
Evaluating and Improving Internet Load Balancing with
Large-Scale Latency Measurements

by

Yibo Pi

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in the University of Michigan
2021

Doctoral Committee:

Associate Professor Sugih Jamin, Chair
Associate Professor Harsha Madhyastha
Associate Professor Chinedum Okwudire
Professor Atul Prakash

Yibo Pi

yibo@umich.edu

ORCID iD: 0000-0003-1287-3311

© Yibo Pi 2021

To my family and friends.

ii

ACKNOWLEDGEMENTS

I am very grateful for the opportunity to study here at the University of Michigan. I

would first like to thank my advisor, Professor Sugih Jamin, for his support and guidance

through this journey. Sugih is always very patient with me and allows me to grow at my

own pace. He treats me more like a friend than a student. He respects my ideas, decisions

and feelings, and always spares no effort to help me, especially during difficult times. He

teaches me how to become an independent researcher and, more importantly, how to work

with others and treat everyone with kindness, respect and compassion. I truly appreciate

the experience of working with him in the past six years.

I am also thankful for all my collaborators and sponsors for their generous support. I

thank Peter Danzig for devoting his personal time working with me for four years. Peter

always guided me to think deeper on the practical impact of my work and generously

introduced my work to his industry colleagues. I thank Professor Feng Qian for his valuable

comments on the paper, which changed my career path. I greatly appreciate Professor Atul

Prakash, Harsha Madhyastha, and Chinedum Okwudire serving as my committee members.

I am fortunate to meet many wonderful friends at Ann Arbor and would like to thank

you all for your company through this journey. I thank labmates, Yike Liu, Haojun Ma,

Yulong Cao, Qingzhao Zhang, for countless time of studying together and my roommate,

Shichang Xu, for being such a supportive and considerate friend. I would like to specially

thank Winnie Song for accompanying me through the most difficult times. At last, I would

like to sincerely thank my parents and girlfriend, Yujing Zhong, for their unconditional

love and support. They are always by my side through ups and downs.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . vii

LIST OF TABLES . viii

ABSTRACT . ix

CHAPTER

I. Introduction . 1

1.1 Why Existing Methods Fail to Achieve Performance Similarity? . . 1
1.2 Why is the Performance Dissimilarity Issue Important? 3
1.3 Challenges in Evaluating Performance Dissimilarity at Scale . . . 4
1.4 My Thesis and Contributions . 6
1.5 Thesis Organization . 8

II. AP-Atoms: A Data-Driven Client Aggregation for
Global Load Balancing . 9

2.1 Introduction . 9
2.2 Evaluating Existing Client Aggregations 10

2.2.1 Data Description and Methodology 11
2.2.2 Latency Dispersion . 13
2.2.3 Causes for Large Dispersion 18

2.3 AP-Atoms . 20
2.3.1 AP-Atom Candidates: Single-Server View 21
2.3.2 AP-Atoms: Multi-Server View 33

2.4 Performance Evaluation . 34
2.4.1 Scalability of AP-Atoms 35
2.4.2 Server-Independence 39

iv

2.4.3 Tradeoff Between Tolerance and Responsiveness 41
2.5 Discussion . 43
2.6 Summary . 46

III. Latency Imbalance Among Internet Load-Balanced Paths:
A Cloud-Centric View . 48

3.1 Introduction . 48
3.2 Background . 51

3.2.1 Types of Load Balancing 51
3.2.2 Load-Balanced Segments or Diamonds 52

3.3 Measurement Methodology . 53
3.3.1 Our Focus and Key Challenges 53
3.3.2 Overview of Our Methodology 54
3.3.3 Measuring One-Way Imbalance 55
3.3.4 Source and Destination Selection 61
3.3.5 Metrics for One-Way Imbalance 62

3.4 Impact of One-Way Imbalance on Applications and Baseline . . . 63
3.5 Imbalance from Data centers to Public IPv4 Addresses 66

3.5.1 Distribution of One-Way Imbalance 67
3.5.2 Why Cloud Providers Differ in Latency Imbalance? . . . 69
3.5.3 Is Latency Imbalance Stable Over Time? 71
3.5.4 Diving Deeper Into One-Way Imbalance 73

3.6 Imbalance Between Data centers 77
3.6.1 Data Collection . 77
3.6.2 Intra- and Inter-Cloud Latency Imbalance 78

3.7 Applications . 80
3.7.1 Clock Synchronization by NTP 80
3.7.2 Delay-Based Geolocation 82
3.7.3 VoIP . 85

3.8 Discussion . 87
3.9 Summary . 87

IV. Congi: Measuring Congestion Imbalance Among Internet Load-
Balanced Paths at Scale . 89

4.1 Introduction . 89
4.2 Measurement Methodology . 91

4.2.1 Our Goal . 91
4.2.2 Overview of Our Methodology 92
4.2.3 How to Choose the Latency-Based Metric? 93
4.2.4 Building a Ground-Truth Dataset 102
4.2.5 Training Congi’s SVM Classifiers 104
4.2.6 Putting It All Together to Build Congi 108

4.3 How Does Congi Actually Perform? 110

v

4.3.1 Trace-driven Simulation 111
4.3.2 Real-World Experiments 112

4.4 Congestion Imbalance: A Cloud-Centric View 115
4.4.1 Does Congi Measures Short or Long Congestion Imbal-

ance? . 115
4.4.2 Prevalence of long imbalance 116
4.4.3 Latency Imbalance as a Result of Congestion Imbalance 116
4.4.4 Prevalence of Short Imbalance 119

4.5 Impact on Applications . 120
4.5.1 Web Page Load . 121

4.6 Discussion . 121
4.7 Summary . 122

V. Related Work . 123

5.1 Client Aggregations for Global Load Balancing 123
5.2 Latency Imbalance Among LB Paths 124
5.3 Congestion Imbalance Among LB Paths 126

VI. Contributions and Future Works . 129

6.1 Key Contributions . 129
6.2 Limitations . 130
6.3 Future Work . 131

BIBLIOGRAPHY . 134

vi

LIST OF FIGURES

Figure

2.1 Data density . 11
2.2 Illustration of latency dispersion . 13
2.3 Latency dispersion to a single server . 15
2.4 Maximum latency dispersion to multiple servers 16
2.5 Distribution of the pruned ratio . 19
2.6 Four patterns of latencies . 21
2.7 An example of applying MSC to obtain MSC clusters 24
2.8 Locations of servers . 34
2.9 Scalability of AP-atoms . 35
2.10 Server-independence . 38
2.11 Tolerance to latency inflation . 41
2.12 Impact of network changes on client aggregation 43
3.1 An example of LB paths . 52
3.2 Tradeoff between accuracy and efficiency 57
3.3 Impact of sampling on accuracy . 61
3.4 Distribution of path asymmetry . 62
3.5 Distribution of relative imbalance from DCs to public IPv4 addresses. . . 66
3.6 Distribution of relative imbalance under different ranges of OWDs 68
3.7 Imbalance difference between cloud providers 70
3.8 Stability of latency imbalance over time 72
3.9 Visible and invisible diamonds . 75
3.10 Intra-cloud and inter-cloud latency imbalance 78
3.11 Maximum error reduction for clock offset in NTP 80
3.12 Impact of latency imbalance on geolocation 82
3.13 Weighted distribution of the percentage of improved calls for country pairs 85
4.1 An example of time series segmentation 97
4.2 Comparing latency-based metrics and tuning thresholds 100
4.3 Performance in detecting congested paths 106
4.4 Congi’s high-level workflow . 109
4.5 Verifying ability to measure throughput imbalance 113
4.6 Latency imbalance as a result of congestion imbalance 117
4.7 Impact of congestion imbalance on web page load 120

vii

LIST OF TABLES

Table

1.1 Summary of dissertation work . 6
3.1 Applications affected by imbalance and baseline 63
3.2 /24 address prefix reachability . 66
4.1 The Path-Perf dataset summary . 98
4.2 Trace-driven simulation . 111
4.3 Real-world experiments . 112
4.4 Prevalence of long imbalance . 116
4.5 Prevalence of short imbalance . 119

viii

ABSTRACT

Load balancing is used in the Internet to distribute load across resources at different lev-

els, from global load balancing that distributes client requests across servers at the Internet

level to path-level load balancing that balances traffic across load-balanced paths. These

load balancing algorithms generally work under certain assumptions on performance sim-

ilarity. Specifically, global load balancing divides the Internet address space into client

aggregations and assumes that clients in the same aggregation have similar performance to

the same server; load-balanced paths are generally selected for load balancing as if they

have similar performance. However, as performance similarity is typically achieved with

similarity in path properties, e.g., topology and hop count, which do not necessarily lead

to similar performance, performance between clients in the same aggregation and between

load-balanced paths could differ significantly.

This dissertation evaluates and improves global and path-level load balancing in terms

of performance similarity. We achieve this with large-scale latency measurements, which

not only allow us to systematically identify and evaluate the performance issues of Internet

load balancing at scale, but also enable us to develop data-driven approaches to improve

the performance. Specifically, this dissertation consists of three parts. First, we study the

issues of existing client aggregations for global load balancing and then design AP-atoms, a

data-driven client aggregation learned from passive large-scale latency measurements. Sec-

ond, we show that the latency imbalance between load-balanced paths, previously deemed

insignificant, is now both significant and prevalent. We present Flipr, a network prober that

actively collects large-scale latency measurements to characterize the latency imbalance

ix

issue. Lastly, we design another network prober, Congi, that can detect congestion at scale

and use Congi to study the congestion imbalance problem at scale. For both latency and

congestion imbalance, we demonstrate that they could greatly affect the performance of

various applications.

x

CHAPTER I

Introduction

Internet load balancing is used to distribute network traffic load across multiple re-

sources for better utilization and performance. At the Internet level, for scalable manage-

ment, global load balancing divides Internet address space into aggregation units of proper

sizes for the accurate assignment of clients to their nearby servers. Akamai’s global load

balancing system routes trillions of clients’ requests to servers per day in its content deliv-

ery network (CDN) [1]. At the path level, load balancers forward packets across multiple

paths to balance traffic. The paths between about 90% of source-destination pairs are re-

ported to traverse a load balancer [2]. Global load balancing assumes that clients in the

same aggregation have similar performance to the same server such that they can be man-

aged together and share the same server redirection decisions. Path-level load balancing

assumes that load-balanced (LB) paths have similar performance such that load balancers

can choose among LB paths with simple hashing algorithms to distribute traffic as if it

makes no difference using one path or another [3].

1.1 Why Existing Methods Fail to Achieve Performance Similarity?

Existing methods take a simple way to achieve performance similarity by assuming

that similar properties lead to similar performance. This assumption makes the problem

of achieving performance similarity much easier, because properties of an object, e.g.,

1

topology of a path and geographic locations of clients, are typically easy to obtain and

stable over time. However, this assumption does not always hold. When it fails, objects

could differ significantly in performance. This dissertation focuses on the performance

dissimilarity issue in DNS-based global load balancing and between load-balanced paths.

DNS-based Global Load Balancing As there are billions of clients in the Internet, these

clients are generally aggregated into aggregation units for scalable management, where

clients in the same aggregation should have similar performance to the same server. Choos-

ing the proper size of client aggregations is a complex problem, which determines the ac-

curacy of server assignment and the number of aggregation units that a mapping system

has to maintain. DNS-based client aggregation has been adopted by many CDN provides

like Google [4] and Akamai [5]. Since the local DNS nameserver (LDNS) of a client is

typically co-located with the client, it is common to aggregate clients by their LDNSs. Af-

ter that, to make redirection decisions for billions of clients, a mapping system only needs

to measure the performance from servers to hundreds of thousands of LDNSs. However,

a recent study on Akamai’s CDN found that aggregation by LDNS results in poor client

redirection for nearly 20% of client demand, where clients use either public resolvers or

LDNSs remote to the clients [1]. In contrast, we can use /24 IP blocks of fine granularity as

client aggregations, which may be accurate in redirection but not scalable as the mapping

system has to maintain performance from servers to millions of /24s. As a good tradeoff

between scalability and accuracy, /20 IP blocks have been proposed in [1]. There are also

other aggregation methods aggregating clients by their geographical locations [6] and BGP

prefixes [7]. However, all existing aggregations rely on the property similarity between

clients, which does not equate similar performance.

Path-Level Load Balancing Load balancers commonly use equal-cost multi-path rout-

ing (ECMP) to find LB paths of equal cost (e.g., hop count) such that LB paths have similar

performance [3]. However, as the cost of a path is not universally defined and equal cost

2

does not necessarily equate similar performance, LB paths could differ significantly in

performance. Further, large flows could cause one path to be congested while the other

paths are uncongested. Extensive efforts have been made to measure the topology of LB

paths [2, 8, 9], but the performance difference (or performance imbalance) between LB

paths is still under-explored. To better understand this issue, this dissertation studies la-

tency and congestion imbalance between load-balanced paths. Latency imbalance is the la-

tency difference between LB paths, where the latency is the minimum path latency without

inflation, while congestion imbalance occurs when LB paths experience difference levels of

congestion. Latency and congestion imbalance affects application performance in different

ways. Congestion imbalance in general has more significant impacts, because it affects all

aspects of path performance, including latency inflation, packet loss and throughput drop.

1.2 Why is the Performance Dissimilarity Issue Important?

The performance dissimilarity issue mentioned above affects application performance

at different levels and in different ways. In global load balancing, when clients in the same

aggregation have different performance to a server, a redirection decision to the server will

not work well for some clients. For these clients, another server may provide better service.

It is similar that in path-level load balancing, latency and congestion imbalance indicates

that one path has better performance than another.

Latency-Sensitive Applications Using a path or a server that leads to lower latency

would improve the quality of experience (QoE) for applications sensitive to latency. In

the era of 5G, the latency in cellular networks can be as low as 1ms and the latency bottle-

neck will be shifted to the Internet [10]. The problem of latency dissimilarity in the Internet

load balancing will become more prominent for the end-to-end latency. Moreover, latency

imbalance makes the existing methods insufficient for measuring the minimum path la-

tency, because they only consider the latency inflation in single paths [6], not the difference

3

between paths. This affects geolocation applications or network coordinated systems re-

lying on the accurate minimum path latency [7,8]. Also, latency imbalance, if measured

separately on the forward or return path, is an indicator to path asymmetry, affecting ap-

plications relying on symmetric paths to accurately estimate one-way delay, e.g., clock

synchronization via networks [9, 10].

Throughput-Sensitive Applications Throughput-sensitive applications, e.g., large file

transfer and video streaming, could benefit similarly as the latency-sensitive applications

do. When congestion imbalance occurs, the congested path could experience severe

throughput drop. Choosing the uncongested path would greatly improve application perfor-

mance. This also applies to global load balancing, where one server could provide higher

throughput than the others.

Other Impacts Besides latency and throughput, applications sensitive to packet loss,

e.g., Voice over IP (VoIP), can benefit similarly from considering performance dissimilarity

in Internet load balancing. Moreover, latency imbalance has an impact on all applications

relying on measuring latency to estimate distance, e.g., network coordinate systems used

in peer-to-peer systems [11, 12]. Congestion imbalance indicates that multi-path transport

protocol could be more useful in the Internet. Both latency and congestion imbalance would

serve as an important metric for the measurement studies examining latency characteristics.

1.3 Challenges in Evaluating Performance Dissimilarity at Scale

Considering the scale of global and path-level load balancing, we want to evaluate the

performance dissimilarity issue at the Internet scale. This requires a dataset describing the

performance between clients and servers for global load balancing and a dataset describing

the performance between LB paths for path-level load balancing. Both datasets will be of

very large scale to cover Internet-scale clients and paths. These datasets can be collected ei-

4

ther passively without incurring measurement overheads or actively with network probers.

We will use passive measurements for global load balancing and active measurements for

path-level load balancing.

Passive Measurements for Global Load Balancing Considering that the daily traffic

between clients and servers is enormous, we can passively collect performance data at the

server side without incurring extra measurement overheads. Although the total volume of

passive measurements is large, the average amount of samples for individual addresses is

sparse and sporadic. The major challenge is how to increase data density by proper data

aggregation and extract useful information from the aggregated data. Large-scale passive

measurements from the server’s perspective are readily available to content providers, but

are mostly proprietary and not available to the public, making it hardly a common way

of obtaining large-scale performance data. To tackle the data sparsity issue, our approach

increases data density by clustering samples of similar addresses and obtains path perfor-

mance with pattern recognition techniques.

Active Measurements for Path-Level Load Balancing Compared with passive mea-

surements, we can collect active measurements at scale with network probing. Specifically,

we send probes to random Internet addresses and use their responses to infer path per-

formance. An experiment that scans the Internet-wide addresses can be done at a single

vantage point, which makes network probing a popular way of data collection in network

measurements. However, due to ICMP rate limiting, probes need to be sent at a low rate.

Moreover, routers generally de-prioritize ICMP responses and generate them in the slow

paths, which could cause the inferred path performance to be inaccurate. It is well-known

that network probing can accurately measure path latency, but can only perform coarse esti-

mation on throughput [13, 14]. Throughput is commonly measured from vantage points to

instrumented servers in public measurement infrastructures, e.g., M-Lab. The major chal-

lenge in collecting active measurements is how to measure each target with as few samples

5

Problem scope Project name
The sizing of client aggregations
for global load balancing

AP-atoms: A High-Accuracy Data-Driven Client
Aggregation for Global Load Balancing

Latency imbalance between LB
paths

Latency Imbalance Among Internet Load-
Balanced Paths: A Cloud-Centric View

Congestion imbalance between
LB paths

Congi: Measuring Congestion Imbalance Among
InternetLoad-Balanced Paths at Scale

Table 1.1: Summary of dissertation work

as possible such that it can be easily scaled to measuring Internet-wide addresses. In this

dissertation, we will correlate latency inflation with throughput drop and packet loss, and

use sampling to efficiently infer latency inflation.

1.4 My Thesis and Contributions

By studying the performance dissimilarity issue in global and path-level load balancing,

this dissertation supports the following thesis: large-scale latency measurements allow us

not only to systematically identify and evaluate the performance issues of Internet load bal-

ancing at scale, resulting in a comprehensive understanding of its impacts on applications,

but also to develop data-driven approaches to improve its performance.

As summarized in Table 1.1, this dissertation includes three projects, where the first

project uses large-scale latency measurements to study the sizing of client aggregations for

global load balancing and the second and third projects focus on evaluating the latency

and congestion imbalance among LB paths at scale with large-scale latency measurements

respectively. This dissertation work makes the following contributions.

A Data-driven Client Aggregation for Global Load Balancing To the best of our

knowledge, we are the first to conduct a comparative study of the performance of existing

client aggregation methods. We find that even for the best existing aggregation, almost 17%

of clients have latency 50 ms apart from other clients. By studying the causes for widely

6

dispersed clients, we find that the wide dispersal of client latencies in existing aggregations

are caused by aggregating clients based on attributes other than path performance. To ad-

dress this issue, we propose a data-driven aggregation, AP-atoms, that can flexibly trade

off scalablity for accuracy. Our method relies on the passive measurements of existing

traffic between service providers and clients and thus incurs no extra measurement over-

heads. The data-driven property enables our mechanism to dynamically adapt to changing

network conditions.

A Cloud-Centric View of Latency Imbalance Among LB Paths We develop a method-

ology of efficiently measuring latency imbalance at the Internet scale. We carefully discuss

the tradeoff between the accuracy and efficiency of our method and verify the accuracy of

measured imbalance. We present a global view of latency imbalance from a cloud-centric

view, where latency imbalance is found to be both significant and prevalent. We use path

analysis to explain the difference between latency imbalance seen from different cloud

providers and show that latency imbalance is stable over time. We evaluate the impact of

latency imbalance on three applications and propose potential solutions to improve their

performance. We make our tool and data publicly available at [15].

Measuring Congestion Imbalance Among LB Paths at Scale We present Congi, a

network prober that uses SVM classifiers to detect congestion imbalance at scale. Congi is

developed in a systematic way and is verified to be capable of detecting throughput, latency

and packet loss imbalance between LB paths. We use Congi to detect congestion imbalance

from our VPs to Internet-wide addresses and find that congestion imbalance is prevalent in

the Internet. We use web page load as an example and further evaluate how congestion

imbalance affects application performance.

7

1.5 Thesis Organization

The dissertation is organized as follows. Chapter II presents the data-driven client ag-

gregation, AP-atoms, for global load balancing. Chapter III characterizes congestion im-

balance among LB paths and its impacts on applications. Chapter IV presents Congi, our

network prober to measure congestion imbalance at scale. Chapter V summarizes the re-

lated work. We conclude the dissertation in Chapter VI.

8

CHAPTER II

AP-Atoms: A Data-Driven Client Aggregation for

Global Load Balancing

In this chapter, we focus on evaluating and improving the existing client aggregations

for global load balancing with large-scale latency measurements. We first conduct a com-

parative study of the existing client aggregations and find out the causes for clients in the

same aggregation to have different performance to the same server. Inspired by the insights

from the cause analysis, we propose a data-driven client aggregation, called AP-atoms. AP-

atoms are learned from the latency data passively collected at the server side and thus incur

no extra measurement overheads. As AP-atoms are generated from data continuously col-

lected over time, it adapts to changing network conditions. Further, AP-atoms can flexibly

trade off between accuracy and scalability based on the needs.

2.1 Introduction

In Internet mapping, IP address space is divided into a set of client aggregation units,

which are the finest-grained units for global load balancing. Choosing the proper level

of aggregation is to find a good tradeoff between scalability and accuracy. Using /24 IP

blocks as client aggregations may be accurate in redirection, but not scalable in terms of

performance estimation. In contrast, aggregating clients by their LDNSs is scalable, but not

9

accurate for remote clients. IP blocks with /20 network prefix have been proposed to be a

good tradeoff between scalability and accuracy [5]. Clients can also be aggregated by their

geographic locations [16] and BGP routing paths [17]. We use Internet-wide measurements

provided by a commercial global load balancing service provider to study the performance

of existing client aggregations.

We find that even for the best existing aggregation, almost 17% of clients have latency

50 ms apart from other clients. By studying the causes for widely dispersed clients, we find

that the wide dispersal of client latencies in existing aggregations are caused by aggregat-

ing clients based on attributes rather than path performance. To address this, we propose

AP-atoms that are data-driven and group clients based directly on their path performance

(e.g., latency) to servers.1 Since the path performance between clients and servers can be

passively measured from user traffic available to service providers [19], AP-atoms can be

obtained without incurring extra measurement overheads. To obtain AP-atoms, we use ma-

chine learning algorithms to identify distinct latency patterns and cluster clients based on

these patterns. Besides the next-generation mapping system, AP-atoms also have potential

usages in other emerging applications, e.g., consumer cloud storage [20], that could benefit

from the scalable and accurate estimation of path performance between clients and servers.

2.2 Evaluating Existing Client Aggregations

To motivate this study, we first compare the performance of existing client aggrega-

tions. To our best knowledge, these existing aggregation methods have been studied sepa-

rately [16, 5, 7, 21], but there has been no comparative study of the four methods. We use

Internet-wide measurements from a commercial global load balancing service provider for

the comparative study.

1In the literature, performance measurements are commonly used to estimate performance between
servers and pre-determined client aggregations for better load balancing [18, 4], but not used to obtain client
aggregations.

10

1 10 100 1000

Num. of RTT samples

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F 1-day

2-day

4-day

8-day

Figure 2.1: Data density

2.2.1 Data Description and Methodology

Our dataset is provided by a commercial global load balancing service provider, collect-

ing over 1 billion measurements per day as part of their normal operations. Each time when

a client browses an instrumented web hosted by a participating provider, a Javascript script

is downloaded and executed to download test objects. The test objects are small enough to

fit into a single TCP packet. The time to first byte is recorded as the latency to the participat-

ing provider. This project is called Radar and is described in detail in [22]. Measurements

are conducted when the browser is idle such that user experience is not affected. Since

each visit to the web pages will trigger only a few measurements, the measurements from

single clients are sparse over time. Our dataset includes measurements from both wireless

(Wi-Fi only) and wired networks, where the percentage of measurements from wireless

networks is 12.8%. Since measurements in our dataset are triggered by user activities, our

dataset resembles passive measurements that global load balancers would obtain from user

traffic. The anonymization of addresses in our dataset does not limit the use of our dataset

as explained in §2.3.1.1.

Our dataset includes 30 days of measurements. Each day’s data contains about 1.5 bil-

lion measurement records, occupying approximately 550 GB. Clients in our dataset cover

86% of countries in the world and are from 4.2 million /24s. Path latencies are measured

between these clients and 160 sites of CDN and cloud service providers, including Aka-

mai, Amazon, Google, Level3 and Microsoft Azure, and others. Our dataset only includes

measurements on network performance (e.g., RTT and throughput) and does not contain

11

any sensitive information about clients (e.g., traffic content and passwords). Further, indi-

vidual addresses (32-bit addresses) are anonymized with the last byte of addresses masked

for privacy. In other words, addresses in our dataset are represented as /24 IP blocks. How-

ever, most providers do not have enough traffic with clients for analysis purposes. We only

use the top 10 servers having the most traffic with clients in our experiments. Figure 2.1

shows the distribution of the number of RTT samples between clients and servers in period

lengths of 1 to 8 days. The measurements of individual addresses in the same /24 block

are aggregated and are considered from the same single client. In 1-day periods, 38% of

clients only have one sample. As the period length increases, the number of RTT sam-

ples from clients increases. Due to the sparsity of our dataset, we use 2-day periods for

latency pattern identification in our experiments. We also include only clients with at least

5 measurements in a 2-day period.

The general principle in client aggregation is to pool together clients that are similar.

Existing aggregations define client similarity mainly based on one of four attributes: (1)

geographic locations, (2) fix-sized prefixes, (3) BGP routing paths, or (4) LDNSs. Using

the first attribute, clients within a given geographic radius are gathered together into geo-

blocks [16]. Aggregation by the second attribute simply groups clients by the first k bits

of their IP addresses. Researchers studying Akamai’s end-user mapping suggested /20

prefixes as a good tradeoff between scalability and accuracy [5]. Aggregation by the third

attribute exploits shared BGP routing paths amongst clients. Since clients within the same

routable prefix share a portion of their BGP paths, it is reasonable to aggregate clients into

routable BGP prefixes. Aggregation by the fourth attribute is commonly used by CDNs,

where clients using the same LDNS are aggregated into the same aggregation unit [5, 4].

Using our dataset, we simulate the use of aggregation methods above in real systems.

In Internet routing, routers choose next hops using the longest prefix match. Packets sent

from a server to a client are routed to the prefix that shares the longest common bits with

the client’s IP address. The latency along the routes is the latency between the server and

12

serverdispersion

centroid

latency of

the aggregation unit

aggregation unit

(a) Latency dispersion of clients

server 1

server 2

latency = 20ms
dispersion = 100ms

(b) Impact of dispersion

Figure 2.2: Illustration of latency dispersion

the client. We thus use the latency measurements between clients and servers in our dataset

to simulate the latency along the routes in Internet routing. To compare the performance of

the four client aggregation methods, we present a metric referred to as latency dispersion,

which measures the differences in latency between clients in the same aggregation unit.

We study the performance of existing client aggregations in terms of latency. The same

concept of dispersion applies to other performane metrics such as bandwidth and packet

loss.

2.2.2 Latency Dispersion

As shown in Figure 2.2(a), an aggregation unit is an aggregation of clients. Given a

server, we can have two types of latencies: 1) the latency from each client in the aggregation

unit to the server and 2) the latency from the aggregation unit as a whole to the server2. For

scalable management of the Internet, client redirections are determined by the latencies of

aggregation units to servers [4, 5]. To understand the effects of using latency of aggregation

units to perform redirection for all clients inside the unit, we define two metrics for both

clients and aggregation units as follows.

The dispersion of a client to a server is the difference between the latency of the client

to the server and the centroid of the aggregation unit to the server, where the centroid is

the average latency of clients in the aggregation unit. The dispersion of clients tells us

2In [4], one client in the aggregation unit is selected randomly and its latency is considered as representa-
tive of the unit.

13

how many clients are far away from other clients in the same aggregation unit in terms of

latency. The dispersion of an aggregation unit to a server is the largest dispersion among

all clients in the aggregation unit, which tells us the worst performance of existing aggre-

gation units. We use the largest dispersion instead of a percentile-based one because the

sizes of aggregation units range from a few to thousands of clients and the percentile-based

dispersion is biased against small ones, where each client takes a significant portion of its

aggregation unit.3 More importantly, using largest dispersion gives us a worst-case perfor-

mance for aggregation units. We use largest dispersion only in comparing the performance

of aggregation methods, not part of aggregation methodology.

Figure 2.2(b) shows an example on the impact of dispersion on server selection. Based

on latencies, server 1 is a better choice than server 2 for the aggregation unit. However,

since the dispersion of the aggregation unit to server 1 is 100 ms, directing all clients in

the unit to server 1 will cause some clients to experience 50 ms larger latency than if they

had been redirected to server 2. We want to use latency dispersion as a metric to indicate

the quality of aggregation units. Small latency dispersion enables an accurate estimation

of latency to aggregation units and thus an accurate server redirection. Since clients in

an aggregation unit could be redirected to mutliple servers, we prefer that the dispersion

of the aggregation unit to all possible servers be small. Although latency dispersion may

give us false positive results4 in some cases, these cases cover at most 0.8% of clients for

all aggregation methods. In the following, we first show the latency dispersion of existing

client aggregations to a single server and the maximum latency dispersion to all servers.

14

0 50 100 150 200 250

Dispersion (ms) of aggr. units

0

0.2

0.4

0.6

0.8

1.0

C
D

F BGP prefx

geo-block

/20 IP block

LDNS

(a)

0 50 100 150 200 250

Dispersion (ms) of clients

0

0.2

0.4

0.6

0.8

1.0

C
D

F BGP prefix

geo-block

/20 IP block

LDNS

(b)

Figure 2.3: Latency dispersion to a single server

2.2.2.1 Latency Dispersion to a Single Server

We use the database of routable BGP prefixes from CAIDA [23] for aggregation by

BGP routing paths and the IP-to-location database from IP2Location [24] for aggregation

by geographic locations. We use /20 IP blocks for fix-sized prefixes and aggregate clients

by their LDNSs. Addresses in the IP-to-location database are represented as IP blocks

and each IP block has an estimated location. For comparison with other aggregations, we

aggregate IP blocks into geo-blocks that have a distribution of prefix size similar to BGP

prefixes, where IP blocks in the same geo-block have locations in a circle with a radius less

than 200 miles. We compare the latency dispersion of the four aggregation methods above

on two granularities: aggregation units and clients. Since the last byte of addresses in our

dataset is anonymized for privacy reasons, each client in our dataset is a /24 IP block,

which is actually an aggregation of individual addresses (32-bit).

To calculate latency dispersion, we use the latency measurements from all clients to one

server.5 Among all clients, we have obtained 1.7 million clients that have stable latencies

(i.e., the single-mode latency in Figure 2.6(a)) to the server. For comparison among aggre-

3For large aggregation units, we could have a small portion of clients far away from others, but we do
not consider them as outliers, in contrast, representatives of a small group of clients that are aggregated
improperly. The reasons for this are that 1) the clients we can use to calculate dispersion for large aggregation
units only takes a small portion of all clients in the units, which implies that the actual dispersion could be
larger, and that 2) the latencies of clients are accurately identified as shown in Section 2.4.3.

4False positive results occur when clients in an aggregation unit use the same gateway (not middleboxes,
see Section 2.5.0.1) to the rest of the Internet and have different path performance. Such clients would have
large dispersion (larger than 50 ms) to all servers.

5Using latency measurements to other servers gives us similar results, not presented here. We do not
average latency dispersion of clients over servers because each client has communications with a different set
of servers.

15

0 50 100 150 200 250

Max. dispersion (ms) of aggr. units

0

0.2

0.4

0.6

0.8

1.0

C
D

F BGP prefix

geo-block

/20 IP block

LDNS

(a)

0 50 100 150 200 250

Max. dispersion (ms) of clients

0

0.2

0.4

0.6

0.8

1.0

C
D

F BGP prefix

geo-block

/20 IP block

LDNS

(b)

Figure 2.4: Maximum latency dispersion to multiple servers

gation methods, we group these clients to aggregation units for each aggregation method

respectively. For LDNS, clients using the same LDNS are in the same aggregation unit.

For BGP prefixes, /20 IP blocks and geo-blocks that are represented as prefixes, we use

the longest prefix match to group clients. Each client is mapped to the aggregation unit

having the longest common prefix with the client’s address. Then, we calculate the dis-

persion of clients and aggregation units. Figure 2.3(a) shows the cumulative distribution

function (CDF) of latency dispersion of aggregation units to the server. BGP prefixes in

general have smaller dispersion than other aggregations, but still have a significant per-

centage (about 14%) of aggregation units with dispersion larger than 50 ms. Following the

study of Google’s CDN [4], we use 50 ms as a threshold to indicate a significant difference

in latency. Looking at the distribution of latency dispersion of clients in Figure 2.3(b), /20

IP blocks have smaller dispersion than other aggregations. About 6% of clients in /20 IP

blocks have dispersion larger than 50 ms. Moreover, the distribution of dispersion of clients

has a long tail, where the 99-th percentile dispersion is about 150 ms for all aggregations.

In Figure 2.3(a), BGP prefixes and geo-blocks include a portion of aggregation units with

zero dispersion. This is due to half of aggregation units from BGP prefixes and geo-blocks

being of size /24, comprising of only one client each.

2.2.2.2 Latency Dispersion to Multiple Servers

In global load balancing, since clients of an aggregation unit could be directed to one

of a set of candidate servers [25], the worst-case performance of clients is determined by

16

the server to which the aggregation unit has the maximum dispersion among all candidate

servers. Thus, we want to know the maximum dispersion of aggregation units and of clients

to multiple servers. To calculate the maximum dispersion, we use latencies from clients

to all 10 servers. Among all clients, we have obtained 2.3 million clients having stable

latencies to at least one server. The dispersion of clients to each server is first calculated.

If a client has no measured latency to a server, the dispersion of the client to the server is

considered undetermined. Each client then will have dispersions calculated for up to 10

servers. Among these dispersions, the maximum one is used as the maximum dispersion

of clients. Recall how we obtained the dispersion of aggregation units to each server from

the dispersion of clients. Similarly, we can obtain the maximum dispersion of aggregation

units. Figure 2.4(a) shows the distribution of the maximum dispersion of aggregation units

to the 10 servers. BGP prefixes and geo-blocks have smaller dispersion than /20 IP blocks

and LDNS6, but almost 26% of BGP prefixes and geo-blocks have dispersion larger than

50 ms to at least one server. Figure 2.4(b) shows that about 17% of clients in /20 IP blocks

and geo-blocks have dispersion larger than 50 ms to at least one server.

Comparing Figures 2.4(a) and 2.4(b), we can see that even though BGP prefixes and

/20 IP blocks have similar latency dispersion of clients, BGP prefixes have 20% more ag-

gregation units with dispersion less than 50 ms than /20 IP blocks do. This is because BGP

prefixes and geo-blocks have 40% of aggregation units with zero dispersion, where 98% of

these aggregation units are /24s. However, compared to /20 IP blocks, BGP prefixes and

geo-blocks both have very large aggregation units, which could easily have large disper-

sion if clients included are not similar. Indeed, among the aggregation units with dispersion

larger than 250 ms in BGP prefixes, 73% are of size at least /19 while only 7% are of size

/22 or smaller. Similarly, among aggregation units with dispersion larger than 250 ms in

geo-blocks, 80% are of size at least /19 and only 4% are of size /22 or smaller. As the

numbers show, aggregating clients by attributes could result in widely dispersed clients,

6Since geo-blocks and BGP prefixes are similar in the distribution of prefix sizes, they are close in disper-
sion in Figure 2.3 and 2.4.

17

regardless of aggregation unit sizes.

2.2.3 Causes for Large Dispersion

An aggregation unit has large dispersion when a small portion of clients (minorities)

have latencies significantly different from other clients in the same aggregation unit,7 or

when the aggregation unit is overlarge and includes clients that should be divided into

smaller aggregation units (over-aggregation).

2.2.3.1 Identifying Minorities and Over-aggregation

To study the two causes, we look at the aggregation units with dispersion larger than 50

ms and determine the minimum set of clients that must be pruned to obtain dispersion less

than 50 ms. We use a greedy algorithm to minimize the number of clients in the pruned

set. The greedy algorithm starts from all the clients in the aggregation unit and first prunes

the client that has latency furthest from the average latency of clients. Then, the process is

repeated with the rest of the clients until the dispersion of the aggregation unit is less than

50 ms. Then, we calculate the ratio of the number of clients in the pruned set to the total

number of clients (pruned ratio).

Figure 2.5 shows the distribution of pruned ratios for the four aggregation methods. We

consider an aggregation unit as containing minorities if they have a pruned ratio 0.1 or less.

Since a /20 IP block includes at most 16 /24 clients, almost no /20 IP blocks have a pruned

ratio less than 0.1. Of the other aggregation methods, only 25% to 31% of their aggregation

units have a pruned ratio less than 0.1. Since small aggregation units include a fewer

number of clients, they are less likely to have a small pruned ratio. Among aggregation

units with a pruned ratio less than 0.1, over 84% of them are of size at least /18 for BGP

prefixes and geo-blocks. If we now consider aggregation units with a pruned ratio larger

7We have verified that atypical latencies are not the reason to large dispersion. Among aggregation units
with large dispersion, less than 2% of them include minorities that could experience atypical latencies (20 ms
larger than latencies in neighboring periods) such as caused by network congestion.

18

0 0.2 0.4 0.6 0.8

Pruned ratio of aggr. units

0

0.2

0.4

0.6

0.8

1.0

C
D

F BGP prefix

geo-block

/20 IP block

LDNS

Figure 2.5: Distribution of the pruned ratio

than 0.2 to be due to over-aggregation, over 40% of aggregation units have large dispersion

due to over-aggregation for all aggregation methods. Since each client takes a significant

portion in small aggregation units, small aggregation units with large dispersion are more

likely due to over-aggregation. Among aggregation units of size /18 or larger, 10% of geo-

blocks, 9% of BGP prefixes and 4% of aggregations by LDNSs with large dispersion are

due to over-aggregation.

2.2.3.2 Inflexibility of Existing Aggregations

Existing aggregation methods partition Internet address space by clustering clients simi-

lar in certain attributes. The attributes do not necessarily reflect path performance of clients.

Moreover, given an attribute by which clients are aggregated, partitioning of the address

space is fixed, not adaptive to changing network conditions. This inflexibility of parti-

tioning causes the minorities and over-aggregation problems. In this section, we analyze

the relationship between inflexible address space partitioning due to the use of arbitrary,

non-performance related attributes and the presence of minorities and over-aggregation.

Minorities and over-aggregation are due to clients’ having large distances in their la-

tencies (latency distance). We now study how latency distance relates to the distance in

IP addresses (address distance), i.e., how clients far away in latency can be separated by

splitting address space. We use the same definition of address distance used by Lee and

Spring [26]. For each client in the pruned set, we choose the top 10% furthest clients in

latency and refer to them as distant clients. Then, we calculate two address distances: 1)

19

from the client in the pruned set to the distant clients and 2) between distant clients. For the

first measure, we calculate the address distance between the client and each of the distant

clients, and use the average as the address distance. For the second measure, we calculate

the address distance between each pair of the distant clients and use the average as the

address distance.

For existing aggregation methods, we find that about 37% to 47% of minorities are

closer to the distant clients in address space than the distant clients are among themselves.

Thus to separate them from the distant clients would require segregating them into their

own, small aggregation units, e.g., /23s. For the remaining 53% to 63% of minorities, since

they are further apart from the distant clients than the distant clients are apart amongst them-

selves, we could further divide the address space. In the case of over-aggregation, only 7%

of clients are closer to the distant clients than the distant clients are apart amongst them-

selves, in address space. This means that for most clients in the case of over-aggregation,

being far apart in latency to distant clients implies being far apart in address space. Thus,

these clients should be easily separated from the distant clients by further dividing the ad-

dress space. In the following, we introduce AP-atoms which takes advantage of the above

observations and allow for flexible address space boundaries that adapt dynamically to net-

work condition.

2.3 AP-Atoms

In contrast to existing aggregation methods, AP-atoms are data-driven aggregation. It

aggregates clients based on their latencies. Each AP-atom includes clients with similar

latencies. The similarity in latencies, which determines the dispersion of clients, can be

controlled depending on the requirements on the accuracy of client redirection. Since AP-

atoms aggregate clients based on their latencies and the latencies of clients change with

network events, e.g., route changes, AP-atoms dynamically adapt to changing network con-

ditions, resulting in high-accuracy aggregation. Further, AP-atoms are server-independent:

20

0 10 20 30 40 50

Sample number

200
250
300
350
400
450
500

R
T

T
 (

m
s
)

mode of samples

(a) Single mode

0 10 20 30 40 50 60 70 80 90

Sample number

0
50

100
150
200
250
300
350

R
T

T
 (

m
s
) mode 1 of samples

mode 2 of samples

(b) Non-overlapping modes

0 50 100 150 200

Sample number

300
400
500
600
700
800
900

1000

R
T

T
 (

m
s
) mode 1 of samples

mode 2 of samples

(c) Overlapping modes

0 2 4 6 8 10 12

Sample number

0
200
400
600
800

1000

R
T

T
 (

m
s
)

(d) No mode

Figure 2.6: Four patterns of latencies

the dispersion of aggregation units and of clients is small whichever server they are redi-

rected to. To achieve server-independence, we find a set of aggregation units that have

small dispersion from the view of each single server, referred to as AP-atom candidates.

Then, we merge the view of each server (i.e., AP-atom candidates) to obtain AP-atoms.

2.3.1 AP-Atom Candidates: Single-Server View

AP-atom candidates are generated from clusters of clients with similar patterns in their

latency measurements. Before discussing how to cluster clients based on their latency

patterns, we first present latency patterns and the identification of latency patterns. We start

with the latencies between a server and its clients, which can be obtained, for example,

from the TCP round-trip time estimates of the clients’ connections at the server. Client

latencies, observed over time, change with network events and thus have different patterns.

2.3.1.1 Latency Patterns

Before introducing patterns in latency measurements, we first discuss how to determine

latency. When an individual address (a 32-bit IP address) has a large number of RTTs

21

available [4, 11], the minimum or median RTT is generally used as latency. However,

when this method is used for passive measurements, it faces two problems: 1) a significant

portion of individual addresses could have an insufficient number of measurements in pas-

sive measurements,8 and 2) the measurements of individual addresses could be inflated due

to network congestions, not representative for typical latencies. To solve these problems,

we aggregate RTTs and use the collective behaviors in the aggregated RTTs to determine

latency. As the finest address prefix granularity in our dataset is /24 for privacy purposes,

we aggregate individual addresses in the same /24 IP block. As recent work has shown, it

is possible for /24 IP blocks to include individual addresses that are dissimilar in latencies

[27]. We use the modes of RTTs as latency, where the modes of RTTs are the prevalent

RTTs (see Section 2.3.1.2 for more details). Since RTTs can have multiple modes, using

modes instead of the minimum or median latency helps us distinguish dissimilar addresses

within the same /24 IP block.

Figure 2.6 shows four patterns of RTTs taken from a client (i.e., a /24 IP block). When

individual addresses in the same /24 block are similar in latencies, their combined RTTs

either have a single mode as in Figure 2.6(a) or multiple modes that do not overlap in time

as in Figure 2.6(b). A single mode occurs when RTTs are measured in a stable period

of the network, where the network could be either uncongested or persistently congested.

Multiple non-overlapping modes occur when RTTs are measured in a period including

network condition changes, e.g., congestion or route changes. As individual addresses are

similar in latency, their RTTs change with the changing network conditions, resulting in

non-overlapping multiple modes. Figure 2.6(c) shows a pattern including multiple modes

that overlap in time, which we refer to as overlapping modes. Due to insufficient or noisy

measurements, the modes of RTTs could be unidentifiable, referred to as unidentifiable

modes. Figure 2.6(d) shows an example of noisy RTTs, where RTTs take a large range of

8An individual address could easily have sparse data in passive measurements due to 1) the individual
address may have infrequent or no communications with the servers of interest and 2) latency can be measured
passively only at limited stages of communications, e.g., during TCP’s three-way handshake [19].

22

values and thus no mode can be identified.

2.3.1.2 Identifying Latency Patterns

We identify latency patterns using two machine learning algorithms, i.e., mean shift

clustering (MSC) [28] and total variation denoising (TVD) [29]. MSC is used to cluster

RTT samples, where samples in the same cluster (called MSC cluster) are close in values.

TVD is used to determine the relations between MSC clusters. In Figure 2.7(a), we use

an example to show how to obtain MSC clusters and the relations between MSC clusters.

The example shows one-day RTT trace from a /24 block to a given server. At time 6, an

erroneous sample, much less than other samples, is marked as a cross. Before and after

time 12, there is a change of the minimum RTTs, which could be due to a network event.

After applying MSC on the RTT samples, we obtain the MSC clusters in Figure 2.7(b).

The erroneous sample is isolated in MSC cluster 1. Each MSC cluster has a peak and the

RTT corresponding to the peak is the mode of the cluster. MSC clusters 2, 3 and 5 have a

much higher peak than other clusters, indicating that they include a much larger number of

samples.

To distinguish between MSC clusters (denoted as x and y), we identify three relations:

1) x is noise to y, i.e., x has a much less number of RTTs than y, and RTTs in x and y

are interleaved in time, e.g., MSC clusters 1 and 5; 2) x and y are non-overlapping, i.e., x

and y are not noise to any other clusters and their RTTs almost do not overlap in time, e.g.,

MSC clusters 2 and 3; 3) x and y are overlapping, i.e., x and y are not noise to any other

clusters and their RTTs are interleaved in time, e.g., MSC clusters 2 and 5. Only the modes

of MSC clusters that are not noise to any other clusters are considered stable and used to

calculate latency dispersion in experiments. In the following, we use TVD to quantitatively

determine the relations between MSC clusters.

The most well-known application of TVD is noise removal. Given a noisy signal as

input, TVD recovers the original signal by smoothing out the noise. If the noisy signal is

23

0 4 8 12 16 20 24

Time of a day (hour)

0

200

400

600

800

R
T

T
 (

m
s
)

(a) RTT samples

0 200 400 600 800

RTT (ms)

0
0.002
0.004
0.006
0.008

0.01
0.012

P
D

F

53

2

1 4 876

(b) MSC clusters

Figure 2.7: An example of applying MSC to obtain MSC clusters

denoted as r = (r1, . . . , rm), where ri is the i-th element, the objective of TVD is to find

a sequence z = (z1, . . . , zm), an approximation to the original signal by minimizing the

following cost function,

arg min
z

m∑
i=1

|ri − zi|2 + λ
m∑
i=2

|zi − zi−1| ,

where λ is a tuning parameter penalizing the change to zi. Given two MSC clusters x and

y, we first set all RTTs in each MSC cluster to be the mode of that cluster and then merge

the RTTs in both clusters in the order of their measured time. Using the merged RTTs as

input r to TVD, we obtain the output z as previously described. Setting all RTTs in each

cluster to the same value before applying TVD emphasizes the impact of one cluster on the

other. If ri is in x, |zi − ri| is then the impact of RTTs in y on ri after TVD. Let us denote

the change of ri, i.e., |zi − ri|, as ∆i and use a threshold ∆th to determine if the change is

significant.

After TVD, we calculate the percentages of RTTs having significant changes in x and

y, denoted as Px and Py respectively. Let h be a threshold to determine if most RTTs

have significant changes. The relations between x and y are summarized as follows: 1) If

Px ≤ 1 − h and Py ≥ h, most RTTs in y have significant changes, while most RTTs in x

do not have significant changes, i.e., y is noise to x. Similarly, if Py ≤ 1− h and Px ≥ h,

x is noise to y; 2) If Px ≤ 1 − h and Py ≤ 1 − h, RTTs in x and y have small impact

on each other, i.e., x and y are non-overlapping; 3) Otherwise, overlapping. It should be

noted that x and y in the last two relations cannot be noise to any other clusters. Using the

24

pairwise relations between MSC clusters, we can identify latency patterns as follows. If

two MSC clusters are overlapping, the latency pattern has overlapping modes. If two MSC

clusters are non-overlapping and other clusters are noise to the non-overlapping clusters,

the latency pattern has non-overlapping modes. If all other clusters are noise to one cluster,

the latency pattern has a single mode.

In the algorithms above, we have three parameters λ, ∆th and h. To determine λ and

∆th, we establish a relation between them. Since RTTs in x and y are set to the mode of

each cluster respectively before merging, the merged RTTs are comprised of alternating

segments, where each segment includes RTTs of the same value and consecutive segments

include RTTs of different values. We represent the merged RTTs as r = (s1, . . . , sk),

where si is the i-th segment, and the number of RTTs in si as N(si). The relation between

λ and N(si) is as follows.

Theorem 1. Let dx and dy be the modes of x and y, and the merged RTTs have k segments.

For λ ∈ (0, |dx − dy| /2), we have that ∆i = λ
2N(sj)

if ri is in sj for j ∈ {1, k} and that

∆i = λ
N(sj)

if ri is in sj for j ∈ {2, . . . , k − 1}.

Proof. Without loss of generality, we assume dx < dy. When the optimal solution is

reached, for any i ∈ {1, . . . ,m}, we must have dx ≤ zi ≤ dy. For zi’s less than dx or larger

than dy, we can always get a smaller cost by setting these zi’s to dx or dy whichever is closer

in distance. Similarly, when the optimal solution is reached, for ri’s in the same segment,

we must not have oscillating ∆i’s, e.g., ∆i > ∆i−1 and ∆i > ∆i+1. For such ∆i’s, a

smaller cost can be achieved by setting ∆i = (∆i−1 + ∆i+1)/2. Thus, for all ri’s in the

same segment, we have a monotonic sequence of ∆i’s. Without loss of generality, assuming

that the sequence of ∆i’s in the same segment is non-decreasing, we have |zi − zi−1| =

|∆i−∆i−1| = ∆i−∆i−1. By denoting dy− dx as ∆d and zi− zi−1 as ∆zi, we can rewrite

the cost function as

f =
m∑
i=1

∆2
i + λ

∆d−∆1 −∆N(s1)+1 +
m∑

i=N(s1)+2

|∆zi|

 .

25

When f is minimized, we have that for each ri where i ∈ {2, . . . , N(s1)}, ∂f/∂∆i =

2∆i = 0. However, since the sequence of ∆i is non-decreasing, we have that f is min-

imized when ∆i = ∆1 for i ∈ {2, . . . , N(s1)}. This implies that the cost is minimized

when all ri’s in the same segment have the same change. Let ∆si be the change of RTTs

on the i-th segment. We have

f =
k∑
i=1

N(si)∆
2
si

+ λ

(
(k − 1)∆d−

k∑
i=1

∆si −
k−1∑
i=2

∆si

)
.

Taking the derivatives of f with respect to ∆si , we have that the optimal solution is

achieved when ∆si = λ
2N(si)

for i ∈ {1, k} and ∆si = λ
N(si)

for i ∈ {2, . . . , k − 1}.

For the similar reason as ∆i’s, we must not have oscilating ∆si’s across segements, i.e.,

λ
N(si)

+ λ
N(sj)

≤ ∆d is true for any N(sj) and N(sj) when i 6= j. We thus have λ ≤

∆d/2.

Theorem 1 tells us that the changes to RTTs depend on the number of RTTs in their

segment. We set a threshold Nth to determine if the number of RTTs in a segment is signif-

icant. We refer segments with at least Nth RTTs as significant segments. Since we expect

RTTs in significant segments have insignificant changes after TVD, we set the threshold

∆th equal to λ/Nth. The relation between λ and ∆th holds for λ between 0 and |dx − dy| /2.

We thus can set λ to any value in the range. The parameters h and Nth both determine the

percentages of different latency patterns. Higher h and Nth result in a larger percentage of

latency patterns to be identified as having overlapping modes. As will be discussed in later

sections, to guarantee the accuracy of AP-atoms, we prefer relatively large h and Nth. We

use h = 0.8 and Nth = 5 in our later experiments, where the setting of Nth also considers

the data density in our dataset as discussed in §2.2.1. To avoid high-variation RTTs that are

greatly inflated, we require the largest MSC cluster include at least Nth RTTs.

26

2.3.1.3 Clustering Clients Based on Latency Patterns

After having the latency patterns of clients, we want to cluster clients such that clients

in the same cluster have similar latency patterns. The latency patterns of clients are identi-

fied for a given time period and can change over different time periods, depending on the

network events in the periods. To ensure that clients that experienced the same network

event, i.e., having the same latency pattern, can be found, we cluster clients based on la-

tency patterns identified for the same time period. In the next section, we will discuss how

to consolidate latency patterns over different time periods.

Once we have identified latency patterns, we divide clients having the same latency

pattern into the same group and cluster clients in each group seperately. For clients with

overlapping modes, since they already include individual addresses with dissimilar modes,

we consider that each of them is a cluster by itself. Due to the data granularity limitation

of our dataset, even if we find that addresses in some /24 clients have a distance between

latencies greater than the predefined threshold, we cannot further split these clients into

smaller clusters. Nonetheless, this is a limitation of our dataset, not our method. Our

method can be used to split /24 clients if the measurements of individual addresses in the

/24 block are available. For clients with non-overlapping modes, we determine if two

clients should be in the same cluster by merging the RTTs of the two clients and then

checking the latency pattern of the merged RTTs. If the merged RTTs continue to have

non-overlapping modes, the two clients shoud be in the same cluster; otherwise, they are

in different clusters. Two clients with non-overlapping modes are in the same cluster only

if the modes of latencies of the two clients are similar both in values and in time duration.

The degree of similarity is determined by the TVD algorithm discussed above. To cluster

clients with a single mode, we use the quality threshold (QT) clustering algorithm [30].

Since all clients only have a single mode, each of them is associated with the value of the

mode and the QT algorithm clusters clients based on the values of their modes. The QT

algorithm takes the pre-defined threshold as a parameter for clustering. After clustering,

27

clients in the same cluster have difference in modes less than the pre-defined threshold.

Since the algorithms to identify latency patterns and the QT algorithm are of superlinear

complexity [28, 31], clustering all clients together is of high complexity. We thus divide the

Internet address space into prefixes of proper size, which we refer to as the top prefix, and

cluster clients using the QT algorithm only within each top prefix, not across them. For the

sizing of top prefixes, there is a tradeoff between scalability and computational complexity.

As will be discussed in Section 2.3.1.5, the number of top prefixes affects the number of

AP-atoms. Considering both scalability and computional complexity, we use /16s as top

prefixes and need 45K /16s to cover the entire Internet address space of the 592K routable

BGP prefixes provided by CAIDA.

2.3.1.4 Evolution of Client Clusters

Given a server, we can use latency patterns of clients in a single period to obtain the

clusters of clients in that period (single-period clusters). Due to changing network con-

ditions and the emergence of new clients, single-period clusters can only reflect the sim-

ilarity of clients in one period. For each top prefix, we want a set of client clusters that

dynamically adapts to the changing network conditions and cumulatively accommodates

new clients. Further, since the latency patterns of clients could be misidentified in any one

time period, we want to be able to correct the misidentification over time. We refer to

such client clusters as cumulative clusters. As cumulative clusters use latencies of clients

from multiple (both past and current) periods, cumulative clusters include more clients than

single-period clusters and more accurate latency patterns of clients.

Suppose we want to obtain the cumulative clusters in the (n + 1)-st period. We first

consolidate clients in the cumulative clusters in the n-th period together with clients in

the single-period clusters in the (n + 1)-st period, and then correct the latency patterns

of clients that are misidentified. The cumulative clusters in the n-th period are obtained

from the latency patterns of clients from the first to the n-th periods. When n is equal to

28

1, the cumulative clusters are the single-period clusters in the first period. Depending on

whether a client has identifiable latency patterns on the n-th and (n+1)-st time periods, we

have three cases (not including the case when the client has no identifiable latency patterns

on both periods). For each case, we must treat clients differently based on their latency

patterns.

In the first two cases, a client has an identifiable latency pattern in the (n+ 1)-st period.

We cluster the client using the latency pattern and record the latency pattern for correction

later. In the third case, a client has no identifiable latency pattern in the (n + 1)-st period.

We want to use the client’s latency pattern in the n-th period to infer the one in the (n+ 1)-

th period for the consolidation. More specifically, in the first two cases, if the client has

overlapping and non-overlapping modes, the client is in the single-period cluster of the

client in the (n+1)-st period, where single-period clusters are obtained by clustering clients

based on their latency patterns in that period. If the client has a single mode, we calculate

the moving average of the mode and use the moving average to cluster the client with other

single-mode clients later. Using moving average is to smooth the mode and thus be more

resilient to atypical modes.

In the third case, if the client has overlapping modes in the n-th period, it is a cluster

by itself in the (n + 1)-st period. If the client has a single mode, the moving average of

its mode in the n-th period carries to the (n + 1)-st period and the moving average is used

to cluster the client with other clients. If the client has non-overlapping modes, we check

if the client is in the same cumulative cluster with other clients in the n-th period, referred

to as in-cluster clients. If there is no in-cluster client, the client is a cluster by itself in the

(n+1)-st period. If in-cluster clients exist, we use the most frequent pattern of these clients

in the (n+ 1)-st period as the latency pattern of the client. It is possible that none of the in-

cluster clients have identifiable pattern in the (n+ 1)-st period or the most frequent pattern

still has non-overlapping modes. In this case, the client and its in-cluster clients are still

in the same cluster in the (n + 1)-st period. If the most frequent pattern has overlapping

29

modes, the client is in a cluster by itself in the (n + 1)-st period. If the most frequent

pattern has a single mode, the average mode of the in-cluster clients is used as the mode of

the client in the (n+ 1)-st period. We calculate the moving average using the mode for the

client and use the moving average to cluster the client with the other clients later.

After the operations above, clients in the n-th and (n + 1)-st periods are consolidated.

We record the most recent latency pattern (i.e., the one in the (n+ 1)-st period) and correct

the latency patterns of clients to their most frequent latency patterns in record if the most re-

cent one differs from the most frequent. This is to avoid the possibility that the most recent

latency pattern is misidentified. However, we do not correct the latency patterns of clients if

their most frequent latency patterns are non-overlapping modes, as non-overlapping modes

are temporary due to network events. Since clients with non-overlapping and overlapping

modes are already clustered, we must cluster clients with a single mode using the QT al-

gorithm, which operates on the moving averages of their modes. All the resulting clusters

combined comprise the cumulative clusters of clients in the (n+1)-st period. In the follow-

ing, we use cumulative clusters to get AP-atom candidates and simply refer to cumulative

clusters as clusters.

2.3.1.5 AP-Atom Candidates: Optimal Prefix Splitting

After clustering, we obtain clusters including clients with similar latency patterns to a

given server. However, these clusters only include clients with identifiable latency patterns

in our dataset. We cannot directly use these clusters for global load balancing. Instead, we

use them as a guide to generate a set of prefixes that cover the entire Internet address space.

Given a server, we can have a set of client clusters in each top prefix. Our goal is to find

the minimum set of prefixes (i.e., AP-atom candidates) for each top prefix such that 1) these

prefixes can cover the entire address space of the top prefix and 2) using the longest prefix

match, clients in the same cluster are matched into the same prefix and clients in different

clusters are matched to different prefixes. The longest prefix match algorithm [32], widely

30

used for Internet routing, always finds the prefix that shares the most number of common

bits with the address of the client. This property guarantees that even when one prefix

is included in another prefix, the client can still be matched to the correct one. In the

following, we refer to this problem as optimal prefix splitting.

To obtain the minimum set of prefixes, we construct a binary tree from all the prefixes

covered by the address space of the top prefix. Each node in the tree is a prefix, where the

root of the tree is the top prefix and the leaves are /24 clients. The children of a prefix /x

are two /(x+ 1) prefixes that evenly split the /x prefix. Clusters of /24 clients are indexed

and each /24 client, if it has an identifiable latency pattern, is associated with the number

of the cluster that the client is in. Clients in the same cluster have the same cluster number

and must be matched to the same prefix. Clients with no identifiable pattern has no cluster

number and can be matched to any prefix depending on how the address space is split.

Among all the nodes in the tree, we want to select the minimum number of nodes that can

achieve the optimal prefix splitting, where the prefixes at the selected nodes comprise the

minimum set of prefixes. For each node in the tree, we have two choices, either selecting

the node or not.

Let us start the node selection from the top prefix. If the top prefix is not selected, the

minimum set of prefixes is the union of the minimum sets of prefixes needed to achieve the

optimal prefix splitting for the left and right children of the top prefix. If the top prefix is

selected, there could be multiple clusters of clients in the subtree of the root node, where the

subtree of a node consists of the node and all descendents of the node. We must determine

which cluster of clients the top prefix should cover under the longest prefix match. Because

clients in different clusters should be matched to different prefixes, each prefix can only

cover one cluster. Suppose the top prefix is selected to cover the i-th cluster. To guarantee

that clients in the i-th cluster are matched with the top prefix under the longest prefix match,

for other prefixes we must select the largest ones whose subtrees do not include clients in

the i-th cluster; otherwise, since these prefixes are smaller than the top prefix, clients in

31

the i-th cluster in the subtree of these prefixes will be matched with them rather than the

top prefix under the longest prefix match. We refer to such prefixes as complementary

prefixes to the top prefix. To generalize the definition, the complementary prefixes to a

prefix are the largest prefixes that are in the subtree of the prefix and do not include any

client from the cluster covered by the prefix under the longest prefix match. When the top

prefix is selected, the minimum set of prefixes to achieve the optimal prefix splitting is the

top prefix and the union of the minimum set of prefixes needed for each complementary

prefix to the top prefix, where the set of complementary prefixes depends on which cluster

the top prefix covers.

From the selection process above, we can see that the problem of optimal prefix split-

ting can be divided into similar subproblems. We can use dynamic programming to solve

the problem as follows. Suppose we have a node u and want to know the optimal splitting

of the prefix at node u. We denote the minimum number of prefixes needed as Fopt(u). The

set of prefixes that achieve the minimum number of prefixes is the minimum set of prefixes.

We denote the number of prefixes needed by selecting node u as Fin(u, i), where i is the

cluster number of the clients that the prefix at node u must cover under the longest prefix

match. We index clusters from 1 and use Fin(u, 0) for the case that no cluster is included in

the subtree of node u. Suppose the i-th cluster is chosen to be covered by the prefix at node

u. We denote the set of complementary prefixes to the prefix at node u as Pu,i. The subtree

of each complementary prefix includes a set of clusters—the set may be empty. We denote

the set of clusters in the subtree of node v as Sv, where Sv is empty if no cluster is in the

subtree of node v. If node u is not selected, no cluster is covered by the prefix at node u and

the optimal splitting is determined by the children of node u, denoted as Cu. We denote the

number of prefixes needed by not selecting node u as Fout(u). Thus, the optimal solution is:

Fopt(u) = min {mini∈Su {Fin(u, i)} , Fout(u)} ,

where mini∈Su {Fin(u, i)} is the minimum number of prefixes among all cases when dif-

32

ferent clusters in the subtree of node u are chosen to be covered. Based on the selection

process, we also have that

Fin(u, i) = 1 +
∑

v∈Pu,i

Fopt(v)

and

Fout(u) =
∑

v∈Cu

Fopt(v).

We use dynamic programming to compute the optimal solution. When traversing the

binary tree, we stop at a node either when the subtree of the node includes no cluster

or a single cluster. Suppose we stop at node v. If node v includes no cluster, we set

Fin(v, 0) = 1, because no further search is needed. If node v includes a single cluster and

the cluster number is i, we set Fin(v, i) = 1. In both cases, we set Fout(v) to∞ such that

the prefix at node v must be included to guarantee that either the entire address space is

covered or each cluster is covered by a prefix. After we obtain the minimum set of prefixes,

each prefix is an AP-atom candidate.

2.3.2 AP-Atoms: Multi-Server View

We now have a set of AP-atom candidates for each server, where clients in the same AP-

atom candidate have small distances between their latencies to the server. Since the sets of

AP-atom candidates to different servers may be different, we next merge these sets to obtain

AP-atoms. The goal of this merging operation is to achieve server-independence. Under

the longest prefix match rule, the merging can be easily done by combining the set of AP-

atom candidates of each server. Suppose we have a client that is in the prefix a1.b1.c1.d1/x1

to server 1 and is in the prefix a2.b2.c2.d2/x2 to server 2. For the two prefixes, since they

cover the same client, the larger prefix must include the smaller one, i.e., the address space

covered by the smaller prefix is within the address space covered by the larger one. After

combining the sets of AP-atom candidates, we have both prefixes in the set of AP-atoms.

33

N.California
(AWSEC2)

Dallas
(Rackspace)

Ireland
(AWSEC2)

N.Virginia
(AWSEC2)

Chicago
(Rackspace)

London
(Rackspace)

Singapore
(AWSEC2)

Amsterdam
(Joyent)

Hongkong
(Rackspace)

Oregon
(AWSEC2)

Figure 2.8: Locations of servers

Under the longest prefix match rule, the client is matched to the smaller prefix. Since the

larger prefix includes the smaller one, the client is also in the larger prefix and thus has

small dispersion to both servers.

Combining AP-atom candidates to each server gives us the set of AP-atoms, but this

set includes many empty prefixes, i.e., the ones that no clients are matched to. In other

words, the address space covered by an empty prefix is the combination of the address

spaces covered by other small prefixes. For instance, if the set of AP-atoms includes a /x

prefix and two /(x + 1) prefixes that evenly divide the address space of the /x prefix, the

/x prefix is an empty prefix. After pruning all empty prefixes, we obtain the finalized set

of AP-atoms.

2.4 Performance Evaluation

We use 30 days of latency measurements between clients and 10 servers in September

2015, where the locations of servers are shown in Figure 2.8. Due to data sparsity, as

discussed in the §2.2.1, we divide 30 days into 15 two-day periods and use measurements

from two consecutive days to identify latency patterns. To avoid atypical latencies, we

smooth the latencies by their moving average with the typical weights of moving average

in TCP. To present the capability of AP-atoms in trading off scalability for accuracy, we

34

1 3 5 7 9 11 13 15

Period number

2
4
6
8

10

#
 o

f
A

P
-a

to
m

s 10
5 AP-atom(35)

AP-atom(50)

AP-atom(75)

(a) Scaling over time

1 3 5 7 9 11 13 15

Period number

10
4

10
5

10
6

10
7

#
 o

f
n

e
w

 c
li
e

n
ts

(b) New clients over time

1 2 3 4 5 6 7 8 9 10

of servers

0
2
4
6
8

10

#
 o

f
A

P
-a

to
m

s 10
5 AP-atom(35)

AP-atom(50)

AP-atom(75)

(c) Scaling over servers

8 10 12 14 16 18 20 22 24

Prefix size

0
1
2
3
4
5
6

#
 o

f
p
re

fi
x
e
s

10
5

AP-atom(35)

AP-atom(50)

AP-atom(75)

BGP prefix

(d) Prefix size distribution

Figure 2.9: Scalability of AP-atoms

obtain three sets of AP-atoms using different pre-defined thresholds for the QT algorithm.

The numbers of AP-atoms on these sets are chosen to be on scales that are larger than, equal

to, and smaller than the number of aggregation units under existing aggregation methods

respectively. Each set of AP-atoms is compared against existing aggregation methods in

terms of scalability and server-independence.

2.4.1 Scalability of AP-Atoms

We look at the scalability of AP-atoms in three aspects: 1) the scaling of AP-atoms over

time, 2) the scaling of AP-atoms over the number of servers and 3) the distribution of prefix

sizes of AP-atoms. The third aspect tells us the reasons for the advantages of AP-atoms

over existing aggregation methods in terms of scalability.

2.4.1.1 Scaling of AP-Atoms over Time

Since AP-atoms evolve, we want to know the scaling of AP-atoms over time and the

factors that affect the number of AP-atoms. Figure 2.9(a) shows the number of AP-atoms

over 15 periods, where AP-atom(k) denotes the AP-atoms obtained by setting the pre-

35

defined threshold equal to k ms, meaning that the radius of clusters in the QT algorithm is

less than k ms. In general, as the period number increases, the total number of AP-atoms

under all thresholds increases. The increment is mainly caused by the appearance of new

clients, clients that never have an identifiable latency pattern in the previous periods. De-

pending on the latency patterns, new clients can cause the number of AP-atoms to increase

in three ways: 1) If the new client has a single mode and the mode is far away from the

modes of other clients, a separate cluster will be needed for the client. 2) If the new client

has non-overlapping modes not similar to the latency patterns of other clients, the client

will be in a separate cluster. 3) If the new client has overlapping modes, the new client will

be in a separate cluster by itself.

Figure 2.9(b) shows the number of new clients in each period. In the first five periods,

there are at least 100K new clients in each period and even until the last period, there are

still about 20K new clients. When the number of new clients becomes stable at the 10-th

period, the number of AP-atoms(50) and AP-atoms(75) increases slowly. In contrast, AP-

atoms(35) are sensitive to new clients and increase with a rate of 15K per period after the

11-th period. Comparing AP-atoms(35) and AP-atoms(75), we see that a large threshold

helps accommodate new clients without incurring a significant number of new AP-atoms.

This is because most clients have a single mode, which can be easily accommodated with

other clients when the threshold is large. When the last period ends, we obtain 895K AP-

atoms(35), 563K AP-atoms(50) and 322K AP-atoms(75), which are 1.51×, 0.95×, and

0.54× the 592K number of BGP prefixes. To cover the address space of BGP prefixes, we

need 693K /20 IP blocks. Since geo-blocks generally have smaller aggregation units than

BGP prefixes, we need more geo-blocks to cover the entire address space.

It is noticeable that even when there are more than 100K new clients appearing in the

second period, the number of AP-atoms(75) in the second period is still less than that in the

first one. The decrement is caused by the correction of latency patterns. From the first to

the second period, clients identified to have non-overlapping and overlapping modes in the

36

first period are corrected to have a single mode in the second one. Under a large threshold,

these clients changing to have a single mode can be clustered with other clients, causing the

total number of AP-atoms(75) to decrease. The latency patterns of such clients also change

when the thresholds are equal to 35 ms and 50 ms, but as AP-atoms(35) and AP-atoms(50)

are more sensitive to new clients, the total still increases.

2.4.1.2 Scaling of AP-atoms over the Number of Servers

To be server-independent, AP-atoms are obtained by merging the AP-atom candidates

of each server. We want to know the scaling of AP-atoms over the number of servers.

Figure 2.9(c) shows the number of AP-atoms under different numbers of servers. As the

number of servers increases, the number of clients accommodated into AP-atoms increases

sharply (not shown here). At 8 servers, about 98% of clients have been accommodated

into AP-atoms, but this does not slow down the linear increment of AP-atoms from server

9 to 10. The key reason for the increment is because AP-atom candidates of each server

are obtained separately without considering others. More specifically, AP-atom candidates

of a server are generated by the optimal prefix splitting based on the set of clients to the

server, while servers have different sets of clients, which results in different sets of AP-

atom candidates. An optimization across servers would further decrease the number of

AP-atoms, which is a subject of our future research.

For small-scale CDNs with servers in 30 to 40 locations [33], the scaling of AP-atoms

is not a concern. Even when the AP-atom candidates of all servers are used, based on the

trend of AP-atoms(75) in Figure 2.9(c), the number of AP-atoms is approximately 470K

for 40 servers, which is 0.8× the number of BGP prefixes. For large-scale CDNs with

more than 1K locations of servers [34, 5], we can select servers whose views of AP-atom

candidates differ significantly and only merge AP-atom candidates of these servers.

37

0 50 100 150 200 250

Max. dispersion (ms) of clients

0

0.2

0.4

0.6

0.8

1.0

C
D

F AP-atom(35)

AP-atom(50)

AP-atom(75)

/20 IP block

(a) Accommodation of clients

0 50 100 150 200 250

Max. dispersion (ms) of aggr. units

0

0.2

0.4

0.6

0.8

1.0

C
D

F AP-atom(35)

AP-atom(50)

AP-atom(75)

BGP prefix

(b) Disp. of aggr. units in the future

0 50 100 150 200 250

Max. dispersion (ms) of clients

0

0.2

0.4

0.6

0.8

1.0

C
D

F AP-atom(35)

AP-atom(50)

AP-atom(75)

/20 IP block

(c) Disp. of clients in the future

Figure 2.10: Server-independence

2.4.1.3 Distribution of Prefix Sizes

We have compared AP-atoms with existing aggregation methods in terms of the total

number of aggregations needed to cover the Internet address space, but the total number

cannot tell us the reasons for the scale of aggregation units. We look at the distribution of

prefix sizes to understand the advantages of AP-atoms over existing aggregations. Figure

2.9(d) shows the distributions of prefix sizes of BGP prefixes and the three sets of AP-

atoms, where the 1.6% of BGP prefixes smaller than /24 are not counted for the distribution.

Since the IP2Location LITE database does not include the entire Internet address space,

geo-blocks are not compared here. The largest prefix size of BGP prefixes is /8, while as

AP-atoms are split from /16 top prefixes, AP-atoms have the largest prefix size equal to

/16.

The three sets of AP-atoms include about 43K /16s, which are the 97% of all /16s we

use to cover the entire address space. Large prefixes, due to covering large address space,

are preferred to minimize the number of aggregation units. For each prefix size smaller

than /16, AP-atoms(75) use a smaller number of prefixes than BGP prefixes and thus have

a total number that is half the number of BGP prefixes. AP-atoms(50) have almost equal

38

number of prefixes as BGP prefixes for each prefix size and thus have the same scale as

BGP prefixes, while AP-atoms(75) include higher numbers of /23s and /24s than BGP

prefixes. From the figure, we can see that the different scales of AP-atoms are mainly

due to using different numbers of /23s and /24s. In other words, top prefixes generally

must be split into small prefixes under a small threshold. It is interesting to note that only

5% of AP-atoms(50)’s /24 aggregation units prefixes are also BGP /24 prefixes. The /24

aggregation units in AP-atoms(50) are constructed based on path performance whereas /24

BGP prefixes reflect commercial organizational decisions that do not necessarily reflect

different network performances.

2.4.2 Server-Independence

To be server-independent, an aggregation unit must have small dispersion to all servers,

i.e., the maximum dispersion of the aggregation unit to all servers must be small. We have

presented the maximum dispersion of existing aggregations in Section 2.2.2 and use the

best existing aggregation to compare against AP-atoms. We first check if clients in the past

and current periods have been properly accommodated in AP-atoms and then look at the

performance of AP-atoms to deal with clients in future periods.

2.4.2.1 Capability of Accommondating Clients

AP-atoms accommodate clients based on the latency patterns of clients in the past pe-

riods. If clients are properly accommodated in AP-atoms, we would expect the maximum

dispersion of the clients calculated using the latencies in the past periods to be small. We

use the AP-atoms in the last period for the experiments. Since the maximum dispersion of

/20 IP blocks is the smallest among existing aggregations (Figure 2.4(b)), we compare the

three sets of AP-atoms with /20 IP blocks. Figure 2.10(a) shows the maximum dispersion

of clients calculated using latencies from the first to the 15-th period. Compared to /20 IP

blocks that have 17% of clients with maximum dispersion larger than 50 ms, AP-atoms(35)

39

only have 1.5% of clients with the maximum dispersion larger than 50 ms. This implies

that AP-atoms(35) properly accommodate clients in terms of latency. The main reason for

AP-atoms(35) not able to control the dispersion of all clients less than 50 ms is because

the threshold is 35 ms, which allows clients in the same AP-atom to have the maximum

dispersion up to 70 ms. As the threshold increases to 75 ms, 12% of clients have maximum

dispersion larger than 50 ms.

2.4.2.2 Dispersion and Latency Prediction

At the end of each period, we update AP-atoms and use them for the next period. AP-

atoms used in the (n+1)-st period are AP-atoms updated when the n-th period ends. From

Figure 2.9(b), we can see that the number of new clients starts to slow down from the

10-th period. We consider the 10-th period as the time that AP-atoms have accumulated

sufficient clients. From the 10-th to the 15-th period, we use AP-atoms in the n-th period as

the aggregation units in the (n + 1)-st period and calculate the dispersion of clients in the

(n + 1)-st period. Given a server, the dispersion of a client to the server is the maximum

dispersion of the client over all periods to the server. Using the dispersion of a client to

each server, we obtain the maximum dispersion of the client to all servers.

Figure 2.10(b) shows the distribution of the maximum dispersion of aggregation units.

Because the maximum dispersion of aggregation units in BGP prefixes is the smallest

among existing aggregations (Figure 2.4(a)), we compare AP-atoms with BGP prefixes.

While BGP prefixes have 26% of aggregation units with dispersion larger than 50 ms, AP-

atoms(35) can reduce such aggregation units to 4%. The aggregation units with zero dis-

persion are mainly /24s. It is interesting to note that the percentage of /24s in AP-atoms(75)

is 12% less than that in BGP prefixes, but in Figure 2.10(b), the percentage of aggregation

units with zero dispersion in AP-atoms(75) is higher than that in BGP prefixes. This is

because /24s in AP-atoms are identified by their traffic in the past and clients with past

history of traffic to a service provider are generally more likely to have traffic to the service

40

6 12 30 80 150 300

Num. of samples

0

0.01

0.02

0.03

0.04

0.05

E
rr

o
r

ra
ti
o r = 0.1

r = 0.2

r = 0.3

r = 0.4

(a) Error ratio

6 12 30 80 150 300

Num. of samples

0

0.2

0.4

0.6

0.8

1.0

S
u

c
c
e

s
s
 r

a
ti
o

r=0.1 r=0.2 r=0.3 r=0.4

(b) Success ratio

Figure 2.11: Tolerance to latency inflation

provider in the future. Thus, /24s in AP-atoms(75) are more likely to have traffic than the

/24s in BGP prefixes.

Figure 2.10(c) shows the distribution of the maximum dispersion of clients, where /20

IP blocks are compared with AP-atoms. About 13% of clients in /20 IP blocks have disper-

sion larger than 50 ms. Even with a scale of aggregation units that is 0.46× the number of

/20 IP blocks, AP-atoms(75) can reduce this number to 10%. With a scale that is 1.3× the

number of /20 IP blocks, AP-atoms(35) reduces this number to 3.5%.

2.4.3 Tradeoff Between Tolerance and Responsiveness

Clients could have high-variation latencies to a server if their paths are greatly inflated

due to network events, e.g., queueing and route changes. Our latency identification algo-

rithm can tolerate a certain level of inflation and still accurately identify the underlying

latency pattern. A larger set of measurements is always preferred for latency identifica-

tion, but collecting measurements takes time, influencing the responsiveness of AP-atoms

to network changes. We want to study the tradeoff between tolerance and responsiveness.

To test our algorithm, we create synthetic latency samples with different levels of in-

flations, controlled by the probability of latency samples being inflated (denoted as r).

Suppose the base latency without inflation is denoted as l. In our experiments, each sample

is chosen to be inflated with a probability of r. If a sample is inflated, we first determine

the inflation that is uniformly distributed between 0 and l,9 and then add the inflation to the

9We use a simple uniform distribution to model latency inflation. The maximum inflation is set to l,

41

base latency; otherwise, the sample is equal to the base latency. We continue generating

new samples until the desired number of samples (denoted as n) is reached. We then apply

our algorithm on these samples to identify the base latency. If a single latency is found in

these samples, we consider that our algorithm succeeds in identifying the base latency and

calculate the identification error (i.e., the difference between the identified base latency and

the actual base latency).

In our experiments, we set the base latency to 100 ms such that the maximum inflation

is 100 ms, large enough to simulate variable network conditions. To avoid randomness,

we repeat the same experiment 1000 times and use the average results. Figure 2.11 shows

the average success and error ratios under different r’s and n’s, where the success ratio is

the percentage of repeated experiments in which our algorithm succeeds in identifying the

base latency and the error ratio is the ratio of the identification error to the base latency.

Figure 2.11(a) shows that the identified base latency is accurate with an error less than 5%

for all r’s, but the cost of having accurate identification is that the success ratio is relatively

low when the number of samples is small. Using a larger number of samples can improve

the success ratio to near 100% when r = 0.1 or 0.2, but this fails when r increases to 0.4.

This implies that the limit to the tolerance of our algorithm to latency inflation is reached

when 30% of samples are inflated 50 ms on average.

The success ratio determines the percentage of clients whose latencies can be iden-

tified. A better tolerance to inflation leads to a higher success ratio. We want a better

tolerance in order to have more clients with identifiable latencies. However, collecting a

larger number of measurements generally takes a longer time, resulting in slow response

to network changes. Considering both tolerance and responsiveness, using 12 samples for

latency identification is a reasonable choice.10 When no base latency is identified at 12

samples, we can either consider the clients have multiple latencies and regroup them or

proportional to the base latency, as a path with larger latency is likely to traverse more links and experience
larger inflation.

10In previous experiments, we divide time into fixed-length periods and use measurements from the same
periods for comparison purpose.

42

AS3

AS1

G1

G2

C1
C2

C3

C4

Server

Routechange
12

AS2

Figure 2.12: Impact of network changes on client aggregation

wait for more samples to be collected. The actual time taken to collect 12 samples depends

on the traffic rates of clients. We can complement passive measurements with active probes

to improve the responsiveness to network changes.

Compared to AP-atoms, other aggregation methods are not adaptive to network

changes. Geolocations and LDNSs of clients are static. Although BGP prefixes may be

changed, as BGP prefixes are designed for Internet routing, changing BGP prefixes would

cause many BGP issues like convergence and incur communication overheads. As found in

[35], except for new networks, most new BGP prefixes are due to BGP misconfigurations.

Moreover, BGP prefixes are managed by tens of thousands of service providers separately.

Cooperation from these service providers is needed to change BGP prefixes.

2.5 Discussion

We know how to obtain AP-atoms, but it is unclear how AP-atoms perform under spe-

cific network scenarios: middleboxes, high-variation latencies and network changes.

2.5.0.1 Aggregating Clients behind Middleboxes

Middleboxes generally hide their clients’ addresses from external networks. When a

server communicates with clients behind a middlebox, only the public addresses (i.e., pub-

licly routable addresses) of the middlebox are visible to the server. From the server’s per-

spective, all measurements are from the same address. If these measurements exhibit a

single latency (e.g., clients behind a NAT have similar latencies to the server), the public

43

address is further aggregated with other clients based on the latency. In contrast, if these

measurements exhibit more than one latency (e.g., clients behind a NAT have evenly dis-

tributed latencies from 100 to 200 ms to the server), the public address will be treated as a

separate aggregation unit. In AP-atoms, middleboxes that hide the private addresses from

the rest of the Internet implicitly aggregate these private addresses behind them. Nonethe-

less, middleboxes can be further aggregated to reduce the number of aggregation units that

a mapping system has to maintain. The potential improvements of AP-atoms are discussed

in Section 2.5.0.4.

2.5.0.2 Aggregating Clients with High-Variation Latencies

Clients could have various path performance depending on their network conditions.

Clients in mobile networks (e.g., cellular) are prone to experiencing more variations in

latency than those in wired networks. For clients with high-variation latencies, if they are

behind a middlebox, they will be aggregated by the middlebox as discussed above. In cellu-

lar networks, a majority of clients (70% in [36]) are reported behind a middlebox and have

private addresses. For clients with public addresses, if they have large-variation latencies,

AP-atoms will group them into small aggregation units. To understand the resilience of

AP-atoms to latency variations, we conduct experiments in Section 2.4.3, which shows that

our algorithm is able to identify latency patterns even when 30% of samples are inflated

by 50% on average. As AP-atoms aggregate clients starting from /24 blocks. The worst

case is that AP-atoms treat each /24 block as an aggregation unit, which increases the total

number of aggregation units. This weakness of AP-atoms can be overcome if combined

with active probing as discussed in Section 2.5.0.4.

2.5.0.3 Impact of Network Changes on AP-atoms

When network conditions change, the performance of clients using the network might

be affected, but no re-grouping of clients is needed if clients in the aggregation unit still

44

have similar path performance after the change.11 Only when network changes cause parts

of an aggregation unit to have different performance than the others, clients in that aggrega-

tion unit should be re-grouped. Since AP-atoms group clients based on measurements, the

re-grouping of clients requires new measurements be collected after the change. If a net-

work change is long-term, AP-atoms would be updated to accommodate the change after it

is detected. On the other hand, if the network change is transient, the update of AP-atoms

may not be responsive to the change. The time taken to collect sufficient new measure-

ments for re-grouping clients depends both on the portion of clients affected by the change

and the traffic rates of clients. An experimental study on the responsiveness of AP-atoms

to network changes is provided in Section 2.4.3.

In Figure 2.12, we use route changes as an example of network changes to show how

client aggregation is affected. Before the route changes, all clients in autonomous system

AS1 take a path traversing gateway G1 and AS2 to the server (represented by the solid

line) and have similar latencies. The first route change occurs between two routers in AS2.

Since all clients still share the same path to the server, the performance of clients is changed

equally and thus no client re-grouping is needed. The second route change causes clients

C3 and C4 to use a new gateway G2 to the server. If the new path increases the latency

to the server, clients C3 and C4 will be re-grouped into a separate aggregation unit. In

contrast, if the route change does not affect the latency to the server, all clients remain in

the same aggregation unit.

2.5.0.4 Weaknesses and Improvements of AP-Atoms

AP-atoms are obtained from passive measurements, which incurs no extra measure-

ment overheads. Unfortunately, this also leads to several weaknesses of AP-atoms: 1) AP-

atoms aggregate clients with high-variation latencies into small aggregation units, which

impacts the scalability of AP-atoms; 2) AP-atoms cannot promptly react to abrupt network

11The reasons for this could be that clients take a new path with the same performance or that the perfor-
mance of clients is changed by the same amount.

45

changes, e.g., a BGP routing change. The responsiveness of AP-atoms to network changes

is determined by the traffic rates of clients; 3) since AP-atoms aggregate clients based on

measurements, if the network has few measurements available, AP-atoms may not be ac-

curate for clients in that network. These weaknesses can be overcome by using targeted

active probing to complement AP-atoms [5]. Suppose we find a large IP block consisting

of small aggregation units, each of which includes clients with high-variation latencies. It

is possible that this large IP block includes addresses from cellular networks. We can send

probes to discover if the clients in this large IP block are similar in topology (e.g., using the

same gateway connecting with the Internet12). Similarly, we can complement passive mea-

surements with active measurements to be more responsive in detecting network changes.

The sending rate of active probes is determined by the requirements on responsiveness.

2.5.0.5 Extension of AP-Atoms to IPv6 networks

AP-atoms are specifically designed for IPv4 networks. Since IPv6 has a much larger

address space that is presently more sparsely allocated and carries much less traffic than

IPv4 [37], the proper use of AP-atoms for IPv6 networks remains an interesting future

research topic.

2.6 Summary

In this chapter, we presented a comparative study of existing client aggregation meth-

ods and found that even for the best existing client aggregation, a significant portion (17%)

of clients are far away from other clients in the same aggregation unit in terms of latency.

We analyzed the causes for the widely dispersed clients and found the main cause to be

that existing methods aggregate clients based on attributes other than path performance. To

address this, we proposed a data-driven aggregation called AP-atoms, which group clients

12It has been reported that major cellular carriers in US connect their networks with the Internet through a
few ingress points[26].

46

based on their path performance. The data-driven property enables AP-atoms to dynam-

ically adapt to network changes. We studied the scalability of AP-atoms and compared

AP-atoms against existing aggregation methods. Our results showed that AP-atoms can

flexibly trade off scalability and accuracy. Using the same scale of aggregation as exist-

ing methods, AP-atoms can reduce widely dispersed clients by 2× and reduce the 98-th

percentile difference in clients’ latencies by almost 100ms.

47

CHAPTER III

Latency Imbalance Among Internet Load-Balanced Paths:

A Cloud-Centric View

In this chapter, we evaluate the latency imbalance among LB paths and its impacts on

various applications. We show that the latency imbalance, previously deemed insignificant,

is now prevalent from the perspective of the cloud and affects various latency-sensitive ap-

plications. To characterize latency imbalance, we conduct the first large-scale measurement

study of latency imbalance from a cloud-centric view. Using public cloud around the globe,

we measure latency imbalance both between DCs in the cloud and from the cloud to the

public Internet. We further evaluate the impact of latency imbalance on three applications

(i.e., NTP, delay-based geolocationand VoIP) and propose potential solutions to improve

application performance.

3.1 Introduction

Latency imbalance was first studied by Augustin et al. in 2007 between 22K source-

destination pairs, of which only 2% exhibit significant latency imbalance [8]. Low latency

imbalance at that time was not enough to raise concerns. Although measurement tools,

e.g., Tokyo ping [38], have been proposed to enforce probes to follow the same LB path to

avoid instability of latency samples due to latency imbalance, existing measurement tools

48

and applications do not consider latency imbalance by default. For instance, ping and

traceroute are commonly used to measure latency in their default modes, allowing

probes sent to the same destination to take different LB paths. In this work, we conduct

the first large-scale measurement study of latency imbalance from a cloud-centric view,

i.e., using data centers (DCs) as vantage points, and evaluate its impact on applications. In

2019, 12 years after the first study, we observed that 15.6% of 48M DC-destination pairs

had significant latency imbalance, affecting various latency-sensitive applications.

To measure latency imbalance at the Internet scale, we need an efficient way of mea-

suring it for each source-destination pair, which could have a large number of LB paths

in between [9]. The major challenges are three-fold: 1) how to efficiently ensure that all

LB paths are covered to calculate latency imbalance for a given source-destination pair?

2) how to efficiently obtain stable latency under transient network events for LB paths? 3)

how to dissect latency imbalance to better understand the causes for latency imbalance? To

address these challenges, our methodology uses three key strategies (§3.3.3). First, instead

of enumerating LB paths that is inherently heavy in measurement overhead, we sample the

latency of LB paths with sufficient sample size such that almost all LB paths are covered

with high probability. Second, as we want to know how LB paths differ in latency, we use

the range of latencies to measure the latency difference and obtain stable latencies only

for LB paths that could potentially have the lowest and highest path latencies. Third, to

better understand latency imbalance, we focus on measuring one-way latency imbalance

occurring only on the forward paths that can be discovered with TTL-limited probes.

Using our methodology, we collect a global view of latency imbalance from the per-

spective of the cloud. The global view includes two parts: latency imbalance from DCs

around the globe to about 3M /24 prefixes (§3.5) and latency imbalance between DCs in

the cloud (§3.6). Overall, we find that latency imbalance is both significant and prevalent

between DCs in the cloud and from the cloud to the public Internet. To better interpret

the significance of latency imbalance, we determine the baseline of latency imbalance for

49

three applications based on each application’s sensitivity to latency imbalance (§3.4). We

highlight our key findings below.

• Latency imbalance is prevalent from the perspective of DCs. Even the best DC has

latency difference between LB paths larger than 5ms to about 20% of public IPv4 ad-

dresses and the latency difference increases to 40ms to the same amount of addresses

for the worst DC (§3.5). The prevalence of latency imbalance in the 1s of millisec-

onds could affect applications, e.g., Internet geolocation and clock synchronization

via NTP, very sensitive to latency imbalance (§3.4). High latency imbalance in the

tens of milliseconds mainly occurs on long-distance LB paths and thus would affect

long-distance communications, e.g., international VoIP calls (§3.7).

• Latency imbalance differs significantly between cloud service providers: Google’s

DCs have consistently lower latency imbalance to public addresses than Amazon’s

and Alibaba’s. Detailed path analysis tells us that Google uses private wide area

networks (WANs) to route packets to an egress point close to the destinations and

that its private long-distance paths are well balanced. Other cloud service providers,

on the other hand, forward packets to the public Internet closer to traffic sources,

which is less balanced than the providers’ own networks (§3.5.2).

• The distribution of latency imbalance seen from most of the DCs is stable over

months, which implies that latency imbalance is not due to temporary behaviors of

the Internet (§3.5.3).

• Significant latency imbalance is found both between DCs in the same cloud (intra-

cloud) and between DCs across different clouds (inter-cloud). Google’s DCs (in

premium network service tiers) have lower intra- and inter-cloud latency imbalance

than those of other cloud providers due to using well-balanced paths in its own private

WANs (§3.6).

50

• We further evaluate the impact of latency imbalance on three applications affected

by latency imbalance in different ways. (1) Under latency imbalance, ping would

overestimate the minimum path latency by > 5ms for 17% of addresses if measured

from the cloud. Using the minimum path latency rather than the ping-time (the path

latency measured by ping) could improve the accuracy of Internet geolocation by

40% for 20% of addresses for cloud-based applications, e.g., cloud data geolocation

[39]. (2) Clock synchronization via NTP assumes symmetric paths to estimate one-

way latency between the NTP client and server. Our experiments show that estima-

tion error of the one-way latency can be reduced by as high as tens of milliseconds.

(3) We simulate the visionary idea of using an overlay network, consisting of DCs

around the globe as relays, for VoIP [40]. About 14% of long-distance VoIP calls

between certain countries (e.g., US and CN) could have better call quality by using

lower-latency paths.

3.2 Background

3.2.1 Types of Load Balancing

Load balancing can be performed per flow, per destination, or per packet. In per-flow

load balancing, load balancers commonly hash 5 fields in the packet header to determine the

next hop to forward the packet, where the 5 fields are used as flow identifier and described

as a five-tuple: 〈source address, source port, destination address, destination port, protocol

number〉 [2, 41]. For the same source-destination pair, we can change port numbers to

discover LB paths in between [9]. Per-destination load balancing allows routers to balance

traffic based on the destination address. In per-packet load balancing, packets in the same

flow could be forwarded to different paths causing reordering of packets. Besides the five-

tuple in TCP and UDP packets, routers also load-balance ICMP packets based on their

checksum fields [2]. Both per-flow and per-packet load balancing could cause latency

51

Figure 3.1: An example of LB paths

imbalance between source-destination pairs. Per-flow load balancing affects about 40% of

Internet paths, while per-packet load balancing only affects 2% [8]. We focus on per-flow

load balancing in this chapter, under which paths to the same destination can be controlled

via port numbers.

3.2.2 Load-Balanced Segments or Diamonds

Starting from the source, paths to a given destination diverge at the first load balancer

(divergence point) and eventually converge back (at the convergence point) to reach the

destination. A multi-homed source could be a divergence point and similarly a multi-

homed destination could be a convergence point. Following the literature, we refer to the

multiple path segments between the divergence and convergence points (or end points) as

the load-balanced segments or, in aggregate, as a diamond. Each diamond is defined by its

divergence point (x1) and convergence point (x2) and referred to as the [x1, x2] diamond.

Since diamonds include the path segments where LB paths differ from each other, they can

be used to dissect latency imbalance.

Figure 3.1 shows an example of LB paths between a source and a destination. Due

to path asymmetry, the forward and return paths are different and thus include different

diamonds. In Figure 3.1, we have two diamonds, [A1, A4] and [A4, A7], on the forward

paths and [B2, B5] on the return paths. Suppose that the path segments A1-A2-A4 and

A1-A3-A4 in [A1, A4] differ in path latency. We refer to [A1, A4] as imbalanced diamond,

which are the causes for latency imbalance.

52

3.3 Measurement Methodology

This section presents our focus and key challenges in measuring latency imbalance and

our measurement methodology. We begin by defining latency imbalance.

Definition of Latency Imbalance When LB paths exist between a source-destination

pair, these paths could have different path latencies. To characterize the significance of

the path latency difference, we define latency imbalance as the difference between the

highest and lowest latencies of LB paths. We want latency imbalance to be stable and

thus consider path latency as the minimum time needed for packets to travel through the

path, excluding transient network dynamics (e.g., congestion). Such stable path latency is

widely used in applications, e.g., Internet mapping [4], geolocation [42] and network clock

synchronization [43].

3.3.1 Our Focus and Key Challenges

Our goal is to characterize latency imbalance at the Internet scale. We first discuss the

exact type of latency imbalance to be measured, and then identify the key challenges and

describe a strawman approach to highlight the limitations of existing measurement tools.

Measuring One- or Two-Way Latency Imbalance? Between a source-destination pair,

latency imbalance could occur on both forward and return paths. One-way imbalance is the

latency imbalance occurring only on forward paths, calculated as the difference between

the highest and lowest one-way delays (OWDs) of LB forward paths. Two-way imbalance

is the combination of latency imbalance on both forward and return paths. As we have no

control over destinations, we can only use TTL-limited probes to obtain full topology on

forward paths but not on return paths. While Reverse Traceroute can discover return paths

using ICMP packets [44], the return paths cannot be pinned down by flow identifiers. This

means that we can understand one-way imbalance with path analysis (§3.5.4 and §3.5.2),

53

but cannot do the same for two-way imbalance. We thus focus on studying one-way latency

imbalance in this chapter, which affects all applications mentioned above.

Key Challenges and A Strawman Approach To measure one-way imbalance at the

Internet scale, we face three challenges: 1) how to efficiently discover LB paths between

each source-destination pair? 2) how to efficiently measure the stable latencies of LB

paths for the calculation of latency imbalance? 3) how to measure one-way imbalance? A

strawman approach is to first enumerate LB forward paths using Paris Traceroute, the most

popular tool to enumerate LB paths to a given destination [2], and then measure their stable

OWDs. However, the overhead of path enumeration is inherently heavy. Even with the

lightweight version, MDA-Lite, recently developed by Vermeulen et al. [9], it could take

several minutes to enumerate paths between a single source-destination pair for complex

network topologies [45]. Moreover, OWD can be accurately measured only if we have

access to both ends of the path [46]. Access to a large number of hosts is needed for

large-scale experiments. These issues make it difficult to scale the approach.

3.3.2 Overview of Our Methodology

As no existing measurement tool and public dataset are suitable for studying one-way

imbalance, we develop our own measurement tool and use it to collect data by actively

probing the Internet. Our tool is built on Yarrp [47] with functions (1000+ lines of code)

added for the scheduling and processing of packets. To ensure global coverage, we send

probes to IPv4 addresses from DCs around the globe. We initiate a prober process in each

DC selected and the prober measures one-way imbalance to one representative address in

each /24 prefix. Of 10.8M /24 prefixes probed, we were able to measure one-way imbal-

ance to about 3M representative addresses (see Table 3.2). The prober has no access to

the destination and thus measures one-way imbalance from a single end. The key ideas

of achieving this include two points. First, we strategically manipulate the UDP probes

54

to ensure the ICMP responses always traverse the same return path, thus eliminating the

impact of return path load balancing. Second, we sample LB paths to the destination by

sending UDP probes with different flow identifiers, specifically port numbers. Since the

path of a UDP probe is passively selected by load balancers based on its flow identifier, for

sufficiently large sample size, most of the LB paths would be covered with high probability

(see §3.3.3.2). We use UDP rather than TCP probes, as we have no way of controlling the

return paths of TCP responses (i.e., TCP ACKs or RSTs).

3.3.3 Measuring One-Way Imbalance

We want to efficiently measure one-way imbalance from a single end. This section first

presents our methodology and then evaluates its accuracy in measuring one-way imbalance.

3.3.3.1 Fixing the Return Path

Each RTT sample measured at the prober is the sum of the traversal time of a UDP

probe on the forward path and that of the corresponding ICMP response on the return

path. For UDP probes sent to the same destination, we want to fix the return paths of

ICMP responses such that the difference between RTTs is the same as the latency difference

between forward paths. Since except for per-packet load balancers, ICMP responses are

load-balanced based on their checksums [2], we fix the return path by enforcing ICMP

responses to use the same checksum. Per-packet load balancers on the return path could

cause ICMP responses with the same checksum to take different paths, but only 2% of

paths in the public Internet were found to traverse a per-packet load balancer in Augustin et.

al’s 2007 survey [8]. In case there could be more per-packet load balancers in the public

Internet nowadays or from the cloud to the public Internet, we further filter out unstable path

latencies that could be affected by per-packet load balancing as in §3.3.3.4. Augustin et al.

have proposed a general method of obtaining the desired ICMP checksum by manipulating

the UDP data, which requires extra probing to the destination [8]. We simplify the method

55

by sending UDP probes without UDP data.

3.3.3.2 Achieving High Path Coverage with Probabilistic Guarantees

We refer to UDP samples with the same flow identifier as a flow. Instead of enumerat-

ing LB paths to a destination, we sample them by sending flows with different identifiers

(specifically port numbers), which may take different paths to the destination. We want to

determine the sample size (i.e., the number of flows) needed to achieve high path coverage.

Defining Path Coverage Suppose there are n LB paths between a source-destination

pair with latencies ordered as l1 ≤ l2 ≤ · · · ≤ ln, and that the probability of taking the

i-th path is pi. We have m flow samples with the lowest and highest latencies denoted as

lY and lZ , where Y and Z are the path indices. Since latency imbalance is the difference

between the lowest and highest latencies, all paths with latencies inclusively between lY

and lZ are covered. We thus define path coverage as the sum of the probability of the

covered paths. Let s[i, j] be the probability of taking a path with latency in interval [li, lj],

i.e., s[i, j] =
∑j

i pi. The path coverage is then equal to s[Y, Z]. This definition of path

coverage implicitly makes us favor covering the paths of high probability over those of

low probability for high path coverage. As will be discussed later, a large number of extra

samples is needed to cover a path of low probability with latency much lower or higher

than other paths.

Probability of Achieving High Path Coverage We want s[Y, Z] to be higher than a

threshold, called required coverage. We denote the required coverage as x and the proba-

bility of s[Y, Z] > x as p(s[Y, Z] > x). Let w+
x,i be the largest index with s[i, w+

x,i] ≤ x and

56

Figure 3.2: Tradeoff between accuracy and efficiency

w−x,i be the lowest index with s[w−x,i, i] ≤ x. We can calculate p(s[Y, Z] > x) as

p(s[Y, Z] > x) = 1− p(s[Y, Z] ≤ x)

= 1− p(s[Y, Z] ≤ x|Y ≥ w−x,n)− p(s[Y, Z] ≤ x|Y < w−x,n)

= 1− s[w−x,n, n]m −
w−

x,n−1∑
i=1

p(Y = i)

(
s
[
i, w+

x,i

]
s [i, n]

)m−1

, (3.1)

where p(Y = i) = p(Y ≥ i)− p(Y ≥ i+ 1) = s [i, n]m − s [i+ 1, n]m.

Coverage Guarantee and Tradeoff We want to achieve high coverage with probabilis-

tic guarantees. More formally, we want the actual coverage to be no less than the required

coverage (x) with probability at least 1 − δ, i.e., p(s[Y, Z] > x) ≥ 1 − δ. Under the same

δ, we need larger sample size to achieve higher path coverage; there is a tradeoff between

the measurement accuracy (determined by path coverage) and the measurement efficiency

(sample size). Given the required coverage and the probability distribution of paths (pi’s)

between a source-destination pair, we can use Equation (3.1) to obtain the minimum sam-

ple size needed to achieve a certain probabilistic guarantee. In practice, however, as the

probability distribution of paths is not known in advance, we cannot customize the sample

size for each pair. Instead, we choose a sample size that achieves the coverage guarantee

for all source-destination pairs under various probability distributions of paths.

To collect a diverse range of LB paths, we measured LB paths between 232K source-

destination pairs from 6 DCs belonging to 3 cloud providers to random IPv4 addresses. For

57

each pair, we approximate the probability distribution of paths using their frequency distri-

bution [48]. More specifically, we measure the IP-level paths of 600 flows with different

identifiers for each pair and count the frequency of each path. The normalized frequency

of a path is used as its probability. Figure 3.2 shows the sample sizes needed to achieve

different required coverages with confidence levels of 90%, 95% and 99% respectively.

Although the sample size increases exponentially with the required coverage, the increase

rate is low when the required coverage is under 0.85 and we can use 30 samples to achieve

the required coverage of 85% at the 95% confidence level.

It is worth noting that cloud providers may place many load balancers close to DCs to

distribute high-volume traffic and these load balancers provide a large number of unique

interfaces, resulting in hundreds of IP-level LB paths between DCs and destinations. The

probability distributions of LB paths from Amazon’s and Alibaba’s DCs to destinations

are nearly uniform. Only < 1% of the DC-destination pairs fail the chi-squared test for

uniformity at the 95% significance level. The large number of LB paths further necessitates

the use of sampling to measure latency imbalance from a cloud-centric view.

3.3.3.3 Obtaining Stable Latencies for Latency Imbalance

We refer to flows with the highest and lowest latencies as extreme flows. Latency imbal-

ance is then the latency difference between extreme flows. A simple approach to calculating

latency imbalance is to first measure stable latency to each flow and then select the extreme

flows. To reduce measurement overhead, we only measure flows that could potentially be

the extreme flows. We first sample each flow once and select the flow with the highest RTT

as the candidate for the highest-latency flow. Since the RTT of the candidate could possibly

be inflated, we probe the candidate for six consecutive rounds and consider the candidate

is the highest-latency flow if its RTT maintains the minimum over the six rounds. We use

six probes to effectively mitigate the effects of latency inflation. If the flow’s RTT is higher

than that in any of the six rounds, we update the flow’s RTT to the minimum RTT in the six

58

rounds to mitigate inflation. We then choose the next flow with the highest RTT among all

flows and probe it over another six rounds until the highest-latency flow is found. Similarly,

we can determine the lowest-latency flow. It is possible that the RTTs to some addresses

are highly varying and the extreme flows cannot be determined within a reasonable amount

of probes. We stop probing an address if no extreme flows could be determined after 90

rounds. After probing, each extreme flow will have at least 7 RTTs, which will be used to

prune probing results.

3.3.3.4 Pruning Probing Results

Although the minimum RTT of a flow is conventionally used as its latency in existing

methods [4], it cannot eliminate latency inflation. Moreover, it could cause flow latency to

be underestimated due to measurement errors, i.e., the minimum RTT is an outlier much

lower than other RTTs of the flow [4]. The inflation of the highest flow latency and the

underestimation of the lowest flow latency both result in the overestimation of latency im-

balance. We further prune probing results as below. Flows with inflated latencies typically

have varying RTTs over time. We use the variability of RTTs to prune the highest-latency

flows with unstable latencies. The variability of RTTs is measured by the median absolute

difference (MAD), robust to outliers [49]. We empirically prune a highest-latency flow if it

has a MAD> 2% of the flow’s latency. For the lowest-latency flow, we detect measurement

errors by checking if the flow’s minimum RTT is much lower than other RTTs. We pruned

about 5% of lowest-latency flows with the minimum RTT lower than the second minimum

one for > 5% of the flow latency.

3.3.3.5 Impact of Sampling on Accuracy and Sample Size Selection

To understand how sampling affects accuracy, we want to know the distance between

the maximum latency imbalance and the measured one. We begin by estimating the maxi-

mum latency imbalance.

59

Estimating the Maximum Latency Imbalance Obtaining the maximum latency imbal-

ance requires enumerating all LB paths and measuring their path latencies. When 100s of

LB paths are common between source-destination pairs, it is impractical to directly mea-

sure the maximum imbalance for a large number of destinations. Instead, we approximate

the maximum latency imbalance using our method with a large sample size. When the

sample size is 100, we can achieve path coverage greater than 95% at the 97% confidence

level. In other words, the probability of the uncovered paths only sums up to ≤ 5% at

the 97% confidence level. We thus consider these uncovered paths to be rare. We use the

latency imbalance measured with 100 flow samples to approximate the maximum latency

imbalance and study the accuracy loss due to sampling.

Accuracy of Sampling and Sample Size Selection We evaluate the accuracy of sam-

pling in measuring two types of latency imbalance: 1) aggregate imbalance, the collection

of latency imbalance for a large number of source-destination pairs and 2) pairwise im-

balance, latency imbalance for single source-destination pairs. In our experiments, we

measure latency imbalance with different sample sizes back to back for the same source-

destination pair, where a pair is discarded if path changes are detected while the path is

being measured. We use CDF to characterize the distribution of latency imbalance in ag-

gregate and measure the difference between CDFs as |F1(x)− F2(x)|, where F1(x) and

F2(x) are two CDFs of latency imbalance.

Figure 3.3(a) shows the CDFs of latency imbalance under different sample sizes for

469K source-destination pairs from 6 DCs to random IPv4 addresses. Sampling is in gen-

eral effective in measuring the aggregate imbalance. Even with 10 samples, the measured

CDF only has at most 11% difference from that measured with 100 samples. The maximum

difference decreases to 4% for 30 samples and further decreases to 2% for 50 samples.

Moreover, the difference between CDFs reaches the maximum at low latency imbalance

(< 3ms) and decreases as the latency imbalance increases. Considering both accuracy and

60

(a) Aggregate Imbalance (b) Pairwise imbalance

Figure 3.3: Impact of sampling on accuracy

efficiency, we use 30 samples when measuring aggregate latency imbalance.

For each source-destination pair, we calculate the ratio of the latency imbalance mea-

sured with each sample size to that with 100 samples respectively. Figure 3.3(b) shows the

distribution of the ratios under different sample sizes. For 10 samples, only 40% of pairs

have a ratio > 0.9. The percentage increases with the sample size and reaches 80% for

70 samples. Compared to aggregate imbalance, we apparently need a much larger sample

size to accurately measure pairwise imbalance. We use 100 samples to measure inter-DC

latency imbalance in §3.6.

3.3.4 Source and Destination Selection

Source Selection We probe from 16 DCs in 14 cities around the globe, including 4 in

Europe, 3 in North America, 6 in Asia and 1 in Australia. All but four of the DCs are

located in different cities. Of the four, two are located in London and belong to different

cloud providers, and the other two are located in Sydney, also belonging to different cloud

providers. We intend to use these four DCs to observe the effect of cloud provider choices

(§3.5.2).

Destination Selection Considering the similarity of addresses in the same /24 prefix [26],

we probe only one responsive address for each /24 prefix to reduce measurement overhead.

61

Figure 3.4: Distribution of path asymmetry

For /24 prefixes without any responding addresses, we use the responding router closest to

the destination as a proxy for the entire /24. To ensure that probes to the proxy follow the

same path as probes to the intended /24 prefix, the probes are directed to a (non-responding)

destination within the /24 prefix with TTLs expiring at the proxy.

3.3.5 Metrics for One-Way Imbalance

Absolute and Relative Latency Imbalance The latency imbalance defined above is the

absolute latency difference between the highest- and lowest-latency paths, called absolute

imbalance. However, the same absolute imbalance is of higher significance for low path la-

tency than for high path latency. To capture the relative significance of absolute imbalance

to path latency, we introduce a new metric called relative imbalance, which is the ratio of

absolute imbalance to the forward-path latency of the highest-latency path. Relative im-

balance is calculated with respect to the forward-path latency because one-way imbalance

only occurs on forward paths. Relative imbalance can be interpreted as the percentage of

latency reduction on the forward paths by switching from the highest-latency flow to the

lowest-latency one. As forward-path latency is OWD, which cannot be accurately mea-

sured from a single end, we thus estimate forward-path latency from its RTT.

Estimating Forward-Path Latency In 2008, Pathak et al. showed that estimating OWD

of a path as 0.6 times its RTT would overestimate the OWD in 90% of cases, due to path

asymmetry [46]. Conservatively, we want to use 0.6 times RTT of the highest-latency

flow as its forward-path latency in computing relative imbalance to avoid overestimation.

62

Table 3.1: Applications affected by imbalance and baseline

Applications
Latency
(OWD) Accuracy

One-Way Imbalance
Baseline

NTP 10s of ms 1s of ms max(1ms, 5% of OWD)
Geolocation 10s of ms < 400km 2ms
VoIP (Intl.) 100s of ms × 20% of OWD

To verify that their results still apply in the current Internet, especially when data center

networks are involved, we re-did the experiments in 2019 using public instances in 24 DCs

and 31 PlanetLab (PL) nodes that are geographically distributed. An NTP daemon runs

on each node to synchronize its local clock and estimates the synchronization error. A

sufficient number of flows are exchanged between each pair of nodes to explore alternate

paths in between. As in [46], flows with a synchronization error > 3% of their RTTs are

pruned. Figure 3.4 shows the distribution of path asymmetry for 35,328 flows from 552

DC-DC pairs, 85,910 flows from 1,354 DC-PL pairs and 48,747 flows from 765 PL-PL

pairs. PL-PL pairs generally have the worst path asymmetry, but still have 90% of flows

with the ratio of forward-path latency to its RTT > 0.6. This confirms that using 0.6 times

RTT of a path to conservatively estimate its OWD is still reasonable in the current Internet.

We use “absolute imbalance” and “relative imbalance” to mean absolute and relative one-

way imbalance by default unless stated otherwise.

3.4 Impact of One-Way Imbalance on Applications and Baseline

Before looking at the measurement results on one-way imbalance, we first want to in-

tuitively understand its impact on applications. We take three applications (in Table 3.1) as

examples and discuss how latency imbalance affects their performance. We set a baseline

of one-way imbalance for each application to help evaluate the significance of the impact.

Clock Synchronization by NTP To synchronize time, an NTP client estimates the NTP

server’s clock and adjusts its local clock to the estimated server’s clock. The NTP client

63

sends a message to the server and estimates the server’s clock as the sending time of the

response plus the estimated OWD from the server to the client. Since the OWD is typically

estimated to be half of the RTT, a major source of error for NTP is path asymmetry [50]. We

define ∆d as the average of one-way imbalance on the forward and return paths. Through

both analysis and experiments (see §3.7.1), we show that the maximum reduction in syn-

chronization error by considering latency imbalance is≤∆d for all source-destination pairs

and > ∆d/2 for most of the pairs.

A study on NTP servers shows that the OWDs between most NTP servers and their

peers (other servers used for synchronization) are in the 10s of milliseconds and that the

synchronization errors are in the 1s of milliseconds [51]. We simply use 10% of OWDs

as reference for typical synchronization errors, where the error is proportional to OWD be-

cause longer distance between NTP servers and clients is likely to result in larger synchro-

nization error. We consider significant error reduction to be > 25% of the synchronization

error, i.e., 2.5% of OWD. Since the maximum error reduction is mostly at least half the

amount of one-way imbalance, we set the baseline of one-way imbalance to the maximum

of 1ms and 5% of OWD, where 1ms is used when OWDs are low.

Delay-Based Geolocation Delay-based geolocation is an important technique to build

IP geolocation database used by online services to enforce access policy and to determine

advertising content [52]. To geolocate an Internet host, delay-based geolocation uses a

set of hosts with known locations, called landmarks, and measure the latency between each

landmark and the host. The measured latency is then used to estimate the distance (r) to the

host. From the perspective of each landmark, the host is in a circle with radius r centered

at the landmark. The intersection of these circles is the estimated geolocation region of

the host. We can see from this process that larger-than-actual latency causes overestimated

distance, resulting in a larger estimated geolocation region. Since city-level accuracy is an

important metric to the existing geolocation databases [52], we want to the overestimated

distance to be at least < 400km, where 400km is simply used to approximate the diameter

64

of the largest city in the world. We use the worst case to set the baseline such that latency

imbalance higher than the baseline would be significant to delay-based geolocation. Using

the travel speed of signals in fiber-optic cable (2/3 of the speed of light in vacuum), we

obtain that it takes 2ms for signals to travel 400km. We thus set the baseline to be 2ms.

Since landmarks in the same subcontinental region (e.g., country) of the target host are

preferred for better accuracy, we use the average OWD in North America (in the 10s of

milliseconds) as a reference for the typical latency in delay-based geolocation [53].

VoIP International VoIP calls have been rising in recent years and have taken a large

portion of Internet-based calls (about 46% of Skype calls are international [40]). How-

ever, international calls are more likely to experience high RTT and have poor call quality.

According to [40], about 5% of Skype calls use paths with RTT over 400ms. For these

calls, the fraction of calls with poor quality (with a rating of 1 or 2) can be reduced by >

10% when OWD is decreased by 20%. We set the baseline to be 20% of OWD and con-

sider one-way imbalance larger than the baseline to be significant to call quality. Since call

quality is more sensitive to latency reduction at high path latencies than at low ones, we

would expect that latency imbalance have more significant impacts on calls experiencing

high latency. We use 100s of milliseconds as the latency of interest for VoIP.

Other Applications Other applications vulnerable to high imbalance include networked

AR/VR [54], low-latency gaming [55], real-time video conferencing [56], industrial

IoT [10], etc.

Baseline The baseline for each application is summarized in Table 3.1. Latency imbal-

ance affects applications with various operating latencies and applications have different

degrees of sensitivity to latency imbalance.

65

Table 3.2: /24 address prefix reachability
Responsive /24s Proxies Probed

/24sStable Pruned Expired∗ Stable Pruned Expired
2.7M 598K 736K 254K 92K 29K 10.8M
∗ No extreme flows can be obtained within 90 probes.

(a) Amazon EC2 (b) Google cloud

(c) Alibaba cloud

Figure 3.5: Distribution of relative imbalance from DCs to public IPv4 addresses.

3.5 Imbalance from Data centers to Public IPv4 Addresses

We probed from the 16 DCs to 10.8M /24 prefixes covered in the CAIDA’s IPv4 prefix-

to-AS mapping database [57]. The instance types we used in Amazon’s, Google’s and

Alibaba’s DCs were c5.large, n1-standard-2 and ecs.ic5.large respectively, all of which had

2 virtual CPUs and at least 2GB memory. Table 3.2 characterizes these /24 prefixes by the

degree to which we were able to reach them. A /24 prefix is considered “Responsive” if

66

at least one address within the address space responded to our probe. We are unable to

determine imbalance for 736K /24 prefixes and 29K proxies (termed “Expired”) because

we cannot determine the extreme flows after sending 90 probes. About 598K prefixes

and 92K proxies are pruned because their extreme flows (defined in §3.3.3) have unstable

latencies. In total, we have latency imbalance measured to roughly 2.7M /24 prefixes and

254K proxies. The rest 6.4M /24 prefixes are not measurable in that we were not able to

reach a responsive host and we could not establish 30 flows to the last-responding router

proxy.

In the following, we report only on the results of probing the 2.7M /24 prefixes and

254K proxies with stable imbalance from the 16 DCs, or about 48M source-destination

pairs in total. These /24 prefixes are widely spread covering 96% of countries in the world

and 68% of ASs in the CAIDA’s prefix-to-AS database.

3.5.1 Distribution of One-Way Imbalance

Absolute Imbalance Figure 3.5 shows the distribution of absolute imbalance seen from

the perspective of each DC. Latency imbalance is prevalent between DCs and public ad-

dresses. Even the DC with the narrowest distribution (Google Tokyo) has absolute imbal-

ance > 5ms to about 20% of probed addresses. Moreover, latency imbalance has a wide

range; the distributions of absolute imbalance for most DCs are long-tailed. The narrowest

distribution (Google Tokyo) has a tail covering 7% of addresses with absolute imbalance

> 10ms. The absolute imbalance for Amazon’s Sydney and Alibaba’s Shanghai DCs are

more widely distributed with shorter but heavier tails and have absolute imbalance > 20ms

to more than 60% of addresses. Moreover, latency imbalance differs significantly between

cloud providers, as will be studied further in §3.5.2.

Relative Imbalance Figure 3.6 shows the distribution of relative imbalance under differ-

ent ranges of OWDs for 5 DCs. We do not compute relative imbalance for low OWDs (<

67

20-60
60-120

120-180
>180

OWD (ms)

0-0.1
0.1-0.2
0.2-0.3
0.3-0.4

>0.4
Re

la
tiv

e
Im

ba
la

nc
e

0 0.12 0.09 0.11
0 0.01 0.06 0.35
0 0.02 0.16 0.03
0 0.02 0.01 0
0 0 0.01 0

Amazon Sydney

20-60
60-120

120-180
>180

OWD (ms)

0.21 0.25 0.22 0.05
0.05 0.04 0.08 0.03
0.01 0.01 0.02 0.01

0 0 0 0
0 0 0 0

Amazon London

20-60
60-120

120-180
>180

OWD (ms)

0.22 0.21 0.29 0.08
0.05 0.03 0.01 0.02
0.01 0.01 0.01 0.02

0 0 0 0.02
0 0 0 0.01

Google London

20-60
60-120

120-180
>180

OWD (ms)

0.07 0.09 0.26 0.15
0.09 0.04 0.08 0.05
0.03 0 0.02 0.02
0.01 0 0.04 0.02

0 0 0.02 0.02

Alibaba Beijing

20-60
60-120

120-180
>180

OWD (ms)

0.1 0.02 0.05 0.08
0.04 0.01 0.16 0.16
0.02 0.02 0.19 0.05

0 0.02 0.03 0.01
0 0 0.01 0.02

Alibaba Shanghai

0.00
0.04
0.08
0.12
0.16
0.20

Figure 3.6: Distribution of relative imbalance under different ranges of OWDs

20ms) to mitigate the effects of measurement errors and our dataset only includes 5% of

source-destination pairs with OWD < 20ms. Figure 3.6 shows that Amazon’s Sydney and

Alibaba’s Shanghai DCs, with the highest two absolute imbalance, have most of the high

imbalance occurring at high path latencies (OWD >120ms). If we only consider addresses

with OWD > 120ms from DCs, Amazon’s Sydney and Alibaba’s Shanghai DCs have rela-

tive imbalance> 0.2 to about 26% and 41% of them, and the other 3 DCs also have relative

imbalance > 0.2 to 7%, 13% and 21% of them respectively. This implies that traffic in the

WANs between DCs and public addresses would experience significantly less latency by

choosing a path of lower latency. Potential applications include using DCs as relays for

international VoIP calls [40] or as globally accessible cloud VPN [58].

Besides imbalance in high path latencies, most DCs also have large relative imbalance

to a significant portion of addresses with low path latencies (OWD < 60ms). Except for

Amazon’s Sydney DC, other DCs have relative imbalance > 0.1 to about 6% (Amazon

London) to 13% (Alibaba Beijing) of all reported addresses. Amazon’s Sydney DC has

nearly zero relative imbalance in low path latencies due to a small number of responsive

domestic addresses (< 10K). If we only consider addresses with OWD < 60ms from DCs,

Amazon’s and Google’s London DCs have relative imbalance > 0.1 to about one-fifth of

them, and Alibaba’s Beijing and Shanghai DCs have imbalance > 0.1 to no less than one-

third of them. This implies that the accuracy of delay-based geolocation and NTP could

both be improved for a large portion of addresses by using lower-latency paths. Poten-

tial applications include geolocating cloud VPN servers [42] and time synchronization for

68

cloud-enabled IoT, e.g., real-time earthquake detection [59].

3.5.2 Why Cloud Providers Differ in Latency Imbalance?

As shown in Figure 3.5, Google and Amazon both have DCs in Sydney and London, but

Google’s Sydney DC has much lower imbalance than Amazon’s Sydney DC. To understand

the causes, we divide the distance from a DC to a destination into 1) the distance from the

DC to the first router in its neighbor AS, called egress distance, and 2) that from the router

to the destination. Since cloud providers operate DCs and routers within the egress distance

in their own ASes, a longer egress distance indicates more control over the entire path to

the destination. We will show that Google’s DCs have much longer egress distances than

other cloud providers’ DCs.

Given the path from a DC to a destination, the difficulty in determining the egress

distance is to locate which router along the path is the border router of the DC’s neighbor

AS. Inferring the border routers of ASes is a complicated problem and simply mapping a

router to the origin AS of its interfaces could be incorrect for many reasons [60]. To obtain

accurate router-to-AS mapping, we considered using CAIDA’s ITDK datasets including

Internet-scale routers’ ownership, inferred from traceroute paths from vantage points to

destinations. However, as traceroute discovers router interfaces facing the vantage points,

only about 20% of router interfaces in our dataset are covered by the ITDK dataset [61],

where our dataset includes the traceroute paths from each DC to responsive addresses.

We thus use bdrmapIT to obtain routers’ ownership using our dataset, together with other

inputs including prefix-to-AS mapping supplemented with RIR delegations [62, 63, 64, 65,

66], IXP prefixes [67, 68, 69] and AS relationships [70]. Using the derived router-to-AS

mapping, we first identify the interdomain link (the near side in the DC’s AS and the far

side in its neighbor AS) from the traceroute path for each DC-destination pair and then

measure the egress distance in both hop count and RTT.

Figure 3.7(a) shows the median egress distance (measured in hop count and RTT) from

69

(a) Distance to neighboring ASs (b) Egress distance of Google Tokyo

Figure 3.7: Imbalance difference between cloud providers

each DC to responsive addresses. All Google DCs have the median RTT > 94ms, while

Amazon’s and Alibaba’s DCs (except for Amazon Seoul) have the median RTT < 3ms.

Looking into the egress distances of Google’s DCs, we found that egress distance generally

increases with the distance (measured in RTT) from the DC to destinations and is capped

at certain values for some destinations. Figure 3.7(b) shows the relation between egress

distance and distance to destinations for 1,000 destinations seen from Google Tokyo. The

egress distance is capped at around 50ms, 100ms and 140ms for some destinations. This

indicates that Google uses its own private WANs to route packets to an egress point close to

traffic destinations. This observation is further confirmed by Google’s own documentation

on network service tiers [71], where traffic in premium network tiers is forwarded as close

to the destination’s ISP and all our VMs in Google cloud are in premium network tiers. As

a result, the imbalance incurred in Google’s own networks dominates the latency imbalance

for the entire paths. For instance, for 77% of destinations probed from Google Tokyo, more

than 60% of the entire path latency is spent on travelling from the DC to its neighbor ASes.

Despite the long egress distance, the latency imbalance incurred by Google’s networks is

low. The worst DC has absolute imbalance < 10ms before entering its neighbor ASes for

at least 88% of destinations. This shows that the low imbalance of Google’s DCs is due to

the use of well-balanced long-distance paths in Google’s own networks.

As shown in Figure 3.7(a), Amazon’s and Alibaba’s DCs are close to neighbor ASes

70

and thus should forward packets to the public Internet close to traffic sources. The low

egress distance of Amazon’s and Alibaba’s DCs results in low latency imbalance to neigh-

bor ASes, where all of these DCs have the median absolute imbalance < 0.8ms. Amazon’s

Seoul DC has the median RTT equal to 32ms, but the median absolute imbalance to neigh-

boring ASs is only 0.2ms. Since the latency imbalance before entering the neighbor ASs is

low, we can conclude that the major imbalance of Amazon’s and Alibaba’s DCs to destina-

tions occurs in the public Internet.

3.5.3 Is Latency Imbalance Stable Over Time?

We consider aggregate latency imbalance, which is a collection of latency imbalance

measured to a set of destinations in a single experiment. We want to know if aggregate

latency imbalance is stable over experiments. Specifically, for each DC, we first measure

latency imbalance to the same set of destinations in experiments starting at different times.

We then use the first experiment as reference and compare the aggregate latency imbalance

in subsequent experiments respectively with that in the first experiment to check if the dif-

ference increases with time or remains stable. We use a CDF to characterize the distribution

of latency imbalance in aggregate and measure the difference between aggregate latency

imbalances by the maximum difference between their CDFs. Suppose the first experiment

starts at time 0 and that Ft(x) denotes the percentage of destinations with latency imbalance

≤ x in the experiment starting at time t. The difference between CDFs of latency imbal-

ance in the first experiment and the experiment at time t is then d(x, t) = Ft(x) − F0(x)

with the maximum equal to dmax(t) = maxx≥0 |d(x, t)| over all latency imbalance.

Figure 3.8(a) shows the dmax(t)’s for 5 representative DCs in experiments starting at

different t’s over a week, where latency imbalance is measured from each DC to 200K1

destinations. Except for Amazon Sydney, all other DCs have stable distributions of latency

1We conduct our medium-sized experiments at the scale of 100s of thousands of destinations, a typical
scale for many existing measurement campaigns [9, 72]. As a reference, 200K random destinations cover
roughly about 87% of countries, 13K ASes.

71

(a) Latency imbalance over time (b) Distribution of latency imbalance

Figure 3.8: Stability of latency imbalance over time

imbalance across experiments with dmax(t) < 0.08 for all t’s. We further examine if

dmax(t)’s are reached at low or high latency imbalance. Figure 3.8(b) shows the distribution

of latency imbalance in the first experiment of the week with error bars being dmax(x) =

maxt>0 |d(x, t)|, the maximum difference between CDFs of latency imbalance over all

experiments in the week at latency imbalance equal to x. We find that the differences

between experiments are large (the high error bars) mostly at low latency imbalance and

decrease as latency imbalance increases. From Figure 3.8(b), we thus can conclude that

except for Amazon Sydney, other DCs have stable latency imbalance for at least one week.

To check if these DCs have stable latency imbalance for longer periods of time, we compare

the first experiment in Figure 3.8 (starting on September 1, 2019) with that in Figure 3.5,

conducted in February, 2019. We find that these DCs (except for Amazon Sydney) still

have small dmax(t) < 0.10 occurring at low latency imbalance. This indicates that most of

the DCs have stable aggregate latency imbalance even over months.

Compared to other DCs, Amazon Sydney has more variable aggregate latency imbal-

ance due to changing network conditions. At t = Day 1, dmax(t) is reached at latency

imbalance equal to 9ms. Comparing the destinations with latency imbalance around 9ms

(specifically from 8 to 11ms) in all experiments for Amazon Sydney, we found that the ex-

periment at Day 1 only shared < 20% of these destinations with other experiments, while

other experiments shared > 80% of these destinations among themselves. Considering

72

all experiments probe to the same set of destinations, this indicates that the network con-

ditions from Amazon Sydney to a large number of destinations changed temporarily at t

= Day 1 and reverted back to the previous conditions at later days. The large difference

between Amazon Sydney’s latency imbalance in Figure 3.8 and Figure 3.5 is likely due

to network condition changes (e.g., caused by traffic engineering) or the use of different

source addresses in the two experiments, resulting in LB paths traversing different parts of

the Internet.

3.5.4 Diving Deeper Into One-Way Imbalance

As mentioned in §3.2.2, imbalanced diamonds with unequal latencies on their path seg-

ments are the causes for one-way imbalance. In this section, we want to 1) verify that our

measured one-way imbalance is indeed due to imbalanced diamonds, 2) analyze imbal-

anced diamonds to understand the causes, and 3) discuss the challenges of load balancing

in terms of latency imbalance.

3.5.4.1 Verifying Our Measured One-Way Imbalance

We want to verify that our measured one-way imbalance reflects the imbalance expe-

rienced by LB paths rather than measurement artifacts. We first collected 10K samples of

one-way imbalance from each prober to its nearby routers at different times throughout our

experiments (in §3.5.1) and found that the average one-way imbalance is < 0.2ms for all

probers. This confirms that the probers have almost no impact on the measured imbalance.

Measurement errors could also come from the destinations due to 1) slow ICMP responses,

generated in the slow-path [38], and 2) irregular router behaviors, e.g., adding IP options to

ICMP responses or modifying their contents [8]. It is challenging to directly estimate these

errors [73] and we instead verify the accuracy of our measured imbalance to a destination

using its last-hop router(s) as follows.

The key idea is that if latency imbalance between the extreme flows (i.e., the highest-

73

and lowest-latency flows) is caused by traversing an imbalanced diamond, the latency im-

balance will be carried to hops after the diamond. In other words, if our measured imbal-

ance is due to imbalanced diamonds, we would expect the latency differences between the

extreme flows seen at a destination (denoted as I1) and its last-hop router(s) (denoted as

I2) to be similar, unless non-negligible latency imbalance occurs in between. In our ex-

periments, we only use destinations in the same /24 subnet as their last-hop routers, where

the distance between them is likely to be close and results in negligible imbalance. We

define the error of the measured imbalance as the absolute difference between I1 and I2.

We found that our measured imbalance had an error < 1ms for 95% of source-destination

pairs of all DCs, where the worst DC (Google Tokyo) had an error < 1ms for 81% of pairs

and an error < 2ms for 89%. Looking into the worst DC, we confirmed that accuracy of

path latency was not an issue for the pairs with an error > 1ms, because the back-to-back

imbalance samples to the same destination had a difference < 0.5ms for all destinations.

We further checked that only 1% of these pairs experienced ICMP responses with different

checksums. The error thus should be mainly due to the imbalance between the destinations

and their last-hop routers. This implies that our measured imbalance should have higher

accuracy than the reported. Since from the perspective of destinations, the imbalance possi-

bly caused by middleboxes or firewalls is the same as that caused by unequal path lengths,

we consider them as part of imbalanced diamonds.

3.5.4.2 Top Imbalanced Diamonds and Potential Causes

We first discuss how to discover imbalanced diamonds and then the potential causes for

imbalanced diamonds.

Discovering Imbalanced Diamonds Figure 3.9 shows an example of discovering im-

balanced diamonds. By merging the common hops of the extreme paths (solid and dashed

lines) in the forward direction, we can identify diamond [A1, A4] from the topology. Sup-

74

Figure 3.9: Visible and invisible diamonds

pose we want to estimate the imbalance of a diamond, i.e., the latency difference between

the diamond’s path segments. We first measure the latency difference between the extreme

paths at both the convergence and divergence points of the diamond, denoted as d1 and

d2 respectively. The difference between d1 and d2 is then the change in latency difference

due to traversing the diamond, equal to the imbalance of the diamond. However, not all

diamonds can be discovered by topology. Routers could be unresponsive or even invisible

to TTL-limited probes, e.g., routers in MPLS networks [74]. We refer to diamonds dis-

coverable by topology as visible diamonds and those not as invisible diamonds. Diamond

[A5, A8] in Figure 3.9 is an invisible diamond with unresponsive routers A6 and A7. We

identify an invisible imbalanced diamond from its imbalance.

Imbalanced Diamonds and Potential Causes For each source-destination pair, we first

discover visible diamonds and group the hops in the rest of path segments into pairs of two,

e.g., A4-A5-A8 in Figure 3.9 is divided into A4-A5 and A5-A8. We consider each pair as

a potential invisible diamond and calculate its imbalance. Considering that the error of our

measured imbalance is < 1ms at one hop (§3.5.4.1), we would expect an error at most 2ms

for diamond imbalance. We use a relative large threshold, 5ms, to determine imbalanced

diamonds and found 4.1M visible and 2.1M invisible imbalanced diamonds. Although

invisible diamonds can be identified from the topology, it is error-prone to identify the

actual end points of a diamond at the IP level due to IP aliasing [8]. Since we do not use

alias resolution techniques, we limit our focus on invisible diamonds with their end points

having consecutive TTLs such that no aliases exist in the diamonds. We further require each

invisible diamond to have at least 10 samples and use the median sample as the diamond

imbalance. After pruning, we obtain 65K invisible imbalanced diamonds, where 32% have

75

imbalance < 10ms and 50% have imbalance between 10ms and 20ms. For such invisible

diamonds, load balancing between their end points could occur between multiple paths in

MPLS networks [75] and between links in link aggregation groups (LAGs) [38].

Using the database of router ownership in §3.5.2, we can categorize these diamonds into

two types: 1) inter-AS, if the convergence and divergence points are in different ASes and

2) intra-AS, otherwise. We found that 80% of these diamonds are intra-AS and that almost

half of these intra-AS diamonds are from the top 10 imbalanced ASes (containing the most

number of intra-AS diamonds), including 4 Tier-1 providers: AS174 (Cogent), AS7018

(ATT-INT), AS2914 (NTT America) and AS6762 (Telecom Italia). We confirmed that 7 of

the top 10 imbalanced ASes use MPLS from existing studies of MPLS networks [76, 74].

Further, invisible diamonds directly between border routers were found in all of these ASes

except AS7922 (Comcast Backbone) and AS4230 (Embratel). Since MPLS tunnels are

widely used inside ASes to connect border routers [75], these invisible diamonds are very

likely due to invisible MPLS tunnels with imbalanced load balancing. AS12389 (Rostele-

com) and AS6762 have respectively 68% and 100% of invisible diamonds between border

routers, which could indicate wide deployment of invisible MPLS tunnels. Other than in-

visible MPLS tunnels directly between border routers, we can also see invisible MPLS

tunnels with the last hop of the egress border router visible to traceroute when the Penulti-

mate Hop Poping (PHP) is activated [74]. We found that 6% and 30% of invisible diamonds

in AS4230 and AS12389 respectively used such invisible MPLS tunnels. Identifying other

types of diamonds requires careful probing analysis [77] and validation requires informa-

tion from the operators. Both are subject to future research. We also found 8,601 inter-AS

invisible diamonds spreading across 3,340 pairs of ASes, of which 7.6% are peers. This

indicates that latency imbalance also occurs between border routers of inter-domain links.

Both LAG and multi-paths in invisible MPLS networks are the possible causes for the

latency imbalance.

76

Challenges of Load Balancing The definitions of path cost are diverse and a certain

definition of path cost (e.g., latency) can at best ensure the related performance metric to

be equal across LB paths. However, applications have a wide range of requirements from

latency- to bandwidth-sensitive. In addition to changing network conditions, it is impossi-

ble to have LB paths with equal performance for all applications. LB paths optimized for

equal bandwidth may differ greatly in latency [78]. When performance imbalance is signif-

icant, undifferentiated selection of LB paths, as done by hashing-based algorithms, would

degrade application QoE. Latency imbalance emphasizes the importance of differentiated

services. Diffserv-aware MPLS traffic engineering (MPLS-TE) is a good option for pro-

viding differentiated services in the Internet. However, MPLS-TE generally monitors and

computes label switching paths at the router level, while load balancing could occur at the

link level [75]. Since multiple links could exist between routers, it is challenging to monitor

link-level path performance.

3.6 Imbalance Between Data centers

Inter-DC WANs, e.g., Microsoft’s SWAN [79] and Google’s B4 [80], are designed to

carry traffic between DCs for various interactive services highly sensitive to latency [79].

We thus want to understand the latency imbalance between DCs.

3.6.1 Data Collection

To have a more rounded view of latency imbalance between DCs, we added 8 Microsoft

Azure’s DCs located in New South Wales (Australia East), Tokyo, Chennai (South India),

California, Virginia, Toronto, London, and Paris. We refer to two connected DCs as a DC

pair. Due to path asymmetry, connectivity of DC pairs is directional. We denote the set of

paths from DC a to DC b as a 7→ b. Along with the 16 DCs in Figure 3.5, we have 552

DC pairs amongst the 24 DCs. We sample the latency imbalance between each pair every

20 minutes for one day using the same methodology in §3.3. We use 100 flows for each

77

(a) Intra-cloud (b) Inter-cloud

Figure 3.10: Intra-cloud and inter-cloud latency imbalance

source-destination pair as studied in §3.6. No latency imbalance sample can be obtained

if no extreme flows are found within the first 160 probes or extreme flows have unstable

latency. After the data pruning in §3.3.3, we have 5 pairs with < 10 samples left. We prune

these pairs and analyze the stability of latency imbalance for the rest of pairs. To avoid

outliers, we use the median latency imbalance sample as representative for each DC pair in

our study.

3.6.2 Intra- and Inter-Cloud Latency Imbalance

We separate DC pairs into intra- and inter-cloud pairs for analysis. An intra-cloud pair

is between DCs belonging to the same cloud provider, while an inter-cloud pair consists of

two DCs from different cloud providers.

3.6.2.1 Intra-Cloud Latency Imbalance

Figure 3.10(a) shows the one-way imbalance of all intra-cloud pairs with respect to

their OWDs, where the three lines present one-way imbalance equal to 2ms, 10% of OWD

and 20% of OWD respectively. In general, Google has the least latency imbalance with

only 10% of its intra-cloud pairs having imbalance slightly > 2ms, while Microsoft has

7 out of 56 pairs with imbalance > 10% of their OWDs. Of the 7 pairs, 2 pairs have

imbalance as high as 34ms and 67ms, much larger than 20% of their respective OWDs,

78

and they have very stable latency imbalance over time. The high latency imbalance would

cause Microsoft’s traffic between the same DC pair to experience disparate path latencies,

causing inconsistent performance for clients in latency-sensitive applications. We only

have two intra-cloud pairs between Beijing and Shanghai for Alibaba with OWD around

15ms and one-way imbalance > 2ms.

We further analyze the paths between DCs as in §3.5.2. We found that all intra-cloud

pairs have all discovered intermediate hops in the ASs of their respective cloud providers.

As Google’s private WAN is well-balanced, its intra-cloud pairs have low latency imbal-

ance. Looking into Microsoft’s pairs with high imbalance (> 10% of OWD), we found that

1) two pairs with the highest imbalance use flows of disparate path lengths (measured in

the total hop count), where the lowest-latency flow takes a path of length only about half of

that of the highest-latency flow and that 2) even when paths have similar lengths, the long-

distance inter-continental paths are not well-balanced and cause most of the imbalance.

3.6.2.2 Inter-Cloud Latency Imbalance

The percentage of inter-cloud pairs with high imbalance (> 10% of OWD) is similar

to that of intra-cloud pairs. Pairs involving Google’s DCs generally have lower latency

imbalance than other pairs, because Google uses its well-balanced paths to directly forward

inter-cloud traffic from its own ASs to the ASs of the Amazon’s and Microsoft’s DCs. The

traffic from Google’s DCs to Alibaba’s DCs first traverses the major ISPs in China before

entering Alibaba’s ASs, but most of the time is spent on traveling Google’s own networks,

resulting in low latency imbalance. Pairs involving Alibaba’s DCs have higher latency

imbalance than other pairs mainly because the long-distance paths between Alibaba’s and

other DCs are not well-balanced. Looking at the AS-level paths between Alibaba’s and

Amazon’s DCs, we found that the high imbalance from Alibaba’s to Amazon’s DCs largely

occurs at the inter-AS connections between AS 4837 (China Unicom) and AS2914 (NTT),

while the high imbalance from Amazon’s to Alibaba’s DCs mainly occurs within AS 4134

79

(a) Max error reduction (b) Average one-way imbalance

Figure 3.11: Maximum error reduction for clock offset in NTP

(China Telecom), a major ISP in China.

3.7 Applications

As discussed in 3.5.4.2, it is inherently difficult to guarantee that LB paths have similar

latency at the network layer or below. In this section, we will evaluate the impact of latency

imbalance on three applications and discuss potential solutions.

3.7.1 Clock Synchronization by NTP

An NTP client synchronizes time by adjusting its local clock to the NTP server’s clock.

Suppose that of all LB paths, the i-th path is used for time synchronization with its forward-

and return-path latency equal to dFi and dRi respectively. The error in estimating the server’s

clock time is equal to the estimation error of the OWD, i.e., |dFi −dRi |/2 [50]. When multiple

LB paths exist, choosing forward and return paths that are more symmetric can reduce the

estimation error of the OWD. Suppose A is the set of LB paths. The maximum reduction

of the estimation error is
(
maxi∈A{|dFi − dRi |} −minj∈A{|dFj − dRj |}

)
/2.

Upper Bound of Error Reduction Suppose there are n LB paths between the NTP client

and the NTP server and that the maximum and minimum estimation errors occur at the i-th

and j-th LB paths respectively. The maximum reduction of estimation error (denoted as ∆)

80

then becomes
(
|dFi − dRi | − |dFj − dRj |

)
/2. Using triangle inequality, we have that

∆ ≤
∣∣(dFi − dRi)− (dFj − dRj)

∣∣ /2 ≤ (|dFi − dFj |+ |dRi − dRj |) /2
≤ (∆F + ∆R)/2,

where ∆F and ∆R are the one-way imbalance on the forward and return paths respectively.

Relation Between One-Way Imbalance and NTP Accuracy Using the same dataset of

OWDs between the 55 nodes (24 data center instances and 31 Planetlab (PL) nodes) in

§3.3.5, we calculate the maximum error reduction for each pair of nodes as defined above.

Figure 3.11(a) shows the relation between the maximum error reduction and ∆d for all pairs

of nodes. The maximum error reduction can be as high as 27ms and more importantly, most

of the maximum error reductions are larger than ∆d/2. Figure 3.11(b) shows the CDF of

the average latency imbalance of different types of pairs. The latency imbalance between

PL-PL pairs is much lower than that between pairs involving DCs.

Practical Impact Although NTP uses DNS-based load balancing to serve clients based

on locality, NTP servers could, in practice, still see a median OWD of 175-300ms to world-

wide clients [81]. Since long-distance paths are more likely to have high latency imbalance,

considering latency imbalance in NTP would benefit a large portion of clients. Moreover,

NTP servers could also see traffic from cloud providers [82], and popular IoT clouds (e.g.,

AWS IoT [83]) would synchronize their servers with cloud-connected IoT devices. The

communications between clouds and public Internet would experience similar latency im-

balance as characterized in §3.5.1.

Potential Solution Using the same dataset, we simulate the schemes of choosing a ran-

dom path and the lowest-latency path for time synchronization and repeat the experiment

1,000 times. In the experiments, only source-destination pairs with potential improvement

81

(a) Distribution of latency gap (b) Distribution of area reduction

Figure 3.12: Impact of latency imbalance on geolocation

(∆d ≥ 1ms) are used and 10 random flows are used in finding the lowest-latency path. We

found that using the lowest-latency path could achieve on average 64% of the maximum er-

ror reduction and reduce the standard deviation of synchronization error by 1ms compared

to using a random path. However, choosing the lowest-latency path incurs extra overhead.

This solution works for any client-server pair, complementary to stratum server selection.

3.7.2 Delay-Based Geolocation

Delay-based geolocation techniques commonly use ping to measure latency and use

the measured latency to estimate the distance from landmarks to the host. However, under

latency imbalance, ping may fail to measure the minimum path latency (minRTT), result-

ing in overestimated distance. We refer to the measured minRTT by ping as ping-time

and the difference between the ping-time and the minRTT as latency gap. We show how

the accuracy of CBG++ [42], the state-of-the-art geolocation technique, can be improved

by considering latency imbalance.

We first present a global view of latency gap and then discuss how latency gap affects

geolocation accuracy. The global view of latency gap is from the perspective of DCs,

providing insights to the geolocation for cloud-based applications, e.g., location verification

of cloud data and proxies [42, 39].

82

A Global View of Latency Gap We measure ping-time and the minRTT, in parallel,

from DCs in 15 cities around the globe to 400K random destinations. We use Amazon’s

and Alibaba’s DCs as vantage points to reflect more closely traffic sent from client hosts in

the Internet (see § 3.5.2). For each DC-address pair, we repeat the method in §3.3.3 with

UDP, TCP and ICMP probes respectively to discover as many alternate paths as possible

and use the minimum RTT sample as minRTT. We use fping, an extension to ping, for

fast probing destinations in parallel. In geolocation applications, ping-time is typically the

minimum of several RTT samples to mitigate queueing delay [84, 16]. In our experiments,

we use more samples (i.e., 30 samples) to further exclude queueing delay for ping-time.

Figure 3.12 shows the distribution of latency gaps under different cases. The worst DC

(with the largest median latency gap) has latency gap > 5ms to 40% of addresses. As

landmarks close to the host are found to be more effective in geolocation [42], we further

look at DC-address pairs with OWD < 60 ms and find that the distribution of latency gap is

similar. This indicates that latency gap occurs at latencies of a wide range. The worst case

assumes that ping probes sent from the worst DC always take the highest-latency path,

indicating the maximum possible latency gap. The figure shows that the worst-case latency

gap is much larger than those under other cases.

Impact of Latency Gap on Geolocation Accuracy We simulate delay-based geoloca-

tion using the real-world data of 55 PlanetLab nodes, where their locations can be found in

[85] and the RTT samples between them are obtained from the iPlane project dataset [86].

To simulate the process of geolocating an Internet host, we randomly select one PlanetLab

node as the host and use the rest as landmarks. Based on the latencies between landmarks

and the host, we use CBG++ to predict a region containing the host. To study the impact

of latency gap, the region is predicted under both minRTT (without latency gap) and ping-

time (with latency gap). The minRTT between each landmark and the host is the minimum

RTT sample between them in the iPlane project dataset and the ping-time is simulated as

83

the minRTT plus latency gap. We use the DC-address pairs in Figure 3.12(a) to resemble

the landmark-host pairs in applications using existing measurement platforms to geolocate

cloud addresses, where the host resides in a DC and landmarks are common Internet ad-

dresses outside the cloud. We consider two geolocation schemes: 1) all landmarks are used

for geolocation, where the latency gap follows the distribution when all DC-address pairs

are included in Figure 3.12(a) and 2) only landmarks close to the host (with OWD< 60) are

used for geolocation, where the latency gap follows the distribution when only DC-address

pairs with OWD < 60 are included.

The accuracy of geolocation is typically measured by the area of the predicted region.

Since the predicted region under ping-time is no less than that under minRTT, we consider

the percentage of area reduction as the accuracy improvement by considering latency im-

balance. We repeat the geolocation process above for 1000 random hosts (selected with

replacement from the 55 PlanetLab nodes) under each geolocation scheme. Figure 3.12(b)

shows the distribution of area reduction (in percentage), where area reduction is > 20% for

40% of hosts. The area reduction would be larger if the host is in the worst DC. We further

verify if latency imbalance larger than the baseline in Table 3.1 is significant to geoloca-

tion. As latency gap includes latency imbalance on both forward and return paths, we set

latency gap to 4ms for each landmark-host pair, equivalent to one-way imbalance equal to

2ms (the baseline). About 85% of hosts have area reduction > 20% for both geolocation

schemes.

Practical Impact The results above are obtained using our measured imbalance from the

cloud to the public Internet. Applications that possibly see similar improvement include:

1) geolocating VPN services to enforce accurate geographic access control [42] and 2)

geolocating data in the cloud to verify that replicas are in diverse geolocations [87] or to

prevent storage providers from relocating the data [39]. As imbalanced diamonds exist in

the public Internet (§3.5.4.2), other geolocation applications would also benefit.

84

Figure 3.13: Weighted distribution of the percentage of improved calls for country pairs

Potential Solution The experiments above used our method to measure the minRTT (see

Appendix 3.7.2 for details), where UDP packets with random ports are used to uncover

LB paths and the minimum path latency is used as the minRTT. Ping uses ICMP echo

packets, which have higher reachability than UDP packets [72], but UDP packets may

uncover more LB paths than ICMP echo packets as more per-flow load balancers balance

UDP packets than ICMP echo packets. Moreover, sending UDP packets with random

ports, rather than incrementing ones as traceroute does, helps UDP packets uncover LB

paths more efficiently.

3.7.3 VoIP

Long-distance Internet-based calls have been rising in recent years with 46% of Skype

calls being international [40]. However, long-distance Internet paths could have high RTT,

packet loss and jitter. Distributed DCs around the globe are envisioned as relays to provide

high-quality paths [40]. In this context, we show how to improve call quality when latency

imbalance is considered.

Experiments Our experiment simulates a relay network formed by 24 DCs around the

globe, where a path between the caller and callee consists of multiple logical links (includ-

ing a caller-relay link, a relay-callee link and relay-relay links, if used) and each link could

include multiple alternate paths. Our simulated relay network is similar to the ones used

85

by Google+ Hangout and Skype [88], except that we use relay networks to improve perfor-

mance, not just to provide connectivity between clients. The best path is defined to have the

minimum latency between the caller and callee. Without considering latency imbalance,

each link randomly uses one of the alternate paths. When latency imbalance is considered,

each link always uses the lowest-latency path. We select the best paths in both cases and

consider the difference between call quality as the improvement by considering latency

imbalance. The call quality is estimated using an analytical model (E-Model defined by

the ITU [89]) that computes the Mean Opinion Score (MOS) from network metrics, where

MOS values range from 1 (“unacceptable”) to 5 (“excellent”). Since our focus is on the

impact of latency imbalance on call quality, we fix the jitter parameter in the E-model to

the default value [90] and assume constant packet loss for all paths.

We randomly select callers and callers in different countries for each call and consider

that call quality is improved if its MOS increases by one or more levels. We simulate one

million calls in total with three packet loss rates (0.03%, 0.1% and 1%) and two types of

latency imbalance: 1) random imbalance, where an alternate path is randomly selected

for each link, and 2) maximum imbalance, where the highest-latency path is selected for

each link. We group calls from the same pair of countries (country pair henceforth) and

calculate the percentage of calls with improved quality for each country pair. Figure 3.13

shows the distribution of the percentage of improved calls weighted by the number of calls

in respective country pairs. The percentage of improved calls decreases as the packet loss

increases and becomes the major bottleneck. Nonetheless, calls between some countries

still benefit significantly from latency reduction. When packet loss is 0.03% (packet loss

between DCs [91]), the percentage of improved calls is about 8% under random imbalance

and 14% under maximum imbalance for 10 country pairs comprising 40% of total calls.

Potential Solution Requests on multiple flows can be sent simultaneously to the relay or

destination, and the first received request is considered taking the shortest path. Although

86

we only consider stable path latency, this method is also useful to explore the multi-path

capability to reduce latency inflation as in [92].

3.8 Discussion

Our methodology and measurement results have several limitations.

Limited View: All of our hosts are in DCs, but ideally we want more heterogeneous ones

such as residential hosts. Latency imbalance in public-only Internet may differ from that

between the cloud and the public Internet.

Measurement Bias: Our method is biased towards destinations with stable flow latencies.

Destinations pruned due to unstable latencies could also have high latency imbalance.

Causes Not Validated: Our tool has limited visibility in MPLS tunnels and has no alias

resolution, which prevents us from fully characterizing and understanding the causes for

latency imbalance. The possible causes are also not validated by network operators.

Compounding Errors: In §3.3.3, although we have carefully examined each type of error

sources in our methodology, these errors could compound and greatly affect the accuracy

of pairwise latency imbalance. For instance, the probabilistic guarantee of high path cov-

erage may fail together with the stability check of path latency during temporary network

congestion. If the goal is to accurately measure pairwise latency imbalance, multiple mea-

surements for the same pair over time would help either explore the rare paths with extreme

latencies or reduce the measurement errors due to temporary network events.

3.9 Summary

In this chapter, we presented a methodology of measuring latency imbalance among In-

ternet load-balanced paths at scale and used it to collect a global view of latency imbalance

from the perspective of the cloud. We found that latency imbalance is both significant and

prevalent between DCs in the cloud and from the cloud to the public Internet. We analyzed

87

the reasons for cloud providers to have different latency imbalance and further showed

that latency imbalance could affect application performance in various ways. Moreover,

we verified the accuracy of our measured imbalance and discussed the potential causes

for latency imbalance and the challenges of load balancing. In the era of 5G, with the

last-mile ratio link having sub-millisecond delay and emerging applications being more

delay-constrained, the problem of Internet latency imbalance will become more prominent.

This requires us to consider latency imbalance in the performance evaluation of future ap-

plications. Our work has limitations in that we measure latency imbalance all from DCs

and only focus on latency.

88

CHAPTER IV

Congi: Measuring Congestion Imbalance Among Internet

Load-Balanced Paths at Scale

In the previous chapter, we discussed the latency imbalance among LB paths, which

focuses on the minimum path latency stable over time. In this chapter, we evaluate the con-

gestion imbalance among LB paths that occurs with network congestion. As congestion is

typically short-lived, this makes the detection of congestion imbalance much more difficult

than latency imbalance. Latency imbalance is extensively studied in datacenters, but is still

under-explored in the Internet. We take the first step to measure congestion imbalance in

the Internet. Congi is our network prober designed to measure congestion imbalance at

scale, which uses SVM classifiers to detect congestion imbalance with a very small num-

ber of samples. We verify Congi in terms of its ability to detect the throughput, packet loss

and latency imbalance between LB paths. We further use web page load as an example and

evaluate the impact of congestion imbalance on applications.

4.1 Introduction

Congestion imbalance has been mostly studied in datacenter (DC) networks [93, 3],

where paths between servers can be carefully planned—to share minimal common bottle-

neck links—such that not all of the paths would be congested at the same time. Given

89

the capability to carefully plan paths, congestion-aware load balancing can better utilize

bandwidth in data center networks. In contrast, despite the prevalence of load balancers in

the Internet, Internet LB paths are likely to overlap, especially in access networks at the

edges [94]. We are not aware of any study reporting on the prevalence of congestion imbal-

ance in the Internet. In this work, we take the first step to measure congestion imbalance

in the Internet at scale. We want to understand the prevalence of congestion imbalance and

the extent to which it causes LB paths to differ in performance. Considering that conges-

tion affects all performance aspects (throughput, latency, and packet loss) of a path, we

would expect that harnessing Internet congestion imbalance would benefit a wide range of

Internet applications.

Broadly speaking, congestion imbalance exists as long as LB paths experience differ-

ent levels of congestion. As a first step, we limit our focus on recognizing a congested

path from an uncongested one, without differentiating the congestion levels. To measure

congestion imbalance at scale, we need to address two major challenges: 1) how to detect

congestion, and 2) once a congested path is detected, how to quickly search among a pool

of LB paths for an uncongested path while the congestion persists? To detect congestion,

we use network probing from a single vantage point (VP) directed towards public Inter-

net addresses. Network probing infers path performance towards an address based on the

destination’s responses to the probes. Due to ICMP rate limiting, probes sent to the same

destination must be controlled at a very low rate, which makes us unable to detect tran-

sient congestion. We focus on congestion with durations ranging from seconds to minutes,

which are of interest to many applications, e.g., web page load and VoIP. Our approach can

also be easily extended to detect the diurnal persistent inter-domain congestion in [95].

Our approach uses latency inflation to infer congestion similar to the Time Series La-

tency Probing (TSLP) technique [96]. However, to detect congestion at scale (the first chal-

lenge), we cannot use latency time series collected in the long term as in TSLP. Instead, we

develop Congi, our network prober that leverages a support vector machine (SVM) clas-

90

sifier to detect congestion with a small number of latency samples. As Congi is designed

to detect congestion imbalance, not just congestion, it also includes two SVM classifiers

trained to detect uncongested paths, which focus on the speed and accuracy of detection

respectively. The goal of the speed-focused classifier is to fast search among LB paths

for potential uncongested paths, whose results are then further verified by the accuracy-

based classifier. These two classifiers work together to address the second challenge. The

SVM classifiers in Congi are trained on a ground-truth dataset that we build from a collec-

tion of path performance data between a large number of geographically-diverse source-

destination pairs.

We verify Congi’s performance with both trace-driven simulation and real-world ex-

periments, and find that Congi excels at detecting significant congestion imbalance, where

the uncongested paths are on average 3x greater in throughput and 1.8% lower in packet

loss rate than the congested ones. In our large-scale experiments, we ran Congi from 12

DCs around the globe to Internet-wide addresses. We found that most DCs experience long

imbalance lasting 2 minutes to about 10% of Internet addresses and short imbalance lasting

30s to at least 35% of addresses. We further evaluate the impact of congestion imbalance

on web page load by downloading web pages using the congested and uncongested paths

respectively. We found that half of the download times can be reduced by 50%, using the

uncongested paths.

4.2 Measurement Methodology

4.2.1 Our Goal

Congestion imbalance occurs between a source and a destination when the connecting

paths experience different levels of congestion. In this work, we simply categorize paths

as either congested or uncongested, with no further distinction of congestion levels. Con-

gestion imbalance between a source and destination pair occurs when an uncongested path

91

exists concurrently with a congested one. Our goal is to measure congestion imbalance at

scale from a single vantage point (VP) with network probing, assuming no direct access to

a large number of instrumented routers or end hosts. We focus on measuring short-term

congestion imbalance lasting from seconds to minutes, which affects many applications

like web page load and video streaming. Nonetheless, our approach can also be used to

measure transient congestion imbalance within sub-seconds, if probe rate limiting is not a

concern, and to measure long-term congestion imbalance lasting hours.

4.2.2 Overview of Our Methodology

We want to design Congi (short for Congestion Imbalance), a network prober that col-

lects latency samples to detect congestion imbalance. The core of Congi is a set of SVM

classifiers capable of detecting both congested and uncongested paths with a small number

of latency samples. Of these classifiers, some focus on the accuracy of congestion imbal-

ance detection, while others focus on the speed of searching for uncongested paths amongst

a set of LB paths. To obtain these classifiers, we must address two key questions:

1. Can we differentiate between congested and uncongested paths from their latency

samples?

2. Can we accurately detect congestion imbalance with a small number of latency sam-

ples?

A positive answer to the first question requires the existence of a latency-based metric

capable of such differentiation. To that end, we collect real performance data (latency,

throughput, and packet loss) of Internet paths, use the metric to classify these paths as ei-

ther congested or uncongested based on latency, and check if the uncongested paths have

lower throughput and higher packet loss rates than the uncongested ones. However, as there

could be many LB paths between a source-destination pair, to collect path performance of

all of them is a very resource intensive process. Instead, we collect the performance of one

92

path continuously over a long period of time and check if a metric can differentiate between

congested and uncongested periods of the path. This not only simplifies data collection, but

it also ensures that congestion would be the reason for performance degradation with all

other factors being equal. We experiment on several latency-based metrics (latency eleva-

tion, latency deviation, and latency inflation) and found that latency elevation (increase in

mean latency over a sustained period of time) best differentiate congested and uncongested

periods of a path (see §4.2.3.4 for more precise definitions and detailed descriptions). In

§4.3.2 we verify that latency elevation can also be used to detect congestion across multiple

paths.

Latency elevation enables us to detect congestion imbalance without actually measuring

throughput and packet loss rates of LB paths. Unfortunately latency elevation relies on

long running latency time series to be effective. We want to answer the second question by

finding classifiers capable of accomplishing the same task but with a very small number of

latency samples. To train these classifiers, we create a large ground-truth dataset consisting

of latency time series each of which has been labeled by the latency- elevation based metric

as being of a congested or uncongested paths. These lightweight classifiers enable us to

scale the detection of congestion imbalance. We combine them to build Congi, verify its

ability to detect congestion imbalance, and conduct measurement campaigns from VPs

around the globe to Internet-wide addresses.

4.2.3 How to Choose the Latency-Based Metric?

The intuition behind a latency-based metric is that when a path is congested, its capac-

ity is over utilized, causing packets to be buffered, resulting in inflated measured latency.

Dhamdhere et al. [95] have shown that inflation in latency time series can be used to detect

congested periods. However, we are not aware of any study to compare different latency-

based metrics and to systematically explore their use in detecting congestion periods. In

this section, we will compare alternative metrics for describing latency inflation and deter-

93

mine thresholds that properly separate congested periods from uncongested ones. We start

by the collection and processing of the path-perf dataset that includes the performance of

a diverse range of paths.

4.2.3.1 Data Collection: The Path-Perf Dataset

This dataset is used to evaluate several latency-based metrics, which involves correlat-

ing path latency with throughput and packet loss. In this dataset, all the three path metrics

are collected for each path included. As public clouds enable us to easily access computing

resources in data centers (DCs) around the globe, we create virtual machines (VMs) in DCs

as our vantage points (VPs). For throughput measurement, we run the Network Diagnostic

Tool (NDT) test from our VPs to M-Lab NDT servers [97]. Since we use latency to in-

fer congestion, our latency and throughput measurements do not overlap in time, to avoid

self-induced latency inflation. The TCP trace made public by M-Lab only provides latency

during TCP sessions and thus does not fit our needs [97].

Measurement Methodology We want to measure latency and throughput for the same

path between a source-destination pair, including both the forward and return directions.

As 98% of load-balanced paths include only per-flow and per-destination load balancers,

traffic with the same flow identifier (source IP, destination IP, source port, destination port,

protocol ID) will follow the same path when there is no path change [8]. Given a source-

destination pair, we enforce all measurement traffic to use the same source and destination

ports. The impact of path changes will be considered during data processing (§4.2.3.2).

Since NDT tests use TCP, we measure latency to the NDT hosts by sending TCP ACK

to the port numbers used in NDT tests. The measured latency of the path is the elapsed

time between the sending of the TCP ACK and receiving the corresponding TCP RST.

Measured packet loss rate is the percentage of TCP ACK probes for which we do not

receive responses.

94

To understand how latency is correlated with throughput, we want latency and through-

put to be measured under various network conditions, including both congested and uncon-

gested periods. Since collecting one latency sample only takes one probe, we periodically

measure path latency to all NDT servers in parallel. In contrast, each NDT test measures

upload and download TCP throughput separately, each taking about 10 seconds. We only

run one NDT test from each VP to a target server at the same time to avoid multiple NDT

tests competing for bandwidth. Considering the overheads of throughput measurements

and that congested periods are typically less common than the uncongested ones, it is

impractical and unnecessary to periodically measure throughput to all NDT servers. We

instead drive NDT tests by latency variation: we trigger a NDT test to measure a path

when the path latency is seen varying and follow up with another NDT test when the path

latency returns back to stable. In this way we distribute throughput measurements more

evenly between paths of varying and stable latencies, and still covers paths within the full

range of latency variations. Moreover, we want to focus on latency variation due to conges-

tion rather than route changes, where path latency during congestion is constantly varying

while a route change causes path latency to suddenly increase or decrease and remain sta-

ble afterwards. We thus define latency variation as the average absolute difference between

neighboring latency samples, i.e.,
∑n

i=1 |ri − ri−1| /(n−1), where n is the number of sam-

ples and ri is the i-th latency sample.

Experiment Setup In our experiments, we used 12 geographically-distributed VPs (2 in

Europe, 5 in Asia, 2 in North America, 1 in South America, 1 in Africa, and 1 in Oceania)

and measured path performance from these VPs to 471 NDT-7 (NDT version 7) servers

to create this dataset. As cloud providers may differ in how they route traffic from their

DCs to the public Internet [98], these 12 VPs are further distributed evenly among 3 cloud

providers (Google Cloud, Microsoft Azure, and Alibaba Cloud).1 Each VP sent TCP ACK

1We did not have VPs in Amazon AWS for this dataset because the download TCP throughput from
the NDT-7 servers to our VPs in Amazon DCs was throttled to a low level, which decorrelated latency and

95

probes to all NDT-7 servers every 2 seconds to measure path latency and packet loss. La-

tency variation was calculated every 60 seconds with the most recent 90 latency samples,

where samples below the 10-th percentile and above the 90-th percentile were not used,

to mitigate the impact of outliers. For each source-destination pair, we triggered a NDT

test when latency variation was greater than 2ms, a relatively small threshold to capture

small latency changes. When a NDT test was done, we waited at least 15 minutes before

checking if the latency variation has returned back to stable (below the threshold) and we

could conduct a follow-up NDT test.

4.2.3.2 Data Processing: Time Series Segmentation

We want to prepare the dataset for correlating latency with throughput and packet loss.

Given a latency time series between a pair of VP and NDT server, we want to 1) segment it

into periods of varying latency (or varying periods) and periods of stable latency (or stable

periods) such that latencies in the same period reflect the same state of the path, and 2)

match each period with the throughput samples measured in it. Note that a varying period

is not necessarily a congested one because apart from congestion, other factors, such as

delayed response, could also cause varying latency [99]. A congested period is a varying

period that actually causes performance degradation. We will find proper thresholds for

concluding if a path is congested or uncongested in §4.2.3.4. In the following, we first dis-

cuss the current method of detecting varying periods and its drawbacks, and then introduce

a more accurate method for time series segmentation.

Drawbacks of the Current Mean-Shift Detection Method Observing that latency sam-

ples in varying periods are typically inflated, have higher means, than those in stable pe-

riods, Dhamdhere et al. proposed to use latency mean shifts in time series to identify

varying periods [95]. Their method uses a moving window to sequentially scan the latency

throughput.

96

Varying	periods

Figure 4.1: An example of time series segmentation

time series and, with a statistical test, checks if there is a mean shift in the moving win-

dow. However, this method relies on a moving window, including only a partial view of

the entire time series, to make decisions and is thus prone to false positives when the entire

moving window is in a varying period. Moreover, the statistical test can detect level shifts

but is not capable of telling the exact boundary between varying and stable periods, which

is critical for segmenting time series.

An Improved Method: Changepoint Detection To address the above issues, we intro-

duce a new method called changepoint detection, which segments time series by observing

the entire time series [100]. Specifically, the changepoint detection method segments the

latency time series into time periods with different latency means. Let Pi be the i-th period,

yij be the j-th sample in Pi, and m be the number of periods. The optimal segmentation is

obtained by minimizing the loss function

min
{ȳ1,...,ȳm}

m∑
i=1

∑
yij∈Pi

|yij − ȳi|2 + βm,

where ȳi is the latency mean of the i-th period and βm is a penalty term to avoid over-fitting.

We use one of the common choices for the penalty term, i.e., the Bayesian Information

Criterion penalty by setting β to σ2 log(n), where n is the total number of samples and

σ2 is the variance of samples [100]. The ruptures package in Python [101] is used to

97

Table 4.1: The Path-Perf dataset summary
Cloud
Providers

#VP-Server
Pairs

#Throughput
Samples

#Latency
Samples

Google Cloud 342 1,903 22,239,395
Alibaba Cloud 629 2,683 30,464,281

Microsoft Azure 627 2,789 40,717,975

segment time series in our dataset. The minimum period length is set to 15 samples to

obtain periods lasting for at least 30s (inter-sample time is 2s). The minimum period length

is chosen to be relatively small such that short varying periods can still be detected.2 Figure

4.1 shows an example of time series segmentation with the changepoint detection method,

where we can clearly see the boundaries between neighboring periods.

Matching Segmented Periods with Throughput Samples After time series segmenta-

tion, it is straightforward to associate each segmented period with the throughput samples

measured by time. We do need to handle some edge cases where throughput samples are

measured close to the boundaries. To avoid associating throughput samples with the wrong

periods, we only use throughput samples measured at least 10s away from both the start

and end times of their associated periods.

4.2.3.3 Resulting Data Distribution

Table 4.1 summarizes the path-perf dataset, which only counts the VP-server pairs

(pairs of VP and NDT server) that have at least one varying and one stable periods, both

with throughput samples. Google Cloud has the least number of VP-server pairs with

varying periods, likely because probes from VPs in Google Cloud to NDT servers spend

most of their times traversing Google’s well-provisioned private WANs [98, 80]. Since we

run only one NDT test at a time from each VP, when the paths to multiple NDT hosts have

2A long minimum period forces the method to consider short varying periods as noise and may result in
long stable periods with short varying periods inside them. A very short minimum period makes the method
over-reactive to outliers.

98

varying latencies, only one will be measured—the others would have to wait for future

rounds of measurement. This case happens more often for the VPs in Alibaba Cloud and

Microsoft Azure, leaving them with fewer throughput samples for each pair, on average.

To compensate for this difference, we run experiments longer for VPs in Alibaba Cloud

and Mircrosoft Azure. We next use this dataset to compare different latency-based metrics.

4.2.3.4 Comparative Study of Latency-based Metrics

We want to find a latency-based metric that can differentiate between congested and

uncongested periods of a path by the gap in path performance during these periods. We will

compare three latency-based metrics that describe latency inflation from different aspects:

1) latency elevation, the difference between latency mean and the minimum latency, 2)

latency deviation, the standard deviation of latency samples, and 3) inflation level, the

percentage of inflated latency samples.

Defining the Performance Gap We want to define the performance gap between the con-

gested and uncongested periods for two path metrics, throughput and packet loss. For each

source-destination pair, the throughput gap is defined as the ratio of the average throughput

during congested periods to that during uncongested ones, also referred to as the through-

put ratio. Similarly, the packet loss gap is defined as the difference between the average

packet loss rate during congested periods and that during uncongested ones. We use the

average path performance to alleviate the impact of measurement errors that are infrequent

but difficult to exclude. For example, we could not tell if low throughput during a stable

period is because the bottleneck link, though uncongested, has high utilization [94] or be-

cause the NDT server is under heavy load, which we want to exclude as it is not network

related.

Ability to Maximize Throughput Gap To compare the alternative metrics, we use each

metric to classify periods in our dataset as congested or uncongested, and calculate the

99

3 9 15 21 27
Congestion thres (ms)

0.0

0.5

1.0

1.5

2.0

Th
ro

ug
hp

ut
 ra

tio

0.00

0.25

0.50

0.75

1.00

Co
ve

ra
ge

(a) Latency elevation

2 4 6 8 10
Congestion thres (ms)

0.0

0.5

1.0

1.5

2.0

Th
ro

ug
hp

ut
 ra

tio

0.00

0.25

0.50

0.75

1.00

Co
ve

ra
ge

(b) Standard deviation

0.1 0.3 0.6 0.9
Congestion thres

0.0

0.5

1.0

1.5

2.0

Th
ro

ug
hp

ut
 ra

tio

0.00

0.25

0.50

0.75

1.00

Co
ve

ra
ge

(c) Inflation level

3 7 11 15
Non-congestion range (ms)

0.00

0.05

0.10

Pa
ck

et
 lo

ss
 g

ap
Congestion thres = 15ms

0.00

0.25

0.50

0.75

1.00

Co
ve

ra
ge

(d) Threshold tuning

9 15 21 27
Congestion thres (ms)

0.00

0.05

0.10

Pa
ck

et
 lo

ss
 g

ap

Non-congestion range = 7ms

(e) Packet loss gap

Figure 4.2: Comparing latency-based metrics and tuning thresholds

throughput gap between the congested and uncongested periods. The best metric is the one

that achieves the maximum throughput gap. Given a metric, we consider a period congested

if the metric calculated from the latency samples during the period is above a pre-defined

congestion threshold; otherwise, we consider the period uncongested. Per the definition of

throughput gap, it can only be calculated for pairs having at least a congested period and an

uncongested one. This means that the number of pairs with a throughput gap is determined

by the choice of the metric and the congestion threshold. In our dataset, we obtain the max-

imum number of pairs having a throughput gap when we use the ilatency elevation metric,

with congestion threshold of 3ms. The maximum number of pairs having a throughput gap

is about 47% of the total VP-server pairs present. We consider this the total number of

available pairs and calculate the coverage (i.e., the percentage of pairs with a throughput

gap) at other congestion thresholds with respect to this number. Figure 4.2(a) shows the

throughput gap/ratio and coverage under different congestion thresholds, where each box

represents the distribution (10-th, 50-th and 90-th percentiles) of throughput ratios for the

given threshold. We can see that as the congestion threshold increases, the throughput ra-

100

tio decreases, indicating a larger throughput gap. Meanwhile, the coverage also decreases,

which implies that a higher throughput gap is achieved at the cost of coverage. There is thus

a tradeoff between throughput gap and coverage. When the congestion threshold is 15ms,

we can achieve a median throughput ratio of 0.33 and cover 60% of pairs. The average

throughput ratio between the 10-th and 90-th percentile is only 0.37.

Figure 4.2(b) and 4.2(c) show the throughput ratios when latency deviation and inflation

level are used as the metrics. We calculate standard deviation with samples between the

10-th and 90-th percentiles to mitigate the impact of outliers and consider a sample inflated

if it is larger than the minimum latency for 5ms. Using standard deviation with a threshold

of 6ms can achieve a median throughput ratio of 0.37 but covers only 45% of pairs, which

is much less coverage than using latency elevation. When inflation level is 0.9, the median

throughput ratio can be as low as 0.18 and even the 90-th percentile is below 0.4, but only

a very small faction of pairs are covered. We thus consider latency elevation as the best

latency-based metric and use 15ms as the congestion threshold to obtain a good tradeoff

between throughput gap and coverage. We next discuss the ability of latency elevation to

describe the packet loss gap.

One Threshold or Two? Given that the congestion threshold is 15ms, we calculate the

packet loss gaps for available pairs and find that 11% of pairs have a negative packet

loss gap. This implies that some pairs have their congested periods misidentified as un-

congested, resulting in the packet loss rates in uncongested periods higher than those in

congested ones. We revisit our way to differentiate between congested and uncongested

periods, and find that the culprit is that since only one threshold is used to separate the

congested periods from the uncongested ones, there is a sudden switch in categorization.

We thus add a second threshold to identify uncongested periods and enforce a buffer re-

gion between the two thresholds. A period is uncongested if it has latency elevation be-

low the second threshold. We refer to the range from zero to the second threshold as

101

the non-congestion range. Figure 4.2(d) shows the packet loss gaps under different non-

congestion ranges, where the 10-th percentile packet loss gap approaches zero when the

non-congestion range is 7ms or less. The use of a buffer region may reduce the coverage.

We calculate the coverage at different non-congestion ranges with respect to that when the

buffer region is zero, i.e., both the non-congestion range and the congestion threshold are

15ms. We use 7m as the non-congestion range, which reduces coverage by 15%.

Relating Latency Elevation with the Packet Loss Gap After the non-congestion range

is determined, we can calculate the packet loss gaps under different congestion thresh-

olds. As shown in Figure 4.2(e), both the median and mean packet loss gaps increase

with the congestion threshold. This provides additional validation that latency elevation is

an effective latency-based metric in separating congested periods from uncongested ones.

Nonetheless, it is noticeable that compared with the throughput gap, the packet loss gap is

in general very small, with the median being as low as 0.6% when the congestion threshold

is 15ms. It is more interesting to look at the packet loss gaps in the high percentiles, where

the 75-th and 90-th percentiles are about 5% and 10% respectively. We refer to this method

of using latency elevation and thresholds to identify congested and uncongested periods as

the metric-based method.

4.2.4 Building a Ground-Truth Dataset

The main drawback of the metric-based method is that it relies on long latency time

series. We want lightweight classifiers that can achieve a similar accuracy in detecting

congested and uncongested paths as the metric-based method but does so with much fewer

samples. Specifically, we 1) want a dataset consisting of the latency time series of paths,

where each time series is labeled either belonging to a congested or uncongested path,

and 2) train the classifiers to determine if a path is congested or uncongested with a small

portion of samples from its latency time series.

102

4.2.4.1 Large-Scale Ground-Truth Dataset

Instead of using the path-perf dataset, we want the ground-truth dataset to be of a larger

scale and include a more diverse range of paths such that the classifiers can be accurately

trained and perform well when used in real-world scenarios. To create such a large-scale

dataset, we collect latency time series from VPs in DCs around the globe to a large amount

of random IPv4 Internet addresses. Since we want the classifiers to achieve similar per-

formance as the metric-based method, we apply the metric-based method on the collected

data to construct the ground truth (see §4.2.4.3). We start by introducing how latency time

series are collected.

4.2.4.2 Data Collection

We randomly select addresses from the IPv4 Internet address space and probe from 12

geographically-diverse VMs to the last-hop routers of these addresses to avoid affecting

the end hosts. Latency is measured as the elapsed time between sending a UDP probe with

the TTL expiring at the last-hop router and receiving the ICMP response from it. For each

target, we force all UDP probes and ICMP responses to take the same path by sending

UDP probes with the same source and destination ports [98]. The rate of UDP probes sent

to each router is controlled at 0.5 packet/s, unlikely to cause packet drop due to ICMP

rate limiting on routers [102]. To capture short-term congestion of various durations, we

periodically measure each last-hop router for 1 hour and stop immediately once there is a

route change, which is detected by path discovery to the last-hop router every 5 minutes

with TTL-limited probes. After 7 days of measurements in October 2020, we collected

latency and path information from our VPs to 342,139 Internet addresses, where each target

has 1,800 latency samples.

103

4.2.4.3 Data Labeling

We first segment latency time series into periods of different latency means with the

changepoint detection method. For each period, we calculate the latency elevation and

label those with latency elevation greater than 15ms as “congested”, less than 7ms as “un-

congested”, and the rest as “undetermined”.

4.2.5 Training Congi’s SVM Classifiers

Given a target, Congi first collects data with its probing module and then uses its SVM

classifiers to detect congestion imbalance with the collected data. We will first describe

the classifiers and discuss how we design a concurrent probing and training regime of the

classifiers.

4.2.5.1 Accuracy- and Speed-Focused SVM Classifiers

Congi includes two types of SVM classifiers: the accuracy-focused and the speed-

focused classifiers. The accuracy-focused classifiers aim to detect both congested and un-

congested paths with high accuracy, while the speed-focused classifiers aim to detect un-

congested paths with a reasonable accuracy but with much fewer samples. For each target

host, Congi starts the probing by detecting congestion with an accuracy-focused classifier,

because if an uncongested path is misclassified as congested, all subsequent measurements,

e.g., the search of an uncongested path, will be wasted. Congi also ends the probing by re-

confirming congestion imbalance with the accuracy-focused classifiers. The speed-focused

classifiers are used to search for an uncongested path once a congested path is detected.

Between a source and a destination pair, there could be tens of LB paths [9]. It is crucial to

check each path fast such that an uncongested path can be found while congestion persists.

We choose SVM as our classifiers because 1) the separating hyperplane between classes

is determined only by the data points near the hyperplane (a.k.a. support vectors), making

it more robust to outliers compared to logistic regression, and 2) if needed, we can sep-

104

arate non-linearly separable classes by mapping them to higher dimensional spaces with

non-linear kernels [103].

4.2.5.2 Creating Training and Testing Datasets from the Ground Truth

The ground-truth dataset above includes a collection of labeled latency time series. For

each time series, Congi’s classifiers only take a small portion of samples as input. The

process of picking these samples from the time series simulates how probing works. There

are two design parameters for probing, the number of samples to collect (denoted as m)

and the inter-sample time (denoted as d). As different probing schemes lead to different

data being collected, we will train the SVM classifiers on datasets collected under different

d’s and m’s to choose the best probing scheme.

Consider a probing process that collects 3 samples with an inter-probe time of 4s. To

simulate this process on a ground-truth time series, we first randomly select a sample in

the time series as the start point and then select the 1st, 3rd, and 5th samples as input to

the classifiers, where the start point is the 1st sample and the inter-sample time is 2s in the

ground-truth dataset. As probing could begin from any sample within the time series, we

repeat the probing process at different start points to average out randomness. Let d∗ and

m∗ denote the upper bounds of m’s and d’s in the design space. To simulate a probing

scheme with m = m∗ and d = d∗, we need latency time series of length at least equal to

l∗ = d∗ × (m∗ − 1) + 1. We require each time series in the dataset to support simulating

the probing scheme with m = m∗ and d = d∗ such that all probing schemes with d’s and

m’s within the upper bounds can be simulated on the same dataset for fair comparison.

Another issue of this dataset is that we have much more uncongested paths than congested

ones. We handle this unbalanced class problem by randomly selecting the same amount of

uncongested and congested paths in the dataset before simulating the probing process. For

each pair of d and m, this random selection is repeated to average out randomness. We use

two thirds of the data for training and the rest for testing.

105

2 4 6 8 10 12 14 16
Sample Size

0.6

0.7

0.8

0.9

1.0

Pr
ec

isi
on

IST(2s)
IST(4s)
IST(6s)
IST(8s)

(a) Tuning inter-sample time (IST)

2 4 6 8 10 12 14 16
Sample Size

0.6

0.7

0.8

0.9

1.0

Pr
ec

isi
on

all+linear
partial+linear
partial+RBF
all+RBF

(b) Precision (IST = 2s)

2 4 6 8 10 12 14 16
Sample Size

0.7

0.8

0.9

1.0

Re
ca

ll

all+linear
partial+linear
partial+RBF
all+RBF

(c) Recall (IST = 2s)

Figure 4.3: Performance in detecting congested paths

4.2.5.3 Training the Classifier for Detecting Congested Paths

As mentioned in §4.2.4.3, our dataset includes three classes of paths (congested, uncon-

gested, and undetermined), which implies that this is a multi-class classification problem.

As we are not interested in detecting the undetermined paths, we take a one-versus-rest ap-

proach to detect the congested and uncongested paths respectively [104]. That is, when our

goal is to detect one class, we consider it as the positive class and the rest two together as

the negative class. This requires us to have separate classifiers for detecting the congested

and uncongested paths. Considering the number of samples as input to the classifiers is

limited, we generate a feature from each sample and form a feature vector of dimension

equal to the number of samples. Specifically, given m samples, we form a m-dimensional

feature vector by 1) considering the minimum sample as the minimum latency, 2) subtract-

ing it from each sample to obtain the inflated part, and 3) sorting the inflated parts of all

samples in an increasing order.

106

Figure 4.3(a) shows the precision in detecting congested paths under different m’s and

d’s, where a linear kernel is used and the precision is the fraction of true positives among

all claimed positives. We can see that the precision increases gradually with the sample

size, but the improvement becomes very marginal when the sample size is greater than 12.

As the sample size becomes larger, samples are more likely to include outliers far away

from other samples, which causes more uncongested paths to be misclassified as congested

and counteracts the improvement by using a higher dimension. We can also see a slight

improvement in precision by using a larger inter-sample time (IST), because a larger IST

makes samples more independent from each other and is thus more likely to result in larger

difference between latency samples for congested paths. Considering that the improvement

for using a large inter-sample time is limited and that congestion is typically short-lived,

we want probing to be done fast and thus choose the inter-sample time to be 2s.

In Figure 4.3(a), all m samples are used to construct the feature vector. We wonder if

excluding the extreme samples that might be outliers could improve precision and that how

kernel selection affects precision. With the inter-sample time being 2s, Figure 4.3(b) and

4.3(c) show how feature and kernel selection affects the precision and recall in detecting

congested paths, where “all” means that all samples are used for prediction and “partial”

means that only samples between the 10-th and 90-th percentiles are used, to exclude out-

liers. When a percentile lies between two samples, the smaller one is used for the 10-th

percentile and the larger one is used for the 90-th percentile. In Figure 4.3(b), the scheme of

using partial samples begins to drop samples when sample size reaches 10, which results in

a lower-dimensional feature vector and causes a sharp decrease in precision. This indicates

that the precision gain by excluding outliers cannot cover the precision loss due to using

a higher-dimensional feature vector. We therefore use all samples as input for prediction.

Comparing the two schemes of using all samples in Figure 4.3(b) and 4.3(c), we find almost

no difference in precision between using a linear and a radial basic function (RBF) kernels

and a slight 1% difference in recall when sample size is 10. When sample size is 12, both

107

classifiers with the linear and RBF kernels can achieve a high precision of 95% and a high

recall of 94%. We will elaborate how Congi uses these classifiers in §4.2.6.

4.2.5.4 Training Classifiers for Detecting Uncongested Paths

We want to train two types of classifiers for detecting uncongested paths: an accuracy-

focused classifier and a speed-focused classifier. The uncongested paths constitute the

positive class and the other two classes together constitute the negative class. We train these

classifiers for detecting uncongested paths similarly to the way we train the classifiers for

detecting congested paths described in the previous subsection. We use different sample

sizes but with a fixed inter-sample time of 2s in the training regime. We find that for both

classifiers with linear and RBF kernels, the precision and recall increase with the sample

size and the increase rate begins to slow when the sample size reaches 8 (not shown). When

the sample size is 8, using a RBF kernel results in a precision of 94%, almost the same as

using a linear kernel, and a recall of 87%, about 2% higher than using a linear kernel. For

the speed-focused classifier, we want a small sample size that can provide a reasonable

precision and recall such that each LB path can be checked quickly. When the sample size

is 4, using a RBF kernel achieves a precision of 88% and a recall of 81%, while using a

linear kernel achieves a precision of 91% and a recall of 76%. Since a high recall is desired

while searching for uncongested paths, we choose the RBF kernel for the speed-focused

classifier.

4.2.6 Putting It All Together to Build Congi

We want to combine the classifiers above to build Congi. Figure 4.4 shows Congi’s

high-level workflow, which consists of three stages.

Stage I: Detecting Congestion Given a target address, Congi first detects if congestion

exists in a path to the target. To avoid affecting the end hosts, we often use the last respond-

108

1. Detecting congestion 2. Detecting
uncongested paths

3. Collecting
more samples12 samples

Addr1
Addr2

Detected
(accuracy-focused)

Detected
(speed-focused)

ttl-2
•••
ttl+2

Path discovery

4

8 samples

•••

•••

18 samples

18 samples

Detected
(accuracy-focused)

Figure 4.4: Congi’s high-level workflow

ing router along the path to the target as a proxy and measure congestion imbalance from

the source to the router. This means that all probes are still sent to the target with TTLs

expiring at its last responding router such that congestion imbalance seen by the router will

also be seen by the target. To force all probes to take the same path, Congi sends UDP

probes with the same source and destination ports. To avoid triggering ICMP rate limiting,

Congi sends one UDP probe to the router every 2 seconds until the 12 samples are collected.

Congi then feeds the 12 samples into its accuracy-focused classifier to detect congestion. If

no congestion is detected, Congi moves on to the next target; otherwise, Congi enters into

stage II. It is possible that the target router has a very low budget of ICMP responses and

drops most of our probes. Congi allows a packet loss rate less than 30% for each target and

stops probing a target if the packet loss rate is above the threshold. As shown in Figure 4.4,

targets are probed in parallel and the total sending rate depends on the number of targets

being probed simultaneously.

Stage II: Searching for an Uncongested Path Once a congested path is detected, Congi

begins to search for a new path to the router and check if it is uncongested. This process

is repeated until an uncongested path is found or failed to be found after 15 trials. The

discovery of new paths is done by sending UDP probes to random destination port numbers.

Although the paths of UDP probes are passively selected by load balancers based on their

109

port numbers, with a sufficiently large number of trials, we can discover an uncongested

path, if one exists, with a high probability. For instance, assuming that LB paths have

equal probability of being taken by UDP probes with random port numbers, even when

the portion of uncongested paths is less than 10% among all LB paths, Congi can still

find one with a probability of 1 − 0.915 = 79.4% with 15 trials. This is more efficient

than finding new paths by hop-by-hop comparison with the previously probed ones. Note

that although UDP probes may take different forward paths due to having different port

numbers, all ICMP responses take the same return path because Congi manipulates UDP

probes such that ICMP responses can have the same checksum, the factor load balancers

use to determine the paths ICMP packets take [98]. For each new path, Congi has to

estimate the TTL from the source to the target router. Congi uses the TTL of probes in the

congested path as reference and search neighboring TTLs (±2) for the new path. Once a

new path is found, Congi collects 4 samples and use the speed-focused classifier to check

if this path is uncongested. If so, Congi continues to collect 4 more samples and verify this

with the accuracy-focused classifier. Congi either enters into Stage III after a successful

verification or returns back to finding a new path if the verification fails.

Stage III: Collecting More Samples Congi collects more samples for both the congested

and uncongested paths for two reasons. First, as it takes time to find the uncongested path,

during which the congestion may have ended, Congi confirms congestion imbalance with

the most recent 12 samples of each path at the end of the probing. Second, we want to

collect 30 samples for each path in total to estimate their mean path latencies for later study

of the latency difference between LB paths under congestion imbalance (§4.4.3).

4.3 How Does Congi Actually Perform?

Before conducting large-scale measurements with Congi, we want to verify its per-

formance in detecting congestion imbalance with both trace-driven simulation and real-

110

Table 4.2: Trace-driven simulation

Method Throughput Ratio Packet Loss Gap
25-th 50-th 75-th Mean∗ 25-th 50-th 75-th Mean∗

Metric-based 0.12 0.32 0.65 0.37 0 0.6% 5.0% 2.0%
Congi 0.11 0.27 0.59 0.34 0 0.7% 3.4% 1.6%

∗ Mean of the samples between the 10-th and 90-th percentiles.

world experiments. In trace-driven simulation, we use the path-perf dataset to simulate

how Congi works and expect Congi to detect similar throughput and packet loss imbalance

as the latency-based metric does in §4.2.3.4. In the real-world experiments, we run Congi

from VPs to NDT servers to verify its ability to detect the throughput imbalance between

LB paths, and from VPs to the public Internet addresses to verify its ability to detect the

packet loss imbalance.

4.3.1 Trace-driven Simulation

Recall that in the path-perf dataset, each throughput sample is associated with a seg-

mented period of latency samples. We use Congi to determine if a period is congested

or uncongested based on its latency samples and compute the throughput and packet loss

gaps as in §4.2.3.4. To simulate how Congi works, for each throughput sample, we feed

the 12 latency samples measured right before starting the throughput sample into Congi’s

accuracy-focused classifier to detect congested paths. If the result comes back positive, we

then feed the 12 latency samples right after the completion of the throughput sample into

the same classifier. We consider the associated period congested if both the results are pos-

itive. We check congestion both before and after the throughput sample to ensure that the

throughput sample is measured while congestion persists. Similarly, we consider the period

uncongested if both the results come back positive from Congi’s accuracy-focused classifier

for detecting uncongested paths. Table 4.2 compares the throughput ratios and packet loss

gaps under Congi and the metric-based method. We can see that Congi achieves similar

throughput ratios at different percentiles and lower packet loss gaps at the high percentiles

compared to the metric-based method. Considering the small number of latency samples

111

Table 4.3: Real-world experiments

Method Throughput Ratio Packet Loss Gap
25-th 50-th 75-th Mean∗ 25-th 50-th 75-th Mean∗

Congi 0.10 0.28 0.61 0.34 0 0.4% 1.5% 0.7%
∗ Mean of the samples between the 10-th and 90-th percentiles.

Congi uses to perform its measurements, we are pleased by how close the results are to the

metric-based measurements and how well they track each other.

4.3.2 Real-World Experiments

We next verify Congi’s ability to detect the throughput and packet loss imbalance be-

tween LB paths with real-world experiments.

4.3.2.1 Ability to Detect Throughput Imbalance

If Congi is capable of detecting throughput imbalance, the congested and uncongested

paths detected by Congi should differ significantly in throughput. In our experiment, we

ran Congi to measure congestion imbalance from VPs in 9 geographically-diverse DCs (3

DCs per cloud provider) to 471 NDT-7 servers, where NDT servers are used as destinations

because we want to measure path throughput with NDT tests. Each VP periodically detects

congestion imbalance to all NDT servers every 3 minutes. Once congestion imbalance is

detected between a congested and an uncongested path to a NDT server, we immediately

stop Congi and measure throughput for each path respectively with a NDT test. Since two

back-to-back NDT tests take at least 40 seconds, it is possible that congestion imbalance

ceases during the NDT tests. After the NDT tests are done, we resume Congi to collect

more samples and double check if congestion imbalance still exists. This ensures that

congestion imbalance persists when throughput samples are measured.

The left column in Table 4.3 shows the percentiles of throughput ratios between uncon-

gested and congested paths in real-world experiments. Among all congestion imbalance

events detected by Congi, the uncongested paths on average have throughput 3x greater

112

0.00 0.25 0.50 0.75 1.00
Throughput ratio

0.00

0.25

0.50

0.75

1.00

CD
F

Tokyo(Alibaba)
Hongkong(Google)
Virginia(Google)
Sao Paulo(Azure)

Figure 4.5: Verifying ability to measure throughput imbalance

than the congested ones. This implies that Congi is capable of differentiating between

the congested and uncongested paths in real-world settings. Moreover, by comparing the

throughput gaps in the real-world experiment and the trace-driven simulation, we find that

Congi, though trained on the congested and uncongested periods of the same path, can

achieve similar throughput gaps between different LB paths in real-world experiments.

This validates our design choice of using the performance data of the same path to choose

the best latency-based metric in §4.2.2 and build the ground-truth dataset in §4.2.4.

To further illustrate the utility of congestion-imbalance detection, we show in Figure 4.5

the distribution of throughput ratios for four DCs. The figure shows that Alibaba Tokyo’s

and Microsoft Sao Paulo’s DCs have the two smallest mean throughput ratios of 0.22 and

0.26, and that Google’s DCs in Hongkong and North Virginia have the two largest mean

throughput ratios of 0.43 and 0.46. We can see that although throughput imbalance varies

across DCs, all DCs experience significant congestion imbalance on their paths to NDT

servers. The average thoughput of uncongested paths from Alibaba Tokyo’s DC was almost

5x that of the congested paths. As a point of record, Congi uses the same set of classifiers

for all DCs for the simplicity of design.

113

4.3.2.2 Ability to Detect Packet Loss Imbalance

Unlike throughput that can be measured with a single NDT test, packet loss rate is a

statistic calculated from a large number of collected samples. To obtain the packet loss

gap between a congested and uncongested paths, we have to probe each path for a long

period of time, all the while monitoring that they remain in the same state (either congested

or uncongested) the whole time. Recall that when creating the ground-truth dataset for

training the SVM classifiers in §4.2.4, we segmented the latency time series into varying

or stable periods. To verify Congi’s ability to detect packet loss imbalance, we similarly

create a dataset comprising latency time series of LB paths, segmented into varying and

stable periods. To build this dataset, we first randomly select an IPv4 address. Then from

each of our VPs (listed in §4.2.4.2), we alternately probe two randomly selected LB paths

to the selected IPv4 address. For each VP-destination pair, we measure only two LB paths

at a time to avoid triggering ICMP rate limiting. Upon completion of probing a pair of LB

paths, we segment the resulting latency time series using the changepoint detection method

introduced in §4.2.4 and pair the segmented periods of the two LB paths that overlap in

time. We then use Congi to detect congestion imbalance for each pair of segmented periods,

where Congi picks a random starting point and takes latency samples from the pair of

segmented periods. The packet loss gap is calculated for pairs where each period includes

at least 200 samples and congestion imbalance is detected by Congi.

The right column in Table 4.3 shows the percentiles of packet loss gaps between the

congested and uncongested paths by Congi, where the mean is 0.7%. As this dataset in-

cludes latency time series of paths, we can also apply the metric-based method to detect

packet loss imbalance, which achieves a mean packet loss gap of 1.2%. Congi achieves

a lower packet loss gap than the metric-based method for the same reason as in the trace-

driven simulation: it makes decisions based on a small number of samples, a local view of

the period. Moreover, we can see that the packet loss gaps in the real-world experiments are

smaller than those in the trace-driven simulation. This difference is likely because 1) dif-

114

ferent sets of source-destination pairs are measured and 2) the dataset in this experiment is

collected with UDP probes and ICMP responses, while the dataset used in the trace-driven

simulation is collected using TCP ACK/RST pairs. The use of different source-destination

pairs and different types of probes make it hard to fairly compare the two. We use UDP

probes in this real-world experiment to obtain a packet loss gap that reflects more closely

the gap in later large-scale measurement campaigns that also use UDP probes.

4.4 Congestion Imbalance: A Cloud-Centric View

We ran Congi from 12 DCs of 4 cloud providers to 10.8M routable /24s in CAIDA’s

IP-to-Prefix dataset [57]. This run took about 10 days in January of 2021. The average

probing rate of Congi was controlled at 500 packets/second or approximately 110 Kbps to

avoid self-induced queueing delay. For each /24, we randomly select an address and probe

to the first responsive router closest to the address, so as not to affect the end host.

4.4.1 Does Congi Measures Short or Long Congestion Imbalance?

Recall that Congi checks congestion imbalance twice (in Stage II and III respectively)

in a complete cycle of probing a destination. We refer to the initial congestion imbalance

detection as short imbalance and secondary detection as long imbalance. The initial detec-

tion differs from the secondary detection in that the initial detection uses samples collected

in sequence for both the congested and uncongested paths, whereas the secondary detec-

tion uses interleaved samples collected alternately between the two paths. This results in

the initial detection being prone to false positives: an uncongested path is found because

congestion ceases prior to the end of measurement. We don’t use the sample interleaving

method for initial detection because it is inefficient when there is no congested path.

We first focus on the long imbalance measured by Congi and design separate exper-

iments to measure short imbalance later in §4.4.4. Another detailed discussion of short

imbalance can be found in §4.5, where we use short imbalance as a guide for real applica-

115

Table 4.4: Prevalence of long imbalance
Google Cloud Amazon AWS Microsoft Azure Alibaba Cloud

London Tokyo HK∗ London Tokyo Cali London Tokyo SP∗ London Tokyo Shanghai
Congestion 251K 171K 172K 331K 349K 339K 283K 295K 318K 362K 392K 1,693K
Long imbl 15K 15K 16K 37K 48K 35K 36K 32K 39K 59K 43K 32K

% 6.0% 8.8% 9.3% 11.1% 13.7% 10.3% 12.7% 10.8% 12.3% 16.3% 11.0% 1.9%
∗ HK = Hongkong, SP = Sao Paulo

tions. In a complete cycle of probing, Congi collects 60 samples for each destination (30

samples for each path), which means that long imbalance lasts for at least 120 seconds.

4.4.2 Prevalence of long imbalance

Table 4.4 summarizes the number of congestion and long imbalances seen by each

DC in our experiments. Most DCs see long imbalances to 9%-13% of probed addresses.

Google Cloud observes much less congestion than other cloud providers. This is due to

Google using its own, well-provisioned private WANs to route traffic to egress points clos-

est to the destinations [98]. For Alibaba Cloud, DCs in London and Tokyo observe similar

amounts of congestion as Amazon’s and Microsoft’s DCs. This may be because unlike

Google Cloud, they rely on the public Internet to route traffic to destinations [98]. Alibaba

Shanghai observes a much higher level of congestion events than other DCs, which indi-

cates the presence of persistent under provisioning of network resources between China and

the rest of the world. Despite that congestion events are frequent, Alibaba Shanghai has

the lowest percentage of congestion imbalance among all DCs, because when congestion

occurs, almost all LB paths are congested.

4.4.3 Latency Imbalance as a Result of Congestion Imbalance

Congestion imbalance causes LB paths to differ significantly in latency. We analyze

the latency imbalance between LB paths under congestion imbalance from several aspects.

Imbalance in Latency Elevation Although we have verified in §4.3 that Congi is capable

of detecting both congested and uncongested paths, we would like to understand how much

116

0 10 20 30 40
Latency elevation (ms)

0.00

0.25

0.50

0.75

1.00

CD
F

Congested
Uncongested
Difference

(a)

0 20 40 60 80
Latency span (ms)

0.00

0.25

0.50

0.75

1.00

CD
F

Congested
Uncongested
Difference

(b)

0 20 40 60 80
Latency mean diff (ms)

0.00

0.25

0.50

0.75

1.00

CD
F

(c)

Figure 4.6: Latency imbalance as a result of congestion imbalance

latency is elevated under congestion imbalance in our large-scale experiments. One caveat

is that we only have 30 samples for each path and thus cannot accurately estimate the

minimum latency as in previous experiments. We simply use the minimum sample as the

minimum latency to roughly estimate latency elevation, i.e., the difference between latency

mean and the minimum latency as defined before. Figure 4.6(a) shows the distribution of

latency elevation for the congested and uncongested paths separately and the difference

in latency elevation between them. We can see that the congested paths have much more

significant latency elevation than the uncongested ones. The average latency elevation

is 24ms for the congested paths and 3ms for the uncongested ones. This confirms that

Congi is capable of detecting significant latency imbalance between LB paths. Moreover,

about 15% of congested paths have latency elevation higher than 40ms. We would expect

that these congested paths experience severe throughput drop and that the corresponding

uncongested paths have much higher throughput on average.

117

Imbalance in Latency Variation Besides latency elevation, we also want to understand

the imbalance in latency variation, critical to interactive applications [79]. Specifically, we

focus on latency spikes, which may be transient but of significant magnitude. We define

latency span as in [105], which is the difference between the 90-th percentile sample and

the minimum. Figure 4.6(b) shows the distribution of latency span for all the congested

and uncongested paths. Note how the uncongested paths have much more stable latency

than the congested ones. The figure shows that 16% of congested paths have latency span

greater than 80ms, meaning that for 16% of congested paths, 10% of samples could expe-

rience latency spikes 80ms higher than the minimum path latency. The latency spikes are

unlikely due to ICMP responses traversing a relatively slow path because Congi ensures

that the congested and uncongested paths both have the same return path (§4.2.6). We also

compare the standard deviation of latency samples between congested and uncongested

paths. The average standard deviation is 14ms for the congested paths and only 1.3ms for

the uncongested paths.

Imbalance in Latency Mean We have seen that congested paths have much higher la-

tency elevation than uncongested paths, but this does not necessarily mean that the mean

latency of a congested path would be higher than that of its corresponding uncongested

path. Figure 4.6(c) shows the distribution of the difference in mean latency between con-

gested and uncongested paths. About 10% of DC-destination pairs have an uncongested

path with a higher mean latency than the congested one because due to a higher minimum

latency. This implies that a shorter path is not always the better choice especially when it is

congested. This figure also shows that about 10% of pairs have a mean latency difference

greater than 80ms, where the congested paths of these pairs have a mean latency span of

102ms and a mean latency elevation of 59ms.

118

Table 4.5: Prevalence of short imbalance
Detection
method

Google Cloud Amazon AWS Microsoft Azure Alibaba Cloud
London Tokyo HK∗ London Tokyo Cali London Tokyo SP∗ London Tokyo Shanghai

Interleaved 24% 36% 40% 30% 38% 37% 43% 42% 39% 36% 36% 6.6%
Non-interleaved 43% 62% 71% 64% 59% 58% 65% 62% 63% 58% 57% 29%
∗ HK = Hongkong, SP = Sao Paulo

4.4.4 Prevalence of Short Imbalance

As mentioned in §4.4.1, Congi achieves fast search of short imbalances at the cost of

accuracy. To better characterize these short imbalances, we design a separate experiment

as follows. The method used in this experiment to detect short imbalances is wasteful of

resources and not very efficient. We employ it here to better understand short imbalances

but do not otherwise use it as part of “production” Congi.

Experiment Design: Challenges in Measuring Short Imbalance To reduce the false

positive rate of short imbalance detection, we use the interleaved sampling method origi-

nally employed in §4.4.1 to detect long imbalance. Given a fixed probe sending rate and

a minimum number of samples required for each path, the more LB paths we probe under

this method, the longer the detection will take. To short imbalances before they abate, we

have to keep the number of LB paths probed to the minimum.

To figure out the minimum number of LB paths to probe, we consider the number of

LB paths probed in our previous experiment on measuring long imbalances in §4.4.2. We

found that short imbalances can be detected in nearly half the cases by probing only two

LB paths and if a third path is added, short imbalances can be detected in about two thirds

of the cases. Unfortunately, adding a third path also makes the method less sensitive to

short imbalances. Whereas we can detect imbalances lasting as short as 24s when 2 paths

are used, adding a third path lessens the sensitivity to 36s, i.e., only imbalances lasting 36s

or longer would be detectable. In this experiment, we probe two LB paths in parallel to

detect short imbalances lasting at least 24s.

119

0.25 0.00 0.25 0.50 0.75 1.00
Download time reduction

0.00

0.25

0.50

0.75

1.00

CD
F

Figure 4.7: Impact of congestion imbalance on web page load

Data Collection and Experiment Results From each of our VPs (used in §4.4.2), we

alternately probe two LB paths in parallel to 1M random IPv4 addresses and collect 12

samples for each LB path. Then, for each pair, we feed the samples of LB paths to Congi’s

classifiers to detect if short imbalance exists. Table 4.5 shows the percentage of short

imbalance seen by our VP in each DC. We can see that congestion imbalance detected

using interleaved sampling is much smaller than that using non-interleaved sampling, and

should reflect more closely the actual percentage of short imbalances. Overall, except for

Alibaba Shanghai, short imbalances are significant and prevalent in all DCs.

4.5 Impact on Applications

Since congestion affects all performance metrics (throughput, latency, and packet loss)

of a path, we would expect that congestion imbalance has an impact on a wide range of

applications. We use web page load as an example to show how application performance

would be affected.

120

4.5.1 Web Page Load

When loading a web page, a client browser resolves the dependency between objects

and issues a series of HTTP requests to download the objects following the dependency

chain. The total download time is determined by each individual request on the longest

dependency chain. To understand how congestion imbalance impacts the completion time

of individual requests, we use Congi to monitor congestion imbalance to servers hosting

the Alexa top-1000 websites. We find the largest object in a web page using the Chrome

web browser’s Remote Debugging Protocol (RDP). Since congestion imbalance may not

persist, we download the target object immediately after short imbalance is detected. The

object is fetched with HTTP requests along the congested and uncongested paths and is

downloaded twice for each path, where the first download is to warm the cache and the

second download is used to obtain the download times. All downloads are done serially, to

avoid self interference.

We denote t1 and t2 as the respective download time for using the congested and un-

congested paths, and measure the reduction in download time as (t1 − t2)/t1. Note that

the download time reduction could be negative if using the uncongested path results in a

larger download time than using the congested path. Figure 4.7 shows the distribution of

download time reduction for 500 downloads from a node in the campus network, where

there is sufficient bandwidth for the access link. We can see that the median download time

reduction is as high as 50% under congestion imbalance.

4.6 Discussion

Our measurement methodology and results have several limitations.

Limited to Wired Networks Congi assumes latency to be stable for uncongested paths

and uses latency variability to detect congestion. However, as latency in wireless networks,

e.g., cellular, is inherently varying, Congi is prone to make false inference. In our experi-

121

ments, we use Congi to probe the last-hop routers of end hosts to exclude potential wireless

access links. It is interesting to extend the measurement of congestion imbalance to include

the access networks, which are typically considered to be the bottleneck for throughput.

Unverified Results for Large-Scale Experiments We are able to verify Congi in terms

of throughput and packet loss imbalance between our VPs and NDT servers, but cannot

do the same for our large-scale experiments measuring imbalance to random Internet ad-

dresses. We thus interpret our large-scale measurement results as providing a coarse es-

timation of congestion imbalance. A more accurate large-scale experiment can be done

by content providers that can directly infer throughput imbalance from the traffic between

their servers and clients.

No Practical Solutions Implemented Although we estimate the impact of congestion

imbalance on web page load, no practical solution is implemented. As future work, it is

appealing to optimize path selection or multi-path transport layer protocols, e.g., Multi-Path

TCP (MP-TCP), by considering congestion imbalance.

4.7 Summary

In this chapter, we took the first step to measure congestion imbalance at scale. We

presented Congi, a network prober that uses SVM classifiers to detect congestion imbalance

with a very small number of samples. Congi was verified in terms of its capabilities of

detecting throughput, packet loss and latency imbalance among LB paths. We used Congi

to measure congestion imbalance from our VPs to Internet-wide addresses and found that

short-term congestion imbalance is prevalent in the Internet. We also used Congi to guide

web page load and found a significant reduction in download time.

122

CHAPTER V

Related Work

This chapter presents the prior work related to the characterization and improvement of

global load balancing, latency imbalance, and congestion imbalance respectively.

5.1 Client Aggregations for Global Load Balancing

Existing aggregations generally aggregate clients based on several attributes: (1) ge-

ographic locations, (2) topological proximity, (3) LDNSs, or (4) fixed-size prefixes. In

geoclustering, clients with geographic proximity are aggregated into geoclusters [16]. By

considering BGP prefixes as a natural group of Internet clients, geoclusters are obtained by

splitting BGP prefixes into smaller prefixes until clients in prefixes have consensus on their

geographic locations. Aggregating clients by topological proximity can be conducted at the

prefix level or router level. Clients in the same BGP prefix largely have identical Internet

routing. In anycast CDNs, clients are in the same BGP prefix are redirected to the same

server and the nearest server is the one with the shortest BGP routing path to clients [17].

In iPlane, clients are aggregated into BGP prefixes to construct a topological map for the

Internet [106]. Moreover, in latency-based client redirection, the latency from the represen-

tative client in a BGP prefix to a server is used as the latency from all clients in the prefix to

the server [4]. The geographic locality of BGP prefixes has also been studied [7]. Recently,

Lee and Spring [26] developed a method to aggregate /24s based on the last-hop routers

123

or non-hierarchical relationships. However, since the method relies on topology discovery,

which makes the aggregates hard to cover the entire Internet address space.

Aggregating clients by LDNSs is widely used in DNS-based CDNs [107, 4], where

clients using the same LDNS are redirected to the same server. As the DNS infrastructure

evolves, the number of clients using remote DNS services grows, causing the mismatch

problem between clients and LDNSs [108, 21]. To solve this problem, end-user mapping

directly uses the subnets of clients included in the EDNS queries to locate clients on the

Internet [5]. However, end-user mapping requires the mapping system estimate the per-

formance from servers directly to client aggregations[107]. Thus, a proper aggregation

is crucial to both the scalability and accuracy of the mapping system. Using a heuristic

method, Chen et al. [5] suggested that /20 IP blocks are a good tradeoff between scala-

bility and accuracy. Our work is also related to those studying whether /24s are a good

aggregation unit. Krishnan et al. studied the similarity between individual addresses in

/24 prefixes in terms of geographic co-locality [27]. Lee and Spring studied the similarity

between individual addresses in /24 prefixes in terms of topological proximity [26]. Both

works confirm that /24 prefixes are not necessarily the smallest aggregation units.

5.2 Latency Imbalance Among LB Paths

Since Augustin et al. presented the problems of classic traceroute under load balanc-

ing in 2006 [2], extensive efforts have been made to measure LB paths and study their

impacts (e.g., [38, 9]). However, most of the efforts focus on the topology difference be-

tween LB paths, leaving the performance difference under-explored. In this dissertation,

we characterize the latency difference between LB paths from a cloud-centric view and

evaluate its impact on applications.

Discovering Load-Balanced Paths Paris Traceroute [2] is the most popular tool to iden-

tify diamonds and enumerate LB paths between a source and a destination via the Multi-

124

path Detection Alogrithm (MDA) [109]. To incentivize the deployment of Paris Traceroute

and its MDA, Vermeulen et al. developed MDA-Lite Paris Traceroute incurring less net-

work overhead [9]. Moreover, Almeida et al. extended MDA to measure load balancing

in IPv6 networks [110] and Vanaubel et al. developed a method capable of discovering

load balancing in MPLS tunnels [75]. Other than IP-level paths, load balancing was also

studied at the AS level [8, 111]. This dissertation differs from these prior works in that we

focus on the performance side of LB paths. We use the topology of LB paths to discover

diamonds as in [8, 9] and further extend the discovery of topologically invisible diamonds

by observing their impact on latency imbalance between LB paths (§3.5.4.2).

Latency Difference Between LB Paths In 2007, Augustin et al. [8] conducted the first

study on latency imbalance between LB paths for 22K source-destination pairs and only

2% were found to have significant latency imbalance. To avoid the latency variability due

to latency imbalance in latency measurement, Tokyo ping was developed as a replacement

to ping [38]. Although both works are closely related to ours in that they found latency

imbalance between LB paths and attempted to figure out the causes, our work [98] differs

in several aspects. First, we measure latency imbalance both in the cloud and from the

cloud to the public Internet, while they have vantage points (VPs) and destinations all in

the public Internet. Although virtual machines (VMs) were carefully excluded as sources

in [38], we observe almost no impact of using VMs in the cloud as VPs on measurement

accuracy (3.5.4). Second, their approaches to measure latency imbalance are either not scal-

able due to requiring path enumeration [8] or not systematic in choosing sample size [38].

We propose a lightweight approach to measure latency imbalance, which requires no path

information and provides accuracy guarantees. Third, we evaluate the impact of latency

imbalance on application performance and propose potential solutions. Our work also dif-

fers from [38] in that 1) we do not exclude last-hop routers from probing and observe no

significant influence of slow-path ICMP generation on measured latency (§3.5.4), and that

125

2) we use UDP probes, though having less reachability than ICMP [112], to reflect more

closely the latency imbalance experienced by the Internet traffic.

Applications Latency imbalance implies that path selection may affect application per-

formance. Wu et al. proposed to send multiple requests to explore the multi-path capability

of load balancing to reduce latency inflation, where the first received request is considered

taking the best path [92]. We evaluate how latency imbalance affects application perfor-

mance on three applications: delay-based geolocation [84, 42], NTP [51] and VoIP [40].

Latency imbalance has impacts on latency-based client direction for global load balancing

in content delivery networks [1, 113]. Latency imbalance could also affect many emerging

applications, e.g., networked VR/AR [54], low-latency gaming [55] and industrial IoT [10].

Moreover, latency imbalance also makes us rethink the design of load balancing algorithms

(e.g., hashing-based schemes [114]).

5.3 Congestion Imbalance Among LB Paths

Latency Difference Between LB Paths Different from the works measuring the differ-

ence in the minimum path latency between LB paths [8, 98], we here focus on the differ-

ence in inflated latency under congestion imbalance. We further study the imbalance in

throughput and packet loss incurred by congestion imbalance, which disappears with the

congestion imbalance and is thus hard to capture.

Latency-based Congestion Detection To detect congestion imbalance, we need to first

find congestion. We are interested in an effective way of detecting congestion in the In-

ternet. Latency inflation during TCP sessions has been used to infer congestion for TCP

congestion control since TCP Dual and Vegas decades ago [115, 116]. In latency-based

congestion control, the path latency is updated almost every round-trip time to infer tran-

sient congestion [115, 117]. Although our interest is not to detect transient congestion that

126

requires high-frequency latency samples, the idea of using latency inflation as an indica-

tor to congestion is also applicable to detecting long-term congestion. In 2014, Luckie

et al. [96] proposed the time-series latency probes (TSLP) method that detects persistent

inter-domain congestion by observing elevated latency in latency time series collected over

a long period of time. After that, the TSLP method was used to study the impact of conges-

tion on the African IXPs in [118] and was further improved and validated in [95]. Our work

also uses latency probes to detect congestion, but differs in two respects. First, we conduct

a comparative study of several latency-based metrics for congestion detection to choose the

best metric. Second, we further propose to detect congestion with a very small number of

samples rather than long-term latency time series, which greatly improves the scalability

and enables congestion detection at scale. Note that since our goal is to characterize con-

gestion imbalance at scale, we want to detect paths that collectively have throughput drop

and packet loss. It is not our goal to ensure that every detection is accurate and rigorously

validate if the performance degradation is indeed due to congestion as in [95]. Although

throughput drop and packet loss, as a result of congestion, can provide partial validation, it

is unclear that how large a throughput drop can be interpreted as congestion [94]. A com-

plete validation of inferred congestion requires feedback from the network operators [95].

Throughput Estimation and Modeling Our work is also related with those that use

network probes to estimate available bandwidth or throughput. Available bandwidth esti-

mation techniques send a sequence of probes and use the change either in inter-probe time

or between the sending and receiving rates to estimate the available bandwidth [13, 119].

They generally have at least one of the following drawbacks preventing them from being

used to measure available bandwidth at scale: 1) control is required at both the sender and

the receiver sides, e.g., Pathload [13] and Spruce [14]; 2) performance varies for different

network settings and there is no guarantee of accuracy [120] and that 3) estimation may

incur high measurement overhead or require high resolution on inter-probe time [120].

127

Similar to available bandwidth estimation, there are extensive research efforts modeling

TCP throughput with latency and packet loss [121]. He et al. [122] show that using latency

and packet loss measured before a TCP session to predict TCP throughput could result

in large errors and provide significantly less accuracy than using those metrics measured

during the TCP session. A recent work [123] greatly improved the modeling accuracy by

incorporating the congestion window size in the model, which however limits its usage to

throughput prediction during TCP sessions. Considering these drawbacks and limitations,

none of the works above provides a viable light-weight solution to characterize throughput

imbalance between LB paths at scale with network probing.

Applications Performance imbalance between LB paths implies that there is one path

better than another. In 2014, Wu et al. [92] observed that the LB paths from the PlatnetLab

nodes to DCs could experience different levels of latency inflation and demonstrated the

benefits of leveraging load balancing for latency-sensitive applications. Our work on con-

gestion imbalance can extend the benefits to applications sensitive to throughput and packet

loss. There are also many existing works addressing the performance imbalance issue in

DCs, where it is clear that harnessing congestion imbalance improves performance [3, 93].

128

CHAPTER VI

Contributions and Future Works

This chapter concludes the dissertation. We highlight the key contributions and limita-

tions of this dissertation and discuss potential future directions.

6.1 Key Contributions

This dissertation evaluates and improves Internet load balancing, i.e., global and path-

level load balancing, with large-scale latency measurements. It supports the following

thesis: large-scale latency measurements, either passively or actively collected, are key

to the evaluation and improvement of Internet load balancing; we can use them not only

to systematically characterize and understand the performance issues, but also to develop

data-driven approaches. Specifically, it makes the following key contributions.

A Data-driven Client Aggregation for Global Load balancing AP-atoms are the first

data-driven client aggregation designed for global load balancing. AP-atoms are learned

from the large-scale latency measurements readily available for the content or service

providers and thus incur no extra measurement overheads. The design of AP-atoms is

inspired by the key finding in a comparative study of existing client aggregations: aggregat-

ing clients by attributes rather than performance is the culprit for the poor performance of

existing client aggregations. The comparative study also uses the large-scale latency mea-

129

surements for the performance evaluation of existing client aggregations. As AP-atoms are

generated from data streams continuously collected over time, they are adaptive to chang-

ing network conditions.

A Cloud-Centric View of Latency Imbalance Among LB Paths This dissertation is the

first to evaluate latency imbalance from the perspective of public clouds. Latency imbal-

ance, previously deemed insignificant, is found to be both significant and prevalent from

the clouds to the public Internet. Considering that passive large-scale measurements are

generally hard to obtain, we use network probing to actively collect latency measurements.

We develop Flipr, a network prober that can efficiently measure latency imbalance between

a source and a destination such that we can easily scale our experiments to measure from

our VPs to Internet-scale addresses. We present a global view of latency imbalance and

show that latency imbalance is stable over time and affects a wide range of applications,

especially latency-sensitive applications.

Measuring Congestion Imbalance Among LB Paths at Scale This dissertation is the

first to evaluate congestion imbalance at scale in the Internet. In contrast to latency imbal-

ance, which are stable over time, congestion imbalance occurs with congestion that is typ-

ically short-lived. To detect congestion imbalance quickly and scalably, we develop Congi

that uses SVM classifiers to detect congestion with a very small number of samples. We use

Congi to present a global view of congestion imbalance from our geographically-diverse

VPs to Internet-wide addresses. We confirm that congestion imbalance is also prevalent in

the Internet and has significant impacts on latency- and throughput-sensitive applications.

6.2 Limitations

As with other data-driven approaches, our results are affected by the data we have.

AP-atoms have better accuracy for client aggregations that have higher data density. The

130

measurement of latency imbalance is biased towards destinations with stable flow latencies

because we are likely to discard destinations with unstable latencies. Congi is limited to

measuring congestion imbalance in wired networks (or Internet core networks) where la-

tency of uncongested paths is stable. In contrast, latency in wireless networks, e.g., cellular,

is typically varying and causes Congi to easily make false inference.

6.3 Future Work

In this dissertation, we focus on using large-scale latency measurements to evaluate

the performance issues of Internet load balancing and their impacts on applications. Apart

from AP-atoms, no practical solutions are implemented to solve latency and congestion

imbalance. Further, we take an end-to-end approach to characterize latency and congestion

imbalance. The root causes are still not fully understood. Considering the importance of

the performance imbalance issue, we would expect the following directions worth further

exploring.

Understanding Diamonds that Cause Latency and Congestion Imbalance As men-

tioned, diamonds are the causes for latency and congestion imbalance. This dissertation

has discussed the simplest form of diamonds in Chapter III, but there are still many ques-

tions left unanswered, e.g., how to discover diamonds of more complex structures, how

prevalent diamonds are in the Internet, and how to locate these diamonds. Answering these

questions may require developing more advanced probing tools that can see into networks

currently invisible to our probers, e.g., invisible MPLS networks [77]. Further, if access

to the physical infrastructure is available, we can delve into the root causes for congestion

imbalance, e.g., router misconfigurations and poorly-designed load balancing algorithms.

The ability to pinpoint diamonds in the Internet could help network operators better debug

and design their networks.

131

Applying More Advanced Machine Learning Techniques The machine learning tech-

niques we used in this dissertation are very basic ones for pattern recognition and clas-

sification problems. We expect that more advanced machine learning techniques would

be able to achieve higher accuracy and be more powerful in taking large volumes of data

streams as input for real-time monitoring and management. It is also interesting to study

how to automate the learning process, e.g., using feature engineering to automatically ex-

tract features for prediction and using reinforcement learning to gradually learn the best

decisions. Moreover, we could use machine learning techniques to push the limit of exist-

ing probers. Existing probers, e.g., Zmap [124] and Yarrp [47], are mostly used to discover

active addresses or topology, which is unrelated to performance. When used to measure

performance, e.g., Scamper [125], the sending rate is controlled at a very low level to avoid

self-induced queueing [95]. It would be interesting to develop a prober that is aware of

self-induced errors and meanwhile sends probes at its maximum rate. Such a prober can

greatly accelerate large-scale measurement campaigns and enable real-time monitoring of

networks at scale.

Solving Latency and Congestion Imbalance at Different Layers We can explore po-

tential solutions for latency and congestion imbalance at different layers. At the network

layer, we can revisit existing load balancing algorithms in terms of latency and congestion

imbalance and try to figure out better designs. We can improve routing algorithms to be

aware of congestion imbalance. To avoid routing instability, routes can be updated at a

large time scale to mitigate persistent inter-domain congestion [95]. Further, in SDN-based

networks, network operators can control paths by considering congestion imbalance at finer

time granularity. At the transport layer, we can design end-to-end approach to tackle con-

gestion imbalance. More specifically, we can optimize transport layer protocols to choose

paths in a smarter way that is aware of latency and congestion imbalance or design multi-

path protocols to adaptively shift load across paths. As demonstrated by our experimen-

132

tal results, there is a significant performance difference between using the congested and

uncongested paths. This implies that it is promising to unleash the power of multi-path

transport layer protocols, e.g., multi-path TCP or QUIC, to tackle congestion imbalance

and that the performance of throughput-sensitive applications, e.g., video streaming, would

significantly benefit from considering congestion imbalance. If all the solutions above are

not viable due to challenges in deployment, application-layer solutions can be researched.

Sending redundant requests can explore LB paths, and analyzing measured performance

data of paths can detect congestion.

133

BIBLIOGRAPHY

134

BIBLIOGRAPHY

[1] Fangfei Chen, Ramesh K. Sitaraman, and Marcelo Torres. End-user mapping: Next
generation request routing for content delivery. In SIGCOMM, 2015.

[2] Brice Augustin, Xavier Cuvellier, Benjamin Orgogozo, Fabien Viger, Timur Fried-
man, Matthieu Latapy, Clémence Magnien, and Renata Teixeira. Avoiding tracer-
oute anomalies with Paris Traceroute. In IMC, 2006.

[3] Naga Katta, Aditi Ghag, Mukesh Hira, Isaac Keslassy, Aran Bergman, Changhoon
Kim, and Jennifer Rexford. Clove: Congestion-aware load balancing at the virtual
edge. In CoNEXT, 2017.

[4] Rupa Krishnan, Harsha V. Madhyastha, Sridhar Srinivasan, Sushant Jain, Arvind
Krishnamurthy, Thomas Anderson, and Jie Gao. Moving beyond end-to-end path
information to optimize CDN performance. In IMC, pages 190–201, 2009.

[5] Fangfei Chen, Ramesh K. Sitaraman, and Marcelo Torres. End-user mapping: Next
generation request routing for content delivery. In SIGCOMM, pages 167–181,
2015.

[6] Michael J. Freedman, Mythili Vutukuru, Nick Feamster, and Hari Balakrishnan. Ge-
ographic locality of IP prefixes. In IMC, 2005.

[7] Michael J. Freedman, Mythili Vutukuru, Nick Feamster, and Hari Balakrishnan.
Geographic locality of IP prefixes. In USENIX, pages 153–158, 2005.

[8] Brice Augustin, Timur Friedman, and Renata Teixeira. Measuring load-balanced
paths in the Internet. In IMC, 2007.

[9] Kevin Vermeulen, Stephen D. Strowes, Olivier Fourmaux, and Timur Friedman.
Multilevel MDA-Lite Paris Traceroute. In IMC, 2018.

[10] Imtiaz Parvez, Ali Rahmati, Ismail Guvenc, Arif I. Sarwat, and Huaiyu Dai. A
survey on low latency towards 5G: RAN, core network and caching solutions. IEEE
Communications Surveys & Tutorials, 20(4):3098–3130, 2018.

[11] Frank Dabek, Russ Cox, Frans Kaashoek, and Robert Morris. Vivaldi: A decentral-
ized network coordinate system. In SIGCOMM CCR, pages 15–26, 2004.

135

[12] Jonathan Ledlie, Paul Gardner, and Margo I. Seltzer. Network coordinates in the
wild. In NSDI, volume 7, pages 299–311, 2007.

[13] Manish Jain and Constantinos Dovrolis. End-to-end available bandwidth: Measure-
ment methodology, dynamics, and relation with TCP throughput. In SIGCOMM
CCR, 2002.

[14] Jacob Strauss, Dina Katabi, and Frans Kaashoek. A measurement study of available
bandwidth estimation tools. In IMC, 2003.

[15] Our tool and dataset. https://github.com/yibopi/
latency-imbalance.

[16] Venkata N. Padmanabhan and Lakshminarayanan Subramanian. An investigation of
geographic mapping techniques for Internet hosts. In SIGCOMM, pages 173–185,
2001.

[17] Matt Calder, Ashley Flavel, Ethan Katz-Bassett, Ratul Mahajan, and Jitendra Pad-
hye. Analyzing the performance of anycast CDN. In IMC, pages 531–537, 2015.

[18] Citrix. NetScaler Global Server Load Balancer. https://docs.citrix.
com/en-us/netscaler/12/global-server-load-balancing.
html.

[19] Hao Jiang and Constantinos Dovrolis. Passive estimation of TCP round-trip times.
In SIGCOMM, 2002.

[20] Haowen Tang, Fangming Liu, Guobin Shen, and Chuanxiong Guo. UniDrive: Syn-
ergize multiple consumer cloud storage services. In Proceedings of the 16th Annual
Middleware Conference, pages 137–148, 2015.

[21] John S. Otto, Mario A. Sánchez, John P. Rula, and Fabián E. Bustamante. Content
delivery and the natural evolution of DNS. In IMC, 2012.

[22] Cedexis. Radar crowd sourcing. https://www.cedexis.com/
technology/.

[23] CAIDA. The CAIDA AS Relationships Dataset, <May 2015>. http://www.
caida.org/data/as-relationships/.

[24] IP2Location. Geolocate IP Address Location using IP2Location. http://www.
ip2location.com.

[25] Bruce M. Maggs and Ramesh K. Sitaraman. Algorithmic nuggets in content deliv-
ery. In SIGCOMM CCR, pages 52–66, 2015.

[26] Youndo Lee and Neil Spring. Identifying and aggregating homogeneous IPv4 /24
blocks with Hobbit. In IMC, pages 151–165, 2016.

136

https://github.com/yibopi/latency-imbalance
https://github.com/yibopi/latency-imbalance
https://docs.citrix.com/en-us/netscaler/12/global-server-load-balancing.html
https://docs.citrix.com/en-us/netscaler/12/global-server-load-balancing.html
https://docs.citrix.com/en-us/netscaler/12/global-server-load-balancing.html
https://www.cedexis.com/technology/
https://www.cedexis.com/technology/
http://www.caida.org/data/as-relationships/
http://www.caida.org/data/as-relationships/
http://www.ip2location.com
http://www.ip2location.com

[27] Manaf Gharaibeh, Han Zhang, Chritos Papaopoulos, and John Heidemann. Assess-
ing co-locality of IP blocks. In IEEE Global Internet Symposium, 2016.

[28] Daniel Freedman and Pavel Kisilev. Fast mean shift by compact density representa-
tion. In CVPR, pages 1818–1825, 2009.

[29] Ivan Selesnick. Total variation denoising (an MM algorithm). https://goo.
gl/rjBpG, 2014.

[30] Xin Jin and Jiawei Han. Quality threshold clustering. Encyclopedia of Machine
Learning, Springer, pages 820–820, 2011.

[31] Anthony Danalis, Collin McCurdy, and Jeffrey S. Vetter. Efficient quality threshold
clustering for parallel architectures. In Parallel and Distributed Processing Sympo-
sium, pages 1068–1079, 2012.

[32] Tsunemasa Hayashi and Toshiaki Miyazaki. High-speed table lookup engine for
IPv6 longest prefix match. In GLOBECOM, pages 1576–1581, 1999.

[33] USC CDN coverage. http://usc-nsl.github.io/cdn-coverage.

[34] Matt Calder, Xun Fan, Zi Hu, Ethan Katz-Bassett, John Heidemann, and Ramesh
Govindan. Mapping the expansion of Google’s serving infrastructure. In IMC,
pages 313–326, 2013.

[35] Ratul Mahajan, David Wetherall, and Tom Anderson. Understanding BGP miscon-
figuration. In SIGCOMM CCR, pages 3–16, 2002.

[36] Sipat Triukose, Sebastien Ardon, Anirban Mahanti, and Aaditeshwar Seth. Geolo-
cating ip addresses in cellular data networks. In PAM, pages 158–167, 2012.

[37] Jakub Czyz, Mark Allman, Jing Zhang, Scott Iekel-Johnson, Eric Osterweil, and
Michael Bailey. Measuring IPv6 adoption. In SIGCOMM, 2014.

[38] Sandeep Kumar Singh, Tamal Das, and Admela Jukan. From Paris to Tokyo: On the
suitability of ping to measure latency. In IMC, Barcelona, Spain, 2013. ACMPress.

[39] Mark Gondree and Zachary NJ Peterson. Geolocation of data in the cloud. In Pro-
ceedings of the third ACM conference on Data and application security and privacy,
pages 25–36, 2013.

[40] Junchen Jiang et al. Via: Improving internet telephony call quality using predictive
relay selection. In SIGCOMM, 2016.

[41] Zhiruo Cao, Zheng Wang, and Ellen Zegura. Performance of hashing-based schemes
for Internet load balancing. In INFOCOM, pages 332–341, 2000.

[42] Zachary Weinberg, Shinyoung Cho, Nicolas Christin, Vyas Sekar, and Phillipa Gill.
How to catch when proxies lie: Verifying the physical locations of network proxies
with active geolocation. In IMC, pages 203–217, 2018.

137

https://goo.gl/rjBpG
https://goo.gl/rjBpG
http://usc-nsl.github.io/cdn-coverage

[43] Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Balaji Prabhakar, Mendel Rosenblum,
and Amin Vahdat. Exploiting a natural network effect for scalable, fine-grained
clock synchronization. In NSDI, pages 81–94, 2018.

[44] Ethan Katz-Bassett, Harsha V. Madhyastha, Vijay Kumar Adhikari, Colin Scott, Jus-
tine Sherry, Peter Van Wesep, Thomas E. Anderson, and Arvind Krishnamurthy.
Reverse traceroute. In NSDI, 2010.

[45] MDA-Lite repository. https://gitlab.planet-lab.eu/
cartography/multilevel-mda-lite.

[46] Abhinav Pathak, Himabindu Pucha, Ying Zhang, Y. Charlie Hu, and Z. Morley Mao.
A measurement study of Internet delay asymmetry. In PAM, 2008.

[47] Robert Beverly. Yarrp’ing the Internet: Randomized high-speed active topology
discovery. In IMC, pages 413–420, 2016.

[48] Perry R. Hinton. Statistics explained. Routledge, 2014.

[49] Christophe Leys, Christophe Ley, Olivier Klein, Philippe Bernard, and Laurent Li-
cata. Detecting outliers: Do not use standard deviation around the mean, use ab-
solute deviation around the median. Journal of Experimental Social Psychology,
49(4):764–766, 2013.

[50] Ki Suh Lee, Han Wang, Vishal Shrivastav, and Hakim Weatherspoon. Globally
synchronized time via datacenter networks. In SIGCOMM, 2016.

[51] Cristina D. Murta, Pedro R. Torres Jr, and Prasant Mohapatra. Qrpp1-4: Character-
izing quality of time and topology in a time synchronization network. In Globecom,
pages 1–5, 2006.

[52] Yuval Shavitt and Noa Zilberman. A geolocation databases study. IEEE Journal on
Selected Areas in Communications, 29(10):2044–2056, 2011.

[53] Ip latency statistics. https://enterprise.verizon.com/terms/latency/, July 2019.

[54] Mohammed S. Elbamby, Cristina Perfecto, Mehdi Bennis, and Klaus Doppler. To-
ward low-latency and ultra-reliable virtual reality. IEEE Network, 32(2):78–84,
2018.

[55] Roy D. Yates, Mehrnaz Tavan, Yi Hu, and Dipankar Raychaudhuri. Timely cloud
gaming. In INFOCOM, 2017.

[56] Sadjad Fouladi, John Emmons, Emre Orbay, Catherine Wu, Riad S. Wahby, and
Keith Winstein. Salsify: low-latency network video through tighter integration be-
tween a video codec and a transport protocol. In NSDI, 2018.

[57] CAIDA. Routeviews prefix to AS mappings dataset for IPv4 and IPv6.
https://www.caida.org/data/routing/routeviews-prefix2as.xml, Sep 2018.

138

https://gitlab.planet-lab.eu/cartography/multilevel-mda-lite
https://gitlab.planet-lab.eu/cartography/multilevel-mda-lite

[58] Timothy Wood, Prashant J. Shenoy, Alexandre Gerber, Jacobus E. van der Merwe,
and Kadangode K. Ramakrishnan. The case for enterprise-ready virtual private
clouds. In HotCloud, 2009.

[59] Sathiya Kumaran Mani, Ramakrishnan Durairajan, Paul Barford, and Joel Sommers.
An architecture for IoT clock synchronization. In Proceedings of the 8th Interna-
tional Conference on the Internet of Things, 2018.

[60] Alexander Marder, Matthew Luckie, Amogh Dhamdhere, Bradley Huffaker,
kc claffy, and Jonathan M. Smith. Pushing the boundaries with bdrmapit: Mapping
router ownership at Internet scale. In IMC, 2018.

[61] CAIDA. The CAIDA Internet Topology Data Kit. https://www.caida.org/
data/internet-topology-data-kit, August 2018.

[62] AFRINIC Extended Allocation and Assignment Reports. ftp://ftp.
afrinic.net/pub/stats/afrinic/, 2019.

[63] RIPE Extended Allocation and Assignment Reports. ftp://ftp.afrinic.
net/pub/stats/ripencc/, 2019.

[64] LACNIC Extended Allocation and Assignment Reports. ftp://ftp.afrinic.
net/pub/stats/lacnic/, 2019.

[65] APNIC Extended Allocation and Assignment Reports. ftp://ftp.afrinic.
net/pub/stats/apnic/, 2019.

[66] ARIN Extended Allocation and Assignment Reports. ftp://ftp.afrinic.
net/pub/stats/arin/, 2019.

[67] Euro-IX IXP Directory. https://www.euro-ix.net/tools/
ixp-directory, 2019.

[68] PeeringDB. https://peeringdb.com/api, 2019.

[69] Packet Clearing House: Internet Exchange Directory. https://www.pch.net/
applications/ixpdir/menu_download.php, 2019.

[70] CAIDA. The CAIDA AS Relationships Dataset. https://www.caida.org/data/as-
relationships/, Feb 2019.

[71] Google cloud network service tiers. https://cloud.google.com/
network-tiers#tab1.

[72] Matthew Luckie, Amogh Dhamdhere, kc Claffy, and David Murrell. Measured im-
pact of crooked traceroute. In CCR, pages 14–21, 2011.

[73] Ramesh Govindan and Vern Paxson. Estimating router ICMP generation delays. In
PAM, 2002.

139

https://www.caida.org/data/internet-topology-data-kit
https://www.caida.org/data/internet-topology-data-kit
ftp://ftp.afrinic.net/pub/stats/afrinic/
ftp://ftp.afrinic.net/pub/stats/afrinic/
ftp://ftp.afrinic.net/pub/stats/ripencc/
ftp://ftp.afrinic.net/pub/stats/ripencc/
ftp://ftp.afrinic.net/pub/stats/lacnic/
ftp://ftp.afrinic.net/pub/stats/lacnic/
ftp://ftp.afrinic.net/pub/stats/apnic/
ftp://ftp.afrinic.net/pub/stats/apnic/
ftp://ftp.afrinic.net/pub/stats/arin/
ftp://ftp.afrinic.net/pub/stats/arin/
https://www.euro-ix.net/tools/ixp-directory
https://www.euro-ix.net/tools/ixp-directory
https://peeringdb.com/api
https://www.pch.net/applications/ixpdir/menu_download.php
https://www.pch.net/applications/ixpdir/menu_download.php
https://cloud.google.com/network-tiers#tab1
https://cloud.google.com/network-tiers#tab1

[74] Yves Vanaubel, Pascal Mérindol, Jean-Jacques Pansiot, and Benoit Donnet.
Through the wormhole: Tracking invisible MPLS tunnels. In IMC, 2017.

[75] Yves Vanaubel, Pascal Mérindol, Jean-Jacques Pansiot, and Benoit Donnet. MPLS
under the microscope: Revealing actual transit path diversity. In IMC, 2015.

[76] Joel Sommers, Paul Barford, and Brian Eriksson. On the prevalence and character-
istics of MPLS deployments in the open Internet. In IMC, 2011.

[77] Benoit Donnet, Matthew Luckie, Pascal Mérindol, and Jean-Jacques Pansiot. Re-
vealing MPLS tunnels obscured from traceroute. In SIGCOMM CCR, 2012.

[78] Abhinav Pathak, Ming Zhang, Y. Charlie Hu, Ratul Mahajan, and Dave Maltz. La-
tency inflation with MPLS-based traffic engineering. In IMC, 2011.

[79] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Mohan Nanduri,
and Roger Wattenhofer. Achieving high utilization with software-driven WAN. In
SIGCOMM CCR, 2013.

[80] Sushant Jain et al. B4: Experience with a globally-deployed software defined WAN.
In SIGCOMM, pages 3–14, 2013.

[81] Ramakrishnan Durairajan, Sathiya Kumaran Mani, Joel Sommers, and Paul Barford.
Time’s Forgotten: Using NTP to understand Internet latency. In HotNets, 2015.

[82] Sathiya Kumaran Mani, Ramakrishnan Durairajan, Paul Barford, and Joel Sommers.
Mntp: enhancing time synchronization for mobile devices. In In Proceedings of the
2016 Internet Measurement Conference, 2016.

[83] Amazon AWS IoT. https://aws.amazon.com/iot/.

[84] Bamba Gueye, Artur Ziviani, Mark Crovella, and Serge Fdida. Constraint-based
geolocation of Internet hosts. TON, 14(6):1219–1232, 2006.

[85] Planetlab locations. https://www.planet-lab.org/db/pub/sites.
php.

[86] iplane project dataset. http://web.eecs.umich.edu/˜harshavm/
iplane/iplane_logs/data/.

[87] Karyn Benson, Rafael Dowsley, and Hovav Shacham. Do you know where your
cloud files are? In Proceedings of the 3rd ACM workshop on Cloud computing
security workshop, pages 73–82, 2011.

[88] Yang Xu, Chenguang Yu, Jingjiang Li, and Yong Liu. Video telephony for end-
consumers: Measurement study of Google+, iChat, and Skype. In IMC, pages 371–
384, 2012.

[89] G.107. The E-Model, a computational model for user in transmission planning,
2017. https://www.itu.int/rec/T-REC-G.107.

140

https://aws.amazon.com/iot/
https://www.planet-lab.org/db/pub/sites.php
https://www.planet-lab.org/db/pub/sites.php
http://web.eecs.umich.edu/~harshavm/iplane/iplane_logs/data/
http://web.eecs.umich.edu/~harshavm/iplane/iplane_logs/data/
https://www.itu.int/rec/T-REC-G.107

[90] Haiyong Xie and Yang Richard Yang. A measurement-based study of the skype
peer-to-peer VoIP performance. In IPTPS, 2012.

[91] Osama Haq, Mamoon Raja, and Fahad R. Dogar. Measuring and improving the
reliability of wide-area cloud paths. In Proceedings of the 26th International Con-
ference on World Wide Web, 2017.

[92] Zhe Wu, Curtis Yu, and Harsha V. Madhyastha. CosTLO: Cost-effective redundancy
for lower latency variance on cloud storage services. In NSDI, 2015.

[93] Mohammad Alizadeh et al. CONGA: Distributed congestion-aware load balancing
for datacenters. In SIGCOMM, 2014.

[94] Srikanth Sundaresan, Xiaohong Deng, Yun Feng, Danny Lee, and Amogh Dhamd-
here. Challenges in inferring Internet congestion using throughput measurements.
In IMC, 2017.

[95] Amogh Dhamdhere, David D. Clark, Alexander Gamero-Garrido, Matthew Luckie,
Ricky KP Mok, Gautam Akiwate, Kabir Gogia, Vaibhav Bajpai, Alex C. Snoeren,
and kc Claffy. Inferring persistent interdomain congestion. In SIGCOMM, 2018.

[96] Matthew Luckie, Amogh Dhamdhere, David Clark, Bradley Huffaker, and kc Claffy.
Challenges in inferring Internet interdomain congestion. In IMC, 2014.

[97] M-Lab. NDT (Network Diagnostic Tool).
https://www.measurementlab.net/tests/ndt/.

[98] Yibo Pi, Sugih Jamin, Peter Danzig, and Feng Qian. Latency imbalance among
Internet load-balanced paths: A cloud-centric view. In SIGMETRICS, 2019.

[99] Bob Briscoe et al. Reducing Internet latency: A survey of techniques and their
merits. IEEE Communications Surveys & Tutorials, 2014.

[100] Charles Truong, Laurent Oudre, and Nicolas Vayatis. Selective review of offline
change point detection methods. Signal Processing, 2020.

[101] Charles Truong, Laurent Oudre, and Nicolas Vayatis. ruptures: change point detec-
tion in Python. arXiv preprint arXiv:1801.00826, 2018.

[102] Hang Guo and John Heidemann. Detecting ICMP rate limiting in the Internet. In
PAM, pages 3–17, 2018.

[103] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector ma-
chines. ACM transactions on intelligent systems and technology, 2011.

[104] Ganesh R. Naik and Dinesh Kant Kumar. Twin SVM for gesture classification us-
ing the surface electromyogram. IEEE Transactions on Information Technology in
Biomedicine, 2009.

141

[105] Toke Høiland-Jørgensen, Bengt Ahlgren, Per Hurtig, and Anna Brunstrom. Measur-
ing latency variation in the Internet. In CoNEXT, 2016.

[106] Harsha V. Madhyastha, Tomas Isdal, Michael Piatek, Colin Dixon, Thomas Ander-
son, Arvind Krishnamurthy, and Arun Venkataramani. iplane: An information plane
for distributed services. In OSDI, pages 367–380, 2006.

[107] Erik Nygren, Ramesh K. Sitaraman, and Jennifer Sun. The Akamai network: a
platform for high-performance internet applications. In ACM SIGOPS Operating
Systems Review, pages 2–19, 2010.

[108] Cheng Huang, Ivan Batanov, and Jin Li. A practical solution to the client-LDNS
mismatch problem. In SIGCOMM CCR, 2012.

[109] D. Veitch, B. Augustin, R. Teixeira, and T. Friedman. Failure control in multipath
route tracing. In INFOCOM, 2009.

[110] Rafael Almeida, Osvaldo Fonseca, Elverton Fazzion, Dorgival Guedes, Wagner
Meira, and Ítalo Cunha. A characterization of load balancing on the IPv6 Internet.
In PAM, 2017.

[111] Eric Elena, Jean-Louis Rougier, and Stefano Secci. Characterisation of AS-level
path deviations and multipath in Internet routing. In 6th EURO-NGI Conference on
Next Generation Internet, 2010.

[112] Young Hyun Luckie, Matthew and Bradley Huffaker. Traceroute probe method and
forward IP path inference. In SIGCOMM, 2008.

[113] Yibo Pi, Sugih Jamin, Peter Danzig, and Jacob Shaha. Ap-atoms: A high-accuracy
data-driven client aggregation for global load balancing. IEEE/ACM Transactions
on Networking, 2018.

[114] Zhiruo Cao, Zheng Wang, and Ellen Zegura. Performance of hashing-based schemes
for Internet load balancing. In INFOCOM, 2000.

[115] Lawrence S. Brakmo, Sean W. O’Malley, and Larry L. Peterson. TCP Vegas: New
techniques for congestion detection and avoidance. In Proceedings of the conference
on Communications architectures, protocols and applications, 1994.

[116] Belma Turkovic, Fernando A. Kuipers, and Steve Uhlig. Fifty shades of con-
gestion control: A performance and interactions evaluation. In arXiv preprint
arXiv:1903.03852, 2019.

[117] Venkat Arun and Hari Balakrishnan. Copa: Practical delay-based congestion control
for the Internet. In NSDI, 2018.

[118] Rodérick Fanou, Francisco Valera, and Amogh Dhamdhere. Investigating the causes
of congestion on the African IXP substrate. In IMC, 2017.

142

[119] Ningning Hu and Peter Steenkiste. Evaluation and characterization of available
bandwidth probing techniques. IEEE JSAC, 2003.

[120] Alok Shriram, Margaret Murray, Young Hyun, Nevil Brownlee, Andre Broido, and
Marina Fomenkov. Comparison of public end-to-end bandwidth estimation tools on
high-speed links. In International Workshop on Passive and Active Network Mea-
surement, 2005.

[121] Jitendra Padhye, Victor Firoiu, Don Towsley, and Jim Kurose. Modeling TCP
throughput: A simple model and its empirical validation. In SIGCOMM, 1998.

[122] Qi He, Constantine Dovrolis, and Mostafa Ammar. On the predictability of large
transfer TCP throughput. In SIGCOMM, 2005.

[123] Yi Cao, Javad Nejati, Aruna Balasubramanian, and Anshul Gandhi. Econ: Modeling
the network to improve application performance. In IMC, 2019.

[124] Zakir Durumeric, Eric Wustrow, and J. Alex Halderman. ZMap: Fast Internet-wide
scanning and its security applications. In USENIX Security, 2013.

[125] Matthew Luckie. ZMap: Scamper: a scalable and extensible packet prober for active
measurement of the Internet. In IMC, 2010.

143

