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“No man ever steps in the same river twice, for it is not the same river, and he is

not the same man.” - Heraclitus

ii



ACKNOWLEDGEMENTS

I would like to express my sincerest thank to my advisor, Prof. Raman, for guiding

my Ph.D. study throughout the years with not only rigorous requirements but also

great patience, as well as the best platform and resources. After years of Ph.D.

training, I may understand the probability of turbulent non-localized forced ignitions

using realistic jet fuels, while I am not sure about the probability of someone flying

over the Pacific and finding an ideal advisor for his/her research and career, which is

why I greatly appreciate having worked in Prof. Raman’s lab.

For the same reason, I would like to deeply thank my defense committee mem-

ber Prof. Driscoll, Prof. Gamba, and Prof. Sick. Their insightful advising has

significantly helped improve the quality of the thesis.

I greatly appreciate having all my lab mates accompanying my Ph.D. journey,

from whom I can always learn and receive help. Heeseok, Chris, Romain, and Stephen

kindly helped me pick up many basic research skills when I first got introduced to

combustion simulation. Malik helped me get through numerous technical troubles

and from him I better saw how to approach and resolve a research problem. I also

greatly respect his upright and altruistic way of treating people and handling issues.

Prof. Han is a model scholar to me in combustion research, while I regret being

only a freshman when he was in our lab and missed the best opportunity for more

in-depth discussions. Despite working on completely different projects, Takuma and

I were constantly exchanging ideas, tricks, and info, and, of course, catching up on

endless deadlines together (in parallel). Alex is my first collaborator where I am the

iii



second author, who also provided me tons of valuable career advice when I approached

graduation. Negin (Maryam) is the only lab mate whose research topic is too advanced

for me to grasp, despite that she already tried her best to explain them to me. Supraj

impressed me with his problem-solving skills and effectiveness, and meanwhile being

mindful helps me save potential troubles more than one time. Shivam always gives

me great insights in data-driven analysis during our collaboration, which is one of

the best research experiencing as if he (and Malik) just made those data self-tell a

research story while all I need is to send the data. Xudong impressed me with his

modestness in listening to suggestions/opinions and willingness to learn and try new

things. Despite working together for a relatively short time, I’ve also felt the passions

from Caleb and Ral toward combustion research, and I believe all the newly joined

lab mates will achieve in their field of study as well. I’d also thank Damien for being

a bright lab mate.

I am fortunate to meet many talented collaborators and peers during my Ph.D.

study. Brandon is the experimental collaborator of my thesis study, whose profes-

sionality and in-depth understandings of multidisciplinary physics appreciably shed

into my thesis (I hope). I appreciate the chances of internship at Argonne National

Lab offered by Riccardo and Sibendu, and all the friendly colleagues at ANL that

made me feel belonged during my short stay. I would particularly thank Riccardo for

his patient advisory and being thoughtful and approachable, Joohan for his limitless

patience, professionality, and earnestness, and Brandon for the eye-opening tour at

APS. For the project of flashback simulation, I greatly appreciate Rakesh Ranjan for

always being responsive and patient in answering my trivial queries regarding his ex-

periments. For the project of soot simulation, I would like to first thank Prof. Im for

his advisory and then thank Junjun for being so hard-working, resilient, and efficient

during our collaborations. Shaowu is my senior schoolmate since I’m an undergrad,

who shows great research talent and has provided me many valuable suggestions dur-

iv



ing my study, which I greatly appreciate. I would also thank Adel for co-working

on the jet flame project, Prabhu for co-working on the soot project, and Yuan for

progressive discussions. Thank my undergraduate mentor Prof. Gao, Prof. Jiang,

and Prof. Lee for introducing me to the wonders of CFD.

This thesis is completed in an unsettling year of unexpected events, where my

graduation paces have been greatly disrupted. For this, I would like to thank my

colleagues at ANSYS for providing me a smooth transition to the industrial position

during my graduation season. Especially, thank Shaoping and Genong for allowing

me a very flexible schedule so that I can complete my thesis and defense in time,

thank Chao, Steven (Yu), and Chenglong for their warm welcome, great hospital-

ity, and career advice, thank Rakesh Yadav, Sibo, and Ashish for their help during

the transition period. I am glad that I will still be working in the field related to

combustion/reacting flow science - this is something I always enjoy doing.

I would like to thank my roommate Weihui, Renqi, and Bing for being kind and

understanding. Thank all my friends in life.

Last, I would thank my parents for raising me, for their unconditional love, sup-

port, and understandings - these go beyond words.

v



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

LIST OF APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Overview . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Aircraft Igniter . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Forced Ignition Process in Altitude Relight . . . . . 6
1.2.3 Ignition Probability . . . . . . . . . . . . . . . . . . 10
1.2.4 Liquid Fuel Spray . . . . . . . . . . . . . . . . . . . 11

1.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.1 Experimental Studies . . . . . . . . . . . . . . . . . 13
1.3.2 Numerical Studies . . . . . . . . . . . . . . . . . . . 15

1.4 Scope of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 20

II. Computational Framework . . . . . . . . . . . . . . . . . . . . . 22

2.1 Forced Ignition LES Simulation Platform . . . . . . . . . . . 22
2.1.1 Tabulated Detailed Chemistry Model . . . . . . . . 23
2.1.2 LES Simulation & CFD Solver . . . . . . . . . . . . 36
2.1.3 Coupling between the Kernel and the Turbulent Flow 39

2.2 Ignition Probability Estimation . . . . . . . . . . . . . . . . . 46
2.2.1 Formulation of Uncertainty Problem . . . . . . . . . 47

vi



2.2.2 Evaluation of Conditional Ignition Probability . . . 49
2.2.3 Evaluation of the Statistical Distribution of the Ker-

nel Parameter . . . . . . . . . . . . . . . . . . . . . 55
2.2.4 Uncertainty Quantification . . . . . . . . . . . . . . 58

2.3 Distinction between Prediction and Calibration . . . . . . . . 60
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

III. Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.1 Target Configuration . . . . . . . . . . . . . . . . . . . . . . . 63
3.1.1 Stratified Forced Ignition Rig . . . . . . . . . . . . . 63
3.1.2 Numerical Cases & Setups . . . . . . . . . . . . . . 65

3.2 Performance of the Forced Ignition LES Simulation . . . . . . 68
3.2.1 Reproducing the Pulsing Dynamics of the Kernel . . 68
3.2.2 Reproducing the Variability of Forced Ignition Out-

comes . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.2.3 Reproducing the Fundamental Physics of Forced Ig-

nition . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.3 Performance of Ignition Probability Estimation . . . . . . . . 91

3.3.1 Validating the Ignition Response Surface . . . . . . 91
3.3.2 Predicting the Final Ignition Probability . . . . . . 97
3.3.3 Evaluating the Computational Cost . . . . . . . . . 101

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

IV. Supplemental Studies . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.1 Data-driven Analysis of Turbulent Induced Ignition Variability 104
4.1.1 Configuration & Numerical Setups . . . . . . . . . . 105
4.1.2 Forced Ignition Dataset . . . . . . . . . . . . . . . . 106
4.1.3 Data Analysis Strategies . . . . . . . . . . . . . . . 107
4.1.4 Cause of Ignition Failure . . . . . . . . . . . . . . . 119
4.1.5 Modes of Ignition Success and Failure . . . . . . . . 125
4.1.6 Summary and Conclusions . . . . . . . . . . . . . . 132

4.2 Detailed Simulation of Aircraft Sunken Fire Igniter Discharge 133
4.2.1 Experimental Configuration . . . . . . . . . . . . . 134
4.2.2 Numerical Methods . . . . . . . . . . . . . . . . . . 138
4.2.3 Test Cases of Different Energy Deposition Strategies 140
4.2.4 Preliminary Results . . . . . . . . . . . . . . . . . . 143
4.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . 148

V. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.1 Summary of Findings . . . . . . . . . . . . . . . . . . . . . . 150
5.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.3 Future Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

vii



5.3.1 Modeling Forced Ignition with Liquid Fuel Spray . . 155
5.3.2 Detailed Modeling of the Spark Discharge . . . . . . 156
5.3.3 Computational Efficiency Improvement . . . . . . . 157

5.4 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

viii



LIST OF FIGURES

Figure

1.1 Diagram of altitude relight. . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Configurations of the sunken fire igniter (left) and the flush fire igniter
(right) [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Schematic of localized ignition vs. non-localized ignition, reproduced
from [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Igniter displacement in a typical annular combustor, obtained from [3]. 10

1.5 Flight envelope of safe altitude relight of a conventional annular com-
bustor, obtained from [1]. . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6 Schematic of the flame particle models, reproduced from [4]. The blue
dots indicates grid cells, green dots indicates flame particles that are
active, and red dots indicates flame particles that are quenched. . . 19

2.1 Schematic of forced ignition in an aircraft engine and the proposed
model decomposition. . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Demonstration of interpolation error in conventional tabulation strat-
egy during ignition. The time history profile (green dash line) and
the tabulation C-axis (black dots) are created artificially for demon-
stration purposes. The integrated reaction source SC,t is indicated
by the slope of the red slid line whereas the exact reaction source is
indicated by the slope of the green solid line. t0 is set to 0. . . . . . 28

2.3 Tabulation and look-up strategy of SC,r. The time history profile
and the tabulation C-axis are created artificially for demonstration
purposes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

ix



2.4 Ignition time history obtained from time integration of directly tabu-
lated reaction source with different resolutions of C-axis (black), the
new tabulation/table lookup strategy (green), and detailed chemistry
calculation of homogeneous reaction (dashed red). The operating
conditions are set to 1 atm and stoichiometry. . . . . . . . . . . . . 31

2.5 Maximum temperature vs. sthiochiometric scalar dissipation rate of
methane/air counterflow diffusion flamelets obtained at different air
stream temperatures. Fuel stream temperature is fixed at 600 K.
Operating pressure is 1 atm. . . . . . . . . . . . . . . . . . . . . . . 34

2.6 Unified FPVA/HR tabulation of ∆tTab (left) and temperature (right)
plotted in {H,C}-space, plotted at iso-plane of stoichiometric mix-
ture fraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.7 Schematic of the coupling of the kernel and flow field. . . . . . . . . 41

2.8 Temporal (left) and spatial (right) profiles of total enthalpy (top) and
normal velocity (bottom) applied at the kernel boundary. Subscript
‘c’ denotes value at the boundary center, and ‘ker’ denotes the bulk
value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.9 Diagram of relationships between parameters involved in enthalpy
boundary conditions at the kernel inlet. Green boxes indicate con-
trolling parameters of the boundary setups. Red boxes indicate pa-
rameters explicitly enforced at the boundary (i.e., profiles in Fig. 2.8). 45

2.10 Diagram of the modeling procedure for ignition probability estimation. 47

2.11 Schematic of the turbulent flow field initialization strategy. . . . . . 51

2.12 Schematic of the sampling procedure provided I varies monotonically
with K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1 Configuration of the forced ignition rig developed at Georgia Institute
of Technology. The flow direction is from left to right. . . . . . . . . 64

3.2 Schematic of the simulation domain and the applied boundary con-
ditions. The background contour is colored by the mixture fraction
field depicting the moment when a kernel just enters the main flow.
The kernel edge (yellow and white lines) plotted here are artificial
results only for demonstration purposes. . . . . . . . . . . . . . . . 66

x



3.3 Time-series of kernel injection. Within each group, the left column is
numerical schlieren, and the right column is experiment schlieren [5,
6]. For Group 1, the numerical schlieren is obtained with line-of-
sight integration. After confirming the numerical kernel edge is not
affected by out-of-plane density variations, the numerical schlieren is
simply calculated at the mid-plane for Group 2. . . . . . . . . . . . 70

3.4 Time history of kernel top edge vertical distance from the base wall
and kernel diameter. The numerical results are obtained using ex-
treme positions highlighted in Fig. 3.4. . . . . . . . . . . . . . . . . 71

3.5 Regime diagram of different PJICF flow structures and entrainment
characteristics. The diagram is reproduced from [7], where the sub-
plots are typical vorticity iso-surfaces. . . . . . . . . . . . . . . . . . 72

3.6 Left - LES time series of vortex evolution and scalar mixing for a
kernel PJICF of Group 1 plotted at the mid-plane in the spanwise
direction. Upper right - experimental schlieren images under Group
1 [5] and Group 2 [6] operating conditions. Bottom right - instan-
taneous DNS contour of scalar mixing of the PJICF under a similar
velocity ratio and stroke ratio [7]. . . . . . . . . . . . . . . . . . . . 74

3.7 Time histories of maximum progress variable obtained from a total
number of 467 LES forced ignition simulations: red - successful igni-
tion; black - failed ignition. The operating conditions are similar to
Group 2 using the fuel A2 (Chapter IV, Section. 4.1). . . . . . . . . 75

3.8 Points in the {Ed, Uker}-space tested in the kernel parameter study
colored by their ignition outcomes: red – successful ignition; black
– failed ignition. The dashed box indicates the two cases that were
applied for in-depth analysis in Section 3.2.3.1. . . . . . . . . . . . . 76

3.9 Time series of a successful (left) and failed (right) ignition kernel de-
velopment under Group 1 operating conditions: averaged fluid parti-
cle trace lines conditioned on the ignition final states at t = 3.5 ms;
group I: C ≥ 0.125; group II: 0.05 ≤ C ≤ 0.125; group III: C ≤ 0.05;
iso-surfaces of progress variable C sampled at 6 time instances. The
dashed line estimates the location of the mixing layer. . . . . . . . . 79

3.10 Time history of flame kernel volumes defined by different progress
variable threshold values. Dots mark the sampled instances same as
in Figs. 3.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

xi



3.11 Schematic of the successful forced ignition process of the PJICF ker-
nel: black line - PJIFC discrete vortex ring; yellow surface - flame
surface; red arrow - motion of flame wrap-up and propagation. For
the failed ignition, the pattern is similar while the flame surface is
observably smaller and more broken since Phase 2, and eventually
gets dissipated in Phase 3. Note that this is a demonstrative plot
that does not represent actual size or detailed shape. . . . . . . . . 82

3.12 Iso-surface of OH mass fraction YOH = 5 × 10−4 (top) and YOH =
1× 10−4 (bottom) colored by progress variable C ∼ [0, 0.075]. Dash
line estimates the location of the mixing layer. . . . . . . . . . . . . 84

3.13 Physical space trajectories of mass-less Lagrangian particles from an
LES forced ignition simulation in Group 2 studies. Plotted every 50th

particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.14 Ensemble-averaged phase space particle trajectories collected from
all successful ignition simulations in Group 2 studies at φ = 0.8 and
Ed = 1.25 J. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.15 OH mass fraction evolution compared between LES forced ignition
simulation and DNS simulation. The LES operating condition is of
Group 1, with φ = 1.1, Tin = 425 K. The DNS operating condition
is of Group 1, while the exact values of φ and Tin are not specified in
Ref. [8]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.16 Kernel area growth history from 40 samples of successful ignition
at φ = 1.5. Experimental results [6] are obtained from chemilumi-
nescence images. Numerical results are transformed from the flame
kernel volume (defined by C ≥ 0.275) by assuming a spherical shape.
Dash lines and error bars indicate a 95% confidence interval. . . . . 90

3.17 Unified FPVA/HR tabulations built using different upper bounds of
the FPVA tabulation. The contour is ∆tTab plotted in h− C space,
at Z = Zst. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.18 Percentage of error of ∆tTab of different tabulations compared to the
nominal case of TFPV A = 1600 K. Left: TFPV A = 2200 K; Right:
TFPV A = 1000 K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.19 Number of successful ignition predicted using different upper en-
thalpy bounds of the FPVA tabulation. The error bars indicate 1−σ
of sampling error from the total number of simulations NSpl = 15. . 94

xii



3.20 PCE truncation error estimated by Eq. 3.2 (top) and sampling error
estimated by Eq. 2.29 (middle) and the PCE response surface itself
(bottom). The results are shown for Case I in the phase space of
Tin − Ed (left) and for Case II in the phase space of φ− Ed (right). 96

3.21 Contour of L2-norm error between convolved ignition probability and
experimental measurement calibrated with the Group 1 experimental
dataset of Case I (left) and Case II (right). The triangle marks the
coordinates of distribution mean and standard deviation that mini-
mizes the calibration error. . . . . . . . . . . . . . . . . . . . . . . . 98

3.22 Comparison of convolved final ignition probability compared against
experimental measurements for Case I (left) and Case II (right) study:
blue - results obtained with distribution calibrated against Case I
experimental data; red - results obtained with distribution calibrated
against Case II experimental data; dash lines and error bars indicate
84.1% confidence interval (i.e., 1-σ). . . . . . . . . . . . . . . . . . . 99

3.23 Distribution calibration results obtained with Group 2 experimental
dataset of Case III (left), IV(middle), and V(right), plotted in the
same fashion as Fig. 3.23. . . . . . . . . . . . . . . . . . . . . . . . . 100

3.24 Comparison of convolved final ignition probability compared against
experimental measurements for Case III (left), Case IV (middle),
and Case V (right) study. Dash lines and error bars indicate 84.1%
confidence interval. . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.1 Time history of maximal field value of progress variable for all 467
(A2) and 432 (C1) LES forced ignition simulations labeled as suc-
cessful (red) and failed (black) ignition. . . . . . . . . . . . . . . . . 108

4.2 Illustration of the sparse sensing workflow. In POD and LDA repre-
sentations, red is ignition success and black is failure. In the LDA rep-
resentations (2nd to the rightmost plot), the black line corresponds
to the LDA density conditioned on ignition failure and the red line
corresponds to that conditioned on ignition success. No clear sepa-
ration is seen in the first three POD coordinates, but the densities
show a clear separation in the 1-D LDA space, which is the desired
outcome. The theoretically ideal discriminant outcome measured by
Eq. 4.3 should yield from two δ-PDFs located at ±∞ in the LDA
space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

xiii



4.3 Top - density of mixture fraction at t = 0 for A2 in the LDA space
generated by 50 different runs. Left corresponds to original data,
middle to sparse data, and right to sparse data computed from runs
with a cropped domain. Bottom - corresponding sensor locations with
colors indicating the sensor frequency (higher frequency means more
probable in the cross-validation sensor training). The highlighted
plane indicates x = 0 and the box enclosing indicates cropped domain
bounds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.4 Left - spanwise profile of mixing layer height averaged over ignition
realizations and the streamwise direction plotted for half of the do-
main. Right - streamwise profile of mixing layer height averaged
over ignition realizations and the spanwise direction. Igniter tip is at
{x = 0, y = 0}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.5 Time evolution of the mean vorticity magnitude at the iso-surface
C = 0.02 for A2 (blue) and C1 (red) and averaged over the ignition
success cases (solid) and the ignition failure cases (dash). The line
plots are interpolated from values at recorded time instances (sym-
bols, with error bars that represent statistical uncertainties) to ease
visualization. The subplot represents zooms in the region of interest. 123

4.6 Left - LDA densities of sparse dataset using initial mixture fraction
fields for C1 fuel (all 50 realizations of algorithm shown. Right: mean
LDA accuracies of the full-domain sparse dataset for A2 (blue, cor-
responding LDA densities are plotted in Fig. 4.3) and C1 (red) for
mixture fraction fields at t = 0. Error bars indicate maximum and
minimum values from the various runs. . . . . . . . . . . . . . . . . 124

4.7 Time evolution of the mean strain magnitude at the iso-surface C =
0.02 for A2 (blue) and C1 (red) and averaged over the ignition success
cases (solid) and the ignition failure cases (dash). Plotted in the same
fashion as Fig. 4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.8 Mid-spanwise planes of progress variable centroids that correspond to
Mode 1 (top) and Mode 2 (bottom) for ignition success of C1 (left)
A2 (right), at different time of the ignition process. . . . . . . . . . 127

4.9 Mid-spanwise planes of progress variable centroids that correspond
to Mode 1 (top) and Mode 2 (bottom) for ignition failure of C1 (left)
A2 (right), at different time of the ignition process. . . . . . . . . . 128

4.10 Mid-spanwise planes of temperature centroids that correspond to
Mode 1 (top) and Mode 2 (bottom) for ignition (left) and failure
(right) of C1, at t = 0.0006s. . . . . . . . . . . . . . . . . . . . . . . 129

xiv



4.11 Left - time history of maximal field value of temperature for real-
izations labeled as ignition success (red) and ignition failure (black).
Right - time history of the volume of flame kernel defined by the vol-
ume of computational cells with C > 0.1, for ignition success cases
only. Thin lines denote Mode 1 (typical ignition schematic) and thick
lines denote Mode 2 (kernel breakdown). . . . . . . . . . . . . . . . 131

4.12 The target aircraft sunken fire igniter mounted in a quiescent envi-
ronment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.13 Illustration of x-ray diagnostics of kernel status reproduced from
Ref. [9]. Top - top view of the x-ray radiography layout. Bottom-left -
raster grid of experimental measurements. Bottom-right - a snapshot
of the gas displacement contour reconstructed on the measurement
grid using multiple spark discharges. . . . . . . . . . . . . . . . . . . 136

4.14 Schematic of simulation domain with pre-set, region-dependent grid
refinements, with L0 and L4 being respectively the base grid and
finest grid (O(2.5×10−4)). The rectangular region with L3 refinement
corresponds to the x-ray measurement window. . . . . . . . . . . . . 138

4.15 Numerical gas displacement measured from different incident angles.
A total number of 3 incident angles are shown (3 cutting planes). The
same 3-D schematic is plotted from two viewing angles (left and right)
to provide a better illustration. In the actual post-processing, the
final ensemble gas displacement is calculated as arithmetic average
of the property measured from a total number of 60 incident angles. 141

4.16 Time sequence of gas displacement contour obtained from x-ray diag-
nostics and simulations cases with different energy deposition strategies.145

4.17 Time sequence of mid-plane density contour within the igniter cavity
obtained from Case II simulation. . . . . . . . . . . . . . . . . . . . 147

4.18 Time sequence of gas displacement contour compared in between re-
sults predicted by the energy soft clipping at the original upper en-
ergy limit of the thermodynamic model and that at an artificially
high temperature extrapolated beyond the upper energy limit. . . . 148

A.1 Optimal number of clusters obtained at each time instance for A2
(blue) and C1 (red) for igniting ( ) and failing cases ( ), using
silhouette score (top), and X-means (bottom). . . . . . . . . . . . . 166

xv



A.2 Top left: toy dataset in 2D for success (black) and failure (red), with
the LDA vector overlayed (dash-green). Top right: LDA densities for
each class for the original data (solid lines) and sparse data (dashed
lines). Bottom left: LDA vector in physical space, s = φw, from the
Jet-A mixture fraction dataset. Bottom right: corresponding sparse
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ABSTRACT

Fast and reliable altitude relight performance is one of the end goals of aircraft

engine design. Relight involves the use of an external heat source (a kernel, for in-

stance), to ignite a cold mixture of fuel and air in a turbulent flow environment. Due

to the variabilities in spark kernel formation, its transport in a turbulent flow environ-

ment, and the mixing and chemical reactions that are influenced by turbulent mixing,

ignition is described statistically in terms of a probability of success. Currently, full-

engine tests remain the most direct approach to evaluating relight probability at

relevant conditions. However, this approach is expensive both in terms of time and

monetary cost. Computational models that can accurate predict ignition processes in

a statistical sense can vastly accelerate engine design, and significantly reduce cost.

The objective of the dissertation is to develop a predictive computational framework

that addresses this key need.

Forced ignition, due to the nature of turbulent flow, exhibits complex flame struc-

ture. To describe the combustion processes, a novel hybrid tabulation approach is

formulated. This method combined a conventional flamelet-progress variable tabu-

lation with a homogeneous reaction model to capture the spark transition from a

homogeneous volumetric reaction process to a diffusion-controlled flame. Since the

success of kernel ignition or failure has to be described statistically, a procedure for

introducing uncertainties from spark discharge and the turbulent flow is developed.

The resulting computational model involves an ensemble approach, where a large set

of realizations of a detailed large eddy simulation (LES) based description of the flow

along with the hybrid tabulation model is used to determine ignition probabilities

xix



The proposed framework is thoroughly validated using a stratified forced igni-

tion experiment designed to replicate high altitude relight. The model is found to

successfully reproduce the fundamental physics, including the evolution of the spark

kernel, and the entrainment of the fuel-air mixture into the hot kernel discharge. A

particular experiment using methane as fuel is used to calibrate the spark discharge

model, which is then used without modification in the study of alternative jet fuels. It

is shown that the prediction framework capture the ignition probability for different

fuels and operating conditions. This new computational framework provides the first

rigorous approach to modeling high altitude relight.
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CHAPTER I

Introduction

1.1 Motivation

The advancement of aircraft gas turbine engines is one of the important drivers

of aerospace technologies. In general, the goal is to develop safer, more economical,

and cleaner aircraft engines. More specifically, there are several key figures of merits

(FOM) that are often interrogated during the design improvement of aircraft gas

turbine engines. This includes altitude relight and lean blowout performances that

are often used to evaluate operational safety, fuel efficiency and maintenance cost

used to evaluate economy of use, and pollutant emissions (greenhouse gases, NOx,

and soot) that the determine environmental footprint.

The focus of this thesis is the FOM of altitude relight, which is the forced ig-

nition process of an aircraft gas turbine engine after it experiences a flameout at

high altitude. Altitude relight is also a key FOM in the development of alterna-

tive jet fuels (AJFs), where the developed AJFs should be used as drop-in replace-

ments of existing conventional jet fuels with minimum to no modifications in their

operational capability. Currently, the design of aircraft engine/AJFs relies heavily

on large-scale experiments to determine the engine relight characteristics under the

tested conditions of combustor layout/fuel composition, which is resource-consuming

and time-consuming. To develop numerical capabilities as alternative enabling tools
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for predicting altitude relight has become more and more meaningful. As the recent

advancement of computational technologies allows for the increase of simulation fi-

delity, such a goal has also become more reachable than ever. Motivated by these

above, this thesis sets goals to numerically predict the fundamental problem of alti-

tude relight - forced ignition. In specific, the target problem here features a turbulent

non-premixed forced ignition using realistic jet fuels and an aircraft spark igniter.

While focusing on the application of altitude relight, the thesis may also provide

insights into other areas that involve forced ignition.

1.2 Problem Overview

While highly unlikely, aircraft gas turbine engines can experience a flameout dur-

ing operation at high altitudes due to reasons including turbulent disturbances and

ingestion of ice [1, 10, 11]. Under such a situation, the engine needs to be relighted

within a certain time period. Since the combustor pressure and temperature drop

during the engine flameout, the longer it takes to relight the engine, the higher risk

of a complete relight failure. Therefore, a fast and reliable altitude relight is always

the end goal of the design.

A typical altitude relight procedure goes as follows (Fig. 1.1): Firstly, the engine

igniter turns on and creates an electric spark at a certain frequency. With every

electric spark fired by the igniter, there is a chance that the spark successfully ini-

tiates chemical reactions of the fuel/air mixture that later develops into a stabilized

combustion inside the engine. Secondly, the fuel flow is increased, sometimes with

selective fuel injection techniques that direct the fuel spray biased towards the igniter

location [3], so as to further increase the chances of ignition success; Then, within

a specified time period (5 − 10 seconds), if the engine is successfully relighted, the

relight procedure is ended and the engine resumes normal operation. Otherwise, the

fuel flow needs to be cut off for a while allowing the “cleaning” of the engine before
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repeating the entire relight procedure.

Igniter

liner

outer case

 

liquid fuel

 
spark

Figure 1.1: Diagram of altitude relight.

The fundamental physics of the altitude relight problem is the forced ignition of

combustion following the aircraft igniter discharge. Unlike the forced ignition within

a well-organized environment that is quiescent or laminar, the process here features a

turbulent non-premixed forced ignition, where the turbulent strain and turbulent fuel-

mixing greatly complicate the physics. Besides, the realistic effect of liquid fuel spray

introduces another layer of complexity. In the following sections, several important

components and concepts related to turbulent non-premixed forced ignition in altitude

relight are introduced.

1.2.1 Aircraft Igniter

Modern gas turbine engines mostly apply electrical discharge as the ignition source

[1]. The advantages of electrical discharge over other types of ignition sources (e.g.

torch igniters [12, 13] or heating surface [14–16]) is its high efficiency of energy conver-

sion which conveniently deposits a considerable amount of energy in a short amount

of time [1]. The most widely applied spark igniter in aircraft engines is the surface

discharge igniter [1, 17], which mainly consists of a central electrode and an outer
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electrode, separated by an insulator. A semiconductor is further attached to the fir-

ing end of the insulator to facilitate the ionization of the spark gap. The surface

discharged igniter can be categorized into two main types of designs, depending on

whether the spark gap is flush or recessed, to be the flush fire igniter, or the sunken

fire igniter (similar to the plasma jet igniter [18]). A configuration of the two types

of surface discharge igniter is provided in Fig. 1.2. In general, the flush fire igniter

converts energy more efficiently, has a longer operating life, but is also more difficult

to manufacture, whereas the sunken fire igniter is vice versa [1].

Figure 1.2: Configurations of the sunken fire igniter (left) and the flush fire igniter
(right) [1].

The working mechanism of the surface discharged igniter goes as follows. At the

beginning of each spark discharge, the voltage generation unit of the aircraft ignition

system imposes increasingly high voltage (∼ 2 kV) between the central electrode and

outer electrode, until the gas near the spark gap is suddenly ionized and becomes

conductive (electrical breakdown), producing a discharge in the form of an electric

arc. A significant amount of electric energy is then converted into thermal energy
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when the electric current runs through the gas field, concentrated near the electric

arc. The discharge duration lasts for a very short amount of time (O(10−5) s) before

the voltage between the electrodes drops and the ionized gas channel cannot sustain.

Depending on the size of the aircraft engine, the corresponding igniter has a spark

rate of 60 ∼ 250 sparks per minute and an energy release of 1 ∼ 12 J per discharge.

The main outcome of the spark igniter discharge is the creation of a hot spot in

the gas field, here referred to as the “kernel”, which is frequently used as the initial

condition/starting point in forced ignition studies. Apart from the energy deposition,

there are also other physical effects introduced by the spark discharge, such as a blast

wave due to drastic density variation, and free radicals/ions due to thermal disso-

ciation/ionization [19]. Each of these effects is featured by a different characteristic

time scale and can be more or less important based on the particular configuration

of the forced ignition problem. As a starting point, the studies in this thesis mainly

consider the spark discharge as a pure energy source (unless otherwise mentioned),

which is nonetheless widely applied in the forced ignition modeling community.

Before moving to the next section, one should note that while the aircraft igniter

critically affects the forced ignition outcome, the design of the aircraft igniter cannot

be made only to guarantee the success of ignitions (e.g., simply by increasing the

igniter power). Most of the forced ignitions in an aircraft engine take the form of an

engine ground start instead of an altitude relight, where the operating life of the igniter

is important, which implies that the design must consider routine reliable operation.

Therefore, just like any other design optimization problem, the aircraft igniter design

takes a blended consideration of economics and performance. Throughout this thesis,

it will be mentioned occasionally that certain difficulties or approach limitations exist

for resolving the forced ignition problem, and many of those are related to the aircraft

igniter design.
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1.2.2 Forced Ignition Process in Altitude Relight

1.2.2.1 General information of forced ignition

To begin with, the concepts of forced ignition vs. autoignition is first introduced.

Forced ignition is the ignition process with an external source of thermal energy or

radical species. Autoignition is the ignition process that takes place spontaneously,

and it happens when the fuel/oxidizer mixture is at a temperature above a threshold

value referred to as the autoignition temperature. An interesting case that is worth

a brief mention here is the homogeneous charge compression ignition (HCCI) that

is widely applied in diesel engines [20]. In practice, the HCCI ignition is due to

autoignition, as the fuel/air mixture spontaneously ignites as it reaches autoignition

temperature due to compression. However, the thermal energy rise in the HCCI

ignition does come from an external source, except that the source is not directly

imposed locally to a certain region but instead globally in the form of compression

work. In this regard, the HCCI ignition is similar to forced ignition. As will be

explained later in Sec. 2.1.1.1, the ignition model developed in this thesis for turbulent

non-premixed forced ignition is inspired by a model for HCCI ignition.

In a well-characterized configuration such as a quiescent condition or laminar

flow, the forced ignition process is controlled by the competition between chemical

heat release within the kernel and the rate of heat loss through the kernel surface.

Essentially, as long as the initial kernel energy can sustain the heat loss for a sufficient

amount of time before the chemical reactions start releasing energy, the ignition

process will be successful. Based on experimental measurements [21–24], analytical

modeling [22, 25], and reduced-order modeling [26], the ignition outcome can be

predicted to a fairly accurate extent using only a few parameters such as the minimum

ignition energy (MIE) [21, 22] of the kernel or the critical radius [25] of the spherical

flame developed during the early stage kernel evolution.
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In more realistic applications of industrial burners and aircraft combustors, there

are more obstacles to overcome before reaching a successful forced ignition. The

reaction should not only survive the kernel stage and transform into a propagating

flame front but should also survive the flame quenching during flame propagation

and reach flame stabilization within the combustor/aircraft engine. More specifically,

the forced ignition process must go through the following three phases [2]: phase 1,

generation of small flame around the kernel (referred to as the “flame kernel”); phase

2, the transition from the flame kernel into propagating flame; phase 3, long-term

flame stabilization within the burner. For aircraft engines, an additional phase can

be defined as phase 4, where the flame propagates to multiple combustors especialy

in a can-annular arrangment [27]. Due to the complex flow environment in realistic

applications, throughout the above processes, the reaction fronts evolve based on

the complex interplay between heat dissipation, fuel entrainment/mixing, turbulent

strain, and reaction kinetics. As a result, the ignition success/failure will not only

be dependent on the initial kernel status but also the evolution history of the kernel

trajectory and the later turbulent flame propagation, making it much more difficult

to predict the ignition outcome.

1.2.2.2 Turbulent non-premixed forced ignition

For realistic combustors using turbulent non-premixed combustion, the concept

of localized ignition vs. non-localized ignition is introduced here. The difference lies

in whether the kernel starts reaction immediately at the spark location (localized

ignition) or reacts later after it gets transported somewhere else (non-localized ig-

nition). The physical mechanism behind such difference is related to flammability

limits and fuel entrainment. As a demonstration, a schematic of the turbulent non-

premixed forced ignition process for provided in Fig. 1.3. The figure is reproduced

from Ref. [2], which originally only depicts the localized ignition. Here, both local-
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ized and non-localized ignitions are plotted, with two kernels initialized at different

locations that are inside/outside the regions enclosed by the iso-lines of flammability.

Note that even if the kernel initialization is fixed to the same position, as in most

applications, the flammability of the initial kernel can still vary between shots due to

turbulent disturbances.

For the localized ignition, the ignition sequence (steps) in Fig. 1.3 exhibits a

straightforward match-up to the three phases of forced ignition introduced in the last

section for single burners (hence, no phase 4). Step 1 corresponds to phase 1, where a

small spherical flame is immediately formed around the kernel at the location of the

spark discharge. Step 2 corresponds to phase 2, where the flame kernel expands in the

nature of a stratified flame, i.e., within the flammable range of equivalence ratio [28].

Step 3 corresponds to phase 3, where the flame propagates upstream following the

iso-line of the stoichiometric equivalence ratio. Depending on the mixture fraction

gradient, the flame front propagates in the nature of a premixed flame (3A), a triple-

flame (3B) [29], and an edge flame (3C) [30], and eventually develops into a stable

turbulent jet flame, attached to the nozzle or lifted.

For the non-localized ignition, however, since the kernel is initialized with a local

composition outside flammability (usually lean), the kernel would need to first get

transported to reach and entrain a flammable mixture before reaction. This step is

labeled here as step 0 (kernel transport), prior to step 1 (reaction initiation), and step

0 & 1 should together constitute phase 1. The remaining steps are the same as those

in a localized ignition.

In altitude relight, the non-local effect is often very prominent compared to other

applications. This is due to the placement of the igniter relative to the fuel injec-

tor. Typically, the aircraft igniter is positioned outside of the primary zone, with its

tip immersed ±1 mm from the combustor liner [1], which barely clears the layer of

cooling airflow through the sidewall (see Fig. 1.4). This placement design is partially
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localized ignition
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iso-line of stoichiometry
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flame fronts at different ignition steps

main directions of flame propagation
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Figure 1.3: Schematic of localized ignition vs. non-localized ignition, reproduced
from [2].

for maintenance accessibility purposes and partially for a longer operating life of the

igniter. For instance, if the temperature of the igniter tips gets above 900 K, the

operating life of the igniter will be reduced rapidly due to overheating of the semicon-

ductor [31]. Therefore, the igniter tip cannot protrude too far into the combustor. In

some cases, a film of cooling air is directed to flow over the igniter tip to prevent the

overheating [1], where the resulting kernel composition becomes even leaner. There-

fore, non-localized ignitions constitute a significant portion of the forced ignitions

in altitude relight. However, this feature also poses a modeling challenge, since the

transport of the kernel from the igniter to the primary fuel zone is affected by the

intervening turbulent flow, which disrupts the otherwise direct relationship between
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the initial kernel status and the ignition outcome. Here, an initial kernel status that

promotes reaction may be quenched later due to strain, whereas one that prohibits

reaction may later ignited due to sustained fuel entrainment. As will be discussed in

Sec. 1.3.2.2, many existing forced ignition models based on the local properties of the

kernel have difficulties in capturing non-localized ignitions.

4,417,439 
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Figure 1.4: Igniter displacement in a typical annular combustor, obtained from [3].

1.2.3 Ignition Probability

Realistic forced ignition problems are chaotic in nature due to multiple factors.

Here, the ignition outcome (success/failure) is extremely sensitive to small variations

in the initial and boundary conditions and it is almost impossible to predict individual

sparking events. The uncertainties associated with the problem are mainly two-fold.

Firstly, the ignition process depends on the details of the spark discharge, such as

the shape of the electric arc and the amount of energy deposited during the discharge

varies between shots, which are chaotic and cannot be accurately predicted. Secondly,
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the background turbulence will strongly affect the ignition outcome, which is also

a chaotic process with uncertainties propagated from the initial status of the flow

field and the domain boundaries. As a result, the ignition probability needs to be

introduced to describe the forced ignition performances.

For aircraft engines, the industrial approaches often apply the flight envelope of

safe altitude relight (Fig. 1.5), which is essentially the iso-line of a certain threshold

success rate of altitude relight, and is obtained by performing large-scale rig tests or

even full-scale engine tests [32]. The success rate of the altitude relight can also be

evaluated as the probability of ignition success produced by a series of forced ignition

trails. For a total number of NSpk spark discharges, this probability is evaluated as

PRelight = 1− (1− PI)NSpk , (1.1)

assuming that each forced ignition processes followed by the spark discharge is statis-

tically independent. In academic studies, the main goal is often to measure/predict

the ignition probability of an individual forced ignition sequence, denoted in this

thesis as PI .

1.2.4 Liquid Fuel Spray

In aircraft engines, fuel is injection in the form of liquid droplets. Essentially,

as the fuel would need to first transfer from the liquid phase into the gas phase

before reaction, the forced ignition of a fuel mist faces the extra rate-limiting factor

of fuel evaporation compared to that of a fully evaporated mixture. The local fuel

evaporation rate, however, is dependent on multiple factors including vapor fraction,

fuel volatility, and droplet size distribution. The size distribution, resulting from the

breakup of a spray jet, is dependent on the atomization techniques, turbulence and the

physical properties of the liquid fuel such as viscosity and surface tension. Overall,
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Figure 1.5: Flight envelope of safe altitude relight of a conventional annular combus-
tor, obtained from [1].

the liquid fuel spray introduces an extra set of physical processes in the already

complex forced ignition problem. As a result, the dominating physical mechanism

and the forced ignition behavior can be vastly different from gas phase combustion.

For instance, in a recent research campaign that focuses on developing AJFs [33], it is

shown that the dominating factors that affect the ignition performances of the liquid

spray combustion are often the density, surface tension, and viscosity of the fuel [34],

whereas those in gas-phase combustion are found to be the chemical properties of the

fuel [35]. Experimental data also show that ignition behavior variation with operating

conditions can be starkly different between gaseous and multiphase combustion [36].

This brief introduction is provided only to note the differences between liquid and
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gaseous fuel based forced ignition. The focus of this thesis is on the latter, for which

existing literature is reviewed first.

1.3 Literature Review

Due to the breadth of this topic, the review here is mainly focused on turbu-

lent non-premixed forced ignition, aircraft spark igniter, gas-phase combustion, and

numerical studies. In particular, the numerical modeling approaches are discussed.

A comprehensive review of the turbulent non-premixed forced ignition problem is

provided by in [2], which forms the basis for this analysis.

1.3.1 Experimental Studies

Due to the relevance for internal combustion (IC) engines, premixed forced ignition

has been extensively studied [37–40]. However, such studies are often conducted in a

quiescent environment [41, 42]. The MIE-type theory (Sec. 1.2.2.1) has been success-

fully applied to explain the governing mechanism of the forced ignition process. Apart

from MIE models based on a spherical kernel governed by diffusive processes, there

are other empirical models that incorporate the entrainment and vortex dynamics of

the kernel [43, 44], which have been validated against experimental observations [45].

Compared to premixed forced ignition, non-premixed ignition has been less ex-

tensively studied, especially for turbulent combustion. Ahmed and Mastorakos [46]

studied the spark ignition sequence of a lifted turbulent non-premixed jet flame, fo-

cusing on the growth rate of the initial flame kernel (flow pocket of high concentration

of reaction product) and the follow-up edge flame propagation. To understand the

ignition probability of turbulent non-premixed forced ignition, the pioneering stud-

ies of Birch et al. [47] and Smith et al. [48] measured the ignition probability of a

turbulent non-premixed jet flame at different sparking locations, and introduced the

flammability factor as an estimation of the probability of establishing a stable flame
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at a certain sparking location. The flammability factor is calculated as the probability

of having a mixture fraction that is in between the lean and rich flammability limits,

i.e.,

F =

Zrich∫
Zlean

f(Z) dZ. (1.2)

Equation 1.2 is formulated at a local point within the physical domain, with F being

the flammability factor and f being the probability density function (PDF) of the

mixture fraction Z.

More recently, Ahmed and Mastorakos [49] carried out a similar experiment to

measure the ignition probability and evaluated its relationship between the flamma-

bility factor. They found that the ignition outcome is not necessarily monotonic to

the local equivalence ratio being inside/outside the flammability limits. The rea-

son behind this phenomenon is mainly due to turbulent quenching and non-localized

ignition as introduced in Sec. 1.2.2.2.

While those previous experiments have addressed the issue of non-localized ig-

nition in turbulent non-premixed forced ignition, a systematic experimental study

that provides control over the mixture fraction or the duration between spark kernel

creation and the interaction of the spark kernel with a flammable mixture has not be-

come available until the recent thesis study by Sforzo [5], where a facility is designed

for this particular purpose. In this configuration, the spark discharge is initialized

within a non-reactive flow before the hot kernel later mixes with flammable fluid,

making it possible to control the kernel transport process in the non-localized igni-

tion. The facility not only closely replicates the ignition process of aircraft engines

altitude relight, but also provide abundant measurements of the ignition probabilities

of multiple jet fuels, as well as other important properties such as the area growth of

the flame kernel [6, 50]. While the main experiment was performed for gas-phase com-

bustion, companion studies using liquid fuel spray have also become available [36, 51].
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In this thesis, this facility is chosen as the main target configuration.

1.3.2 Numerical Studies

The focus of this thesis is in the use of large eddy simulation (LES) for modeling

ignition. It is now well-established that LES is better suited for modeling turbulent

combustion than Reynolds-averaged Navier–Stokes (RANS) simulations [52, 53]. The

main reason is the ability to capture unsteady effects of turbulence on the combustion

process more accurately. The discussion below only summarizes LES-based modeling

of ignition.

Similar to the experimental studies, simulations of the forced ignition process in

premixed combustion are also largely focused on IC engines, where multiple premixed

combustion models are already available to track the flame propagation, including

the time scale model [54], the flame surface density (FSD) model [55], and the level

set/G-equation combustion model [56]. The remaining problem is to model the initial

transition from a kernel (high-energy fluid pocket) into a spatially distributed flame

front. In many cases, this transition is triggered until the small flame around the

kernel can expand and reach a certain size [56], which could be the critical radius

(introduced in Sec. 1.2.2.1). The growth of the kernel is further tracked by Lagrangian

particles transported by an effective kernel growth velocity calculated as a function

of properties of the spark discharge and the premixed combustion (e.g., spark energy

and turbulent flame speed) [57], where the Lagrangian particles are used to overcome

the lack of grid resolution relative to the initial kernel size. Once the transition is

triggered, the flame propagation model is enabled by initializing the flow field with

imposed flame surfaces.

Based on the research objective and methodology, previous numerical studies of

turbulent non-premixed forced ignition mainly fall into two categories. Category 1 is

to investigate flame extinction and stabilization process after the kernel has successful
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transit into a propagating flame, i.e., phase 3 and phase 4 of a realistic forced ignition

process (introduced in Sec. 1.2.2.1), and is usually performed by analyzing individual

time sequence of the flame evolution obtained from the simulated ignition events [27,

58–63]. Category 2, conversely, is to investigate the overall statistical behavior of

the ignition, i.e., the ignition probability, and the analysis is usually based on the

ensemble results from multiple simulated ignition events [4, 64, 65]. Often, vastly

different modeling methods are applied in the two categories of studies, as summarized

in the two following subsections.

1.3.2.1 Methods for flame propagation and stabilization study

For Category 1 studies, high fidelity reacting flow simulations are mostly used,

since the computational cost is affordable to perform a single simulation. Moreover,

since the study focus is on the later stage flame propagation instead of the initial

evolution of the kernel, there is no extra modeling requirement to include the under-

lying physics of forced ignition. In many cases, existing turbulent combustion models

are directly applied to the forced ignition simulations with imposed initial condition

method (i.e., flow field patching). For instance, Triantafyllidis et al. [58] used a con-

ditional moment closure (CMC) approach to study the ignition of a bluff-body flame,

with the kernel initialized as a pocket of the reaction product of the 1-D flamelet.

Subramanian et al. [59] and Pillai [60] have applied energy deposition (ED) to rep-

resent the kernel. The initial evolution of the kernel is tracked by monitoring the

local gas-phase temperature, and when the local post-ED temperature drops to the

level of chemical equilibrium, and the reaction is then initiated by patching the flow

field with chemical equilibrium conditions. The advantage of the imposed initial con-

dition approach is its simplicity. However, the disadvantage is the strong modeling

assumption of an already-existed flame front, which holds for the studies of Category

1, but not for studies of Category 2 as will be soon discussed, and, especially, not for
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non-localized ignitions. Apart from applying field initialization to existing turbulent

combustion models, directly solving for the finite-rate chemistry and applying ED to

represent the kernel is another commonly applied modeling approach. The advan-

tage of finite rate chemistry is the inclusion of fundamental reaction kinetics without

relying on the modeling assumptions of any canonical flows (e.g., the flamelet-based

model), and is, therefore, applicable to general combustion problems (e.g., auto igni-

tion, forced ignition, and flame propagation) regardless of the governing physics. The

disadvantage, however, is the potential high computational cost of finite chemistry

when detailed modeling of chemical reactions is required. As a result, previous forced

ignition simulations with finite rate chemistry are mostly limited to simple fuels with

global reactions [61, 62, 66], where the ignition process can be adequately captured

by the simplified chemical mechanism or by using detailed chemistry mechanisms but

limited to simple configurations [63]. For forced ignitions in altitude relight, however,

due to the complicated heat release process of the realistic jet fuels and the scale of

the flow domain, finite rate chemistry has difficulties in balancing between modeling

fidelity and computational cost.

1.3.2.2 Methods for ignition probability study

For Category 2 studies, most numerical predictions of ignition probability are

based on cold flow simulations due to the prohibiting computational cost of simulating

a large number of flow realizations. There are mainly two types of such cold-flow-

based ignition probability models. One is by using the local flow properties, here

referred to as the “local flow property models”, and the other is based on flame

propagation tracking, here referred to as the “flame particle models”. The local flow

property models assume the forced ignition success or failure depends entirely on the

cold flow properties at the spark discharge location. For instance, Lacaze et al. [67]

estimated ignition probability based on the local flow statistics provided by a cold
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flow LES simulation, where the ignition outcome is modelled as a function of local

flow statistics taking into the account of flammability and turbulent stretching. A

similar method has been applied to study the ignition of two-phase flow by Eyssartier

et al. [68]. The flame particle models [69], however, define the forced ignition to be

successful until a certain portion of the domain is light up by the flame propagation

and track the propagation using mass-less Lagrangian particles referred to as the

“flame particles”. This method is explained in more detail below as it is widely used

in previous studies [4, 64, 69–72].

A schematic of the general flame particle models is provided in Fig. 1.6. In prior

to the main simulation, a cold flow LES is performed to provide information on the

turbulent velocity field. During the main simulations, a mesh that is much coarser

than the cold-flow LES simulation is applied, where the flame particles are released

from the cells that present the initial position and shape of the kernel. The flame

particles then move according to a stochastic model using the statistics of the cold

flow velocity as inputs. As the particles move and traverse to new cells, they can

ignite a cell that was initially cold and release a new particle (to mimic the flame

propagation). A particle can also be quenched and taken out of the simulation if

the cold flow statistics of the new cell prohibit combustion, measured by a quench

criterion (for instance, the local Karlovitz number being above a critical value). The

simulation is repeated multiple times to obtain the ignition probability. The final

ignition outcome determined is based on the ratio of the total number of cells that is

ignited by the particles to the total number of cells in the domain.

As the flame particle models apply weaker modeling assumptions than the local

flow property models while maintaining a relatively low computational cost, they

have been extensively used to estimate ignition probability [4, 64, 69] with multiple

variations now available [70–72]. However, ensuring computational feasibility requires

a suite of assumptions, especially about the interaction of a hot kernel with the sur-
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kernel initialization

time time

Figure 1.6: Schematic of the flame particle models, reproduced from [4]. The blue
dots indicates grid cells, green dots indicates flame particles that are ac-
tive, and red dots indicates flame particles that are quenched.

rounding flow field, which prevents such models from being directly compared to

reacting-flow experiments. Moreover, the fluid particle models often do not include

the notion of non-localized ignition. Here, the models tend to predict a failed igni-

tion as the flame particles will be taken out at the moment of their release by the

quench criterion (e.g., local Karlovitz number goes to infinity when the flame speed

is measured outside flammability). While such difficulties can be partially overcome

by providing the flame particles with a thermal memory [55], this introduces addi-

tional modeling components along with the corresponding modeling assumptions and

complexities. Another common issue with flame particle models is the lack of in-

clusion of the uncertainties associated with the spark discharge. By releasing flame

particles from the initial kernel location to track the reaction propagation, the model

essentially assumes a propagating flame front has been formed immediately following

the spark discharge, and the only uncertainty that can lead to a failed ignition is for

the flame front to be later quenched during its propagation. This is not necessarily

true, as a “weaker” spark discharge is more likely to generate an insufficient amount of

propagating flame area, if any (non-localized ignition), during its early post-discharge
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evolution and therefore more likely to lead to a failed ignition. Often, it is unclear

how previous studies of flame particle models address this issue. An exception is the

thesis study of Esclapez [70], which applies a continuous field variable to describe

the initial size and the probability of the presence of the kernel (instead of directly

using the flame particles). Nonetheless, the evolution of such field variable is based

on macroscopic properties of the cold flow turbulence (i.e, turbulent dissipation rate)

and is less likely to accurately capture the complex fuel entrainment in a non-localized

ignition.

Fully reacting flow simulations are relatively sparse, with the study by Esclapez

et al. [65] being the exception. While the estimation is based on a few numbers

of simulation realizations and lacks a rigorous comparison with experimental data

in terms of presenting the statistical uncertainties, this study has shown promising

accuracy for capturing the ignition probability. This demonstrates the usefulness of

using high-fidelity hot-flow simulations to provide a numerical estimation of ignition

probability. However, there are still many modeling challenges to overcome before

such numerical capabilities are ready to use, as will be discussed in Chapter. II.

Lastly, apart from cold-flow and hot-flow LES studies, there are other numerical

efforts that predict forced ignition based on reduced-dimension modeling [73] and

semi-empirical relations [74] that are also worth noting.

1.4 Scope of the Thesis

Given the limitations of existing numerical capabilities in predicting turbulent

non-premixed forced ignition in altitude relight, the goal of this thesis is to develop

a computational framework that enables such predictions. In specific, the thesis will

try to achieve the following goals.

• Focusing on gas-phase combustion, develop a computational framework for
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predicting the turbulent non-premixed forced ignitions in altitude relight,

which enables

– high fidelity and computationally efficient LES simulations of the forced

ignition problems;

– estimation of ignition probability based on LES simulation results.

• Provide rigorous validation of the developed computational framework for

predicting turbulent non-premixed forced ignition.

• Demonstrate the use of the developed framework for identifying important

physics in a target forced ignition problem.

The thesis is organized as follows:

Chapter II: The developed computational framework for predicting turbulent

non-premixed forced ignition in altitude relight is introduced. The modeling theory

of the combustion model is first introduced, along with its incorporation into the LES

simulation platform and other technical details. The modeling procedure for ignition

probability estimation is then discussed.

Chapter III: This section provides a validation of the developed computational

framework. The target configuration is introduced first, and the comparison studies

between the numerical simulations and experiments are then carried out.

Chapter IV: Two supplemental studies are carried out. The first is a demon-

stration study that uses the developed computational framework to understand key

mechanisms in the target forced ignition problems. The second study is to evaluate

the performance of existing numerical capabilities in providing a forward prediction of

the sunken fire igniter discharge by simulating the gas expansion process immediately

following the high-energy spark discharge.

Chapter V: A summary of this thesis is provided along with suggestions for

future work.
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CHAPTER II

Computational Framework

This chapter describes the computational model developed to predict forced igni-

tion. This framework provides two main capabilities. One is the reacting flow LES

simulation of the turbulent non-premixed forced ignition problem. This is a forward

modeling that provides a deterministic ignition outcome given certain simulation in-

puts (e.g., spark deposit energy and initial background turbulence). The other is

the comprehensive method of ignition probability predictions. This is a Monte-Carlo-

based modeling procedure that propagates the uncertainties associated with the forced

ignition problem from the hot-flow simulation inputs into the simulation results, and

then reconstructs the ignition probability from the ensemble of results.

2.1 Forced Ignition LES Simulation Platform

The developed LES simulation platform consists of three main components, (a) a

tabulated detailed chemistry model that includes the fundamental physics of forced

ignition, (b) an LES solver that incorporates the turbulent combustion model and

enables the simulation of flame development from a kernel; (c) coupling between the

kernel and the turbulent flow.
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2.1.1 Tabulated Detailed Chemistry Model

One of the modeling challenges for the turbulent non-premixed forced ignition

problem here is balancing between fidelity and computational cost. One the one

hand, the inclusion of detailed reaction is required for the application of realistic jet

fuels. One the other hand, the computational cost must maintain a similar level as

cold flow LES simulations to be applicable for ignition probability estimation. In this

regard, the tabulated detailed chemistry model is the ideal modeling option.

A schematic of the ignition process along with the corresponding modeling strategy

of the tabulated detailed chemistry model is summarized in Fig. 2.1. The turbulent

non-premixed forced ignition in altitude relight is modeled as a process that goes

through two main stages, each one corresponding to a different physical process. The

model describes the initial kernel mixing and ignition as a homogeneous reaction

process where chemical reactions alone dominate the thermodynamic state (stage

1), while the flame development and stabilization as a diffusion-controlled process

where flow and chemical timescales interact, denoted (stage 2). As can be seen, this

two-stage definition is a physics-based simplification of the localized/non-localized

ignition steps summarized in Sec. 1.2.2.2. Specifically, step 0-1 is governed by a quasi-

homogeneous reaction (stage 1), step 3-4 are governed by diffusion-reaction balance

(stage 2), whereas step 2 is in the intermediate reaction mode between stage 1 and 2.

The model developed here uses a tabulated detailed chemistry approach, constructed

by blending solutions from different canonical combustion configurations that best

represent each one of the two stages. Two types of canonical solutions are applied to

construct the look-up table: (a) a constant pressure homogeneous reaction (HR) for

stage 1; (b) a flamelet progress variable approach (FPVA) for stage 2. An additional

type (c) is introduced as the blend between (a) and (b). As a result, the model

should in theory be capable of capturing the entire physical process of the turbulent

non-premixed forced ignition problem, along with the effects of non-localized ignition
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and strain quenching.

Turbulent inflow of  
fuel/air mixture 

Spark discharge

1

Products 2

Sustains

Dissipates

1

2

Kernel development stage - homogeneous reaction (HR)

Flame propagation stage - flamelet progress-variable approach (FPVA)

Figure 2.1: Schematic of forced ignition in an aircraft engine and the proposed model
decomposition.

Since the total enthalpy of a representative kernel monotonically decreases due

to mixing and diffusion, the total enthalpy H can be applied as a good marker to

track the ignition process. As the flow evolves, the switch from HR to FPVA must

occur when the total enthalpy H drops below a certain threshold (explained in the

following sections). Therefore, the chemistry is tabulated as a function of H. To

track the fuel–air mixing and the advancement of the reaction in the HR and FPVA

model, the chemistry is also tabulated with respect to mixture fraction Z and progress

variable C. Here, C is defined as the linear combination of the mass fraction of major

species of the combustion product (i.e., H2O, CO2, CO, and H2) and Z applies the

definition of Bilger [75].

The two tabulation strategies (HR and FPVA) cover different phase space regions

of the look-up table. In specific, HR is used for the high enthalpy space and FPVA for
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the low enthalpy space. Further, an overlap region is tabulated as a weighted average

of the two individual maps. When the tabulation is implemented in simulations, a

kernel is initialized as a pocket hot fluid, which falls into the HR tabulation region

in the tabulation phase space. If the local flow properties described by {Z,H} are

favorable to ignition, the high chemical source from the HR tabulation allows C to

increase and initiate the reaction. As the flow field evolves, the kernel entrains the cold

outerflow and eventually dissipates out, and the corresponding phase space positions

(i.e., composition space positions) shift toward lower enthalpy regions and eventually

fall into the FPVA tabulation region. Hence, flame propagation or dissipation is

automatically captured. The HR and FPVA tabulation strategies are explained in

detail in the following two subsections.

2.1.1.1 HR Tabulation

The HR tabulation is inspired by the study of Pera et al. [76], which uses a tabu-

lation model built from HR for HCCI ignition. As has been discussed in Sec. 1.2.2.1,

the ignition process there is driven by compression-based energy rise that brings the

mixture temperature to be above the autoignition temperature. Inspired by this idea,

here, the modeling strategy treats the forced ignition process locally as a homoge-

neous reaction caused by energy increase due to the spark source. The fundamental

idea here is to assume the local reaction time scale in a forced ignition event is much

smaller than the transport time scales, so that the ignition core can be treated as

reaction-dominant. Stratification effects can also be included in the tabulation by

combining different HR solutions for a range of equivalence ratios and unburnt tem-

peratures. Specifically, each HR solution provides information of reaction process

versus time which can be mapped on the C space at a constant {Z,H}; a series of

HR solutions at different Z values provides information of stratification effects on

reaction, and HR solutions with different unburnt temperatures allow a mapping in
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the total enthalpy space H. The entire set of HR solutions can then be tabulated as

a function of {C,Z,H}.

The HR calculations are performed using the open-source solver CANTERA [77].

The time history of species was stored for each HR calculation. To keep a smooth

ignition trajectory in time and progress variable phase space, the HR solutions are

stored whenever one of the following three criteria is met: (a) the temperature in-

crement exceeds a certain value last output (in this thesis, 5 K); (b) the progress

variable percentage increment exceeds a certain percentage since last output (in this

thesis, 5%); (c) the time increment exceeds certain value since last output (in this

thesis, 1 s). The HR calculation is terminated after it can be safely considered that

the time exceeds the largest possible flow time scale (in this thesis, 7.5 s). A total

number of about 3500 HR calculations were performed for about 100 levels of initial

temperatures in the range of about 1000 K to 3000 K, and about 40 levels of equiv-

alence ratios spanning within the flammability limits clustered near stoichiometric

condition. The exact values of the enforced boundaries of the HR operating condi-

tions are determined by the following criteria: (a) outside the lower temperature limit

(i.e, autoignition temperature Ta), or the fuel-lean/rich limit, ignition delay will be

longer than the largest flow time scales; (b) outside the upper-temperature limit, the

burnt temperature will breach the upper bound of the thermodynamic model (e.g.,

the upper limit of the NASA polynomial fitting of enthalpy-temperature relation).

While the HR solutions contain all the necessary information on the ignition his-

tory profiles, the tabulation of these values for use in the CFD solution can lead to

some numerical issues. In the CFD approach, a transport equation is solved for the

three variables used to map the solution space (H, Z, and C). Of these, the progress

variable equation contains a chemical source term, which is obtained from the table.
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The exact integrated progress variable source term is defined as

SC =
1

∆tSim

t=t0+∆tSim∫
t=t0

ω̇C dt, (2.1)

where ω̇C is the instantaneous progress variable source term, t0 is the start time of

the current CFD time iteration, and ∆tSim is the CFD simulation timestep. In con-

ventional tabulations, the integrated source term (denoted as SC,t) is often obtained

by assuming a constant progress variable source term over a timestep [78], as:

SC,t = ω̇C(t = t0 + ∆tSim/2) (2.2)

where ω̇C is the progress variable source term that is interpolated from the discrete

tabulation points on the table. This is based on the mid-point rule for integration and

is accurate in conventional simulations to capture flame propagation, as long as the

time-step is not large. However, for the purpose here, this approach may be erroneous.

In the above formulation, two levels of approximation are made: (a) the reaction

source term is assumed constant over the timestep and (b) the reaction source term

is interpolated to C(t = ∆tSim/2) since it is only tabulated at discrete values of C.

Since the ignition delay is of primary importance here, it is crucial to correctly capture

the early stages of the HR calculation (say between C = 0 and C = 0.01). There, the

chemical source term is low enough such that approximating the source term constant

over the simulation timestep (dictated by the flow) is reasonable. However, the source

term interpolation can introduce an error that is large compared to the instantaneous

value of the progress variable source. Moreover, because the progress variable source

term follows a convex profile with respect to the progress variable during the onset

of ignition, and the resulting interpolation error always overestimates the integrated

source term SC . This is illustrated in Fig. 2.2, where the simulation time step ∆tSim
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is small compared to the interval between two HR tabulation points (black dots), and

the overestimation of interpolated reaction source (red dash arrow) is contributed

from the higher reaction source at the next tabulation point (yellow dash arrow).

This issue can be resolved by sufficiently refining the table, but this could become

quickly intractable in terms of memory requirements.

t

C

0

Ci

Ci+1
 

Figure 2.2: Demonstration of interpolation error in conventional tabulation strategy
during ignition. The time history profile (green dash line) and the tabu-
lation C-axis (black dots) are created artificially for demonstration pur-
poses. The integrated reaction source SC,t is indicated by the slope of the
red slid line whereas the exact reaction source is indicated by the slope
of the green solid line. t0 is set to 0.

A different tabulation/table look-up strategy is developed to resolve this issue.

Here, the progress variable source term is no longer directly tabulated but instead

reconstructed on-the-fly. The time information of the HR solution is tabulated, which

serves as a target ignition time history profile, and the reaction source is reconstructed

based on this tabulated time information. The purpose here is to avoid the interpo-

lation error mentioned above, and, obtain from the tabulation, the progress variable
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source term integrated over the simulation timestep. This can be achieved by tak-

ing the advantage that, under the HR modeling assumption, the linearization of the

chemical source in the CFD partial differential equation (PDE) is equivalent to the

chemical integration of the HR ordinary differential equations (ODE). In specific, the

reconstructed reaction source (denoted as SC,r) is written as

SC,r(C(t0),∆tSim) =
Ctarget − C(t0)

∆tSim
, (2.3)

where SC,r depends on the initial progress variable C(t0), the current simulation step

size ∆tSim and Ctarget, which is the theoretical final value of progress variable. Here,

this theoretical value should be on the time history profile of the progress variable

along the HR profile (denoted as CHR). As C(t0) and ∆tSim are already available at

the current time step, the goal is to find Ctarget = CHR(t0 + ∆tSim).

The following numerical procedure is applied to obtain Ctarget (illustrated in

Fig. 2.3): the time history of the original HR solution is referred to as tHR = tHR(C) ,

or conversely CHR = CHR(t). All tabulated properties are labeled by subscript “Tab”,

and their value at the i-th point of C-axis of the table is labeled by subscript i. At

the tabulation stage, tHR(C) (green line) is first mapped onto the table C-axis, and is

discretized in the table as tHR,Tab(C) (black line marked by dots). The time interval

between two consecutive points of the tabulated HR time history is then stored at

the former point, as ∆tHR,Tab(Ci) = tHR,Tab(Ci+1)− tHR,Tab(Ci); at the table look-up

stage, Ctarget is determined inversely from the equation

∆tSim =

Ctarget∑
Ci=C(t0)

∆tHR,Tab(Ci). (2.4)

Note that Ctarget is the upper limit of the above summation, and the equality can

be tested by incrementally adding the term ∆tHR,Tab(Ci) into the summation until

the desired value of Ctarget is found. Therefore, the numerical implementation of the
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Figure 2.3: Tabulation and look-up strategy of SC,r. The time history profile and the
tabulation C-axis are created artificially for demonstration purposes.

above procedure is about the same time complexity as finding the reference points

adjacent to C(t0 + ∆tSim/2) and interpolating the looked-up value (i.e., conventional

source term look-up strategy of Eq. 2.2).

The performance of this tabulation/table look-up strategy of reaction source is

tested using homogeneous reaction simulation. Three different types of simulations

are carried out: (a) ignition profile is obtained using the tabulated source term and

considering it constant over each timestep, (b) integration is performed using the

aforementioned strategy that uses the modified tabulation approach, and (c) integra-

tion is performed without tabulation but instead by directly integrating ODE obtained

from the chemical mechanism. Figure 2.4 shows the temperature profile as a function

of time. A consistent trend is observed: the direct tabulation of reaction source tends

to under-predict ignition delay compared to detailed chemistry calculations. This dis-

crepancy can be mitigated by refining the tabulation grid, but even with 500 points

in the progress variable space, the results are still not accurate. On the other hand,

the tabulation/table look-up strategy reproduces the detailed chemistry calculation
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with only 75 points, which is comparable to conventional requirements for tabulated

chemistry [79]. This validates the developed strategy of the direct tabulation of time

information instead of the reaction rate for ignition simulations.

t (ms)

T
 (

K
)

Figure 2.4: Ignition time history obtained from time integration of directly tabulated
reaction source with different resolutions of C-axis (black), the new tab-
ulation/table lookup strategy (green), and detailed chemistry calculation
of homogeneous reaction (dashed red). The operating conditions are set
to 1 atm and stoichiometry.

2.1.1.2 FPVA tabulation

The FPVA tabulation [80] is the flamelet-based method applied here for the de-

scription of flame front propagation. The method assumes what the structure of

the flame is, and uses a tabulation approach to impose it in the CFD computation.

Specifically, conventional FPVA tabulation solves a family of steady diffusion flamelets

along the “Z-shaped curve”(or S-shaped when the maximum flamelet temperature is

plotted against the inversion of scalar dissipation rate) and then maps the resulting

solutions onto a lookup table of {Z,C} [78]. Here, the FPVA tabulation requires an

extra mapping variable (total enthalpy H) to account for the enthalpy rise due to
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spark discharge. The modeling strategy of enthalpy variation here is similar to that

of Ihme [81] and Mueller [82], which combines flamelets solved at different enthalpy

levels. Counterflow diffusion flamelets are solved here with the boundary temperature

of the oxidizer side ranging from room temperature (300 K) to higher levels (exact

range is discussed later) with a fixed incremental step of 50 K. The exact method

of how the enthalpy rise should be introduced into the diffusion flamelet (e.g., from

the oxidizer boundary, from the fuel boundary, or from an external source within the

domain) remains an open question, while previous studies of non-adiabatic premixed

flamelets have concluded that the flamelet solution is insensitive to this factor [83, 84].

In this thesis, the oxidizer inlet temperature is varied, since in the target problem the

igniter tip is immersed in an air stream (see Section 3.1.1). The flamelet solutions

are then mapped onto the phase space of H − Z − C.

The remaining question is to determine to what extent can the temperature bound-

ary be raised until the diffusion flamelet solutions can no longer be considered suitable

for describing the turbulent flame structure here. Again, diffusion flamelets at ele-

vated enthalpy not commonly encountered in FPVA tabulation and there is little

existing tabulation strategy that can be referred to. However, a previous study of

hydrogen-air counterflow diffusion flamelet [85] found that boundary temperature rise

leads to partial extinction, which is a concept adopted here from studies of counterflow

premixed flamelet to describe the extinction behavior of the counterflow flamelet [86–

88]. During partial extinction, the flamelet shows a smooth response of temperature

drop to strain rate increments. A demonstration is provided here for methane/air

reaction in Fig. 2.5. It can be seen the temperature that leads to partial extinction

is found to be about 2250 K for the shown test case. Above this temperature, the

turning point on the Z-shaped curve disappears since the flame is more resistant to

strain at higher inflow temperatures. This temperature, here, referred to as the par-

tial extinction temperature Tp, is used as the upper limit of the diffusion flamelet
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calculations. The reaction at a higher enthalpy level will therefore be modeled by HR

calculations. The modeling assumptions of this treatment are provided as follows: (a)

the boundary temperature that causes partial extinction in the diffusion flamelets is

an indication of strong reaction, which supports the approximation of HR. (b) Diffu-

sion flamelet solutions with partial extinction need to be obtained under a very large

strain rate (as = O(106) 1/s) to get into the extinction region (low progress variable),

which does not characterize the flow dynamics of the altitude relight problem. Ref-

erence [85] suggests flamelets under such operating conditions should be applied in

combustion under very high strain, e.g., supersonic combustion. In this thesis, the

phase space region of a high H-value and a low C-value should represent a kernel

developing towards ignition, instead of a propagating flame front being quenched.

In Section 3.3.1.1, a sensitivity study of the FPVA upper-temperature boundary is

performed, where statistical results show that the ignition outcome is insensitive to

this boundary.

Last, recall that in the HR tabulation, a time property ∆tHR,Tab has been intro-

duced for source term reconstruction. Here, to make the tabulation format consistent,

an similar property is introduced into the FPVA tabulation. Firstly, the progress

variable source ω̇C of the diffusion flamelet solutions can be directly mapped onto

H −Z−C space, denoted as ω̇C,Tab. Then, along each iso-line of {H,Z}, ∆tFPV A,Tab

can be tabulated using the formula

∆tFPV A,Tab(Ci) =
Ci+1 − Ci
ω̇C,Tab(Ci)

. (2.5)

This time property can later be applied to the same source term look-up procedure

(Eq. 2.4-2.3) and returns the correct source term value of the diffusion flamelets.
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partial extinction
Z-shaped curve

 

Figure 2.5: Maximum temperature vs. sthiochiometric scalar dissipation rate of
methane/air counterflow diffusion flamelets obtained at different air
stream temperatures. Fuel stream temperature is fixed at 600 K. Op-
erating pressure is 1 atm.

2.1.1.3 Unified HR/FPVA Tabulation

For a convenient implementation in the CFD simulations, the two tabulation

strategies (HR/FPVA) are unified into a single look-up table. For that, the two

tabulations are built to carry the same thermochemical properties. As have been

early introduced, the HR and FPVA tabulation are used to construct the look-up

table for the high and low enthalpy phase space, respectively. Further, a blended

tabulation is needed in the middle enthalpy region, to model the transition region

between HR and FPVA. Here, the properties in the HR tabulation and the FVPA

tabulation are denoted by the subscript “HR” and “FPVA”, respectively, and the

tabulated properties in the blended region are denoted by the subscript “Blended”.
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Note that the enthalpy bounds that separate the HR, Blended, and FPVA tabulations

are not explicitly specified, but instead transformed from the temperature bounds

applied to populate the HR and the diffusion flamelet solutions. Those temperature

bounds, as defined in the last two sections, lead to an overlap of enthalpy between

the lower bound of HR tabulation and the upper bound of FPVA tabulation (i.e.,

HHR,min < HFPV A,max, as shown by the dash lines in Fig. 2.6). In the unified table,

the tabulated thermochemical properties in the blended region are calculated as a

weighted average of the HR and FPVA tabulation, as

φBlended =
H −HHR,min

HFPV A,max −HHR,min

φHR +
HFPV A,max −H

HFPV A,max −HHR,min

φFPV A, (2.6)

where φ denotes a tabulated thermochemical property. The weighing factor in the

above averaging simply follows a linear variation in between the two bounds of the

blended region, so that φBlended degenerates to φHR/φFPV A at upper/lower bound.

HFPVA,max

HHR,min

HR

FPVA

Blended

Figure 2.6: Unified FPVA/HR tabulation of ∆tTab (left) and temperature (right) plot-
ted in {H,C}-space, plotted at iso-plane of stoichiometric mixture frac-
tion.

An example of the unified table is shown in Fig 2.6 and demonstrates the role of

∆tTab, which is inversely proportional to the progress variable source. As the total
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enthalpy H decreases, this ignition time increases as expected. In the FPVA region,

the ignition time is very long (> 102 s) when C is close to zero, which indicates

that a non-burning flamelet cannot be ignited without an external source of enthalpy.

Note that the transition between the HR and FPVA regions is smooth, especially for

thermophysical properties such as the temperature plotted here, which is important

for the stability of the CFD simulation.

2.1.2 LES Simulation & CFD Solver

The turbulent flow is described using the large eddy simulation (LES) framework.

In the LES approach, the governing equations of the fluid flow (i.e., mass, momentum,

energy, and scalar transport) are filtered using a low-pass filter to obtain the LES

transport equations, formulated as below.

Continuity equation:

∂ρ

∂t
+
∂ρũj
∂xj

= 0. (2.7)

Momentum equation:

∂ρũi
∂t

+
∂ρũjũi
∂xj

= − ∂p̃

∂xi
+
∂σ̃ij
∂xj

+
∂ρ(ũiũj − ũiuj)

∂xj
. (2.8)

Scalar transport equation:

∂ρΨ̃

∂t
+
ρũjΨ̃

∂xj
=

∂

∂xj

(
D̃Ψ

∂Ψ̃

∂xj

)
+
∂ρ(Ψ̃ũj − Ψ̃uj)

∂xj
+ ρ˜̇ωΨ. (2.9)

In the above equations, ρ denotes the fluid density, ũi is the ith component of the

velocity vector, p̃ is the hydrodynamic pressure, σ̃ is the viscous stress tensor that’s

further calculated as 
σ̃ij = 2µS̃ij − 2

3
µ̃δijS̃kk;

S̃ij = 1
2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
,

(2.10)
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with µ̃ being dynamic viscosity and δ being the Kronecker delta, Ψ denotes a trans-

ported scalar (i.e., H, Z, and C) with D̃Ψ being its the molecular diffusivity. The

non-linear closure terms for sub-filter transport are modeled using the gradient diffu-

sion hypothesis. A dynamic subgrid-scale model [89] is used to obtain the turbulent

viscosity. The turbulent diffusivity is obtained using a constant turbulent Schmidt

number Sct = 0.72. A constant turbulent Prandtl number Prt = 0.7 is used for the

energy equation. Besides, the filtered mixture fraction variance Z̃v is evaluated in the

LES simulation, which is obtained by assuming a local equilibrium among production

and dissipation rate [90], as

Z̃v = Cv∆
2|∇Z̃|2, (2.11)

where ∆ is the filter width (i.e., here, the grid size), and Cv is a constant that can be

either specified or obtained dynamically. Here, the value Cv = 0.1 is applied [91].

The thermochemical properties are obtained based on the tabulation procedure

described in Sec. 2.1.1. For molar diffusivity, while the unity Lewis number assump-

tion is widely applied in the turbulent combustion modeling community, differential

diffusion effects are not always negligible. In this thesis, differential diffusion effects

are neglected in the LES equations for C and H, but not for Z. Such a blended

treatment is justified for the altitude relight problem as followings. For C, the con-

centration of highly diffusive species (e.g., H2) are generally low. For H, the strong

energy diffusion presents only at locations of low concentrations of the jet fuel species

(igniter are often displaced at fuel-lean locations) that feature non-diffusive large

molecules. For Z, however, the unity Lewis number assumption is less reasonable,

mainly due to the presence of the non-diffusive jet fuels that are actively involved in

the fuel-mixing. The modeling of differential diffusion effects in tabulated chemistry

remains to be an open topic [92, 93]. Here, as an alternative compromise to partially

capture the high Lewis number effect of the realistic jet fuels, the molar diffusivity of

Z is modeled by that of the lumped fuel species [94]. Similar methods have been ap-
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plied in the soot modeling community to model the diffusion of PAH species [95, 96],

which are also non-diffusive large molecules.

A presumed-PDF approach is used for modeling turbulence-chemistry-interactions.

The laminar table is convolved with the joint-PDF of the input variables (i.e., Z, C

and H) that describe the subfilter variations [52, 80], as

φ̃ =

∫∫∫
f(H,Z,C)φ(H,Z,C) dH dZ dC, (2.12)

Following prior work [97], the subfilter variations of each variable are assumed inde-

pendent of each other and the joint-PDF of the input variables becomes the product

of three marginal PDF. The marginal PDF of mixture fraction is described by a

β-function, characterized by the filtered mixture fraction mean and variance. The

marginal PDFs of C and H are assumed to be described by δ-functions, expressed

in terms of the filtered variables. The resulting table contains four input variables

(filtered mixture fraction mean and variance, filtered progress variable, and filtered

enthalpy), as

φ̃(Z̃, Z̃v, C̃, H̃) =

∫∫∫
β(Z; Z̃, Z̃v)δ(C − C̃)δ(H − H̃) dZ dC dH, (2.13)

The LES models are implemented in the OpenFOAM open-source code base,

which has been specifically modified to minimize kinetic energy dissipation [98].

Supported by the scale separation between the shock and kernel penetration speed

(Sec. 4.2.4.1), a low-Mach number assumption is used to solve the gas phase, i.e., the

energy equation is decoupled from the momentum equation and the pressure-velocity

coupling is achieved using the pressure-implicit with splitting of operator (PISO) al-

gorithm [99] with an incompressible pressure correction equation. A time-staggering

approach along with second-order discretization schemes for the convection and dif-

fusion terms are used, and the governing equations are solved using a semi-implicit
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Euler method that is second-order in time.

2.1.3 Coupling between the Kernel and the Turbulent Flow

Spark initiation results in a soup of free radicals, ionized species, and rapidly

expanding shock waves. Since these events occur at time scales much shorter than that

for turbulence or ignition processes, their net effect can be modeled as a volumetric

source term in the form of energy deposition that affects the local enthalpy of the

fluid. The discussion below describes the formulation of this energy source model.

The justification for the assumption of fast time scales is provided in Sec. 4.2.4.1.

2.1.3.1 Challenges in modeling aircraft spark igniter discharge

Previous ED strategies mainly apply a volumetric source that follows certain

spatio-temporal distributions [61, 62, 66]. In IC engine spark ignitions, the shape,

and movement of the electric arc are further tracked using Lagrangian particles [100]

which nonetheless involves applying a volumetric source to the finite control volume.

These strategies are suitable when the igniter electrode is directly exposed to the

outer flow and the amount of deposited energy is relatively low [62, 101]. When ap-

plying a volumetric energy source, the parameters of the enforced profiles are often

set to values that do not necessarily reflect the actual physics. For instance, the ker-

nel size is set to the value of the post-discharge high energy fluid pocket after it has

expanded until a much later stage where the local enthalpy spike is relaxed to below

the upper temperature limit of the thermodynamic database (3000 ∼ 5000 K for

typical chemical mechanisms). Alternatively, the duration of the volumetric source

enforcement is relaxed by a certain factor from the actual electrical breakdown period

to avoid the temperature beach. In fact, such adjustments are almost inevitable, as

most combustion mechanisms are not designed to handle the thermodynamic inclu-

sion of the high-energy gas at the early post-discharge time, which involves thermal
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non-equilibrium and plasma physics. In the end, as long as the effective amount of

energy is deposited into the gas phase, those treatments should serve as a reasonable

approximation. In this study, the applied coupling method follows the same principle

but is formulated quite differently from conventional volumetric sources to properly

represent the aircraft igniter discharge.

To facilitate the discussion, a schematic of the target igniter applied in this thesis

is plotted in Fig. 2.7. The igniter is a commercial aircraft igniter designed by origi-

nal equipment manufacture (OEM). As has been introduced in Sec. 1.2.1, there are

mainly two types of configurations of the aircraft surface discharged spark igniter,

i.e., the flush fire igniter and the sunken fire igniter. The target igniter applied here

belongs to the second type - the sunken fire igniter. The feature of the sunken fire

igniter is that the spark gap in between the igniter central and outer electrodes are

recessed from the igniter outer surface, forming a confined spatial region referred to

as the “igniter cavity”. In contrary to the flush fire igniter where the kernel is allowed

to expand freely, here, the spark discharge takes place within this relatively confined

environment. This introduces a pulsing effect of the kernel following its early stage

post-discharge expansion. The pulsing effect provides the kernel a prominent momen-

tum, and the kernel dynamics will strongly affect its downstream fuel entrainment

(Section. 3.2.1) and reaction (Section. 3.2.2.2). Therefore, the applied ED here should

not only introduce the proper amount of energy but should also reproduce this puls-

ing effect. In theory, the pulsing effect can be captured by detailed simulations of

the gas expansion within the igniter cavity during and following the spark discharge

(i.e., using a volumetric energy source displaced within the igniter cavity). However,

as will be later demonstrated (Section. 4.2), existing numerical capabilities cannot

accurately capture the kernel geometry, velocity, nor the effective deposited energy of

this sunken fire igniter.

The challenges here are mainly two-fold. The first one is the above-mentioned,
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that existing thermodynamic database (at least for most of those available for com-

bustion simulations) rarely provides the modeling inclusion of high-energy gas. Here,

for the aircraft igniter, such challenge becomes much more prominent compared to

conventional application of spark igniter such as an IC engine spark plug, as the en-

ergy release is by orders of magnitude higher. For instance, the nominal spark energy

of an IC engine spark plug is about 50 mJ, whereas that of a surface discharged air-

craft igniter is about 1− 10 J. The other challenge is a practical issue, that the inner

dimensions of the target igniter are not available as the igniter is an intellectual prop-

erty (IP), making it impossible to perform accurate simulation of the gas expansion

within the igniter cavity. Later, in Chapter IV, a supplemental study is carried out

to address these challenges. Here, a “shortcut” is taken with an alternative approach

of ED to achieve the coupling between the kernel and flow field, which is shown on

the r.h.s. of Fig. 2.7. Instead of using volumetric energy source, the ED here is intro-

gas gap (kernel inlet)

igniter cavity (dimension is  
unavailable)

igniter outer surface (solid wall)

electric spark (1.25 J of  
nominal energy)

 

enforced H/U profiles  
at kernel inlet

pulsing kernel (injected energy  
is a fraction of the nominal energy)

Figure 2.7: Schematic of the coupling of the kernel and flow field.

duced from a boundary surface that represents the opening spark gap on the igniter

top outer surface, referred to as the “kernel inlet” (yellow lines in Fig 2.7). Similar

approaches have been applied by Jaravel et al. [102] and Rieth et al. [8] for simulating
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the same igniter. The gas phase properties of the injected kernel are estimated using

a 0-D analysis of the kernel expansion process, whereas the dynamic properties are

calibrated against experimental data of the kernel shape and trajectory. The details

are presented below.

2.1.3.2 Energy deposition introduced from simulation boundary

At the kernel injection boundary, velocity and enthalpy are specified using time-

dependent Dirichlet conditions. Note that the kernel is made of air at an elevated

temperature and does not contain fuel (Sec. 3.1.1), and therefore the mixture fraction

field requires no special treatment here. The applied temporal and spatial profiles are

summarized in Fig. 2.8 where Hker and Uker are respectively the characteristic value of

the kernel enthalpy and velocity, tinit is the time at which the enthalpy and velocity

boundary enforcement start, tterm is the time at which the enthalpy boundary en-

forcement ends, τker is the duration of the velocity boundary enforcement, and rigniter

is the radius of the igniter top surface. This functional form for boundary conditions

is adopted so that the trajectory of individual kernels reasonably approximates the

experimental observations. More details are provided below.

A uniform spatial profile is used for the kernel enthalpy boundary, where the

characteristic value Hker is linearly related to the spark deposit energy Ed by 0-D

energy conservation as

Hker = H0 +
Ed

ρ0Vcav
. (2.14)

Ed measures the energy deposited into the gas phase during the spark discharge. This

value cannot be exactly controlled and is considered a random variable for the un-

certainty quantification (described in the next section). Ed is related to En which is

the nominal electrical energy of the discharge arc. In this case En = 1.25 J [5]. The

deposition efficiency which is the ratio of Ed to En was assumed to be 90–95% due to

the short discharge duration [101]. However, note that the high deposition efficiency
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Figure 2.8: Temporal (left) and spatial (right) profiles of total enthalpy (top) and
normal velocity (bottom) applied at the kernel boundary. Subscript ‘c’
denotes value at the boundary center, and ‘ker’ denotes the bulk value.

here is not a direct measure for the final efficiency, as eventually only a fraction of

Ed enters the domain. H0 and ρ0 are the pre-discharge flow properties. The volume

of the igniter cavity Vcav is 0.2 cm3 (Sheng, personal communication, October 2017).

Essentially, the 0-D approximation of Hker at the kernel inlet boundary allows the

local enthalpy spike at early post-discharge within the igniter cavity to relax towards

thermodynamic homogeneity, and the resulting Hker is dropped to the same orders

of magnitude of upper enthalpy limit of the thermodynamic model (Hmax), although

some necessary clipping is still needed during the following calculation of thermody-

namic properties (see Fig. 2.9). By applying Vcav in Eq. 2.14, it is assumed that the
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cold flow within the entire igniter cavity is entrained into the kernel during the initial

post-discharge kernel expansion before the kernel enters the flow domain. A more

accurate calculation by Sforzo using 0-D perfectly stirred reactor (PSR) modeling [5]

also confirms that the entrained volume of cold flow during the initial kernel expan-

sion is O(0.1) cm3 to obtain a reasonable initial thermodynamic state of the injected

kernel, which is close to Vcav here. The kernel enthalpy boundary follows a step pro-

file, which is initiated when a spark discharge is triggered. The profile is terminated

at tterm, which is triggered during simulation run-time as soon as a prescribed volume

of kernel enters the domain, denoted by Vker. This volume quantity is also difficult to

control in the experiments, and only estimates are available [5, 6]. Here, the order of

O(0.25) cm3 is applied for Vker, which was found to best reproduce the initial kernel

diameter compared to Schlieren measurements [5].

Since a number of parameters of similar physical meanings are involved in the

above kernel enthalpy boundary condition, a diagram is provided in Fig. 2.9 to clarify

the relationships between them. The parameters in the green boxes are inputs used

to control the kernel enthalpy boundary setup, whereas those in the red boxes are

explicitly enforced at the kernel inlet boundary during the simulation. As summarized

in the bottom of Fig. 2.9, the final amount of energy introduced into the domain is

an implicit function of Ed and Vker. Besides, as ρkerVker < ρ0Vcav (mainly due to

the density ratio), the final energy rise introduced into the domain is only a fraction

of Ed. This “rule of fraction” has been followed in other previous studies [5, 102],

and is further confirmed by a more recent experimental study that provides accurate

measurements on the pulsing kernel generated the target igniter [9]. Here, based

on the particular simulation case setups (Hmax is thermal-model-dependent), the

equivalent fraction of the actual energy introduced into the CFD domain to the kernel

boundary characteristic energy (Ed) is about 20− 30%.

Apart from relaxing the initial high enthalpy gas, another purpose of introducing
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Figure 2.9: Diagram of relationships between parameters involved in enthalpy bound-
ary conditions at the kernel inlet. Green boxes indicate controlling param-
eters of the boundary setups. Red boxes indicate parameters explicitly
enforced at the boundary (i.e., profiles in Fig. 2.8).

ED from the kernel inlet is to reproduce the pulsing effect, for which a spatio-temporal

velocity profile is also enforced at kernel inlet. The velocity boundary condition

consists of two parts (see Fig. 2.8). Here, the velocity at the center of the injector

Uc is obtained from a trapezoidal profile that depends on a nominal kernel velocity

Uker. A spatial parabolic profile is then applied across the injector diameter. The

kernel injection duration τker and velocities are again subject to uncertainty but are

O(50) µs and O(300) m/s, respectively, in order to reproduce the observed kernel

shapes and trajectories.

In summary, the kernel coupling strategy developed above is fully specified by four

parameters K = {Ed, Vker, Uker, τker}. The uncertainty of the initial spark discharge

can therefore be represented as uncertainties for these parameters. The approach for
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treating these uncertainties will be discussed separately in the next section. In order

to demonstrate the validity of the chosen set of parameters, a nominal simulation has

been performed in Sec. 3.2.1, which reproduced the time sequence of kernel shape

and locations reasonably well. In the following discussions about ignition probability

estimation, this coupling method as well as the flow and combustion models described

above will be used.

2.2 Ignition Probability Estimation

As has been introduced in Sec. 1.2.3, ignition is heavily influenced by inherent

variabilities in the spark deposition process and the turbulent flow. It is then natu-

ral to consider ignition probability, which is essentially the probability that ignition

success will occur for a set of macroscopic nominal conditions. In this thesis, the

interested macroscopic variables include the global equivalence ratio of the main flow,

the main flow temperature, and the applied fuel type. In general, the estimation

of such ignition probability is carried out using uncertainty quantification (UQ) ap-

proaches [103, 104].

Very simply, these approaches use a Monte-Carlo type method that treats the

variabilities as arising from a known probability distribution, and conducting an en-

semble of computations with parameter values sampled from this distribution. A

diagram of the modeling procedure applied here for ignition probability is shown in

Fig. 2.10. The main components are on the forced ignition simulation (Sec. 2.1) and

the sampling procedure, which together allow variability of macroscopic variables to

be included. Since the underlying LES calculations are computationally intensive, it

is necessary to determine the most important sources of variability so as to limit the

size of the ensemble. In this section, these issues and the resulting UQ procedure is

described.
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Figure 2.10: Diagram of the modeling procedure for ignition probability estimation.

2.2.1 Formulation of Uncertainty Problem

The uncertainty in ignition comes from the kernel parameters K and the state

of the initial turbulent flow field ξ. The latter quantity is a high-dimensional vector

that describes the initial velocity and scalar fields at the M grid points used to solve

the LES fields. The approximation of these parameters is later made. Without losing

generosity, the probability of ignition is formally expressed by these parameters, as

PI(O) , E(I(K, ξ;O)) =

∫∫
I(K, ξ;O)fK,ξ(K, ξ;O) dK dξ. (2.15)

Here, I is the ignition indicator function which is binary in between 0 (failed ignition)

and 1 (successful ignition), E(.) is the expectation operator (average over statistical
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distribution), fK,ξ is the joint probability density function of K and ξ, and O denotes

the parameters that define the operating conditions (e.g., main flow temperature

T ). In Eq. 2.15, K and ξ are vectors of random variables, while O is treated as a

non-random parameter should affect the shape of the joint-PDF and, of course, the

ignition indicator function. The inner integration of the joint PDF in Eq. 2.15 can

be further replaced by the following conditional ignition probability

PI|K(K,O) =

∫
I(K, ξ;O)fξ|K(ξ;O) dξ, (2.16)

where fξ|K is the conditional probability density function of ξ. Eq. 2.16 measures the

ignition probability conditioned on a specific kernel parameters. By plugging Eq. 2.16

into Eq. 2.15, the ignition probability can be re-expressed as

PI(O) =

∫
PI|K(K,O)fK(O) dK. (2.17)

fK(K) is the PDF of K that is assumed to be known and independent of the operating

conditions and the local turbulence properties.

In short, the computational strategy applied here (Eq. 2.17) is to first determine

the conditional ignition probability due to the impact of turbulence on a particular

choice of kernel parameters K, and then compute final ignition probability by con-

volving the resulting conditional probability with the PDF of kernel parameters K.

The conditional ignition probability PI|K accounts for the uncertainty associated with

the turbulence and is approximated using an empirical mean of the ignition indica-

tor obtained from multiple simulations. The PDF fK accounts for the uncertainty

associated with the spark discharge, and it can be obtained either directly from prior

knowledge of the igniter discharge characteristics, if such direct information is avail-

able, or indirectly from other experimental information (e.g., experiment measured

ignition probability) using a calibration procedure developed in this thesis (explained
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in Sec. 2.2.3).

The above approach provides a convenient path to evaluating the effect of the

high-dimensional turbulent flow field while providing a functionally smooth probabil-

ity function (PI|K in Eq. 2.17) rather than a binary indicator function (I in Eq. 2.15).

This latter feature is especially useful as the conditional ignition probability can be

determined as a continuous function of K and O (response surface) using the poly-

nomial chaos expansion (PCE) approach, which further enables the implementation

of probability density integration and distribution calibration. Details of evaluating

each of the two components of PI|K and fK are explained in the following sections.

2.2.2 Evaluation of Conditional Ignition Probability

The conditional ignition probability PI|K as a function of kernel parameters K

and operating condition O is first estimated by Monte-Carlo sampling at discrete

phase space locations. Then, a continuous response surface of the conditional ignition

probability is constructed based on the sampling results using the PCE approach.

2.2.2.1 Monte-Carlo sampling

The conditional ignition probability PI|K in Eq. 2.16 is here evaluated by the

empirical mean value PI|K,Spl, as

PI|K(K,O) = PI|K,Spl(K;O) + εSpl(K,O), (2.18)

where the r.h.s. first and second terms are respectively the statistical estimator and

the statistical error. In specific, PI|K,Spl is obtained from Monte-Carlo simulation, as

PI|K,Spl(K,O) =
1

N

∑
ξ∈Ξ

ISpl(ξ,K;O), (2.19)

49



where N is the number of samples, Ξ is the ensemble of N turbulent flow fields used

in the empirical mean, and ISpl is the ignition indicator value (1 or 0) obtained from

each LES simulation (not exactly true, to be explained soon).

The sampling of turbulence to represent the correct probability density function is

a computationally expensive problem. To be precise, the statistically stationary flow

without the kernel discharge subscribes to an attractor in high-dimensional space [105,

106]. To obtain the correct density of initial conditions, points on this attractor

need to be sampled. It is known that even for low Reynolds number flows, the

dimension of this attractor can be sufficiently large that such a direct sampling will

be expensive [52, 105, 106]. In this study, it is assumed that the fully developed

main and kernel flow (the crossflow) moves on an attractor, which is valid for ergodic

systems [107]. Therefore, starting the ignition calculations at different initial times is

equivalent to sampling the attractor.

In practice, initial turbulent flow fields are first obtained by sampling a cold flow

simulation for every specific time interval ∆tSpl, which constitutes a database of

initial turbulent flow fields in the phase space of cold flow time-space tcold. Then, by

initialization the forced ignition simulations with different snapshots in this database

and trigger the spark discharge at the beginning of each hot flow simulation (thot =

0), it is equivalent to starting the ignition calculations at different initial times in

the cold flow time-space, denoted here as tSpl,i with i being the sample index. A

diagram is provided in Fig. 2.11 to demonstrate this strategy. The sampling interval

is chosen such that the initial turbulent flow field between samples can be considered

as statistically independent, as

∆tSpl > lint/Ubulk, (2.20)

where lint is the integral length scale estimated as the ensemble and spatial average
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of k3/2

ε
, k is the turbulent kinetic energy, ε is the turbulent dissipation rate estimated

from the filtered strain rate tensor, and Ubulk is the bulk streamwise velocity in the

target configuration. For the validation studies to be presented in Chapter III, ∆tSpl >

5 ms and N = 15 was found to be adequate. The cold flow LES database can be

reused for the sampling of K, assuming the initial status of turbulence is independent

of the kernel parameters, but needs to be regenerated for every sampled level of O,

as the gas phase thermodynamic properties are dependent on O.

tcoldtSpl,1 tSpl,3tSpl,2 tSpl,NtSpl,i. . . . . . ΔtSpl

thot0
hot flow LES simulation of the ith forced ignition sample

database of cold flow LES snapshots

in
iti
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Figure 2.11: Schematic of the turbulent flow field initialization strategy.

With this above strategy, the sampling of Eq. 2.19 is to re-formulated as

PI|K,Spl(K,O) =
1

N

N∑
i=1

ISim(tSpl,i, K;O), (2.21)

which needs to be evaluated at prescribed locations in the phase space of K −O, de-

noted as {KSpl,j=1∼M , OSpl,k=1∼L}, with M and L being respectively the total number

of sampling levels in K and O directions. As K and O are high-dimension vectors,

dimensionality reduction is inevitable in order to scale down the problem and is im-

plemented based on the particular configuration and study objective. In the later

validation studies, for the macroscopic operating conditions O, the three components

of global equivalence ratio φ, main flow temperature Tin, and fuel type Ft are cho-

sen to be sampled, each component being varied at a time, i.e., at sparse locations
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in the 3-D phase spaced of φ − Tin − Ft. For the kernel parameters K, the degree

of freedom has already been limited to 4 in Sec. 2.1.3, as K = {Ed, Vker, Uker, τker},

which is further simplified to 1 as will be discussed in the next chapter. Moreover,

if the ignition outcome exhibits a monotonic relationship with K, then it provides a

feature that can be taken advantage of to effectively reduce the computational cost

of the sampling procedure, as explained below.

To facilitate the discussion, assume the kernel parameter K is a scalar variable

and the ignition indicator function monotonically increases with K. For each sampled

level ofO, the above sampling procedure is equivalent to the evaluation of I(tSpl, K;O)

at the 2-D structured grid points of {tSpk,i=1∼N , KSpl,j=1∼M} (see Fig. 2.12). At the

beginning of this section, it is suggested that each ISpl should be obtained from an

LES simulation, which is only necessary when no prior knowledge of the distribution

of ISpl in the phase space of tSpl − KSpl is given. However, the with the monotonic

relation between I and K being assumed, the evaluation in the KSpl-direction can be

performed in a bisectional manner until the two adjacent grid points that bifurcate

failure/success is found (highlighted by blue dash boxes), and therefore skipping the

LES simulation on a lot of sampling points. With this strategy, the number of LES

simulations can be reduced by a factor of O(M/log2M), which should be exploited

whenever possible. From the aspect of the forced ignition physics, such a scalar

variable K can often be defined in some forms related to the kernel energy (e.g.,

in Sec. 3.2.2.2, K = Ed). Namely, if two successive realizations produce successful

ignition, then the LES simulation of higher kernel energy need not be considered since

they will produce successful ignition as well, and vice versa for the failed ignition case.

2.2.2.2 Response surface reconstruction with PCE

One of the challenges with the sampling approach described above is that the

numerical results are discrete in nature, providing outcomes for discrete values of
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Figure 2.12: Schematic of the sampling procedure provided I varies monotonically
with K.

kernel parameters and operating conditions. However, to convolve the conditional

ignition probability PI|K with the probability of the kernel properties f(k), and to

calibrate the distribution of f(K) against experimental data measured at arbitrary

levels of O, the output of the model should be made continuous in the phase space of

K −O. For this purpose, so-called response surfaces are constructed, which provides

a continuous surrogate of the discretely sampled PI|K,Spl. The response surfaces are

constructed using polynomial chaos expansion (PCE) [103, 108], which traditionally
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is used to represent a random variable as a linear combination of polynomials of other

random variables. Here, it is used to represent a random variable (the probability

of ignition) as a function of one random variable (K) and one deterministic variable

(O), as

PI|K,Spl(K,O) = PI|K,PCE(K,O) +RPCE(K,O), (2.22)

where the PCE output is denoted by subscript “PCE”, and RPCE is the residual of

the expansion.

The reconstruction details are as follows. Firstly, the PCE takes the form

PI|K,PCE(K,O) =
∞∑
n=0

αnΨn (K,O) , (2.23)

where Ψn are the elements of basis in which the ignition probabilities are expressed,

and αn are the coefficients representing the projection of PI|K,Spl onto each basis

function. Here, the Wiener-Hermite polynomials are used (Ψn = Hn), through which

the infinite sum can be represented using a truncated sum [103]. Then, Eq. 2.22 can

be expressed as:

PI|K,Spl(K,O) = PI|K,PCE(K,O) +RPCE (K,O)

=

q∑
n=0

αnHn (K,O) +RPCE (K,O) ,
(2.24)

where q is the order of the truncation and RT
PCE is the residual of the expansion.

Obtaining the PCE approximation of PI|K,Spl is then equivalent to obtaining estimates

of αn, which is done here using non-intrusive methods [109]. The non-intrusive PCE

requires the evaluation of the deterministic model output for various model inputs.

Here, x = {K,O}, with necessary re-scaling as the PCE are describable with Hermite

polynomials only for random variables following a standard normal distribution [110].
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The PCE coefficients αn are computed by formulating the following linear system



H0(x0) H1(x0) . . . HQ(x0)

H0(x1) H1(x1) . . . HQ(x1)

...
...

...
...

H0(xm) H1(xm) . . . HQ(xm)





α0

α1

...

αQ


=



PI|K,Spl(x0)

PI|K,Spl(x1)

...

PI|K,Spl(xm)


, (2.25)

where m is the number of data points {KSpl,j=1∼M , OSpl,k=1∼L} (i.e., m = M ·L), and

Q = (r+q)!
r!q!
− 1, with q being the truncation order. The applied truncation order here

is q = 6. Note that the total number of data points m does not need to be equal to Q.

In fact, it was found to yield a better approximation of the model output statistics

when m ≥ 2(Q+1) [111, 112], and the coefficients are then obtained in a least-square

sense.

Theoretically, the above method is able to reconstruct the response surface with

the same dimensionality of the fully-expanded phase space of K−O. In practice, the

target problem is always constrained to a limited number of dimensions. Following

the dimensionality reduction explained in the last section, in the validation studies

to be presented in Chapter III, K is reduced to a scalar variable, and multiple 2-D

response surfaces (r = 2) are constructed for each investigated component of O. In

specific, for the study of the global equivalence ratio (O = φ), the surface is created

in the phase space of K − φ; for that of the main flow temperature (O = Tin), the

surface is created in the phase of K−Tin; for that of the fuel type Ft, the investigated

O are two-dimensional (O = {φ, F t}), and response surfaces are reconstructed in the

phase space of K − φ for each sampled Ft.

2.2.3 Evaluation of the Statistical Distribution of the Kernel Parameter

The conditional ignition probability has taken into consideration variabilities in

turbulent flow and provided a function that only depends on one random variable - the
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kernel parameter. This parameter is not precisely known, the probability of ignition

is obtained by convolving the conditional ignition probability with the statistical

distribution of the kernel parameters, which provides a measure of ignition odds

for a given set of operating conditions. Of course, the primary challenge here is

to specify the kernel parameter distribution. In some cases, this distribution can be

approximated based on experimental measurements [101]. More often, such quantities

are unknown, including in this thesis. The challenge is mainly due to the limited

measuring capabilities from the experiment. Firstly, the spark-induced kernel exhibits

variabilities for its initial energy, size, shape, momentum, and etc., which cannot be

fully measured. Secondly, even when the dimensionality of K is reduced to the few

most important properties, e.g., the kernel energy and velocity, such quantity is still

difficult to be accurately measured. In particular, note that the kernel parameters

here are the gas phase properties (e.g., energy deposited into the gas phase), and they

should not be confused with nominal properties of the spark igniter discharge (e.g.,

electric energy during spark discharge), which are relatively easy to measure.

To overcome this difficulty, the statistical distribution of the kernel parameters is

evaluated here using a calibration procedure, similar to the Bayesian technique [52,

103, 104]. Here, instead of using a full-blown Bayesian formulation, the kernel param-

eters K is assumed to be normally distributed with a mean and variance. Further,

the likelihood function is also assumed to be Gaussian which leads to a posterior that

is normally distributed as well. Since only a single uncertain variable is involved,

linear regression estimates are sufficient to determine the posterior distribution. The

regression-based estimation is obtained with subsets of experimental data (PI,exp):

that is, the uncertainty is determined based on one set of the experiments where a

specific component of O is varying, e.g., φ or Tin.

The specific distribution calibration procedure is explained as below. The 2-D

phase space of the mean and standard variation of the presumed distribution µK−σK
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is considered to be explored. At each of point in this phase space, the ignition

probability PI(O) can be calculated as the convolution in Eq. 2.17, using the local

normal distribution as a trail of f(K) and the PCE response surface of PI|K,PCE as

the approximation of PI|K . The convolution calculation leads to the final ignition

probability, denoted as PI|Ed,Conv. Due to the nature of the PCE response surface,

PI|Ed,Conv is a continuous function in the phase space of O, and its L2-norm error

compared against the experimental dataset can be readily calculated, as

δCali(N (µK , σ
2
K)) =

1

Nexp

Nexp∑
i=1

√
(PI|Ed,Conv(Oexp,i;N (µK , σ2

K))− PI,exp(Oexp,i))2,

(2.26)

where PI,exp is the experimental ignition probability, Oexp,i is the operating condi-

tion where the i-th experimental measurement is conducted under, and Nexp is the

total number of points in the subset of experimental data applied to the distribution

calibration. The calibrated mean and standard variation of the presumed normal

distribution is obtained as the pair of parameters that minimizes the below target

function, as

{µK,Cali, σ2
K,Cali} = argmin(δCali(N (µ, σ2))), (2.27)

which can be solved numerically simply using brute force algorithms as the evaluation

of PI|K,conv and δCali is computationally inexpensive.

Lastly, note that the distribution calibration essentially applies the outcomes (ig-

nition probability measurements) to determine the parameters related to energy de-

position. In this sense, there is uncertainty in both the experiments and the spark

igniter discharge process itself. The calibration exercise seeks the best set of pa-

rameters that “explains” the measurements, and the above optimization procedure

is used to determine this set of parameters. In this context, the mean and stan-

dard deviation of spark deposit energy is not determined only by the uncertainty

in the ignition estimation process, but also in the uncertainty of measurements of
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ignition probability. Namely, the result of the distribution calibration is dependent

on the experimental dataset applied, and so is the resulting final ignition probability.

The performance of the distribution calibration can be evaluated by performing a

cross-validation study, i.e., performing multiple calibration procedures using different

subsets of the experimental data, and compare the resulting distributions as well the

final ignition probabilities against each other. If the results are only weakly depen-

dent on the exact experimental data set applied in the calibration, then it is validated

that the uncertainties associated with the experimental measurements are low and

any one of the calibrated distributions should work as a reasonable approximation of

the true distribution.

2.2.4 Uncertainty Quantification

Based on the response surface constructed using the sampled data and the PCE

approach, a modeled conditional ignition probability PI|K,PCE can be obtained. Since

this quantity is subject to both sampling error (due to finite number of samples)

and the PCE truncation (due to finite number of polynomials), the true conditional

ignition probability can be written as

PI|K(K,O) = PI|K,PCE +RPCE(K,O) + εSpl(K,O), (2.28)

which is obtained by combining Eq. 2.18 and Eq. 2.24. One may notice that Eq. 2.18

is defined at discrete positions in the phase space that have been sampled.

In Eq. 2.28, the sampling error εSpl is extended from the original term in Eq. 2.18

and becomes the continuous statistical convergence error in the continuous phase

space of K − O. For those phase space locations that are not sampled, the physical

meaning of this εSpl serves as an estimation of the sampling error if the same turbu-

lence sampling procedure is to be performed there. Using the central limit theorem,
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εSpl can be assumed normally distributed with zero mean and a variance σ2
εSpl

that

can be approximated as:

σ2
εSpl

(K,O) =
PI|K,PCE(K,O)(1− PI|K,PCE(K,O))

N
, (2.29)

where N is the number of samples used to estimate the conditional ignition probability

for a given kernel energy density. In this study, this sampling error is only due to the

turbulence sampling, and N denotes the number of initial turbulence flow fields used

as described in Sec. 2.2.2.1.

The residual error term from the PCE expansion is of a fundamentally different

nature than the statistical sampling error, in that it arises from the finite-term trunca-

tion of the polynomials. generally, the errors in the truncation reduce exponentially

with the order of truncation. Typically, q between 4 and 6 is sufficient to obtain

accurate results [109, 112, 113]. Here, an estimation of RPCE(K,O) is achieved by

a convergence test, i.e., by comparing the error between 2 PCE response surfaces

obtained with different PCE truncation orders. The method details and results are

presented in Section 3.3.1.2. Here, a result is directly provided, that in this thesis,

the PCE truncation error RPCE is by an order of magnitude lower than the sampling

error εSpl.

For the convolved final ignition probability PI,Conv, the uncertainties are evaluated

for the contributions from the sampling error in the conditional ignition probability

PI|K , whereas those from the PCE truncation error are neglected, and is calculated

as

εConv(O) =

∫
εSpl(K,O)f(K) dK. (2.30)

In an ideal situation, if the number of turbulence sampling, the number of PCE

basis functions, and the number of experimental sampling measurements all go to

infinity, then the uncertainties associated with the final ignition probability should
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go to zero for both numerical modeling and experimental samplings. Under such a

case, any discrepancy between the numerical and experimental data is purely due to

modeling error, including both the LES forced ignition simulation and the presumed

distribution of kernel parameters. In reality, none of those conditions can be achieved,

and the experimental and numerical results can only be “roughly” compared by their

confidence intervals. The above uncertainty quantification method is therefore im-

portant as it made such comparison available. Otherwise, comparisons made only

between mean values make poor statistical sense.

2.3 Distinction between Prediction and Calibration

In the last two sections, the modeling of individual forced ignition sequences (as

deterministic procedures given the initial and boundary conditions) and the ignition

probability were proposed. As part of this modeling, many of the physical processes

as well as quantities are evaluated (or estimated). In this regard, a first-principles

calculation of relight is not feasible since this will require complete resolution of the

inflow conditions as well as the spark discharge process. In order to keep the modeling

tractable, certain aspects of the problem are directly modeled, while other components

are treated as uncertain variables.

The following distinctions are made

• An individual LES realization consists of injection of a spark kernel and its evo-

lution in turbulent flow, with the end result of either a stable flame or extinc-

tion. The associated LES models, including the tabulation approach, constitute

physics-based models that may be individually validated against experiments.

• The spark kernel energy is taken to an uncertain parameter, in that the total

energy deposited into the spark is variable from one shot to the next. This

kernel energy is assumed to have a distribution, with a mean and variance, and
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characterized by a normal process. It is also assumed that this distribution is in-

dependent of the operating parameters, including turbulence levels, equivalence

ratio, and other flow related parameters. Since the energy deposition occurs in

a region that is outside of the main flow, this assumption is valid. As a result,

the distribution of spark energy is calibrated using methane/air system, and is

re-used for alternative jet fuels.

• The inflow turbulence is a high-dimensional process, and cannot be fully de-

scribed by the filtered velocity field imposed at the inlet boundary. As a result,

there is variability in the flow field, induced through initial conditions that exist

at the time of spark discharge. For this reason, the initial state of the fluid is

treated as an irreducible uncertainty. The LES calculations are carried out in

such a way that an ensemble of simulations represents the various initial states

present in the flow.

• The prediction of ignition probability then combines the individual LES re-

alization and associated models, spark energy calibration, and the variability

introduced by initial conditions.

A detailed list of modeling setup is also later provided in Tab. 3.1.2, where the

consistency can be directly evaluated among different cases.

2.4 Summary

In this chapter, the developed computational platform for predicting turbulent

non-premixed forced ignition in altitude relight is described in full detail. The mod-

eling procedure is comprehensive and covers all common topics/challenges are poten-

tially encountered in the numerical prediction of such type of problems, providing

an understanding of the forced ignition physics from a modeling aspect. The main

highlights are as follows. (a) In Sec. 2.1.1, for turbulent non-premixed forced ignition
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modeling, capturing the entire process from reaction initiation to flame stabilization

is important, the early-stage reaction initiation is often not included in previous com-

bustion models, and therefore cannot properly handle the effects such as non-localized

ignitions. Here, by applying HR calculations to model the early stage kernel stabiliza-

tion and FPVA approach to model the later stage flame propagation, the complete

forced ignition process is included in the combustion model. (b) In Sec. 2.2, when

estimating ignition probability, the stochasticity contributed from both turbulence

and the spark discharged should be quantified, while previous estimations mostly

predict ignition success and failure only due to turbulence disturbances, the prob-

ability estimation strategy developed here takes both factors into account and also

provides a rigorous quantification of the modeling uncertainty. (c) The computational

framework development is formulated in the most generic format possible. The only

configuration-specific treatment is the coupling between the kernel and turbulent flow

field (Sec. 2.1.3), which is nonetheless based on a popular configuration of aircraft

spark igniter and can also be easily adapted to simulate other igniter configurations.
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CHAPTER III

Model Validation

In this chapter, the computational framework developed in Chap. II is validated

using a model forced ignition rig that represents turbulent non-premixed forced ig-

nition in altitude relight. The validation is performed for both the LES simulation

of individual forced ignition process and the numerical prediction of ignition proba-

bility, each carried out in the two forms of (a) sensitivity test or cross-validation of

the applied modeling parameters; (b) comparison with DNS or experimental data.

Most of the results presented in this chapter are collected from the early studies of

Ref. [35, 114–116].

3.1 Target Configuration

3.1.1 Stratified Forced Ignition Rig

The flow configuration used here is based on the stratified forced ignition rig at

the Georgia Institute of Technology [5], as schematically shown in Fig. 3.1. On the

left plane, the inflow is split into two streams by a splitter plate: the kernel flow

(lower) and the main flow (upper). The pre-vaporized fuel is injected from three fuel

bars fabricated from perforated steel tubing into the main flow, whereas kernel flow

is isolated from fuel mixing and remains as pure air. The configuration can also be

separated into two sections in the streamwise direction by the location of the splitter
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Figure 3.1: Configuration of the forced ignition rig developed at Georgia Institute of
Technology. The flow direction is from left to right.

plate trailing edge - the upstream is the fuel-mixing section and the downstream is the

ignition test section. The length of the fuel mixing section is designed to be sufficient

such that some level of mixing has been achieved [115]. However, the mixture is

not homogeneous and there exist spatial-temporal fluctuations of equivalence ratio

when the main flow enters the ignition test section. Inside the ignition test section, the

kernel flow and the main flow meets with a mixing layer formed in between them. The

mixing layer is almost shear-free as the kernel flow and the mean flow are introduced

with the same bulk velocity. The sunken-fire igniter introduced in Sec. 2.1.3 is placed

at the bottom of the ignition test section. The spark is discharged within a cavity

recessed from the igniter top surface, and the thermal expansion inside the cavity

forces the kernel to be ejected into the kernel flow. The kernel then transits through

the non-flammable kernel flow and eventually enters the fuel-seeded main flow where

chemical reactions can occur. Depending on the initial conditions of the spark and

the flow field, the kernel can either dissipate (ignition failure) or sustain and develop
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into a propagating turbulent flame front (ignition success).

The configuration is representative of the forced ignition process that typically

takes place in aircraft engines during relight. Particularly, the kernel flow here rep-

resents the non-flammable stream that prevents the spark-induced kernel from an

immediate reaction after the spark discharge and is critical for reproducing the non-

localized ignitions. The transit time it takes for the kernel to reach the mixing layer

τtransit can be controlled by adjusting the height of the splitter plate and the intrusion

depth of the igniter tip into the flow domain. The definition of a successful ignition

applied in the experimental study [5] is that the flame front sustains and expands for

a certain time period after the initial spark discharge (2 ms), measured by the OH∗

signal. This definition is slightly less stringent than those applied in other previous

studies [2, 27] where the flame needs to be fully stabilized. Because the experimental

operating conditions applied here all lead to an effective turbulent flame speed below

the main flow bulk velocity, the flame front eventually convects downstream even

in a successful ignition. Nonetheless, the ignitions here have reached step 3 of the

non-localized ignition process (defined in Sec. 1.2.2.2), most likely in the form of 3A

and 3B as the inflow here is fuel-stratified instead of completely non-premixed. This

corresponds to an early phase 3 of the turbulent forced ignition problem (defined in

Sec. 1.2.2.1), which is a fairly mature ignition process despite being not fully com-

plete. The corresponding numerical definition of ignition success/failure is introduced

in the following section.

3.1.2 Numerical Cases & Setups

To reduce the computational cost, the simulation domain only includes the down-

stream ignition test section of the stratified forced ignition rig (Fig. 3.2). Here, the

origin of the physical coordinate system is positioned at the projection of the igniter

spark gap center point onto the facility floor plane. Temporarily and spatially varying
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profiles of turbulent velocity and mixture fraction are enforced at the domain inlet to

represent the upstream turbulent flow development and fuel mixing. These profiles are

obtained from an auxiliary cold flow LES of the upstream fuel-mixing section [115]

and can be reused for similar operating conditions. The inlet enthalpy boundary

conditions apply a time-space-dependent Dirichlet boundary conditions with value

inversely looked-up from the table using the target inflow temperature value. The

solid walls enforce a no-slip boundary condition for velocity and an adiabatic bound-

ary condition for enthalpy. The boundary treatments at the kernel inlet have been

explained in Sec. 2.1.3.2.

    

Success

Failure

x

y

z .
85

 m
m

232 mm

Uin(y, z, t)Zin(y, z, t)
profiles obtained from  

upstream cold flow LES

5 mm

6.35 mm

kernel inlet (Sec. 2.1.3.2)

0~3.18 mm

non-slip, adiabatic wall

Figure 3.2: Schematic of the simulation domain and the applied boundary conditions.
The background contour is colored by the mixture fraction field depict-
ing the moment when a kernel just enters the main flow. The kernel
edge (yellow and white lines) plotted here are artificial results only for
demonstration purposes.

To better explain the applied modeling parameters and setups, the numerical test

cases are introduced first. Based on the fuel type and geometrical setups used in the

corresponding experimental studies, the numerical cases can be categorized into two

main groups, as listed Tab. 3.1. Group 1 involves the small molecule fuel of CH4,

which is to investigate the model performances under varying inflow temperatures
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and global equivalence ratios. Group 2 contains three cases, each using a different

realistic jet fuel, which is to investigate the model performance under varying fuel

blends. For all cases, the operating pressure is 1 atm. Within each case, one single

component of the operating conditions vector O is varied (i.e., highlighted by square

brackets in Tab. 3.1), and a response surface of the conditional ignition probability

PI|K is reconstructed in the corresponding phase space, as explained in Sec. 2.2.2.2.

Table 3.1: Summary of operating conditions of numerical cases
Group Case ID Fuel Inflow temperature Global equiv. ratio

1
I CH4 [375, 425, 455, 485, 525] K 1.1
II CH4 455 K [0.9, 1.1, 1.2, 1.3, 1.4]

2
III C1 475 K [0.6, 0.7, 0.8]
IV A2 475 K [0.6, 0.7, 0.8]
V C5 475 K [0.6, 0.7, 0.8]

To be consistent with the experiments, the definition of ignition success/failure is

based on the kernel volume, measured as the total volume of computational cells with

temperature higher than 1500 K. Successful ignition causes this volume to increase

in the time range 2− 3 ms after the spark.

The applied simulation setups and modeling parameters are mostly dependent on

the group of study, as summarized in Tab. 3.1.2. Unless otherwise mentioned, the

numerical results presented in this chapter are obtained with these setups listed in

the table. The choice of each modeling parameter will be discussed below in the

sections dealing with the corresponding simiulations. Here, the differences in the

operating conditions between the two study groups are clarified. In Group 1, the

igniter top surface is flush-mounted on the facility floor plane, whereas in Group 2,

the igniter top surface is raised 3.18 mm above the floor plane, as illustrated in Fig. 3.2.

Besides, the main flow bulk velocity is also different in these two groups of studies.

Experimentally, the main reason for these adjustments is to increase the ignitability

of the jet fuels in Group 2 [6]. As a result, the velocity profile enforced at the kernel

inlet uses different peak values for the two groups of studies. This peak velocity value
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is the only one modeling parameter that is particularly “tuned” in this thesis, which

is nonetheless due to the nature of the developed kernel initialization strategy: there

is less of a direct physical justification of the enforced kernel inlet velocity except to

be able to reproduce the experimental kernel trajectory. Apart from this choice, all

the other modeling parameters are applied with identical/consistent setups across all

the numerical cases within the two groups of studies.

An evaluation of computational cost is provided in Section 3.3.3.

3.2 Performance of the Forced Ignition LES Simulation

This section validates the developed LES simulation capabilities in predicting the

target forced ignition problem. First, the performance of the developed coupling

strategy between the kernel and the turbulent flow field is evaluated, by comparing

the predicted kernel shape and vortex dynamics against experimental schlieren data.

Then, the variability of the predicted forced ignition outcomes are interrogated, by

evaluating the sensitivity of the simulation outputs w.r.t. the inputs of turbulence

and kernel parameters, and the modeling parameter that determines the partition

between the HR and FPVA tabulations. Last, the LES simulation capabilities are

evaluated for capturing the fundamental physics of the forced ignition process, by

comparing the simulated forced ignition process with DNS and experimental data.

3.2.1 Reproducing the Pulsing Dynamics of the Kernel

For the geometrical setups in both groups, using the nominal values of {Ed = 1.25

J, Vker = 0.25 cm3, τker = 50 µ s} and Uker as listed in Tab. 3.1.2, the kernel injec-

tion process was simulated. Results are first compared with experimental schlieren

images, shown in Fig. 3.3. It can be seen that the injection method reproduces the

kernel shapes and locations reasonably well throughout the time sequence for both

groups of studies. Further, quantitative validation can be made by comparing the
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Table 3.2: Nominal simulation setups and modeling parameters.

Components Prameters Group 1 Group 2

Operating
conditions

Igniter surface height 0 mm 3.18 mm
Inflow bulk velocity 20± 2 (m/s) 12± 0.2 (m/s)

Combustion
model

Chem. mech. GRI 3.0 [117] HyChem [118–121]
HR/FPVA
partitiona

HHR,min = H(Ta),
HFPV A,max = H(Tp)

HHR,min = H(Ta),
HFPV A,max = H(Tp)

Meshb Finest resolution 2/15 rigniter 2/15 rigniter
Total mesh size 3.9 million 2 million

Turbulence
modeling

SGS viscosity dyn. Smagorinsky dyn. Smagorinsky
Non-dimensional

constants
PrT = 0.72,
ScT = 0.7

PrT = 0.72,
ScT = 0.7

Kernel
initialization

Enthalpy profile
Hker from Eq. 2.14,
Vcav = 0.25 cm3

Hker from Eq. 2.14,
Vcav = 0.25 cm3

Velocity profile
Uker = 300 m/s,
τker = 50 µs

Uker = 200 m/s,
τker = 50 µs

Probability
estimation

Turbulence sampling NSpl = 15 NSpl = 15
Spark deposit

energy samplingc

Ed,Spl = 1 ∼ 1.75 J
∆Ed,Spl = 0.01 J

Ed,Spl = 1 ∼ 2.5 J
∆Ed,Spl = 0.01 J

PCE truncation order q = 6 q = 6
Normal distribution of
spark deposit energy

µEd
= 1.24 J

σEd
= 0.14 J

µEd
= 1.24 J

σEd
= 0.14 J

a The HR and FPVA tabulation is partitioned based on enthalpy, which is trans-
lated from the unburnt temperature of the canonical reactions. Here, Ta denotes
the autoignition temperature and Tp denotes the partial extinction temperature.
Details can be found in Sec. 2.1.1.3.

b After Group 1 studies, it is determined that the higher domain region (y > 0.5
m) can be trimmed off. Therefore, the total number of control volume in Group 2
is about half of that in Group 1. The mesh resolution remains unchanged, which
applies 15 points across the kernel inlet diameter (2rigniter).

c The spark deposit energy Ed is reduced from the kernel parameters K
(Sec. 3.2.2.2). The sampling range in the Ed-space can be arbitrarily extended
until the resulting probability PI|Ed,Spl goes to 0/1 at the lower/upper bound. The
exact lower/upper value here is far less important than the sampling resolution
∆Ed,Spl, which is identical for the two study groups.
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Curve: edges of                   = 0.6 (blue) and 0.9 (red)
Dot : extreme positions of kernel edges 

Group 1:  m/sUker = 300 Group 2:  m/sUker = 200

Figure 3.3: Time-series of kernel injection. Within each group, the left column is
numerical schlieren, and the right column is experiment schlieren [5, 6].
For Group 1, the numerical schlieren is obtained with line-of-sight inte-
gration. After confirming the numerical kernel edge is not affected by
out-of-plane density variations, the numerical schlieren is simply calcu-
lated at the mid-plane for Group 2.

kernel diameter and the topmost location of the kernel as a function of time. The

extreme positions that mark the kernel edge are defined using a numerical edge track-

ing algorithm and are obtained with different threshold values. Figure 3.4 shows that

irrespective of the metric chosen to get these quantities, the simulations predict the

observed trends in the experiments reasonably well.

Further investigation is conducted into the kernel vortex roll-up dynamics and fuel

mixing after the kernel enters the main flow. As the kernel is ejected into a crossflow

instead of a stationary outer flow, the flow dynamics here features a pulse-jet-in-
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Figure 3.4: Time history of kernel top edge vertical distance from the base wall and
kernel diameter. The numerical results are obtained using extreme posi-
tions highlighted in Fig. 3.4.

crossflow (PJICF) configuration. Prior studies of PJICF [7] showed that the kernel

evolution is strongly dependent on the formation of vortex rings at the leading edge of

the jet. The structure of these rings depends on non-dimensional parameters given by

the velocity ratio (r = Uker/Uin) and stroke ratio (L/D = Ukerτker/(2rigniter)), where

Uin is the inflow bulk velocity. A regime diagram defined based on these two non-

dimensional parameters is shown in Fig. 3.5. For the kernel initialization applied here,

the velocity ratio and stroke ratio are respectively r = 15 and L/D = 3 for Group 1

studies, and r = 16.7 and L/D = 2 for Group 2 studies. Under both conditions, the

PJICF should fall into the regime of “discrete vortex rings”. A demonstration of the

simulated PJICF kernel flow patterns are plotted in Fig. 3.6, along with experimental

schileren and DNS data. The discrete vortex ring has a short trailing vortex column,

the length of which is directly proportional to the stroke ratio. Also, the vortex ring

slightly tilted upstream as it evolves, indicated by the two vorticity iso-lines (white

solid) in the LES results, with the one on the leeward side (i.e., the right side of the
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formation number  
 (L /D)0 = 3.6

transition stroke ratio  
 (L /D)tr = − 5.6(L /D)0e−0.5r

 

Vortex ring with trailing volume

Figure 3.5: Regime diagram of different PJICF flow structures and entrainment char-
acteristics. The diagram is reproduced from [7], where the subplots are
typical vorticity iso-surfaces.

view in Fig. 3.6) rose slightly faster than that on the windward side. This tilting

momentum comes from the Kutta-Joukowski lift that is induced by the relative flow

motions between the crossflow and vortex circulation. The available experimental

schlieren images show the kernel edge up to 0.32 ms, which appears to exhibit the

same trend of upstream tilting, while further measurements of the velocity field await.

Since the vortex structure here features a 3-D ring, the concept of counter-rotating

vortex pair (CVP) can be introduced as a 2-D description of such structure. It should

be clarified that there are two versions of CVPs in the PJICF problem here: the CVP

in the mid-spanwise plane (side view) and the CVP in a cross-section plane (front

view), both of which are later used to facilitate the discussions of the forced ignition

72



process.

In terms of fuel-mixing, the mixture fraction field evolution is presented in Fig. 3.6

by the colored contours, where it can be seen that the scalar entrainment is mainly

achieved by the vortex ring bottom being rolled-up into the ring center. The en-

trainment is barely observed at t = 0.36 ms and increases rapidly with time, which

is believed to correspond to the first cycle of vortex roll-up after the kernel trailing

edge enters the main flow. Besides, throughout the process, the windward side of the

vortex ring is better mixed than the leeward side, which is interesting as the leeward

side of the kernel should have the advantage of early access to the main flow due to

the upstream tilting. Similar fuel-mixing behavior is also found in the DNS study

by Sau and Mahesh [7]. In their study, it is explained that the flow stretching effect

plays an important role to enhance the scalar mixing, which is more prominent on

the windward side than the leeward side.

As a quick summary, the applied kernel coupling strategy is able to reproduce the

size and trajectory of the ejected kernel. Besides, the LES is able to correctly capture

the kernel vortex dynamics and fuel mixing of the PJICF in the target configuration.

3.2.2 Reproducing the Variability of Forced Ignition Outcomes

3.2.2.1 Sensitivity to turbulence

To study how turbulence affects the forced ignition process, a large number of LES

forced ignition simulations are performed for operating conditions similar to Group 2

studies later in Chapter IV. Here, a preview of the simulation results is provided in

Fig. 3.7, where the time histories of the maximum field value of the progress variable

are plotted for the forced ignition processes. The simulations here are initialized with

the same kernel status but different initial turbulent flow fields, which isolates the

turbulence effects. It can be seen that the bifurcation between ignition success and

failure cannot be determined until reaching a later stage of the ignition process. In
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Group 1 
 mst = 0.22

Group 2 
 mst = 0.32

Schlieren

DNS

Group 1: , L /D = 15 r = 3
LES

, L /D = 6 r = 2 Z

Figure 3.6: Left - LES time series of vortex evolution and scalar mixing for a kernel
PJICF of Group 1 plotted at the mid-plane in the spanwise direction.
Upper right - experimental schlieren images under Group 1 [5] and Group
2 [6] operating conditions. Bottom right - instantaneous DNS contour
of scalar mixing of the PJICF under a similar velocity ratio and stroke
ratio [7].

particular, at the early stage of the ignition process (0− 1 ms), despite the maximum

C values in the successful ignitions being statistically greater than those in the failed

ignition, the trajectories of success and failures can still cross path at a later ignition

stage (1 − 3 ms). This observation suggests that turbulence is playing an active

role that affects the ignition outcome throughout the ignition process, i.e., a forced

ignition trajectory that initially develops towards ignition can be quenched later due

to turbulence strain. The mechanisms that cause success or failure of ignition will be

discussed in detail latr (Chap. IV, Sec. 4.1). Here, it is simply demonstrated that the

simulated forced ignition outcomes are sensitive to the initial turbulent flow field.
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Figure 3.7: Time histories of maximum progress variable obtained from a total num-
ber of 467 LES forced ignition simulations: red - successful ignition; black
- failed ignition. The operating conditions are similar to Group 2 using
the fuel A2 (Chapter IV, Section. 4.1).

3.2.2.2 Sensitivity to kernel parameters

While the coupling strategy between the kernel and the turbulent flow field (Sec. 2.1.3.2)

uses a set of parameters defined by K = {Ed, Vker, τker, Uker}, some of these param-

eters may be correlated. In order to further reduce the phase-space of uncertain

variables, it is useful to consider these correlations. For example, the energy of the

ejected kernel is proportional to both Ed and Vker, and the PJICF stroke ratio (the

length of the momentum pulsing jet) is proportional to both Uker and τker. As a

starting point, consider the spark deposit energy Ed and the nominal kernel veloc-

ity Uker as the two independent parameters to be investigated here. The other two

parameters {Vker, τker} are fixed at the nominal values suggested in Sec. 2.1.3.2.

While it can be postulated that increasing the deposition energy will increase the

probability of ignition, the dependence of the ignition event on Uker is less direct.

For instance, higher velocities will cause the kernel to reach the main flow faster, but
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will also increase kernel air entrainment leading to dissipation of the high-enthalpy

gases (turbulence stretch [7]) and flame quenching (turbulent strain). To further

understand the relative roles of these parameters, a series of cases varying {Ed, Uker}

within two standard deviations of their nominal values of {1.24 J, 300 m/s} is under

the Group 1 operating conditions. These standard deviations are set to {0.02 J, 25

(m/s)}, based on results from [5]. When all other conditions are maintained the same

(in particular, the initial turbulent flow field). Note that when all other parameters

are held constant, there is a clear separation between the ignition and failure regimes

for each of the input variables. In other words, these events are deterministic for any

given set of kernel parameters. The results are shown in Fig. 3.8.

success
failure
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)
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failure

Figure 3.8: Points in the {Ed, Uker}-space tested in the kernel parameter study col-
ored by their ignition outcomes: red – successful ignition; black – failed
ignition. The dashed box indicates the two cases that were applied for
in-depth analysis in Section 3.2.3.1.

The model captures the impact of the velocity of the kernel as well as its energy

on the ignition outcome. Specifically, based on the boundary that separates the
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failed and successful ignitions, the ignition outcome is strongly dependent on the

spark deposit energy Ed. Besides, there is also a weak dependency of the ignition

outcome on the kernel nominal velocity, i.e., when the kernel is ejected with a higher

velocity, the less amount of spark deposit energy is required to achieve a successful.

This relationship between Uker and ignition outcome suggests that the transit time

τtransit for the ejected kernel to enter the main flow (i.e., faster fuel entrainment)

is the dominating mechanism over other physical effects, such as turbulent stretch

and strain. This prediction is also qualitatively confirmed by experimental studies in

Ref. [5], where the τtransit is adjusted by setting the splitter plate to different distances

above the floor plane. The experimental results showed that when τtransit decreases,

which is qualitatively equivalent to an increase of Uker here, the forced ignition is

more likely to succeed.

Lastly, note that the energy of the kernel primarily influences chemistry. Moreover,

the variation in critical energy for ignition is nearly constant for a wide range of

velocities, indicating that spark energy deposition is an independent factor. While

there is also considerable uncertainty in the specification of injection time τker and

kernel volume Vker, the previous section (Section 3.2.1) used experimental images to

calibrate these values. Here, it is assumed that post-calibration, the uncertainty in

these parameters is small. As a result, any uncertainty in the kernel parameters is

reduced to uncertainty in Ed. In the rest of this thesis, ‘K’ is replaced by ‘Ed’, for

both the variable name and the subscript.

3.2.3 Reproducing the Fundamental Physics of Forced Ignition

3.2.3.1 Numerical predictions of methane forced ignitions

In this section, two different simulations from the Group 1 studies of methane

ignition are interrogated. The global equivalence ratio of the cases is φ = 1.1 and

the inflow temperature is Tin = 455 K. Both cases use the same initial flow field.
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However, the spark deposition energy Ed is varied for the two cases by 0.8%, with

Ed = 1.2325 J and 1.2425 J for the successful and failed ignition, respectively.

Figures 3.9 show the time evolution of an iso-surface of progress variable for the

successful and failed ignition cases, respectively. For the successful case, and at

early times (before 1.6 ms), the reaction front has a complex spatial structure. For

reference, Fig. 3.6 discussed above corresponds to the successful ignition process here.

It can be seen that the progress variable peaks inside two vertical columns (purple,

0.36 ms) that go through the vortex ring of the kernel. At later times (green, 1.6

ms), it can be seen that the flame surface occurs along the outer edges of the kernel,

which corresponds to the cross-section plane CVP. In between 0.36 − 1.6 ms, the

flame surface takes various complex shapes as it tries to propagate. Interestingly, the

windward part of the reaction front that initially forms at 0.9 ms is later quenched

at 1.6 ms, suggesting stretch-induced quenching on the windward side of the kernel

as discussed in Sec. 3.2.1. After 1.6 ms, the reaction front propagates from the kernel

side edges gradually to the leeward side, and also to the windward side to form a

horse-shoe shaped flame surface. Allowing the flame to further develop, the flame

front will eventually encompass the entire vortex ring (not shown). For the failed

ignition case, the progress variable iso-surfaces are noticeably smaller after t = 0.9

ms. This shows that the reaction has already been inhibited enough even before this

time. After t = 1.6 ms the horse-shoe-shape pattern is not visible and the reaction

zone gradually dissipates until complete disappearance at t = 3.5 ms.

To further understand the details of ignition, a Lagrangian analysis is conducted.

A set of tracer particles are seeded in the flow, and the gas-phase properties seen

by these particles are recorded as they move within the domain. The particles are

grouped based on their recorded progress variable at an end time, taken to be t = 3.5

ms here. The trajectories of fluid particles grouped by the end state show interesting

features. It is seen that the primary contributor for ignition success is the formation
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top view
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Figure 3.9: Time series of a successful (left) and failed (right) ignition kernel de-
velopment under Group 1 operating conditions: averaged fluid particle
trace lines conditioned on the ignition final states at t = 3.5 ms; group
I: C ≥ 0.125; group II: 0.05 ≤ C ≤ 0.125; group III: C ≤ 0.05; iso-
surfaces of progress variable C sampled at 6 time instances. The dashed
line estimates the location of the mixing layer.

of the kernel vortices as the pulsed-jet turns into the crossflow. In the failed ignition

case, this outer region of highly reacted gases fails to stabilize. The side-view of

the trajectories shows another feature. The igniting part of the kernel is positioned

towards the windward side, which is consistent with the kernel vortex formation that

is stronger on this side than the leeward side that is protected by the jet itself from the

crossflow. As a result, group I trajectories are found on the windward side, while the

non-igniting group III trajectories are on the leeward side. For the failed ignition case,

there is not much variation in the trajectories of the different groups. This clearly

indicates that the entrainment mechanism that produces the ignition pockets has

failed to stabilize the reaction zone. As a result, fluid particles on the windward side
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also fall in group III. Note that all the trajectories only present an average behavior

of the particles.

The ignition process can also be described in terms of the flame kernel volume,

marked by a region of high progress variable values. For this purpose, the volume

of fluid occupied by different progress variable groups can be tracked as a function

of time. Since values greater than zero are feasible only within the kernel volume,

the sum of all of these group volumes will provide the total flame kernel volume.

Figure 3.10 shows the evolution of the flame kernel volumes for the two cases. The

flame kernel volume defined by progress variable in the range of [0.05, 0.125] is formed

predominantly by entrainment and signals the initial region of ignition. For both

cases, this volume grows with time until t = 0.9 ms, which is the time when these

groups reach the diffusion-limited reaction part of the process. It is seen that at this

stage, excessive straining can quickly quench this initial ignition pocket. On the other

hand, the successful ignition process can make the transition to a diffusion-controlled

flame, which is accompanied by an increase of the flow volume with progress variable

C > 0.125. As this high progress variable region grows in volume, it infuses higher

enthalpy to the inner part of the kernel, causing a growth in the volume of the

C = [0.05, 0.125] group as well.

3.2.3.2 Three-phase evolution of the PJICF non-localized ignition

Combining the observed forced ignition process in the last section, along with

the PJICF dynamics in Sec. 3.2.1, the PJICF non-localized ignition process here can

be summarized by the following schematic in Fig 3.11, which is a 3-phase schematic

similar to the previous definition [2]. Phase 1: An observable reaction is first ini-

tiated within the vortex ring center (0.36 ms) in a homogeneous reaction fashion.

By Lagrangian particle trajectories, this initial reaction should be contributed from

the fuel entrainment from the windward side. Phase 2: The transition period from
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Figure 3.10: Time history of flame kernel volumes defined by different progress vari-
able threshold values. Dots mark the sampled instances same as in
Figs. 3.9.

0.36−1.6 ms is critical for the initial complex-shaped, small flame to stabilize. By the

C iso-surface histories, there are significant flame quenching during this period on the

windward side. By the flame kernel volume history, the kernel volume is gradually

restored after the fast quenching of the initial ignition pocket. Phase 3: As the PJICF

evolves, a propagating flame front is eventually established within the cross-section

plane CVP (1.6 ms), which, shown by the C iso-surface histories, develops into a

horse-shoe shaped flame for a successful ignition, or, gets dissipated for a failed ig-

nition. Combined with the PJICF flow dynamics, the flame propagation mechanism

resembles a swirling flame that evolves along the vortex ring, from the two spwanwise

side edges toward the windward edge and leeward edge, and eventually encompasses
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the entire vortex ring.

Homogeneous Reaction 
Reaction initiation due to fuel 
entrainment on windward side

Transition to Diffusion-controlled Flame 
Flame quenching on windward side and initial 
stabilization along side edges of vortex ring 

Flame Propagation 
Flame propagation along the vortex 

ring in a swirling flame fashion

0.36 ms 0.9 ms 1.6 ms 3.5 ms

windward

leeward

crossflow direction

Figure 3.11: Schematic of the successful forced ignition process of the PJICF kernel:
black line - PJIFC discrete vortex ring; yellow surface - flame surface; red
arrow - motion of flame wrap-up and propagation. For the failed ignition,
the pattern is similar while the flame surface is observably smaller and
more broken since Phase 2, and eventually gets dissipated in Phase 3.
Note that this is a demonstrative plot that does not represent actual size
or detailed shape.

Note that while the 3-phase ignition schematic is summarized here based on a

only few realizations of the ignition process. AS follow-up data-driven analysis using

a large sample of LES simulations confirm that this is the most frequently encountered

ignition pattern in this target configuration, which is later presented in Chapter. IV,

Section. 4.1.5. In the remaining of the thesis, the term “3-phase schematic” will be

used to facilitate the discussion of the forced ignition physics.

3.2.3.3 Numerical predictions of jet fuels forced ignitions

A similar analysis can be conducted for simulation results of Group 2 studies of

different realistic jet fuels. A total number of three jet fuels are tested, i.e., C1, A2,

and C5. The labeling of the fuels are adopted from the National Jet Fuel Combustion

Program [33], where A2 refers to the conventional Jet-A fuel, which serves as the

nominal case here, and C1 and C5 are synthetic jet fuels designed for testing. In the

last section, the interrogated successful and failed ignition cases are chosen to have
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the same initial turbulence but different spark deposit energy. Here, the cases are

chosen conversely, i.e., to have the same spark deposit energy of Ed = 1.25 J (close

to the nominal spark energy) but different initial turbulent flow fields. The cases are

under the operating condition of φ = 0.8.

The OH iso-surfaces of the ignition process of three realistic jet fuels are first

plotted in Fig. 3.12. The time between 0.6 ∼ 2.25 ms is critical for ignition success,

where a small reaction zone is generated through homogeneous ignition, leading to a

ring-like OH-isosurface forming, with the high reaction progress variable concentrated

at the bottom of the kernel and stabilizing on the leeward side of the jet. As time

progresses, this high C region grows to encompass the entire OH isosurface. While

the failed ignition cases show similar initial features (at 0.2 ms), the progress variable

does not increase significantly beyond this time. Similar to Fig. 3.9, the initial flame

stabilization is heavily dominated by the generation of cross-section plane CVP due

to the PJICF flow dynamics. The top view shows an asymmetry in the spanwise

direction, which is realization dependent, with some cases showing stronger ignition

fronts on the left lobe as opposed to the right lobe. Such asymmetry can also be

observed in Fig. 3.9 for Group 1 cases, despite being less prominent.

As a summary, the ignition pattern is qualitatively the same as the methane

ignition, while a few differences and supplemental observations are as follows. (a)

By coloring the OH iso-surface with the C-contour, the propagating flame front is

found to first establish on the leeward (bottom) side of the mid-spanwise plane CVP

(1.5 ms) and later grows to cover the entire flame kernel. Note that this propagating

flame front should not be confused with the initial small flame surface, which is

still formed from the fuel entrainment mainly on the windward side (0.6 ms). (b)

The flame front shape here exhibits asymmetry that is more prominent than that in

Group 1 studies. This could be due to the operating condition differences that, firstly,

the igniter tip here intrudes into the domain and may disrupt the flow pattern, and
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Figure 3.12: Iso-surface of OH mass fraction YOH = 5×10−4 (top) and YOH = 1×10−4

(bottom) colored by progress variable C ∼ [0, 0.075]. Dash line estimates
the location of the mixing layer.

secondly, the asymmetry may get amplified as the reaction here is more sensitive to

the flow dynamics as the global equivalence ratio is lower. (c) The flame propagation

here fails to form a complete horseshoe shape as it fails to propagate back to the

windward side of the kernel at phase 3 of the ignition schematic. This is possibly due

to the chemical properties of the realistic jet fuels being less resistant to turbulent

strain and stretch on the windward side of the vortex ring as it would require a longer

local residence time for the large molecule fuels to decompose and react.

Moreover, there are appreciable differences in the ignition structure for the three

jet fuels. For instance, C1 shows a larger OH iso-surface compared to C5 at 0.2 ms,

but the kernel occupies a smaller volume at later stages. C1 also shows regions of high
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progress variable aligned with the core of the kernel, where the two counter-rotating

pairs (side edges of the vortex ring) meet, compared to C5, which is similar in structure

to A2. In the failed ignition case, C5 exhibits an appreciable reaction even at later

times, but the kernel volume does not grow, indicating that the homogeneous reactions

have not transitioned to a relatively low strain flame region. On the other hand, A2

and C1 fail similarly, with the progress variable dissipating due to entrainment of

the colder fuel-air mixture. However, note that the above results are realization

dependent and should not be over-generalized at this point.

To better understand the fuel effects, the kernel composition is probed, again,

using Lagrangian particles. The particles are initialized within the kernel (H ∼ 2×106

J/kg) when its top edge reaches the main flow. For each LES simulation, a total of

1200 particles are tracked. Multiple LES realizations (NSpl = 15) are simulated for

each operation condition, and here the results are shown for the resulting successful

ignitions. The individual particle trajectories from one of the ignition samples are

first plotted in the physical domain, shown in Fig. 3.13. In contrary to Fig. 3.9

where the trajectories are shown for the grouped particles, here, the flow vortex

structures are better revealed by the individual trajectories especially for the two

side edges of the vortex ring (see bottom right subplot in Fig. 3.13). This provides

a more straightforward impression of where the propagating flame front is initially

established.

The average of the particle trajectories are then re-plotted in the phase space

of interest, as shown in Fig. 3.14, the uncertainty bandwidth is not shown as the

total number of sample trajectories are sufficiently large to distinguish between the

averaged trajectories here. In the left plot, the trajectories are interrogated in the

3D phase space of H − φ − C. The projection onto the H − φ space is identical for

all cases, indicating that mixing is nearly independent of the fuel. The differences

between fuels are seen mainly in the variations of progress variable as a function of
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Figure 3.13: Physical space trajectories of mass-less Lagrangian particles from an
LES forced ignition simulation in Group 2 studies. Plotted every 50th

particles.

time. From the time histories of the progress variable C and the reaction rate ω̇C ,

a spike of ω̇C occurs about 0.2 ms, which leads to the first increment of C. This

should correspond to phase 1 of the forced ignition schematic introduced in the last

section. The reaction is then sharply suppressed after the initial spike, suggesting a

fall-off of reaction rate due to the entrainment of colder flow and turbulent stretch.

The reactions then accelerate after the initial reduction. This period corresponds to

phase 2 of the forced ignition process. During this transition period, it can be seen

that the C5 fuel exhibits the fastest restoration of ω̇C , while the C1 fuel exhibits a

restored value of ω̇C that is significantly lower than A2 and C5. After about 2 ms, the

reaction rates reach a plateau, indicating the transition from homogeneous reaction to

diffusion-controlled flame, which corresponds to phase 3 of the forced ignition process.
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Again, the C1 fuel here exhibits a much lower reaction rate than the A2 and C5 fuel.

Figure 3.13 also shows the time histories of two of the major pyrolysis species. The

Time

C1 A2 C5
dash - 3D trajectories projections onto 2D phase space

blue - C1;     red - A2;     yellow - C5 
solid - ;     dash - C̃ ·̃ω C

blue - C1;     red - A2;     yellow - C5 
solid - ;     dash - X̃ C2H4 X̃ iC4H8

Figure 3.14: Ensemble-averaged phase space particle trajectories collected from all
successful ignition simulations in Group 2 studies at φ = 0.8 and Ed =
1.25 J.

main species is found to be C2H4 for A2 and C5, and i-C4H8 for C1. As i-C4H8 takes

a much longer time than C2H4 to be oxidized [94], this chemical difference explains

the overall weaker ignition strength of the C1 fuel, although pyrolysis products of C1

are generated at roughly the same rate as that for C5.

A summary of the fuel effects is as follows. Overall, C1 fuel exhibits a considerably

weaker ignition process compared to A2 and C5. Fluid trajectory analysis reveals

that the ignition process itself did not affect the fuel-air entrainment into the kernel.

Hence, the observed differences come mainly from the interaction of the chemical

processes with the particular trajectory in phase space introduced by the boundary

and initial conditions. Specifically, the progress variable histories of the three fuels

are qualitatively the same while only different in terms of the magnitude, and the

restoration of reaction rate from the initial reaction fall-off is critical for successful

ignitions. In this regard, C1 exhibits a lower reaction rate the A2 and C5, possibly

due to producing pyrolysis products that do not oxidize easily.
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3.2.3.4 Numerical predictions compared against DNS and Experiment

Although forced ignition has been sparsely studied numerically, Rieth et al. [8]

provided a DNS study under the Group 1 operating conditions, i.e., methane/air

forced ignition under ambient pressure. The results are used here for a qualitative

comparison, as only preliminary results are available in Ref. [8]. The OH contour at

the domain spanwise mid-plane is plotted in Fig. 3.15. The DNS ignition process is

available for up to 600 µs, which corresponds to phase 1 and early phase 2 of the forced

ignition process. The OH evolution demonstrates how the reaction is first initiated

from a side view. At about 100 µs, which is the estimated time for the kernel to reach

the mixing layer (τtransit), OH is first generated at the top edge of the kernel. The

fuel mixing here is achieved via molecular diffusion across the kernel surface. At this

point, the OH concentration appears to be very low. The exact magnitude of the

OH peak mole fraction is not directly comparable between the DNS and LES results

and is possibly very sensitive to the particular time instance chosen for the plotting

relative to the local ignition delay time, at least for the case of the LES results (e.g.,

at 100 µs, the magnitude of the LES OH peak mole fraction becomes 1× 10−5). As

the kernel further enters the main flow, the OH layer is wrapped up around its edge.

This demonstrates that the forced ignition mode here is essentially a homogeneous

reaction under high unburnt temperature, i.e., the reaction closely follows the fuel

mixing process. At 600 µs, the fuel mixing layer is fully entrained into the kernel

around the vortex pairs. While the exact velocity ratio r is unclear for the DNS

study, the kernel is also tilted towards the windward direction.

The LES simulation predicts qualitatively the same process. The main difference

is in the exact time instance/peak OH mole fraction when the comparable patterns

are observed, which is acceptable as the operating conditions are not necessarily the

same, and kernel initialization setups (e.g., the radius of kernel inlet and the enforced

velocity profile) are different for the two simulations. Another difference is the shape
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Figure 3.15: OH mass fraction evolution compared between LES forced ignition sim-
ulation and DNS simulation. The LES operating condition is of Group
1, with φ = 1.1, Tin = 425 K. The DNS operating condition is of Group
1, while the exact values of φ and Tin are not specified in Ref. [8].

of the OH layer appears to be more disturbed for the LES results. This is possibly due

to the fuel stratification effects in the LES main flow, where the mixture fraction inlet

profile is obtained from the upstream cold flow LES. Conversely, the DNS simulation

simplified the main flow to be fully premixed.

For a quantitative validation, the growth history of the flame kernel is compared

between numerical simulations and experimental measurements. The operating con-

ditions are similar to Group 2 studies, but at a higher equivalence ratio of φ = 1.5 as

this is the only experimental data available. The results are plotted in Fig. 3.16. The
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kernel growth is first observed at 1 ∼ 2 ms after kernel injection with an accelerating

rate, which corresponds to phase 1 of the forced ignition process where the flame ker-

nel growth is governed by fuel entrainment. After 3 ms, the kernel growth reaches a

more stable stage, which corresponds to phase 3 of the forced ignition process where

the rate of flame kernel growth is governed by the flame speed. For all fuels con-

sidered, the simulation correctly predicts the ignition trends, with C1 showing the

weakest growth rate. As pointed out in the last section, this arises from the slow

oxidation of initial pyrolysis products.

A2 C5C1

Figure 3.16: Kernel area growth history from 40 samples of successful ignition at
φ = 1.5. Experimental results [6] are obtained from chemiluminescence
images. Numerical results are transformed from the flame kernel volume
(defined by C ≥ 0.275) by assuming a spherical shape. Dash lines and
error bars indicate a 95% confidence interval.

The above comparison against DNS and experimental data, therefore, validated

the LES forced ignition simulation and the unified HR/FPVA tabulation model for

qualitatively and quantitatively reproducing the fuel entrainment, the transition from

an ignition kernel to diffusion-controlled flame, and the propagation of flame front in

the forced ignition process.
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3.3 Performance of Ignition Probability Estimation

This section validates the developed capabilities of ignition probability estimation.

Firstly, the modeling parameters applied in the construction of the response surface

of the conditional ignition probability PI|Ed
, i.e, the first component in the integration

of Eq. 2.17, are validated. Secondly, the calibrated distribution of the spark deposit

energy, i.e., the second component of the integration, is validated. The resulting final

ignition probabilities are as well compared against experimental data for a range of

operating conditions.

3.3.1 Validating the Ignition Response Surface

In the two following subsections, it is validated that the estimated response surface

of PI|Ed
using LES simulation sampling and PCE expansion provides a reasonable and

consistent estimation of the true ignition probability conditioned on the spark deposit

energy, with uncertainties that can be quantified and controlled.

3.3.1.1 Sensitivity study of partition boundary between HR and FPVA

tabulation

Before discussing the response surface of PI|Ed
, the potential modeling error of the

combustion model itself needs to be evaluated. While the combustion model has been

validated in Section 3.2.2 for reproducing the forced ignition physics (mainly for the

ignition success), the robustness of the LES forced ignition simulation in predicting the

ignition outcomes to be success or failure has not been evaluated yet. In particular,

while most of the modeling assumptions of the unified HR/FPVA tabulation are

intuitive (Sec. 2.1.1) and have been validated (Sec. 3.2.3.4), one modeling parameter

that has a potential impact on the ignition outcomes remain questionable, i.e., the

partition boundary between the HR and FPVA tabulation. In specific, the upper

enthalpy boundary of the FPVA tabulation HFPV A,max is transformed from the partial
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extinction temperature Tp (Sec. 2.1.1.2), which is introduced from the counterflow

diffusion flamelet theory that is indirectly related to the forced ignition problem here.

In this section, a sensitivity study of the LES forced ignition outcomes w.r.t. the

HFPV A,max boundary is performed, using the cases of Group 1 studies (methane fuel).

Three levels of the upper enthalpy bound of the FPVA tabulation are tested here,

which are obtained from the temperature bounds (denoted as TFPV A). Precisely,

TFPV A is tested at {1000 K, 1600 K, 2200 K}, as demonstrated in Fig. 3.17. The

highest value of 2200 K is close to the partial extinction temperature of Tp = 2250 K,

which represents the modeling assumption applied in Section 2.1.1.2. The lowest value

of 1000 K is slightly above the HHR,min boundary of Ta ≈ 875 K, which represents a

sharp transition between HR and FVPA. The middle value 1600 K is a compromise

between the two extremes, which serves as a nominal case. Simply by looking at

the contour of ∆tTab, all three cases show a smooth transition from HR to FPVA

tabulation with no prominent differences. To better visualize the difference, the

HR

FPVA

Blended

TFPVA=2200 K

Ta=875 K

TFPVA=1600 K
TFPVA=1000 K

Figure 3.17: Unified FPVA/HR tabulations built using different upper bounds of the
FPVA tabulation. The contour is ∆tTab plotted in h − C space, at
Z = Zst.

percentage of error between different tabulations are shown in Fig. 3.18, which is
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calculated as

ε =
∆tTab − tTFPV A=1600K

Tab

∆tTFPV A=1600K
Tab

× 100%. (3.1)

In general, when the FPVA-based tabulation region is larger, the tabulated reaction

rates are lower. Note that ∆tTab is inversely related to the reaction rate. This suggests

that under the operating conditions in the blended tabulation phase space (i.e., an

unburnt temperature higher than Ta) the rate-limiting effects of fuel mixing and strain

dominate over the rate promoting effects of radical and thermal diffusion.

HR

FPVA

Blended

Figure 3.18: Percentage of error of ∆tTab of different tabulations compared to the
nominal case of TFPV A = 1600 K. Left: TFPV A = 2200 K; Right:
TFPV A = 1000 K.

The potential impact of different enthalpy bounds on the simulated ignition out-

come is further studied. A total number of NSpl = 15 simulations with randomly

assigned initial turbulent flow conditions are performed for each tabulation. All other

operating conditions and kernel parameters are set to a fixed level. The results are

shown in Fig. 3.19. It can be seen that the actual impact of TFPV A on the simulated

ignition outcome is much less significant as the maximum error percentage contour

in Fig. 3.19 may suggest: the case of TFPV A = 1600 K and 1000 K leads to identical
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results; the case of TFPV A = 2200 K predicted one ignition success less than the

other two cases. Statistically, the potential error caused by this modeling setup is

less than the sampling error (Sec. 2.2.4). Physically, this suggests that the ignition

outcome here is more dependent on the development of reaction in the early HR

stage than the transition stage. It is therefore concluded that within the suggested

modeling choice of TFPV A ∼ [Ta, Tp], the LES forced ignition simulations using the

unified HR/FPVA tabulation predict the ignition outcomes consistently regardless of

the specific partition between the two sub-tabulations.
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Figure 3.19: Number of successful ignition predicted using different upper enthalpy
bounds of the FPVA tabulation. The error bars indicate 1−σ of sampling
error from the total number of simulations NSpl = 15.
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3.3.1.2 Convergence study of polynomial chaos expansion

In Section 2.2.4, Eq. 2.28, it has been shown that the PCE truncation error is one

of the modeling uncertainties that contribute to the estimated conditional ignition

probability PI|Ed
, where a formulation that can be explicitly applied to quantify such

error is unavailable. In this section, this error is quantified in the form of a convergence

test. The approach is by varying q in Eq. 2.24, as

RPCE(Ed, O; qi) ≈ |
qi∑
n=0

αnHn(Ed, O)−
qt∑
n=0

αnHn(Ed, O)|, (3.2)

where qi denotes the PCE truncation order being inquired, and the approximation

should approach the true value when qt →∞. In this thesis, all the PCE surfaces are

constructed with qi = 6, and the PCE convergence is tested with qt = 8. The tests

have been performed for each of the response surfaces constructed in the two groups

of studies (Sec. 2.2.2.2). Here, only the two PCE response surfaces in the Group

1 studies are shown, i.e., in the phase space of Tin − Ed (Case I in Tab. 3.1) and

φ−Ed (Case II), whereas the convergence tests of Group 2 studies are not shown but

giving consistent results. The errors between the two PCE expansions are plotted in

Fig. 3.20. For comparison, the corresponding turbulence sampling errors estimated by

Eq. 2.29 are also plotted. The PCE response surface is plotted as well. Both response

surfaces show the consistent trend that the sampling error and PCE truncation error

is highest near the region where ignition probability increases from 0 to 1. Further,

the PCE response surfaces PI|Ed,PCE well capture the sampled ignition probabilities

PI|Ed,Spl (green symbols), and the estimated PCE truncation error is generally smaller

and more sparsely distributed than the sampling error. This validates that the applied

PCE truncation order of q = 6 should be sufficient in this thesis. The PCE truncation

error is also neglected in the uncertainty quantification of the final ignition probability,

as has been explained in Section 2.2.4.
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Figure 3.20: PCE truncation error estimated by Eq. 3.2 (top) and sampling error es-
timated by Eq. 2.29 (middle) and the PCE response surface itself (bot-
tom). The results are shown for Case I in the phase space of Tin − Ed
(left) and for Case II in the phase space of φ− Ed (right).
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3.3.2 Predicting the Final Ignition Probability

The final ignition probability can now be obtained by the convolution calculation

in Eq. 2.17 using the response surface of conditional ignition probability PI|Ed
and

the statistical distribution of the spark deposit energy f(Ed). The former component

has been validated in the above sections, and the latter component is obtained via

the distribution calibration procedure developed in Sec. 2.2.3. In this section, the

performance of this distribution calibration is first evaluated.

As explained in Section 2.2.3, the calibration procedure is essentially to minimize

the L2-norm of the error between the convolved ignition probability and the experi-

mental data, referred to here as the ‘calibration error’. As the experimental measure-

ments also have uncertainties, here, the calibration results obtained using different

subsets of the experimental data (i.e., Case I-V in Tabl. 3.1) are compared against

each other as cross-validation. Figure 3.21 shows the calibration results by the cali-

bration error for different values of mean energy (µEd
) and standard deviation (σEd

) of

the spark energy distribution. The result on the l.h.s. is obtained using experiments

that contain variations in inflow temperature but at constant global equivalence ra-

tio, i.e., Case I., whereas the result on the r.h.s. is obtained using experiments that

contain variation in global equivalence ratio but at a constant inflow temperature,

i.e., Case II. Firstly, it is seen that the mean and standard deviation that minimizes

the calibration error is approximately the same for both Case I and Case II results

in particular for the mean value. This suggests the two experimental datasets have

relatively low uncertainties, and the modeling strategy of distribution calibration is

consistent with the computational framework of LES forced ignition simulation and

ignition probability estimation. Moreover, the mean value that minimizes the calibra-

tion error is close to 1.25 J for both Case I and Case II, which is the nominal energy

deposited by the igniter. This further validates the developed calibration strategy and

the developed coupling method between the kernel and turbulent flow field. Lastly,
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Figure 3.21: Contour of L2-norm error between convolved ignition probability and
experimental measurement calibrated with the Group 1 experimental
dataset of Case I (left) and Case II (right). The triangle marks the
coordinates of distribution mean and standard deviation that minimizes
the calibration error.

it is also seen that as the mean and standard deviation of the distribution deviates

away from the optimal solution, the increment of distribution error is more sensitive

to the variation in the mean value than that in the standard deviation, which makes

sense in terms of the order of the statistical moments.

The resulting ignition probabilities in Group 1 studies is shown in Fig. 3.22 for

results obtained with both sets of calibrated distributions. It can be seen that all

simulated data predict the variation in the probability of ignition reasonably accu-

rately. In particular, the simulations capture the peak in ignition probability followed

by a reduction for both leaner and richer mixtures, and the change in slope noticed

between low and high main flow temperatures is also predicted well. For all cases,

the computed ignition probability, as well as the uncertainty due to the statistical

sampling of the initial turbulence field, cover most of the experimental data.

The same distribution calibration procedure is also performed for Group 2 studies

of Case III-V, as shown in Fig. 3.23. Again, the calibrated mean value is consistent
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Figure 3.22: Comparison of convolved final ignition probability compared against ex-
perimental measurements for Case I (left) and Case II (right) study: blue
- results obtained with distribution calibrated against Case I experimen-
tal data; red - results obtained with distribution calibrated against Case
II experimental data; dash lines and error bars indicate 84.1% confidence
interval (i.e., 1-σ).

among three Group 2 cases, while being slightly lower than that in Group 1 cases.

Interestingly, the pattern of the iso-lines of the calibration error is also similar for

cases within the same study groups but different in between the study groups. Con-

sidering the operating condition differences between the two study groups and the

uncertainties associated with the experimental measurements, the comparison is ac-

ceptable. Besides, the trend of experimental data (symbols in Fig. 3.24) in Group 2

cases are less clear compared to that in Group 1 cases, suggesting larger uncertainties

in the Group 2 calibration results. In this consideration, the spark deposit energy

distribution calibrated against the Group 1 experimental data should be more reli-

able and is therefore applied to calculate the final ignition probability of all (Group

2) cases. More precisely, the Case II calibration result is applied (distribution listed

in Tab. 3.1.2), which leads to the lowest calibration error among all three Group 1

cases.
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Figure 3.23: Distribution calibration results obtained with Group 2 experimental
dataset of Case III (left), IV(middle), and V(right), plotted in the same
fashion as Fig. 3.23.

The resulting final ignition probabilities of Group 2 studies are shown in Fig. 3.24.

For all three realistic jet fuels, the ignition probability compares well with experimen-

tal data. Ignition probabilities over the range of lean equivalence ratios for each fuel

generally increased with increased fuel content. Related back to the observed fuel

effects discussed in Section. 3.2.3.3, since C5 exhibits significant reactivity during

the transition from kernel to propagating flame, it is predicted to have the highest

ignition probability among the three fuels considered here. Since C1 is less reactive

compared to A2/C5 due to its chemical properties, the kernel quenches more easily

due to mixing. The plateau of ignition probability for C1 with increasing equivalence

ratio is an illustration of the limit to the balance between the mixture reactivity and

the cooling effect of that mixture as it is entrained into the kernel.

As a summary of this section, the developed distribution calibration procedure is

validated for providing a statistical distribution of the kernel parameter of Ed that

performs consistently among multiple experimental datasets, and the final ignition

probability successfully predicts the ignition probability for a range of different oper-

ating conditions including, inflow temperature, global equivalence ratio, and realistic

fuel effects.
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Figure 3.24: Comparison of convolved final ignition probability compared against ex-
perimental measurements for Case III (left), Case IV (middle), and Case
V (right) study. Dash lines and error bars indicate 84.1% confidence in-
terval.

3.3.3 Evaluating the Computational Cost

As has been explained in Section 2.2.2.1, the number of LES simulations performed

during the Monte-Carlo sampling per tested operating conditions has a logarithmic

relation to the total number of sampling levels in the Ed-space and a linear relation

to the total number of sampling levels in the tSpk-space. The total computational

cost is then proportional to the number of LES simulations performed during the

Monte-Carlo sampling per tested operating conditions, multiplied by the number of

tested operating conditions, as

NLES = log2(NEd
)×NtSpk

×NO, (3.3)

where NLES is the total number of LES simulation performed in a study, NEd
and

NtSpk
are respectively the number of sampling levels in Ed-space and tSpk-space, and

NO is the number of tested operating conditions.

In the two groups of validation studies presented in this chapter, the sample Ed-

space applied in Group II studies is extended to be larger than that of Group I studies
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to ensure a sampled conditional probability of 0/1 at the lowest/highest sampled Ed

(see footnote in Tab. 3.1.2), which is related to the intrinsic ignition performance of

the tested operating conditions and cannot be controlled before the sampling. To

maintain the same sampling accuracy in Ed-space, the number of sampling cases

for each tested operating conditions is larger in Group II studies (NEd
= 150) than

that of Group I studies (NEd
= 75). For both study groups, the number of sampled

levels in tSpk-space is NSSpk
= 15, and the number of tested operating conditions

in each study group is NOp = 9. The total number of LES simulations are there-

fore NLES = 900 and NLES = 1200 for Group I and Group II studies, respectively.

Later, the initial difference in NLES between the two study groups is compensated

by the mesh size difference (see the footnote in Table 3.1.2) as well as other practical

supercomputing factors such as the parallel computing scaling efficiency. The final

computational cost to perform the LES simulations becomes roughly equal, which is

about 1 million CPUh for each of the two study groups. Other computational costs,

e.g., cold flow simulations, homogeneous reaction and flamelet calculations, PCE-UQ

post-processing, are negligible compared to the Monte-Carlo sampling. Lastly, in a

more straightforward illustration, with 4000 processors, it takes about 3 weeks to

simulate all the study cases listed in Table. 3.1 and obtain the ignition probability

shown in Fig. 3.22 and Fig. 3.24.

The above computational costs remain tractable, mostly due to chemistry tab-

ulation being used in place of full chemistry evolution. Prior studies use at most

25 simulations to construct ignition probabilities [65], which would not have been

adequate for the current analysis. The method developed in this thesis is compara-

tively cheap and allows multiple sources of uncertainties to be included. In general,

an ignition probability prediction using the method proposed here should require a

computational cost comparable to the validation study presented in this chapter. In

particular, the total number of LES simulations of a similar magnitude should be
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expected to achieve a modeling uncertainty comparable to conventional experimental

measurements, independent of the complexity of chemical reactions, while the exact

computational cost should be dependent on the scale of the specific geometry.

3.4 Summary

In this chapter, the developed computational framework is validated using a forced

ignition rig that represents turbulent non-premixed forced ignition in altitude relight.

The validation is performed extensively covering major aspects of the target problem.

The two highlights are as follows: (a) The LES forced ignition simulation using the

unified HR/FPVA tabulation model can reproduce the variability of the ignition out-

come as well as the forced ignition physics comparable to DNS and experimental data.

(b) The ignition probability estimation based on the reacting-flow LES simulations

captures the variability with operating conditions at an acceptable computational

cost.
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CHAPTER IV

Supplemental Studies

In this chapter, two supplemental studies are performed to address unresolved

issues related to the thesis topic. The first one is a data-driven study that focuses

on understanding the effects of turbulence on the variability of ignition outcome.

The second one is a detailed simulation study that evaluates the performance of

existing numerical capabilities in predicting the pulsing kernel introduced by the

aircraft sunken fire igniter discharge.

4.1 Data-driven Analysis of Turbulent Induced Ignition Vari-

ability

In Section 3.2.2.1, the variability of the simulated ignition outcome is demon-

strated to be sensitive to turbulence. As the LES forced ignition simulation has now

been validated to capture fundamental physics, the focus of this section is to under-

stand how such variability is induced by turbulence by analyzing the simulation data.

In specific, the two main questions are addressed here: (a) since turbulence affects

the ignition outcome, it is desirable to pinpoint the turbulence structures that induce

ignition failure in the target combustor; (b) since turbulent ignition and misfire can

themselves occur in different ways, knowing whether or not the combustor has ignited

is not sufficient to precisely characterize the response of the combustor to the sparking
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process. Therefore, a method that identifies ignition and failure pathways would be

useful.

The developed forced ignition LES platform is used to generate a large number

of successful and failed ignition events in the target combustor. The two different

realistic jet fuels of A2 (Jet-A) and C1 are tested here, which were found to ex-

hibit significantly different ignition behaviors in the validation study presented in

Chapter III. Using this data, the cause of ignition failure is evaluated based on a

discriminant analysis that delineates the difference between turbulent initial condi-

tions that lead to ignition or failure. From the discriminant analysis, a compressed

sensing algorithm is then applied to help pinpoint the locations of relevant turbulent

features. Next, a clustering strategy is used to identify ignition success and failure

modes. The results presented in this section are mainly based on a recent study of

Ref. [122].

4.1.1 Configuration & Numerical Setups

The simulation configuration here is the same one applied in Chapter III for

model validation, which has been explained in detail in Section. 3.1.1. The operating

conditions along with the numerical setups are almost the same as the Group 2 studies,

as introduced in Section 3.1.2 (Table 3.1 and Table 3.1.2). However, the following

two adjustments are applied: (a) the global equivalence ratio is raised to φ = 1.1

to increase the ignition probability to about 50%; (b) the spark discharge energy is

further adjusted to Ed = 0.96 J for the C1 fuel and Ed = 1.1275 J for the A2 fuel,

where these energy values are obtained iteratively in a preliminary study to bring

the ignition probability further closer to 50% for each fuel. The reason to have an

ignition probability as close as 50% is to ensure a comparable amount of data samples

for both successful and failed ignitions.
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4.1.2 Forced Ignition Dataset

The LES simulations are used to characterize individual ignition realizations.

Although LES should, in general, reproduce one-time multi-point statistics of the

flow [123], the particular forced ignition problem considered here is well-suited for

the approximation made. Additional justification is provided in Appendix A.1. Be-

low, the generation of the LES dataset is explained.

The 3-D LES results are recorded for a total number of T = 21 times per simu-

lation between 0 and 3.5 ms with points clustered at the early phase of the ignition

process, where each 3-D LES flow field is referred to as a “snapshot”. To ease the ma-

nipulation of data, the unstructured field is interpolated onto a structured grid made

of M = 160 × 100 × 40 grid points with uniform spacing in a domain surrounding

the kernel inlet, given by 74.5 mm × 36.5 mm × 20 mm in the x, y, and z-directions

respectively, which is of a comparable resolution of the original LES grid. For each of

the two test fuels, the whole dataset comprises an ensemble of scalar fields Xt
i ∈ RM ,

where i = 1, . . . , N is the realization index and t = 1, . . . , T is the snapshot

index within each realization. Here, the ignition success/failure occurs not because

of a change in operating conditions, but because of initial turbulent flow condition

variability, which is modeled with the same field initialization strategy as explained

in Sec. 2.2.2.1.

Unlike in the validation study (Sec. 3.1.2), the ignition outcome here is determined

using the maximum field value of the progress variable (C = YH2O+YH2+YCO+YCO2)

at the final simulation time t = Tf = 3.5 ms. At the final time, if the progress variable

value exceeds anywhere in the domain 0.12, the ignition is considered successful. In

turn, if the progress variable value does not exceed 0.05 anywhere, the ignition is

considered failed. It was found that only in a few simulations lead, at t = Tf to a
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maximum value of progress variable between 0.05 and 0.12. Formally,

max (C
t=Tf
i ) > 0.12 =⇒ ∀t,xti ∈ S,

max (C
t=Tf
i ) < 0.05 =⇒ ∀t,xti ∈ F ,

(4.1)

where S and F are the sets of xi containing respectively ignition successes and failures,

and C
t=Tf
i is the final progress variable field for the i-th LES simulation. The total

number of LES realization is N = card(S) + card(F). For A2, S and F have sizes

of 237 and 230, respectively; for C1, the corresponding amounts are 212 and 220.

From the time history of the maximal field value of progress variable for each LES

simulations and each fuel (Fig. 4.1), it can be seen that the criterion clearly demarcates

successful ignition and failed ignition. Some of the simulations had a final maximal

progress variable value that fell in the range [0.05, 0.12]. In that range, it was found

that the maximal value of progress variable was neither continuously increasing or

decreasing, which prevented labeling the realization as ignition success or failure. It is

likely that these simulations correspond to a late ignition or late failure which happens

after 3.5 ms. To avoid polluting the dataset with false success or false failure, these

simulations were discarded. Nonetheless, the discarded cases constitute only a small

portion (∼ 5%) of the total LES realizations.

4.1.3 Data Analysis Strategies

A total of three strategies are applied here to analyze the forced ignition data:

(a) an efficient discriminant analysis combined with a compressed sensing approach;

(b) a conditional averaging of flow dynamical properties near the flame kernel; (c) a

network of ignition success/failure sequence constructed based on K-means clustering.

The first two strategies are leveraged to extract the turbulence structures that cause

of ignition failure (Sec. 4.1.4), whereas the last one is applied to identify the modes

of ignition success and failure (Sec. 4.1.5). The detailed methodologies are explained
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Figure 4.1: Time history of maximal field value of progress variable for all 467 (A2)
and 432 (C1) LES forced ignition simulations labeled as successful (red)
and failed (black) ignition.

in the following three subsections.

4.1.3.1 Discriminant analysis & sparse sensing

The discriminant analysis and sparse sensing are applied to the initial mixture

fraction fields to identify how the initial conditions differ between igniting and failing

cases. This goal is reformulated as follows. Each snapshot in S and F can be

considered as a member of an M degree-of-freedom (DOF) phase space, where M

is the number of grid points (or pixels) present in a single snapshot. The goal is to

determine a small subset of these M dimensions or grid points that plays an important

role in distinguishing whether or not an initial condition will lead to ignition and to

potentially connect this subset to turbulence-based causal features. Ultimately, this

identified subset of grid points should identify locations in physical space related to

high variability in the ignition outcome.

To accomplish this goal, one route is to individually inspect each snapshot and

extract key features that delineate ignition success and failure using expert-guided

analysis. However, since M (as well as N , the number of realizations) can be very
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large, this approach is infeasible. Instead, a more practical route is to employ data-

driven techniques that take advantage of the fact that the ignition outcome for each

initial condition to be analyzed is already known. As such, the technique employed

here (and to be described in further detail below) draws from a method based on

supervised classification and sparse sensing [124, 125]. The method relies on a com-

bination of proper orthogonal decomposition (POD, [126]) and linear discriminant

analysis (LDA, [127]) to eventually produce the desired subset of grid points, termed

sensors, of which there are NS. The term “sparse” here refers to the fact that the

method ensures NS � M . The workflow of the sparse sensing technique can be cat-

egorized into four steps. In step 1, the data in question is organized into classes of

interest, here S and F (as described in Sec. 4.1.2). In step 2, in the usual case that

M � N , the data is pre-processed using a variant of POD known as the method of

snapshots [126]. As a result of the second step, the data is transformed into a so-called

POD-space of K dimensions, where K ≤ N is the number of retained POD modes. In

step 3, LDA is carried out in the POD-space. The LDA vector is obtained as a result

of this third step, which can be interpreted as a visualizable “flow direction” in phys-

ical space (not dissimilar to a POD mode) that discriminates the classes of interest.

Then, in step 4, an optimization problem is solved to produce a sparse counterpart to

the LDA vector, which provides the desired NS sensor locations. Inspection of these

sensors in physical space then facilitates the analysis of turbulence-driven ignition

misfires. This workflow is summarized in Fig. 4.2. Additional detail on the POD

(step 2) and LDA procedure (step 3) is provided below, followed by details on the

recovery of the sensors from the LDA output (step 4).

The LES data is first transformed from physical space into a K-dimensional POD

representation via the method of snapshots [126], as

X i =
K∑
j=1

ai,jφj. (4.2)
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Step 1
Label data

Step 2
POD

Step 3
LDA

LDA Coordinate

Step 4
Sensors

Figure 4.2: Illustration of the sparse sensing workflow. In POD and LDA represen-
tations, red is ignition success and black is failure. In the LDA repre-
sentations (2nd to the rightmost plot), the black line corresponds to the
LDA density conditioned on ignition failure and the red line corresponds
to that conditioned on ignition success. No clear separation is seen in the
first three POD coordinates, but the densities show a clear separation in
the 1-D LDA space, which is the desired outcome. The theoretically ideal
discriminant outcome measured by Eq. 4.3 should yield from two δ-PDFs
located at ±∞ in the LDA space.

Here, φj ∈ RM×1 is the POD basis vector with j being the mode index, which exhibits

the orthogonality feature of φTj φj = δij. The total number of retained POD mode is

denoted by K. X i ∈ RM×1 is the scalar field vector describing the initial turbulent

flow (e.g., Z, C, Ux, Uy, ...) with i being the index of snapshot. As only one snapshot

in each ignition realization (i.e., the initial flow field) is applied for the discriminant

analysis, i here is also the index of the ignition realization (i.e., i = 1, . . . , N). ai,j

is the POD coefficient that describes the transformation from the i-th snapshot to

the j-th POD mode. The POD transformation allows for a significant speed-up in

the following LDA execution, as K�M . The data-driven analysis here is performed

using K = 400 POD modes, which retained 99% of the data variance.

LDA is essentially a supervised classification technique, i.e., to label certain quanti-

ties to one of several classes using a trained “discriminator”. In the two-class problem

considered here, the inputs to the LDA algorithm are the sets of pre-labeled data,

i.e., S (successful ignition) and F (failed ignition), and the output is a single discrim-

ination vector, referred to as the LDA vector w. The LDA vector is an optimal linear
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discriminator in the sense that a projection of the data in S and F onto w generates

the LDA coordinates that best discriminates the classes, where “best” is defined by

the two objectives of (a) maximize between-class distance and (b) preserve within-

class variance. There also exist more complex discriminant analysis techniques such

as non-linear discriminant analysis (NLDA). In NLDA, the data is transformed with

a non-linear transformation and the LDA is applied to the transformed data [128]. It

can be useful to turn to non-linear techniques if the LDA is unsuccessful. Here, the

LDA alone was found sufficient to distinguish igniting and failing initial conditions.

The LDA vector is obtained in the K-dimensional POD space by maximizing the

objective function

L(w) =
wTCBw

wTCWw
, (4.3)

where the K-by-K matrices CB and CW represent the between-class and within-class

covariances, respectively. These are computed using the class-conditional averages,

i.e.

CB = (µS − µF)(µS − µF)T , (4.4)

CW = 〈(a− µS)(a− µS)T | ai ∈ S〉 (4.5)

+ 〈(a− µF)(a− µF)T | ai ∈ F 〉.

Here, µS = 〈a | ai ∈ S〉, µF = 〈a | ai ∈ F〉, and a is the POD coefficient vector with

i being the snapshot (and realization) index. It can be shown that the LDA vector

w is the eigenvector corresponding to the maximum eigenvalue of C−1
W CB [124, 127].

An illustration of effective LDA discrimination has been shown in Fig. 4.2. The

POD coefficients obtained from the individual classes of data are not necessarily

distinguishable in the original POD phase space. The 1-D LDA coordinate here is the

projection of a POD coefficient vector ai onto the LDA vector w, and is, therefore, a
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linear combination of the POD coefficients. In the demonstration of Fig. 4.2, an LDA

vector can be found such that the resulting PDFs (referred to as the LDA densities) of

the projected POD coefficients are clearly distinguished in between the two classes,

suggesting the data can be demarcated. However, even if all LDA vectors fail to

demarcate the classes (e.g., the LDA densities are heavily overlapping in Fig. 4.6),

such an LDA result is still an important piece of information that could be used to

understand the causal mechanism.

The sparse sensors are calculated from the LDA vector. First, the representation

of the LDA vector in the original M -dimensional space, denoted here as s ∈ RM , is

obtained using the POD modes, as

s = φw, (4.6)

where φ ∈ RM×K is the POD basis matrix. Based on the above definition of the

POD-LDA analysis, the s here should represent a single direction (discriminator) in

the M -dimensional space that best discriminates the two classes of interest defined

in the LDA problem with respect to the scalar field snapshots used to generate the

LDA vector. In other words, different snapshots of the initial mixture fraction fields

Z ∈ RM , after being projected onto this s, will be most clearly separated between

the “failure” set and the “success” set. Besides, s is visualizable for a physical in-

terpretation of the original discriminant problem, as every coordinate (or DOF) of

the M -dimensional space is associated with a physical grid point. The magnitude of

each component of s should therefore quantify how a physical grid point contributes

to the discriminator s. Then, a sparse vector ŝ ∈ RM is obtained as the solution to

the optimization problem of

min
ŝ
‖ŝ‖1 s.t. φT ŝ = w. (4.7)
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Upon convergence of the optimization, the sensors are the non-zero elements of this

sparse vector ŝ, and the total number of sensors is denoted here as Ns. Note that

both ŝ and s are similar in that they (a) exist on the original M -dimensional grid,

and (b) produce the same LDA vector w in the POD space. Thus, assuming good

convergence in Eq. 4.7, analysis of the NS sensors (i.e., the non-zero pixels in ŝ)

provides a low-dimensional representation of the discriminative features between the

two classes used to generate the LDA vector w. To elucidate the meaning of the

LDA vector and sensors, the LDA procedure is demonstrated on a toy problem in

Appendix A.3 – examples of an LDA vector and sensors obtained from the mixture

fraction dataset (s and ŝ, respectively), are also shown.

As will be shown in Sec. 4.1.4.2, there is no guarantee for the LDA vector to

be interpretable since it can overfit the input data. Therefore, it is important to

assess classification accuracy (referred to here as the LDA accuracy) on the dataset

used to generate the LDA vector. Note that the classification accuracy here is not

necessarily equivalent to whether the data can be demarcated. For example, the

data can be demarcated by two clearly-separated clouds of points after the LDA

projection, while the data labels within each cloud (class) can still be completely

out of consistency (i.e., the tails of the LDA densities can extend far beyond the

classification boundary). The LDA classification here is performed by computing the

distance between a snapshot ai and the respective means µS and µF after being

projected onto the LDA vector w (i.e., the distance between the corresponding LDA

coordinates). A snapshot closer to the conditional mean of one class in the LDA

space is assigned to that class. Therefore, the classification boundary in the LDA

space is simply at the mid-point of the two conditional means, which is demonstrated

as the dashed line on the rightmost plot in Fig. 4.2. The resulting LDA accuracy of a

certain class is measured as the percentage of data with the correct labels. The LDA

accuracy quantifies the ability of the LDA analysis to recognize initial conditions that
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leads to ignition success and failure. To ensure no overfitting, the sparse version of the

LDA accuracy can be obtained. This step is achieved by generating a dataset using

an element-wise multiplication of each snapshot X i with the sensor locations in the

sparse vector ŝ. Namely, only the data corresponding to the location of the sensors is

kept, with everywhere else is discarded. The LDA classification accuracy in terms of

this sparse dataset then provides a measure of the overall viability and utility of the

recovered sensors. If the sparse classification accuracy is reasonably high, it can be

concluded that the discrimination power of the LDA is not a result of overfitting, and

thus the sensors can be physically interpreted. Otherwise, the corresponding sensors

should not be considered as meaningful.

As a final measure to address overfitting, a cross-validation training strategy is

further applied when computing the sparse sensors. More specifically, a statistical

representation of the sensor locations is obtained by running multiple realizations of

the LDA sensor training (i.e., Eq. 4.7) using randomly chosen subsets of snapshots

from the full dataset. Besides, before each training realization, a single subset is

obtained by removing 15 snapshots at random from both S and F . The 30 removed

snapshots then become the testing set for that training realization where the LDA

accuracy is evaluated. The above ensemble of optimization runs allows for a more

robust analysis of sensor behavior - in particular, the frequency at which a single

grid point is chosen as a sensor can be used to assess sensor importance. Here,

50 realizations of the optimization (i.e. 50 different LDA and sensor outputs) are

performed to assess the sparse sensing results for each fuel.

4.1.3.2 Conditional averaging of near-flame-kernel flow dynamics

The discriminant analysis combined with the sparse sensing isolates turbulent

features that differ between initial conditions that lead to ignition success or failure.

Because that analysis was performed at initial times, it allowed concluding the cause
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of ignition or failure. Following the discriminant analysis, the evolution of the flame

kernel at later times is tracked, to confirm those findings from the aspect of the forced

ignition physics. In this case, conditional averages among the igniting and failing

flame kernels are useful. Note that the surface averaging here is calculated over the

flame kernel instead of the kernel. As has been clarified earlier, in this thesis, the term

“flame kernel” (fluid pocket of high concentration of reaction product) is different from

the term “kernel” (fluid pocket high energy), where only the first concept is closely

related to the forced ignition outcomes and, therefore, chosen as the ignition process

tracker that better suits the study purpose here.

Since the focus is on the interaction between turbulence and the flame kernel, only

quantities at the flame kernel boundary are extracted. The flame kernel boundary is

defined here as the iso-surface of C = 0.02, which was found to be indicative of the

early stages of flame kernel development. However, note that the results presented

later in this study are also broadly insensitive to the choice of the iso-surface value.

The surface is extracted using a standard marching cube method [129]. Different tur-

bulence properties (i.e., vorticity and strain rate) are then extracted and interpolated

at the flame kernel iso-surface.

At every time instance (the same snapshots index within each ignition realization),

the iso-surface area can vary from realization to realization. To avoid biasing the

results towards early ignition cases which have a larger kernel surface area, the plotted

statistics of the quantity ξ are calculated simply as the arithmetic means of the

surface-averaged quantity over different realizations:

ξ̂S(t) = ES(Efksi|S(ξi(t))),

ξ̂F(t) = EF(Efksi|F(ξi(t))),

(4.8)

where ξ̂S(t) (respectively ξ̂F(t)) denotes the near-flame-kernel statistics for successful

(respectively failing) ignition, and E(.) and Efksi(.) are the expectation operators that
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calculate, respectively, the arithmetic average among different realizations and the

surface average over the flame kernel surface boundary. Note that ξ̂S(t) (respectively

ξ̂F(t)) is a time-varying statistic of the quantity ξ for all successful (respectively

failing) cases, with subscript i being the index of ignition realization. To clarify, in

contrary to the LDA analysis, where i is both the snapshot index and the realization

index, here, multiple snapshots are used for each realization, and i is used only as the

realization index. The variances used to quantify uncertainties for ξ̂S(t) and ξ̂F(t) are

also computed in a similar manner.

4.1.3.3 K-means clustering & networks of ignition sequence

Existing data classification techniques are leveraged to identify ignition and fail-

ure modes from the simulations. At every time instance recorded, the snapshots

from different ignition realizations are classified into clusters, such that each cluster

represents an ignition mode. This process is done in an unsupervised manner using

K-means clustering [130, 131], which has been successfully used in a variety of fluid

applications [132–135]. The K-means algorithm takes as an input a number of clus-

ters and subsequently groups the realizations (or snapshots) into these many clusters.

The groups are created such that the variances of the snapshots within a cluster are

minimized. More formally, starting from N data points X = {x1, ..., xN}, one would

like to define Nk clusters C = {C1, ..., CNk
}. Each cluster Ck is an ensemble of data

points and can be characterized by its barycenter, or centroid ck =
∑

x∈Ck
x. The

K-means algorithm solves the following minimization problem

arg min
C

∑
Ck

∑
x∈Ck

d(x, ck)
2. (4.9)

The centroid can then be considered as a representative of its cluster and can be used

for interpretation.
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The K-means clustering relies on two “hyperparameters” that need to be decided

by the user: the number of clusters and the type of distance chosen. For the first hy-

perparameter, there exist indicators that evaluate how suited a candidate number of

clusters is to a particular dataset. However, these indicators should not be considered

as a systematic way of choosing the number of clusters [133], but rather as guide-

lines that should be refined by the user. Here, two different indicators (silhouette

score [136] and X-means [137–139]) were used to determine the optimal cluster num-

ber. Although both methods gave a different cluster number, the results presented in

Sec. 4.1.5 were not sensitive to this choice. In the results shown, the number of clusters

is chosen using the silhouette method, since the number of clusters was lower overall

than the X-means counterpart, facilitating interpretation (see Appendix A.2). The

silhouette and K-means algorithms are imported from the Scikit-learn library [140],

and X-means is imported from the pyclustering library [139]. For the second hy-

perparameter, here, the distance chosen for the clustering is the L2 norm computed in

physical space. While this choice has been sufficient in other applications [132–134], it

is not necessarily ideal. Other distance measures based on image recognition concepts

were investigated [141], though these led to the same conclusions as the ones to be

presented in Sec. 4.1.5.

During each ignition or misfire realization, the 3D data is printed at 21 time

instances. Then, for each fuel, for each type of event (ignition or misfire), and for

each one of the 21 time instances, an optimal number of clusters is computed using

the silhouette method. Note that the number of clusters need not be constant across

time instances (see Appendix A.2). For each fuel, for each type of event, and for each

one of the 21 time instances, the data is clustered. The result of the clustering is

visualized by using the centroid as a representation of each cluster. Since the data

clustered is three-dimensional, the centroid is also three-dimensional. Between each

time instance, a snapshot jumps from one cluster to another. By recording how often
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a realization transitioned between clusters, one can build a probability map of the

ignition sequence. For example, if 90% of the realizations that belong to cluster A

after 1 ms, belong to cluster B after 2 ms, one can infer that the path from cluster A

to B is dominant. This idea is similar to the one developed in Ref. [134], except that

the goal is not to build a reduced-order model of an ergodic system, but to summarize

the evolution of many realizations. The full ignition sequence can be visualized as a

forward-in-time network, where vertices are the centroids and edges are the transition

probability. The network allows quick visualization of different ignition and failure

pathways. For clarity, the networks are not reproduced inside the manuscript of this

thesis.

Different ignition modes can then be interpreted based on the network of ignition

sequence constructed. It should be emphasized that the number of clusters should be

distinguished from the number of ignition modes: a mode refers to a unique physical

mechanism that distinguishes it from other modes. In practice, the same mode can

appear in several clusters in a more or less pronounced form. Identifying modes from

clusters depends on the type of conclusions needed, and requires expert knowledge.

The results shown in Sec. 4.1.5 are the result of this analysis, where the interpretations

are carried out mainly as the following procedure. For each cluster at the last recorded

time (21st), the highest possible pathway that leads to this cluster is found from all

permutations of pathways and is assigned to an ignition mode. In other terms, here,

the total number of interpreted ignition modes Nm equals to that of the clusters at the

last recorded time, which is found to be 2 for all the cases using the silhouette method.

At other recorded times, all the clusters that those highest probability pathways go

through are also assigned to the corresponding ignition modes.
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4.1.4 Cause of Ignition Failure

Using the above data analysis strategies, the first objective is to extract the tur-

bulence structures which most disturb the ignition outcome, i.e. causing the ignition

to fail. The causality is first inferred using the POD-LDA analysis combined with the

sparse sensing, and is then confirmed by the flow dynamics statistics collected near

the flame-kernel. The physical interpretations of the results are presented in the two

subsections below.

4.1.4.1 Influential initial conditions

The LDA densities and sensor outputs corresponding to the mixture fraction for

A2 fuel at t = 0 (the initial condition) are shown in Fig. 4.3. In the top row of

Fig. 4.3, three LDA densities are shown for three different representations of the

input mixture fraction fields. Each LDA density plot contains the results from 50

realizations of the LDA sensor training in Eq. 4.3. The leftmost LDA density plot

corresponds to the projection of the full mixture fraction dataset onto the LDA vector

w. The middle LDA density plot corresponds to the projection of the sparse mixture

fraction dataset (obtained from the sensor locations as described in Sec. 4.1.3.1) onto

the same LDA vector. The rightmost density plot corresponds to another sparse

dataset for a smaller, cropped domain that is more localized around the igniter tip

(see the box in the bottom-right plot in Fig. 4.3) - its purpose is described further

below.

The sensors obtained from the A2 mixture fraction fields achieve overall good

discriminative power. The separation in the LDA densities of different classes, though

not perfectly ideal, is also quite pronounced even in the sparse datasets. This is a

powerful result in itself, as the average number of sensors over the 50 optimizations for

the full and cropped domains is NS = 299.6 and 332.4, respectively. Such numbers

are three orders of magnitude smaller than the original field dimensionality (M =
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Figure 4.3: Top - density of mixture fraction at t = 0 for A2 in the LDA space gen-
erated by 50 different runs. Left corresponds to original data, middle to
sparse data, and right to sparse data computed from runs with a cropped
domain. Bottom - corresponding sensor locations with colors indicating
the sensor frequency (higher frequency means more probable in the cross-
validation sensor training). The highlighted plane indicates x = 0 and
the box enclosing indicates cropped domain bounds.

160 × 100 × 40). In other words, only a few mixture fraction locations at the initial

condition are needed to discriminate between ignition success and failure to reasonable

accuracy in the A2 case. Besides, the corresponding sparse LDA-accuracy (Fig. 4.6)

is also good for the A2 fuel, suggesting its ignition outcome is mostly affected by the

turbulent fuel mixing.

The full domain sensor locations (bottom-left plot of Fig. 4.3) show that most

high-frequency sensors are predominantly (a) contained in the mixing layer, and (b)

located to the downstream (positive x-direction) of the igniter tip (centered at x = 0).

Besides, some of the sensors in the full-domain case are located far downstream of

the igniter and are therefore non-physical. This behavior is a limitation of the sparse
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sensing method and requires physical insight to rule out some of the sensors. In

this consideration, the analysis re-performed but on the cropped domain (bottom-

right of Fig. 4.3) intended to explicitly enforce the sensor locations to coincide with

physical, prior expectations, i.e., domain region closer to the igniter tip. This can be

considered as a user-guided weighting of the near-igniter region, so as to eliminate

potential downstream noise effects on the sparse sensing output. Figure 4.3 shows

that the high-probability sensors in the cropped-domain case are still predominantly

downstream of the igniter, indicating that this region is indeed influential with regards

to A2 ignition outcome.

The experimental studies have already evidenced the influence of the time taken

by the kernel to reach the mixing layer (transit time τtransit) on ignition [5]. There-

fore, it is unsurprising to find sensors located at the mixing layer. What was not

well-established is that the fuel-kernel mixing above the mixing layer is of little im-

portance. This suggests that the non-local effects are solely contained in the mixing

layer, i.e., the fuel entrainment into the PJICF kernel (discussed in Sec. 3.2.1) when

it first reaches the mixing layer are the most influential on the ignition outcome.

Similar observations were made for different geometries in Refs. [2, 46, 65, 142]. The

importance of this downstream part of the mixing layer on ignition is more surprising,

as one would instead expect turbulent structures advected from upstream to be more

influential. A further interpretation is provided below.

The sparse representation of the LDA analysis can only achieve a good LDA

accuracy when a small collection of points in the original domain can be used to

recover a high class-discrimination. For the turbulent forced ignition problem, this is

possible when the ignition outcome is affected by the localized turbulent structures

of large scales. More discussions of this interpretation are presented in the following

section. While the sensors do not provide a physical interpretation by themselves,

they indicate where the flow should be examined - the mixture fraction field should
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be inspected along the streamwise and spanwise directions near the mixing layer.

To this end, the mixing layer height is extracted as the height of the iso-surface of

Z = 0.03. The height is averaged over the igniting and failing initial conditions for

the A2 fuel, and over the streamwise direction, and is shown in Fig. 4.4. It can

y 
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]

Figure 4.4: Left - spanwise profile of mixing layer height averaged over ignition re-
alizations and the streamwise direction plotted for half of the domain.
Right - streamwise profile of mixing layer height averaged over ignition
realizations and the spanwise direction. Igniter tip is at {x = 0, y = 0}.

be seen that the mixing layer is the highest near the centerline which is where the

igniter tip is located. Since the mixing layer height decreases with the streamwise

direction, it could explain why the downstream region is instrumental for A2 ignition.

The main difference between the cases of ignition success and ignition failure can be

seen along the spanwise direction where the mixing layer experiences a steep drop,

especially in the igniting cases. This phenomenon may be the result of a stronger

recirculation caused by the igniter tip (the igniter tip intrudes into the domain for

the Group 2 operating conditions, as explained in Sec. 3.1.2), which will in turn aid

the entrainment of fuel into the kernel.

To validate this interpretation, near-flame-kernel turbulent statistics are used.

The instantaneous vorticity magnitude ω averaged over the realizations of ignition

success and ignition failure is computed using Eq. 4.8. Figure 4.5 shows the resulting

ω̂S(t) and ω̂F(t) for both fuels. At 0.4 ms (when the kernel bottom first enters the

main flow, see Fig. 3.12), higher values of vorticity appear to promote ignition. At
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Figure 4.5: Time evolution of the mean vorticity magnitude at the iso-surface C =

0.02 for A2 (blue) and C1 (red) and averaged over the ignition success
cases (solid) and the ignition failure cases (dash). The line plots are
interpolated from values at recorded time instances (symbols, with error
bars that represent statistical uncertainties) to ease visualization. The
subplot represents zooms in the region of interest.

that time, the main vortical structure is the vortex ring generated by the PJICF

kernel (Sec. 3.2.1), which entrains fuel. It can be concluded that fuel entrainment is

an important driver for the ignition of A2. This contrasts with C1, where higher high

values of vorticity do not promote ignition. At later times, large values of vorticity

are detrimental to ignition for both fuels.

4.1.4.2 Cause of ignition failure for different fuels

The sensor procedure for the initial mixture fraction field was also carried out for

the C1 fuel. The LDA density from the full-domain case, again for 50 realizations

of the algorithm, as well as associated LDA accuracies for success and failure (along

with the accuracy for the full domain case for A2 shown in Fig. 4.3) are shown in

Fig. 4.6. As opposed to A2, the sparse LDA is significantly less accurate (right plot

in Fig. 4.6). The minimum of C1 sparse LDA accuracy for both success and failure

reaches the 50% mark, which is very close to the designed ignition probability of the

dataset. Thus, the C1 sensors for initial mixture fraction do not provide any real
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Figure 4.6: Left - LDA densities of sparse dataset using initial mixture fraction fields
for C1 fuel (all 50 realizations of algorithm shown. Right: mean LDA
accuracies of the full-domain sparse dataset for A2 (blue, corresponding
LDA densities are plotted in Fig. 4.3) and C1 (red) for mixture fraction
fields at t = 0. Error bars indicate maximum and minimum values from
the various runs.

level of discrimination power. This reveals a key difference in the flow structures that

drive ignition between the two fuels, which is interpreted below.

The sparse classification is based on a representation of the LDA vector in the grid

coordinate space (i.e., s ∈ RM) with a sparse vector. Since representing small scales

requires more grid points than large scales, it can be expected that the sparse vector

will perform better when representing processes that are dominated by the larger

structures in the flow. If the scales that drive the ignition outcome are too small

to be efficiently resolved by the sparse vector, then the classification is expected to

be ineffective. This motivates the hypothesis that C1 ignition is more influenced by

small scales, while A2 is influenced by larger structures.

To verify this hypothesis, near-kernel strain-rate statistics are examined. This

time, the magnitude of the strain rate tensor S is averaged over the flame kernel

surface and plotted for all of the igniting and failing cases for both fuels in Fig. 4.7.

Similar to the mean vorticity magnitude history (Fig. 4.5), here, most of the differ-

ences between fuels can be observed at 0.4 ms, which corresponds to the early phase

of ignition (see Fig. 3.11 and Fig. 3.12). At this time, for C1 fuel, the strain rate is

about 30% higher for failing cases than for igniting cases. A similar discrepancy in

strain rate for igniting and failing cases for A2 is not observed. Vorticity is indicative
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Figure 4.7: Time evolution of the mean strain magnitude at the iso-surface C = 0.02

for A2 (blue) and C1 (red) and averaged over the ignition success cases
(solid) and the ignition failure cases (dash). Plotted in the same fashion
as Fig. 4.5

of an organized turbulence structure while strain rate can be associated with any

type of velocity gradient. This supports the fact that an organized structure such as

recirculation may be more influential in the case of A2 as compared to C1.

4.1.5 Modes of Ignition Success and Failure

In the previous section, the types of turbulent structures that affect the ignition

outcome were identified in the case of A2 and C1 fuels. However, the realization-

to-realization variability is not only limited to changes in ignition outcome, but to

variation in the process by which the ignition outcome occurs. In other terms, the

combustor can experience different ignition and failure modes which can lead to dif-

ferent types of behavior for the combustor. Therefore, knowing what ignition and

failure modes are possible in a given combustor is essential for design purposes. In

this section, it is shown how the data generated can be used to identify the different

ignition and failure modes through the clustering technique. The results are presented

and discussed in the three subsections below.
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4.1.5.1 Ignition Success Modes

First, all the progress variable snapshots that correspond to ignition realizations

are clustered. While only the mid-spanwise plane of the centroids are shown here,

the clustering is done with the 3-D data. Only three recorded time instances from

each mode are shown here that corresponds to different phases of the forced ignition

process. The probabilities mentioned here are based on the size of the cluster at the

last time instance.

Two main ignition paths are found for C1 and are shown in Fig. 4.8 as a sequence

of centroids at select time instances. Mode 1 is the most common ignition mode and is

found to occur about 95% of the time (202 realizations out of 212). The ignition mode

can be described as follows: ignition starts in the counter-rotating vortex pair (i.e.,

the mid-spanwise plane CVP, as introduced in Sec. 3.2.1) of the emerging kernel; then,

the windward side (upstream) of the vortex ignites while a continuous roll-up of on

the leeward vortex mixes the surrounding fuel with the hot kernel; eventually, ignition

develops in the leeward vortex. This mode is similar to the previous descriptions from

LES simulations with detailed chemistry [102]. Further, by comparing the 3-D flame

surface to the forced ignition physics found in Section. 3.2.3.2 and Section. 3.2.3.3, it

can be seen that this mode well-corresponds to the typical 3-phase ignition schematic

summarized in Fig. 3.11: the ignition first takes place due to fuel entrainment on the

windward side; then, the initial flame surface on the windward side is quenched, and

the propagating flame front is established within the cross-section plane CVP (out of

the plane of Fig. 4.8); at a later time, the flame propagation eventually reaches the

leeward side of the kernel. Note that the ignition progresses here faster than that in

the Group 2 validation studies in Sec. 3.2.3.3 due to the higher global equivalence

ratio. Conversely, Mode 2 is found to occur only 5% of the time (10 realizations out

of 212) and exhibits unique features. As the kernel emerges, the mid-spanwise plane

CVP is heavily tilted with the windward vortex being located at a lower y-location
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Ignition Success, C1 Ignition Success, A2
0.6 ms 1.5 ms 2.75 ms 1 ms 2 ms 2.75 ms

Figure 4.8: Mid-spanwise planes of progress variable centroids that correspond to
Mode 1 (top) and Mode 2 (bottom) for ignition success of C1 (left) A2
(right), at different time of the ignition process.

than the leeward vortex. This behavior leads to a breakdown of the kernel which

ignites only on the windward side, which will be further discussed in the later section.

As shown in Fig. 4.8, A2 also exhibits two main ignition paths, but the differences

between these two modes are not as pronounced as for C1. Both modes of ignition of

A2 resemble Mode 1 of C1, as well the 3-phase ignition schematic in Fig. 3.11. The

only difference between the two A2 modes is that the progress variable in Mode 2 is

higher than that in Mode 1 at each of the reaction phases, which leads to an overall

stronger ignition. Out of the fuels studied, C1 is the only one that exhibited kernel

breakdown which suggests that it is the most affected by small and disorganized

turbulence structures. This observation is consistent with the analysis of Sec. 4.1.4,

where it was found that C1 was influenced by smaller turbulence structures than A2.

4.1.5.2 Ignition Failure Modes

By clustering the progress variable field for all the failed ignitions, two main

ignition paths are also identified for A2 and C1. For C1, the ignition failure modes

shown in Fig. 4.9 are similar to the ignition success modes in Fig. 4.8. In the case of

Mode 1, the progress variable grows first in the windward vortex and then the leeward

vortex. However, the progress variable growth is too slow to counteract thermal
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Ignition Failure, C1 Ignition Failure, A2
0.6 ms 1.5 ms 2.75 ms 1 ms 2 ms 2.75 ms

Figure 4.9: Mid-spanwise planes of progress variable centroids that correspond to
Mode 1 (top) and Mode 2 (bottom) for ignition failure of C1 (left) A2
(right), at different time of the ignition process.

energy dissipation. In Mode 2, the kernel experience the same tilting as described

in Sec. 4.1.5.1 which later leads to a vortex breakdown. A notable difference is that

Mode 2 is observed for 27% of the realizations (59 realizations out of 220), while it

was observed for 5% of the successful ignition realizations. When a kernel breakdown

occurs (69 realizations in total), it can be favorable to successful ignition (15% of the

time) but much more often leads to failed ignition (85% of the time).

In the case of A2, although the paths appear separate, the kernels are in a similar

state, which is again similar to the successful ignition modes. Slight differences in

the value of the progress variable can be identified between the two modes. Overall,

the values of the progress variable are lower all the way through the failed ignition

sequence compared to the successful ignition sequence. It can be concluded that the

early phase of the ignition process is instrumental for the ignition outcome. This

observation is in line with other work [2, 46, 65, 142].

4.1.5.3 Causes and effects of kernel breakdown

From the analysis of the previous subsections, it appears that C1 differs from A2

because the kernel can experience a breakdown at the later phases of the ignition

process. Here, the causes and the consequence of the breakdown are further detailed.

First, the breakdown mechanism is investigated by clustering the temperature field
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following the same procedure as used for the progress variable. Figure 4.10 shows the

mid-spanwise plane of the temperature centroid corresponding to Mode 1 and 2 for

the ignition and failure of C1 at 0.6 ms. At this phase, the kernel has just entered

the main flow and started tilting and the advancement of the combustion is visibly

different. In Mode 1 (typical ignition schematic), the entire vortex ring is hotter than

in Mode 2 (kernel breakdown) which could act as a viscous buffer that would prevent

the kernel from being exposed to turbulent fluctuations.

Ignition Success  
0.6 ms

Ignition Failure 
0.6 ms

Figure 4.10: Mid-spanwise planes of temperature centroids that correspond to Mode
1 (top) and Mode 2 (bottom) for ignition (left) and failure (right) of C1,
at t = 0.0006s.

While the probability map cannot determine the root cause of the kernel break-

down, they can be useful for identifying in the dominant flow quantities. One can

construct a network of the ignition and failure of C1 for other quantities than the

progress variable. For each quantity, the time at which the two ignition modes appear

can be used to infer what causes the kernel breakdown. The networks and the time

where the split occurs are shown in the Supplementary Material. Table 4.1 shows

the time at which the two ignition paths appear for each quantity clustered. Here,
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Table 4.1: Time instances at which the two ignition and failure path can be dis-
tinguished in the ignition network constructed by clustering the vorticity
magnitude ω, the progress variable C and the mixture fraction Z.

ω C Z
Ignition 0.08ms 0.3ms 0.6ms
Failure 0.08ms 0.25ms 0.4ms

the clustering is done for the vorticity magnitude (ω), the progress variable (C), the

and mixture fraction (Z). It is found that the earliest path divergence (i.e., earli-

est recorded time when the highest probability paths of different modes go through

different centroids) is observed in the vorticity field, whereas the latest divergence is

observed in the mixture fraction field. Therefore, it can be concluded that the kernel

breakdown is really due to a vortical structure that affects the kernel growth rather

than a fuel-feeding mechanism.

To evaluate the effect of the kernel breakdown, the maximal temperature over the

computational domain is tracked for C1 cases (Fig. 4.11). In cases of ignition success,

the volume occupied by the products (defined as the volume of computational cells

where C > 0.1), is also tracked (r.h.s. of Fig. 4.11). It can be observed that Mode

2 (kernel breakdown) leads to the most extreme ignition success and ignition failure

events. If a failed ignition occurs, it is fastest when the kernel breaks. In cases of a

failed ignition, the reaction rate is too slow to counteract mixing. Therefore, enhanced

dissipation leads to faster ignition failure. Conversely, if the ignition is successful, the

kernel breakdown leads to a high maximal temperature and larger fuel consumption.

The larger kernel volume is not due to an earlier ignition since products always appear

around the same time of O(τtransit). Instead, the fuel consumption is more distributed

in space. This effect of increasing turbulence was also observed in other studies [143],

where larger integrated heat release was recorded in case of intense turbulence. The

larger maximal temperature could be explained by a more intense fuel-kernel mixing

which, in this case, overcomes the heat dissipation. In the past, it was found that
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increasing turbulence could decrease the maximal temperature [144]. While this is

also true on average here, the finer analysis conducted here reveals that turbulence

can lead to high temperatures depending on the flow characteristics.

Figure 4.11: Left - time history of maximal field value of temperature for realizations
labeled as ignition success (red) and ignition failure (black). Right -
time history of the volume of flame kernel defined by the volume of
computational cells with C > 0.1, for ignition success cases only. Thin
lines denote Mode 1 (typical ignition schematic) and thick lines denote
Mode 2 (kernel breakdown).
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4.1.6 Summary and Conclusions

The realization-to-realization ignition variability of two realistic jet fuels (A2 and

C1) observed with multiple LES simulations were analyzed using a range of data-

driven analysis methods. The four highlights are as follows: (a) Using discriminant

analysis combined with a sparse sensing approach, it is possible to identify that the

entrainment of fuel in the kernel is crucial for the ignition of A2. (b) In the case

of C1, the same discriminant analysis is not interpretable because the ignition was

found to be dependent on the flame extinction through strain induced by small scale

features. This finding highlights how the mechanisms that lead to ignition can be

different for different fuels operated in the same geometry. Therefore, the design of

aircraft engines regarding altitude relight may need to be revisited when alternative

jet fuels are introduced. (c) With a data clustering analysis, it is found that two

ignition success and failure modes can be observed for C1. One of the modes appears

to be the result of an early kernel tilt which later results in kernel breakdown. Two

ignition success and failure modes are also observed for A2, albeit being similar to

each other. The difference lies in the strength of the ignition. (d) When the kernel

breakdown occurs for C1, it leads to the most extreme ignition successes and failures.

During ignition success, the kernel breakdown allows a distributed ignition over space

and the kernel temperature is larger than when the breakdown does not occur. On

average, ignition failure is more likely than ignition success when a kernel breakdown

occurs.

The capabilities of the developed computational framework of turbulent non-

premixed forced ignition are well-exploit and demonstrated in this study, where high-

fidelity forced ignition data can be efficiently populated. Combined with state-of-the-

art data-driven analysis, a detailed description of realization-to-realization variability

for realistic jet fuel turbulent non-premixed forced ignition becomes possible and can

be used in a realistic setting to refine the design of an aircraft engine. When com-
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bined with the domain knowledge of the combustion process, these simulation and

data analysis techniques provide extensive insight into the mechanisms that drive the

ignition in such devices. An interesting extension is the application of these tech-

niques to experimental data of gas turbine combustors, which will be pursued in the

future.

4.2 Detailed Simulation of Aircraft Sunken Fire Igniter Dis-

charge

In Section 2.1.3, it was discussed that conventional methods to represent the spark

discharge as a volumetric energy source is challenged by the high-energy aircraft spark

igniter discharge. As a result, an alternative approach (Sec. 2.1.3.2) is applied as the

coupling between the ignition kernel and the turbulent flow field. Further, the distri-

bution of the kernel parameter Ed is obtained using a calibration method (Sec. 2.2.3)

during the ignition probability estimation. While these strategies are able to suc-

cessfully reproduce the shape and dynamics of the PJICF kernel, as well as the final

ignition probability, the methods rely on modeling parameters to be constrained by

experimental data (e.g., Schlieren imaging and experiment measured ignition prob-

ability), which are not always available or may partially compromise the accuracy

of the prediction. In this regard, the numerical capabilities that provide a forward

prediction of the spark-induced kernel without targeting any of those experimental

measurements by simulating the gas expansion process immediately following the

spark discharge, would be ideal. Note that the igniter geometry and nominal dis-

charge energy are still required in this case, but those can often be easily measured.

Namely, from the aspect of prediction vs. calibration, which has been discussed in

Sec. 2.3, it would be beneficial here if the spark deposit energy distribution can be

predicted with existing numerical capabilities, which allows an important modeling
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component to be treated as predictable instead of uncertain variable.

In this section, a preliminary study is presented to evaluate existing numerical

capabilities in performing such a forward prediction. More specifically, the high-

temperature gas expansion within the cavity of the target aircraft igniter is simulated

using high-fidelity methods. Three commonly applied strategies are tested to resolve

the issue of the temperature limit of the thermodynamic model when simulating the

high-energy spark discharge. Preliminary results are shown for these methods along

with a qualitative comparison against experimental measurements.

4.2.1 Experimental Configuration

4.2.1.1 Sunken fire igniter

The same target igniter applied in previous chapters is tested in this study. To

isolate the spark discharge from other effects, the igniter is mounted in a quiescent

environment of atmospheric condition (1 atm, room temperature), and is enshrouded

in an acrylic tube as a protection measure in the corresponding experimental study [9].

A schematic of this configuration is shown in Fig. 4.12. As has been explained in

Section 2.1.3.1, the configuration here features a sunken fire igniter, where the spark

discharge takes place within a confined region, and the thermal expansion following

the spark discharge would force a high energy flow pocket (i.e., the kernel) to be

ejected into the domain. The high-fidelity simulation applied here aims to capture

such effects. Note that while the external dimensions of the igniter are accurately

known here, the inner dimensions are not known due to the proprietary design of the

igniter. In this study, the inner dimensions are set based on a qualitative estimation

by the experimental collaborator (Sfrozo, personal communication, 2019). The exact

values are not presented since these simulations are qualitative in nature. Regardless,

knowing the exact dimension is of secondary priority for this study, as the goal here

is not to reproduce the quantitatively same spark-induced kernel, but to qualitatively
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evaluate the performance of existing numerical capabilities.
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Figure 4.12: The target aircraft sunken fire igniter mounted in a quiescent environ-
ment.

4.2.1.2 X-ray diagnostics of kernel status

The x-ray diagnostic techniques applied in the experimental studies are briefly

explained here for a better understanding of the experimental data. Due to the

strong electromagnetic interference and light emission of the aircraft igniter discharge,

conventional optical-based diagnostics are inapplicable to measure the kernel status

shortly after the discharge. The x-ray beam is much less sensitive to scattering and can

thus provide quantitative data inside optically incompatible flow fields, and is applied

in the corresponding experimental study [9]. One feature of the x-ray measurement

is that each measurement, which corresponds to a spark discharge, is a line-of-sight

probe of the gas field taken at a fixed incident location. Therefore, it is impossible

to record the spatial distribution of the kernel property from a single spark discharge
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sequence with the x-ray beam. Instead, the spatial distribution is reconstructed on a

raster grid of measurement points (see Fig. 4.13), where the time sequence of the spark

discharge at each point is recorded, one point at a time. Further, to reduce the shot-

to-shot uncertainties, the time histories at each point is measured as the ensemble

average of multiple realizations of the spark discharge sequences. Therefore, the x-

ray data depict neither the spatial nor temporal profile of the kernel for an individual

discharge sequence, but instead the ensemble kernel behavior following the spark

discharge.

raster grid

Figure 4.13: Illustration of x-ray diagnostics of kernel status reproduced from Ref. [9].
Top - top view of the x-ray radiography layout. Bottom-left - raster
grid of experimental measurements. Bottom-right - a snapshot of the
gas displacement contour reconstructed on the measurement grid using
multiple spark discharges.

The direct output of the x-ray measurement is the decay of the light intensity of

the x-ray beam along its pathway, which is then converted to the gas displacement
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using the Beer-Lambert law [145], as

L:(x, y, t) =

l∫
0

ρ0 − ρ(z)

ρ0

dz = − 1

µρ0

ln
I0(x, y)

I(x, y, t)
. (4.10)

Here, L is the gas displacement, µ is the photoelectric absorption coefficient, which

applies a constant value in Ref. [9], I is the measured beam intensities, and ρ is the

density. The subscript 0 denotes the baseline value measured from the ambient gas

without the presence of the kernel.

The gas displacement L is a critical property that reveals the size, shape, and

trajectory of the kernel. By the mathematical definition, L is dependent on the

line-of-sight density variation induced by the kernel. Physically, L > 0 means gas

expansion, L < 0 means compression, and in the most extreme condition, where

the hot gas density approaches to zero (vacuum), L approaches the length of the

vacuum space occupied by the kernel in the line-of-sight direction. Therefore, L is

a measure of the kernel size. In this study, L is reconstructed as a time series of

2-D contours on the experimental measurement grid, which is applied to visualize

the kernel shape and trajectory. An illustration of this visualization is provided in

the bottom-right of Fig. 4.13. Further, the kernel size can be applied to evaluate the

total amount of thermal energy carried by the kernel into the domain external to

the igniter cavity [9]. Therefore, L is used in this study as the property to evaluate

the performances of different spark discharge simulation strategies. The numerical

version of the gas displacement is computed by post-processing the simulation output,

which is explained in Section 4.2.2.3.
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4.2.2 Numerical Methods

4.2.2.1 Simulation domain

A schematic of the simulation domain is shown in Fig. 4.14, which consists of

a section of the experimental test tube with Neumann boundary conditions applied

at both ends. In prior to the main simulations, preliminary simulations have been

performed to determine the sufficient domain scale and grid resolution. A fixed grid

embedding strategy is applied for mesh refinement, which is concentrated near the

igniter tip, in particular, within the igniter cavity, which has the grid size of O(1.25×

10−4) m. The boundary condition at the wall features a non-slip velocity. As a

Figure 4.14: Schematic of simulation domain with pre-set, region-dependent grid re-
finements, with L0 and L4 being respectively the base grid and finest grid
(O(2.5×10−4)). The rectangular region with L3 refinement corresponds
to the x-ray measurement window.

preliminary case, a fixed temperature of 300 K is applied at the igniter surface, while

a more realistic setup should consider conjugate heat transfer due to the presence of

high-temperature gas. The simulation is initialized from quiescent flow at atmospheric

conditions. The flow motion is driven by the thermal expansion induced by the

energy rise, which is introduced into the simulation domain, at the beginning of the
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simulation with details to be explained in Sec. 4.2.3.

4.2.2.2 CFD solver & Flow Modeling

A density-based compressible solver implemented in the commercial CFD plat-

form CONVERGE [146] is used. The transport equations for mass, momentum,

species, and total energy are solved in the LES framework. The dynamic Smagorinsky

model [89] is applied to provide closures for the LES equations. The pressure-velocity

coupling is achieved using the PISO algorithm [99] and a compressible pressure cor-

rection equation. A second-order-accurate spatial discretization scheme [147] is used

for the governing equations with a fully-implicit first-order-accurate time integration

scheme. The time step during the simulation was automatically determined based

on the Courant-Friedrichs-Levy (CFL) numbers defined by the speed of sound, which

is constrained to be lower than 1.0. The solver along with similar setups has been

successfully applied to simulate high-temperature, high-speed flows that include dis-

continuities [148], which is similar to the test case here.

The equation of state of the gas mixture is closed using the ideal gas assumption.

As a starting point, the gas phase is treated as a non-reacting mixture of O2 and

N2, while more realistic effects require the inclusion of reactions of thermal dissoci-

ation/ionization. The thermodynamic modeling applies the polynomial fittings from

the NASA CEA [149], which is defined up to 20, 000 K. Such modeling closures serve

as the best available approximations that are compatible with existing combustion

simulation frameworks. Further improving the modeling fidelity (e.g., the inclusion

of thermal-non equilibrium, plasma kinetics) would be nontrivial, which requires pro-

fessional knowledge of high-energy plasma and additional coupling between the “non-

conventional” thermodynamic model with the “conventional” combustion simulation

framework. For the scope of this study, the goal is to evaluate the best performance

of the existing modeling strategies without such additional efforts. Regarding this,
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more details are discussed the Section 4.2.3.

4.2.2.3 Post-processing techniques

To compare the simulation results against the experimental x-ray data introduced

in Sec. 4.2.1.2, the numerical gas displacement needs to be reconstructed. For this

purpose, the line-of-sight integration in Eq. 4.10 is calculated using the simulation

output density field. To enable the line-of-sight integration calculation, the simulation

density field is mapped onto a structured grid with one of the local grid coordinates

aligned with the line-of-sight integration direction. The resulting integration output

is therefore the numerical gas displacement measured from one incident angle.

Since the CFD simulation is deterministic, the output is not directly comparable

to the ensemble kernel behavior of the x-ray data, which is the ensemble result of

multiple spark discharge sequences. To partially resolve this issue while maintaining a

low computational cost, the uncertainties associated with the spark discharge process

is assumed to be only contributed from the variability in the position where the

electric arc channel is formed. More specifically, the initial arc channel is assumed to

follow a uniform distribution around the circumference of the igniter inner side wall

(more details presented in Sec. 4.2.3). Then, by taking advantage of the symmetry of

the geometry, the ensemble gas displacement can be approximated by averaging the

numerical property reconstructed from a single simulation but using a discrete series

of incident angles, as illustrated in Fig. 4.15.

4.2.3 Test Cases of Different Energy Deposition Strategies

Unless the simulation includes a thermal non-equilibrium modeling of the high-

temperature plasma, existing energy deposition methods in a spark discharge ignition

simulation will encounter the issue of energy breach. Namely, the energy density

at the early phase of spark discharge is higher than the upper energy limit of the
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Figure 4.15: Numerical gas displacement measured from different incident angles. A
total number of 3 incident angles are shown (3 cutting planes). The
same 3-D schematic is plotted from two viewing angles (left and right)
to provide a better illustration. In the actual post-processing, the final
ensemble gas displacement is calculated as arithmetic average of the
property measured from a total number of 60 incident angles.

thermodynamic model, which needs to be avoided as the simulation will either make

unreliable predictions or even fail due to the non-physical thermodynamic properties

extrapolated outside the upper thermodynamic limit. This section briefly discusses

commonly applied strategies that resolve the issue within the conventional combustion

simulation framework.

Based on the spatial distribution of the imposed energy source, the ED strategies

can be categorized mainly into: (a) a line source; (b) a volume source. The line

source deposits the spark discharge energy into the computational cells overlaps with

the electric arc channel, which can be either prescribed or tracked using Lagrangian

particles. Due to practical concerns of computational cost, the applied computational

control volumes that overlap with the electrical arc often have a cell size greater than

the arc channel radius O(0.1) mm [100], which is theoretically improper for resolving

the shape of the arc channel, but technically mitigates the issue of energy breach as

the effective radius of the channel becomes greater than actual physics. The volume

source, on the other hand, deposit the spark discharge energy into a spatial region
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occupied by the kernel expanded from the initial electric breakdown, which is often

prescribed based on the observed or presumed shape of the kernel at a certain time

after the discharge. Therefore, the line source is more physical than the volume source

in terms of better retaining the initial shape of the kernel. However, the line source

also faces a higher risk of energy breach compared to the volume source, as the spark

discharge energy is initially deposited into a much smaller volume.

Apart from adjusting the spatial distribution of the ED energy source, other aux-

iliary methods help overcome the energy breach. One straightforward method is to

simply clip off the energy source when the local energy is about to breach the upper

energy limit of the thermodynamic model. This method is implementation friendly,

and is the default option in CONVERGE, which is here referred to as “harsh en-

ergy clipping”. The harsh energy clipping along with the line source has been used

to successfully model the IC engine spark discharge [100], where the spark nominal

energy is much lower than that in this study. Here, the harsh energy clipping may

lead to non-physical results by removing too large of a portion of the energy. Another

more physical method is simply to allow the energy to breach and later relax to a

lower value via thermal expansion and heat dissipation. As for the thermodynamic

modeling, all the other energy-dependent thermodynamic properties are clipped at

the upper energy limit during the energy breach. This method is referred to here

as the “soft energy clipping”, as it is capable of conserving the correct amount of

transported energy within the domain.

Based on the above discussions, a total number of three ED strategies are tested

in this study, as listed in Table. 4.2. Case I and II applies a line source, but each with

a different energy clipping method of harsh and soft, respectively. Case III applies

a volume source. For Case I and II, the discharge profile applies a constant power

profile of 1.24 J of energy over 40 µs [5]. The line source geometry is prescribed at a

fixed displacement within the igniter cavity. In reality, the arc channel has curvature
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and can be elongated due to flow motion. Here, since little prior information is

provided for the physics within the igniter cavity, the line source here is assumed

to be a straight line displaced along the inner side wall of the igniter. For Case

III, the same 1.24 J amount of energy is uniformly distributed within a cylindrical

region inside the igniter cavity. The volume of this region is relaxed to a critical value

estimating using a constant volume PSR calculation, which leads to a post-discharge

temperature just below the upper temperature (energy) limit of the thermodynamic

model. The critical volume is found to be 4.1× 10−8 m3, which is close to the entire

igniter cavity volume. In comparison, the effective volume of the line source in Case

I and II are only about 4× 10−10 m3. Besides, the discharge of the volume source in

Case III is set to be infinity fast. This is to “freeze” the flow field during the energy

deposition to avoid the energy breach induced by the local density drop - an effect

that cannot be taken into account by the PSR calculation.

Table 4.2: Energy deposition strategies applied in different test cases.
Case ID Source Distribution Energy Breach Treatment Discharge Profile

I line source harsh energy clip const power
II line source soft energy clip const power

III volume source
critical volume estimated from
const volume PSR calculation

infinitely fast

4.2.4 Preliminary Results

Only preliminary results are currently available. The first part of the results shows

a qualitative comparison of the pulsing kernel shape and trajectory compared against

the x-ray measurement using the three different ED strategies. The second part shows

an analysis of the thermal expansion process and energy loss via the igniter surfaces.
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4.2.4.1 Kernel shape and trajectories predicted by different ED strategies

The time sequence of gas displacement contour obtained from the x-ray diagnostics

and simulation cases with energy deposition strategies are plotted in Fig. 4.16. The

x-ray data provides a global view of the post-discharge kernel evolution. At t = 7 µs

after the discharge, the kernel top just emerged from the spark gap on the igniter

top surface (y = 0 mm), prevailing the kernel (positive gas displacement) is a shock

wave (negative gas displacement), which is formed due to compression effects induced

by the drastic density ratio introduced by the spark-induced thermal expansion. It

is clarified that the compression region behind the shock in the gas displacement

appears to be greater than actual (e.g. at 25 µs), which is due to the line-of-sight

effects. The actual density field features a sharp discontinuity at the shock front with

a post-shock compression weaker than suggested by the gas displacement contour

(see Fig. 4.18). It can be seen that the distance between the kernel boundary and

the wave front is quickly widened as time progresses. This observation supports the

low-Mach treatment applied in the developed LES forced ignition simulation platform

(Section 2.1.2), as the separation of time scale between the shock wave and the kernel

propagation allows the downstream reaction to being isolated from the compression

effects. For instance, in the target configuration, by the time when the reaction is

initiated (O(1) ms, as in Sec. 3.2.3.1) the shock front has propagated to a distance far

away from the kernel (out of the measurement window). As time further progresses,

the kernel penetrates further into the domain, retaining approximately the same shape

while becoming smaller in size. Besides, the kernel boundary becomes more blurred

out, and there is a trace of density disturbances in the wake of the pulsing kernel.

Note that those effects are partially due to turbulent dissipation and partially due

to the uncertainties of the individual discharge sequence contributed to the ensemble

x-ray results.

In Case I, the size of the kernel is heavily underpredicted, as well the intensity of
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x-ray

Case I: line source + harsh energy clip

Case II: line source + soft energy clip

Case III: volume source + infinitely fast discharge 

Figure 4.16: Time sequence of gas displacement contour obtained from x-ray diag-
nostics and simulations cases with different energy deposition strategies.
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the shock wave. The result is therefore qualitatively incomparable with the exper-

imental data. This proves the previous assumption that the harsh energy clipping

would trim off too much energy in the case of the target aircraft igniter discharge.

In Case II, the numerical results are in qualitative comparison with the exper-

imental data in terms of both the early stage kernel shape and the intensity and

propagation of the shock wave. As time progresses, the predicted kernel shape be-

comes less comparable against experimental data, especially for the time at 800 µs,

where the kernel appears to be heavily distorted in the radial direction at its upper

part such that the azimuthal average appears to be of a lower gas displacement at

the inner radius region than that at the outer radius region. However, considering

the complex physics associated with the process, and, in particular, the uncertainties

in the igniter inner geometry, the result is satisfactory.

For Case III, the “intensity” of the spark discharge is qualitatively over-predicted.

More specifically, the size of the kernel is over-predicted as well as the density ratio

across the shock wave. This over-prediction is more than an equivalent time shift

to cancel out the applied infinitely fast discharge, where the result will still be over-

predicted. More likely, the over-predicting of kernel size and density change is due to

the constant volume PSR calculation. Consider the two types of PSR calculation - the

constant pressure PSR and the constant volume PSR, the former calculation allows

the kernel to freely expand by completely ignoring the comprehensibility effects, while

the latter does not allow the kernel to expand at all. For the gas expansion process

immediately following the electric arc, the actual physics should be somewhere in

between the two calculations. In this regard, an improved method is to use the volume

source with the constant power discharge profile to simulate the actual expansion

physics and use the soft energy clipping to handle the potential energy breach, which

is considered as a future study.
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4.2.4.2 Physics of sunken fire igniter discharge

As Case II best reproduces the pulsing kernel in the above section, the analysis

of the sunken fire igniter discharge process within the igniter cavity is interrogated

using the Case II result. The time series of mid-plane density contour is shown

plotted in Fig. 4.18 at the early stage of the spark discharge. The time series reveals

 (kg/m3)ρ

s30 μs20 μs15 μs12.5 μ

s9 μs7 μs5 μs3 μ

Figure 4.17: Time sequence of mid-plane density contour within the igniter cavity
obtained from Case II simulation.

the expansion of the kernel from the electric arc channel (left) to the other side of the

inner wall (right). Upon reaching the other wall (9 µs), the shock wave is reflected

within the igniter, possibly for multiple times before eventually being dissipated out

(30 µs). The top part of the expanding kernel moves upward, forming a hemispherical

shape with an asymmetry effect that becomes more prominent as time progresses.

Note that the minimum density allowed in the simulation is clipped at 20, 000 K due

to the soft energy clipping, in this sense the actual expansion process is not necessarily

the same as that predicted here.

The discharge process here also features significant wall heat loss, which is found

to be 0.2 J in Case II. Moreover, and unsurprisingly, the wall heat loss here is sensitive

to the upper-temperature limit allowed in the thermodynamic model. For instance,
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in another test case where the maximum temperature is allowed to go to an artificial

value of 90, 000 K (by extrapolating the local temperature beyond the thermodynamic

limit using the last available data point of specific gas constant Cp), the wall heat loss

is found to be 0.5 J, which is a significant portion of the total 1.24 J. The resulting

kernel size in such a case is therefore much smaller than that in Case II, as shown

in Fig. 4.18. This suggests that a quantitative prediction of right kernel energy is

infeasible with the existing conventional combustion simulation platform.

Case II: line source + soft energy clip (Tmax=20,000 K)

line source + soft energy clip (Tmax=90,000 K)

Figure 4.18: Time sequence of gas displacement contour compared in between results
predicted by the energy soft clipping at the original upper energy limit of
the thermodynamic model and that at an artificially high temperature
extrapolated beyond the upper energy limit.

4.2.5 Summary

A detailed simulation is performed to predict the pulsing kernel produced from

the aircraft sunken fire igniter discharge tested in previous chapters. A total num-

ber of three energy deposition strategies that address the issue of energy breach are
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tested. Preliminary conclusions are as follows. (a) The line source combined with

the soft energy clipping is able to qualitatively reproduce the shock propagation and

kernel pulsing. (b) While the detailed simulation of the post-discharge kernel ex-

pansion is capable of providing a qualitative understanding of the early stage gas

expansion process following the spark discharge, the robustness of existing simula-

tion capabilities in predicting the correct amount of wall heat loss as well as kernel

energy remains questionable. (c) Under the high-energy sparking effects, the early

stage kernel evolution involves complex physics of conjugate heat transfer, radiation,

and thermal non-equilibrium, all these factors make it difficult to make an accurate

forward prediction on the amount of energy that eventually enters the pulsing kernel.

In light of these observations, the currently available options for evaluating the

kernel or spark deposit energy of the aircraft sunken fire igniter should be based on

experimental information, which can be either a direct probe of the kernel status (e.g.

x-ray diagnostics) or some other properties that implicitly contain such information

(e.g., the calibration of spark deposit energy distribution Section 2.2.3 using the

experimental ignition probability).
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CHAPTER V

Summary

5.1 Summary of Findings

In this study, a computational framework is developed and validated for predicting

the turbulent non-premixed forced ignitions in altitude relight. A detailed list of main

points is below.

Chapter I:

In this chapter, key numerical challenges are identified.

1. The fundamental physics of altitude relight are forced ignitions that involve

non-local fuel entrainment and turbulent strain quenching.

2. The forced ignition problem here features a chaotic process that can only be

described statistically.

3. Existing forced ignition models based on semi-empirical relations cannot be

directly applied to altitude relight.

Chapter II:

In this chapter, the computational framework is developed.

1. A hybrid tabulation strategy is applied to include both physics of forced ignition

and flame propagation.
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2. A specialized kernel initialization strategy is applied to reproduce the aircraft

igniter discharge effects.

3. A modeling procedure based on Monte-Carlo sampling, polynomial chaos expan-

sion, and presumed-shaped PDF distribution calibration is applied to estimate

the ignition probability.

4. Regardless of individual ignition outcome or the statistical behavior, the pro-

posed modeling is predictive, in terms of evaluating the ignition physics given

a kernel status after the initial thermal expansion, but calibrated, in terms of

evaluating this initial kernel status.

Chapter III:

In this chapter, the computational framework is validated using a forced ignition

rig that represents altitude relight scenarios.

1. The LES simulation captures the kernel vortex dynamics and fuel entrainment

qualitatively comparable with experiment and DNS data.

2. The LES simulation captures the variability of ignition outcomes due to per-

turbations in both background turbulence and the spark discharge.

3. The LES simulation predicts the early-stage OH species evolution comparable

to DNS data.

4. For the target configuration, the LES simulation predicts the complete forced

ignition process to exhibit a 3-phase pattern, which is partially supported by

experimental flame kernel area history.

5. The numerical ignition probabilities are quantitatively comparable with exper-

imental data over a wide range of operating conditions.
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6. The computational framework achieved a computational efficiency to afford

numerical predictions of ignition probability based on reacting flow simulation.

Chapter IV:

In this chapter, two supplemental studies are carried out.

The first study applied the developed computational framework and data-driven

analysis to understand the impact of turbulence on the ignition process.

1. Using discriminant analysis, the entrainment of fuel in the kernel is identified

to be crucial for the ignition of the A2 fuel.

2. The same discriminant analysis was not possible for the C1 fuel, where the flame

extinction was found to be dependent on strain induced by small scale features.

3. With a data clustering analysis, two different ignition modes can be observed

for the C1 fuel, with one resulting in a flame kernel breakdown. The observed

modes are similar to each other for the A2 fuel.

4. When the flame kernel breakdown occurs for C1, it leads to the most extreme

ignition successes and failures.

The second study evaluated existing numerical capabilities in reproducing the

early-stage kernel evolution immediately following the aircraft igniter discharge.

1. The line-shaped energy source combined with the proposed soft energy clipping

strategy is able to qualitatively reproduce the shock propagation and kernel

pulsing.

2. While the detailed simulation qualitatively captures the kernel pulsing effect

following the spark discharge, the accuracy remains questionable.
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5.2 Conclusion

The computational framework developed in this thesis provides a novel approach

for predicting the forced ignition process in high-altitude relight. The general conclu-

sions and lessons learned from this dissertation are provided below.

While forced ignition has been explored combustion literature, it is still not well

understood. Depending on the specific configuration, the dominant physics can be

vastly different, requiring careful choice of modeling strategy. For altitude relight

applications, the core modeling challenges here are the effects of non-local fuel en-

trainment and turbulent strain, which can disrupt the otherwise monotonic relation-

ship between the initial kernel status and ignition outcome. Existing ignition models

based on semi-empirical relations are not applicable here, as those are derived from

simple ignition configurations and modeling assumptions that do not include such

effects.

Moreover, aircraft relight is different from internal combustion engines due to the

non-local nature of the flame processes. In internal combustion engines, the spark

is directly applied to fuel-air mixture. However, in forced ignition considered here,

the spark is dischared into air, and has to travel a finite distance before reaching the

fuel-air mixture. To capture both non-localized ignition and turbulent flame quench-

ing, the modeling strategy here applies an LES tabulated detailed chemistry model

that includes the reaction kinetics of the entire forced ignition process, i.e., from

early-stage kernel reaction to later stage flame propagation. A hybrid tabulation of

homogeneous reaction (HR) and flamelet progress variable approach (FPVA) is de-

veloped. The HR tabulation approximates the forced ignition to be a locally-quasi

zero-dimensional reaction, whereas the FPVA tabulation models the non-premixed

turbulent flame propagation by the popular flamelet assumption. Besides, a kernel

initialization strategy specialized for aircraft igniter discharge is developed, to re-

produce the pulsing effect of the spark-induced kernel. Together, these components
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constitute the proposed simulation platform.

Apart from simulating forced ignition with sufficient fidelity, another critical goal

is to predict the ignition probability, as the target problem is sensitive to stochastic

events. The ignition probability estimation presented in this study features a com-

prehensive modeling procedure that includes the uncertainties associated with both

the igniter discharge and the turbulence, along with a rigorous quantification of the

estimated modeling uncertainties. A Monte-Carlo sampling using multiple forced ig-

nition LES simulations is first applied to predict the ignition probability conditioned

on the spark deposit energy. The final ignition probability is then predicted, as the

integration of this conditional ignition probability and the statistical distribution of

the spark deposit energy.

In this context, it is found that calibrating spark discharge using one set of exper-

iments does not diminish predictive accuracy at other flow conditions. This, in itself,

is a useful conclusion since it provides a way forward for independently characterizing

igniters.

The proposed framework provides a level of fidelity that cannot be reached by

conventional approaches that rely on flame-surface patching or other semi-empirical

methods. The variation in spark deposit energy, which is often neglected in previous

approaches, is shown here to be a critical factor that affects the individual ignition

outcome. In terms of predicting ignition probability, by including the uncertainties

associated with both turbulence and the spark discharge, the probability predictions

here are shown to be highly accurate. Moreover, in the cross-validation study, the

proposed ignition probability modeling has shown consistent prediction accuracy that

is insensitive to the calibration procedure. Lastly, for the first time, the computational

efficiency has been significantly advanced so that ignition probability prediction based

on detailed reacting flow simulation has become feasible..

This computational approach can be further utilized for data-driven analysis by
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generating large amounts of forced ignition data. A demonstration is presented by

applying such analysis to study the impact of turbulence on the ignition process,

where the ignition of different jet fuels is found to be affected by different turbulent

scale features. An interesting pattern of the ignition process is also identified for one of

the tested jet fuels, which features a flame kernel breakdown that is uncommonly seen

among the generated ignition samples but can greatly affect the ignition outcome. It

is noted that such analyses cannot be treated as fully validated conclusions yet, since

the simulations utilize models for different processes. However, combined with expert

knowledge of the fundamental physics, such analyses still provide extensive insight

into the mechanisms that drive forced ignition in the altitude relight problem.

While considerable advances have been made in this thesis, the topic of modeling

forced ignition in altitude relight is far from being fully completed. In the next section,

possible future research efforts are presented.

5.3 Future Study

This thesis develops a computational framework that includes many aspects of the

practical altitude relight problems. Realistic problems are always more sophisticated,

requiring future efforts to pursue further improving the numerical capabilities. A few

recommendations are proposed here based on the best understandings of the author.

5.3.1 Modeling Forced Ignition with Liquid Fuel Spray

As mentioned in the introduction of this thesis, the effects of liquid fuel spray is an

important factor in practical altitude relight problems. While existing methods are

abundant for liquid spray modeling, the coupling between the gas phase combustion

model may need to be re-designed in the case of spark ignition. For example, while the

aircraft igniter is displaced at the edge of the primary zone of the aircraft combustor,

there are chances that a liquid fuel droplet can directly interact with an electric spark
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discharge (especially for altitude relight, where the liquid fuel becomes difficult to

be atomized). Under such circumstances, the evaporation of the droplet as well the

ignition of the gas fuel could be different from conventional spray combustion where

the droplet is only be heated by the gas phase.

5.3.2 Detailed Modeling of the Spark Discharge

The coupling of the spark-induced kernel and the turbulent flow field is an im-

portant topic that has been addressed multiple times in this thesis. There are still

modeling components that await further improvement, mainly in the two aspects of

(a) measurement-constrained field initialization approach and (b) forward modeling

approach.

Before considering a more sophisticated modeling strategy, gaining a better under-

standing of existing capabilities is always helpful. While this study has successfully

applied experimental constrained boundary profiles to reproduce the pulsing kernel

introduced by the spark discharge, there are still many approximations and imper-

fections in the developed strategy. An in-depth study of how the ignition kernel

should be initialized using a commonly available experimental dataset, including how

to better represent the uncertainties associated with the kernel will be helpful.

As has been discussed in the second supplemental study, to provide a forward

prediction of the kernel expansion during and immediately following the aircraft ig-

niter spark discharge requires the inclusion of non-equilibrium modeling of the high-

temperature plasma. Unless such prediction capabilities are developed, it is always

difficult to make an accurate initialization of the spark-induced kernel solely based

on nominal igniter spark properties (e.g., the electrode shape and electrical power

histories). In this regard, there are abundant previous studies related to the high-

temperature plasma that can be borrowed from. The immediate challenge is to build

a computational framework that incorporates both non-equilibrium plasma and con-
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ventional combustion simulation and provides the proper coupling between the two

models. As always, finding the balance between modeling fidelity and modeling com-

plexity (prediction and calibration) is critical.

5.3.3 Computational Efficiency Improvement

While the developed computational framework has achieved computation effi-

ciency comparable to cold flow LES simulations, the computational cost to predict

ignition probability is still not sufficiently low to simulate the forced ignition in a

realistic aircraft combustorIn this regard, the following two directions are suggested

to develop a more computationally efficient model.

Firstly, in the first supplemental study, the data-driven analysis has shown promis-

ing capabilities in identifying flow features that promote/suppress ignition. Following

this idea, it is worth considering a multi-fidelity computation framework that applies

a detailed CFD simulation as the high-fidelity prediction along with a classification

model that can be trained on-the-fly as the low-fidelity prediction.

Secondly, while existing semi-empirical models based on cold flow LES are unsuit-

able for capturing the detailed fuel entrainment mechanism of the pulsing kernel and

the non-localized ignition in some of the forced ignition problems, those models are

still strongly competitive modeling candidates for providing fast estimations of tur-

bulent forced ignitions. For example, for the well-known flame particle model, with

additional modeling component being added. For example, by providing the flame

particles with thermal memory, developing strategies to include detailed modeling of

the fuel entrainment into the pulsing kernel, and developing better empirical criteria

for realistic jet fuels, the model can potentially be adjusted to simulate non-localized

forced ignition problem in altitude relight. In this regard, such models should not be

overlooked and studies that pursue further improving them can always be helpful.
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5.4 Outlook

With growing computational power, one of the future direction is to apply nu-

merical simulations of full-scale aircraft engine altitude relight to assist the engine

design. With advancing artificial intelligence technology, conventional combustion

models, not necessarily just for forced ignition modeling, could be replaced by AI

models.

Meanwhile, there are still huge gaps between current numerical studies and the

full-scale altitude relight engine test. For instance, forced ignition behavior is often

studied under ground-conditions. Also, the interference of ignition processes following

multiple spark discharges are rarely simulated. In a short-term view, these gaps are

to be filled.

Before radical changes will be brought to the world of computational science,

applying high-fidelity computational simulation using models developed based on

fundamental physics will continue to serve as a mid-term resolution.
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APPENDIX A

Data-driven Analysis of Turbulent Induced

Ignition Variability

A.1 Justifying the realization-to-realization approach

To begin with, detailed information on the turbulent properties of the cold flow

(initial conditions) are provided in Tab. A.1. The values here are averaged over space

and also over the ensemble of realizations. The turbulent dissipation rate is calculated

as

ε = 2ν〈sijsij〉, (A.1)

where, sij = ∂Ũi

∂xj
, and Ũi is the i component of the filtered velocity, and ν is the

kinematic viscosity. The Kolmogorov timescale is defined as

τη =

√
ν

ε
, (A.2)

the integral timescale is defined as

τint =
k

ε
, (A.3)
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and the Taylor microscale Reynolds number is approximated as

Reλ =

√
20

3

k2

εν
. (A.4)

Table A.1: Turbulent properties averaged over space and over the initial conditions.
Error bounds indicate root mean square fluctuations over the realizations.
k (m2.s−2) ε (m3.s−2) τη (ms) τint (ms) Reλ

C1 0.448 ± 0.032 46.38 ± 3.19 2.31 ± 0.096 56.5 ± 4.9 52 ± 3.7
A2 0.446 ± 0.032 46.5 ± 3.1 2.33 ± 0.096 55 ± 4.9 50.6 ± 3.6

Due to the chaoticity of turbulence, the LES simulations cannot, in general, be

used to investigate individual realizations [123]. Over time, any small scale errors

including sub-filter scale approximations amplify until they dominate the flow field

[150, 151]. The growth of sub-filter scale errors during an ignition realization is

analyzed below.

First, the sub-filter errors grow in magnitude at a certain rate (the Lyapunov

exponent) [152, 153], which should be compared to the simulation time of the forced

ignition process. The rate of growth of perturbations is estimated using the method

in [152], where a relationship between the perturbation growth rate and Reλ is pro-

vided. It can found that the sub-filter errors would grow at the exponential rate of

e42t for both the C1 and A2 fuel. For the LES simulation time here, (3.5 ms, which is

sufficient to distinguish between a successful and a failed ignition), the corresponding

error would have grown by only 15%. By the end of the LES forced ignition simula-

tion, the sub-filter error magnitudes have marginally grown. This partially justifies

the realization-to-realization approach.

Second, the sub-filter errors tend to back-scatter over time, and it was found that

the characteristic error wave number decreases at a rate defined by the integral time

scale τint (listed in Tab. A.1) [151, 154]. For both C1 and A2, τint is larger than the

simulation time. It can be therefore expected that sub-filter error will only marginally
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back-scatter during the LES simulations. Regardless of how small or localized, if the

error is localized at scales that matter for the ignition process, predictions based

on the initial conditions cannot be achieved. In the case of A2, it is later found

that the large vortical structures affected the ignition process (Sec. 4.1.4.1). These

large structures are not affected by the back-scatter of sub-filter scales errors, which

explains why it is possible to identify initial conditions that lead to ignition success or

failure. In the case of C1, however, it is later concluded that small scales do affect the

ignition process (Sec. 4.1.4.2). Since the classification of ignition success and failure

based on initial conditions is not always possible, it can be concluded that scales

smaller than the LES filter size matter, at least initially. At later stages, since the

ignition modes are clearly separated (Sec. 4.1.5) until the end of the simulations, the

analysis is unlikely to be influenced by the accumulation of errors over time.

A.2 Number of clusters

In order to characterize the ignition success and failure mechanism of both fuels,

we use the K-means clustering. At each one of the 21 time instance samples during

the simulations, clustering is done. Therefore the number of clusters can vary over

time.

For the initialization of the clusters, the K-means++ version of the K-means algo-

rithm [130] is used. The algorithm picks random snapshots as initial centroids of the

clusters. This random initialization creates a variance in the silhouette score obtained

with a fixed number of clusters. Therefore, the number of clusters is determined by

running the silhouette score 21 times for cluster numbers between 2 and 10. The

number of clusters selected is the one that gives, on average, the largest silhouette

score. This process is repeated for each one of the 21 time instances saved between

t = 0 ms and t = 3.5 ms, and for each fuel. Therefore, the optimal number of clusters

varies over time.
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As mentioned in Sec. 4.1.3.3, a second method is used to determine the optimal

number of clusters: the X-means method [137]. This algorithm starts with a certain

number of clusters (the parent clusters) and recursively refines them in subgroups

(the child cluster). The refined clustering of the parent cluster is then evaluated

using a certain criterion [138]. If the refined clustering of the parent cluster is deemed

more appropriate by the criterion, it is adopted. The clustering initialization is also

subject to randomness. Therefore, the optimal number of clusters is also computed 21

times. For each time instance, each field, and each fuel, the average optimal number

of clusters is recorded. Note that the clustering is always done with K-means, and

X-means is only used to decide on the number of clusters.

The optimal number of clusters obtained for progress variable over time, for both

fuels, are plotted in Fig. A.1. It can be seen that both methods do not agree on the

optimal number of clusters but highlight similar trends. At early times, both methods

require a larger amount of clusters than at later times. Then, two or three clusters are

deemed necessary. The clustering was done with X-means and the silhouette method

to decide which method was the most appropriate. The centroid obtained with the

X-means did not show different physical processes, which explains why the clustering

obtained with the silhouette method was used.

A.3 LDA and Sensor Example

A toy dataset is created in a 2D space by sampling two Gaussian distributions with

the following means: [1, 0] for the “failure” set, and [−1, 0] for the “success” set. The

covariance matrices for both are set to the identity matrix scaled by 0.01. As shown

in Fig. A.2 (left), once sampled, the resulting dataset by construction represents two

distinct “blobs” separated along the x-axis. Through this trivial example, the goal is

to elucidate the meaning of the LDA vector and the sensors.

Since the data here already exists in such a low-dimensional space (2D), the POD
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Figure A.1: Optimal number of clusters obtained at each time instance for A2 (blue)
and C1 (red) for igniting ( ) and failing cases ( ), using silhouette score
(top), and X-means (bottom).Z Ux Uy Uz

s ̂s

0

1

2

Figure A.2: Top left: toy dataset in 2D for success (black) and failure (red), with the
LDA vector overlayed (dash-green). Top right: LDA densities for each
class for the original data (solid lines) and sparse data (dashed lines).
Bottom left: LDA vector in physical space, s = φw, from the Jet-A
mixture fraction dataset. Bottom right: corresponding sparse sensors
ŝ obtained from the optimization – the nonzero values are the sensor
locations. Both images are X-Y planes obtained at the Z=0 section. As
per Eq. 4.7, both s and ŝ produce the same vector w in POD space.

166



pre-processing step (step 2 in Fig. 4.2) is neglected (or, alternatively, the original data

and the POD coefficients can be considered identical). Upon labeling the datasets in

the same manner as with the LES simulations (Fig. A.2), the LDA can be carried

out. The LDA vector was found to be w = [0.998, 0.067]T , and is also shown in

Fig. A.2. As expected, most of the contribution to w comes along the x-axis, which

is the direction that best discriminates the two classes. Through this simple example,

we can see the significance of the LDA vector: it is a direction that encodes the

separation between the two classes from the data given. The projection of the data

onto the LDA vector is also illustrated in Fig. A.2, which shows the separation in the

LDA coordinates for the two classes in the 1D LDA space.

We now proceed with recovering the sparse sensors. Recall that in Eq. 4.7, the

optimization problem is defined such that the POD transformation of the sparse

vector, φT ŝ, must reproduce the LDA vector w, since in the actual implementation,

the LDA is performed in the POD space. In this toy example, the original data space

and POD space are identical, so the optimization of Eq. 4.7 is not purposeful (w = s).

Instead of running the optimization, we simply take the best sparse approximation

to the already computed w. In two dimensions, there are only two options: [1, 0]T or

[0, 1]T , corresponding to a single sensor in the x- or y-directions, respectively. Clearly,

the ideal sensor approximation to w = [0.998, 0.067]T is ŝ = [1, 0]T . Note that in this

setting, we only have one sensor (NS = 1), and this sensor indicates that only the

first dimension (x-direction) is significant in determining the class discrimination.

The dashed lines in Fig. A.2 (top right) show the LDA projection computed with the

sparse data (same concept as in Fig. 4.3), where the sparse dataset was obtained by

computing the element-wise product of the original dataset and ŝ – since ŝ = [1, 0]T ,

this amounts to considering only the x-direction and neglecting the y-direction from

the original Gaussian data, and then projecting this modified “sparse” dataset onto

the LDA vector w. The densities almost exactly overlap, indicating the reliability of
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the sensor approximation.

The same concept applies in higher dimensions as used in the ignition dataset,

where each dimension in the M -dimensional phase space represents an (x,y,z) lo-

cation in physical space. An example of an actual LDA vector obtained from the

mixture fraction dataset juxtaposed with the corresponding sensors resulting from

one optimization run in Eq. 4.7 is shown in Fig. A.2 (bottom). Each of these plots is

analogous to the 2D toy problem counterparts. In the end, the sparse sensors can be

regarded as a more interpretable proxy for the LDA vector w.

It should be noted that in the bottom plots of Fig. 4.3, the frequency at which a

sensor occupies a particular location in physical space is plotted. These frequencies

are obtained by performing several runs of the optimization from the same dataset,

as described in Sec. 4.1.3.1.

168



BIBLIOGRAPHY

169



BIBLIOGRAPHY

[1] Lefebvre, A. H. and Ballal, D. R., Gas turbine combustion: alternative fuels
and emissions , CRC press, 2010.

[2] Mastorakos, E., “Ignition of turbulent non-premixed flames,” Progress in En-
ergy and Combustion Science, Vol. 35, No. 1, 2009, pp. 57–97.

[3] Sepulveda, D. and Striebel, E. E., “Starting means for a gas turbine engine,”
1983, US Patent 4417439A.

[4] Neophytou, A., Richardson, E., and Mastorakos, E., “Spark ignition of turbu-
lent recirculating non-premixed gas and spray flames: A model for predicting
ignition probability,” Combustion and Flame, Vol. 159, No. 4, 2012, pp. 1503–
1522.

[5] Sforzo, B. A., High energy spark ignition in non-premixed flowing combustors ,
Ph.D. thesis, Georgia Institute of Technology, 2014.

[6] Sforzo, B., Dao, H., Wei, S., and Seitzman, J., “Liquid fuel composition effects
on forced, nonpremixed ignition,” Journal of Engineering for Gas Turbines and
Power , Vol. 139, No. 3, 2017.

[7] Sau, R. and Mahesh, K., “Dynamics and mixing of vortex rings in crossflow,”
Journal of fluid Mechanics , Vol. 604, 2008, pp. 389.

[8] Rieth, M., Borghesi, G., and Chen, J. H., “DNS of Post-Discharge Plasma Igni-
tion Evolution Relevant to High Altitude Relight.” Tech. rep., Sandia National
Lab., Livermore, CA, United States, 2018.

[9] Sforzo, B., Matusik, K., Kastengren, A., Powell, C., and Seitzman, J. M., “Air-
craft Ignition Kernel Characterization by X-ray Radiography,” AIAA Scitech
2019 Forum, 2019, p. 2246.

[10] Lefebvre, A. H., Gas turbine combustion, CRC press, 1998.

[11] Addy Jr, H. E. and Veres, J. P., “An overview of NASA engine ice-crystal icing
research,” SAE Technical Paper , SAE International, 2011.

[12] Wagner, T. C., O’Brien, W. F., Northam, G. B., and Eggers, J. M., “Plasma
torch igniter for scramjets,” Journal of Propulsion and Power , Vol. 5, No. 5,
1989, pp. 548–554.

170



[13] Repas, G. A., Hydrogen-oxygen torch ignitor , National Aeronautics and Space
Administration, 1994.

[14] Saintsbury, J., “A Glow Plug Ignition System for the Gas Turbine,” SAE Tech-
nical Paper , SAE International, 1967.

[15] Furuhama, S. and Fukuma, T., “High output power hydrogen engine with high
pressure fuel injection, hot surface ignition and turbocharging,” International
journal of hydrogen energy , Vol. 11, No. 6, 1986, pp. 399–407.

[16] Colwell, J. D. and Reza, A., “Hot surface ignition of automotive and aviation
fluids,” Fire Technology , Vol. 41, No. 2, 2005, pp. 105–123.

[17] Boston, P., Bradley, D., Lung, F.-K., Vince, I., and Weinberg, F., “Flame initia-
tion in lean, quiescent and turbulent mixtures with various igniters,” Symposium
(International) on Combustion, Vol. 20, Elsevier, 1985, pp. 141–149.

[18] Orrin, J., Vince, I., and Weinberg, F., “A study of plasma jet ignition mecha-
nisms,” Symposium (International) on combustion, Vol. 18, Elsevier, 1981, pp.
1755–1765.

[19] Maly, R. and Vogel, M., “Initiation and propagation of flame fronts in lean
CH4-air mixtures by the three modes of the ignition spark,” Symposium (inter-
national) on combustion, Vol. 17, Elsevier, 1979, pp. 821–831.

[20] Zhao, F., Asmus, T. N., Assanis, D. N., Dec, J. E., Eng, J. A., and Najt, P. M.,
“Homogeneous charge compression ignition (HCCI) engines,” SAE Technical
Paper , SAE International, 2003.

[21] Lewis, B. and Von Elbe, G., Combustion, flames and explosions of gases , Else-
vier, 2012.

[22] Ballal, D. R. and Lefebvre, A. H., “The influence of flow parameters on min-
imum ignition energy and quenching distance,” Symposium (International) on
Combustion, Vol. 15, Elsevier, 1975, pp. 1473–1481.

[23] Ballal, D. and Lefebvre, A., “The influence of spark discharge characteristics
on minimum ignition energy in flowing gases,” Combustion and Flame, Vol. 24,
1975, pp. 99–108.

[24] Ko, Y., Anderson, R., and Arpaci, V. S., “Spark ignition of propane-air mixtures
near the minimum ignition energy: Part I. An experimental study,” Combustion
and flame, Vol. 83, No. 1-2, 1991, pp. 75–87.

[25] Ko, Y., Arpaci, V. S., and Anderson, R., “Spark ignition of propane-air mixtures
near the minimum ignition energy: Part II. A model development,” Combustion
and flame, Vol. 83, No. 1-2, 1991, pp. 88–105.

171



[26] Boudier, P., Henriot, S., Poinsot, T., and Baritaud, T., “A model for turbulent
flame ignition and propagation in spark ignition engines,” Symposium (Inter-
national) on Combustion, Vol. 24, Elsevier, 1992, pp. 503–510.

[27] Boileau, M., Staffelbach, G., Cuenot, B., Poinsot, T., and Bérat, C., “LES of
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[74] Luong, M. B., Pérez, F. E. H., and Im, H. G., “Prediction of ignition modes
of NTC-fuel/air mixtures with temperature and concentration fluctuations,”
Combustion and Flame, Vol. 213, 2020, pp. 382–393.

[75] Bilger, R., St̊arner, S., and Kee, R., “On reduced mechanisms for methane air
combustion in nonpremixed flames,” Combustion and Flame, Vol. 80, No. 2,
1990, pp. 135–149.

[76] Pera, C., Colin, O., and Jay, S., “Development of a FPI detailed chemistry
tabulation methodology for internal combustion engines,” Oil & Gas Science
and Technology-Revue de l’IFP , Vol. 64, No. 3, 2009, pp. 243–258.

[77] Goodwin, D. G., Moffat, H. K., and Speth, R. L., “Cantera: An Object-oriented
Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Pro-
cesses,” 2017, Version 2.3.0.

175



[78] D PIERCE, C. and Moin, P., “Progress-variable approach for large-eddy sim-
ulation of non-premixed turbulent combustion,” Journal of fluid Mechanics ,
Vol. 504, 2004, pp. 73.

[79] Van Oijen, J., Donini, A., Bastiaans, R., ten Thije Boonkkamp, J., and De Goey,
L., “State-of-the-art in premixed combustion modeling using flamelet generated
manifolds,” Progress in Energy and Combustion Science, Vol. 57, 2016, pp. 30–
74.

[80] Pierce, C. D. and Moin, P., Progress-variable approach for large-eddy simulation
of turbulent combustion, Ph.D. thesis, Citeseer, 2001.

[81] Ihme, M. and Pitsch, H., “Modeling of radiation and nitric oxide formation in
turbulent nonpremixed flames using a flamelet/progress variable formulation,”
Physics of Fluids , Vol. 20, No. 5, 2008, pp. 055110.

[82] Mueller, M. E., Large eddy simulation of soot evolution in turbulent reacting
flows , Ph.D. thesis, Stanford University, 2012.

[83] Fiorina, B., Baron, R., Gicquel, O., Thevenin, D., Carpentier, S., Darabiha,
N., et al., “Modelling non-adiabatic partially premixed flames using flame-
prolongation of ILDM,” Combustion Theory and Modelling , Vol. 7, No. 3, 2003,
pp. 449–470.

[84] Nunno, A. C., Grenga, T., and Mueller, M. E., “Comparative analysis of
methods for heat losses in turbulent premixed flames using physically-derived
reduced-order manifolds,” Combustion Theory and Modelling , Vol. 23, No. 1,
2019, pp. 42–66.

[85] Darabiha, N. and Candel, S., “The influence of the temperature on extinc-
tion and ignition limits of strained hydrogen-air diffusion flames,” Combustion
science and technology , Vol. 86, No. 1-6, 1992, pp. 67–85.

[86] LIBBY, P. A. and WILLiAMS, F. A., “Strained premixed laminar flames under
nonadiabatic conditions,” Combustion science and technology , Vol. 31, No. 1-2,
1983, pp. 1–42.

[87] Coriton, B., Smooke, M. D., and Gomez, A., “Effect of the composition of the
hot product stream in the quasi-steady extinction of strained premixed flames,”
Combustion and flame, Vol. 157, No. 11, 2010, pp. 2155–2164.

[88] Tang, Y. and Raman, V., “LES flamelet approach for non-adiabatic, strained
premixed combustion,” Combustion and Flame (Submitted), 2021.

[89] Germano, M., “Turbulence: the filtering approach,” Journal of Fluid Mechan-
ics , Vol. 238, 1992, pp. 325–336.

176



[90] Pierce, C. D. and Moin, P., “A dynamic model for subgrid-scale variance and
dissipation rate of a conserved scalar,” Physics of Fluids , Vol. 10, No. 12, 1998,
pp. 3041–3044.

[91] Branley, N. and Jones, W., “Large eddy simulation of a turbulent non-premixed
flame,” Combustion and flame, Vol. 127, No. 1-2, 2001, pp. 1914–1934.

[92] Pitsch, H., “Unsteady flamelet modeling of differential diffusion in turbulent jet
diffusion flames,” Combustion and Flame, Vol. 123, No. 3, 2000, pp. 358–374.

[93] Donini, A., Bastiaans, R., van Oijen, J., and De Goey, L., “Differential dif-
fusion effects inclusion with flamelet generated manifold for the modeling of
stratified premixed cooled flames,” Proceedings of the Combustion Institute,
Vol. 35, No. 1, 2015, pp. 831–837.

[94] Wang, K., Xu, R., Parise, T., Shao, J., Movaghar, A., Lee, D. J., Park, J.-
W., Gao, Y., Lu, T., Egolfopoulos, F. N., et al., “A physics-based approach to
modeling real-fuel combustion chemistry–IV. HyChem modeling of combustion
kinetics of a bio-derived jet fuel and its blends with a conventional Jet A,”
Combustion and Flame, Vol. 198, 2018, pp. 477–489.

[95] Mueller, M. E. and Pitsch, H., “LES model for sooting turbulent nonpremixed
flames,” Combustion and flame, Vol. 159, No. 6, 2012, pp. 2166–2180.

[96] Rodrigues, P., Franzelli, B., Vicquelin, R., Gicquel, O., and Darabiha, N.,
“Coupling an LES approach and a soot sectional model for the study of soot-
ing turbulent non-premixed flames,” Combustion and Flame, Vol. 190, 2018,
pp. 477–499.

[97] Mercier, R., Auzillon, P., Moureau, V., Darabiha, N., Gicquel, O., Veynante, D.,
and Fiorina, B., “LES modeling of the Impact of Heat Losses and Differential
Diffusion on Turbulent Stratified Flame Propagation: Application to the TU
Darmstadt Stratified Flame,” Flow, turbulence and combustion, Vol. 93, No. 2,
2014, pp. 349–381.

[98] Hassanaly, M., Koo, H., Lietz, C. F., Chong, S. T., and Raman, V., “A
minimally-dissipative low-Mach number solver for complex reacting flows in
OpenFOAM,” Computers & Fluids , Vol. 162, 2018, pp. 11–25.

[99] Issa, R. I., “Solution of the implicitly discretised fluid flow equations by
operator-splitting,” Journal of computational physics , Vol. 62, No. 1, 1986,
pp. 40–65.

[100] Scarcelli, R., Zhang, A., Wallner, T., Som, S., Huang, J., Wijeyakulasuriya,
S., Mao, Y., Zhu, X., and Lee, S.-Y., “Development of a Hybrid Lagrangian–
Eulerian Model to Describe Spark-Ignition Processes at Engine-Like Turbu-
lent Flow Conditions,” Journal of Engineering for Gas Turbines and Power ,
Vol. 141, No. 9, 2019.

177



[101] Sforzo, B., Lambert, A., Kim, J., Jagoda, J., Menon, S., and Seitzman, J.,
“Post discharge evolution of a spark igniter kernel,” Combustion and Flame,
Vol. 162, No. 1, 2015, pp. 181–190.

[102] Jaravel, T., Labahn, J., Sforzo, B., Seitzman, J., and Ihme, M., “Numerical
study of the ignition behavior of a post-discharge kernel in a turbulent strati-
fied crossflow,” Proceedings of the Combustion Institute, Vol. 37, No. 4, 2019,
pp. 5065–5072.

[103] Najm, H. N., “Uncertainty quantification and polynomial chaos techniques in
computational fluid dynamics,” Annual review of fluid mechanics , Vol. 41, 2009,
pp. 35–52.

[104] Braman, K., Oliver, T. A., and Raman, V., “Bayesian analysis of syngas chem-
istry models,” Combustion Theory and Modelling , Vol. 17, No. 5, 2013, pp. 858–
887.

[105] Constantin, P., Foias, C., Manley, O. P., and Temam, R., “Determining modes
and fractal dimension of turbulent flows,” Journal of Fluid Mechanics , Vol. 150,
1985, pp. 427–440.

[106] Hassanaly, M. and Raman, V., “Ensemble-LES analysis of perturbation re-
sponse of turbulent partially-premixed flames,” Proceedings of the Combustion
Institute, Vol. 37, No. 2, 2019, pp. 2249–2257.

[107] Krengel, U., Ergodic theorems , Vol. 6, Walter de Gruyter, 2011.

[108] Ghanem, R. G. and Spanos, P. D., “Stochastic finite element method: Response
statistics,” Stochastic finite elements: a spectral approach, Springer, 1991, pp.
101–119.

[109] Hosder, S., Walters, R., and Perez, R., “A non-intrusive polynomial chaos
method for uncertainty propagation in CFD simulations,” 44th AIAA aerospace
sciences meeting and exhibit , 2006, p. 891.

[110] Nagy, Z. and Braatz, R. D., “Distributional uncertainty analysis using power
series and polynomial chaos expansions,” Journal of Process Control , Vol. 17,
No. 3, 2007, pp. 229–240.

[111] Hosder, S., Walters, R., and Balch, M., “Efficient sampling for non-intrusive
polynomial chaos applications with multiple uncertain input variables,” 48th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Mate-
rials Conference, 2007, p. 1939.

[112] Cooper, M., Wu, W., and Mccue, L., “Non-intrusive polynomial chaos for ef-
ficient uncertainty analysis in parametric roll simulations,” Journal of Marine
Science and Technology , Vol. 21, No. 2, 2016, pp. 282–296.

178



[113] Hosder, S., Walters, R. W., and Balch, M., “Point-collocation nonintrusive
polynomial chaos method for stochastic computational fluid dynamics,” AIAA
journal , Vol. 48, No. 12, 2010, pp. 2721–2730.

[114] Tang, Y., Hassanaly, M., Raman, V., Sforzo, B., and Seitzman, J., “A com-
prehensive modeling procedure for estimating statistical properties of forced
ignition,” Combustion and Flame, Vol. 206, 2019, pp. 158–176.

[115] Tang, Y., Hassanaly, M., Raman, V., Sforzo, B. A., Wei, S., and Seitzman,
J. M., “Simulation of gas turbine ignition using Large eddy simulation ap-
proach,” Turbo Expo: Power for Land, Sea, and Air , Vol. 51067, American
Society of Mechanical Engineers, 2018, pp. GT2018–76216.

[116] Tang, Y., Hassanaly, M., Raman, V., Sforzo, B., and Seitzman, J. M., “Nu-
merical simulation of forced ignition of Jet-fuel/air using large eddy simulation
(LES) and a tabulation-based ignition,” AIAA Scitech 2019 Forum, 2019, p.
2242.

[117] Smith, G. P., Golden, D. M., Frenklach, M., Moriarty, N. W., Eiteneer, B.,
Goldenberg, M., Bowman, C. T., Hanson, R. K., Song, S., Gardiner Jr, W. C.,
et al., “GRI 3.0 Mechanism,” Gas Research Institute (http://www. me. berkeley.
edu/gri mech), 1999.

[118] Wang, H., Xu, R., Wang, K., Bowman, C. T., Hanson, R. K., Davidson, D. F.,
Brezinsky, K., and Egolfopoulos, F. N., “A physics-based approach to modeling
real-fuel combustion chemistry-I. Evidence from experiments, and thermody-
namic, chemical kinetic and statistical considerations,” Combustion and Flame,
Vol. 193, 2018, pp. 502–519.

[119] Xu, R., Wang, K., Banerjee, S., Shao, J., Parise, T., Zhu, Y., Wang, S.,
Movaghar, A., Lee, D. J., Zhao, R., et al., “A physics-based approach to model-
ing real-fuel combustion chemistry–II. Reaction kinetic models of jet and rocket
fuels,” Combustion and Flame, Vol. 193, 2018, pp. 520–537.

[120] Wang, K., Xu, R., Parise, T., Shao, J., Movaghar, A., Lee, D. J., Park, J.-
W., Gao, Y., Lu, T., Egolfopoulos, F. N., et al., “A physics-based approach to
modeling real-fuel combustion chemistry–IV. HyChem modeling of combustion
kinetics of a bio-derived jet fuel and its blends with a conventional Jet A,”
Combustion and Flame, Vol. 198, 2018, pp. 477–489.

[121] Gao, Y. and Lu, T., “Reduced HyChem models for jet fuel combustion,” 10th
US National Combustion Meeting , 2017, pp. 23–26.

[122] Hassanaly, M., Tang, Y., Barwey, S., and Raman, V., “Data-driven Analysis of
Relight variability of Jet Fuels induced by Turbulence,” Combustion and Flame,
Vol. 225, 2021, pp. 453–467.

179



[123] Langford, J. A. and Moser, R. D., “Optimal LES formulations for isotropic
turbulence,” Journal of Fluid Mechanics , Vol. 398, 1999, pp. 321.

[124] Brunton, B. W., Brunton, S. L., Proctor, J. L., and Kutz, J. N., “Sparse sensor
placement optimization for classification,” SIAM Journal on Applied Mathe-
matics , Vol. 76, No. 5, 2016, pp. 2099–2122.

[125] Bai, Z., Brunton, S. L., Brunton, B. W., Kutz, J. N., Kaiser, E., Spohn, A.,
and Noack, B. R., “Data-driven methods in fluid dynamics: Sparse classifica-
tion from experimental data,” Whither Turbulence and Big Data in the 21st
Century , Springer, 2017, pp. 323–342.

[126] Sirovich, L., “Turbulence and the dynamics of coherent structures. I. Coherent
structures,” Quarterly of appl. math., Vol. 45, No. 3, 1987, pp. 561–571.

[127] Izenman, A. J., “Multivariate regression,” Modern Multivariate Statistical Tech-
niques , Springer, 2013, pp. 159–194.

[128] Roth, V. and Steinhage, V., “Nonlinear discriminant analysis using kernel func-
tions,” Advances in neural information processing systems , 2000, pp. 568–574.

[129] Lorensen, W. E. and Cline, H. E., “Marching cubes: A high resolution 3D sur-
face construction algorithm,” ACM siggraph computer graphics , Vol. 21, No. 4,
1987, pp. 163–169.

[130] Arthur, D. and Vassilvitskii, S., “k-means++: The advantages of careful seed-
ing,” Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algo-
rithms , SIAM, 2007, pp. 1027–1035.

[131] Steinley, D., “K-means clustering: a half-century synthesis,” British Journal of
Mathematical and Statistical Psychology , Vol. 59, No. 1, 2006, pp. 1–34.

[132] Barwey, S., Hassanaly, M., An, Q., Raman, V., and Steinberg, A., “Experimen-
tal data-based reduced-order model for analysis and prediction of flame tran-
sition in gas turbine combustors,” Combustion Theory and Modelling , 2019,
pp. 1–27.

[133] Barwey, S., Ganesh, H., Hassanaly, M., Raman, V., and Ceccio, S., “Data-
based analysis of multimodal partial cavity shedding dynamics,” Experiments
in Fluids , Vol. 61, No. 4, 2020, pp. 1–21.

[134] Kaiser, E., Noack, B. R., Cordier, L., Spohn, A., Segond, M., Abel, M., Daviller,
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