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ABSTRACT

This dissertation consists of three research projects that center on measuring voters’ and political

representatives’ multi-dimensional latent preferences based on their binary opinions on public pol-

icy issues. This dissertation engages with the broad political methodology literature on pairwise

comparison models, Dirichlet process mixture models, and Bayesian IRT models. I innovate sta-

tistical models to uncover partisan perceptions of information, to identify voting coalitions, and to

estimate multi-dimensional latent preferences. I analyze survey data and roll call vote data, includ-

ing both existing and newly-collected data. These studies advance the understanding of important

political science topics, such as political biases in people’s perceptions of COVID-19 related state-

ments, politicization of human rights in the United Nations, and multiple issue dimensions of

legislators’ ideal points. Summaries of the three projects are detailed below.

In the first project, I propose a new multidimensional pairwise comparison model to improve

the existing models in the pairwise comparison literature. Two new model specifications are pro-

posed. The first version has a uniform prior for respondent attributes, and the second version has a

Dirichlet process prior for respondent attributes. The new model allows for a richer structure of the

latent attributes of the objects being compared than standard models as well as respondent-specific

perceptual differences. I use the new multidimensional pairwise comparison model to analyze the

survey data that I collected in the summer of 2020. This survey asked respondents to compare

the truthfulness of pairs of statements about COVID-19. These statements were taken from the

fact-checked statements on https://www.politifact.com. I thus have an independent

measure of the truthfulness of each statement. I find that the actual truthfulness of a statement

explains very little of the variability in individuals’ perceptions of truthfulness. Instead, I find that

the partisanship of the speaker and the partisanship of the respondent account for the majority of
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the variation in perceived truthfulness, with statements made by co-partisans being viewed as more

truthful.

In the second project, I advance the scholarship on politicization of humans rights within the

United Nations. Previous research typically looks at simple associations between voting coalitions

and observable variables, such as geographic location or membership in international organiza-

tions. My study is the first attempt at estimating the latent coalition structure based on the voting

data. I propose a Bayesian Dynamic Dirichlet Process Mixture (DDPM) model to identify voting

coalitions based on roll call vote data across multiple time periods. I also propose post-processing

methods for analyzing the outputs of the DDPM model. I apply these methods to the United Na-

tions General Assembly (UNGA) human rights roll call vote data from 1992 to 2017. I identify

human rights voting coalitions in the UNGA after the Cold War, and polarizing resolutions that

divide countries into different coalitions.

In the third project, I propose an innovative penalized EM algorithm for estimating sparse item-

dimension loading structures in multidimensional IRT models. The new penalized EM algorithm

identifies a sparse item-dimension loading structure for multidimensional IRT models by applying

a L1 penalty on discrimination parameters in model estimation. The sparse item-dimension loading

structure aids in identifying the anchoring items for each dimension and provides information on

what each dimension means. In addition, the penalized EM algorithm has the flexibility to allow a

discrimination parameter to be exactly zero. Hence, the penalized EM algorithm can consistently

estimate the multidimensional ideal points when the data generation process is truly based on

a sparse item-dimension loading structure. I first use simulation data to demonstrate how the

penalized EM algorithm can accurately recover both the true item-dimension loading structure and

ideal points. Then, I replicate a previous study on the 105th US senate roll call vote data to show

how the penalized EM algorithm can help infer latent dimension meanings.
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CHAPTER 1

Introduction

This dissertation contains three research projects that center on measuring voters’ and political rep-

resentatives’ multi-dimensional latent preferences based on their binary opinions on public policy

issues. The theme of identifying the ordinal or clustering patterns of political actors’ latent pref-

erences links the three projects into one coherent academic endeavor. We work with survey data

and roll call vote data, and we develop statistical models to uncover partisan perceptions of infor-

mation, identify voting coalitions, or estimate multi-dimensional latent preferences. These three

studies advance our understanding of important political science topics, such as political biases in

people’s perceptions of COVID-19 related statements, politicization of human rights in the United

Nations, and multiple issue dimensions of legislators’ ideal points.

In addition to the shared substantive theme, the three projects all speak to the political method-

ology literature on latent variable models. Latent variable models are important empirical analysis

tools in various social science fields, such as political science, psychology, educational studies,

sociology, and economics. These models are critical for researchers to learn about the underlying

patterns from behavioral and opinion data, and therefore make sense of actors’ choices and be-

haviors. Specifically, the newly proposed models in this dissertation contribute to the literature on

pairwise comparison models, Dirichlet process mixture models, and Bayesian IRT models. Com-

pared with existing models, the newly proposed models relax unidimensional assumptions, account

for temporal dependence of cluster numbers, and allow richer structures of latent variables.

The rest of the dissertation proceeds as follow. In the second chapter, we propose a 2-dimensional
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pairwise comparison model to improve the unidimensional models in the current pairwise com-

parison literature. We show that the 2-dimensional pairwise comparison model provides more

interpretable and informative latent estimates in a study on survey respondents’ perceptions of the

truthfulness of COVID-19 related statements. In the third chapter, we propose a Bayesian Dynamic

Dirichlet Process Mixture (DDPM) model to identify voting coalitions based on roll call vote data

across multiple time periods. We apply the new method to the United Nations General Assembly

(UNGA) human rights roll call vote data from 1992 to 2017. In the fourth chapter, we propose

an innovative penalized EM algorithm for estimating sparse item-dimension loading structures in

multidimensional IRT models. The sparse item-dimension loading structure aids us in identifying

the anchoring items for each dimension and provides information on what each dimension means.

We replicate a previous study on the 105th US Senate roll call vote data to show how the penalized

EM algorithm can help us infer latent dimension meanings. In the last chapter, we conclude by

summarizing our findings and contributions.
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CHAPTER 2

Multidimensional Pairwise Comparison Model for

Heterogeneous Perceptions

(Joint Work with Kevin M. Quinn)

2.1 Introduction

Latent attribute measurement models have broad applications in political science, psychology, eco-

nomics and other social science fields. The importance of latent measurement models lie in the fact

that latent attributes are essential to explain actors’ preferences, personalities, choices and behav-

iors. In political science, unobserved variables and concepts are at the core of many studies, such as

ideology, preference, democracy, human rights score, and public opinions (Poole and Rosenthal,

1991; Martin and Quinn, 2002; Treier and Jackman, 2008; Fariss, 2014; Jessee, 2009). Scien-

tific measurement of many latent variables greatly advance our understanding of the mechanisms

deciding political actors’ opinions, preferences and choices.

To have comparable measurement across objects or respondents, we have to assume that la-

tent attributes are located on a common space, such as the left-right political spectrum. The ideal

observed data for us to learn latent attributes from should share the same data generation process

given the latent attributes. For example, if one research group assigns scores on observed domestic

institutions for every country with the same benchmark, then we can believe that all the observed

data are determined by a consistent latent attribute, such as democracy, on a common space (Treier
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and Jackman, 2008). If we can collect data on incidents of different kinds of human rights viola-

tions, then we can also believe that countries’ oppressive latent attributes (human rights score) on

a common space determine these violation occurrences (Fariss, 2014). The observed data in the

above two settings are “objective”, because they represent either a professional agency’s impartial

and consistent evaluation, or historical records of incidents. Many popular models are ready for

analyzing this kind of data, such as the factor analysis model, Bayesian IRT model, or multidi-

mensional scaling model (Quinn, 2004; Clinton, Jackman and Rivers, 2004; Poole and Rosenthal,

1985).

Latent variable estimation becomes challenging when it’s difficult to collect “objective” eval-

uations on objects’ latent attributes. Perception or opinion data often fall in this category. For

example, when respondents are asked to assign perceived blackness scores on a white-to-black

ordinal basis to different photos of males, the resulting scores on the photos are inconsistent across

respondents. This is because that a respondent’s own race, life experience, and living environ-

ment would greatly affect how she perceives racial features. Therefore, it’s difficult to assume that

scores assigned by different respondents come from the same data generation process (Abrajano,

Elmendorf and Quinn, 2018).

To avoid the inconsistent evaluations across respondents, researchers have proposed the pair-

wise comparison method for data collection and analysis (Thurstone, 1927; Bradley and Terry,

1952; David, 1963). It’s a much easier task for respondents to compare two objects and pick the

one having a greater latent attribute. In the above example, instead of asking respondents to score

one photo at a time, researchers can instead ask respondents to compare a randomly selected photo

pair and pick the one that in her opinion has a greater latent attribute. This way, researchers are

able to collect perception data that are determined by attributes in a common space. The downside

is that researchers can only collect dichotomous data with this method. Pairwise comparison mod-

els aid researchers in recovering the locations of objects on a continuous scale in a latent common

space.

The pairwise comparison model was originally proposed in psychometrics. Researchers in
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psychology, marketing studies, and information science have proposed various specifications of

the pairwise comparison model to analyze different data, such as ranking data and pairwise com-

parison data by multiple respondents (Stark, Chernyshenko and Drasgow, 2005; Wang et al., 2017;

Kim, Kim and Shim, 2017). The most common pairwise comparison model assumes a unidimen-

sional latent attribute for objects (Thurstone, 1927; Bradley and Terry, 1952). Other researchers

have proposed a unidimensional respondent attribute to account for respondents’ different levels

of sensitivity (Carlson and Montgomery, 2017). There are also attempts to generalize the pair-

wise comparison models to multidimensional latent spaces. The current multidimensional pair-

wise comparison models lack interpretabiltiy, because there are insufficient constraints in model

specification. As a result, it’s difficult to learn how different dimensions are aggregated in the

data generation process. In addition, the existing multidimensional models also assume that ev-

ery respondent must have unique respondent-specific parameters, and are thus unable to identify

groups of respondents that share the same respondent-specific parameters. To fill this lacuna in the

literature, we propose a new multidimensional pairwise comparison model in this chapter.

The proposed model assigns a unit-length positive vector to each respondent. This constraint

guarantees that a respondent attribute is a weight vector, whose elements are non-negative and sum

up to 1. This constraint makes it explicit to model how object attributes of different dimensions

are aggregated and in turn determine respondents’ choices. Compared with previous models, the

proposed model has an advantage in model identification and interpretability due to the innovative

constraint. Moreover, in the second version of the new model, we add a Dirichlet Process prior

on respondent-specific parameters, so we can flexibly cluster respondents into groups that share

similar perceptions. This innovation gives us leverage to learn the grouping structure among re-

spondents, which can potentially advance our understanding of how latent attributes are perceived

differently. Furthermore, this also allows us to make inferences on which characteristics of respon-

dents affect their perceptions on the latent attribute in question.

We use the new model to analyze survey data that we collected in the summer of 2020. This

survey asked respondents to compare the truthfulness of pairs of statements about COVID-19. Ap-
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plying our new model to our survey data, We find that the objective truthfulness of a statement only

weakly correlates with respondents’ perceptions of truthfulness. On the other hand, we find strong

correlations between the political valence of the statements and their perceived truthfulness, mod-

erated by the political leaning of a respondent. Statements made by a co-partisan of a respondent

tend to be viewed as more truthful by this respondent.

A sizable fraction of respondents gauge the truthfulness of COVID-19 statements through par-

tisan lenses. For these respondents, partisanship has a stronger impact on their responses than

does the actual truthfulness of the statements. Indeed, the responses from the most right-leaning

respondents are negatively correlated with the objective truthfulness of the statements. That said,

a plurality of respondents are relatively unswayed by partisanship but have a difficult time accu-

rately gauging the truthfulness of COVID-19 statements. We also observe associations between

the respondent-specific perceptual parameters and public-health-relevant behaviors, such as mask

wearing and social distancing.

The rest of the chapter proceeds as follow. First, we review the assumptions and specifications

of previous pairwise comparison models, before we detail the new multidimensional pairwise com-

parison model. Second, we specify the MCMC samplers for the new model in detail. Third, we

show simulation studies on the new model to illustrate how the new model can accurately recover

the true latent variable values. Fourth, we apply the new model to the pairwise comparison data

collected in the survey. We report and compare the analysis results based on both existing unidi-

mensional models and the newly-proposed multidimensional model. We conclude by discussing

our findings and plans for future research.

2.2 A New Model for Pairwise Comparisons Data with Hetero-

geneous Perceptions

Pairwise comparisons provide an important method of measuring latent attributes in the social

sciences. Pairwise, relative judgments are cognitively easier for human respondents than other
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types of assessments, such as those based on Likert-type scales (Oishi et al., 2005; Phelps et al.,

2015; Dittrich et al., 2007). Further, the focus on pairwise, relative judgments eliminates the

possibility that respondents may use a Likert-type scale differently (see, for instance, Bachman

and O’Malley (1984); Brady (1985); Suchman and Jordan (1990) and King et al. (2004)).

Traditional models for pairwise comparisons assume unidimensional latent attributes for ob-

jects (Thurstone, 1927; Bradley and Terry, 1952; David, 1963). Some researchers add a unidi-

mensional respondent-specific parameter to account for respondents’ different levels of ability or

sensitivity (Carlson and Montgomery, 2017). There have also been attempts to generalize pairwise

comparison models to multidimensional latent spaces (Carroll and De Soete, 1991; Yu and Chan,

2001; Balakrishnan and Chopra, 2012). In this section, we briefly review the existing pairwise

comparison models, before we introduce our new model.

2.2.1 Existing Models

We start by reviewing unidimensional pairwise comparison models. Consider a set of J objects

{oj}Jj=1. We assume that each oj has a latent attribute θj ∈ R that denotes an attribute of interest.

While θθθ is unobserved, we do observe yijj′ , the result of a paired comparison of oj and oj′ by

respondent i, in which i is asked to make a ranking judgment as to whether oj or oj′ has a larger

value of the latent attribute. yijj′ is equal to 1, if respondent i judges oj to have a larger value of

the latent attribute in question than oj′ , 0 otherwise. More specifically, we assume

yijj′ ∼ Bernoulli(pijj′)

pijj′ = F (θj − θj′)

where F (·) is a cumulative distribution function (CDF). If F (·) is the CDF of a standard normal

distribution, the model above is the Thurstone model, the first pairwise comparison model ever

proposed (Thurstone, 1927). If F (·) is the CDF of a logistic distribution, the model above is the

Bradley-Terry model (Bradley and Terry, 1952).
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If we assume that respondents make conditionally independent judgments of the objects, the

likelihood for θθθ can be written as the product of Bernoulli probability mass functions. A variant of

the above model is to assume that respondents vary in their ability or sensitivity to discern the latent

differences between objects, but the latent object attributes remain on the real line, i.e. θj ∈ R for

j = 1, . . . , J . Here

pijj′ = F (βi [θj − θj′ ])

Typically, it is assumed that βi ∈ R+ for i = 1, . . . , N (Carlson and Montgomery, 2017). An

object pair is compared by multiple respondents, and a respondent does multiple tasks of pairwise

comparisons. Therefore, we are able to estimate the two sets of latent variables, object attributes

and respondent attributes, iteratively. The intuition is that we are able to update the object attributes

conditioning the current values of respondent attributes, and vise versa. Fully Bayesian methods

based on Markov chain Monte Carlo (MCMC) or the EM algorithm have both been proposed to

estimate these unidimensional models (Böckenholt and Tsai, 2001; Johnson and Kuhn, 2013).

Political scientists have applied the above unidimensional pairwise comparison models to var-

ious projects, such as solving the coder inconsistency problem in text data coding tasks (Carlson

and Montgomery, 2017), gauging legislators’ degree of “grandstanding” in speech (Park, 2021),

and measuring the sophistication of political text (Benoit, Munger and Spirling, 2019). Similar uni-

dimensional pairwise comparison models are also popular in personality measurement research1

(Stark, Chernyshenko and Drasgow, 2005; Wang et al., 2017). An alternative specification of

the unidimensional pairwise comparison model is latent ranking estimation models, which focus

on probabilistically estimating rankings of objects instead of specific object attributes. The as-

sumption for these models is that there could be multiple latent rankings governing the pairwise

comparison data generation process. The goal of these models is to learn the ranking that is the

most likely. Similar latent ranking models are widely applied in the area of information sciences

1These tests are called multidimensional personality test. However, the word “multidimensional” does not refer
to latent dimensions, but refer to an aspect of personality captured by a group of specially designed objects. A
unidimensional pairwise comparison model is used to measure an individual “dimension” of personality with a group
of pertinent objects. Therefore, the underling measurement model is still undimensional for an aspect of personality.
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and recommendation systems. For example, Kim, Kim and Shim (2017) assume a categorical

distribution among all the possible rankings among objects, and use a generative model to learn

which overall ranking is the most likely (Kim, Kim and Shim, 2017).

As a variant of the unidimensional pairwise comparison model, the Thurstonian Factor Model

further decomposes the J object attributes by the product of a loading matrix and a vector of

multidimensional common factors (Maydeu-Olivares and Böckenholt, 2005; Maydeu-Olivares and

Brown, 2010). We illustrate the model setup for only three unique objects, J = 3. Each unique

object pair is compared only once, so the probability parameters for all the unique pairwise com-

parison tasks are modeled as below.

ppp︸︷︷︸
J(J−1)

2
×1

= F ( AAA︸︷︷︸
J(J−1)

2
×J

θθθ︸︷︷︸
J×1

)

θθθ︸︷︷︸
J×1

= µµµ︸︷︷︸
J×1

+ ΛΛΛ︸︷︷︸
J×d

ξξξ︸︷︷︸
d×1

+ εεε︸︷︷︸
J×1

AAA =


1 −1 0

1 0 −1

0 1 −1

 , if J = 3

where ppp ∈ [0, 1]
J(J−1)

2 is a J(J−1)
2

-length probability vectors, representing the probability pa-

rameters for all the unique pairwise comparison tasks. θθθ is the latent attribute vector for object

1, 2, · · · , J . AAA is a linear transformation matrix that helps to compute the differences between all

object attribute pairs. We can easily construct AAA for other J values by enumerating all possible

unordered unique object attribute pair differences by row. F (·) is the link function that maps an

element in the AAAθθθ vector to the corresponding element in vector ppp. The first equation above is

the matrix representation of the unidimensional pairwise comparison model. The second equation

represents a factor analysis model to rewrite the vector of object attributes as the sum of the mean

vector, µµµ, and the product of a loading matrix ΛΛΛ and a common factor vector ξξξ, conditioning on
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d < J . The Thurstonian Factor Model serves as an exploratory method to show the common latent

factors that generate a specific object’s latent attribute.2

A limitation of the above unidimensional pairwise comparison models is that they either as-

sume no perceptual differences between the individuals making the comparative judgments, or as-

sume that individuals only vary in the ability to discern the signal from a common unidimensional

comparison of latent attributes. However, the unidimensional assumption is too strong when re-

spondents have to compare objects on more than one latent dimension, and they have to aggregate

objects’ attributes on different latent dimensions to make their choices. Moreover, when indi-

viduals are asked to compare objects on a general attribute that is itself made up of component

attributes, they may vary in the way they construct the general attribute from the component at-

tributes. For instance, it is common for individuals to be asked to rate the “racial stereotypicality”

of photographs (Eberhardt et al., 2006). Yet one might reasonably think that racial stereotypicality

is composed of multiple sub-attributes, such as skin color, hair texture, face shape, and so on. Fur-

ther, one might also think that individuals differ in the weights they place on these sub-attributes

when asked to make comparisons between photos on the general attribute of racial stereotypicality

(Abrajano, Elmendorf and Quinn, 2018).

In addition to the unidimensional models, researchers have also proposed multidimensional

pairwise comparison models (Cattelan, 2012). In multidimensional models, both objects and re-

spondents are assumed to have locations on a common space. What determines a respondent’s

choice between objects is the relative distance between the respondent location to the two objects’

locations. A respondent will prefer an object that’s closer to her own latent location than an object

that’s far away.

Two methods for estimating multidimensional object and respondent attributes are originally

proposed: the wandering vector method and the wandering ideal point method (Carroll and De Soete,

2For example, we ask employees to rank all unique pairs of nine work environment motivations: 1. Supportive
Environment. 2. Challenging Work. 3. Career Progression. 4. Ethics. 5. Personal Impact. 6. Personal Development.
7. Social Interaction. 8. Competition. 9. Work Security. We use the Thurstonian Factor Model to learn a single
common factor and a 9 × 1 loading matrix, the product of which gives us object attributes. This is equivalent to a
unidimensional pairwise comparison model. We can also reduce the nine objects’ attributes to two or three common
factors. For more details, see Maydeu-Olivares and Brown (2010).
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1991). These two methods use two common ways to compute distance in a multidimensional

space. The wandering vector method uses the dot product to compute distance, whereas the

wandering ideal point model uses a method similar to Euclidean distance. The wandering vec-

tor method provokes more innovations of multidimensional pairwise comparison models later, so

we focus on this specification. The probability parameter for a pairwise comparison task in a

d-dimensional wandering vector model is modeled as follows:

pijj′ = F (βββi · θθθj − βββi · θθθj′)

where βββi ∈ Rd
+ and ||βββi|| = 1 for i = 1, . . . , N , and θθθj ∈ Rd. A respondent attribute is a

unit-length vector with non-negative elements. The distance between a respondent location and an

object location is the dot product between the two vectors. No estimation method was provided for

the wandering vector method when it was originally proposed.

A Bayesian sampler is proposed for the wandering vector method on analyzing full ranking

data on a group of objects evaluated by multiple respondents (Yu and Chan, 2001). This Bayesian

sampler uses a normal prior for all βββi: βββi ∼ Nd(111, IIId). A similar Bayesian model is proposed

to analyze pairwise movie preference data by multiple users (Balakrishnan and Chopra, 2012).

This model also uses a multivariate normal prior for respondent vectors. These Bayesian samplers

do not constrain a respondent vector as a unit-length non-negative vector, but use a multivariate

normal prior for all βββi, such as βββi ∼ Nd(111, IIId). These weaker constraints on respondent attributes

greatly hurt the interpretabiltiy of the model, because the dot product of a respondent vector and

an object vector is no longer the weighted average of attributes on different dimensions.

2.2.2 A New Multidimensional Model

The unidimensional pairwise comparison models discussed above have important limitations. They

either assume no perceptual differences between respondents, or they assume that respondents only

vary in the ability or sensitivity to discern the object attribute differences. Moreover, the unidimen-
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sional attribute assumption is overly strong when respondents evaluate objects on more than one

latent dimension. Further, respondents may differentially weight the attributes that correspond to

different latent dimensions.

Existing multidimensional pairwise comparison models are difficult to intepret due to their lack

of constraints on the respondent-specific parameters. When respondent-specific parameters are not

constrained to be unit-length non-negative vectors, these parameters cannot be easily viewed as

dimension-specific weights. In addition, the existing models do not allow for any clustering among

the respondent-specific parameters that would represent shared perceptual frameworks among re-

spondents. To address these issues, we propose a new multidimensional pairwise comparison

model. We detail two versions of this model—each corresponding to a different prior distribution

for the respondent-specific parameters.

In this new model, we operationalize a unit-length weight vector for each respondent with

trigonometric functions. This allows us to model a respondent’s perception of an object as the

weighted average of the object’s attributes on each latent dimension. The model therefore allows

researchers to estimate how multiple latent sub-attributes are aggregated into a general latent at-

tribute, and to assess the extent to which respondents differ in their construction of the general

attribute from the sub-attributes.

In the first version of the model we assume a uniform prior for these respondent-specific pa-

rameters. In the second version, we assume a Dirichlet Process prior on the respondent-specific

parameters. This second model allows researchers to learn how perceptual frameworks cluster

among respondents and how various respondent characteristics relate to respondent perceptions of

the latent attributes in interest.

We begin with the special case of a two-dimensional latent attribute space. Once again, con-

sider a set of J objects {oj}Jj=1. However, we now assume each oj has latent attributes that can

be represented by a location in two-dimensional Euclidean space: θθθj ∈ R2. We assume that re-

spondents differ in the weights they place on each of these two dimensions. More specifically,

respondent i’s judgment depends on a unit-vector g(γi) ≡ (cos(γi), sin(γi))
T with γi ∈ [0, 1

2
π] in
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the following way:

yijj′ ∼ Bernoulli(pijj′)

pijj′ = Φ1(θθθj · g(γi)− θθθj′ · g(γi))

where Φ1(·) is the CDF of a univariate standard normal distribution, and · denotes the dot product

between two vectors. Intuitively, respondent i projects the latent attributes onto g(γi) and then

uses the signed distance between the projected points to compare two objects. This is depicted

graphically in Figure 2.1.
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Figure 2.1: Example of the Two-Dimensional Latent Attribute Model. In the left panel, respondent
1 places much more emphasis on dimension 1 (the horizontal dimension). As a result, this indi-
vidual is slightly more likely to evaluate oj′ as being preferred to oj . In the right panel, respondent
2 gives weight to both of the latent dimensions with slightly more weight placed on dimension 2
(the vertical dimension). As a result, this individual is much more likely to evaluate oj as being
preferred to oj′ .

A semi-conjugate prior distribution for θθθj is:

θθθj
iid∼ N2(0, I2) j = 1, . . . , J.

A number of priors for γγγ are reasonable. We consider two, and introduce the two versions of
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the new model in the following subsections.

2.2.2.1 Uniform Prior

The most intuitive prior on γi is the uniform prior:

γi
iid∼ Unif(0, 1

2
π) i = 1, . . . , N.

This specification has the advantage of simplicity but it does not allow for the possibility that

γi is equal to γi′ for any two individuals i and i′. Such grouping may be desirable if we are

interested in making inferences about the extent to which respondents share the same perceptual

framework for evaluating the latent attributes in question. Further, allowing γi to equal γi′ with

positive probability is also useful in situations where respondents only rate a small-to-moderate

number of paired comparisons. In these situations, allowing some form of clustering among the γ

parameters will lower the variance of the resulting estimates of the γ parameters.

2.2.2.2 Dirichlet Process Prior

An alternative is to assume that each γi is drawn from a distribution G that is itself drawn from a

Dirichlet process. More formally,

γi
iid∼ G i = 1, . . . , N

G ∼ DP(αG0)

where α ∈ R+ is a concentration parameter and G0 is the centering distribution, which is speci-

fied as Unif(0, 1
2
π). α could be either fixed at a constant value or given a prior distribution and

estimated. If α is to be estimated, then we assume a Gamma prior distribution for α:

α ∼ Gamma(a, b)
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While the Dirichlet process prior for γγγ complicates estimation, it has the advantage of allowing for

the possibility of perceptual clustering among respondents.

The new models can be generalized to d > 2 dimensions by assuming that each θθθj ∈ Rd, and

the perceptual unit-vectors g(γγγi) are constrained to lie in the positive orthant of Rd. γγγi would be

(d − 1)-dimensional in this case with each element being an angle in the positive orthant. For

example, if d = 3, then we can use [γi1 γi2]T to represent a unit-length vector in the positive

orthant, [cos(γi1) cos(γi2), cos(γi1) sin(γi2), sin(γi1)]T . The MCMC algorithms we use for

fitting these two versions of the model are discussed in the next section.

2.3 Markov Chain Monte Carlo Algorithm

In this section, we detail the samplers for the two versions of the new model.

2.3.1 Sampler for the First Version of the New Model

The sampler for the first version of the new model consists of a Gibbs sampler component and a

random walk Metropolis-Hastings (MH) sampler component. We use the Gibbs sampler to sample

θθθj’s and the augmented parameters, y∗ijj′’s. We use the random walk MH sampler to sample γi’s.

2.3.1.1 Sample y∗ijj′

We use the data augmentation method in Bayesian statistics to replace the binary choice data points

with continuous values (Albert and Chib, 1993, 1995). A binary choice data point has the following

Bernoulli distribution:

yijj′ ∼ Bernoulli(pijj′)

pijj′ = Φ1(θθθj · g(γi)− θθθj′ · g(γi))

We define a continuous latent attribute difference, y∗ijj′ , to correspond every binary data point, yijj′ .
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We use εijj′ ∼ N(0, 1) to denote an i.i.d error term. Therefore, yijj′ = 1 is equivalent to a positive

attribute difference between object j and object j′ for respondent i: y∗ijj′ = θθθj ·g(γi)−θθθj′ ·g(γi) +

εijj′ > 0. Likewise, yijj′ = 0 is equivalent to a negative attribute difference between object j and

object j′ for respondent i: y∗ijj′ = θθθj · g(γi) − θθθj′ · g(γi) + εijj′ < 0. Without loss of generality,

we impose a truncated standard normal distribution on y∗ijj′ . The sign of y∗ijj′ must be equal to the

sign of the corresponding yijj′ − 1
2
. Given the current values of θθθj ,θθθ′j and γi, we can sample y∗ijj′

from the following distribution:

y∗ijj′ ∼


N
(
θθθj · g(γi)− θθθj′ · g(γi), 1

)
I(y∗ijj′ > 0), if yijj′ = 1

N
(
θθθj · g(γi)− θθθj′ · g(γi), 1

)
I(y∗ijj′ < 0), if yijj′ = 0

whereN
(
θθθj ·g(γi)−θθθj′ ·g(γi), 1

)
I(y∗ijj′ > 0) is a univariate truncated normal distribution, which

only takes positive values. Similarly, N
(
θθθj · g(γi) − θθθj′ · g(γi), 1

)
I(y∗ijj′ < 0) is a univariate

truncated normal distribution, which only takes negative values.

2.3.1.2 Sample θθθj

For sampling the values of θθθj , we need to do careful bookkeeping of all the pairwise comparison

tasks that involve object j. Let’s use Mj to denote the number of all the unique comparison tasks

involving object j. Accordingly, we need to record the sign of θθθj , the counterpart object attribute

θθθj′ , the respondent attribute γi, and the augmented parameter y∗ijj′ or y∗ij′j (depending on which

side object j shows in this task) in each one of the Mj tasks.

We use the rows of matrix Θ̃ΘΘ to store the counterpart object attribute θθθj′’s in all the comparison

tasks involving object j. We use vector γ̃γγj to store the respondent attribute γi’s in all the compar-

ison tasks involving object j. We use vector ỹyy∗j to store the augmented parameter y∗’s in all the

comparison tasks involving object j. When object j shows up in a comparison task, it either shows

as the left-side choice or right-side choice. For a unique comparison task, we denote the sign of

object j as +1 if it’s the left-side option, or as −1 if it’s the right-side option. We use vector sssj to
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store the signs of object j in all the comparison tasks involving object j. These four containers are

filled in a specific order so that the m’th element or row of the four containers correspond to the

parameters for the m’th comparison task involving object j.

To illustrate the relationship between θθθj , Θ̃ΘΘj , γ̃γγj , and ỹyy∗j , we write out the equation representing

the m’th comparison involving object j.

θθθj ·
(
sssj[m]× g(γ̃γγj[m])

)
+ error term = ỹyy∗j [m] +

(
sssj[m]×

(
Θ̃ΘΘj[m] · g(γ̃γγj[m])

))
where [m] indicates the m’s element of a vector or the m’s row of a matrix, and the error term has

an i.i.d standard normal distribution.

We can write a similar equation for every comparison task involving object j. The left hand side

of the equation is a dot product of θθθj and another vector, and the right hand side of the equation is

a scalar. For m = 1, 2, · · · ,Mj , we repeat the same algebraic manipulation in the above equation.

We compute sssj[m] × g(γ̃γγj[m]), and store the resulting vector in the m’th row of matrix XXXj . We

compute ỹyy∗j [m]+
(
sssj[m]×

(
Θ̃ΘΘj[m]·g(γ̃γγj[m])

))
, and store the resulting value in them’th element of

vector zzzj . Then we can express the distribution of zzzj with the multidimensional normal distribution

below.

zzzj︸︷︷︸
Mj×1 vector

∼ NMj

(
XXXj︸︷︷︸

Mj×2 matrix

× θθθj︸︷︷︸
2×1 vector

, IMj

)
θθθj has a semi-conjugate bivariate normal prior distribution.

θθθj ∼ N2(0, I2)

Then, we are able to derive the conditional posterior of θθθj as follows:

θθθj|XXXj, zzzj ∼ N2

((
XXXT

jXXXj + I2

)−1

XXXT
j zzzj,

(
XXXT

jXXXj + I2

)−1
)
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2.3.1.3 Sample γi

For sampling the values of γi, we need to do careful bookkeeping of all the pairwise comparison

tasks that involve respondent i. Let’s use Mi to denote the number of all the unique comparison

tasks involving respondent i. Accordingly, we need to record the left-side object attribute θθθj , the

right-side object attribute θθθj′ , and the augmented parameter y∗ijj′ in each one of the Mi tasks.

We use the rows of matrix Θ̃ΘΘi to store the left-side object attribute θθθj’s in all the comparison

tasks involving respondent i. We use the rows of matrix Θ̃ΘΘ
′
i to store the right-side object attribute

θθθj′’s in all the comparison tasks involving respondent i. We use vector ỹyy∗i to store the augmented

parameter y∗’s in all the comparison tasks involving respondent i. These three containers are

filled in a specific order so that the m’th element or row of the three containers correspond to the

parameters for the m’th comparison task involving respondent i.

Given the current values of γ(t)
i , Θ̃ΘΘi, and Θ̃ΘΘ

′
i, the density function of ỹyy∗i is the product of Mi

normal distribution densities:

L(ỹyy∗i |γ
(t)
i , Θ̃ΘΘi, Θ̃ΘΘ

′
i) =

Mi∏
m=1

φ1(ỹyy∗i [m]; Θ̃ΘΘi[m] · g(γ
(t)
i )− Θ̃ΘΘ

′
i[m] · g(γ

(t)
i ), 1)

where [m] indicates the m’th element of a vector or the m’th row of a matrix, and φ1(·;µ, σ2) is

the PDF of a univariate normal distribution with mean µ and variance σ2.

We use a random walk MH sampler to sample γi, and we sample each γi separately for i =

1, 2, · · · , I . We generate a random walk step, τ , from a uniform distribution, τ ∼ Unif(−δ, δ). δ

is the positive tuning parameter that determines the accepting rate of the random walk MH sampler.

(Chib and Greenberg, 1995a) The proposed new value of γi is γ(t+1)
i = γ

(t)
i + τ . We plug γ(t+1)

i in

the density function, and get L(ỹyy∗i |γ
(t+1)
i , Θ̃ΘΘi, Θ̃ΘΘ

′
i).

Due to the uniform prior on γi, the acceptance ratio, r, is determined only by the ratio of the

likelihoods.

r = min

(
1,
L(ỹyy∗i |γ

(t+1)
i , Θ̃ΘΘi, Θ̃ΘΘ

′
i)

L(ỹyy∗i |γ
(t)
i , Θ̃ΘΘi, Θ̃ΘΘ

′
i)

)
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With probability r, we accept the proposed new γ
(t+1)
i , and with probability 1− r, we reject it.

2.3.2 Sampler for the Second Version of the New Model

The sampler for the second version of the new model shares the same steps for sampling y∗ijj′ and

θθθj in the first version. We only introduce the rest of the steps in the sampler for the second version

of the new model, given the current values of y∗ijj′’s and θθθj’s. We assume a Dirichlet process prior

on γi. Before specifying the sampler for γi, we compare two approaches to implement a Dirichlet

process Mixture model: the collapsed sampler and the blocked Gibbs sampler (Müller, Rodriguez

et al., 2013).

The collapsed sampler approach analytically computes the probability for assigning a unit to

a cluster by integrating out the parameters characterizing each cluster (Ferguson, 1973; Escobar,

1994; MacEachern, 1994; Escobar and West, 1995; MacEachern and Müller, 1998; Neal, 2000).

This approach works well with conjugate priors, and cleverly uses the integral trick to account

for infinite values of the cluster parameters when deciding a cluster assignment probability. The

collapsed sampler has wide applications in various fields. The limitation of the collapsed sampler

lies in the relative difficulty for it to work with non-conjugate priors.

The blocked Gibbs sampler has its theoretical foundation in the stick-breaking process repa-

rameterizaton of the Dirichlet process (Sethuraman, 1994; Ishwaran and Zarepour, 2000; Ishwaran

and James, 2001). The blocked Gibbs sampler further simplifies the sampling procedure by assum-

ing a finite number of candidate clusters to start with (Müller, Rodriguez et al., 2013). There are

other augmented variables in the blocked Gibbs sampler to facilitate large clusters to grow larger

and small clusters to disappear. Even if we assume a large number of finite candidate clusters at the

beginning, the block Gibbs sampler will eventually converge to a small number of clusters as the

MCMC mixes. Therefore, the block Gibbs sampler represents a close and efficient approximation

to the original Dirichlet process with infinite candidate clusters.

Due to the non-conjugate prior employed on γi, we use the block Gibbs sampler for sampling

γi in the second version of the new model. In this subsection, we first specify the Dirichlet process
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prior on γi. Then we introduce the sampling steps for the Dirichlet process part of the second

version of the new model.

We assume a finite maximum number of clusters K. We denote each cluster membership of

respondent i as Li, Li ∈ {1, 2, · · · , K}. Cluster k is characterized by parameter, γk. In contrast

to the first version of the new model where each respondent has a unique γi, different respondents

may share the same γk if they are in the same cluster k in the second version. All the γk’s have the

Dirichlet process prior.

γk
iid∼ G k = 1, . . . , K

G ∼ DP(αG0)

where α ∈ R+ is a concentration parameter and G0 is the centering distribution, which is specified

as Unif(0, 1
2
π).

Without considering any density function, we devise an augmented cluster weight parameter,

ωk. The purpose of ωk’s is to induce sparsity in clustering, so that large clusters tend to grow

larger and small clusters tend to disappear. The prior for the vector ωωω is a generalized Dirichlet

distribution (Ishwaran and James, 2001; Connor and Mosimann, 1969). ωk is generated from a

stick-breaking process, for k = 1, 2, ..., K, and is only determined by the current sizes of all the

clusters.

To express the density function of the augmented parameters, y∗ijj′’s, associated with respondent

i, conditioning on respondent i being in cluster k, we need to use the notations elaborated in the

last section, Θ̃ΘΘi, Θ̃ΘΘ
′
i, and ỹyy∗i . Given respondent i being in cluster k with γk, the conditional density

function of ỹyy∗i is the product of Mi normal distribution densities:

L(ỹyy∗i |γk, Θ̃ΘΘi, Θ̃ΘΘ
′
i) =

Mi∏
m=1

φ1(ỹyy∗i [m]; Θ̃ΘΘi[m] · g(γi)− Θ̃ΘΘ
′
i[m] · g(γk), 1)

Both the cluster weight, ωk, and the conditional density of respondent i’s augmented param-

eters, ỹyy∗i , given respondent i being in cluster k, contribute to the probability of assigning respon-

dent i to cluster k. We denote the probability of assigning respondent i to cluster k as qik. For
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k = 1, 2, · · · , K, we compute qik as follows:

qik ∝ ωkL(ỹyy∗i |γk, Θ̃ΘΘi, Θ̃ΘΘ
′
i)

K∑
k=1

qik = 1

The cluster label for respondent i has a categorical distribution:

Li ∼ Categorical(qi1, qi2, · · · , qiK)

We can supply a fixed value for the precision parameter, α. Or we can treat α as a parameter

to estimate based on the data. In the latter case, we put a conjugate Gamma prior on α with shape

a and rate b:

α ∼ Gamma(a, b)

In the rest of this subsection, we demonstrate the steps to sample the parameters above.

2.3.2.1 Sample γk

Given the current cluster memberships of all the respondents, we update each cluster’s γk with

either a mini random walk Metropolis-Hastings sampler or a simple draw from the prior. If cluster

k is empty, then we don’t have any empirical data for updating γk. We simply draw a new γk from

Unif(0, π
2
). If cluster k has members, we treat these respondents and their associated Θ̃ΘΘi, Θ̃ΘΘ

′
i, and

ỹyy∗i as belonging to cluster k. Then we use a random walk MH sampler to update γk. Theoretically,

we can use a one-step MH sampler for each cluster, and the MCMC should eventually traverse to

the mode of each γk. In order to improve the efficiency of MCMC, we do multiple steps of MH

sampler and update γk with the last-step value. We need to specify the iteration number and tuning

parameters for these mini MH samplers.

In each iteration within a mini MH sampler, we do the following steps. Given the current value

of γ(t)
k , {Θ̃ΘΘi}i:Li=k, and {Θ̃ΘΘ′i}i:Li=k, the conditional density of {ỹyy∗i }i:Li=k is the product of multiple
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normal distribution densities:

L({ỹyy∗i }i:Li=k|γ
(t)
k , {Θ̃ΘΘi}i:Li=k, {Θ̃ΘΘ

′
i}i:Li=k)

=
∏
i:Li=k

Mi∏
m=1

φ1(ỹyy∗i [m]; Θ̃ΘΘi[m] · g(γ
(t)
k )− Θ̃ΘΘ

′
i[m] · g(γ

(t)
k ), 1)

where [m] indicates the m’th element of a vector or the m’th row of a matrix, and φ1(·) is the PDF

of a univariate normal distribution.

We generate a random walk step, τ , from a uniform distribution, τ ∼ Unif(−δ, δ). δ is the

positive tuning parameter that determines the accepting rate of the mini random walk MH sampler.

The proposed new value of γk is γ(t+1)
k = γ

(t)
k + τ . We plug γ(t+1)

k in the density function, and get

L({ỹyy∗i }i:Li=k|γ
(t+1)
k , {Θ̃ΘΘi}i:Li=k, {Θ̃ΘΘ

′
i}i:Li=k).

Due to the uniform prior on γk, the acceptance ratio, r, is determined only by the ratio of the

density functions.

r = min

(
1,
L({ỹyy∗i }i:Li=k|γ

(t+1)
k , {Θ̃ΘΘi}i:Li=k, {Θ̃ΘΘ

′
i}i:Li=k)

L({ỹyy∗i }i:Li=k|γ
(t)
k , {Θ̃ΘΘi}i:Li=k, {Θ̃ΘΘ

′
i}i:Li=k)

)

With probability r, we accept the proposed new γ
(t+1)
k , and with probability 1− r, we reject it.

We store the last-step value γ(T )
k , and update the old γk with γ(T )

k . We repeat this process for each

cluster, until we finish updating all the γk’s.

2.3.2.2 Sample ωk

Given the current respondents’ cluster memberships and each cluster’s size, we use a stick-breaking

process to update ωk’s. We denote the size of cluster k as ζk. To generate ωk, we need to introduce

auxiliary parameters, Vk, for k = 1, 2, · · · , K − 1. Given the current cluster sizes, ζk’s, we first

generate the auxiliary parameters, Vk as below.

Vk ∼ Beta(1 + ζk, α +
K∑

l=k+1

ζl), for k = 1, 2, · · · , K − 1
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Then we update ωk’s according to the following formula:

ω1 = V1

ωk = Vk

k−1∏
l=1

(1− Vl), for k = 2, · · · , K − 1

ωK =
K−1∏
l=1

(1− Vl) = 1−
K−1∑
l=1

ωl

2.3.2.3 Sample Li

Given the current value of γk for cluster k, we compute the conditional density, L(ỹyy∗i |γk, Θ̃ΘΘi, Θ̃ΘΘ
′
i),

for respondent i to be in cluster k. We then take the product of ωk and L(ỹyy∗i |γk, Θ̃ΘΘi, Θ̃ΘΘ
′
i), and use it

to form the categorical distribution below to draw the new cluster label, Li, for respondent i, from

the discrete cluster label set, {1, 2, · · · , K}.

Li ∼ Categorical(qi1, qi2, · · · , qiK)

qik ∝ ωkL(ỹyy∗i |γk, Θ̃ΘΘi, Θ̃ΘΘ
′
i)

K∑
k=1

qik = 1

2.3.2.4 Sample α

The vector ωωω has a generalized Dirichlet distribution prior, and the concentration parameter α is a

parameter in this prior. The conditional distribution of α, given the current ωωω, has the kernel of a

Gamma distribution: f(α|ωωω) ∝ αK−1ωαK = αK−1 exp
(
− (−α logωK)

)
(Ishwaran and Zarepour,

2000). Given the conjugate Gamma prior on α, α ∼ Gamma(a, b), we can express the conditional

posterior for α as follows:
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α|ωωω ∼ Gamma(a+K − 1, b− logωK)

2.4 Simulation Study

We conduct simulation studies to illustrate how the samplers for the two versions of the new model

work. The experiments show that both versions of the new model are able to recover the true latent

variable values from the observed binary choice data. For both versions of the new model, we

specify four configurations of respondent number, I , and object number, J : (I = 40, J = 40), (I =

40, J = 80), (I = 80, J = 40), (I = 80, J = 80). For each configuration, we repeat the simulation

steps below for 50 times, so we end up with 50 simulated data sets for each configuration.

2.4.1 Simulation Results for the First Version of the New Model

For each simulation data set with respondent number I and object number J , we let each re-

spondent compare round(
0.03J(J − 1)

2
) object pairs. We generate the true θθθj’s from a bivariate

standard normal distribution. We generate γi’s from a uniform distribution, γi
i.i.d∼ Unif(0, π

2
). We

generate respondent i’s binary choice between object pair j and j′, yijj′ , in the following way:

yijj′ ∼ Bernoulli(pijj′)

pijj′ = Φ1(θθθj · g(γi)− θθθj′ · g(γi))

Before fitting the first version of the new model on a simulated data set, we generate the starting

values of θθθj’s from a bivariate standard normal distribution. We generate the starting values of

γi’s from a uniform distribution, Unif(0, π
2
). After some trial runs, we set the random walk MH

sampler tuning parameter as δ = 0.5. We run 2500 iterations with the first 500 iterations as burnins.

We thin the MCMC chain by 2.

The simulation results show that the sampler for the first version of the new model is able
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to recover the true latent variable values based a simulated binary choice data set. Moreover, as

either I or J grows, a simulation data set provides more information about the latent variables,

and the sampler for the first version of the new model also achieves higher accuracy in latent

variable estimation. We use two measures to gauge how well the model can uncover the true latent

variables values: the correlations between the estimated parameters and the true values, and the

Mean Squared Errors (MSE) of the estimated parameters. We compute the correlations and MSEs

for the results from each simulation data set under each simulation configuration.

As shown by Figure 2.2 through Figure 2.5, the estimated γ parameters and θ parameters have

consistently high correlations with the true values, and low MSE values across simulation data

sets and simulation configurations. Under the simulation configuration with the least information

(I = 40 and J = 40), the mode of the correlations between the estimated γ’s and their true

values is around 0.85, and the mode of the MSEs is around 0.09. As the information in simulation

data sets grows, the correlation mode grows to about 0.95, and the MSE mode drops to about 0.03.

Similarly, under the simulation configuration with I = 40 and J = 40, the mode of the correlations

between the estimated θ’s and their true values is around 0.9, and the mode of the MSEs is around

0.25. As the simulation data set size grows, the correlation mode grows to about 0.97, and the

MSE mode drops to about 0.07.
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Figure 2.2: Correlation between Estimated γ and True γ for the First Version of the New Model.
Under the simulation configuration with I = 40 and J = 40, the mode of the correlations between
the estimated γ values and their true values is around 0.85. As the simulation data set size grows,
the correlation mode grows to about 0.95.
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Figure 2.3: MSE of Estimated γ for the First Version of the New Model. Under the simulation
configuration with I = 40 and J = 40, the mode of the MSEs of the estimated γ values is around
0.09. As the simulation data set size grows, and the MSE mode drops to about 0.03.
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Figure 2.4: Correlation between Estimated θ and True θ for the First Version of the New Model.
Under the simulation configuration with I = 40 and J = 40, the mode of the correlations between
the estimated θ values and their true values is around 0.9. As the simulation data set size grows,
the correlation mode grows to about 0.97.
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Figure 2.5: MSE of Estimated θ for the First Version of the New Model. Under the simulation
configuration with I = 40 and J = 40, the mode of the MSEs of the estimated θ values is around
0.25. As the simulation data set size grows, the MSE mode drops to about 0.07.
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2.4.2 Simulation Results for the Second Version of the New Model

For each simulation data set with respondent number I and object number J , we let each re-

spondent compare round(
0.03J(J − 1)

2
) object pairs. We generate the true θθθj’s from a bivariate

standard normal distribution. We generate γi’s from a Categorical distribution among three unique

values, γi
i.i.d∼ Categorical(1

3
, 1

3
, 1

3
). We draw the three unique values from Unif(0, π

2
).3 We gen-

erate respondent i’s binary choice between object pair j and j′, yijj′ , in the following way:

yijj′ ∼ Bernoulli(pijj′)

pijj′ = Φ1(θθθj · g(γi)− θθθj′ · g(γi))

Before fitting the second version of the new model on a simulated data set, we generate the starting

values of θθθj’s from a bivariate standard normal distribution. We set the maximum cluster number at

20. We use the evenly distanced sequence of values from 0.03 to
π

2
− 0.03 as the starting values of

γi’s. After some trial runs, we set the random walk MH sampler tuning parameter as δ = 0.5. We

use 300 iterations for a mini-MCMC step for updating the γ value for an existing cluster. We don’t

fix the α value. Instead, we set a = 0.01 and b = 1 in the prior distribution for α, Gamma(a, b).

We run 2500 iterations with the first 500 iterations as burnins. We thin the MCMC chain by 2.

The simulation results show that the sampler for the second version of the new model is able to

recover the true latent variable values. Moreover, as a simulation data set provides more informa-

tion about the latent variables, the sampler for the second version of the new model also performs

better at latent variable estimation. Similarly to the simulation study on the first version of the new

model, we compute the correlations and MSEs for the results from each simulation data set under

each simulation configuration.

As shown by Figure 2.6 through Figure 2.9, the estimated γ values and θ values have consis-

tently high correlations with the true values, and low MSE values across simulation data sets and

3We make sure that any two unique values are not too close to each other. Namely, we make sure that the absolute
difference between any unique value pair is greater than

π

8
.
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simulation configurations. Under the simulation configuration with I = 40 and J = 40, the mode

of the correlations between the estimated γ values and their true values is around 0.88, and the

mode of the MSEs is around 0.07. As the information in a simulation data set grows, the corre-

lation mode grows to about 0.99, and the MSE mode drops to about 0.01. Similarly, under the

simulation configuration with I = 40 and J = 40, the mode of the correlations between the esti-

mated θ values and their true values is around 0.9, and the mode of the MSEs is around 0.25. As

the simulation data set size grows, the correlation mode grows to about 0.98, and the MSE mode

drops to about 0.05.
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Figure 2.6: Correlation between Estimated γ and True γ for the Second Version of the New Model.
Under the simulation configuration with I = 40 and J = 40, the mode of the correlations between
the estimated γ values and their true values is around 0.88. As the simulation data set size grows,
the correlation mode grows to about 0.99.
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Figure 2.7: MSE of Estimated γ for the Second Version of the New Model. Under the simulation
configuration with I = 40 and J = 40, the mode of the MSEs of the estimated γ values is around
0.07. As the simulation data set size grows, the MSE mode drops to about 0.01.
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Corr b/w Estimated θ & True θ, I=40, J=40
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Figure 2.8: Correlation between Estimated θ and True θ for the Second Version of the New Model.
Under the simulation configuration with I = 40 and J = 40, the mode of the correlations between
the estimated θ values and their true values is around 0.9. As the simulation data set size grows,
the correlation mode grows to about 0.98.
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Figure 2.9: MSE of Estimated θ for the Second Version of the New Model. Under the simulation
configuration with I = 40 and J = 40, the mode of the MSEs of the estimated θ values is around
0.25. As the simulation data set size grows, the MSE mode drops to about 0.05
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2.5 Modeling the Perceived Truthfulness of Public Statements

on COVID-19

One important challenge in combating the COVID-19 pandemic is to help the public identify

scientific information and to rein in the spread of misinformation (Galvão, 2020). The COVID-

19 “infodemic”, which stands for the “overabundance of information—some accurate and some

not—that occurs during an epidemic”, has great implications for the global efforts in fighting the

COVID-19 pandemic (Eysenbach, 2020). Rumors, stigma, and conspiracy theories about COVID-

19 have caused damage across the world (Islam et al., 2020). To better understand how COVID-19

misinformation spreads, we need to measure and analyze how information about COVID-19 is

perceived by individuals, and what individual characteristics impact the perception. In today’s

environment where COVID-19 is highly politicized (Hart, Chinn and Soroka, 2020), it is valuable

to investigate how individuals perceive the truthfulness of public statements about COVID-19. To

do this we collect original survey data and analyze the data with the new multidimensional pairwise

comparison model proposed above.

More specifically, we focus our attention on the following question: Does the objective truth-

fulness of a statement on COVID-19 or the political valence of the statement better account for in-

dividual perceptions of the truthfulness of the statement? To answer this question, we implemented

a nation-wide online survey that elicited perceptions of truthfulness on 42 public statements on the

COVID-19 pandemic. To minimize cognitive demands on respondents and to eliminate the possi-

bility of differential Likert-type scale usage, our survey asked respondents to compare the relative

truthfulness of pairs of COVID-19 statements.

We hypothesize that perceptions of truthfulness are influenced by two distinct attributes of

the statements: 1) the objective truthfulness of the statements, and 2) the political valence of the

statements. Such multidimensional latent structure of the objects being rated cannot be represented

by standard, unidimensional models for pairwise comparisons data (e.g. Thurstone (1927); Bradley

and Terry (1952)). Therefore, we apply the new multidimensional pairwise comparison model
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above to the survey data, which allows the objects being rated to have a rich structure of latent

attributes and also allows for respondent-specific differences in perception. The remainder of this

section proceeds as follow. First, we describe our data collection procedure and survey design.

Next, we apply the new model to the pairwise comparison data collected in the survey. We report

and compare the analysis results based on both existing unidimensional models and the newly-

proposed multidimensional model.

2.5.1 Data and Survey Design

In this section we briefly discuss the source of the COVID-19 statements used in our survey, and

the design and implementation of the survey.

2.5.1.1 COVID-19 Statements

Since we are interested in the extent to which members of the mass public accurately assess the

truthfulness of statements about COVID-19, it is important that we use fact-checked statements

so as to have an independent measure of the truthfulness of each statement. Our source of these

fact-checked COVID-19 statements is the website https://www.politifact.com.4

PolitiFact catalogs a range of statements that have political content. According to PolitiFact’s

own website:

Each day, PolitiFact journalists look for statements to fact-check. We read transcripts, speeches,

news stories, press releases, and campaign brochures. We watch TV and scan social media.

Readers send us suggestions via email to truthometer@politifact.com; we often

fact-check statements submitted by readers. Because we can’t feasibly check all claims, we

select the most newsworthy and significant ones.5

PolitiFact journalists fact check these statements and categorize the truthfulness of each state-

ment into one of six categories (from most truthful to least truthful): true, mostly true, half true,
4PolitiFact’s Editor-in-Chief, Angie Drobnic Holan, gave us permission to use the PolitiFact data for this survey in

an email on May, 11, 2020.
5
https://www.politifact.com/article/2018/feb/12/principles-truth-o-meter-politifacts-methodology-i/
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mostly false, false, pants on fire.6

We selected 42 statements with the intent of balancing the truthfulness of the statements and

the slant of the statements (left, neutral, right). These statements were made between February 22,

2020 and May 8, 2020. Ideally, we would have used equal numbers statements of left, neutral,

and right-leaning statements from all six truthfulness categories. However, some categories were

sparsely populated and we were forced to dichotomize the truthfulness categories into high truth

(true, mostly true, and half true) and low truth (pants on fire, false, mostly false). This gave us 7

statements in each of the 3× 2 combinations of slant × truthfulness. The full set of 42 statements

along with their truthfulness ratings and slant is presented in Appendix A.1.

2.5.1.2 The Survey

The survey was conducted on July 8, 2020.7 Respondents were recruited from the Lucid Market-

place.8 Quotas were used to make the sample approximate the U.S. voting age population. The

survey was conducted online using the Qualtrics interface.

After a respondent provided their informed consent to continue with the survey, a short training

page was provided to the respondent. This training page made it clear that the questions about the

relative truthfulness of pairs of COVID-19 statements were eliciting the respondent’s belief about

which statement was more truthful when it was stated. The key language here was:

Factual statements can be placed on a line. At one extreme end of the line are statements that

are completely truthful and accurate. At the other extreme end are statements that are inten-

tionally false. Between these two extremes we find statements that contain elements of truth

and falsity and / or half-truths. For each task, you will see two statements on the coronavirus

pandemic. Your task is to read both and to select the statement that you believe was more

truthful when it was stated.
6See https://www.politifact.com/article/2018/feb/12/principles-truth-o-meter-politifacts-methodology-i/ for full description

of PolitiFact’s fact-checking process.
7This survey was judged exempt from review by our university’s IRB (study ID HUM00184241).
8https://luc.id/marketplace/
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After this brief training, each respondent was given a single attention check question that provided

the respondent with two COVID-19 statements and asked them to select both statements.9 Recent

work on attention checks in online surveys suggests that eliminating respondents who fail attention

checks may introduce demographic bias.10 Consequently, we do not exclude respondents who fail

this check. The purpose of including this attention check is solely to encourage respondents to read

the following response prompts carefully.

After the attention check, respondents were asked to report their view of the relative truthful-

ness of COVID-19 statements given to them in randomly selected pairs of statements. Figure 2.10

depicts what this looks like for one randomly selected pair of statments.

After the paired comparisons of COVID-19 statements were given to respondents, the respon-

dents were asked a sequence of demographic, attitudinal, and behavioral questions.

We removed a small number of respondents that Lucid flagged as having a high likelihood

of being fraudulent. We received usable responses from 2,621 respondents. On average, each

respondent gave us their view of the relative truthfulness of just less than 15 pairs of randomly

selected statements. Appendix A.2 provides descriptive statistics on our respondent sample.

2.5.2 COVID-19 Statement Perception Data Analysis Results

Before presenting results from our new model, we present results from simple unidimensional

models. As we show, the unidimensional models obscure the structure that underlies perceptions

of truthfulness of COVID-19 statements. As we see in Section 2.5.2.2, our two-dimensional model

more accurately represents the respondent-level heterogeneity: The responses from some respon-

dents are more highly correlated with the objective truth of the statements, while the responses

from other respondents are more strongly associated with the political valence of the statements.

9The text of the question was: “The following are two statements about the coronavirus pandemic. These state-
ments were made between late February and early May, 2020. We are interested in which statement you believe was
more truthful when it was made. However, for this question, we care more about whether you are paying attention.
Please choose both the first and second statements to indicate you are paying attention.”

10For example, see https://www.qualtrics.com/blog/using-attention-checks-in-your-surveys-may-harm-data-
quality/.
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Figure 2.10: Screen Shot of COVID-19 Statement Comparison Survey.

The latter association varies with the strength of a respondent’s partisanship and political ideology.

2.5.2.1 Results from Unidimensional Models

As a starting point, we fit the simple Thurstone model,

yijj′ ∼ Bernoulli(pijj′)

pijj′ = Φ(θj − θj′)
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, to the pairwise comparison data from our survey.11 Here Φ(·) is the Gaussian cumulative distri-

bution function.

Inspection of the output reveals that this simple model provides a poor fit to the observed data.

For instance, for each observed yijj′ we calculate the in-sample posterior expectation of a correct

classification:

1

M

M∑
m=1

(
I(yijj′ = 1)Φ(θ

(m)
j − θ(m)

j′ ) + I(yijj′ = 0)Φ(θ
(m)
j′ − θ

(m)
j )

)

where m = 1, . . . ,M indexes the MCMC draws. Note that a “correct” classification is simply

defined to be a classification equal to the observed response—it is not necessarily related to whether

respondent i accurately perceived the true truthfulness of statement j relative to statement j′.

The average of these posterior expectations of a correct response, taken over all observed yijj′s,

is 0.52. We can also aggregate to the statement by averaging over respondents. Doing this, we see

that the average probability of a correct classification across all statements is also 0.52, and that no

statement has a probability of being correctly classified greater than 0.56. If we aggregate to the

respondent by averaging over the statement pairs seen by each respondent, we see that the average

probability of a correctly classified response by a respondent is also 0.52. Further, we find that

26% of respondents have probabilities of a correctly classified statement less than 0.5 and only

0.3% of respondents (8 out of 2,621) have probabilities of a correctly classified statement greater

than 0.6.

We also examine how the posterior means of the θ parameters correlate with the objective

truthfulness and partisan valence of the statements. To do this we give a “pants-on-fire” statement

a value of 0, a “false” statement a value of 1, a “mostly-false” statement a value of 2, a “half-true”

statement a value of 3, a “mostly-true” statement a value of 4, and a “true” statement a value of

5. We then calculated the Spearman rank correlation between these truthfulness ratings and the

posterior means of the θ parameters. This produced a rank correlation of 0.42.

11To identify the model, we constrained θ1014 to be negative and constrained θ1015 = 0.25. The remaining θ
parameters were assumed to have independent standard normal prior distributions. The MCMC sampler was run for
120,000 iterations with the first 20,000 discarded as burn-in iterations. Every 10th iteration was stored.
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Similarly, we gave right-valence statements a value of 1, neutral-valence statements a value of

0, and left-valence statements a value of -1. Then we calculated the Spearman rank correlation

between the partisan-valence of the statements and the posterior means of the θ parameters. This

resulted in a rank correlaton of -0.17.

The simple unidimensional Thurstone model produces estimates of the statement-specific pa-

rameters that are only weakly correlated with objective truth and even more weakly correlated with

the other factor that we expect to structure responses—the political valence of the statements.

As noted above, a natural extension of the basic Thurstone model is to introduce a respondent-

specific parameter βi that allows for differential ability to perceive differences between statements.

This produces the model:

yijj′ ∼ Bernoulli(pijj′)

pijj′ = Φ(βi[θj − θj′ ]).

We fit this model to the pairwise comparisons data from our survey.12

If we calculate the in-sample posterior expectation of a correct classification for this model

in the analogous way that we did for the simple Thurstone model, we find that the average of

these posterior expectations of a correct response, taken over all observed yijj′s, is 0.55. While

the inclusion of the respondent-specific β parameters ensures that the respondent-level predictions

match the observed data at least 50% of the time, it is still the case that 35% of the observed yijj′s

have posterior probabilities of a correct classification less than 0.50. At the statement level, we see

that, on average, statements are classified correctly 55% of the time with only 2 of 42 statements

having a probability of correct classification greater than 0.6.

The Spearman rank correlation between the posterior means of the statement-specific θ pa-

rameters and the ojective truthfulness of the statements is 0.32, which is lower than in the simple

Thurstone model. However, the rank order correlation between the posterior means of θ and the

12To identify the model, we constrained θ1014 to be negative and constrained θ1015 = 0.25. The remaining θ param-
eters were assumed to have independent standard normal prior distributions. The β parameters were also assumed to
have independent standard normal priors. The sign of the β parameters was not restricted. The MCMC sampler was
run for 120,000 iterations with the first 20,000 discarded as burn-in iterations. Every 10th iteration was stored.
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partisan valence of the statements is -0.73. Even though we constrained the model so that a neutral-

valence, high-truth statement was to the right of 0 and a neutral valence, low-truth statement was

to the left of 0, the resulting estimates of θ are more strongly correlated with the partisan valence

of the statements than the objective truthfulness of the statements.

Indeed, this warping of truthfulness at the responent level can be seen in the posterior means

of the respondent-specific β parameters. 38% of respondents have a β parameter with a posterior

mean less than 0. In other words, 38% of respondents are, on average, viewing objective truth as

subjective falsity, and vice versa.

2.5.2.2 Results from the Two-Dimensional Dirichlet Process Model

The results from the simple unidimensional models are not fully satisfying. The Thurstone model

does a poor job of representing observed patterns in the data, and produces estimates of statement-

specific parameters that only weakly correlate with objective truthfulness. The inclusion of a

respondent-specific parameter slighly improves model fit at the expense of weakening the already

weak correlation between the statement-specific parameter estimates and objective truth.

We fit the two-dimensional Dirichlet process model discussed in Section 2.2.2.2 to the data in

the hope that this provides a better fit than the unidimensional models. 13

Calculating the in-sample posterior expectation of a correct classification for this model in

the analogous way that we did for the unidimensional models above, we find that the average

of these posterior expectations of a correct response, taken over all observed yijj′s, is 0.57. The

respondent-level predictions and statement-level predictions also match the observed data 57% of

the time. These numbers are slightly better than the values of 0.52 and 0.55 we achieved with the

unidimensional models.

However, this slight improvement in in-sample predictive accuracy is not the main advantage

13To identify the model, we constrained θθθ1015 to be equal to 0.25 on the first dimension and greater than 0 on the
second dimension; we constrained θθθ1004 to be less than 0 on the first dimension; and we constrained θθθ1042 to be greater
than 0 on the first dimension. The remaining θθθ parameters were assumed to have independent bivariate normal prior
distributions with mean 0 and variance-covariance matrices equal to identity matrices. G0 was set to Uuni(0, 12π) and
the concentration parameter α was assumed to follow a Gamma(1, 1) distribution. The MCMC sampler was run for
440,000 iterations with the first 40,000 discarded as burn-in iterations. Every 40th iteration was stored.
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of the two-dimensional Dirichlet process model. The main advantage is that it allows us to un-

cover a more nuanced understanding of how certain types of respondents assess the truthfulness of

statements. More specifically, in this application it allows us to see how some respondents make as-

sessments of truthfulness based on their partisanship or political ideology, while other respondents

seem to be more guided by the objective truthfulness of the statements.
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Figure 2.11: Posterior Means of θθθ and the Minimum, Maximum, and Median Posterior Means of
g(γ). In each panel, the points correspond to the posterior means of the θθθ parameters for the 42
statements. The arrows correspond to the g(γ) vectors at the minimum posterior mean of γi, the
maximum posterior mean of γi, and the median posterior mean of γi for i = 1, . . . , N . In panel
(a), the θθθ points are shaded based on the objective truthfulness of the statements. In panel (b), the
θθθ points are color-coded based on the left-right valence of the statements. Finally, in panel (c),
the θθθ points are coded according to both the objective truthfulness of the statements and the left-
right valence of the statements. Note that projecting the θθθ points onto g(0.77) (0.77 is the median
posterior mean of γi i, . . . , N ) produces values associated with the objective truthfulness of the
statements, albeit weakly. On the other hand, projecting the θθθ points onto g(0.18) and g(1.41)
results in points where higher values correspond to more left-leaning and right-leaning valence
respectively.

As a starting point, consider Figure 2.11. This figure plots the posterior means of θθθj for the

j = 1, . . . , 42 statements along with g(0.18), g(0.77), and g(1.41), where 0.18, 0.77, and 1.41 are

the minimum, median, and maximum values of the posterior means of γi, for i = 1, . . . , N respec-

tively. Figure 2.11 allows us to see how three types of respondents (those with γi = 0.18, 0.77 and

1.41) perceive the truthfulness of the statements.

Respondents with γi parameters near the median of 0.77 project the statement-specific θθθ pa-
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rameters onto a dimension that correlates with the objective truthfulness of the statements, albeit

weakly. On the other hand, respondents with γi parameters near the minimum of 0.18 project the

statement-specific θθθ parameters onto a dimension which is positively correlated with the leftward

valence of the statements. Finally, respondents with γi parameters near the maximum of 1.41

project the statement-specific θθθ parameters onto a dimension which is positively correlated with

the rightward valence of the statements.

E[γi|Y]

0.0 0.5 1.0 1.5

0.28 0.32 0.32 0.35 0.4 0.39 0.45 0.4 0.32 0.18 0.06 −0.03 −0.07 −0.09 −0.12

−0.74 −0.72 −0.7 −0.67 −0.62 −0.54 −0.37 −0.03 0.35 0.57 0.73 0.77 0.79 0.79 0.8

Correlation w/ Objective Truth

Correlation w/ Valence

Figure 2.12: Histogram of the Posterior Means of γi for i = 1 . . . , N Along with the Spearman
Rank Correlations Between θθθj ·g(γ) and Objective Truthfulness and Left-Right Valence for Various
Values of γ. Note that respondents whose posterior mean γ parameter is near 0.77 tend to assess
statements primarily based on the objective truthfulness of the statements but that this association
is weak (correlation slightly greater than 0.4). Respondents with γ parameters that are closer to
the extremes of 0.18 and 1.41 assess the truthfulness of the COVID-19 statements in ways that
are strongly associated with the left-right valence of the statements. Further, respondents with
γ parameters greater than approximately 1.1 not only assess the truthfulness of the COVID-19
statements such that right-valence statements are perceived as more truthful, they also assess the
truthfulness of COVID-19 statements in ways that are negatively correlated with the objective
truthfuness of the statements.

While the information in Figure 2.11 is useful, it doesn’t provide information on three impor-
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tant things: a) the distribution of respondent-specific γi parameters, b) the precise strength of the

correlation between particular g(γi) projections and the objective truthfulness of statements, and

c) the precise strength of the correlation between particular g(γi) projections and the left-right

valence of the statements. This information is displayed in Figure 2.12.

Looking at Figure 2.12, three things are apparent. First, most respondents have estimated γ pa-

rameters near the median posterior mean value of 0.77 (the modal estimate of γi is just to the right

of 0.77). There are a smaller number of respondents who have lower estimated γ parameters—

about 16% of the respondents have estimated γ parameters less than 0.5—and there is a still smaller

number of respondents with much larger estimated γ parameters—about 13% have estimated γ pa-

rameters greater than 1.0.

Second, Figure 2.12 presents the correlation between θθθj · g(γ) and the objective truthfulness

of the statements for various values of γ. This is the multidimensional analog to the correlation

between θθθ and objective truthfulness from the unidimensional models discussed in Section 2.5.2.1.

Once again, we give a “pants-on-fire” statement a value of 0, a “false” statement a value of 1, a

“mostly-false” statement a value of 2, a “half-true” statement a value of 3, a “mostly-true” state-

ment a value of 4, and a “true” statement a value of 5. We then calculated the Spearman rank

correlation between these truthfulness ratings and θθθj · g(γ) for the posterior means of θθθ for the 42

statements and 15 equally-spaced values of γ from 0.18 to 1.41. This produces the 15 color-coded

correlations at the top of Figure 2.12.

What we see here is that the γ value that induces the highest correlation with the objective truth

of the statements is γ = 0.70 which gives rise to a correlation of 0.45. γ values less than or equal

to 0.88 give rise to correlations with objective truth that are greater than or equal to 0.28. However,

respondents with γ values greater than or equal to 1.14 tend to rate COVID-19 statements in ways

that are negatively correlated with the objective truth of the statements.

Third, Figure 2.12 presents the correlation between θθθj · g(γ) and the left-right valence of the

statements. As above, we gave right-valence statements a value of 1, neutral-valence statements

a value of 0, and left-valence statements a value of -1. We calculated the Spearman rank correla-
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tion between these left-right valence ratings and θθθj · g(γ) for the posterior means of θθθ for the 42

statements and 15 equally-spaced values of γ from 0.18 to 1.41. This produces the 15 color-coded

correlations at the very top of Figure 2.12.

The resulting pattern of correlations with the left-right valence is stark. Respondents with the

highest values of γ, say above or equal to 1.14, perceive the truthfulness of the COVID-19 state-

ments in a way that positively correlates with the rightward valence of the statements with corre-

lations of 0.77 or above. These same individuals’ evaluations of the truthfulness of the COVID-19

statements are negatively correlated with objective truth. On the other hand, individuals with

the lowest values of γ, say below or equal to 0.35, perceive the truthfulness of the COVID-19

statements in a way that negatively correlates with the rightward valence of the statements with

correlations of -0.70 or below. These individuals’ evaluations of the truthfulness of the COVID-19

statements are weakly positively correlated with the objective truth of the statements.

To summarize, respondents with the modal value of γ are primarily responding to the objective

truthfulness of the COVID-19 statements when evaluating the truthfulness of pairs of statements.

These respondents are not rating statements in ways that are correlated with the left-right valence

of the statements. That said, there is only a weak correlation between the objective truth of the

statements and their subjective perceptions. On the other hand, respondents with γ values at the two

extremes are rating the truthfulness of statements in ways that are strongly associated with left-right

valence of the statements—respondents with low values of γ tend to see left-leaning statements

as more truthful while respondents with high values of γ tend to see right-leaning statements as

more truthful. The objective truth of the statements is less relevant for these respondents than is

the left-right valence of the statements. Indeed, those respondents who tend to see right-leaning

statements as more truthful tend to perceive the truthfulness of the statements in ways that are

slightly negatively correlated with the objective truth of the statements.

We also examine how respondent perceptions of COVID-19 statement truthfulness, as mea-

sured by their estimated γ parameters, correlate with respondent characteristics and behaviors.

Figure 2.13 plots the relationship between the respondent-specific γ estimates and three measures
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related to the political attitudes of respondents: partisanship (as operationalized by an indica-

tor of whether a respondent self-identifies as a strong Republican), ideology (as operationalized

by respondent self-placement on a 7-point Likert-type scale running from 1 = “very liberal” to

7 = “very conservative”), and the slant of news media consumption (as operationalized by re-

spondent self-statement of their preferred news outlet combined with the media bias ratings from

https://www.allsides.com/media-bias/media-bias-ratings). Each panel of

Figure 2.13 plots a local regression estimate of the conditional expectation function of the variable

in question on γi for respondents i = 1, . . . , N .14
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Figure 2.13: Associations Between Posterior Means of γi for i = 1 . . . , N and Respondent Parti-
sanship, Ideology, and Slant of News Media Consumption. The dark orange lines are the posterior
means of local regression predictions averaged over the posterior distribution of γ. The light or-
ange band is the pointwise central 95% credible region for these local regression predictions, again
averaged over the posterior distribution of γ.

Not suprisingly, inspection of Figure 2.13 reveals that rightwing partisanship, ideology, and

news media consumption is increasing in γ. Respondents with the largest values of γ tend to be

the respondents with the most right-leaning political views. Those with the lowest γ values tend to

be the most left-leaning respondents.

We also examine whether respondent-specific γ values (and thus the perceptual framework that

respondents use to evalute the truthfulness of COVID-19 statements) are associated with behaviors

important for public health. More specifically, Figure 2.14 plots the relationship between the

14Each panel was constructed by fitting M local regressions of the variable in question on each of the M posterior
samples of γγγ. The pointwise average of these M estimated regression functions is the dark orange line in each panel.
The light orange band in each panel is the pointwise central 95% credible region for these local regressions (the
empirical 2.5th and 97.5th pointwise percentiles of the M estimated regression functions).
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Figure 2.14: Associations Between Posterior Means of γi for i = 1 . . . , N and Self-Reported
Social-Distancing Behavior and Mask-Wearing Behavior. The dark orange lines are the posterior
means of local regression predictions averaged over the posterior distribution of γ. The light
orange band is the pointwise central 95% credible region for these local regression predictions,
again averaged over the posterior distribution of γ.

respondent-specific γ estimates and a) a measure of a lack of social distancing (operationalized as

0/1 indicator equal to 1 if a respondent said that 21 or more people were 6 feet or closer to them

in the past week), and b) a measure of mask wearing (operationalized as the number of situations,

out of nine possible, where the respondents said they wear a mask). The panels are constructed in

the same way as Figure 2.13.

Figure 2.14 shows that the structure underlying how respondents judge the truthfulness of

COVID-19 statements (as measured by their γ values) is associated with behaviors that have con-

sequences for publich health. Specifically, lack of social distancing is increasing in γ, while mask

wearing is decreasing in γ.
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2.6 Conclusion

In this chapter, we have proposed a new multidimensional pairwise comparison model to mea-

sure multidimensional latent attributes and respondent-specific perceptual parameters. This model

incorporates desirable constraints on respondent-specific parameters, and thereby has much bet-

ter interpretabiltiy than previous multidimensional models. We derive a computationally efficient

MCMC algorithm for estimating the new model and we will make the resulting code available to

the public in the MCMCpack R package.

We apply this new model to original survey data where respondents are asked to judge the

truthfulness of pairs of statements on COVID-19. Our analysis sheds light on how statements

on COVID-19 are perceived by respondents and what respondent characteristics are associated

with the perceptual frameworks used by respondents. Importantly, we find a weak correlation

between the actual truthfulness of a statement and respondents’ perceptions of truthfulness. More

importantly, we find that the political valence of statements is largely responsible for the variation

in perceived truthfulness. Co-partisanship between a respondent and the speaker of a statement

predicts higher perceived truthfulness.

Additional findings directly speak to the puzzle about why and how misinformation on COVID-

19 spreads. Our findings show that individuals generally have a hard time differentiating the sci-

entific information on COVID-19 from the misinformation. Moreover, many respondents rely on

partisanship as a cue to gauge the truthfulness of statements on COVID-19. Among these partisan

respondents, the most rightward-leaning respondents’ tend to view objectively truthful statements

as subjectively false. Finally, we also observe associations between the respondent-specific percep-

tual parameters and respondents’ practice of mask-wearing or social distancing. This shows that

perceptions of information on COVID-19 have powerful consequences for what actions individuals

take to cope with the pandemic.
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CHAPTER 3

Dynamic Dirichlet Process Mixture Model for

Identifying Voting Coalitions on Human Rights Roll

Call Votes in the United Nations General Assembly

3.1 Introduction

In his 2018 address to the United Nations General Assembly (UNGA), President Trump stated

that the United Nations’ body overseeing human rights issues “had become a grave embarrassment

to this institution, shielding egregious human rights abusers while bashing America and its many

friends” (Trump, 2018). Indeed, others have lodged similar critiques of the United Nations’ han-

dling of human rights. Many critiques point out that human rights are highly politicized, making

it difficult for the United Nations to fulfill its original mission of defending human rights (Habibi,

2007; Normand and Zaidi, 2008; Freedman, 2013; Hug, 2016).

One important avenue for countries to make their voices heard on human rights issues is to

vote on human rights resolutions in the UNGA. These human rights resolutions concern both gen-

eral human rights principles, such as the right to development, the use of mercenaries, children’s

and women’s rights, and human rights violation reports on a specific country. Researchers have

analyzed countries’ human rights votes from two main perspectives. First, researchers believe that

countries’ votes on human rights resolutions reflect their individual preferences in terms of human

rights protection, negligence, or violation (Boockmann and Dreher, 2011). Researchers found that
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countries’ domestic political regimes and domestic human rights records are predictive of their

votes on human rights resolutions (Hug and Lukács, 2014). This approach is in line with many

studies that apply multidimensional scaling models or Bayesian IRT models to the UNGA vot-

ing data to estimate countries’ latent preferences in terms of global governance and world affairs

(Voeten, 2000, 2004; Bailey, Strezhnev and Voeten, 2017; Bailey and Voeten, 2018).

Second, other researchers focus on the “peer group” effect. Studies of the United Nations

have shown evidence for “voting blocs” in the UNGA vote data in the early days of the institution

(Hovet, 1958). Namely, there are apparent indications of clustering of states’ voting in the UNGA

(Lijphart, 1963; Newcombe, Ross and Newcombe, 1970; Holloway, 1990). However, most of these

studies take a qualitative approach, and explain this phenomenon in terms of the historical and po-

litical backgrounds. Specifically, researchers of human rights voting in the UNGA and the Human

Rights Council of the UN also contend that “peer groups” of countries affect individual countries’

votes on human rights resolutions (Boockmann and Dreher, 2011; Hug and Lukács, 2014; Hug,

2016). The “peer groups” may arise from geographic closeness, such as regional country groups,

or cultural connections, such as countries sharing the same religion or language. Specifically,

researchers contend that the European Union (EU) member countries tend to coalesce in human

rights voting (Luif, 2003). Other researchers find that member countries of the Organization of

Islamic Cooperation (OIC) are inclined to vote together on human rights issues (Besant and Malo,

2009).

Our study on the human rights votes in the UNGA engages with the “peer group” argument in

the literature. The existing analyses rely solely on observable variables to group countries, such

as geographic region or international organization membership. To the best of our knowledge,

there has been no attempt to learn the latent clustering structure in the UNGA human rights votes

data.1 To better understand the politicization and the challenges of dealing with human rights is-

sues in the UN, we propose a new statistical clustering model to analyze the UNGA human rights

1There are studies aimed at detecting communities based the entire UNGA votes in the network literature (Macon,
Mucha and Porter, 2012; Pauls and Cranmer, 2017; Pomeroy, Dasandi and Mikhaylov, 2019). These studies illustrate
some general community structures in the UNGA, but do not engage the specific topic of UNAG human rights votes.
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vote data. The goal of this study is to inductively identify the voting coalitions in the UNGA hu-

man rights vote data without making assumptions about countries’ political, historical, or cultural

backgrounds.2 We also identify the most polarizing resolutions that divide countries into different

voting coalitions. The latent voting coalition structures and the polarizing resolutions advance our

understanding of the lines of conflict on human rights and the driving force behind the politiciza-

tion of human rights issues in the UNGA. In addition, our study also engages and contributes to

the broad literature on model-based clustering methods for identifying voting blocs (Gormley and

Murphy, 2008; Gormley, Murphy et al., 2008).

In this chapter, we propose a Dynamic Dirichlet Process Mixture (DDPM) model to identify

voting coalitions based on roll call vote data across multiple time periods. We also propose post-

processing methods for analyzing the outputs of the DDPM model. The strength of the Dirichlet

Process Mixture (DPM) model lies in its weak assumptions and flexibility. In this study, the DPM

model assumes an individual voter’s vote on a specific bill as a Bernoulli trial.3 We make less

data generation assumptions than other common models applied to roll call vote data, such as

multidimensional scaling models and Item Response Theory models. In addition, as a Bayesian

non-parametrics clustering algorithm, the DPM model does not require users to pre-specify the

number of clusters for data analyses. Theoretically, the method can identify as many clusters as

there are individual voters. With proper priors, the DPM model lets the data decide how many

clusters there should be. Moreover, as a strength of Bayesian modeling in general, the DPM

model allows researchers to add hierarchical priors on appropriate parameters to model dynamic

dependence.

Many existing roll call vote datasets cover decades of voting records in one institution. The

dynamic nature of the datasets provide important information on the varying numbers of voting

coalitions across time. Intentionally modeling the dynamic dependence of the numbers of voting

coalitions allows the DDPM model to borrow information across time periods, resulting in more

2In this project, the term “voting coalition” is based on statistical patterns in the voting data, and it’s different from
what a “coalition” means in a game-theoretic model.

3In the extreme case where every voter is in her own coalition (cluster), DPM model jointly models NJ Bernoulli
trials, which is equivalent to estimating NJ Bernoulli parameters, for a N × J voting matrix.
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accurately identifying voting coalitions in each period. Aside from the purpose of borrowing infor-

mation across time, the variation and trend of the numbers of voting coalitions across time could

be the direct quantity of interest. For example, the number of voting coalitions in the UNGA hu-

man rights vote data bears on many important topics in international relations, such as polarity

and politicization of human rights issues. To model the dynamic dependence among roll call votes

across periods, we propose a Dynamic Linear Model (DLM) to model the precision parameters

for each period’s DPM. The precision parameter in a period directly reflects a researcher’s prior

belief about how many voting coalitions there should be in this period. The DLM on the precision

parameters adds a dynamic dependence structure on modeling the numbers of voting coalitions

across time.

Due to the label switching problem, interpreting the MCMC output from the DDPM model

can be challenging. To aid applied researchers in analyzing the outputs of the DDPM models, we

propose a Maximum A Posteriori estimation method to extract fixed cluster labels for each voter in

a period based on the posterior samples. Moreover, we propose a visualization method to present

the coalition structure in each time period, based on the posterior probability for any voter pair

to be in the same cluster. We implement the DDPM model and post-processing methods in the

MCMCddpmbb R package, and make it freely available to the public.

The rest of the chapter proceeds as follows: First, we illustrate the model setup for a single

period in a roll call vote setting. Second, we specify the DLM structure to model time dependence

in the data. Third, we outline the sampling scheme for the DDPM model. Fourth, we propose post-

processing methods for analyzing the posterior samples of the DDPM model. Fifth, we show the

DDPM model’s effectiveness at uncovering the true latent variables and its robustness to various

model specifications in multiple simulation studies. Last, we use the DDPM model to analyze the

UNGA human rights roll call vote data after the Cold War.
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3.2 Model Setup for a Single Period

We illustrate the proposed model for a single period in the setting of identifying voting coalitions

(clusters) based on voters’ roll call votes in a parliament-like institution across multiple periods.

The number of time periods is T , i.e., t = 1, ..., T . The number of voters and bills can both vary

across time. For any given time period t, there are It voters, i.e., i = 1, ..., It, and there are Jt bills

(items), i.e., j = 1, ..., Jt. Let vijt be an indicator variable representing the observed vote of voter

i on bill j at time t.

vijt =


1 if voting yea

0 if voting nay

NA if missing

In each time period, a roll call vote matrix VVV t stores all the data. Column i of VVV t stores voter i’s

voting record vector vvvit that consists of 1, 0 or NA. We use Jt independent Bernoulli distributions

to model each vvvit. For the voters belonging to the same cluster l, they share the same Jt Bernoulli

parameters, which are stored in θθθlt. If voter i is in cluster l, then we know vijt ∼ Bernoulli(θljt),

for j = 1, 2, · · · , Jt, and we express the likelihood of voter i’s voting record, vvvit, as follows:

F (vvvit|θθθlt) =
Jt∏
j=1

θ
I(vijt=1)
ljt (1− θljt)I(vijt=0)

where I() is an indicator function.

We use a Beta-Binomial DPM model to cluster voters, which is equivalent to clustering all the

vvvit vectors. We put a Dirichlet Process prior on cluster l’s Bernoulli parameter vector θθθlt:

θθθlt|Gt ∼ Gt

Gt|αt,λλλt ∼ DP (αtG0t(·|λλλt))
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αt is the precision parameter in period t. Gt does not have a specific parametric form but is assumed

to be generated from a Dirichlet process, whose center distribution is G0t. G0t is the product of Jt

independent Beta distributions, acting as the priors for an arbitrary cluster l’s Bernoulli parameter

vector θθθlt. λλλt is a Jt by 2 matrix, the j’th row of which stores the two parameters for the Beta

prior distribution corresponding to bill j in time t. For an arbitrary new cluster l, the prior for its

Bernoulli parameter vector, G0t(θθθlt|λλλt), is expressed as follows:

G0t(θθθlt|λλλt) =
Jt∏
j=1

{ Γ(λ1jt + λ0jt)

Γ(λ1jt)Γ(λ0jt)
θ
λ1jt−1
ljt (1− θljt)λ0jt−1}

We introduce the parameter of direct interest, cit, indicating the cluster affiliation of voter i in

time t. Given λλλt and αt, cit’s are drawn separately across different time periods. When considering

the distribution for cit, we take the current cluster affiliations of all the other voters, ccc−i,t, as given.

Assuming that there are currently Lt existing unique clusters in period t among all the voters except

for voter i, then the cluster affiliation of voter i is determined by a categorical distribution. When

drawing a new value of cit, we know that the drawn value is either one of the existing cluster’s

label, or a new label representing a completely new cluster (vvvit will be the first member of this new

cluster). Therefore, the categorical distribution on cit is defined on all the existing clusters’ labels

and a potentially newly generated cluster’s label. We can express the probability for cit as follows:

p(cit = l, for l ∈ ccc−i,t|ccc−i,t,VVV t) = b
n−i,lt

It − 1 + αt

∫
F (vvvit|θθθlt)dH−i,l(θθθlt)

p(cit 6= ci′t,∀i′ 6= i|ccc−i,t,VVV t) = b
αt

It − 1 + αt

∫
F (vvvit|θθθ0t)dG0t(θθθ0t)

ccc−i,t represents all voters’ cluster affiliations except for voter i’s, cit. b is an appropriate normalizing

constant. n−i,lt is the size of cluster l, not considering voter i. F (vvvit|θθθlt) is the likelihood above,

andH−i,l is the updated prior density of θθθlt based on the Dirichlet Process priorG0t and all the vote
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vectors belonging to cluster l, except for voter i’s. Note that we analytically integrate out θθθlt and

θθθ0t vectors by relying on the conjugate Beta prior, so we never sample θθθ parameters in the MCMC

sampler. The intuition to use the product of cluster l’s size and the likelihood of voter i’s vote vector

is to induce sparsity of cluster assignment. Without considering cluster sizes, assigning each voter

to her own cluster is guaranteed to achieve the largest likelihood for the data. However, identifying

only single-member clusters provides no additional insight beyond the information presented by

the raw data.

In a single period, we draw cit’s with the Chinese Restaurant Process (Blackwell, MacQueen

et al., 1973; Aldous, 1985; Pitman, 1996). The Chinese Restaurant Process induces large clusters

to grow larger and small clusters to disappear. The Chinese Restaurant Process is not a very strong

assumption in itself, because we can theoretically tune the algorithm with the precision parameter,

αt, to achieve a vast possibility of cluster configurations. αt acts as the imaginary cluster size for

a cluster yet to be generated. If αt → 0, then we put all voters in one cluster, which is equivalent

to a completely pooled model. If αt → +∞, then we put each voter in a single-member cluster,

which is equivalent to separately modeling each voter’s vote vector without borrowing information.

We can add proper priors on αt’s to let the data tell how many clusters there should be, and this

modeling strategy reflects the flexibility of DPM.

We assume that the values of λλλt are known a priori. As pointed out in Spirling and Quinn

(2010), roll call vote data usually do not provide enough information for sampling λλλt parameters,

so models that sample values of λλλt are not ideal. This finding is also confirmed by our exploration

with models that sample λλλt with simulated data. Sampling λλλt prevents the posterior samples of

cluster labels from converging to the true values. For this chapter, we assume that all values in

each matrix λλλt are 1. This is equivalent to assuming a uniform(0, 1) prior distribution for all θljt’s.

However, it’s reasonable to assume other values for elements in λλλt based on alternative theories or

prior beliefs.

We assume that a voter’s voting record on a bill is missing at random (Rubin, 1976). The

implication of this assumption is that a missing voting record does not affect estimating any voter’s
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cluster affiliation. For a single period, if voter i’s voting record on bill j is missing (vijt = NA),

then the likelihood of vijt, F (vijt), is a constant in voter i’s cluster affiliation, cit.4 Therefore, vijt

does not affect computing the weight parameters for the categorical distribution for drawing voter

i’s cluster affiliation, cit, and only observed voting records for voter i have an impact. Similarly,

suppose voter i′ belongs to cluster l for the current sampling iteration, and we are about to draw

the cluster affiliation parameter for voter i, cit. Then voter i′’s missing voting record on bill j does

not affect computing H−i,l(θθθlt), the updated prior density of θθθlt. 5

3.3 Modeling Dynamic Dependence

For each period t, the precision parameter αt is a very important parameter. The value of αt reflects

a researcher’s prior belief about the number of clusters in period t. Let Lt be the number of clusters

in period t. The prior distribution for Lt depends critically on αt, and is stochastically increasing

with αt. As shown in the DPM model literature, the approximate conditional expectation of Lt,

given αt, the precision parameter, and It, the number of voters, can be expressed as follows:

E(Lt|αt, It) ≈ αt ln(1 + It
αt

) (Escobar and West, 1995). αt is always positive, so for a single time

period t, we put a log-normal prior on αt.

ln(αt) ∼ N(γt, V )

We assume an underlining Bayesian Dynamic Linear Model (DLM) on zt = log(αt) for the

purpose of smoothing the values of αt’s by borrowing information from adjacent time periods. The

reason for adding this dynamic smoothing structure on αt’s is that adjacent time periods should

show similar degrees of division or cooperation in the voting records. Therefore, the prior belief

4If vijt = NA, then F (vijt|θljt) = θ
I(vijt=1)
ljt (1 − θljt)I(vijt=0) = constant. It does not matter if we put voter i

in any existing cluster or a newly generated cluster, because F (vijt|θljt) is the same constant. Therefore, the missing
vijt does not affect voter i’s cluster affiliation sample draws.

5The updated Beta prior, H−i,l(θθθlt), is based on the Dirichlet Process priorG0t and all the observed voting records
of the voters belonging to cluster l. We put a conjugate Beta prior for θljt, and we only use observed voting records of
the voters in cluster l for updating the Beta prior of θljt. A missing voting record for any voter belonging to cluster l
does not affect this process.
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of the number of clusters for one period should be correlated with those in adjacent periods. The

sampler will be able to borrow information from draws of αt in neighboring periods for sampling

αt for a specific period.

Specifically, we put a random walk DLM prior on zt. The random walk DLM prior specifi-

cation is extensively used in various Bayesian dynamic IRT models for modeling latent variables

in political science research, such as the Supreme Court Justices’ ideal points (Martin and Quinn,

2002; Bailey, 2013) and countries’ human rights scores (Schnakenberg and Fariss, 2014). The

popularity of the random walk DLM prior is due to its flexibility and the efficient Gibbs sampler

developed for it. The random walk DLM prior on zt is specified as follows:

zt ∼ N(γt, V )

γt ∼ N(γt−1,W )

γ0 ∼ N(m0, H0)

V ∼ Inverse-Gamma(
r0

2
,
s0

2
)

W ∼ Gamma(r1, s1)

V is the variance of the Gaussian disturbance, e2, in the observation equation, zt = γt + e2, e2 ∼

N(0, V ). V has a conjugate Inverse-Gamma prior with user-supplied parameters r0 and s0. W

is the variance of the Gaussian disturbance, e1, in the evolution equation, γt = γt−1 + e1, e1 ∼

N(0,W ). The smaller W is, the more smoothing of zt is achieved across time, whereas large

W value allows the value of zt to change more drastically across time. W has a Gamma prior

with user-supplied shape parameter r1 and rate parameter s1. We choose a Gamma prior for W

over a conjugate Inverse-Gamma prior commonly used in the DLM literature (Petris, Petrone and

Campagnoli, 2009). The Gamma prior is a better alternative, because of its potentially desirable

shrinkage property (Bitto and Frühwirth-Schnatter, 2019). If a user believes that cluster numbers

are very stable across time, then she can pull the estimated W toward a small value, by tuning r1
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and s1 to reduce both the prior mean r1
s1

and the prior variance r1
s21

. Conversely, if a user does not

have a strong belief about the stability of cluster numbers across time, then she can use a more

diffused Gamma prior on W , and little shrinkage effect will take place in this case. m0 and H0 are

the mean and variance for Gaussian prior on γ0 for the imaginary period before period 1. Except for

the Gamma prior on W , the above specification is the standard setup of a unidimensional Gaussian

random walk DLM (West and Harrison, 2006).

3.4 Sampling Scheme

The sampler for the entire model is a mixture of Gibbs sampler and Metropolis-Hastings sampler.

Due to conjugate prior specifications, the DPM part of the model only relies on a Gibbs sampler

for sampling cit’s. The conjugate property breaks down for sampling αt, so we use a random walk

Metropolis-Hastings step to sample αt in each period separately. Given the last draws of αt’s,

the DLM part of the model mostly relies on a Gibbs sampler, except for the sampling step on W ,

which employs a random walk Metropolis-Hastings sampler. We lay out the sampling scheme in

the following three parts:

1. For each period t, we sample cluster labels, cit’s, given the current value of αt, vote matrix,

VVV t, and user-supplied values of λλλt.

2. For each period t, we draw the precision parameter, αt, given the current value of γt, the

current number of clusters, Lt, and the constant number of voters, It.

3. Given the current values of αt’s and the user-supplied values ofm0, H0, r0, s0, r1, s1, we sam-

ple the latent means, γt’s, the observation equation variance, V , and the innovation equation

variance, W , in the DLM model.
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3.4.1 Sample cit | ccc−i,t, αt,VVV t,λλλt,

Cluster affiliation parameters, cit, are sampled separately in each time period given VVV t and λλλt, so

we drop subscript t for simplification in this subsection. Every cluster affiliation corresponds to

either a unique existing cluster, or to a newly generated cluster. ccc−i represents all voters’ cluster

affiliations except for voter i’s, ci. We use the Chinese Restaurant Process to draw ci given ccc−i.

Voter i is assigned to a new cluster or an existing cluster with a categorical distribution. Due to

the conjugacy of the Beta-Binomial prior-likelihood specification, we can integrate out θθθ0 or θθθl

when computing the weights for a new cluster or the existing clusters (Neal, 2000). Therefore, the

sampler never directly samples or stores the values of θθθ0 or θθθl.

Let n−i,l be the size for an existing cluster l, not considering voter i. For each existing cluster

l (not considering voter i), we define the count of yea vote on bill j as n−i,lj1, and the count

of nay vote on bill j as n−i,lj0, based on all the affiliating voters’ observed voting records. A

yet-to-be-generated cluster has α size and zero counts of yea or nay vote on any bill. Let b be

an appropriate normalizing constant, and I be the number of voters. We express the conditional

posterior probability of ci as below.6 We can thus directly draw ci with a closed-form Gibbs

sampler.

p(ci = l, for l ∈ ccc−i|ccc−i,VVV ) = b
n−i,l

I − 1 + α

J∏
j=1

(( n−i,lj1 + λ1j

n−i,lj1 + n−i,lj0 + λ0j + λ1j

)I(vij=1)

×
( n−i,lj0 + λ0j

n−i,lj1 + n−i,lj0 + λ0j + λ1j

)I(vij=0)
)

p(ci 6= ci′ ,∀i′ 6= i|ccc−i,VVV ) = b
α

I − 1 + α

J∏
j=1

(( λ1j

λ0j + λ1j

)I(vij=1)( λ0j

λ0j + λ1j

)I(vij=0)
)

6Please refer to section, “Example: Bernoulli Data with a Conjugate Beta Prior”, in Jain and Neal (2004) for the
derivations of the Gibbs sampler for ci. We adapt the notations in Jain and Neal (2004) to express the formula in this
chapter.
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Researchers find that pure Gibbs samplers for DPM models have poor mixing, so it’s necessary

to attempt at merging and splitting existing clusters to improve mixing (Jain and Neal, 2004).

Therefore, in addition to the Gibbs sampler for ci, we also use the Sequentially-Allocated Merge-

Split (SAMS) sampler for ci. We implement the above Gibbs sampler and SAMS sampler in

alternative turns. Interested readers should refer to Dahl (2003) for the details of SAMS sampler.

3.4.2 Sample αt (zt) | γt, V, Lt, It

For period t, the conditional likelihood of αt, given the number of clusters Lt and the number of

voters It, is p(αt|Lt, It) ∝ αLt
t

Γ(αt)
Γ(αt+It)

(Antoniak, 1974; Escobar and West, 1995, 1998). We have

a log-normal prior on αt, ln(αt) ∼ N(γt, V ). We can express the conditional posterior of αt as

follows:

p(αt|γt, V, Lt, It) ∝
1

αt
exp

(
− (lnαt − γt)2

2V

)
︸ ︷︷ ︸

log-normal prior kernel

αLt
t

Γ(αt)

Γ(αt + It)︸ ︷︷ ︸
conditional likelihood

The conditional posterior of αt does not have a kernel of any recognizable distribution. We

use a unidimensional random walk Metropolis-Hastings sampler to sample αt for each period

separately, and users supply the positive value τ to generate the random walk step, δ , from δ ∼

uniform(−τ, τ) for updating αt. We accept the proposed new αt, new = αt + δ value, with the

following acceptance rate.

min
{

1,
p(αt, new|γt, V, Lt, It)
p(αt|γt, V, Lt, It)

}
Users can monitor the acceptance rate for αt and tune the τ parameter to achieve the desirable

acceptance rate around 0.45 (Roberts et al., 1997; Chib and Greenberg, 1995b). After sampling αt,

we can use an logarithm transformation to directly get zt by zt = ln(αt).

62



3.4.3 Sample {γt}Tt=0, V , W | zt,m0, H0, r0, s0

Based on the random walk DLM prior imposed on zt’s, we use a Gibbs sampler to draw {γt}Tt=0,

V and W , given the latest draws of zt. We use the efficient Forward Filtering Backward Sampling

(FFBS) algorithm for this Gibbs sampler. Interested readers can refer to Carter and Kohn (1994),

Frühwirth-Schnatter (1994) or West and Harrison (2006) for the detailed proof for the FFBS algo-

rithm. We lay out the sampling steps below.

Let Dt denote all the information available up to period t, and we know Dt = {Dt−1, zt}. For

period 0, we know D0 = {m0, H0, V,W}. We exploit the factorization of the joint probability of

{γt}Tt=1:

p({γt}Tt=0) = p(γT |DT )p(γT−1|γT , DT ) · · · p(γ1|γ2, D2)p(γ0|γ1, D1)

We can thus draw a joint sample of {γt}Tt=0 by sampling p(γT |DT ) first, then we can subsequently

draw γt by p(γt|γt+1, Dt+1) for t = T − 1, T − 2, · · · , 1, 0.

Given the current values of {zt}Tt=1, V and W , and the fixed values of m0 and H0, we start the

forward filtering procedure. For t = 1, 2, · · · , T , we compute the following quantities in sequence.

First, we compute, at, the prior mean of γt, givenDt−1 by at = E[γt|Dt−1] = E[γt−1+e1] = mt−1.

Second, we compute,Rt, the prior variance of γt, givenDt−1 byRt = V ar[γt|Dt−1] = V ar[γt−1+

e1] = Ht−1 +W . Third, we compute, ft, the prior mean of the one-step forecast of zt, given Dt−1

by ft = E[zt|Dt−1] = E[γt + e2|Dt−1] = at. Fourth, we compute, Qt, the prior variance of

the one-step forecast of zt, given Dt−1 by Qt = V ar[zt|Dt−1] = V ar[γt + e2|Dt−1] = Rt + V .

Fifth, we compute, mt, the posterior mean of γt given Dt by mt = E[γt|Dt] = E[γt|Dt−1] +

V ar[γt|Dt]

V ar[zt|Dt−1]

(
zt−E[zt|Dt−1]

)
= at+

Rt

Ht

(zt−ft). Sixth, we compute, Ht, the posterior variance

of γt given Dt by Ht = V ar[γt|Dt] = V ar[γt|Dt−1] −
(V ar[γt|Dt−1]

V ar[zt|Dt−1]

)2

V ar[zt|Dt−1] = Rt −(Rt

Qt

)2
Qt.

After the above forward filtering procedure, we store the following values: {at}Tt=1, {Rt}Tt=1,

{ft}Tt=1, {Qt}Tt=1, {mt}Tt=1, and {Ht}Tt=1. We start the backward sampling procedure from t = T ,
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since in the factorization of p({γt}Tt=0), the PDF of γT is only conditioning on DT . We can directly

draw γT from the conditional posterior below:

γT |DT ∼ N(mT , HT )

Sequentially, for t = T −1, · · · , 2, 1, 0, we compute, ut, the mean of the conditional distribution of

γt, given γt+1 and Dt, by ut = E[γt|γt+1, Dt] = E[γt|Dt] +
V ar[γt|Dt]

V ar[γt+1|Dt]
(γt+1 − E[γt+1|Dt]) =

mt +
Ht

Rt+1

(γt+1 − at+1). Then we compute, Ut, the variance of the conditional distribution of γt,

given γt+1 and Dt, by Ut = V ar[γt|γt+1, Dt] = V ar[γt|Dt] −
( V ar[γt|Dt]

V ar[γt+1|Dt]

)2
V ar[γt+1|Dt] =

Ht −
( Ht

Rt+1

)2
Rt+1. Given the values of ut and Ut, we update γt by its full conditional posterior

below.

γt|γt+1, Dt ∼ N(ut, Ut)

Next, we update the value of V , given the updated values of {γt}Tt=1 and {zt}Tt=1. V has

a conjugate Inverse-Gamma prior distribution, V ∼ Inverse-Gamma(
r0

2
,
s0

2
). The conditional

posterior distribution of V is expressed below.

V |{γt}Tt=1, {zt}Tt=1 ∼ Inverse-Gamma(
r0 + T

2
,
s0 +

∑T
t=1(zt − γt)2

2
)

Lastly, we sample the value of W , given the updated values of {γt}Tt=0. W has a non-conjugate

Gamma prior distribution, W ∼ Gamma(r1, s1). We can express the conditional posterior of W

as follows:

p(W |{γt}Tt=0, r1, s1) ∝ W r1−1 exp(−s1W )︸ ︷︷ ︸
Gamma prior kernel

T∏
t=1

1√
W

exp
(
− (γt − γt−1)2

2W

)
︸ ︷︷ ︸

conditional likelihood kernel

The conditional posterior of W does not have a kernel of any recognizable distribution. We

use a unidimensional random walk Metropolis-Hastings sampler to sample W . Users supply the
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positive value τW to generate the random walk step, δW , from δW ∼ uniform(−τW , τW ) for

updating W . We accept the proposed new Wnew = W + δW value, with the following acceptance

rate. Users can monitor the acceptance rate for W and tune the τW parameter to achieve the

desirable acceptance rate around 0.45.

min
{

1,
p(Wnew|{γt}Tt=0, r1, s1)

p(W |{γt}Tt=0, r1, s1)

}

3.5 Post-Processing

Due to the label switching problem present in any DPM model, we are not able to use simple

statistical summaries of the exact draws of cluster labels for analysis (Jasra, Holmes and Stephens,

2005). Instead, we propose a maximum a posteriori (MAP) estimation method to extract fixed

cluster labels for voters. This method draws on the post-processing procedure proposed for both

finite and infinite mixture models in the model-based clustering literature (Frühwirth-Schnatter,

2006; Frühwirth-Schnatter and Malsiner-Walli, 2019). We compute the MAP cluster labels for

each period t separately, so we drop subcript t in the following illustration for simplification.

3.5.1 Compute the Cluster Number Mode and Subset the Posterior Samples

In the posterior sample of cluster labels,
{
{ci,iter}Ii=1

}N
iter=1

, the number of unique clusters, Liter,

varies across iterations, which reflects DPM’s strength in letting the data decide how many clusters

there should be. We compute the mode of cluster numbers, Lmode, across iterations. Then, we

extract a subset of the cluster label posterior sample iterations,
{
{ci,iter}Ii=1

}
iter∈{1,2,··· ,N |Liter=Lmode}

,

where the number of clusters is equal to the mode. We denote
{
{ci,iter}Ii=1

}
iter∈{1,2,··· ,N |Liter=Lmode}

as
{
{ci,iter}Ii=1

}
Liter=Lmode

. By using the mode as the subseting criterion, we let the algorithm decide

the number of clusters in our final result. Working with the above subset of the cluster label

posterior samples, we have a fixed number of clusters, Lmode, across iterations. Therefore, we can

use the likelihood of a finite mixture model as an approximate likelihood function, in order to get
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the MAP cluster labels in the next step.

3.5.2 Identify the MAP Cluster Labels

We compute the likelihood for each iteration in
{
{ci,iter}Ii=1

}
Liter=Lmode

. First, we compute, wl, the

marginal probability for a voter to belong to cluster, l, by the ratio of cluster l’s size, nl, to the

number of voters, I: wl = nl

I
. Second, for each cluster l, we can compute the posterior Bernoulli

probability parameter vector, θ̃̃θ̃θl, based on the voters’ voting records, who belong to cluster l. For a

specific bill j, we compute the Bernoulli parameter by θ̃lj =
λ1j + nlj1

λ1j + λ0j + nlj1 + nlj0
, where nlj1 is

the count of yea vote on bill j from all the voters belonging to cluster l, nlj0 is the count of nay vote

on bill j from all the voters belonging to cluster l, and λ1j and λ0j are the Beta prior parameters

supplied by users.

We compute the approximate posterior likelihood for a cluster label posterior sample iteration

as follows:

p({ci,iter}Ii=1|VVV ,λλλ) =
I∏
i=1

(∏
l

[
wl
( J∏
j=1

θ̃
I(vij=1)
lj (1− θ̃lj)I(vij=0)

)]I(ci,iter=l)
)

We compute the above approximate posterior likelihood for each iteration in
{
{ci,iter}Ii=1

}
Liter=Lmode

,

and use the iteration of cluster label draws, {ci,iter}Ii=1, corresponding to the largest approximate

posterior likelihood value, as the MAP cluster labels. The MAP cluster labels are expressed as

below.

argmax

{ci,iter}Ii=1∈
{
{ci,iter}Ii=1

}
Liter=Lmode

p({ci,iter}Ii=1|VVV ,λλλ)
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3.5.3 Visualization of Voter-Pair Posterior Probability of Being in the Same

Cluster

In addition to the MAP cluster labels, we propose a visualization method to present the clustering

structure in a time period. Based on the posterior sample of cluster labels, we compute the posterior

probability for any pair of voters, i1 and i2, to be in the same cluster across iterations in time

t. These probabilities are stored in an It × It symmetric square matrix, Mt, for period t, and

element (i1, i2) of Mt indicates the posterior probability for voters, i1 and i2, to be in the same

cluster. We use Ward’s Hierarchical Agglomerative Clustering Method to reorder the rows and

columns of Mt (Murtagh and Legendre, 2014). We use the Ward’s dissimilarity criterion to move

the similar columns and rows to be adjacent to each other. hclust() function in R implements

this algorithm with various distance criteria, and we use ward.D2 distance criterion for this study.

The resulting reordered matrix M ′
t has anti-diagonal blocks storing larger probability values and

off-anti-diagonal elements storing lesser probability values. We plot matrix M ′
t like a heat map to

visualize the clustering structure.

3.6 Simulation Study

In this section, we report findings from various simulation studies. First, we show how the DDPM

model is able to achieve high accuracy at both identifying the correct cluster numbers and clas-

sifying the relationships of unique voter pairs in each period, based on different simulated data

sets. Second, we simulate cluster numbers in a Monte Carlo experiment for an imaginary time

period, and show how hyperparameter specifications affect the prior distribution for the number

of clusters. Lastly, we run multiple robustness checks to show that the DDPM model is able to

consistently identify the true cluster numbers under various model specifications.
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Period 1 2 3 4 5 6 7 8 9 10
number of voters 45 51 52 57 40 49 46 54 59 58
number of items 75 80 73 55 49 76 52 74 69 72
number of clusters 4 4 4 2 2 3 2 3 2 2

Table 3.1: True Data Structure in the Stable-Cluster-Number Example.

3.6.1 Two Demonstrative Examples

To demonstrate the effectiveness of the DDPM model, we run the DDPM model on two simulated

data sets of multiple periods. In one data set, the numbers of clusters are relatively stable across

time, and in the other data set, the numbers of clusters fluctuate in a more volatile way. There are 10

periods in total, and in each period t we randomly sample (with equal likelihood and replacement)

the number of voters, It, among the integers between 40 and 60, and the number of bills, Jt, among

the integers between 40 and 80.

We use the following two DLM models to specify the true numbers of clusters across periods.

For the stable-cluster-number example, we set γ0 = 0, W = 0.05, V = 0.05. For the volatile-

cluster-number example, we set γ0 = 0, W = 0.1, V = 0.05. For each example respectively,

We generate the values of γ1, γ2, · · · , γT by the evolution equation in DLM: γt = γt−1 + e1, e1 ∼

N(0,W ). After obtaining all the γt’s, we generate all the zt’s through the observation equation

in the DLM: zt = γt + e2, e2 ∼ N(0, V ). All the αt’s directly follow by the transformation,

αt = exp(zt). Given the number of voters, It, and αt, we generate the true numbers of clusters

by the function, Lt,true = round(E(Lt|αt, It)), where E(Lt|αt, It) ≈ αt ln(1 + It
αt

) (Escobar and

West, 1995). The true numbers of clusters, voters and items for each period in the stable-cluster-

number example are reported in the Table 3.1, and those in the volatile-cluster-number example

are reported in the Table 3.2.

In both examples, a roll call vote matrix is generated with underling Bernoulli distributions,

for each period t. Given the number of clusters, Lt, we generate Lt Bernoulli parameter vectors

of length Jt, θθθlt, by generating each element of θθθlt from a Beta distribution, θljt ∼ Beta(1, 1). For

68



Period 1 2 3 4 5 6 7 8 9 10
number of voters 53 49 57 42 47 56 54 59 44 51
number of items 67 53 52 65 74 40 73 77 72 56
number of clusters 3 4 2 4 3 5 5 4 4 7

Table 3.2: True Data Structure in the Volatile-Cluster-Number Example.

period t, we distribute all voters into Lt clusters evenly.7 For all the voters that belong to cluster l,

we simulate their vote vectors, vvvit, with the Bernoulli parameter vector, θθθlt, through the following

Bernoulli distributions, vijt ∼ Bernoulli(θljt), for j = 1, 2, · · · , Jt. The roll call vote matrices of

ten periods are supplied as the data set to the DDPM model sampler.

The DDPM model specifications in the stable-cluster-number example and the volatile-cluster-

number example are the same. We run the SAMS sampler every third of the scan. The tuning

parameter for the random walk Metropolis-Hastings step for drawing αt’s, τ , is 1. We set the

parameters in the DLM priors as follow: m0 = 0, H0 = 0.1, r0 = 10, s0 = 0.5, r1 = 1, s1 = 50.

The tuning parameter for the random walk Metropolis-Hastings step for drawing W , τW , is 0.02.

We use the following values as starting values for V , W and all αt’s: Vstart = 0.05, Wstart = 0.02,

and αt,start = 1 for t = 1, 2, · · · , T . We run 2000 iterations and discard the first 1000 iterations as

burnin. In the stable-cluster-number example, the acceptance rates of the random walk Metropolis-

Hastings steps for drawing αt’s lie in the interval, [0.2430, 0.3250]. The acceptance rate of the

random walk Metropolis-Hastings step for drawing W is 0.5485. In the volatile-cluster-number

example, the acceptance rates of the random walk Metropolis-Hastings steps for drawing αt’s lie

in the interval, [0.3320, 0.4730]. The acceptance rate of the random walk Metropolis-Hastings

steps for drawing W is 0.5215. These acceptance rates are all acceptable for a unidimensional

Metropolis-Hastings sampler.

In Figure 3.1 and Figure 3.2, we report the cluster number histograms against the true values

indicated by the dashed lines across periods in both examples. In both examples, the modes of

cluster numbers are all equal to the true cluster numbers across all periods.

7For voter i, we get the modulo m from the ratio between i − 1 and Lt, and we assign voter i to cluster m + 1 ∈
{1, 2, · · · , Lt}.
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Figure 3.1: Cluster Number Histograms in the Stable-Cluster-Number Example. The figures show
the histograms of the numbers of clusters across iterations in each period. The dashed lines indicate
the true cluster numbers.
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Figure 3.2: Cluster Number Histograms in the Volatile-Cluster-Number Example. The figures
show the histograms of the numbers of clusters across iterations in each period. The dashed lines
indicate the true cluster numbers.
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Period 1 2 3 4 5 6 7 8 9 10
Sensitivity 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Specificity 1.00 1.00 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 3.3: Classification Performance of the DDPM Model in the Stable-Cluster-Number Exam-
ple. In the stable-cluster-number example, the MAP cluster estimators correctly predict all the
classification labels, except for a few incorrect predictions in period 3.

Period 1 2 3 4 5 6 7 8 9 10
Sensitivity 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 0.98
Specificity 1.00 1.00 1.00 1.00 1.00 0.92 1.00 1.00 1.00 0.87

Table 3.4: Classification Performance of the DDPM Model in the Volatile-Cluster-Number Exam-
ple. In the volatile-cluster-number example, the MAP cluster estimators correctly predict all the
classification labels, except for a few incorrect predictions in period 6 and period 10.

To evaluate the performance of the DDPM model on identifying unit-wise cluster affiliations,

we frame the clustering task as a classification task. For period t, we have It(It−1)
2

unique voter

pairs. If the (i1, i2) voter pair are in the same cluster, we code the label as 1, and 0 otherwise. We

post-process the posterior samples from the above two examples with the MAP estimation method

and identify the MAP cluster estimators for each period. Based on the MAP cluster estimators, we

predict the voter pair label as 1 if they are in the same cluster, and 0 otherwise.

We report the sensitivity and specificity of the DDPM model’s classification performance in

the stable-cluster-number example in Table 3.3, and those in the volatile-cluster-number example

in Table 3.4. Sensitivity indicates the success rate of correctly predicting the voter pairs that are

truly in the same cluster. Specificity indicates the success rate of correctly predicting voter pairs

that are truly not in the same cluster. In the stable-cluster-number example, the MAP cluster

estimators correctly predict all the classification labels, except for a few incorrect predictions in

period 3. In the volatile-cluster-number example, the MAP cluster estimators correctly predict all

the classification labels, except for a few incorrect predictions in period 6 and period 10. Overall,

the DDPM model has a decent performance at predicting whether voter pairs are in the same cluster

in both examples.
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To conserve space, we only visualize the pair-wise posterior probabilities of being in the same

cluster for period 10 in Figure 3.3 and Figure 3.4, for the stable-cluster-number example and the

volatile-cluster-number example, respectively. The two heat map plots show that the DDPM mod-

els identify the true clustering structures with great accuracy in both examples. In the stable-

cluster-number example, all the units are estimated to be in their true clusters accurately. In the

volatile-cluster-number example, only unit 41, unit 43, and unit 48 seem to switch between two

clusters across iterations, and all the other units are estimated to be in their true clusters accurately.

3.6.2 Prior Distribution of the Cluster Number Simulation

In the DDPM setup, it’s important to understand how the hyperprior parameter specifications affect

the prior distribution of the cluster number in a period. We simulate cluster numbers in a Monte

Carlo experiment for an imaginary time period t = 0, based on the following hyperprior specifi-

cations: m0 = 0, H0 = 1, V = 0.05. We simulate the cluster numbers under three scenarios, and

the only difference across the scenarios is the number of voters. We specify the following voter

numbers across the three scenarios: I0 ∈ {40, 50, 60}.

We use the following steps to generate the cluster numbers under each scenario. Under each

scenario, we simulate 10000 cluster numbers. We generate a value of γ0 by γ0 ∼ N(m0, H0). After

obtaining a γ0 value, we generate the corresponding z0 through the observation equation in the

DLM: z0 = γ0 + e2, e2 ∼ N(0, V ). The corresponding α0 directly follows by the transformation,

α0 = exp(z0). Given the number of voters, I0, and α0, we generate the cluster number by the

function, L0 = round(E(L0|α0, I0)), where E(L0|α0, I0) ≈ α0 ln(1 + I0
α0

) (Escobar and West,

1995). We plot the empirical densities of the simulated cluster numbers under each scenario in

Figure 3.5. The modes of the three empirical densities fall within the interval, [3, 4]. The three

empirical densities are all right-skewed.
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Figure 3.3: Heat Map Plot for Period 10 in the Stable-Cluster-Number Example. Each element in
the heat map indicates the posterior probability for the unique voter pair to be in the same cluster
in period 10.
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Figure 3.4: Heat Map Plot for Period 10 in the Volatile-Cluster-Number Example. Each element
in the heat map indicates the posterior probability for the unique voter pair to be in the same cluster
in period 10.
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Figure 3.5: Empirical Densities of the Simulated Cluster Numbers under Each Scenario. The
modes of the three empirical densities fall within the interval, [3, 4]. The three empirical densities
are all right-skewed.

3.6.3 Robustness Check

Researchers have found that some Dirichlet Process Mixture model-based (DPM model-based)

clustering methods have a hard time in consistently identifying the true cluster number, and they

tend to estimate more clusters than the ground truth (Miller and Harrison, 2013). To solve this

challenge, other researchers have developed alternative sparse finite mixture models to induce

sparsity in cluster number estimation, leading to more accurate identification of cluster numbers

(Malsiner-Walli, Frühwirth-Schnatter and Grün, 2016, 2017). More recently, researchers have

found that a DPM model and a sparse finite mixture model yield similar estimation results with

respect to the number of clusters, as long as the hyperparameter specifications in the two models

induce a similar degree of sparsity (Frühwirth-Schnatter and Malsiner-Walli, 2019).

In response to the above general concern about DPM model-based clustering methods, we

conduct various robustness checks. We run robuestness checks for a stable-cluster-number example

and a volatile-cluster-number example. The robustness check results show that the DDPM model
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is able to accurately identify the true cluster numbers under various model specifications.

In the subsection, “Two Demonstrative Examples”, we have explained the details about simu-

lating the data sets for the stable-cluster-number example and the volatile-cluster-number example.

For robustness checks, we follow the exact same data simulation specifications and steps for both

examples. Therefore, Table 3.1 shows the true data structure for the stable-cluster-number ex-

ample, and Table 3.2 shows the true data structure for the volatile-cluster-number example. We

simulate 100 roll call vote data sets for each example.

We fit three DDPM models on the 100 simulated data sets, for both examples respectively.

In all of the three models, we run the SAMS sampler every third of the scan. In all of the three

models, we run 2000 iterations and discard the first 1000 iterations as burnin. We specify different

hyperparameters in the DLM parts of the three models. From Model One to Model Three, the

hyperparameter specifications reflect increased degrees of restriction on sampling αt’s, and should

therefore induce more sparsity in estimating cluster numbers.

In Model One, the tuning parameter for the random walk Metropolis-Hastings steps for drawing

αt’s, τ , is 4. We set the parameters in the DLM priors as follow: m0 = 0, H0 = 0.4, r0 = 10, s0 =

2, r1 = 1, s1 = 10. The tuning parameter for the random walk Metropolis-Hastings step for

drawing W , τW , is 0.1. We use the following values as starting values for V , W and all αt’s:

Vstart = 0.2, Wstart = 0.1, and αt,start = 1 for t = 1, 2, · · · , T . In Model Two, the tuning

parameter for the random walk Metropolis-Hastings steps for drawing αt’s, τ , is 2. We set the

parameters in the DLM priors as follow: m0 = 0, H0 = 0.2, r0 = 10, s0 = 1, r1 = 1, s1 = 20.

The tuning parameter for the random walk Metropolis-Hastings step for drawing W , τW , is 0.05.

We use the following values as starting values for V , W and all αt’s: Vstart = 0.1, Wstart = 0.05,

and αt,start = 1 for t = 1, 2, · · · , T . In Model Three, the tuning parameter for the random walk

Metropolis-Hastings steps for drawing αt’s, τ , is 1. We set the parameters in the DLM priors as

follow: m0 = 0, H0 = 0.1, r0 = 10, s0 = 0.5, r1 = 1, s1 = 50. The tuning parameter for the

random walk Metropolis-Hastings step for drawing W , τW , is 0.02. We use the following values

as starting values for V , W and all αt’s: Vstart = 0.05, Wstart = 0.02, and αt,start = 1 for
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Period 1 2 3 4 5 6 7 8 9 10
Model One Average 4.00 4.00 4.00 2.00 2.31 3.00 2.31 3.00 2.00 2.00
Model Two Average 4.00 4.31 4.00 2.00 2.31 3.01 2.31 3.00 2.32 2.00
Model Three Average 4.00 4.00 4.00 2.00 2.31 3.00 2.31 3.00 2.00 2.00
True Cluster Number 4 4 4 2 2 3 2 3 2 2

Table 3.5: Robustness Check Results for the Stable-Cluster-Number Example. For the stable-
cluster-number example, all three models are able to consistently identify the true cluster numbers
on average across time periods, except for the slightly inflated cluster number estimation in period
5 and period 7.

Period 1 2 3 4 5 6 7 8 9 10
Model One Average 3.01 4.12 2.02 4.00 3.00 5.64 5.07 4.12 4.00 7.52
Model Two Average 3.00 4.10 2.05 4.03 3.00 5.72 5.05 4.08 4.06 7.49
Model Three Average 3.00 4.18 2.02 4.03 3.00 5.60 5.05 4.10 4.06 7.41
True Cluster Number 3 4 2 4 3 5 5 4 4 7

Table 3.6: Robustness Check Results for the Volatile-Cluster-Number Example. For the volatile-
cluster-number example, all three models seem to have a decent performance at consistently iden-
tifying the correct cluster numbers on average across time periods, except for the slightly inflated
cluster number estimation in period 6 and period 10.

t = 1, 2, · · · , T .

Table 3.5 and Table 3.6 show the robustness check results for the stable-cluster-number exam-

ple and the volatile-cluster-number example, respectively. For each Monte Carlo experiment, we

use the mode of the posterior cluster number sample as the estimated cluster number. The average

values reported in the above two tables are the simple averages of the estimated cluster numbers

across 100 Monte Carlo experiments. We also report the true cluster numbers at the bottom of

the tables. For the stable-cluster-number example, the estimated cluster number averages are very

similar across the three model specifications. All three models are able to consistently identify

the true cluster numbers on average across time periods, except for the slightly inflated cluster

number estimation in period 5 and period 7. For the volatile-cluster-number example, all three

models seem have a decent performance at consistently identifying the correct cluster numbers on

average across time periods, except for the slightly inflated cluster number estimation in period
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Table 3.7: Summary Statistics of the UNGA Human Rights Vote Data. The table reports the
summary statistics for the numbers of countries and the numbers of resolutions in the UNGA
human rights roll call vote data from 1992 to 2017.

Summaries Number of Countries Number of Resolutions
Min. 99.0 11.00
1st Qu. 119.2 17.25
Median 134.0 21.00
Mean 131.3 20.50
3rd Qu. 141.0 24.00
Max. 156.0 29.00

6 and period 10. However, there are slight differences in terms of the estimated cluster number

averages across the three models. The most restrictive model, Model Three, seem to perform the

best overall at consistently identifying the correct cluster numbers on average across time periods.

3.7 Human Rights Votes in the UNGA

We apply the proposed DDPM model and post-processing methods to the United Nations General

Assembly (UNGA) human rights roll call vote data from 1992 to 2017. We rely on the publicly

available “United Nations General Assembly Voting Data” for this study (Voeten, Strezhnev and

Bailey, 2009). The original UNGA roll call vote data record “Yes”, “No”, “Abstain”, or “Missing”

for a voting record. Voeten argues that “UNGA resolutions are not binding, what really matters is

whether or not a state is willing to go on the record for supporting a resolution.” “No” votes and

“Abstain” votes “both are essentially ways a state can express its unwillingness to comply with the

text of a resolution” (Voeten, 2000). Therefore, in this study, we record “Yes” votes as 1, “Missing”

as NA, and both “No” and “Abstain” votes as 0. Moreover, in each year, we only include countries

that vote on at least 95% of the human rights resolutions in the year. Table 3.7 reports the summary

statistics of the numbers of countries and resolutions throughout the years.

We use the following specifications for running the DDPM model on human rights vote data.

We run the SAMS sampler every third iteration of the MCMC sampling scheme. We supply the
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Figure 3.6: Annual Cluster Number Mode. For each year, we compute the mode of the numbers
of unique clusters across iterations in the posterior sample. The annual cluster number modes
represent our estimates of the annual voting coalition numbers, based on the DDPM model.

following fixed values. All elements in λλλt’s are fixed at 1. The tuning parameter for the random

walk Metropolis-Hastings steps for drawing αt’s, τ , is 0.5. We set the parameters in the DLM

priors as follow: m0 = 0, H0 = 0.1, r0 = 10, s0 = 0.5, r1 = 1, s1 = 50. The tuning parameter

for the random walk Metropolis-Hastings step for drawing W , τW , is 0.01. We use the following

values as starting values for V , W and all αt’s: Vstart = 0.05, Wstart = 0.02, and αt,start = 1

for t = 1, 2, · · · , T . We run 10000 iterations and discard the first 5000 iterations as burnin. The

acceptance rates of the random walk Metropolis-Hastings steps for drawing αt’s lie in the interval,

[0.3871, 0.4661]. The acceptance rate of the random walk Metropolis-Hastings step for drawing

W is 0.344. These acceptance rates are all acceptable for a unidimensional Metropolis-Hastings

sampler.

We post-process the posterior samples of cluster labels in each year, and report the year-wise

cluster number modes in Figure 3.6. For all years, the numbers of coalitions vary between 3 and

5. There is no obvious time trend of the cluster numbers across years. The relative stability of
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coalition numbers show preliminary evidence for “peer groups” in the UNGA human rights vote

data. It also shows that there is no universal consensus on human rights issues in the UNGA. The

persistent existence of coalitions lends support to the criticism of human rights politicization in the

UNGA.

For each year, we estimate the MAP cluster labels for countries. In Appendix B.1, we report

the voting coalition membership for each year from 1992 to 2017. To converse space, we only

show the coalition membership in the most recent year, 2017, in Table 3.8. In 2017, the DDPM

model identifies four coalitions. The most obvious pattern is the separation between developed and

developing countries. There are two coalitions consisting of developed countries. Most western

European countries and the developed countries in Asia-Pacific, such as Japan, South Korea, and

New Zealand, form a coalition. The US, Israel, and two other close US allies form a coalition.

The developing countries are also divided into two coalitions: a large coalition including most

developing countries, and a small coalition joined mostly by a few Latin American countries.

Figure 3.7 shows the posterior probability for unique country pairs to be in the same coalition in

2017. The plot confirms the four coalitions reported in the Table 3.8. The heat map plot shows that

Australia is likely to belong to both the smaller US-led coalition and the bigger EU-led coalition.

Similarly, Russia and Argentina are likely to belong to the bigger developing country coalition

and the smaller developing country coalition. However, there is no country that is likely to belong

to both a developing country coalition and a developed country coalition. This shows that the

differences between developing countries and developed countries are much starker than those

among developing countries themselves or developed countries themselves.

After examining the coalition memberships from 1992 and 2017, we are able to find some

consistent patterns. These findings help us reevaluate some of the arguments in the literature of

human rights voting in the UNGA. First, across all the years, there are stable coalition structures

in the voting data. This finding lends support to the long-lasting discussion of the politicization of

human rights issues in the UNGA. Ideally, human rights debates in the UNGA should be based on

principles and international laws, and consensus building on human rights issues should contribute
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Table 3.8: Voting Coalition Membership in 2017. Four voting coalitions are identified in 2017.
Coalition 3 is the EU-led big developed country coalition. Coalition 2 is the US-led small devel-
oped country coalition. Coalition 4 is the big developing country coalition including most coun-
tries in Asia and Africa. Coalition 1 is the small developing country coalition, mostly consisting
of Latin American countries. Coalition 1, 2, 3, 4 corresponds to the four anti-diagonal blocks from
the bottom-left corner to the top-right corner in Figure 3.7.

Coalition Member

1 Cameroon, Colombia, Guatemala, Honduras, Mexico, Panama, Paraguay,
Peru, Solomon Islands, Togo

2 Australia, Canada, Israel, United States of America
3 Albania, Andorra, Austria, Belgium, Bosnia and Herzegovina, Bulgaria,

Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France,
Georgia, Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan, Latvia,
Liechtenstein, Lithuania, Luxembourg, Malta, Monaco, Montenegro,
Netherlands, New Zealand, Norway, Poland, Portugal, Republic of Ko-
rea, Republic of Moldova, Romania, San Marino, Slovakia, Slovenia,
Spain, Sweden, Switzerland, The former Yugoslav Republic of Macedo-
nia, Turkey, Ukraine, United Kingdom of Great Britain and Northern Ire-
land

4 Algeria, Angola, Argentina, Bahamas, Bahrain, Bangladesh, Bhutan, Bo-
livia (Plurinational State of), Botswana, Brazil, Brunei Darussalam, Cabo
Verde, Cambodia, Chile, China, Congo, Costa Rica, Côte D’Ivoire, Cuba,
Djibouti, Dominican Republic, Ecuador, Egypt, El Salvador, Equatorial
Guinea, Eritrea, Ethiopia, Gabon, Guinea, Guyana, India, Indonesia, Iraq,
Jamaica, Jordan, Kazakhstan, Kenya, Kuwait, Kyrgyzstan, Lao People’s
Democratic Republic, Lesotho, Libya, Malaysia, Maldives, Mali, Mau-
ritania, Mauritius, Morocco, Mozambique, Namibia, Nepal, Nicaragua,
Oman, Pakistan, Philippines, Qatar, Russian Federation, Saint Kitts and
Nevis, Saint Lucia, Saudi Arabia, Sierra Leone, Singapore, South Africa,
Sri Lanka, Sudan, Syrian Arab Republic, Tajikistan, Thailand, Trinidad
and Tobago, Tunisia, Uganda, United Arab Emirates, United Republic of
Tanzania, Uruguay, Uzbekistan, Venezuela, Bolivarian Republic of, Viet
Nam, Yemen, Zimbabwe
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Figure 3.7: Posterior Probability for Country Pairs Being in the Same Coalition in 2017. Four
voting coalitions emerge from the heat map plot. The four anti-diagonal blocks from the bottom-
left corner to the top-right corner correspond to Coalition 1, 2, 3, 4 in Table 3.8. The vast majority
of countries belong to one coalition with very high probability. Australia is likely to belong to both
Coalition 2 and Coalition 3. Russia and Argentina are likely to affiliate to both Coalition 1 and
Coalition 4.
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to global governance. However, the voting records show that different country coalitions take

contradictory positions, and countries are divided in the political debates of human right issues.

Second, throughout the years, the EU member countries always coalesce in the same group.

This finding lends support to the previous studies that treat the EU as a voting bloc (Luif, 2003). In

addition to the EU member countries, a few developed countries in Asia-Pacific, including Japan,

South Korea, and New Zealand, are also consistently a part of the EU-led group. Therefore, we

should update the previous understanding of treating EU as a bloc, but redefine the EU-led group to

include more developed countries. In some years, the US, Israel, Canada, and Australia are part of

the EU-led group, but they form their own smaller US-led group in other years. This finding shows

that US and Israel agree with the EU-led coalition in many aspects of human rights issues, but

there is also some repeated disagreement between the US-led coalition and the EU-led coalition.

Among the developing countries, there is always a big developing country coalition, including

most developing countries from Asia and Africa. In addition, there also exists a smaller developing

country coalition, including Latin American countries and former Soviet Union member countries.

The coalition pattern among the developing countries contradicts previous studies that treat the

Organization of Islamic Cooperation member countries as a bloc. As shown by the clustering

results, most of the Muslim countries are a part of the big developing country coalition. Moreover,

the coalition patterns among developing countries also corroborate some of the previous arguments

that emphasize regional voting blocs. As shown by the smaller developing country coalition, we

find that Latin American countries break with the big developing country coalition to form their

own smaller coalition in some years. There is also evidence showing that Russia and other former

Soviet Union member countries are apart from the big developing country coalition and end up in

a smaller coalition in some years.

We examine what specific human rights issues divide countries into different coalitions. Based

on the MAP cluster estimators and each country’s voting records in year t, we are able to compute

the probability vector, θ̃̃θ̃θlt, for each cluster l. There are Jt resolutions in year t. For each resolution

j ∈ {1, 2, · · · , Jt}, we compute the maximum probability difference for any unique cluster pairs,
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dll′jt = max
{
|θ̃jlt − θ̃jl′t|

}
, for all l, l′ ∈ {cit,MAP}Iti=1. For some resolutions, countries have

almost unanimous votes, so dll′jt is close to zero. However, other resolutions become the center of

controversy, and cluster-wise probability parameters for this resolution can be very different. The

numbers of resolutions vary in each year, so we identify the top 50% most polarizing resolutions

in terms of dll′jt values in each year. To conserve space, we only report the top 50% most divisive

resolutions in 1992 in Table 3.9 . We report the top 50% most polarizing resolutions in all years in

Appendix B.2.

We have a few important findings from showing these most polarizing resolutions. First, the

Israeli-Palestinian issue is a persistent line of conflict in all years. This finding confirms previous

studies that theorize the obsession of voting on the Israeli-Palestinian issue in the UNGA (Becker

et al., 2015). Second, country-specific human rights reports tend to be polarizing, such as reports

on Cuba and Iran. The reports targeting specific countries clearly show the political nature of

human rights issues in the UNGA. Countries are divided in different coalitions by how they view

the human rights record of a country, because they prioritize bilateral relations with the targeted

country over objectively evaluating the facts. Third, the UNGA tends to vote on some of the exact

same polarizing human rights resolutions for many years. For example, the resolution condemning

“the use of mercenaries to violate human rights” has been a polarizing resolution in almost every

year from 1992 until the late 2000s. This resolution-wise repetition also shows evidence for the

persistent politicization of certain human rights issues. For the case of the “use of mercenaries”

resolution, developing countries almost all vote for it, while developed countries almost all oppose

it. This resolution has become a weapon for developing countries to embarrass developed countries

on their human rights practice.

Last, we compare the DDPM model with a Bayesian Dynamic IRT model for analyzing the

UNGA human rights vote data. A Bayesian IRT model is one of the most common choices for

modeling roll call vote data. Bayesian IRT models assume that voters make voting decisions based

on the relative utilities between voting yea and nay. In a latent policy space, if a voter’s ideal point

is closer to the new proposal’s position, she is more likely to vote yea; if a voter’s ideal point is
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Table 3.9: Polarizing Resolutions in 1992. The six resolutions are the top 50% most polarizing
resolutions in 1992. Resolution 1, 4, 5, 6 are country-specific human rights resolutions about Iran
or the Palestinian-Israeli issue. Resolution 2, 3 are about general human rights principles, such as
self-determination of nations and the use of mercenaries.

Count Resolution Title

1 Programme of work, Committee on Palestinian rights
2 Importance of the universal realization of the rights of peoples to self deter-

mination and of the speedy granting of independence to colonial countries
and peoples for the effective guarantee and observance of human rights

3 Use of mercernaries as a means to violate human rights and to impede
the exercise of the right of peoples to self determination United Nations
African Institute for the Prevention of Crime and the Treatment of Offend-
ers

4 Situation of human rights in the Islamic Republic of Iran
5 Encourages all member states to lend assistance to the committee on Pales-

tinian rights
6 Reaffirms the inalienable right of all displaced inhabitants to return to their

homes or former places of residence in the territories occupied by Israel
since 1967

closer to the status quo, she is inclined to vote nay. In each year, the Dynamic IRT model estimates

one continuous ideal point variable for each country, and two continuous parameters for each

resolution. Here, we use the same model specified in the study of the US Supreme Court justices’

ideal points (Martin and Quinn, 2002). We implement the model with MCMCdynamicIRT1d()

function in MCMCpack R package (Martin, Quinn and Park, 2011). We use the default priors and

tuning parameters of the function.

To compare the performances of the DDPM model and the Dynamic IRT model, we first ran-

domly draw one voting record per country-year to form a hold-out testing data set. The remaining

data points become the training data set. We train the two models with the training data set,

and predict the hold-out voting records with the estimated latent variables, respectively. We use

sensitivity, specificity, and F1 score to evaluate prediction performance.8 Table 3.10 shows the

8In the roll call vote context, sensitivity represents the share of the yea votes that are correctly predicted as a
yea vote, and specificity represents the share of the nay votes that are correctly predicted as a nay vote. F1 score
is a balanced prediction performance metric, considering both sensitivity and precision. F1 score is a function of
sensitivity and precision: F1 = 2×precision×sensitivity

precision+sensitivity .
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Table 3.10: DDPM Model and Bayesian Dynamic IRT Model Comparison. We train a DDPM
model and a Bayesian Dynamic IRT model on the same training data set. We use the estimated
latent variables to predict the unique country-pair relations (being in the same coalition or not) in
the hold-out testing data set. The table shows that the DDPM model has a slight edge over the
Bayesian Dynamic IRT model in terms of F1 score.

Model Sensitivity Specificity F1 Score
DDPM Model 0.9511 0.8501 0.8668

Dynamic IRT Model 0.9540 0.8127 0.8477

prediction performances of the two models. The Dynamic IRT model is slightly better than the

DDPM model at predicting yea votes, while the DDPM model is much better than the Dynamic

IRT model at predicting nay votes. In sum, the DDPM model has a larger F1 score than the Dy-

namic IRT model. The comparison of the DDPM model and the Dynamic IRT model shows that

the DDPM is at least as a good of a modeling choice as the Dynamic IRT model. This provides

further support for modeling voting coalitions instead of individual country’s ideal points for the

UNGA human rights vote data.

3.8 Conclusion

We have proposed the DDPM model to identify voting coalitions with roll call vote data across

multiple periods, along with post-processing methods to analyze the posterior samples from the

DDPM model. The proposed post-processing methods provide streamlined steps for applied re-

searchers to make sense of the DDPM outputs and more easily interpret the results. We make the

functions implementing the DDPM model and the post-processing methods available to the public

in the MCMCddpmbb R package.

We have applied these methods to the UNGA human rights roll call vote data from 1992 to

2017. We have identified human rights voting coalitions in the UNGA after the Cold War, and the

polarizing resolutions that divide countries into different coalitions. Through this study, we find a

clear separation between developing and developed countries in human rights voting. Moreover,

87



we find the EU as a stable coalition among the developed countries, whereas some Latin American

countries tend to form a small coalition, apart from a large developing country coalition. We also

find that many polarizing resolutions repeatedly show up across years, and the lines of conflict lie

in both debates on general human rights principles and human rights violation reports on specific

countries.

Future research plans are in order. One future plan for improving the DDPM model is to

investigate how to dynamically model voters’ cluster affiliations across time directly. Another

place for future improvement is to generalize the binary voting record assumption to accommodate

ordinal voting records, such as “nay”, “abstain”, and “yea”. Last, it’s worth investigating how a

sparse finite mixture model performs at producing interpretable results in the roll call vote context.

A sparse finite mixture model option can be a potentially useful addition to the MCMCddpmbb R

package.
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CHAPTER 4

Penalized EM Algorithm for Multidimensional IRT

Model

4.1 Introduction

Ideal point estimation models have extensive applications in political science. With ideal point es-

timation models, researchers measure national-level and state-level legislators’ (Clinton, Jackman

and Rivers, 2004; Shor, Berry and McCarty, 2010), the Supreme Court justices’ (Martin and Quinn,

2002), or voters’ (Jessee, 2009) ideal points, based on an actor’s binary responses to bills, court

cases, or survey questions. Researchers also use similar models to estimate countries’ preferences

according to the United Nations General Assembly roll call votes (Voeten, 2000; Bailey, Strezh-

nev and Voeten, 2017). There are various methods in the toolkit for ideal point estimation, such

as NOMINATE Models (Poole and Rosenthal, 1985; Poole, 2001; Carroll et al., 2009), Bayesian

IRT models (Martin and Quinn, 2002; Clinton, Jackman and Rivers, 2004; Imai, Lo and Olmsted,

2016), and non-parametric ideal point models (Poole, 2000; Tahk, 2018). Specifically, this chapter

focuses on developing a penalized EM algorithm for IRT models.

The spatial voting model is the theoretical foundation for IRT models. The spatial voting model

assumes that actors make voting decisions based on the relative utilities between voting yea and

nay. In the policy space, if an actor’s ideal point is closer to a new proposal’s position, she is more

likely to vote “Yea”; if an actor’s ideal point is closer to the status quo, she is inclined to vote “Nay”.

The spatial voting model assumes a uni- or multi-dimensional policy space, and accordingly IRT
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models are able to estimate uni- or multidimensional ideal points.

Unidimensional IRT models are commonly used. A unidimensional ideal point model is easy

to estimate and interpret. Unidimensional IRT models simply aim at accounting for the maximum

variation in the data with unidimensional ideal point estimates. Researchers do not have to inves-

tigate the dimension meaning since all items load onto the single dimension. Instead, researchers

give a heuristic interpretation of the single dimension based on their understandings of the subject.

Researchers show that unidimensional ideal point scores capture most of the variation and predict

the observed data well for some binary choice data sets (Poole and Rosenthal, 1991). Therefore,

we have a strong justification for estimating only unidimensional ideal points in these situations.

However, for other binary choice data, multidimensional models significantly improve the pre-

dictive power of ideal point estimates on the observed choices. The multidimensional ideal points

are able to pick out different patterns of variation in the data that the unidimensional models are

not able to. Furthermore, there are indeed concerns for the lack of fit or interpretability of unidi-

mensional IRT models when estimating survey data in the literature (Broockman, 2016; Ahler and

Broockman, 2018). New methods have also been proposed to model the number of dimensions

itself, together with estimating ideal points, based on roll call vote data (McAlister, 2021). This

paper does not directly speak to how to decide between uni- or multidimensional IRT models.

Rather, we focus on how to improve upon the existing methods for estimating multidimensional

IRT models.

In contrast to unidimensional IRT models, a multidimensional IRT model requires more rigor-

ous investigation of the item-dimension loading structure and dimension meanings. The previous

attempts at learning dimension meanings mostly rely on researchers’ substantive understandings

of the area or data. Poole and Rosenthal (1991) contend that for US legislators’ two-dimensional

ideal points, “one dimension ranges from strong loyalty to one party (Democrat-Republican or

Democrat) to weak loyalty to either party to strong loyalty to a second, competing, party (Federal-

ist, Whig, or Republican). Another dimension differentiates ‘liberals’ from ‘conservatives’ within

the two competing parties.” This observation is based on heuristic interpretations of the estimated

90



ideal points, and no specific “anchoring items (bills)” are identified to give concrete evidence.

Jackman (2001) takes a step further for learning dimension meanings, and he stresses the im-

portance of learning the item-dimension loading structure in multidimensional IRT model estima-

tion (Jackman, 2001). This is equivalent to estimating the sparse mapping relationship between

items and dimensions, akin to estimating the factor loading structure in traditional factor analysis.

Jackman (2001) estimates a multi-dimensional IRT model assuming all items load on all dimen-

sions at the beginning, and examines whether a discrimination parameter is significantly different

from zero or not ex post.1 He identifies the bills that have a significant discrimination parameter

on only one dimension as the “anchoring items” for this dimension. Then he infers the dimension

meanings based on the contents of the anchoring bills. His approach gives inconsistent estimates

if the loading structure is truly sparse in the data generation process (many discrimination param-

eters should be exactly zero). Moreover, he relies on an arbitrary threshold (significance level) to

determine whether a discrimination parameter is zero.

Ideally we should integrate the estimation of the sparse item-dimension loading structure into

the entire IRT model estimation process. This way, we are able to consistently estimate the item

parameters and ideal points simultaneously. In turn, we will be able to identify items that only

load onto a single dimension, and use these special items to identify the meanings of each dimen-

sion. Researchers have attempted to estimate the sparse item-dimension loading structure for a

full Bayesian IRT model by employing spike-and-slab priors (Richard Hahn, Carvalho and Scott,

2012). This method is able to identify a stochastic sparse item-dimension loading structure but

suffers from two potential drawbacks. First, the learnt loading structure is potentially different in

every iteration of the posterior sample, and it’s difficult to determine a fixed result of the item-

dimension loading structure. Nor do we have a clear method to choose the optimal amount of

regularization (the prior probability of the spike) in the Bayesian framework. Second, Bayesian

simulations with spike-and-slab priors can be enormously costly in terms of computational time

1Jackman uses the 90% credible intervals of discrimination parameter posterior samples to decide whether the
discrimination parameters are “significant” or not. This is an application of frequentist statistical tests to Bayesian
posterior samples.
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and memory.

An EM algorithm has the potential to avoid the above two drawbacks. To our best knowledge,

there is one existing EM algorithm for estimating the sparse item-dimension loading structure

for IRT models (Sun et al., 2016). Sun et al. (2016) develop this method for IRT models with a

logit link and only positive discrimination parameters. This group of IRT models is commonly

used in educational testing and psychology studies, where items are guaranteed to elicit subjects’

latent attributes in a fixed direction.2 However, in ideal point estimation, yea votes on some bills

reveal an actor’s conservative preference, whereas yea votes on other bills reflect an actor’s liberal

inclination. Therefore, we need to develop a method for estimating the IRT models suitable for

ideal point estimation in the political science research.

In this paper, we propose a new penalized EM algorithm to estimate the sparse item-dimension

loading structure in multidimensional IRT models. We hereby make two contributions. First, the

proposed penalized EM algorithm is able to identify the sparse item-dimension loading structure

for a multidimensional IRT model. The sparse item-dimension loading structure provides the

evidence for identifying the anchoring items for each dimension and inferring the meaning of

each dimension. Second, the penalized EM algorithm relaxes the assumption that all items load

onto all dimensions. Therefore, the penalized EM algorithm is able to consistently estimate the

multidimensional ideal points in the presence of a sparse item-dimension loading structure. Similar

to all EM algorithms, the penalized EM algorithm for IRT model is sensitive to parameter starting

values. Researchers should experiment with multiple starting values in exploration analysis, and

then pick the most suitable starting values.

The rest of the chapter proceeds as follows. First, we revisit the spatial voting model and

Bayesian IRT model for ideal point estimation. Second, we propose the penalized EM algorithm

for multidimensional IRT models, and specify the estimation steps for the algorithm. Third, we use

simulation data to illustrate that the penalized EM algorithm is able to successfully recover the true

item-dimension loading structure and consistently estimate the true ideal points simultaneously.

2For example, all test items in SAT are designed to elicit test takers’ aptitude, and a test taker’s correct answer to a
test item shows higher aptitude in expectation.
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Last, we apply the proposed algorithm to the 105th US Senate roll call vote data to identify the

anchoring items for a two-dimensional IRT model and infer dimension meanings.

4.2 Spatial Voting Model and Bayesian IRT Model

The data structure we study in this paper resembles a roll call vote matrix, where rows indicate

voters and columns represent items. Let matrix YYY (N × J) denote such a roll call vote matrix with

N voters voting on J items. The vote outcome is binary in that each voter either votes “Yea” or

“Nay” to a given item. An entry yij is recorded in the following way.

yij =


0 if voter i votes Yea on item j

1 if voter i votes Nay on item j

NA if voter i’s vote on item j is missing

The spatial voting model sets the theoretical foundation for inferring voters’ ideal points based

on the above roll call vote data (Enelow and Hinich, 1984; Jackman, 2009). The spatial voting

model assumes that voters’ ideal points, proposal positions and the status quo are projected onto

a policy space. A voter’ decision on a new proposal is defined as the function of her ideal point’s

relative distance to the proposal position and the status quo. Under the globally satiable and sym-

metric utility assumption, voters have a quadratic utility function over “Yea” or “Nay” choices.

Let φφφj denote the proposal position andψjψjψj denote the status quo with respect to item j. The policy

space has dimension K. Then the utility of voter i’s “Yea” vote and “Nay” vote on item j are:

Ui(φφφj) = −||xxxi − φφφj||2 + ηij

Ui(ψψψj) = −||xxxi −ψψψj||2 + vij

where xxxi is the ideal point of voter i, and ηij and vij are both error terms. Voter i will vote “Yea” if

Ui(φφφj) > Ui(ψψψj) and “Nay” otherwise. The errors are assumed to be independently and normally
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distributed with mean, 0, and variance, σ2
j . With this structural assumption on the errors, the

probability of voter i voting “Yea” is modeled as

P (yij = 1) = P (Ui(φφφj) > Ui(ψψψj))

= P (vij − ηij < ||xxxi −ψψψj||2 − ||xxxi − φφφj||2)

= P (vij − ηij < 2(φφφj −ψψψj)Txxxi +ψψψTj ψψψj − φφφTj φφφj)

= Φ(βTj xxxi + αj)

where βj =
φφφj −ψψψj
σj

(a vector of length K), αj =
ψψψTj ψψψj − φφφTj φφφj

2σj
(a scalar), and Φ(·) denotes the

CDF of a standard normal distribution.

We further assume that all vote data points are independent, given the voters’ ideal points and

the corresponding item parameters. Therefore, we can write out the likelihood function for the

entire roll call vote matrix as follows:

L(YYY |{βj}Jj=1, {αj}Jj=1, {xxxi}Ni=1) =
N∏
i=1

J∏
j=1

(
Φ(xxxTi βj + αj)

)I(yij=1)(
1− Φ(xxxTi βj + αj)

)I(yij=0)

where I(·) is an indicator function.

Building on the above modeling strategy, researchers have proposed an efficient Bayesian

Gibbs sampler for estimating the parameters (Clinton, Jackman and Rivers, 2004; Jackman, 2009).

Researchers place independent and conjugate normal priors on xxxi, αj and βj:

xxxi
i.i.d∼ NK(µµµx,ΣΣΣx)

[αj βj]
T = βββj

i.i.d∼ NK+1(µµµβ,ΣΣΣβ)

where ΣΣΣx and ΣΣΣβ are diagonal matices.

Henceforth, we can write out the joint posterior as a product of the prior and the likelihood as
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follows:

P ({βj}Jj=1, {αj}Jj=1, {xxxi}Ni=1|YYY )

∝
N∏
i=1

J∏
j=1

(
Φ(xxxTi βj + αj)

)I(yij=1)(
1− Φ(xxxTi βj + αj)

)I(yij=0)

︸ ︷︷ ︸
likehood

×
N∏
i=1

φK(xxxi;µµµx,ΣΣΣx)
J∏
j=1

φK+1(βββj;µµµβ,ΣΣΣβ)︸ ︷︷ ︸
prior

where φK(·;µµµ,ΣΣΣ) denotes the PDF of a K-dimensional normal distribution with mean µµµ and co-

variance matrix ΣΣΣ.

To implement the efficient Gibbs sampler, researchers have proposed a data-augmentation step

for the above joint posterior (Albert and Chib, 1993; Jackman, 2000). As in Probit regressions, we

introduce a latent variable, y∗ij , to represent the utility for voter i to vote “Yea” on item j. Hence,

we can model a latent response as y∗ij = αj + βTj xxxi + εij , εij ∼ N(0, 1), under the constraints

below:


y∗ij > 0 if yij = 1

y∗ij < 0 if yij = 0

y∗ij ∈ R if yij is NA

We store all the y∗ij’s corresponding to each vote record data point in matrix YYY ∗. A joint posterior

including the latent YYY ∗ can be expressed as follows:

P (YYY ∗, {βj}Jj=1, {αj}Jj=1, {xxxi}Ni=1|YYY )

∝
N∏
i=1

J∏
j=1

(
I(yij = 1)I(y∗ij > 0) + I(yij = 0)I(y∗ij < 0)

)
φ1(y∗ij;xxx

T
i βj + αj, 1)

×
N∏
i=1

φK(xxxi;µµµx,ΣΣΣx)
J∏
j=1

φK+1(βββj;µµµβ,ΣΣΣβ)
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where I(y∗ij > 0)φ1(y∗ij;xxx
T
i βj + αj, 1) is the PDF of a univariate truncated normal distribution,

which only takes positive values. Similarly, I(y∗ij < 0)φ1(y∗ij;xxx
T
i βj + αj, 1) is the PDF of a uni-

variate truncated normal distribution, which only takes negative values.

4.3 Penalized EM algorithm for IRT Model

The above Bayesian IRT model is usually estimated by MCMC simulations, which entail large

time and memory cost as the size of a binary response data matrix grows. To reduce the time and

memory cost of full Bayesian simulations, researchers have proposed an EM algorithm that’s based

on the above joint posterior distribution for fast estimation (Imai, Lo and Olmsted, 2016). As a

typical EM algorithm, this method consists of two steps: E-step and M-step. The E-step establishes

the target function (often called Q-function). The Q-function is the conditional expectation of the

joint log-likelihood given the parameter values saved from the last iteration. In this method, Imai,

Lo and Olmsted (2016) take conditional expectation of the missing values, y∗ij’s, in the latent

response matrix YYY ∗. Then in the M-step, Imai, Lo and Olmsted (2016) maximize the Q-function

with respect to the parameters, βββj’s and xxxi’s. They use the same normal priors for both βββj’s and xxxi

as in the full Bayesian method in the optimization step.

We build on the above EM algorithm by introducing anL1 penalty term on each βj . We draw on

the statistics literature on sparse factor analysis and sparse principle component analysis in devising

the new penalized EM algorithm (Choi, Oehlert and Zou, 2010; Lee, Huang and Hu, 2010; Hirose

and Konishi, 2012; Hirose and Yamamoto, 2014, 2015). Note that no penalty is imposed on any

αj . We also replace the normal prior on βββj’s with an improper prior, P ({βββj}Jj=1) ∝ 1. To simplify

notations, we use ~xi to denote [1 xxxi]
T .
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The Q-function for the penalized EM algorithm is expressed as follows:

Q({βββj}Jj=1, {~xi}Ni=1)

= E
[

logP (YYY ∗, {βββj}Jj=1, {~xi}Ni=1|YYY )
∣∣∣{βββ(t−1)

j }Jj=1, {~x
(t−1)
i }Ni=1

]
= −1

2

N∑
i=1

J∑
j=1

(βββTj ~xi~x
T
i βββj − 2βββTj ~xiy

∗(t)
ij )− 1

2

N∑
i=1

(xxxTi ΣΣΣ−1
x xxxi − 2xxxTi ΣΣΣ−1

x µµµx) + constant

where

y
∗(t)
ij = E[y∗ij|~x

(t−1)
i ,βββ

(t−1)
j , yij]

=



~x
(t−1)T
i βββ

(t−1)
j +

φ(~x
(t−1)T
i βββ

(t−1)
j )

Φ(~x
(t−1)T
i βββ

(t−1)
j )

if yij = 0

~x
(t−1)T
i βββ

(t−1)
j −

φ(~x
(t−1)T
i βββ

(t−1)
j )

1− Φ(~x
(t−1)T
i βββ

(t−1)
j )

if yij = 1

~x
(t−1)T
i βββ

(t−1)
j if yij is NA

In the E-step, we minimize the above Q function with respect to {~xi}Ni=1, {βββj}Jj=1 sequentially.

The optimization formulation for {~xi}Ni=1 is the same as in the previous EM algorithm:

xxx
(t)
i =

(
ΣΣΣ−1
x +

J∑
j=1

β
(t−1)
j β

(t−1)T
j

)−1(
ΣΣΣ−1
x µµµx +

J∑
j=1

β
(t−1)
j (y

∗(t)
ij − α

(t−1)
j )

)

However, the optimization formula for {βββj}Jj=1 is different due to the improper prior specification.

βββ
(t)
j =

( N∑
i=1

~x
(t)
i ~x

(t)T
i

)−1( N∑
i=1

~x
(t)
i y
∗(t)
ij

)

Before adding penalty, the above formula gives us the solution to {βββj}Jj=1 in the unconstrained

M-step. As shown by the solution form, the optimal values of βββj is equivalent to the solution to
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the optimization problem below:

min
βββj

(
y
∗(t)
j − ~x(t)T

i βββj

)T(
y
∗(t)
j − ~x(t)T

i βββj

)
In order to estimate the sparse item-dimension loading structure, we add an L1 penalty on each

βj (not on αj) to the above optimization problem in every M-step. The regularized optimization

problem is transformed into the problem below:

min
βββj

(
y
∗(t)
j − ~x(t)T

i βββj

)T(
y
∗(t)
j − ~x(t)T

i βββj

)
+ λ||βj||1

where λ controls the amount of penalty imposed on non-zero elements in βj . In the statistics

literature, the standard and efficient method to solve the above penalized optimization problem

is the cyclic coordinate descent algorithm (Friedman et al., 2007; Friedman, Hastie and Tibshi-

rani, 2010). The name “coordinate descent” comes from the fact that we update each dimension

(coordinate) k of βββj given the current values of all the other βjk’s. For each βββj , we treat the opti-

mization problem as a regularized least square problem, and we update βjk’s for k = 0, 1, · · · , K

for multiple iterations until convergence.

We use β(t)
jk to denote the current values for βjk in an iteration within the coordinate descent

process. Since we do not apply any penalty on αj’s (βj0’s), we update αj’s as a normal least square

problem in the following way:

αj = βj0 ←
1

N

N∑
1

(
y
∗(t)
ij −

K∑
1

x
(t)
ik β

(t)
jk

)
, given β(t)

jk for k = 1, · · · , K

Before we update any βjk in the coordinate descent process, we define y∗(t,k)
ij as the difference

between y∗(t)ij and the dot product of the current ideal points and the current values of item param-

eters (including intercept) for all the other dimensions than k. y∗(t,k)
ij is computed by the formula

below:
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y
∗(t,k)
ij = y

∗(t)
ij −

∑
k∈{0,··· ,k−1,k+1,··· ,K}

x
(t)
ik β

(t)
jk

Then we update all the discrimination parameters as an L1 regularized least square problem as

below:

βjk ← S

(( N∑
1

x
(t)2
ik

)−1
N∑
1

x
(t)
ik y
∗(t,k)
ij , λ

)

where S(z, γ) is the soft-thresholding operator below:

sign(z)(|z| − γ)+ =


z − γ if z > 0 and γ < |z|

z + γ if z < 0 and γ < |z|

0 if γ ≥ |z|

The penalized EM-algorithm updates {~xi}Ni=1 and {βββj}Jj=1 until convergence. We define the

convergence criterion in a similar way as in the previous EM algorithm (Imai, Lo and Olmsted,

2016). The convergence criterion is based on large correlations of parameter estimates between

two adjacent iterations under a pre-specified small threshold value, τ .3

converge criterion = I[Cor(~x(t−1), ~x(t)) > 1− τ ]

where ~x(t) is a long vector that stores all the elements in {~xi}Ni=1 for the current iteration. We

choose the value of λ by cross-validation based on Bayesian Information Criterion (BIC) (Sun

et al., 2016). We start with a grid of λ values and fit the above penalized EM algorithm repeatedly

under each λ value. After each trial converges, we store the estimated parameters. We compute

the BIC values with the final optimal parameter values under each λ value. We choose the λ value

3Imai, Lo and Olmsted (2016) compute the cross-iteration correlations for both {~xi}Ni=1, {βββj}Jj=1. It’s inappropri-
ate for us to compute the cross-iteration correlations for{βββj}Jj=1 because there are many exact zero values in {βββj}Jj=1

estimates in our model. Therefore, we only compute the across-iteration correlations for {~xi}Ni=1. Based on our
simulation studies, this convergence criterion works well.
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that returns the least BIC value.

4.4 Results on Simulated Data

To demonstrate the effectiveness of the new penalized EM algorithm for the IRT model, we run

the algorithm on simulated data and compare the estimated parameters with the ground truth.

We simulate a roll call vote matrix with 50 voters and 90 items. The latent ideal points have 3

dimensions. αj’s and βj’s are first randomly drawn from a normal distribution with mean 1 and

variance 0.4. Then we multiply αj’s and βj’s by −1 or 1 with equal chance. xik is sampled from

a standard normal distribution. Then we impose a sparse item-dimension loading structure on the

item parameter matrix. We let the first 30 items only load on the first dimension, and therefore

βjk = 0, ∀k ∈ {2, 3}, j ∈ {1, 2, · · · , 30} and βjk 6= 0,∀k = 1, j ∈ {1, 2, · · · , 30}. Likewise,

we let the second 30 items only load on the second dimension, and the last 30 items only load on

the third dimension. Therefore, for the first experiment, the discrimination parameter matrix has

180 zero value elements and 90 non-zero value elements. Lastly, an element, yij , in the simulated

roll call vote matrix is randomly sampled from a Bernoulli distribution. The parameter pij of the

Bernoulli distribution for drawing yij is defined as pij = Φ(αj + xxxTi βj).

In sum, the penalized EM algorithm is able to accurately identify the true sparse item-dimension

loading structure and consistently uncover the true multidimensional ideal points. First, we show

the results on one simulated roll call vote matrix to illustrate how to run the algorithm and how

to make sense of the results. We compare the results from both the previous EM algorithm and

the new penalized EM algorithm to show why it’s ideal to use the penalized EM algorithm in the

presence a sparse item-dimension loading structure. Second, we repeat the experiments 500 times

on different simulated roll call vote matrices based on different item-dimension loading structures.

First, we run the previous EM algorithm without penalty. The estimated βββ is plotted against the

true βββ. Figure 4.1 shows that the EM algorithm without penalty does not uncover the zero elements

in the true βββ. We use β0 to represent α for an item in this section. The correlations between
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Figure 4.1: Estimated βk with No Penalty. The EM algorithm without penalty does not uncover
the zero elements in the true βββ. The correlations between the true βk’s and the estimated βk’s, for
k = 0, 1, 2, 3, are 0.9697469, 0.4673016, 0.4802608, 0.5763199.

the true βk’s and the estimated βk’s, for k = 0, 1, 2, 3, are 0.9697469, 0.4673016, 0.4802608,

0.5763199. Figure 4.2 plots the estimated xk’s from the previous EM algorithm against the true

xk’s . The correlations between the true xk’s and the estimated xk’s for k = 1, 2, 3, are 0.4560569

,0.4584138, 0.6555498. The above results show that the estimated item parameters and ideal points

are inconsistent without penalty in the presence of a true sparse item-dimension loading structure.

Second, we run the penalized EM algorithm on the simulated roll call vote data. We start with

a grid of λ values, and run the EM algorithm repeatedly under each λ value. We plot the BIC value

for each trial against the λ value. We choose the λ value that returns the least BIC value. Figure

4.3 shows that the optimal value of λ is 0.46. We use the optimal λ value, 0.46, to compute the

final estimated parameters from the penalized EM algorithm.

Figure 4.4 shows that the penalized EM algorithm uncovers most of the zero elements in βββ.
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Figure 4.2: Estimated xk with No Penalty. The EM algorithm without penalty does not uncover the
ground truth of xk’s. The correlations between the true xk’s and the estimated xk’s for k = 1, 2, 3,
are 0.4560569 ,0.4584138, 0.6555498.

The correlations between the true βk’s and the estimated βk’s for k = 0, 1, 2, 3, are 0.9615604,

0.9587055, 0.93453, 0.9320354. We can measure the performance of the penalized EM algorithm

by thinking of the sparse item-dimension loading structure estimation task as a classification prob-

lem. In turn, we examine how well the penalized EM algorithm can correctly classify the true zero

elements in βββ as zero. We report several classification performance metrics below. In aggregate,

the penalized EM algorithm correctly classifies 82.18% of elements in βββ as either zero or non-zero.

The penalized EM algorithm correctly classifies 92.22% (sensitivity metric) of the true non-zero

elements in βββ. The penalized EM algorithm correctly classifies 90% (specificity metric) of the true

zero elements in βββ. The overall F1 score for this classification task is 0.8691. Figure 4.5 plots

the estimated xk’s against the true xk’s. The correlations between the true xk’s and the estimated

xk’s, for k = 1, 2, 3, are 0.9599019, 0.9299417, 0.9522259. The above results show that we can

consistently estimate the item parameters and the ideal points with the penalized EM algorithm in

the presence of a sparse item-dimension loading structure.

Third, we repeat the above roll call vote matrix simulation and penalized EM algorithm fitting

for 500 times. In each data simulation, we randomly draw the item-dimension loading structure.

Specifically, for each item j we first draw the number of zero discrimination parameters, tj , from

{0, 1, 2} with equal likelihood. Then we draw tj discrimination parameters without replacement
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Figure 4.3: BIC Values. The optimal value of λ is 0.46.
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Figure 4.4: Estimated βk with Penalty. The penalized EM algorithm uncovers most of the zero
elements in βββ. The correlations between the true βk’s and the estimated βk’s for k = 0, 1, 2, 3, are
0.9615604, 0.9587055, 0.93453, 0.9320354.
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Figure 4.5: Estimated xk with Penalty. The penalized EM algorithm uncovers the ground truth of
xxx. The correlations between the true xk’s and the estimated xk’s, for k = 1, 2, 3, are 0.9599019,
0.9299417, 0.9522259.

from {βj1, βj2, βj3} and set them to be equal to zero. Other than the distinct item-dimension

loading structures, we use the same simulation steps to generate 500 roll call vote matrices.

We fit the penalized EM algorithm with the same random seed and staring values on the 500

roll call vote matrices respectively. Because of the fixed starting values, we expect that the results

for some of the replications may not be ideal. Similar to all EM algorithm methods, the proposed

algorithm in this paper requires researchers to experiment with multiple starting values. However,

the Monte Carlo experiments still show that the penalized EM algorithm works almost all of the

times in spite of the inflexible starting values. As shown by Figure 4.6, the penalized EM algorithm

can accurately recover the true values of ideal points for all three latent dimensions for nearly all

the trials. Similarly, Figure 4.7 shows that the penalized EM algorithm can accurately estimate the

true values of item parameters for almost all of the trials. More importantly, as illustrated by Figure

4.8, the EM algorithm does a decent job at recovering the sparse item-dimension loading structure

for nearly all of the trials. The vast majority of the classification metrics, including Precision,

Sensitivity, Specificity and F1 Score, exceed 80%.
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Figure 4.6: Correlations between Estimated xk and True xk for 500 Trials. The penalized EM
algorithm can accurately recover the true values of ideal points for all three latent dimensions for
nearly all the trials.
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Figure 4.7: Correlations between Estimated βk and True βk for 500 Trials. The penalized EM
algorithm can accurately estimate the true values of item parameters for almost all of the trials.
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Figure 4.8: Classification Metrics for 500 Trials. The EM algorithm does a decent job at recovering
the sparse item-dimension loading structure for nearly all of the trials. The vast majority of the
classification metrics, including Precision, Sensitivity, Specificity and F1 Score, exceed 80%.
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4.5 US Senator Ideal Point Estimation

We replicate a previous study on estimating 2-dimensional ideal points for US senators in Jack-

man (2001). In this study, Jackman emphasizes the importance of estimating the item-dimension

loading structure and draws a mathematical connection between multidimensional IRT models

and factor analysis models. His strategy to identify the item-dimension loading structure is to first

estimate the item parameters without penalty and then examine if a discrimination parameter is

significantly different than zero. He runs the full Bayesian IRT model specified above, and uses

the 90% credible interval of the posterior sample of a discrimination parameter as a significance

check. If the 90% credible interval of the posterior sample of a discrimination parameter includes

zero, then Jackman classifies this discrimination parameter as zero. This way, he converts the orig-

inal discrimination parameter matrix into a sparse matrix, and he identifies special anchoring items

based on the sparse discrimination parameter matrix.

Jackman’s study contributes to the literature of ideal point estimation by highlighting the im-

portance of item-dimension loading structures. However, this method has a few potential pitfalls.

First, as shown by the simulation data example, if the item-dimension loading structure is truly

sparse, then an estimation method without penalty cannot consistently estimate the ideal points or

the item parameters. Therefore, the full Bayesian approach may not be able to accurately estimate

the item parameters in the first place, and this makes the significance check based on the posteriors

of the item parameters less credible. Second, the criterion for the significance check is arbitrary,

be it 90% or 95%, and we do not have a clear way to choose the optimal credible interval level.

We replicate this study with the penalized EM algorithm. Our goal is to show that the penalized

EM algorithm is able to definitively identify an item-dimension loading structure and the special

anchoring items. Then we closely examine the anchoring items and explain what these anchoring

items mean substantively. We use the US Senate 105th Session’s roll call vote data as in the original

study. As in the original study, we remove all the bills where less than 3 senators are in the voting

minority, because these extremely lopsided votes do not provide much information on a senator’s

ideal point. We end up with 100 senators and 486 bills in the data.
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Figure 4.9: 1-D Ideal Point Estimates from Bayesian and EM IRT Models. The estimated unidi-
mensional ideal points from full Bayesian and EM IRT models are highly correlated.

First, we run a unidimensional IRT model with the previous EM algorithm without penalty. We

use the starting values −3 for Senator Paul Wellstone (D-MN) and 3 for Senator Jim Inhofe (R-

OK) due to their well-known and relatively outlying ideological leanings. We save the estimated

unidimensional ideal points for all the senators. For comparison, we also run a full Bayesian uni-

dimensional IRT model on the same data set. Figure 4.9 shows that the estimated unidimensional

ideal points from full Bayesian and EM IRT models are highly correlated. We use the above uni-

dimensional ideal point estimates as the starting values for the first dimension ideal points when

we run the 2-dimensional EM IRT model. The second dimension of the ideal points starting

values are randomly generated from a standard normal distribution. In preparation, we run the

2-dimensional EM IRT model without penalty with the above starting ideal point values, and save

the 2-dimensional ideal point estimates.

We use the above 2-dimensional ideal point estimates as the starting values for running the

penalized EM algorithm. We start with a grid of λ values, a sequence from 0.3 to 0.6 by step 0.01.

We run the 2-dimensional penalized EM algorithm under each λ value. Figure 4.10 shows that the

optimal λ value is 0.47. We use the optimal λ value 0.47 to run the final 2-dimensional penalized

EM algorithm on the roll call vote data. In Figure 3 of the original paper (Jackman, 2001), Jackman

108



0.30 0.35 0.40 0.45 0.50 0.55 0.60
30

25
0

30
30

0
30

35
0

λ
B

IC
 v

al
ue

s

Figure 4.10: BIC Values for Replication Study. The optimal λ value is 0.47.

Senator Estimated 1st D Original 1st D Estimated 2nd D Original 2nd D
BREAUX -0.5514101 - 0.2886047 +
LOTT 1.142636 + -0.1434896 +
MCCAIN 0.640696 + -0.3509587 -
ASHCROFT 1.076252 + -1.040977 -
CHAFEE 0.1636766 + 0.5292594 +
DASCHLE -1.155316 - 0.353784 +
WELLSTONE -1.465541 - -0.07373871 -

Table 4.1: 2-D Ideal Points from Penalized EM Algorithm and Signs of Original Ideal Points. The
penalized EM algorithm returns the same signs for the ideal points of the selected senators except
for Senator Lott (R-MS)’s second dimension ideal point.

reports the 2-dimensional ideal points of a few representative senators.4 The 2-dimensional ideal

points of these senators from the penalized EM algorithm have almost the same signs as those in

the original study. Table 4.1 shows that the penalized EM algorithm returns the same signs for

the ideal points of the selected senators except for Senator Lott (R-MS)’s second dimension ideal

point.

In the original study, Jackman identifies 282 bills that only load on the first dimension and 12

bills that only load on the second dimension. The penalized EM algorithm finds 306 pure-first-

dimension bills and 40 pure-second-dimension bills. To show the meanings of the two dimen-

4Jackman does not report the exact values of the ideal point estimates in the paper. Judging by the plot, we can
only tell the signs of the ideal points in the original study.
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sions, we study the two groups of anchoring items for the first and second dimensions respectively.

Substantively, the 306 pure-first-dimension bills include almost all kinds of policy issues, so it’s

difficult to summarize the first dimension by the pure-first-dimension bills’ contents. The 40 pure-

second dimension bills have more coherent substantive meanings. There are two policy topics that

repeatedly show up in the pure-second-dimension issues: appropriations and foreign policy. Bill

No.63, 92, 96, 181, 185, 209, 235, 251, 257, 264, 283, 298, 337, 338, 339, 342, 416, 512, 558, and

612 are all about appropriations or budget issues. Bills that are related to foreign policy include

bill No. 25, 184, 185, 339, 342, 345, 410, and 546. The summaries of the above bills are reported

in the tables in Appendix C.

To further differentiate the first and second dimensions of ideal points, we employ senators’

party ID data to check if there is a clear difference in the degree of partisanship between the pure-

first-dimension and the pure-second-dimension bills. If we can predict each senator’s vote on a

bill by her party ID fairly well, then we regard this bill as more partisan. On the contrary, if we

cannot accurately predict the votes on a bill based on senators’ party IDs, then we think of this bill

as less partisan. We run 306 logistic regression models with senators’ party ID as the predictor and

senators’ votes on a bill as the response for each pure-first-dimension bill. Then we use the learned

logistic regression model to predict senators’ votes on each pure-first-dimension bill. For this two-

class prediction problem, we use the AUROC (Area Under the Receiver Operating Characteristics)

metric to evaluate the prediction performance. We repeat the above procedure on the 40 pure-

second-dimension bills.

As shown by Figure 4.11, we can use only party ID data to decently predict most of the pure-

first-dimension bills, whereas the party ID variable does not give us much leverage for predicting

votes for the pure-second-dimension bills. Figure 4.12 more clearly contrasts the predictability of

votes based on party ID and partisanship for the pure-first-dimension and pure-second-dimension

bills. This finding provides further evidence to the theory in congress studies: one dimension of

ideal points should capture the partisanship of a legislator, and the other dimensions should capture

a legislator’s preference other than voting along the party line (Poole and Rosenthal, 1985). By
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Figure 4.11: Histogram of AUROC Values on Anchoring Items. We can use only party ID data to
decently predict most of the pure-first-dimension bills, whereas the party ID variable does not give
us much leverage for predicting votes for the pure-second-dimension bills.
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Figure 4.12: Boxplot of AUROC Values on Anchoring Items. This boxplot more clearly contrasts
the predictability of votes based on party ID and partisanship for the pure-first-dimension and
pure-second-dimension bills. The pure-first-dimension bills are much more partisan than the pure-
second-dimension bills.

using the penalized EM algorithm, we are able to identify the bills that are inherently partisan

or less partisan, and these anchoring items provide stronger evidence for the latent dimension

meanings.
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4.6 Conclusion

We have proposed an innovative penalized EM algorithm for estimating sparse item-dimension

loading structures in multidimensional IRT models. The new penalized EM algorithm identifies

a sparse item-dimension loading structure for multidimensional IRT models by applying an L1

penalty on discrimination parameters in model estimation. The sparse item-dimension loading

structure aids us in identifying the anchoring items for each dimension and provides information

on what each dimension means. In addition, the penalized EM algorithm has the flexibility to allow

a discrimination parameter to be exactly zero. Hence, the penalized EM algorithm can consistently

estimate the multidimensional ideal points when the data generation process is truly based on a

sparse item-dimension loading structure. We have used simulation data to demonstrate how the

penalized EM algorithm can accurately recover both the true item-dimension loading structure and

ideal points. Then, we have also replicated a previous study on the 105th US Senate roll call vote

data to show how the penalized EM algorithm can help us infer latent dimension meanings.
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CHAPTER 5

Conclusion

In this dissertation, we have proposed three new statistical models for analyzing discrete choice

data. These new models all fall into the category of Bayesian latent variable models, and respec-

tively contribute to three political methodology literatures: pairwise comparison models, Dirichlet

process mixture models, and Bayesian IRT models. The newly proposed models improve the ex-

isting models by relaxing unidimensional assumptions, modeling temporal dependence of cluster

numbers, and supporting richer structures of latent variables. We have applied the three new mod-

els to survey data or roll call vote data. These models uncovered the underlying patterns from the

opinion or vote data, and therefore shed important light on actors’ preferences and behaviors. In

these empirical studies, we have derived new insights about important political science topics, such

as political biases in people’s perceptions of COVID-19 related statements, politicization of human

rights in the United Nations, and multiple issue dimensions of legislators’ ideal points. Below we

reiterate our findings and contributions in the three chapters above.

In the second chapter, we have proposed a new multidimensional pairwise comparison model

to measure multidimensional latent attributes and respondent-specific perceptual parameters. We

have applied this new model to original survey data where respondents are asked to judge the

truthfulness of pairs of statements on COVID-19. We find a weak correlation between the actual

truthfulness of a statement and respondents’ perceptions of truthfulness. More importantly, we

find that the political valence of statements is largely responsible for the variation in perceived

truthfulness. Co-partisanship between a respondent and the speaker of a statement predicts higher

113



perceived truthfulness. We have also observed associations between the respondent-specific per-

ceptual parameters and respondents’ practice of mask-wearing or social distancing.

In the third chapter, we have proposed the Dynamic Dirichlet Process Mixture (DDPM) model

to identify voting coalitions with roll call votes across multiple periods, along with post-processing

methods to analyze the posterior samples from the DDPM model. We have applied these methods

to the United Nations General Assembly (UNGA) human rights roll call vote data from 1992

to 2017. We identify human rights voting coalitions in the UNGA after the Cold War, and the

polarizing resolutions that divide countries into different coalitions. Through this study, we find a

clear separation between developing and developed countries in human rights voting. Moreover,

we find the EU as a stable coalition among the developed countries, whereas some Latin American

countries tend to form a small coalition, apart from a large developing country coalition. We also

find that many polarizing resolutions repeatedly show up across years, and the lines of conflict lie

in both debates on general human rights principles and human rights violation reports on specific

countries.

In the fourth chapter, we have proposed an innovative penalized EM algorithm for estimat-

ing sparse item-dimension loading structures in multidimensional IRT models. The sparse item-

dimension loading structure aids us in identifying the anchoring items for each dimension, which

provide information on what each dimension means. In addition, the penalized EM algorithm has

the flexibility to allow a discrimination parameter to be exactly zero. Hence, the penalized EM

algorithm can consistently estimate the multidimensional ideal points when the data generation

process is truly based on a sparse item-dimension loading structure. We have replicated a previous

study on the 105th US Senate roll call vote data to show how the penalized EM algorithm can help

us identify anchoring items for latent dimensions and thereby infer latent dimension meanings.
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APPENDIX A

COVID-19 Statements and Respondent Descriptive

Statistics

A.1 COVID-19 Statements

In the following 7 tables, we report the 42 unique statements used in the survey. We show each

statement in the same format as in the survey. In the “Statement” column, we report a statement’s

content, the speaker, the date when the statement was made, and the channel through which the

statement was made. We also report the unique IDs, the truthfulness ratings given by PolitiFact

website, the grouped truthfulness ratings, and the partisanship labels for all the statements. We

group “pants-on-fire”, “false”, and “mostly-false” statements as “low-truth” statements. We group

“half-true”, “mostly-true”, and “true” statements as “high-truth” statements.1

1Note that in 2011 Politifact changed the label on their third lowest truthfulness rating from “barely true” to “mostly
false” (https://www.politifact.com/article/2011/jul/27/-barely-true-mostly-false/). While the ratings of our statements
that appear on the Politifact website reflect this change, it appears that their underlying database that we scraped still
uses “barely true” for this category. We use “mostly false” in this paper, but the underlying data we rely upon uses
“barely true”.
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Table A.1: Coronavirus / COVID-19 Statement Table

ID Statement PolitiFact
Rating

Grouped
Rating

Partisan-
ship

1001 “Joe Biden was in charge of the H1N1 Swine
Flu epidemic which killed thousands of peo-
ple. The response was one of the worst on
record. Our response is one of the best, with
fast action of border closings & a 78% Ap-
proval Rating, the highest on record. His was
lowest!” This statement was made by Don-
ald Trump on March 12, 2020 in a tweet.

barely-
true

low-
truth

right

1002 “We’ve still had more deaths to the flu this
year than we’ve had COVID-19.” This state-
ment was made by Dan Forest on April 24,
2020 in an interview.

false low-
truth

right

1003 “There was no real scientific basis for be-
lieving that social distancing would be nec-
essary, since it had never been studied.” This
statement was made by Laura Ingraham on
May 4, 2020 in a TV segment.

false low-
truth

right

1004 “We’ve tested more than every country com-
bined.” This statement was made by Donald
Trump on April 27, 2020 in comments made
during a White House briefing.

pants-
fire

low-
truth

right

1005 “Nancy Pelosi’s coronavirus bill includes tax
credits for solar and wind energy, retirement
plans for community newspaper employees,
$300 million for PBS, climate change stud-
ies, and more.” This statement was made by
Donald Trump on March 24, 2020 in a cam-
paign ad.

mostly-
true

high-
truth

right

1006 “Longstanding Food and Drug Administra-
tion regulations created barriers to the pri-
vate industry creating a test quickly for the
coronavirus.” This statement was made by
Dan Crenshaw on March 13, 2020 in a tweet.

true high-
truth

right
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Table A.2: Coronavirus / COVID-19 Statement Table

ID Statement PolitiFact
Rating

Grouped
Rating

Partisan-
ship

1007 “The United States is actually screening
fewer people (for the coronavirus than other
countries) because we don’t have appropriate
testing.” This statement was made by Lou
Dobbs on March 2, 2020 in a TV interview.

mostly-
true

high-
truth

right

1008 “During the 2009 swine flu outbreak, Biden
made reckless comments unsupported by
science & the experts. The Obama Admin
had to clean up his mess & apologize for
his ineptitude.” This statement was made by
Donald Trump on March 12, 2020 in a tweet.

mostly-
true

high-
truth

right

1009 “Three Chinese nationals were apprehended
trying to cross our Southern border illegally.
Each had flu-like symptoms. Border Patrol
quickly quarantined them and assessed any
threat of coronavirus.” This statement was
made by Charlie Kirk on February 24, 2020
in a tweet.

mostly-
true

high-
truth

right

1010 “Regarding the risks of coronavirus trans-
mission on an airplane, it’s as safe as an envi-
ronment as you’re going to find.” This state-
ment was made by Gary Kelly on May 3,
2020 in an interview on CBS.

barely-
true

low-
truth

neutral

1011 “The April 22 jump in COVID-19 cases was
related to the election.” This statement was
made by Chris Larson on April 23, 2020 in a
Facebook post.

false low-
truth

neutral

1012 “They’re furloughing nurses in hospitals in
western New York state.” This statement was
made by Jerome Adams on March 27, 2020
in a television interview.

false low-
truth

neutral
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Table A.3: Coronavirus / COVID-19 Statement Table

ID Statement PolitiFact
Rating

Grouped
Rating

Partisan-
ship

1013 “Silver Solution used on strains of coron-
avirus ‘totally eliminate it. Kills it. Deac-
tivates it.’ ” This statement was made by
Sherill Sellman on February 12, 2020 in re-
marks on the Jim Bakker show.

pants-
fire

low-
truth

neutral

1014 “It’s actually the safest time to fly.” This
statement was made by Ainsley Earhardt on
March 13, 2020 in the Fox & Friends show.

false low-
truth

neutral

1015 “Small trials to test convalescent plasma
therapy for coronavirus patients seem to
have had some degree of success.” This
statement was made by Jamie Nadler on
April 14, 2020 in a newspaper interview.

true high-
truth

neutral

1016 “Covid-19 is now the leading cause of death
in the United States.” This statement was
made by Mandy Cohen on April 20, 2020 in
a press conference.

half-true high-
truth

neutral

1017 “Some states are only getting 50 tests per
day, and the Utah Jazz got 58.” This state-
ment was made by Michael Dougherty on
March 12, 2020 in a tweet.

true high-
truth

neutral

1018 “You’re more likely to die of influenza right
now than the 2019 coronavirus.” This state-
ment was made by Dr. Drew Pinsky on
February 3, 2020 in a Daily Blast Live seg-
ment.

half-true high-
truth

neutral
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Table A.4: Coronavirus / COVID-19 Statement Table

ID Statement PolitiFact
Rating

Grouped
Rating

Partisan-
ship

1019 “(Barack Obama) set up anti-pandemic pro-
grams in 47 vulnerable countries as a way
to protect against something like the coro-
navirus, exactly. Do you know that Trump
closed 37 of them?” This statement was
made by Joy Behar on March 9, 2020 in an
episode of ABC’s “The View”.

false low-
truth

left

1020 “The health insurance industry has agreed to
waive all co-payments for coronavirus treat-
ments.” This statement was made by Donald
Trump on March 11, 2020 in a White House
speech.

false low-
truth

right

1021 “The World Health Organization offered the
testing kits that they have available and to
give it to us now. We refused them. We did
not want to buy them.” This statement was
made by Joe Biden on March 15, 2020 in a
Democratic primary debate.

barely-
true

low-
truth

left

1022 “There was no effort to get American ex-
perts into China after it announced the coro-
navirus, and we had one person in-country
(and Trump) pulled him out of the country.”
This statement was made by Joe Biden on
March 27, 2020 in a virtual town hall on
CNN.

barely-
true

low-
truth

left

1023 “If you line up all the countries that have
done (Covid-19) testing on a per-capita ba-
sis, we’re at the bottom of the list.” This
statement was made by Bobby Scott on April
2, 2020 in a radio interview.

false low-
truth

left

1024 “Republicans have shown themselves will-
ing to cut millions off their health insurance
and eliminate preexisting condition protec-
tions for millions more, even in the middle of
this public health crisis.” This statement was
made by Barack Obama on April 14, 2020
in his online video endorsement of Joe Biden
for president.

true high-
truth

left
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Table A.5: Coronavirus / COVID-19 Statement Table

ID Statement PolitiFact
Rating

Grouped
Rating

Partisan-
ship

1025 “Some states, like Montana and Nebraska,
are getting more than $300,000 in fed-
eral stimulus money per reported COVID-19
case. New York is the hardest-hit state and
yet we are getting only about $12,000 per
case.” This statement was made by Andrew
Cuomo on April 12, 2020 in a tweet.

mostly-
true

high-
truth

left

1026 “The Trump Administration promised 27
million tests by the end of March. As of now,
only 4 million have been completed.” This
statement was made by Joe Biden on April
21, 2020 in a tweet.

half-true high-
truth

left

1027 “President Donald Trump’s actions on the
coronavirus: No. 1, he fired the pan-
demic team two years ago. No. 2, he’s
been defunding the Centers for Disease Con-
trol.” This statement was made by Michael
Bloomberg on February 26, 2020 in a CNN
town hall.

half-true high-
truth

left

1028 “45 nations had already moved to enforce
travel restrictions with China before the pres-
ident moved.” This statement was made by
Joe Biden on April 5, 2020 in an ABC “This
Week” interview.

half-true high-
truth

left

1029 “Dr. Anthony Fauci has known for 15
years that chloroquine and hydroxychloro-
quine will not only treat a current case of
coronavirus but prevent future cases.” This
statement was made by a blogger on April
27, 2020 in an article.

false low-
truth

right

1030 “President Barack Obama signed the med-
ical appliance tax bill that forced compa-
nies to outsource manufacturing of masks,
gowns, gloves and ventilators to China, Eu-
rope and Russia to avoid the tax.” This state-
ment was made by a Facebook user on April
23, 2020 in a viral image circulating on so-
cial media attributing comments to Barack
Obama.

pants-
fire

low-
truth

right
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Table A.6: Coronavirus / COVID-19 Statement Table

ID Statement PolitiFact
Rating

Grouped
Rating

Partisan-
ship

1031 “Africans living in China now being forced
to sleep outside in the cold as Chinese na-
tionals blame them for the rising number of
new coronavirus cases in the country.” This
statement was made by a Facebook user on
April 16, 2020 in a post on Facebook.

true high-
truth

right

1032 “A California surfer was alone, in the ocean,
when he was arrested for violating the state’s
stay-at-home order.” This statement was
made in a viral image on April 8, 2020 in
a Facebook post.

mostly-
true

high-
truth

right

1033 “Herd immunity is probably why California
has far fewer COVID-19 deaths than New
York.” This statement was made by a Face-
book user on April 10, 2020 in a Facebook
post.

false low-
truth

neutral

1034 “The Asian, Hong Kong, swine and bird flus
each killed more people than coronavirus.”
This statement was made by a Facebook user
on April 6, 2020 in a Facebook post.

false low-
truth

neutral

1035 “COVID-19 is here to stay and we need to
accept that and be prepared to deal with
COVID long term.” This statement was
made by a Facebook user on April 26, 2020
in a Facebook post.

mostly-
true

high-
truth

neutral

1036 “Hospitals get paid more to list patients as
COVID-19.” This statement was made by a
Facebook user on April 10, 2020 in a Face-
book post.

half-true high-
truth

neutral
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Table A.7: Coronavirus / COVID-19 Statement Table

ID Statement PolitiFact
Rating

Grouped
Rating

Partisan-
ship

1037 “Unemployment now pays $24/hour, even if
your wages were lower. Why don’t essen-
tial people forced to still work get $24, too?”
This statement was made by a Facebook user
on March 29, 2020 in a Facebook post.

half-true high-
truth

neutral

1038 “Mike Pence was caught on a hot mic deliv-
ering empty boxes of PPE to a nursing home
and pretended they were heavy.” This state-
ment was made by a blogger on May 8, 2020
in a blog post.

false low-
truth

left

1039 “Trump said hundreds of governors are call-
ing him & we only have 50.” This statement
was made by a Facebook user on April 21,
2020 in a Facebook post.

false low-
truth

left

1040 “Donald Trump would receive $17 million
for three hotels closed for four days under
Republican bill! How in the hell is this
right?!” This statement was made by a Face-
book user on March 23, 2020 in a Facebook
post.

false low-
truth

left

1041 “The CDC issued its first warning on Jan 8.
Trump held campaign rallies on Jan 9, Jan
14, Jan 28, Jan 30, Feb 10, Feb 19, Feb 20,
Feb 21, & Feb 28. He golfed on Jan 18, Jan
19, Feb 1, Feb 15, Mar 7, Mar 8. The first
time he admitted the coronavirus might be a
problem was Mar 13.” This statement was
made by a Facebook user on March 31, 2020
in a Facebook post.

half-true high-
truth

left

1042 “On February 7, the WHO warned about
the limited stock of PPE. That same day,
the Trump administration announced it was
sending 18 tons of masks, gowns and respi-
rators to China.” This statement was made
by a Facebook user on March 31, 2020 in a
Facebook post.

true high-
truth

left
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A.2 Descriptive Statistics

We report various summary statistics about respondent characteristics in the tables below.

Percentile 5% 25% 50% 75% 95%
Birth Year 1953 1974 1983 1992 2000

Table A.8: Birth Year. The median respondent birth year is 1983. The first quartile is 1974, and
the third quartile is 1992. The 5th percentile is 1953, and the 95 percentile is 2000.

Gender Male Female
Number 1170 1446

Table A.9: Gender. The respondent sample has a roughly even distribution in terms of gender.
Females make a slight majority in the sample.

Education
Level

High
School
Unfinished

High
School
Graduate

Some Col-
lege

Bachelor’s
Degree

Graduate
school

Number 69 523 694 886 448

Table A.10: Education Level. A plurality of the respondents have a bachelor’s degree. The re-
spondent sample has good representation for high school graduates, people with some college
education, and people with graduate school education.

Race White Black Hispanic Asian Native
Amer-
ican

Middle
East-
ern

Mixed Other

Number 1806 361 222 111 28 10 69 12

Table A.11: Race. The vast majority of the respondents are white. The respondent sample also has
good representation for Black and Hispanic people.
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Ideology Very
Liberal

Liberal Somewhat
Liberal

Middle
of the
Road

Somewhat
Conser-
vative

Conser-
vative

Very
Conser-
vative

Number 363 393 263 791 260 285 265

Table A.12: Ideology. A plurality of the respondents self-identify with the middle-of-the-road
ideology. The distribution of liberals and conservatives are roughly even. There are more liberals
than conservatives in the respondent sample.

Partisan-
ship

Strong
Demo-
crat

Not
very
strong
Demo-
crat

Lean
Demo-
crat

Indepen-
dent

Lean
Re-
publi-
can

Not
very
strong
Re-
publi-
can

Strong
Re-
publi-
can

Not
Sure

Number 617 297 155 381 127 265 607 148

Table A.13: Partisanship. The distribution of liberals and conservatives are roughly even.

Percentile 5% 25% 50% 75% 95%
Response Time in Seconds 192 360 591 911 2023

Table A.14: Percentiles of Response Time in Seconds. More than half of the respondents spent
more than 10 minutes on the survey. A quarter of the respondents spent between 6 and 10 minutes.
The other quarter of the respondents spent less than 4 minutes.
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APPENDIX B

Voting Coalition Membership Tables and Polarizing

Resolution Tables

B.1 Voting Coalition Membership Tables

We report the estimated voting coalition memberships from 1992 to 2017 in Table B.1 through

Table B.26 .
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Table B.1: Coalition Membership in 1992

Coalition Member

1 United States of America, Canada, United Kingdom of Great
Britain and Northern Ireland, Ireland, Netherlands, Belgium, Luxem-
bourg, France, Liechtenstein, Portugal, Germany, Austria, Hungary,
Czechoslovakia, Italy, Russian Federation, Estonia, Latvia, Lithuania,
Finland, Sweden, Norway, Denmark, Iceland, Israel, Japan, Australia,
New Zealand, Marshall Islands

2 Cuba, Colombia, Guyana, Cyprus, Mauritania, Niger, Côte D’Ivoire,
Liberia, Cameroon, Nigeria, Gabon, Angola, Zimbabwe, Namibia,
Libya, Sudan, Iran (Islamic Republic of), Syrian Arab Republic, Jordan,
Saudi Arabia, Afghanistan, China, India, Bhutan, Pakistan, Bangladesh,
Sri Lanka, Maldives, Thailand, Lao People’s Democratic Republic, Viet
Nam, Malaysia, Brunei Darussalam, Philippines, Indonesia

3 Jamaica, Barbados, Saint Lucia, Saint Vincent and the Grenadines, An-
tigua and Barbuda, Mexico, Belize, Guatemala, Honduras, El Salvador,
Costa Rica, Venezuela, Bolivarian Republic of, Suriname, Ecuador,
Peru, Brazil, Bolivia (Plurinational State of), Paraguay, Chile, Gam-
bia (Islamic Republic of the), Mali, Benin, Togo, Rwanda, Botswana,
Swaziland, Mauritius, Algeria, Nepal, Singapore

4 Panama, Spain, Malta, Greece, Ukraine, Belarus, Azerbaijan, Turkey,
Kazakhstan, Republic of Korea, Samoa
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Table B.2: Coalition Membership in 1993

Coalition Member

1 United States of America, Canada, Dominican Republic, Argentina,
United Kingdom of Great Britain and Northern Ireland, Ireland, Nether-
lands, Belgium, Luxembourg, France, Liechtenstein, Portugal, Ger-
many, Poland, Austria, Czech Republic, Slovakia, Italy, The former Yu-
goslav Republic of Macedonia, Slovenia, Bulgaria, Russian Federation,
Latvia, Georgia, Finland, Sweden, Norway, Denmark, Iceland, Israel,
Japan, Australia, New Zealand, Marshall Islands, Micronesia (Feder-
ated States of)

2 Bahamas, Jamaica, Trinidad and Tobago, Barbados, Saint Lucia, Saint
Vincent and the Grenadines, Antigua and Barbuda, Mexico, Belize,
Honduras, Nicaragua, Costa Rica, Colombia, Venezuela, Bolivarian Re-
public of, Guyana, Suriname, Ecuador, Peru, Brazil, Bolivia (Pluri-
national State of), Chile, Uruguay, Cyprus, Benin, Ghana, Rwanda,
Botswana, Swaziland, Mauritius, Algeria, Saudi Arabia, Nepal, Sin-
gapore

3 Cuba, Guinea Bissau, Mali, Mauritania, Niger, Côte D’Ivoire, Sierra
Leone, Togo, Nigeria, Kenya, Mozambique, Zimbabwe, Namibia,
Lesotho, Tunisia, Libya, Sudan, Iran (Islamic Republic of), Syrian
Arab Republic, China, India, Bhutan, Pakistan, Bangladesh, Sri Lanka,
Maldives, Thailand, Lao People’s Democratic Republic, Viet Nam,
Malaysia, Brunei Darussalam, Philippines, Indonesia

4 Panama, Spain, Malta, Greece, Ukraine, Belarus, Armenia, Azerbaijan,
Kazakhstan, Republic of Korea
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Table B.3: Coalition Membership in 1994

Coalition Member

1 United States of America, Canada, Argentina, United Kingdom of Great
Britain and Northern Ireland, Ireland, Netherlands, Belgium, Luxem-
bourg, France, Liechtenstein, Spain, Portugal, Germany, Poland, Aus-
tria, Hungary, Czech Republic, Italy, The former Yugoslav Republic of
Macedonia, Slovenia, Greece, Bulgaria, Estonia, Finland, Sweden, Nor-
way, Denmark, Iceland, Israel, Japan, Australia, New Zealand, Marshall
Islands

2 Bahamas, Haiti, Jamaica, Trinidad and Tobago, Grenada, Antigua and
Barbuda, Saint Kitts and Nevis, Mexico, Belize, Nicaragua, Venezuela,
Bolivarian Republic of, Guyana, Suriname, Ecuador, Peru, Brazil, Bo-
livia (Plurinational State of), Paraguay, Chile, Cabo Verde, Zambia,
South Africa, Botswana, Mauritius, Algeria, Fiji

3 Panama, Colombia, Cyprus, Mali, Benin, Mauritania, Niger, Côte
D’Ivoire, Ghana, Togo, Cameroon, Nigeria, Gabon, Congo, Uganda,
Kenya, United Republic of Tanzania, Ethiopia, Angola, Mozambique,
Zimbabwe, Namibia, Swaziland, Tunisia, Libya, Iran (Islamic Repub-
lic of), Syrian Arab Republic, Lebanon, Jordan, Saudi Arabia, Bahrain,
Kyrgyzstan, China, India, Pakistan, Bangladesh, Sri Lanka, Maldives,
Malaysia, Singapore, Brunei Darussalam, Philippines, Indonesia

4 Uruguay, Malta, Ukraine, Belarus, Kazakhstan, Republic of Korea
5 Republic of Moldova, Russian Federation, Tajikistan
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Table B.4: Coalition Membership in 1995

Coalition Member

1 United States of America, Canada, Ecuador, Argentina, United King-
dom of Great Britain and Northern Ireland, Ireland, Netherlands, Bel-
gium, Luxembourg, France, Monaco, Liechtenstein, Spain, Portugal,
Germany, Austria, Czech Republic, Slovakia, Italy, Slovenia, Greece,
Bulgaria, Republic of Moldova, Romania, Russian Federation, Lithua-
nia, Finland, Sweden, Denmark, Iceland, Israel, Kazakhstan, Japan,
Australia, New Zealand, Solomon Islands, Samoa

2 Bahamas, Haiti, Jamaica, Trinidad and Tobago, Antigua and Barbuda,
Mexico, Belize, Honduras, El Salvador, Panama, Venezuela, Bolivar-
ian Republic of, Guyana, Suriname, Peru, Brazil, Bolivia (Plurinational
State of), Uruguay, Malta, Cyprus, Ukraine, Belarus, South Africa,
Botswana, Mauritius, Mongolia, Singapore

3 Colombia, Mali, Benin, Niger, Ghana, Togo, Cameroon, Nigeria,
Gabon, Uganda, Kenya, Zimbabwe, Swaziland, Algeria, Tunisia,
Libya, Sudan, Iran (Islamic Republic of), Egypt, Lebanon, Jordan,
Saudi Arabia, China, India, Pakistan, Bangladesh, Myanmar, Sri Lanka,
Nepal, Thailand, Malaysia, Brunei Darussalam, Philippines, Indonesia,
Papua New Guinea, Fiji
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Table B.5: Coalition Membership in 1996

Coalition Member

1 United States of America, Israel, Marshall Islands, Micronesia (Feder-
ated States of)

2 Canada, Argentina, United Kingdom of Great Britain and Northern Ire-
land, Ireland, Netherlands, Belgium, Luxembourg, France, Monaco,
Liechtenstein, Spain, Andorra, Portugal, Germany, Austria, Hungary,
Czech Republic, Slovakia, Italy, The former Yugoslav Republic of
Macedonia, Slovenia, Bulgaria, Republic of Moldova, Romania, Es-
tonia, Latvia, Lithuania, Finland, Sweden, Norway, Denmark, Iceland,
Japan, Australia, New Zealand, Samoa

3 Bahamas, Jamaica, Trinidad and Tobago, Saint Lucia, Antigua and Bar-
buda, Mexico, Venezuela, Bolivarian Republic of, Guyana, Suriname,
Ecuador, Peru, Brazil, Bolivia (Plurinational State of), Paraguay, Chile,
Uruguay, Malta, Zambia, South Africa, Botswana, Turkey, Mongolia,
Vanuatu, Solomon Islands

4 Panama, Colombia, Cabo Verde, Guinea Bissau, Senegal, Benin, Mau-
ritania, Niger, Burkina Faso, Ghana, Togo, Cameroon, Nigeria, Uganda,
Kenya, United Republic of Tanzania, Burundi, Ethiopia, Zimbabwe, Al-
geria, Tunisia, Sudan, Syrian Arab Republic, Lebanon, Jordan, China,
India, Bhutan, Pakistan, Bangladesh, Myanmar, Sri Lanka, Nepal, Thai-
land, Cambodia, Malaysia, Singapore, Brunei Darussalam, Philippines,
Indonesia

5 San Marino, Cyprus, Russian Federation, Belarus, Kazakhstan, Repub-
lic of Korea, Fiji
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Table B.6: Coalition Membership in 1997

Coalition Member

1 United States of America, Bulgaria, Israel, Marshall Islands, Microne-
sia (Federated States of)

2 Canada, Argentina, United Kingdom of Great Britain and Northern Ire-
land, Ireland, Netherlands, Belgium, Luxembourg, France, Monaco,
Liechtenstein, Spain, Andorra, Portugal, Germany, Poland, Austria,
Hungary, Czech Republic, Slovakia, Italy, San Marino, Croatia, Slove-
nia, Greece, Republic of Moldova, Romania, Estonia, Lithuania, Ar-
menia, Finland, Sweden, Norway, Denmark, Iceland, Japan, Australia,
New Zealand

3 Bahamas, Jamaica, Trinidad and Tobago, Barbados, Antigua and Bar-
buda, Mexico, Belize, Guatemala, Honduras, El Salvador, Nicaragua,
Venezuela, Bolivarian Republic of, Guyana, Ecuador, Peru, Brazil, Bo-
livia (Plurinational State of), Paraguay, Chile, Uruguay, Malta, Rus-
sian Federation, Ethiopia, South Africa, Botswana, Mongolia, Vanuatu,
Samoa

4 Cuba, Grenada, Panama, Colombia, Suriname, Cabo Verde, Guinea
Bissau, Mali, Senegal, Benin, Mauritania, Niger, Côte D’Ivoire,
Guinea, Burkina Faso, Liberia, Sierra Leone, Ghana, Togo, Cameroon,
Nigeria, Uganda, Kenya, United Republic of Tanzania, Angola,
Mozambique, Zimbabwe, Namibia, Swaziland, Morocco, Algeria,
Tunisia, Libya, Sudan, Iran (Islamic Republic of), Egypt, Syrian Arab
Republic, Lebanon, Jordan, Saudi Arabia, Kuwait, United Arab Emi-
rates, China, India, Bhutan, Pakistan, Bangladesh, Myanmar, Sri Lanka,
Nepal, Thailand, Lao People’s Democratic Republic, Malaysia, Singa-
pore, Brunei Darussalam, Philippines, Indonesia, Papua New Guinea

5 The former Yugoslav Republic of Macedonia, Cyprus, Ukraine, Be-
larus, Kyrgyzstan, Kazakhstan, Republic of Korea, Solomon Islands
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Table B.7: Coalition Membership in 1998

Coalition Member

1 United States of America, Israel, Marshall Islands
2 Canada, United Kingdom of Great Britain and Northern Ireland, Ire-

land, Netherlands, Belgium, Luxembourg, France, Monaco, Liechten-
stein, Spain, Andorra, Portugal, Germany, Poland, Austria, Hungary,
Slovakia, Italy, San Marino, Albania, Croatia, Slovenia, Greece, Bul-
garia, Republic of Moldova, Romania, Estonia, Latvia, Lithuania, Fin-
land, Sweden, Norway, Denmark, Iceland, Kyrgyzstan, Republic of Ko-
rea, Japan, Australia, New Zealand

3 Bahamas, Jamaica, Trinidad and Tobago, Barbados, Antigua and Bar-
buda, Guatemala, Panama, Venezuela, Bolivarian Republic of, Guyana,
Peru, Brazil, Bolivia (Plurinational State of), Paraguay, Chile, Ar-
gentina, Uruguay, Malta, The former Yugoslav Republic of Macedo-
nia, Cyprus, Russian Federation, Ukraine, Senegal, Ethiopia, Botswana,
Saudi Arabia, Vanuatu, Samoa

4 Saint Lucia, Mexico, Colombia, Suriname, Belarus, Cabo Verde,
Guinea Bissau, Equatorial Guinea, Mali, Benin, Mauritania, Niger,
Côte D’Ivoire, Sierra Leone, Ghana, Togo, Cameroon, Nigeria, Gabon,
Chad, Djibouti, Eritrea, South Africa, Namibia, Algeria, Tunisia, Libya,
Sudan, Egypt, Lebanon, Jordan, India, Pakistan, Bangladesh, Myan-
mar, Sri Lanka, Nepal, Thailand, Lao People’s Democratic Republic,
Malaysia, Singapore, Brunei Darussalam, Philippines, Indonesia
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Table B.8: Coalition Membership in 1999

Coalition Member

1 United States of America, Israel, Marshall Islands
2 Canada, United Kingdom of Great Britain and Northern Ireland, Ire-

land, Netherlands, Belgium, Luxembourg, France, Monaco, Liechten-
stein, Spain, Andorra, Portugal, Germany, Poland, Austria, Hungary,
Czech Republic, Slovakia, Italy, San Marino, Malta, Croatia, Slove-
nia, Greece, Cyprus, Bulgaria, Republic of Moldova, Romania, Esto-
nia, Latvia, Lithuania, Georgia, Finland, Sweden, Norway, Denmark,
Iceland, Republic of Korea, Japan, Australia, New Zealand

3 Bahamas, Haiti, Jamaica, Trinidad and Tobago, Dominica, Grenada,
Mexico, El Salvador, Panama, Colombia, Venezuela, Bolivarian Re-
public of, Guyana, Ecuador, Peru, Brazil, Bolivia (Plurinational State
of), Paraguay, Chile, Argentina, Uruguay, The former Yugoslav Repub-
lic of Macedonia, Russian Federation, Ukraine, Belarus, South Africa,
Mauritius, Tajikistan, Mongolia, Solomon Islands, Samoa

4 Cuba, Saint Lucia, Suriname, Mali, Benin, Côte D’Ivoire, Guinea,
Burkina Faso, Ghana, Togo, Cameroon, Gabon, Kenya, United Repub-
lic of Tanzania, Ethiopia, Eritrea, Angola, Namibia, Swaziland, China,
Democratic People’s Republic of Korea, India, Myanmar, Cambodia,
Lao People’s Democratic Republic, Singapore

5 Antigua and Barbuda, Cabo Verde, Senegal, Sierra Leone, Nigeria, Dji-
bouti, Mozambique, Zambia, Zimbabwe, Botswana, Morocco, Alge-
ria, Tunisia, Libya, Sudan, Iran (Islamic Republic of), Egypt, Jordan,
Saudi Arabia, Kuwait, Bahrain, United Arab Emirates, Bhutan, Pak-
istan, Bangladesh, Sri Lanka, Maldives, Nepal, Thailand, Malaysia,
Brunei Darussalam, Philippines, Indonesia, Papua New Guinea
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Table B.9: Coalition Membership in 2000

Coalition Member

1 United States of America, Israel, Marshall Islands, Micronesia (Feder-
ated States of)

2 Canada, United Kingdom of Great Britain and Northern Ireland, Ire-
land, Netherlands, Belgium, Luxembourg, France, Monaco, Liecht-
enstein, Spain, Andorra, Portugal, Germany, Poland, Austria, Hun-
gary, Czech Republic, Slovakia, Italy, San Marino, Malta, The former
Yugoslav Republic of Macedonia, Croatia, Slovenia, Greece, Cyprus,
Bulgaria, Republic of Moldova, Romania, Estonia, Latvia, Lithuania,
Ukraine, Georgia, Finland, Sweden, Norway, Denmark, Iceland, Re-
public of Korea, Japan, Australia, New Zealand

3 Cuba, Saint Lucia, Antigua and Barbuda, Belarus, Azerbaijan, Cabo
Verde, Senegal, Guinea, Burkina Faso, Ghana, Togo, Nigeria, Chad,
Uganda, Kenya, United Republic of Tanzania, Burundi, Djibouti,
Ethiopia, Mozambique, Namibia, Botswana, Swaziland, Comoros, Al-
geria, Tunisia, Libya, Sudan, Egypt, Jordan, Qatar, United Arab Emi-
rates, China, India, Bangladesh, Myanmar, Sri Lanka, Nepal, Thai-
land, Lao People’s Democratic Republic, Malaysia, Singapore, Brunei
Darussalam, Philippines, Indonesia

4 Dominican Republic, Barbados, Grenada, Mexico, Guatemala, Hon-
duras, Nicaragua, Panama, Colombia, Venezuela, Bolivarian Repub-
lic of, Guyana, Ecuador, Peru, Brazil, Bolivia (Plurinational State of),
Paraguay, Chile, Argentina, Uruguay, Russian Federation, South Africa,
Mauritius, Papua New Guinea, Solomon Islands, Fiji, Samoa

134



Table B.10: Coalition Membership in 2001

Coalition Member

1 United States of America, Israel
2 Canada, United Kingdom of Great Britain and Northern Ireland, Ire-

land, Netherlands, Belgium, Luxembourg, France, Monaco, Liechten-
stein, Spain, Andorra, Portugal, Germany, Poland, Austria, Hungary,
Czech Republic, Slovakia, Italy, San Marino, The former Yugoslav Re-
public of Macedonia, Croatia, Slovenia, Greece, Bulgaria, Republic of
Moldova, Romania, Latvia, Lithuania, Georgia, Finland, Sweden, Nor-
way, Denmark, Iceland, Japan, Australia, New Zealand

3 Cuba, Haiti, Saint Lucia, Belarus, Cabo Verde, Equatorial Guinea, Mali,
Senegal, Benin, Mauritania, Burkina Faso, Sierra Leone, Ghana, Togo,
Nigeria, United Republic of Tanzania, Djibouti, Ethiopia, Eritrea, An-
gola, Mozambique, Zambia, South Africa, Namibia, Morocco, Alge-
ria, Tunisia, Libya, Sudan, Iran (Islamic Republic of), Egypt, Syrian
Arab Republic, Lebanon, Jordan, Saudi Arabia, Kuwait, Bahrain, Qatar,
United Arab Emirates, China, Democratic People’s Republic of Korea,
India, Pakistan, Bangladesh, Myanmar, Sri Lanka, Nepal, Thailand,
Cambodia, Lao People’s Democratic Republic, Malaysia, Singapore,
Brunei Darussalam, Philippines, Indonesia

4 Dominican Republic, Jamaica, Trinidad and Tobago, Barbados,
Grenada, Mexico, Belize, Guatemala, Panama, Colombia, Venezuela,
Bolivarian Republic of, Guyana, Ecuador, Peru, Brazil, Bolivia (Pluri-
national State of), Paraguay, Uruguay, Russian Federation, Kazakhstan,
Maldives

5 Chile, Argentina, Malta, Cyprus, Ukraine, Armenia, Republic of Korea
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Table B.11: Coalition Membership in 2002

Coalition Member

1 United States of America, Israel, Nauru, Marshall Islands
2 Canada, United Kingdom of Great Britain and Northern Ireland, Ire-

land, Netherlands, Belgium, Luxembourg, France, Monaco, Liechten-
stein, Switzerland, Spain, Andorra, Portugal, Germany, Poland, Aus-
tria, Hungary, Czech Republic, Slovakia, Italy, San Marino, Malta, Al-
bania, The former Yugoslav Republic of Macedonia, Croatia, Bosnia
and Herzegovina, Slovenia, Greece, Cyprus, Bulgaria, Romania, Es-
tonia, Latvia, Lithuania, Ukraine, Georgia, Finland, Sweden, Norway,
Denmark, Iceland, Turkey, Republic of Korea, Japan, Australia, New
Zealand

3 Bahamas, Dominican Republic, Jamaica, Trinidad and Tobago, Barba-
dos, Grenada, Antigua and Barbuda, Mexico, Belize, Guatemala, Hon-
duras, El Salvador, Costa Rica, Panama, Colombia, Venezuela, Bolivar-
ian Republic of, Guyana, Ecuador, Brazil, Bolivia (Plurinational State
of), Paraguay, Chile, Uruguay, Armenia, Senegal, Mauritius, Kuwait

4 Cuba, Haiti, Saint Lucia, Belarus, Azerbaijan, Cabo Verde, Sao Tome
and Principe, Mali, Mauritania, Côte D’Ivoire, Guinea, Burkina Faso,
Ghana, Togo, Nigeria, Congo, Uganda, Kenya, United Republic of
Tanzania, Somalia, Djibouti, Ethiopia, Eritrea, Mozambique, Zam-
bia, Zimbabwe, South Africa, Namibia, Lesotho, Botswana, Mo-
rocco, Algeria, Tunisia, Libya, Sudan, Egypt, Syrian Arab Republic,
Lebanon, Jordan, Saudi Arabia, Bahrain, Qatar, United Arab Emirates,
Oman, China, Democratic People’s Republic of Korea, India, Pakistan,
Bangladesh, Myanmar, Sri Lanka, Thailand, Cambodia, Malaysia, Sin-
gapore, Brunei Darussalam, Philippines, Indonesia

5 Saint Vincent and the Grenadines, Peru, Argentina, Russian Federation,
Kazakhstan, Papua New Guinea, Solomon Islands, Fiji
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Table B.12: Coalition Membership in 2003

Coalition Member

1 United States of America, Israel, Australia
2 Canada, United Kingdom of Great Britain and Northern Ireland, Ire-

land, Netherlands, Belgium, Luxembourg, France, Monaco, Liechten-
stein, Switzerland, Spain, Andorra, Portugal, Germany, Poland, Aus-
tria, Hungary, Czech Republic, Slovakia, Italy, San Marino, Malta, Al-
bania, The former Yugoslav Republic of Macedonia, Croatia, Bosnia
and Herzegovina, Slovenia, Greece, Cyprus, Bulgaria, Republic of
Moldova, Romania, Estonia, Latvia, Lithuania, Ukraine, Finland, Swe-
den, Norway, Denmark, Iceland, Republic of Korea, Japan, New
Zealand

3 Bahamas, Dominican Republic, Mexico, Guatemala, Honduras, El
Salvador, Nicaragua, Costa Rica, Panama, Colombia, Ecuador, Peru,
Brazil, Bolivia (Plurinational State of), Paraguay, Chile, Argentina,
Uruguay, Russian Federation, Rwanda, Kazakhstan, Thailand, Fiji,
Nauru, Samoa

4 Cuba, Jamaica, Trinidad and Tobago, Barbados, Grenada, Saint Lu-
cia, Antigua and Barbuda, Belize, Venezuela, Bolivarian Republic of,
Guyana, Suriname, Belarus, Azerbaijan, Guinea Bissau, Mali, Sene-
gal, Mauritania, Niger, Côte D’Ivoire, Guinea, Burkina Faso, Ghana,
Togo, Nigeria, Kenya, United Republic of Tanzania, Djibouti, Ethiopia,
Eritrea, Mozambique, Zambia, Zimbabwe, South Africa, Namibia,
Lesotho, Botswana, Madagascar, Mauritius, Morocco, Algeria, Tunisia,
Libya, Sudan, Iran (Islamic Republic of), Egypt, Syrian Arab Republic,
Lebanon, Jordan, Saudi Arabia, Yemen, Kuwait, Bahrain, Qatar, United
Arab Emirates, Oman, China, India, Pakistan, Bangladesh, Myanmar,
Sri Lanka, Maldives, Nepal, Cambodia, Malaysia, Singapore, Brunei
Darussalam, Philippines, Indonesia
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Table B.13: Coalition Membership in 2004

1 United States of America, Canada, Israel, Australia, Nauru, Marshall
Islands

2 Bahamas, Cuba, Jamaica, Trinidad and Tobago, Barbados, Dominica,
Saint Lucia, Saint Vincent and the Grenadines, Belize, Colombia,
Venezuela, Bolivarian Republic of, Guyana, Suriname, Ecuador, Be-
larus, Azerbaijan, Cabo Verde, Mali, Senegal, Benin, Mauritania, Côte
D’Ivoire, Guinea, Burkina Faso, Sierra Leone, Ghana, Togo, Nige-
ria, United Republic of Tanzania, Somalia, Djibouti, Ethiopia, Eritrea,
Mozambique, Zambia, Zimbabwe, South Africa, Namibia, Lesotho,
Madagascar, Mauritius, Morocco, Algeria, Tunisia, Libya, Sudan, Iran
(Islamic Republic of), Egypt, Syrian Arab Republic, Lebanon, Jor-
dan, Saudi Arabia, Yemen, Kuwait, Bahrain, Qatar, United Arab Emi-
rates, Oman, Turkmenistan, Kyrgyzstan, Uzbekistan, China, Demo-
cratic People’s Republic of Korea, India, Pakistan, Bangladesh, Myan-
mar, Sri Lanka, Nepal, Cambodia, Lao People’s Democratic Republic,
Malaysia, Singapore, Brunei Darussalam, Philippines, Indonesia

3 Haiti, Dominican Republic, Grenada, Guatemala, Honduras,
Nicaragua, Costa Rica, Peru, Uruguay, Russian Federation, Cameroon,
Uganda, Kenya, Thailand, Papua New Guinea, Samoa

4 Mexico, El Salvador, Panama, Brazil, Bolivia (Plurinational State of),
Paraguay, Chile, Argentina, Armenia, Guinea Bissau, Fiji

5 United Kingdom of Great Britain and Northern Ireland, Ireland, Nether-
lands, Belgium, Luxembourg, France, Monaco, Liechtenstein, Switzer-
land, Spain, Andorra, Portugal, Germany, Poland, Austria, Hungary,
Czech Republic, Slovakia, Italy, San Marino, Malta, Albania, The for-
mer Yugoslav Republic of Macedonia, Croatia, Bosnia and Herzegov-
ina, Slovenia, Greece, Cyprus, Bulgaria, Republic of Moldova, Ro-
mania, Estonia, Latvia, Lithuania, Ukraine, Finland, Sweden, Norway,
Denmark, Iceland, Republic of Korea, Japan, New Zealand
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Table B.14: Coalition Membership in 2005

Coalition Member

1 United States of America, Canada, Israel, Australia, Palau
2 Bahamas, Cuba, Jamaica, Trinidad and Tobago, Barbados, Saint Lu-

cia, Antigua and Barbuda, Belize, Panama, Colombia, Venezuela, Bo-
livarian Republic of, Guyana, Suriname, Russian Federation, Azerbai-
jan, Cabo Verde, Mali, Senegal, Benin, Guinea, Burkina Faso, Ghana,
Togo, Cameroon, Nigeria, Uganda, Kenya, United Republic of Tan-
zania, Djibouti, Ethiopia, Eritrea, Mozambique, Zambia, Zimbabwe,
South Africa, Namibia, Lesotho, Botswana, Mauritius, Morocco, Alge-
ria, Tunisia, Libya, Iran (Islamic Republic of), Iraq, Egypt, Syrian Arab
Republic, Jordan, Saudi Arabia, Yemen, Kuwait, Bahrain, Qatar, United
Arab Emirates, Oman, Kyrgyzstan, Uzbekistan, Kazakhstan, China, In-
dia, Bhutan, Pakistan, Bangladesh, Sri Lanka, Maldives, Nepal, Thai-
land, Malaysia, Singapore, Brunei Darussalam, Philippines, Indonesia

3 Haiti, Dominican Republic, Saint Vincent and the Grenadines, Mexico,
Guatemala, Honduras, El Salvador, Nicaragua, Costa Rica, Ecuador,
Peru, Brazil, Bolivia (Plurinational State of), Paraguay, Chile, Ar-
gentina, Uruguay, Armenia, Mauritania, Vanuatu, Fiji

4 United Kingdom of Great Britain and Northern Ireland, Ireland, Nether-
lands, Belgium, Luxembourg, France, Monaco, Liechtenstein, Switzer-
land, Spain, Andorra, Portugal, Germany, Poland, Austria, Hungary,
Czech Republic, Slovakia, Italy, San Marino, Malta, Albania, The
former Yugoslav Republic of Macedonia, Croatia, Slovenia, Greece,
Cyprus, Bulgaria, Republic of Moldova, Romania, Estonia, Latvia,
Lithuania, Finland, Sweden, Norway, Denmark, Iceland, Republic of
Korea, Japan, New Zealand, Micronesia (Federated States of), Samoa
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Table B.15: Coalition Membership in 2006

Coalition Member

1 United States of America, Canada, Israel, Australia, Micronesia (Fed-
erated States of)

2 Bahamas, Mexico, Guatemala, Honduras, El Salvador, Nicaragua,
Panama, Ecuador, Peru, Brazil, Paraguay, Chile, Argentina, Uruguay,
Armenia, Samoa

3 Cuba, Jamaica, Trinidad and Tobago, Barbados, Antigua and Bar-
buda, Belize, Costa Rica, Colombia, Venezuela, Bolivarian Republic
of, Guyana, Suriname, Bolivia (Plurinational State of), Russian Fed-
eration, Belarus, Mali, Senegal, Benin, Mauritania, Niger, Guinea,
Sierra Leone, Ghana, Nigeria, Congo, Djibouti, Ethiopia, Mozambique,
Zambia, South Africa, Namibia, Comoros, Mauritius, Morocco, Al-
geria, Libya, Sudan, Iran (Islamic Republic of), Egypt, Syrian Arab
Republic, Lebanon, Jordan, Saudi Arabia, Yemen, Kuwait, Bahrain,
Qatar, United Arab Emirates, Kazakhstan, China, India, Bhutan, Pak-
istan, Bangladesh, Myanmar, Sri Lanka, Nepal, Thailand, Viet Nam,
Malaysia, Singapore, Brunei Darussalam, Philippines, Indonesia

4 Dominican Republic, Burundi, Malawi, Fiji
5 United Kingdom of Great Britain and Northern Ireland, Ireland, Nether-

lands, Belgium, Luxembourg, France, Monaco, Liechtenstein, Switzer-
land, Spain, Andorra, Portugal, Germany, Poland, Austria, Hungary,
Czech Republic, Slovakia, Italy, San Marino, Malta, Albania, The for-
mer Yugoslav Republic of Macedonia, Croatia, Bosnia and Herzegov-
ina, Slovenia, Greece, Cyprus, Bulgaria, Republic of Moldova, Roma-
nia, Estonia, Latvia, Lithuania, Ukraine, Georgia, Finland, Sweden,
Norway, Denmark, Iceland, Turkey, Republic of Korea, Japan, New
Zealand
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Table B.16: Coalition Membership in 2007

Coalition Member

1 United States of America, Canada, Israel, Australia, Marshall Islands,
Palau

2 Bahamas, Mexico, Guatemala, Honduras, El Salvador, Costa Rica,
Panama, Colombia, Peru, Brazil, Chile, Argentina, Uruguay, Russian
Federation, Armenia, Kazakhstan, Thailand

3 Cuba, Haiti, Dominican Republic, Jamaica, Trinidad and Tobago,
Barbados, Saint Lucia, Antigua and Barbuda, Belize, Nicaragua,
Venezuela, Bolivarian Republic of, Guyana, Ecuador, Belarus, Mali,
Senegal, Benin, Mauritania, Niger, Guinea, Burkina Faso, Ghana,
Togo, Nigeria, Congo, Uganda, United Republic of Tanzania, Djibouti,
Eritrea, Mozambique, Zambia, Zimbabwe, South Africa, Lesotho,
Botswana, Mauritius, Morocco, Algeria, Libya, Sudan, Iran (Islamic
Republic of), Iraq, Egypt, Syrian Arab Republic, Lebanon, Jordan,
Saudi Arabia, Yemen, Kuwait, Bahrain, Qatar, United Arab Emirates,
Oman, Afghanistan, Kyrgyzstan, Uzbekistan, China, Democratic Peo-
ple’s Republic of Korea, India, Pakistan, Bangladesh, Myanmar, Sri
Lanka, Nepal, Lao People’s Democratic Republic, Viet Nam, Malaysia,
Singapore, Brunei Darussalam, Philippines, Indonesia

4 United Kingdom of Great Britain and Northern Ireland, Ireland, Nether-
lands, Belgium, Luxembourg, France, Monaco, Liechtenstein, Switzer-
land, Spain, Andorra, Portugal, Germany, Poland, Austria, Czech Re-
public, Slovakia, Italy, San Marino, Malta, Montenegro, The former
Yugoslav Republic of Macedonia, Croatia, Slovenia, Greece, Cyprus,
Bulgaria, Republic of Moldova, Romania, Estonia, Latvia, Lithuania,
Ukraine, Georgia, Finland, Sweden, Norway, Denmark, Iceland, Re-
public of Korea, Japan, New Zealand
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Table B.17: Coalition Membership in 2008

Coalition Member

1 United States of America, Israel, Marshall Islands, Palau
2 Canada, United Kingdom of Great Britain and Northern Ireland, Ire-

land, Netherlands, Belgium, Luxembourg, France, Monaco, Liechten-
stein, Switzerland, Spain, Portugal, Germany, Poland, Austria, Hun-
gary, Czech Republic, Slovakia, Italy, San Marino, Malta, Albania,
Montenegro, The former Yugoslav Republic of Macedonia, Croatia,
Bosnia and Herzegovina, Slovenia, Greece, Cyprus, Bulgaria, Repub-
lic of Moldova, Romania, Estonia, Latvia, Lithuania, Ukraine, Geor-
gia, Finland, Sweden, Norway, Denmark, Iceland, Republic of Korea,
Japan, Australia, New Zealand

3 Cuba, Dominican Republic, Jamaica, Barbados, Grenada, Antigua and
Barbuda, Nicaragua, Venezuela, Bolivarian Republic of, Ecuador, Bo-
livia (Plurinational State of), Belarus, Azerbaijan, Guinea Bissau, Mali,
Senegal, Mauritania, Ghana, Togo, Congo, Kenya, Ethiopia, Eritrea,
Angola, Mozambique, Zambia, Zimbabwe, South Africa, Namibia,
Lesotho, Swaziland, Mauritius, Morocco, Algeria, Libya, Sudan, Iran
(Islamic Republic of), Iraq, Egypt, Syrian Arab Republic, Lebanon, Jor-
dan, Saudi Arabia, Yemen, Kuwait, Bahrain, Qatar, United Arab Emi-
rates, Oman, Afghanistan, Tajikistan, Kyrgyzstan, Uzbekistan, China,
Democratic People’s Republic of Korea, India, Pakistan, Bangladesh,
Myanmar, Sri Lanka, Maldives, Nepal, Lao People’s Democratic Re-
public, Viet Nam, Malaysia, Singapore, Brunei Darussalam, Philip-
pines, Indonesia

4 Mexico, Honduras, Costa Rica, Panama, Brazil, Paraguay, Chile, Ar-
gentina, Uruguay, Armenia, Botswana, Turkey, Kazakhstan, Timor-
Leste

5 Guatemala, Colombia, Russian Federation, Côte D’Ivoire, Cameroon,
Thailand
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Table B.18: Coalition Membership in 2009

Coalition Member

1 United States of America, Israel
2 Canada, United Kingdom of Great Britain and Northern Ireland, Ire-

land, Netherlands, Belgium, Luxembourg, France, Monaco, Liechten-
stein, Switzerland, Spain, Andorra, Portugal, Germany, Poland, Austria,
Hungary, Czech Republic, Slovakia, Italy, San Marino, Malta, Albania,
Montenegro, The former Yugoslav Republic of Macedonia, Croatia,
Bosnia and Herzegovina, Slovenia, Greece, Cyprus, Bulgaria, Repub-
lic of Moldova, Romania, Estonia, Latvia, Lithuania, Ukraine, Geor-
gia, Finland, Sweden, Norway, Denmark, Iceland, Republic of Korea,
Japan, Australia, New Zealand

3 Bahamas, Cuba, Dominican Republic, Jamaica, Trinidad and Tobago,
Dominica, Saint Lucia, Saint Vincent and the Grenadines, Nicaragua,
Venezuela, Bolivarian Republic of, Guyana, Ecuador, Brazil, Bolivia
(Plurinational State of), Paraguay, Belarus, Azerbaijan, Mali, Senegal,
Benin, Mauritania, Niger, Ghana, Nigeria, Kenya, Ethiopia, Zimbabwe,
South Africa, Mauritius, Morocco, Algeria, Libya, Sudan, Iran (Islamic
Republic of), Iraq, Egypt, Syrian Arab Republic, Lebanon, Jordan,
Saudi Arabia, Kuwait, Bahrain, Qatar, United Arab Emirates, Oman,
Afghanistan, Tajikistan, Kyrgyzstan, Kazakhstan, China, Democratic
People’s Republic of Korea, India, Pakistan, Bangladesh, Sri Lanka,
Maldives, Nepal, Thailand, Viet Nam, Malaysia, Singapore, Brunei
Darussalam, Indonesia

4 Mexico, Guatemala, El Salvador, Costa Rica, Panama, Colombia, Peru,
Argentina, Uruguay, Russian Federation, Côte D’Ivoire, Liberia, Bu-
rundi, Botswana

5 Chile, Turkey
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Table B.19: Coalition Membership in 2010

Coalition Member

1 United States of America, Canada, Israel, Marshall Islands, Palau
2 Bahamas, Mexico, Guatemala, Honduras, El Salvador, Costa Rica,

Panama, Colombia, Peru, Paraguay, Chile, Argentina, Uruguay, Papua
New Guinea, Fiji

3 Cuba, Haiti, Dominican Republic, Jamaica, Trinidad and Tobago,
Barbados, Saint Lucia, Saint Vincent and the Grenadines, Belize,
Nicaragua, Venezuela, Bolivarian Republic of, Guyana, Ecuador,
Brazil, Bolivia (Plurinational State of), Greece, Russian Federation, Be-
larus, Azerbaijan, Guinea Bissau, Gambia (Islamic Republic of the),
Mali, Senegal, Mauritania, Niger, Guinea, Liberia, Ghana, Togo, Nige-
ria, Uganda, Kenya, United Republic of Tanzania, Somalia, Djibouti,
Eritrea, Mozambique, Zambia, Zimbabwe, Malawi, South Africa,
Namibia, Lesotho, Botswana, Swaziland, Comoros, Morocco, Alge-
ria, Libya, Sudan, Iran (Islamic Republic of), Iraq, Egypt, Syrian Arab
Republic, Lebanon, Jordan, Saudi Arabia, Yemen, Kuwait, Bahrain,
Qatar, United Arab Emirates, Oman, Afghanistan, Tajikistan, Uzbek-
istan, Kazakhstan, China, Democratic People’s Republic of Korea, In-
dia, Bhutan, Pakistan, Bangladesh, Myanmar, Sri Lanka, Maldives,
Nepal, Thailand, Cambodia, Lao People’s Democratic Republic, Viet
Nam, Malaysia, Singapore, Brunei Darussalam, Philippines, Indonesia,
Solomon Islands

4 Grenada, United Kingdom of Great Britain and Northern Ireland, Ire-
land, Netherlands, Belgium, Luxembourg, France, Monaco, Liechten-
stein, Switzerland, Spain, Andorra, Portugal, Germany, Poland, Austria,
Hungary, Czech Republic, Slovakia, Italy, San Marino, Malta, Alba-
nia, Montenegro, The former Yugoslav Republic of Macedonia, Croa-
tia, Bosnia and Herzegovina, Slovenia, Cyprus, Bulgaria, Republic of
Moldova, Romania, Estonia, Latvia, Lithuania, Ukraine, Georgia, Fin-
land, Sweden, Norway, Denmark, Iceland, Republic of Korea, Japan,
Australia, New Zealand, Samoa
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Table B.20: Coalition Membership in 2011

Coalition Member

1 United States of America, Canada, Israel, Palau
2 Bahamas, Haiti, Jamaica, Barbados, Saint Lucia, Mexico, Belize,

Guatemala, Honduras, El Salvador, Costa Rica, Colombia, Peru, Chile,
Argentina, Uruguay, Benin, Côte D’Ivoire, Liberia, Botswana, Mauri-
tius, Tunisia, Libya, Kazakhstan, Maldives, Thailand, Solomon Islands,
Fiji

3 Cuba, Dominican Republic, Trinidad and Tobago, Saint Vincent and
the Grenadines, Antigua and Barbuda, Nicaragua, Venezuela, Boli-
varian Republic of, Guyana, Ecuador, Brazil, Bolivia (Plurinational
State of), Russian Federation, Belarus, Mali, Senegal, Guinea, Burkina
Faso, Ghana, Uganda, Kenya, Djibouti, Ethiopia, Zambia, South Africa,
Morocco, Algeria, Sudan, Iran (Islamic Republic of), Egypt, Syr-
ian Arab Republic, Lebanon, Jordan, Saudi Arabia, Kuwait, Bahrain,
Qatar, United Arab Emirates, Oman, Afghanistan, Tajikistan, Kyr-
gyzstan, Uzbekistan, China, India, Bhutan, Pakistan, Bangladesh, Sri
Lanka, Nepal, Cambodia, Lao People’s Democratic Republic, Viet
Nam, Malaysia, Singapore, Philippines, Indonesia

4 United Kingdom of Great Britain and Northern Ireland, Ireland, Nether-
lands, Belgium, Luxembourg, France, Monaco, Liechtenstein, Switzer-
land, Spain, Andorra, Portugal, Germany, Poland, Austria, Hungary,
Czech Republic, Slovakia, Italy, San Marino, Malta, Albania, Montene-
gro, The former Yugoslav Republic of Macedonia, Bosnia and Herze-
govina, Slovenia, Greece, Cyprus, Bulgaria, Republic of Moldova, Ro-
mania, Estonia, Latvia, Lithuania, Ukraine, Finland, Sweden, Norway,
Denmark, Iceland, Republic of Korea, Japan, Australia, New Zealand

5 Armenia, Samoa
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Table B.21: Coalition Membership in 2012

Coalition Member

1 United States of America, Canada, Israel
2 Bahamas, Cuba, Haiti, Dominican Republic, Jamaica, Trinidad and

Tobago, Barbados, Grenada, Saint Lucia, Saint Vincent and the
Grenadines, Antigua and Barbuda, Belize, Nicaragua, Venezuela, Bo-
livarian Republic of, Guyana, Ecuador, Brazil, Bolivia (Plurinational
State of), Uruguay, Cabo Verde, Mali, Benin, Mauritania, Niger,
Côte D’Ivoire, Guinea, Nigeria, Congo, Uganda, United Republic of
Tanzania, Djibouti, Ethiopia, Eritrea, Angola, Zambia, Zimbabwe,
South Africa, Namibia, Lesotho, Botswana, Morocco, Algeria, Tunisia,
Libya, Sudan, Iran (Islamic Republic of), Iraq, Egypt, Syrian Arab
Republic, Lebanon, Jordan, Saudi Arabia, Yemen, Kuwait, Bahrain,
Qatar, United Arab Emirates, Oman, Afghanistan, Turkmenistan, Tajik-
istan, Kyrgyzstan, Uzbekistan, Kazakhstan, China, India, Bhutan, Pak-
istan, Bangladesh, Sri Lanka, Maldives, Nepal, Thailand, Lao People’s
Democratic Republic, Viet Nam, Malaysia, Singapore, Brunei Darus-
salam, Philippines, Indonesia, Solomon Islands, Tuvalu

3 Mexico, Guatemala, El Salvador, Costa Rica, Colombia, Peru,
Paraguay, Chile, Argentina, Russian Federation, Armenia, Liberia,
Togo, Burundi, Turkey, Fiji

4 Honduras, Panama, Cameroon, Papua New Guinea, Vanuatu
5 United Kingdom of Great Britain and Northern Ireland, Ireland, Nether-

lands, Belgium, Luxembourg, France, Monaco, Liechtenstein, Switzer-
land, Spain, Andorra, Portugal, Germany, Poland, Austria, Hungary,
Czech Republic, Slovakia, Italy, San Marino, Malta, Albania, Mon-
tenegro, The former Yugoslav Republic of Macedonia, Croatia, Bosnia
and Herzegovina, Slovenia, Greece, Cyprus, Bulgaria, Republic of
Moldova, Romania, Estonia, Latvia, Lithuania, Ukraine, Georgia, Fin-
land, Sweden, Norway, Denmark, Iceland, Republic of Korea, Japan,
Australia, New Zealand, Samoa
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Table B.22: Coalition Membership in 2013

Coalition Member

1 United States of America, Canada, Israel, Australia, Palau
2 Bahamas, Mexico, Guatemala, Costa Rica, Colombia, Peru, Chile, Ar-

gentina, Armenia, Turkey, Samoa
3 Cuba, Dominican Republic, Jamaica, Trinidad and Tobago, Barba-

dos, Saint Lucia, Saint Vincent and the Grenadines, Antigua and
Barbuda, Belize, El Salvador, Nicaragua, Venezuela, Bolivarian Re-
public of, Guyana, Suriname, Ecuador, Brazil, Bolivia (Plurinational
State of), Uruguay, Russian Federation, Cabo Verde, Sao Tome and
Principe, Guinea Bissau, Gambia (Islamic Republic of the), Mali,
Senegal, Benin, Mauritania, Niger, Côte D’Ivoire, Guinea, Liberia,
Togo, Nigeria, Congo, Uganda, United Republic of Tanzania, Soma-
lia, Djibouti, Ethiopia, Eritrea, Angola, Mozambique, Zimbabwe, South
Africa, Namibia, Lesotho, Swaziland, Comoros, Mauritius, Morocco,
Algeria, Tunisia, Libya, Sudan, Iran (Islamic Republic of), Iraq, Egypt,
Syrian Arab Republic, Lebanon, Jordan, Saudi Arabia, Yemen, Kuwait,
Bahrain, Qatar, United Arab Emirates, Oman, Afghanistan, Turk-
menistan, Kyrgyzstan, Uzbekistan, Kazakhstan, China, India, Bhutan,
Pakistan, Bangladesh, Sri Lanka, Maldives, Nepal, Thailand, Lao Peo-
ple’s Democratic Republic, Viet Nam, Malaysia, Singapore, Brunei
Darussalam, Philippines, Indonesia, Solomon Islands, Fiji

4 Honduras, Panama, Paraguay, Cameroon, Papua New Guinea
5 United Kingdom of Great Britain and Northern Ireland, Ireland, Nether-

lands, Belgium, Luxembourg, France, Monaco, Liechtenstein, Switzer-
land, Spain, Andorra, Portugal, Germany, Poland, Austria, Hungary,
Czech Republic, Slovakia, Italy, San Marino, Malta, Albania, Mon-
tenegro, The former Yugoslav Republic of Macedonia, Croatia, Bosnia
and Herzegovina, Slovenia, Greece, Cyprus, Bulgaria, Republic of
Moldova, Romania, Estonia, Latvia, Lithuania, Ukraine, Georgia, Fin-
land, Sweden, Norway, Denmark, Iceland, Republic of Korea, Japan,
New Zealand

147



Table B.23: Coalition Membership in 2014

Coalition Member

1 Canada, United Kingdom of Great Britain and Northern Ireland, Ire-
land, Netherlands, Belgium, Luxembourg, France, Monaco, Liechten-
stein, Switzerland, Spain, Andorra, Portugal, Germany, Poland, Austria,
Hungary, Czech Republic, Slovakia, Italy, San Marino, Albania, Mon-
tenegro, Croatia, Bosnia and Herzegovina, Slovenia, Greece, Cyprus,
Bulgaria, Republic of Moldova, Romania, Estonia, Latvia, Lithuania,
Ukraine, Finland, Sweden, Norway, Denmark, Iceland, Israel, Japan,
Australia, New Zealand, Palau

2 Bahamas, Cuba, Dominican Republic, Jamaica, Trinidad and Tobago,
Barbados, Saint Lucia, Antigua and Barbuda, Belize, El Salvador,
Nicaragua, Venezuela, Bolivarian Republic of, Guyana, Suriname,
Ecuador, Brazil, Chile, Uruguay, Mali, Senegal, Niger, Guinea, United
Republic of Tanzania, Djibouti, Ethiopia, Eritrea, Angola, Mozam-
bique, Zimbabwe, South Africa, Namibia, Seychelles, Morocco, Al-
geria, Tunisia, Libya, Iraq, Egypt, Syrian Arab Republic, Lebanon,
Jordan, Saudi Arabia, Yemen, Kuwait, Bahrain, Qatar, United Arab
Emirates, Oman, Afghanistan, Tajikistan, Kyrgyzstan, Kazakhstan,
China, India, Bhutan, Pakistan, Bangladesh, Myanmar, Sri Lanka, Mal-
dives, Nepal, Thailand, Lao People’s Democratic Republic, Viet Nam,
Malaysia, Singapore, Philippines, Indonesia, Solomon Islands, Tuvalu

3 Mexico, Guatemala, Honduras, Costa Rica, Panama, Colombia, Peru,
Paraguay, Argentina, Russian Federation, Armenia, Liberia, Togo,
Cameroon, Central African Republic, Papua New Guinea
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Table B.24: Coalition Membership in 2015

Coalition Member

1 United States of America, Canada, United Kingdom of Great Britain
and Northern Ireland, Ireland, Netherlands, Belgium, Luxembourg,
France, Monaco, Liechtenstein, Switzerland, Spain, Andorra, Portu-
gal, Germany, Poland, Austria, Hungary, Czech Republic, Slovakia,
Italy, San Marino, Malta, Albania, Montenegro, The former Yugoslav
Republic of Macedonia, Croatia, Bosnia and Herzegovina, Slovenia,
Greece, Cyprus, Bulgaria, Republic of Moldova, Romania, Estonia,
Latvia, Lithuania, Ukraine, Georgia, Finland, Sweden, Norway, Den-
mark, Iceland, Turkey, Israel, Republic of Korea, Japan, Australia, New
Zealand, Palau

2 Cuba, Dominican Republic, Jamaica, Trinidad and Tobago, Grenada,
Saint Lucia, Saint Vincent and the Grenadines, Mexico, Belize, El Sal-
vador, Nicaragua, Costa Rica, Guyana, Ecuador, Brazil, Bolivia (Pluri-
national State of), Chile, Argentina, Uruguay, Cabo Verde, Guinea Bis-
sau, Mali, Senegal, Mauritania, Niger, Guinea, Sierra Leone, Nige-
ria, Gabon, Chad, Congo, Uganda, Kenya, United Republic of Tanza-
nia, Djibouti, Ethiopia, Eritrea, Angola, Mozambique, Zambia, Zim-
babwe, South Africa, Namibia, Botswana, Mauritius, Morocco, Al-
geria, Tunisia, Libya, Sudan, Iraq, Egypt, Syrian Arab Republic,
Lebanon, Jordan, Saudi Arabia, Yemen, Kuwait, Bahrain, Qatar, United
Arab Emirates, Oman, Afghanistan, Tajikistan, Kyrgyzstan, Uzbek-
istan, Kazakhstan, China, India, Bhutan, Pakistan, Bangladesh, Myan-
mar, Sri Lanka, Maldives, Nepal, Thailand, Cambodia, Lao People’s
Democratic Republic, Viet Nam, Malaysia, Singapore, Brunei Darus-
salam, Philippines, Indonesia, Papua New Guinea, Solomon Islands,
Fiji

3 Guatemala, Honduras, Panama, Colombia, Peru, Paraguay, Russian
Federation, Armenia, Liberia, Togo, Cameroon

149



Table B.25: Coalition Membership in 2016

Coalition Member

1 Albania, Andorra, Australia, Austria, Belgium, Bosnia and Herzegov-
ina, Bulgaria, Canada, Croatia, Cyprus, Czech Republic, Denmark,
Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ire-
land, Israel, Italy, Japan, Latvia, Liechtenstein, Lithuania, Luxem-
bourg, Malta, Monaco, Montenegro, Netherlands, New Zealand, Nor-
way, Palau, Poland, Portugal, Republic of Moldova, Romania, San
Marino, Slovakia, Slovenia, Spain, Sweden, Switzerland, The former
Yugoslav Republic of Macedonia, Ukraine, United Kingdom of Great
Britain and Northern Ireland, United States of America

2 Algeria, Antigua and Barbuda, Argentina, Bahamas, Bahrain,
Bangladesh, Barbados, Benin, Bhutan, Bolivia (Plurinational State of),
Brazil, Brunei Darussalam, Burundi, Chile, China, Cuba, Dominican
Republic, Ecuador, Egypt, El Salvador, Ethiopia, Fiji, Guyana, India,
Indonesia, Iraq, Jamaica, Jordan, Kazakhstan, Kenya, Kuwait, Lao
People’s Democratic Republic, Lesotho, Libya, Malaysia, Maldives,
Mali, Mauritania, Myanmar, Nepal, Nicaragua, Nigeria, Oman, Pak-
istan, Philippines, Qatar, Saint Vincent and the Grenadines, Saudi Ara-
bia, Singapore, South Africa, Sri Lanka, Sudan, Suriname, Syrian Arab
Republic, Tajikistan, Thailand, Trinidad and Tobago, United Arab Emi-
rates, United Republic of Tanzania, Uruguay, Uzbekistan, Venezuela,
Bolivarian Republic of, Viet Nam

3 Cameroon, Colombia, Costa Rica, Guatemala, Honduras, Mexico,
Panama, Papua New Guinea, Paraguay, Peru, Russian Federation, Togo

150



Table B.26: Coalition Membership in 2017

Coalition Member

1 Cameroon, Colombia, Guatemala, Honduras, Mexico, Panama,
Paraguay, Peru, Solomon Islands, Togo

2 Australia, Canada, Israel, United States of America
3 Albania, Andorra, Austria, Belgium, Bosnia and Herzegovina, Bul-

garia, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland,
France, Georgia, Germany, Greece, Hungary, Iceland, Ireland, Italy,
Japan, Latvia, Liechtenstein, Lithuania, Luxembourg, Malta, Monaco,
Montenegro, Netherlands, New Zealand, Norway, Poland, Portugal, Re-
public of Korea, Republic of Moldova, Romania, San Marino, Slovakia,
Slovenia, Spain, Sweden, Switzerland, The former Yugoslav Republic
of Macedonia, Turkey, Ukraine, United Kingdom of Great Britain and
Northern Ireland

4 Algeria, Angola, Argentina, Bahamas, Bahrain, Bangladesh, Bhutan,
Bolivia (Plurinational State of), Botswana, Brazil, Brunei Darus-
salam, Cabo Verde, Cambodia, Chile, China, Congo, Costa Rica,
Côte D’Ivoire, Cuba, Djibouti, Dominican Republic, Ecuador, Egypt,
El Salvador, Equatorial Guinea, Eritrea, Ethiopia, Gabon, Guinea,
Guyana, India, Indonesia, Iraq, Jamaica, Jordan, Kazakhstan, Kenya,
Kuwait, Kyrgyzstan, Lao People’s Democratic Republic, Lesotho,
Libya, Malaysia, Maldives, Mali, Mauritania, Mauritius, Morocco,
Mozambique, Namibia, Nepal, Nicaragua, Oman, Pakistan, Philip-
pines, Qatar, Russian Federation, Saint Kitts and Nevis, Saint Lucia,
Saudi Arabia, Sierra Leone, Singapore, South Africa, Sri Lanka, Su-
dan, Syrian Arab Republic, Tajikistan, Thailand, Trinidad and Tobago,
Tunisia, Uganda, United Arab Emirates, United Republic of Tanzania,
Uruguay, Uzbekistan, Venezuela, Bolivarian Republic of, Viet Nam,
Yemen, Zimbabwe
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B.2 Polarizing Resolution Tables

We report the polarizing resolutions from 1992 to 2017 in Table B.27 through Table B.52 .

Table B.27: Polarizing Resolutions in 1992

Count Resolution Title

1 Programme of work, Committee on Palestinian rights
2 Importance of the universal realization of the rights of peoples to self

determination and of the speedy granting of independence to colonial
countries and peoples for the effective guarantee and observance of hu-
man rights

3 Use of mercernaries as a means to violate human rights and to impede
the exercise of the right of peoples to self determination United Na-
tions African Institute for the Prevention of Crime and the Treatment of
Offenders

4 Situation of human rights in the Islamic Republic of Iran
5 Encourages all member states to lend assistance to the committee on

Palestinian rights
6 Reaffirms the inalienable right of all displaced inhabitants to return to

their homes or former places of residence in the territories occupied by
Israel since 1967

Table B.28: Polarizing Resolutions in 1993

Count Resolution Title

1 Importance of the universal realization of the rights of peoples to self
determination and of the speedy granting of independence to colonial
countries and peoples for the effective guarantee and observance of hu-
man rights

2 Committee on the Exercise of the Inalienable Rights of the Palestinian
People

3 Division for Palestinian Rights of the Secretariat
4 Use of mercenaries as a means to violate human rights and to impede

the exercise of the right of peoples to self determination
5 Situation of human rights in Cuba
6 Alternative approaches and ways and means within the UN system for

improving the effective enjoyment of human rights and fundamental
freedoms
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Table B.29: Polarizing Resolutions in 1994

Count Resolution Title

1 Committee on the Exercise of the Inalienable Rights of the Palestinian
People

2 Division for Palestinian Rights of the Secretariat
3 Use of mercenaries as a means to violate human rights and to impede

the exercise of the right of peoples to self determination
4 Importance of the universal realization of the rights of peoples to self

determination and of the speedy granting of independence to colonial
countries and peoples for the effective guarantee and observance of hu-
man rights

5 Alternative approaches and ways and means within the UN system for
improving the effective enjoyment of human rights and fundamental
freedoms

6 Situation of human rights in the Islamic Republic of Iran
7 Situation of human rights in Cuba

Table B.30: Polarizing Resolutions in 1995

Count Resolution Title

1 Committee on the Exercise of the Inalienable Rights of the Palestinian
People

2 Division for Palestinian Rights of the Secretariat
3 Situation of human rights in Cuba
4 Situation of human rights in the Sudan
5 Use of mercenaries as a means to violate human rights and to impede

the exercise of the right of peoples to self determination
6 Situation of human rights in the Islamic Republic of Iran
7 Respect for the right to universal freedom of travel and the vital impor-

tance of family reunification
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Table B.31: Polarizing Resolutions in 1996

Count Resolution Title

1 Committee on the Exercise of the Inalienable Rights of the Palestinian
People

2 Division for Palestinian Rights of the Secretariat
3 Requests the Department of Public Information of the Secretariat to as-

sist in the worldwide dissemination of accurate and comprehensive in-
formation in support for the inalienable rights of the Palestinian people

4 The right of the Palestinian people to self-determination
5 Use of mercenaries as a means of violating human rights and impeding

the exercise of the right of peoples to self determination
6 Enhancement of international cooperation in the field of human rights
7 Report of the Special Committee to Investigate Israeli Practices Affect-

ing the Human Rights of the Palestinian People and Other Arabs of the
Occupied Territories, including Jerusalem

8 Situation of human rights in the Islamic Republic of Iran

Table B.32: Polarizing Resolutions in 1997

Count Resolution Title

1 UN promotion of human rights through international cooperation and
the importance of non-selectivity, impartiality and objectivity

2 Decides to confer upon Palestine, in its capacity as observer, and as
contained in the annex to the present resolution, additional rights and
privileges of participation in the sessions and work of the General As-
sembly and the international con

3 Committee on the Exercise of the Inalienable Rights of the Palestinian
People

4 Division for Palestinian Rights of the Secretariat
5 Human rights situation in the Islamic Republic of Iran
6 Human rights situation in Cuba
7 Human rights situation in Nigeria
8 Human rights and terrorism
9 Use of mercenaries to violate human rights
10 Human rights situation in the Sudan
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Table B.33: Polarizing Resolutions in 1998

Count Resolution Title

1 Requests the Department of Public Information of the Secretariat to as-
sist in the worldwide dissemination of accurate and comprehensive in-
formation in support for the inalienable rights of the Palestinian people

2 Human rights of Palestinians in the occupied territories
3 Right of the Palestinian people to self-determination
4 Right to development
7 Committee on the Exercise of the Inalienable Rights of the Palestinian

People
8 Division for Palestinian Rights

Table B.34: Polarizing Resolutions in 1999

Count Resolution Title

1 Committee on the Exercise of the Inalienable Rights of the Palestinian
People

2 Division for Palestinian Rights of the Secretariat
3 Requests the Department of Public Information of the Secretariat to as-

sist in the worldwide dissemination of accurate and comprehensive in-
formation in support for the inalienable rights of the Palestinian people

4 Reaffirms the right of all persons displaced as a result of the June 1967
and subsequent hostilities to return to their homes or former places of
residence in the territories occupied by Israel since 1967

5 Israeli Practices Affecting the Human Rights of the Palestinian People
in the Occupied Palestinian Territory, including Jerusalem

6 Use of mercenaries as a means of violating human rights and impeding
the exercise of the right of peoples to self-determination

7 The right of the Palestinian people to self-determination
8 Human rights and terrorism
9 Human rights and unilateral coercive measures
10 The right of development

155



Table B.35: Polarizing Resolutions in 2000

Count Resolution Title

1 Committee on the Exercise of the Inalienable Rights of the Palestinian
People

2 Division for Palestinian Rights of the Secretariat
3 Requests the Department of Public Information of the Secretariat to as-

sist in the worldwide dissemination of accurate and comprehensive in-
formation in support for the inalienable rights of the Palestinian people

4 Use of mercenaries as a means of violating human rights and impeding
the exercise of the right of peoples to self-determination

5 The right of the Palestinian people to self-determination
6 Situation of human rights in the Islamic Republic of Iran
7 Reaffirms the right of all persons displaced as a result of the June 1967

and subsequent hostilities to return to their homes or former places of
residence in the territories occupied by Israel since 1967

8 Israeli Practices affecting the human rights of the Palestinian people in
the Occupied Palestinian Territory, including Jerusalem

Table B.36: Polarizing Resolutions in 2001

Count Resolution Title

1 Requests the Department of Public Information of the Secretariat to as-
sist in the worldwide dissemination of accurate and comprehensive in-
formation in support for the inalienable rights of the Palestinian people

2 Reaffirms the right of all persons displaced as a result of the June 1967
and subsequent hostilities to return to their homes or former places of
residence in the territories occupied by Israel since 1967

3 Israeli practices affecting the human rights of the Palestinian people in
the Occupied Palestinian Territory, including Jerusalem

4 The right of Palestinian people to self-determination
5 Equitable geographical distribution of the membership of the human

rights treaty bodies
6 Human rights and unilateral coercive measures
7 The right to development
8 The right to food
9 Use of mercenaries as a means of violating human rights and impeding

the exercise of the right of peoples to self-determination
10 Comprehensive implementation of and follow-up to the World Confer-

ence against Racism, Racial Discrimination, Xenophobia and Related
Intolerance
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Table B.37: Polarizing Resolutions in 2002

Count Resolution Title

1 Requests the Department of Public Information of the Secretariat to as-
sist in the worldwide dissemination of accurate and comprehensive in-
formation in support for the inalienable rights of the Palestinian people

2 Reaffirms the right of all persons displaced as a result of the June 1967
and subsequent hostilities to return to their homes or former places of
residence in the territories occupied by Israel since 1967

3 Israeli practices affecting the human rights of the Palestinian people in
the Occupied Palestinian Territory, including East Jerusalem

4 Use of mercenaries as a means of violating human rights and impeding
the exercise of the right of peoples to self-determination

5 Human rights and unilateral coercive measures
6 Situation of human rights in Iraq
7 Situation of human rights in the Democratic Republic of the Congo
8 The Acting President
9 Globalization and its impact on the full enjoyment of all human rights
10 Situation of human rights in the Sudan
11 Work of the Special Committee to Investigate Israeli Practices Affecting

the Human Rights of the Palestinian People and Other Arabs of the
Occupied Territories
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Table B.38: Polarizing Resolutions in 2003

Count Resolution Title

1 Global efforts for the total elimination of racism, racial discrimination,
xenophobia and related intolerance and the comprehensive implemen-
tation of and follow-up to the Durban Declaration and Programme of
Action

2 The right to development
3 Human rights and unilateral coercive measures
4 Use of mercenaries as a means of violating human rights and impeding

the exercise of the right of peoples to self-determination
5 Israeli practices affecting the human rights of the Palestinian people in

the Occupied Palestinian Territory, including East Jerusalem
6 Committee on the Exercise of the Inalienable Rights of the Palestinian

People
7 Division for Palestinian Rights of the Secretariat
9 Situation of human rights in the Democratic Republic of the Congo
10 Globalization and its impact on the full enjoyment of all human rights
12 Promotion of peace as a vital requirement for the full enjoyment of all

human rights by all

Table B.39: Polarizing Resolutions in 2004

Count Resolution Title

1 Situation of human rights in Turkmenistan
2 Human rights and unilateral coercive measures
3 Human rights and terrorism
4 Globalization and its impact on the full enjoyment of all human rights
5 Equitable geographical distribution in the membership of the human

rights treaty bodies
6 Use of mercenaries as a means of violating human rights and impeding

the exercise of the right of peoples to self-determination
7 Division for Palestinian Rights of the Secretariat
8 Committee on the Exercise of Inalienable Rights of the Palestinian Peo-

ple
9 Situation of human rights in the Democratic Republic of the Congo
10 Respect for the purposes and principles contained in the Charter of the

United Nations to achieve international cooperation in promoting and
encouraging respect for human rights and for fundamental freedoms
and in solving international problems
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Table B.40: Polarizing Resolutions in 2005

Count Resolution Title

1 Situation of human rights in Uzbekistan
2 Situation of human rights in Turkmenistan
3 The right to development
4 Human rights and unilateral coercive measures
5 Global efforts for the total elimination of racism, racial discrimination,

xenophobia and related intolerance and the comprehensive implemen-
tation of and follow-up to the Durban Declaration and Programme of
Action

6 Situation of human rights in the Islamic Republic of Iran
7 Globalization and its impact on the full enjoyment of all human rights
8 Israeli practices affecting the human rights of the Palestinian people in

the Occupied Palestinian Territory, including East Jerusalem
9 Promotion of peace as a vital requirement for the full enjoyment of all

human rights by all
10 Respect for the principles of national sovereignty and diversity of demo-

cratic systems in electoral processes as an important element for the
promotion and protection of human rights

11 Division for Palestinian Rights of the Secretariat
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Table B.41: Polarizing Resolutions in 2006

Count Resolution Title

1 Israeli settlements in the Occupied Palestinian Territories, including
East Jerusalem, and the occupied Syrian Golan

2 The occupied Syrian Golan
3 Human rights an unilateral coercive measures
4 Respect for the right of universal freedom of travel and the vital impor-

tance of family reunification
5 Composition for the staff of the Office of the UN High Commissioner

for Human Rights
6 Globalization and its impact on the full enjoyment of all human rights
7 The right of the palestine people to self-determination
8 Use of mercenaries as a means of violating human rights and impeding

the excercise of the right of peoples to self-determination
9 Inadmissibility of certain practices that contribute to fuelling contem-

porary forms of racism, racial discrimination, xenophobia and related
intolerance

11 Situation of human rights in Belarus
12 The right of development
13 The human rights situation arising from the recent Israeli military oper-

ations in Lebanon
14 Situation of human rights in the Islamic Republic of Iran

160



Table B.42: Polarizing Resolutions in 2007

Count Resolution Title

1 Commitee on the Exercice of Inalienable Rights of the Palestinian Peo-
ple

2 Division for Palestine Rights of the Secretariat
3 Report of the Human Rights Council on the preparations for the Durban

Review Conference
4 Human rights and unilateral coercive measures
5 The right of the Palestinian People to self-determination
6 Use of mercenaries as a means of violating human rights and impeding

the exercise of the right of peoples to self-determination
7 The right to development
8 Global efforts for the total elimination of racism, racial discrimination,

xenophobia and related intolerance and the comprehensive implemen-
tation of and follow-up to the Durban Declaration and Programme of
Action

9 Report of the Human Rights Council
10 Promotion of peace as a vital requirement for the full enhoyment of all

human rights by all
11 Globalization and its impact on the full enjoyment of all human rights
12 Respect for the purposes and principles contained in the Charter of

the United Nations to achieve internationlal cooperation in promoting
and encouraging respect for human rights and fundamental freedoms in
solving international problems

13 Work of the Special Committee to Investigate Israeli Practices Affecting
the Human Rights of the Palestinian People and Other Arabs of the
Occupied Territories
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Table B.43: Polarizing Resolutions in 2008

Count Resolution Title

1 Division for Palestinian Rights of the Secretariat
2 Committee on the Excercise of the Inalienable Rights of the Palestinian

People
3 The occupied Syrian Golan
4 Israeli practices affecting the human rights of the Palestinian people in

the Occupied Palestinian Territory, including East Jerusalem
5 Applicability of the Geneva Convention relative to the Protection of

Civilian Persons in Time of War, of 12 August 1249, to the Ocuupied
Palestinian Territory, including East Jerusalem, and the other occupied
Arab territories

6 Israeli settlements in the Occupied Palestinian Territory, including East
Jerusalem, and the occupied Syrian Golan

7 Situation of human rights in the Democratic People’s Republic of Korea
8 Promotion of a democratic and equitable international order
9 Extrajudicial, summary or arbitrary executions
10 Human rights and unilateral coercive measures
11 The right to development
12 Situation of human rights in the Islamic Republic of Iran
13 Equitable geographical distribution in the membership of the human

rights treaty bodies
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Table B.44: Polarizing Resolutions in 2009

Count Resolution Title

1 Follow-up to the report of the United Nations Fact-Finding Mission on
the Gaza Conflict

2 Committee on the Exercise of the Inalienable Rights of the Palestinian
People

3 Division for Palestinian Rights of the Secretariat
4 Work of the Special Committee to Investigate Israel Practices Affecting

the Human Rights of the Palestinian People and Other Arabs of the
Occupied Territories

5 Israeli settlements in the Occupied Palestinian Territory, including East
Jerusalem, and the occupied Syrian Golan

6 Israeli practices affecting the human rights of the Palestinian people in
the Occupied Palestinian Territory, including East Jerusalem

7 Applicability of the Geneva Convention relative to the Protection of
Civilian Persons in Time of War, of 12 August 1949, to the Occupied
Palestinian Territory, including East Jerusalem, and the other occupied
Arab territories

8 The occupied Syrian Golan
9 Inadmissibility of certain practices that contribute to fuelling contem-

porary forms of racism, racial discrimination, xenophobia and related
intolerance

10 Globalization and its impact on the full enjoyment of all human rights
11 Human Rights and unilateral coercive measures
12 The right to development
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Table B.45: Polarizing Resolutions in 2010

Count Resolution Title

1 Israeli practices affecting the human rights of the Palestinian people in
the Occupied Palestinian Territory, including East Jerusalem

2 The right of the Palestinian people to self-determination
3 Use of mercenaries as a means of violating human rights and impeding

the exercise of the right of peoples to self-determination
4 Globalization and its impact on the full enjoyment of all human rights
5 Human rights and unilateral coercive measures
6 The right to development
7 Promotion of a democratic and equitable international order
8 Report of the Human Rights Council
9 Review of the Human Rights Council
10 Committee on the Exercise of the Inalienable Rights of the Palestinian

People
11 Division for Palestinian Rights of the Secretariat
12 Inadmissibility of certain practices that contribute to fuelling contem-

porary forms of racism, racial discrimination, xenophobia and related
intolerance
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Table B.46: Polarizing Resolutions in 2011

Count Resolution Title

1 Inadmissibility of certain practices that contribute to fuelling contem-
porary forms of racism, racial discrimination, xenophobia and related
intolerance

2 Global efforts for the total elimination of racism, racial discrimination,
xenophobia and related intolerance and the comprehensive implemen-
tation of and follow-up to the Durban Declaration and Programme of
Action

3 The right of the Palestinian people to self-determination
4 Use of mercenaries as a means of violating human rights and impeding

the exercise of the right of peoples to self-determination
5 Promotion of equitable geographical distribution in the membership of

the human rights treaty bodies
6 Human rights and cultural diversity
7 The right to development
8 Human rights and unilateral coercive measures
9 Promotion of a democratic and equitable international order
10 Globalization and its impact on the full enjoyment of all human rights
11 Applicability of the Geneva Convention relative to the Protection of

Civilian Persons in Time of War, of 12 August 1949, to the Occupied
PalestinianTerritory, including East Jerusalem, and the other occupied
Arab territories

12 Israeli settlements in the Occupied Palestinian Territory, including East
Jerusalem, and the occupied Syrian Golan
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Table B.47: Polarizing Resolutions in 2012

Count Resolution Title

1 Committee on the Exercise of the Inalienable Rights of the Palestinian
People

2 Division for Palestinian Rights of the Secretariat
3 Applicability of the Geneva Convention relative to the Protection of

Civilian Persons in Time of War, of 12 August 1949, to the Occupied
Palestinian Territory, including East Jerusalem, and the other occupied
Arab territories

4 Israeli settlements in the Occupied Palestinian Territory, including East
Jerusalem, and the occupied Syrian Golan

5 Israeli practices affecting the human rights of the Palestinian people in
the Occupied Palestinian Territory, including East Jerusalem

6 The occupied Syrian Golan
7 Global efforts for the total elimination of racism, racial discrimination,

xenophobia and related intolerance and the comprehensive implemen-
tation of and follow-up to the Durban Declaration and Programme of
Action

8 The right of the Palestinian people to self-determination
9 Use of mercenaries as a means of violating human rights and impeding

the exercise of the right of peoples to self determination
10 Globalization and its impact on the full enjoyment of all human rights
11 Human rights and unilateral coercive measures
12 The right to development
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Table B.48: Polarizing Resolutions in 2013

Count Resolution Title

1 Israeli practices affecting the human rights of the Palestinian people in
the Occupied Palestinian Territory, including East Jerusalem

2 Israeli settlements in the Occupied Palestinian Territory, including East
Jerusalem, and the occupied Syrian Golan

3 Applicability of the Geneva Convention relative to the Protection of
Civilian Persons in Time of War, of 12 August 1949, to the Occupied
Palestinian Territory, including East Jerusalem, and the other occupied
Arab territories

4 Promotion of a democratic and equitable international order
5 Globalization and its impact on the full enjoyment of all human rights
6 Promotion of equitable geographical distribution in the membership of

the human rights treaty bodies
7 Human rights and unilateral coercive measures
8 Human rights and cultural diversity
9 Use of mercenaries as a means of violating human rights and impeding

the exercise of the right of peoples to self-determination
10 Global efforts for the total elimination of racism, racial discrimination,

xenophobia and related intolerance and the comprehensive implemen-
tation of and follow-up to the Durban Declaration and Programme of
Action
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Table B.49: Polarizing Resolutions in 2014

Count Resolution Title

1 A global call for concrete action for the total elimination of racism,
racial discrimination, xenophobia and related intolerance and the com-
prehensive implementation of and follow-up to the Durban Declaration
and Programme of Action

2 Use of mercenaries as a means of violating human rights and impeding
the exercise of the right of peoples to self-determination

3 Globalization and its impact on the full enjoyment of all human rights
4 Promotion of peace as a vital requirement for the full enjoyment of all

human rights by all
5 Human rights and unilateral coercive measures
6 Division for Palestinian Rights of the Secretariat
7 Combating glorification of Nazism, neo-Nazism and other practices that

contribute to fuelling contemporary forms of racism, racial discrimina-
tion, xenophobia and related intolerance

8 Committee on the Exercise of the Inalienable Rights of the Palestinian
People

9 Report of the Human Rights Council
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Table B.50: Polarizing Resolutions in 2015

Count Resolution Title

1 Committee on the Exercise of the Inalienable Rights of the Palestinian
People

2 Human rights and unilateral coercive measures
3 Promotion of equitable geographical distribution in the membership of

the human rights treaty bodies
4 Human rights and cultural diversity
5 Globalization and its impact on the full enjoyment of all human rights
6 Division for Palestinian Rights of the Secretariat
7 Combating glorification of Nazism, neo-Nazism and other practices that

contribute to fuelling contemporary forms of racism, racial discrimina-
tion, xenophobia and related intolerance

8 A global call for concrete action for the total elimination of racism,
racial discrimination, xenophobia and related intolerance and the com-
prehensive implementation of and follow-up to the Durban Declaration
and Programme of Action

9 Use of mercenaries as a means of violating human rights and impeding
the exercise of the right of peoples to self-determination

10 Report of the Human Rights Council
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Table B.51: Polarizing Resolutions in 2016

Count Resolution Title

1 A/71/251 66b - Comprehensive implementation of and follow-up
to the Durban Declaration and Programme of Action. - RACIAL
DISCRIMINATION–PROGRAMME IMPLEMENTATION

2 A/71/251 67 - Right of peoples to self-determination. - SELF-
DETERMINATION OF PEOPLES

3 A/71/251 68b - Human rights questions, including alternative ap-
proaches for improving the effective enjoyment of human rights and
fundamental freedoms. - HUMAN RIGHTS ADVANCEMENT

4 A/71/251 68b - Human rights questions, including alternative ap-
proaches for improving the effective enjoyment of human rights
and fundamental freedoms. - HUMAN RIGHTS ADVANCE-
MENT;A/71/251 68b[12] - SANCTIONS–INTERNATIONAL RELA-
TIONS

5 A/71/251 68b - Human rights questions, including alternative ap-
proaches for improving the effective enjoyment of human rights
and fundamental freedoms. - HUMAN RIGHTS ADVANCE-
MENT;A/71/251 68b[6] - GLOBALIZATION–HUMAN RIGHTS

6 A/71/251 68b - Human rights questions, including alternative ap-
proaches for improving the effective enjoyment of human rights
and fundamental freedoms. - HUMAN RIGHTS ADVANCE-
MENT;A/71/251 68b[31] - DEMOCRACY

7 A/71/251 66a - Elimination of racism, racial discrimination, xeno-
phobia and related intolerance. - RACIAL DISCRIMINATION–
ELIMINATION

8 A/71/251 35 - Question of Palestine. - PALESTINE QUESTION
9 A/71/251 68c - Human rights situations and reports of special rappor-

teurs and representatives. - HUMAN RIGHTS–REPORTS
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Table B.52: Polarizing Resolutions in 2017

Count Resolution Title

1 A/72/251 72b - Human rights questions, including alternative ap-
proaches for improving the effective enjoyment of human rights
and fundamental freedoms. - HUMAN RIGHTS ADVANCE-
MENT;A/72/251 72b[6] - GLOBALIZATION–HUMAN RIGHTS

2 A/72/251 67 - Report of the Human Rights Council. - UN. HUMAN
RIGHTS COUNCIL–REPORTS

3 A/72/251 72b - Human rights questions, including alternative ap-
proaches for improving the effective enjoyment of human rights
and fundamental freedoms. - HUMAN RIGHTS ADVANCE-
MENT;A/72/251 72b[12] - SANCTIONS–INTERNATIONAL RELA-
TIONS

4 A/72/251 70b - Comprehensive implementation of and follow-up
to the Durban Declaration and Programme of Action. - RACIAL
DISCRIMINATION–PROGRAMME IMPLEMENTATION

5 A/72/251 70a - Elimination of racism, racial discrimination, xeno-
phobia and related intolerance. - RACIAL DISCRIMINATION–
ELIMINATION

6 A/72/251 72b - Human rights questions, including alternative ap-
proaches for improving the effective enjoyment of human rights
and fundamental freedoms. - HUMAN RIGHTS ADVANCE-
MENT;A/72/251 72b[11] - RIGHT TO DEVELOPMENT

7 A/72/251 72b - Human rights questions, including alternative ap-
proaches for improving the effective enjoyment of human rights
and fundamental freedoms. - HUMAN RIGHTS ADVANCE-
MENT;A/72/251 72b[30] - RIGHT TO CULTURE

8 A/72/251 71 - Right of peoples to self-determination. - SELF-
DETERMINATION OF PEOPLES

9 A/72/251 54 - Report of the Special Committee to Investigate Israeli
Practices Affecting the Human Rights of the Palestinian People and
Other Arabs of the Occupied Territories. - TERRITORIES OCCUPIED
BY ISRAEL–HUMAN RIGHTS

10 A/72/251 72b - Human rights questions, including alternative ap-
proaches for improving the effective enjoyment of human rights and
fundamental freedoms. - HUMAN RIGHTS ADVANCEMENT

11 A/72/251 38 - Question of Palestine. - PALESTINE QUESTION
12 A/72/251 72b - Human rights questions, including alternative ap-

proaches for improving the effective enjoyment of human rights
and fundamental freedoms. - HUMAN RIGHTS ADVANCE-
MENT;A/72/251 72b[31] - DEMOCRACY
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APPENDIX C

The Pure Second-Dimension Bills’ Summaries

The 40 pure second-dimension bills have more coherent substantive meanings. There are two pol-

icy topics that repeatedly show up in the pure-second-dimension bills: appropriations and foreign

policy. Bill No. 63, 92, 96, 181, 185, 209, 235, 251, 257, 264, 283, 298, 337, 338, 339, 342, 416,

512, 558, and 612 are all about appropriations or budget issues. Bills that are related to foreign

policy include Bill No. 25, 184, 185, 339, 342, 345, 410, and 546. The summaries of the above

bills are reported in the tables below.
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Bill Number Bill Summary
63 SENATE AGREED TO A MOTION TO ADVANCE S. 672, MAK-

ING SUPPLEMENTAL APPROPRIATIONS AND RESCISSIONS
FOR THE FISCAL YEAR ENDING SEPTEMBER 30,1997, TO
THE THIRD READING.

92 SENATE PASSED H. CON. RES. 84, ESTABLISHING THE CON-
GRESSIONAL BUDGET FOR THE UNITED STATES GOVERN-
MENT FOR FISCAL YEAR 1998 AND SETTING FORTH AP-
PROPRIATE BUDGETARY LEVELS FOR FISCAL YEARS 1999,
2000, 2001, AND 2002.

96 SENATE AGREED TO THE CONFERENCE REPORT ON
H.CON.RES. 84, ESTABLISHING THE CONGRESSIONAL
BUDGET FOR THE UNITED STATES GOVERNMENT FOR FIS-
CAL YEAR 1998AND SETTING FORTH APPROPRIATE BUD-
GETARY LEVELS FOR FISCAL YEARS 1999,2000, 2001, AND
2002.

181 SENATE REJECTED THE ALLARD AMENDMENT NO. 891,
TO DECREASE THE AMOUNT OF FUNDS AVAILABLE TO
OPIC FOR ADMINISTRATIVE EXPENSES TO CARRY OUT
THE CREDIT AND INSURANCE PROGRAMS.

185 SENATE PASSED S. 955, MAKING APPROPRIATIONS FOR
FOREIGN OPERATIONS,EXPORT FINANCING, AND RE-
LATED PROGRAMS FOR THE FISCAL YEAR ENDING
SEPTEMBER 30, 1998.

Table C.1: Pure-2nd-D Bills on Appropriations (Part 1)
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Bill Number Bill Summary
209 SENATE AGREED TO THE CONFERENCE REPORT ON H.R.

2015, TO PROVIDE FOR RECONCILIATION PURSUANT TO
SUBSECTIONS (B)(1) AND (C) OF SECTION 105 OF THE
CONCURRENT RESOLUTION ON THE BUDGET FOR FISCAL
YEAR 1998.

235 SENATE PASSED S. 1061, MAKING APPROPRIATIONS FOR
THE DEPARTMENTS OF LABOR, HEALTH, AND HUMAN
SERVICES, AND EDUCATION, AND RELATED AGENCIES
FOR THE FISCAL YEAR ENDING SEPTEMBER 30, 1998.

251 SENATE PASSED H.R. 2107, MAKING APPROPRIATIONS
FOR THE DEPARTMENT OF THE INTERIOR AND RELATED
AGENCIES FOR THE FISCAL YEAR ENDING SEPTEMBER
30,1998.

257 SENATE AGREED TO THE CONFERENCE REPORT ON H.R.
2209, MAKING APPROPRIATIONS FOR THE LEGISLATIVE
BRANCH FOR THE FISCAL YEAR ENDING SEPTEMBER 30,
1998.

264 SENATE AGREED TO THE CONFERENCE REPORT ON H.R.
2378, MAKING APPROPRIATIONS FOR THE TREASURY DE-
PARTMENT, THE UNITED STATES POSTAL SERVICE, THE
EXECUTIVE OFFICE OF THE PRESIDENT, AND CERTAIN IN-
DEPENDENT AGENCIES, FOR THE FISCAL YEAR ENDING
SEPTEMBER 30, 1998.

283 SENATE AGREED TO THE CONFERENCE REPORT ON H.R.
2107, MAKING APPROPRIATIONS FOR THE DEPARTMENT
OF THE INTERIOR AND RELATED AGENCIES FOR THE FIS-
CAL YEAR ENDING SEPTEMBER 30, 1998.

298 SENATE AGREED TO THE CONFERENCE REPORT ON H.R.
2264, MAKING APPROPRIATIONS FOR THE DEPARTMENTS
OF LABOR, HEALTH AND HUMAN SERVICES,AND EDUCA-
TION, AND RELATED AGENCIES FOR THE FISCAL YEAR
ENDING SEPTEMBER30, 1998.

337 SENATE REJECTED MCCAIN AMENDMENT NO. 2063, TO
ELIMINATE CERTAIN SPENDING ITEMS FROM THE BILL.

Table C.2: Pure-2nd-D Bills on Appropriations (Part 2)
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Bill Number Bill Summary
338 SENATE REJECTED GRAMM/SANTORUM AMENDMENT NO.

2104, TO ESTABLISH THAT ONLY THAT PORTION OF BUD-
GET AUTHORITY PROVIDED IN THIS ACT THAT IS OB-
LIGATED DURING FISCAL YEAR 1998 SHALL BE DESIG-
NATED AS AN EMERGENCY REQUIREMENT PURSUANT TO
THE BALANCED BUDGET AND EMERGENCY DEFICIT CON-
TROL ACT OF 1985.

339 SENATE TABLED FEINGOLD AMENDMENT NO. 2121, TO
REMOVE THE EMERGENCY DESIGNATION FOR THE SUP-
PLEMENTAL APPROPRIATIONS TO FUND INCREMENTAL
COSTS OF CONTINGENCY OPERATIONS IN BOSNIA.

342 SENATE AGREED TO THE MCCONNELL MODIFIED AMEND-
MENT NO. 2100, TO PROVIDE SUPPLEMENTAL APPROPRIA-
TIONS FOR THE INTERNATIONAL MONETARY FUND FOR
THE FISCAL YEAR ENDING SEPTEMBER 30, 1998.

416 SENATE PASSED THE CONFERENCE REPORT ON H.R. 3579,
MAKING EMERGENCY SUPPLEMENTAL APPROPRIATIONS
FOR RECOVERY FROM NATURAL DISASTERS, AND FOR
OVERSEAS PEACEKEEPING EFFORTS, FOR THE FISCAL
YEAR ENDING SEPTEMBER 30,1998.

512 SENATE PASSED H.R. 4112, MAKING APPROPRIATIONS FOR
THE LEGISLATIVE BRANCH FOR THE FISCAL YEAR END-
ING SEPTEMBER 30, 1999, AS AMENDED.

558 SENATE PASSED H.R. 4104, MAKING APPROPRIATIONS
FOR THE TREASURY DEPARTMENT, THE UNITED STATES
POSTAL SERVICE, THE EXECUTIVE OFFICE OF THE PRES-
IDENT, AND CERTAIN INDEPENDENT AGENCIES, FOR THE
FISCAL YEAR ENDING SEPTEMBER 30, 1999.

612 SENATE AGREED TO THE CONFERENCE REPORT ON H.R.
4328, THE OMNIBUS CONSOLIDATED AND EMERGENCY
SUPPLEMENTAL APPROPRIATIONS ACT, 1999

Table C.3: Pure-2nd-D Bills on Appropriations (Part 3)
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Bill Number Bill Summary
25 SENATE TABLED HOLLINGS AMENDMENT NO. 19, TO RE-

QUIRE CONGRESSIONAL APPROVAL BEFORE ANY INTER-
NATIONAL TRADE AGREEMENT THAT HAS THE EFFECT
OF AMENDING OR REPEALING STATUTORY LAW OF THE
UNITED STATES LAW CAN BE IMPLEMENTED IN THE
UNITED STATES.

184 SENATE REJECTED THE HUTCHINSON AMENDMENT NO.
890, TO EXPRESS THE SENSE OF THE SENATE THAT MOST
FAVORED NATIONS TRADE STATUS FOR CHINA SHOULD
BE REVOKED.

185 SENATE PASSED S. 955, MAKING APPROPRIATIONS FOR
FOREIGN OPERATIONS,EXPORT FINANCING, AND RE-
LATED PROGRAMS FOR THE FISCAL YEAR ENDING
SEPTEMBER 30, 1998.

339 SENATE TABLED FEINGOLD AMENDMENT NO. 2121, TO
REMOVE THE EMERGENCY DESIGNATION FOR THE SUP-
PLEMENTAL APPROPRIATIONS TO FUND INCREMENTAL
COSTS OF CONTINGENCY OPERATIONS IN BOSNIA.

342 SENATE AGREED TO THE MCCONNELL MODIFIED AMEND-
MENT NO. 2100, TO PROVIDE SUPPLEMENTAL APPROPRIA-
TIONS FOR THE INTERNATIONAL MONETARY FUND FOR
THE FISCAL YEAR ENDING SEPTEMBER 30, 1998.

345 SENATE REJECTED S.J. RES. 42, TO DISAPPROVE THE CER-
TIFICATION OF THE PRESIDENT UNDER SECTION 490(B)
OF THE FOREIGN ASSISTANCE ACT OF 1961REGARDING
FOREIGN ASSISTANCE FOR MEXICO DURING THE FISCAL
YEAR 1998.

410 SENATE REJECTED THE WARNER AMENDMENT NO. 2322,
TO PROVIDE FOR A THREE-YEAR PAUSE IN FURTHER NATO
EXPANSION AFTER ADMISSION OF POLAND,HUNGARY,
AND THE CZECH REPUBLIC.

546 SENATE FAILED TO TABLE TO THE HUTCHINSON AMEND-
MENT NO. 3124, TO CONDEMN THOSE OFFICIALS OF THE
CHINESE COMMUNIST PARTY, THE GOVERNMENT OF THE
PEOPLE’S REPUBLIC OF CHINA, AND OTHER PERSONS
WHO ARE INVOLVED IN THE ENFORCEMENT OF FORCED
ABORTIONS BY PREVENTING SUCH PERSON FROM EN-
TERING OF REMAINING IN THE UNITED STATES, AND TO
EXPRESS THE SENSE OF THE CONGRESS THAT THE PRES-
IDENT SHOULD MAKE FREEDOM OF RELIGION ONE OF
THE MAJOR OBJECTS OF UNITED STATES FOREIGN POL-
ICY WITH RESPECT TO CHINA.

Table C.4: Pure-2nd-D Bills on Foreign Policy
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