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Abstract 

 Non-aqueous redox flow batteries (NaRFBs) are a promising technology for widespread 

grid-scale energy storage deployment. Despite their potential for high energy density, current 

active materials lack the necessary stability and cyclability for scale-up. One class of active 

materials for NaRFBs are redox active organic molecules (ROMs), which are a focus of recent 

development due to their low cost and high solubilities compared to other candidate active 

materials. The research in this thesis seeks to advance of ROM development through 

characterization of new active materials and development of computational design tools for 

stability and cyclability. ROM characterization focused on cyclability of the dialkoxyarene ROM 

catholyte family and (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl (TEMPO). An extensive set of bulk 

electrolysis (BE) experiments with varying active material concentration, cycle rate, and 

supporting salt were performed. Two different design strategies for improving dialkoxyarene 

cyclability were identified: increasing steric hinderance in alkylammonium electrolytes and 

increasing lithium-coordination in lithium electrolytes. These two strategies and the BE data 

provide new insight into ROM design and proper selection of electrolytes for cyclability. 

Computational work used the model building tool Sure Independence Screening and Sparsifying 

Operator (SISSO) to develop models for screening and prediction of ROMs. A variety of prediction 

tools for dialkoxyarene and TEMPO cyclability were developed, highlighting the lowest 

unoccupied molecular orbital (LUMO) energy and the solvation energy as the most important 

active material descriptors for improving cyclability. Similar tools were developed for 

dialkoxyarene stability, with the LUMO energy and geometry as the most important factors 

identified by SISSO. Most significantly, a generalized screening model for stability was developed 

from data for dialkoxyarene catholytes and pyridinium anolytes. This model is the first 

generalizable model for any ROM property of interest and provides insight into the unknown 

factors affecting electrochemical stability. These models provide foundations and methods for 

the computational design of new ROMs. 
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Chapter 1 

 

Introduction 

 

1.1 Energy Storage 

Demand for reliable electricity supply has increased greatly over the past decades, which 

is expected to continue with the improving global standard of living. This increasing electricity 

demand is primarily met by burning of fossil fuels which releases harmful levels of CO2 in the 

environment. The greatest challenge with this increase in electrification is reducing the carbon 

emissions from power generation. Consequently, there is now a shift towards clean renewable 

energy resources like solar and wind, which are expected to supply ~35% of the total electricity 

demand by 2050 according to the US Energy Information Administration.1 However, integrating 

renewables as a significant portion of our generation profile will lead to grid instability due to the 

intermittent nature of wind and solar power, the two most widespread and cost-effective 

renewable technologies. To offset this intermittency, energy storage capacity will need to be 

installed at a similar rate to fully utilize these renewable resources. In the United States, only ~2% 

of electricity is supplied from energy storage devices, a number that has remained constant for 

the past 30 years. However, renewable technologies now account for 19% of the electricity 

supply,2 shown in Figure 1.1. Integration of energy storage enables peak shaving, load shifting, 

and frequency regulation, improving grid reliability in addition to reducing carbon emissions and 

costs. Energy storage devices also play an important role in the development of smart grids and 

decentralized electricity generation.3  

 Grid-scale energy storage technologies can be classified into four major categories, listed 

from largest to smallest capacity, mechanical, thermal, chemical, and electrical energy storage.4 

Mechanical energy storage systems, which are the most mature energy storage technologies, use 
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kinetic or potential energy as their storage medium. Kinetic energy storage is dominated by 

flywheels, but is not a significant source of total storage capacity. Pumped hydroelectric storage 

(PHS) is the dominant form potential energy storage and of installed grid-scale energy storage 

devices in the U.S., accounting for 94% of the installed energy storage capacity, shown in Figure 

1.2.5  

 

Figure 1.1 U.S. overall and renewable power generation projections until 2050.2 
 

 

Figure 1.2 U.S. 2020 energy storage capacity, rated power includes announced projects.5  
 

PHS systems operate as a reversible dam, pumping water from a lower reservoir to an upper 

reservoir during “charging” and then releasing the stored water to power turbines during 

“discharge”. PHS systems have long lifetimes and large capacities, but their cost and geographic 

limitations restrict use to large scale, which cause significant environmental harm.4  
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 Thermal energy storage technologies are a candidate technology aiming to avoid the high 

costs and geographic limitations associated with PHS. These systems operate by storing heat/cold 

in various media, which is later extracted for thermal energy or electricity. These systems are 

already in use for commercial and industrial cooling but have not yet matured as an energy 

storage technology due to their cost at larger scales.6 Mature electrical energy storage 

technologies are capacitors and super capacitors, both of which have widespread use for 

frequency regulation, but lack the capacity to replace PHS as a widespread grid-scale energy 

storage technology.7  

 Chemical energy storage encompasses battery chemistries, which have varying levels of 

technological maturity. They can range in size and capacity, from coin cell batteries (~0.01 Wh) 

to redox flow batteries (RFBs) for grid scale storage (~1 GWh). For grid scale applications, mature 

technologies such as lead-acid and lithium ion batteries are commonly used. However, these 

technologies have relatively short lifetimes and are significant risks for thermal runaway, a major 

safety hazard.8 One alternative to these technologies are RFBs, which offer improved lifetimes 

and safety over other batteries while still avoiding the significant cost and geographic limitations 

of PHS. Research efforts are focused on increasing energy densities and reducing cost of RFBs to 

make them market viable for grid scale integration.9 This dissertation will discuss performance 

trends and predictions for new non-aqueous RFB (NaRFB) chemistries to expedite materials 

discovery and characterization.  

 

1.2 Redox Flow Batteries 

 RFBs are batteries with their electrochemically active species stored in liquid electrolytes, 

whereas traditional batteries contain their active species at or near the electrode surface. This 

feature allows RFBs to be constructed with a separate cell stack and storage reservoirs as shown 

in Figure 1.3. Since the power output is proportional the electrode area and capacity are 

proportional to the size of the storage reservoirs, RFBs can independently scale power output 

and capacity. During operation of the battery, the electrolytes are pumped from the reservoirs 

to the cell stack, where they undergo charge/discharge and are returned to the reservoirs. For 

convention, the electrolyte which undergoes oxidation during charge is known as the catholyte 
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and the other is the anolyte. These electrolytes are kept electrochemically isolated by a 

membrane in the cell stack, which allows transport of non-reactive ions to satisfy charge 

neutrality in the system while preventing transport of the active species. These membranes are 

typically inert materials, which can undergo further surface treatments to improve kinetics and 

reduce resistance.10,11  

 

 

Overall RFB performance is measured through a variety of metrics. Two commonly used 

metrics are cycle life (𝑁𝑞) and energy density. 𝑁𝑞 is defined as the number of cycles or amount 

of time before the battery reaches a lower bound on acceptable capacity, which in this work was 

chosen as 80% of the initial capacity (𝑁80). Increasing the cycle life of an RFB increases its 

operational lifetime.  

Energy density measures the energy per unit volume of electrolyte and is given in 

Equation 1.1  

Figure 1.3 Diagram of a redox flow battery. 
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 𝐸 = 𝑛𝐹𝑉𝐶𝑒𝑙𝑙𝐶𝑎𝑐𝑡𝑖𝑣𝑒 
 

(1.1) 

Where 𝑛 is the number of electrons transferred, 𝐹 is Faraday’s constant, 𝑉𝑐𝑒𝑙𝑙 is the cell voltage 

during discharge, and 𝐶𝑎𝑐𝑡𝑖𝑣𝑒 is the concentration of active species. Increasing energy density of 

an RFB decreases the necessary electrolyte volume and reservoir size. Commercially available 

RFBs have long cycle lives (>10,000) but low energy densities (up to 25 Wh/L).12,13 Further 

installation and integration of RFBs requires significant improvements to energy density. 

 

1.2.1 Aqueous Redox Flow Batteries 

  The first RFB chemistry was developed in the 1930’s, an aqueous RFB (AqRFB) with a 

variety of metal redox couples as possible active matierals.14 The first modern RFB was developed 

at NASA after improvements to cell components in the 1970’s with Fe2+/Fe3+ and Cr2+/Cr3+ halide 

solutions as the catholyte and anolyte respectively, but was plagued with high crossover and 

subsequent capacity fade of the anolyte.15 Further development around various metal redox 

couples led to the invention of the vanadium RFB (VRFB) in the 1980’s at the University of South 

Wales. This design used sulfuric acid electrolytes with V2+/V3+ and V4+/V5+ as the catholyte and 

anolyte respectively, eliminating contamination from crossover.16 The VRFB is the most 

commercially viable RFB to date, with a cycle life up to 20,000 and efficiencies up to 85%, but 

energy densities of only 25 Wh/L.13 Energy densities for the system are limited by the limited 

voltage window of water (1.23 V) and the low solubility of vanadium (1.7 M), which also limits 

the system to a narrow range of operating temperatures (10 – 40 °C).17 Development of VRFBs is 

ongoing, with a primary focus on increasing efficiency and increasing solubility. Efficiency has 

been improved by optimization of cell components and some electrode treatments to reduce 

overvoltage.18–21 New electrolytes have also been investigated to increase the solubility of 

vanadium in the system.22,23  

 Several other AqRFB chemistries are in various stages of development. More mature 

technologies include the zinc bromine RFB24,25 and zinc cerium RFB.26,27 New active material 

development is also an active area of research, with efforts focused on redox active organic 

molecules (ROMs) for their low cost.28,29 However, these efforts are still gated by the limited 

voltage window of water. 
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1.2.2 Non-Aqueous Redox Flow Batteries 

 Current construction and integration of redox flow batteries is limited by their high cost 

per kilowatt hour. A capital cost target for widespread integration set by the Department of 

Energy is 150 USD/kWh, which PHS and lithium ion batteries are approaching.30,31 Redox flow 

batteries are still significantly behind this target, current VRFB systems cost 500 USD/kWh 

assuming a 4 hour discharge.31 One possible avenue of reducing costs is to move away from water 

and its low voltage window to non-aqueous solvents, which have voltage windows up to 6 V.32 

This wider voltage window can utilize many new chemistries with improved solubilities, 

increasing theoretical energy density drastically. An additional benefit of these systems is more 

tunability with the larger range of supporting salts and solvents to choose from. Current non-

aqueous RFBs (NaRFBs) are limited to the bench-scale, however they have seen an increase in 

research focus due to their potential to reach higher energy densities at lower costs than aqueous 

RFBs. 

 

1.2.2.1 Non-aqueous Electrolytes 

 A wide variety of solvents exist for non-aqueous electrochemistry, which allows for a wide 

degree of control over properties such as viscosity, operational temperature, and voltage 

window, among others. Non-aqueous solvents require a supporting salt to reach necessary ionic 

conductivities for electrochemical activity, although there are a wide variety of support salts to 

choose from.33 Non-aqueous electrolyte development has primarily focused on the lithium-ion 

(Li-ion) battery space, with significant developments in liquid electrolyte chemistries.34–36 These 

electrolytes consist of a carbonate solvent or mixture of carbonate solvents, dimethyl carbonate 

(DC), ethylene carbonate (EC), propylene carbonate (PC), among others; and a lithium-based 

supporting salt like lithium tetrafluoroborate (LiBF4), lithium hexafluorophosphate (LiPF6), or 

lithium perchlorate (LiClO4). Early NaRFB research utilized these Li-ion electrolytes, however 

acetonitrile (MeCN) has steadily grown as the solvent of choice due to the variety of benefits it 

offers over carbonate solvents including lower viscosity and greater supporting salt solubility.33,34 

For these reasons, all experiments in this thesis used MeCN. However, MeCN does not see 
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industrial use as a battery solvent due to the presence of water in the purified solvent, which 

currently cannot be removed at an industrial scale. Industrially dried acetonitrile can be further 

dried at laboratory scale, making it suitable for use with water-incompatible materials.37 

 Supporting salts consist of an anion and cation that dissociate in the solvent to provide 

the necessary conductivity for bulk electrochemical reactions. The most commonly used anions 

are BF4
-, PF6

-, ClO4
-, and bis(trifluoromethanesulfonyl)amide (TFSi-), each with their advantages 

and disadvantages. BF4
- has the smallest ionic radii and therefore the largest limiting molar ionic 

conductivity of available anions.33 When BF4 is combined with lithium as a cation in LiBF4, it 

dissociates poorly in MeCN and is one of the most expensive supporting salts.35 PF6
- is more 

dissociative than BF4
- but is known to react with water to produce HF, although the presence of 

HF may stabilize electrodes in Li-ion batteries.35 ClO4
- is one of the most soluble anions, but 

oxidizes non-aqueous solvents at high current loads or high temperatures, a significant safety 

hazard.33 TFSi- provides a balance of properties with BF4
- and PF6

-, but has shown instability in 

ether- and sulfone-based electrolytes.33,35,38 This thesis used BF4
-, PF6

-, and TFSi- as supporting 

salt anions. 

 There are only two types of cations used in NaRFB research, alkylammonium and lithium, 

both of which are used in this thesis. The two alkylammonium cations used here are 

tetrabutylammonium (TBA+) and tetraethylammonium (TEA+), which provide high 

conductivities.39 Lithium salts are known to dissociate poorly in some solvents, and strongly 

interact with some active species.35,40,41 Despite this, the interaction can often be beneficial, 

which will be discussed in Chapters 2 and 3.  

 

1.2.2.2 Active Species 

NaRFBs research is primarily focused on active material development and 

characterization, as scale-up and performance are currently gated by the low stability and 

cyclability of proposed active species. There are four main classes of active materials for NaRFBs, 

ordered by molecular size from smallest to largest are ROMs, metal coordination complexes 

(MCCs), redox active polymers (RAPs), and redox active colloids (RACs).  
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ROMs are promising for NaRFB research because of their low costs, high solubility, and 

easy tunability of chemical and electrochemical properties.42 Structures for a few common ROMs 

are shown in Scheme 1.1. 

 

 

ROM development was driven by active materials for overcharge protection in Li-ion 

batteries.43,44 The high redox potential and stability of these molecules led to their use as NaRFB 

catholytes. The primary family of focus in this thesis, the dialkoxyarene family, was one of the 

first to be investigated for NaRFB applications. This family exhibits high redox potentials (~ 0.8 V 

vs Ag/Ag+ in MeCN) and has been modified for high solubilities (>2 M in carbonate solvents).45,46 

Another ROM family of interest is (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl (TEMPO) and its 4-

substituted derivatives. These families exhibit high redox potentials (~ 0.4 V vs Ag/Ag+ in MeCN) 

and exceptional solubilities (>5.2 M in carbonate solvents);47 TEMPO features primarily in 

Chapter 3 of this thesis. More recently, anolyte ROMs have been introduced. The two main 

families of anolytes are pyridinium anolytes and benzothiadiazoles (BzNSN).48,49 These families 

have high stabilities and low redox potentials (~-2.2 V vs Ag/Ag+), but have yet to approach 

reduction potentials near lithium (-3.2 V vs Ag/Ag+ in MeCN).  

Redox active metals are the dominant active material in AqRFBs, but they are insoluble in 

non-aqueous solvents. These metals can be functionalized with organic ligands to create soluble 

metal coordination complexes (MCCs). MCCs can exhibit multiple redox events which are tunable 

by changing the coordinated ligands. Bipyridine MCCs were the first family of MCCs proposed for 

NaRFBs with four redox events within their voltage window, however solubility was limited to 

0.2 M in MeCN.50 Acetylacetonate MCCs were the next major family investigated, with increased 

Scheme 1.1 General chemical structures for (a) dialkoxyarene catholytes, (b) pyridinium 
anolytes, and (c) (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl (TEMPO) derivatives. 
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solubility (2.0 M) and improved cyclability (~200 cycles).51–53 Of particular note, these molecules 

were the first with demonstrated correlations of structure to both solubility and cyclability.53 

Most recently, a systematic investigation of metal centers and ligands identified ligand denticity 

as a key factor in MCC cyclability, with tridentate ligands out-cycling bidentate ligands due to 

stronger attachment to the metal center.54 

Redox active polymers and redox active colloids are newer types of molecules that 

evolved from ROM development and a desire to reduce crossover of active species.55,56 They 

consist of functionalized ROMs attached to a polymer or colloid backbone, greatly increasing the 

size and number of redox events of a single molecule. 

 

1.3 Research Motivation 

Initial NaRFB active material development was focused on improving solubility, which has 

resulted in established functionalization strategies. A larger focus is now placed on stability and 

cyclability, which govern the performance of active materials and are not well understood.  

 

1.3.1 Stability 

 Stability of an active species measures its ability to remain in the charged state. This 

governs the theoretical coulombic efficiency of the active material and the charge retention of 

an RFB. Stability is a chemical property of the active species, but can be influenced by the 

supporting salt and solvent environment. Shelf-life studies are the simplest way of evaluating 

stability, although recent studies have used resonance spectroscopy for more detailed results. 

 

1.3.2 Cyclability  

 Cyclability of an active species measures its ability to remain stable while cyclically 

donating and accepting electrons, the determining factor of RFB lifetime. Cyclability is greatly 

influenced by external factors, including electrolyte interactions and experimental conditions of 

cycling experiments. The two main ways to characterize cyclability are bulk electrolysis (BE) and 

flow cell cycling, this work focuses on BE. The primary experimental component of this research 
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systematically adds to the limited quantity of cyclability data available to develop a greater 

understanding between cyclability and the various experimental factors that influence it.  

 

1.3.3 Prediction 

 Synthesis and characterization of new active materials are time-consuming processes and 

are responsible for the lackluster rate of new active materials development. In addition, there is 

no guarantee of finding a promising active material from a synthesized family, as the 

performance of materials is seemingly random. Computational screening of materials has so far 

only been possible for redox potential.57 Stability and cyclability screening have been shown for 

a couple non-generalizable cases,48,53 but more generalized prediction has been non-existent. 

The primary computational part of my research focuses on developing predictive models for 

active material stability and cyclability based on structural and electrochemical descriptors 

obtained computationally. These models can greatly reduce the number of molecules that are 

synthesized and characterized through pre-screening of candidate materials, increasing active 

material discovery throughput.  

 

1.4 Research Summary and Goals 

 This thesis is split into two parts, an experimental section in Chapters 2-4 and a 

computational section in Chapters 5 and 6. The experimental section will discuss the 

characterization of ROM catholyte active materials. The experimental section reports and 

discusses the cyclability results for two main thrusts: characterizing additions to the 

dialkoxyarene family and a systematic investigation of experimental factors affecting cyclability. 

These results greatly expand the set of available cyclability data and provide insight into the 

complexity of cyclability characterization, guiding characterization procedures for future active 

materials. Lastly, a model for a new cyclability metric, recovery, is developed and used to provide 

additional insight into the reported results. The computational section of this thesis discusses the 

use of Sure Independence Screening and Sparsifying Operator (SISSO) for model development of 

general ROM stability and the BE experiments. These models will help increase active material 
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discovery throughput by providing previously non-existent computational screening methods for 

performance.  

 

1.5 Chapter Summaries 

1.5.2 Chapter 2: A Cycling Comparison of Dialkoxyarene Catholytes 

 Chapter 2 discusses the dialkoxyarene family of ROMs and their development into active 

materials for RFBs. A series of nine dialkoxyarenes with new functional group variations are 

presented and characterized by cyclic voltammetry and BE. Oxidation potentials, peak height 

ratios, cycle life, and coulombic efficiencies are reported for each active material. Trends and 

relationships for oxidation potentials, cycle life, and coulombic efficiency are discussed. 

Additionally, the degradation mechanism of these dialkoxyarenes is identified. Steric hinderance 

was identified as a significant descriptor of cyclability and its effects on decay are demonstrated. 

Lastly, the significance of experimental conditions and electrolyte choice are identified.  

 

1.5.3 Chapter 3: Factors Affecting Bulk Electrolysis Cycling Performance 

 Chapter 3 discusses the experimental effect of active material concentration, cycle rate, 

and supporting salt choice on cyclability. To investigate these effects, a total of 66 BE experiments 

were performed on three ROM active materials. From the BE experiments, supporting salt choice 

was found to be as impactful as active material selection for cyclability and should be considered 

for all ROM characterization. Li+ coordination to the ROMs significantly improved cyclability, 

while an active impurity in BF4
- salts made them incompatible with dialkoxyarene ROMs. Further 

investigation of Li+ coordination allowed us to hypothesize possible mechanisms for improved 

cyclability. Lastly, the impact and mechanism of active material concentration on TEMPO 

cyclability was identified. 

 

1.5.4 Chapter 4: A Kinetic Model for Redox Organic Active Material Cycling 

 Chapter 4 follows the derivation of a kinetic model for BE cycling. This model was 

developed as an alternative metric for performance and quantifies the recovery, 𝜙, of an active 

material. 𝜙 is a metric for how much decay of a charged active material returns to the neutral 
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state and is a kinetic indicator of the quantity of active material decay. 𝜙 is calculated for all BE 

experiments in Chapters 2 and 3. The derivation of 𝜙 also led to an expression for the maximum 

theoretical coulombic efficiency, which can be used to identify active material/supporting salt 

combinations which coordinate. Lastly, 𝜙 was used to gain additional insights in to the BE 

experiments from Chapter 3. 

 

1.5.5 Chapter 5: Stability Predictions for ROMs 

Chapter 5 introduces three models for computational stability prediction of ROMs 

developed with Sure Independence Screening and Sparsifying Operator. The first model is a 

generalized ROM stability screening model, which categorizes stable and unstable dialkoxyarene 

catholytes and pyridinium anolytes, allowing synthesis and characterization efforts to be focused 

on stable molecules. This model is the first multi-family stability model for any active materials 

and identifies a non-obvious, common feature for ROM stability. The second and third models 

are predictive models for hydrocarbon substituted-dialkoxyarenes and a multi-task learning, 

general dialkoxyarene model. 

 

1.5.6 Chapter 6: Cyclability Predictions for Catholyte ROMs 

 Chapter 6 continues the modeling efforts in Chapter 5 by focusing on cyclability. Nine 

SISSO developed models for computational cyclability prediction of dialkoxyarenes and TEMPO 

are introduced, although none of these models is generalizable to all ROMs. Two models are 

developed for cyclability of hydrocarbon substituted-dialkoxyarenes in different electrolytes. The 

additional seven models focused on predicting the effects of active material concentration, cycle 

rate, and supporting salt on cyclability. Model development was severely hampered by the 

limitations of the descriptor sets, which did not account for active material-supporting salt 

interactions. These models provide a basis to predict cyclability with varying experimental 

conditions, however additional experimental work is needed to confirm their robustness.
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 Chapter 2 

 

A Cycling Comparison of Dialkoxyarene Catholytes 

 

2.1 Background and Approach 

 Non-aqueous redox flow batteries (NaRFBs) are an emerging technology for grid scale 

energy storage applications. However, significant progress in active material, electrolyte, and 

membrane development are necessary before they become competitive with current 

technologies.3,58 Active materials for NaRFBs need to exhibit electrochemical reversibility, high 

solubility, high stability, and high cyclability to move beyond laboratory scale investigation. 

Currently, there are no active materials that meet all these criteria. New materials discovery is 

currently limited by time intensive materials synthesis and characterization. Compounding this 

effect, there is still limited information on the molecular characteristics that impact stability and 

cyclability. Increasing throughput of molecular discovery requires a greater understanding of 

structural features impacting active material performance and screening candidate molecules 

computationally to increase the productivity of laboratory work.  

 Work in this thesis is focused on using promising redox active organic material (ROM) 

families to identify key descriptors for performance through laboratory characterization and 

computational tools.  

Dialkoxyarene molecules were among the earliest ROMs investigated for use in non-

aqueous redox flow batteries,43 the two primary dialkoxyarene molecules, 1,4-Di-tert-butyl-2,5-

dimethoxybenzene (DDB) and 1,4-Di-tert-butyl-2,5-bis (2-methoxyethoxy)benzene (DBBB), are 

shown in Scheme 2.1. 
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Their use for charge storage was initially investigated for Li-ion battery overcharge 

protection, where DDB cycled for thousands of hours. However, DDB and other dialkoxyarene 

molecules of the time had low solubility (8 mM in carbonate solvents), limiting their practicality.43 

To increase solubility, DDB was functionalized with poly-ethylene oxide chains, creating DBBB 

with greater solubility (0.4 M in PC).46 DBBB was the first dialkoxyarene to be investigated in 

NaRFB applications, with further development of the family focused on NaRFB applications 

thereafter.45,59,60 While a number of these materials have been cycled, many are not 

electrochemically reversible, which greatly reduces the data available.59,60 

In this chapter, I present a newly synthesized series of dialkoxyarene molecules, which 

were characterized by cyclic voltammetry (CV) and bulk electrolysis (BE) to assess their 

electrochemical reversibility and cyclability. Further, I discuss cyclability trends and the decay 

mechanism. Most importantly, I discovered the impact of experimental conditions on cyclability 

performance, in particular supporting salt choice. This work also establishes the importance of 

steric hinderance for improved cyclability in the dialkoxyarene family and identifies the impact 

of supporting salt choice on cyclability.  

 

2.2 Experimental 

2.2.1 Molecule Set 

The nine dialkoxyarene molecules investigated in this chapter are presented in Scheme 

2.2.  

Scheme 2.1 Structures of DDB and DBBB. The extended poly-ethylene oxide chains of DBBB 
increase solubility in polar solvents. 
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These molecules were synthesized at Argonne National Laboratory (ANL) and shipped in 

inert atmospheres to the University of Michigan (UM).  

 

2.2.2 Cyclic Voltammetry 

Cyclic Voltammetry experiments provide a rapid characterization of basic electrochemical 

behavior. As implied by the name, a CV scan increases the applied voltage to an electrode of 

know surface area at a fixed scan rate, and then reverses the direction of the applied voltage to 

the start point, in a cyclical experiment. Redox events are marked by an increase in the magnitude 

of current, oxidation in the positive direction and reduction in the negative direction, as per the 

IUPAC convention. A sample CV scan can be found in Figure 2.1.  

Molecule Alternate Names R1 R2 

Q1  DiMe, DDB Me Me 

Q2  MeEt Me Et 

Q3  MeiPr Me iso -Pr 

Q5  MeBn Me Bn 

Q6  DiEt Et Et 

Q7  DiiPr iso -Pr iso -Pr 

Q9  DiBn Bn Bn 

Q10  MesBu Me sec -Bu 

Q11  DisBu sec -Bu sec -Bu 

Scheme 2.2 The nine dialkoxyarene catholyte names and structures investigated in this 
chapter. 
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A CV scan provides information on the number of redox events, their standard potentials, 

reversibility, diffusivity, and kinetics. The standard potential of a redox couple is defined as the 

average of the anodic and cathodic potentials (𝐸𝑝,𝑎 and 𝐸𝑝,𝑐). For an ideal, reversible system, the 

peak separation between 𝐸𝑝,𝑎 and 𝐸𝑝,𝑐 is 
59

𝑛
 mV, where 𝑛 is the number of electron transfers. 

Larger peak separation values are indicative of slow kinetics and/or high solution resistance; non-

aqueous electrochemistry typically falls into the second category due to low solvent conductivity, 

with typical peak separation values in this work around 70 mV for one electron transfer. The peak 

height ratio 
𝑖𝑝,𝑎

𝑖𝑝,𝑐
 provides a quantification of reversibility, with a perfectly reversible redox event 

returning unity. Diffusion coefficients and reaction rate constants can be measured by conducting 

CVs at a variety of scan rates and applying the Randles-Sevcik equation. In a full flow cell, 

diffusivity can become a limiting factor for materials utilization and achievable power densities,61 

however, for the experiments in this thesis it is neglected due to low active material 

concentrations. Slow reaction kinetics lead to an increase in overpotential seen in bulk 

electrolysis (BE) experiments, but non-aqueous electrolytes generally exhibit near-instant 

Figure 2.1 Example CV with cathodic and anodic peak potentials (𝐸𝑝,𝑐 and 𝐸𝑝,𝑎) and peak 

heights (𝑖𝑝,𝑐 and 𝑖𝑝,𝑎) labeled with blue and red dashed lines, respectively. Scans were taken 

starting at a potential of 0 V to a termination point of 1 V, where they reversed direction.  
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kinetics.13 CV requires only a small amount of active material and is rapid, an ideal experiment 

for basic characterization. However, only material near the surface of the electrode undergoes 

redox reactions and measured reversibility is not necessarily indicative of bulk reversibility.  

For this work, all materials storage, solution preparation, and electrochemical 

characterization were performed in an argon-filled glove box (O2 < 0.3 ppm, H2O < 0.5 ppm). CVs 

were measured in-situ in fritted, three electrode bulk electrolysis cells with a 3.0 mm diameter 

glassy carbon (GC) working electrode (BASi), a reticulated-vitreous carbon (RVC) counter 

electrode (Duocell, 100 PPI), and Ag/Ag+ quasi-reference electrode (BASi). The GC electrode was 

polished in air with micron alumina oxide polishing paper (Fiber Instrument, 9 micron and 0.3 

micron) and water. The reference electrode was a fritted chamber containing 10 mM of silver 

nitrate (AgNO3) or silver bis(trifluoromethanesulfonyl)amide (AgTFSi) in MeCN and a silver wire. 

A BioLogic VSP potentiostat recorded scans at a rate of 100 mV/s. Solutions contained either 5 

or 20 mM of the active species with 500 mM of tetrabutylammonium hexafluorophosphate 

(TBAPF6) or lithium bis(trifluoromethanesulfonyl)amide (LiTFSi) (> 99%, Sigma Aldrich) in 10 mL 

of MeCN (Acros Organics).  

 

2.2.3 Bulk Electrolysis 

 Bulk electrolysis experiments provide a single-molecule evaluation of active material 

cyclability. As also implied by the name, bulk electrolysis experiments alter the oxidation state of 

the bulk electrolyte solution. This technique is used to quantify the cyclability of the active 

material and provides cursory information about possible decay mechanisms. BE requires limited 

solution volumes and can be performed at a wide variety of concentrations (2 mM – 100 mM), 

potentially minimizing the use of active material. The cyclability obtained from BE is typically a 

lower bound, as crossover from the uncontrolled counter chamber or other physical effects can 

occur.  

 Cycling experiments can be performed at constant current measuring the voltage 

response, or constant voltage measuring the current response. This work uses galvanostatic 

(constant current) cycling experiments, which provide greater information about the redox 

events being accessed. In a galvanostatic bulk electrolysis, the working electrode is held at 
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constant current, appropriate cutoffs (capacity, potential, time) are used to repeatedly alternate 

between charge and discharge. A sample potential response can be found in Figure 2.2.  

 

 

The primary metric of interest from BE is cyclability, which is typically defined as the cycle life or 

the time of cycling. Cycle life (𝑁𝑞) in this work is defined as the number of cycles before the 

discharge capacity reaches 80% of its theoretical value (𝑁80), shown in Figure 2.3.  

Cycling efficiencies (coulombic, voltaic, and energy) can also be calculated, but only 

coulombic efficiency (𝐶𝐸) has meaning due to the use of a reference electrode. 𝐶𝐸 is the ratio of 

discharge capacity to charge capacity and provides information on losses in the cell due to 

irreversibility/instability of the redox event and crossover. 

 

Figure 2.2 Example BE current response with cathodic and anodic peak potentials (𝐸𝑝,𝑐 and 

𝐸𝑝,𝑎) labeled with blue dashed lines. 𝐸𝑝,𝑐 is located at the halfway point of oxidation and 𝐸𝑝,𝑎 

is located at the halfway point of reduction. 
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 All BE experiments were performed in a fritted glass H-cell, shown in Figure 2.4. Two 5 mL 

chambers are separated by a 1.6 µm glass frit (frit porosity: P5, Adams and Chittenden) that 

eliminates the need for a membrane. This is particularly important in non-aqueous 

electrochemistry, as many membranes are incompatible with non-aqueous solvents.9 RVC is used 

for both the working and counter electrode with a Ag/Ag+ quasi-reference electrode. Both cell 

chambers are stirred continuously during cycling; a separate port for an in-situ CV electrode is 

provided in the cell design. All solutions were composed of either 5 or 20 mM of the active species 

with 500 mM of TBAPF6 or LiTFSi (> 99%, Sigma Aldrich) in 10 mL of MeCN (Acros Organics). A 

BioLogic VSP potentiostat was used to provide a constant current. Three sets of cutoffs were 

used, a potential cutoff set around the redox event (± 200 mV for TBAPF6 experiments, 0 to 1.6 

V for LiTFSi experiments), a state of charge (SOC) cutoff to 50% theoretical SOC, and a time cutoff 

if any of the previous two cutoffs failed. A 3.0 mm diameter GC electrode was used to record CVs 

before and after cycling.  

 

Figure 2.3 An example capacity vs cycle graph from BE with cycle life (𝑁80) labeled with black 
lines. 
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2.2.4 Density Functional Theory 

 Density Functional Theory (DFT) is the most common method for electronic structure 

calculations, providing a balance between accuracy and resource requirements.63 DFT solves the 

Schrödinger equation: 

 𝐻Ψ = 𝐸Ψ (2.1) 
Where 𝐻 is the Hamiltonian operator, Ψ is the wavefunction, and 𝐸 is the energy. The 

wavefunction is generated by the positions of the system nuclei and electrons, where the 

electrons are described as waves and their positions are interpreted as molecular orbitals. Very 

simple systems have an analytical solution to the Schrodinger equation, but for systems of any 

practical use, simplifications must be made. The most elegant of these simplifications was 

discovered by Hohenberg and Kohn in 1964, which solely uses electron density to determine the 

Hamiltonian, and is the birth of DFT.64,65  

 There are a variety of different first-principles methods used to generate the molecular 

orbital shapes (basis sets) and density functionals (Functionals). Basis sets commonly consist of a 

series of gaussian type orbitals (Gaussians) describing the molecular orbitals. For the calculations 

in this thesis, the 6-31G(d) basis set is used.66 This set provides a good balance between accuracy 

Figure 2.4 Schematic of the fritted H-cell used in this work.62 
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and computational expense for systems where long-range interactions are not critical.63 Similar 

to the variety of basis sets, there are numerous functionals to choose from. Functionals can be 

based solely on DFT approximations or combine DFT approximation and Hartree-Fock 

wavefunction theory to form a hybrid functional. The hybrid functional Becke, three-parameter, 

Lee-Yang Parr (B3LYP)67 is utilized throughout this thesis. The combination B3LYP/6-31G(d) is 

commonly used for calculating structures and energies for organic and other small molecules.57,68 

All DFT modeling in this Chapter was performed with Gaussian09 on computing resources 

provided by UM Advanced Research Computing.69  

 

2.2.4.1 Standard Potential Calculation 

Theoretical standard potentials can be calculated from a thermodynamic cycle combined 

with DFT predictions. However, this procedure is computationally expensive, requiring optimized 

structures for the molecule and its oxidized/reduced state in vacuum and in solution. Each of 

these optimizations requires additional thermal corrections, requiring frequency calculations. An 

alternative to this method is to calculate highest occupied/lowest unoccupied molecular orbital 

(HOMO/LUMO) energies, which only require optimization of the neutral structure. As shown in 

Figure 2.5, (a) LUMO and (b) HOMO energies have been correlated to standard potentials for 

quinoxaline derivatives, as well as metal coordination complex families.53,57 
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2.3 Results and Discussion 

2.3.1 Electrochemical Reversibility and Oxidation Potentials 

 The first aim of this study was to evaluate the electrochemical reversibility of the new set 

of dialkoxyarene active materials. To perform this evaluation, the nine dialkoxyarene molecules 

underwent CV at a concentration of 5 mM with 500 mM of TBAPF6 in 10 mL of MeCN. A scan rate 

of 100 mV/s was used, and the fourth scan out of five was selected. No significant differences in 

electrochemical reversibility were identified, all nine molecules exhibited consistent and 

reasonable peak height ratios. CV scans, peak height ratios, and experimentally determined 

oxidation potentials are presented in Table 2.1. The small variation in potential between each 

molecule is expected given their structural similarity. This data reveals an inverse correlation 

between peak height ratio and potential, or more reversible molecules have lower potentials. A 

similar relationship exists between chemical stability of pyridinium anolyte molecules and their 

Figure 2.5 Correlations between (a) reduction potentials vs Li/Li+ and LUMO energies and (b) 
oxidation potentials vs Li/Li+ and HOMO energies of quinoxaline derivatives.57 



23 
 

reduction potential,48 which disappointingly confirms that molecules that enable greater cell 

potential are more unstable. 

 Similar to the correlation developed for quinoxaline derivatives,57 experimental oxidation 

potentials were correlated with the HOMO energies of the DFT optimized neutral structures, 

resulting in Figure 2.6. Albeit with much less data, these nine dialkoxyarene molecules have a 

similar relationship between oxidation potential and HOMO energies as the quinoxaline 

derivatives. This relationship has also been demonstrated for acetylacetonate metal coordination 

complexes (MCCs),53 and looks to be further generalizable with this result.  

 

  

Figure 2.6 Correlation between oxidation potentials and HOMO energies of the 
dialkoxyarene catholytes. 
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Molecule Structure 𝑬𝒐𝒙 𝒊𝒑,𝒂

𝒊𝒑,𝒄
 

CV 

Q1 

 

0.781 0.89 
 

 

Q2 

 

0.741 0.95 
 

 

Q3 

 

0.743 0.94 
 

 

Q5 

 

0.782 0.91 
 

 

Table 2.1 Names, structures, oxidation potentials (vs Ag/Ag+), peak height ratios, and CV 
scans of the nine dialkoxyarene catholytes. 
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Molecule Structure 𝑬𝒐𝒙
°  𝒊𝒑,𝒂

𝒊𝒑,𝒄
 

CV 

Q6 

 

0.722 0.92 
 

 

Q7 

 

0.693 0.94 
 

 

Q9 

 

0.808 0.87 
 

 

Q10 

 

0.721 0.93 
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Molecule Structure 𝑬𝒐𝒙
°  𝒊𝒑,𝒂

𝒊𝒑,𝒄
 

CV 

Q11 

 

0.669 0.94 
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2.3.2 Cyclability 

Continuing with electrochemical characterization of the dialkoxyarene ROMS, BE 

experiments were performed to quantify their cyclability. All cycling experiments were 

performed at 5 mM with 500 mM of TBAPF6 in 10 mL of MeCN to 50% SOC at a rate of 1 C 

(corresponding to a current which charges 100% SOC in one hour) with voltage cutoffs of ±200 

mV. The dialkoxyarene molecules, their average (in the case of experiments with replicate data) 

𝑁80 and 𝐶𝐸 are reported in Table 2.2. Except for Q5 and Q9, all molecules had reasonable 

performance compared to previously reported non-aqueous active materials, with an 𝑁80 of at 

least 50.  

Additional trends are explained with the BE and CV data. The expected positive 

correlation between 𝑁80 and 𝐶𝐸 is present, as better cycling molecules are expected to discharge 

more efficiently. However, the 𝑁80 greatly exceeds the amount of material unrecovered by 𝐶𝐸, 

implying that a significant portion of un-discharged active material decays back to the parent 

molecule. The expectation that lower redox potentials can signal greater stability48 also extends 

to 𝑁80 for this dialkoxyarene set. Q11 was clearly the best cycling of the molecules, followed by 

Q7, which have the lowest oxidation potentials of the group. Additionally, they are the most 

sterically hindered molecules of the set. This steric hinderance likely has an additional 

dependence on symmetry; Q10 and Q3, despite having the same functionalization on one ligand, 

perform significantly worse than Q11 and Q7 respectively. Replicate data was recorded for Q2, 

Q7, and Q11, and all results were confirmed.  

Investigating the poor performance of Q5 and Q9, both were functionalized with bulky 

benzyl groups, which appeared to have a significant effect on their 𝑁80. Further investigation 

with DFT revealed that these benzyl groups rotated ninety degrees when Q5 and Q9 were 

oxidized, this significant structural change is the likely cause of their rapid decay, as less-

significant changes to structure during redox has led to poor cycling performance of MCCs.70  
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Molecule Q1 Q2 Q3 
Structure 

 

  

𝑵̅𝟖𝟎 68 60 50 

𝑪𝑬̅̅ ̅̅  92.4% 89.7% 92.5% 

Molecule Q5 Q6 Q7 
Structure 

 
  

𝑵̅𝟖𝟎 29 53 73 

𝑪𝑬̅̅ ̅̅  86.7% 91.2% 91.9% 

Molecule Q9 Q10 Q11 
Structure 

 

 

 

𝑵̅𝟖𝟎 18 55 127 

𝑪𝑬̅̅ ̅̅  84.9% 92.0% 96.3% 

 

  

Table 2.2 Names, structures, cycle lives, and coulombic efficiencies from BE experiments of 
the dialkoxyarene catholytes. 
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2.3.3 Decay Mechanisms 

This section is adapted with permission from B. Silcox, J. Zhang, I. Shkrob, L. Thompson, 

L. Zhang; Journal of Physical Chemistry C (2019). Copyright 2019 American Chemical Society 

 Plots of capacity vs cycle number are the most common way to report the behavior of a 

cycling experiment and can be used in conjunction with post-cycling CV to infer possible decay 

mechanisms for the active material of interest. This is particularly insightful for the dialkoxyarene 

series in the TBAPF6/MeCN electrolyte. Each molecule’s capacity decayed in an identical manner 

except for Q11, shown in Figure 2.7.  

 

 

In Q11, this decay reaction has first-order kinetics with a familiar first-order shape. For all 

other molecules, this reaction is self-catalyzed, eventually reaching a critical rate where the 

charged species decays before it can be discharged, causing an abrupt loss of capacity. All post-

cycling CVs for these materials indicated that the active material was completely depleted, 

confirming their decay into an electrochemically inactive species.  

 To investigate this decay mechanism further, product quantification with GC-MS and H-

NMR was performed at ANL. The likely reaction pathway back to the parent molecules is via 

deprotonation of the radical cation from the alkoxy group of the molecule that is followed by H 

atom abstraction from the solvent by the C-centered radical. This particular pathway is suggested 

by H/D substitution observed in the ROMs electrolyzed in deuterated MeCN; however, it is not 

possible to fully exclude the protic impurity as a possible reagent for a fraction of charged ROMs. 

Figure 2.7 Capacity vs cycle life plots for (a) Q1 and (b) Q11. Structures shown inset. The decay 
behavior of Q1 is an abrupt decrease, while Q11 decays with a first order rate. 
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The primary competing reaction is O-dealkylation that is initiated when an anion, the 

solvent, or a nucleophile solvent impurity attacks the ROM (ArOR), releasing an aroxyl radical 

(ArO•) and a free or bound carbocation, R+. Two such aroxyl radicals can disproportionate to 

yield the corresponding quinone (that can also form by secondary oxidation of the phenols); 

alternatively, the aroxyl radicals abstract hydrogen yielding phenols (ArOH) or react with 

acetonitrile to yield ArON=• CMe radicals that undergo internal cyclization through the 

elimination of tert-butyl from the ortho-position in the aromatic ring. These reactions are shown 

in Scheme 2.3.  

 

 

The presence of these three products was established using GC−MS, and their chemical 

structure was confirmed by chromatographic fractioning and 1H NMR spectroscopy. These 

Scheme 2.3 (1) Dialkoxyarene dealkylation and subsequent (2) disproportionation, (3) 
abstraction, and (4) solvent reactions to form products. 
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aroxyl-related products can be observed alone or in combination, depending on the ROM 

structure and experimental conditions. The carbocation elimination is particularly efficient when 

a stable carbocation (such as the benzyl) is generated; hence, the radical cations of such ROMs 

are very vulnerable to O-dealkylation. The stable carbocations (R+) reversibly add to the 

acetonitrile, yielding RN=C+ Me cations that subsequently undergo the Ritter reaction, yielding 

acetamides (RNH2(O)Me), which are detected using GC−MS. According to our product analyses, 

O-dealkylation is the main reaction for such ROMs. 

This O-dealkylation reaction rate is dependent on molecular structure, although no 

relation has been identified. The decay behavior of Q11 suggests that its steric hinderance 

removes the chain-reaction behavior of the dealkylation and can be a design factor for future, 

more cyclable dialkoxyarenes.  

 

2.3.4 Cyclability Comparisons with ANL 

 Cyclability characterization of the dialkoxyarene molecules occurred in tandem at ANL 

under different experimental conditions: 20 mM of active material in 500 mM LiTFSi/MeCN, 

cycled to 50% SOC at 3 C rate and voltage cutoffs from 0 to 1.6 V vs Ag/Ag+. Q9 was an exception 

due to solubility and was cycled at UM at a 5 mM concentration will all other conditions identical 

to ANL. The results of this investigation are plotted in Figure 2.8.  
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There is no consistent trend between the two experimental conditions, with most 

molecules outperforming expectations at the ANL conditions. As a general rule, if a molecule 

underwent the same behavior during cycling at ANL and UM, we expect its 𝑁80 to be a function 

of the cycle rate: the 𝑁80 of the active materials should have been increased by a factor of 3 at 

ANL compared to UM. However, this is only the case for Q7, Q9, Q10, and Q11. It is likely that 

the electrolyte environment is responsible for the drastically increased 𝑁80 seen from Q1, Q2, 

Q3, and Q6. Lithium ions are known to coordinate with acetonitrile, changing the overall 

solvation environment and the cycling behavior of specific molecules.38,71 Molecules with 

sufficient steric hinderance (Q7, Q9, Q10, and Q11) avoid interaction with the new Li-MeCN 

coordination structures. Steric hinderance may also provide insight into the 𝑁80 increases seen 

from Q1, Q2, Q3, and Q6. Their unexpected increase in 𝑁80 also correlates with their steric 

hinderance, Q1 is the least bulky molecule and has the greatest overperformance of the four, 

while Q3 is the bulkiest and has its magnitude of increase is the least of the four. While the exact 

interaction of Li+ in the electrolyte is unknown, its impact on the performance of the 

dialkoxyarenes can be explained by structural characteristics. 

Figure 2.8 Comparison between 𝑁80 of the dialkoxyarene catholytes at UM and ANL. Q1 
shows the largest increase in 𝑁80, while Q5 shows no change in 𝑁80 despite cycling at three 
times the rate. 
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Q5 is the outlier molecule, recording the same 𝑁80 at both sets of conditions. This specific 

result suggests that Q5’s 𝑁80 is limited by the number of charge/discharge cycles it undergoes, 

further supporting the hypothesis that the rotation of the benzyl group during oxidation places 

excess steric strain on the structure. 

 

2.4 Conclusions 

 In this Chapter, nine new dialkoxyarene catholyte molecules were systematically 

characterized to identify trends in their electrochemical properties. Analysis of the nine 

structures and their performance revealed many significant relationships. CV results 

demonstrated a negative relationship between electrochemical reversibility and redox potential. 

Further addition of BE data revealed a relationship between steric hinderance, cyclability, and 

redox potential. Q11 was by far the best cycling molecule of the data set, likely due to its bulky 

sec-Butyl substitution compared to the rest of the molecules. With ANL, the decay mechanism of 

the dialkoxyarene catholytes was hypothesized as O-dealkylation, which proceeds in a runaway 

manner. Lastly, comparisons between cyclability were made at ANL and UM, and discovered the 

significant effect experimental conditions and electrolyte choice have on performance, which are 

explored in Chapter 3. Overall, this work confirms the benefit of steric hinderance on ROM 

cyclability, which can be used as a starting point for molecular design of future active materials.  
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Chapter 3 

 

Factors Affecting Bulk Electrolysis Cycling Performance 

 

3.1 Background and Approach 

Active materials for non-aqueous redox flow batteries (NaRFBs) need to exhibit 

electrochemical reversibility, solubility, stability, and cyclability. Of these criteria, design for 

reversibility, solubility, and stability are relatively well understood.45,59,72 Cyclability and their 

associated experiments introduce additional complexity into quantifying and understanding 

active material behavior in the form of electrode-active material interactions, crossover, and 

extended time under load, among others. To better understand and design for cyclability, it is 

necessary to understand the additional complexities introduced by cycling experiments.  

In Chapter 2, I discussed the dialkoxyarene redox active organic molecule (ROM) family 

and their development into catholytes. The molecules characterized by cyclic voltammetry (CV) 

and bulk electrolysis (BE) helped identify the effect of steric hinderance on oxidation potential, 

reversibility, and cycle life (𝑁80). However, 𝑁80was as greatly influenced by the active materials 

themselves as the experimental conditions. For Li+ supporting salts, steric hinderance actually 

limited the possible 𝑁80 of the dialkoxyarenes, providing even more complexity in the 

interpretation and analysis of cyclability experiments. Of the experimental conditions used, three 

were identified as key factors: active material concentration, cycle rate, and supporting salt 

choice.  

 The effect of supporting salt choice has been briefly reported for ROMs.41,73,74 In 

particular, Li+ coordination to active materials has been intentionally used to increase cyclability 

of a tetramethylnapthalene ROM.41 Lithium coordination to the Lewis basic methoxy groups of 

the molecule allowed the complex to cycle reversibly compared to an alkylammonium cation. 
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Additionally, individual active materials may be incompatible with specific supporting salts and 

solvents, an effect that is unknown until cycling.73 Active material concentration and cycle rate 

are even less studied and are often chosen for convenience. While these effects are significant 

and deserve investigation, research efforts have mostly focused on designing and improving 

active materials.48,59,75 

In this chapter, I propose an experimental design to investigate the effect of active 

material concentration, cycle rate, and supporting salt choice on the three catholytes in Scheme 

3.1, 1,4-Di-tert-butyl-2,5-dimethoxybenzene (DDB, Q1), 1,4-Di-tert-butyl-2,5-bis (2-

methoxyethoxy)benzene (DBBB, C1), and (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl (TEMPO).  

 

 

A set of 66 BE experiments are used to fully explore the design space, and the effect of 

each experimental condition on 𝑁80 is reported. Most importantly, guidelines for thorough 

electrochemical characterization and electrolyte choice are discussed. This work establishes the 

importance of proper BE characterization and the impact on reported performance. 

 

3.2 Experimental 

3.2.1 Materials 

3.2.1.1 Active Materials 

 The three active materials used in this Chapter were chosen for their availability and 

demonstrated cyclability in lithium-ion (Li-ion) and NaRFB applications.43,44,46,76 Adding a 

molecule outside the dialkoxyarene family provides a control for effects specific to the 

Scheme 3.1 Structures of DDB, DBBB, and TEMPO. 
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dialkoxyarene family. TEMPO was chosen for its extreme solubility (5.2 M) in carbonate 

electrolytes and similar performance.47 

TEMPO (Sigma Aldrich, 98%) was used as received. Two batches of DDB were used, one 

from Argonne National Laboratory (ANL) and one from AAblocks (98%). The two samples were 

confirmed electrochemically identical by CV and BE. DBBB was synthesized at ANL, its synthesis 

procedure is included here from ref. 46. 

2,5-di-tert-bulylhydroquinone (9 mM) was dissolved in anhydrous tetrahydrofuran (THF) 

(20 mL). Sodium hydroxide (27 mM) and 2-methoxyethoxymethyl chloride or 2-

chloroethylmethyl ether (18 mM) was added to the solution. The reaction was stirred at room 

temperature overnight. After removal of the THF, the residue was partitioned between 

dichloromethane (DCM) and NaHCO3 (0.1 M). The organic portion was separated and dried over 

Na2SO4 before the solvent was removed under vacuum. The crude product was chromatographed 

(silica, hexanes/DCM from 5:1 to 1:1) isolate oligo(ethylene glycol) functionalized compounds, 

which were further purified by crystallization from saturated DCM solution under low 

temperature.  

 

3.2.1.2 Supporting Salts 

 Six supporting salts were chosen for this work based to provide a range of cations and 

anions: tetrabutylammonium tetrafluoroborate (TBABF4), tetrabutylammonium 

hexafluorophosphate (TBAPF6), tetraethylammonium tetrafluoroborate (TEABF4), lithium 

tetrafluoroborate (LiBF4), lithium hexafluorophosphate (LiPF6), and lithium 

bis(trifluoromethanesulfonyl)amide (LiTFSi). These six were selected to provide a spectrum of 

anions and cations, maintaining at least one common ion for each molecule in the series. Of 

commonly available and used NaRFB support salts, only tetraethylammonium 

bis(trifluoromethanesulfonyl)amide (TEATFSi) was not used due to time constraints. All 

supporting salts were purchased from Sigma Aldrich at purities > 99 % for the alkylammonium 

salts and > 99.9% for the lithium salts. Alkylammonium salts were dried under vacuum for 24 

hours at 140 °C before use.  
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3.2.2 Electrochemical Methods 

 For this work, all materials storage, solution preparation, and electrochemical 

characterization were performed in an argon-filled glove box (O2 < 0.3 ppm, H2O < 0.5 ppm). All 

BE and CV experiments were performed in a fritted glass H-cell with 10 mL of electrolyte split 

between the working and counter chambers. A reticulated vitreous carbon (RVC) (Duocell) 

counter electrode and a Ag/Ag+ quasi-reference electrode (BASi) were used for all experiments. 

Acetonitrile (MeCN) (Acros Organics) was used as the solvent for all solutions and contained a 

supporting salt concentration of 500 mM. The reference electrode was a fritted chamber 

containing 10 mM of a corresponding silver salt: silver tetrafluoroborate (AgBF4) for BF4
- salts, 

silver nitrate (AgNO3) for PF6
- salts, and silver bis(trifluoromethanesulfonyl)amide AgTFSi for 

LiTFSi and a silver wire. A BioLogic VSP potentiostat recorded all data. A total of 66 BE 

experiments were run for this chapter, 3 catholytes, 2 active material concentrations, 2 cycle 

rates, and 6 supporting salts. 6 cells, 20 mM DDB in alkylammonium salts, were not cycled due 

to solubility limits. 

 

3.2.2.1 Cyclic Voltammetry 

CVs were measured in-situ before and after BE experiments with a 3.0 mm diameter 

glassy carbon (GC) working electrode (BASi). CV scans were taken before cycling experiments 

with 500 mM supporting salt in 10 mL MeCN. Scans were recorded from 0 to 1 V vs Ag/Ag+ at a 

scan rate of 100 mV/s and all scans displayed are of the fourth cycle out of five. 

 

3.2.2.2 Bulk Electrolysis 

BE were performed with an RVC working electrode. Three sets of cutoffs were used: a 

potential cutoff set around the redox event, a state of charge (SOC) cutoff to 50% theoretical 

SOC, and a time cutoff if any of the previous two cutoffs failed. With the high 𝑁80 seen in some 

experiments, it is valuable to note that BE measures the lower bound of cyclability, as modes of 

failure (electrode failure, crossover, and others) at 𝑁80 > 400 can often be related to failure of 

the cell components themselves. Additionally, cells with long enough 𝑁80 will inevitably fail due 

to MeCN evaporating out of the working and counter chambers to the point where electrodes 
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are unable to contact the electrolyte. To allow for a non-time dependent measurement of 𝑁80, 

these cells were periodically refilled with MeCN. Due to the excess of MeCN compared to the 

active material, this should not have an effect on performance or other cell failure modes. 

 

3.2.2.3 Active Material Concentration 

 Two active material concentrations were chosen for comparison, 5 mM and 20 mM. 

These concentrations were selected from the concentrations used in Chapter 2. Solubility is the 

limiting factor for reaching higher active material concentrations, especially with the limited 

solubility of DDB (8 mM in carbonate).43 Despite valiant efforts, DDB was still insoluble at 20 mM 

with the alkylammonium salts, reducing the total number of experiments. 

 

3.2.2.4 Cycle Rate 

 Two cycle rates were chosen for comparison, 1 C and 3 C, also selected from the cycle 

rates tested in Chapter 2. For BE experiments, cycle rate is often not a limiting factor due to high 

electrode surface area, rapid stirring of each chamber, and lack of concern about overpotential.  

 

3.2.3 Computational Methods 

3.2.3.1 Density Functional Theory 

 All density functional theory (DFT) used in this Chapter was performed on Gaussian0969 

with the Becke, three-parameter, Lee-Yang Parr hybrid functional and 6-31G(d) basis set.66,67 

Computing resources were provided by UM Advanced Research Computing. 

 

3.2.3.2 Molecular Dynamics 

 Molecular dynamics (MD) simulations were performed at Argonne National Laboratory 

(ANL) for TEMPO solvation with a ratio of TEMPO:Supporting Salt:MeCN of 1:50:800 in the Opls-

aa force field. 

 

3.3. Results and Discussion 

3.3.1 Oxidation Potentials and Electrochemical Reversibility 
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 While all three active materials investigated are known to be stable and cyclable, CV 

scans, peak height ratios, and experimentally determined oxidation potentials (V vs Ag/Ag+) from 

the 5 mM active material concentration, 1 C rate, TBAPF6 experiments (5/1/TBAPF6) are 

presented in Table 3.1. 

 

Molecule Structure 𝑬𝒐𝒙 𝒊𝒑,𝒂

𝒊𝒑,𝒄
 

CV 

DDB 

 

0.781 0.89 
 

 

DBBB 

 

0.791 0.83 
 

 

TEMPO 

 

0.339 0.99 
 

 

 

 

Table 3.1 Names, structures, oxidation potentials (vs Ag/Ag+), peak height ratios, and CV 
scans of the three selected catholytes. 
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Of particular note is the greater oxidation potential of DBBB compared to DDB despite being 

more sterically hindered. DBBB also displays a poor peak height ratio that is confirmed by CVs in 

the other supporting salts. Despite this, the cycling behavior of DBBB does not seem to be 

affected, one of the limitations of using electrochemical reversibility as a proxy for cycling 

characterization.  

 

3.3.2 Cycling Summary 

 The 𝑁80 and coulombic efficiency (𝐶𝐸) for all BE experiments is presented in Tables 3.2 - 

3.4, arranged by active material, concentration, cycle rate, and supporting salt in sequence.  

 

Molecule Structure Active 
Material 
Concentration 

Cycle 
Rate 

Supporting 
Salt 

𝑵𝟖𝟎 𝑪𝑬 

DDB 

 

5 mM 1 C TBABF4 16 76.0% 

TBAPF6 68 92.4% 

TEABF4 21 78.1% 

LiBF4 48 91.8% 

LiPF6 498* 98.6% 

LiTFSi 623* 95.3% 

3 C TBABF4 19 86.3% 

TBAPF6 168 98.1% 

TEABF4 35 91.9% 

LiBF4 345 96.8% 

LiPF6 2868* 95.9% 

LiTFSi 901* 99.7% 

20 mM 1 C LiBF4 620* 93.5% 

LiPF6 1073 98.9% 

LiTFSi 447 98.9% 

3 C LiBF4 86 94.8% 

LiPF6 210 98.4% 

LiTFSi 172 96.9% 

  

Table 3.2 Name, structure, active material concentration, cycle rate, supporting salt, cycle 
life, and coulombic efficiency for DDB. The alkylammonium supporting salts were not cycled 

at 20 mM active material concentration due to solubility limitations of DDB. Cells that 
terminated prematurely are marked with an asterisk. 
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Molecule Structure Active 
Material 
Concentration 

Cycle 
Rate 

Supporting 
Salt 

𝑵𝟖𝟎 𝑪𝑬 

DBBB 

 

5 mM 1 C TBABF4 21 82.5% 

TBAPF6 63 89.6% 

TEABF4 26 84.5% 

LiBF4 70 93.1% 

LiPF6 941* 98.1% 

LiTFSi 883* 93.1% 

3 C TBABF4 48 91.9% 

TBAPF6 165 96.8% 

TEABF4 32 88.5% 

LiBF4 756* 98.2% 

LiPF6 2696* 99.6% 

LiTFSi 582 96.4% 

20 mM 1 C TBABF4 26 71.7% 

TBAPF6 33 87.2% 

TEABF4 176 96.7% 

LiBF4 648* 95.9% 

LiPF6 548 99.3% 

LiTFSi 439 96.0% 

3 C TBABF4 137 97.8% 

TBAPF6 131 98.2% 

TEABF4 163 97.4% 

LiBF4 72 95.7% 

LiPF6 461 95.7% 

LiTFSi 242 98.4% 

 

  

Table 3.3 Name, structure, active material concentration, cycle rate, supporting salt, cycle 
life, and coulombic efficiency for DBBB. Cells that terminated prematurely are marked with 

an asterisk. 
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Molecule Structure Active 
Material 
Concentration 

Cycle 
Rate 

Supporting 
Salt 

𝑵𝟖𝟎 𝑪𝑬 

TEMPO 

 

5 mM 1 C TBABF4 129 98.0% 

TBAPF6 132 98.0% 

TEABF4 131 98.8% 

LiBF4 182 99.9% 

LiPF6 68 99.5% 

LiTFSi 323 98.5% 

3 C TBABF4 89 97.8% 

TBAPF6 132 99.0% 

TEABF4 254 99.1% 

LiBF4 155 100.0% 

LiPF6 141 99.7% 

LiTFSi 366 99.2% 

20 mM 1 C TBABF4 118 98.1% 

TBAPF6 149 98.9% 

TEABF4 102 97.3% 

LiBF4 142 99.9% 

LiPF6 67 98.8% 

LiTFSi 328 98.9% 

3 C TBABF4 93 98.4% 

TBAPF6 118 98.7% 

TEABF4 156 99.0% 

LiBF4 105 99.5% 

LiPF6 178 100.0% 

LiTFSi 193 99.5% 

 

 

 

 

 

 

 

 

Table 3.4 Name, structure, active material concentration, cycle rate, supporting salt, cycle 
life, and coulombic efficiency for TEMPO. No TEMPO cells terminated prematurely. 
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Three primary decay behaviors were seen among the cycling experiments, shown in Figure 3.1.  

 

 

The capacity fade behaviors shown in Figure (a) and (b) were discussed in Chapter 2. The abrupt 

fade is due to self-catalyzed behavior of the active material decay, while the first order decay is 

expected without this self-catalyzation. Figure (c) shows a third decay, where cycling is abruptly 

terminated. This behavior was only seen in cells with significantly high 𝑁80 (> 400 cycles). This 

occurs when the cell fails due to an external factor. Experimental observation of these cells 

hypothesized that electrode failure accounted for all these cases, either through disconnection 

of the RVC from the electrode assembly or coating of the counter electrode and the subsequent 

cycling failure. Neither of these results is particularly damning for the active material itself. The 

laboratory assembled RVC electrodes are not expected to be perfect, especially in the harsh BE 

environment. Similarly, the coating and subsequent failure of the counter electrode is unique to 

the H-cell and would not be present in a full flow cell, where the complimentary chamber would 

be cycling around a separate active material. Results where this termination of cycling occurs are 

therefore a lower bound on the 𝑁80 at these experimental conditions.  

Similar to the dialkoxyarene active materials discussed in Chapter 2, 𝑁80 greatly exceeds 

the amount of material unrecovered by CE, implying that a significant portion of un-discharged 

active material decays back to the parent molecule for all experiments. 

 

3.3.3 DDB Summary 

 As predicted from the results in Chapter 2, DDB sees drastic 𝑁80 and 𝐶𝐸 improvements 

when cycled in Li+ salts. Of the alkylammonium salts, 𝑁80is largest in TBAPF6. Conclusions about 

Figure 3.1 Capacity vs cycle life plots for (a) DDB 5/1/TBAPF6, (b) TEMPO 5/1/LiPF6, and (c) 
DDB 5/3/LiTFSi. Structures shown inset. The decay behavior of (a) is an abrupt decrease, (b) is 
a first order decay, and (c) terminates without capacity fade.  
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increasing active material concentration are hard to draw, as none of the 20 mM alkylammonium 

salt experiments could be performed due to solubility limitations and many of the Li+ salt 

experiments failed due to cell termination. Cycle rate had mixed effects, only one cell pair, 

5/1/TBAPF6 and 5/3/TBAPF6, showed linear scaling of 𝑁80 with cycle rate, the expected behavior. 

The cycle rate variations between 20/1/Li+ and 20/3/Li+ show extreme 𝑁80 decreases that are not 

expected from previous results and are unaccounted for in the experimental design. These 

results are likely due to increased cell resistances. DDB shows an incompatibility with BF4
- anions, 

which are even able to reduce the 𝑁80 of the 5/1/LiBF4 experiment to alkylammonium-similar. 

This behavior will be discussed in Section 3.3.8.1.  

 

3.3.4 DBBB Summary 

 Similar to DDB, DBBB sees drastic 𝑁80 and 𝐶𝐸 improvements when cycled in Li+ salts and 

are incompatibility with BF4
- anions. With the exceptions of BF4

- anionic salts, increasing active 

material concentration causes a slight decrease in 𝑁80 and mixed effects on 𝐶𝐸 that appear to 

depend on the supporting salt. The relatively poor performance of DBBB 20/3/Li+ compared to 

other experiments conditions is also present.  

 

3.3.5 Similarities in DDB and DBBB Performance 

 DDB and DBBB show similar performance and trends between at identical experimental 

conditions (incompatibility with BF4
-, improved performance in Li+, similar performance at 

5/3/LiPF6, etc.). As they have similar structure, this is unsurprising. This result is encouraging 

because it helps support the existence of a structure-function relationship in the dialkoxyarene 

family. For the remainder of this chapter, DDB and DBBB will be discussed together. 

 

3.3.6 TEMPO Summary 

 The TEMPO cycling experiments provide a particularly useful comparison to the 

dialkoxyarene active materials, as TEMPO exhibits a smaller degree of Li+ stabilization on 𝑁80 and 

none of the TEMPO cells terminated due to cell failure. Additionally, TEMPO does not exhibit the 

same BF4
- incompatibility behavior as DDB and DBBB although there is likely some effect present. 
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TEMPO however, does exhibit an incompatibility with LiPF6, which will also be discussed in 

Section 3.3.8.3. At 5 mM active material and 1 C rate, TEMPO exhibits remarkable consistency in 

𝑁80 and 𝐶𝐸 between all three alkylammonium support salts. In addition, these results confirm 

the cycle life reported for TEMPO as Li-ion overcharge, shown in Figure 3.2.  

 

Figure 3.2 Cycling of a Li4/3Ti5/3O4/LiFePO4 coin cell with 0.3 M TEMPO in 0.5 M LiBOB 
electrolyte. TEMPO was used as an overcharge protector, cycling after the primary redox 
event. With 25-hour cycles, TEMPO remained cyclable until 124 cycles at around 3100 
hours.44 

 

As a quasi-baseline for 𝑁80, TEMPO exhibits some performance benefits in Li+ salts, as expected 

for a molecule without significant steric hinderance. Similar to DDB and DBBB, performance was 

noticeably harmed in the 20 mM active material 3 C cycle rate experiments. 

 Of the three active materials cycled, TEMPO is unique as a stable organic radical. In 

addition to a decay of the positively charged ion, TEMPO itself has a half-life and observed first 

order decay into electrochemically non-active materials by disproportionation. In the non-

interactive alkylammonium salts, this is the most likely cause of the consistent capacity fade. 
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3.3.7 Exceptional Dialkoxyarene Performance 

 Previously reported ROM 𝑁80 has been limited, reaching 100 cycles in BE is an 

accomplishment and seen as cyclable. These results show that it is possible to approach the long 

cell lifetimes (>4000 hours, 120 cycles) reported for DDB and DBBB in Li-ion overcharge43,46 in an 

H-cell. The DDB and DBBB 5/3/LiPF6 cells and the DDB 20/1/LiPF6 cell reached cell lifetimes 

around 1000 hours, with many more cycles at these experimental conditions than in Li-ion 

overcharge. These results show promise for these active materials, which are much closer to 

hitting the 5000 cycle 𝑁80 targets77 needed for scale-up than previously reported.76 Of these cells, 

the DDB 20/1/LiPF6 cell shown in Figure 3.3 provides the most promising estimate of maximum 

𝑁80, as it failed due to capacity fade and not cell termination. 

 

 

3.3.8 The Impact of Supporting Salt Choice on 𝑁80 

 From Tables 3.2 – 3.4, the choice of supporting salt is observed to have just as great an 

impact on 𝑁80 as active material selection. The most dramatic change occurs with DDB and DBBB, 

which have two order of magnitude increases in 𝑁80 when moving from alkylammonium salts to 

LiPF6. While the underlying mechanism behind these active material-supporting salt interactions 

Figure 3.3 Capacity vs cycle life for the DDB 20/1/LiPF6 cell. 𝑁80 was reached at 1073 cycles, 
the longest lifetime of any experiment. Experiments of this duration typically terminate due 
to cell component failure, making this result particularly valuable.  
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was not thoroughly investigated in this work, the wealth of experimental data reported allows us 

to draw conclusions. TBAPF6 is the only salt not implicated in any electrolyte effect, and is 

recommended as a baseline for characterization of ROM active materials.  

 

3.3.8.1 Incompatibility with BF4
- 

  The most noticeable trend from DDB and DBBB cycling is the extremely poor 

performance in the alkylammonium BF4
- salts, with lesser performance in LiBF4 than the other Li+ 

salts. This incompatibility is most likely due to an electrochemically active impurity present in the 

BF4
- salts, which can be seen in the DDB 5/1/TBABF4 CV in Figure 3.4.  

 

 

The highlighted section in the DDB 5/1/TBABF4 CV shows a small peak around 0.4 V vs 

Ag/Ag+, this peak is also present in TEABF4 and LiBF4 CVs. TBABF4 has the most prominent peak 

as the lowest purity of three salts. The presence of this peak in all three BF4
- salts, its absence in 

the remaining three salts, and subsequent poor performance of the dialkoxyarenes in BF4
-, leads 

Figure 3.4 Pre-cycling CV for the DDB 5/1/TBABF4 BE cell. The highlighted peak around 0.4 V 
shows the active impurity present in all BF4 salts. 
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to the hypothesis that this impurity interferes with dialkoxyarene cycling. At the greater active 

material concentration, 𝑁80 for DBBB in TBABF4 and TEABF4 reaches or improves on the TBAPF6 

𝑁80. The greater performance increase in TEABF4 compared to TBABF4 can be explained by the 

difference in purity. 

This impurity has a reduced effect on TEMPO 𝑁80 due to TEMPO’s redox potential, which 

is below that of the impurity, but its impact cannot be ruled out. TEMPO 𝑁80 trends with the 

different alkylammonium salts show no pattern across experimental conditions, suggesting this 

impurity may have an unknown but more complex effect than for the dialkoxyarenes. The 

presence of this impurity invokes the recommendation to avoid BF4
- salts for electrochemical 

characterization without additional compatibility studies. For the remainder of this work, 

comparison of individual experiments becomes more difficult when three of the six supporting 

salts chosen contain the impurity.  

One effect that cannot be explained with the previous hypothesis is the poor performance 

of DDB and DBBB in the 20/3/LIBF4 cells. While all active materials performed poorly at the 20 

mM active material and a 3 C cycle rate, DDB and DBBB in LiBF4 were by far the worst. 

 

3.3.8.2 Dialkoxyarene Behavior with Li+ 

 DDB and DBBB both saw significant cyclability improvements in Li+ salts, with 𝑁80 

increases up to two orders of magnitude. This stabilization suggests that either the changing 

electrolyte environment or Li+ coordination to the dialkoxyarenes are responsible. Of these two 

effects, Li+ coordination to the dialkoxyarenes is most likely. There are two possible explanations 

for improved 𝑁80 with Li+-coordination present. Coordination may lead to more stable 

charge/discharge reactions, like the mechanism in ref. 41. The second is based on the 

dialkoxyarene decay reactions in Scheme 2.3; the presence of Li+ coordination may serve a similar 

purpose as steric hinderance and inhibit the O-dealkylation reaction. Based on the 𝑁80 of DDB 

and DBBB with Li+ salts compared to the other dialkoxyarenes in Figure 2.8, this Li+ coordination 

is more impactful than steric hinderance for improving 𝑁80. Possible Li+ coordination structures 

of DBBB were investigated by DFT, two possibilities are shown in Figure 3.5.  
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Of these two structures, the single O-Li+ coordination is more favorable due to the 

similarities in 𝑁80 of DDB and DBBB, as DDB cannot have 2O-Li coordination. Of note is no 

significant change in redox potential of the Li+ coordination structure compared to the 

dialkoxyarene, which was also not seen in ref. 41. Li+ coordination to MeCN may also influence 

cycling performance, although it is less likely. Li-MeCN coordination does occur to varying 

degrees depending on the supporting anion,38,40,71,78,79 but its contribution cannot be determined 

through this work.  

 

3.3.8.3 TEMPO Behavior with Li+ 

 While both dialkoxyarenes have beneficial interactions with Li+, TEMPO shows variable 

performance with Li+. TEMPO 𝑁80 improves in LiTFSi but is incompatible with LiPF6 as shown by 

comparing the 5/1/TBAPF6 cell and 5/1/LiPF6 cell in Figure 3.6.  

Figure 3.5 DFT optimized structures of DBBB coordinated to (a) one Li+ on a single O atom or 
(b) on two O atoms. Li is purple, O is red, C is grey, and H is white.  
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The 5/1/TBAPF6 cell is one of the “baseline” TEMPO cells, but when the supporting salt cation is 

changed to Li+, 𝑁80 drops by half despite improved 𝐶𝐸. An MD investigation of TEMPO 

coordination to Li+ returned three different coordination behaviors the Li+ salts, shown in Figure 

3.7.  

 

 

Figure 3.7 Radial distribution function of the TEMPO oxygen to Li+ distance. LiPF6 coordinates 
strongest, while LiBF4 shows no coordination.  

Figure 3.6 Capacity vs cycle plots for (a) TEMPO 5/1/TBAPF6 and (b) TEMPO 5/1/LiPF6. The 
5/1/LiPF6 cell has an early onset decay at an 𝑁80 roughly half of the 5/1/TBAPF6 cell. 
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TEMPO coordination is strongest to LiPF6, with moderate coordination to LiTFSi and no 

coordination to LIBF4 in this calculation, shown by the peak height at 2.5 Å. This behavior matches 

salt dissociation trends seen in literature,79 which identify LiBF4 as one of the least dissociative 

Li+ salts. Furthermore, there may be an optimal coordination behavior of Li+. 𝑁80 is improved by 

coordination for TEMPO with LiTFSi but not with LiPF6, the most likely-to-coordinate TEMPO-salt 

combination. DFT investigations of TEMPO-Li+-anion structures returned similar coordination 

structures for each different anion, yielding no additional insight.  

 

3.3.9 Poor Performance at 20 mM/3 C  

 All three active materials performed worse at the 20 mM active material 3 C cycle rate 

condition, often times not even reaching the 𝑁80 seen at 1 C despite cycling three times as 

quickly. This was particularly pronounced with the dialkoxyarene LiBF4 cells, which had 𝑁80’s 

above 300 in the 5/3/LiBF4 and the 20/1/LiBF4 conditions but below 100 for the 20/3/LiBF4 cell. 

Experimental conditions which reported excellent results at 5 mM active material at 3 C and 20 

mM active material at 1 C (for example, DBBB with LiBF4), could not replicate that performance 

at the 20 mM active material at 3 C rate condition. 𝐶𝐸 at 20 mM and 3 C was among the highest 

reported at all active material concentration/cycle rate combinations, contrary to the low 𝑁80. 

Two exceptions to this trend were present, DBBB in TBABF4 and TBAPF6.  

This effect is unexplainable with the work presented in this dissertation and requires more 

investigation. One hypothesis is the increase in overpotential due to the increased current and 

cell resistance, which increases the active material oxidation potential to the limits of the 

supporting salts. 

 

3.3.10 The Impact of Active Material Concentration on 𝑁80 

 The laboratory experiments in this work do not approach the necessary active material 

concentrations needed for commercial NaRFBs and this work does not provide any insight on the 

effect molar-order active material concentrations have on 𝑁80. With novel research chemicals in 

particular, there is a desire to minimize the amount of active material used in characterization 
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experiments. Variation of active material concentration for DDB, DBBB, and TEMPO provides 

some insight into the effect of active material concentration on 𝑁80 of TEMPO. 

 The three active materials of interest all have first order decay of their corresponding 

cations. For the dialkoxyarenes, this decay is either H-atom abstraction from the solvent back 

into the parent molecule or through irreversible side reactions, resulting in the observed capacity 

fade. As DDB and DBBB are stable in the neutral state, 𝑁80 should not vary based on active 

material concentration, and any trends are obscured by high 𝑁80 cell termination and supporting 

salt effects. TEMPO, alternatively, has both decay of the cation back to the neutral state and 

decay of the neutral molecule through H-atom abstraction and subsequent disproportionation,80 

shown in Scheme 3.2.  

 

 

 

One of the disproportionation products is the N-oxoammonium cation itself. The rate-limiting 

step and overall reaction order are unknown, and observed decrease in TEMPO 𝑁80 with 

increasing concentration is indicative of an overall reaction order greater than 1. 

 A general effect of active material concentration is difficult to determine due to the 

presence of the BF4
- and TEMPO/LIPF6 electrolyte interactions. However, some qualitative trends 

can still be highlighted. First, the increased active material to impurity ratio at 20 mM active 

material compared to 5 mM led to increases in 𝑁80, which are more accurate to the true 

performance of dialkoxyarenes in these salts. Second, the decrease of TEMPO 𝑁80 at increased 

concentration implies the existence of a concentration dependent decay. To further confirm the 

concentration effect on TEMPO, two BE experiments at 100 mM active material were performed 

(100/1/TEABF4 and 100/1/LiTFSi). LiTFSi shows no 𝑁80 differences between 5 mM and 20 mM 

active material, likely due to Li+ coordination. TEABF4 was chosen as an alkylammonium control. 

Scheme 3.2 TEMPO H-abstraction and disproportionation into the N-oxoammonium salt and 
2,2,6,6-Tetramethylpiperidin-1-ol.  
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Comparative capacity vs cycle plots for these experiments and the 20 mM active material 

experiments are presented in Figure 3.8. Both the 100 mM TEABF4 and LiTFSi cells had reduced 

𝑁80, confirming the presence of a concentration effect and the greater than one reaction order 

for TEMPO decay. 

 

3.3.11 The Impact of Cycle Rate on 𝑁80 

 In the ideal case, 𝑁80 would scale linearly with cycle rate and this section would be 

conclusive. There were three pairs of experiments where this occurred (DDB and DBBB with 

TBAPF6, TEMPO with LiPF6), but the majority of the experiments did not obey this linear scaling. 

A second, less ideal case would be similar 𝑁80 no matter the cycle rate, indicative of a fixed 𝑁80 

decay similar to Q5 and Q9 in Chapter 2, but this was only observed for TEMPO 5/1/TBAPF6 and 

TEMPO 5/3/TBAPF6. The remainder of the experiments showed variable cycle rate scaling 

through the BF4
- impurity, cell termination at high 𝑁80, and other unidentified effects. 𝐶𝐸 was at 

a maximum cycling at 3 C, as expected with a shorter time for cation decay. Additional 

investigation is necessary to determine the effect of cycle rate on these active materials, however 

TBAPF6 can be recommended as a supporting salt which shows linear 𝑁80 scaling with cycle rate.  
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Figure 3.8 Capacity vs cycle plots for TEMPO (a) 20/1/TEABF4, 𝑁80 = 102, (b) TEMPO 
100/1/TEABF4 𝑁80 = 50, (c) TEMPO 20/1/LiTFSi, 𝑁80 = 328, and (d) TEMPO 100/1/LiTFSi, 𝑁80 
= 241. 𝑁80 decreases with greater active material concentrations for TEMPO due to its decay 
reaction order. 



55 
 

3.4 Conclusions 

 This chapter discussed an extensive set of experiments conducted to isolate and identify 

the effect of active material concentration, cycle rate, and supporting salt choice on 𝑁80. Analysis 

of active material concentration and cycle rate were difficult due to the significance of supporting 

salt choice, which overshadowed all other experimental variations. Due to the reaction order of 

TEMPO decay, active material concentration did have a negative correlation with 𝑁80. 

Investigation of supporting salt interactions with active materials revealed many different 

interactions between individual active materials and supporting salts. Li+ coordination was key to 

extending the 𝑁80 of all the tested active materials, although there does appear to be an optimal 

amount of coordination. The stabilization mechanism of the Li+ coordination was hypothesized 

to be the same as steric hinderance for the dialkoxyarenes in Chapter 2, decreasing the rate of 

O-dealkylation by reducing access to the ether oxygens. Lastly, LiPF6 and TBAPF6 are 

recommended to achieve the greatest 𝑁80 for dialkoxyarenes and as a baseline comparison for 

other results, respectively. Significant negative interactions occurred between active materials 

and BF4
- salts, which should be avoided until the active impurity present in those salts can be 

removed. This work also reported the best cycling ROM to date, with DDB 20/1/LiPF6 cycling for 

1073 cycles. Overall, this work introduces Li+ coordination as an alternative to steric hinderance 

as a stabilization strategy for ROM design and the importance of electrolyte composition on 

proper characterization. 
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Chapter 4 

 

A Kinetic Model for Redox Active Organic Molecule Cycling 

 

Portions of this chapter are adapted with permission from B. Silcox, J. Zhang, I. Shkrob, L. 

Thompson, L. Zhang; Journal of Physical Chemistry C (2019). Copyright 2019 American Chemical 

Society 

 

4.1 Background and Approach 

 Development of high cyclability active materials is a critical issue for non-aqueous redox 

flow battery (NaRFB) advancement.58,81 As demonstrated in Chapter 3, the factors affecting 

cyclability are numerous and their interactions with active materials are complex.41,73 For this 

reason, performance comparisons for active materials across literature or laboratories are often 

difficult if identical experiments are not performed. Compounding this difficulty is the lack of 

metrics for cyclability. Cycle life (𝑁𝑞) is the primary metric but is simple and empirical, unable to 

standardize variable experimental conditions. 𝑁𝑞 in particular does a poor job at high cycle rates, 

exaggerating performance for active materials that have a calendar life component to their fade. 

Cell lifetime, another metric, has the opposite problem, overestimating performance at low cycle 

rates and active materials that are only stable in the absence of redox activity. To make improved 

cyclability comparisons, new metrics, ideally with a theoretical basis, are needed.  

 In this chapter, I introduce a kinetic model of H-cell bulk electrolysis (BE) cycling 

experiments and use it to derive a new metric for evaluating cyclability. This model is applied to 

the experimental data presented in Chapters 2 and 3 to gain additional insight into their cycling 

behavior. This work establishes a new, kinetic metric for cycling experiments, which suppresses 

the effect of active material concentration and cycle rate.  
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4.1.1 Model Development  

 Ideally, this new model would have a basis in chemical kinetics, so a simple kinetic model 

for BE cycling was developed. From the experimental setup discussed in Chapter 2, we begin with 

the initial redox active organic molecules (ROM) concentration 𝐶0 and the cell volume 𝑉. For the 

experiments in Chapters 2 and 3, we picked 𝑇, the theoretical cycling period, and defined the 

current in the cell, 𝐼 by 𝐼 =  𝐶0𝑉𝐹/𝑇, where 𝐹 is Faraday’s constant. If a specific current was 

instead desired, 𝑇 could be calculated from the same relationship. Active material decay behavior 

was modeled from experimental observation. The dialkoxyarene family has demonstrated first-

order decay of the charged species with a rate constant 𝑘,82,83 with this decay either recovering 

the original active material or proceeding into irreversible side reactions. We define the yield of 

this recovery reaction as 𝜙 and 𝜙̅ = 1 − 𝜙 as the irreversible decay. Lastly, to complete our basic 

kinetic model, the concentration of the uncharged active species is defined as 𝐶 and the 

concentration of the charged active species as 𝐶∗. Combining these variables into two first order 

rate equations, we have 

 
𝑑𝐶 𝑑𝑡⁄ = ∓

𝐼

𝑉𝐹
+ 𝜙𝑘𝐶∗ 

(4.1) 

 
𝑑𝐶∗ 𝑑𝑡⁄ = ±

𝐼

𝑉𝐹
− 𝑘𝐶∗ 

(4.2) 

where the upper/lower signs denote charge and discharge cycles respectively (concentration of 

the uncharged active material decreases during charge, and increases during discharge). Before 

any cycling is performed at 𝑡 = 0, 𝐶∗ = 0 and 𝐶 =  𝐶0. 

When cycling, the cell first undergoes constant current charge until either a time cutoff 

(equivalent to a desired capacity cutoff) is reached or the cell reaches its voltage cutoffs. The 

time/capacity cutoff is defined by 𝑇′ = 𝜂𝑇, where 𝜂 is the desired state of charge (SOC). For 

simplicity, the voltage cutoff is ignored in the mathematical model. When one of these two 

cutoffs are reached, the current is reversed and the cell discharges back to the uncharged state. 

Charge and discharge times are defined as 𝑇𝑐 and 𝑇𝑑; note that 𝑇𝑐 and 𝑇𝑑 have a theoretical 

maximum of 𝑇′. 𝑁𝑞, the number of cycles before discharge capacity reaches a percentage 

capacity, can now be defined at 𝑞𝑇𝑑, where 𝑞 is the capacity cutoff.  



58 
 

When 𝜂 < 1, the immediate capacity fade is not apparent, and only appears when the 

concentration of ROM during charge decreases below the theoretical capacity. This creates two 

regimes of cycling, one where we see no observable capacity fade and one where we do. We can 

define 𝑁< as the number of cycles in this first regime, and 𝑁> =  𝑁𝑞 − 𝑁< as the number of cycles 

in the second regime before reaching 𝑁𝑞. An illustration of these regimes is shown in Figure 4.1.  

 

 

Defining these cycling parameters in the model provides a target for the derivation, as they can 

be measured experimentally. 

To simplify calculations, dimensionless parameters 𝑐 = 𝐶/𝐶0 , 𝑐∗ =  𝐶∗/𝐶0, 𝜅 = 𝑘𝑇, and 

reduced time 𝜏, are introduced. Equations 4.1 and 4.2 are rewritten as 

 𝑑𝑐 𝑑𝜏⁄ − 𝜙𝜅𝑐∗ = ∓1 (4.1a) 

 𝑑𝑐∗ 𝑑𝜏⁄ + 𝜅𝑐∗ = ±1 (4.2a) 

Figure 4.1 A graphical representation of the cycling regimes 𝑁𝑞, 𝑁<, and 𝑁>. 𝑁< extends to 

the end of the constant capacity plateau, followed by 𝑁> until the capacity cutoff 𝑞 is 
reached. 
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 In mathematical terms, charge of the cell ends when 𝜏𝑐 = 𝜂 (for 𝑐 ≥ 𝜂) or 𝑐 = 0 for (𝑐 <

𝜂), while discharge always ends at 𝑐∗ = 0. Due to the charged active material decay, the 

discharge capacity is always less than the charge capacity so the capacity limit can never be 

reached during discharge in a well-behaved cell. Solving Equation 4.2a analytically allows us to 

obtain the dimensionless concentrations at the end of a charge-half cycle, 

 
𝑐∗ =

1 − 𝑒−𝜅𝜏𝑐

𝜅
 

(4.3) 

 𝑐 = 𝑐𝑛 − 𝜙̅𝜏𝑐 − 𝜙𝑐∗  (4.4) 

where 𝑐𝑛 is the dimensionless concentration at the completion of cycle 𝑛. Taking the series 

expansions of Equations 4.3 and 4.4 for the practically important limit of 𝜅𝜏𝑐 ≪ 1 gives 

 
𝑐∗ =

1 − 𝑒−𝜅𝜏𝑐

𝜅
≈ 𝜏𝑐 (1 −

𝜅𝜏𝑐

2
) 

(4.3a) 

 𝑐 = 𝑐𝑛 − 𝜙̅𝜏𝑐 − 𝜙𝑐∗  ≈  𝑐𝑛 − 𝜏𝑐 + 𝜙 𝑘𝜏𝑐
2 2⁄  (4.4a) 

while 𝑐𝑛 ≥ 𝜂, 𝜏𝑐 = 𝜂. For 𝑐𝑛 < 𝜂, a second series expansion of Equation 4.4a is needed and can 

be approximated as 

 
𝜏𝑐 ≈ 𝑐𝑛  (1 +

𝜙𝜅𝑐𝑛

2
) 

(4.5) 

A similar manner of solving for 𝜏𝑑 from Equation 4.2a gives 

 
𝜏𝑑 =  

ln (1 + 𝜅𝑐∗)

𝜅
 

(4.6) 

And finally, Equation 4.3 can be substituted into Equation 4.6 and a series expansion used to get 

𝜏𝑑 in terms of 𝜏𝑐 

 𝜏𝑑 ≈  𝜏𝑐(1 − 𝜅𝜏𝑐) (4.7) 

With expressions for the time of charge and discharge, the concentration at the end of each cycle 

can be determined 

 𝑐𝑛+1 = 𝑐 − 𝜙̅𝜏𝑑 + 𝜙𝑐∗ (4.8) 

With 𝑐 and 𝑐∗ at the end of each cycle from Equations 4.3a and 4.4a respectively 

 𝑐𝑛+1 ≈ 𝑐𝑛 − 𝜙 ̅𝜅𝜏𝑐
2 (4.9a) 

For 𝑐𝑛 ≥ 𝜂  𝜏𝑐 = 𝜂  and the concentration 𝑐𝑛 decreases with each cycle by a constant value 
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 𝑐𝑛 ≈ 1 − 𝜙 ̅𝑛𝜅𝜂2 (4.9b) 

 This leads to a fairly simple expression for 𝑁<, which is defined at 𝑐𝑛 = 𝜂 

 𝑁< ≈
1−𝜂

𝜙 ̅̅ ̅𝜅𝜂2
 (4.10) 

𝑁> is defined by the number of cycles to reach a specific capacity cutoff. This is defined by the 

discharge cycle, giving 𝜏𝑑 =  𝜂𝑞. With the previous assumption 𝜅𝜏𝑐 ≪ 1, Equation 4.5 gives 𝜏𝑑 ≈

𝜏𝑐 ≈ 𝑐𝑛 ≈ 𝜂𝑞. A new expression can then be derived from Equations 4.5 and 4.9a 

 
𝑐𝑛+1 − 𝑐𝑛 ≈

𝑑𝑐𝑛

𝑑𝑛
≈ −𝜙 ̅𝜅𝑐𝑛

2(1 + 𝜙𝜅𝑐𝑛) 
(4.11) 

Integrating to find 𝑁> 

 
𝜙 ̅𝜅𝑁>  ≈  ∫

𝑑𝑐

𝑐2(1 + 𝜙𝜅𝑐)

𝜂

𝜂𝑞

 
(4.12) 

If 𝜙 = 0 , a simple expression exists for 𝑁> 

 
𝑁>  ≈  

1 − 𝑞

𝑞𝜅𝜂
 

(4.13a) 

 And 𝑁𝑞 =  𝑁< + 𝑁> with a series expansion of Equation 4.9b 

 
𝑁𝑞  ≈  

1

𝜅𝜂
(

1 − 𝜂

𝜂
+

1 − 𝑞

𝑞
) 

(4.13b) 

For the more relevant 𝜙 ≠ 0 case 

 
𝑁>  ≈  

1 − 𝑞

𝜙̅𝑞𝜅𝜂
−

𝜙

𝜙̅
ln

1 + 𝜙𝜅𝜂

1 𝑞 + ⁄ 𝜙𝜅𝜂
 

(4.14a) 

 
𝑁𝑞 ≈  

1

𝜙̅𝜅𝜂
(

1 − 𝜂

𝜂
+

1 − 𝑞

𝑞
) −

𝜙

𝜙̅
(ln 𝑞 +  𝜙𝜅𝜂(1 − 𝑞) ) 

(4.14b) 

This derivation made the assumption that 𝜅𝜂 ≪ 1, which corresponds to a relatively small decay 

rate and low theoretical capacity loss per cycle. For the NaRFB space, fast decay and high capacity 

loss per cycle is uninteresting, as those active materials will not have the necessary stability or 

cyclability.  

 The model relates experimentally measured 𝑁𝑞 to 𝜙, which is a kinetic performance 

metric. 𝜙 is not dependent on active material concentration or cycle rate, although any 

significant electrolyte interactions affecting 𝑁𝑞 will still be transferred to 𝜙. Equation 4.14b 

requires an additional experimental value, in this case 𝜅, the dimensionless rate constant. Finding 
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𝜅 can be even more time consuming than 𝑁𝑞, as these measurements require resonance 

spectroscopy techniques and 𝜅s have been reported in the hundreds of hours.48,74,83 To be most 

useful for cyclability characterization, an equation for 𝜙 would only require data from BE cycling.  

 From the original kinetic model, 1 − 𝜅𝜂2 is the theoretical maximum coulombic efficiency 

(𝐶𝐸). While BE experiments don’t measure theoretical 𝐶𝐸, we can still substitute experimental 

𝐶𝐸 for 𝜅 in Equation 4.14b 

 
𝑁𝑞 ≈  

1

𝜙̅
(1 − 𝐶𝐸)

𝜂

(
1 − 𝜂

𝜂
+

1 − 𝑞

𝑞
) −

𝜙

𝜙̅
(ln 𝑞 +  𝜙

(1 − 𝐶𝐸)

𝜂
(1 − 𝑞) ) 

(4.15) 

Equation 4.15 can be used to calculate 𝜙 for any BE experiment, even if the active material does 

not have published stability data.  

 

4.1.1.1 Model Variation for TEMPO 

 Of the active materials investigated in this thesis, (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl 

(TEMPO) is unique due to an additional decay mechanism from the neutral state.80 Assuming first 

order decay, an additional term is added to the initial kinetic model in Equation 4.1 

 
𝑑𝐶 𝑑𝑡⁄ = ∓

𝐼

𝑉𝐹
+ 𝜙𝑘𝐶∗ − 𝑘𝑇𝐸𝑀𝑃𝑂𝐶 

(4.16) 

 
𝑑𝐶∗ 𝑑𝑡⁄ = ±

𝐼

𝑉𝐹
− 𝑘𝐶∗ 

(4.17) 

The expressions for 𝜏𝑐 and 𝜏𝑑 are now  

 
𝜏𝑐 ≈ 𝑐𝑛  (1 +

𝜙𝜅𝑐𝑛

2
−

𝜅𝑇𝐸𝑀𝑃𝑂𝑐𝑛

2
) 

(4.18) 

 
𝜏𝑑 =  

ln (1 + 𝜅𝑐∗)

𝜅
 

(4.19) 

𝜏𝑑 remains the same as the original derivation, as Equation 4.16 and 4.2 are identical. The 

expression for 𝑐𝑛+1 is now 

 𝑐𝑛+1 ≈ 𝑐𝑛 − 𝜙 ̅𝜅𝜏𝑐
2 − 𝜅𝑇𝐸𝑀𝑃𝑂𝜏𝑐

2 − 𝜅𝑇𝐸𝑀𝑃𝑂𝜏𝑐
2(1 + 𝜅𝜏𝑐

2 − 2𝜅𝜏𝑐) (4.20) 

The expression for 𝑁< proceeds from the same conditions, 𝜏𝑐 = 𝑐𝑛 = 𝜂, with constant capacity 

fade for each cycle 
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𝑁< ≈

(1 − 𝜂)

(𝜙̅𝜅𝜂2 + 𝜅𝑇𝐸𝑀𝑃𝑂 (1 −
𝜂2

2 ) + 𝜅𝑇𝐸𝑀𝑃𝑂 (1 −
𝜂2(1 − 𝜅𝜂)2

2 ))

 
(4.21) 

With Equation 4.20, the integrand to find 𝑁> is no longer integrable. For sufficiently long 𝑁𝑞, 

small 𝜂 (0.5, which is used in this thesis, is sufficient), and high 𝑞, 𝑁> ≪ 𝑁< and the expression 

for 𝑁> in Equation 4.13b is a reasonable approximation. The majority of active material decay 

should occur in the cycling regime described by 𝑁<. The final form of the recovery equation is 

 

𝑁𝑞 = (1 − 𝜂) (
1

𝜙̅𝜅𝜂2 + 𝜅𝑇𝐸𝑀𝑃𝑂 (1 −
𝜂2

2 ) + 𝜅𝑇𝐸𝑀𝑃𝑂 (1 −
𝜂2(1 − 𝜅𝜂)2

2 )
+

1

𝜙̅𝜅𝜂2̅̅ ̅̅ ̅̅ ̅
)

+
1 − 𝑞

𝜙̅𝑞𝜅𝜂
+

𝜙

𝜙̅
(ln 𝑞 +  𝜙𝜅𝜂(1 − 𝑞) ) 

(4.22) 

The 𝐶𝐸 =  1 − 𝜅𝜂2 substitution can be made to reduce the dependence on kinetic data, giving 

the final form of the equation for TEMPO 

 
𝑁𝑞 =

(1 − 𝜂)

𝜙̅(1 − 𝐶𝐸) + 𝜅𝑇𝐸𝑀𝑃𝑂 (1 −
𝜂2

2
) + 𝜅𝑇𝐸𝑀𝑃𝑂 (1 −

𝜂2 (1 −
(1 − 𝐶𝐸)

𝜂 )
2

2
)

 

+
(1 − 𝜂)

𝜙̅(1 − 𝐶𝐸)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
+

1 − 𝑞

𝜙̅𝑞
(1 − 𝐶𝐸)

𝜂

+
𝜙

𝜙̅
(ln 𝑞 +  𝜙

(1 − 𝐶𝐸)

𝜂
(1 − 𝑞) )  

(4.23) 

Unfortunately, Equation 4.23 does require 𝜅𝑇𝐸𝑀𝑃𝑂 to be measured experimentally, a condition 

which applies to all active materials with decay of the uncharged species. 

 

 

4.2 Experimental 

4.2.1 TEMPO Stability Measurements 

 Solutions of TEMPO and 4-acetomido TEMPO (> 99%, Sigma Aldrich) were prepared for 

spectroscopy in fritted glass H-cells. 20 mM of the active material was solvated with 500 mM 

lithium bis(trifluoromethanesulfonyl)amide (LiTFSi) (Sigma Aldrich) in 10mL acetonitrile (MeCN) 

(Acros Organics). The H-cell contained working and counter electrodes composed of reticulated 
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vitreous carbon (Duocell). The reference electrode was a fritted chamber containing 10 mM of a 

silver bis(trifluoromethanesulfonyl)amide (AgTFSi) and a silver wire. A BioLogic VSP potentiostat 

recorded all data.  

The electrolyte was charged at a rate of 5 C to 100% SOC. A 20 µL sample of the charged 

electrolyte was placed in a glass capillary and sealed. The neutral radical was observed using 

electron paramagnetic resonance (EPR) spectroscopy in the X-band using 100 kHz field 

modulation. The first-derivative EPR spectra were collected at room temperature using a Bruker 

EMX X-band spectrometer operating at 9.69 GHz. For kinetic analysis, the EPR spectra was 

recorded at the constant time intervals, centered, background corrected, and doubly integrated. 

The decay kinetics were fit by a biexponential function, one for the decay of the cation and one 

for the decay of the TEMPO radical.  

 

4.3 Results and Discussion 

4.3.1 𝜙 

 A plot of 𝜙 vs 𝑁80 for different 𝐶𝐸 is shown in Figure 4.2. From Figure 4.2, 𝜙 becomes 

more descriptive as 𝐶𝐸 increases, providing more information for low 𝑁80 cells. 𝜙 as a metric 

fails at for active materials with low 𝑁80 and low 𝐶𝐸, although these poorly performing active 

materials are not the target for development and can be safely neglected. 
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4.3.2 Maximum 𝐶𝐸 

 As a byproduct of model development, an expression was developed for maximum 

theoretical 𝐶𝐸, 1 − 𝜅𝜂2. If stability data exists for an active material, exceeding the theoretical 

maximum 𝐶𝐸 indicates that there is a structural change of the active material in the cell, such as 

Li+ coordination. Cation stabilities, reported as half-lives (𝑡1

2

), for 1,4-Di-tert-butyl-2,5-

dimethoxybenzene (DDB) and 1,4-Di-tert-butyl-2,5-bis (2-methoxyethoxy)benzene (DBBB) have 

been recorded (𝑡1

2

= 26.5 h and 26.1 h respectively), TEMPO+ stability was found from EPR, 𝑡1

2

= 

106.5 h. Table 4.1 contains the theoretical maximum 𝐶𝐸 for DDB, DBBB, and TEMPO at 1 C and 

3 C cycle rates. 

 

Figure 4.2 𝜙 vs 𝑁80 in Equation 15 for different 𝐶𝐸 at 𝜂 = 0.5, 𝑞 = 0.8. As 𝐶𝐸 increases, 𝜙 
shows greater variation at low 𝑁80. Materials with sufficiently high 𝐶𝐸 have a theoretical 
minimum 𝑁80. 
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Molecule DDB DBBB TEMPO 

𝑪𝑬𝒎𝒂𝒙,𝟏 𝑪 99.3% 99.3% 99.8% 

𝑪𝑬𝒎𝒂𝒙,𝟑 𝑪 99.8% 99.8% 99.9% 

 

4.3.3 Recovery Summary 

Chapter 3 illustrated the difficulty in comparing active materials at different experimental 

conditions due to the significance of supporting salt effects overshadowing active material 

concentration and cycle rate. Calculating 𝜙 for each of these experiments provides a renewed 

opportunity to understand the variations in 𝑁80, although electrolyte effects may still dominate. 

Similarly, the cycling experiments from Chapter 2 provides an opportunity for greater comparison 

of recovery with structural similarity. Table 2.2 has been updated with 𝜙 in Table 4.2, which 

reports 𝑁80, 𝐶𝐸, and 𝜙 arranged by active material. A plot of 𝜙 vs 𝑁80 is shown in Figure 4.3. 

 

 

Table 4.1 Theoretical maximum 𝐶𝐸 for DDB, DBBB, and TEMPO. 𝐶𝐸 greater than the 
theoretical maximum in a BE experiment requires a change in the active material structure. 

Figure 4.3 𝜙 vs 𝑁80 for the dialkoxyarene catholytes in Table 4.2. 
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Molecule Q1 (DDB) Q2 Q3 
Structure 

 

  

𝑵̅𝟖𝟎 68 60 50 
𝑪𝑬̅̅ ̅̅  92.4% 89.7% 92.5% 
𝝓 0.877 0.877 0.830 

Molecule Q5 Q6 Q7 
Structure 

 
  

𝑵̅𝟖𝟎 29 53 73 
𝑪𝑬̅̅ ̅̅  86.7% 91.2% 91.9% 
𝝓 0.832 0.862 0.832 

Molecule Q9 Q10 Q11 
Structure 

 

 

 

𝑵̅𝟖𝟎 18 55 127 

𝑪𝑬̅̅ ̅̅  84.9% 92.0% 96.3% 
𝝓 0.763 0.853 0.876 

 

Figure 4.3 shows a slight positive correlation between 𝜙 and 𝑁80, although 𝜙 for all the 

dialkoxyarenes with the exception of Q9 were between 0.83 and 0.88. These results suggest, with 

the exception of Q9, that this series of dialkoxyarenes has the same kinetic cycling performance 

and 𝑁80 is only related to the rate of cation decay. 

Table 4.2 Names, structures, cycle lives, coulombic efficiencies, and recoveries from BE 
experiments of the dialkoxyarene catholytes. All values are averages when multiple 

experiments were performed. 
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Tables and 3.2 – 3.4 have been updated with 𝜙 in Tables 4.3 – 4.5, which report 𝑁80, 𝐶𝐸, 

and 𝜙 arranged by active material, concentration, cycle rate, and supporting salt in sequence. 

𝑘𝑇𝐸𝑀𝑃𝑂 = 0.0129 h-1 was found from the TEMPO stability EPR experiment and used for all 𝜙 

values in Table 4.5. Plots of 𝜙 vs 𝑁80 for DDB, DBBB, and TEMPO are shown in Figure 4.4 – 4.6 

respectively. 

 

 

Molecule Structure Active 
Material 
Concentration 

Cycle 
Rate 

Supporting 
Salt 

𝑵𝟖𝟎 𝑪𝑬 𝝓 

DDB 

 

5 mM 1 C TBABF4 16 76.0% 0.828 

TBAPF6 68 92.4% 0.876 

TEABF4 21 78.1% 0.856 

LiBF4 48 91.8% 0.838 

LiPF6 498* 98.6% 0.910 

LiTFSi 623* 95.3% 0.978 

3 C TBABF4 19 86.3% 0.752 

TBAPF6 168 98.1% 0.804 

TEABF4 35 91.9% 0.775 

LiBF4 345 96.8% 0.942 

LiPF6 2868* 95.9% 0.994 

LiTFSi 901* 99.7% 0.796 

20 mM 1 C LiBF4 620* 93.5% 0.984 

LiPF6 1073 98.9% 0.947 

LiTFSi 447 98.9% 0.873 

3 C LiBF4 86 94.8% 0.859 

LiPF6 210 98.4% 0.818 

LiTFSi 172 96.9% 0.883 

  

Table 4.3 Name, structure, active material concentration, cycle rate, supporting salt, cycle 
life, coulombic efficiency, and recovery for DDB. The alkylammonium supporting salts were 
not cycled at 20 mM active material concentration due to solubility limitations of DDB. Cells 

that terminated prematurely are marked with an asterisk. 
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Molecule Structure Active 
Material 
Concentration 

Cycle 
Rate 

Supporting 
Salt 

𝑵𝟖𝟎 𝑪𝑬 𝝓 

DBBB 

 

5 mM 1 C TBABF4 21 82.5% 0.823 

TBAPF6 63 89.6% 0.902 

TEABF4 26 84.5% 0.839 

LiBF4 70 93.1% 0.868 

LiPF6 941* 98.1% 0.966 

LiTFSi 883* 93.1% 0.990 

3 C TBABF4 48 91.9% 0.835 

TBAPF6 165 96.8% 0.880 

TEABF4 32 88.5% 0.825 

LiBF4 756* 98.2% 0.954 

LiPF6 2696* 99.6% 0.970 

LiTFSi 582 96.4% 0.954 

20 mM 1 C TBABF4 26 71.7% 0.909 

TBAPF6 33 87.2% 0.847 

TEABF4 176 96.7% 0.891 

LiBF4 648* 95.9% 0.976 

LiPF6 548 99.3% 0.832 

LiTFSi 439 96.0% 0.964 

3 C TBABF4 137 97.8% 0.790 

TBAPF6 131 98.2% 0.729 

TEABF4 163 97.4% 0.851 

LiBF4 72 95.7% 0.795 

LiPF6 461 95.7% 0.968 

LiTFSi 242 98.4% 0.838 

  

Table 4.4 Name, structure, active material concentration, cycle rate, supporting salt, cycle 
life, coulombic efficiency, and recovery for DBBB. Cells that terminated prematurely are 

marked with an asterisk. 
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Molecule Structure Active 
Material 
Concentration 

Cycle 
Rate 

Supporting 
Salt 

𝑵𝟖𝟎 𝑪𝑬 𝝓 

TEMPO 

 

5 mM 1 C TBABF4 129 98.0% 0.942 

TBAPF6 132 98.0% 0.944 

TEABF4 131 98.8% 0.909 

LiBF4 182 99.9% 0.229 

LiPF6 68 99.5% 0.451 

LiTFSi 323 98.5% 0.972 

3 C TBABF4 89 97.8% 0.864 

TBAPF6 132 99.0% 0.837 

TEABF4 254 99.1% 0.925 

LiBF4 155 100.0% 0.0 

LiPF6 141 99.7% 0.507 

LiTFSi 366 99.2% 0.950 

20 mM 1 C TBABF4 118 98.1% 0.932 

TBAPF6 149 98.9% 0.908 

TEABF4 102 97.3% 0.941 

LiBF4 142 99.9% 0.317 

LiPF6 67 98.8% 0.787 

LiTFSi 328 98.9% 0.963 

3 C TBABF4 93 98.4% 0.826 

TBAPF6 118 98.7% 0.853 

TEABF4 156 99.0% 0.873 

LiBF4 105 99.5% 0.500 

LiPF6 178 100.0% 0.0 

LiTFSi 193 99.5% 0.818 

 

With the exception of five TEMPO cells discussed later, 𝜙 values above 0.5 indicate that 

the decay of undischarged cations for these molecules favors a return to the parent compound. 

Like 𝑁80, 𝜙 in Tables 4.3 – 4.5 is a lower bound due to the premature termination of some cells 

and derivation from 𝑁80. For all three active materials, 𝑁80 and 𝜙 show the same weak positive 

correlation as the dialkoxyarenes catholytes in Figure 4.3. 

Table 4.5 Name, structure, active material concentration, cycle rate, supporting salt, cycle 
life, coulombic efficiency, and recovery for TEMPO. No TEMPO cells terminated prematurely. 

𝑘𝑇𝐸𝑀𝑃𝑂 = 0.0129 ℎ−1 was used for all calculations of 𝜙.  
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Figure 4.4 𝜙 vs 𝑁80 for the DDB experiments in Table 4.3. 

Figure 4.5 𝜙 vs 𝑁80 for the DBBB experiments in Table 4.4. 
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 Figure 4.6 highlights the poor kinetic performance of TEMPO with LiPF6 and LiBF4, which 

are separated from the remainder of the experiments with low 𝜙.  

  

4.3.4 Cells above Maximum 𝐶𝐸 

 None of the Chapter 2 dialkoxyarenes, which were all cycled in tetrabutylammonium 

hexafluorophosphate (TBAPF6), reported greater than maximum 𝐶𝐸. This is expected, as there is 

no evidence of alkylammonium coordination to active materials.  

 Of the DDB, DBBB, and TEMPO cycling variation experiments in Chapter 3, five cells 

reported 𝐶𝐸 at or above the theoretical maximum. All of these cells used Li+ supporting salts. 

One of these was DBBB 20/1/LiPF6. This further confirms the suspected Li+ stabilization of the 

dialkoxyarenes, as structural changes to the active material must occur to reach this 𝐶𝐸.  

 Four TEMPO cells reported 𝐶𝐸 above the theoretical limit, three lithium tetrafluoroborate 

(LiBF4) cells (5/1/LiBF4, 5/3/LiBF4, 20/1/LiBF4) and 20/3/LiPF6. Three LiBF4 cells on this list are 

surprising, as LiBF4 showed no coordination to TEMPO by a molecular dynamics investigation in 

Figure 4.6 𝜙 vs 𝑁80 for the TEMPO experiments in Table 4.5. 
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Chapter 3. The 20/3/LiPF6 cell’s appearance is likely due to its strong Li+-coordination, all four 

TEMPO lithium hexafluorophosphate (LiPF6) cells had high 𝐶𝐸. 

 

4.3.5 New Insights from 𝜙 

 For the Chapter 2 dialkoxyarene characterization, 𝜙 confirms the increased decay of Q5 

and Q9, which were among the lowest 𝜙 values of the series. Besides Q9 (𝜙 = 0.763), there was 

no significant difference in 𝜙 for the other dialkoxyarenes.  

Unfortunately, 𝜙 cannot suppress the supporting salt interactions affecting 𝑁80. For this 

reason, there is no significant understanding of the active materials gained by investigating 𝜙 for 

the cycling experiments in Chapter 3. 𝜙 for DDB and DBBB confirms the significant impact BF4
- 

supporting salts have on performance. In addition to accelerating the decay of the dialkoxyarene 

cations, the impurity appears to increase the yield of the O-dealkylation side reaction through an 

unknown mechanism. LiPF6 and lithium bis(trifluoromethanesulfonyl)amide (LiTFSi) experiments 

had 𝜙 ranging from 0.8 to 0.99, too wide a range for there to be a consistent effect from Li+ 

coordination. The coordination may have multiple effects on dialkoxyarenes, both decreasing the 

overall decay rate of the cation and inhibiting the O-dealkylation reaction. The balance of these 

effects is either due to variations within the individual experimental set ups or is dependent on 

specific active material-salt interactions and requires further investigation. 

The four TEMPO LiBF4 cells, three with unphysical 𝐶𝐸, had several of the lowest 𝜙 in the 

BE experiments. With no TEMPO-LiBF4 coordination, two hypotheses for this abnormal 

interaction are the cycling of the active impurity in LiBF4 or TEMPO interactions with the impurity 

that were unobvious from 𝑁80. Cycling of this active impurity, if more stable in the charged state 

than TEMPO, would account for the unphysical 𝐶𝐸 and the low 𝜙. Additionally, the TEMPO LiBF4 

system is the most likely active material-supporting salt combination for TEMPO-impurity 

interactions. LiBF4 dissociates poorly in and coordinates well to MeCN, which would bring the 

impurity in closer proximity to TEMPO compared to other supporting salts. These mechanisms 

may occur in combination and LiBF4 should be avoided for further TEMPO characterization due 

to the active impurity interactions.  

 



73 
 

4.4 Conclusions 

 This chapter discussed the development of a kinetic model and parameter, 𝜙, with 

applications for improved cycling comparisons. Unlike 𝑁80, 𝜙 normalizes for material 

concentration and cycle rate, but still cannot suppress active material-supporting salt 

interactions. Due to electrolyte effects still appearing in 𝜙, few additional insights were made 

from the results presented in Chapter 3. The most significant is a newly identified interaction 

between TEMPO and the active impurity in LiBF4. In the process of developing this model, the 

maximum theoretical 𝐶𝐸 was identified and can be calculated for active materials with reported 

decay rates. This 𝐶𝐸 can be used to identify cycling experiments which contain structural changes 

to the active material during cycling such as Li+ coordination. Overall, this work introduces a 

second metric for active material cycling comparison, which can be used to compare experiments 

independent of active material concentration and cycle rate. 
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Chapter 5 

 

Stability Predictions for Redox Active Organic Molecules 

 

Portions of this chapter are adapted with permission from B. Silcox, J. Zhang, S. Tung, I. 

Shkrob, L. Zhang, L. Thompson; manuscript submitted to ACS Materials Letters. Copyright 

unassigned 

 

5.1 Background and Approach 

Redox active organic molecules (ROMs) are a focus for active material development due 

to their low cost, high solubility, and high redox potentials in non-aqueous electrolytes.12,43,45,49 

ROMs are conventionally divided into anolytes (negative charge carriers) and catholytes (positive 

charge carriers), with significant structural differences between the molecular families of each. 

Neutral molecules, stable radicals, and organic ions of either charge can serve as the parent 

molecules that become electrochemically charged. However, currently available ROMs lack the 

required long-term stability and cyclability to be used in practical devices.42,49,59,73,74,76,84  

Laboratory screening of active materials requires time consuming syntheses and 

exhaustive electrochemical characterization, limiting materials throughput. In silico screening of 

key active material properties such as redox potential, stability, and cyclability would streamline 

this process, but has proved difficult.48,53 The only generalized pre-synthetic prediction can be 

made for redox potential, which is linearly correlated to highest occupied/lowest unoccupied 

molecular orbital (HOMO/LUMO) energy calculated by density functional theory (DFT).57 

However, redox potential is one of the simplest properties to characterize, and greater benefit 

would be gained with correlations for stability and cyclability.  
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Two quantitative structure-property models were developed from active materials 

studies, one for pyridinium anolyte stability48 and one for metal acetylacetonate cyclability.53 

While these models are useful within their individual molecular families, they are not 

generalizable to other ROM or metal coordination complex families. Given the labor of synthesis 

and characterization, all existing data sets within each active material family are relatively small 

(10-30 molecules). The small dataset size makes it challenging to learn robust, generalizable, 

models, where instead overfitting is favored, and high uncertainty arises.  

Stability is the first property of interest for computational model building. While stability 

is not particularly relevant to cycling experiments, it governs the charge-storage retention of a 

redox flow battery (RFB). Of ROM families, only two have published stability data, the 

dialkoxyarenes discussed in this thesis and the pyridinium anolyte family.48 Molecules from these 

two families form the data set used for model building in this chapter. The generalized structures 

for the dialkoxyarene catholytes and pyridinium anolytes used in this work are shown in Scheme 

5.1.  

 

 

There are two types of models of particular use in ROM development, materials screening 

and property prediction. Materials screening focuses on identifying unviable materials and 

excluding them from further development, in this case electrochemically unstable active 

materials. These active materials are the first target for exclusion in the development pipeline to 

avoid wasted effort with their synthesis and characterization. Property prediction focuses on 

Scheme 5.1 Structures for (a) dialkoxyarene catholytes and (b) pyridinium anolytes. 
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accurately predicting properties of interest, in this chapter stability, and applying those models 

to candidate active materials for further validation.  

In this chapter, I introduce 3 models to assist in ROM development for improved stability. 

A generalized model for screening electrochemically unstable active materials based on the 

dialkoxyarene and pyridinium families was developed with Sure Independence Screening and 

Sparsifying Operator (SISSO).85 Two additional models for predicting dialkoxyarene stability were 

also developed with SISSO. In addition to establishing these models, this work is the first to use 

SISSO for prediction of experimental data on redox active molecules. 

 

5.2 Experimental  

5.2.1 ROMs 

 The dialkoxyarene catholyte and pyridinium anolyte families used in this chapter are the 

only ROM families with comprehensive published stability data. In total, 52 active materials were 

used in this chapter, although model development occurred with subsets of this data set when 

necessary. Of these 52 molecules, 33 were dialkoxyarene catholytes (23 stable molecules and 10 

unstable molecules, 21 from ref. 76, nine from ref. 60, one from ref. 86,86 and two introduced 

here). These molecules were split into Scheme 5.2 and Scheme 5.3 based on structure, and their 

names, functional groups, and stability (if measured) are presented in Tables 5.1 and 5.2 

respectively. Stability data for the twenty-three stable DMBs is presented in refs. 8 and 10. 19 

pyridinium anolytes (P1 to P18 from ref. 48 and unstable P19) are shown in Scheme 5.4 and their 

names, functional groups, and stability are presented in Table 5.3. The stability data for 

dialkoxyarenes was measured at room temperature in acetonitrile electrolytes, while the 

pyridinium stability data was measured at 70 °C in acetonitrile electrolytes. Unstable molecules 

were identified by electrochemical reversibility in cyclic voltammetry. The unstable species have 

a half-life in the charged state shorter than 1-10 s, which is the typical time for the potential 

sweep during the measurement of the redox current. 

 

5.2.2 Density Functional Theory 
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 Density functional theory (DFT) was used to calculate descriptors for the investigated 

active materials. Calculations were performed using Gaussian 09 suite for the parent molecules 

and their charged states, both in the gas phase and in a solvation model based on density (SMD) 

model.87 Molecular descriptors included orbital energies, dipole moments, ionization energies, 

and steric parameters. Sterimol parameters were calculated from optimized geometries in 

Sterimol.88 Computing resources were provided by UM Advanced Research Computing. 
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Molecule Alternate Names R1 R2 𝒕𝟏
𝟐

 

Q1 DDB, DiMe Me Me 26.5 

Q2 MeEt Me Et 365.2 

Q3 MeiPr Me iso -Pr 213.5 

Q5 MeBn Me Bn 5.6 

Q6 DiEt Et Et 208 

Q7 DiiPr iso -Pr iso -Pr 312.9 

Q9 DiBn Bn Bn 10.4 

Q10 MesBu Me sec -Bu 19.2 

Q11 DisBu sec -Bu sec -Bu 23.7 

Q12 MePr Me n -Pr 86.3 

Q13 DiPr n -Pr n -Pr 248.6 

C1 DBBB, DiEO C2H4OMe C2H4OMe 26.1 

C2 MeEO Me C2H4OMe 162.5 

C3 Me(EO)2 Me (C2H4O)2Me 189.8 

C4 Di(EO)2 (C2H4O)2Me (C2H4O)2Me 13.6 

F1 FMe Me CH2CF3 13.3 

F2 FEt Me CH2C2F5 197.4 

F3 FBn Me CH2C6F5 71 

F4 DiFMe CH2CF3 CH2CF3 275.8 

F5 DiFEt CH2C2F5 CH2C2F5 106.6 

F6 DiFBn CH2C6F5 CH2C6F5 9.1 

C23  OSO2CF3 OSO2CF3 Unstable 

 

Table 5.1 Name, substituting groups, and experimentally measured half-lives of the Scheme 
5.2 dialkoxyarenes. 

 

Scheme 5.2 Structure for the dialkoxyarene catholytes in Table 5.1. 
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Molecule R1 R2 R3 R4 𝒕𝟏
𝟐

 

C7 Me H H Me 15.3 

C8 Me Me H H 42.5 

DMB H H H H Unstable 

JH0 Me H H H Unstable 

JH3 Me Me Me H Unstable 

JH4 Me Me Me Me Unstable 

JH6 Me H Me H Unstable 

JH7 NO2 H H H Unstable 

JH8 OAc H H H Unstable 

C21 (iPr2)PO F (iPr2)PO F Unstable 

C22 Me Me Me Me Unstable 

 

  

Table 5.2 Name, substituting groups, and experimentally measured half-lives of the Scheme 
5.3 dialkoxyarenes. 

 

Scheme 5.3 Structures for the dialkoxyarenes catholytes in Table 5.2. 
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Molecule R1 R2 𝒕𝟏
𝟐

 

P1 Me Ph 1.47 

P2 Me p -C6H5OMe 1.06 

P3 Me p -C6H5Me 0.91 

P4 Me p -C6H5Cl 10.2 

P5 Me o -C6H5Me 3.38 

P6 Me Ph 41.98 

P7 p -C6H5CF3 Ph 132.09 

P8 Et Ph 2.68 

P9 Iso -Pr Ph 15.97 

P10 tert -Bu Ph 106.24 

P11 Me Me 1.47 

P12 tert -Bu Me 25.16 

P13 Me Mes 26.92 

P14 p -C6H5OMe Ph 31.73 

P15 o -C6H5Me Ph 392.92 

P16 o,o’ -C6H4Me2 Ph 1311.19 

P17 Et - 163.73 

P18 Me - 12.72 

P19 Me OMe Unstable 

 

  

Table 5.3 Name, substituting groups, and experimentally measured half-lives of the Scheme 
5.4 pyridiniums. 

 

Scheme 5.4 Structures for the pyridinium anolytes in Table 5.3. 
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5.2.3 Sure Independence Screening and Sparsifying Operator 

 SISSO is an algorithm that identifies low-dimensional a mathematical model for a property 

of interest, with a focus on being able to handle large, correlated feature spaces and sparse data 

sets. The limited number and size of ROM data sets and the complexity of stability and cyclability 

prediction make SISSO ideal for model building in this thesis. A full description of the SISSO 

algorithm and feature space construction can be found at ref. 85. SISSO constructs its feature 

space by applying mathematical operators recursively on the selected set of provided features 

while maintaining the dimensionality of the original descriptors. Basic arithmetic operations, the 

modulus, and the square root were used for all models in this chapter. A graphical representation 

of SISSO’s construction of the feature space is shown in Figure 5.1.  

 

 

Figure 5.1 SISSO construction of its feature space. Mathematical operators are recursively 
applied to the initial feature space, rapidly increasing the total number of descriptor 
combinations while maintaining dimensionality. For this example, 𝑥 and 𝑦 are variables with 
different dimensionality, limiting possible combinations. 
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With the feature space constructed, sure independence screening (SIS) is then performed to 

return the subset of the feature space that best correlates with the target property. With the 

new feature space subset, Sparsifying Operator (SO) finds the best n-dimensional model for the 

subset, if no model is found SIS and SO are run recursively to find subsequently higher dimension 

solutions.  

SISSO can be used for classification or regression model development. For supervised 

classification, SISSO separates materials into one of two groups, uses the binary sort overlap to 

determine the optimal model. For supervised regression, SISSO uses goodness of fit for model 

selection. One of the models presented in this chapter used SISSO for classification, the other 

two were regression models. SISSO also has the flexibility to operate as single-task or multi-task 

learning, where materials are grouped and a model developed in parallel.89 A full description of 

multi-task SISSO can be found at ref 85. Computing resources were provided by UM Advanced 

Research Computing. 

 

5.3 Results and Discussion 

5.3.1 A Binary Classifier for Generalized ROM Stability 

 In the development pipeline, many ROMs are designed, synthesized, and finally 

characterized by CV before they are identified as unstable. Targeting these unstable active 

materials presents the largest potential benefit in increasing the rate of viable ROM synthesis. 

While a screening model for a single ROM family would still be beneficial, a generalized model is 

ideal. A generalized model would have to be validated with stability data from a variety of ROM 

families, which is currently unavailable. However, a common model for even two active material 

families has not been developed.  

 All 52 ROM active materials in Tables 5.1 – 5.3 were used for this model, divided into 

“stable” and “unstable” categories by their measured stability. Single-task SISSO returned the 

model parameter 𝜉 defined as 

𝜉 =
𝐿𝜖

𝑆𝐸(𝑆𝐸 + 𝐼𝐸)3
 

Where 𝐿 is the Sterimol length (across the ether oxygens for dialkoxyarenes and across the 

nitrogen and carbonyl carbon for the pyridiniums, in nm),88 𝜖 is the orbital energy for the highest 
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occupied (for a catholyte) or the lowest unoccupied (for an anolyte) Kohn-Sham molecular orbital 

(in Hartree), 𝑆𝐸 is the solvation energy, and 𝐼𝐸 is the ionization energy (both in Hartee, both of 

the uncharged molecule). 𝜉 classified the 52 active materials with perfect accuracy and is shown 

in Figure 5.2. 

The formula for 𝜉 suggests a balance of several factors affecting stability. The numerator 

provides a positive correlation between higher redox potentials, greater steric effects, and 

chemical stability, in agreement with the pyridinium stability correlation.48. For the 

dialkoxyarenes, this hinderance prevents the initial O-dealkylation reaction, while the 

pyridiniums are likely to experience π-merization with two pyridiniums face to face. The 

denominator suggests that lower solvation and ionization energies improve stability, and 

indicates the involvement of solvolysis, which is one of subsequent dialkoxyarene reactions after 

O-dealkylation.83,90 The presence of ionization energy on stability is unclear, as there are no 

established relationships between ionization energy and stability. Within the ROM families 

themselves, there is no correlation between ionization energy and stability. The presence of 

ionization energy may be a divider between the two ROM families, as the pyridinium anolytes 

have lower ionization energies than the dialkoxyarenes, which is reflected in 𝜉 also dividing the 

stable ROMs.  

 

5.3.1.2 Cross Validation 

With any statistical model, validation is necessary to prove the robustness of the model 

as a predictive tool and to remove the possibility of SISSO overfitting to the data set. Because 𝜉 

is a two-family model, validation is necessary to determine if 𝜉 is describing a common molecular 

descriptor of stability or is just a statistical anomaly. To do so, the 52 molecules were partitioned 

into training and validation data sets, and SISSO was then trained on the training set and its 

performance was validated on the validation set. This method, holdout validation, can be 

repeated with multiple random partitions of the initial data set in Monte Carlo cross validation 

(MC-CV). With SISSO, this can result in a new term selected for each partition. If the MC-CV, on 

average, classifies the validation set with high accuracy and the new model, 𝜉′, is statistically 
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similar to 𝜉, then SISSO is identifying molecular factors affecting stability and has use as a 

predictive tool.  

To determine the statistical similarity of 𝜉 and 𝜉′, the Pearson correlation coefficient (PCC, 

𝜌) between the two data sets was used 

 
𝜌𝜉,𝜉′ =  

𝑛 ∑ 𝜉𝑖𝜉𝑖
′ − ∑ 𝜉𝑖 ∑ 𝜉𝑖

′

√𝑛 ∑ 𝜉𝑖
2 − (∑ 𝜉𝑖)2√𝑛 ∑ 𝜉𝑖

′2
−(∑ 𝜉𝑖

2)2

 
(5.1) 

  

where 𝑛 is the sample size and 𝜉𝑖  and 𝜉𝑖
′ are the individual sample points. If 𝜉 and 𝜉′ are identical, 

𝜌 = 1, if there is no correlation, 𝜌 = 0, and if there is a perfect negative correlation 𝜌 = −1.  

 The initial MC-CV for the model was performed with a 42/10 training/validation set split, 

maintaining the ratio of stable and unstable ROMs in each set (9/2 training/validation set split of 

unstable molecules). A histogram for 100 partitions is shown in Figure 5.3. 
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Figure 5.2 𝜉 classification of the 52 dialkoxyarene catholytes (blue) and pyridinium anolytes 
(red) as unstable or stable above or below the dashed line respectively. Experimentally 
unstable molecules are given faded colors.  
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 Figure 5.3 shows most validation cases have 𝜉′ close to 𝜉, with a sharp decrease in the 

number of models towards zero. This suggests that SISSO is identifying an unobvious common 

feature of the two ROM families describing stability. The prediction accuracy for the validation 

sets in these 42/10 partitions averaged to 93%, confirming the use of 𝜉 as a predictor. A second, 

larger, validation partition of 27/25 was made to further validate the accuracy of the model. Even 

with ~50% of the data in the validation set, the models identified in MC-CV had a 90% prediction 

accuracy. This further confirms the validity of 𝜉 as a predictive and generalizable model for ROM 

stability screening.  

 

 

 

 

Figure 5.3 A histogram of 100 absolute PCCs of 𝜉 and 𝜉′ for the 42/10 MC-CV partitions. 
Clustering of the values near one indicates that the models identified by SISSO do have 
chemical meaning for ROM stability. 
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5.3.1.3 TEMPO Family Prediction 

 While there are no other complete ROM families to validate 𝜉 with, (2,2,6,6-

tetramethylpiperidin-1-yl)oxyl (TEMPO) and 4-acetomido TEMPO (ATEMPO) shown in Scheme 

5.5, are both stable radicals and stable by CV. 

 

 

𝜉 can be further validated with TEMPO and ATEMPO, shown in Figure 5.4. 

Both TEMPO and ATEMPO are classified by 𝜉 as unstable despite their excellent 

experimental stability. While this result is disappointing, it in unsurprising as 𝜉 was not trained 

on any TEMPO family catholytes. With TEMPO and ATEMPO added to the data set for a total of 

54 molecules, SISSO ran to find an updated form of the model, returning 𝜉𝑇𝐸𝑀𝑃𝑂 

𝜉𝑇𝐸𝑀𝑃𝑂 = (
𝐼𝐸

𝐿
−

𝑆𝐸

𝐵1
)

1

𝐼𝐸 + 𝜖
 

Where 𝐵1 is the Sterimol height out of the ring for all active materials. 𝜌𝜉,𝜉𝑇𝐸𝑀𝑃𝑂
= −0.958, and 

while 𝜉 did not correctly classify TEMPO and ATEMPO, there is almost perfect negative 

correlation between 𝜉 and 𝜉𝑇𝐸𝑀𝑃𝑂. This further supports the conclusion that SISSO is identifying 

an unobvious descriptor for electrochemical stability and that 𝜉 is identifying a generalizable 

stability parameter. 

 

Scheme 5.5 Structures of TEMPO and ATEMPO. Both molecules are stable, 
electrochemically active radicals.  
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5.3.2 Dialkoxyarene Stability Predictions 

 While screening for electrochemically unstable molecules led to the development of a 

fairly simple model, stability prediction is more difficult. The success and simplicity of the stability 

prediction for pyridinium anolytes seems to be an exception rather than the trend. This is 

surprising given the nature of dialkoxyarene cycling in alkylammonium salts, which had a strong 

correlation between steric hinderance and cycle life (𝑁80). In contrast, the dialkoxyarene half-

lives show no correlation with any steric parameters. Q2, which is the most stable cation, is the 

second least sterically hindered dialkoxyarene in any of the three dimensions, while Q11, the 

longest cycling molecule from Chapter 2, has a cation half-life of less than 24 hours. As the 

stabilities of the dialkoxyarenes seem random, descriptive models are more difficult to find and 

more complex, with a greater possibility of overfitting. 

 Initial attempts to develop a stability model from the 23 stable dialkoxyarenes in Tables 

5.1 and 5.2 were unsuccessful. Of the models that were developed with a reasonable R2 value, 

none passed the simplest cross-validation case, leave-one-out cross-validation (LOOCV), implying 

that all the models were overfitted. LOOCV is a subset of leave-p-out cross validation, where a 

Figure 5.4 𝜉 classification of a selected group of dialkoxyarene catholytes (blue), pyridinium 
anoyltes (red), and TEMPO family catholytes (orange) as unstable or stable above or below 
the dashed line respectively. Experimentally unstable molecules are given faded colors. Both 
TEMPO and ATEMPO are stable but are not classified properly by 𝜉. 
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subset p is removed from the original data set to be used as the validation set. LOOCV uses p = 

1, which for 23 total samples is equivalent to removing ~4% of the training set.  

 Despite the lack of a robust model, the SISSO terms which correlate best to the target 

property, in this case 𝑡1

2

, can still provide insight into the most important descriptors. The best 1, 

2, and 3-dimensional properties selected by SISSO (𝑐1𝐷 , 𝑐2𝐷 , 𝑐3𝐷) were 

𝑐1𝐷 =  
1

𝑆𝐸+
 

𝑐2𝐷 =  
𝐵5

𝑆𝐸+
3 

𝑐3𝐷 =  
𝑆𝐸+(𝑆𝐸0 + 𝑆𝐸+)

𝐵5
 

Where 𝑆𝐸 is the solvation energy of the active species for the specified molecular charge (in 

Hartree) and 𝐵5 is the Sterimol width (measured from the ether oxygen axis, in nm). The presence 

of these three terms suggest that width out of the benzene ring and solvation energy are the 

most important factors for dialkoxyarene stability. The presence of solvation in these terms and 

the classification model in Section 5.3.1 suggests that the solvation environment has a significant 

effect on the stability of dialkoxyarenes. This also has implications for cycling experiments, which 

have so far been almost exclusively performed in acetonitrile. Further investigation of the 

dialkoxyarenes in other non-aqueous solvents may be needed to optimize their electrolytes for 

stability. 𝐵5 confirms the established hypothesis that steric hinderance is significant for 

maintaining ROM stability, but typically height of the ROM is more significant than width.48 

 

5.3.2.1 Stability Prediction of Hydrocarbon-Substituted Dialkoxyarenes 

 Overfitting of the dialkoxyarene predictions may be due to insufficient structural 

similarities in the 23-molecule training set. Removing even one structurally unique active 

material would then change the entire model. Selecting a narrower subset of the dialkoxyarenes 

does further reduce the size of the training set, but may prevent overfitting. The first subset 

selected were the molecules Q1 – Q13 in Table 5.1, the hydrocarbon-substituted structures. 

SISSO returned a fairly simple model for these structures 
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𝑡1
2

=  𝐴 ×
1

𝐵1 × 𝐿𝑈𝑀𝑂
+ 𝐵 ×

𝜇0

𝜇0 − 𝜇+
+ 𝐶 ×

𝜇+

|𝐿𝑈𝑀𝑂 − 𝐿𝑈𝑀𝑂𝑆|
+ 𝐷 

Where 𝐵1 is the Sterimol height (measured from the plane of the benzene ring, in nm), 𝐿𝑈𝑀𝑂 is 

the lowest unoccupied Kohn-Sham molecular orbital (in Hartree), and 𝜇 is the absolute dipole 

moment for subscript molecular charge (in Debye). 𝐴 =  −3.54, 𝐵 =  −218, 𝐶 =  −0.0223, and 

𝐷 =  −101. This formula for 𝑡1

2

 suggests that solvation energy does not play a significant role in 

the stability of these dialkoxyarenes, instead 𝐿𝑈𝑀𝑂 and dipole moments are most important. 

While the significance of the LUMO is unknown, dipole moments are an indirect measure of both 

symmetry and size. From the presence of 𝐵1 and the dipole moment, steric hinderance is a 

significant factor on the stability of the hydrocarbon-substituted dialkoxyarenes, matching 

observations from the general ROM screening model and pyridinium stability.48 A parity plot for 

this model is shown in Figure 5.5.  

Due to the limited size of the data set, LOOCV was used to assess the robustness of the 

model. Of the 11 cross validation cases, nine returned the same model, including the exclusion 

of Q2, the most stable molecule. The two LOOCV cases which did not cross-validate were 

exclusion of Q1 and Q5. Q5 is the least stable molecule and the inability to cross validate with 

the lowest 9% of the data removed is not surprising. Q1’s inability to cross validate is not 

dependent on the exclusion of extreme data and must have structural significance. This inability 

to cross validate is likely due the lack of an asymmetric pair for Q1, as the base molecule for the 

dialkoxyarene family. Every other hydrocarbon-substituted dialkoxyarene is part of an 

asymmetric/symmetric pair, even if one is excluded in cross-validation, the other still provides 

necessary descriptors for SISSO to find the original model. 
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5.3.2.2 Multi-Task Stability Prediction of Dialkoxyarenes 

 The lack of similarity between the descriptors for dialkoxyarene stability and the 

hydrocarbon substituted dialkoxyarene stability suggests that a common stability model cannot 

be developed with the current data set. However, with the success of the hydrocarbon 

substituted dialkoxyarene model, multi-task SISSO modeling may be suitable. To enable multi-

task learning, the 21 dialkoxyarenes in Table 5.1 were divided into three sub-families by 

substituting groups, hydrocarbons, poly-ethylene oxides (PEO), and fluorinated hydrocarbons. 

SISSO was tasked with finding shared stability descriptors for the three sub-families in parallel, 

the descriptors are given unique coefficients for each sub-family to complete the model. The 

general form of the model returned by SISSO is 

𝑡1
2

= 𝐴 ×
𝐵1,𝑠ℎ𝑜𝑟𝑡 + 𝐵1,𝑙𝑜𝑛𝑔

2𝐵1,𝑠ℎ𝑜𝑟𝑡𝐵1,𝑙𝑜𝑛𝑔𝐿𝑈𝑀𝑂𝑆
+ 𝐵 ×

𝐿𝑈𝑀𝑂

𝐿 − 2𝐵5
+ 𝐶 ×

𝜇+
3

〈𝑅2〉9
+ 𝐷 

Figure 5.5 Parity plot of experimental and predicted 𝑡1

2

 of hydrocarbon substituted 

dialkoxyarene catholytes. 
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Where 〈𝑅2〉 is the electronic spatial extent of the neutral molecule (in 104 a.u.). Table 5.4 

contains the active materials and coefficients for each sub-family of dialkoxyarenes. 

 

Sub-Family Active Materials 𝑨 𝑩 𝑪 𝑫 

Hydrocarbons Q1 – Q13 −2.22 −1.66 × 104 −0.635 −139 

PEO C1 – C4  −35.2 1.64 × 105 0.307 −3770 

Fluorinated F1 – F6 −4.89 −170 −0.0121 −8.30 

 

Molecular geometry plays a significant role in the model through Sterimol parameters and a term 

for the electronic spatial extent. Similar to the hydrocarbon-only model, LUMO energy and the 

dipole moment as a proxy for symmetry seem to be significant, although the physical meaning of 

the LUMO is still unknown. A parity plot for all three sub-families is shown in Figure 5.6. 

Due to the limited size of the data set and the constraints of multi-task SISSO, which 

minimizes goodness of fit for each sub-task weighted equally, cross-validation was unsurprisingly 

unsuccessful. Even with LOOCV only excluding one active material, the size of each sub-family 

prevented SISSO from prediction. Because of this, the multi-task model reported cannot be 

claimed to be robust, but more active materials are needed for a well-supported conclusion.  

 

Table 5.4 Molecules and coefficients for the three dialkoxyarene sub-families. 
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5.4 Conclusions 

 In this Chapter, SISSO was used to find molecular descriptors for ROM stability. Three 

separate physics-based models were developed, a generalized ROM screening model, a 

predictive model for hydrocarbon-substituted dialkoxyarenes, and a predictive, multi-task 

model for dialkoxyarenes. The screening model allows researchers to screen unstable ROMs in 

the dialkoxyarene catholyte and pyridinium anolyte family. The two dialkoxyarene models are 

the first stability models developed for the dialkoxyarene family. All of the models developed 

showed the importance of steric properties on stability, although these varied by ROM family. 

For the dialkoxyarenes in particular, 𝐿𝑈𝑀𝑂 energy, sterimol height out of the benzene ring, 

and symmetry were the best individual descriptors for stability. Most importantly, this work 

Figure 5.6 Parity plot of experimental and predicted 𝑡1

2

 of hydrocarbon substituted 

dialkoxyarene catholytes. 
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shows that there is commonality between stable and unstable molecules in the three ROM 

families investigated, as well as demonstrates how physics-based models can be constructed 

for ROMs with SISSO. Overall, this work introduces three models for design of stable active 

materials and identifies the molecular descriptors impacting ROM stability.  
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Chapter 6 

 

Cyclability predictions for Catholyte Redox Active Organic Molecules 

 

6.1 Background and Approach 

The most important characteristic for redox active organic molecules (ROMs) is their 

cyclability, or their ability to cycle reversibly over extended time frames. However, no ROM has 

been developed with the required cyclability to be used in beyond the laboratory 

scale.42,49,59,73,74,76,84 Developing new ROMs to meet cyclability targets requires time consuming 

syntheses and exhaustive electrochemical characterization, limiting materials throughput. 

Ideally, researchers would be able to use in silico screening of cyclability before synthesizing and 

characterizing ROMs.  

Computational calculation of redox potentials and the estimation of redox potentials 

from highest occupied/lower unoccupied molecular orbital (HOMO/LUMO) energies is well 

established. Reasonable stability predictions exist for the pyridinium anolyte family and a 

generalized ROM prediction in Chapter 5 of this thesis.48 For cyclability, only one model exists, 

which encompasses a subset of metal acetylacetonates.53 This model related the cycle life (𝑁80) 

of metal acetylacetonates to the HOMO orbital density on the metal center, shown in Figure 6.1.  

The same limitations for developing stability predictions, such as difficulties taking 

experimental data, small data sets, and a small number of data sets, are amplified for cyclability. 

Only one complete set of ROM 𝑁80 data has been published,76 with most papers only reporting 

their best results. In addition, many of the reported results intentionally avoid showing material 

decay, providing only an artificial lower bound on 𝑁80. These limitations are compounded by the 

complexities and limitations of bulk electrolysis (BE) experiments discussed in Chapter 3. While 

stability is a relatively controlled measurement, cyclability introduces interactions between the 



96 
 

active material and the electrodes, electrolyte, and separators, among others. Differences in 

experimental conditions and supporting salt choices can make comparing literature experiments 

pointless with no understanding of these effects on their 𝑁80. These limitations further decrease 

the amount of data available, making cyclability modeling more challenging. 

 

 

Figure 6.1 Parity plot of experimental and predicted cycle life of metal acetylacetonates with 
more than 50% of their HOMO orbital density on the metal.53 

 
 

The 𝑁80 data used in this chapter are the BE cells which have been previously discussed 

in Chapters 2-4, the suite of dialkoxyarene active materials and (2,2,6,6-Tetramethylpiperidin-1-

yl)oxyl (TEMPO). Cyclability modeling is less concerned with screening and more concerned with 

prediction, as most electrochemically reversible molecules cycle to some degree and the range 

of 𝑁80 for ROMs is not large enough to dismiss molecules under a specific cutoff.  

 In this chapter, I introduce nine models for dialkoxyarene 𝑁80 developed with Sure 

Independence Screening and Sparsifying Operator (SISSO). The first two are simple models for 
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dialkoxyarene cycling in TBAPF6 and LiTFSi based on the insights gained in Chapter 2 for improving 

𝑁80. The remainder were developed from the cycling matrix data in Chapter 3.  

 

6.2 Experimental 

6.2.1 ROMs 

 Due to the limitations of cyclability data from literature sources, all 𝑁80 data used in this 

chapter was taken from the BE experiments in Chapters 2 and 3. Chapter 2 data consisted of nine 

dialkoxyarene catholytes cycled at 5 mM active material, 1 C rate, with 500 mM TBAPF6 in 

acetonitrile (MeCN). The names, structures, and 𝑁80 of these dialkoxyarenes, reproduced from 

Table 2.2 are shown in Table 6.1. Chapter 3 data consisted of the BE cycling matrix for 1,4-Di-tert-

Butyl-2,5-dimethoxybenzene (Q1, DDB), 2,5-Di-tert-butyl-1,4-bis(2-methoxyethoxy)benzene 

(DBBB), and TEMPO at a variety of active material concentrations, cycle rates, and with 6 different 

supporting salts. Structures for DDB, DBBB, and TEMPO are shown in Scheme 6.1, reproduced 

from Scheme 3.1  

 

 

𝑁80 data for the cycling matrix can be found in Tables 3.2 – 3.4. Additional 𝑁80 data for DBBB and 

the three liquid dialkoxyarenes, shown in Table 6.2 with their names, structures, and 𝑁80, were 

used as a validation set for the simple dialkoxyarene model. 

  

Scheme 6.1 Structures of DDB, DBBB, and TEMPO. 
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Molecule Q1 (DDB) Q2 Q3 
Structure 

 

  

𝑵̅𝟖𝟎 68 60 50 

Molecule Q5 Q6 Q7 
Structure 

 
  

𝑵̅𝟖𝟎 29 53 73 

Molecule Q9 Q10 Q11 
Structure 

 

 

 

𝑵̅𝟖𝟎 18 55 127 

 

 

 

Molecule C2 (ANL-8) C3 (ANL-9) C4 (ANL-10) 
Structure 

  

 

𝑵𝟖𝟎 51 51 59 

Table 6.1 Names, structures, and cycle lives from BE experiments of the dialkoxyarene 
catholytes originally presented in Chapter 2. Cells were cycled at 5 mM active material, 1 C 

cycle rate, in TBAPF6/MeCN. 

Table 6.2 Names, structures, and cycle lives from BE experiments of the liquid dialkoxyarene 
catholytes. 
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6.2.2 Density Functional Theory 

 Density functional theory (DFT) was used to calculate descriptors for the investigated 

active materials. Calculations were performed using Gaussian 09 suite for the parent molecules 

and their charged states (using B3LYP/6-31g(d), both in the gas phase and in a solvation model 

based on density (SMD) model.87 Molecular descriptors for SISSO included orbital energies, 

dipole moments, ionization energies, and steric parameters. Sterimol parameters were 

calculated from optimized geometries in Sterimol.88 Computing resources were provided by UM 

Advanced Research Computing. 

 

6.2.3 Sure Independence Screening and Sparsifying Operator 

SISSO quantitative single and multi-task were used to construct the 9 models presented 

in this chapter. The SISSO feature space was constructed with basic arithmetic operations, the 

modulus, and the square root. SISSO selected models from the identified feature space with the 

least squared error. Computing resources were provided by UM Advanced Research Computing. 

 

6.3 Results and Discussion 

6.3.1 A Simple Model for Dialkoxyarene 𝑁80 with a TBAPF6/MeCN Electrolyte 

 Chapter 2 introduced a new set of dialkoxyarene catholytes, characterized them with BE, 

and identified the descriptors which correlated to 𝑁80. As a model for dialkoxyarene cyclability 

has yet to be developed, this data set provides an opportunity to do so. Ideally, this model would 

not be limited to a single supporting salt and include more than 9 data points, but reliable, 

transferable 𝑁80 data does not exist.  

 The nine dialkoxyarene molecules in Table 6.1 were used for this model. Single-task SISSO 

returned the model 

𝑁80 = 𝐴 ×
𝐵1,𝑠ℎ𝑜𝑟𝑡

𝑆𝐸
+ 𝐵 ×

𝐵1,𝑙𝑜𝑛𝑔

𝜇0
+ 𝐶 

where 𝐵1 is the sterimol height out of the benzene ring for the long and short functional groups 

(in Å). If the dialkoxyarene was symmetric, these values are identical. 𝑆𝐸 is the solvation energy 

of the neutral molecule (in Hartree) and 𝜇 is the absolute dipole moment at the specified charge 
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(in Debye) in the SMD solvent model (MeCN). 𝐴 =  −0.788, 𝐵 =  −0.00199, and 𝐶 =  −30.1. A 

parity plot of predicted 𝑁80 vs experimental 𝑁80 is shown in Figure 6.2 with the maximum 

absolute error (MAE) inset.  

 The formula for 𝑁80 suggests steric factors are the most significant component, 

confirming the hypothesis from Chapter 2. The separation of the steric parameters of the two 

functional groups and the presence of the dipole moment both suggest that symmetry is also 

significant. The data from Table 6.1 shows that Q7 and Q11, the more cyclable molecules, are 

both symmetric and out-cycle their asymmetric counterparts. Revisiting the reaction in Scheme 

2.3, O-dealkylation can occur on either methoxy group, which necessitates a sterically hindered 

functional group on each. Similar to the model for general ROM screening, 𝑆𝐸 is significant, 

possibly due to the solvolysis reaction that occurs after O-dealkylation.  

 

 

Figure 6.2 Parity plot of experimental and SISSO predicted cycle life of dialkoxyarene 
catholytes cycled in a TBAPF6/MeCN electrolyte at 5 mM active material concentration and 1 
C rate. 
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6.3.1.1 Cross Validation 

 Due to the very limited size of the data set, the only reasonable cross-validation strategy 

is leave-one-out (LOOCV), partitions the data set into a validation set of size one and a training 

set with the remainder of the data. Due to the nature of the data set used for this model 

development, cross-validation is not expected to be perfect. Q11 is almost an outlier in the data, 

and most of the data is clumped around 𝑁80 = 60. Of the nine LOOCV cases, six returned the 

same model and seven correctly predicted the validation set. The two cases where predictions 

failed were with Q7 and Q11 excluded. These two molecules are symmetric and the most 

sterically hindered of the dialkoxyarenes and correspondingly have the second highest and 

highest 𝑁80 respectively. However, the models returned by SISSO in these cross-validation cases 

were highly similar to the original, maintaining the presence of 𝐵1 and 𝑆𝐸. The LOOCV case which 

did not return the exact same model but still was predictive had Q1 removed from the training 

set. Similar to the model for hydrocarbon stability, Q1 will not cross-validate, most likely due to 

the lack of an asymmetric pair molecule.  

 

6.3.1.2 Liquid Dialkoxyarene Validation 

 With a seemingly robust model for the dialkoxyarenes in Table 6.1, an attempt was made 

to validate it with four additional experiments for poly-ethylene oxide (PEO) substituted 

dialkoxyarenes, DBBB, C2, C3, and C4. Unfortunately, the model underpredicts 𝑁80 by an average 

of 24, or 45% for these four molecules due to their increased solubilities (and consequently 

greater solvation energies). Adding these molecules to the training set introduced much greater 

complexity into the SISSO selected model, indicative of a separate descriptor for their 𝑁80 that 

SISSO could not reconcile. 

 

6.3.1.3 The Simple Model for a LiTFSi/MeCN Electrolyte 

 With the success of the simple model for the TBAPF6/MeCN electrolyte, an attempt was 

made to identify a model for the same active materials in a LiTFSi/MeCN electrolyte using the 
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data taken at Argonne National Laboratory (ANL) in Figure 2.8. Single-task SISSO identified a 

similarly complex model 

𝑁80 = 𝐴 ×
𝑆𝐸+

𝑆𝐸
+ 𝐵 ×

𝜇+

𝐿𝑈𝑀𝑂𝑠
+ 𝐶 

Where 𝑆𝐸+ is the solvation energy of the cation active material (in Hartree) and 𝐿𝑈𝑀𝑂𝑆 is the 

lowest unoccupied Kohn-Sahm molecular orbital energy in the SMD solvent environment (in 

Hartree). 𝐴 =  131, 𝐵 =  0.428, and 𝐶 =  −362. A parity plot for this model is shown in Figure 

6.3. In addition to a greater root-mean-square error than the TBAPF6/MeCN model, this 

LiTFSi/MeCN model did not cross-validate with LOOCV, likely due to the inability of the 

descriptors to adequately capture Li+ coordination effects. While this model is of no particular 

robustness, it confirms the most significant descriptors for predicting dialkoxyarene cyclability. 

Even without a predictive model, these descriptors can be used as guidelines for developing more 

cyclable dialkoxyarenes. 

 

Figure 6.3 Parity plot of experimental and predicted cycle life of dialkoxyarene catholytes 
cycled in a LiTFSi/MeCN electrolyte at 20 mM active material concentration and 3 C rate. 
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6.3.2 Cyclability Models for Varied Experimental Conditions and Supporting Salts 

 Chapter 3 performed a thorough investigation of active material concentration, cycle 

rate, and supporting salt choice in BE experiments. As trends for 𝑁80 could not be observed, 

developing models with SISSO provides a second opportunity to identify trends in this data. 

Alternatively, this attempt may prove futile, as supporting salt effects dominated the BE 

experiments. Due to the multi-variate nature of the data set, the 66-element data set from Tables 

3.2 – 3.4 was partitioned along active materials, supporting salts, and experimental conditions to 

form training sets. Due to the supporting salt interactions, six additional supporting salt 

descriptors were added to the descriptor set from a literature review of refs. 15-17.32,33,91 Only 

descriptors which were measured for all six of the investigated supporting salts could be used, of 

which only six were found. The limited number of descriptors means that differences between 

supporting salts signaled by these descriptors may be the result of unknown factors that are not 

in the descriptor set. Therefore, the presence of these descriptors in the models presented in this 

chapter may not have physical meaning. These descriptors were ionic radii, limiting molar 

conductivities, the transfer activity coefficient of the positive supporting salt ion from water to 

MeCN, and the standard Gibbs energy of transfer of the positive supporting ion from water to 

MeCN.  

 

6.3.2.1 General Models for Catholyte ROM Cyclability 

 Similar to the screening model for stability developed in Chapter 5, a general model for 

cyclability would be the ideal tool for assisting molecular design efforts. With the data from 

Chapter 3, this model would hypothetically be able to predict cyclability for a given active 

material at specific experimental conditions. However, due to its complexity, it is difficult to even 

develop trends for the data presented in Chapter 3. The numerous active material-supporting 

salt interactions and dialkoxyarene cells which terminated early are likely introducing enough 

variance into the data to obscure any trend that may exist. SISSO was unable to identify a general 

model form for 𝑁80. However, the best correlating terms to 𝑁80 still provide some insight into 

the most important descriptors. The best 1, 2, and 3-dimensional properties selected by single-

task SISSO (𝑐1𝐷, 𝑐2𝐷, 𝑐3𝐷) were 
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𝑐1𝐷 =  
𝐿

𝑟+
 

𝑐2𝐷 =  
𝐿

𝑟+𝐶
 

𝑐3𝐷 =  
𝐶 𝑅𝑎𝑡𝑒

𝑟+𝐶 × 𝐿𝑈𝑀𝑂
 

Where 𝐿 is the sterimol length across either the ether oxygen axis for dialkoxyarenes or through 

the oxygen and 4-position for TEMPO (in Å), 𝑟+ is the ionic radius of the supporting salt cation (in 

nm), 𝐶 is the active material concentration, 𝐶 𝑟𝑎𝑡𝑒 is the experimental cycle rate, and 𝐿𝑈𝑀𝑂 is 

the lowest unoccupied Kohn-Sahm molecular orbital energy (in Hartree). From these three terms, 

it is apparent that supporting salt choice is as impactful as active material selection, while active 

material concentration and cycle rate are also significant. This confirms that supporting salt 

choice is the most impactful variation of those tested in Chapter 3, although all are significant. 

The benefit of Li+ coordination is also reflected in these terms through the ionic radius of the 

supporting salt cation, which is an order of magnitude lower for Li+ than for the alkylammoniums. 

 For multi-task learning, the data was partitioned three separate ways, by active material, 

by salt, and by experimental condition. SISSO was once again unable to identify a common model 

for any partition of the data. SISSO’s selected best descriptors for each partition were also 

dominated by terms containing 𝐿, 𝑟+, 𝐿𝑈𝑀𝑂, 𝐶, and 𝐶 𝑟𝑎𝑡𝑒, confirming the significance of these 

terms on 𝑁80, but no overall relationship.  

 

6.3.2.2 Models at Individual Experimental Conditions 

 With the difficulty developing a general model for 𝑁80, further partitioning of the data set 

by individual experimental conditions was needed. These partitions would both reduce the 

number of terms in the data set and eliminate the presence of concentration and cycle rate from 

the model. With these partitions, models for the 20 mM active material, 1 C and 3 C rate models 

was identified. It is likely that the reduced impact of active material-supporting salt interactions 

at the higher active material concentration benefited model development. The SISSO identified 

model for the 20 mM active material, 1 C rate experiments is 
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𝑁80 = 𝐴 ×
𝛾+,𝑀𝑒𝐶𝑁

𝑟+𝑟−(𝐿𝑈𝑀𝑂 + 𝐿𝑈𝑀𝑂𝑆)
+ 𝐵 ×

𝛾+,𝑀𝑒𝐶𝑁

𝐵1
𝑟+

−
𝐿
𝑟−

+ 𝐶 ×
𝛾+,𝑀𝑒𝐶𝑁

Λ°−(𝐻𝑂𝑀𝑂𝑆 − 𝐿𝑈𝑀𝑂𝑆) − Λ°+𝐼𝐸𝑆

+ 𝐷 

Where 𝛾+,𝑀𝑒𝐶𝑁 is the log of the transfer activity coefficient of the positive supporting salt ion 

from water to MeCN, 𝑟− is the ionic radius of the supporting salt cation (in nm), 𝐵1 is the Sterimol 

height out of the benzene ring for the dialkoxyarenes and through the oxygen and 4-position for 

TEMPO (in Å), Λ° is the limiting ionic molar conductivity for the specified supporting salt ion (in S 

m2 mol-1), 𝐻𝑂𝑀𝑂𝑆 is the highest occupied Kohn-Sahm molecular orbital energy in the SMD 

solvent environment (in Hartree), and 𝐼𝐸𝑆 is the ionization energy of the neutral active material 

in the SMD solvent environment (in Hartree). 𝐴 =  −0.0227, 𝐵 =  −37.5, 𝐶 =  −28.7, 𝐷 = 143. 

Due to the increased complexity of this model, less can be gleaned from the descriptors than 

from the simple models. 

The presence of a significant number of supporting salt terms are likely due to the impact 

of Li+ coordination, which SISSO is modeling by the differences in supporting salt cation 

descriptors, with supporting salt anion descriptors to further differentiate the experimental data. 

Of the active material descriptors used in the model, the LUMO energy once again appears to be 

the most significant factor along with Sterimol properties. Due to the limitations of the data, this 

model represents a prediction for the lowest bound of 𝑁80, which can introduce some error for 

cross validation. A parity plot for this model is shown in Figure 6.4. 
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LOOCV of this model returned mixed results, with 8 out of the 15 possible validation cases 

succeeding. This is unsurprising with experiments that measure lower bounds and the unique 

active material-supporting salt interactions. Even with non-ideal cross-validation, this model still 

has use as the first predictor for cyclability at experimental conditions of 20 mM and 1 C. 

 The SISSO identified model for the 20 mM active material, 3 C rate experiments was more 

complex than those previously reported in this chapter 

𝑁80 = 𝐴 ×
𝑟−

4

𝑟−
𝑆𝐸

−
𝑟+

𝐿𝑈𝑀𝑂𝑆

+ 𝐵 × |
Λ°+

𝑆𝐸 + 𝐿𝑈𝑀𝑂𝑆
−

Λ°− − Λ°+

𝑆𝐸 − 𝐿𝑈𝑀𝑂
| + 𝐶 × (𝑟−Λ°−

2 + Λ°+|𝑟− − 𝑟+|)

+ 𝐷 

Where 𝐴 =  −34800, 𝐵 =  −0.0643, 𝐶 =  0.326, 𝐷 = −872. With the increasing complexity of 

the individual terms identified by SISSO, the individual descriptors in the model become less 

meaningful and overfitting becomes more likely. However, it appears that SISSO identifies 

Figure 6.4 Parity plot of experimental and predicted cycle life of DDB, DBBB, and TEMPO 
cycled at 20 mM active material concentration and 1 C rate. 
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supporting salt ionic radii and limiting molar conductivity as the best descriptors to differentiate 

the six supporting salts. Similarly, the LUMO energy appears for the fourth time in the models, 

the most important active material descriptor for 𝑁80, although the reason behind its significance 

is still unclear. A parity plot for the 20 mM 3 C model is shown in Figure 6.5. 

 

 

LOOCV of the 20 mM 3 C model returned a similar result to the 20 mM 1 C model, with 8 

out of 15 possible validation cases succeeding. Notably, LOOCV failed for all DBBB data points 

and succeeded for all TEMPO data points, suggesting that further partitioning of the data set by 

active material would lead to simpler and more robust models. With this restriction, developed 

models are no longer general models for ROM cyclability and more data is needed to assist the 

development of a general ROM model. 

   

6.3.3 Models for Individual Active Materials and Experimental Conditions  

Figure 6.5 Parity plot of experimental and predicted cycle life of DDB, DBBB, and TEMPO 
cycled at 20 mM active material concentration and 3 C rate. 
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Partitioning the training set for an individual active material and experimental condition 

combination reduces the number of data points in each training set to six. With these limited 

training sets, the complexity of models is greatly reduced but the potential for overfitting is 

greatly increased. The presence of Li+ coordination to the dialkoxyarenes also reduces some 

training sets to two clusters of three points each, which is trivial to fit. Additionally, the limited 

number of descriptors for supporting salts means SISSO is restricted to identifying relationships 

from a sparse data set. Insights from the SISSO selected descriptor are therefore selected for 

necessity not physical meaning. The models reported in this section are models which passed 

LOOCV, and to remain properly fitted models, all have only one SISSO identified descriptor. No 

properly fitted models were identified for DDB due to the reduced number of experiments 

performed at 20 mM active material concentration and the BF4
- impurity effect. 

 

6.3.3.1 DBBB 

 Only one robust model was identified for DBBB, at the 20 mM active material 1 C rate 

experimental condition.  

𝑁80 =  𝐴(𝑟+ + 𝑟−) + 𝐵 

Where 𝐴 =  −1660 and 𝐵 =  1120. All six LOOCV cases succeeded, reporting the same model 

as the training set. Once again, this model is only predictive for the lower bound of these 

experiments due to premature cell termination. However, it does suggest that supporting salts 

with lower ionic radii are ideal for maximizing the 𝑁80 of DBBB at these experimental conditions. 

A parity plot for this model is shown in Figure 6.6. 
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6.3.3.2 TEMPO 

 TEMPO was the easiest of the three active materials to model, with a robust model 

developed for each of the four experimental conditions. This is likely due to the reduced impact 

of the BF4
- impurity on TEMPO cycling experiments. Notably, TEMPO LOOCV was most likely to 

fail when LiPF6 was removed from the training set, as the descriptor set with SISSO cannot 

account for active material-supporting salt interactions, which are strongest in the TEMPO-LiPF6 

experiments. The SISSO identified model for the 5 mM active material 1 C rate experiments is 

𝑁80 =  𝐴
𝐿

Λ°−
+  𝐵 

Where 𝐴 = 10300 and 𝐵 =  −505. As TEMPO is the only active material in the training set, 𝐿 is 

a constant and SISSO identifies the supporting salt anion as the only significant factor for 𝑁80. A 

parity plot with the LiPF6 and LiBF4 data points highlighted is shown in Figure 6.7. 

Figure 6.6 Parity plot of experimental and predicted cycle life of DBBB cycled at 20 mM active 
material concentration and 1 C rate. 
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The TEMPO 5 mM/1C data set is poorly predicted by the model, with LiPF6 and LiBF4 

significantly over and underpredicted, respectively. LOOCV returned the same model for all six 

cases, suggesting that there is no descriptor for this data set that can account for the active 

material-supporting salt interactions. 

The SISSO identified model for the 5 mM active material 3 C rate experiments is 

𝑁80 =  𝐴(Λ°− − Λ°+) +  𝐵 

Where 𝐴 = −8.05 and 𝐵 =  453. SISSO identifies both supporting salt ions as necessary to 

predict 𝑁80; favoring supporting salts with similar cationic and anionic limiting molar 

conductivities. The parity plot is shown in Figure 6.8. 

Figure 6.7 Parity plot of experimental and predicted cycle life of TEMPO cycled at 5 mM active 
material concentration and 1 C rate. The LiPF6 and LiBF4 data points are labeled. 
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Once again, the LiPF6 is the worst predicted experiment due to TEMPO-LiPF6 coordination 

that is unaccounted for in the descriptor set. LOOCV succeeded in five out of six cases, failing 

with LiTFSi, the experiment with the largest 𝑁80. 

 The SISSO identified model for the 20 mM active material 1 C rate experiments is 

𝑁80 =  𝐴
𝐿

Λ°−
+  𝐵 

Where 𝐴 =  11900 and 𝐵 =  −617. This model is identical to the 5 mM active material 1 C rate 

model, which confirms the Chapter 3 hypothesis that active material concentration has a scaling, 

negative effect on TEMPO 𝑁80. A parity plot with LiPF6 labeled is shown in Figure 6.9. 

Figure 6.8 Parity plot of experimental and predicted cycle life of TEMPO cycled at 5 mM active 
material concentration and 3 C rate. The LiPF6 data point is labeled. 
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Once again, the LiPF6 𝑁80 is overpredicted by the model. LOOCV for this model also 

succeeded for five out of six cases, failing for LiTFSi.  

The SISSO identified model for the 5 mM active material 3 C rate experiments is 

𝑁80 =  𝐴𝑟−Λ°+ +  𝐵 

Where 𝐴 = 11.8 and 𝐵 =  −67.2. This model does not match the 5 mM 3 C rate model, but the 

20 mM 3 C condition did not fit any trends in Chapter 3. A parity plot with the LiPF6 callout is 

shown in Figure 6.10. 

Figure 6.9 Parity plot of experimental and predicted cycle life of TEMPO cycled at 20 mM 
active material concentration and 1 C rate. The LiPF6 data point is labeled. 
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Of the four TEMPO models, the 20 mM 3 C model is the only one to underpredict LiPF6, 

although it is still the outlier. LOOCV succeeded in five out of six cases, failing with the exclusion 

of LiBF4.  

 The five models developed for supporting salt variation show that prediction of 𝑁80 for 

new supporting salts is possible. For TEMPO and DBBB at 20 mM 1 C experimental conditions, 

new supporting salts can be screened before characterization, identifying supporting salts that 

can further improve 𝑁80.  

 

6.4 Conclusions 

 In this Chapter, SISSO was used to develop descriptors and models for ROM cyclability. 

These models are the first for ROMs, although only two are applicable to multiple active 

materials. For the dialkoxyarene catholytes, two models were developed for 𝑁80. The first 

Figure 6.10 Parity plot of experimental and predicted cycle life of TEMPO cycled at 20 mM 
active material concentration and 3 C rate. The LiPF6 data point is labeled. 
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encompassed the experiments in Chapter 2 at 5 mM active material, 1 C rate, with a 

TBAPF6/MeCN electrolyte, the second was developed for the same active materials cycled at 20 

mM concentration, 3 C rate, in a LiTFSi/MeCN electrolyte. Two models were developed for the 

experimental condition experiments in Chapter 3, predicting 𝑁80 for cells with 20 mM active 

material. Models for this specific concentration were successfully identified due to the lower 

significance of the BF4
- impurity affecting dialkoxyarene cycling. Lastly, five models predicting the 

impact of supporting salts on specific active materials and experimental conditions were 

developed. From the SISSO descriptors, dialkoxyarene cyclability is governed by steric factors, 

LUMO energy, and the solvation energy, although the effect of the LUMO is unknown. Ultimately, 

this work introduces design tools for hydrocarbon-substituted dialkoxyarenes and began 

predicting 𝑁80 for ROMs. 
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Chapter 7 

 

Conclusions and Future Directions 

 

7.1 Conclusions 

 Non-aqueous redox flow batteries (NaRFBs) are promising candidates for the future of 

grid scale energy storage. Due to their high energy densities, they have potential for low-cost 

electricity storage. However, the candidate active materials employed in these batteries cannot 

provide the necessary stability and cyclability for scale-up. This thesis presents a novel 

combination of experimental and computational work focused on improving redox active organic 

molecules (ROMs) for NaRFBs. By combining computational and experimental work, key 

descriptors of stable and cyclable molecules were identified, enabling new strategies for active 

material development.  

  

7.1.1. Cyclability Characterization 

 The first section of this thesis focused on cyclability characterization of ROM catholytes. 

The dialkoxyarene family is the most studied ROM family for NaRFB applications and their 

development from lithium-ion overcharge protection molecules to NaRFB active materials was 

introduced. Chapter 2 discussed nine new hydrocarbon substituted-dialkoxyarenes with new 

functional group variations. Electrochemical characterization of these active materials revealed 

trends between oxidation potential, cycle life (𝑁80), and coulombic efficiency (CE). All three of 

these electrochemical properties correlated well to steric hindrance, which was identified as the 

most significant descriptor for performance. Additional gas and liquid chromatography revealed 

dialkoxyarenes decay through O-dealkylation, which is disrupted when more sterically hindered 
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ligands are present. However, these results were inconsistent with cyclability trends in Li+ 

supporting salts, which implied the existence of a second stabilization mechanism.  

 An alternative stabilization mechanism only present in Li+ supporting salts required an 

investigation of the effects of experimental conditions on 𝑁80. Chapter 3 identified three variable 

factors in cycling experiments, active material concentration, cycle rate, and supporting salt 

choice. A systematic variation of these three factors in cycling experiments of three different 

ROM catholytes revealed significant effects of supporting salt choice on 𝑁80. Li+ support salts 

engaged in varying degrees of coordination to active materials, a largely beneficial effect. 

Additionally, BF4
- supporting salts were shown to have an electrochemically active impurity, 

drastically impacting the 𝑁80 of dialkoxyarenes. However, this study did not develop relationships 

to normalize 𝑁80 for these three experimental factors.  

 With the difficulty comparing 𝑁80 between different experimental conditions, Chapter 4 

introduced a new metric for cyclability, recovery (𝜙). 𝜙 was derived from a kinetic model for bulk 

electrolysis cycling, the first of its kind. 𝜙 normalizes experimental results for active material 

concentration and cycle rate, which allows experiments to be compared independent of these 

conditions. However, 𝜙 is still dependent on active material-supporting salt interactions present 

in experiments, which limits its use as a universal cyclability comparison. Additionally, the kinetic 

model for cycling identifies the theoretical maximum CE, which is used to identify experiments 

with unphysical charge retention, indicative of Li+ coordination to active materials.  

 Collectively, these results can be used to improve future characterization of ROMs and 

other active materials for all classes of RFBs. The identification of structural contributors to 

cyclability is critical for future ROM development and the two stabilizing mechanisms identified 

provides different pathways towards more cyclable active materials. Combining these active 

material design strategies with proper electrolyte selection can improve ROM cyclability to reach 

RFB targets for commercial deployment within a decade. 

 

7.1.2 Computational Screening and Prediction 

 The second section of this thesis discussed computational screening and prediction of two 

key active material properties, stability and cyclability. As NaRFB development is currently limited 
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by synthesis and characterization of candidate active materials, it is desirable to have in silico 

methods for characterization. Chapter 5 introduces computational models for screening and 

predicting stability of ROMs. The screening model is generalizable to all ROM families and 

identifies unstable active materials, allowing them to be removed from the workflow before 

synthesis. Two additional predictive models for dialkoxyarene ROMs were developed to identify 

descriptors for dialkoxyarene stability and provide computational design tools for new materials. 

 Lifetime of NaRFBs is currently the greatest limiting factor to scale up, which places an 

even greater importance on cyclability prediction compared to stability prediction. In Chapter 6, 

𝑁80 data from Chapters 2 and 3 was used to develop predictive models. A model for hydrocarbon 

substituted-dialkoxyarenes identified steric effects and the solvation energy as the two most 

important factors for predicting dialkoxyarene 𝑁80. Attempts to predict 𝑁80 with variations to 

active material, active material concentration, cycle rate, and supporting salt failed, but 

predictions were successfully made for active material and supporting salt variations. These 

predictions act as a starting point for design of new active materials for cyclability and to optimize 

electrolyte choice. However, cyclability is significantly more complex than stability and these 

models are not as robust or impactful as those for stability. Combined, the modeling work in this 

thesis offers many computational design tools for ROMs, with a focus on the dialkoxyarene 

family. 

 

7.2 Future Directions 

 The greatest challenge for NaRFB development is still the development of stable and 

cyclable active materials. New ROM development has successfully demonstrated design concepts 

for improving solubility, redox potential, and stability.45,48,59 Cyclability is still a black box for 

design, with varied structural effects that are molecular family dependent. Unfortunately, the 

only way to identify the factors affecting cyclability are with synthesis and characterization of 

new ROMs to validate current models and provide the necessary data needed for robust model 

development.  

From the results presented in this thesis, Li+-coordination to active materials is the best 

strategy for improving ROM cyclability, although the effect is dependent on the choice of 
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electrolyte. Development for active materials must consider the desired supporting salt and 

electrolyte environment, with different design targets for different electrolytes. For the 

dialkoxyarene family, development for cyclability in alkylammonium supporting salts should be 

focused on increasing the steric hinderance of the substituting ligands, although care must be 

taken with regards to solubility in non-aqueous electrolytes. Designing for cyclability in Li+ 

supporting salts should focus on maintaining Li+ coordination while substituting functional groups 

with improved solubility. Li+ coordination to improve cyclability is the most promising design 

strategy for reaching the NaRFB scale-up targets, although the dependence on Li+ introduces the 

mineral resource disadvantages from metal coordination complexes to ROMs. Designing for Li+ 

coordination may also benefit from improvements in Li-ion electrolytes and development of 

beyond Li-ion batteries. 

 While this thesis did investigate and identify the effects of supporting salt choice on 

cyclability, there are still numerous unknown factors affecting measured 𝑁80. Additional 

characterization on existing ROMs would help identify these factors. Two principal areas of 

additional characterization are the investigation of additional supporting salts and the 

investigation of new solvents. Both supporting salts and non-aqueous solvents can have 

significant stabilizing or destabilizing effects on ROM stability and cyclability,73 but most active 

materials are only characterized in one electrolyte.60,72,92 The addition of other supporting salts, 

such as TEATFSi, to the existing data set would provide additional data to isolate key active 

material-supporting salt interactions of dialkoxyarenes and TEMPO. Investigation of new 

electrolytes has the potential to identify previously developed and discarded active materials 

which show significant stability and cyclability improvements in specific electrolytes.  

 Lastly, the significant performance enhancement seen for dialkoxyarenes in this thesis 

merits further investigation in full flow cell systems. DDB and DBBB show remarkable cyclability 

in bulk electrolysis with Li+ supporting salts, but this may not transfer to other cycling 

experiments. Flow cell cyclability introduces additional membrane and anolyte interactions, 

which are likely to decrease overall cyclability. However, the remarkable performance of DDB 

and DBBB demonstrated in this thesis should be used as a starting point for further ROM 

development and characterization. 
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