 Inst
$

L1 Data
$

Lender
core

Master

core

L1 Inst
$

L1 Data
$

L1 Inst
$

L1 Data
$

Filler-thread mode

L0

L0

Lender
core

Master
core

Lender
core

Master
core

LLC

Memory, I/O
controllers, etc

(a) (b) (c)

...

...

Lender
core

Master
core

Lender
core

Master
core

...

...

Sh
ar

e
d

th
re

ad
 b

ac
kl

o
gs

Figure 2.4: (a) A naive master-core design where stateful micro-architectural components are
replicated across modes, (b) A Duplexity dyad composed of a master-core and a lender-core, and (c)
Layout of a Duplexity server processor chip.

triggers a transition whenever the master-thread becomes idle or incurs a µs-scale stall.

We drain instructions elder than the stalling instruction and flush younger instructions. In

contrast to MorphCore, a master-core does not evict the architectural register state of the

master-thread; it retains its registers to facilitate fast restart when the stall resolves, after

which all in-flight instructions from filler-threads are immediately squashed.

There are two challenges with this strawman master-core design, if used alone. First,

filler-threads thrash the cache, TLB, and branch predictor state of the master-thread. When

the master-thread resumes, it will incur many cache misses, which may adversely affect its

tail latency. Second, filler-threads have no guarantee when they will be scheduled on the

master-core; they are only scheduled when the master stalls, and hence they may starve. We

next solve these problems.

2.3.2.2 Segregating State

We must ensure that filler-threads do not thrash the master-thread’s state. The naive

approach is to replicate all stateful micro-architectural structures (register files, caches,

branch predictor, TLBs, etc.), segregating the filler-threads’ from the master-thread’s state.

We compare against this alternative, shown in Figure 2.4(a), in our evaluation. The problem

with replicating all structures is that caches and register file are large and power-hungry. In

particular, depending on microarchitecture, register files usually consume 5%-20% and L1

caches consume 10%-40% of a core’s area [117]. So, this approach undermines Duplexity’s

performance density and energy efficiency objectives.

22

Instead, Duplexity replicates only the area-inexpensive structures. We provision a full-

size TLB and reduced-size branch predictor for exclusive use by filler-threads. For the

register file, we provision empty physical registers to store the architectural state of filler-

threads, using the renaming logic to track the assignment of logical filler-thread registers to

physical registers. Once its in-flight instructions are squashed or drained, the master-thread

occupies only enough physical registers to maintain its architectural state.

To avoid replicating caches, we introduce the concept of dyads, which we discuss next.

2.3.2.3 Master-Lender Dyads

Instead of replicating caches, we pair a master-core with a lender-core to form a dyad.

When a master-core morphs into filler-thread mode, the filler-threads remotely access the

L1 instruction and data caches of the lender-core. The dyad provides data paths from the

master-core’s fetch and memory units to the lender-core’s caches, as shown in Figure 2.4(b).

This approach has two benefits: (1) it protects the master-thread’s state, and (2) it allows

filler-threads to hit on their own cache state as they migrate between the cores. However,

this approach also entails two challenges: (1) The L1 access latency of filler-threads on the

master-core is ∼3 cycles higher than local cache access in either core. (2) The capacity

pressure and bandwidth requirements on the lender-core’s caches increase, since both cores

may access them.

We address these challenges by provisioning a small 2KB L0 I-cache and a 4KB L0 write-

through D-cache in the master-core for accesses to the lender-core’s L1 caches. Although

these L0 caches have low hit rates, they act as effective bandwidth filters and service many

sequential accesses, especially for instructions. Whereas capacity pressure on the lender-

core’s L1 cache is high, HSMT is inherently latency-tolerant; our evaluation demonstrates a

net throughput win. The lender-core L1 D-cache maintains inclusion with L0 D-cache and

forwards invalidations to maintain coherence.

23

2.3.2.4 Fast Filler-thread Eviction

A key Duplexity objective is to ensure fast master-thread resumption when it becomes

ready. We use several approaches to accelerate restart.

First, we reuse the L0 data cache to accelerate spilling filler-thread architectural state.

The L0 cache is write-through, hence, its contents can be discarded or overwritten at any time.

When the master-thread becomes ready, all pending filler-thread instructions are immediately

flushed. Then, all physical register file read ports are used to read filler-thread architectural

state and write it to the L0 data cache. With 8 read ports and an L0 write bandwidth of one

cache-line per cycle, it takes less than 50 cycles to spill the filler-threads. We assume each

thread requires 16 64-bit GP integer registers and 16 128-bit XMM floating-point/SIMD

registers, per the x86-64 ISA. The master-core’s physical register files include 144 registers—

sufficient for architectural registers of 9 threads (the master and 8 filler-threads). The 4KB

L0 capacity is sufficient to absorb the spill of all filler-thread registers.

During the spill, the master-core can begin dispatching master-thread instructions but

instructions do not issue until read ports become available. As the master-thread’s cache

state is intact, fetches are likely to hit. Furthermore, the master-thread’s architectural state

is already present in the physical register file, as we do not evict it. Filler-thread register

state is drained from the L0 to the dedicated backing store in memory in the background. In

short, master-thread resumption incurs roughly a 50-cycle delay.

2.3.3 Summary

Figure 2.4(c) depicts the final Duplexity design, comprising several dyads each with

a master- and a lender-core that share virtual contexts. The lender-core uses HSMT with

8 physical contexts sharing an 8-way InO datapath. HSMT enables the lender-core to

hide µs-scale stalls in its latency-insensitive virtual context pool. The master-core can fill

the master-thread’s µs-scale holes with filler-threads borrowed from the lender-core by

morphing into an InO HSMT architecture, while still protecting the master-thread from tail

24

latency disruption. Sharing virtual contexts across the dyad prevents contexts from starving.

2.4 Discussion

Scheduling. Duplexity affects several aspects of how the OS must manage SMT threads.

The OS must schedule latency-critical threads on master-cores and provision the virtual

contexts for each dyad. Since the number of virtual contexts is variable, and should be

tuned based on the frequency and duration of stalls, a dyad appears to software as if it

supports a variable number of hardware threads. The scheduling of virtual contexts on

the physical contexts of master- and lender-cores is transparent to software. Conceptually,

the master-core is exposed to software as a single-threaded core, while virtual contexts

belonging to a dyad belong to the lender-core. Existing CPU hot-plug mechanisms [147]

may be applicable to vary the number of virtual contexts at runtime. Alternatively, OS

designs like Barrelfish [218], which separates core, thread, and OS abstractions, might be

adopted.

The OS must select how many virtual (filler) contexts to activate in a dyad. One

option is to simply over-provision, but this may lead to long scheduling delays for ready

virtual contexts. Alternatively, a data-center-scale scheduling layer might optimize thread

assignments via data-center-wide optimization [39, 38]. We find empirically that 32 virtual

contexts per dyad are sufficient to hide stalls in our most pessimistic scenarios, wherein both

the latency sensitive and batch threads incur frequent stalls (1 µs stall per µs of compute).

If batch threads do not incur µs-scale stalls, 16 batch threads are sufficient; eight each to

fill contexts on the lender and master-cores. If only batch threads incur µs-scale stalls (and

thus never run on the master-core), 21 threads are sufficient to occupy the lender-core (see

Figure 2.2(b)).

We use a simple round-robin scheduling policy for virtual contexts, which is easy to

implement in hardware and provides some fairness/starvation avoidance. Virtual contexts

are scheduled on a physical context for a 100 µs quantum to prevent starvation. Because this

25

quantum is far lower than the OS scheduling quantum, the two scheduling mechanisms do

not interfere—from the OS perspective, all virtual contexts are active, much like hardware

threads in an SMT system. Unused virtual contexts are parked via HLT, much like unused

hyperthreads. Note that the two-level scheduling applies only to latency-insensitive batch

threads.

Throughput threads. Duplexity’s approach increases the number of active threads per

chip. The need for more threads to maintain utilization is an inherent consequence of more

frequent and longer stalls and is a key aspect of scale-out server architectures. For multi-

programmed workloads, a possible consequence is an increase in server memory capacity

requirements. Duplexity’s improved latency tolerance dovetails with emerging memory

technologies like 3D XPoint [83, 1] which trade improved capacity for longer access latency.

For many classes of scale-out batch workloads (e.g., graph analytics [128], task-parallel

applications [17, 168], Spark [217], and Hadoop [206]), it is often possible to partition data

shards or tasks among threads at finer granularity to exploit more parallelism within the same

memory footprint and provide flexibility in the number of threads. Moreover, individual

tasks are often latency insensitive, making them well-suited to Duplexity. These workloads

typically benefit substantially from hardware multithreading as they can overlap multiple

remote accesses and provide (remote) memory-level parallelism (MLP) through thread-

level parallelism (similar to the execution model of GPUs). In the absence of sufficient

hardware threads, such distributed big-data algorithms must rely on complex asynchronous

programming models and continuation/call-back mechanisms to provide MLP [187].

Duplexity protects the master-thread from interference by filler-threads. Nevertheless,

batch/filler-threads may interfere with one another. Existing work on intelligent co-location

may be applicable to mitigate such interference [213, 39, 224].

Demarcating stalls. A second aspect of Duplexity is that we assume that hardware can

recognize the start and end of µs-scale stalls. For example, remote disaggregated memory

accesses can be recognized from their memory translations or use queue pair-based memory

26

models [151] that bypass the kernel, as in other forms of polling-based high-performance

I/O protocols that are transparent to the OS [90, 162, 12, 104, 170, 103]. Stalls end when

remote loads return. Alternatively, special monitoring instructions (e.g., mwait, variants of

hlt [66]), can wake upon cache coherence activity or data/work arrival [126].

Alternative approaches. GPUs and user-level multithreading present two alternative

strategies to hide µs-scale stalls by multiplexing many threads. GPUs employ large register

files to accommodate all active threads and accelerate context switching [87, 100, 50].

However, GPUs are applicable only to workloads amenable to their distinct programming

model (CUDA/OpenCL), which is typically ill-suited for most software frameworks that run

in the cloud—especially I/O intensive workloads or those where concurrency arises from

request rather than data parallelism. User-level multithreading (e.g., [30, 44, 18]) enables

fast context-switching through cooperative threading. This approach also entail substantial

software re-engineering and does not apply to existing binaries. Both of these approaches

are better suited for throughput rather than latency-sensitive applications. Moreover, neither

approach protects a latency-critical thread from throughput-thread interference.

2.5 Evaluation Methodology

We use gem5 x86-64 [14] to evaluate Duplexity. We extend gem5 to model the master-

core (and our other OoO baselines) and evaluate its performance in detailed simulation. We

model a single dyad. For the scale-out workloads running on filler-threads, we determine

the throughput of multi-threaded workloads on the in-order master-/lender-cores through

trace-based simulation. We analyze energy and area with McPAT [117], and apply the

changes described in [210] to more accurately model OoO cores. We estimate tail latencies

using the BigHouse [134] methodology. We simulate the queuing system until we achieve

95% confidence intervals of 5% error in reported results. We measure IPC in gem5 and

use it to determine the service rate of an FCFS M/G/1 queuing system. We then simulate

the high-level behavior of the queue at request (rather than instruction) granularity. The

27

M/G/1 assumption is in line with prior studies [220, 97, 82]. We generate service times in

BigHouse by measuring their distribution on real hardware, and scaling them using IPC

slowdowns measured in gem5.

Overheads. The master-core builds upon a 4-wide OoO microarchitecture. We add the

ability to transition to filler-thread mode, much like MorphCore. As such, the master-core

entails all the hardware overheads of MorphCore (extra muxing paths in the front-end, select,

and wakeup logic, and additional bypass paths in the back-end). Khubaib reports an area

overhead of ∼2% for these structures [101]. In addition, the master-core provisions a TLB,

reduced-size branch predictor, L0 I/D caches for use by filler-threads, and fetch/memory-

access data-paths to the lender-core’s caches. We model these additional structures with

McPAT and find that the additional TLBs, branch predictors, and L0 caches impose area

overheads of 0.7%, 1.2%, and 1%, respectively. The total area overhead of the master-core

is approximately 5% compared to a baseline 4-wide OoO core. The static power overhead

is within 5% of the baseline. In contrast, a master-core variant that replicates all stateful

structures, including L1 caches, incurs a 38% area overhead. Our master-core requires

additional multiplexers at various pipeline stages to mux between InO/OoO data paths used

in different modes. Assuming 20 gates per pipeline stage [29], we estimate a cycle time

penalty of 4% for these muxes. We include area, frequency, and power overheads in our

results.

Workloads. We consider the following microservices, two of which are simplified/simulator-

friendly versions of microservices from [186]; the other two are constructed using the same

framework.

• FLANN: We evaluate two configurations of the FLANN [143] microservice intro-

duced in Section 2.2.2; FLANN-HA (High-Accuracy) has an LSH lookup latency

of 10µs and identifies a large number of nearest-neighbor candidates. FLANN-LL

(Low-Latency) reduces lookup latency to only 1µs by using longer hash keys. Both

of these configurations issue a one-sided single–cache-line remote access to retrieve

28

one of the identified nearest neighbors. We assume single–cache-line RDMA read

latency to be exponentially distributed with a 1µs average [15].

• Remote Storage Caching (RSC): We implement a remote storage caching microser-

vice; a simplified variant of Flash caches [21, 105, 3, 80]. Our RSC microservice

maps linear block addresses of a remote storage system to a local low-latency SSD

using Cuckoo hashing [155]. We only consider read transactions; allocation and

coherence mechanisms fall outside the scope of our experiments. Look-up latency is

3µs, which, upon a hit, is followed by 8µs average access latency to Intel’s Optane

SSD [69] through user-level polling [191] and 4µs average latency for a 4KB memcpy.

Though optimistic for current-generation Optane, we believe these characteristics are

representative of future devices.

• McRouter: We employ a consistent hashing microservice based on Facebook’s

McRouter [118, 150]. This microservice routes Key-Value (KV) operations to 100

leaf servers via a consistent hash function and synchronously waits for leaf responses.

We consider a state-of-the-art RDMA-based low-latency KV store that uses single-

sided operations to minimize communication latency [92, 93]. The root microservice

requires 3µs to route each request and the leaf KV store requires 3-5µs depending on

the KV operation [92].

• Word Stemming: Stemming is a normalization process used to reduce words to their

root and is a core query rewriting microservice employed in various cloud applications,

such as web search. We develop a word stemming microservice based on Oleander’s

implementation of the Porter stemming algorithm [160, 161]. This microservice

incurs no µs-scale stalls, since it is a leaf service. Hence, core under-utilization arises

only due to the idle time between requests. Furthermore, it is state-less; it hard-codes

all stemming paths (prefixes, suffixes, etc.) into the program control-flow. It requires

an average processing time of 4µs.

29

Filler-threads execute distributed PageRank and Single-Source Shortest Path algorithms

based on bulk synchronous processing [199] and synchronous queue pair-based disag-

gregated memory model [151] on a single dataset representing a subset of the Twitter

graph [112]. Reading a remote vertex requires a single–cache-line RDMA read that takes

1µs [15]. Since almost half of vertices are accessed remotely through RDMA, our filler-

threads also require 1µs stall time per each 1-2µs of compute. We execute 32 filler-threads

per dyad.

Design Configurations. We compare a Duplexity dyad to a variety of alternative core

microarchitectures. Our performance density and energy efficiency studies pair each core

alternative with a throughput-oriented HSMT core (configured to match Duplexity’s lender-

core) for a fair throughput comparison. Our main objective is to contrast the impact of these

architectures on the microservice’s tail latency/QoS.

We consider the following alternatives:

(1) Baseline: A 4-wide OoO core that only executes the latency-sensitive microservice.

(2) SMT: Baseline augmented with a second SMT batch thread, using ICOUNT [196]. The

core does not prioritize the latency-critical thread.

(3) SMT+: Similar to SMT but prioritizes the latency-sensitive microservice over its co-

runner unless the microservice thread is stalled. For bandwidth (per-cycle) resources (Fetch,

Issue, Commit), SMT+ always prioritizes the latency-sensitive thread and only allocates slots

to the co-runner if the microservice thread does not need them [45]. For storage resources

(IQ, ROB, LSQ), SMT+ limits the co-runner to occupy at most 30% of the slots [167].

(4) MorphCore: MorphCore as proposed in [101], running 8 filler-threads when it morphs.

(5) MorphCore+: MorphCore extended with our HSMT mechanism and paired with a

lender-core (i.e., it borrows threads from a shared virtual context pool, like a master-core).

(6) Duplexity + replication: A Duplexity (master-core+lender-core) variant wherein all

master-core’s stateful structures, including caches, are replicated.

(7) Duplexity: Our final Duplexity (master-core+lender-core) design. (Master-core shares

30

Table 2.1: Microarchitecture details of Duplexity

Baseline/SMT 4-wide OoO, 144-entry ROB/PRF, 48-entry LQ, 32-entry
SQ, ICOUNT fetch for SMT
Tournament predictor: bimodal (16K), gshare (16K) and
selector (16K); 32-entry RAS; 2K-entry BTB, 64-entry I/D
TLBs

Lender-core 8-way InO HSMT, 32 virtual contexts, 4-wide issue, 128-
entry ARF, Round-Robin fetch, gshare (8K) predictor, 2K-
entry BTB, 64-entry I/D TLBs

Master-core Transitions between singe-threaded OoO and InO HSMT,
uarch same as baseline; tournament(16k)/gshare(8k), sepa-
rate TLBs for the two modes, 2KB/4KB I/D write-through
L0 caches

L1 caches Private 64KB I/D, 64B lines, 2-way SA
LLC 1 MB per core, 64B lines, 8-way SA

Memory 50 ns access latency
NIC FDR 4x Infiniband (56Gbit/s, 90M ops/s)

Table 2.2: Area and clock frequencies of different design configurations

Component Area Frequency
Baseline OoO 12.1 mm2 3.4 GHz

SMT 12.2 mm2 3.35 GHz
MorphCore 12.4 mm2 3.3 GHz
Master-core 12.7 mm2 3.25 GHz

Master-core + replication 16.7 mm2 3.25 GHz
Lender-core 5.5 mm2 3.4 GHz

LLC 3.9 mm2/MB N/A

L1 I/D caches with its neighbor lender-core when running filler-threads; L0 caches as

bandwidth filters/register-buffers).

We report microarchiture configuration details in Table 4.1 and area/frequency results,

obtained using McPAT [117] and CACTI [145] for 32nm technology, in Table 2.2.

2.6 Efficiency Results

2.6.1 Core Utilization

Figure 2.5(a) reports average core utilization. We calculate core utilization by dividing

the number of retired instructions per cycle by the core’s peak retire bandwidth (i.e, 4).

31

(e) (f)

0

10

20

30

40

50

60

70

80

FLANN_HA

(30% Load)

FLANN_LL

(30% Load)

McRouter

(30% Load)

RSC

(30% Load)

WordStem

(30% Load)

FLANN_HA

(70% Load)

FLANN_LL

(70% Load)

McRouter

(70% Load)

RSC

(70% Load)

WordStem

(70% Load)

C
o
re

 u
ti
liz

at
io

n
 (

%
)

Baseline SMT SMT+ MorphCore MorphCore+ Duplexity+replication Duplexity (Master-Core)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

FLANN_HA

(30% Load)

FLANN_LL

(30% Load)

McRouter

(30% Load)

RSC

(30% Load)

WordStem

(30% Load)

FLANN_HA

(70% Load)

FLANN_LL

(70% Load)

McRouter

(70% Load)

RSC

(70% Load)

WordStem

(70% Load)

N
o
rm

al
iz

e
d
 p

e
rf

o
rm

an
ce

 d
e
n
si

ty

Baseline SMT SMT+ MorphCore MorphCore+ Duplexity+replication Duplexity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FLANN_HA

(30% Load)

FLANN_LL

(30% Load)

McRouter

(30% Load)

RSC

(30% Load)

WordStem

(30% Load)

FLANN_HA

(70% Load)

FLANN_LL

(70% Load)

McRouter

(70% Load)

RSC

(70% Load)

WordStem

(70% Load)

N
o
rm

al
iz

e
d
 e

n
e
rg

y
co

n
su

m
p
ti
o
n

Baseline SMT SMT+ MorphCore MorphCore+ Duplexity+replication Duplexity

0

0.5

1

1.5

2

2.5

FLANN_HA

(30% Load)

FLANN_LL

(30% Load)

McRouter

(30% Load)

RSC

(30% Load)

WordStem

(30% Load)

FLANN_HA

(70% Load)

FLANN_LL

(70% Load)

McRouter

(70% Load)

RSC

(70% Load)

WordStem

(70% Load)

N
o
rm

al
iz

e
d
 I
so

-t
h
ro

u
gh

p
u
t

ta
il

la
te

n
cy

Baseline SMT SMT+ MorphCore MorphCore+ Duplexity+replication Duplexity

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

FLANN_HA

(30% Load)

FLANN_LL

(30% Load)

McRouter

(30% Load)

RSC

(30% Load)

WordStem

(30% Load)

FLANN_HA

(70% Load)

FLANN_LL

(70% Load)

McRouter

(70% Load)

RSC

(70% Load)

WordStem

(70% Load)
N

o
rm

al
iz

e
d
 S

T
P

Baseline SMT SMT+ MorphCore MorphCore+ Duplexity+replication Duplexity

0

1

2

3

4

5

6

7

8

FLANN_HA

(30% Load)

FLANN_LL

(30% Load)

McRouter

(30% Load)

RSC

(30% Load)

WordStem

(30% Load)

FLANN_HA

(70% Load)

FLANN_LL

(70% Load)

McRouter

(70% Load)

RSC

(70% Load)

WordStem

(70% Load)

N
o
rm

al
iz

e
d
 9

9
%

 t
ai

l
la

te
n
cy

Baseline SMT SMT+ MorphCore MorphCore+ Duplexity+replication Duplexity

(a) (b)

(d)(c)

Figure 2.5: (a) Core utilization, (b) Normalized performance density, (c) Normalized energy con-
sumption, (d) Normalized 99% tail latency, (e) Normalized iso-throughput 99% tail latency (f)
Normalized system throughput (STP) for batch threads.

These results include only the utilization of the master-core or its alternatives. Whereas

instructions executed from borrowed threads are included, instructions executed on the

lender-core are not. Baseline OoO core utilization is at most 29% and drops to 5.7% when

load is low (30%) and the stall ratio is high (e.g., ∼60% in McRouter). The baseline OoO

scheme is single-threaded and has no mechanism to mitigate µs-scale stalls, so this result is

not surprising. All other architectures improve utilization by executing instructions from

filler-threads. SMT and MorphCore yield considerably lower utilization than HSMT-based

designs (MorphCore+ and Duplexity variants) as 8 filler-threads are insufficient to hide

stalls.

The Duplexity variants achieve the highest utilization. However, as load or work/stall

ratio increases, utilization falls since filler-threads execute instructions only when the master-

thread is idle/stalled. When active, the master-thread runs by itself and utilization depends

32

only on the master-thread’s IPC; prior work [55, 94] reports that scale-out applications

exhibit low ILP/MLP and fail to fully utilize a core. Conversely, at low load or work/stall

ratio (e.g., McRouter and RSC at 30% load), Duplexity fills wasted cycles with useful

work from filler-threads and increases issue bandwidth utilization to 79%. Finally, whereas

Duplexity improves average utilization by 4.8× and 1.9× over the baseline and SMT, respec-

tively, it always achieves lower utilization (3.6%, on average) than Duplexity + replication.

Replication reduces lender-core cache pressure when the master-core runs filler-threads.

Nevertheless, replicating caches is area-inefficient and incurs a drastic performance density

penalty (see Table 2.2).

The low utilization of MorphCore+ compared to Duplexity arises because of (1) cold

misses when the latency-critical thread resumes execution (due to cache pollution by filler-

threads) and (2) mode switching latency. SMT+ achieves the lowest utilization (except for

the baseline OoO) as it limits the co-runner thread to use only 30% of hardware resources

to minimize master-thread interference; it achieves 2.4× lower utilization, on average,

compared to Duplexity. The WordStem microservice provides the least opportunity for

utilization improvement as it does not incur µs-scale stalls; opportunity arises only during

idle periods. However, even under 70% load of WordStem, Duplexity improves issue

bandwidth utilization by 69% and 41% compared to baseline and SMT, respectively, because

the IPC of 8 co-running filler-threads is substantially higher than OoO and SMT.

2.6.2 Performance Density & Energy Efficiency

Performance density (Figure 2.5(b)) and energy efficiency (Figure 2.5(c)) are widely

used in the literature to normalize performance over cost and estimate TCO [124, 222]. In

these results, we pair alternative core variants with a throughput-oriented InO HSMT core

(configured to match Duplexity’s lender-core) to compare throughput fairly.

Performance density—instructions retired per unit-time per unit-area—enables com-

parison of area efficiency, which is critical when comparing TCO across heterogeneous

33

designs [124]. Figure 2.5(b) reports normalized performance density across design points.

Duplexity achieves the highest result: 49% and 28%, on average (up to 72% and 37%),

higher than baseline and SMT, respectively. These results generally track utilization results

(Figure 2.5(a)) with two exceptions: First, the gaps between designs are smaller, since we

normalize by the area of an entire chip, including the shared LLC. The throughput core (i.e.,

lender-core) and LLC area mask differences in core efficiency. Second, while Duplexity

+ replication yields the highest core utilization, its performance density is, on average, 9.2%

(up to 13.4%) lower than Duplexity due to the large area overhead of replication.

Although it achieves slightly higher utilization, Duplexity + replication remains an

undesirable design point. When the master-core does not borrow threads, all designs except

Duplexity + replication achieve roughly the same performance density as the baseline.

However, Duplexity + replication loses ∼17% density relative to the baseline—due to its

considerably higher area—which translates to higher TCO. The replication cost is even

higher if we apply Duplexity to scale-out processors [124] (e.g., Cavium ThunderX [23]),

which trade SRAM for cores and share a modestly sized LLC (e.g., 8-16MB) across many

cores (e.g., 32-64 cores).

To measure energy, we divide the power consumption of each design by the average

number of instructions retired each cycle. Figure 2.5(c) reports normalized energy results,

which largely mirror the trend of performance density. Duplexity nearly always consumes the

least energy, as Duplexity is able to retire the highest number of instructions per cycle among

all designs except Duplexity + replication, which falls short on energy-efficiency because

it replicates power-hungry structures. In particular, Duplexity is able to reduce energy

consumption by 34% and 21%, on average, compared to baseline and SMT architectures,

respectively.

Duplexity replicates some units (e.g., TLBs, predictors), which are not used when the

master-thread executes. At first blush, this may appear antithetical to our goal of maximizing

utilization. We decide whether to replicate or borrow a structure based on area and power—

34

we only replicate inexpensive structures, for which replication provides a performance

density and energy efficiency win. The metrics measured in Figures 2.5(b) and 2.5(c)

capture this trade-off; if replication is area- or power-inefficient, these metrics worsen. In

other words, these metrics represent the overall system utilization normalized against the

area/power cost of all units.

2.7 Performance & QoS Results

We report QoS via aggregate throughput for batch threads and tail-latency for the

latency-critical microservices.

We determine Duplexity’s impact on tail latency as described in Section 2.5. Even

small service time increases are amplified in the tail by queuing effects, especially at high

loads [99]. Figure 2.5(d) reports the normalized 99th percentile tail latency under various

load levels. Whereas SMT, Morphcore, and Morphcore+ increase tail latency by up to

7.2×, 5.8×, and 4.9×, respectively, Duplexity only increases tail latency by 19%, while

recovering 4.8× higher core instruction throughput.

We make two further observations from Figure 2.5(d): First, SMT+ usually achieves

considerably (up to 89%) lower tail latency than SMT as it minimizes the master-core

interference via prioritization and partitioning. In fact, when the mode switch frequency is

high and stalls are short, SMT+ achieves lower tail latency than MorphCore/MorphCore+,

as it is less disruptive to master-thread issue bandwidth. However, its tail latencies are still

higher than the baseline (up to 3.8×), due to interference on caches and core resources.

Second, while WordStem does not incur µs-scale stalls and does not maintain any state

across requests, it nevertheless is sensitive to instruction cache interference and suffers high

tail latencies under SMT and MorphCore variants.

Figure 2.5(e) reports normalized iso-throughput 99% tail latency of the master-thread

across workloads and load levels, to make a system-level assessment. These results normal-

ize across designs such that they achieve the same cost by varying input load in proportion to

35

the performance density reported in Figure 2.5(b). The intent of this metric is to compare the

impact of two microarchitectures on tail latency at a particular throughput while accounting

for the fact that the designs differ in area, and therefore cost. Improving this metric implies

a more tail-tolerant microarchitecture at a given cost. Duplexity achieves the lowest iso-

throughput tail-latency, which is up to 2.6× and 4.3× (1.8× and 2.7×, on average) lower

than iso-throughput tail latencies achieved by baseline and SMT, respectively. Whereas

MorphCore variants achieve lower iso-throughput tail latencies over the baseline due to

their high efficiencies, SMT variants lengthen iso-throughput tail latency compared to the

baseline, as they do not sufficiently improve utilization. Perhaps surprisingly, while SMT+

provides isolation and prioritization mechanisms to protect the master-thread’s performance,

in some cases it yields worse iso-throughput tail latencies than SMT (up to 23%), due to

lower utilization.

For the batch threads, we report system throughput (STP) [51], a metric that considers

both performance and fairness for multi-threaded workloads. Figure 2.5(f) reports normal-

ized batch-thread STP. Again, we pair all cores with an HSMT core for a fair comparison.

MorphCore+ and Duplexity + replication yield better STP than Duplexity, because Duplex-

ity shares the lender-core’s caches between the master-core and the lender-core when the

master-thread is idle/stalled, degrading performance. Nevertheless, Duplexity still improves

batch STP over the baseline and SMT by an average of 52% and 24%, respectively, within

8% of the best STP achieved by Duplexity + replication.

2.8 Case Study: Interconnect Utilization Analysis

Duplexity improves CPU utilization via thread-level parallelism; thus, it requires enough

busy threads to be effective. As such, it is critical that bottleneck resources provide sufficient

bandwidth to support all threads, otherwise, we simply shift from one bottleneck to another.

For disaggregated memory, interconnect bandwidth is a key resource. So, we confirm that

Duplexity’s interconnect requirements are feasible.

36

0

1

2

3

4

5

6

7

8

FLANN_HA (30% Load) FLANN_LL (30% Load) FLANN_HA (70% Load) FLANN_LL (70% Load)

N
e
tw

o
rk

 O
p
s

U
ti

liz
at

io
n
 (

%
)

p
e
r

D
ya

d

Baseline SMT SMT+ MorphCore MorphCore+ Duplexity+replication Duplexity

Figure 2.6: Network BW (IOPS) utilization (%) per dyad.

We consider a single FDR 4x Infiniband link to calculate network bandwidth utilization,

following [15]. Most NICs impose two bandwidth constraints: a maximum data rate, and

a maximum I/O operations per second (IOPS), respectively 56Gbit/s and 90M ops/s for

FDR [135, 154]. As our workloads issue single–cache-line remote accesses, they are IOPS-

limited. Figure 2.6 reports network IOPS utilization per dyad, which largely tracks core

utilization. Duplexity improves average network utilization over the baseline and SMT

by 58% and 29%, respectively. The key takeaway is that, although the main purpose of

Duplexity is to improve compute utilization, it also improves utilization for other resources.

Further, Figure 2.6 confirms that Duplexity incurs requirements that fall within current

networking capabilities: the maximum IOPS of each dyad is less than 7.1% of the FDR

capability. Hence, 14 dyads can share one NIC port. Further scalability is possible with

multiple NICs or through continued scaling of Infiniband technology to higher rates [15,

184].

2.9 Related Work

To the best of our knowledge, Duplexity is the first work to provide architectural support

to fill the utilization holes caused by killer-microsecond, without sacrificying QoS and tail

37

latency. Concurrent to Duplexity, [30] proposes a software multithreading and prefetching-

based solution to hide µs-scale memory accesses and µDPM [31] seeks to improve server

energy-efficiency in the killer microseconds era. While Duplexity is a server design that

targets general µs-scale I/O accesses and idle periods, the approach used in [30] is only

amenable to cachable memory accesses and provides no QoS guarantees.

We review related studies on the key aspects of Duplexity.

Co-location and isolation. There is a large body of work that aims to improve processor

utilization in data center workloads by co-locating batch and latency-sensitive applications

using mechanisms to minimize interference among co-running applications [131, 213, 39,

122, 224]. Bubble-Flux [213] and Bubble-up [131] are online schemes that detect interfer-

ence and identify “safe” co-locations to bound performance degradation while maximizing

core utilization. Heracles [122] focuses on latency-critical workloads and employs isolation

techniques to minimize interference between latency-critical and batch workloads. Diri-

gent [224] seeks to improve utilization by minimizing variation in latency-critical workloads.

Finally, Paragon [38] and Quasar [39] use online classification techniques to co-locate work-

loads that are unlikely to interfere. These studies do not co-locate applications on different

hardware threads of the same core, likely because SMT co-location (without hardware

support to mitigate interference) results in drastic tail latency increases [122]. Moreover,

these studies consider application behavior at millisecond (and higher) time-scales; they do

not seek to address µs-scale stalls.

Further work addresses thread interference in SMT cores using specialized perfor-

mance accounting hardware [52], shared resource usage tracking [25, 24], performance

sampling [179], and competition heuristics [200]. However, most of the classic works do

not provide QoS guarantees with respect to tail latency. Lo et al. [122] show that SMT

co-location of batch and latency-critical threads can have catastrophic impacts on the tail

latency and, in particular, Google’s latency-critical workloads are not able to meet their

QoS targets if co-located with batch threads without isolation mechanisms. SMiTe [220]

38

and Elfen scheduling [215] aim to minimize interference while providing QoS guarantees.

SMiTe [220] follows Bubble-Up to identify co-locations that minimize QoS violations by

determining workload contentiousness and interference-sensitivity. However, their results

show that even the best SMT co-locations may violate QoS for ∼20% of requests. Elfen

scheduling [215] prioritizes the latency-sensitive thread over the batch thread; the batch

thread polls regularly to see if the latency-sensitive thread is running and then voluntarily

deschedules itself. However, polling at µs time scales implies untenable overhead. Further-

more, both SMiTe and Elfen scheduling only consider a single batch thread, which we show

is insufficient if the batch threads also incur µs-scale stalls. With many batch threads, all

storage-based components of the core (especially L1 caches) become very important and

it would be essential for the core to incorporate some isolation mechanism with respect to

such resources, which neither SMiTe nor Elfen scheduling provides.

There have been many proposals for isolation and partitioning schemes with respect

to shared last level caches [49, 166, 174, 130, 182, 211, 98, 85, 67, 78] and memory

bandwidth [223, 85, 48, 144, 149, 176]. These proposals are orthogonal and can compose

with Duplexity.

Reconfigurable/heterogeneous architectures. Other work aims to exploit thread-level

parallelism (TLP) through microarchitectural reconfiguration. Such designs provision

numerous simple compute units/cores that can either serve multiple threads individually or

be ganged together to build more powerful cores when TLP is low or peak single-threaded

performance is needed [204, 102, 84]. MorphCore [101] takes the opposite approach and

morphs a wide OoO core into a multithreaded SMT core when threads are abundant. In

conjoined/composite cores [110, 125], two cores share components to increase efficiency, as

in Duplexity. Duplexity differs from these architectures as it seeks to fill killer microsecond

stalls and prevent QoS harm for the latency-critical microservices.

Heterogeneous multicores, which incorporate heterogeneous cores representing dif-

ferent points in the power/performance design space, have been proposed to improve

39

energy-efficiency [109, 111]. Recent proposals allocate threads/tasks at either service-

level [158] or request-level [71] to particular core types to improve throughput, density, and

energy-efficiency, while meeting QoS targets. Duplexity fits within this class of multicore

architecture, introducing the novel notions of dyads and thread borrowing.

2.10 Conclusion

Duplexity is a server architecture that aims to maximize performance density and energy

efficiency by filling the killer microsecond utilization “holes” of microservices. These holes

result from stalls due to accessing fast I/O devices or brief idle periods between requests.

Neither existing microarchitectual techniques nor OS context switches can hide µs-scale

stalls. Duplexity couples a latency-oriented master-core and throughput-oriented lender-core

into a dyad. The master-core primarily executes a latency-critical master-thread. However,

when idle or stalled, the master-core morphs into a multithreaded throughput mode and

borrows filler-threads from the lender-core to fill utilization holes. By provisioning separate

memory paths for the master and filler-threads, Duplexity protects master-thread cache state

facilitating fast restart when a stall resolves. Our evaluation shows that Duplexity improves

core utilization and iso-throughput tail-latency by 1.9× and 2.7× over an SMT-based server

design.

40

CHAPTER III

The Queuing-First Approach for Tail Management of

Interactive Microservices

3.1 Introduction

Online Data Intensive (OLDI) services (e.g., web search) traverse terabytes of data

with strict latency targets [11]. Managing high-percentile tail latencies is a key problem

in designing such services. First, to guarantee user satisfaction, services must meet strict

response time Service-Level Objectives (SLOs), especially for tail latencies [94, 41]. Second,

such services typically communicate via fan-out patterns wherein datasets are “sharded”

across numerous “leaf” servers and their responses are aggregated before responding to the

user. As such, overall latency is often dictated by the slowest leaves (i.e., the “tail at scale”

effect [37]).

High tail latencies arise from two effects. First, such applications’ service time distribu-

tions include outlying requests that take much longer (10×-100× or more) than the mean

[99]. Some requests may require exceptional processing time depending on their arguments

(e.g., search engines [11, 70]) or query types (e.g, sets vs gets in key-value stores [82, 99]).

Some requests are delayed by system interference, such as from garbage collection, page

deduplication, synchronous huge-page compaction or network stack impediments [96, 37].

In other cases, scheduler inefficiencies, power state transitions, suboptimal interrupt routing,

41

poor NUMA node allocation, or virtualization effects may contribute to long tail laten-

cies [115]. Finally, interference from co-located workloads can cause slowdown due to

contention for shared caches, memory bandwidth, or global resources like network cards or

switches [122, 138].

A second key contributor to applications’ end-to-end latency distribution are queuing

effects [41]. Queuing arises at numerous layers causing some requests to wait for oth-

ers [37]. Whereas queuing also affects average performance, its effect on tail latency may

be catastrophic. To achieve performance stability, systems must be engineered such that

the overall request arrival rate is lower than the aggregate system capacity (service rate).

However, as both rates fluctuate, arrivals may temporarily outstrip service capacity, causing

requests to queue. Queueing delay is most apparent under high system load. However, in

this chapter, we make the case that queuing effects drastically magnify the impact of rare

system events/hiccups and can result in high tail latencies even under modest load. Due to

head-of-line (HoL) blocking, many requests are delayed by an exceptionally slow one that

stalls a server/core; these delayed requests account for a bulk of the latency distribution tail.

Through stochastic queuing simulation [134], we show that improving a system’s queu-

ing behavior often yields much greater benefit than mitigating the individual system hiccups

that increase service time tails. We suggest two general directions for improving system

queuing behavior: Server Pooling, and Common-Case Service Acceleration (CCSA). Server

pooling is the practice of redesigning system architecture to change single-server (“scale-

out”) queues into multi-server (“scale-up”) ones; that is, rather than enqueuing requests

at distinct servers/cores, a single queue is shared among many (i.e., converting c G/G/1

queues into a G/G/c). Server pooling greatly reduces queuing delay and can completely

eliminate queueing with enough servers (i.e., high enough c). Pooling smooths fluctuations

in both arrivals and service, making the system behave more like one with deterministic

inter-arrival and service times. Especially for high-disparity service time distributions (i.e.,

rare system events/hiccups), server pooling reduces the overall tail latency by breaking HoL

42

blocking and preventing nominal requests from waiting behind exceptionally long ones.

Even a modest degree of concurrency allows many short requests to drain past stalled ones,

substantially reducing weight in the latency distribution tail.

CCSA improves systems’ queuing behavior by deploying optimizations that target

common-case service behavior (as opposed to optimizations that target directly rare/slow

requests or hiccups). It may seem counter-intuitive to improve tail latency by optimizing

typical-case request performance. But, queuing delays are greatly impacted by the average

load, which depends more on typical-case service time than rare cases.

In single-server systems, CCSA has little impact when the service variance is exces-

sively high (i.e., HoL blocking is common), as nominal requests queue behind rare, slow

ones regardless of how fast the nominal requests are processed. But, if there is sufficient

concurrency (e.g., by using server pooling) that slow requests rarely occupy all servers, then

CCSA provides enormous benefit by allowing nominal requests to drain past slow ones,

drastically reducing wait time. Importantly, we show that, with concurrency, CCSA is more

effective than reducing directly either the length or the probability of rare hiccups. Since

finding and mitigating tail events is hard due to their myriad causes [214], we believe this

observation is encouraging—we can reduce tail latency without engaging in “whack-a-mole”

with rare system hiccups.

In short, we argue that cloud system designers should invest optimization effort first into

(1) reducing HoL blocking through higher concurrency and improved queuing discipline

(i.e., server pooling) and then into (2) optimizing common-case performance to improve

mean service time. Both of these approaches may have greater impact and are easier to

achieve than directly pinpointing and mitigating rare cases and hiccups. Whereas server

pooling smooths out arrival and service variability, CCSA reduces the effective system load.

The relative impact of the two approaches depends critically on the system load and service

time variance. CCSA’s effectiveness improves as service times become more normal and/or

concurrency increases. We build a simple regression model on concurrency and service

43

time variance to estimate HoL blocking and indicate whether server pooling or CCSA is

more beneficial in reducing tail latency. System designers can use this model to guide

optimization effort and estimate its impact.

3.2 Background and Methodology

Most interactive cloud services can be modeled as A/S/c queuing systems (based on

Kendall’s notation [72]), where A specifies the request inter-arrival time distribution, S

the service time distribution, and c the number of concurrent servers. Regardless of the

distributions, the average arrival rate (λ) must be lower than the average aggregate service

rate of all servers (µc, with µ as the average service rate of a single server); otherwise,

requests queue without bound.

The most common queuing models used in analytical studies are M/M/c systems*,

where both inter-arrival and service times follow exponential distributions. It can be shown

that the exponential distribution is the only continuous distribution with the memoryless

property (i.e., occurrence of events is independent of the system’s history) [72]. An inter-

esting property of exponentially distributed random variables is the constant ratio between

their mean values and all of their quantiles (including the median and all-percentile tails), as

shown in Equation (1). Due to the memoryless property of exponential distributions, M/M/c

queuing systems can be easily analyzed with Continues Time Markov Chains (CTMCs)

and have closed-form solutions for many of their parameters, such as average waiting and

sojourn (waiting plus service) times.

P(S > αE(S)) = e−α (1)

Neither inter-arrival nor service times of interactive cloud services are perfectly modeled

by exponential distributions. But, since requests usually originate from a large pool of

*M stands for Markovian.

44

independent sources (e.g., many distinct users), they typically mimic Poisson (memoryless)

arrivals; prior studies have observed that inter-arrival time distributions usually have small

coefficients of variation (mostly, between 1 and 2 [134]). As such, inter-arrival processes can

be well approximated with an exponential distribution (CV = 1) with little fidelity loss [133].

Service time distributions, in contrast, may have long tails; some requests encounter rare

hiccups that increase service time by 10×-100× (or even more) over the mean—much larger

than the ratio of the 99th percentile and mean values in the exponentially distributed services

times of M/M/c systems (∼ 4.6, based on Equation (1)). Hence, interactive cloud services

are often investigated using M/G/c queuing models† [132, 99].

Unfortunately, M/G/c queuing models do not have closed-form solutions for average

waiting/sojourn times and the accuracy of existing approximations, which use only a few

moments, is poor [68]. Furthermore, to the best of our knowledge, there is no widely-

used approximation for waiting/sojourn time quantiles of these systems. Thus, we use

stochastic queuing simulation, based on the BigHouse methodology [134], to measure the

tail latency of such M/G/c systems. We simulate the queuing system until we achieve

95% confidence intervals of 5% error in reported results. We consider the First-Come-

First-Served (FCFS) queuing discipline as prior work [115, 207] shows it to be the best

non-preemptive scheduling policy when tail latency is the metric of interest.

We model “nominal” request performance by drawing service times from an exponential

distribution with mean 1/µn. Then, to represent rare/slow requests, which we call “hiccups”,

with probability ph we add an additional delay drawn from a second exponential distribution

with mean 1/µh. We vary both ph and the ratio of µn/µh in our experiments. This hybrid

model is similar to the dual-branch Hyperexponential distribution, which is widely used as a

phase-type distribution for approximating heavy-tailed systems [72]. We study analytical

distributions as they are easier to understand and their parameters can be tuned to model

various real scenarios.
†G stands for General.

45

The intent of our approach is to model the near-memoryless nominal behavior of cloud

services and then overlay an independent distribution to model hiccups. We consider

hiccups that are (1) 10× longer than average, affecting 1% of requests, and (2) 100× longer

affecting 0.1% of requests. (1) represents unusual code paths that arise in e.g., web search.

As an example, Microsoft observes a bimodal distribution for Bing search [70], wherein

most requests incur latencies close to the mean but occasional requests require an order of

magnitude more processing time due to their complicated search queries. They report a 27×

ratio between the 99th percentile tail and the median latency (which is usually smaller than

the mean). Similarly, Google reports a 1ms median leaf service time with 99th percentile

tail latency of 10ms [37]. (2) represents rare pauses that arise due to system activities and

interference. As an example, [202] studies a multi-tier web application and identifies a

similar bimodal distribution incorporating rare requests with less than 1% probabilities

that take 30−40× longer than the mean due to “transient events”, such as JVM garbage

collection or voltage/frequency state transitions.

3.3 The Queuing-First Approach

Requests may incur an end-to-end latency in a high percentile tail either because the

request itself incurred a rare hiccup or due to queuing delays. Queuing greatly magnifies the

impact of few, rare hiccups by causing nominal requests to queue behind one with a hiccup

and incur high sojourn times. With deterministic or memory-less service times, queuing

arises primarily due to request bursts, wherein the instantaneous arrival rate exceeds the

average service rate. However, with high-disparity service time distributions, queuing is

caused mostly by HoL blocking, wherein the instantaneous service rate drops temporarily

well below the average request arrival rate.

The differing nature of queuing has important implications. First, with high-disparity

service, queuing can arise even at low load; when a slow request stalls the server for a long

time, many requests may queue behind it, even if the arrival rate is low. Second, it increases

46

0

1

2

3

4

5

6

0 20 40 60 80 100

N
or

m
al

iz
ed

 ta
il

la
te

nc
y

% System Load (λ/μ)
Service Time Sojourn Time

0

10

20

30

40

50

60

0 20 40 60 80 100

N
or

m
al

iz
ed

 ta
il

la
te

nc
y

% System Load (λ/μ)

0

20

40

60

80

100

120

0 20 40 60 80 100

%
 Q

ue
ui

ng
 d

el
ay

 in
 so

jo
ur

n
ta

il
re

qs

% System Load (λ/μ)
M/M/1 Queue M/G/1 Queue

0

20

40

60

80

100

120

0 20 40 60 80 100

%
 S

oj
ou

rn
 ta

il
re

qs
al

so
 in

 se
rv

ic
e

ta
il

% System Load (λ/μ)

(a) (b)

(c) (d)

Figure 3.1: (a) Normalized service- and sojourn-time 99th percentile tail in an M/M/1 queue, (b)
normalized service- and sojourn-time 99th percentile tail in an M/G/1 queue, (c) average % wait time
in sojourn-time tail requests, and (d) % of sojourn-time tail requests that are also in the service-time
tail. The M/G/1 queue has an exponential service time distribution but incorporates 100× hiccups
that occur in 0.1% of the requests.

the contribution of nominal requests to the sojourn-time tail; while hiccups directly impact

few requests, such requests account for a large fraction of server utilization. As such, a

substantial fraction of nominal requests queue behind the exceptional ones. As an example,

in an M/G/1 queue where 0.1% of requests incur a 100× higher-than-nominal service time,

the exceptional requests account for ∼ 10% server utilization. As a consequence of Poisson

arrivals, ∼ 10% of requests arrive during such a slow service and may also contribute to the

sojourn-time tail.

Figures 4.1(a) and (b) report the normalized 99th percentile tail latency of an M/M/1

system and its M/G/1 counterpart with the high-disparity service time distribution described

above across various load levels. Figure 4.1(c) reports the fraction of sojourn time spent

waiting by the 1% slowest requests for both M/M/1 and M/G/1 queues. Under low loads,

wait time is usually small in M/M/1 systems and the sojourn-time tail is nearly the same

47

as the service-time tail. However, queuing accounts for a significant fraction of tail latency

when the service time distribution is high-disparity. Furthermore, since hiccups occur with a

low probability (0.1%), they do not noticeably affect the service time 99th percentile tail.

However, due to HoL blocking, their impact on the sojourn-time tail is large under both low

and high loads.

Figure 4.1(d) reports the percentage of requests in the sojourn-time tail that also con-

tribute to the service-time tail. Under both low and high loads, the percentage is much higher

in the M/M/1 system. With high-disparity service times, HoL blocking in the M/G/1

system comprises the bulk of the tail—most sojourn-time tail requests are nominal requests

that queue behind exceptionally slow ones. Furthermore, as shown in Figure 4.1(c), while

the fraction of queuing delay relative to sojourn time in tail requests is higher in the M/G/1

system, queuing still accounts for more than half of sojourn time even in M/M/1 systems

for loads over ∼ 30%.

The takeaway is that, if a service incurs either high load or has a high-disparity service

time distribution, end-to-end tail latency is dominated by queuing effects. As a result,

improving system queuing behavior is typically more effective than seeking to directly

mitigate system hiccups that cause heavy/long tails. Finding and mitigating system hiccups

is hard. As such, we advocate pursuing optimizations that address queuing behavior instead.

3.3.1 Server Pooling

Figure 3.2 contrasts two different models to compose multiple servers. In the scale-

out model, each server has a separate request queue and a dispatcher/load balancer steers

incoming requests into different queues such that the request arrival rate of all servers is

balanced. In the scale-up model, instead a single request queue is shared among all servers,

which each fetch requests from the central request queue as they become idle. This model

requires synchronization of the central request queue, but improves queuing.

It can be shown that the scale-up (M/G/c) organization always outperforms the scale-out

48

!/# $
!/# $

!/# $

!
$
$

$

… …
Scale-out	Organization
c-M/G/1	Queues

Scale-up	Organization
Single	M/G/c	Queue

Figure 3.2: Scale-out vs. scale-up queuing organizations.

organization (c−M/G/1) in principle (neglecting synchronization). First, in the scale-up

organization, a server will not remain idle if there are requests waiting in the central queue.

However, in scale-out systems, a server may remain idle if its own queue is empty even

while other servers have outstanding requests. Second, when a request takes longer than

average in a scale-out organization, all the requests behind it suffer from HoL blocking

delays. In contrast, in scale-up architectures, requests may be serviced by any server; stalling

at one server has little impact on system-wide instantaneous service rate.

Several prior studies have observed that scale-up queuing systems outperform scale-out

organizations [115, 99]. However, a large number of contemporary software systems use

a scale-out queuing architecture as it is easier to implement [115]. Implementing a scale-

up model across multiple machines requires remote disaggregated memory accesses or a

distributed data structure, which are difficult to implement and optimize. Even within a single

multi-core server, implementing a scale-up model mandates either a single synchronized

data structure or a work-stealing architecture, which incur coherence traffic and are difficult

to scale.

We refer to the practice of consolidating c−M/G/1 servers into a single M/G/c

system as Server Pooling. When service-time distributions are high-disparity, HoL blocking

49

0
5

10
15
20
25
30
35
40

Base
lin

e

50% sh
orte

r h
icc

ups

50% lo
wer h

icc
up prob

No hicc
up

Poolin
g-2

Poolin
g-3

Poolin
g-5

Poolin
g-1

0

CCSA
-1.2

CCSA
-1.5

CCSA
-2.0

0
2
4
6
8

10
12
14
16
18
20

Base
lin

e

50% sh
orte

r h
icc

ups

50% lo
wer h

icc
up prob

No hicc
up

Poolin
g-2

Poolin
g-3

Poolin
g-5

Poolin
g-1

0

CCSA
-1.2

CCSA
-1.5

CCSA
-2.0

0
1
2
3
4
5
6
7

Base
lin

e

50% sh
orte

r h
icc

ups

50% lo
wer h

icc
up prob

No hicc
up

Poolin
g-2

Poolin
g-3

Poolin
g-5

Poolin
g-1

0

CCSA
-1.2

CCSA
-1.5

CCSA
-2.0

(a) (b) (c)

Figure 3.3: Normalized service-time (light bars) and sojourn time (dark bars) tails of an M/G/1
queue under different scenarios. (a) 70% load, 100× hiccups affecting 0.1% of requests, (b) 70%
load, 10× hiccups affecting 1% of requests, and (c) 30% load, 100× hiccups affecting 0.1% of
requests.

becomes the main source of queuing delay (and tail latency) and the gap between the two

queuing organizations grows. We argue that Server Pooling can play a key role in resolving

HoL blocking under such service conditions and hence should be pursued despite higher

implementation complexity. In fact, Server Pooling often reduces the tail latency more than

directly mitigating the rare hiccups that cause exceptionally long service.

Figure 3.3 reports the normalized service/sojourn time tail latencies in an M/G/1 system

with different service time distributions and system loads. The leftmost red bars represent

tail latencies in the presence of rare hiccups. The next group of blue bars show the tail latency

where the impact (i.e., duration/probability) of hiccups has been reduced. In particular, from

left to right, these bars represent cases where hiccup duration is halved, their occurrence

probability is halved, and where hiccups are fully eliminated. Finally, the cluster of green

bars indicate server pooling cases with varying number of servers c. (We discuss the orange

bars later.)

Figure 3.3(a) considers an exponential service time distribution with hiccups that occur

0.1% of the time and last 100× longer than the average service time under 70% system

load. We make three observations: First, reducing the hiccup probability is considerably less

effective at reducing the overall tail than reducing their duration. The intuition is that longer

hiccups cause more requests to queue and hence exacerbate tails more than shorter but more

frequent hiccups. Second, pooling only two servers reduces tail latency almost as much as

halving hiccup durations. Whereas it may be challenging to implement high-concurrency

50

data structures to enable a high degree of server pooling, sharing queues across just pairs of

machines or cores is likely easier than finding and mitigating hiccups. Finally, with greater

degrees of server pooling, queuing delay vanishes and the sojourn-time tail and service-time

tail match. In such a scenario, end-to-end tail latency is even lower than in a system with no

hiccups but without pooling.

Figure 3.3(b) reports the same results for hiccups 10× longer than the average occurring

in 1% of requests. Whereas the general trend matches Figure 3.3(a), the gap between the

service- and sojourn-time tails is noticeably smaller even though the total service time

attributable to hiccups is the same (10× 1% = 100× 0.1%). As previously observed,

longer hiccups introduce more severe HoL blocking and cause more nominal requests

to queue behind the exceptional ones (despite lower hiccup probability). Nevertheless,

in Figure 3.3(b), pooling across only two servers, despite hiccups, is enough to reduce

the sojourn time tail below that of a system without server pooling and without hiccups.

Figure 3.3(c) considers the same service time distribution as Figure 3.3(a) but under lower

(30%) system load. Here, whereas queuing delays are typically near-negligible under

low load, the high-disparity service distribution nevertheless causes HoL blocking and a

significant sojourn time tail. Interestingly, the ratio between the sojourn- and service-time

tails is much higher than that seen in Figure 3.3(b) due to longer hiccups and higher HoL

blocking, despite lower load. Furthermore, when HoL blocking is high but system load is

low, pooling across two servers completely eliminates queuing delay.

In summary, server pooling is highly effective in eliminating HoL blocking and reducing

queuing delays that otherwise arise due to rare system hiccups. Although pooling across

many cores/machines is often challenging, encouragingly, we show that pooling across as

few as two servers is often sufficient for large tail latency reductions.

A variety of steering and scheduling techniques can enable a scale-out system to more

closely approximate scale-up system behavior. Examples include smart load-balancing

schemes that steer requests to queues based on wait time estimates derived from metrics

51

like queue occupancy, injecting replica requests to different queues and then cancelling the

redundant requests [37], and various work-stealing approaches that migrate tasks between

queues [116]. While these techniques typically fall short of an ideal M/G/c system, they

still drastically reduce wait time and HoL blocking. Further, as shown by Wierman and

Zwart [207], FCFS scheduling is only best for M/G/1 queues if the service-time distribution

is light-tailed. Otherwise, variants of Processor Sharing outperform FCFS in terms of

tail latency. Thus, should direct implementation of server pooling prove prohibitive in

a particular system, time-multiplexing machines/cores among requests may provide an

alternative to address queuing due to rare hiccups.

3.3.2 Common-Case Service Acceleration

CCSA is another general approach to improve system queuing behavior. In this approach,

rather than seek to mitigate the rare hiccups that cause high service times, instead, the system

designer deploys optimizations that accelerate common case behavior. As such, while CCSA

directly reduces average service time, it has little effect on the tail of the service distribution.

Conventional wisdom suggests that improving average service time does not improve tail

latency; indeed, some prior work suggests trading off slower average performance to reign

in tails [82, 70]. However, reducing average service time increases service rate, and hence

reduces server utilization. Reduced utilization in turn reduces queuing delays.

Unlike server pooling, CCSA has little impact when HoL blocking is high, as nominal

requests enqueue behind long ones regardless of how fast nominal requests are processed.

The rightmost set of orange bars in Figure 3.3 report service and sojourn time tails under

varying degrees of CCSA (i.e., different speedups of common-case service time). We

observe a large benefit in Figure 3.3(b), where hiccups are relatively short and there is little

HoL blocking; accelerating the common-case service time by only 20% (without affecting

its tail) reduces the sojourn time tail almost as much as reducing the average hiccup length

by half. Doubling the service rate reduces the sojourn time tail below that of a system with

52

0
4
8

12
16
20

Base
lin

e

Poolin
g-2

Poolin
g-3

Poolin
g-4

Poolin
g-6

Base
lin

e+C
CSA

-2.0

Poolin
g-2

+C
CSA

-2.0

Poolin
g-3

+C
CSA

-2.0No
rm

al
ize

d
Ta

il
La

te
nc

y

Figure 3.4: Normalized sojourn time tail latency in an M/G/1 queue (100× hiccups in 0.1% of
requests) with various degrees of server pooling and CCSA.

no hiccups or a system with a pooling degree of two. In the remaining cases (Figures 3.3(a)

and (c)), CCSA has only modest impact on the sojourn time tail, as there is more HoL

blocking and insufficient concurrency for requests to avoid it.

CCSA provides greater benefit with higher concurrency (e.g., via server pooling). Even

modest concurrency is sufficient to unlock CCSA’s effectiveness; rare events are unlikely to

occupy multiple servers at the same time, so nominal requests nearly always bypass a stalled

server. As an example, Figure 3.4 considers the scenario from Figure 3.3(a) but in M/G/2

and M/G/3 systems (i.e., with server pooling). Not only is CCSA better than mitigating

hiccups, it is also better than further increasing server pooling. We expect that CCSA

will typically be easier to implement than hunting down and optimizing the underlying

causes of rare performance hiccups as software developers are already incentivized to make

the common case fast. Note that this approach is most beneficial for service distributions

wherein, despite heavy/long tails, most of the system utilization arises from nominal re-

quests. For example, in our modeled distributions, ∼ 10% of system utilization is spent on

hiccups. However, in many power-law distributions, tail events contribute to 80−90% of

53

the distribution; CCSA would not be as effective in such scenarios.

3.3.3 Discussion

We expect CCSA to be more beneficial than server pooling, as CCSA reduces the

effective system load, while server pooling has no effect on load/utilization. However, as

we showed in the previous subsection, CCSA is only effective in the absence of sever HoL

blocking. When HoL blocking is frequent (e.g., service time variance is high), CCSA no

longer provides benefit as nominal requests queue behind exceptionally long ones. In such

scenarios, additional concurrency must be introduced to unleash CCSA’s efficacy.

In single-server systems, service time variability is a good measure of HoL blocking.

For example, in Figure 3.3(a), where CVservice = 4.2, CCSA has negligible impact; nominal

requests wait behind slow ones. In contrast, in Figure 3.3(b) where CVservice = 1.6, (near the

CVservice = 1.0 of M/M/∗ queues), CCSA is more effective than server pooling. However,

CVservice only reflects HoL blocking in single-server systems. We suggest the inter-departure

time variability of a saturated queue (when queuing probability is close to 1.0) to measure

HoL blocking in multi-server queues. In saturated single-server queues, the inter-departure

time distribution is the service time distribution (CVservice = CVdeparture). However, with

multiple servers, departures interleave, reducing inter-departure time variability. For exam-

ple, in Figure 3.4, which is similar to Figure 3.3(a) but with an additional 1-2 servers, the

CVdeparture drops (from 3.0) to 1.7 and 1.1, respectively. As a result, in the M/G/2 case,

CCSA yields almost the same benefit as pooling. In the M/G/3 case, where HoL blocking

resembles that of an M/M/∗ queue with CVdeparture = 1.0, CCSA yields much better results

than server pooling.

We find that a simple regression model can predict the CVdeparture of a saturated M/G/c

queue based on its CVservice and the number of servers (c). We construct the model by

simulating saturated queues with a set of heavy-tailed distributions with different CVservice

and measure their CVdeparture. We observe that small degrees of server pooling quickly

54

reduce HoL blocking. Therefore, we postulate an exponential decay effect for the number

of servers. Also, we note that CVdeparture may not decrease below 1.0 as the inter-departure

process becomes near-memoryless around CVdeparture = 1.0, where the ratio of tail-to-

average cases does not decrease through higher concurrency (see Equation (1)). As a result,

we suggest a regression model of the form of Equation (2) and tune its parameter using the

Least Squares method. We find its average error to be less than 13%.

CVdeparture ≈ (CVservice−1)e−0.8(c−1)+1 (2)

Using this model, we can derive CVdeparture as a proxy for the HoL blocking rate and

predict how it is affected by server pooling. Alternatively, cloud system architects may

perform Stochastic Queueing Simulations, similar to our approach, and directly measure

CVdeparture instead of predicting it. When the system approaches the CVdeparture = 1.0 of

M/M/∗ queues, blocking becomes rare; the remaining tail of the sojourn time distribution

is then primarily due to service time tails or high load. Under low load, queuing delays

vanish with sufficient server pooling; remaining sojourn time tails reflect only service tails.

Under high load, HoL blocking will no longer be the dominant source of queuing delays

when sufficient concurrency has been introduced. As such, with sufficient server pooling

(often just 2-3 servers), CCSA becomes more effective than further server pooling.

In short, we recommend developers follow a simple optimization sequence to address

tail latency in their services: (1) introduce server pooling until HoL blocking is sufficiently

mitigated; (2) if load is high, introduce CCSA; (3) if end-to-end tails remain unacceptable,

only then seek to directly optimize rare, high service latencies.

55

3.4 Conclusion

Managing high-percentile tail latencies is key to designing user-facing cloud services.

Rare system hiccups or unusual code paths make some requests take 10×-100× longer

than the average. Prior work seeks to reduce tail latency by trying to address primarily root

causes of slow requests. However, often the bulk of requests comprising the tail are not

these rare slow-to-execute requests. Rather, due to head-of-line blocking, most of the tail

comprises requests enqueued behind slow-to-execute requests. Under high-disparity service

distributions, queuing effects drastically magnify the impact of rare system hiccups and

can result in high tail latencies even under modest load. We demonstrated that improving

the queuing behavior of a system often yields greater benefit than mitigating the individual

system hiccups that increase service time tails. We suggested two general directions to

improve system queuing behavior—–server pooling and common-case service acceleration–

—and discuss circumstances where each is most beneficial.

56

CHAPTER IV

Q-Zilla: A Scheduling Framework and Core

Microarchitecture for Tail-Tolerant Microservices

4.1 Introduction

Modern user-facing cloud services (e.g., web search, social media) must meet stringent

Service Level Objectives (SLOs) to ensure responsiveness to millions of daily users [11, 183].

Often expressed in terms of (e.g., 99th percentile) tail latency, SLOs target the latency of the

slowest requests, and thus bound the slowest interaction a user may have with the service.

The “tail at scale” effect [37] makes tail-tolerant computing even more challenging—such

services typically communicate via fan-out patterns wherein datasets are “sharded” across

numerous “leaf” servers and their responses are aggregated before responding to the user.

As such, the end-to-end latency is often dictated by the slowest leaves.

Two effects can lead to high tail latencies. First, applications’ service time distributions

often include rare cases that take much longer (10×-100× or more) than the mean [99].

Such tasks may require extraordinary processing time and/or trigger unusual code paths [70,

82, 91]. In other cases, system effects, such as from garbage collection [202, 37], memory

management activities [177, 156], virtualization [212], network stack impediments [96, 115,

203], or co-runner application interference [220, 122, 38] may delay tasks.

Queuing effects are a second key contributor to end-to-end tail latency [41]. Queuing,

57

where some requests must wait for others, arises at many system layers [37, 175]. Whereas

queuing can affect average performance, its effect on tail latency may be devastating. For

stable performance, systems must be engineered to ensure overall request arrival rate is

below the aggregate system capacity (service rate). However, as both rates fluctuate, arrivals

may briefly outstrip service capacity, causing requests to queue. Queuing delay is most

apparent under high service time variability and/or high system load. Under high-disparity

service distributions, many requests become delayed by an exceptionally slow one that stalls

a server/core—a phenomenon called Head-of-Line (HoL) blocking. These delayed requests

account for the bulk of the latency distribution tail under moderate-to-high loads [139].

In this chapter, we introduce Q-Zilla as an algorithmic framework to tackle the problem

of tail latency from a queuing perspective. In Q-Zilla, we make two distinct contributions:

First, we propose Server-Queue Decoupled Size-Interval Task Assignment (SQD-SITA) as an

efficient scheduling algorithm for high-disparity service distributions to minimize tail latency.

SQD-SITA is inspired by an earlier algorithm, SITA [35, 73], which seeks explicitly to

address HoL blocking by providing an “express-lane” for short tasks, protecting them from

queuing behind rare, long ones. However, SITA requires prior knowledge of tasks lengths to

steer them into their corresponding lane—an impractical assumption. Furthermore, whereas

SITA is generally effective at reducing queuing delay and tail latency, it can fall short of

the performance of a single-queue M/G/k* system when some lanes become underutilized.

To overcome these challenges, SQD-SITA uses incremental preemption to avoid the need

for a priori task-size information, and dynamically reallocates servers to lanes to boost

server utilization. SQD-SITA never falls short of M/G/k performance. We further introduce

an enhanced variant of SQD-SITA, called Interruptible SQD-SITA (ISQD-SITA), which

maximizes server utilization and further improves tail latency at the cost of additional

preemptions.

*Kendall’s Notation: A/S/k [A/S: arrival/service distribution, k: number of servers, M: Markovian/mem-
oryless (exponential) distribution, G: general distribution]—because requests usually originate from many
independent sources (e.g., distinct users), they typically mimic Poisson (memoryless) arrivals [134, 72].

58

Second, as an example realization of the Q-Zilla framework, we propose CoreZilla,

a microarchitecture to minimize the tail latency of µs-scale microservices. Modern in-

ternet services use distributed microservice architectures, wherein a complex application

is decomposed into numerous discrete microservices that interact over high-performance

data center networks using remote procedure calls (RPCs) [187, 185, 58]. Many cloud

service companies, including Amazon [188], LinkedIn [189], Netflix [193], and Sound-

Cloud [159] have adopted microservice-based architectures. Example microservices include

content caching [56, 54], protocol routing [118, 150], key-value lookup [92, 142], query

rewriting [8], or other steps performed across various application tiers [59].

Managing tail latency is inherently more difficult for microservices, as individual RPCs/-

tasks are often only a few microseconds [138, 9]. Due to these short task lengths, it is often

prohibitive to implement a “scale-up” queuing organization, wherein a single task queue is

shared among all cores, as this organization leads to high contention on the shared queue—

all cores must synchronize frequently to retrieve new tasks and the excessive synchronization

costs may outweigh the benefits of sharing the task queue across cores. Nonetheless, such

systems can adopt a hierarchical queuing scheme, wherein each core maintains a distinct

queue that is shared only among hardware threads running on that core, achieving strong

cache affinity for the local task queue.

Our proposal, CoreZilla, implements a hierarchical scheduling algorithm across hardware

contexts in a Simultaneous Multithreading (SMT) core. It incorporates an automatic load

adaptation scheme that dynamically tunes the number of physical contexts and schedules

virtual contexts on them using ISQD-SITA. CoreZilla minimizes queuing delay and tail

latency at each core, obviating the need for a cross-core scale-up queuing architecture and its

associated synchronization and cache coherence overheads. Our evaluation demonstrates that

CoreZilla improves tail latency over a conventional SMT core by 2.25×, 3.23×, 4.38× with

2, 4, 8 contexts, on average, respectively. We further compare CoreZilla to a hypothetical

32-core scale-up system with idealized (zero-overhead) synchronization. CoreZilla with

59

8 contexts still outperforms the idealized scale-up design by 12%, due to superior task

scheduling.

4.2 Background and Motivation

4.2.1 Queuing Organizations

Prior work has considered two different approaches to compose multiple servers: scale-

out and scale-up [139]. In the scale-out model (k−M/G/1), a dispatcher balances incoming

tasks among separate request queues dedicated to each server. In the scale-up model, servers

instead fetch tasks from a single, shared queue. In principle, in terms of average and

tail response time, the scale-up (M/G/k) organization always outperforms the scale-out

organization. In the scale-up organization, no server will idle if there are tasks waiting in

the central queue. However, in scale-out systems, a server with an empty queue will remain

idle even while others have outstanding tasks. Furthermore, for scale-out systems, when a

task takes longer than average all the tasks behind it suffer from HoL blocking. In contrast,

in the scale-up model, tasks may be serviced by any server; stalling at one server has less

impact on the system-wide instantaneous service rate.

Figure 4.1 reports the normalized 99th percentile tail latency of five different microser-

vices measured at 70% load, on a Xeon processor with 16 cores and Hyperthreading. More

details about the microservices are presented in Section 4.7. Different bars report the tail la-

tency under (1) a scale-out queuing organization, wherein each core has a distinct task queue,

(2) a hierarchical queuing organization, wherein the two hyperthreads of each core share a

single task queue, (3) a scale-up organization, wherein a single task queue is shared among

all cores, and (4) a theoretical scale-up model, wherein the costs of the synchronization and

cache coherence are neglected (not measured on real hardware).

As shown in Figure 4.1, whereas a scale-up organization can theoretically result in 8.3×

lower tail latency, on average, compared to a scale-out organization, it can only reduce

60

0

2

4

6

8

10

RocksDB Word
Stemming

FLANN Remote
Storage
Caching

McRouter GeoMean

N
o

rm
al

iz
ed

 T
ai

l L
at

en
cy

Scale-Out Hierarchical Scale-Up (Practical) Scale-Up (Theoretical)

16
.5

31
.6

21
.7

19
.1

Figure 4.1: Normalized 99th percentile tail latency of different queuing organizations (16 dual-
threaded cores).

the tail latency by 1.93× in practice due to communication and synchronization costs of

the shared queue. However, a hierarchical approach only achieves 16% higher tail latency

than a practical scale-up organization because (1) sharing the queue across hyperthreads

within a core minimizes the synchronization/coherence overheads [63], and (2) as observed

in prior work [139], only a small degree of concurrency is sufficient to eliminate the HoL

blocking and allow the nominal tasks to drain past the rare, long ones. Interestingly, for

microservices like McRouter, which do not exhibit heavy-tailed service distributions, the

hierarchical approach results in lower tail latency than a practical scale-up organization.

Nonetheless, there is a still a ∼ 4× gap between the hierarchical approach and the

theoretical scale-up organization (with no synchronization or cache coherence overheads).

Our goal is to design scheduling algorithms that can be implemented across hardware

threads within a single physical core, to bridge the gap between theoretical and practical

(hierarchical) queueing schemes.

61

𝑳 < 𝜶

𝜶 < 𝑳 < 𝜷

𝜷 < 𝑳

𝑺𝟏

𝑺𝟎

𝑺𝟐

SITA

𝑺𝟏

𝑺𝟎

𝑺𝟐

Preemptive-SITA(a) (b) (c)

𝜷

𝜶

𝐋 < 𝛂

𝛂 < 𝐋

𝑺𝟏

𝑺𝟎

𝑺𝟐

Ganged-SITA

Figure 4.2: (a) Size-Interval Task Assignment (SITA); (b) SITA with incremental preemption
(Preemptive-SITA); and (c) SITA with Server Ganging (Ganged-SITA). α and β represent cutoff
points. L refers to task lengths.

4.2.2 SITA Scheduling

In an M/G/k system with high service-time variability, especially with moderate-to-high

load, it is probable that all servers become occupied by long tasks. In these cases, short tasks

become enqueued behind long ones and suffer substantially from HoL blocking, increasing

tail latency. The Size-Interval Task-Assignment (SITA) [35, 73] scheduling policy explicitly

addresses this problem by providing an “express-lane” for the short tasks, protecting them

from rare, long ones. Unlike M/G/k, SITA considers multiple servers with dedicated

queues for each, similar to scale-out (k−M/G/1) systems. However, in contrast to scale-

out systems, SITA assigns cutoff points to task-size intervals and steers tasks into queues

based on the interval to which their size belongs. As an example, Figure 4.2(a) illustrates

a SITA-scheduled system with three servers and cutoff points α and β . By providing an

express-lane for tasks that are shorter than α , SITA prevents them from being enqueued

behind long ones, to reduce tail latency under high service-time variability.

There are various approaches for tuning SITA cutoff points, such as equalizing the load

across all servers [73]. However, to minimize the end-to-end response time, cutoff points

must often be set in a way that intentionally unbalances load to favor either short or long

tasks [35]. Finding the minimal cutoff points for SITA is, to date, an open problem and is

usually done via empirical search, especially if the number of servers is small [72].

62

Physical Context 0

PC

Functional
Units

Virtual Context
Queue PointersMemory

CTX Queue
PTR 1

CTX Queue
PTR 0

Elapsed Time

Cutoff Register 0

Physical Context 1

Elapsed Time PC

PC
Regs

PC
Regs

PC
Regs

PC
Regs

PC
Regs

PC
Regs

Physical
Register File

Figure 4.3: A two-way Express-Lane SMT (ESMT) core.

Although SITA is often effective at reducing tail latency and queuing delay under most

high-variability service distributions, it suffers from two shortcomings: First, whereas

M/G/k fully utilizes all servers, SITA fails to do so, as it pre-assigns tasks to servers while

ignoring their load, similar to scale-out systems; while there might be outstanding tasks

at one queue, other servers may be idle waiting for new tasks to arrive. Second, SITA

requires task sizes to be known in advance, which is an impractical assumption. We propose

SQD-SITA to address these shortcomings.

4.3 Express-Lane SMT

We first introduce the Express-lane SMT (ESMT) [140] microarchitecture, as a basline

for CoreZilla. An ESMT core shown in Figure 4.3, comprises two physical contexts and a

fixed number (e.g., 32) of virtual contexts, organized in two context queues in dedicated

memory. The ESMT core may fetch and issue instructions only from the two physical

contexts. Virtual contexts must be swapped into a physical context before they may execute.

The ESMT core datapath resembles an SMT core with two hardware threads, and has similar

area costs and clock frequency. Similar to existing SMT cores, the physical register file

holds the architectural register values of all physical contexts and additional registers that

enable register renaming and out-of-order execution.

63

When the first physical context reaches a preset service cutoff, it stops fetching/dispatch-

ing new instructions and drains the in-flight instructions from the re-order buffer. Once

all in-flight instructions are drained, the context only contains architectural registers (all

temporary physical registers are released). Then, its architectural state (program counter,

registers, etc.) is swapped by the virtual context at the head of the first context queue and

the preempted virtual context is placed at the end of the second context queue.

Swapping the virtual contexts into and out of the core is performed via microcode

operations using the Firmware Context Switching (FCS) mechanism [197, 138]. FCS

behaves as an additional instruction sequence for swapping threads, much like that done in

software by the operating system, and therefore does not impose any additional requirements

on the number of register file ports; microcode r-save/r-restore operations access the register

file like typical load/store instructions. However, because FCS does not incur user/kernel

mode transitions or switch address spaces, it is considerably faster than software context

switches; while software context switches require 5-20µs [114, 195], a typical FCS can

usually be performed within only 300ns [197]. Nonetheless, each virtual context is slowed

down by at least a microsecond when it is preempted and moved to the second context queue

due to indirect caching effects (i.e., cold misses when the task is resumed) [138]. This is not

a significant problem in ESMT as the number of preemptions per virtual context is at most

one.

ESMT allocates an idle virtual context to each incoming task. By having two context

queues, ESMT provides an “express lane” for nominal tasks, protecting them from HoL

blocking behind rare, long ones, thereby reducing queuing delay and tail latency—ESMT

implements a preemptive variant of the SITA scheduling policy (which we will formally

define in Section 4.4) with only two lanes.

A major drawback of ESMT, and SITA in general, is underutilization of physical

contexts (servers in SITA) as they are statically mapped to queues. As we will show in

Section 4.8, ESMT bridges the small gap between a hierarchical queuing scheme and a

64

practical implementation of a cross-core scale-up queuing organization. However, due

to said underutilization, it still significantly falls short of a theoretical scale-up queuing

organization. Our goal is to design scheduling mechanisms that can be used in ESMT-like

core microarchitectures to avoid underutilization while minimizing preemptions, closing the

gap between hierarchical designs and theoretical scale-up organizations.

4.4 Server-Queue Decoupled SITA

We propose Server-Queue Decoupled (SQD)-SITA—a preemption-based variant of

SITA that improves server utilization by dynamically reallocating servers to queues, which

prevents servers from idling while tasks wait in another queue. We also introduce an

enhanced variant of SQD-SITA, called Interruptible SQD-SITA (ISQD-SITA), which max-

imizes server utilization and further improves tail latency but may result in additional

preemptions. Note that the (I)SQD-SITA scheduling algorithm may be implemented on

different substrates, including multicore processors. However, in this chapter, we propose an

ESMT-based implementation of these algorithms, called CoreZilla, which is well-suited for

modern µs-scale microservices. We construct the SQD-SITA and ISQD-SITA scheduling

algorithms in three steps:

4.4.1 Adding Preemption and Ganging to SITA

We begin our development of SQD-SITA by enhancing SITA with incremental preemp-

tion and server ganging.

Incremental preemption. Whereas SITA statically assigns tasks to lanes based on their

length, SQD-SITA incrementally preempts and migrates them to the end of the next queue as

they reach a pre-determined service time cut-off. We call a SITA variant that also performs

incremental preemption preemptive-SITA, as shown in Figure 4.2(b), and compare against it

in our evaluation. The incremental preemption approach of preemptive-SITA is similar to

the approaches used in ESMT [140] and some software frameworks [70, 116]. Unlike SITA,

65

preemptive-SITA (and SQD-SITA) does not require prior knowledge of task lengths.

Server ganging. Server ganging (also called server pooling) is the practice of merging

multiple scale-out queues into a single scale-up one by allowing multiple servers to share a

single queue [139]. The original SITA algorithm was designed for task allocation in data

center clusters, where a “server” represents a physical machine [35]. In such deployments,

each server is associated with a distinct queue. However, SQD-SITA is intended primarily

for scheduling tasks on cores/threads within a single machine. Therefore, it is possible to

consolidate multiple queues and have fewer queues (and hence, cutoffs) than servers. Our

key observation, which we will quantitatively explain in Section 4.8, is that only a few

cutoffs are typically sufficient for SITA to achieve optimal isolation of long and short tasks;

having a distinct cutoff per server leads to unnecessary load-imbalance, increasing queuing

delay and tail latency. As a result, to construct the SQD-SITA algorithm, we start from a

(preemptive) SITA variant where the number of queues is less than or equal to the number

of servers, allowing a queue to be serviced by more than one server, as the first step towards

server-queue decoupling. We call this variant Ganged-SITA, as shown in Figure 4.2(c), and

compare against it in our evaluation.

4.4.2 Server-Queue Decoupling

The key feature of SQD-SITA is that it dynamically reallocates servers to queues to

improve utilization and tail latency. We start from a preemptive-SITA system with server

ganging as a strawman and look for scenarios where changing the assignment of servers to

queues improves utilization without impacting performance. To this end, we derive upper

and lower bounds on the number of servers that can be assigned to service tasks from each

queue, and an algorithm to assign servers to queues in a way such that these bounds are met.

All tasks enter the system at queue 0 and, when they reach the predetermined service

cutoff, are preempted and enqueued in queue 1, and so on. Thus, each successive queue

contains longer tasks. Whereas in a conventional queuing system, servers are assigned to

66

particular queues, in SQD-SITA, we conceptually associate lanes with each queue, and

servers join lanes to accept tasks from a particular queue. A server is only preempted when

its task finishes or reaches the cutoff point where it should advance to the next lane (i.e., task

preemptions are only triggered by timers, not any external events, such as new task arrivals);

we will relax this assumption later when we discuss ISQD-SITA. When a task is immediately

reassigned to the server it was running on before being preempted, the preemption is elided.

Reservations and starvation. In SQD-SITA, we conceive a system with N servers

and M queues/lanes, numbered 0 to N-1, and 0 to M-1, respectively, where M <= N. We

associate each lane with a positive number of reservations, where the sum of the number of

reservations in all M lanes is equal to N. Thus, for example, if the number of servers and

lanes is equal (M = N), each lane has only one reservation. The number of reservations

specifies the minimum number of servers that must be available to serve tasks in a lane. We

say that a lane starves if it has fewer tasks in service than its reservations while tasks wait

in its queue. SQD-SITA’s goal is to maximize server utilization while avoiding starvation.

That is, we allow a lane to be assigned more servers than its reservations only if we can

guarantee no other lane will starve.

Upper-bound criterion. To ensure a lane is assigned servers beyond its reservation only

if we provably avoid starvation, we define an upper bound criterion to limit the maximum

number of servers that may be assigned to each lane. The upper bound criterion assures

that, if new tasks arrive, servers will be available at lower-numbered lanes so those lanes

do not starve. The upper-bound criterion is expressed in Equation 1. For any given lane,

the number of servers that may be allocated to this and all higher-numbered lanes, in total,

is at most the cumulative reservations of these lanes. At a high level, Equation 1 ensures

that, for any k, lanes 0 to k can always accommodate, in total, at least as many tasks as their

cumulative reservations. To understand the purpose of this criterion, consider an extreme

case where all the lanes 0 to k are empty. Even so, a burst of tasks might arrive and quickly

flow into these lanes before existing (long) tasks running in higher-numbered lanes finish,

67

starving low-numbered lanes. In the special case where the number of lanes and servers

are equal (i.e., each lane has a single reservation), Equation 1 simplifies to Equation 2. In

this case, only one server may service lane N-1 (longest tasks), at most two in lanes N-2 or

higher, 3 in lanes N-3 or higher, and so on.

∀ 0≤ m≤M−1 :
M−1

∑
i=m

servers(lanei)≤
M−1

∑
i=m

reservations(lanei) (1)

∀ 0≤ m≤M−1 :
M−1

∑
i=m

servers(lanei)≤M−m (M = N) (2)

Lower-bound criterion. Whereas the upper-bound criterion is necessary to avoid

starvation, it is not sufficient. We must also introduce a lower-bound criterion on the

allocation of servers to lanes, denoted in Equation 3. At a high level, the lower-bound

criterion ensures that a lane will receive at least as many servers as the sum of its reservation

and the unused reservations of higher-numbered lanes. The key intuition underlying this

criterion is that tasks that reach a cutoff and must advance to the next lane can take their

server with them to satisfy the next lane’s reservation but this must not cause their previous

lane to starve. The lower bound criterion ensures this does not happen. We will provide an

example later to illustrate this case.

∀ 0≤ m≤M−1 : servers(lanem)≥ (3)

min(tasks(lanem),
M−1

∑
i=m

reservations(lanei)−
M−1

∑
i=m+1

servers(lanei))

Interestingly, we show that, to maximize utilization (while ensuring no lane starves),

each lane must be allocated exactly as many servers as specified by the lower-bound criterion:

the upper bound criterion (Equation 1) can also be written as Equation 4 by deriving the

maximum number of servers that may be allocated to each lane from Equation 1. Equation

4 shows that this maximum number equals the second operand of the min() function in

Equation 3. When this second operand is the smaller, the upper- and lower-bound criteria

match. Conversely, if the first is the smaller (the lane has fewer tasks than reservations),

allocating additional servers to the lane would leave those servers idle. As a result, in

68

(Step 1) (Step 2) (Step 3) (Step 4)

𝑆𝑆𝑆

𝑆𝑆1

𝑆𝑆0

𝑆𝑆𝑆

𝑆𝑆1

𝑆𝑆0

𝑆𝑆𝑆

𝑆𝑆𝑆

𝑆𝑆0

𝑆𝑆𝑆

𝑆𝑆𝑆

𝑆𝑆0Lane 2

Lane 1

Lane 0

Lane 2

Lane 1

Lane 0

Lane 2

Lane 1

Lane 0

Lane 2

Lane 1

Lane 0

Figure 4.4: (Step 1) The initial configuration of an SQD-SITA system with three lanes and three
servers, which are all initially allocated to lane 0, and (Step 2)/(Step 3)/(Step 4) when the first/sec-
ond/third task reaches the first cutoff point.

SQD-SITA, each lane (except lane 0) is allocated exactly as many servers as specified by

the lower bound criterion (Equation 3), maximizing server utilization and ensuring no lane

starves. “Extra” servers beyond those required to satisfy the lower-bound criterion wait at

lane 0 in anticipation of newly arriving tasks.

∀ 0≤ m≤M−1 : (4)

servers(lanem)≤
M−1

∑
i=m

reservations(lanei)−
M−1

∑
i=m+1

servers(lanei)

SQD-SITA algorithm. To ensure lanes are allocated servers to match the lower-bound

criterion, SQD-SITA adopts the following algorithm: when a server becomes idle, it joins

the highest-numbered lane where the lower-bound criterion (Equation 3) is not already met.

Stated differently: when a server becomes idle, it joins the highest-numbered lane with

a non-empty queue, where allocating one more server would not violate the upper-bound

criterion (Equation 1 or 4).

Example. We illustrate SQD-SITA’s operation in Figure 4.4. In this simple example,

the number of servers and lanes are both three, and hence, each lane has a single server

reservation. Initially, all servers accept tasks from lane 0. When a server becomes idle (i.e.,

its task finishes or reaches the cutoff point and is therefore preempted and advances to the

next queue), the server joins a lane to accept a new task from the head of the corresponding

queue according to the SQD-SITA procedure. Suppose three tasks (red, orange, yellow)

arrive at queue 0; all three servers (S0-S2) accept tasks from lane 0 and all three tasks enter

69

service (Figure 4.4 - Step 1). When the red task has been serviced for a time equal to the first

cutoff point, it is preempted and advances to queue 1. The newly idle server, S0, then scans

the queues to seek the eldest waiting task while respecting the upper-bound criterion. In this

case, S0 joins lane 1, as shown in Figure 4.4 (Step 2), and resumes servicing the task that

it had previously served (the preemption is elided). Now suppose the orange task running

on S1 also reaches the cutoff point; it is also preempted and migrated to lane 1. Again, the

newly idle server, S1, scans the queues, finds work in lane 1 (the just-preempted orange

task), and resumes serving the task (Figure 4.4 - Step 3). Note that this configuration does

not the violate upper-bound criterion, which allows at most two servers to be allocated to

lanes 1 and 2 in total. However, subsequently, when the yellow task also reaches the cutoff

point, although the task migrates to lane 1, server S2 may not join lane 1 and resume serving

the task, as the resulting lane assignment would violate the upper-bound criterion. Hence,

the yellow task is preempted and appended to queue 1, yielding the state in Figure 4.4 (Step

4), wherein server S2 remains idle at lane 0 (in anticipation of new arrivals) despite the

yellow task waiting at lane 1.

70

(Step 1) (Step 2a)

(Step 2b) (Step 3b)

𝑆𝑆2

𝑆𝑆0

𝑆𝑆1

𝑆𝑆2

𝑆𝑆𝑆

𝑆𝑆0

𝑆𝑆2

𝑆𝑆𝑆

𝑆𝑆0

𝑆𝑆2

𝑆𝑆0

𝑆𝑆1

?

?

Lane 2

Lane 1

Lane 0

Lane 2

Lane 1

Lane 0

Lane 2

Lane 1

Lane 0

Lane 2

Lane 1

Lane 0

Figure 4.5: (Step 1) A valid configuration where each lane has at least one task and is allocated a
server; (Step 2a) S0 follows the SQD-SITA procedure and joins lane 1 after finishing its task at lane
2; (Step 2b) S0 is allocated to lane 0 instead of lane 1 to prioritize short tasks; and (Step 3b) either
lane 1 or lane 2 starves due to shortage of servers, resulted by the lower-bound violation in Step 2b.

Avoiding starvation. It may at first seem counter-intuitive that idle SQD-SITA servers

scan lanes from highest to lowest to seek the eldest waiting task, as this appears to favor

longer tasks over shorter ones. This policy ensures the lower-bound criterion is met at

all lanes, while the the upper-bound criterion prevents too many servers from joining

high-numbered lanes. We present another example to illustrate how this procedure avoids

starvation. Consider the system in Figure 4.5, again with three servers and three lanes. In

the scenario in Figure 4.5 (Step 1), servers S0, S1, and S2 are serving red, orange, and blue

tasks and are assigned to lanes 2, 1, and 0, respectively. The indigo and violet tasks wait in

the queue at lane 0 while the yellow and green tasks wait in the queue at lane 1. Lane 2’s

queue is empty. When S0’s task completes, it scans lanes to seek the eldest waiting task,

finding work (the yellow task) at lane 1 (Figure 4.5 - Step 2a). Were it instead assigned to

lane 0 to prioritize shorter tasks (Figure 4.5 - Step 2b), when S1’s orange task reaches the

71

cutoff point, is preempted, and advances to lane 2 (Figure 4.5 - Step 3b), one of the two

lanes 1 and 2 has to starve as they both have tasks but there is only one server S1 available to

be assigned. This example shows that greedy prioritization of short-task lanes over long-task

ones can lead to starvation; the lower-bound criterion (violated in Step 2b) ensures this may

not occur.

Corollaries. We note two additional provable properties of SQD-SITA: (1) no task

experiences longer response time under SQD-SITA than it can experience with (server-

ganged) preemptive-SITA†, and (2) SQD-SITA minimizes preemptions as a server always

follows its task when the task advances across lanes, to avoid preemption, unless doing so

violates the upper-bound criterion‡.

4.4.3 Interruptible SQD-SITA

SQD-SITA limits the number of servers assigned to each lane, according to the upper-

bound criterion, to guarantee that no task experiences a longer response time than under

preemptive-SITA. As a result, whereas SQD-SITA improves server utilization over both

SITA and preemptive-SITA, it fails to achieve the optimal utilization, wherein servers never

remain idle when tasks are queued at some lane (i.e., SQD-SITA is not work-conserving)—

SQD-SITA intentionally idles servers in anticipation of new task arrivals. In this section, we

propose Interruptible SQD-SITA (ISQD-SITA), which seeks to maximize server utilization

by allowing servers to join lanes in violation of the upper-bound criterion if and only if they

would otherwise remain idle.

However, to avoid starvation (assure each lane can accommodate at least as many tasks

as its reservations), ISQD-SITA requires an additional preemption mechanism, which allows

new arrivals to preempt running tasks (in contrast to SQD-SITA, wherein tasks are only

preempted at cut-off points). When a new task arrives, if no idle server waits at lane 0,

†Tasks enter lanes in FIFO order and no lane ever starves.
‡By induction, any elder tasks are either being served, or cannot be currently served due to the upper-bound

criterion (Equation 1).

72

ISQD-SITA scans lanes from highest to lowest to check if the upper-bound criterion has

been violated in any lane. If so, it preempts the youngest running task in that lane and

allocates the preempted server to the arriving task in lane 0.

ISQD-SITA algorithm. Algorithm 1 shows the high-level procedure that SQD-SITA

and ISQD-SITA follow when a server is preempted. The highlighted parts are exclusive to

ISQD-SITA. The procedure has two phases. In phase 1—shared between SQD-SITA and

ISQD-SITA—an idle server joins the highest-numbered non-empty queue that has capacity

for an additional server without violating the upper-bound criterion. Under SQD-SITA,

if no such queue is found, the server will idle, waiting for new work to arrive at lane 0.

Under ISQD-SITA, the server instead picks the head of the lowest-numbered non-empty

queue (phase 2), in violation of the upper-bound criterion. If a new task arrives, some server

must be preempted immediately to ensure the lower-bound criterion is still met. Note that

even though ISQD-SITA permits upper-bound violations, it never violates the lower-bound

criterion. As a result, external preemptions (i.e., non–timer-based preemptions) only occur

upon new task arrivals.

Corollaries. As shown in Algorithm 1, while phase 1 scans the lanes from highest to

lowest, phase 2 scans them from lowest to highest. This has two advantages: (1) it prioritizes

shorter tasks, and (2) it guarantees that no tasks wait in a lane numbered lower than the one

with the upper-bound violation§. The latter property has two useful implications: First, it

retains the guarantee that no lane starves since the system behaves the same as SQD-SITA in

all lanes numbered above that where the violation occurred (those lanes meet both the lower-

bound and the upper-bound criteria). The yellow highlight in Algorithm 1 is an optimization

that exploits this property to stop scanning lanes in phase 1 if an upper-bound violation is

detected (as the rest of the lanes have empty queues). Second, (ignoring preemption cost) it

ensures that no task experiences higher response time under ISQD-SITA than SQD-SITA,

§By induction: the first time an upper-bound violation occurs, the property holds; after that, if a task is
enqueued in a lower-numbered lane than the violating lane, that task would be selected by phase 2 of the
algorithm, so the property continues to hold.

73

Algorithm 1: SQD-SITA and ISQD-SITA pseudocodes
(Red highlight: only in ISQD-SITA — Yellow highlight: optimization)
1 event server S is preempted
2 server count = 0 // phase 1
3 reservation count = 0
4 for i = M-1 to 0 do
5 server count += lanes[i].num servers()
6 reservation count += lanes[i].num reservations()
7 if lanes[i].has waiting tasks() and server count < reservation count then
8 lanes[i].allocate server(S)
9 return

10 end
11 else if server count > reservation count then
12 break
13 end
14
15 end
16 for i = 0 to M-1 do // phase 2
17
18 if lanes[i].has waiting tasks() then
19 lanes[i].allocate server(S)
20 return
21 end
22 end
23 lanes[0].allocate server(S) // last resort
24
25 end
26 event task arrival
27 if lanes[0].has idle servers() then
28 return
29 end
30 server count = 0
31 reservation count = 0
32 for i = M-1 to 0 do
33 server count += lanes[i].num servers()
34 reservation count += lanes[i].num reservations()
35 if server count > reservation count then
36 S = lanes[i].youngest running task()
37 preempt(S)
38 lanes[0].allocate server(S)
39 return
40 end
41 end
42 end
43

again since all lanes numbered higher than the violating lane behave as in SQD-SITA and

no task can be waiting in lower-numbered lanes. Therefore, if detecting new arrivals and

preempting existing tasks is inexpensive, ISQD-SITA should be preferred over SQD-SITA.

74

4.5 Core-Zilla Microarchitecture

In this section, we describe the CoreZilla microarchitecture, which extends the ESMT

design and employs ISQD-SITA to schedule tasks to hardware threads. CoreZilla enables a

hierarchical queuing organization, wherein each physical core has a dedicated task queue (as

in scale-out designs) to avoid the synchronization and cache coherence overheads of sharing

a queue across all cores in scale-up systems. However, each core’s task queue is shared

among its hardware threads to minimize queuing delay and tail latency at the core, obvi-

ating the need for cross-core scale-up solutions. CoreZilla facilitates software-transparent

preemptive scheduling within the core to eliminate HoL blocking and minimize tail latency.

In addition to ISQD-SITA scheduling, CoreZilla dynamically tunes the number of active

hardware threads, based on the system load, to yield optimal tail latency. In the following

subsections, we describe the two key components of CoreZilla: Hierarchical Scheduling

and Automatic Load Adaptation.

4.5.1 Hierarchical Scheduling

As shown in Figure 4.3, a strawman ESMT core is composed of two physical contexts

and a fixed number of virtual contexts that are organized in two context queues in dedicated

memory. CoreZilla extends ESMT to have a tunable number of physical contexts (e.g., 2-8),

and virtual contexts (e.g., 32). Thus, rather than only two context queues, in CoreZilla we

provision a number of context queues that can be configured to be less than or equal to the

number of physical contexts. These context queues each correspond to an ISQD-SITA queue

and maintain the backlog of virtual contexts ready for execution in a particular ISQD-SITA

lane. Each physical context represents an ISQD-SITA server.

The CoreZilla scheduling hardware manages the assignment of physical contexts (ISQD-

SITA servers) to context queues (ISQD-SITA lanes) in accordance with constraints outlined

in Section 4.4. When a physical context becomes idle (due to task completion or preemption),

75

the hardware scheduler selects the next virtual context from the head of a context queue

by scanning for non-empty queues starting with the highest numbered lane (eldest tasks),

based on the procedure explained in Algorithm 1. The scheduling hardware further tracks

the execution time for each virtual context so that it can determine when the virtual context

reaches the execution time limit imposed by the next ISQD-SITA scheduling cutoff. When

this cutoff is reached, the task is preempted and the virtual context is descheduled and

appended to the end of the context queue for the next ISQD-SITA lane. Tasks in the highest

lane have no cutoff and will execute to completion.

CoreZilla provides a task-based software model where a single worker thread is pinned

to each virtual context. The worker threads retrieve tasks from a single shared software

task queue, as in an M/G/k system, and manage both task queue synchronization and the

CoreZilla scheduling hardware transparently to the executing tasks. Worker threads run the

procedure shown in Algorithm 2. Each virtual context has an associated elapsed time that is

maintained with the context and tracks how long the virtual context has been scheduled on a

physical context since it began a new task. The elapsed time implicitly maps the context

to an ISQD-SITA lane, based on where it falls relative to the ISQD-SITA cutoffs. An idle

thread retrieves a task from the software task queue and resets the elapsed execution time for

the virtual context to zero. The task then begins execution. When the elapsed execution time

reaches the next ISQD-SITA cutoff, the context is preempted and appended to the context

queue for the next ISQD-SITA lane. As noted in Section 4.4, we optimize for the special

case where the next ISQD-SITA queue is empty and elide the context switch if the physical

context would immediately reschedule the same virtual context. The central idea of our

approach is to map a task-based software model to a thread-based execution model that

allows the hardware to schedule among a fixed number of threads (virtual contexts) while

managing a potentially unbounded number of tasks.

The scheduling hardware tracks the elapsed time for all physical contexts, and therefore

also tracks the assignment of physical contexts to lanes, which can be inferred from the

76

Physical Context 0

PC Functional
Units

Virtual Context
Queue PointersMemory

CTX Queue
PTR 0

Elapsed Time

Cutoff 0

PC
Regs

ET

PC
Regs

ET

PC
Regs

ET

PC
Regs

ET

PC
Regs

ET

PC
Regs

ET

(ET=Elapsed Time)

Physical Context 1

PCElapsed Time

Physical Context 2

PCElapsed Time

Physical Context 3

PCElapsed TimePC
Regs

ET

PC
Regs

ET

PC
Regs

ET

CTX Queue
PTR 2

CTX Queue
PTR 3

Physical
Register File

Cutoff 1

Cutoff 2

CTX Queue
PTR 1

Figure 4.6: A 4-way CoreZilla with three context queues.

elapsed times and the cutoffs. Time can be maintained using any convenient monotonic

counter (e.g., Intel’s timestamp counter). Cutoffs are specified in a set of special registers

and are set by the task framework based on prior knowledge or runtime monitoring of the

service distribution. To enable ISQD-SITA, we add a mechanism that interrupts execution

upon a write to a monitored memory location, to be able to detect new arrivals (highlighted

line; only needed for ISQD-SITA). This scheme is similar to existing memory monitoring

mechanisms, such as mwait in Intel processors [66], which detect changes to a memory

location by tracking coherence invalidation messages.

Algorithm 2: High-level procedure of the worker threads
1 while true do
2 while task == nil do
3 reset elapsed time()
4 task = dequeue(task queue)
5 end
6 async monitor(task queue)
7 run(task)
8 task = nil
9 end

Figure 4.6 illustrates the microarchitecture of a 4-way CoreZilla, with four physical

77

1

2

3

4

5

0 20 40 60 80 100
N

o
rm

al
iz

ed
 T

ai
l L

at
en

cy

Load (%)
0 20 40 60 80 100

Load (%)

1 HW Thread
2 HW Threads
4 HW Threads
8 HW Threads

(b)(a)

Figure 4.7: Normalized 99th percentile latency at different loads for (a) Word Stemming and (b)
McRouter.

contexts and three context queues (the number of reservations for lane 0 is two). Whereas

there is fixed mapping between physical contexts and context queues in ESMT—leading

to underutilization of physical contexts—in CoreZilla, the mapping changes dynamically,

improving throughput and efficiency.

4.5.2 Automatic Load Adaptation

CoreZilla’s two-level thread-context mechanisms enable hardware scheduling to imple-

ment ISQD-SITA. We add an additional mechanism to tune the number of active physical

contexts to best serve the current load and service characteristics.

Some prior works [122, 28] advocate reducing or disabling hardware multithreading to

avoid interference, which can exacerbate tail latency. Others [55, 94, 6] advocate hardware

multithreading to improve core utilization and reduce Total Cost of Ownership (TCO). The

guidance from these studies is in conflict.

We observe that the right number of hardware threads to balance tail latency and uti-

lization depends on the workload’s service time distribution and system load. When load

is low, and end-to-end response time is dominated by service (rather than queuing) time,

it is better to disable additional hardware threads, allowing a single thread to enjoy higher

execution bandwidth and run faster without interference. However, as load increases, addi-

tional threads enable higher instruction throughput, which results in higher overall service

rate at the core and reduced queuing time. Furthermore, as the service time distribution

grows more heavy-tailed, additional threads become critical to minimize HoL blocking and

78

excessive queuing delays—high disparity service distributions are common in microser-

vices [91, 162, 203, 185].

We illustrate these effects with an example. Figure 4.7(a) and (b) present end-to-end

tail latency at different loads for Word Stemming and McRouter microservices (described

in detail later in Section 4.7). As these figures show, fewer threads yield lower tail latency

at low load, as each thread executes faster and queuing is rare at low load. However,

as load increases, the better instruction throughput enabled by additional threads results

in substantially lower queuing delay and tail latency. Furthermore, we observe that the

break-even points for McRouter (b), which has a low-disparity service distribution, occur

at higher relative loads compared to the break-even points of word stemming (a), which

is a heavy-tailed microservice; word stemming requires more threads at lower load than

McRouter to prevent HoL blocking.

To exploit this trade-off, CoreZilla incorporates an automatic load adaptation mechanism

that dynamically tunes the number of physical contexts to minimize tail latency. CoreZilla’s

load adaptation comprises offline profiling and online adaptation phases. The offline profiling

phase constructs a profile of tail latency vs. load across thread counts for a particular

workload like those shown in Figure 4.7. The critical break-even points (crossings) in the

load curves are then recorded in a lookup table.

During execution, the instantaneous arrival rate (the rate tasks are added to SQD-SITA

lane 0) is monitored over 5-millisecond-scale windows to estimate load. Then, the lookup

table is consulted to determine how many physical contexts to activate. A 5-ms window is

long enough relative to the µs-scale service times of microservices to yield accurate load

measurement, but also short enough to capture transient load changes as load fluctuations

usually occur at least at the granularity of 10s of milliseconds [70, 187].

79

4.6 Discussion

Finding cutoffs. Finding SQD-SITA (and SITA) cutoffs is a non-trivial problem and is

usually performed by empirical search. When the number of lanes is only two, cutoffs can

be found by quantizing the service time distribution and linearly searching the entire space.

However, with a larger number of servers/lanes, the search space grows combinatorially.

Furthermore, our algorithm for finding cutoffs must consider server-ganged variants of SITA

and SQD-SITA algorithms, where the lane count may be smaller than the server count.

Hence, even the lane and reservation counts may not be fixed parameters when searching

for the optimal cutoffs.

We propose a hill climbing-based heuristic for finding cutoffs. We empirically find

the search space to be convex and the cutoffs to be near high quantiles of the service

time distribution. We initialize the search with all reservations in the final lane (i.e., no

cutoffs). We then consider moving one reservation to a new lane, searching for a tail-latency-

minimizing cutoff value over descending quantiles of the service time distribution. We

then iterate, considering (1) moving an additional reservation to the most recent lane, or

(2) adding a new lane with a lower cutoff. The algorithm halts when neither moving a

reservation nor adding a lane improves tail latency. Search time scales with the granularity

of the search over quantiles and is independent of the number of servers/lanes. Hence, it is

scalable to many servers. We performed point validations against exhaustive searches for a

4-server system and were not able to improve over this heuristic.

Comparison with SRPT and PS. Shortest Remaining Processing Time (SRPT) and

Processor Sharing (PS) are other scheduling algorithms tailored for high-disparity service

distributions. SRPT preempts a running task upon a new arrival and gives the execution

resources to the new task if it is shorter than the remaining portion of the currently running

task. While SRPT is proven to be asymptotically optimal [7, 152] (at most a constant factor

worse than the optimal) for heavy-tailed service distributions, it can cause long tasks to

starve and yield unpredictable results for tail latency, especially at high loads. Furthermore,

80

it is a size-based algorithm and is only applicable when task sizes are known or can be

predicted accurately in advance [74] (much like SITA).

PS fairly shares execution capacity across all tasks by time sharing servers at small

scheduling quanta. While PS is not size-based and does not starve long tasks, as in SRPT, it

entails frequent preemptions (proportional to the task sizes), which hurt performance and

may be impractical. We will show in Section 4.8 that (I)SQD-SITA outperforms both SRPT

and PS, given enough servers, by isolating short tasks from long ones while respecting FIFO

ordering of task arrivals.

Finite virtual contexts. Because CoreZilla supports only a finite number of virtual

contexts, it is possible for all of them to be assigned tasks longer than the first (I)SQD-SITA

cutoff (i.e., if 32 incomplete tasks all execute past the first cutoff). This scenario leads to

a violation of both upper and lower-bound criteria, as there is no context able to execute

newly arriving tasks in lane 0. Once any task completes execution, the hardware scheduler

resumes obeying the (I)SQD-SITA constraints. The number of virtual contexts should be

provisioned such that the probability that all virtual contexts are occupied by tasks longer

than the first cutoff is negligible. This probability vanishes rapidly as the number of virtual

contexts grows; 32 virtual contexts is more than sufficient.

Hardware costs and scalability. CoreZilla builds upon the ESMT hardware substrate,

and from a hardware point of view, only extends it to have more than two physical contexts.

The only hardware extension an N-way ESMT/CoreZilla requires over an N-way SMT

core are N registers to hold virtual context queue pointers, N-1 registers to hold service

cutoff points, N-1 timers/counters to measure elapsed times, and three registers to hold load

break-even points. All of these structures in total add negligible area/power overheads to the

datapath as they are small compared to the core’s physical register file.Furthermore, all of

these structures scale linearly with respect to the number of SMT execution lanes. Therefore,

the main scalability bottleneck to add lanes is the SMT mechanism itself, because having

more execution lanes complicates both the core frontend and backend, and particularly,

81

requires a larger register file to at least contain all the architectural registers of all physical

contexts. Consequently, no commercial system supports more than 8 SMT threads; we have

also only considered 2, 4, and 8 threads, which are the options available in IBM Power

8/9 microarchitectures that currently support the largest number of SMT threads. We have

modeled these additional structures in McPAT [117] and found the area and power overheads

of CoreZilla to be within 2% and 3% of a baseline SMT core, respectively. There is no

accurate way to measure the clock frequency impact, except via RTL-level implementation

and synthesis. However, we do not expect the additional control logic to be on the critical

path and both the original Firmware Context Switching (FCS) [197] and subsequent designs

employing this mechanism [138] report negligible cycle-time impact.

4.7 Evaluation Methodology

To evaluate SQD-SITA, we employ Stochastic Queuing Simulation (SQS), based on the

BigHouse methodology and simulator [134]. We simulate until we achieve 95% confidence

intervals of 5% error in reported results. We find cutoffs based on the heuristic explained

in Section 4.6. We measure service time distributions of five microservices and feed their

latency distribution histograms to our SQS framework. To accurately model the cost of

preemption and context switches in CoreZilla and its alternatives, we model their hardware in

the gem5 simulator [14] and include the preemption/restart latencies in our SQS experiments,

following prior work [138]. We consider 2,4, and 8 SMT lanes (physical contexts) to model

the available options for the number of hardware threads in IBM Power8/9 processors.

We use the following microservices for our evaluation:

• FLANN: we use a microservice benchmark based on

FLANN [143], an open-source library for performing fast approximate nearest neigh-

bor searches in high-dimensional spaces. FLANN uses Locality Sensitive Hashing

(LSH) to perform k-nearest neighbor identification—a critical microservice employed

82

Table 4.1: Microarchitecture details of ESMT

Core 4-wide issue OoO, 192-entry ROB/PRF, 48-entry LQ, 32-
entry SQ

SMT ICOUNT [169] Fetch, up to 8 physical contexts, 32 virtual
contexts

L1 cache Private 64KB I/D, 64B lines, 2-way SA
LLC 1 MB per core, 64B lines, 8-way SA

Memory 50 ns access latency

in content-based similarity search. We use Google’s Open Images dataset [64]. We

consider variants of FLANN with (1) 20-bit, and (2) 12-bit LSH key sizes.

• RocksDB: We use RocksDB [53], a popular and widely deployed in-memory key-

value store developed by Facebook. We use an open-source Twitter dataset [55] and

RocksDB’s default load generator with two different configurations, (1) where 90%

of requests are GETS and 10% are SCANs, and (2) where 99% of requests are GETS

and 1% are SCANs. SCAN requests scan 5000 keys and take approximately 50×

longer than GETs.

• Word Stemming (WS): Stemming is a normalization process that reduces words to

their root, employed in various cloud services, such as web search. We employ a

word stemming microservice based on Oleander’s implementation [153] of the Porter

stemming algorithm [160, 161]. It is a high-disparity microservice as it hard-codes all

stemming paths (prefixes, suffixes, etc.) into the control-flow and the length of paths

for different words might be substantially different. Our queries include words from

Wikipedia Redux [208].

• Remote Storage Caching (RSC): We implement a remote storage caching microser-

vice as a simplified variant of existing host-side Flash caches [21, 105, 3, 80]. Our

RSC microservice maps linear block addresses of a remote storage system to a local

low-latency SSD using Cuckoo hashing [155]. We only consider read transactions.

The three outcomes of a lookup query are that it might be a hit in the local memory,

83

hit in local SSD, or a miss.

• McRouter: We employ a consistent hashing microservice, based on Facebook’s

McRouter [118, 150], to route Key-Value (KV) operations to 100 leaf servers via a

consistent hash function. We generate key-value lookup queries from an open-source

Twitter dataset [55].

4.8 Results

4.8.1 SQD-SITA performance analysis

We first study alternative queuing organizations to gain insight into how each organi-

zation behaves in principle. In this section, we neglect the costs of preemption, and also

consider scheduling algorithms that require task lengths to be known a priori, which is

impractical for systems like CoreZilla. Figure 4.8 reports normalized 99th percentile tail

latencies achieved under various queuing organizations, including M/G/k, SITA, Ganged

SITA (G-SITA), Preemptive Ganged SITA (PG-SITA), SQD-SITA, ISQD-SITA, Processor

Sharing (PS), and Shortest Remaining Processing Time (SRPT). For PS, we consider a 2µs

scheduling quantum. We consider 2, 4, and 8 servers, which correspond to (a), (b), and

(c), respectively. For each number of servers in each workload, we set the offered load

to the break-even point where our load adaptation system selects that configuration (e.g.,

break-even points in Figure 4.7).

As Figure 4.8 shows, ISQD-SITA improves tail latency by 2.28×, 3.39×, 4.76× over an

M/G/k system with, 2, 4, and 8 servers, on average, respectively. Furthermore, while (I)SQD-

SITA consistently improves tail latency over PG-SITA, there are a few cases where it falls

short of the tail latency achieved by (G-)SITA. These cases arise because non-preemptive

SITA is a size-based algorithm, which can exploit its prior knowledge of task sizes. In

addition, note the impact of server ganging—with 4 and 8 servers, SITA yields significantly

higher tail latencies than G-SITA, which, in many cases, are even higher than those of the

84

0

0.5

1

1.5

2

2.5

3

3.5

RocksDB 1 RocksDB 2 WS FLANN 1 FLANN 2 RSC McRouter Average

N
o

rm
al

iz
ed

 T
ai

l L
at

en
cy

0

0.5

1

1.5

2

2.5

3

3.5

RocksDB 1 RocksDB 2 WS FLANN 1 FLANN 2 RSC McRouter Average

N
o

rm
al

iz
ed

 T
ai

l L
at

en
cy

1
8

.9

6
.2

2
.4

2
.5

2
3

.4

5
.1

1
2

.4

3
3

.7

6
.5

2
9

.6

3
.8 4
.87
.1

2
6

.6

1
5

.6

1
3

.7

8
.9

1
7

.3

1
9

.5

1
3

.4

1
2

.6

(c)

(b)

(a)

0

0.5

1

1.5

2

RocksDB 1 RocksDB 2 WS FLANN 1 FLANN 2 RSC McRouter Average

N
o

rm
al

iz
ed

 T
ai

l L
at

en
cy

M/G/k SITA G-SITA PG-SITA SQD-SITA ISQD-SITA PS SRPT

Figure 4.8: Normalized 99th percentile latency under various organizations for (a) 2, (b) 4, and (c) 8
servers.

baseline M/G/k system. Having too many lanes results in unnecessary load imbalance in

systems like SITA, which, unlike SQD-SITA, statically assign servers to lanes; only a few

lanes are sufficient to eliminate HoL blocking, regardless of the number of servers.

We observe that, with 8 servers, ISQD-SITA consistently outperforms PS and SRPT (by

49% and 2.13 ×, on average), and with 4 servers ISQD-SITA consistency outperforms PS

and is outperformed by SRPT only for RSC workload (16% and 24% average improvement

over PS and SRPT). However, with two servers, ISQD-SITA is outperformed by PS and

85

0

0.5

1

1.5

2

2.5

RocksDB 1RocksDB 2 WS FLANN 1 FLANN 2 RSC McRouter Average

N
o

rm
al

iz
ed

 T
ai

l L
at

en
cy

SMT ESMT HSMT CaperCore Theoretical SU-32

0

0.5

1

1.5

2

2.5

3

3.5

RocksDB 1RocksDB 2 WS FLANN 1 FLANN 2 RSC McRouter Average

N
o

rm
al

iz
ed

 T
ai

l L
at

en
cy

SMT ESMT HSMT CaperCore Theoretical SU-32

0

0.5

1

1.5

2

2.5

3

3.5

4

RocksDB 1 RocksDB 2 WS FLANN 1 FLANN 2 RSC McRouter Average

N
o

rm
al

iz
ed

 T
ai

l L
at

en
cy

SMT ESMT HSMT CaperCore Theoretical SU-32

2
3

.5

6
.9

2
.9 2
2

.3

7
.3 5
.2

1
4

.8
4

.6

3
.9

3
0

.5
7

.3 8
.6

4
.7

2
6

.9
8

.8
7

.1

1
1

.7

4
.4

(a) (b) (c)

CoreZilla CoreZilla CoreZilla

Figure 4.9: Normalized 99th percentile latency of CoreZilla and alternatives for (a) 2, (b) 4, and (c) 8
hardware threads.

SRPT by 6% and 11%, on average, respectively. Neither PS nor SRPT respect FIFO ordering

of the tasks; PS fairly shares the system capacity among all tasks and SRPT strictly prioritizes

short tasks. These algorithms are well-suited only for high-disparity service distributions

and fall short of a FIFO-ordered (M/G/k) system for low-disparity distributions [19, 207]

(e.g., McRouter). However, with enough servers, ISQD-SITA isolates short tasks from long

ones while respecting their FIFO arrival ordering, outperforming PS and SRPT.

4.8.2 CoreZilla performance analysis

In this section, we seek to find the optimal core microarchitecture, and therefore only

consider non–size-based scheduling policies, which can be practically adopted by a system

like CoreZilla, and also consider the costs of preemption. Figures 4.9(a), (b), and (c) report

normalized 99th percentile tail latencies achieved by different core microarchitectures with

2, 4, and 8 physical SMT contexts, implementing different scheduling policies. We compare

SMT, Hierarchical SMT (HSMT) [138], Express-Lane SMT (ESMT) [140], and CoreZilla,

with the same number of physical contexts (2/4/8). HSMT effectively implements PS

scheduling by time multiplexing all virtual contexts on the physical contexts at 2µs time

quanta. We also compare against a theoretical 32 cores scale-up organization—in all other

designs, there is a distinct task queue per physical core.

CoreZilla improves tail latency over a conventional SMT core and an ESMT core with

2, 4, 8 physical contexts by 2.25×, 3.23×, 4.38×, and 38%, 2.83×, 3.07× on average,

respectively. Improvements are slightly smaller than reported in the previous section as

86

the costs of preemption are now included. Also it is notable that whereas ESMT achieves

only slightly higher tail latency than CoreZilla with 2 physical contexts, it falls well short

of CoreZilla’s performance with more physical contexts. ESMT suffers significantly from

underutilization of physical contexts as it statically maps each physical context to a context

queue. Server ganging and dynamic reallocation of physical contexts to context queues in

(I)SQD-SITA solve this problem in CoreZilla. Moreover, note that while ESMT and HSMT

may result in tail latencies that are higher than SMT, CoreZilla never falls short of SMT

performance, thanks to the same mechanisms.

CoreZilla significantly outperforms HSMT (which implements PS), since the number

of preemptions incurred under PS are much higher than under (I)ISQD-SITA; with PS,

each task requires, on average, mean− task− size/scheduling− quantum preemptions

(mean− task− size can be 10s – 100s of microseconds). However, with SQD-SITA, each

task incurs at most one preemption per cutoff/lane. Unlike SQD-SITA, the number of

preemptions under ISQD-SITA is not bounded. However, as these results show, the net gain

is always positive.

Finally, we observe that, with two and four physical contexts, CoreZilla achieves 99th

percentile tail latency that is within 31% and 22% of a theoretical 32-core scale-up organiza-

tion, respectively. With eight physical contexts, however, due to superior task scheduling,

CoreZilla is even able to achieve 12% lower average tail latency compared to a theoretical

32-core scale-up organization, obviating the need for having a cross-core shared queue and

its attendant overheads.

4.8.3 Impact of preemptions in ISQD-SITA

As noted before, ISQD-SITA may incur additional preemptions compared to SQD-SITA.

Figure 4.10 reports the average number of preemptions in 8-server Preemptive-SITA, SQD-

SITA, and ISQD-SITA systems. Here we consider non-ganged (i.e., 8-lane) variants of

these algorithms, as these incur the most preemptions. Whereas ISQD-SITA increases the

87

0

0.5

1

1.5

2

2.5

3

RocksDB 1 RocksDB 2 WS FLANN 1 FLANN 2 RSC McRouter

A
vg

 n
u

m
b

er
 o

f
p

re
em

p
ti

o
n

s
p

er
 r

eq

P-SITA SQD-SITA ISQD-SITA

Figure 4.10: Average number of preemptions per request for different scheduling policies in various
microservices.

number of preemptions relative to SQD-SITA, it often significantly reduces their number

compared to Preemptive-SITA. Interestingly, the average number of preemptions per task of

ISQD-SITA exceeds that of Preemptive-SITA for the RSC workload (0.84 vs. 0.63) because

RSC includes both exceptionally long and exceptionally short tasks. In this scenario, before

any nominal or long task finishes, one task that violates the upper bound criterion may

be be preempted and resumed multiple times, due to rapid arrivals of such short tasks.

Nevertheless, as shown in Figure 4.10, the overall average number of preemptions in

(I)SQD-SITA is negligible.

4.9 Related Work

The most related work to ours is RPCValet [36], which proposes a potential solution

for approximating a scale-up queuing organization on a scale-out system in the presence of

on-chip integrated NICs. With RPCValet, instead of the integrated NIC “pushing” packets

into each core’s dedicated queues, which may result in load imbalance and HoL blocking,

each core “pulls” a packet from the NIC once it is done processing the previous packet.

The single shared packet queue is managed in hardware by the on-chip NIC and distributes

packets into the cores’ local queues. RPCValet’s solution is only applicable to systems with

on-chip integrated NICs and can at best achieve the lower-bound tail latency of a theoretical

scale-up system. However, as we showed in Section 4.8, with sufficient physical contexts,

88

CoreZilla can reduce the tail latency even beyond that of a theoretical 32-core scale-up

system because CoreZilla augments the queuing model with the (I)SQD-SITA scheduling

policy, which is inherently able to isolate long and short tasks and prevent HoL blocking.

A large body of prior work seeks to lower the tail latency of interactive services. However,

most past studies target classic monolithic services with millisecond- to second-scale service

times and, hence, require different approaches for our target microservices. We discuss

various classes of such studies:

Parallelization and Heterogeneity. One class seeks to accelerate long tasks by paral-

lelizing them on multiple cores to reduce their processing time and queuing impact. Jeon

et al. [88] propose an adaptive solution to determine the required degree of parallelism for

each query based on the offered load. In a follow up work [89], they propose a feature-based

prediction model to predict long tasks and parallelize them. Haque et al. [70] propose an

incremental approach that increases the degree of parallelism as a task advances in execution.

In a follow up work [71], they move the longer tasks to faster cores in heterogeneous

platforms to accelerate them further. All of these techniques are only applicable to ms-scale

services that are easily parallelized, such as web search.

Voltage/Frequency Boosting. Another class seeks to boost core voltage and frequency

to accelerate long tasks. Adrenaline [82] considers SET requests in a key-value store as long

tasks and accelerates them; their approach is application-specific and not easily generalizable.

Rubik [97] takes a more general approach and by probabilistically accelerating queries based

on the service time distribution and the position of each query in the queue. However, it fails

to capture heavy-tailed service distributions, where the probability of HoL blocking is high,

and relative position of queries in the queue has low correlation with their queuing time.

Non-FIFO Scheduling. Another class seeks to minimize tail latency of high-disparity

services by employing better-than-FIFO scheduling schemes to eliminate HoL blocking.

Various authors [116, 162] propose per core task queues augmented by work-stealing to

improve tail latency. While work-stealing is an effective approach for improving utilization

89

and throughput, it is not well-suited for server applications, where the objective is to

minimize the response-time. Work-stealing allows cores to take tasks from other queues

when their own queue is empty to improve utilization; it does not solve the HoL blocking

problem within each queue.

Shinjuku [91] proposes to address tail latency by employing PS for high-disparity task

distributions. As we have shown, (I)SQD-SITA usually outperforms PS as PS does not

respect the FIFO ordering of task arrivals. Baraat [43] proposes a FIFO with limited paral-

lelism (FIFO-LM) scheme, wherein a number of oldest tasks (e.g., 8) are time-multiplexed

but younger tasks wait for them in a FIFO queue. Interestingly, this mechanism is already

implemented in SMT cores as the active threads (which serve the oldest tasks) are truly

sharing the processor. CoreZilla outperforms conventional SMT designs which implement

such a policy.

Size-based Scheduling. Finally, a few prior studies propose size-based scheduling

mechanisms by correlating the processing time of a request with one of its features. Harchol-

Balter et al. [74] propose to use SRPT for file and web servers by estimating request

processing times based on file sizes. Didona et al. [42] propose a cross-core sharding

of key-value store queries, based on object sizes. Their approach effectively implements

server-ganged SITA across cores by estimating task lengths based on object sizes. These

approaches are only applicable to their respective services and are not comparable to generic

approaches like SQD-SITA.

90

4.10 Conclusion

In this chapter, we proposed Q-Zilla as a scheduling framework and its hardware

instantiation to tackle the tail latency of microservices. Q-Zilla is composed of Server-

Queue Decoupled – Size-Interval Task Assignment (SQD-SITA), as a tail-aware scheduling

algorithm, and Interruptible SQD-SITA (ISQD-SITA) which further improves tail latency at

the cost of additional preemptions. (I)SQD-SITA dynamically reallocates servers to lanes

to increase server utilization with no performance penalty. Finally, we proposed CoreZilla,

as a hardware realization of (I)SQD-SITA in a multithreaded core. CoreZilla improves tail

latency over a conventional SMT core with 8 threads by 4.38× and outperforms a theoretical

32-core scale-up organization by 12%, on average.

91

CHAPTER V

Parslo: A Gradient Descent-based Approach for Partial

SLO Allocation in Virtualized Cloud Microservices

5.1 Introduction

There is a growing trend towards building modern cloud services using microservice

architectures, wherein a complex application is decomposed into tens to hundreds of inde-

pendent, loosely-coupled, distributed components—in form of a Directed Acyclic Graph

(DAG) [59, 183]. Microservice architectures have been adopted by major cloud-based

companies, such as Facebook, Netflix, Linkedin, etc., as they significantly improve pro-

grammability, reliability, manageability, and scalability of cloud services. For example, a

Facebook news feed service query may flow through a chain of microservices such as Sigma

(a spam filter), McRouter (a protocol router), Tao (a distributed social graph data store)

and MyRocks (a user database) [183]. Figure 5.1 illustrates two open-source microservice

DAGs from [59], representing a social network and a media service.

Service Level Objectives (SLOs) impose bounds on the average or tail of the end-to-end

latency distribution in a cloud service, to ensure an acceptable level of service quality

and user satisfaction [139]. Auto-scaling frameworks, such as Google’s Autopilot [171],

continuously monitor the response time of the incoming requests to a service and upsize

or downsize the service by increasing or decreasing the number of instances (VMs or

92

containers) in the virtual cluster to meet the latency SLO at minimal cost [164]. However,

with microservice-based applications, it is unclear which microservices need to be scaled

when end-to-end latency SLOs are violated.

Most existing systems impose partial latency SLOs on individual microservices so as to

ensure that the end-to-end SLO is met if all partial SLOs are met [198, 129]. However, these

partial SLOs are usually allocated empirically, which may significantly increase the total

deployment cost of the service [164, 95]. Recent research studies propose to use centralized

Machine Learning (ML)-driven auto-scaling frameworks to determine which microservice(s)

to scale when end-to-end latency SLOs are violated [60, 163]. While these frameworks can

react dynamically to changes in the microservice DAG topology, they are heavy-weight

and need frequent data collection and retraining. Furthermore, whereas such frameworks

outperform empirical partial SLOs, they do not guarantee optimality and may still result in

suboptimal service deployment costs.

In this chapter we propose Parslo—a Gradient Descent-based approach to allocate partial

SLOs to different nodes of a microservice graph under an end-to-end latency SLO. Parslo

isolates different microservice nodes within a DAG from one another and enables each

microservice to be scaled independently through its own auto-scaling framework. At a high

level, the Parslo algorithm breaks the end-to-end SLO budget into small “SLO units”, and

iteratively allocates one SLO unit to the best candidate microservice to achieve the highest

total cost savings until the entire end-to-end SLO budget is exhausted. Parslo employs novel

mechanisms to be applicable to general microservice DAGs—as such the ones depicted

in Figure 5.1—which may include microservice dependencies, branching path, as well as

parallel indexing and sharding.

To the best of our knowledge, Parslo is the first systematic partial SLO allocation scheme

for microservices supporting general microservice DAGs. Parslo achieves the optimal partial

SLO allocation, thereby minimizing the total deployment cost for the entire service. Our

evaluation results demonstrate that Parslo reduces service deployment costs by more than

93

mongoDB

mongoDB

mongoDB

memcached

memcached

memcached

mongoDB

memcached

Social Network

Service

text

video

image

userTag

composePost

postsStorage

writeTimeline

writeGraph

readPost blockedUsers

readTimeline

login

userInfo
mongoDB

memcached

search

index0

index1

indexn

…

uniqueID
ads

recommender

Client nginx

http

http

fastcgi
php-

fpm

Load

Balancer
urlShorten

favorite

followUser

Figure 4. The architecture (microservices dependency graph)
of Social Network.

Client nginx

http

http

fastcgi
php-

fpm

Load

Balancer

photos

videos

rent

movie

ads
mongoDB

mongoDB

memcached

plot

mongoDB

memcached

video

streaming

(nginx-hls)

NFS

userReview

composePage

reviewStorage memcached

thumbnail

rating

movieReview

uniqueID

movieID

login

text/rating

userInfo
mongoDB

memcached

cast

composeReview

recommender

Media Service

search

index0

index1

indexn

MovieDB

(MySQL)

…

Figure 5. The architecture of theMedia Service for reviewing,
renting, and streaming movies.

specific webserver is selected, also in nginx, the latter uses
a php-fpm module to talk to the microservices responsible
for composing and displaying posts, as well as microservices
for advertisements, search engines, etc. All messages down-
stream of php-fpm are Apache Thrift RPCs [1]. Users can
create posts embedded with text, media, links, and tags to
other users. Their posts are then broadcasted to all their
followers. Users can also read, favorite, and repost posts, as
well as reply publicly, or send a direct message to another
user. The application also includes machine learning plugins,
such as ads and user recommender engines [22, 23, 53, 83],
a search service using Xapian [51], and microservices to
record and display user statistics, e.g., number of followers,
and to allow users to follow, unfollow, or block other ac-
counts. The service’s backend uses memcached for caching,
and MongoDB for persistent storage for posts, profiles, media,
and recommendations. Finally, the service is instrumented
with a distributed tracing system (Sec. 3.7), which records
the latency of each network request and per-microservice
processing; traces are recorded in a centralized database.
The service is broadly deployed at our institution, currently
servicing several hundred users. We use this deployment to
quantify the tail at scale effects of microservices in Section 8.

3.3 Media Service
Scope: The application implements an end-to-end service
for browsing movie information, as well as reviewing, rating,
renting, and streaming movies [18, 19].
Functionality: Fig. 5 shows the architecture of the end-to-
end service. As with the social network, a client request hits
the load balancer, which distributes requests among multiple
nginx webservers. Users can search and browse information
about movies, including their plot, photos, videos, cast, and
review information, as well as insert new reviews in the sys-
tem for a specific movie by logging into their account. Users
can also select to rent a movie, which involves a payment
authentication module to verify that the user has enough

funds, and a video streamingmodule using nginx-hls, a pro-
duction nginx module for HTTP live streaming. The actual
movie files are stored in NFS, to avoid the latency and com-
plexity of accessing chunked records from non-relational
databases, while movie reviews are kept in memcached and
MongoDB instances. Movie information is maintained in a
sharded and replicated MySQL database. The application
also includes movie and advertisement recommenders, as
well as a couple auxiliary services for maintenance and ser-
vice discovery, which are not shown in the figure. We are
similarly deployingMedia Service as a hosting site for project
demos at Cornell, which members of the community can
browse and review.

3.4 E-Commerce Service
Scope: The service implements an e-commerce site for cloth-
ing. The design draws inspiration, and uses several compo-
nents of the open-source Sockshop application [16].
Functionality: Fig. 6 shows the architecture of the end-
to-end service. The application front-end in this case is a
node.js service. Clients can use the service to browse the
inventory using catalogue, a Go microservice that mines
the back-end memcached and MongoDB instances holding
information about products. Users can also place orders
(Go) by adding items to their cart (Java). After they log
in (Go) to their account, they can select shipping options
(Java), process their payment (Go), and obtain an invoice
(Java) for their order. Orders are serialized and commit-
ted using QueueMaster (Go). Finally, the service includes
a recommender engine for suggested products, and microser-
vices for creating an item wishlist (Java), and displaying
current discounts.

3.5 Banking System
Scope: The service implements a secure banking system,
which users leverage to process payments, request loans, or
balance their credit card.

Figure 5.1: The microservice DAG for a social network and a media service system from [59].
.

6× in microservice-based applications, compared to a state-of-the-art partial SLO allocation

scheme.

5.2 Background and Motivation

5.2.1 SLOs and Auto-Scalers

Service Level Objectives (SLOs) specify key properties of cloud applications, such as

availability, latency, etc. One of the key features of cloud-based services is their elasticity,

wherein the number of instances allocated to the service can be quickly tuned up or down

(i.e., the services is upsized or or downsized) depending on the current request arrival rate,

to ensure the end-to-end latency SLO is met. Latency SLOs are usually defined based on the

average or (e.g., 99th-percentile) tail latency. Tail latency is the preferred metric in defining

latency SLOs as it bounds the slowest interactions of users with the service and guards

overall user satisfaction.

Figure 5.2 illustrates the high-level operations of a reactive auto-scaler, wherein the

end-to-end response time of a service is continuously monitored. If the observed response

time exceeds the latency SLO, the service is iteratively upsized (i.e., by adding service

instances). Spreading the load over more instances reduces the queueing delay at each

instance until the latency SLO is met. Conversely, if the end-to-end latency is significantly

94

ServiceRequest Response

Virtual
Cluster

Auto
Scaler

Tail latency
or

SLO violation %
or

Utilization

Upsize
or

Downsize

If tail latency > SLA constraint : upsize (increase # instances by p%)
If tail latency < 0.8 SLA constraint : downsize (decrease # instances by p%)

Off-line profiling

Figure 5.2: High-level operations of an auto-scaling framework.

lower than the SLO, the service is downsized to close the latency gap and meet the latency

SLO while reducing cost (i.e., fewest active instances).

When SLO is defined based on the tail (rather than average) latency, it is preferred

that each instance reports to the auto-scaler the fraction of requests that violate the SLO’s

latency target, rather than the raw tail latency, as this metric is easier to aggregate across

instances. However, a more efficient approach is to profile the service offline in one instance

across the load spectrum and derive the load-latency profile of the service—which we call a

“hockey stick” graph for its distinctive shape—shown in Figure 5.3(a). With this approach,

the maximum utilization level at which each instance may operate without violating the

latency SLO is identified. Therefore, if an instance’s utilization exceeds this threshold, the

auto-scaler may proportionally increase the number of instances, rather than incrementally

upsizing the service until the latency SLO is met. This approach is particularly advantageous

in response to load spikes or flash crowds where incremental scaling may take a long time

to converge and large queues might build. Furthermore, this approach is easier to implement

in automated cluster management frameworks—such as Kubernetes—as these frameworks

typically scale the services based on the CPU utilization of the instances since this metric

externally available to the cluster manager, as opposed to raw latency or SLO violation rate,

which need to be communicated to cluster manager by the code running within the instance.

Flash crowds or load spikes refer to brief periods of sudden, significant increases in the

95

μρμλα
R

S

Load Load Load

La
te
nc

y

La
te
nc

y

La
te
nc

y

(a) (b) (c)

Figure 5.3: (a) load-latency profile of a microservice, known as the “hockey-stick” graph (λ : an
arbitrary arrival rate; R: the response time corresponding to λ ; α: zero-load latency; µ: maximum
load; S: latency SLO; ρ: maximum utilization without violating the SLO. (b) two different valid
hockey-stick graphs, based on an M/M/1 (red) and and M/G/1 queuing model with a heavy-tailed
service-time distribution (blue). (c) an invalid hockey-stick graph.

request arrival rate. During load spikes, the arrival rate may go up by 20% or even 2× [10],

for a short period of time. Load spikes present a significant challenge to auto-scalers, as

increasing the number of instances takes time, and delayed reaction to load-spikes results in

large queue build-ups within the instances, whose effect may persist for a long time after the

load spike subsides. To address this issue, auto-scalers typically over-provision the number

of instances, in anticipation of load spikes. Whereas this may result in wasted resources, it

prevents load spikes from building long queues within the instances, which result in drastic

increases in SLO violation rate. Sophisticated proactive auto-scalers seek to mitigate this

issue by over-provisioning the right number of additional instances via estimating the spike

magnitudes based on previous spike behavior [61].

5.2.2 Latency SLOs for Mircoservices

Modern services are implemented as DAGs of loosely-coupled microservices. A key

challenge with microservices is that is the latency SLOs are usually defined based on the

the whole-service end-to-end response time, rather than individual microservices, given the

goal of the latency SLOs is to optimize the end user experience. Hence, with microservices,

it is unclear how each individual microservice must be scaled, when the end-to-end latency

SLO is violated.

96

There are two general approaches to address this issue: (1) most existing and deployed

systems as well as classic research proposals assign Partial SLOs to individual microser-

vices [198, 129], to ensure each microservice can be independently managed and scaled

through its own auto-scaling framework. This approach is cheap and straightforward

especially because different microservices may be implemented atop different cluster man-

agement frameworks, which are not easy to integrate. However, existing systems assign

partial SLOs to microservices through ad hoc and empirical mechanisms, which may re-

sult in a sub-optimal total cost (i.e., total number of instances). (2) Some recent research

proposals advocate end-to-end auto-scaling frameworks, wherein a single controller scales

the number of instances for all microservices upon traffic changes, using machine learning-

based techniques [60, 163]. Whereas these schemes are able to quickly react to changes

in the microservice graph topology, they impose a significant overhead for implementing

an ML-driven centralized controller, they are not trivially scalable to large microservice

graphs, they require frequent data collection and retraining, and most importantly, there is

no guarantee of optimality for such systems—i.e., they do not necessarily achieve a minimal

cost to meet the end-to-end latency SLO.

In this chapter, we take the simpler approach of allocating partial SLOs to individual

microservices but seek to propose a systematic mechanism for achieving an optimal solution,

rather than empirically allocating partial SLOs. Our goal is to design an algorithm that takes

the microservice DAG and the hockey-stick graph of each node as an input and produces

optimal SLOs for each microservice, in a way that meeting these partial SLOs results in the

fewest total number of instances while ensuring the end-to-end latency SLO is met.

5.2.3 Optimal Partial SLO Allocation

As noted earlier, prior works that propose partial latency SLOs often allocate them

empirically, which may result in suboptimal costs. A recent work [95] considers chains of

microservices, as shown in Figure 5.4(a), and proposes to divide the end-to-end latency SLO

97

across microservices proportional to their average service time, as stated in Equation 5.1. In

this subsection, we seek to understand whether such an allocation optimizes the total cost

for the end-to-end service.

SLOk =
Tk

∑
n
i=1 Ti

(5.1)

We consider the following parameters for each microservice, as shown in Figure 5.3(a):

α specifies the zero-load latency of the microservice—it can can be the average or the tail

of the service time, depending on the metric of interest for the latency SLO. µ specifies the

maximum arrival rate that an instance of the microservice can sustain (without incurring

infinite queuing). c specifies the cost of a single instance—this parameter may be set to 1

when all microservices are deployed on the same instance type. However, since typically

each microservice may be deployed on a different instance type with different configurations

(cores, memory, etc.), it is more realistic to optimize for the total cost rather than the total

number of instances. Finally, the φ function specifies the shape of the hockey-stick graph

for the microservice. In other words, φ takes as input a number within the [0,1] range that

specifies the fraction of the maximum load (µ) and produces the latency of the instance,

normalized to the zero-load latency α .

Based on the defined parameters, a microservice’s response time corresponding to

a particular arrival rate λ can be inferred from Equation 5.2. Similarly, if we set the

partial latency SLO of a microservice to be s, the maximum utilization of an instance is

calculated by Equation 5.3. As a result, the relative cost of the microservice is given by Equa-

tion 5.4 (the number of instances is inversely proportional to the utilization of each instance).

98

(Response time) R = αφ(
λ

µ
) (5.2)

(Max utilization) ρ = φ
−1(

s
α
) (5.3)

Microservice cost =
c

µρ
=

c
µφ−1(s

α
)

(5.4)

To examine the optimality of the SLO allocation scheme presented in Equation 5.1, we

consider a chain of only two microservices. Equation 5.5 denotes the total cost for the

chain, assuming both microservices are operated at their individual maximum utilization.

To derive the optimal partial SLO allocation, we set s2 = SLO− s1 (SLO denotes the end-

to-end latency SLO) and find the roots of the derivative of the total cost over s1, which

results in Equation 5.6. As this equation clearly shows, allocating partial SLOs propor-

tional to zero-load latencies of the microservices (i.e., s1
α1

= s2
α2

) can be a solution but only

under particular assumptions: (1) the shape of the hockey-stick graph for the two microser-

vices is the same (i.e., φ1 = φ2), (2) the cost of each instance for the two microservices

is equal (i.e., c1 = c2), and (3) zero-load latencies of the microservices are inversely pro-

portional to their maximum load (i.e., α1µ1 = α2µ2). Note that (3) is often true when

latency SLOs are defined based on the average latency but not necessarily true when they

are defind based on the tail latency. In such cases, allocating partial SLOs based on either

the average or the tail of the service times (zero-load latency) does not minimize the cost.

Total cost = cost1 + cost2 =
c1

µ1φ
−1
1 (s1

α1
)
+

c2

µ2φ
−1
2 (SLO−s1

α2
)

(5.5)

c1

α1µ1

φ
−1
1
′(s1

α1
)

φ
−1
1 (s1

α1
)2
− c2

α2µ2

φ
−1
2
′(SLO−s1

α2
)

φ
−1
2 (SLO−s1

α2
)2

= 0 (5.6)

To further illustrate the lack of optimality for the SLO allocation approach described

in Equation 5.1, we consider the hockey-stick graphs presented in Figure 5.3(b) for the

two microservices in the chain. In this case, even if the all other parameters are equal for

99

the two microservices (i.e., α,µ,c) the optimal SLO allocation may result in up to 24%

lower cost, compared to the allocation approach presented in Equation 5.1. Aside from

lack of optimality, this approach is useful only for chains of microservices and does not

generalize to arbitrary DAGs as seen in real applications. Our goal is to derive a partial SLO

allocation scheme, which, given an end-to-end latency SLO budget, results in an optimal

allocation—minimizing the total cost—and is applicable to the general microservice DAGs

of real applications.

5.3 Parslo: SLO Allocation

In this section, we describe the Parslo partial SLO allocation methodology. Parslo is

an iterative optimization algorithm based on the Gradient Descent theory. Parslo takes as

input an end-to-end latency SLO, a microservice DAG, and the load-latency profile (i.e.,

the hockey-stick graph) for all of the nodes in the DAG, and produces an optimal partial

SLO allocation that minimizes the deployment cost for the end-to-end service. Even though

Gradient Descent is only guaranteed to converge to a local optimum, since the cost function

Parslo seeks to optimize is convex, Parslo guarantees to find the globally optimal solution.

Parslo is applicable to general microservice DAGs that may be seen in real applications,

such as the ones shown in Figure 5.1. We first describe a simple variant of the algorithm

for a chain of microservices, shown in Figure 5.4(a). Then, in the following subsections,

we will describe how the algorithm handles more complex scenarios that may be found in

microservice DAGs.

Algorithm 1 presents pseudocode for the Parslo partial SLO allocation methodology. At

a high level, the algorithm breaks the end-to-end SLO budget into small “SLO units”. At

each step, the algorithm allocates one marginal SLO unit to the best candidate microservice

to achieve the highest total cost savings. The algorithm iteratively repeats this process until

the entire end-to-end SLO budget is exhausted. The size of the SLO unit must be small

enough to ensure the algorithm does no jump over the optimal solution. We empirically find

100

BA BA

M1

M2

(b) (c) (d)

(a)

M

30%
Requests

70%
Requests

Figure 5.4: (a) a chain of microservices, (b) dependencies across microservices, (c) parallel indexing
and sharding, (d) branching paths.

Optimal Partial SLO

Optimal Partial SLO

Iterations Iterations Iterations

N
or

m
al

iz
ed

 L
at

en
cy

N
or

m
al

iz
ed

 To
ta

l C
os

t

N
or

m
al

iz
ed

 To
ta

l C
os

t

Partial SLO

Partial SLO

(a) (b) (c)

Figure 5.5: (a) marginal increase of Partial SLOs with Parslo. Final values match the optimal partial
SLOs found by exhaustive search. (b) incremental reduction of total costs shown in linear, and (c)
log scale.

that dividing the SLO budget into 1000 SLO units is sufficient for converging to an optimal

solution.

The algorithm first initializes all microservices by allocating a single SLO unit to

them. This step ensures the algorithm starts with a finite total cost, so the cost saving

can be calculated at each step. As a result, the algorithm starts with an SLO budget that

is smaller than the end-to-end SLO, since a fraction of the budget is allocated during

initialization. Then, the algorithm finds the microservice that yields the highest cost savings

if allocated one more unit of SLO. The cost of a microservice node given a particular

101

partial SLO is calculated using Equation 5.4. The algorithm continues allocating SLO

units one at a time until the entire end-to-end SLO budget is exhausted. As a result, the

computational complexity of the algorithm is linear in the number SLO units and the number

of microservices in the chain. Finding the best microservice for each incremental SLO unit

can be optimized to logarithmic complexity via priority queue-based implementations, but

this optimization yields little gain as the number of microservices in real applications is

usually less than 100. In our experiments, the algorithm converges to the optimal solution in

less than a minute, even with complex microservice DAGs (which we will discuss later).

1 SLO-budget = Initialize()

2 while (SLO-budget > SLO-unit){

3 best-candidate = find-candidate-with-highest-cost-saving()

4 best-candidate.increase-SLO(SLO-unit)

5 update-total-cost()

6 SLO_budget=SLO-budget-SLO-unit

7 }

8

Algorithm V.1: Parslo SLO Allocation Process

Figure 5.5 illustrates the Parslo algorithm for a chain of two microservices. As shown in

the figure, both microservices are initially allocated a single SLO unit. Then, their partial

SLOs are incrementally increased, based on the marginal resource savings, until the entire

SLO budge is allocated. Final partial SLOs match the optimal values found by exhaustive

search. Figures 5.5 (b) and (c) report the total deployment cost as the partial SLOs change.

As shown in these Figures, the total cost initially reduces rapidly but the reductions slow

down as the sensitivity of the hockey-stick graphs to utilization is much higher when latency

constraints are tight.

A key requirement for the algorithm to yield a globally optimal solution is that the

slope of the hockey-stick graphs of all microsevices must always be increasing (i.e., the

second derivative of the function is always positive). This requirement ensures that the

102

optimum resource saving decreases monotonically across iterations, resulting in a convex

cost function. As a result, the cost function only has a single local optimum, which is

the globally optimum solution. As an example, the algorithm doesn’t necessarily yield an

optimal SLO allocation if one of the microservices exhibits a hockey-stick graph similar

to 5.3(c). However, this assumption is generally true in almost all microservices as the

response time increases at a higher pace when the load increases in almost all queuing

organizations [139]. We next describe how Parslo handles more complex scenarios that arise

in real microservice DAGs.

5.3.1 Microservice Dependencies

We described the basic operation of Parslo for a chain of microservices. However, many

microservices exhibit dependencies, wherein a non-leaf microservice issues subsequent

requests to another microservice while processing a request and is only able to continue

processing the request after it receives a response from the next-tier microservice, as shown

in Figure 5.4(b). In such scenarios, the response time of a request at the first microservice

(M1) depends upon the response time at the second microservice (M2).

To understand the impact of such dependencies on SLO allocation, we briefly explain

different implementation alternatives for microservice M1 [187]: (1) In the most straightfor-

ward way, M1 may be implemented synchronously, wherein each core processing a request

issues a subsequent request to M2 and waits until the response arrives back. During this

period, the core remains idle even if there are outstanding requests in the queue. (2) To opti-

mize for utilization and throughput, M1 may instead be implemented in an over-subscribed

manner, wherein the number of processing threads is larger than the number of cores. In

this case, when a thread is stalled, waiting for the next-tier response, it is context switched

with another thread to process another request and keep the core busy. Finally, (3) M1

may be implemented asynchronously, wherein the number of threads is the same as the

number of cores but each thread picks a new request after issuing the subsequent request

103

to M2 and continues processing the previous request when the response from M2 returns,

using an explicit state machine to track the partial progress of the requests. Asynchronous

implementations are significantly more complicated than over-subscribed implementations

but are more efficient as they do not incur context switching overheads.

A key requirement in Parslo is that different microservices must exhibit hockey-stick

graphs that are independent of one another. When a microservice is implemented in an

over-subscribed or asynchronous manner (i.e., options (2) or (3) above) its throughput

behavior would be independent of the next-tier microservice latency as cores do not remain

idle while a request is waiting for a response. To isolate the latency behavior from the next

tier, we define the response time of a request as the time a request has spent waiting or

processing within a microservice, excluding the time a microservice waits for the next-tier

response. In other words, in Figure 5.4(b), the response time of microservice M1 at a given

load (represented by its hockey-stick graph) corresponds to the time a request is enqueued

waiting for service at M1 plus the time it is being processed, but exclusive of the time

waiting for a response from M2—the time spent at M2 is subtracted from the total response

time of M1 when measuring the hockey-stick graph. Parslo performs its SLO allocation

based on this modified definition of response time for dependent microservices.

As a result, using our modified definition of the response time, microservice dependen-

cies do not impact partial SLO allocation for over-subscribed or asynchronous deployments,

since both the throughput and latency behaviors of the calling microservice are indepen-

dent of the latency at the next-tier microservice. Hence, Parslo is applicable only for such

deployment approaches. Fortunately, most real applications use one of these deployment

approaches as a naive synchronous implementation is highly inefficient [187].

5.3.2 Parallel Indexing and Sharding

Another common pattern in real microservice-based applications is a fan-out communi-

cation pattern with concurrent batched retrieval from numerous shards; this pattern arises in

104

search use cases, as shown in Figure 5.4(c). With sharded retrieval, the root microservice

has to wait until the responses from all shards return. In Parslo, we represent all the parallel

shards as a single microservice node in the DAG, subject to a single partial SLO, since

they operate concurrently. However, the latency distribution of the entire microservice node

may differ from the distribution of a single shard, as the latency of the microservice node

is determined by the slowest shard. In particular, when latency SLOs are defined based on

tail latency, the microservice node representing all shards will have a higher tail latency

than that measured at each instance. For example, if the probability of the observed latency

being greater than or equal to a specific value is measured to be 1% at a single instance (i.e.,

the value represents the 99th percentile tail latency), the probability of the observed latency

being greater than or equal to the same value over the entire microservice node would be

1.99%, which represents the ∼ 98th percentile tail latency of the microservice node.

The hockey-stick graph of a microservice node—which is used by the Parslo algorithm

to calculate cost savings—represents the average or tail of the latency distribution at a given

load. In Parslo, we seek to derive the hockey-stick graph for the entire microservice node

based on the hockey-stick graph measured at a single shard. To measure the tail latency

at a particular load, a large number of latency measurements need to be made to construct

a latency distribution and determine its tail of interest. When a request goes through two

parallel paths within a microservice node and the latency of the entire node is determined by

the slowest path, as shown in Figure 5.4(c), the Probability Distribution Funciton (PDF) of

the entire microservice can be inferred from the measured distributions at the two parallel

paths using Equation 5.7, assuming the latencies of the two paths are independent. When

a microservice performs indexing on multiple shards, the same procedure may be applied

to incrementally derive the latency distribution of the entire microservice, based on the

measured distribution of a single instance (shard). It is usually safe to assume the latency

distributions of different shards are independent, given that, at a particular load, internal

events within an instance—which are independent of the other instances—cause specific

105

One shard Two shards Ten shards

Latency (us) Latency (us) Load (%)

N
or

m
al

iz
ed

 L
at

en
cy

CD
F

PD
F (a) (b) (c)

95% Tail

Figure 5.6: (a) PDF and (b) CDF resulting from the sharding transformation on the latency distribution
of microservice exhibiting a 100µs mean latency with an exponential latency distribution, and (c)
the transformed hockey-stick graph of a microservice with an M/M/1 queueing model.

requests to be slower than nominal ones and comprise the tail [139].

PDFM(t) = P(M = t) (5.7)

= P(A = t)P(B≤ t)+P(B = t)P(A≤ t)−P(A = t)P(B = t)

= PDFA(t)CDFB(t)+PDFB(t)CDFA(t)−PDFA(t)PDFB(t)

Figure 5.6 illustrates the impact of inferring the PDF (a) and CDF (b) functions of

a sharded microservice based on the latency distribution of a single instance, which is

assumed to exhibit a 100µs mean latency with an exponential distribution. As these figures

show, sharding causes the probability of small latencies to decreases while resulting in a

higher probability for large latencies, since the overall microservice latency is detemined

by the slowest shard. Figure 5.6(c) presents the resulting hockey-stick graphs for a sample

microservice with an M/M/1 queueing system, for different numbers of shards. Parslo

calculates the cost of sharded microservices based on such transformed hockey-stick graphs

using Equation 5.7.

106

5.3.3 Branching Paths

In real cloud applications, such as the ones depicted in Figure 5.1, requests do not

necessarily go through a single chain of microservices, but rather may branch through

multiple paths, as shown in Figure 5.4(c). Branching makes partial SLO allocation more

complicated. Parslo addresses this issue via a combination of mechanisms. First, Parslo

seeks to equalize the SLO across all paths—by ensuring all possible paths within the service

conform to the same average or tail latency SLO, Parslo ensures that all requests meet the

end-to-end latency SLO, regardless of the path they take. To ensure it is possible to equalize

all paths, Parslo only supports a particular class of DAGs, known as Nested Fork-Join (NFJ)

DAGs.

Prior work has shown that checking whether a DAG is NFJ and, if not, converting it into

an NFJ DAG through node replication can be performed in linear time [77, 57]. Replicating

a node in a microservice DAG simply means that different instances of the microservice are

subject to different latency SLOs. For example, Figure 5.7(a) depicts a non-NFJ DAG that

has been converted to an NFJ DAG in Figure 5.7(b) by replicating node D into nodes D1

and D2. This replication means that D1 and D2 are treated as two separate microservice

deployments, each with their own partial SLO that is enforced by their own auto-scaler.

Despite the fact that the instances of D1 and D2 are effectively running the same code, they

might be offered different load and target different latency SLOs.

During initialization, Parslo ensures that all branches of a fork are allocated an equal

total budget of the initial SLO, by dividing the residual SLO from the branch with the largest

number of nodes among all the nodes in each other branch, as shown in Figure 5.7(b). Then,

Parslo obtains all combinations of nodes across branches by performing a Cartesian product

across branches at each fork. Each combination of nodes represents an option for allocating

a marginal SLO unit to all branches of a fork to maintain an equal SLO budget across all

branches.

During the iterative optimization process, the algorithm selects the best candidate to

107

A B

C D

E F G H

I

J

40%

60%

20%

40%

40%

A B

C D1

E F G H

I

J

40%

60%

40%

40%

D2
20%

2

1

1 1 1 1

1

3

3

2

1

Marginal SLO Alloca�on Candidates: A B (C, E) (D1, E) (C, D2, F, I)
(D1, D2, F, I) (C, D2, G, I) (D1, D2, G, I) (C, D2, H, I) (D1, D2, H, I) J

(a) (b)

Figure 5.7: (a) an arbitrary DAG of microservices, (b) converting the DAG into an NFJ DAG; initial
SLO allocations denoted on top of each node.

allocate the marginal SLO unit to achieve highest cost savings. When microservice DAGs

include branches, candidates may comprise single nodes or combinations of nodes, wherein

a marginal SLO unit is allocated to all nodes within a combination. Figure 5.7(b) lists all

potential candidates for allocating marginal SLO in each iteration. With branches, the total

cost of the entire service deployment depends upon the probability that each request might

take a particular branch at a fork—the number of instances of a node is linearly proportional

to its request arrival rate. As a result, Parslo also requires that DAGs be annotated with

an estimated (or profiled) fraction of requests taking each branch at a fork. Equation 5.4

calculates the total cost for each node. However, with branches, the cost of each node is

weighted by the fraction of requests passing through the node. For example, in Figure 5.7(b)

the cost of node I is calculated by multiplying the cost calculated via Equation 5.4 to 0.24

(0.4×0.6). The weights for the nodes in combination (C, D2, F, I) would be (0.4, 0.12, 0.24,

0.24) whose sum is equal to 1.0.

The number of candidates Parslo must examine at each iteration may grow combinatori-

ally with the branching degree of forks. But, since real microservice DAGs do not usually

have branching degrees larger than 5, the number of combinations remains tractable. For

example, whereas the DAG in Figure 5.7(b) has 11 nodes in total, the number of candidates

Parslo must examine at an iteration is also 11.

108

Parslo

Calibrate

Microservice
DAG

New SLO budget

Tail latency

Partial
SLOs

Current SLO budget

Tail estimation
model

Microservice
DAG

if Tail latency > End-to-end SLO
or Tail latency < 0.9 End-to-end SLO:

SLO budget*=End−to−end SLO
Tail latency

Virtual
cluster

Parslo

Calibrate

Microservice
DAG

New SLO budget

Tail latency

Partial
SLOs

Current SLO budget

(a) (b)

Figure 5.8: Parslo’s (a) online and (b) offline SLO budget calibration framework.

5.4 Parslo: Calibration

In the previous section, we described Parslo’s partial SLO allocation procedure, given

an end-to-end latency SLO budget. The procedure described in the previous section only

results in optimal SLO allocation if the latency SLOs are defined based on metrics, such as

average latency, which exhibit an additive property. However, this approach would be highly

conservative and wasteful if SLOs are defined based on metrics like tail latency, which do

not exhibit such an additive property. As an example, with a chain of two microservices

A and B, the procedure would allocate partial SLOs to them in such a way that the sum

of SLOA and SLOB would be equal the end-to-end SLO budget. However, the end-to-end

tail latency may be much smaller than the sum of the tail latencies of A and B, since the

likelihood of a request experiencing exceptionally high latencies in both is very low, unless

the two microservices are inter-dependent. Therefore, even if the allocated partial SLOs

sum up to a value that is higher than the end-to-end SLO, the resulting tail latency may still

meet the end-to-end SLO.

To address this issue, we augment Parslo with an iterative “calibration” approach—

illustrated in Figure 5.8—wherein Parslo starts with an SLO budget which is equal to the

end-to-end latency SLO, and iteratively increases the SLO budget until the resulting end-

to-end tail latency is very close to the end-to-end latency SLO. The calibration framework

modifies the SLO budget proportional to the ratio of the end-to-end tail latency and the

109

end-to-end latency SLO. Every time the SLO budget is modified, the Parslo SLO allocation

algorithm is performed again to allocate all microservice-level partial SLOs and derive the

resulting end-to-end latency distribution, and thus the end-to-end tail latency. If the resulted

tail latency is higher or significantly (i.e., more than 10%) lower than the end-to-end latency

SLO, the SLO budget will be re-adjusted, until the achieved the tail latency is only within

10% of the end-to-end latency SLO. We propose an online and an offline variant for the

calibration approach, illustrated in Figures 5.8(a) and (b), respectively.

PDFS = PDFA ∗PDFB (5.8)

= P(S = t) =
∞∫
−∞

P(A = x)P(B = t− x)dx

PDFS = P(S = t) = P(A = t)P(A)+P(B = t)P(B) (5.9)

In the online approach, shown in Figure 5.8(a), the end-to-end tail latency must be

measured at the virtual cluster every time the SLO budget is re-adjusted. Whereas we

find that calibrating the SLO budget usually takes less than 10 iterations, this may still

be costly and time-consuming, since each iteration involves (1) running the Parslo SLO

allocation to calculate the optimal partial SLOs for the given SLO budget, (2) waiting for the

corresponding auto-scalers to upsize/downsize the cluster accordingly, and (3) measuring a

large number of end-to-end request latencies to collect high-confidence latency distributions.

As a result, we recommend calibrating the SLO budget offline using the estimates of the

latency distributions first and only perform an online calibration phase at deployment time,

if necessary (i.e., if the resulting end-to-end tail latency is higher or significantly lower than

the end-to-end latency SLO).

110

5.4.1 Offline Tail Estimation Model

We propose an offline tail estimation model to enable offline calibration of Parslo’s

SLO budget, as shown in Figure 5.8(b). The model estimates the end-to-end tail latency

given a set of partial SLOs for all microservice nodes. After allocating a partial SLO to a

microservice node, the maximum load each instance of the microservice can operate at will

be known, which corresponds to a measured latency distribution, as shown in Figure 5.9.

Assuming all microservice nodes are independent, we can combine these distributions to

derive the end-to-end latency distribution for the entire microservice DAG, to estimate the

end-to-end tail latency. Whereas different microservice nodes might be inter-dependent, we

make such an independence assumption in our offline calibration phase, since it would be

automatically corrected in the online calibration phase, if needed.

Our tail estimation model uses equations 5.8 and 5.9 to iteratively combine the latency

distributions of different microservice nodes, until all distributions are reduced into a single

end-to-end latency distribution. When two independent microservice nodes are chained, their

latency distributions may be combined using a convolution operation, as shown in Figure 5.9

and Equation 5.8, to derive to the end-to-end latency distribution. Convolutions are used to

derive the distribution of a sum of two random variables by considering all combinations of

values from the two distributions that yield a particular summation. Figure 5.9 illustrates two

microservices with the same behavior, which exhibit exponential latency distributions. As

shown in the figure, while the tail latency for one microservice is ∼ 400µs, the tail latency

for the convolution of the two latency distributions—which represents chaining the two

microservices—would be ∼ 600µs, rather than 800µs. This is due to the lack of additive

property for tail latency, which we explained earlier.

Similarly, Equation 5.9 may be used to derive the end-to-end latency distribution over

a branching path (i.e., fork operator), shown in Figure 5.4(d). Our tail estimation model

recursively employs Equation 5.8 to reduce all nodes within a chain in a branch into a

single node and then employs Equation 5.9 to reduce the nodes in all branches of a fork to a

111

M1 M2

Partial SLO

Load (%)

Ta
il

La
te

nc
y

Latency

PD
F

Latency

CD
F

Partial SLO

Load (%)

Ta
il

La
te

nc
y

Latency

PD
F

Latency

CD
F

*

*

=

=

M1M2

Tail Latency
≈ 600μs

Tail Latency
≈ 400μs

Latency

Latency

PD
F

CD
F

Figure 5.9: Combining latency distributions of two chained microservices using convolution in
Parslo’s offline tail estimation model.

112

single node. After all microservice nodes are reduced into a single node, the node’s latency

distribution may be used to obtain the end-to-end tail latency and compare it against the

end-to-end latency SLO.

5.5 Evaluation

To evaluate Parslo, we employ stochastic queuing simulation, using the BigHouse

Framework [134], based on the measured service time distributions of three common

microservices from [141]: FLANN, McRouter, and Word Stemming (WS). We consider

M/G/k queuing systems based on these microservices running atop instance types with

8 or 16 processors with instance costs proportional to the number of processors. These

assumptions are in line with VM offerings from all major cloud providers. Parslo is proven to

achieve the optimal solution. However, to determine Parslo’s improvements over the state-of-

the-art, we compare our deployment costs to those achieved by the SLO allocation approach

presented in GrandSLAm [95]. We consider a variant of GrandSLAm that allocates SLOs

based on zero-load latency (i.e., average or tail of the service time distribution depending on

the SLO definition) rather than the average service time, as we find this variant to always

perform better (see Section 5.2.3). To evaluate real-world microservice-based applications,

we apply Parslo to two microservice DAGS for the social network and media service

from [59]. We consider simplified variants of these DAGs with small modifications as the

original DAGs exhibit synchronous dependencies which Parslo does not suport.

5.5.1 Chains of Microservices

To determine the impact of different factors on the improvements of Parslo over Grand-

SLAm, we first consider chains of only two microservices. Figure 5.10 reports the cost ratio

of Parslo over GrandSLAm, under (a) a relaxed SLO latency target, which is 10× the sum

of the zero-load latencies, and (b) a tight SLO latency target, which is 3× the sum of the

zero-load latencies, when SLOs are defined based on the average and 99th percentile latency

113

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

McRouter (8) + FLANN (8) WS (8) + FLANN (8) WS (8) + FLANN (16) FLANN (8) + FLANN (16)

Re
la

tiv
e

co
st

Average Latency Tail Latency Tail Latency + Calibration

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

McRouter (8) + FLANN (8) WS (8) + FLANN (8) WS (8) + FLANN (16) FLANN (8) + FLANN (16)

Re
la

tiv
e

co
st

Average Latency Tail Latency Tail Latency + Calibration

(a)

(b)

Figure 5.10: Relative deployment costs of chains of two microservices with different instance sizes
and costs ahcieved by Parslo, compared to GrandSLAm when SLOs are defind based on the average
and the 99th percentile tail latency for SLO of (a) 10× and (b) 3× the sum of zero-load latencies.

114

(with and without calibration). As shown in the Figure, Parslo achieves larger improvements

over grandSLAm when (1) SLOs are defined based on tail (rather than average) latency, (2)

instance types are different (rather than the same), and (3) the SLO latency target is tight.

Conclusion (1) is because, as explained in Section 5.2.3, GrandSLAm’s approach is closer

to optimal when zero-load latency is inversely proportional to maximum load, which is

usually true when hockey-stack graphs represent average latency. In such scenarios, Parslo

would have a smaller opportunity for improvement over GrandSLAm. Conclusion (2) is

because GrandSLAm’s approach is agnostic to instance costs and only seeks to minimize

the number of instances. Conclusion (3) is because increasing the latency SLO results in

much sharper increase in maximum utilization when latency SLOs are tight. Therefore,

optimal SLO allocation is more critical in these regimes.

Finally, Parslo’s improvements are higher when the two microservices are McRouter+FLANN

compared to when they are WS+FLANN, because both WS and FLANN exhibit high-

disparity service distributions. Hence, their hockey-stick graphs are more similar to one

another, making GrandSLAm perform better and leaving smaller improvement opportunity

for Parslo. As Figure 5.10 shows, calibration reduces the total deployment cost achieved by

Parslo by 2×−3×, by addressing the lack of additive property in tail latency, which the

non-calibrated variant of Parslo does not consider.

5.5.2 DAGs of Microservices

To demonstrate the key benefit of Parslo’s mechanism to allocate partial SLOs to

microservice DAGs, we consider 5 synthetic DAGs as well as the two DAGs for the social

network and media service from [59], depicted in Figure 5.1. All DAGs exhibit parallel

indexing as well as branching paths. Since GrandSLAm does not natively support DAGs,

we consider a modified variant of it, wherein the end-to-end SLO is divided across the nodes

within the critical path of the DAG proportional to the zero-load latencies. The critical path

is the path with the largest sum of zero-load latencies. Non-critical paths are allocated SLO

115

(a)

(b)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

DAG1 DAG2 DAG3 DAG4 DAG5 Media
Service

Social
Network

Re
la

tiv
e

co
st

Average Latency Tail Latency Tail Latency + Calibration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

DAG1 DAG2 DAG3 DAG4 DAG5 Media
Service

Social
Network

Re
la

tiv
e

co
st

Average Latency Tail Latency Tail Latency + Calibration

Figure 5.11: Relative deployment costs of microservice DAGs achieved by Parslo, compared to the
DAG-aware modified variant of GrandSLAm when SLOs are defind based on the average and the
99th percentile tail latency when SLO is (a) 3× and (b) 10×the sum of the zero-load latencies on the
critical path.

budgets equal to the allocation of the critical path and divide their SLO budget across nodes

proportional to the zero-load latencies of the nodes on those paths.

Figure 5.11 reports the cost ratio of Parslo over the modified variant of GrandSLAm

for DAGs, under a SLO latency target that is (a) 10× and (b) 3× the sum of the zero-load

latencies on the critical path, when SLOs are defined based on the average and 99th percentile

latency (with and without calibration). All synthetic DAGs consider mixes of McRouter,

WS, and FLANN workloads. Parslo’s improvements are much larger in DAGs because

GrandSLAm does not natively support fan-out and branching effects. Similar to chains

the case of chains, Parslo’s improvements are much larger when with tighter SLOs and

116

when latency SLO is defined based on tail, rather than average latency. All synthetic DAGs

are calibrated offline as their nodes are, by definition, independent. In case of the two real

DAGs, however, we perform final calibration to correct the potential errors of the offline

calibration phase. As shown in Figure 5.11, total cost savings for the two real DAGs are a

little smaller than synthetic DAGs due to dependencies across different nodes. Altogether,

Parslo achieves up to more than 2×/6× (with/without calibration) reduction in deployment

costs, compared to GrandSLAm, for the social network and media service DAGs.

5.6 Conclusion

We proposed Parslo as a Gradient Descent-based approach to allocate partial SLOs

among nodes in a microservice DAG, enabling independent auto-scaling of individual

microservices. Parslo employs novel mechanisms to be applicable to general DAGs, with

microservice dependencies, parallel fan-out, and branching paths. Parslo achieves the

optimal solution, minimizing the total cost for the entire service deployment. Our evaluation

demonstrates that Parslo reduces service deployment costs by more than 6× in microservice-

based applications, compared to a state-of-the-art SLO allocation technique.

117

CHAPTER VI

µSteal: Preemptive Work and Resource Stealing for

Mixed-Criticality Microservices

6.1 Introduction

Modern internet services are shifting away from single-binary, monolithic services

into various loosely-coupled microservices, to enable rapid development, release, and

frequent updates of cloud software [58, 59, 186, 183]. Microservice–based services are

implemented as a Directed Acyclic Graph (DAG) composed of tens to hundreds of individual

microservices, wherein each microservice node of the DAG is independently deployed and

scaled. Microservice architectures have been adopted by major cloud-based companies,

such as Facebook, Netflix, and Linkedin, as they significantly improve programmability,

reliability, manageability, and scalability. For example, a Facebook news feed query may

flow through a chain of microservices, such as Sigma (a spam filter), McRouter (a protocol

router), Tao (a distributed social graph data store), and MyRocks (a user database) [183].

Since microservices arise from decomposing complex services into simpler components,

common microservices are often found across multiple end-to-end services. For example,

Facebook incorporates the same face detection/recognition and image understanding models

into many user-facing services [76, 209]. Similarly, speech recognition and many other text

and language understanding microservices may be common across services like web search,

118

translation, or digital assistants. However, given the dissimilarities in the orchestration and

the number of microservices in the DAGs of different services, as well as varying end-to-end

latency objectives, these common microservices may need to operate under differing latency

constraints when deployed as part of each service.

The common and straight-forward solution is to deploy a dedicated instance pool (i.e.,

virtual machines or containers) for each end-to-end use case of a microservice [201]. These

dedicated pools can be tuned for differentiated latency constraints and scaled appropriately

for each end-to-end service deployment. However, in this chapter, we argue that dedicated

pools can be wasteful; sharing an instance pool across multiple use cases for the same

microservice can result in significant reduction in the total number of instances (and,

correspondingly, compute and memory resources), especially if the latency constraints

imposed by the service DAGs are highly asymmetric. We call microservice deployments with

diverse latency requirements across classes of requests “mixed-criticality” microservices,

and seek to facilitate their implementation.

Whereas sharing microservice instances across multiple deployments can result in

remarkable resource savings, we show that it is only beneficial if the arriving requests

from each criticality class (i.e., service deployment) are intelligently scheduled across the

execution resources within an instance, to account for the varying latency requirements of

each class—naively interleaving requests among classes leads either to over-provisioning or

missed deadlines for requests with tighter requirements. In contrast, strict prioritization by

latency constraint tends to starve requests in the most relaxed class. We examine multiple

scheduling policies and show that no trivial policy achieves a competitive request throughput

without violating latency requirements in any request class.

To address this challenge, we propose a request scheduling scheme, called µSteal, that

leverages preemptive work and resource stealing to schedule arriving requests onto process-

ing cores within a mixed-criticality microservice instance. µSteal provisions differing “core

reservations” for each request class, depending on their latency constraints, but allows a

119

class to steal cores from other reservations if the cores would otherwise remain idle. Still,

when offered load within a class requires its full reservation, µSteal preempts stolen cores,

returning them to their reserved class. By synergistically employing core partitioning, work

stealing, and preemption, µSteal seeks to maximize the total throughput supported by an

instance while ensuring all request classes meet their latency constraints.

µSteal’s effectiveness depends critically on the optimal allocation of core reservations to

request classes. µSteal allocates a higher processing capacity to a class by reserving more

cores to it—poor allocation results in suboptimal throughput and efficiency. µSteal employs

a feedback controller to tune reservations at runtime, since the arrival rate in each class may

change over time. However, in the presence of load spikes, wherein a class’s arrival rate

increases suddenly, a feedback controller approach may take long to converge iteratively

to an optimal core reservation distribution across request classes. Hence, we propose a

queuing theory-based analytical approach to estimate the required core reservation per class,

to minimize feedback controller convergence time.

To our knowledge, µSteal is the first scheduling framework for mixed-criticality mi-

croservices with varying latency requirements across request classes. Our real-system

implementation shows that µSteal reduces the required number instances by up to 1.29×

compared to a deployment with dedicated instances for each request class and significantly

outperforms any other scheduling scheme when using shared instances in a mixed-criticality

microservice.

6.2 Background and Motivation

6.2.1 A case for mixed-criticality microservices

The same microservices may often appear in the DAG of multiple end-to-end services.

As an example, Figure 6.1 depicts a scenario where a provider offers web search, translation,

and digital assistant end-to-end services, and it accepts both text and voice inputs for search

120

Speech
Recognition
Microservice

Translation
Microservice

Graph

Search
Microservice

Graph

Digital Assistant
Microservice

Graph

Voice Input

Text Input

Text Query

Output

500ms SLO
500ms SLO

Figure 6.1: Speech recognition as a shared mixed-criticality microservice.

and translation. The digital assistant service may itself generate queries to the search or

the translation services, depending on its input voice command. The speech recognition

microservice is shared across the DAG of all three end-to-end services.

Assuming the end-to-end latency SLO for all of these services is 500ms to achieve a

desirable user experience, the speech recognition microservice must satisfy different parial

SLOs depending on the end-to-end service class. For example, suppose the average time

taken to complete a search query is significantly longer than the average time taken to finish

a translation query. In this case, the latency SLO for the speech recognition microservice in

the web search DAG must be significantly smaller than the SLO for the same microservice

in the translation DAG. On the other hand, for all microservices in the search or translation

DAGs, the latency SLO must be tighter if the query originates from voice (rather than text)

input, given that a fraction of the 500ms SLO is spent in the speech recognition microservice.

Similarly, all microservices in the search or translation DAGs must meet significantly

121

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100

99
th

 p
er

ce
nt

ile
 ta

il
la

te
nc

y
(n

or
m

al
ize

d
to

 m
ea

n
se

rv
ic

e
tim

e)

Load (%)

ρA = 77%

SLOA = 20T

SLOB = 6T

ρB = 24%

Figure 6.2: Maximum load supported by a microservice instance under different latency SLOs.

tighter SLOs if their input query is generated by the digital assistant service, rather than

directly from a user. We call microservices with multiple latency SLOs “mixed-criticality”

microservices; a term we borrow from the embedded/real-time systems community [20].

6.2.2 Sharing instances

Figure 6.2 illustrates a synthetic load vs. latency profile for one instance of a microser-

vice, with an M/M/1 queuing model. Load refers to the ratio of the request arrival rate (λ)

to a single instance, by the total service rate of the instance (cµ where c is the total number

of cores in an instance and µ is the maximum service rate of a core). As shown in the figure,

as load increases, the response time increases by a semi-exponential rate—especially at

loads above ∼ 50%—due to the increased queuing delay in the instance’s request queue.

When the microservice’s latency SLO is relaxed to a higher value, each instance may operate

at higher utilization while still meeting the SLO, allowing the auto-scaler to reduce the

number of microservice instances.

Consider a microservice with the load-latency profile shown in Figure 6.3 and arriving

requests belonging to two classes A and B. Whereas A has a relaxed SLO that requires tail

latency to be bounded within 20× the mean service time, B has a strict SLO that requires

122

…

…

N instances for A
Each instance utilized at ~75%

3N instances for B
Each instance utilized at ~25%

Unused capacity =
3N*75% = 2.25N >> N !

Figure 6.3: An illustrative example showing the resource saving opportunity from sharing instances
across different deployments of a microservice with different latency SLOs.

the tail latency to be bounded within only 6× the mean service time. As a result, if we

deploy separate instances to service requests for A and B classes, whereas each instance

deployed for A can support at most 77% utilization, each instance deployed for B is limited

to only 24% utilization without violating their corresponding latency SLO. To simplify the

calculations, we assume each instance deployed for A can be utilized up to 75% and each

instance deployed for B can be utilized up to 25%. Hence, as shown in Figure 6.3, assuming

equal arrival rates for A and B, if A needs N instances to meet its latency SLO, B needs 3N

instances (each instance for A can support 3× higher utilization).

As shown in Figure 6.3, the underutilized B-instance capacity equals 0.75∗3N = 2.25N

(each of the 3N instances is underutilized 75% of the time), which is more than twice the

total capacity needed by A to meet its latency SLO. This example shows that deploying

distinct instance pools for each request class results in myriad wasted resources. While

sharing the instances across request classes may reduce instance count by up to 25% in this

example, further resource savings are possible if the classes’ arrival rates are also asymmetric

(in addition to their latency SLOs). However, naively sharing the instances across multiple

request classes may result in significant SLO violations—since B needs exactly 3N instances

to meet its latency SLO in our example, any interference caused by requests from A will

result in SLO violations for B.

123

6.2.3 Scheduling within an instance

Task-parallel frameworks, such as Cilk [16], usually employ per-core local task queues

to observe the dependencies and maximize locality across related tasks while minimizing

synchronization overheads. To maximize throughput, these frameworks often employ work

stealing, wherein a core usually processes tasks from its own local queue, but, if its local

queue becomes empty, the core steals a task from another non-empty queue. When all tasks

constitute a single job, the overall job execution latency translates roughly to task processing

throughput. Hence, a work-stealing task scheduler seeks to maximize task throughput to

reduce job execution latency.

However, in cloud microservices, there is no dependency or locality among requests.

Furthermore, the metric of interest in cloud microservices is the response time for individual

requests. As a result, unlike task-parallel frameworks, cloud microservices usually employ a

single shared request queue across cores, to observe the FIFO arrival order of the requests and

prevent Head-of-Line (HoL) blocking caused by requests with exceptionally long service

times, minimizing the response time distribution mean and tails [139]. Microservices

exhibit mean service times ranging from tens of microseconds to single-digit seconds [183].

Whereas implementing a shared queue across cores can be challenging for short µs-scale

microservices, recent frameworks have sought to mitigate its overheads in software [91] or

hardware [36].

We envision a baseline scheduler for mixed-criticality microservices, shown in Fig-

ure 6.4(a), wherein requests from all classes are spread over all instances. So, there are

multiple request queues for different classes within each instance. An ideal request sched-

uler must provide some form of prioritization for the request classes with tighter latency

SLOs or higher request arrival rates. Unfortunately, as we will show in Section 6.6, strict

prioritization of one class over another results in starvation and drastic SLO violations for

under-prioritized classes. In contrast, partitioning the cores across classes results in wasted

resources, requiring more instances to be launched, since the resulting scheduler is no longer

124

(b) (c)(a) (d)

Figure 6.4: (a) A baseline mixed-criticality microservice deployment with multiple request queues
belonging to different classes shared across all cores, (b) partitioning the cores across request classes,
(c) partitioning augmented by work/resource stealing, (d) preempting the youngest request from the
stealing class as performed by the µSteal scheduler. Note that µSteal allocates a core reservation
“count” to each class, rather than a fixed set of cores, as shown in the figure.

“work-conserving”—cores allocated to one class may remain idle if the corresponding

request queue is empty while there are requests pending in another class’s queue.

Earliest Deadline First (EDF) is a classic scheduling algorithm for real-time systems

where individual tasks have a deadline. It can be shown that if a collection of tasks with

different arrival times and deadlines are schedulable by any algorithm such that all tasks

complete by their deadline, EDF will schedule this collection of tasks so they all complete by

their deadline [219]. It has further been shown that EDF minimizes the fraction of reneged

work—the residual work lost due to elapsed deadlines—under heavy traffic [108].

Prior work [95] suggests setting the SLO latency target for each request in a microservice

as its deadline and scheduling requests using EDF, resulting in a near-minimal SLO violation

rate. The term near-minimal is used as EDF guarantees to minimize the the total reneged

work, rather the the total number requests that miss their latency target. In microservices with

a single latency SLO, EDF simply functions as a First Come First Serve (FCFS) scheduler,

as the deadline (i.e., latency SLO) for all requests is the same. GrandSLAm [95] suggests

a particular variant of EDF for microservice environments, called Least Slack First (LSF),

which re-orders requests to make up for the slowdowns in the previous microservice stages,

seeking to minimize end-to-end SLO violations. LSF re-orders requests at each microservice

stage according to the original arrival time of the requests (at the entire end-to-end service),

125

rather then their arrival time to the individual microservice node.

Whereas EDF/LSF achieves a near-minimal SLO violation rate for single-SLO mi-

croservices, in case of mixed-criticality multi-SLO microservices, it seeks to minimize the

total SLO violation rate across all requests for each class—EDF/LSF is unaware of request

classes and treats all SLO violations the same regardless of class. As such, the algorithm

will tend to prioritize requests from one class over another, especially if the classes exhibit

asymmetric request arrival rates. Notably, in such cases EDF/LSF favors classes with the

higher request arrival rates, as doing so minimizes the overall SLO violation rate.

Our goal in this chapter is to design a scheduling scheme for mixed-criticality microser-

vices, which—unlike EDF/LSF—is aware of the request classes and seeks to maximize the

total request throughput within each instance (thereby reducing the number of instances)

while ensuring each request class meets its latency SLO.

6.3 The µSteal Framework

In this section, we present the µSteal framework, a runtime request scheduling system to

be deployed at each instance of a mixed-criticality microservice. µSteal schedules incoming

requests onto cores so as to maximize the total request processing throughput per instance—

thereby minimizing the total number of instances—while ensuring all request classes meet

their latency SLO. µSteal framework considers multiple request classes each comprising a

separate request queue (shared across all cores) and a pre-defined latency SLO, as depicted in

Figure 6.4. Typically, microservice runtime frameworks follow variants of FCFS scheduling

to minimize queuing delay and tail latency. Hence, µSteal also seeks to adhere to FCFS

scheduling within each request class and only makes decisions on the interleaving of request

admissions across classes. As a result, µSteal’s main responsibility is to decide from which

non-empty queue a core should select a request when the core becomes idle (i.e., finishes

processing the previous request). µSteal employs a core partitioning scheme augmented

with a preemptive work/resource stealing mechanism, to account for the asymmetric latency

126

SLOs and arrival rates of different request classes, while providing a “work conserving”

scheduler to achieve maximum throughput. That said, note that µSteal can implement any

scheduling policy—such as EDF/LSF—within a request class and is composable with other

microservice request schedulers [91, 95], enabling them to perform well for mixed-criticality

multi-SLO microservices.

6.3.1 Stealing-enabled scheduler

Algorithm 1 presents the high-level approach by which µSteal steers requests to cores.

The algorithm considers N cores and M classes of requests with different latency SLOs. The

algorithm allocates each request class a different “core reservation”, wherein the reservations

for all classes add up to the total number of cores (i.e., r1 + r2 + ...+ rM = N). The core

reservation for a request class represents the number of cores a class is guaranteed to be

allocated if there are sufficient available requests in the class’s corresponding queue to

utilize the allocated cores. This approach is conceptually equivalent to dividing the cores

across request classes by the same fraction, as shown in Figure 6.4(b). Core reservations

are the mechanism that the µSteal scheduler employs to partially prioritize one class over

others—when a class needs a higher processing capacity (i.e., exhibits a significantly stricter

latency SLO or a higher arrival rate), it is assigned a larger core reservation, ensuring it can

claim cores when it needs them.

Since the framework seeks to maximize request throughput, it implements a work

conserving scheduler, wherein no core remains idle if there is at least one request pending in

any request queue. Hence, when a request arrives, if there is any idle core available within

the instance, the request is dispatched to the core for processing. This may result in a class

using cores in excess of its reservation (i.e., “stealing cores” from another class). Similarly,

in the equivalent view of allocating a fixed share of cores among classes, this effect can be

interpreted as a class with idle cores “stealing work” from a different class with pending

requests and no idle cores, as shown in Figure 6.4(c).

127

Algorithm 3: µSteal Request Scheduling Procedure
1 event (core becomes available)
2 core.previous-request.class.decrement-allocated-cores()
3 best-class = NULL
4 lowest-core-reservation-ratio = inf
5 for class in all classes do
6 if !class.queue.empty() then
7 n = class.allocated-cores()
8 r = class.reservation()
9 If n/r < lowest-core-reservation-ratio

10 lowest-core-reservation-ratio = n/r
11 best-class = class
12 end
13 end
14 if best-class!=NULL then
15 request = best-class.queue.pop-front()
16 core.process (request)
17 request.class.increment-allocated-cores()
18 end
19 else
20 idle-cores.push-back(core)
21 end
22 event (request arrives)
23 if !idle-cores.empty() then
24 core = idle-cores.pop-front()
25 core.process (request)
26 request.class.increment-allocated-cores()
27 end
28 else
29 n = request.class.allocated-cores()
30 r = request.class.reservation()
31 if n<r then
32 best-class = NULL
33 highest-core-reservation-ratio = n/r
34 for class in all classes do
35 n = class.allocated-cores()
36 r = class.reservation()
37 if n/r > highest-core-reservation-ratio then
38 best-class = class
39 highest-core-reservation-ratio = n/r
40 end
41 end
42 victim = best-class.youngest-running-request()
43 core = victim.running-core()
44 core.preempt-running-request()
45 victim.class.decrement-allocated-cores()
46 victim.class.queue.push-front(victim)
47 core.process(request)
48 request.class.increment-allocated-cores()
49 end
50 else
51 request.class.queue.push-back(request)
52 end
53 end

In contrast, when a request arrives and no idle core is available within the instance, the

framework checks whether the corresponding class is presently utilizing at least as many

cores as its reservation. If present usage exceeds reservation, the request is enqueued to

the corresponding request queue and waits to be processed in FIFO order within its queue.

However, if the class’s present usage is below its reservation, the framework preempts the

youngest request from the class that is presently exceeding its reservation the most (i.e., by

128

the largest ratio), appends the preempted request to the head of its corresponding queue, and

allocates the core to the newly arrived core, as shown in Figure 6.4(d). Said differently, if

class i with ri reservation is allocated ni cores and class j with r j reservation is allocated n j

cores, the framework compares ni
ri

and n j
r j

and preempts the youngest running request from

the class with the highest ratio. By preempting the youngest such request and prepending it

to the corresponding queue, the algorithm guarantees FIFO ordering within each class.

When a core becomes idle (i.e., finishes processing its previous request), it dequeues a

new request from the class with a non-empty request queue and the lowest ratio of present

usage to reservation (i.e., ni
ri

). Because of the nature of the prioritization algorithm, a core

will dequeue work from the same class as the just-completed request if that request class is

not presently stealing from another class (there cannot be more than one non-empty queue

with ni
ri
< 1). As a result, while a class uses fewer cores than its reservation, the class is

guaranteed to retain the same cores until its queue empties.

To summarize, the µSteal framework follows three key scheduling concepts: resource

partitioning, work stealing, and preemption. By reserving cores to each request class, the

framework conceptually partitions the cores among classes. However, work stealing allows

request classes to steal idle cores beyond their reservation. Such work stealing ensures

µSteal’s scheduling is work conserving, wherein no cores idle if there is at least one request

pending in any queue. Finally, the framework leverages preemption to ensure request classes

always can seize as many cores as they are reserved, despite employing work-stealing.

6.3.2 Tuning reservations

The µSteal framework maximizes request throughput at every instance (thereby minimiz-

ing required instance count) while ensuring all request classes meet their latency SLOs by

allocating asymmetric processing capacities among classes. µSteal allocates more process-

ing capacity to a class by assigning it a larger core reservation—poor reservation allocation

results in suboptimal throughput and efficiency. Unfortunately, optimal reservation allo-

129

cation depends upon the relative arrival rate among classes, which may change over time.

Although significant load changes are infrequent, small changes in request class arrival

rate are common. Since different request classes are independent, their arrival rates do not

change together. Hence, optimal core reservation allocation also changes over time.

To ensure the optimal reservation for each request class at all times, µSteal employs

an iterative feedback controller similar to that used in various frameworks, such as PAR-

TIES [27]. Whereas such frameworks allocate numerous resources (cores, memory, LLC,

etc.) across multiple applications, µSteal only allocates core reservations across multiple

request classes within a single application (i.e., microservice), and hence employs a simpler

controller.

Algorithm 2 presents the iterative feedback-loop procedure the µSteal framework uses to

tune core reservations upon changes in arrival rates. At every epoch, the framework checks

for SLO latency target violations in each request class and re-balances core reservations if

at least one class is violating its SLO (i.e., latency target violation above 1% for an SLO

defined based on 99% tail latency) and at least one class is meeting its SLO. (If all classes

are violating SLO, the system is overloaded and no feasible adjustment can bring the system

back into SLO). To rebalance reservations, the framework shifts one core from the request

class with the lowest latency target violation rate to the request class with the highest latency

target violation rate. If reducing the reservation of the class with the lowest latency violation

rate results in an SLO violation (i.e., latency target violation goes above 1%), the shift is

reverted and instead a core is taken from the request class with the second lowest latency

target violation rate, and so on.

The iterative procedure continues until either all request classes meet their SLO or no

solution can be found—that is, taking a core from any request class that meets its SLO results

in an SLO violation (i.e., latency target violation above 1%). In this case, the procedure

informs the auto-scaler that it cannot meet its SLO and the auto-scaler must reduce the

per-instance load by increasing the number of instances. If there is a way to distribute

130

Algorithm 4: Feedback Controller for Tuning Reservations
1 Repeat
2 reset-epoch-log()
3 lowest-violation-rate = inf
4 lowest-violation-class = NULL
5 highest-violation-rate = 0
6 highest-violation-class = NULL
7 for class in all classes do
8 if class.last-epoch-log.latency-violation-rate() > highest-violation-rate then
9 highest-violation-rate = violation-rate

10 highest-violation-class = class
11 end
12 if class.last-epoch-log.latency-violation-rate() < lowest-violation-rate and class.is-available() then
13 lowest-violation-rate = violation-rate
14 lowest-violation-class = class
15 end
16 end
17 if highest-violation-rate > ACCEPTED-VIOLATION-RATE then // 1% for 99th percentile tail

latency SLO
18
19 if lowest-violation-class!=NULL and lowest-violation-rate < ACCEPTED-VIOLATION-RATE then
20 lowest-violation-class.decrement-reservations()
21 highest-violation-class.increment-reservations()
22 wait-for-an-epoch()
23 if lowest-violation-class.last-epoch-log.latency-violation-rate() > ACCEPTED-VIOLATION-RATE then
24 lowest-violation-class.mark-unavailable()
25 lowest-violation-class.increment-reservations()
26 highest-violation-class.decrement-reservations()
27 end
28 else
29 mark-all-classes-available()
30 end
31 end
32 else
33 alert-auto-scaler(”overload”)
34 mark-all-classes-available()
35 end
36 end
37 else
38 mark-all-classes-available()
39 end

core reservations across classes so that all request classes meet their SLO, this procedure

is guaranteed to find a solution, as the configuration space is by definition convex for each

pair of request classes *, and the algorithm iteratively searches over the entire configuration

space.

6.4 Reservation Allocation During Load Spikes

As explained in the previous section, if there is a feasible reservation allocation to meet

all SLOs, the iterative feedback-loop procedure presented in Algorithm 2 is guaranteed to

find it. In steady load conditions, changes in the arrival rate of each class are small (i.e.,

*Taking a core reservation from a class and giving it to another class would, by definition, result in an
increased SLO violation rate for the former and a reduced SLO violation rate for the latter class.

131

within at most 20% [10]). As a result, typically at most one to two cores need be shifted

among a pair of classes. Furthermore, since the auto-scalers usually overprovision instance

count in anticipation of load spikes, it is likely that the instance’s reservation configuration

need not change in response to small changes in arrival rates.

However, under a transient load spike, the arrival rate of a particular request class might

drastically increase. In this case, the required core reservation for each class may differ

significantly from the current configuration. Algorithm 2 might require tens of iterations

to eventually converge to a new working configuration. During this search, queues may

build in several request classes, leading to high tail latencies both during and after the

load spike. Each reservation configuration the algorithm considers requires a rebalancing

epoch (comprising hundreds of thousands of requests) to evaluate to ensure a statistically

meaningful measurement of latency tails [221].

To address this issue, we propose an analytical approach to initialize the search for

optimal core reservations upon load spikes to accelerate convergence of algorithm 2 to

examine only a few configurations. We next describe the mathematical intuition behind our

reservation initialization approach:

Square-root staffing rule. Our analytical approach for assigning core reservations

relies on the Square-Root Staffing (SRS) rule. SRS, described in Equation 6.1, is a general

capacity planing tool that provides a simple estimation of the required capacity to service

a given load at Quality- and Efficiency-Driven (QED) conditions [72]. At a high-level,

QED conditions describe scenarios wherein a service is allocated sufficient capacity to

meet its Quality-of-Service (QoS) requirements (tail latency SLO in our case) but the

allocated capacity is not significantly higher than the required capacity, to minimize the

cost and prevent resources from being wasted. Although it is desirable that a microservice

always operates under QED conditions, since auto-scalers over-provision instance count in

anticipation of load spikes, the system does not operate in the QED regime in steady load

conditions (due to the over-provisioning to guard against load increase). However, when

132

load spikes occur, the system enters the QED regime, making SRS a well-suited estimation

tool for capacity planning in the presence of load spikes.

C = R+β
√

R =
λ

µ
+β

√
λ

µ
(6.1)

In Equation 6.1, C estimates the total capacity or the number of resources required for a

service to meet its QoS requirements. R represents the number of resources needed to just

service all the requests without infinite queuing, regardless of the QoS, which is equal to

λ

µ
, wherein λ represents the total request arrival rate and µ represents the service rate of a

single resource. β represents the QoS target. Whereas β can be mathematically calculated

for an M/M/k queuing system (with the QoS metric being the probability of queuing) for

accurate capacity planing, it can also be used with any other QoS metrics as an estimation

tool for capacity planning [72]. In such cases, β can be calculated based on the measured

maximum achievable resource utilization for a given QoS target.

Since the QoS is defined based on the tail latency SLO in our case, we can profile an

in instance to measure the maximum load it can service without violating the latency SLO.

Suppose, for example, an instance has ten cores and can sustain up to 40% utilization. Then,

the β parameter for the latency SLO is 3.0, given by solving the equation 10 = 4+β
√

4.

In this example, R is set to four, as four cores are sufficient to service all requests without

infinite queuing. Similarly, if a 10-core instance can achieve a maximum utilization of 90%

without violating the SLO, the β is 0.33, given by solving the equation 10 = 9+β
√

9.

Allocating core reservations using SRS. To estimate the required core reservation

for each request class, we first calculate the βi parameter for each request class and then

formulate ρi as the maximum load an instance can sustain without violating the SLO of

class i, if it is allocated a reservation of ri cores. Equation 6.2 formulates the required

reservation for class i to operate at load ρi, with N representing the total number of cores

and fi representing the fraction of incoming requests belonging to class i. Equation 6.3,

calculates Ki as the expected number of cores available for use by class i if the instance

133

operates at load ρi. This equation assumes that class i always has access to ri cores, as this

quantity of cores are reserved for class i, but only may access the remaining cores if they are

not consumed by other classes.

Ci = Ri +βi
√

Ri = Nρi fi +βi
√

Nρi fi (6.2)

Ki = ri +(N− ri)(i−ρi(1− fi)) (6.3)
Equation 6.4 equalizes the number of cores class i needs to meet its SLO under load

ρi and the expected number of cores it finds available when needed under load ρi with ri

reserved cores. The resulting quadratic equation is solved in Equation 6.5, assuming ri is

constant and ρi is variable. As a result, Equation 6.5 can be used to find the maximum load

where class i is expected to meet its SLO if it reserves ri cores. At loads below ρi, Ki is

larger than Ci, indicating that class i has access to more cores than it needs to meet its SLO.

In contrast, at loads higher than ρi, Ci exceeds Ki, indicating that class i needs more cores

than are expected to be available.

By exploring different combinations of reservations across different classes and con-

sidering the maximum load all classes can support without violating their SLO for each

configuration—formulated in Equation 6.6—we can estimate the best reservation configura-

tion that maximizes the load at which all classes meet their SLO.

Ci = Ki → ρi(ri−N− ri fi)−
√

ρi(βi
√

N fi)+N = 0 (6.4)

ρi =

√√√√βi
√

N fi−
√

β 2
i N fi−4N(ri−N−N fi)

2(ri−N− ri fi)
(6.5)

ρ = min(ρ1,ρ2, ...,ρi, ...) (6.6)
As an example, Figure 6.5, considers two classes A and B with equal arrival rates (i.e.,

fA = fB), βA = 1, βB = 2, and ten total cores. The figure shows the maximum load each

134

How to split cores across A and B?

• CA = 2; CB = 1

0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4 5 6 7 8 9 10

M
ax

im
um

 L
oa

d

Core reservations allocated to A (rB = 10-rA)
ρA ρB ρ = min(ρA, ρB)

Max ρ
Best configuration

Figure 6.5: Maximum load supported by each class under different reservation configurations,
estimated by µSteal’s analytical reservation tuning tool.

class can support for each combination of reservations and the overall maximum sustainable

load (i.e., the minimum of the two). As shown in the Figure, the maximum load is achieved

when class A reserves 7 cores and class B reserves 3 cores. As illustrated by the example,

Equation 6.6 may be used to estimate the maximum load given a reservation configuration

without iterative search via Algorithm 2. In our experience, the configuration given by

our analytical approach is at most 1-2 steps away from the optimal configuration found by

Algorithm 2. When one of the classes experiences more than 20% arrival rate spike, µSteal

uses Equation 6.6 to estimate the best reservation configuration first, before tuning it using

Algorithm 2, to minimize convergence time.

6.5 Implementation and Methodology

We implement µSteal atop the Shinjuku [91] framework. Shinjuku is a user-level

software data-plane that optimizes operating system threading and notification mechanisms

to enable frequent, efficient preemption of µs-scale microservices. Shinjuku’s main goal

135

is to reduce tail latency of high-disparity microservices via processor sharing, wherein

pending requests are time multiplexed among cores to avoid HoL blocking and excessive

queueing delays caused by rare, long tasks. It supports a single shared request queue across

all cores and implements preemption at fixed time quanta, by allocating a separate thread

to each request and provisioning a large thread pool to address cases with many queued

requests. We modify Shunjuku to support multiple request queues corresponding to different

request classes and perform preemptions when needed according to the µSteal scheduler

(i.e., Algorithm 1).

We deploy our implementation of the µSteal scheduler on a 24-core Intel Xeon server,

which represents a single instance of a particular microservice. We consider varying arrival

traffic mixes and multiple latency SLOs for different request classes, and measure the

maximum load our server can sustain without violating the latency SLO for any request

class. The inverse of the maximum load corresponds proportionally to the required instance

count. We consider a speech recognition microservice from the DjiNN and Tonic suite [75],

which performs a neural network inference per request, and an Image search microservice

from µsuite [185], which performs locality sensitive hashing. We compare µSteal against a

baseline system where separate pools of instances are deployed for each request class, and

cases where the same instances are shared across deployments and requests are scheduled

via the following scheduling policies: FCFS, longest queue (idle core picks the next request

from the longest queue), strict priority (always pick the next request from the class with

the most strict latency SLO), EDF, static core partitioning, and static core partitioning

augmented by work stealing. We consider preemptive variants for strict priority and EDF

policies to perform a fair comparison again µSteal.

136

0

0.5

1

1.5

2

2.5

(6T, 20T) (6T, 10T) (6T, 6T)

N
or

m
al

ize
d

 n
um

be
r o

f i
ns

ta
nc

es

0

0.5

1

1.5

2

2.5

(6T, 20T) (6T, 10T) (6T, 6T)

N
or

m
al

ize
d

 n
um

be
r o

f i
ns

ta
nc

es

Separate pools FCFS Longest Queue Strict Priority EDF Static Partitioning (SP) SP + Work Stealing μSteal

(a) (b)

0

0.5

1

1.5

2

2.5

(20T, 6T) (6T, 20T) (6T, 6T)

N
or

m
al

ize
d

 n
um

be
r o

f i
ns

ta
nc

es

0

0.5

1

1.5

2

2.5

(20T, 6T) (6T, 20T) (6T, 6T)

N
or

m
al

ize
d

 n
um

be
r o

f i
ns

ta
nc

es(a) (b)

Separate pools FCFS Longest Queue Strict Priority EDF Static Partitioning (SP) SP + Work Stealing μSteal

Figure 6.6: Normalized total number of instances for for (a) speech recognition and (b) image search
microservices for deploying separate instances as well as sharing the instances across deployments
with different scheduling policies. The arrival rates for both classes are equal and the latency SLOs
are denoted in (6T, 6T) format, wherein 6T means that the 99th percentile tail latency target for the
SLO is equal to 6× mean service time.

6.6 Evaluation results

6.6.1 Symmetric traffic

Figure 6.6 reports the maximum required number of instances for the (a) speech recog-

nition and (b) image search microservices for two request classes when each accounts for

half of arriving requests. We consider different combinations of latency SLOs for the two

classes. In all combinations, one class has a strict latency SLO (99th percentile tail latency

less than 6× the average service time, 6T). We consider three alternatives for the second

class, respectively, 6T, 10T, and 20T latency SLOs.

As the figure shows, µSteal improves instance count as compared to dedicated instance

pools per request class by up to 1.29× when the latency SLOs are highly asymmetric (6T,

20T) but the improvements shrink as the latency SLOs near one another. µSteal performs

significantly better than all other scheduling policies when sharing instances across request

classes. µSteal particularly outperforms FCFS by up to 1.93× as FCFS hurts the class with

the stricter latency SLO by making its requests wait behind those of the other class. We

conclude that naively sharing instance pools necessitates more instances than dedicated

instance pools. Whereas prioritizing requests from the stricter SLO class seems to address

FCFS’s shortcomings, the strict priority policy only closes the gap to 1.73×; prioritizing the

class with the tightest SLO leads to starvation and long wait times in the other class.

137

Static core partitioning also leads to a high instance count, 1.68× higher than that

achieved by µSteal. Static partitioning results in a non–work-conserving scheduler, leaving

cores from one class idle even when there are requests pending for the other class. Whereas

augmenting static partitioning with work stealing seems to improve its performance, it

actually increases the required count to 1.71× that required by µSteal. Work stealing, alone,

leads to the cores assigned to the stricter SLO class to become occupied by requests from

the other class. Thus, the requests in the stricter class miss their SLO. This result shows the

importance of preemptive work stealing as envisioned in µSteal.

EDF is the only scheduling policy (other than µSteal) that improves instance count

relative to dedicated instance pools. EDF naturally prioritizes for the class with the tighter

SLO but also considers the more relaxed SLO class when the request at its head has spent

enough time waiting. However, EDF instance count is still 1.24× higher than that required

by µSteal, since, as previously noted, EDF is unaware of differentiated request classes, and

seeks only to minimize the total number of SLO violations.

µSteal’s improvements are minimal when both classes exhibit a strict 6T SLO. However,

even in this case, µSteal improves instance count by 1.12× relative to dedicated instance

pools. µSteal allows for a higher degree of sharing to accomodate transient load variations

among different classes (i.e., when one class has few pending requests, the other may have

many, which then utilize the otherwise idle cores). In this case, the FCFS policy also

performs almost the same as µSteal as, if the two classes share the same latency SLO, FCFS

reduces to EDF (all requests have the same “deadline”). Static core partitioning, however,

still performs poorly in this scenario, due to lack of work conservation.

The results follow the same trend in both microservices. However, µSteal’s improve-

ments are noticably smaller for the image search microservice, since the image search service

time (O(10µs)) is drastically shorter than the speech recognition microservice service time

(O(10ms)) magnifying the impact of preemption.

138

0

0.5

1

1.5

2

2.5

(6T, 20T) (6T, 10T) (6T, 6T)

N
or

m
al

ize
d

 n
um

be
r o

f i
ns

ta
nc

es

0

0.5

1

1.5

2

2.5

(6T, 20T) (6T, 10T) (6T, 6T)

N
or

m
al

ize
d

 n
um

be
r o

f i
ns

ta
nc

es

Separate pools FCFS Longest Queue Strict Priority EDF Static Partitioning (SP) SP + Work Stealing μSteal

(a) (b)

0

0.5

1

1.5

2

2.5

(20T, 6T) (6T, 20T) (6T, 6T)

N
or

m
al

ize
d

 n
um

be
r o

f i
ns

ta
nc

es

0

0.5

1

1.5

2

2.5

(20T, 6T) (6T, 20T) (6T, 6T)

N
or

m
al

ize
d

 n
um

be
r o

f i
ns

ta
nc

es(a) (b)

Separate pools FCFS Longest Queue Strict Priority EDF Static Partitioning (SP) SP + Work Stealing μSteal

Figure 6.7: Normalized total number of instances for for (a) speech recognition and (b) image search
microservices for deploying separate instances as well as sharing the instances across deployments
with different scheduling policies. The arrival rates for both classes are asymmetric wherein the first
request class accounts for 75% and the second request class accounts for 25% of the traffic. Latency
SLOs are denoted in (20T, 6T) for the 99th percentile tail latency target of the (first, second) request
class.

6.6.2 Asymmetric traffic

Figure 6.7 reports the maximum required instance count for the (a) speech recognition

and (b) image search microservices for two request classes when the first class accounts

for 75% of the arrival traffic and the second accounts for 25%. We consider a case where

both classes require equally strict 6T SLO despite asymmetric arrival rates and the two

alternative cases where one class exhibits a strict 6T latency SLO and the other a relaxed

20T SLO. Whereas the results generally track the symmetric traffic cases, we make a few

key observations.

First, µSteal’s improvements over almost all other scheduling policies are much larger

in the (20T, 6T) case, while improvements in the (6T, 20T) case are smaller. In the (6T,

20T) case, the class that accounts for the bulk of the traffic also requires a tighter SLO.

Hence, most scheduling policies already perform well regardless of how they optimize.

As an example, the strict prioritization policy exclusively favors the 6T SLO class, but

since that class already accounts for 75% of the traffic, only a small fraction of requests are

disadvantaged. Similarly, static partitioning allocates more cores to the strict SLO class,

which also accounts for the bulk of the traffic.

On the other hand, for the (20T, 6T) case, most scheduling policies find their optimization

objectives at odds with one another, since the class that accounts for the bulk of the requests

139

is the one with the more relaxed SLO—most scheduling policies perform poorly in this

scenario, magnifying µSteal’s improvements. As an example, strict prioritization results

in numerous SLO violations of the relaxed SLO class, as it starves the bulk of the requests

behind the strict-SLO minority. The strict priority policy achieves an instance count 1.71×

higher than that of µSteal. In contrast, the longest queue policy always optimizes for the

class with the higher arrival rate, and hence, always picks the next request from the class

with the relaxed 20T SLO—this policy results in the highest instance count—2.1× higher

than µSteal—as it fully de-prioritizes strict-SLO requests. µSteal, however, significantly

improves instance count relative to all alternatives by reserving more cores to the class with

the strict 6T SLO (19 of 24 cores for speech recognition; 20 of 24 for image search). While

the 6T class reserves most cores, these cores are largely idle and may be stolen by the 20T

class. However, by reserving few cores to the 20T class, its requests do not starve behind

those from the 6T class, as in the strict priority policy.

Finally, for the case where both classes exhibit a strict 6T SLO, the results are similar to

the case with symmetric traffic, with the exception that the longest queue policy performs

much worse here, achieving an instance count 1.41× higher than µSteal. This policy strictly

prioritizes the higher–arrival-rate class, which is harmful when both classes require the same

latency SLO.

6.6.3 Load spikes

To demonstrate the effectiveness of our analytical approach for tuning the reservations

in response to load spikes (see Section 6.4), we design an experiment in Figure 6.8, wherein

two classes share 10T latency SLOs and equal arrival rates (symmetric traffic) for the speech

recognition microservice. We suppose that the auto-scaler has over-provisioned the instance

count by 50% in anticipation of load spikes. As such, if the total arrival rate rises by 50%,

the system still has sufficient capacity to service all requests without SLO violation (i.e., the

system is over-provisioned by 2× relative to the initial load). We compare the behavior of

140

0

0.5

1

1.5

2

2.5

0 1000 2000 3000 4000 5000

N
or

m
al

ize
d

ar
riv

al
 ra

te

Time (ms)

0

0.5

1

1.5

2

2.5

0 1000 2000 3000 4000 5000

N
or

m
al

ize
d

ta
il

la
te

nc
y

Time (ms)

0

0.5

1

1.5

2

2.5

0 1000 2000 3000 4000 5000

N
or

m
al

ize
d

ar
riv

al
 ra

te

Time (ms)

0

0.5

1

1.5

2

2.5

0 1000 2000 3000 4000 5000

N
or

m
al

ize
d

ta
il

la
te

nc
y

Time (ms)

0

0.5

1

1.5

2

2.5

0 1000 2000 3000 4000 5000

N
or

m
al

ize
d

ta
il

la
te

nc
y

Time (ms)

(a)

(b)

(c)

(d)

(e)

Figure 6.8: (a) Normalized arrival rate and (b) normalized tail latency, when B’s load doubles
gradually. (c) Normalized arrival rate, and (d)/(e) normalized tail latency, when B experiences a
sudden 2× load spike (d) without and (e) with the analytical reservation tuning mechanism of µSteal.

141

the µSteal with and without the analytical approach described in Section 6.4. Tail latencies

reported in the figure are normalized to the SLO latency target (tail latencies above 1.0

indicate SLO violation).

Since both classes have the same latency SLO and the same arrival rate, each is allocated

a 12 core reservation (half of the available cores). In all of our experiments, the arrival

rate of class A remains fixed. First, in Figure6.8(a) we consider a case where the arrival

rate of class B gradually increases by 2× and returns to the original rate. As Figure 6.8(b)

shows, neither class experiences significant SLO violations, as the feedback controller of

Algorithm 2 has sufficient time to rebalance core reservations. This scenario does not even

invoke the analytical reservation tuning method, as the changes in the arrival rate of class B

does not exceed 20% in any epoch, and neither request class experiences any SLO violation;

the system over-provisioning can absorb the load ramp.

Next, as shown in Figure 6.8(c), we consider a case where the arrival rate for class B

doubles sharply for a short period of time. In Figure 6.8(d), we consider µSteal’s behavior

without the analytical reservation tuning approach (only the feedback controller). As shown

in the figure, whereas the offered load spike subsides quickly, since the feedback controller

fails to allocate sufficient processing capacity to B during the spike, the impact of the spike

persists long after the load subsides, due to formation of long request queues during the

spike. In contrast, Figure 6.8(e) considers a case where the analytical reservation tuning

approach is invoked when the arrival rate spikes. As the figure shows, whereas B initially

experiences a sharp latency increase, its tail latency rapidly recovers when the analytical

approach re-tunes reservations, even before the load spike subsides.

Finally, we consider a case where class A experiences a 3× load increase, which is

beyond the reserve over-provisioned capacity of the system. As shown in Figure 6.9, while

B experiences a higher tail latency than its SLO latency target (tail latency begins recovering

when the auto-scaler upsizes the cluster), class A does not experience any persistent SLO

violations, as it is allocated a dedicated service capacity through its own core reservations.

142

0
0.5

1
1.5

2
2.5

3
3.5

0 1000 2000 3000 4000 5000

N
or

m
al

ize
d

ar
riv

al
 ra

te

Time (ms)

0

1

2

3

4

5

6

0 1000 2000 3000 4000 5000

N
or

m
al

ize
d

ta
il

la
te

nc
y

Time (ms)

More instances
spawned by the

auto-scaler

Figure 6.9: (a) Normalized arrival rate and (b) normalized tail latency (to the SLO latency target) for
a scenario where B’s load is tripled.

Our result demonstrates the advantage of µSteal over FCFS scheduling even when all classes

exhibit the same latency SLO—unlike Figures 6.6 and 6.7, where the total arrival rate is

below the available service capacity, when one class experiences a sudden arrival rate spike,

µSteal guarantees all other classes their reserved service capacity, guarding them from the

spiking class.

6.7 Related Work

Scheduling for microservices. A large body of work has sought to reduce the tail

latency by more efficiently scheduling requests within each instance of a microservice. Most

of such works have focused on high disparity microservices which are prone to HoL blocking

caused by rare, long tasks. Shunjuku [91] seeks to address this challenge via implementing

a highly efficient preemption mechanism to enable processor sharing by eliminating the

operating system threading overheads. RPCValet [36], Nebula [190], and Q-Zilla [140, 141]

make the observation that shared request queues are very costly for µs-scale microservices

despite being imperative for achieving minimal tail latency. They seek to enable shared

queues through specialized hardware support. GrandSLAm [95] makes the observation

that microservices are inherently different than classic services, due to their multi-stage

nature. It proposes to use EDF scheduling to account for slowdowns and re-orderings in

the previous microservice stages and execute requests at each stage based on their original

143

arrival order to the entire system, rather than their arrival order at a particular microservice.

None of these systems consider mixed-criticality microservices with multiple SLOs for

different request class, which µSteal seeks to address. µSteal is composable to all of these

systems—whereas our implementation considers FCFS scheduling within the request queue

of each class, these queues may instead implement processor sharing, EDF, etc.

Work stealing is a classic technique in high-performance computing applications, which

seeks to maximize the execution throughput of parallel tasks. In such environments, tasks

exhibit parent-child dependencies, which impose execution ordering. Due to such ordering

constrains and localities across dependent tasks, it is advantageous in many cases to employ

per-core—rather than shared—task queues, in addition to reducing the synchronization

costs. A core only performs work stealing when its own task queue is empty, retaining

the “work conserving” property of the system. MIT’s Cilk [16] was the main framework

that modernized this old idea and provided some provable properties around it. Since then,

many frameworks have sought to optimize work stealing via providing better task queue

implementations [26], alternative victim selection strategies [34], efficiently supporting

reduction operations across tasks [113], as well as providing architectural support for work

stealing in heterogeneous environments [13, 32, 194]. Nonetheless, server workloads usually

employ shared—rather than per-core— queues, since there is no locality or dependency

across requests, and the metric of interest is individual requests’ response time, rather

than throughput or latency of the entire job [139]. Tail-control [116] and ZygOS [162]

are the only framework that leverage work stealing for server workloads. Both of them

employ work-stealing to emulate shared queues at a lower cost. Tail control [116] targets

parallelizable cloud workloads; when a request at the head of a local-queue is taking too

long to be processed, another core steals fractions of it to accelerate its processing and

reduce the wait time for the requests behind it. ZygOS [162] steals from the queue whose

requests have already experienced a long wait time, perhaps due to HoL blocking. µSteal is

different than these systems as it leverages work stealing across request classes’s queues,

144

rather than per-core queues.

6.8 Conclusion

In this chapter we proposed µSteal as a scheduling framework for mixed-criticality

microservices. µSteal leverages preemptive work and resource stealing to schedule the

arriving requests to cores within an instance. µSteal provisions “core reservations” for each

request class based on their latency requirements, but allows a class to steal cores from other

classes if the cores would otherwise remain idle. We proposed a runtime feedback controller

augmented by a queuing-theory based initialization approach to tune µSteal’s reservation

configuration. µSteal reduces the total number of instances required for a mixed-criticality

microservices by 1.29× as compared to deploying multiple instance pools, while ensuring

all request classes meet their latency constraints.

145

CHAPTER VII

Conclusion

Hyperscale web services are moving towards loosely-coupled microservices that com-

municate via RPCs to improve programmability, reliability, and scalability of cloud software.

Whereas microservice-based architectures have been adopted by serveral organizations

and companies, they bring about many new challenges for computer system designers

and architects. In this dissertation, we sought to address the some of such challenges by

designing more efficient and performant hardware and runtime systems for microservices

that particularly exhibit µs-scale service times.

We first addressed the problem of Killer Microseconds by introducing the Duplexity

server architecture in Chapter II. Duplexity is a heterogeneous server architecture that

employs aggressive multithreading to hide the latency of µs-scale I/O stalls and idle periods,

without sacrificing the QoS of latency-sensitive microservices. Then, in chapters III-IV, we

characterized different aspects of tail latency for microservices and sought to come up with

effective solutions that minimize the tail latency at low cost. To this end, in chapter IV, we

explored the Q-Zilla framework, which aims to tackle tail latency from a queuing perspective,

by minimizing the probability of HoL blocking induced by rare, long tasks.

Finally, we explored the tail latency problem of microservices from a cluster, rather than

server-level, perspective. We first introduced Parslo in Chapter V as a Gradient Descent-

based framework for partial SLO allocation in virtualized cloud microservices, which

146

minimizes the total cost for the entire deployment of an end-to-end service given a microser-

vice DAG. Then, in Chapter VI we proposed µSteal as a request scheduling framework for

mixed-criticality microservices, which leverages preemptive work and resource stealing and

seeks to maximize request throughput within an instance while ensuring all request classes

meet their latency target.

Altogether, the systems presented in this dissertation (i.e., Duplexity, Q-Zilla, Parslo,

and µSteal) synergistically improve the efficiency and performance of microservice-based

cloud applications on modern hardware. Duplexity facilitates the execution of µs-scale

microservices and improves their efficiency in the face of Killer Microseconds. Q-Zilla

improves the tail latency of µs-scale microservices as the key metric that determines the user

satisfaction in web services. Parslo find an optimal solution for allocating partial SLOs to

microservices within and end-to-end service, which consequentially results in a minimized

total deployment cost for the entire service. Finally, µSteal facilitates the execution of

mixed-criticality microservices which may be shared across multiple end-to-end services

but have to satisfy multiple SLOs and reduces the aggregated instance costs significantly,

compared to a segregated deployment for such microservices.

147

BIBLIOGRAPHY

148

BIBLIOGRAPHY

[1] Neha Agarwal and Thomas F Wenisch. Thermostat: Application-transparent page
management for two-tiered main memory. In Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming Languages and
Operating Systems, pages 631–644. ACM, 2017.

[2] Marcos K Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard, Jayneel Gandhi,
Pratap Subrahmanyam, Lalith Suresh, Kiran Tati, Rajesh Venkatasubramanian, and
Michael Wei. Remote memory in the age of fast networks. In Symposium on Cloud
Computing. ACM, 2017.

[3] Dulcardo Arteaga and Ming Zhao. Client-side flash caching for cloud systems. In
Proceedings of International Conference on Systems and Storage. ACM, 2014.

[4] Mohammad Bakhshalipour, Pejman Lotfi-Kamran, and Hamid Sarbazi-Azad.
Domino temporal data prefetcher. In IEEE International Symposium on High Perfor-
mance Computer Architecture, 2018.

[5] Mohammad Bakhshalipour, Mehran Shakerinava, Pejman Lotfi-Kamran, and Hamid
Sarbazi-Azad. Bingo Spatial Data Prefetcher. In International Symposium on High-
Performance Computer Architecture, 2019.

[6] Mohammad Bakhshalipour, Seyedali Tabaeiaghdaei, Pejman Lotfi-Kamran, and
Hamid Sarbazi-Azad. Evaluation of hardware data prefetchers on server processors.
ACM Computing Surveys (CSUR), 52(3):1–29, 2019.

[7] Nikhil Bansal and Mor Harchol-Balter. Analysis of SRPT scheduling: Investigating
unfairness, volume 29. ACM, 2001.

[8] Mahmoud Barhamgi, Djamal Benslimane, and Brahim Medjahed. A query rewriting
approach for web service composition. IEEE Transactions on Services Computing,
2010.

[9] Luiz Barroso, Mike Marty, David Patterson, and Parthasarathy Ranganathan. Attack
of the killer microseconds. Communications of the ACM, 60(4):48–54, 2017.

[10] Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle. The datacenter as a computer:
An introduction to the design of warehouse-scale machines. Synthesis lectures on
computer architecture, 8(3):1–154, 2013.

149

[11] Luiz André Barroso, Jeffrey Dean, and Urs Holzle. Web search for a planet: The
google cluster architecture. IEEE micro, 23(2):22–28, 2003.

[12] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Christos Kozyrakis,
and Edouard Bugnion. Ix: A protected dataplane operating system for high through-
put and low latency. In USENIX Symposium on Operating System Design and
Implementation (OSDI), number EPFL-CONF-201671. USENIX, 2014.

[13] Michael A Bender and Michael O Rabin. Online scheduling of parallel programs
on heterogeneous systems with applications to cilk. Theory of Computing Systems,
35(3):289–304, 2002.

[14] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali Saidi,
Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh Sardashti,
et al. The gem5 simulator. ACM SIGARCH Computer Architecture News, 39(2):1–7,
2011.

[15] Carsten Binnig, Andrew Crotty, Alex Galakatos, Tim Kraska, and Erfan Zamanian.
The end of slow networks: It’s time for a redesign. Proceedings of the VLDB
Endowment, 9(7):528–539, 2016.

[16] Robert D Blumofe, Christopher F Joerg, Bradley C Kuszmaul, Charles E Leiserson,
Keith H Randall, and Yuli Zhou. Cilk: An efficient multithreaded runtime system.
ACM SigPlan Notices, 30(8):207–216, 1995.

[17] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson,
Keith H. Randall, and Yuli Zhou. Cilk: An efficient multithreaded runtime system.
Journal of Parallel and Distributed Computing, 37(1):55 – 69, 1996.

[18] Gérard Boudol. Fair cooperative multithreading. In Luı́s Caires and Vasco T. Vas-
concelos, editors, CONCUR 2007 – Concurrency Theory, pages 272–286, Berlin,
Heidelberg, 2007. Springer Berlin Heidelberg.

[19] Onno Boxma and Bert Zwart. Tails in scheduling. ACM SIGMETRICS Performance
Evaluation Review, 34(4):13–20, 2007.

[20] Alan Burns and Robert Davis. Mixed criticality systems-a review. Department of
Computer Science, University of York, Tech. Rep, pages 1–69, 2013.

[21] Steve Byan, James Lentini, Anshul Madan, and Luis Pabon. Mercury: Host-side
flash caching for the data center. In Mass Storage Systems and Technologies (MSST),
2012 IEEE 28th Symposium on, pages 1–12. IEEE, 2012.

[22] Adrian Caulfield, Eric Chung, Andrew Putnam, et al. A cloud-scale acceleration
architecture. In IEEE/ACM International Symposium on Microarchitecture, 2016.

[23] Cavium. ThunderX ARM Processors. https://cavium.com/
product-thunderx-arm-processors.html.

150

https://cavium.com/product-thunderx-arm-processors.html
https://cavium.com/product-thunderx-arm-processors.html

[24] Francisco J Cazorla, Peter MW Knijnenburg, Rizos Sakellariou, Enrique Fernandez,
Alex Ramirez, and Mateo Valero. Predictable performance in smt processors: Synergy
between the os and smts. IEEE Transactions on Computers, 2006.

[25] Francisco J Cazorla, Alex Ramirez, Mateo Valero, Peter MW Knijnenburg, Rizos
Sakellariou, and Enrique Fernández. Qos for high-performance smt processors in
embedded systems. Ieee Micro, 2004.

[26] David Chase and Yossi Lev. Dynamic circular work-stealing deque. In Proceed-
ings of the seventeenth annual ACM symposium on Parallelism in algorithms and
architectures, pages 21–28, 2005.

[27] Shuang Chen, Christina Delimitrou, and José F Martı́nez. Parties: Qos-aware resource
partitioning for multiple interactive services. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Languages and
Operating Systems, pages 107–120, 2019.

[28] Shuang Chen, Shay GalOn, Christina Delimitrou, Srilatha Manne, and José F
Martınez. Workload characterization of interactive cloud services on big and small
server platforms. In IEEE International Symposium on Workload Characterization,
2017.

[29] Zeshan Chishti and TN Vijaykumar. Optimal power/performance pipeline depth for
smt in scaled technologies. IEEE Transactions on Computers, 2008.

[30] Shenghsun Cho, Amoghavarsha Suresh, Tapti Palit, Michael Ferdman, and Nima
Honarmand. Taming the killer microsecond. In International Symposium on Microar-
chitecture 2018.

[31] Chih-Hsun Chou, Laxmi N. Bhuyan, and Daniel Wong. µdpm: Dynamic power
management for the microsecond era. In IEEE International Symposium on High
Performance Computer Architecture, 2019.

[32] Kallia Chronaki, Alejandro Rico, Rosa M Badia, Eduard Ayguadé, Jesús Labarta,
and Mateo Valero. Criticality-aware dynamic task scheduling for heterogeneous
architectures. In Proceedings of the 29th ACM on International Conference on
Supercomputing, pages 329–338, 2015.

[33] Jeremy Condit, Edmund B Nightingale, Christopher Frost, Engin Ipek, Benjamin Lee,
Doug Burger, and Derrick Coetzee. Better i/o through byte-addressable, persistent
memory. In ACM SIGOPS 22nd symposium on Operating systems principles, pages
133–146. ACM, 2009.

[34] Gilberto Contreras and Margaret Martonosi. Characterizing and improving the per-
formance of intel threading building blocks. In 2008 IEEE International Symposium
on Workload Characterization, pages 57–66. IEEE, 2008.

151

[35] Mark E Crovella, Mor Harchol-Balter, and Cristina D Murta. Task assignment in a
distributed system (extended abstract): improving performance by unbalancing load.
In ACM SIGMETRICS Performance Evaluation Review, 1998.

[36] Alexandros Daglis, Mark Sutherland, and Babak Falsafi. Rpcvalet: Ni-driven tail-
aware balancing of µs-scale rpcs. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’19, pages 35–48, New York, NY, USA, 2019. ACM.

[37] Jeffrey Dean and Luiz André Barroso. The tail at scale. Communications of the ACM,
56(2):74–80, 2013.

[38] Christina Delimitrou and Christos Kozyrakis. Paragon: Qos-aware scheduling for
heterogeneous datacenters. In ACM SIGPLAN Notices. ACM, 2013.

[39] Christina Delimitrou and Christos Kozyrakis. Quasar: resource-efficient and qos-
aware cluster management. In ACM SIGPLAN Notices. ACM, 2014.

[40] Christina Delimitrou and Christos Kozyrakis. Amdahl’s Law for Tail Latency. In
Communications of the ACM (CACM), August 2018.

[41] Christina Delimitrou and Christos Kozyrakis. Amdahl’s law for tail latency. Commu-
nications of the ACM, 61(8):65–72, 2018.

[42] Diego Didona and Willy Zwaenepoel. Size-aware sharding for improving tail latencies
in in-memory key-value stores. In 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19). USENIX Association, Boston, MA, 2019.

[43] Fahad R Dogar, Thomas Karagiannis, Hitesh Ballani, and Antony Rowstron. De-
centralized task-aware scheduling for data center networks. In ACM SIGCOMM
Computer Communication Review, volume 44, pages 431–442. ACM, 2014.

[44] Alan AA Donovan and Brian W Kernighan. The Go programming language. Addison-
Wesley Professional, 2015.

[45] Gautham K Dorai and Donald Yeung. Transparent threads: Resource sharing in
smt processors for high single-thread performance. In Parallel Architectures and
Compilation Techniques, 2002. Proceedings. 2002 International Conference on, pages
30–41. IEEE, 2002.

[46] Aleksandar Dragojević, Dushyanth Narayanan, Orion Hodson, and Miguel Castro.
Farm: Fast remote memory. In USENIX Conference on Networked Systems Design
and Implementation, 2014.

[47] Subramanya R Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip Lantz, Dheeraj
Reddy, Rajesh Sankaran, and Jeff Jackson. System software for persistent memory.
In European Conference on Computer Systems. ACM, 2014.

152

[48] Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N Patt. Fairness via source
throttling: a configurable and high-performance fairness substrate for multi-core
memory systems. In ACM Sigplan Notices, volume 45, pages 335–346. ACM, 2010.

[49] Nosayba El-Sayed, Anurag Mukkara, Po-An Tsai, Harshad Kasture, et al. Kpart:
A hybrid cache partitioning-sharing technique for commodity multicores. In IEEE
International Symposium on High Performance Computer Architecture, 2018.

[50] Hodjat Asghari Esfeden, Farzad Khorasani, Hyeran Jeon, Daniel Wong, and Nael
Abu-Ghazaleh. Corf: Coalescing operand register file for gpus. In Proceedings of
the 24th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems. ACM, 2019.

[51] Stijn Eyerman and Lieven Eeckhout. System-level performance metrics for multipro-
gram workloads. IEEE micro, 28(3), 2008.

[52] Stijn Eyerman and Lieven Eeckhout. Probabilistic job symbiosis modeling for smt
processor scheduling. ACM Sigplan Notices, 45(3):91–102, 2010.

[53] Facebook. Rocksdb. https://rocksdb.org/, 2018.

[54] Bin Fan, David G Andersen, and Michael Kaminsky. Memc3: Compact and concur-
rent memcache with dumber caching and smarter hashing. In NSDI, 2013.

[55] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad Al-
isafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia Ailamaki,
and Babak Falsafi. Clearing the clouds: a study of emerging scale-out workloads on
modern hardware. In ACM SIGPLAN Notices. ACM, 2012.

[56] Brad Fitzpatrick. Distributed caching with memcached. Linux J., 2004.

[57] José Fonseca, Geoffrey Nelissen, and Vincent Nélis. Schedulability analysis of dag
tasks with arbitrary deadlines under global fixed-priority scheduling. Real-Time
Systems, 2019.

[58] Yu Gan and Christina Delimitrou. The Architectural Implications of Cloud Microser-
vices. In Computer Architecture Letters (CAL), vol.17, iss. 2, Jul-Dec 2018.

[59] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki,
Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, et al. An open-source
benchmark suite for microservices and their hardware-software implications for cloud
& edge systems. In Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems, pages
3–18, 2019.

[60] Yu Gan, Yanqi Zhang, Kelvin Hu, Dailun Cheng, Yuan He, Meghna Pancholi, and
Christina Delimitrou. Seer: Leveraging big data to navigate the complexity of
performance debugging in cloud microservices. In Proceedings of the twenty-fourth
international conference on architectural support for programming languages and
operating systems, pages 19–33, 2019.

153

https://rocksdb.org/

[61] Anshul Gandhi, Mor Harchol-Balter, Ram Raghunathan, and Michael A Kozuch.
Autoscale: Dynamic, robust capacity management for multi-tier data centers. ACM
Transactions on Computer Systems (TOCS), 30(4):1–26, 2012.

[62] Vaibhav Gogte, Stephan Diestelhorst, William Wang, Satish Narayanasamy, Peter M
Chen, and Thomas F Wenisch. Persistency for synchronization-free regions. In ACM
SIGPLAN Conference on Programming Language Design and Implementation, 2018.

[63] Hossein Golestani, Amirhossein Mirhosseini, and Thomas F Wenisch. Software data
planes: You can’t always spin to win. In Proceedings of the ACM Symposium on
Cloud Computing, pages 337–350. ACM, 2019.

[64] Google. OpenImages: A public dataset for large-scale multi-label and multi-class
image classification., howpublished = ”https://github.com/openimages/
dataset”.

[65] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury, and Kang G
Shin. Efficient memory disaggregation with infiniswap. In NSDI, 2017.

[66] Part Guide. Intel® 64 and ia-32 architectures software developer’s manual. Volume
3B: System programming Guide, Part, 2, 2011.

[67] Fei Guo, Hari Kannan, Li Zhao, Ramesh Illikkal, Ravi Iyer, Don Newell, Yan Solihin,
and Christos Kozyrakis. From chaos to qos: case studies in cmp resource management.
ACM SIGARCH Computer Architecture News, 35(1):21–30, 2007.

[68] Varun Gupta, Mor Harchol-Balter, JG Dai, and Bert Zwart. On the inapproximability
of m/g/k: why two moments of job size distribution are not enough. Queueing
Systems, 64(1):5–48, 2010.

[69] Frank T Hady, Annie Foong, Bryan Veal, and Dan Williams. Platform storage
performance with 3d xpoint technology. Proceedings of the IEEE, 2017.

[70] Md E Haque, Yuxiong He, Sameh Elnikety, Ricardo Bianchini, Kathryn S McKinley,
et al. Few-to-many: Incremental parallelism for reducing tail latency in interactive
services. In ACM SIGPLAN Notices. ACM, 2015.

[71] Md E Haque, Yuxiong He, Sameh Elnikety, Thu D Nguyen, Ricardo Bianchini, and
Kathryn S McKinley. Exploiting heterogeneity for tail latency and energy efficiency.
In IEEE/ACM International Symposium on Microarchitecture, 2017.

[72] Mor Harchol-Balter. Performance modeling and design of computer systems: queue-
ing theory in action. Cambridge University Press, 2013.

[73] Mor Harchol-Balter, Mark E Crovella, and Cristina D Murta. On choosing a task
assignment policy for a distributed server system. Journal of Parallel and Distributed
Computing, 59(2):204–228, 1999.

154

https://github.com/openimages/dataset
https://github.com/openimages/dataset

[74] Mor Harchol-Balter, Bianca Schroeder, Nikhil Bansal, and Mukesh Agrawal. Size-
based scheduling to improve web performance. ACM Transactions on Computer
Systems (TOCS), 21(2):207–233, 2003.

[75] Johann Hauswald, Yiping Kang, Michael A Laurenzano, Quan Chen, Cheng Li,
Trevor Mudge, Ronald G Dreslinski, Jason Mars, and Lingjia Tang. Djinn and tonic:
Dnn as a service and its implications for future warehouse scale computers. In 2015
ACM/IEEE 42nd Annual International Symposium on Computer Architecture (ISCA),
pages 27–40. IEEE, 2015.

[76] Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku Diril, Dmytro
Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, et al. Applied
machine learning at facebook: A datacenter infrastructure perspective. In 2018 IEEE
International Symposium on High Performance Computer Architecture (HPCA),
pages 620–629. IEEE, 2018.

[77] Xin He and Yaacov Yesha. Parallel recognition and decomposition of two terminal
series parallel graphs. Information and Computation, 1987.

[78] Andrew Herdrich, Edwin Verplanke, Priya Autee, Ramesh Illikkal, Chris Gianos,
Ronak Singhal, and Ravi Iyer. Cache qos: From concept to reality in the intel®
xeon® processor e5-2600 v3 product family. In IEEE International Symposium on
High Performance Computer Architecture, 2016.

[79] Sébastien Hily and André Seznec. Out-of-order execution may not be cost-effective
on processors featuring simultaneous multithreading. In International Symposium
On High-Performance Computer Architecture. IEEE, 1999.

[80] David A Holland, Elaine Lee Angelino, Gideon Wald, and Margo I Seltzer. Flash
caching on the storage client. In USENIX Annual Technical Conference, 2013.

[81] Urs Hölzle. Brawny cores still beat wimpy cores, most of the time. IEEE Micro,
30(4):23–24, 2010.

[82] Chang-Hong Hsu, Yunqi Zhang, Michael A Laurenzano, David Meisner, Thomas
Wenisch, Jason Mars, Lingjia Tang, and Ronald G Dreslinski. Adrenaline: Pinpoint-
ing and reining in tail queries with quick voltage boosting. In IEEE International
Symposium on High Performance Computer Architecture, 2015.

[83] Intel. 3D Xpoint. https://www.intel.com/
content/www/us/en/architecture-and-technology/
intel-micron-3d-xpoint-webcast.html.

[84] Engin Ipek, Meyrem Kirman, Nevin Kirman, and Jose F Martinez. Core fusion:
accommodating software diversity in chip multiprocessors. In ACM SIGARCH
Computer Architecture News, volume 35, pages 186–197. ACM, 2007.

155

https://www.intel.com/content/www/us/en/architecture-and-technology/intel-micron-3d-xpoint-webcast.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-micron-3d-xpoint-webcast.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-micron-3d-xpoint-webcast.html

[85] Ravi Iyer, Li Zhao, Fei Guo, Ramesh Illikkal, Srihari Makineni, Don Newell, Yan Soli-
hin, Lisa Hsu, and Steve Reinhardt. Qos policies and architecture for cache/memory
in cmp platforms. In ACM SIGMETRICS Performance Evaluation Review, volume 35,
pages 25–36. ACM, 2007.

[86] Vijay Janapa Reddi, Benjamin C Lee, Trishul Chilimbi, and Kushagra Vaid. Web
search using mobile cores: quantifying and mitigating the price of efficiency. In ACM
SIGARCH Computer Architecture News, volume 38, pages 314–325. ACM, 2010.

[87] Hyeran Jeon, Gokul Subramanian Ravi, Nam Sung Kim, and Murali Annavaram.
Gpu register file virtualization. In International Symposium on Microarchitecture.
ACM, 2015.

[88] Myeongjae Jeon, Yuxiong He, Sameh Elnikety, Alan L. Cox, and Scott Rixner.
Adaptive parallelism for web search. In Proceedings of the 8th ACM European
Conference on Computer Systems, EuroSys ’13, pages 155–168, New York, NY,
USA, 2013. ACM.

[89] Myeongjae Jeon, Saehoon Kim, Seung-won Hwang, Yuxiong He, Sameh Elnikety,
Alan L Cox, and Scott Rixner. Predictive parallelization: Taming tail latencies in web
search. In Proceedings of the 37th international ACM SIGIR conference on Research
& development in information retrieval, pages 253–262. ACM, 2014.

[90] EunYoung Jeong, Shinae Woo, Muhammad Asim Jamshed, Haewon Jeong, Sungh-
wan Ihm, Dongsu Han, and KyoungSoo Park. mtcp: a highly scalable user-level tcp
stack for multicore systems. In NSDI, volume 14, pages 489–502, 2014.

[91] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay, David Mazières,
and Christos Kozyrakis. Shinjuku: Preemptive scheduling for µsecond-scale tail
latency. In 16th {USENIX} Symposium on Networked Systems Design and Implemen-
tation ({NSDI} 19), pages 345–360, 2019.

[92] Anuj Kalia, Michael Kaminsky, and David G Andersen. Using rdma efficiently for
key-value services. ACM SIGCOMM Computer Communication Review, 2015.

[93] Michael Kaminsky, Anuj Kalia Michael, and David G Andersen. Design guidelines
for high performance rdma systems. In USENIX Annual Technical Conference, 2016.

[94] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ranganathan, Tipp
Moseley, Gu-Yeon Wei, and David Brooks. Profiling a warehouse-scale computer. In
ACM/IEEE International Symposium on Computer Architecture, 2015.

[95] Ram Srivatsa Kannan, Lavanya Subramanian, Ashwin Raju, Jeongseob Ahn, Jason
Mars, and Lingjia Tang. Grandslam: Guaranteeing slas for jobs in microservices
execution frameworks. In Proceedings of the Fourteenth EuroSys Conference 2019,
pages 1–16, 2019.

156

[96] Rishi Kapoor, George Porter, Malveeka Tewari, Geoffrey M Voelker, and Amin
Vahdat. Chronos: Predictable low latency for data center applications. In Proceedings
of the Third ACM Symposium on Cloud Computing, page 9. ACM, 2012.

[97] Harshad Kasture, Davide B Bartolini, Nathan Beckmann, and Daniel Sanchez. Rubik:
Fast analytical power management for latency-critical systems. In International
Symposium on Microarchitecture. ACM, 2015.

[98] Harshad Kasture and Daniel Sanchez. Ubik: efficient cache sharing with strict qos
for latency-critical workloads. In ACM SIGPLAN Notices. ACM, 2014.

[99] Harshad Kasture and Daniel Sanchez. Tailbench: a benchmark suite and evaluation
methodology for latency-critical applications. In IEEE International Symposium on
Workload Characterization, 2016.

[100] Farzad Khorasani, Hodjat Asghari Esfeden, Amin Farmahini-Farahani, Nuwan
Jayasena, and Vivek Sarkar. Regmutex: Inter-warp gpu register time-sharing. In
ACM/IEEE 45th International Symposium on Computer Architecture (ISCA), 2018.

[101] Khubaib Khubaib, M Aater Suleman, Milad Hashemi, Chris Wilkerson, Yale N Patt,
et al. Morphcore: An energy-efficient microarchitecture for high performance ilp and
high throughput tlp. In IEEE/ACM International Symposium on Microarchitecture,
2012.

[102] Changkyu Kim, Simha Sethumadhavan, Madhu S Govindan, Nitya Ranganathan,
Divya Gulati, Doug Burger, and Stephen W Keckler. Composable lightweight
processors. In IEEE/ACM International Symposium on Microarchitecture, 2007.

[103] Hyeong-Jun Kim, Young-Sik Lee, and Jin-Soo Kim. Nvmedirect: A user-space i/o
framework for application-specific optimization on nvme ssds. In HotStorage, 2016.

[104] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. Reflex: Remote flash local flash.
In Proceedings of the Twenty-Second International Conference on Architectural
Support for Programming Languages and Operating Systems. ACM, 2017.

[105] Ricardo Koller, Ali José Mashtizadeh, and Raju Rangaswami. Centaur: Host-side ssd
caching for storage performance control. In 2015 IEEE International Conference on
Autonomic Computing (ICAC), pages 51–60. IEEE, 2015.

[106] Aasheesh Kolli, Vaibhav Gogte, Ali Saidi, Stephan Diestelhorst, Peter M Chen, Satish
Narayanasamy, and Thomas F Wenisch. Language-level persistency. In ACM/IEEE
International Symposium on Computer Architecture, 2017.

[107] Christos Kozyrakis, Aman Kansal, Sriram Sankar, and Kushagra Vaid. Server
engineering insights for large-scale online services. IEEE micro, 2010.

[108] Łukasz Kruk, John Lehoczky, Kavita Ramanan, Steven Shreve, et al. Heavy traffic
analysis for edf queues with reneging. The Annals of Applied Probability, 21(2):484–
545, 2011.

157

[109] Rakesh Kumar, Keith I Farkas, Norman P Jouppi, Parthasarathy Ranganathan, and
Dean M Tullsen. Single-isa heterogeneous multi-core architectures: The potential
for processor power reduction. In Microarchitecture, 2003. MICRO-36. Proceedings.
36th Annual IEEE/ACM International Symposium on, pages 81–92. IEEE, 2003.

[110] Rakesh Kumar, Norman P Jouppi, and Dean M Tullsen. Conjoined-core chip multi-
processing. In IEEE/ACM International Symposium on Microarchitecture, 2004.

[111] Rakesh Kumar, Dean M Tullsen, Norman P Jouppi, and Parthasarathy Ranganathan.
Heterogeneous chip multiprocessors. Computer, 38(11):32–38, 2005.

[112] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is twitter, a
social network or a news media? In International conference on World wide web.
ACM, 2010.

[113] I-Ting Angelina Lee, Aamir Shafi, and Charles E Leiserson. Memory-mapping
support for reducer hyperobjects. In Proceedings of the twenty-fourth annual ACM
symposium on Parallelism in algorithms and architectures, pages 287–297, 2012.

[114] Chuanpeng Li, Chen Ding, and Kai Shen. Quantifying the cost of context switch. In
Proceedings of the workshop on Experimental computer science. ACM, 2007.

[115] Jialin Li, Naveen Kr Sharma, Dan RK Ports, and Steven D Gribble. Tales of the tail:
Hardware, os, and application-level sources of tail latency. In ACM Symposium on
Cloud Computing, 2014.

[116] Jing Li, Kunal Agrawal, Sameh Elnikety, Yuxiong He, I Lee, Chenyang Lu, Kathryn S
McKinley, et al. Work stealing for interactive services to meet target latency. In ACM
SIGPLAN Notices, volume 51, page 14. ACM, 2016.

[117] Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M Tullsen, and
Norman P Jouppi. Mcpat: an integrated power, area, and timing modeling framework
for multicore and manycore architectures. In IEEE/ACM International Symposium
on Microarchitecture, 2009.

[118] A Likhtarov, Rajesh Nishtala, R McElroy, H Fugal, A Grynenko, and V Venkatara-
mani. Introducing mcrouter: A memcached protocol router for scaling memcached
deployments, 2014.

[119] Kevin Lim, Jichuan Chang, Trevor Mudge, Parthasarathy Ranganathan, Steven K
Reinhardt, and Thomas F Wenisch. Disaggregated memory for expansion and sharing
in blade servers. In ACM SIGARCH Computer Architecture News. ACM, 2009.

[120] Kevin Lim, Parthasarathy Ranganathan, Jichuan Chang, Chandrakant Patel, Trevor
Mudge, and Steven Reinhardt. Understanding and designing new server architectures
for emerging warehouse-computing environments. In ACM SIGARCH Computer
Architecture News, volume 36, pages 315–326. IEEE Computer Society, 2008.

158

[121] David Lo, Liqun Cheng, Rama Govindaraju, Luiz André Barroso, and Christos
Kozyrakis. Towards energy proportionality for large-scale latency-critical workloads.
In ACM/IEEE International Symposium on Computer Architecture, 2014.

[122] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and Christos
Kozyrakis. Heracles: improving resource efficiency at scale. In ACM SIGARCH
Computer Architecture News, volume 43, pages 450–462. ACM, 2015.

[123] Dumitrel Loghin, Bogdan Marius Tudor, Hao Zhang, Beng Chin Ooi, and Yong Meng
Teo. A performance study of big data on small nodes. Proceedings of the VLDB
Endowment, 8(7):762–773, 2015.

[124] Pejman Lotfi-Kamran, Boris Grot, Michael Ferdman, Stavros Volos, Onur Kocber-
ber, Javier Picorel, Almutaz Adileh, Djordje Jevdjic, Sachin Idgunji, Emre Ozer,
et al. Scale-out processors. In ACM SIGARCH Computer Architecture News. IEEE
Computer Society, 2012.

[125] Andrew Lukefahr, Shruti Padmanabha, Reetuparna Das, Faissal M Sleiman, Ronald
Dreslinski, Thomas F Wenisch, and Scott Mahlke. Composite cores: Pushing hetero-
geneity into a core. In IEEE/ACM International Symposium on Microarchitecture,
2012.

[126] Liang Luo, Akshitha Sriraman, Brooke Fugate, Shiliang Hu, Gilles Pokam, Chris J
Newburn, and Joseph Devietti. LASER: Light, Accurate Sharing dEtection and Repair.
In IEEE International Symposium on High Performance Computer Architecture, 2016.

[127] Daniel Lustig and Margaret Martonosi. Reducing gpu offload latency via fine-grained
cpu-gpu synchronization. In IEEE International Symposium on High Performance
Computer Architecture, 2013.

[128] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale graph
processing. In ACM SIGMOD International Conference on Management of data.
ACM, 2010.

[129] Simon J Malkowski, Markus Hedwig, Jack Li, Calton Pu, and Dirk Neumann. Au-
tomated control for elastic n-tier workloads based on empirical modeling. In Pro-
ceedings of the 8th ACM international conference on Autonomic computing, pages
131–140, 2011.

[130] Raman Manikantan, Kaushik Rajan, and Ramaswamy Govindarajan. Probabilistic
shared cache management (prism). In ACM SIGARCH computer architecture news,
volume 40, pages 428–439. IEEE Computer Society, 2012.

[131] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and Mary Lou Soffa.
Bubble-up: Increasing utilization in modern warehouse scale computers via sensible
co-locations. In International Symposium on Microarchitecture. ACM, 2011.

159

[132] David Meisner, Brian T Gold, and Thomas F Wenisch. Powernap: eliminating server
idle power. In ACM Sigplan Notices. ACM, 2009.

[133] David Meisner, Christopher M Sadler, Luiz André Barroso, Wolf-Dietrich Weber,
and Thomas F Wenisch. Power management of online data-intensive services. In
International Symposium on Computer Architecture. IEEE, 2011.

[134] David Meisner, Junjie Wu, and Thomas F Wenisch. Bighouse: A simulation infras-
tructure for data center systems. In Performance Analysis of Systems and Software
(ISPASS), 2012 IEEE International Symposium on. IEEE, 2012.

[135] Mellanox. ConnectX-3 VPI . http://www.mellanox.com/
related-docs/prod_adapter_cards/ConnectX3_VPI_Card.pdf.

[136] Amirhossein Mirhosseini, Aditya Agrawal, and Josep Torrellas. Survive: Pointer-
based in-dram incremental checkpointing for low-cost data persistence and rollback-
recovery. IEEE Computer Architecture Letters, 16(2):153–157, 2017.

[137] Amirhossein Mirhosseini, Mohammad Sadrosadati, Behnaz Soltani, Hamid Sarbazi-
Azad, and Thomas F Wenisch. Binochs: Bimodal network-on-chip for cpu-gpu
heterogeneous systems. In IEEE/ACM International Symposium on Networks-on-
Chip (NOCS), 2017.

[138] Amirhossein Mirhosseini, Akshitha Sriraman, and Thomas F. Wenisch. Enhancing
server efficiency in the face of killer microseconds. In High Performance Computer
Architecture (HPCA), 2019 IEEE 25th International Symposium on. IEEE, 2019.

[139] Amirhossein Mirhosseini and Thomas F. Wenisch. The queueing-first approach for
tail management of interactive services. In IEEE MICRO, 2019.

[140] Amirhossein Mirhosseini, Brendan L West, Geoffrey W Blake, and Thomas F
Wenisch. Express-lane scheduling and multithreading to minimize the tail latency
of microservices. In 2019 IEEE International Conference on Autonomic Computing
(ICAC), pages 194–199. IEEE, 2019.

[141] Amirhossein Mirhosseini, Brendan L West, Geoffrey W Blake, and Thomas F
Wenisch. Q-zilla: A scheduling framework and core microarchitecture for tail-
tolerant microservices. In 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 207–219. IEEE, 2020.

[142] Christopher Mitchell, Yifeng Geng, and Jinyang Li. Using one-sided rdma reads to
build a fast, cpu-efficient key-value store. In USENIX Annual Technical Conference,
pages 103–114, 2013.

[143] Marius Muja and David G. Lowe. Scalable nearest neighbor algorithms for high
dimensional data. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
36, 2014.

160

http://www.mellanox.com/related-docs/prod_adapter_cards/ConnectX3_VPI_Card.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/ConnectX3_VPI_Card.pdf

[144] Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut Kandemir,
and Thomas Moscibroda. Reducing memory interference in multicore systems
via application-aware memory channel partitioning. In IEEE/ACM International
Symposium on Microarchitecture, 2011.

[145] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P Jouppi. Cacti 6.0:
A tool to model large caches. HP Laboratories, pages 22–31, 2009.

[146] Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N Patt. Runahead execution:
An alternative to very large instruction windows for out-of-order processors. In
International Symposium on High-Performance Computer Architecture, 2003.

[147] Zwane Mwaikambo, Ashok Raj, Rusty Russell, Joel Schopp, and Srivatsa Vaddagiri.
Linux kernel hotplug cpu support. In Linux Symposium, volume 2, 2004.

[148] Veynu Narasiman, Michael Shebanow, Chang Joo Lee, Rustam Miftakhutdinov, Onur
Mutlu, and Yale N Patt. Improving gpu performance via large warps and two-level
warp scheduling. In International Symposium on Microarchitecture. ACM, 2011.

[149] Kyle J Nesbit, Nidhi Aggarwal, James Laudon, and James E Smith. Fair queuing
memory systems. In International Symposium on Microarchitecture, 2006.

[150] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee,
Harry C Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, et al. Scaling
memcache at facebook. In nsdi, volume 13, pages 385–398, 2013.

[151] Stanko Novakovic, Alexandros Daglis, Edouard Bugnion, Babak Falsafi, and Boris
Grot. Scale-out numa. In ACM SIGPLAN Notices, volume 49, pages 3–18. ACM,
2014.

[152] Misja Nuyens and Bert Zwart. A large-deviations analysis of the gi/gi/1 srpt queue.
Queueing Systems, 54(2):85–97, 2006.

[153] Oleander-Solutions. Oleander stemming library. http://www.
oleandersolutions.com/stemming/stemming.html.

[154] Olumide Olusanya and Munira Hussain. Need for Speed: Comparing FDR
and EDR InfiniBand. http://en.community.dell.com/techcenter/
high-performance-computing/b/general_hpc/archive/2016/
02/02/need-for-speed-comparing-fdr-and-edr-infiniband-part-1.

[155] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. Journal of Algorithms,
51(2):122–144, 2004.

[156] Ashish Panwar, Aravinda Prasad, and K Gopinath. Making huge pages actually
useful. In ACM SIGPLAN Notices, volume 53, pages 679–692. ACM, 2018.

[157] Steven Pelley, Peter M Chen, and Thomas F Wenisch. Memory persistency. In ACM
SIGARCH Computer Architecture News, 2014.

161

http://www.oleandersolutions.com/stemming/stemming.html
http://www.oleandersolutions.com/stemming/stemming.html
http://en.community.dell.com/techcenter/high-performance-computing/b/general_hpc/archive/2016/02/02/need-for-speed-comparing-fdr-and-edr-infiniband-part-1
http://en.community.dell.com/techcenter/high-performance-computing/b/general_hpc/archive/2016/02/02/need-for-speed-comparing-fdr-and-edr-infiniband-part-1
http://en.community.dell.com/techcenter/high-performance-computing/b/general_hpc/archive/2016/02/02/need-for-speed-comparing-fdr-and-edr-infiniband-part-1

[158] Vinicius Petrucci, Michael A Laurenzano, John Doherty, Yunqi Zhang, Daniel Mosse,
Jason Mars, and Lingjia Tang. Octopus-man: Qos-driven task management for
heterogeneous multicores in warehouse-scale computers. In IEEE International
Symposium on High Performance Computer Architecture, 2015.

[159] Phil Calcado. Building products at soundcloud —part i: Dealing with the monolith.
[Online; accessed 27-Apr-2018].

[160] Martin F Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.

[161] Martin F Porter. Snowball: A language for stemming algorithms, 2001.

[162] George Prekas, Marios Kogias, and Edouard Bugnion. Zygos: Achieving low tail
latency for microsecond-scale networked tasks. In Proceedings of the 26th ACM
Symposium on Operating Systems Principles, number EPFL-CONF-231395, 2017.

[163] Haoran Qiu, Subho S Banerjee, Saurabh Jha, Zbigniew T Kalbarczyk, and Ravis-
hankar K Iyer. {FIRM}: An intelligent fine-grained resource management framework
for slo-oriented microservices. In 14th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 20), pages 805–825, 2020.

[164] Chenhao Qu, Rodrigo N Calheiros, and Rajkumar Buyya. Auto-scaling web ap-
plications in clouds: A taxonomy and survey. ACM Computing Surveys (CSUR),
51(4):1–33, 2018.

[165] Qualcomm. Qualcomm Centriq 2400. https://www.qualcomm.com/
products/qualcomm-centriq-2400-processor.

[166] Moinuddin K Qureshi and Yale N Patt. Utility-based cache partitioning: A low-
overhead, high-performance, runtime mechanism to partition shared caches. In
IEEE/ACM International Symposium on Microarchitecture, 2006.

[167] Steven E Raasch and Steven K Reinhardt. The impact of resource partitioning on smt
processors. In Parallel Architectures and Compilation Techniques, 2003. PACT 2003.
Proceedings. 12th International Conference on, pages 15–25. IEEE, 2003.

[168] James Reinders. Intel threading building blocks: outfitting C++ for multi-core
processor parallelism. ” O’Reilly Media, Inc.”, 2007.

[169] Shaolei Ren, Yuxiong He, Sameh Elnikety, and Kathryn S McKinley. Exploiting
processor heterogeneity in interactive services. 2013.

[170] Phil Rogers and AC Fellow. Heterogeneous system architecture overview. In Hot
Chips, volume 25, 2013.

[171] Krzysztof Rzadca, Pawel Findeisen, Jacek Swiderski, Przemyslaw Zych, Przemyslaw
Broniek, Jarek Kusmierek, Pawel Nowak, Beata Strack, Piotr Witusowski, Steven
Hand, et al. Autopilot: workload autoscaling at google. In Proceedings of the
Fifteenth European Conference on Computer Systems, pages 1–16, 2020.

162

https://www.qualcomm.com/products/qualcomm-centriq-2400-processor
https://www.qualcomm.com/products/qualcomm-centriq-2400-processor

[172] Satish Kumar Sadasivam, Brian W Thompto, Ron Kalla, and William J Starke. Ibm
power9 processor architecture. IEEE Micro, 37(2):40–51, 2017.

[173] Mohammad Sadrosadati, Amirhossein Mirhosseini, Seyed Borna Ehsani, Hamid
Sarbazi-Azad, Mario Drumond, Babak Falsafi, Rachata Ausavarungnirun, and Onur
Mutlu. Ltrf: Enabling high-capacity register files for gpus via hardware/software
cooperative register prefetching. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and Operating
Systems. ACM, 2018.

[174] Daniel Sanchez and Christos Kozyrakis. Vantage: scalable and efficient fine-grain
cache partitioning. In ACM SIGARCH Computer Architecture News. ACM, 2011.

[175] Mohammad Shahrad, Jonathan Balkind, and David Wentzlaff. Architectural im-
plications of function-as-a-service computing. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, pages 1063–1075, 2019.

[176] Akbar Sharifi, Shekhar Srikantaiah, Asit K Mishra, Mahmut Kandemir, and Chita R
Das. Mete: meeting end-to-end qos in multicores through system-wide resource
management. In Proceedings of the ACM SIGMETRICS joint international conference
on Measurement and modeling of computer systems. ACM, 2011.

[177] Dimitrios Skarlatos, Nam Sung Kim, and Josep Torrellas. Pageforge: a near-
memory content-aware page-merging architecture. In Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 302–314. ACM,
2017.

[178] Faissal M Sleiman and Thomas F Wenisch. Efficiently scaling out-of-order cores for
simultaneous multithreading. In Proceedings of the 43rd International Symposium
on Computer Architecture, pages 431–443. IEEE Press, 2016.

[179] Allan Snavely and Dean M Tullsen. Symbiotic jobscheduling for a simultaneous
mutlithreading processor. ACM SIGPLAN Notices, 2000.

[180] Stephen Somogyi, Thomas F Wenisch, Anastasia Ailamaki, and Babak Falsafi. Spatio-
temporal memory streaming. ACM SIGARCH Computer Architecture News, 2009.

[181] Stephen Somogyi, Thomas F Wenisch, Anastassia Ailamaki, Babak Falsafi, and
Andreas Moshovos. Spatial memory streaming. In ACM SIGARCH Computer
Architecture News, 2006.

[182] Shekhar Srikantaiah, Mahmut Kandemir, and Qian Wang. Sharp control: controlled
shared cache management in chip multiprocessors. In International Symposium on
Microarchitecture. ACM, 2009.

[183] Akshitha Sriraman, Abhishek Dhanotia, and Thomas F Wenisch. Softsku: optimizing
server architectures for microservice diversity@ scale. In Proceedings of the 46th
International Symposium on Computer Architecture, pages 513–526. ACM, 2019.

163

[184] Akshitha Sriraman, Sihang Liu, Sinan Gunbay, Shan Su, and Thomas F. Wenisch.
Deconstructing the Tail at Scale Effect Across Network Protocols. The Annual
Workshop on Duplicating, Deconstructing, and Debunking, 2016.

[185] Akshitha Sriraman and Thomas F Wenisch. µsuite: A benchmark suite for mi-
croservices. In 2018 IEEE International Symposium on Workload Characterization
(IISWC).

[186] Akshitha Sriraman and Thomas F Wenisch. µSuite: A Benchmark Suite for Mi-
croservices. In International Symposium on Workload Characterization. IEEE, 2018.

[187] Akshitha Sriraman and Thomas F. Wenisch. µTune: Auto-Tuned Threading for
OLDI Microservices. In USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2018.

[188] Staci D. Kramer. The biggest thing amazon got right: The platform. [Online; accessed
27-Apr-2018].

[189] Steven Ihde and Karan Parikh. From a monolith to microservices + rest: the evolution
of linkedin’s service architecture. [Online; accessed 27-Apr-2018].

[190] Mark Sutherland, Siddharth Gupta, Babak Falsafi, Virendra Marathe, Dionisios
Pnevmatikatos, and Alexandros Daglis. The nebula rpc-optimized architecture. In
2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA), pages 199–212. IEEE, 2020.

[191] Arash Tavakkol, Juan Gómez-Luna, Mohammad Sadrosadati, Saugata Ghose, and
Onur Mutlu. Mqsim: a framework for enabling realistic studies of modern multi-
queue ssd devices. In USENIX Conference on File and Storage Technologies, 2018.

[192] Arash Tavakkol, Aasheesh Kolli, Stanko Novakovic, Kaveh Razavi, Juan Gomez-
Luna, Hasan Hassan, Claude Barthels, Yaohua Wang, Mohammad Sadrosadati,
Saugata Ghose, et al. Enabling efficient rdma-based synchronous mirroring of
persistent memory transactions. arXiv preprint arXiv:1810.09360, 2018.

[193] Tony Mauro. Adopting microservices at netflix: Lessons for architectural design.
[Online; accessed 27-Apr-2018].

[194] Christopher Torng, Moyang Wang, and Christopher Batten. Asymmetry-aware work-
stealing runtimes. In 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA), pages 40–52. IEEE, 2016.

[195] Dan Tsafrir. The context-switch overhead inflicted by hardware interrupts (and the
enigma of do-nothing loops). In Proceedings of the 2007 workshop on Experimental
computer science, page 4. ACM, 2007.

[196] Dean M Tullsen, Susan J Eggers, Joel S Emer, Henry M Levy, Jack L Lo, and
Rebecca L Stamm. Exploiting choice: Instruction fetch and issue on an implementable
simultaneous multithreading processor. In ACM SIGARCH Computer Architecture
News. ACM, 1996.

164

[197] Eric Tune, Rakesh Kumar, Dean M Tullsen, and Brad Calder. Balanced multithread-
ing: Increasing throughput via a low cost multithreading hierarchy. In Microarchitec-
ture, 2004. 37th International Symposium on. IEEE, 2004.

[198] Bhuvan Urgaonkar, Prashant Shenoy, Abhishek Chandra, Pawan Goyal, and Tim-
othy Wood. Agile dynamic provisioning of multi-tier internet applications. ACM
Transactions on Autonomous and Adaptive Systems (TAAS), 3(1):1–39, 2008.

[199] Leslie G Valiant. A bridging model for parallel computation. Communications of the
ACM, 33(8):103–111, 1990.

[200] Augusto Vega, Alper Buyuktosunoglu, and Pradip Bose. Smt-centric power-aware
thread placement in chip multiprocessors. In Parallel Architectures and Compilation
Techniques (PACT), 2013 22nd International Conference on. IEEE, 2013.

[201] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric
Tune, and John Wilkes. Large-scale cluster management at google with borg. In
Proceedings of the Tenth European Conference on Computer Systems, pages 1–17,
2015.

[202] Qingyang Wang, Yasuhiko Kanemasa, Jack Li, Deepal Jayasinghe, Toshihiro Shimizu,
Masazumi Matsubara, Motoyuki Kawaba, and Calton Pu. Detecting transient bot-
tlenecks in n-tier applications through fine-grained analysis. In 2013 IEEE 33rd
International Conference on Distributed Computing Systems, pages 31–40. IEEE,
2013.

[203] Qingyang Wang, Chien-An Lai, Yasuhiko Kanemasa, Shungeng Zhang, and Calton
Pu. A study of long-tail latency in n-tier systems: Rpc vs. asynchronous invocations.
In 2017 IEEE 37th International Conference on Distributed Computing Systems
(ICDCS), pages 207–217. IEEE, 2017.

[204] Yasuko Watanabe, John D Davis, and David A Wood. Widget: Wisconsin decoupled
grid execution tiles. In ACM SIGARCH Computer Architecture News. ACM, 2010.

[205] Thomas F Wenisch, Stephen Somogyi, Nikolaos Hardavellas, Jangwoo Kim, Anas-
tassia Ailamaki, and Babak Falsafi. Temporal streaming of shared memory. ACM
SIGARCH Computer Architecture News, 2005.

[206] Tom White. Hadoop: The definitive guide. ” O’Reilly Media, Inc.”, 2012.

[207] Adam Wierman and Bert Zwart. Is tail-optimal scheduling possible? Operations
research, 60(5):1249–1257, 2012.

[208] Wikipedia-Redux. https://reagle.org/joseph/blog/social/
wikipedia/10k-redux.html.

[209] Carole-Jean Wu, David Brooks, Kevin Chen, Douglas Chen, Sy Choudhury, Marat
Dukhan, Kim Hazelwood, Eldad Isaac, Yangqing Jia, Bill Jia, et al. Machine learning
at facebook: Understanding inference at the edge. In 2019 IEEE International

165

https://reagle.org/joseph/blog/social/wikipedia/10k-redux.html
https://reagle.org/joseph/blog/social/wikipedia/10k-redux.html

Symposium on High Performance Computer Architecture (HPCA), pages 331–344.
IEEE, 2019.

[210] Sam Likun Xi, Hans Jacobson, Pradip Bose, Gu-Yeon Wei, and David Brooks.
Quantifying sources of error in mcpat and potential impacts on architectural studies.
In IEEE International Symposium on High Performance Computer Architecture,
2015.

[211] Yuejian Xie and Gabriel H Loh. Pipp: promotion/insertion pseudo-partitioning of
multi-core shared caches. In ACM SIGARCH Computer Architecture News, vol-
ume 37, pages 174–183. ACM, 2009.

[212] Yunjing Xu, Zachary Musgrave, Brian Noble, and Michael Bailey. Bobtail: Avoiding
long tails in the cloud. In Presented as part of the 10th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 13), pages 329–341, 2013.

[213] Hailong Yang, Alex Breslow, Jason Mars, and Lingjia Tang. Bubble-flux: Precise
online qos management for increased utilization in warehouse scale computers. In
ACM SIGARCH Computer Architecture News, volume 41, pages 607–618. ACM,
2013.

[214] Xi Yang, Stephen M Blackburn, and Kathryn S McKinley. Computer performance
microscopy with shim. In Computer Architecture (ISCA), 2015 ACM/IEEE 42nd
Annual International Symposium on, pages 170–184. IEEE, 2015.

[215] Xi Yang, Stephen M Blackburn, and Kathryn S McKinley. Elfen scheduling: Fine-
grain principled borrowing from latency-critical workloads using simultaneous multi-
threading. In USENIX Annual Technical Conference, 2016.

[216] Yoni Goldberg. Scaling gilt: from monolithic ruby application to distributed scala
micro-services architecture. [Online; accessed 27-Apr-2018].

[217] Matei Zaharia, Reynold S Xin, Patrick Wendell, Tathagata Das, Michael Arm-
brust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J
Franklin, et al. Apache spark: a unified engine for big data processing. Communica-
tions of the ACM, 2016.

[218] Gerd Zellweger, Simon Gerber, Kornilios Kourtis, and Timothy Roscoe. Decoupling
cores, kernels, and operating systems. In OSDI, 2014.

[219] Fengxiang Zhang and Alan Burns. Schedulability analysis for real-time systems with
edf scheduling. IEEE Transactions on Computers, 58(9):1250–1258, 2009.

[220] Yunqi Zhang, Michael A Laurenzano, Jason Mars, and Lingjia Tang. Smite: Precise
qos prediction on real-system smt processors to improve utilization in warehouse scale
computers. In Proceedings of the 47th Annual IEEE/ACM International Symposium
on Microarchitecture, pages 406–418. IEEE Computer Society, 2014.

166

[221] Yunqi Zhang, David Meisner, Jason Mars, and Lingjia Tang. Treadmill: Attributing
the source of tail latency through precise load testing and statistical inference. In
2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture
(ISCA), pages 456–468. IEEE, 2016.

[222] Yanqi Zhou and David Wentzlaff. The sharing architecture: sub-core configurability
for iaas clouds. ACM SIGARCH Computer Architecture News, 2014.

[223] Yanqi Zhou and David Wentzlaff. Mitts: memory inter-arrival time traffic shaping.
In ACM SIGARCH Computer Architecture News. IEEE, 2016.

[224] Haishan Zhu and Mattan Erez. Dirigent: Enforcing qos for latency-critical tasks on
shared multicore systems. ACM SIGARCH Computer Architecture News, 44(2):33–47,
2016.

167

	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	Introduction
	Killer Microseconds
	s-Scale Tail Latency
	Partial Service-Level Objectives
	Mixed-Criticality Microservices

	Duplexity: Enhancing Server Efficiency in the Face of Killer Microseconds
	Introduction
	Motivation and Background
	Killer Microseconds
	Simultaneous Multithreading

	Duplexity
	Lender-cores
	Master-cores
	From MorphCore to Master-core
	Segregating State
	Master-Lender Dyads
	Fast Filler-thread Eviction

	Summary

	Discussion
	Evaluation Methodology
	Efficiency Results
	Core Utilization
	Performance Density & Energy Efficiency

	Performance & QoS Results
	Case Study: Interconnect Utilization Analysis
	Related Work
	Conclusion

	The Queuing-First Approach for Tail Management of Interactive Microservices
	Introduction
	Background and Methodology
	The Queuing-First Approach
	Server Pooling
	Common-Case Service Acceleration
	Discussion

	Conclusion

	Q-Zilla: A Scheduling Framework and Core Microarchitecture for Tail-Tolerant Microservices
	Introduction
	Background and Motivation
	Queuing Organizations
	SITA Scheduling

	Express-Lane SMT
	Server-Queue Decoupled SITA
	Adding Preemption and Ganging to SITA
	Server-Queue Decoupling
	Interruptible SQD-SITA

	Core-Zilla Microarchitecture
	Hierarchical Scheduling
	Automatic Load Adaptation

	Discussion
	Evaluation Methodology
	Results
	SQD-SITA performance analysis
	CoreZilla performance analysis
	Impact of preemptions in ISQD-SITA

	Related Work
	Conclusion

	Parslo: A Gradient Descent-based Approach for Partial SLO Allocation in Virtualized Cloud Microservices
	Introduction
	Background and Motivation
	SLOs and Auto-Scalers
	Latency SLOs for Mircoservices
	Optimal Partial SLO Allocation

	Parslo: SLO Allocation
	Microservice Dependencies
	Parallel Indexing and Sharding
	Branching Paths

	Parslo: Calibration
	Offline Tail Estimation Model

	Evaluation
	Chains of Microservices
	DAGs of Microservices

	Conclusion

	Steal: Preemptive Work and Resource Stealing for Mixed-Criticality Microservices
	Introduction
	Background and Motivation
	A case for mixed-criticality microservices
	Sharing instances
	Scheduling within an instance

	The Steal Framework
	Stealing-enabled scheduler
	Tuning reservations

	Reservation Allocation During Load Spikes
	Implementation and Methodology
	Evaluation results
	Symmetric traffic
	Asymmetric traffic
	Load spikes

	Related Work
	Conclusion

	Conclusion
	BIBLIOGRAPHY

