
Modeling Dispersion of Radionuclides in the Turbulent Atmosphere

by

Matthew Jeffrey Krupcale

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Nuclear Engineering and Radiological Sciences and Scientific Computing)

in the University of Michigan
2021

Doctoral Committee:
Professor Emeritus John C. Lee, Chair
Associate Research Scientist Shaun Clarke
Professor Annalisa Manera
Professor Kenneth G. Powell



Matthew Jeffrey Krupcale

krupcale@umich.edu

ORCID iD: 0000-0003-0551-3748

© Matthew Jeffrey Krupcale, 2021

mailto:krupcale@umich.edu
https://www.orcid.org/0000-0003-0551-3748


Dedication

For my parents: Denise and Jeff and Belinda and Jeff.

ii



Acknowledgements

Thank you to John C. Lee for his commitment and encouragement to me. His insight, wisdom,
and advice have proved essential over the course of the time we have worked together. I know
I may have made this process more difficult and prolonged than necessary, but I am relieved
we were able to make it through in the end.

Thank you also to the rest of the committee members, Dr. Shaun Clarke, Dr. Annalisa
Manera, and Dr. Kenneth G. Powell, for their willingness to serve on my committee and
review this work even during these turbulent, chaotic, and uncertain times.

I appreciate the NERS department and its graduate program coordinators, Ms. Peggy Jo
Gramer and Dr. Garnette Roberts, for their careful attention, guidance, and regard for me.
My sincerest thanks to them for helping me through the doctoral student process.

Thank you to my mentors during my time at the national laboratories: Dr. Paul W. Eslinger at
Pacific Northwest National Laboratory and Dr. Matthew D. Simpson at Lawrence Livermore
National Laboratory.

This work was funded by the Consortium for Verification Technology under Department of
Energy National Nuclear Security Administration award number DE-NA0002534.

Finally, thank you to my friends and family who supported or took interest in me through
this process. In particular, thank you to Denise and my father, Jeff, for allowing me to stay
with them while I finished my defense and writing.

iii



Table of Contents

Dedication ii

Acknowledgements iii

List of Figures viii

List of Tables xi

Nomenclature xiii

Abstract xvi

Chapter 1: Background and Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Significance of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Chapter 2: Physical and Mathematical Preliminaries 6
2.1 Eulerian and Lagrangian Fields . . . . . . . . . . . . . . . . . . . . . 6
2.2 Conservation Laws and Equations of State . . . . . . . . . . . . . . 9
2.2.1 Continuity Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Conservation of Mass . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Conservation of Momentum . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3.1 Momentum Trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3.2 Cauchy Stress Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3.3 External Body Forces . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3.4 Navier-Stokes Equation . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3.5 Pressure in an Incompressible Fluid . . . . . . . . . . . . . . . . . . 17

2.2.4 Conservation of Energy . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.5 Equation of State . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.6 Scalar Conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

iv



2.3 Random Fields and Random Processes . . . . . . . . . . . . . . . . . 21
2.3.1 Probability Distribution Functions and Expected Values . . . . . . . 22
2.3.2 Fine-grained PDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.3 Eulerian and Lagrangian PDFs . . . . . . . . . . . . . . . . . . . . . 25
2.3.4 Random Fields and Processes . . . . . . . . . . . . . . . . . . . . . . 27
2.3.5 Reynolds Decomposition and Averaging . . . . . . . . . . . . . . . . 29

2.4 Stochastic Balance and Langevin Equations . . . . . . . . . . . . . . 30
2.4.1 Master Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.1.1 Chapman–Kolmogorov Equation . . . . . . . . . . . . . . . . . . . . 31
2.4.1.2 Master Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.1.3 Kramers–Moyal Expansion . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.2 Fokker-Planck Equation . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4.3 Langevin Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.3.1 Wiener Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.3.2 Stochastic Differential Equations and the Langevin Equation . . . . 37
2.4.3.3 Master Equation Derivation . . . . . . . . . . . . . . . . . . . . . . . 38
2.4.3.4 Itô’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4.3.5 Kramers–Moyal Coefficients . . . . . . . . . . . . . . . . . . . . . . . 41

Chapter 3: Lagrangian Velocity Langevin Models 43
3.1 Drift-diffusion Turbulent Flow Model . . . . . . . . . . . . . . . . . 44
3.1.1 FLEXPART and HYSPLIT Langevin Drift-diffusion Model . . . . . 44
3.1.2 Navier-Stokes Equation in Turbulent Flows . . . . . . . . . . . . . . 45
3.1.2.1 Reynolds Decomposition and the Reynolds-averaged Navier-Stokes

Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.1.2.2 Turbulent Component Navier-Stokes Equation . . . . . . . . . . . . 47

3.1.3 Turbulent Velocity Drift-diffusion Equation . . . . . . . . . . . . . . 49
3.1.4 Turbulent Particle Dispersion Parameters for a Point Source . . . . . 53

3.2 Alternate Langevin Models . . . . . . . . . . . . . . . . . . . . . . . 55
3.2.1 Normalized Turbulent Velocity Langevin Drift-diffusion . . . . . . . 55
3.2.2 Generalized Langevin Model (GLM) . . . . . . . . . . . . . . . . . . 56
3.2.2.1 Exact Reynolds Stress Transport Model . . . . . . . . . . . . . . . . 58
3.2.2.2 GLM Reynolds Stress Transport Model . . . . . . . . . . . . . . . . 60

3.2.3 Simplified, LRR-IP, and Haworth–Pope Models . . . . . . . . . . . . 62
3.2.4 Contrast with Proposed Drift-diffusion Langevin Model . . . . . . . 65

Chapter 4: Eulerian Physical Models 66

v



4.1 Computational Fluid Dynamics (CFD) Models . . . . . . . . . . . . 66
4.1.1 RANS Eddy Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.1.2 k-ε Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.1.3 Turbulent Fields and Particle Dispersion . . . . . . . . . . . . . . . . 69

4.2 Advection-diffusion (AD) Model . . . . . . . . . . . . . . . . . . . . 69
4.2.1 Advection-diffusion Equation . . . . . . . . . . . . . . . . . . . . . . 70
4.2.2 Symmetry of the RANS and AD Equations with Turbulence Models 71

4.3 Gaussian Plume and Puff Models . . . . . . . . . . . . . . . . . . . . 72

Chapter 5: Lagrangian Velocity Model Code Description 75
5.1 Meteorological Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2 Mesoscale Turbulent Velocity . . . . . . . . . . . . . . . . . . . . . . 76
5.3 Microscale Turbulent Velocity . . . . . . . . . . . . . . . . . . . . . . 77
5.3.1 Estimation of Monin-Obukhov Length . . . . . . . . . . . . . . . . . 77
5.3.2 Parameterization of Turbulence . . . . . . . . . . . . . . . . . . . . . 78
5.3.2.1 Neutral Atmosphere Representation . . . . . . . . . . . . . . . . . . 79
5.3.2.2 Unstable Atmosphere Representation . . . . . . . . . . . . . . . . . 80
5.3.2.3 Stable Atmosphere Representation . . . . . . . . . . . . . . . . . . . 80

5.4 Particle Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.4.1 Grid Averaging: Uniform Kernel . . . . . . . . . . . . . . . . . . . . 82
5.4.2 Detector Averaging: Parabolic Kernel . . . . . . . . . . . . . . . . . 83

5.5 Species Characterization and Mass Transfer . . . . . . . . . . . . . . 84
5.5.1 Dry Deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.5.2 Radioactive Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.6 Adjoint Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Chapter 6: Applications of ATM 89
6.1 Source Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.1.1 Fukushima Daiichi Gaseous Radioxenon and Iodine . . . . . . . . . . 89
6.1.1.1 Radiological Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.1.1.2 FLEXPART Configuration . . . . . . . . . . . . . . . . . . . . . . . 90
6.1.1.3 Radioactive Decay Post-processing . . . . . . . . . . . . . . . . . . . 91
6.1.1.4 Source Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.1.1.5 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.1.2 Fukushima Daiichi Kalman Filter Estimation . . . . . . . . . . . . . 96
6.1.2.1 Kalman Filter Description . . . . . . . . . . . . . . . . . . . . . . . . 96
6.1.2.2 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

vi



6.1.3 DPRK Weapons Tests . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.1.3.1 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.1.4 May 2010 DPRK Radionuclide ATM Analysis . . . . . . . . . . . . . 101
6.1.4.1 Forward Simulation Results and Analysis . . . . . . . . . . . . . . . 104
6.1.4.2 Backward/Adjoint Detector Sensitivity Analysis . . . . . . . . . . . 107
6.1.4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2 Dry Deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.2.1 Iceland 2010 Volcanic Ash: FLEXPART vs. HYSPLIT . . . . . . . . 110

6.3 Grid, Mesoscale, and Microscale Uncertainties . . . . . . . . . . . . . 110
6.3.1 Grid Meteorological Data Uncertainties: Fukushima Daiichi WRF

Data Ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.3.2 Mesoscale Turbulence Fluctuations . . . . . . . . . . . . . . . . . . . 115
6.3.3 Microscale Turbulence Parametric Study: Gaussian Puff Model . . . 115
6.3.3.1 Meteorological Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.3.3.2 Emission and Concentration Configuration . . . . . . . . . . . . . . 118
6.3.3.3 FLEXPART Benchmark Results . . . . . . . . . . . . . . . . . . . . 119

Chapter 7: Conclusions 123
7.1 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 123
7.2 Future Work and Recommendations . . . . . . . . . . . . . . . . . . 124

References 126

Appendix 137

vii



List of Figures

Figure 3.1 Lagrangian velocity autocorrelation function and its relationship to
the Lagrangian time scale. The shaded area of the unit rectangle of
time length TL is equivalent to the total area under the autocorrelation
function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Figure 5.1 Structural diagram of FLEXPART bindings to ORIGEN depletion
solver library. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Figure 6.1 Fukushima Daiichi accident simulation release origin (red triangle)
and IMS radioxenon detectors (green circles). . . . . . . . . . . . . . 91

Figure 6.2 Iodine and xenon radionuclide decay chains . . . . . . . . . . . . . . 92
Figure 6.3 US IMS 131mXe (left) and 133Xe (right) concentrations assuming 100%

radioxenon inventory emissions and 10% iodine emissions with a time-
dependent source emitting 87.5% over the first 4 days and 12.5% over
the final 4 days. The solid grey lines are FLEXPART (FP) predictions,
and the dashed lines are IMS detector measurements. . . . . . . . . 95

Figure 6.4 IMS detector 133Xe concentrations. The solid blue lines are FLEX-
PART (FP) predictions, and the dashed black lines are IMS detector
measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Figure 6.5 FLEXPART simulated optimal 133Xe plume concentration profile at
2017-09-16 19:00 UTC (top) and 2017-09-30 22:00 UTC (bottom) using
the CFSRv2 meteorological data set. The DPRK test site is shown by
the red star, while the green circles and green triangles show the US
IMS particulate and radioxenon stations, respectively. . . . . . . . . 101

Figure 6.6 FLEXPART simulated optimal 133Xe plume concentration profile at
2017-09-16 19:00 UTC (top) and 2017-09-30 22:00 UTC (bottom) using
the ERA-Interim meteorological data set. The DPRK test site is
shown by the red star, while the green circles and green triangles show
the US IMS particulate and radioxenon stations, respectively. . . . . 102

viii



Figure 6.7 Potential emission sites (red stars) as well as RN particulate (green
circles) and radioxenon detectors (green triangles) for the DPRK 2010
RN ATM simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Figure 6.8 133Xe concentrations at Takasaki, Japan JPX38 IMS station due to
an emission source from Bolshoi Kamen at 2010-05-10 12:00 UTC.
The dashed lines are IMS detector measurements, while the colored
markers are optimally estimated FLEXPART concentrations for each
meteorological data set. . . . . . . . . . . . . . . . . . . . . . . . . . 107

Figure 6.9 133Xe concentrations at Takasaki, Japan JPX38 IMS station due to
an emission source from NKTS at 2010-05-12 18:00 UTC. The dashed
lines are IMS detector measurements, while the colored markers are op-
timally estimated FLEXPART concentrations for each meteorological
data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Figure 6.10 133Xe concentrations at Takasaki, Japan JPX38 IMS station using
an interpolated grid averaging uniform kernel. The dashed lines are
IMS detector measurements, while the colored markers are optimally
estimated FLEXPART concentrations for each WRF meteorological
data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Figure 6.11 133Xe concentrations at Takasaki, Japan JPX38 IMS station using
an interpolated grid averaging uniform kernel. The dashed lines are
IMS detector measurements, while the colored markers are optimally
estimated FLEXPART concentrations for each WRF meteorological
data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Figure 6.12 133Xe concentrations at Takasaki, Japan JPX38 IMS station using
an interpolated grid averaging uniform kernel. The dashed lines are
IMS detector measurements, while the colored markers are optimally
estimated FLEXPART concentrations for each WRF meteorological
data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Figure 6.13 133Xe concentrations at Ashland, KS USX74 IMS station using a
detector averaging parabolic kernel. The dashed lines are IMS detector
measurements, while the colored markers are optimally estimated
FLEXPART concentrations for each WRF meteorological data set. . 114

Figure 6.14 133Xe concentrations at Wake Island USX77 IMS station using a
detector averaging parabolic kernel. The dashed lines are IMS detector
measurements, while the colored markers are optimally estimated
FLEXPART concentrations for each WRF meteorological data set. . 114

ix



Figure 6.15 133Xe concentrations at Oahu, HI IMS station using a detector averag-
ing parabolic kernel. The dashed lines are IMS detector measurements,
while the colored markers are optimally estimated FLEXPART con-
centrations for each WRF meteorological data set. . . . . . . . . . . 115

Figure 6.16 133Xe concentrations at Takasaki, Japan JPX38 IMS station using a
detector averaging parabolic kernel. The dashed lines are IMS detector
measurements, while the colored markers are optimally estimated
FLEXPART concentrations for each WRF meteorological data set. . 116

Figure 6.17 133Xe concentrations at Oahu, HI IMS station using an interpolated
grid averaging uniform kernel. The dashed lines are IMS detector
measurements, while the colored markers are optimally estimated
FLEXPART concentrations for each WRF meteorological data set. . 116

Figure 6.18 FLEXPART DPRK test site emission particle trajectory over 24
hours. Five individual particle trajectories are shown in color, while
the ensemble average and standard deviation over all 100 particles
is shown in black. From left to right, the columns show the mean,
turbulent, and mesoscale turbulent components. From top to bottom,
the rows show the velocity components in the x, y, and z directions. 117

Figure 6.19 Dispersion factors vs downwind distance computed using PG curves
(red), FLEXPART concentration (black), and FLEXPART trajectory
ensemble (blue) for PG class A (unstable) with hPBL = 1000 m. . . . 120

Figure 6.20 Dispersion factors vs downwind distance computed using PG curves
(red), FLEXPART concentration (black), and FLEXPART trajectory
ensemble (blue) for PG class F (stable) with hPBL = 1000 m. . . . . . 121

Figure 6.21 Dispersion factors vs downwind distance computed using PG curves
(red), modified FLEXPART concentration (black), and modified FLEX-
PART trajectory ensemble (blue) for PG class F (stable) with hPBL =

1000 m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

x



List of Tables

Table 5.1 FLEXPART atmospheric stability classification [1, 2]. . . . . . . . . 79

Table 6.1 Total Fukushima Daiichi radionuclide half lives and ORIGIN2 esti-
mated inventories [3]. Inventories were estimated at the time of reactor
shutdown (approximately 2011-03-11 05:46 UTC) and include Units
1-3 cores and Units 1-4 spent fuel pools. . . . . . . . . . . . . . . . . 90

Table 6.2 Iteration summary for metric 1(c) in Eq. 6.8 for the optimized, time-
dependent source plotted in Fig. 6.3. . . . . . . . . . . . . . . . . . . 96

Table 6.3 Total estimated radionuclide emissions at Fukushima Daiichi from 16
12-hour uniform emission sources from 2011-03-12 to 2011-03-20 UTC. 99

Table 6.4 Radioxenon concentrations in mBq m−3 at Geojin, ROK and Takasaki,
Japan which were unusual in their concentration (highlighted in red)
for normal civilian activities [4]. . . . . . . . . . . . . . . . . . . . . 103

Table 6.5 Radioxenon isotopic ratios at Geojin, ROK and Takasaki, Japan which
were unusual (highlighted in red) for normal civilian activities [5, 6]. 104

Table 6.6 Emission levels estimated by source optimization against IMS data
for each of the emission sites, times, and meteorological data sets.
Values highlighted in red are relatively high for the emission source
type, while those in blue are relatively low for the type of emission
source. Emission times were selected as potentially significant based
on Wright’s analysis [7]. . . . . . . . . . . . . . . . . . . . . . . . . . 106

Table 6.7 Typical radioxenon emission levels for the different types of sites [8]. 106
Table 6.8 2°×2° spatial average of regional contribution (in seconds) from 0 to

5 meters AGL to the Geojin detector measurement. Emission times
were selected at the beginning, middle, and end of the 48-hour window
predicted by De Geer. . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Table A.1 Pasquill stability class based on the near-surface (10 m) wind, solar
radiation, and cloudiness. Source: [9, 10] . . . . . . . . . . . . . . . 140

xi



Table A.2 Pasquill stability class based on the near-surface (10 m) wind direction
standard deviation or surface layer temperature gradient. Source:
[11, 12] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Table A.3 Correlation parameters for the estimation of L using Eq. A.2. . . . . 141

xii



Nomenclature

Abbreviations

AD advection-diffusion

ATM atmospheric transport modeling

CDF cumulative distribution function

CFD computational fluid dynamics

CTBT Comprehensive Nuclear-Test-Ban Treaty

CTBTO CTBT Organization

DD drift-diffusion

DNS direct numerical simulation

GLM generalized Langevin model

IMS International Monitoring System

LES large eddy simulation

LPDM Lagrangian particle dispersion model

LRR-IP Launder, Reece, Rodi isotropization-of-production

MDC minimum detectable concentration

NS Navier-Stokes

PBL planetary boundary layer

PDF probability density function

xiii



PG Pasquill-Gifford

RANS Reynolds-averaged Navier-Stokes

RMS root mean square

RN radionuclide

SDE stochastic differential equation

SLM simplified Langevin model

TKE turbulent kinetic energy

Greek symbols

Ω angular velocity vector for a rotating frame of reference

∆ volumetric strain rate or expansion, eii = ∂Ui/∂xi = ∇ ·U

δ(Z) Dirac delta function,
∫
Rn δ(Z)dZ = 1

δij Kronecker delta tensor

Γ molecular diffusivity

Γeff
ij effective diffusivity due to molecular and turbulent diffusion, Γδij + ΓT

ij

ΓT
ij turbulent diffusivity or eddy diffusivity tensor

µ dynamic viscosity

ν kinematic viscosity, µ/ρ

νeff effective viscosity due to molecular and turbulent viscosity, ν + νT

νT turbulent viscosity or eddy viscosity

Φ (specific) potential, i.e. potential energy per unit mass

ρ mass density

σij(τ) Lagrangian particle displacement covariance after time τ = t− t0

σ2
ui

turbulent velocity variance in direction i

τ TKE dissipation time scale, k/ε

xiv



ε TKE dissipation rate

ξi(t) Gaussian white noise process in direction i, dWi(t)/dt

Latin symbols

U total velocity

u turbulent velocity component

C0 GLM diffusion coefficient
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Abstract

In an effort to understand the assumptions and approximations involved in the physics
on which atmospheric transport modeling (ATM) relies, we derived from first principles
the Lagrangian turbulent velocity drift-diffusion model used by codes such as FLEXPART
and HYSPLIT. We showed that the drift-diffusion model is a Langevin model representing
the equation of motion for Lagrangian fluid particles based on the turbulent Navier-Stokes
equation. That is, the incompressible turbulent Navier-Stokes equation is cast into the form
of a stochastic differential equation (SDE) called the Langevin equation which describes the
turbulent velocity component of the Lagrangian particle trajectory. The drift coefficient
depends on the Lagrangian time scale modeled using the Lagrangian velocity autocorrelation
function, while the diffusion coefficient depends additionally on the Reynolds stress or velocity
variance. This makes clear that the turbulent Navier-Stokes equation is the physical basis of
the drift-diffusion model used by FLEXPART and HYSPLIT and shows what assumptions
and approximations are made.

In contrast to particle-based methods of the Lagrangian models, the advection-diffusion (AD)
equation physically represents a mass-conservation equation in a turbulent fluid and directly
models the mean Eulerian concentration field by employing an eddy diffusivity hypothesis.
The AD model is the basis for Gaussian plume model codes such as MACCS2 which use
the Pasquill-Gifford semi-empirical turbulence model. We parametrically compared the
FLEXPART drift-diffusion model to the Gaussian puff model using synthetic meteorological
data, which showed significant discrepancies between the vertical or horizontal dispersion
parameters for unstable or stable atmospheres, respectively. However, by modifying the
FLEXPART turbulence model to simulate the Gaussian puff model dispersion parameters,
we demonstrated much better agreement between the two models. On the other hand, the
FLEXPART concentration profile dispersion generally agreed well with the Lagrangian particle
ensemble dispersion, validating to some extent the relationship between the Lagrangian and
Eulerian turbulence parameters.

xvi



In addition to the complexities associated with physically modeling turbulence, we have
demonstrated uncertainties associated with dry deposition, particle size distributions, radioac-
tive decay chains, different meteorological data sets, virtual particle numbers, and mesoscale
velocity fluctuations. We have performed studies on: local (100 km radius) and global scales,
large (Fukushima) and small (DPRK) radionuclide (RN) emission sources, and particulate
(volcanic ash) and gaseous species (Xe). Volcanic ash particulate transport simulations
showed that it is necessary to use large numbers of particles per emission source, that the dry
deposition model significantly reduces predicted atmospheric concentrations and that this is
more pronounced for larger particle sizes. When we examined the radioxenon emissions from
the Fukushima Daiichi nuclear accident, we found that the meteorological data set chosen
has a significant impact on the simulated RN concentrations at detectors as close as Takasaki,
with variations up to four orders of magnitude. Additionally, our studies on DPRK weapons
tests showed that the measured RN data is often very sparse and difficult to explain and
attribute to a particular source.

These studies all demonstrated the many uncertainties and difficulties associated with ATM
of RNs when comparing to real data. Thus, we show that ATMs should rely as closely as
possible on the underlying physics for accurately modeling RN dispersion in the turbulent
atmosphere. In particular, one should use turbulence models based closely on the turbulent
Navier-Stokes equation, accurate and high resolution meteorological data, and physics-based
deposition and transmutation models.
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Chapter 1

Background and Introduction

Fundamentally, the purpose of atmospheric transport modeling (ATM) is to estimate quantities
such as the mass concentration field resulting from the simulated transport and dispersion
of material in the turbulent atmosphere. The material species of interest could be chemical
or radiological in nature with ATM applications ranging from accident analysis, natural
disaster response, environmental regulation, and treaty verification. Our focus is on the
ATM of radionuclides (RNs) for nuclear accident analysis as well as treaty verification of
nuclear weapons testing or monitoring of clandestine nuclear activities. There are several
approaches for ATM of RNs, primarily divided into two categories: Eulerian mass and fluid
dynamics models and Lagrangian particle dispersion models (LPDMs). Each model has its
own assumptions and uncertainties involved, including the systematic modeling errors of the
physical model. In particular, ATMs must simulate the dispersion of species by approximating
the characteristics of atmospheric turbulence.

The primary goal of this dissertation is to provide physical and mathematical justification for
the computational models commonly used in ATM applications. By examining the underlying
assumptions and physics of these computational models, we are able to make comparisons
between various ATMs which are often used without complete understanding. This basic
understanding is important in order to know the limitations and uncertainties involved in
ATM for applications with real data, which is the secondary goal of this thesis. That is, we
wish to emphasize the importance of understanding and acknowledging the uncertainties in
ATM, especially when applied to situations which could have significant consequences. With
the understanding of the physical model and its systematic uncertainties, one can seek to
improve the model and reduce uncertainties by following the physics as closely as possible.
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1.1 Motivation

Atmospheric transport modeling (ATM) has many applications dating back to the early
and mid twentieth century [13–15]. Fundamentally, the purpose of ATM is to simulate the
transport of material in the turbulent atmosphere in order to estimate quantities such as the
mass concentration field of species. Applications of ATM include accident analysis such as
following a nuclear meltdown [16–20] or chemical plant explosion [21], natural disasters like
volcanic eruptions [22–24], environmental regulation modeling of factory emissions [25], and
treaty verification [26, 27] of nuclear weapons testing or monitoring of clandestine nuclear
activities. Thus, the species could be chemical or radiological in nature, undergoing potentially
complex physical processes such as dry deposition, chemical reactions, and radioactive decay.
It is often the case for these situations that the emission source itself is unknown, and therefore
one might be interested in using measured atmospheric concentration data to estimate the
source [28].

As a part of the CVT, the focus of this work has been on nuclear weapons test treaty verification
and monitoring clandestine nuclear activities. In particular, if the Comprehensive Nuclear-
Test-Ban Treaty (CTBT) were ratified, it would ban all explosive nuclear tests, and there
would be a need to verify compliance by its signatory nations. Under the CTBT Organization
(CTBTO) verification regime, a global network of detectors called the International Monitoring
System (IMS) was created for this purpose. The IMS consists of four primary detection
technologies: seismic [29], hydroacoustic [30], infrasound [31], and radionuclide [32]. While
the former three detector networks can provide very useful information about the timing,
location, and intensity of an explosion, it is this latter RN detector network which proves the
nuclear nature of the explosion.

The RN detector network consists of 80 RN detectors, 40 of which have highly sensitive
radioxenon measurement capabilities. These radioxenon detectors are particularly useful for
CTBT verification for several reasons [33]. As a noble gas, radioxenon is chemically inert and
therefore likely to seep through the surface of the Earth in underground nuclear weapons tests.
Additionally, gaseous atmospheric deposition can typically be neglected whereas this is a more
significant effect for particulate matter. These two attributes of noble gases make radioxenon
especially useful for ATM. Finally, the radioactive decay and isotopic ratios of radioxenon
can be used for discriminating civilian nuclear sources from weapons tests [5, 6]. However,
while the radioxenon detectors are both necessary and useful for CTBT verification purposes
[34], their placement and measured data are both relatively sparse, making verification and
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source discrimination difficult [6, 35].

In addition to uncertainties associated with measured data, there are many modeling uncer-
tainties associated with modeling turbulence. Turbulence is a challenging problem in physics
[36], and we present in this thesis the physical basis and assumptions of the turbulence models
employed by several ATMs. In particular, since we are interested in the global transport of
RNs, we sought to use and understand some of the LPDMs most commonly used in this
area [37]: FLEXPART [1, 2] and HYSPLIT [38]. After discovering the level of variability of
both input and output parameters for these models, we began to focus on understanding
the fundamental physics on which these models are based to see what assumptions and
approximations are made and where improvements are warranted.

1.2 Significance of Thesis

The significance of this thesis is to derive from physical first principles the models commonly
used in ATM applications, focusing on the FLEXPART and HYSPLIT LPDMs. While there
have been many works which have discussed these models and their applications [10, 39–42],
the connection to the underlying physics has not been clarified. In particular, whereas
previous forms of the Langevin drift-diffusion (DD) equation are historically asserted outright
as a suitable model for the turbulent fluid flow velocity [15, 43, 44], we have derived directly
from the turbulent Navier-Stokes equation the Langevin DD model used by FLEXPART
with a simple physical understanding of the Langevin equation of motion. Furthermore,
while alternative approaches to deriving Langevin models which rely on statistical probability
distribution transport equations [39, 42, 45] can obscure the underlying physics, the direct
approach we use remains as close as possible to the physical equation of motion. Thus, this
work attempts to make clear what underlying physics these models represent as well as what
assumptions and approximations are made.

With a solid understanding of the physical model, we then present several applications to real
and synthetic data with the caveat that there are many uncertainties inherent in ATM. For
example, it is not uncommon to have estimated emission source uncertainties on the order of
50% or even more than 100% [22, 46]. Furthermore, relatively rapid fluctuations over several
orders of magnitude in simulated and measured concentrations are not uncommon due to
the sharp and chaotic nature of turbulence. Regardless of the widespread recognition that
there are many uncertainties associated with ATM [47–49], researchers and organizations
often employ ATM towards real situations. If not properly acknowledged, these uncertainties
could have consequences on perceived dangers [50] and policy [51, 52] unwarranted by the
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level of confidence in the model. This allows us to propose areas for future improvement as
well as some basic recommendations.

1.3 Outline

Chapter 2 discusses the underling mathematical and physical understanding necessary for the
subsequent chapters. It begins by making the distinction between the Eulerian and Lagrangian
frames of reference, defining the concept of a fluid parcel or fluid particle and the material or
Lagrangian derivative which follows the trajectory of a fluid particle. Then it presents and
justifies the assumptions made for the mass, momentum, and energy conservation equations,
as well as the equation of state, for the Earth’s atmosphere. Since we are particularly
concerned in this thesis with the turbulent atmosphere, we discuss several foundational
concepts of random fields and processes. Finally, we derive the relationship and assumptions
involved between various mathematical formulations of stochastic models and especially their
relationship to the Langevin equation.

Chapter 3 begins with a derivation of the turbulent Navier-Stokes equation from the Navier-
Stokes equation and the Reynolds-averaged Navier-Stokes (RANS) equation. When cast
in terms of the Lagrangian derivative, this is the basis for the FLEXPART and HYSPLIT
Lagrangian velocity Langevin DD model. With a simple approximation, we demonstrate
that the mean velocity gradient drift coefficient can be represented in terms of the velocity
autocorrelation function time scale. This model is contrasted with several alternative models
which depend on other time scales.

As opposed to the Lagrangian models in chapter 3, chapter 4 derives and discusses several
Eulerian approaches for ATM. First, we discuss general computational fluid dynamics (CFD)
models, focusing on perhaps the simplest and most commonly used Reynolds stress turbulence
closure model, the k-ε eddy viscosity model. Secondly, we discuss the advection-diffusion
(AD) model with its analogous eddy diffusivity hypothesis. The AD model is the basis for
the Gaussian puff or plume models commonly used in simple nuclear safety codes. We finally
derive the connection between the AD model diffusion coefficients and particle dispersion
parameters from chapter 3 in terms of the Lagrangian parameters.

Chapter 5 discusses the details of the FLEXPART and HYSPLIT code implementations,
attempting to provide insight into the empirical models employed. First, we present the
mechanics of the grid-scale, mesoscale, and microscale turbulence models used specifically by
FLEXPART. Then we discuss how LPDMs such as FLEXPART determine mass concentrations
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through particle averaging methods as well as their characterization and transmutation of
species during transport. Finally, we discuss the backward or adjoint mode which can be
used to efficiently calculate source-receptor functions.

Chapter 6 presents several practical applications of FLEXPART, HYSPLIT, and Gaussian
puff models. We discuss the use of FLEXPART for source estimation with a focus on gaseous
radionuclide transport applied to both treaty verification and monitoring of clandestine
nuclear activities as well as nuclear accident analysis. Furthermore, we present a deposition
model study with volcanic ash and studies on the grid-, meso-, and microscale turbulence
models of FLEXPART.

Finally, chapter 7 provides a summary of this work, conclusions drawn, possible future
directions, and recommendations of this work.
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Chapter 2

Physical and Mathematical Preliminaries

As atmospheric transport modeling fundamentally seeks to represent the motion of species in
the turbulent atmosphere, ATM shares many of the physical and mathematical models used
in meteorology for describing and forecasting the state of the atmosphere. In particular, it
relies on the laws of conservation, equations of state, and their stochastic representations
for describing the spatiotemporal dynamics and thermodynamics of fluids in the turbulent
atmosphere.

Since velocities in the atmospheric boundary layers are small compared to the speed of light,
we may use Galilean and Newtonian classical physics [53]. In principle, one could attempt to
model all turbulence scales directly as is done through direct numerical simulation (DNS), but
for regional or global ATM, this is computationally impractical. Furthermore, one generally
has insufficient knowledge about initial and boundary conditions. Thus, in practice, one will
rely on meteorological models for resolving grid scale turbulence while employing stochastic
models for resolving mesoscale and microscale turbulence. These stochastic models can take
many mathematical forms, but they all fundamentally are based on the same assumption
that the fields are modeled as a Markov random process—specifically, a diffusion process.
The form which is employed in the ATM codes FLEXPART and HYSPLIT, for example, is a
Langevin model.

2.1 Eulerian and Lagrangian Fields

Many quantities in meteorology and ATM appear as a function of both spatial position x

and time t, and we can describe these quantities from both a Eulerian and a Lagrangian
perspective. Both specifications rely on the continuum hypothesis that allows us to treat
fluids as continuous media, even though they are composed of discrete molecules and atoms.
The continuum hypothesis relies on the fact that the molecular mean free path λ is much
smaller than the geometric and physical length scales of the fluid flow L: λ� L⇒ Kn� 1,
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where Kn is the Knudsen number. Then one can interpret continuum field quantities at (x, t)

as the volume-averaged quantity from the constituent molecules inside a volume `3 centered
at x at time t, where λ� `� L [39].

The Eulerian specification of the fluid field observes the spatiotemporal behavior—that is,
the spatial distribution at each instant during the motion—of the field in an inertial frame
of reference [39]. This relative simplicity makes Eulerian descriptions natural for a fixed
observation point such as ground-based measurements or for stationary grid cells [37]. The
primary flow quantity is the Eulerian velocity field U(x, t), indexed by both spatial position
x and time t, but quantities such as density ρ(x, t) and pressure p(x, t) are also commonly
specified in this way.

In contrast, the Lagrangian perspective observes the field following a fluid parcel or fluid
particle, which can be considered a more physical description and is often convenient for
studying turbulent transport [37, 54]. Fluid parcels or fluid particles are infinitesimal regions
of the fluid whose constituent physical particles are labeled by an identifier x0. Often, this
identifier represents the center of mass of the fluid particle at some time t0, but it could
alternatively be a thermodynamic triple at t0 [41, 55]. As in the continuum hypothesis, the
fluid particle linear dimension is of order ` such that quantities may be considered constant
inside the fluid particle volume [54]. The fluid particle changes shape and volume (if the fluid
is compressible) as it moves with the fluid flow, but it always corresponds to the same set of
particles (and mass if mass is conserved) [41, 55].

Let x(x0, t0|t) and U(x0, t0|t) denote the position and velocity of the Lagrangian fluid particle
at time t originating from position x0 at the reference time t0 ≤ t. Then, by definition, the
fluid particle position satisfies the initial condition

x(x0, t0|t0) ≡ x0, (2.1)

and the velocity of the fluid particle is defined in terms of the Eulerian velocity at the fluid
particle position,

U(x0, t0|t) ≡ U [x (x0, t0| t) , t] . (2.2)

Since the fluid particle moves with the fluid velocity, we have

∂

∂t
x(x0, t0|t) = U (x0, t0| t) = U [x (x0, t0| t) , t] . (2.3)
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Thus, differentiating Eq. 2.2 with respect to t, we have

∂

∂t
Ui(x0, t0|t) =

[
∂

∂t
Ui(x, t) +

∂

∂xj
Ui(x, t)

∂xj
∂t

]
x=x(x0,t0|t)

=

[
∂

∂t
Ui(x, t)

]
x=x(x0,t0|t)

+
∂xj(x0, t0|t)

∂t

[
∂

∂xj
Ui(x, t)

]
x=x(x0,t0|t)

=

[
∂

∂t
Ui(x, t)

]
x=x(x0,t0|t)

+ Uj [x (x0, t0|t) , t]
[
∂

∂xj
Ui(x, t)

]
x=x(x0,t0|t)

=

[
DUi
Dt

]
x=x(x0,t0|t)

. (2.4)

This is to say that the Lagrangian or material derivative is the rate of change following the
fluid particle trajectory, where we define the Lagrangian or material derivative as

D

Dt
≡ ∂

∂t
+ Ui

∂

∂xi
. (2.5)

More generally, one can show that the Lagrangian value of any quantity is the Eulerian
value at the Lagrangian particle position at that time [41]. Consider a scalar1 quantity φ(t)

sampled from the scalar field ϕ = ϕ(x, t) along a particle trajectory x(t) in a continuum fluid
flow:

φ(t) = ϕ [x(t), t] . (2.6)

For example, this quantity might represent a physical quantity such as the fluid density
ρ or velocity component Ui. Then we can calculate the total derivative of φ(t) along this
trajectory x(t) by using the chain rule:

d

dt
φ(t) =

[
∂

∂t
ϕ(x, t)

]
x=x(t)

+
dxi(t)

dt

[
∂

∂xi
ϕ(x, t)

]
x=x(t)

, (2.7)

where ẋ = dx/dt is the velocity of the control volume element. This represents the temporal
change due both to a temporal change at a fixed point, represented by ∂tϕ, and the change in
the control volume location within a gradient, represented by ẋ ·∇ϕ. Note that the trajectory
is completely arbitrary: one can choose any trajectory x(t) along which to measure the
quantity of interest. If the trajectory along which we measure φ(t) is given by the trajectory

1ϕ could similarly represent a vector or tensor field.
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which follows the fluid velocity,

dx(t)

dt
= U(t) = U [x(t), t] , (2.8)

where x(t) ≡ x(x0, t0|t) is the Lagrangian particle position, and U(t) ≡ U(x0, t0|t) =

U [x (x0, t0|t) , t] is the Lagrangian particle velocity, then the total derivative is given by the
Lagrangian derivative:

d

dt
φ(t) =

[
∂

∂t
ϕ(x, t)

]
x=x(t)

+ Ui(t)

[
∂

∂xi
ϕ(x, t)

]
x=x(t)

≡
[

D

Dt
ϕ(x, t)

]
x=x(t)

. (2.9)

Thus, the Lagrangian derivative is the correct derivative for a quantity evaluated along
the Lagrangian particle trajectory, and the Lagrangian quantity value is the Eulerian value
evaluated along the Lagrangian particle trajectory. This Lagrangian derivative is commonly
encountered in fluid dynamics equations for conservation laws, which allows us to compactly
write such equations in terms of the Lagrangian trajectory which follows the velocity of the
fluid.

2.2 Conservation Laws and Equations of State

Several meteorological variables can be described in terms of conservation laws. These include
conservation of mass (for species mixed in the atmosphere or the usual constituents of the
air), energy, and linear momentum. One additionally requires an equation of state to describe
the thermodynamic triple of pressure, temperature, and density or volume. Altogether, these
conservation laws and the equation of state allow us to describe the fluid with six dependent
variables: density ρ, velocity U, pressure p, and temperature T .

2.2.1 Continuity Equation

The continuity equation is used to describe the transport of a quantity and represents a
conservation law. It can be written in both a differential or integral form, but here we will
use the strong, local, differential form of the continuity equation:

∂ρ

∂t
+
∂ji
∂xi

= s, (2.10)
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where ρ is the volumetric density of the conserved quantity q (e.g. mass, energy, momentum),
j is the flux or current density of q, and s is the internal volumetric generation rate of q. In
the case of a quantity which cannot be created or destroyed, s = 0. Note that these equations
are only considered for non-relativistic cases.

2.2.2 Conservation of Mass

For conservation of mass, q = m, where m is the fluid-particle mixture mass, ρ is the mass
density, j = ρU is the mass flux density or flow rate, where U is the flow velocity, and (at low
energies) s = 0, since there is no internal mass generation or loss. Thus, we write explicitly
Eq. 2.10 as [55]

∂ρ

∂t
+

∂

∂xi
(ρUi) = 0. (2.11)

Eq. 2.11 is also the form of the advection equation for the scalar field ρ.

An often-used approximation is in the case of an incompressible fluid, for which Eq. 2.11
becomes simply ∇ ·U = 0. The derivation of this begins by expanding Eq. 2.11 using the
product rule,

∂ρ

∂t
+ ρ

∂Ui
∂xi

+ Ui
∂ρ

∂xi
= 0, (2.12)

where ρ = ρ(x, t). The expanded continuity equation 2.12 can be written in terms of the
material derivative as

Dρ

Dt
= −ρ∂Ui

∂xi
. (2.13)

Thus, for an incompressible fluid, mandating a constant (nonzero) density requires that

Dρ

Dt
= −ρ∂Ui

∂xi
= 0 (2.14a)

⇒ ∂Ui
∂xi

= 0. (2.14b)

The latter condition is a kinematic condition that the velocity field is solenoidal or divergence-
free [55].

We will frequently use this incompressibility approximation, so it is necessary to justify why
and the circumstances under which this approximation may be employed. In the gaseous
atmosphere with time-varying velocity U(x, t), the variations of the density ρ will be negligibly
small when [56]
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1. the fluid velocity is small compared to the speed of sound:

U � c,

where c is the speed of sound;

2. and, if τ and L are characteristic time and length scales, respectively, in which the
fluid velocity undergoes significant changes, the time taken for sound to traverse the
distance L is small compared to the time during which the flow changes perceptibly:

L/c� τ.

The latter condition can be interpreted as the propagation of interactions in the fluid being
instantaneous, while the former is the result of the defining relationship of the speed of sound to
density and pressure changes. The first condition is nearly always satisfied in the atmosphere,
which has a speed of sound c ' 300 m s−1 and velocities of at most U ' 100 m s−1 (although
typically much less). The second condition is generally satisfied for turbulent motions smaller
than mesoscale, so we can generally use the incompressibility approximation within the
planetary boundary layer (PBL) [10, 53].

2.2.3 Conservation of Momentum

Conservation of momentum (in a non-relativistic sense) is simply described by Newton’s
second law on a control volume. Here we set q = mU to be the fluid linear momentum, with
ρU its momentum density, j = ρU⊗U is the momentum flux density, where U⊗U is the
dyadic product of the flow velocity, σ is the Cauchy stress tensor describing surface forces,
and Fb incorporates the the volumetric body forces. Then Eq. 2.10 for momentum becomes

∂

∂t
(ρUi) +

∂

∂xj
(ρUiUj) =

∂σij
∂xj

+ Fb,i. (2.15)

This is called the Cauchy momentum equation. In general, it is a nonlinear equation, but one
can make many simplifications to make it more tractable such as assuming incompressibility,
specifying the stress tensor in terms of a constitutive relation, assuming constant pressure,
and assuming inviscid flow. These various assumptions lead to different forms of either the
Navier-Stokes equations or the Euler equations for fluid dynamics. Ultimately, we will use
the Navier-Stokes equation for an incompressible fluid in the frame of reference of the Earth’s
surface which is rotating with respect to the atmosphere.
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2.2.3.1 Momentum Trajectory

The left-hand side of Eq. 2.15 can be expanded using the product rule as

∂

∂t
(ρUi) +

∂

∂xj
(ρUiUj) = Ui

∂ρ

∂t
+ ρ

∂Ui
∂t

+ Uj
∂

∂xj
(ρUi) + ρUi

∂Uj
∂xj

, (2.16)

= Ui
∂ρ

∂t
+ ρ

∂Ui
∂t

+ UiUj
∂ρ

∂xj
+ ρUj

∂Ui
∂xj

+ ρUi
∂Uj
∂xj

. (2.17)

Multiplying Eq. 2.12 by Ui with a change of indices yields

Ui
∂ρ

∂t
+ UiUj

∂ρ

∂xj
= −ρUi

∂Uj
∂xj

, (2.18)

which when combined with Eq. 2.17 results in

∂

∂t
(ρUi) +

∂

∂xj
(ρUiUj) = ρ

∂Ui
∂t

+ ρUj
∂Ui
∂xj

(2.19)

= ρ
DUi
Dt

(2.20)

Thus, the left-hand side of the momentum conservation Eq. 2.15 follows the trajectory of the
velocity material derivative. Note that this does not require that the fluid be incompressible:
it is a direct result of the combination of the mass and momentum conservation equations.

2.2.3.2 Cauchy Stress Tensor

By employing a constitutive relation, we can relate the stress tensor to the fluid deformation.
In particular, we consider a linear constitutive relation for a Newtonian fluid, which the air
in the atmosphere behaves like to a close approximation [10, 53]. The stress tensor can be
divided into an isotropic component and an anisotropic component [57],

σij = −pδij + τij, (2.21)

where p is the thermodynamic pressure, δij is the Kronecker delta tensor, and τ is the
deviatoric or viscous stress tensor. The pressure is generally defined as negative one-third
the trace of the stress tensor plus stress due to the divergence of the velocity, p = p+ ζ∇ ·U,
where p ≡ −tr(σ)/3 = −σii/3 is the mean hydrostatic stress or the mechanical pressure, and
ζ = λ+ 2µ/3 is a proportionality constant called the bulk viscosity or second viscosity, which
depends on two scalar Lamé parameters, the first parameter λ and the second parameter or

12



dynamic viscosity µ. The second viscosity ζ models the difference between the thermodynamic
and mechanical pressures which can arise due to rapid expansion or compression when
compared to the thermodynamic equilibrium relaxation time [56].

For a Newtonian fluid, the relationship between the viscous stress τij and ∂Ui/∂xj is linear
[55]:

τij = Aijk`
∂Uk
∂x`

. (2.22)

The velocity gradients ∂Ui/∂xj can be decomposed into symmetric and antisymmetric parts:

∂Ui
∂xj

= eij + rij,

where

eij ≡
1

2

(
∂Ui
∂xj

+
∂Uj
∂xi

)
, (2.23)

rij ≡
1

2

(
∂Ui
∂xj
− ∂Uj
∂xi

)
(2.24)

are the rate-of-strain and rate-of-rotation tensors, respectively. The antisymmetric part
represents fluid rotation without deformation and cannot by itself generate stress, so stresses
must be generated by the strain rate tensor eij. Assuming a linearly elastic and isotropic
fluid with a symmetric stress tensor, one can show that Eq. 2.22 reduces to a linear function
of two coefficients [55, 57]:

τij = λ∆δij + 2µeij, (2.25)

where ∆ ≡ eii = ∂Ui/∂xi = ∇ ·U is the volumetric strain rate or expansion.

Substituting Eq. 2.25 into Eq. 2.21, the Cauchy stress tensor for a Newtonian fluid is [55, 56]

σij = − (p− λ∆) δij + 2µeij (2.26a)

= − (p− ζ∆) δij + 2µ

(
eij −

1

3
∆δij

)
, (2.26b)

so the momentum change due to the stress tensor is [56]

∂σij
∂xj

= − ∂p

∂xi
+

∂

∂xi
(ζ∆) +

∂

∂xj

[
µ

(
2eij −

2

3
∆δij

)]
. (2.27)

13



For many applications the Stokes assumption ζ = 0⇒ λ = −2µ/3 is sufficiently accurate2.
With this assumption, the viscous stress tensor Eq. 2.25 and Cauchy stress tensor Eqs. 2.26,
respectively, can be written in terms of the dynamic viscosity alone [55, 57]:

τij = −2

3
µ∆δij + 2µeij, (2.28)

σij = −pδij + 2µ

(
eij −

1

3
∆δij

)
. (2.29)

Thus, the momentum change due to the stress tensor with the Stokes assumption is [55, 57]

∂σij
∂xj

= − ∂p

∂xi
− 2

3

∂

∂xi
(µ∆) +

∂

∂xj
(2µeij) . (2.30)

The viscosity is generally a function of pressure and temperature and thus varies spatially in
the fluid. In most cases, however, the viscosity does not noticeably change in the fluid and
can be regarded as constant [53, 56, 57] so that Eq. 2.30 becomes

∂σij
∂xj

= − ∂p

∂xi
− 2

3
µ
∂∆

∂xi
+ µ

∂

∂xj
(2eij)

= − ∂p

∂xi
− 2

3
µ
∂∆

∂xi
+ µ

(
∂U2

i

∂xj∂xj
+

∂2Uj
∂xi∂xj

)
= − ∂p

∂xi
+ µ

(
∇2Ui +

1

3

∂∆

∂xi

)
, (2.31)

where ∇2Ui ≡ ∂2Ui/∂xj∂xj.

The final simplification is to assume the fluid is incompressible: ∆ = 0. In this case, the
viscous stress tensor Eq. 2.28 and Cauchy stress tensor Eqs. 2.29 (or Eq. 2.25 and Eqs. 2.26),
respectively, simplify to

τij = 2µeij, (2.32)

σij = −pδij + 2µeij, (2.33)

while the momentum change Eq. 2.31 (or Eqs. 2.27 or 2.30 with constant viscosity µ)
2Exceptions to this include e.g. damping of high frequency sound waves and the structure of shock waves

[55].
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simplifies to [55, 57]
∂σij
∂xj

= − ∂p

∂xi
+ µ∇2Ui. (2.34)

2.2.3.3 External Body Forces

External body forces can be separated into conservative and non-conservative portions,
Fb = Fc + Fn, such that any conservative body forces may be written in terms of the gradient
of a potential field:

Fc = −ρ∇Φ, (2.35)

where Φ is the specific potential field—that is, the potential energy per unit mass. For
constant-density flows, any conservative forces can then be absorbed into the pressure
gradient, resulting in a modified pressure

P = p+ ρΦ. (2.36)

The external body forces might include any number of physical effects, but among the
fundamental forces, gravity may be the most important:

Fgrav = ρg = −ρ∇Φgrav, (2.37)

where [58]
Φgrav = −g · x, (2.38)

with g ≡ −gr̂ the gravitational acceleration vector pointing towards the Earth’s polar center
and x the polar position. If the fluid particles are charged, Lorentz forces might be significant,
which also would require solving Maxwell’s equations, but we will not deal with charged
particle ATM.

On the other hand, the Earth’s surface is a non-inertial reference frame, which generally
requires fictitious forces such as the Coriolis force, centrifugal force, and Euler force. Let the
frame of reference be both accelerating with linear acceleration a(t) and rotating with angular
velocity Ω(t) relative to an inertial frame. Then the fictitious forces on a fluid element are
given by [55]

Ffict = −ρ
[
a + 2Ω×U + Ω× (Ω× x) +

dΩ

dt
× x

]
, (2.39)

where the force terms correspond to, respectively, the translational force, Coriolis force,
centrifugal force, and Euler force of the non-inertial frame.

15



1. Translational force
Ftranslational = −ρa (2.40)

2. Coriolis force
FCoriolis = −2ρΩ×U (2.41)

3. Centrifugal force
Fcentrifugal = −ρΩ× (Ω× x) (2.42)

4. Euler force
FEuler = −ρdΩ

dt
× x (2.43)

The Coriolis and centrifugal forces are sufficient for a fluid element relative to the Earth’s
surface since the Earth’s angular speed is nearly constant, and the relative translational
motion can be neglected [58]. Furthermore, the centrifugal force can also be written in terms
of a potential gradient:

Fcentrifugal = −ρΩ× (Ω× x) = −ρ∇Φcentrifugal, (2.44)

with [58]

Φcentrifugal = −1

2
|Ω× x|2 . (2.45)

Thus, the centrifugal and gravitational forces may be combined into an effective gravitational
potential known as the geopotential

Φgeo = Φgrav + Φcentrifugal = −g · x− 1

2
|Ω× x|2 . (2.46)

Typically, meteorological data sets provide the geopotential which thus represents the effective
gravity on Earth due to true gravity and the centrifugal force, resulting in an effective gravity
perpendicular to the level surfaces of the approximately oblate spheroid of the Earth. Thus,
although the centrifugal force is much smaller than the gravitational force [10, 59], it is
typically incorporated with the gravitational potential and does not appear explicitly in the
body force terms.

On the other hand, while the centrifugal force is much larger than the Coriolis force [10, 59],
the Coriolis force should not be neglected for motions over durations on the order of the
Earth’s period of rotation, L/U & Ω−1 [59, 60]. Thus, for sufficiently large scale motions
(L ∼ 1000 km and U ∼ 10 m s−1) or sufficiently small velocities over short ranges (L ∼ 1 km
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and U ∼ 1 cm s−1), the Coriolis force should be considered with the geopotential or pressure
gradients.

Then combining Eqs. 2.41 and 2.46 for the Coriolis, centrifugal, and gravitational forces, the
force per unit volume observed in the non-inertial frame of the Earth’s surface on an element
is

Fb,i = −ρ∂Φgeo

∂xi
− 2ρεijkΩjUk, (2.47)

where εijk is the Levi-Civita tensor.

2.2.3.4 Navier-Stokes Equation

Substituting Eqs. 2.20, 2.34, and 2.47 into Eq. 2.15, we obtain the incompressible Navier-
Stokes equation in the non-inertial frame of the Earth’s surface:

DUi
Dt

=
1

ρ
Fi = −1

ρ

∂P

∂xi
+ ν∇2Ui − 2εijkΩjUk, (2.48)

where F = ∇ · σ + Fb is the force per unit volume, P = p+ ρΦgeo is the modified pressure,
and ν ≡ µ/ρ is the kinematic viscosity. When considering small scale motions, the Coriolis
force may be neglected compared to the modified pressure and viscous forces.

2.2.3.5 Pressure in an Incompressible Fluid

Typically the pressure is related to the thermodynamic properties of density and temperature
through an equation of state. However, in the case of an incompressible fluid, density and
pressure are unrelated, and one must use a different equation for describing pressure [39].
This equation for pressure can be derived by taking the divergence of Eq. 2.48:

∂

∂xi

(
DUi
Dt

)
=

1

ρ
∇ · F

⇒ ∂∆

∂t
+

∂

∂xi

(
Uj
∂Ui
∂xj

)
= −1

ρ
∇2P + ν∇2∆− 2∇ · (Ω×U)

⇒ ∂∆

∂t
+ Uj

∂∆

∂xj
+
∂Uj
∂xi

∂Ui
∂xj

= −1

ρ
∇2P + ν∇2∆− 2∇ · (Ω×U)

⇒
(

D

Dt
− ν∇2

)
∆ = −1

ρ
∇2P − ∂Uj

∂xi

∂Ui
∂xj
− 2∇ · (Ω×U) . (2.49)

With the initial and boundary conditions ∆ = 0, the solution is ∆ = 0 if and only if the
right-hand side of Eq. 2.49 is zero. Then the modified pressure satisfies a Poisson equation
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with a source term S(x, t) based on velocity gradients and the Coriolis force:

∇2P = S(x, t) = −ρ∂Uj
∂xi

∂Ui
∂xj
− 2ρ∇ · (Ω×U) . (2.50)

One can then use the usual approaches for solving Poisson’s equation for the pressure such as
using Green’s function.

2.2.4 Conservation of Energy

Conservation of energy can take many forms, depending on which form of energy one considers:
kinetic, internal, total or mechanical, enthalpy, or entropy. The kinetic energy can easily be
derived from the momentum conservation law, while the latter forms rely on equations of
thermodynamics. In particular, multiplying Eq. 2.15 by Ui and using Eq. 2.20 yields the
kinetic energy conservation equation [55]

Ui
DUi
Dt

=
D

Dt

(
1

2
U2

)
=
Ui
ρ

∂σij
∂xj

+
UiFb,i

ρ
, (2.51)

where Ekin = UiUi/2 = U2/2 is the kinetic energy per unit mass. This equation describes the
change in kinetic energy due to work done by both surface and body forces,

Wkin =
Ui
ρ

∂σij
∂xj

+
UiFb,i

ρ
. (2.52)

To account for heat transfer across the fluid element boundary, we use the first law of
thermodynamics [55]:

∆E = Q+Wint, (2.53)

where E is the internal energy per unit mass, Q is the heat gain per unit mass, and Wint is the
work per unit mass on the fluid element resulting in changes in internal energy alone. That is,
Wint excludes work to change the kinetic energy of the fluid element. The ∆ symbol used in
Eq. 2.53 signifies a change in E and is distinct from the volumetric strain rate ∆ ≡ eii defined
in Eq. 2.25. Heat gain can come from several sources such as radiative exchange, molecular
conduction, phase changes, chemical reactions, and viscous dissipation. For simplicity, we
consider only molecular conduction Q = Qcond, for which the heat flux is proportional to the
fluid temperature gradient [61],

qcond = −kT∇T, (2.54)

where kT and T are the fluid element thermal conductivity and temperature, respectively.
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Then the heat gain per unit mass of a fluid element due to molecular conduction is [55]

Qcond = −1

ρ
∇ · qcond =

1

ρ

∂

∂xi

(
kT
∂T

∂xi

)
. (2.55)

The work done on the fluid element not resulting in kinetic energy change to the fluid element
is work which results in deformation of the fluid element alone [55]

Wint =
σij
ρ

∂Ui
∂xj

=
σijeij
ρ

. (2.56)

Thus, substituting Eqs. 2.55 and 2.56 into Eq. 2.53, the internal energy conservation equation
is given by [55]

DE

Dt
= Q+Wint =

σijeij
ρ

+
1

ρ

∂

∂xi

(
kT
∂T

∂xi

)
, (2.57)

Substituting Eq. 2.26b into Eq. 2.57 then yields [55]

DE

Dt
= −p∆

ρ
+
ζ∆2

ρ
+ Ėν +

1

ρ

∂

∂xi

(
kT
∂T

∂xi

)
, (2.58)

where we have defined the mechanical energy dissipation rate due to viscous shear forces
Ėν = dEν/dt as [55]

Ėν = 2ν

(
eijeij −

1

3
∆2

)
= 2ν

(
eij −

1

3
∆δij

)2

. (2.59)

This term is the result of molecular transport of momentum leading to simple shearing motion
and friction in the usual sense. The first and second terms on the right-hand side of Eq.
2.58 account for, respectively, the reversible transformation of energy due to thermodynamic
pressure and the mechanical energy dissipation due to rapid expansion or compression. This
second dissipation term arises due to a time lag between expansion or compression and the
reestablishment of thermodynamic equilibrium of the molecules [55, 56]. As discussed in
section 2.2.3.2 Eq. 2.27, the Stokes assumption for the bulk or second viscosity ζ = 0 is a
good approximation for cases of interest to us, allowing us to neglect the second term.

The second law of thermodynamics relates the change in entropy per unit mass δS to the
heat change δQ [55]

TδS = δQ. (2.60)

Then using Maxwell’s thermodynamic relations, one can relate the entropy change to internal
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energy, density, temperature, and pressure changes [55, 57, 58, 61]

T
DS

Dt
=

DE

Dt
+ p

D(1/ρ)

Dt
= cp

DT

Dt
− αT

ρ

Dp

Dt
, (2.61)

where cp ≡ T (∂S/∂T )p is the specific heat capacity, and α = −ρ−1(∂ρ/∂T )p is the coefficient
of thermal expansion. Combining Eq. 2.61 with the use of mass conservation Eq. 2.13, Eq.
2.58 can be written as [55, 58, 61]

T
DS

Dt
= cp

DT

Dt
− αT

ρ

Dp

Dt
=
ζ∆2

ρ
+ Ėν +

1

ρ

∂

∂xi

(
kT
∂T

∂xi

)
. (2.62)

Thus, the temperature is modeled as a partial differential equation (PDE) with source
terms based on the pressure, density, and velocity. Together with the mass and momentum
conservation equations 2.11 and 2.15, this makes up a total of five equations for our six
dependent variables. The final scalar equation then comes from the thermodynamic equation
of state.

2.2.5 Equation of State

The equation of state is a thermodynamic equation which relates three thermodynamic state
variables to each other. It is necessary to completely describe the fluid flow using the six
dependent variables density ρ, velocity U, pressure p, and temperature T . The most common
choice of thermodynamic state variables is ρ, p, and T , and the most general equation of
state for a fluid of fixed composition is written as [55, 58]

f(ρ, p, T ) = 0, (2.63)

where f is a function appropriate for the fluid. Common choices for a functional relationship
are:

• Ideal gas law [53, 61]
p = ρRTv, (2.64)

where R = R∗/Mair = 287.058 J kg−1 K−1 is the specific gas constant for dry air, and
Tv ≡ T (1− q + q/ε) is the absolute virtual temperature, with water vapor mixing ratio
q = ρv/ρ and water vapor to dry air molar mass ratio ε = Mv/Mair = R/Rv = 0.62197.

• Boussinesq fluid [62]
ρ = ρ0 [1− α (T − T0)] , (2.65)
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where ρ0 and T0 are initial values of the temperature and density, respectively, and α is
the coefficient of thermal expansion.

There are more sophisticated equations of state such as the cubic Van der Waals equation
and its variations, but for purposes of modeling air in the atmospheric boundary layer, the
ideal gas law Eq. 2.64 is a reasonable choice [53]. In fact, even the ideal gas law for dry air
without the use of the virtual temperature is a reasonable approximation in many cases [61].

2.2.6 Scalar Conservation

In addition to the physical conservation laws above, one can model a conserved passive scalar
quantity denoted ϕ = ϕ(x, t) using the advection-diffusion equation with source term S,

∂ϕ

∂t
+

∂

∂xi
(Uiϕ) =

∂

∂xi

(
Γ
∂ϕ

∂xi

)
+ S. (2.66)

Here φ might represent the mass concentration of a species in the atmosphere or a small
temperature excess, in which case Γ is the molecular diffusivity or thermal diffusivity,
respectively [10]. Since it is passive, it should have no effect on the material properties such
as ρ, ν, and Γ. The source term might account for processes such as chemical reactions or
volumetric material sources. For a constant-property, incompressible flow, Eq. 2.66 simplifies
[10, 39] to

Dϕ

Dt
=
∂ϕ

∂t
+ Ui

∂ϕ

∂xi
= Γ∇2ϕ+ S. (2.67)

2.3 Random Fields and Random Processes

In principle, one could use the conservation laws in section 2.2 to describe completely the
turbulent fluid flow in the atmosphere. This would require resolving all space and time
scales of the turbulent motion as is done by e.g. DNS [39]. However, since the structure of
turbulent fluid flows is highly complex, sharp, and irregular, this is entirely impractical for
high Reynolds number flows [39, 54]. In the atmospheric surface layer, the Reynolds number
is on the order of Re ∼ 107, while in the mixed layer, it is even larger [53]. Thus, we must
instead use a statistical description of the dependent variables in turbulent atmospheric fluids.
In particular, these dependent variables can be described using probability density functions
(PDFs) which vary in time and space, and we can then consider moments such as the mean
and variance of these variables. In the case of Lagrangian particle dispersion models such as
FLEXPART and HYSPLIT, the meteorological data supplies the mean fluid flow fields as
described in Chapter 5 using sophisticated models of the conservation laws for a compressible
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fluid. Then the turbulent components can be modeled using a stochastic model, which for
FLEXPART and HYSPLIT is a Langevin model based on the incompressible Navier-Stokes
equation, as described in Chapter 3.

2.3.1 Probability Distribution Functions and Expected Values

The dependent quantities described in section 2.2, i.e. (ρ,U, p, ϕ), can be treated as random
variables. Formally [63–66], let Zi : Ω0 → R for i = 1, . . . , n be random variables on a proba-
bility space (Ω0,F0,PZi

) = (R,B(R),PZi
) taking values in measurable space (R,B(R)). These

random variables each represent an individual scalar component of the set of dependent vari-
ables. Then define the n-dimensional random vector or multivariate random variable Z(ω) =

(Z1(ω1), . . . , Zn(ωn)) : Ω→ Rn on the probability space (Ω,F ,P) = (Rn,B(Rn),PZ) taking
values in the measurable product space

⊗n
i=1 (R,B(R)) = (Rn,

⊗n
i=1 B(R)) = (Rn,B(Rn)).

This random vector Z could represent any subset of the set of dependent variable scalar
components such as Z = U or Z = (ρ,U, p, ϕ). Furthermore, the random variable Z is
defined as the value of the outcome itself: Z(ω) = ω, where ω ∈ Ω = Rn.

Then the joint and marginal distributions of Z and Zi are, respectively, [63]

µZ(A) = PZ ({Z ∈ A}) , A ∈ B(Rn), (2.68)

and, for Ai ∈ B(R) for i = 1, ..., n,

µZi
(Ai) = PZi

({Zi ∈ Ai}) = µZ

(
Ri−1 × Ai × Rn−i) . (2.69)

Let Ẑ ∈ Rn be an independent3 variable of the measurable state space for Z. Then the
cumulative distribution function (CDF) of Z is defined as

FZ(Ẑ) = FZ(Ẑ1, . . . , Ẑn) ≡ µZ

([
−∞, Ẑ1

]
× · · · ×

[
−∞, Ẑn

])
=

∫ Ẑ1

−∞
· · ·
∫ Ẑn

−∞
fZ(Ẑ ′1, . . . , Ẑ

′
n)dẐ ′1 · · · dẐ ′n (2.70)

where

fZ(Ẑ) = fZ(Ẑ1, . . . , Ẑn) =
∂nFZ(Ẑ1, . . . , Ẑn)

∂Ẑ1 · · · ∂Ẑn
(2.71)

is the probability density function (PDF) of Z. If (and only if) the random variables
Z1, . . . , Zn are independent, the joint CDF FZ(Ẑ) and joint PDF are given by the products

3Independent here refers to a freely varying input as opposed to the dependent output.
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of the marginal functions:

FZ(Ẑ1, . . . , Ẑn) = FZ1(Ẑ1)× · · · × FZn(Ẑn) =
n∏
i=1

FZi
(Ẑi), (2.72a)

fZ(Ẑ1, . . . , Ẑn) = fZ1(Ẑ1)× · · · × fZn(Ẑn) =
n∏
i=1

fZi
(Ẑi), (2.72b)

where

FZi
(Ẑi) =

∫
R
· · ·
∫ Ẑi

−∞
· · ·
∫
R
fZ(Ẑ ′1, . . . , Ẑ

′
i, . . . , Ẑ

′
n)dẐ ′1 · · · dẐ ′i · · · dẐ ′n

=

∫ Ẑi

−∞
fZi

(Ẑ ′i)dẐ
′
i (2.73a)

fZi
(Ẑi) =

∫
Rn−1

fZ(Ẑ ′1, . . . , Ẑ
′
i−1, Ẑi, Ẑ

′
i+1, . . . , Ẑ

′
n)dẐ ′1 · · · dẐ ′i−1dẐ ′i+1 · · · dẐ ′n, (2.73b)

for i = 1, . . . , n are the marginal CDF and PDF of Zi, respectively.

The distribution of Z conditioned on B ∈ B(Rn) is defined as [66]

µZ|B (A|B) = PZ|B ({Z ∈ A}|B) =
PZ ({Z ∈ A ∩B})
PZ ({Z ∈ B})

=
µZ(A ∩B)

µZ(B)
. (2.74)

where µZ(B) > 0. Then, for example, the conditional CDF and PDF, respectively, of Z1

conditioned on Z2 = Ẑ2 are [45, 66]

FZ1|Z2

(
Ẑ1

∣∣∣ Ẑ2

)
=

∫ Ẑ1

−∞ fZ1,Z2(Ẑ
′
1, Ẑ2)dẐ ′1

fZ2(Ẑ2)
(2.75a)

fZ1|Z2

(
Ẑ1

∣∣∣ Ẑ2

)
=
fZ1,Z2(Ẑ1, Ẑ2)

fZ2(Ẑ2)
(2.75b)

where fZ1,Z2(Ẑ1, Ẑ2) is the joint PDF of (Z1, Z2). More concretely, with Z = (U, ϕ), the
conditional PDF of ϕ conditioned on U = Û, Eq. 2.75b becomes

fϕ|U

(
ϕ̂| Û

)
=
fU,ϕ(Û, ϕ̂)

fU(Û)
. (2.76)

Note that from Eq. 2.72b, for independent variables, the conditional PDF is equivalent to
the marginal PDF.
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Often we are interested in the mean (or expected) value of some function of the random
variable Z, Q(Z). Formally, the expected value is given by [39, 63, 66]

〈Q(Z)〉 ≡ E [Q(Z)] ≡
∫

Ω

Q [Z(ω)]PZ(dω) =

∫
Rn

Q(Ẑ)fZ(Ẑ)dẐ, (2.77)

where here and throughout we use the notation 〈·〉 to denote the mean or expected value.
For example, Q(Z) = Z corresponds to the mean of Z, and when Z = U, we have the mean
velocity:

〈U〉 =

∫
ÛfU(Û)dÛ. (2.78)

Similarly, defining the velocity fluctuation about the mean as u ≡ U − 〈U〉 and letting
Q(U) = (Ui − 〈Ui〉) (Uj − 〈Uj〉) = uiuj, we obtain the velocity covariance function4

cov (Ui, Uj) ≡ 〈uiuj〉 =

∫ (
Ûi − 〈Ui〉

)(
Ûi − 〈Uj〉

)
fU(Û)dÛ. (2.80)

One can analogously calculate a conditional expected value such as
〈
Q(Z1, Z2)|Z2 = Ẑ2

〉
=〈

Q|Ẑ2

〉
using the appropriate conditional PDF, i.e. fZ1|Z2(Ẑ1|Ẑ2).

2.3.2 Fine-grained PDF

One way of forming the PDF is through the use of the fine-grained PDF [45, 67], which is
defined as

f ′Z(Ẑ) = δ(Z− Ẑ) =
n∏
i=1

δ(Zi − Ẑi), (2.81)

where δ(Z) is the Dirac delta function defined through the identity
∫
Rn δ(Z)dZ = 1. The

fine-grained PDF has the property that it is zero at all values of Ẑ except for Ẑ = Z. That is,
it describes one possible realization of the random variable Z. Since the fine-grained PDF is
a Dirac delta function, it has all of the properties of the Dirac delta function. By definition,
the fine-grained PDF is already normalized, and the PDF of Z is given by the expected value

4Note that the covariance is independent of a constant (i.e. deterministic) shift: given constants zi, zj ∈ Rn,

cov (Zi + zi, Zj + zj) ≡ 〈[Zi + zi − 〈Zi + zi〉] [Zj + zj − 〈Zj + zj〉]〉
= 〈[Zi − 〈Zi〉] [Zj − 〈Zj〉]〉
≡ cov (Zi, Zj) . (2.79)

Then for Z = U and z = −〈U〉, it immediately follows from Eq. 2.79 that cov(Ui, Uj) ≡ 〈uiuj〉 = cov(ui, uj).
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of the fine-grained PDF [39, 45]:〈
f ′Z(Ẑ)

〉
=
〈
δ(Z− Ẑ)

〉
=

∫
Rn

δ(Ẑ′ − Ẑ)fZ(Ẑ′)dẐ′

= fZ(Ẑ), (2.82)

where we have used Q(Z) = f ′Z(Ẑ) = δ(Z− Ẑ) in Eq. 2.77, replacing the integration variable
Ẑ with Ẑ′, and we have used the Dirac delta shifting property in the final step. Additionally,
we have the property that for any random variable ξ which may or may not depend on Z,
[39, 45] 〈

ξf ′Z(Ẑ)
〉

=
〈
ξδ(Z− Ẑ)

〉
=

∫ ∫
ξ̂δ(Ẑ′ − Ẑ)fZ,ξ(Ẑ

′, ξ̂)dẐ′dξ̂

=

∫
ξ̂fZ,ξ(Ẑ, ξ̂)dξ̂

= fZ(Ẑ)

∫
ξ̂fξ|Z

(
ξ̂
∣∣∣ Ẑ) dξ̂

=
〈
ξ|Z = Ẑ

〉
fZ(Ẑ)

=
〈
ξ|Ẑ
〉
fZ(Ẑ). (2.83)

If ξ is independent of Z, then
〈
ξ|Ẑ
〉

= 〈ξ〉, while if ξ = ξ(Z), then
〈
ξ|Ẑ
〉

= ξ(Ẑ). These
properties make the fine-grained PDF useful for deriving PDF transport equations [39, 45] as
we will show in chapter 3. Alternative methods are discussed in section 2.4.

2.3.3 Eulerian and Lagrangian PDFs

In the Eulerian field description, dependent quantities are functions of both space and time.
Thus, the distributions of random dependent variables such as velocity are also functions
of space and time. Taking the Eulerian velocity U = U(x, t) for example, the fine-grained
Eulerian velocity PDF is [45]

f ′U(Û; x, t) = δ
[
U(x, t)− Û

]
=

3∏
i=1

δ
[
Ui(x, t)− Ûi

]
, (2.84)
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and the Eulerian velocity PDF is fU(Û; x, t) =
〈
f ′U(Û; x, t)

〉
. The notation used here treats

the space and time variables (x, t) after the semicolon as parameters of the distribution as
opposed to independent distribution density variables before the semicolon and with hats.
Thus, the Eulerian velocity in turbulent media is treated as a random variable which is
parameterized by space and time.

Similarly, when using the Lagrangian description, the dependent quantities are a function
of the Lagrangian particle parameters (x0, t0) and the time t. That is, for the Lagrangian
particle position x(t) ≡ x(x0, t0|t) and velocity U(t) ≡ U(x0, t0|t) = U [x (x0, t0|t) , t], we
have the fine-grained Lagrangian joint PDF [45]

f ′U,x

(
Û, x̂; t

∣∣∣x0, t0

)
= δ

[
U(t)− Û

]
δ [x(t)− x̂]

=
3∏
i=1

δ
[
Ui(t)− Ûi

] 3∏
i=1

δ [xi(t)− x̂i] , (2.85)

and the Lagrangian joint PDF is fU,x(Û, x̂; t|x0, t0) =
〈
f ′U,x(Û, x̂; t|x0, t0)

〉
. This Lagrangian

joint PDF is a function of the time t and is conditional on the Lagrangian particle initial
position x0 at time t0. In variable density, compressible flows, the joint PDF of Z = (U,x,ϕ)

may additionally be conditioned on some initial scalar conditions ϕ(x0, t0|t0) = ϕ0, but for
the incompressible flows of interest to us, we have the relation [45]

fU(Û; x̂, t) =

∫
fU,x

(
Û, x̂; t

∣∣∣x0, t0

)
dx0 (2.86)

between the Eulerian and Lagrangian PDFs. Furthermore, there is a correspondence [39]
between the Lagrangian velocity PDF conditioned on x(t) = x̂

fU|x

(
Û
∣∣∣ x̂; t|x0, t0

)
=
fU,x

(
Û, x̂; t

∣∣∣x0, t0

)
fx ( x̂; t|x0, t0)

(2.87)

and the Eulerian velocity PDF fU(Û; x̂, t) when the Lagrangian position marginal PDF

fx ( x̂; t|x0, t0) =

∫
fU,x

(
Û, x̂; t

∣∣∣x0, t0

)
dÛ (2.88)

is uniform and constant, i.e.

fx ( x̂; t|x0, t0) =
1

V
, (2.89)

where V is fluid volume. Since there is no correspondence to fx in the Eulerian description,
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fx must be uniform and constant [39], so there is a correspondence between the Lagrangian
velocity conditional PDF fU|x and the Eulerian velocity PDF fU—that is,

fU(Û; x̂, t) = fU|x

(
Û
∣∣∣ x̂; t|x0, t0

)
= V fU,x

(
Û, x̂; t

∣∣∣x0, t0

)
. (2.90)

This allows us to use either the Eulerian or Lagrangian PDF transport equations and their
moments interchangeably.

2.3.4 Random Fields and Processes

The dependent random conserved quantities are all random processes depending on a time
parameter t. More specifically, since they also depend on space x, they are random fields.
We will consider them as one-point, one-time random fields, meaning that they are fully
characterized by a distribution fZ(Ẑ; x, t) at a single point in time and space (x, t). In
contrast, letting {(xi, ti)}i=1,...,N be a set of N distinct positions and times, the N -point,
N -time CDF and PDF of random variable Z are given by [39, 45]

FZ1,...,ZN
(Ẑ1, . . . , ẐN ; x1, t1, . . . ,xN , tN) ≡ PZ1,...,ZN

[
Z(x1, t1) ≤ Ẑ1, . . . ,Z(xN , tN) ≤ ẐN

]
,

(2.91a)

fZ1,...,ZN
(Ẑ1, . . . , ẐN ; x1, t1, . . . ,xN , tN) =

∂NFZ1,...,ZN
(Ẑ1, . . . , ẐN ; x1, t1, . . . ,xN , tN)

∂Ẑ1 . . . ∂ẐN

.

(2.91b)

The one-point, one-time PDF can be recovered from the N -point, N -time PDF by integrating
over the other N − 1 variables:

fZ(Ẑ; x, t) =

∫
Rn(N−1)

fZ,Z2,...,ZN
(Ẑ, Ẑ2, . . . , ẐN ; x, t,x2, t2, . . . ,xN , tN)dẐ2 · · · dẐN . (2.92)

However, the opposite is not true: there is not sufficient information in the one-point, one-time
PDF to derive the N -point, N -time PDF.

It is impossible to completely describe the random turbulence field using the one-point,
one-time PDF, nor is it possible to determine the N -point, N -time PDF at all positions and
times [39, 45]. Thus, one cannot completely characterize the random turbulence field. By
approximating the random turbulence field using the one-point, one-time PDF, we lose the
information about the frequency or length scales of fluctuations [45], which must be supplied
separately. The models we will discuss will supply this information separately, and so we will
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only use the one-point, one-time PDF.

There are several ways to categorize and classify turbulence fields from a statistical viewpoint.
A process is strictly statistically stationary or statistically homogeneous if the distribution is
invariant under time or space translations, respectively. Given the N -point, N -time PDF,
the random field is statistically stationary if for all ∆t, t1, . . . , tN ∈ R

fZ1,...,ZN
(Ẑ1, . . . , ẐN ; x1, t1 + ∆t, . . . ,xN , tN + ∆t) =

fZ1,...,ZN
(Ẑ1, . . . , ẐN ; x1, t1, . . . ,xN , tN). (2.93)

Thus, such probabilities depend only on the time differences ti − tj , and the one-time PDF is
independent of time [45, 68]. Similarly, the random field is statistically homogeneous if for all
∆x,x1, . . . ,xN ∈ R3

fZ1,...,ZN
(Ẑ1, . . . , ẐN ; x1 + ∆x, t1, . . . ,xN + ∆x, tN) =

fZ1,...,ZN
(Ẑ1, . . . , ẐN ; x1, t1, . . . ,xN , tN), (2.94)

with such probabilities depending only on position differences xi−xj , and the one-point PDF
being independent of space x altogether [45]. If the conditional probability of future states of
a random process conditioned on the past and present values depends only on the present
state, the process has the Markov property and is said to be Markovian or a Markov process.
In particular, letting t1 ≤ · · · ≤ ti ≤ ti+1 ≤ · · · ≤ tN , then Z(t) is a Markov process if [68]

fZi+1,...,ZN |Z1,...,Zi

(
Ẑi+1, . . . , ẐN ; ti+1, . . . , tN

∣∣∣ Ẑ1, . . . , Ẑi; t1, . . . , ti

)
=

fZi+1,...,ZN |Zi

(
Ẑi+1, . . . , ẐN ; ti+1, . . . , tN

∣∣∣ Ẑi; ti

)
. (2.95)

As a consequence of the Markov property and the definition of conditional probability, one
can thus construct arbitrary joint probability functions using a sequential chain of conditional
probabilities [68, 69]:

fZ1,...,Zi
(Ẑ1, . . . , Ẑi; t1, . . . , ti) = fZ|Z

(
Ẑi; ti

∣∣∣ Ẑi−1; ti−1

)
fZ|Z

(
Ẑi−1; ti−1

∣∣∣ Ẑi−2; ti−2

)
· · · fZ|Z

(
Ẑ2; t2

∣∣∣ Ẑ1; t1

)
fZ(Ẑ1; t1), (2.96)

for 1 ≤ i ≤ N . Thus, the N -time joint PDF for a Markov process depends only on the
conditional PDF fZ|Z(Ẑi; ti|Ẑi−1; ti−1) and the one-time PDF fZ(Ẑ; t). Finally, a random field
is said to be statistically isotropic if its distribution is invariant under rotations or reflections.
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If the velocity field U(x, t) is statistically homogeneous and described using a one-point PDF,
〈U(x, t)〉 is spatially uniform and one can choose an inertial frame for which 〈U(x, t)〉 = 0.
In contrast, sometimes the notion of homogeneous turbulence is used to describe the less-
restrictive condition that the fluctuating velocity u(x, t) ≡ U(x, t)− 〈U(x, t)〉 is statistically
homogeneous. In this case, the mean velocity gradient ∂ 〈Ui〉 /∂xj may be nonzero but
uniform [39]. Many flows of interest are statistically stationary and homogeneous in one or
two dimensions [45]. While turbulence is generally anisotropic, many simplifications result
from considering isotropic turbulence models, and isotropic turbulence has been studied much
more extensively [39].

2.3.5 Reynolds Decomposition and Averaging

As might be apparent from the discussions in sections 2.3.1 and 2.3.4, the mean or ex-
pected value 〈Z(x, t)〉 of a random field Z(x, t) is important for studying turbulence models.
Additionally, one is often interested in examining the fluctuation about the mean alone:

Z′(x, t) ≡ Z(x, t)− 〈Z(x, t)〉 . (2.97)

Rearranging Eq. 2.97, it is common to separate a random field Z(x, t) into a mean component
〈Z(x, t)〉 and turbulent or fluctuating component Z′(x, t) as

Z(x, t) ≡ 〈Z(x, t)〉+ Z′(x, t). (2.98)

This process is sometimes called a Reynolds decomposition, and it allows one to derive
conservation laws or equations of balance for both the mean and turbulent components
individually as we will do in chapter 3. In the case of the velocity, we have chosen to use the
notation

U(x, t) ≡ 〈U(x, t)〉+ u(x, t), (2.99)

where u(x, t) is the turbulent component so that we can avoid using the prime symbol
repeatedly or in combination with exponents.

Section 2.3.1 defined the 〈·〉 operator as the expected value in terms of the PDF according
to Eq. 2.77. This is correct from a purely theoretical viewpoint, but it is not possible to
actually measure the PDF, so one often approximates the expected value using alternative
averages. Common choices are [45]:

29



• Ensemble average for flows that can be repeated with several realizations

〈Q [Z(x, t)]〉N ≡
1

N

N∑
i=1

Q
[
Z(i)(x, t)

]
. (2.100)

• Time average for statistically stationary fields

〈Q [Z(x, t)]〉tk ≡
1

∆tk

∫ tk+∆tk

tk

Q [Z(x, t′)] dt′. (2.101)

• Spatial average for statistically homogeneous fields

〈Q [Z(x, t)]〉Vk ≡
1

Vk

∫
Vk

Q [Z(x′, t)] dx′. (2.102)

One can define similar spatial averages for fields statistically homogeneous in one or
two dimensions.

Equations 2.100 through 2.102 are themselves random variables since Q(Z) is a random
variable. One can then estimate the true expected value as

〈Q [Z(x, t)]〉 = E {〈Q [Z(x, t)]〉N} ,

or similarly using any of the averaging methods. By the central limit theorem, as the number
of realizations N → ∞, the estimated mean will approach the true expected value with
a statistical error εN = O(N−1/2). This is the error expected from a purely Monte Carlo
method, but depending on factors such as the averaging kernel or the Lagrangian particle
distribution, the actual error convergence rate could be faster or slower than this [39, 70–72].

2.4 Stochastic Balance and Langevin Equations

In section 2.3 we discussed the general description of random fields and processes through
the use of distributions and their expected values. While the PDF fZ(Ẑ; t) provides a
description for the random variable Z(t), we need to have a physical and mathematical
model for the evolution of the PDF and the stochastic state. We will derive several different
forms of mathematical models under the assumption that Z(t) is a Markov process, which
is to say that the state transitions Ẑ′ → Ẑ depend only on the current state Ẑ′, and the
system is said to be memoryless. The forms we will discuss are the general Master equation
and its Kramers–Moyal expansion, the Fokker-Planck equation, and the Langevin equation.
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Under some simple assumptions, all of these forms can be treated as equivalent methods for
describing the evolution of the stochastic state Z(t).

2.4.1 Master Equation

Perhaps the most general description of a Markov process for a memoryless system in
equilibrium is the Master equation. The Master equation is a general balance equation for
the probability density fZ(Ẑ; t) for system state Ẑ at time t, where Z(t) is a Markov process.
It is the differential form of the Chapman–Kolmogorov equation which describes the gain and
loss processes for the system state in terms of a transition probability rate W (Ẑ|Ẑ′; t) and
which models the temporal evolution of the PDF fZ. Using a Taylor series expansion called
the Kramers–Moyal expansion, the Master equation can be cast into the form of a partial
differential equation with series coefficients given by moments of the transition rate.

2.4.1.1 Chapman–Kolmogorov Equation

The Chapman–Kolmogorov equation starts with the three-time joint PDF written in terms
of the conditional probabilities according to Eq. 2.96

fZ,Z,Z(Ẑ1, Ẑ2, Ẑ3; t1, t2, t3) = fZ|Z

(
Ẑ3; t3

∣∣∣ Ẑ2; t2

)
fZ|Z

(
Ẑ2; t2

∣∣∣ Ẑ1; t1

)
fZ(Ẑ1; t1), (2.103)

where t1 ≤ t2 ≤ t3. Integrating Eq. 2.103 over Ẑ2 yields the marginal distribution
fZ,Z(Ẑ1, Ẑ3; t1, t3), and dividing by fZ(Ẑ1; t1) yields the conditional distribution [69]

fZ|Z

(
Ẑ3; t3

∣∣∣ Ẑ1; t1

)
=

∫
fZ|Z

(
Ẑ3; t3

∣∣∣ Ẑ2; t2

)
fZ|Z

(
Ẑ2; t2

∣∣∣ Ẑ1; t1

)
dẐ2. (2.104)

This is called the Chapman–Kolmogorov equation which relates all conditional probabilities
fZ|Z

(
Ẑi; ti

∣∣∣ Ẑj; tj

)
, and it is satisfied by all Markov processes.

2.4.1.2 Master Equation

The Master equation is derived from the Chapman–Kolmogorov Eq. 2.104 in the limit of
vanishing time differences between state transitions. That is, it is an integro-differential
equation for the time evolution of state probabilities. This makes the Master equation easier
to work with and more relevant to physical systems [69]. van Kampen [69] derives it starting
with a (temporally) homogeneous Markov process, for which transition probabilities depend
only on the time difference, while Gardiner [68] uses a somewhat different approach which
divides the transitions into continuous and discontinuous components.
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Let
W
(

Ẑ
∣∣∣ Ẑ′; t) ≡ lim

∆t→0

1

∆t
fZ|Z

(
Ẑ; t+ ∆t

∣∣∣ Ẑ′; t) (2.105)

be the transition probability per unit time from state Ẑ′ at time t to another state Ẑ at time
t+ ∆t. Then the Master equation is [68, 69]

∂fZ|Z

(
Ẑ; t
∣∣∣ Ẑ0; t0

)
∂t

=

∫ [
W
(

Ẑ
∣∣∣ Ẑ′; t) fZ|Z (Ẑ′; t

∣∣∣ Ẑ0; t0

)
−W

(
Ẑ′
∣∣∣ Ẑ; t

)
fZ|Z

(
Ẑ; t
∣∣∣ Ẑ0; t0

)]
dẐ′, (2.106)

with initial condition
lim
t→t+0

fZ|Z

(
Ẑ; t
∣∣∣ Ẑ0; t0

)
= δ(Ẑ− Ẑ0). (2.107)

The Master equation 2.106 is sometimes instead written for the state PDF

fZ(Ẑ; t) =

∫
fZ|Z

(
Ẑ; t
∣∣∣ Ẑ0; t0

)
fZ(Ẑ0; t0)dẐ0 (2.108)

as [69, 73]

∂fZ(Ẑ; t)

∂t
=

∫ [
W
(

Ẑ
∣∣∣ Ẑ′; t) fZ(Ẑ′; t)−W

(
Ẑ′
∣∣∣ Ẑ; t

)
fZ(Ẑ; t)

]
dẐ′, (2.109)

which has the simple interpretation that the state PDF fZ(Ẑ; t) gains from all states transi-
tioning to state Ẑ and loses due to transitions to any state away from Ẑ.

2.4.1.3 Kramers–Moyal Expansion

By performing a Taylor series expansion, we can turn the integro-differential Master equation
into a partial differential equation for the PDF fZ with coefficients depending on moments
of the transition rate W (Ẑ|Ẑ′; t). For notational simplicity, we will present a derivation
in the one-dimensional, homogeneous case. First substitute Ẑ ′ by defining Ŷ = Ẑ − Ẑ ′ in
the first term and Ŷ = Ẑ ′ − Ẑ in the second term of Eq. 2.109. Then define w(Ŷ , Ẑ) ≡
W (Ŷ + Ẑ|Ẑ)⇒ W (Ẑ|Ẑ ′) = w(Ẑ− Ẑ ′, Ẑ ′) such that the first and second terms of the integral
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in Eq. 2.109 become, respectively,

∫ ∞
−∞

W
(
Ẑ
∣∣∣ Ẑ ′) fZ(Ẑ ′; t)dẐ ′ = −

∫ Ẑ−∞

Ẑ+∞
w(Ŷ , Ẑ − Ŷ )fZ(Ẑ − Ŷ ; t)dŶ

= −
∫ −∞
∞

w(Ŷ , Ẑ − Ŷ )fZ(Ẑ − Ŷ ; t)dŶ

=

∫ ∞
−∞

w(Ŷ , Ẑ − Ŷ )fZ(Ẑ − Ŷ ; t)dŶ , (2.110a)∫ ∞
−∞

W
(
Ẑ ′|Ẑ

)
fZ(Ẑ; t)dẐ ′ =

∫ ∞−Ẑ
−∞−Ẑ

w(Ŷ , Ẑ)fZ(Ẑ; t)dŶ

=

∫ ∞
−∞

w(Ŷ , Ẑ)fZ(Ẑ; t)dŶ , (2.110b)

where we have used the infinite integration interval to absorb the sign change associated with
the change of variables. Thus, Eq. 2.109 becomes [68]

∂fZ(Ẑ; t)

∂t
=

∫ [
w(Ŷ , Ẑ − Ŷ )fZ(Ẑ − Ŷ ; t)− w(Ŷ , Ẑ)fZ(Ẑ; t)

]
dŶ . (2.111)

Now we make a basic assumption that w(Ŷ , Ẑ) is a sharply peaked function of Ŷ but varies
slowly with Ẑ [69]. Furthermore, we assume fZ(Ẑ; t) varies slowly with Ẑ. Then we may
expand g(Ẑ − Ŷ ) = w(Ŷ , Ẑ − Ŷ )fZ(Ẑ − Ŷ ; t) in the first integral using a power series about
Ẑ − Ŷ = Ẑ ⇒ Ŷ = 0,

g(Ẑ − Ŷ ) =
∞∑
n=0

1

n!
g(n)(Ẑ)(Ẑ − Ŷ − Ẑ)n

=
∞∑
n=0

(−Ŷ )n

n!
g(n)(Ẑ)

=
∞∑
n=0

(−Ŷ )n

n!

∂n

∂Ẑn

[
w(Ŷ , Ẑ)fZ(Ẑ; t)

]
. (2.112)
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Substituting Eq. 2.112 into Eq. 2.111 yields [68]

∂fZ(Ẑ; t)

∂t
=

∫ ∞∑
n=0

(−Ŷ )n

n!

∂n

∂Ẑn

[
w(Ŷ , Ẑ)fZ(Ẑ; t)

]
dŶ −

∫
w(Ŷ , Ẑ)fZ(Ẑ; t)dŶ

=

∫ ∞∑
n=1

(−Y )n

n!

∂n

∂Ẑn

[
w(Ŷ , Ẑ)fZ(Ẑ; t)

]
dŶ

=
∞∑
n=1

(−1)n

n!

∂n

∂Ẑn

[
α(n)(Ẑ)fZ(Ẑ; t)

]
, (2.113)

where we define the nth moment of W as

α(n)(Ẑ) =

∫
(Ẑ ′ − Ẑ)nW

(
Ẑ ′
∣∣∣ Ẑ) dẐ ′ =

∫
Ŷ nw(Ŷ , Ẑ)dŶ . (2.114)

Equations 2.113 and 2.114 generalize to an inhomogeneous process in multiple dimensions by
using the multivariate Taylor series expansion [74]:

∂fZ(Ẑ; t)

∂t
=
∞∑
n=1

(−1)n

n!

∑
j1,...,jn

∂n

∂Ẑj1 · · · ∂Ẑjn

[
α

(n)
j1,...jn

(Ẑ, t)fZ(Ẑ; t)
]
, (2.115)

where the nth moment of W is

α
(n)
j1,...jn

(Ẑ, t) =

∫
(Ẑ ′j1 − Ẑj1) · · · (Ẑ

′
jn − Ẑjn)W

(
Ẑ′
∣∣∣ Ẑ; t

)
dẐ′. (2.116)

2.4.2 Fokker-Planck Equation

By truncating the Kramers–Moyal expansion of the Master equation after the first two terms,
one obtains the Fokker-Planck equation or the forward Kolmogorov equation:

∂fZ(Ẑ; t)

∂t
= − ∂

∂Ẑi

[
Ai(Ẑ, t)fZ(Ẑ; t)

]
+

1

2

∂2

∂Ẑi∂Ẑj

[
Bij(Ẑ, t)fZ(Ẑ; t)

]
, (2.117)

where

A(Ẑ, t) = α(1)(Ẑ, t) =

∫
(Ẑ′ − Ẑ)W

(
Ẑ′
∣∣∣ Ẑ; t

)
dẐ′, (2.118a)

B(Ẑ; t) = α(2)(Ẑ, t) =

∫
(Ẑ′ − Ẑ)(Ẑ′ − Ẑ)TW

(
Ẑ′
∣∣∣ Ẑ; t

)
dẐ′. (2.118b)

are the drift vector and diffusion matrix, respectively [68, 75], with the state vector Z in
Eq. 2.118b treated as a column vector. The process corresponding to the PDF modeled by
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the Fokker-Planck equation is mathematically defined as a diffusion process and is uniquely
determined by the coefficients A and B. From Eq. 2.118b, it is apparent that the diffusion
matrix B is positive semidefinite and symmetric [68, 75]. The diffusion process is continuous,
meaning that the probability that the final state Ẑ is finitely different from the initial state
Ẑ′ approaches zero faster than the time increment ∆t: for any ε > 0, we have [68]

lim
∆t→0

1

∆t

∫
|Ẑ−Ẑ′|>ε

fZ|Z

(
Ẑ; t+ ∆t

∣∣∣ Ẑ′; t) dẐ =

∫
|Ẑ−Ẑ′|>ε

W
(

Ẑ
∣∣∣ Ẑ′; t) dẐ = 0 (2.119)

uniformly in Ẑ′, t, and ∆t. Thus, for a continuous Markov process,W (Ẑ|Ẑ′; t) = 0 for|Ẑ−Ẑ′| >
ε.

2.4.3 Langevin Equation

In contrast to the PDF-based models of sections 2.4.1 and 2.4.2, the Langevin equation
is a stochastic (ordinary) differential equation (SDE) which models the stochastic process
evolution directly. The historical origins [40, 68] of the Langevin equation can be traced back
to the work of Robert Brown on Brownian motion in the early 19th century, Einstein [13] on
molecular diffusion, and Langevin [14] on random forces on particles suspended in a fluid.
Langevin’s original derivation essentially started with a macroscopic equation of motion for
particles with a linear drag force and added an a stochastic forcing term to represent the
turbulent motion. Given spherical particles of mass m and radius r in a fluid of dynamic
viscosity µ, Langevin wrote an equation of motion for the Brownian particle velocity u(t) as
[68, 69]

du(t)

dt
= −6πµr

m
u(t) + f, (2.120)

where f is the fluctuating force per unit mass. The viscous drag forces which is linear in velocity
u(t) represents drift, while the fluctuating force term representing incessant fluid molecule
collisions with the Brownian particle accounts for diffusion. The latter was characterized
famously by Einstein and independently by Langevin as related to the mean squared spatial
deviation σ2

x = 2Γt, where Γ = kBT/(6πµr) is the molecular diffusion coefficient with the
Boltzmann constant kB and temperature T . This is referred to as Einstein’s relation from
kinetic theory. Taylor [43] first applied this model to turbulent diffusion, and Uhlenbeck
and Ornstein [15] studied the case of a stationary Brownian motion process with constant
coefficients.

As the Langevin equation follows the trajectory of a particle—Brownian or turbulent fluid—
the Langevin equation is a Lagrangian equation. Langevin’s approach of starting with a
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deterministic macroscopic equation of motion and adding a stochastic forcing term with the
appropriate mean squared fluctuations is perhaps the simplest way of deriving a Langevin
equation. However, there was not a solid mathematical foundation for it until Itô formalized
the concepts of stochastic calculus and ordinary differential equations. In the remainder
of this subsection, we outline these mathematical foundations and show that the Langevin
equation can be derived from the PDF-based models from sections 2.4.1 and 2.4.2 and vice
versa. Then from the uniqueness of the solutions to PDF models and SDEs [75], these two
approaches can be considered equivalent formulations for a Markov process. In particular,
the Fokker-Planck equation and the Langevin equation are equivalent representations of a
diffusion process which can be used to model Brownian motion.

2.4.3.1 Wiener Process

AWiener process is a homogeneousm-dimensional Markov process W(t) defined for t ∈ [0,∞),
whose components Wi(t) for 1 ≤ i ≤ m are all independent, with the following properties
[68, 75]:

• Initial condition
W(0) = W0 = 0. (2.121)

• Independent increments: the random variables ∆Wk ≡W(tk)−W(tk−1) for 1 ≤ k ≤ N

are independent of each other and W(t0), where t0 = 0 < t1 < · · · < tN .

• Gaussian increments: ∆Wk ∼ N (〈W0〉 ,∆tkIm) = N (0,∆tkIm), where ∆tk ≡ tk−tk−1

and Im is the m-dimensional identity matrix. That is,

〈∆Wi〉 = 〈W0〉 = 0, (2.122a)

〈∆Wk,i∆Wk,j〉 = 〈[Wi(tk)−Wi(tk−1)] [Wj(tk)−Wj(tk−1)]〉 = ∆tkδij. (2.122b)

This latter equation leads one to often informally write dWi(t)dWj(t) ≡ δijdt.

• Continuous paths: W(t) is continuous in t.

The Wiener process W(t) mathematically models the Brownian motion of a free particle
in the absence of friction [75]. It is a diffusion process and thus has continuous paths,
but the paths are not differentiable [68, 75]. Then while W(t) provides a good model for
the experimentally observed irregular motion of Brownian particles, if W(t) represents the
position of the Brownian particle, the particle does not possess a velocity at any instant.
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Thus, it is more rigorous to use the Wiener process to represent the particle velocity as
opposed to its position directly.

2.4.3.2 Stochastic Differential Equations and the Langevin Equation

Formally [68, 75], we define an Itô stochastic differential equation as an equation of the form

dZi(t) = ai(Z, t)dt+ bij(Z, t)dWj(t), (2.123a)

Zi(t0) = Z0,i, (2.123b)

for 1 ≤ i ≤ n, and where W(t) is an m-dimensional Wiener process. Equations 2.123a and
2.123b together should be interpreted as a symbolic way of writing the Itô stochastic integrals

Zi(t) = Zi(t0) +

∫ t

t0

ai [Z(t′), t′] dt′ +

∫ t

t0

bij [Z(t′), t′] dWj(t
′). (2.124)

Informally, Eq. 2.123a is often written—especially in physics and engineering literature—in
the form of a more classical differential equation called a Langevin equation

dZi(t)

dt
= ai(Z, t) + bij(Z, t)ξj(t), (2.125)

where ξi(t) is a Gaussian white noise process defined by dWi(t) ≡ Wi(t+ dt)−Wi(t) = ξi(t)dt

or

Wi(t) =

∫ t

0

ξi(t
′)dt′, (2.126a)

ξi(t) =
dWi(t)

dt
. (2.126b)

This latter relation is to say that informally5 white noise is the derivative of the Wiener
process. Gaussian white noise is understood as a stationary Gaussian process with:

• Zero mean
〈ξi(t)〉 = 0. (2.127)

• Dirac delta covariance
〈ξi(t)ξj(t′)〉 = δ(t− t′)δij. (2.128)

5As noted in section 2.4.3.1, the Wiener process is not differentiable, so technically the Langevin equation
is not mathematically rigorous, but one can interpret the integral equations 2.126a and 2.124 with dWi(t) =
ξi(t)dt consistently.
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It is common for one to assume that the white noise process is Gaussian while satisfying Eq.
2.128, but this follows directly from the continuity of the Wiener process [68].

2.4.3.3 Master Equation Derivation

We can derive the Langevin equation for the given Master Eq. 2.109 by calculating the first
and second moments of W , called the drift vector and diffusion matrix, respectively. Taking
the first moment of Eq. 2.109, where the mean of Z(t) is 〈Z(t)〉 ≡

∫
ẐfZ(Ẑ; t)dẐ, we have

∂

∂t

∫
ẐfZ(Ẑ; t)dẐ =

∫ ∫
Ẑ
[
W
(

Ẑ
∣∣∣ Ẑ′; t) fZ(Ẑ′; t)−W

(
Ẑ′
∣∣∣ Ẑ; t

)
fZ(Ẑ; t)

]
dẐ′dẐ

⇒ d

dt
〈Z(t)〉 =

∫ ∫
ẐW

(
Ẑ
∣∣∣ Ẑ′; t) fZ(Ẑ′; t)dẐ′dẐ

−
∫ ∫

ẐW
(

Ẑ′
∣∣∣ Ẑ; t

)
fZ(Ẑ; t)dẐ′dẐ. (2.129)

The drift vector Eq. 2.118a has a mean value

〈A(Z, t)〉 ≡
∫

A(Ẑ, t)fZ(Ẑ′; t)dẐ

=

∫ ∫
(Ẑ′ − Ẑ)W

(
Ẑ′
∣∣∣ Ẑ; t

)
fZ(Ẑ; t)dẐ′dẐ

=

∫ ∫
Ẑ′W

(
Ẑ′
∣∣∣ Ẑ; t

)
fZ(Ẑ; t)dẐ′dẐ

−
∫ ∫

ẐW
(

Ẑ′
∣∣∣ Ẑ; t

)
fZ(Ẑ; t)dẐ′dẐ

=

∫ ∫
ẐW

(
Ẑ
∣∣∣ Ẑ′; t) fZ(Ẑ′; t)dẐ′dẐ

−
∫ ∫

ẐW
(

Ẑ′
∣∣∣ Ẑ; t

)
fZ(Ẑ; t)dẐ′dẐ, (2.130)

where in the final step we have swapped the dummy variables of integration in the first
integrals using Fubini’s theorem so we can write Eq. 2.129 as [73]

d

dt
〈Z(t)〉 = 〈A(Z, t)〉 . (2.131)

In the case of a linear system, A(Z, t) is defined to be linear in its state,

A(Z, t) ≡ A0 − ΛZ, (2.132)
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and Eq. 2.131 simply becomes [73]

d

dt
〈Z(t)〉+ Λ 〈Z(t)〉 = A0. (2.133)

Given the steady-state equilibrium value Z0 ≡ 〈Z(t)〉, the steady-state drift for a linear
system is given by A(Z0, t) = 0⇒ A0 = ΛZ0. Defining the fluctuation about the equilibrium
mean as ζ(t) = Z(t)− Z0, Eq. 2.133 can be written in terms of the mean fluctuation as [73]

d

dt
〈ζ(t)〉+ Λ 〈ζ(t)〉 = 0, (2.134)

which with the initial value 〈ζ(t0)〉 has the solution 〈ζ(t)〉 = 〈ζ(t0)〉 exp [−Λ(t− t0)] . For a
nonlinear system, Eq. 2.131 is not closed, so Eq. 2.134 is only approximate and is obtained
from Eq. 2.131 by expanding about an equilibrium state Z0 given by A(Z0, t) = 0 and
ignoring higher order terms in ζ(t) by linearization. In this case, Λ = −∂A(Z, t)/∂Z.

In addition to the first moment equation 2.134, one can further show [76] directly from higher
moments of the Master equation that for a linear system, ζ(t) = Z(t) − Z0 satisfies the
Langevin equation [73, 76] (

d

dt
+ Λ

)
ζ(t) = S(t), (2.135)

with has the following properties [73, 76]:

1. 〈S(t)〉 = 0,

2.
〈
S(t)ζT(t′)

〉
= 0 for t > t′ (causality),

3.
〈
S(t)ST(t′)

〉
= 〈B [Z(t), t]〉 δ(t− t′) (white noise),

where the diffusion matrix B is defined in Eq. 2.118b. For linear systems 〈B (Z, t)〉 is linear
in Z so that 〈B [Z(t), t]〉 = B [〈Z(t)〉 , t] [73]. Equation 2.135 generalizes in the nonlinear case
to the Langevin equation [76]

dZ(t)

dt
= a(Z, t) + S(t). (2.136)

2.4.3.4 Itô’s Lemma

Itô’s lemma is one of the most important results of Itô calculus. It represents a change of
variables formula for a stochastic process according to a twice-differentiable function g(Z, t),
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and it can be used to show the connection between the Langevin and Fokker-Planck equations.
We present a simple proof for this in 1D, but this generalizes readily to arbitrary dimensions
[75]. Since g is twice differentiable, we can expand it as a Taylor series:

dg =
∂g

∂t
dt+

∂g

∂Z
dZ +

1

2

∂2g

∂Z2
(dZ)2 +O

[
(dt)2

]
+O

[
(dZ)3

]
. (2.137)

Now assuming that Z(t) is an Itô diffusion process satisfying the stochastic differential
equation

dZ(t) = a(Z, t)dt+ b(Z, t)dW (t), (2.138)

where dW (t) is a Wiener process with variance 〈W (t)W (t)〉 = t, Eq. 2.137 for g [Z(t), t]

becomes

dg =
∂g

∂t
dt+

∂g

∂Z
[a(Z, t)dt+ b(Z, t)dW (t)]

+
1

2

∂2g

∂Z2

[
a2(Z, t)(dt)2 + 2a(Z, t)b(Z, t)dtdW (t) + b2(Z, t)(dW (t))2

]
+O

[
(dt)2

]
+O

[
(dZ)3

]
. (2.139)

In the limit dt → 0, the terms (dt)2 and dtdW (t) = (dt)3/2 tend to zero faster than
(dW (t))2 = dt, so Eq. 2.139 becomes

dg =

[
∂g

∂t
+ a(Z, t)

∂g

∂Z
+

1

2
b2(Z, t)

∂2g

∂Z2

]
dt+ b(Z, t)

∂g

∂Z
dW (t). (2.140)

Equation 2.140 is referred to as Itô’s lemma and is the stochastic counterpart of the chain
rule of classical calculus for Itô calculus. Taking the mean of both sides of 2.140 results in

d

dt
〈g(Z, t)〉 =

〈
∂g

∂t

〉
+

〈
a(Z, t)

∂g

∂Z

〉
+

1

2

〈
b2(Z, t)

∂2g

∂Z2

〉
⇒ d

dt

∫
g(Ẑ, t)fZ(Ẑ; t)dẐ =

∫
fZ(Ẑ; t)

[
∂g

∂t

+ a(Ẑ, t)
∂g

∂Ẑ
+

1

2
b2(Ẑ, t)

∂2g

∂Ẑ2

]
dẐ (2.141)

since 〈dW (t)〉 = 0. Moving the ∂tg term to the left-hand side of Eq. 2.141 and using the
product rule to expand the ∂t(gfZ) term yields

d

dt

∫
g(Ẑ, t)fZ(Ẑ; t)dẐ −

∫
∂g

∂t
fZ(Ẑ; t)dẐ =

∫
g(Ẑ, t)

∂fZ
∂t

dẐ. (2.142)
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Substituting Eq. 2.142 into Eq. 2.141, integrating by parts the Z-derivatives, and discarding
surface terms since fZ(Ẑ, t) vanishes at the boundary, Eq. 2.141 becomes∫

g(Ẑ, t)
∂fZ
∂t

dẐ =∫
g(Ẑ, t)

{
− ∂

∂Ẑ

[
a(Ẑ, t)fZ(Ẑ; t)

]
+

1

2

∂2

∂Ẑ2

[
b2(Ẑ, t)fZ(Ẑ; t)

]}
dẐ. (2.143)

Since g is arbitrary, we can factor it out of Eq. 2.143, producing the Fokker-Planck equation

∂fZ(Ẑ; t)

∂t
= − ∂

∂Ẑ

[
a(Ẑ, t)fZ(Ẑ; t)

]
+

1

2

∂2

∂Ẑ2

[
b2(Ẑ, t)fZ(Ẑ; t)

]
. (2.144)

This derivation readily generalizes to arbitrary dimensions, for which the SDE in Eq. 2.123a
results in the Fokker-Planck equation 2.117 where

Ai(Z, t) = ai(Z, t) (2.145a)

Bij(Z, t) = bik(Z, t)bjk(Z, t) (2.145b)

are the drift and diffusion coefficients, respectively. In matrix notation, Eq. 2.145b can be
written as B = bbT. Thus, from the uniqueness of solutions to the SDE and the Fokker-Planck
equation, the diffusion process can be equivalently modeled using either the SDE Eq. 2.123a
(or its Langevin equation form Eq. 2.125) or the Fokker-Planck Eq. 2.117 provided that the
drift and diffusion coefficients satisfy Eqs. 2.145a and 2.145b.

2.4.3.5 Kramers–Moyal Coefficients

A final method for showing the connection between the Master equation and the Langevin
equation is to calculate the Kramers–Moyal expansion coefficients for a given SDE. As in
section 2.4.3.4, we will prove this for the simple 1D SDE in Eq. 2.138, but the proof generalizes
to multiple dimensions. Equation 2.138 can be cast into the integral form

Z(t+ ∆t)− Z(t) =

∫ t+∆t

t

{a [Z(t′), t′] dt′ + b [Z(t′), t′] dW (t′)} , (2.146)
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where Z = Z(t) is the initial value. Expanding a and b as the Taylor series

a [Z(t′), t′] = a(X, t′) +
∂a

∂Z
(Z, t′) [Z(t′)− Z] + · · · , (2.147a)

b [Z(t′), t′] = b(X, t′) +
∂b

∂Z
(Z, t′) [Z(t′)− Z] + · · · , (2.147b)

and substituting Eqs. 2.147a and 2.147b into Eq. 2.146 yields

Z(t+ ∆t)− Z =

∫ t+∆t

t

{
a(X, t′) +

∂a

∂Z
(Z, t′) [Z(t′)− Z] + · · ·

}
dt′

+

∫ t+∆t

t

{
b(X, t′) +

∂b

∂Z
(Z, t′) [Z(t′)− Z] + · · ·

}
dW (t′). (2.148)

One can recursively substitute Z(t′)−Z into the integrands of Eq. 2.148 so that the integrand
depends only on a and b and their derivatives:

Z(t+ ∆t)− Z =

∫ t+∆t

t

a(X, t′)dt′ +

∫ t+∆t

t

b(X, t′)dW (t′)

+

∫ t+∆t

t

∂a

∂Z

[∫ t′

t

a(X, t′′)dt′′ +

∫ t′

t

b(X, t′′)dW (t′′)

]
dt′

+

∫ t+∆t

t

∂b

∂Z

[∫ t′

t

a(X, t′′)dt′′ +

∫ t′

t

b(X, t′′)dW (t′′)

]
dW (t′) + · · · (2.149)

Then we can take moments of Eq. 2.149 to calculate the Kramers–Moyal coefficients according
to

α(n)(Z, t) = lim
∆t→0

1

∆t
〈[Z(t+ ∆t)− Z]n〉Z(t)=Z . (2.150)

Equations 2.114 and 2.150 have the equivalent interpretation of measuring the expected rate
of (Z ′ − Z)n when transitioning from Z = Z(t) to Z ′ = Z(t+ ∆t). Substituting Eq. 2.149
into 2.150 and using the Itô integral, one finds [74]

α(1)(Z, t) = a(Z, t)

α(2)(Z, t) = b2(Z, t)

α(n)(Z, t) = 0, n ≥ 3.

Thus, as in section 2.4.3.4, Eq. 2.138 corresponds directly to the Fokker-Planck equation
2.144 for the diffusion process Z(t).
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Chapter 3

Lagrangian Velocity Langevin Models

The turbulent velocity formulation for the DD model of the FLEXPART and HYSPLIT
codes follows from the Langevin velocity formulation by Legg and Raupach [44], where the
fluid motion is represented in terms of a drift term proportional to the velocity, a stochastic
source term, and a Reynolds stress term. Although the Langevin equation is frequently used
in various system analysis [14, 73], use of the formulation for the turbulent fluid motion
has not been clarified. Our study of the DD model began with a simple inquiry about the
physical basis of the Langevin model contrasted with the first principle representation of
the fluid motion, in particular, the Navier-Stokes equation of motion. This led us to study
the turbulent Navier-Stokes (NS) equation resulting from the difference between the regular
NS equation and Reynolds-averaged Navier-Stokes (RANS) equation. Our derivation of the
FLEXPART model requires representation of the drift term in the Langevin formulation
with the turbulent NS equation. In the original Langevin formulation [44], the drift term is
represented in terms of the autocorrelation function of the turbulent fluid velocity, and our
derivation of the drift term with the turbulent NS equation requires a somewhat approximate,
although physical, representation of the Lagrangian time scale by mean velocity gradient
through the turbulent autocorrelation function.

Our derivation and justification of the FLEXPART DD model should be contrasted with
several different Langevin formulations for the turbulent fluid motion [39, 77] which rely
mostly on representing the Lagrangian time scale via Reynolds stress dissipation time, often
with a mean velocity gradient term unaccounted for. We begin with the derivation of the
DD model from the turbulent NS equation in section 3.1, with a clear introduction of the
DD model in section 3.1.1 followed by comparison between the turbulent NS equation and
the DD equation in section 3.1.2.2 and the Lagrangian time scale formulation to follow in
sections 3.1.3 and 3.1.4. Section 3.2.2 compares and contrasts the FLEXPART DD model
with alternative Langevin models in which the Lagrangian time scale depends on the turbulent
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kinetic energy dissipation rate.

3.1 Drift-diffusion Turbulent Flow Model

We derive from first principles the stochastic drift-diffusion models used in FLEXPART and
HYSPLIT, with section 3.1.1 presenting the FLEXPART and HYSPLIT model in the form
of a Langevin equation. The turbulent component Navier-Stokes equation is then used in
Lagrangian form to derive a Langevin model for the turbulent velocity following a Lagrangian
fluid particle in section 3.1.2. This can be directly compared with the Langevin model used
by FLEXPART and HYSPLIT. In sections 3.1.3 and 3.1.4 we present a justification for the
Lagrangian time scale model proposed. Finally, we make comparisons and contrast with
the models presented by Pope [39, 77] and others in sections 3.2.1 through 3.2.3, where we
clarify in section 3.2.4 that our model for the Lagrangian time scale is the correct model for
FLEXPART and HYSPLIT.

3.1.1 FLEXPART and HYSPLIT Langevin Drift-diffusion Model

Both the FLEXPART and HYSPLIT codes are Lagrangian particle dispersion models
(LPDMs) widely used for ATM in the turbulent atmosphere. They are based on a Langevin
model for the turbulent component of the fluid particle velocity, u(t) = U(t)− 〈U(t)〉, where
U(t) is the total fluid particle velocity, and 〈·〉 denotes the ensemble average of stochastic
process realizations. We discuss the theory behind the linear Langevin model in more detail
in section 3.1.3. The mean velocity itself is treated as a simulation input coming from the
meteorological data model. The FLEXPART model, excluding the density correction [78], is
given by Stohl et al. [1, 2] as

dui(t)

dt
= −ui(t)

T L
ii

+
∂σ2

ui

∂xi
+

(
2σ2

ui

T L
ii

)1/2

ξi(t), (3.1)

where T L
ii is the Lagrangian time scale, σ2

ui
= 〈u2

i (t)〉 is the fluctuating velocity variance, and
ξi(t) is a Gaussian white noise process, with no Einstein summation implied. As discussed
in section 2.4.3.2, Gaussian white noise is a stationary stochastic process with a Gaussian
probability density function with mean 〈ξi(t)〉 = 0 and covariance 〈ξi(t)ξj(t′)〉 = δ(t− t′)δij.

The Lagrangian time scale describes the autocorrelation time scale of the turbulent velocity,
while the velocity variance is the magnitude of fluctuations, as discussed in detail in section
3.1.3. The second term on the right-hand side of Eq. 3.1 is the drift correction proposed by
Legg and Raupach [44] based on the RANS equation, but we will derive it directly using the
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turbulent Navier-Stokes equation in section 3.1.2.2. Equation 3.1 is thus the model presented
in [44] and is used by HYSPLIT. FLEXPART includes a density correction [78] term which
accounts for spatial variations in the fluid density, but we will not carry the term in our
derivation for notational convenience.

3.1.2 Navier-Stokes Equation in Turbulent Flows

We begin with the derivation of the Langevin model used by both FLEXPART and HYS-
PLIT for the turbulent velocity component, including the drift correction, based on first
principles. Fundamentally, the drift-diffusion model is based on the Navier-Stokes momentum
conservation equation in turbulent fluids cast into the form of a stochastic drift-diffusion
equation for particle trajectories. In particular, they are based on the turbulent Navier-Stokes
equation which is the result of subtracting the mean component from the Navier-Stokes
equation. Thus, we reproduce here the equations for mass and momentum conservation in
incompressible flows—the continuity and Navier-Stokes Eqs. 2.14a and 2.48—respectively,
from chapter 2:

Dρ

Dt
=
∂ρ

∂t
+ ui

∂ρ

∂xi
= −ρ∂ui

∂xi
= 0, (3.2a)

DUi
Dt

=
∂Ui
∂t

+
∂

∂xj
(UiUj) =

1

ρ
Fi (3.2b)

where
1

ρ
Fi = −1

ρ

∂P

∂xi
+ ν∇2Ui − 2εijkΩjUk, (3.3)

is the force per unit mass, P = p+ ρΦgeo is the modified pressure, ν = µ/ρ is the kinematic
viscosity, and D/Dt ≡ ∂/∂t+ Ui∂/∂xi is the material or Lagrangian derivative. In Eq. 3.2b
we have used the incompressibility condition 3.2a and the product rule to write Uj∂Ui/∂xj =

∂(UiUj)/∂xj.
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3.1.2.1 Reynolds Decomposition and the Reynolds-averaged Navier-Stokes Equa-
tion

Using a Reynolds decomposition, we expand Ui = 〈Ui〉+ ui and Fi = 〈Fi〉+ fi into mean and
turbulent components and substitute them into Eq. 3.2b:

∂

∂t
(〈Ui〉+ ui) +

∂

∂xj
[(〈Ui〉+ ui) (〈Uj〉+ uj)] =

1

ρ
〈Fi〉+

1

ρ
fi (3.4a)

⇒ ∂ 〈Ui〉
∂t

+
∂ui
∂t

+
∂

∂xj
〈Ui〉 〈Uj〉+

∂

∂xj
uiuj

+
∂

∂xj
〈Ui〉uj +

∂

∂xj
ui 〈Uj〉 =

1

ρ
〈Fi〉+

1

ρ
fi, (3.4b)

where

1

ρ
〈Fi〉 = −1

ρ

∂ 〈P 〉
∂xi

+ ν∇2 〈Ui〉 − 2εijkΩj 〈Uk〉 , (3.5a)

1

ρ
fi = −1

ρ

∂p′

∂xi
+ ν∇2ui − 2εijkΩjuk. (3.5b)

Assuming the geopotential is deterministic, here we have used the Reynolds decomposition
P = 〈P 〉+P ′, where 〈P 〉 = 〈p〉+ρΦgeo and P ′ = p′ is the fluctuating thermodynamic pressure.
Often the fluctuating Coriolis force −2εijkΩjuk is neglected when compared to the fluctuating
pressure gradient and fluctuating viscous stress forces. Taking the ensemble-average of both
sides of Eq. 3.2b and Eq. 3.4b, we obtain

∂

∂t
〈Ui〉+

∂

∂xj
〈UiUj〉 =

1

ρ
〈Fi〉 (3.6a)

⇒ ∂ 〈Ui〉
∂t

+
∂

∂xj
〈Ui〉 〈Uj〉+

∂

∂xj
〈uiuj〉 =

1

ρ
〈Fi〉 . (3.6b)

The quantity 〈uiuj〉 is referred to as the Reynolds stress and is analogous to the viscous shear
stress. Specifically, while the viscous stress is a result of the molecular shearing motion and
friction forces, the Reynolds stress is a shear force resulting from the fluctuating velocity field.
Using the ensemble-averaged incompressible continuity equation, ∂ 〈Ui〉 /∂xi = 0, and so
∂ 〈Ui〉 〈Uj〉 /∂xj = 〈Uj〉 ∂ 〈Ui〉 /∂xj, and Eq. 3.6b yields the Reynolds-averaged Navier-Stokes
(RANS) equation,

∂ 〈Ui〉
∂t

+ 〈Uj〉
∂

∂xj
〈Ui〉+

∂

∂xj
〈uiuj〉 =

1

ρ
〈Fi〉 . (3.7)
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Equation 3.7 can be written in terms of the mean substantial derivative

D

Dt
≡ ∂

∂t
+ 〈Ui〉

∂

∂xi
(3.8)

representing the rate of change along a trajectory following the mean local velocity 〈U〉 as

D 〈Ui〉
Dt

= − ∂

∂xj
〈uiuj〉+

1

ρ
〈Fi〉 . (3.9)

3.1.2.2 Turbulent Component Navier-Stokes Equation

Using the results of section 3.1.2.1, we may derive an equation for the turbulent velocity
component, which is the basis for the FLEXPART and HYSPLIT drift-diffusion model.
Subtracting Eq. 3.6a from Eq. 3.2b (or equivalently Eq. 3.6b from Eq. 3.4b), we obtain

∂ui
∂t

+
∂

∂xj
ui 〈Uj〉+

∂

∂xj
uiuj +

∂

∂xj
〈Ui〉uj −

∂

∂xj
〈uiuj〉 =

1

ρ
fi. (3.10)

The three middle terms on the left-hand side can be expanded using the product rule, which
when combined with incompressibility condition ∂Ui/∂xi = 0⇒ ∂ 〈Ui〉 /∂xi = ∂ui/∂xi = 0

effectively means that the j-velocity components can be pulled outside the derivative such
that Eq. 3.10 can also be written as

∂ui
∂t

+ 〈Uj〉
∂ui
∂xj

+ uj
∂ui
∂xj

+ uj
∂ 〈Ui〉
∂xj

− ∂

∂xj
〈uiuj〉 =

1

ρ
fi. (3.11)

Combining the second and third terms on the left-hand side of Eq. 3.11, 〈Uj〉 ∂ui/∂xj +

uj∂ui/∂xj = Uj∂ui/∂xj , we obtain the turbulent component Navier-Stokes equation in terms
of the Lagrangian derivative,

Dui
Dt

= −uj
∂ 〈Ui〉
∂xj

+
∂

∂xj
〈uiuj〉+

1

ρ
fi. (3.12)

The material derivative is the correct definition of the derivative to use for deriving the
Langevin equation because it describes the rate of change when following the Lagrangian
fluid particle as discussed in section 2.1. Note that in contrast to the RANS equations 3.7
or 3.9, the Reynolds stress gradient has the opposite sign in the turbulent Navier-Stokes
equation 3.12.

The Langevin model used by FLEXPART and HYSPLIT is a model for the turbulent velocity
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component, which can be derived directly from Eq. 3.12. To do this we use the results in
sections 2.1 and 2.4.3 to construct a Lagrangian velocity Langevin model. In particular:

1. Let x(t) ≡ x(x0, t0|t) denote the position at time t of the fluid particle that is located
at x0 at the specified fixed reference time t0.

2. Let U(t) ≡ U(x0, t0|t) = U [x (x0, t0|t) , t] denote the Lagrangian velocity of the fluid
particle, which sets the trajectory according to Eq. 2.8:

dx(t)

dt
= U(t). (3.13)

3. Write the Eulerian velocity in terms of the Lagrangian velocity: U(x0, t) ≡ U(t) ≡
U [x(x0, t0|t), t].

4. Write the Lagrangian time derivative of the Eulerian velocity in terms of the time
derivative of the Lagrangian velocity using Eqs. 2.4 or 2.9:

dU(t)

dt
=

D

Dt
U [x(t), t] . (3.14)

5. Consider only the diagonal terms of Eq. 3.12, such that the equations become uncoupled.

6. Model the stochastic forcing term fi/ρ in terms of a Gaussian white noise process.

Steps one through four can equally be applied to the Lagrangian and Eulerian turbulent
velocity components, replacing U with the turbulent component u and replacing x with
the turbulent position x′. In step four, however, the Lagrangian derivative should still be
evaluated as described in section 2.1 along the particle position x(t) = 〈x(t)〉+ x′(t) whose
trajectory satisfies

dx(t)

dt
=

d 〈x(t)〉
dt

+
dx′(t)

dt
= 〈U(t)〉+ u(t), (3.15)

where d 〈x(t)〉 /dt = 〈U(t)〉 is the mean velocity along the particle trajectory. In FLEXPART
and HYSPLIT, the mean trajectory is determined by interpolating the meteorological data to
the particle position as described in section 5.1. Once the particle trajectory is determined,
one can calculate mass concentration fields as described in section 5.4. Step five is necessary
since the FLEXPART model Eq. 3.1 treats each direction independently and thus neglects
any coupling between the different directions. That is, it neglects the terms uj∂ 〈Ui〉 /∂xj
and ∂ 〈uiuj〉 /∂xj for i 6= j when compared to those for i = j such that the cross product
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terms disappear in the uncoupled 1D FLEXPART Langevin model equations. Step six is
consistent with the original Langevin formulation of modeling the stochastic force in the
equation of motion as a Gaussian white noise process as discussed in section 2.4.3.

Carrying out these steps, we obtain the Langevin model for the turbulent velocity component
as

dui(t)

dt
= −ui(t)

∂ 〈Ui(t)〉
∂xi

+
∂

∂xi
〈ui(t)ui(t)〉+ λiξi(t), (3.16)

where we are not using Einstein summation, and Eulerian quantities such as ∂ 〈Ui〉 /∂xi
are to be evaluated at the particle position x = x(t). The first term on the right-hand
side can be understood as the drift due to a mean velocity gradient along the particle’s
trajectory. The second term is an additional drift due to the Reynolds stress or turbulent
velocity variance, which is the drift correction [44] that we have now derived directly from
the turbulent Navier-Stokes equation. Comparing Eqs. 3.1 and 3.16 allows us to propose

∂ 〈Ui(t)〉
∂xi

' 1

T L
ii

(3.17)

and the diffusion parameter λi =
(
2σ2

ui
/T L

ii

)1/2. Thus, with the approximation Eq. 3.17 we
derived the FLEXPART and HYSPLIT Langevin drift-diffusion model Eq. 3.1 directly using
the turbulent Navier-Stokes equation. When compared to the original Langevin Eq. 2.120,
our turbulent velocity drift-diffusion model Eq. 3.1 now includes the Reynolds stress or
velocity variance term 〈ui(t)ui(t)〉 as well as the ansatz Eq. 3.17 for representing the drift
coefficient.

3.1.3 Turbulent Velocity Drift-diffusion Equation

The stochastic velocity drift-diffusion model is a Langevin model which models the trajectory
of species in turbulent fluid flows [44]. Like the Navier-Stokes equation, it is a force balance
equation [40], but it is written in the form of an equation of motion which includes a retarding
drift acceleration and a random acceleration representing diffusion [44]. Specifically, the
Langevin equation for the turbulent velocity in stationary, homogeneous turbulence is [40, 44]

dui(t)

dt
= −αiui(t) + λiξi(t), (3.18)

where the terms on the right are the drift and diffusion terms, respectively, αi is the drift
coefficient, λi is the diffusion parameter, and ξi(t) is a Gaussian white noise process. The drift
coefficient can be represented through the velocity autocorrelation function, while Akcasu
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[73] takes a different approach to obtain α directly from a balance equation equivalent to the
master equation for a Markovian process, as shown in section 2.4.3.3. Similarly, Langevin
[14] represented α directly in terms of physical drag parameters in the equation of motion for
particles undergoing Brownian motion. We show these alternative approaches for producing
Langevin equations in section 2.4.3. In our case, we emphasize that the Langevin model in
Eq. 3.18 represents the turbulent fluid motion obeying the turbulent Navier-Stokes equation,
and the drift coefficient has to be determined from the Navier-Stokes equation.

To show that our approximation in Eq. 3.17 has a physical justification based on the turbulent
fluid motion, we begin by examining the properties of the solution to Eq. 3.18. Equation 3.18
is a linear stochastic ODE with constant coefficients, so its solution with initial condition
ui(t0) at time t0 can be analytically written as [40, 44]

ui(t) = ui(t0)e−αi(t−t0) + λi

∫ t

t0

eαi(t
′−t)ξi(t

′)dt′, (3.19)

with mean 〈ui(t)〉 = 〈ui(t0)〉 = 0, as expected for the turbulent velocity component. Using
Eq. 3.19 and the Gaussian white noise ensemble-averaged integral∫ t

t0

∫ t

t0

eαi(t
′−t)eαi(t

′′−t) 〈ξi(t′)ξi(t′′)〉 dt′dt′′ =
∫ t

t0

∫ t

t0

eαi(t
′−t)eαi(t

′′−t)δ(t′ − t′′)dt′dt′′

=

∫ t

t0

e2αi(t
′−t)dt′

=
1

2αi

[
1− e−2αi(t−t0)

]
, (3.20)

the velocity variance and covariance are, respectively, [40, 44]

〈ui(t)ui(t)〉 = 〈ui(t0)ui(t0)〉 e−2αi(t−t0) +
λ2
i

2αi

[
1− e−2αi(t−t0)

]
, (3.21a)

〈ui(t0)ui(t)〉 = 〈ui(t0)ui(t0)〉 e−αi(t−t0). (3.21b)

The diffusion term coefficient can be related to both the Reynolds stress 〈uiui〉 and the drift
parameter αi. If ui(t) is a stationary random process with constant mean 〈ui(t)〉 = 0 and
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constant variance σ2
ui

= 〈ui(t)ui(t)〉 = 〈ui(t0)ui(t0)〉, then Eq. 3.21a requires for all t [40, 44]

σ2
ui

= σ2
ui
e−2αi(t−t0) +

λ2
i

2αi

[
1− e−2αi(t−t0)

]
⇒ σ2

ui

[
1− e−2αi(t−t0)

]
=

λ2
i

2αi

[
1− e−2αi(t−t0)

]
⇒ λ2

i = 2αiσ
2
ui
.

Thus, the velocity variance σ2
ui

and drift coefficient αi are sufficient to determine the particle
velocities and trajectories using Eq. 3.18 with some initial velocity distribution ui(t0).

The drift coefficient can be written in terms of the Lagrangian time scale T L
ii related to the

Lagrangian velocity autocorrelation function RL
ii(t). We define the Lagrangian time scale as

the turbulent velocity correlation time [39, 40, 54]

T L
ii ≡

∫ ∞
t0

RL
ii(t− t0)dt, (3.22)

where
RL
ii(t− t0) ≡ 〈ui(t0)ui(t)〉

σ2
ui

(3.23)

is the Lagrangian velocity autocorrelation function. The Lagrangian time scales provide time
or frequency scale information required by the models based on the one-time PDF as discussed
in section 2.3.4. They are implemented in FLEXPART and HYSPLIT via the empirical
correlations such as in Hanna [79]. The particular parameterization of the Lagrangian time
scale is determined by the measured autocorrelation under given atmospheric conditions as
discussed in section 5.3.2. Substituting Eq. 3.21b in Eqs. 3.23 and 3.22 requires that the
drift coefficient be the inverse Lagrangian time scale [40, 44]:

αi =
1

T L
ii

. (3.24)

One often defines a single Lagrangian time scale TL =
∫∞
t0
RL(t − t0)dt, where TL can be

approximated by either the maximum or mean value of T L
ii for i ∈ {1, 2, 3} [54]. The

autocorrelation function and its relationship to the Lagrangian time scale can be visualized as
shown in Fig. 3.1, where the the area under the unit rectangle of time length TL is equivalent
to the total area under the curve. We use this relationship in section 3.1.4 to determine
particle displacement functions. We note that RL(t) physically represents a measure of the
propagation of turbulent velocity over time t.
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Figure 3.1: Lagrangian velocity autocorrelation function and its relationship to the Lagrangian
time scale. The shaded area of the unit rectangle of time length TL is equivalent to the total
area under the autocorrelation function.
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3.1.4 Turbulent Particle Dispersion Parameters for a Point Source

The Langevin model also allows us to calculate particle positions by integrating the particle
velocity trajectories according to Eq. 3.13. Then the Lagrangian particle displacement
covariance at time τ for a point source release at time t0 in stationary, homogeneous turbulence
is obtained as [54]

σij(τ) = 〈[xi(τ)− 〈xi(τ)〉] [xj(τ)− 〈xj(τ)〉]〉 (3.25a)

=

∫ t0+τ

t0

∫ t0+τ

t0

〈ui(t1)uj(t2)〉 dt1dt2, (3.25b)

where τ = t−t0 is the time displacement. Since the turbulence is stationary and homogeneous,
the fluctuating velocity is stationary, and it can be written in terms of the Lagrangian velocity
autocorrelation depending only on the time difference using Eq. 3.23:

〈ui(t1)uj(t2)〉 =
[
σ2
ui
σ2
uj

]1/2

RL
ij(t2 − t1). (3.26)

Defining the variable transform ϕ(t1, t2) = [s(t1, t2), t(t1, t2)] = [t2 − t1, (t1 + t2)/2], the
Jacobian determinant magnitude is

|det Jϕ(t1, t2)| =

∣∣∣∣∣det

[
∂s
∂t1

∂s
∂t2

∂t
∂t1

∂t
∂t2

]∣∣∣∣∣ =

∣∣∣∣∣det

[
−1 1

1
2

1
2

]∣∣∣∣∣ = 1. (3.27)

The region of integration A = {(t1, t2) : t0 ≤ t1 ≤ t0 + τ ∧ t0 ≤ t2 ≤ t0 + τ} corresponds to
the region

ϕ(A) = {ϕ(t1, t2) : t0 ≤ t1 ≤ t0 + τ ∧ t0 ≤ t2 ≤ t0 + τ}

= {(t2 − t1, (t1 + t2) /2) : t0 ≤ t1 ≤ t0 + τ ∧ t0 ≤ t2 ≤ t0 + τ}

=

{
(s, t) : 0 ≤ |s| ≤ τ ∧ t0 +

|s|
2
≤ t ≤ t0 + τ − |s|

2

}
. (3.28)

Then using the change of variables formula
∫
A
f [ϕ(t1, t2)] |det Jϕ(t1, t2)| dt1dt2 =

∫
ϕ(A)

f(s, t)dtds

for Eq. 3.25b with Eq. 3.26 substituted yields

σij(τ) =
[
σ2
ui
σ2
uj

]1/2
∫ τ

−τ

∫ t0+τ− |s|
2

t0+
|s|
2

RL
ij(s)dtds. (3.29)
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Since Eq. 3.26 is symmetric, i.e. RL
ij(−s) = RL

ji(s), we can integrate the right-hand side of
Eq. 3.29 over the positive values of s [54]:

σij(τ) =
[
σ2
ui
σ2
uj

]1/2
∫ τ

0

∫ t0+τ− s
2

t0+ s
2

[
RL
ij(s) +RL

ji(s)
]

dtds (3.30a)

=
[
σ2
ui
σ2
uj

]1/2
∫ τ

0

(τ − s)
[
RL
ij(s) +RL

ji(s)
]

ds, (3.30b)

where we have explicitly integrating with respect to t in the final step. Using Eq. 3.21b in
3.23, we can explicitly calculate the particle displacement variances in Eq. 3.30b for i = j

with σii(τ) ≡ σ2
i (τ) and T L

ii ≡ T L
i :

σ2
i (τ) = 2σ2

ui

∫ τ

0

(τ − s) e−s/TL
i ds

= 2σ2
ui

([
−τT L

i e
−s/TL

i

]τ
0

+
[
sT L

i e
−s/TL

i

]τ
0
−
∫ τ

0

e−s/T
L
i ds

)
= 2σ2

ui
T L
i

(
τ − τe−τ/TL

i + τe−τ/T
L
i + T L

i

[
e−s/T

L
i

]τ
0

)
= 2σ2

ui
T L
i

[
τ − T L

i

(
1− e−τ/TL

i

)]
. (3.31)

Rearranging Eq. 3.31, and letting ∆Ui(τ) = ui(τ) = Ui(τ) − 〈Ui(τ)〉, ∆xi(τ) = x′i(τ) =

xi(τ)− 〈xi(τ)〉, and τ ' T L
i , we obtain

〈
∆U2

i (T L
i )
〉1/2

〈∆x2
i (T

L
i )〉1/2

=

√
σ2
ui

σ2
i (T

L
i )

=
e1/2

√
2

1

T L
i

≈ 1.17

T L
i

. (3.32)

We can interpret this result by treating the ratio of the root mean square (RMS) velocity
fluctuation to the RMS particle displacement on the left-hand side, as a mean velocity gradient
along the particle trajectory. This is justified by the fact that the variance is not affected by
a constant shift according to Eq. 2.79, so σ2

ui
= σ2

Ui
, so that√

σ2
ui

σ2
i (T

L
i )

=

√
σ2
Ui

σ2
xi

(TL)
' ∂ 〈Ui(t)〉

∂xi
. (3.33)

This latter equivalence approximation in Eq. 3.33 is somewhat subtle. The first and second
terms are written in terms of a RMS velocity and position, which represent the Lagrangian
particle displacement along its trajectory. The final term written in terms of the mean velocity
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gradient along this trajectory relies on the fact that the mean turbulent velocity change is
zero by definition. Equation 3.32 then indicates that the velocity gradient is approximately
constant over the Lagrangian time scale, where the constant is approximately the inverse
Lagrangian time scale:

∂ 〈U(t)〉
∂x

' 1

TL

. (3.34)

This leads to Eq. 3.17 proposed in section 3.1.2.2. Another way of seeing this is to integrate
the particle trajectories over some averaging time scale. When observing particle trajectories
over a time period similar to the Lagrangian time scale, the ratio of the time-averaged mean
velocity to the time-averaged mean particle displacement is also on the order of the inverse
Lagrangian time scale. Although the Langevin Eq. 3.1 or 3.18 does not represent spatial
dependence of turbulent velocity u explicitly, we represent the dependence implicitly via
the autocorrelation function RL

ii(t) integrated over time in Eq. 3.31, with the understanding
that RL

ii(t) represents a measure or extent of the velocity propagation over time t. The
autocorrelation function RL

ii(t) can then be used to determine the Lagrangian time scale T L
ii

by Eq. 3.22, with the parameterization depending on atmospheric conditions as discussed in
section 5.3.2.

3.2 Alternate Langevin Models

In sections 3.1.1 and 3.1.2, we presented and derived directly from the turbulent Navier-Stokes
Eq. 3.12 the turbulent velocity DD model Eq. 3.1 used by FLEXPART and HYSPLIT.
Furthermore, we clarified in sections 3.1.3 and 3.1.4 how FLEXPART uses the velocity
autocorrelation function to represent velocity propagation with the Lagrangian time scale.
We present in sections 3.2.1 through 3.2.3 some alternative Langevin models commonly
encountered in the literature and argue that these models are either not physically suitable or
representative of specifically the FLEXPART model of the turbulent Navier-Stokes equation.
This is not necessarily to say that these alternate models are unsuitable under some circum-
stances or that they are less accurate models than FLEXPART. Rather, this is to emphasize
specifically that the derivation presented in section 3.1 is the correct model representation
for FLEXPART.

3.2.1 Normalized Turbulent Velocity Langevin Drift-diffusion

For long integration time steps, FLEXPART uses the turbulent velocity DD model of the
form in Eq. 3.1 [1, 2]. Alternatively, one can form a Langevin model for the normalized
turbulent velocity ui/σui which is used (with the addition of a density correction term) by
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FLEXPART for short integration time steps [1, 2]:

d

dt

(
ui(t)

σui(t)

)
= − ui(t)

σui(t)T
L
ii

+
∂σui
∂xi

+

(
2

T L
ii

)1/2

ξi(t). (3.35)

Equation 3.35 for stationary, inhomogeneous turbulence was originally proposed by Wilson
[80] but was rigorously derived by Thomson [81] and shown to fulfill the well-mixed criterion
[82]. However, Minier [42] showed that Eq. 3.35:

1. depends on whether or not the coordinate reference system is aligned with the principal
axes of 〈uiuj〉 or not for even homogeneous anisotropic turbulence

2. results in spurious drifts for general inhomogeneous flows

Furthermore, generalizations of the normalized turbulent velocity Langevin model Eq. 3.35
were shown by Minier [42] to not produce the correct Reynolds-stress equations. Thus,
normalized turbulent velocity Langevin DD models are inconsistent with the turbulent
Navier-Stokes equation and are therefore unsuitable for inhomogeneous turbulent flows. In
contrast, the turbulent velocity Langevin DD model presented in section 3.1 is consistent
with the turbulent Navier-Stokes equation and has the proper drift correction necessary for
inhomogeneous turbulent flows.

3.2.2 Generalized Langevin Model (GLM)

Pope [39] suggests an alternate Langevin model for the turbulent velocity component, which
he refers to as the generalized Langevin model (GLM):

dui
dt

= −uj
∂ 〈Ui〉
∂xj

+
∂

∂xj
〈uiuj〉+Gijuj + (C0ε)

1/2 ξi(t), (3.36)

where
ε(x, t) ≡ 2ν

〈
e′ije

′
ij

〉
(3.37)

is the turbulent kinetic energy dissipation rate with fluctuating rate of strain tensor—the
difference of Eqs. 2.23 and 4.2—given by

e′ij ≡ eij − 〈eij〉 =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (3.38)
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Equation 3.37 is analogous to the mechanical energy dissipation rate Ėν in Eq. 2.59 but for
the turbulent velocity in an incompressible flow. Gij(x, t) and C0(x, t) are coefficients for the
particular model, with Gij having dimensions of inverse time and C0 being non-dimensional.
In general, Gij and C0 might depend on the local Reynolds stresses 〈uku`〉, velocity gradients
∂ 〈Um〉 /∂xn, and dissipation rate ε [39, 83]. Comparing Eqs. 3.36 and 3.12, we note that
this models the pressure fluctuation and viscous forcing terms collectively as

1

ρ
fi = Gijuj + (C0ε)

1/2 ξi(t). (3.39)

In contrast, we simply model the stochastic force in terms of the Gaussian white noise alone:
fi/ρ = λiξi(t), where λi =

(
2σ2

ui
/T L

ii

)1/2.

Furthermore, in contrast to the simple physical model we propose in Eq. 3.34 in which the
mean velocity gradient is modeled using the Lagrangian time scale, Pope uses a second-order
closure model for the Reynolds stress in order to derive various models for Gij and C0. Pope
[39] presents several models based on the probability density function (PDF) for the turbulent
velocity. These are derived from the fine-grained PDF f ′u(û; x, t) ≡ δ [u(x, t)− û] and written
in terms of the Dirac delta function to produce a PDF transport equation, and the physics
is incorporated through the expected value of the Lagrangian derivative of the turbulent
velocity. This PDF transport equation is in the form of a Fokker-Planck equation, with force
term modeled as in Eq. 3.39, which can then be transformed into an equivalent Langevin
equation like Eq. 3.36 using the results of sections 2.4.3.4 or 2.4.3.5 and Eqs. 2.145. This PDF
model can be used to derive a second-order closure model based on the modeled Reynolds
stress equation, and the comparison with the Reynolds stress equation places constraints
on the values of Gij and C0. In the PDF approach, the Langevin equation derived from
the Navier-Stokes equation depends on how the Lagrangian time scale and force terms are
modeled.

Instead of using a PDF-based approach to determine Gij and C0, we can derive the second-
order closure model for the Reynolds stress equations directly from Eqs. 3.12 and 3.36. In
section 3.2.2.1 we derive the exact Reynolds stress transport model directly from Eq. 3.12,
while in section 3.2.2.2 we derive the Reynolds stress transport model corresponding to the
GLM Eq. 3.36. The method for deriving the Reynolds stress models uses the product rule
with the addition of two symmetric variants of the equation. Then by comparing the exact
and GLM Reynolds stress transport equations, one is then able to constrain Gij and C0 in
the GLM in order to be consistent with the second-order Reynolds stress model.
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3.2.2.1 Exact Reynolds Stress Transport Model

First multiply the left-hand side of Eq. 3.12 by uj, yielding ujDui/Dt. Then interchanging
the indices i and j, adding the two terms and using the product rule, we find

uj
Dui
Dt

+ ui
Duj
Dt

= uj
∂ui
∂t

+ ui
∂uj
∂t

+ ujUk
∂ui
∂xk

+ uiUk
∂uj
∂xk

=
∂uiuj
∂t

+ Uk
∂uiuj
∂xk

=
Duiuj

Dt
. (3.40)

Ensemble-averaging Eq. 3.40 yields, for an incompressible fluid,〈
Duiuj

Dt

〉
=
∂ 〈uiuj〉
∂t

+

〈
Uk
∂uiuj
∂xk

〉
=
∂ 〈uiuj〉
∂t

+ 〈Uk〉
∂ 〈uiuj〉
∂xk

+

〈
uk
∂uiuj
∂xk

〉
=

D 〈uiuj〉
Dt

+
∂ 〈uiujuk〉

∂xk
. (3.41)

Applying the same procedure to the right-hand side of Eq. 3.12 one term at a time, we obtain
the terms [39]:

• Production tensor

Pij = −
〈
ujuk

∂ 〈Ui〉
∂xk

+ uiuk
∂ 〈Uj〉
∂xk

〉
≡ −〈ujuk〉

∂ 〈Ui〉
∂xk

− 〈uiuk〉
∂ 〈Uj〉
∂xk

. (3.42)
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• Velocity-pressure-gradient tensor

Πij ≡
〈
−1

ρ
ujf

(p)
i −

1

ρ
uif

(p)
j

〉
≡ −1

ρ

〈
uj
∂p′

∂xi
+ ui

∂p′

∂xj

〉
(3.43)

= −1

ρ

〈
∂ujp

′

∂xi
− p′∂uj

∂xi
+
∂uip

′

∂xj
− p′ ∂ui

∂xj

〉
=

〈
p′

ρ

(
∂ui
∂xj

+
∂uj
∂xi

)〉
− ∂

∂xk

(
1

ρ
〈uip′〉 δjk +

1

ρ
〈ujp′〉 δik

)
= Rij −

∂

∂xk
T

(p)
kij , (3.44)

where

Rij ≡
〈
p′

ρ

(
∂ui
∂xj

+
∂uj
∂xi

)〉
(3.45)

= 2

〈
p′e′ij
ρ

〉
is the pressure-rate-of-strain tensor, and

T
(p)
kij ≡

1

ρ
〈uip′〉 δjk +

1

ρ
〈ujp′〉 δik (3.46)

is the Reynolds stress flux due to pressure fluctuations.

• Viscous dissipation tensor〈
−1

ρ
ujf

(ν)
i −

1

ρ
uif

(ν)
j

〉
= ν

〈
uj∇2ui + ui∇2uj

〉
= ν

〈
uj

∂2ui
∂xk∂xk

+ ui
∂2uj
∂xk∂xk

〉
= ν

〈
∂

∂xk

(
uj
∂ui
∂xk

)
− ∂uj
∂xk

∂ui
∂xk

+
∂

∂xk

(
ui
∂uj
∂xk

)
− ∂ui
∂xk

∂uj
∂xk

〉
= −2ν

〈
∂ui
∂xk

∂uj
∂xk

〉
+ ν

〈
∂

∂xk

(
∂ujui
∂xk

− ui
∂uj
∂xk

)
+

∂

∂xk

(
∂uiuj
∂xk

− uj
∂ui
∂xk

)〉
= −εij + ν

〈
2∇2uiuj −

∂

∂xk

(
ui
∂uj
∂xk

+ uj
∂ui
∂xk

)〉
= −εij + ν∇2 〈uiuj〉 , (3.47)
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where
εij ≡ 2ν

〈
∂ui
∂xk

∂uj
∂xk

〉
(3.48)

is the dissipation tensor.

• Coriolis tensor〈
1

ρ
ujfCoriolis,i +

1

ρ
uifCoriolis,j

〉
= −2εi`kΩ` 〈ujuk〉 − 2εj`kΩ` 〈uiuk〉 . (3.49)

Typically, the Coriolis tensor can be neglected compared to the production, velocity-
pressure-gradient, and viscous dissipation tensors [53].

Combining all the terms in Eqs. 3.41, 3.42, 3.43, and 3.47 results in the (exact) Reynolds
stress transport equation [39]

D 〈uiuj〉
Dt

= Pij + Πij − εij + ν∇2 〈uiuj〉 −
∂ 〈uiujuk〉

∂xk
(3.50a)

= Pij +Rij − εij −
∂Tkij
∂xk

, (3.50b)

where

Tkij ≡ T
(u)
kij + T

(p)
kij + T

(ν)
kij , (3.51a)

T
(u)
kij ≡ 〈uiujuk〉 , (3.51b)

T
(p)
kij ≡

1

ρ
〈uip′〉 δjk +

1

ρ
〈ujp′〉 δik, (3.51c)

T
(ν)
kij ≡ −ν

∂ 〈uiuj〉
∂xk

, (3.51d)

are the total Reynolds stress fluxes, and Reynolds stress fluxes due to fluctuating velocity Eq.
3.51b, pressure Eq. 3.51c, and viscosity Eq. 3.51d.

3.2.2.2 GLM Reynolds Stress Transport Model

Using the reverse of the procedure described in section 3.1.2.2 for deriving the Langevin Eq.
3.16 from the turbulent Navier-Stokes Eq. 3.12, starting from step four, Eq. 3.36 corresponds
to the Eulerian equation

Dui
Dt

= −uj
∂ 〈Ui〉
∂xj

+
∂

∂xj
〈uiuj〉+Gijuj + (C0ε)

1/2 ξi(t). (3.52)
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Then using the same procedure as in section 3.2.2.1, the model terms in Eq. 3.52 result in
the Reynolds stress transport model terms:

• Modeled linear drift tensor

〈Gikujuk +Gjkuiuk〉 = Gik 〈ujuk〉+Gjk 〈uiuk〉 . (3.53)

• Modeled diffusion tensor〈
(C0ε)

1/2 ujξi(t) + (C0ε)
1/2 uiξj(t)

〉
= (C0ε)

1/2 〈ujξi(t)〉+ (C0ε)
1/2 〈uiξj(t)〉 . (3.54)

The term 〈ujξi(t)〉 can be calculated by using the integral form of Eq. 3.52,

ui(t) = ui(t0)+

∫ t

t0

[
−uj

∂ 〈Ui〉
∂xj

+
∂

∂xj
〈uiuj〉+Gijuj

]
dt′+

∫ t

t0

(C0ε)
1/2 ξi(t

′)dt′. (3.55)

Thus

〈ujξi(t)〉 = 〈uj(t0)ξi(t)〉+

∫ t

t0

[
−〈uk(t′)ξi(t)〉

∂ 〈Uj〉
∂xk

+Gjk 〈uk(t′)ξi(t)〉
]

dt′

+ (C0ε)
1/2

∫ t

t0

〈ξi(t)ξj(t′)〉 dt′

= (C0ε)
1/2

∫ t

t0

δ(t− t′)δijdt′

=
1

2
(C0ε)

1/2 δij. (3.56)

Note that in the second step the terms with 〈uj(t′)ξi(t)〉 = 0 for t′ 6= t since the white
noise is uncorrelated with the turbulent velocity process itself. In the final step, the
Dirac delta integral is halved since t is on the boundary of the integration domain.
Substituting Eq. 3.56 into Eq. 3.54 yields the modeled diffusion tensor

(C0ε)
1/2 〈ujξi(t)〉+ (C0ε)

1/2 〈uiξj(t)〉 = C0εδij. (3.57)

Another way to calculate the modeled diffusion tensor is to use the correspondence
between the Langevin and Fokker-Planck diffusion coefficients bij = (C0ε)

1/2 δij and
Bij = bikbjk = C0εδij, respectively, from section 2.4.3.4 and Eq. 2.145b. Then the
Reynolds stress transport equation modeled diffusion term is given by the Fokker-Planck
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diffusion term in Eq. 2.117 multiplied by ûiûj and integrated over the velocity space:∫
ûiûj

2

∂2

∂ûk∂û`
[Bk` (û,x, t) fu (û; x, t)] dû =

1

2

∫
[Bk` (û,x, t) fu (û; x, t)]

∂2ûiûj
∂ûk∂û`

dû

=
1

2

∫
[Bk` (û,x, t) fu (û; x, t)] δikδj`dû

+
1

2

∫
[Bk` (û,x, t) fu (û; x, t)] δjkδi`dû

=
1

2

∫
[Bij (û,x, t) fu (û; x, t)] dû

+
1

2

∫
[Bji (û,x, t) fu (û; x, t)] dû

=
1

2
[〈Bij (u,x, t)〉+ 〈Bji (u,x, t)〉]

=
1

2
(C0εδij + C0εδji)

= C0εδij.

Note that we have used the product rule twice in the first step with the surface terms
vanishing due to the distribution vanishing at the boundary.

Combining the modeled linear drift and diffusion terms with the production term results in
the Reynolds stress transport model [39]

D 〈uiuj〉
Dt

= Pij +Gik 〈ujuk〉+Gjk 〈uiuk〉+ C0εδij −
∂ 〈uiujuk〉

∂xk
. (3.58)

Comparing the exact Reynolds stress transport model Eqs. 3.50 and the GLM Reynolds
stress transport Eq. 3.58, the two models are consistent when

Gik 〈ujuk〉+Gjk 〈uiuk〉+ C0εδij = Πij − εij + ν∇2 〈uiuj〉 (3.59a)

= Rij − εij −
∂

∂xk
T

(p)
kij −

∂

∂xk
T

(ν)
kij . (3.59b)

3.2.3 Simplified, LRR-IP, and Haworth–Pope Models

Here we present several alternate models which are based on the results of section 3.2.2.2 and
Eqs. 3.59 to compare with the model we propose in Eq. 3.34. When pressure and viscous
transport are neglected, Eq. 3.59b simplifies to [39]

Gik 〈ujuk〉+Gjk 〈uiuk〉+ C0εδij ≈ Rij − εij, (3.60)

62



and the coefficients Gij and C0 correspond to the pressure rate of strain tensor and viscous
dissipation. If the dissipation is isotropic, such as in high Reynolds number flows, the
dissipation tensor can be written as [39]

εij =
2

3
εδij, (3.61)

and Eq. 3.60 reduces to [39]

Gik 〈ujuk〉+Gjk 〈uiuk〉+

(
2

3
+ C0

)
εδij ≈ Rij. (3.62)

Finally, for Rij to be redistributive, one requires that Rii = 0, and Eq. 3.62 becomes the
simple constraint [39]

Rii = Rijδij = 0

⇒ Gik 〈ujuk〉 δij +Gjk 〈uiuk〉 δij +

(
2

3
+ C0

)
εδijδij ≈ 0

⇒ 2Gij 〈uiuj〉+ 3

(
2

3
+ C0

)
ε = 0

⇒
(

1 +
3

2
C0

)
ε+Gij 〈uiuj〉 = 0. (3.63)

For the simplified Langevin model (SLM) [77, 84], the drift coefficient Gij is isotropic:

Gij = −δij
TL

, (3.64)

where TL is the Lagrangian time scale. Substituting Eq. 3.64 into Eq. 3.63, the Lagrangian
time scale is [39] (

1 +
3

2
C0

)
ε− δij

TL

〈uiuj〉 = 0

⇒
(

1 +
3

2
C0

)
ε− 2k

TL

= 0

⇒ TL = 2

(
1

2
+

3

4
C0

)−1

τ, (3.65)
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where C0 is a non-negative constant, and

k ≡ 1

2
〈u · u〉 =

1

2
〈uiui〉 (3.66)

τ ≡ k

ε
(3.67)

are the turbulent kinetic energy (TKE) and TKE dissipation time scale, respectively. Similarly,
substituting Eq. 3.65 into Eq. 3.64, the linear drift coefficient for the SLM is

Gij = −δij
TL

= −
(

1

2
+

3

4
C0

)
δij
τ
. (3.68)

The SLM corresponds to Rotta’s linear return to isotropy turbulence model [85] with

CR = 1 +
3

2
C0. (3.69)

A model incorporating both slow (from Rotta’s model) and rapid pressure fluctuations is the
isotropization of production LRR-IP model [86], for which

Gij = −1

2
CR

δij
τ

+ C2
∂ 〈Ui〉
∂xj

, (3.70)

where
CR = 1 +

3

2
C0 + C2

〈uiuj〉
ε

∂ 〈Ui〉
∂xj

. (3.71)

The most general form of Gij depending linearly on the Reynolds stresses 〈uiuj〉, mean
velocity gradients ∂ 〈Uk〉 /∂x`, and dissipation rate τ is perhaps that of Haworth and Pope
[77, 83]:

Gij =
α1δij + α2bij + α3b

2
ij

τ
+Hijk`

∂ 〈Uk〉
∂x`

, (3.72)

where
bij =

〈uiuj〉
2k

− 1

3
δij (3.73)

is the normalized Reynolds stress anisotropy tensor, and H is the fourth-order tensor

Hijk` = β1δijδk` + β2δikδj` + β3δi`δjk (3.74)

+ γ1δijbk` + γ2δikbj` + γ3δi`bjk

+ γ4bijδk` + γ5bikδj` + γ6bi`δjk.
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Constraints are placed on the coefficients through Eqs. 3.59, so the 12 coefficients (α, β, γ)

can depend on scalar invariants of the normalized Reynolds stress anisotropy tensor bij and
the normalized rate of strain and rotation tensors τ 〈eij〉 and τ 〈rij〉, such as b′ = |bii| and
P/ε = −2τbij 〈eij〉 [77]. It is implicitly assumed here that Gij is inversely proportional to the
Lagrangian time scale T L

ij , so the Lagrangian time scale would depend on Reynolds stresses
〈uiuj〉, mean velocity gradients ∂ 〈Uk〉 /∂x`, and dissipation rate τ .

3.2.4 Contrast with Proposed Drift-diffusion Langevin Model

Thus, there are two key differences between our drift-diffusion Langevin model proposed in
sections 3.1.2.2 and 3.1.3 and alternate models suggested by Pope and others in sections 3.2.2
and 3.2.3:

1. Our stochastic force term is modeled using only a Gaussian white noise process alone,
rather than also including a drift term linearly proportional to the turbulent velocity
Gijuj.

2. In our model, the Lagrangian time scale TL depends only on the time scale of the
mean velocity gradient, whereas in the second-order closure models presented by Pope
and others, the Lagrangian time scale is derived in terms of the dissipation time scale
τ = k/ε .

With these two differences, we obtain the correct form of the Langevin model used in
FLEXPART and HYSPLIT directly from the turbulent Navier-Stokes equation with a model
for the Lagrangian time scale written in terms of the mean velocity gradient alone. Our
Lagrangian time scale model characterizes the velocity autocorrelation in the FLEXPART
and HYSPLIT models rather than the Reynolds stress models represented by Pope and
others. Using the alternate models, on the other hand, results in an additional mean velocity
gradient drift term, uj∂ 〈Ui〉 /∂xj, appearing in the Langevin model, which is not present in
the FLEXPART or HYSPLIT models.
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Chapter 4

Eulerian Physical Models

In chapter 3 we discussed Lagrangian models in the form of Langevin equations for the
turbulent fluid flow velocity field u which are based on the turbulent Navier-Stokes Eq. 3.12
following a Lagrangian particle trajectory. As mentioned briefly in sections 2.3, 3.1.1 and
3.1.2.2, FLEXPART and HYSPLIT determine the mean fluid fields from the meteorological
data input on fixed Eulerian grids, which is described in more detail in section 5.1. One
can instead determine the mean fluid fields in the Eulerian frame of reference by solving
the mean conservation laws, as is done by computational fluid dynamics (CFD) models or
advection-diffusion (AD) models. CFD codes have the ability to perform turbulent flow
simulation to produce several realizations of the fields which can be used to represent the
random variation in the field solutions, or they can employ algebraic or transport turbulence
models for the mean fields [39]. This latter method we discuss briefly in section 4.1 with a
focus on the k-ε model. Advection-diffusion models instead directly solve for the mean mass
concentration field of a species in a turbulent fluid as discussed in section 4.2.

4.1 Computational Fluid Dynamics (CFD) Models

There are many different proprietary and open source (e.g. OpenFOAM) CFD codes available
for solving the conservation laws discussed in section 2.2 in turbulent fluids. The simplest
and most common models are based on the RANS Eqs. 3.7 or 3.9, where one must employ a
turbulence closure model for the Reynolds stress 〈uiuj〉. Turbulence models include first-order
eddy viscosity models such as the k-ε and k-ω models or second-order Reynolds stress models
which use Eqs. 3.50. Some CFD codes also support more sophisticated models such as large
eddy simulation (LES) and direct numerical simulation (DNS) in which the largest or all
turbulence scales, respectively, are directly resolved and thus do not require a turbulence
model. As indicated suggested in chapter 2, however, these are computationally impractical
for the global scale ATMs of interest. Thus, we will focus here only on perhaps the simplest
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and most common turbulence model, the RANS eddy viscosity k-ε model.

4.1.1 RANS Eddy Viscosity

In order to solve Eq. 3.7, one must employ a turbulence model for the Reynolds stress term.
One of the simplest models is a linear turbulent viscosity model [39]

〈uiuj〉 =
2

3
kδij − 2νT 〈eij〉 , (4.1)

where k is the TKE from Eq. 3.66, νT(x, t) is the turbulent viscosity or eddy viscosity, and

〈eij〉 =
1

2

(
∂ 〈Ui〉
∂xj

+
∂ 〈Uj〉
∂xi

)
(4.2)

is the mean rate of strain tensor based on Eq. 2.23. Thus, the turbulent viscosity model
assumes that the Reynolds stress anisotropy is proportional to the mean velocity gradients
∂ 〈Ui〉 /∂xj. This hypothesis can be traced to the classical theory of Boussinesq [87]. There
are more general linear turbulent viscosity models which also account for anisotropy in the
turbulent length scales, but Eq. 4.1 is useful in many cases as an approximation with isotropic
turbulence length scales [54]. Additionally, there are nonlinear viscosity models which can be
beneficial for calculating secondary flows [39].

Substituting the hypothesis Eq. 4.1 into Eq. 3.9, we obtain a RANS equation with diffusion
terms in the mean velocity and a modified source [39]:

D 〈Ui〉
Dt

=
∂

∂xj

[
νT

(
∂ 〈Ui〉
∂xj

+
∂ 〈Uj〉
∂xi

)]
− 2

3

∂k

∂xi
+

1

ρ
〈Fi〉 (4.3a)

=
∂

∂xj

[
νeff

(
∂ 〈Ui〉
∂xj

+
∂ 〈Uj〉
∂xi

)]
+

1

ρ
〈F ′i 〉 (4.3b)

where
νeff(x, t) = ν + νT(x, t) (4.4)

is the effective viscosity due to both molecular and turbulent viscosity, and

1

ρ
〈F ′i 〉 =

1

ρ
〈Fi〉 −

2

3

∂k

∂xi
− ν∇2 〈Ui〉 (4.5)

is the modified mean force per unit mass.
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4.1.2 k-ε Model

As implied by the name, the k-ε model is a two-equation model for the TKE k and the
dissipation rate ε [39]. These two quantities can be used to calculate turbulence dissipation
time scale τ = k/ε, a length scale L = k3/2/ε, and a viscosity scale

νT = Cµ
k2

ε
, (4.6)

where Cµ = 0.09 [39]. The TKE equation is given by half the trace of the Reynolds stress
transport Eq. 3.50b [39]:

1

2

D 〈uiuj〉
Dt

δij =
1

2
Pijδij +

1

2
Rijδij −

1

2
εijδij −

1

2

∂Tkij
∂xk

δij

⇒ Dk

Dt
= P − ε−∇ ·T, (4.7)

where

P =
1

2
Pijδij = −〈uiuj〉

∂ 〈Ui〉
∂xj

= −〈uiuj〉 〈eij〉 , (4.8a)

Ti ≡
1

2
〈uiujuj〉+

1

ρ
〈uip′〉 − 2ν

〈
uje
′
ij

〉
, (4.8b)

are the TKE production and TKE flux, respectively, ε = εijδij/2 from Eq. 3.61, and
Rijδij = Rii = 0 for redistributive Rij as in section 3.2.3. Since the TKE flux Eq. 4.8b
depends on unknown quantities, it is modeled with a gradient-diffusion hypothesis [39]

Ti = −νT

σk

∂k

∂xi
, (4.9)

where σk = 1.0 is the turbulent Prandtl number for kinetic energy. Substituting the TKE
flux hypothesis Eq. 4.9 into Eq. 4.7 then yields the k model

Dk

Dt
=

∂

∂xi

(
νT

σk

∂k

∂xi

)
+ P − ε. (4.10)

In contrast to the k model Eq. 4.10 which is based on the exact TKE transport Eq. 4.7, the
ε model is entirely empirical [39]:

Dε

Dt
=

∂

∂xi

(
νT

σε

∂ε

∂xi

)
+ Cε,1

Pε
k
− Cε,2

ε2

k
, (4.11)
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where Cε,1 = 1.44, Cε,2 = 1.92 and σε = 1.3. Equations 4.3, 4.6, 4.10, and 4.11 together with
a model for the mean pressure 〈P 〉 then provide a complete set of equations for the mean
fields in the k-ε model.

4.1.3 Turbulent Fields and Particle Dispersion

The RANS eddy viscosity models provide a solution for the mean fields in the turbulent flow,
which is sufficient to determine mean particle trajectory. However, since we are interested
in calculating particle dispersion, we need the turbulent velocity u as is determined by the
models in chapter 3. Thus, we must also employ a stochastic turbulence model which depends
only on the modeled mean field quantities such as k, ε, 〈Ui〉, and ∂ 〈Ui〉 /∂xj. One could use
a simple purely stochastic Langevin model such as [88]

dui
dt

= σζi(t), (4.12)

where ζi(t) = ξi(t) or ζi(t) = di(t)ξ(t) are Gaussian white noise processes. A simple model like
this would not be consistent with the turbulent Navier-Stokes equation as we demonstrated
in chapter 3, however. Thus, one should really use one of the Langevin models presented in
chapter 3 in conjunction with the mean fields obtained from the RANS turbulence model. As
indicated in section 3.1.2.2, after determining the particle trajectory according to Eq. 3.15,
one can calculate mass concentration fields as described in section 5.4.

4.2 Advection-diffusion (AD) Model

Ultimately we are interested in obtaining the concentration of a species undergoing turbulent
dispersion in the atmosphere. An alternative approach to those described in chapter 3
and section 4.1.3 is one which more directly models the mass concentration of a material
in a turbulent fluid through the mass continuity Eq. 2.66, where the conserved scalar is
the mass concentration. Using a semi-empirical hypothesis similar to that of the turbulent
viscosity hypothesis Eq. 4.1 for the RANS Eqs. 4.3 discussed in section 4.1, we obtain an
advection-diffusion model for turbulent diffusion. The AD model can be solved numerically
as is done by codes such as Polair3D [89, 90]. Alternately, with simple velocity fields and
boundary conditions, the AD model can be analytically solved for stationary, homogeneous
turbulence [10, 54]. In particular, the AD model in a uniform velocity field is the basis for
the Gaussian puff and plume models commonly used in codes such as MACCS2 [91] and
HotSpot [92].
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4.2.1 Advection-diffusion Equation

The advection-diffusion equation is used to model the mass concentration of a species C(x, t)

in a turbulent atmosphere and can be derived using the mass conservation advection-diffusion
Eq. 2.66

∂C

∂t
+

∂

∂xi
(UiC) =

∂

∂xi

(
Γ
∂C

∂xi

)
+ S, (4.13)

where S(x, t) is the mass source, and Γ is the fluid molecular diffusivity. Substituting the
Reynolds decompositions Ui = 〈Ui〉+ui, C = 〈C〉+C ′, and S = 〈S〉+S ′ into Eq. 4.13 yields

∂

∂t
(〈C〉+ C ′) +

∂

∂xi
[(〈Ui〉+ ui) (〈C〉+ C ′)] =

∂

∂xi

[
Γ
∂

∂xi
(〈C〉+ C ′)

]
+ 〈S〉+ S ′. (4.14a)

⇒ ∂ 〈C〉
∂t

+
∂C ′

∂t
+

∂

∂xi
〈Ui〉 〈C〉+

∂

∂xi
uiC

′

+
∂

∂xi
〈Ui〉C ′ +

∂

∂xi
ui 〈C〉 =

∂

∂xi

(
Γ
∂ 〈C〉
∂xi

)
+

∂

∂xi

(
Γ
∂C ′

∂xi

)
+ 〈S〉+ S ′, (4.14b)

where we have expanded the terms in the second step. Then taking the ensemble average of
both sides of Eq. 4.14b, using the product rule with ∂ 〈Ui〉 /∂xi = 0 for an incompressible
fluid, we obtain the Reynolds-averaged advection-diffusion equation

∂ 〈C〉
∂t

+ 〈Ui〉
∂ 〈C〉
∂xi

+
∂

∂xi
〈uiC ′〉 =

∂

∂xi

(
Γ
∂ 〈C〉
∂xi

)
+ 〈S〉 . (4.15)

Equations 3.7 and 4.15 have an interesting symmetry which reflects the attempt to model
the behavior of massive particles in turbulent media, albeit in somewhat different ways.

Similar to the turbulent viscosity model of Eq. 4.1 employed in section 4.1.1, we must employ
a turbulence model for the scalar flux 〈uC ′〉. Namely, we use the gradient-diffusion hypothesis,
which states that the transport is proportional to the mean scalar gradient [10, 39, 54]:

〈uiC ′〉 = −ΓT
ij

∂ 〈C〉
∂xj

, (4.16)

where ΓT
ij(x, t) is the turbulent diffusivity or eddy diffusivity tensor. This first-order closure

approximation is often called gradient transport theory or K-theory [53]. In simple cases
with isotropic turbulent diffusivity, one can simply use the scalar turbulent diffusivity ΓT
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with ΓT
ij = ΓTδij, but it is more common to use the general anisotropic diffusivity tensor

than in the case of the eddy viscosity discussed in section 4.1.1. Substituting the turbulent
diffusivity hypothesis of Eq. 4.16 into Eq. 4.15, we arrive at the advection-diffusion equation
for turbulent diffusion:

D 〈C〉
Dt

=
∂

∂xi

(
Γeff
ij

∂ 〈C〉
∂xj

)
+ 〈S〉 , (4.17)

where
Γeff
ij (x, t) = Γδij + ΓT

ij(x, t) (4.18)

is the effective mass diffusivity due to both molecular diffusion and turbulent diffusion.

As in the case of the RANS eddy viscosity model discussed in section 4.1, solving Eq. 4.17
requires a turbulence closure model for the eddy diffusivity ΓT

ij. In the k-ε model discussed
in section 4.1.2, this took the simple form in Eq. 4.6 for the eddy viscosity νT. There are
several choices of parameterizations and models available for the eddy diffusivity ΓT in the
atmospheric boundary layer [53]. AD codes such as Polair3D employ parameterizations
based on the local mean flow, while Gaussian puff model codes typically use semi-empirical
parameterizations based on atmospheric stability as discussed in section 4.3.

4.2.2 Symmetry of the RANS and AD Equations with Turbulence Models

Comparing Eqs. 4.3a and 4.17 suggests a nice symmetry between the models for the
mean velocity and mass concentration fields. For high Reynolds number flows such as the
atmospheric surface and mixed layers, the molecular viscosity ν and diffusivity Γ are negligible
compared to the turbulent viscosity νT and diffusivity ΓT, respectively [39]. Furthermore, in
most simple turbulent flows, the turbulent Prandtl number σT = νT/ΓT is found to be of
order unity [39]. Thus, in such flows we can define K ' νT ' ΓT to be the turbulent diffusion
coefficient, and Eqs. 4.3a and 4.17 become

D 〈Uj〉
Dt

=
∂ 〈Uj〉
∂t

+ 〈Ui〉
∂ 〈Uj〉
∂xi

=
∂

∂xi

[
K

(
∂ 〈Ui〉
∂xj

+
∂ 〈Uj〉
∂xi

)]
+

1

ρ

〈
F ′j
〉
, (4.19)

D 〈C〉
Dt

=
∂ 〈C〉
∂t

+ 〈Ui〉
∂ 〈C〉
∂xi

=
∂

∂xi

(
K
∂ 〈C〉
∂xi

)
+ 〈S〉 , (4.20)

respectively. Both of these equations have a drift component as well as a diffusion component
with the same diffusion coefficient used to model both the velocity and the mass concentration
fields. This is not entirely unexpected of course since they are both based on the ensemble-
averaged general continuity Eq. 2.10 with a turbulent gradient hypothesis closure model.
However, it highlights the fact that the two approaches fundamentally represent the same
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underlying physics albeit in different ways.

4.3 Gaussian Plume and Puff Models

The general anisotropic advection-diffusion equation from Eq. 4.20 with 〈C〉 → C and
〈U〉 → U for notational simplicity and source S(x, t) becomes

∂C

∂t
+ Ui

∂C

∂xi
− ∂

∂xi

(
Kij

∂C

∂xj

)
= S(x, t). (4.21)

The solution to this equation for a puff source S(x, t) = S0δ(x − z0ẑ)δ(t) with uniform,
time-invariant velocity U = U x̂ and reflecting boundary conditions is [10]

C(x, t) =
S0

(2π)3/2 σxσyσz
exp

(
−(x− ut)2

2σ2
x

− y2

2σ2
y

)
×
[
exp

(
−(z − z0)2

2σ2
z

)
+ exp

(
−(z + z0)2

2σ2
z

)]
. (4.22)

This equation represents the mean concentration of a scalar quantity transported by a fluid
particle in turbulent fluid flow and is related to the particle displacement probability density
function. In particular, the particle displacement covariance functions are defined in terms of
the diffusion coefficients for time scales t� TL as

σij(t) ≡ 2Kijt, (4.23)

from which it immediately follows that

Kij =
1

2

dσij(t)

dt
. (4.24)

By examining the dispersion parameter limiting behaviors in time, we can gain insight
into the physical significance of the particle dispersion characteristics. For τ � T L

i , with
lims→0R

L
ii(s) = limTL

i →∞R
L
ii(s) = 1, Eq. 3.30b for i = j becomes [39, 54]

σ2
i (τ) ≈ 2σ2

ui

∫ τ

0

(τ − s)
[

lim
TL
i →∞

RL
ii(s)

]
ds

= 2σ2
ui

lim
τ→0

[
τs− s2

2

]τ
0

= σ2
ui
τ 2, τ � T L

i . (4.25)
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Thus, for times scales less than T L
i , the velocities become well correlated, so the root mean

squared displacements increase linearly with time in proportion to the turbulent velocity
standard deviation. Said differently, for short time scales, the particle displacements travel
reversibly in a straight line with the turbulent velocity. If we also assume that the integral∫∞

0
sRL

ii(s)ds is finite, then for τ � T L
i Eq. 3.30b becomes [39, 54]

σ2
i (τ) ≈ 2σ2

ui

∫ ∞
0

(τ − s)RL
ii(s)ds

= 2σ2
ui

[
τ

∫ ∞
0

RL
ii(s)ds−

∫ ∞
0

sRL
ii(s)ds

]
= 2σ2

ui
T L
i τ, τ � T L

i , (4.26)

where the finite term
∫∞

0
sRL

ii(s)ds is neglected compared to the term τT L
i for τ � T L

i .
Then for long time scales compared to T L

i , the velocities are uncorrelated, and the particle
displacements increase in proportion to the square-root of time. This is indicative of an
irreversible, dissipative process such as diffusion and will be useful for calculating the diffusion
coefficient. In particular, substituting 4.26 into Eq. 4.24, we obtain for i = j with σii(t) ≡ σ2

i (t)

the diffusion coefficient based on the Lagrangian particle dispersion parameters [39, 40, 54]

Kii = σ2
ui
T L
i . (4.27)

Equations 4.23 and 4.27 can be written for each of the three directions x, y, and z. Additionally,
the dispersion factors σx, σy, and σz are commonly written in terms of downwind plume
distance x and depend on atmospheric variables, with now two ways to determine them for
the drift-diffusion model:

1. Determine plume concentrations profiles as a function of time and performing a Gaussian
curve fit with Eq. 4.22 for the dispersion parameters σi(x);

2. Evaluate the Lagrangian particle velocity statistics σ2
ui

and T L
i , and use the definition

Eq. 4.23 and σii(t) ≡ σ2
i (t) with Eq. 4.27 to yield

σi(t) =
√

2σ2
ui
T L
i t, (4.28)

where t = x/U is the plume downwind travel time.

We employ both of these methods in the FLEXPART benchmark study of the Gaussian puff
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model presented in chapter 6. In contrast to the two above methods for determining the
dispersion parameters σi(x), Gaussian puff models have classically relied on the Pasquill-
Gifford (PG) semi-empirical curves [93, 94]. These curves are parameterized most simply as
the power law

σi(x) = aix
bi , (4.29)

with ai and bi depending on Pasquill atmospheric stability classes A through F discussed in
section A.5. Section 6.3.3.3 then presents a comparison of the dispersion parameters of the
classical PG semi-empirical curves to those determined in FLEXPART by applying the above
two methods.
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Chapter 5

Lagrangian Velocity Model Code Description

As discussed in chapters 2 and 3, Lagrangian velocity models like the drift-diffusion models
FLEXPART and HYSPLIT rely on both meteorological data for mean fluid flow fields
and empirical models for the turbulence characterization [37]. The meteorological data
is constructed using physical models for the conservation laws described in section 2.2
on a relatively coarse global or regional grid. Using this meteorological data as input,
both mesoscale and microscale turbulence models empirically specify the turbulent velocity
components. The remaining fluid flow dependent variables density ρ, pressure p, and
temperature T are treated as grid-resolved mean quantities obeying the equation of state
Eq. 2.63. That is, turbulent fluctuations of these thermodynamic state variables are not
considered by FLEXPART or HYSPLIT.

In addition to the fluid flow models, FLEXPART and HYSPLIT employ several other models
associated with the Lagrangian particle dispersion. Since one is interested in the transport of
materials in the atmosphere, one must characterize the behavior of the species according to
how it interacts with the surrounding fluid flow and other species in the transport model.
If the species is of a chemical or radionuclide, chemical reactions and radioactive decay
transmutation might be significant factors affecting atmospheric concentration. Similarly, if
the species is a particulate or aerosol as opposed to a well-mixed gas, wet and dry deposition
may result in significant reductions in atmospheric concentration.

There are additionally several parameters and modes of measuring the simulated species
concentration in FLEXPART. Species concentration can be measured with user-specified
averaging time and sampling periods on fixed Eulerian grids or using a parabolic averaging
kernel at selected ground-based detector locations. Alternatively, one can specify the output
units in mass mixing ratio if desired. Finally, FLEXPART and HYSPLIT are capable of
operating in an adjoint or backwards mode whereby particle trajectories are integrated in
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reverse. This may be more computationally efficient when there are many more source
parameters than detector parameters as might be the case for optimal source estimation or
inversion [37].

5.1 Meteorological Data

Meteorological data provides the mean fluid flow fields for FLEXPART and HYSPLIT.
Sophisticated physical models for the conservation laws described in section 2.2 are used to
determine meteorological conditions on a relatively coarsely discretized Eulerian grid. If the
time period of interest is in the future, one must use a forecast model; if the time period is
in the past, however, one can perform a reanalysis which combines both the physical model
and a data assimilation model incorporating data measurements. For global and regional
meteorological data sets, the horizontal coordinates are typically specified in latitude φ and
longitude λ geographic coordinates, while the vertical coordinates are specified in pressure
〈p〉 or hybrid [95] η levels. These pressure or hybrid levels provide a correspondence between
geopotential height zgeo and the pressure 〈p〉. In combination with a fixed radius of the Earth
R⊕, one can determine the physical coordinates x of the meteorological data fields. The
meteorological variables are then linearly interpolated in time and space to the Lagrangian
particle coordinates to drive the mean Lagrangian trajectory and determine mean fields at the
Lagrangian particle time and position. FLEXPART and HYSPLIT require 3D meteorological
fields such as velocity 〈U〉, temperature 〈T 〉, humidity, and pressure 〈p〉. Additionally, they
require 2D fields defined at particular heights or surfaces such as the planetary boundary
layer height hPBL, surface pressure ps, precipitation, cloud cover, 10 m velocity and 2 m

temperature.

5.2 Mesoscale Turbulent Velocity

FLEXPART divides the turbulent velocity into mesoscale umeso and microscale u turbulent
components such that the total velocity is given by

U = 〈U〉+ umeso + u, (5.1)

where 〈U〉 is the mean grid-scale velocity from the meteorological data. These mesoscale
velocity fluctuations represent the intermediate turbulence scales not resolved by the grid-scale
meteorological data or the microscale turbulent velocity parameterizations discussed in section
5.3.

Similarly to the microscale turbulent velocity discussed in chapter 3, FLEXPART uses
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a Langevin equation to model the mesoscale turbulent velocity. However, the mesoscale
velocity variance σ2

ui,meso is determined using the grid-scale velocity variance σ2
Ui,grid with the

assumption that this provides some information of the subgrid variance [1, 2]. This grid-scale
standard deviation σUi,grid is then scaled by a fixed parameter called turbmesoscale which
defaults to fmeso = 0.16. The autocorrelation time TL,meso is taken as half the time interval
between meteorological data fields ∆tgrid on the assumption that linear interpolation between
the grid points can recover half the subgrid variability [1, 2]. Thus, the mesoscale velocity in
each spatial direction is modeled using to the Langevin model

dui,meso

dt
= − ui,meso

TL,meso

+

(
2σ2

ui,meso

TL,meso

)1/2

ξi(t), (5.2)

where TL,meso = ∆tgrid/2 is the estimated mesoscale velocity Lagrangian autocorrelation time
scale, σui,meso = fmesoσUi,grid is the estimated mesoscale velocity standard deviation, σUi,grid is
the estimated standard deviation of the grid-scale velocity determined using the velocities
of the eight nearest meteorological data points to the Lagrangian particle, and ξi(t) is a
Gaussian white noise process. No Einstein summation is implied in Eq. 5.2.

5.3 Microscale Turbulent Velocity

As shown in 3.1.3, the microscale turbulent velocity is characterized by the velocity variances
σ2
ui

and the Lagrangian time scale T L
i . Within the atmospheric boundary layer in FLEXPART,

these quantities are parameterized differently depending on the atmospheric stability, which
itself depends on the Monin-Obukhov length L defined by Eq. A.1 discussed in appendix
A. HYSPLIT, however, uses a fixed, user-specified value for the Lagrangian time scale and
a parameterization for the velocity variances. Above the atmospheric planetary boundary
layer (z > hPBL), FLEXPART uses a constant vertical diffusivity Γz = 0.1 m2 s−1 in the
stratosphere and a horizontal diffusivity of Γ‖ = Γ⊥ = 50 m2 s−1 in the troposphere [1, 2].
The diffusivity can then be converted to a velocity deviation according to

σui =

√
Γi
dt
. (5.3)

5.3.1 Estimation of Monin-Obukhov Length

FLEXPART calculates the Monin-Obukhov length using an iterative procedure called the
profile method [96] in which the following three equations are solved iteratively until they
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converge [1, 2]:

U? =
κ∆U

ln zl
10 m
− ϕM

(
zl
L

)
+ ϕM

(
10 m
L

) , (5.4a)

Θ? =
κ∆Θ

0.74
[
ln zl

2 m
− ϕH

(
zl
L

)
+ ϕH

(
2 m
L

)] , (5.4b)

L =
〈T 〉U2

?

κgΘ?

, (5.4c)

where zl is the height of the second model level, ∆U is the difference between wind speed
at the second model level and at a height of 10 m, ∆Θ is the difference between potential
temperature at the second model level and at a height of 2 m, Θ? is the temperature scale,
and 〈T 〉 is the average surface layer temperature (taken at the first model level). This profile
method uses the 10 m wind and 2 m temperature data, but if the surface shear stresses in
the east/west and north/south directions are available in the meteorological data, then the
friction velocity is calculated simply as

U? =

√
τ0

ρ
, (5.5)

where τ0 =
√
τ 2

1 + τ 2
2 , and τ1 and τ2 are the surface shear stresses in the east/west and

north/south directions, respectively.

Comparing Eq. A.1 to Eq. 5.4c, we can see that the two formulas are equal if

−ρcpT0U
3
?

κg 〈qz〉
=
〈T 〉U2

?

κgΘ?

⇒ 〈qz〉 = −ρcpU?Θ?,

and 〈T 〉 = T0. In FLEXPART, the heat flux is computed by

〈uzθ′v〉 = −ρcpU?Θ?,

so indeed the two formulas for the Monin-Obukhov length are equal.

5.3.2 Parameterization of Turbulence

Once the Monin-Obukhov length and other boundary layer parameters have been determined
using the meteorological data, the standard deviations in the velocity components σUi

and
the Lagrangian time scales T L

ii are determined from the formulation for the autocorrelation
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Table 5.1: FLEXPART atmospheric stability classification [1, 2].
Condition Stability class
hPBL < |L| neutral
L < 0 unstable

L ≥ 0 ∧ hPBL ≥ |L| stable

RL
ii(t) and according to a parameterization proposed by Hanna [79], as defined and discussed

in chapter 3. That is, as opposed to the alternate formulations presented in section 3.2 in
which the Lagrangian time scale T L

ij is represented by Gij and depends on dissipation rate
τ = k/ε, FLEXPART empirically models T L

ii via the autocorrelation RL
ii(t). In particular,

the velocity standard deviations and Lagrangian time scales depend on planetary boundary
layer height hPBL, Monin-Obukhov length L, friction velocity U?, convective velocity scale
W?, surface roughness length z0, and Coriolis parameter f = 2Ω sinφ. The variables hPBL, L,
and z0 can be considered boundary condition parameters in the set of conservation equations,
which control the atmospheric surface layer thickness and stability. FLEXPART categorizes
the turbulence into three stability classes according to the rules shown in Table 5.1.

The empirical form of the velocity deviations and Lagrangian time scales is then determined
based on the stability classes according to the parameterizations of Hanna [79]. The velocity
deviations and Lagrangian time scales are divided into three components: ‖, ⊥, and z for the
components parallel and perpendicular to the horizontal wind components and the vertical
wind component, respectively. The lower bounds of the horizontal and vertical Lagrangian
time scales are set to 10 s and 30 s, respectively, to avoid excessive computation time for
particles close to the surface [1, 2].

5.3.2.1 Neutral Atmosphere Representation

For the neutral atmosphere, the perpendicular and vertical velocity deviation components are
equal, and the Lagrangian time scales in all directions are equal. The velocity deviations are
exponential in particle height, while the Lagrangian time scales take the form of a rational
fraction of linear polynomials.

σu‖
U?

= 2.0 exp

(
−3fz

U?

)
,

σu⊥
U?

=
σw
U?

= 1.3 exp

(
−2fz

U?

)
(5.6)

T L
‖ = T L

⊥ = T L
z =

0.5z/σw
1 + 15fz/U?

(5.7)
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5.3.2.2 Unstable Atmosphere Representation

In the unstable atmosphere, the parallel and perpendicular velocity deviation components
and Lagrangian time scales are equal, while the vertical components are different. The
parallel and perpendicular velocity deviations depend only on the planetary boundary layer
height hPBL, Monin-Obukhov length L, and friction velocity U?, while the vertical velocity
deviation depends also on the convective velocity scale W? according to a complex power-law
expression. Similarly, the parallel and perpendicular Lagrangian time scales depend only on
hPBL and σu‖ = σu⊥ , while the vertical Lagrangian time scale has a more complex piecewise
form depending on the particle height z in comparison to hPBL and the surface roughness z0.

σu‖
U?

=
σu⊥
U?

=

(
12 +

hPBL

2 |L|

)1/3

σw =

[
1.2W 2

?

(
1− 0.9

z

hPBL

)(
z

hPBL

)2/3

+

(
1.8− 1.4

z

hPBL

)
U2
?

]1/2

(5.8)

T L
‖ = T L

⊥ = 0.15
hPBL

σu‖

T L
z =


0.1 z

σw

[
0.55− 0.38

(
z−z0
L

)]−1 z
hPBL

< 0.1 ∧ z − z0 > −L

0.59 z
σw

z
hPBL

< 0.1 ∧ z − z0 < −L

0.15hPBL

σw

[
1− exp

(
− 5z
hPBL

)]
z

hPBL
> 0.1

(5.9)

5.3.2.3 Stable Atmosphere Representation

For the stable atmosphere, the perpendicular and vertical velocity deviation components are
equal, and the Lagrangian time scales in all directions are slightly different. The velocity
deviation components are linear in the particle height, while the Lagrangian time scales
follow a square-root power law with coefficients depending on the vertical deviation in the
respective components.

σu‖
U?

= 2.0

(
1− z

hPBL

)
,

σu⊥
U?

=
σw
U?

= 1.3

(
1− z

hPBL

)
(5.10)

T L
ii = αi

hPBL

σui

(
z

hPBL

)1/2

, (5.11)

for i = {‖,⊥, z}, where α‖ = 0.15, α⊥ = 0.07, and αz = 0.1.
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5.4 Particle Averaging

We wish to determine the spatiotemporal behavior of the mass-concentration Cj(x, t) for
species j in the simulation. In FLEXPART, this can be done using either a uniform or
parabolic averaging kernel for determining concentrations on a fixed Eulerian grid or a fixed
ground-based detector location, respectively. Although we use the term mass here, the mass
might represent the number of nuclides Nj or radioactivity Aj = λjNj , where λj is the decay
constant, in the case of radionuclides. These masses are assigned to the Lagrangian particle
during emission and follow the trajectory determined according to the Langevin velocity
model.

Let there be nj Lagrangian particles of species j within the simulation domain carrying mass
mij(t) ≡ mj [xi(t), t] at Lagrangian particle position xi(t) at time t for 0 ≤ i < nj. Both the
uniform and parabolic kernel averaging methods in FLEXPART use a time averaging over a
period ∆tavg which is sampled every ∆ts such that there are ns = ∆tavg/∆ts time samples
per averaging interval. Then the mean concentration of species j at time tk = t0 + k∆tavg

may be calculated using samples at sample time tk` = tk + `∆ts as [1, 2]

Cj(x, tk) = 〈Cj(x, t)〉tk =
1

ns

ns−1∑
`=0

〈Cs,j(x, tk`)〉 , (5.12)

where [1, 2, 39, 97]

〈Cs,j(x, t)〉h =
1

V

nj−1∑
i=0

Wj [x,xi(t),h]mij(t) (5.13)

is the estimated mass concentration at time t in volume V due to each particle, and
Wj [x,xi(t),h] is the kernel estimator weight function with bandwidth h = h [xi(t), t] deter-
mining the virtual size or smoothing length of the Lagrangian particles [97, 98]. The weight
function should be normalized such that [99]∫

1

V
Wj [x,xi(t),h] dx = 1 (5.14)

and
1

V
lim
h→0

Wj [x,xi(t),h] = δ [x− xi(t)] . (5.15)

This weight function can take various forms such as orthogonal function expansions, in-
terpolating splines, or polynomials [98, 100]. Sometimes it is written in the form of the

81



Nadaraya–Watson estimator weight [39, 100, 101]

Wj [x,xi(t),h] =
Kh [x,xi(t)]∑nj−1

k=0 Kh [x,xk(t)]
(5.16)

with kernel estimator function Kh [x,xi(t)], from from which it is apparent that the weights
sum to unity:

∑nj−1
i=0 Wj [x,xi(t),h] = 1.

5.4.1 Grid Averaging: Uniform Kernel

When using the uniform kernel averaging, the concentration output grid is divided into uni-
formly sized latitude-longitude regions with corners at (λg,i, φg,j) = (λg,0 + i∆λg, φg,0 + j∆φg)

for 0 ≤ i < ng,x, 0 ≤ j < ng,y and user-specified heights zg,k for 0 ≤ k < ng,z. These grid
cell regions with center xijk correspond to a volume V = Vg,ijk = Ag,ij∆zg,k, with area Ag,ij

determined by the spherical segment area

Ag,ij = R2
⊕

∫ λg,i+1

λg,i

dλ

∣∣∣∣∣
∫ θg,j+1

θg,j

sin θdθ

∣∣∣∣∣
= R2

⊕ |cos θg,j − cos θg,j+1|∆λg

= R2
⊕ |sinφg,j − sinφg,j+1|∆λg, (5.17)

where θj = π/2 − φj is the polar angle, and R⊕ = 6.371× 106 m is the Earth’s radius.
Given a Lagrangian particle at position x`(t) at time t, FLEXPART determines the uniform
bandwidth based on the nearest output grid cell: h = hijk = h [x`(t)] = (∆λg,∆φg,∆zg,k).
The uniform kernel assigns mass from each particle to its nearest four grid cells in the λφ-plane
at the height level of the particle according to the fraction of the kernel’s area falling within
the cells [1, 2, 102]. Then the weight function for this particle is given by

Wj [x,x`(t),h] = b1

(
∆λ [x,x`(t)]

∆λg

)
b1

(
∆φ [x,x`(t)]

∆φg

)
b0

(
z − z`(t)

∆zg,k

)
, (5.18)

where ∆λ [x,x`(t)] = λ(x) − λ [x`(t)] and ∆φ [x,x`(t)] = φ(x) − φ [x`(t)] are the longitude
and latitude differences, respectively, between the points x and x`(t). Here we have defined
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the zeroth- and first-order basis spline or B-spline functions b0(ξ) and b1(ξ), respectively, as1

b0(ξ) =

1, |ξ| ≤ 1/2

0, otherwise
(5.19a)

b1(ξ) =

1− |ξ| , |ξ| ≤ 1

0, otherwise
. (5.19b)

5.4.2 Detector Averaging: Parabolic Kernel

FLEXPART additionally has the ability to use a parabolic kernel for measuring the concen-
tration of a ground-based detector. This may be more accurate than the uniform grid kernel,
but it is more computationally demanding since it is of higher order. In this case, the weight
function bandwidth h = h [x`(t), t] = (hx`(τ`), hy`(τ`), hz`(τ`)) depends on the Lagrangian
particle’s age τ` = t− t`,0, where

hx`(τ`) = min
{(

0.29 m + 2.222× 10−3 m s−1/2√τ`
)

∆λm + 1.2× 10−5 m s−1τ`,

hx`,max} , (5.20a)

hy`(τ`) = min
{(

0.18 m + 1.389× 10−3 m s−1/2√τ`
)

∆φm + 7.5× 10−6 m s−1τ`, ,

hy`,max} (5.20b)

hz`(τ`) = min
{

50 m + 0.3 m s−1/2√τ`, hz`,max

}
, (5.20c)

where ∆λm and ∆φm are the meteorological data grid cell spans in the λφ-plane, and the
weight function is [103]

Wj [x,x`(t),h] =

 αV
hx`hy`hz`

(1− ξ2) |ξ| ≤ 1,

0, otherwise
, (5.21)

with ξ2 = ξiξi, where ξi = [xi − xi,`(t)] /hxi,`
for i ∈ {x, y, z}, and α = 15/8π = 0.596831.

The averaging volume is given by the meteorological data grid cell area at the detector
location Am,i = ∆xm,i∆ym,i and half the vertical component bandwidth: V = Am,ihzi/2,

where ∆xm,i = R⊕ cosφd,i∆λm and ∆ym,i = R⊕∆φm are the meteorological data grid cell
spans in the horizontal plane at detector location (λd,i, φd,i). The volume vertical bandwidth
component is halved due to the reflection of particles at the surface.

1In general, the m-order B-spline is given by m− 1 repeated convolutions with the zero-order B-spline:
bm(ξ) = (b0 ∗ bm−1)(ξ) =

∫∞
−∞ b0(ξ − ξ′)bm−1(ξ′)dξ′.
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5.5 Species Characterization and Mass Transfer

LPDMs such as FLEXPART and HYSPLIT are well-suited for modeling complex physical
processes that the species being transported undergoes due to the Lagrangian particle
description. This might include processes such as chemical interactions for chemical species,
radioactive decay for radioisotope species, and particulate aerosol processes for particulate
species. Such processes have the effect of either transferring mass from one species to another
as in radiological or chemical transmutation or removing the species from the atmosphere
as in deposition. In general, all of these processes could be coupled as in, e.g. a radioactive
aerosol in chemical form. For chemical species, one might require reaction rates, while here
we will only focus on the radioactive decay and dry deposition processes.

5.5.1 Dry Deposition

Both FLEXPART and HYSPLIT provide models for dry deposition of gases and particulates.
Since it is impractical to explicitly model all of the microphysical processes by which species are
removed from the atmosphere and deposited on solid surfaces [10], one instead characterizes
the deposition using a parameter called the deposition velocity Udep. This parameter is the
proportionality constant defining the dry deposition mass flux jdep according to

jdep(x, t) = −Udep(x, t)C(x, t), (5.22)

where C(x, t) is the species concentration in the atmosphere. By convention, Udep is defined
positive in the downward direction. Given the deposition velocity at some position for a
given species, one can calculate a deposition time scale within a layer of thickness ∆zp near
the Earth’s surface [38]:

λdep = Udep∆z−1
p . (5.23)

This time scale determines the mass removal according to an exponential decay process
[38, 104]

dC(x, t)

dt
= −λdepC(x, t). (5.24)

That is, the atmospheric concentration after dry deposition within the layer ∆zp during a
time step ∆t is given by [1, 2, 38]

C(x, t+ ∆t) = C(x, t) exp (−λdep∆t) . (5.25)
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Alternatively, one could use a probabilistic model in which each particle within the layer
∆zp deposits all of its mass during time period ∆t with probability PU(0,1)

[
ξ < Udep∆z−1

p ∆t
]
,

where ξ ∼ U(0, 1) [38]. In FLEXPART, ∆zp = 2href is the height below which particles may
be deposited, where href = 15 m by default is the reference height at which the deposition
velocity is calculated, Udep = Udep(href).

FLEXPART and HYSPLIT allow the user to specify explicitly the deposition velocity
parameter for a given species, or they can use the resistance method [1, 2, 10] to estimate it
using alternative parameters for the species. Specifically, the resistance method [10, 105] for
gases requires the diffusivity Γ, effective Henry’s constant H, and specific reactivity parameter
f0 [1, 2, 38]. For particulates, the resistance method requires the particle density ρp and mean
diameter 〈dp〉 since the deposition velocity depends on the gravitational settling velocity
[2, 10]

Udep,grav =
gρp 〈dp〉2Ccun

18µ
, (5.26)

where g is the gravitational acceleration µ is the air dynamic viscosity, Ccun is the Cunningham
slip correction factor, and ρ� ρp. FLEXPART additionally requires σdp , a measure of particle
diameter variation in a log-normal distribution [1, 2]. Since the gravitational settling velocity
has a strong (i.e. quadratic) dependence on particle diameter, it is therefore essential that one
has an accurate representation of the particle density and size distribution when modeling
particulate dry deposition.

5.5.2 Radioactive Decay

In the simplest case in which one is only interested in a single species undergoing radioactive
decay without inter-species mass transfer, FLEXPART has a built-in linear loss model
for species radioactive decay similar to the linear loss due to deposition. However, for
modeling multiple species with inter-species mass transfer, a more sophisticated model must
be used. Generally, the number of radionuclides for a given location satisfies the radionuclide
transmutation or Bateman equation [106]

∂Nj(x, t)

∂t
= −λjNj(x, t) +

∑
i 6=j

βjiλiNi(x, t) + Sj(x, t), j ∈ J, (5.27a)

with initial condition

Nj(x, t0) = N0,j(x) = λ−1
j Aj(x, t0) = λjA0,j(x), j ∈ J, (5.27b)
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where λj = ln 2/T1/2,j is the decay rate constant for a radionuclide with half-life T1/2,j, βji
is the branching ratio or fractional yield of nuclide j from decay of nuclide i, Sj(x, t) is a
radionuclide source, and J is the set of radionuclides to model in the system. Equation 5.27a
is a simplification of the depletion equation [107–109] used in nuclear reactor physics codes
such as SCALE/ORIGEN [106], where we have neglected any transmutation due to neutron
scalar flux φ(x, E, t). The angle- and energy-integrated neutron flux in the atmosphere is on
the order of φ ∼ 10−3 cm−2 s−1 [110–112], and typical effective microscopic cross sections for
e.g. neutron-induced fission (n, f) or radiative capture (n, γ) reactions are on the order of
σ(n,x) ∼ 1 b. Thus, the effective radionuclide transmutation rates are at most on the order of
σ(n,x)φ ∼ 10−27 s−1, and we can neglect these mechanisms in the atmosphere in comparison
to radioactive decay alone provided σ(n,x)φ� λj ⇒ T1/2,j � ln 2/σ(n,x)φ ∼ 1027 s ∼ 1019 yr,
which is true for most radionuclides.

When the species all have the same atmospheric transport characteristics one can completely
decouple the ATM calculation from the radioactive decay calculation. This is the case when
dealing with noble gases such as radioxenon and gaseous iodine. Iodine can form many
chemical compounds, but gaseous iodine I2 is often the dominant form of iodine in the
radioactive decay chain I→ mXe→ Xe. Thus, one can use a unit mass emission source to
determine the ATM dilution factor c(x, t) according to Eq. 5.12 and scale the dilution factor
by the radioactive decay. That is, the radionuclide (number) concentration for species or
isotope j is given by

Cj(x, t) = c(x, t)Nj(x, t), (5.28a)

where Nj(x, t) is the number of radionuclides of isotope j at position x and time t. Alterna-
tively, the radioactivity concentration is given by

Cj(x, t) = c(x, t)Aj(x, t), (5.28b)

where Aj(x, t) = λjNj(x, t) is the radioactivity of isotope j at position x and time t. When
averaging Eqs. 5.28a or 5.28b over the same time periods as in Eq. 5.12, c(x, tk) can be
treated as constant over the time period [tk, tk+1). Then the mean radionuclide number or
activity concentrations during this period are, respectively,

Cj(x, tk) = c(x, tk) 〈Nj(x, t)〉tk , (5.29a)

Cj(x, tk) = c(x, tk) 〈Aj(x, t)〉tk . (5.29b)

For multiple emission source time periods or locations, one can then simply add the contribu-
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Figure 5.1: Structural diagram of FLEXPART bindings to ORIGEN depletion solver library.

tions from each source.

On the other hand, when there are complicated interactions between the radionuclide and
chemical transmutation and the atmospheric transport, the radionuclide transmutation should
be computed directly in the ATM. In this case, species transmutation and mass transfer are
handled during the transport calculation, so Eq. 5.12 directly represents the radionuclide
concentration. If the species also has chemical or gaseous dry deposition, the methods
discussed in section 5.5.1 also apply. We have implemented a simple coupling between
FLEXPART and the ORIGEN depletion solver to handle such cases and for comparison to
our method relying on post-processing of the ATM dilution simulation results using Eqs.
5.27a and 5.28b. Figure 5.1 shows the structure of the bindings between FLEXPART and
the ORIGEN libraries.

5.6 Adjoint Mode

In addition to the standard forward mode of operation, FLEXPART and HYSPLIT can be
operated in a backward or adjoint [107, 108] mode. The measured adjoint ATM concentration
profile represents the sensitivity of a receptor or to a spatiotemporal source region. That
is, the adjoint concentration profile represents the spatiotemporal source contributions to a
given receptor measurement. The Langevin stochastic velocity model is self-adjoint except for
reversal of the time. Thus, the velocity is also reversed, and the Lagrangian particle trajectory
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is backward relative to the standard trajectory, with particles originating at receptor locations.
The advantage of an adjoint approach is that when there are far more source parameters than
receptor parameters (i.e. measurements), as is often the case in source inversion/estimation
problems, it can be computationally more efficient to use the adjoint method for constructing
the source-receptor relationship [37]. However, this requires care to ensure that the well-mixed
condition [82] is satisfied, and not all processes processes (such as deposition) can be easily
represented through an adjoint formulation.

FLEXPART uses the concept of a backward residence time T ∗r (x′, t′|x, t) which represents
the amount of time spent within a gridded spatiotemporal region (x′, t′) by Lagrangian
particles originating from a particular receptor location and time (x, t) [1, 2, 113, 114]. The
spatiotemporal mass concentration field for species j in the receptor volume is determined by
folding the residence time with the mass emission source density rate Sj(x, t) [103, 113]

Cj(x, tk) =
1

V (tk − t0)

∫ tk

t0

∫
V

T ∗r (x′, t′|x, tk)Sj(x′, t′)dx′dt′, (5.30)

where V is the simulation volume. In the simplest case of a constant source in a single grid
cell and time period, this reduces to a simple multiplication.
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Chapter 6

Applications of ATM

We presented the derivation of and physical basis for the Lagrangian particle dispersion
models FLEXPART and HYSPLIT in chapter 3. Similarly, we derived in chapter 4 several
different Eulerian models based on the Reynolds-averaged Navier-Stokes equation or the
advection-diffusion equation with eddy viscosity or eddy diffusivity hypothesis. AD models
with constant velocity field in stationary, homogeneous turbulence lead to the Gaussian
puff and plume models such as the one discussed in section 4.3. Chapter 5 then discussed
several aspects of the FLEXPART and HYSPLIT empirical models for transport, species
transmutation, and particle averaging.

In this chapter we apply these models to several ATM simulations using both real and
synthetic data sets. Section 6.1 presents several studies associated with source estimation or
inversion for radionuclides, first looking at a large radioxenon source from the Fukushima
Daiichi nuclear accident and then looking at emissions detected surrounding the DPRK. In
section 6.2 we show a study on the atmospheric concentration of particulate matter undergoing
dry deposition using FLEXPART or HYSPLIT. Finally, section 6.3 presents several studies
on the different turbulence model scales involved in ATM.

6.1 Source Estimation
6.1.1 Fukushima Daiichi Gaseous Radioxenon and Iodine

In the aftermath of a radiological disaster, it is desirable to predict and estimate the amount
of radionuclides released into the atmosphere and environment. We obtained [115] an estimate
for radioxenon activity released into the atmosphere during the Fukushima Daiichi nuclear
accident by minimizing the discrepancy between the measured radioactivity at several IMS
detectors and that simulated with FLEXPART.
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Table 6.1: Total Fukushima Daiichi radionuclide half lives and ORIGIN2 estimated inventories
[3]. Inventories were estimated at the time of reactor shutdown (approximately 2011-03-11
05:46 UTC) and include Units 1-3 cores and Units 1-4 spent fuel pools.

Nuclide T1/2 ORIGEN2
inventory (PBq)

131mXe 11.934 d 6.70× 101

133Xe 5.2475 d 1.21× 104

133mXe 2.198 d 3.58× 102

135Xe 9.14 h 4.28× 103

135mXe 15.29 min 2.67× 103

131I 8.0252 d 6.02× 103

133I 20.83 h 1.26× 104

135I 6.58 h 1.20× 104

6.1.1.1 Radiological Data

ORIGEN2 calculations [3] of Fukushima Daiichi radionuclide inventories were used as a
starting point for estimating the radiological source emissions. The radionuclides of interest
are shown in Table 6.1. Radionuclide concentration measurements from 11 US stations as well
as two Japan stations in the IMS were used for comparison. Five of these stations included
radioxenon measurement capabilities for detecting 131mXe, 133Xe, 133mXe, and 135Xe: USX74
in Ashland KS, USX75 in Charlottesville VA, USX77 on Wake Island, USX79 in Oahu HI, and
JPX38 in Takasaki, Japan. The radioxenon stations have averaging periods of approximately
12 hours, while the particulate stations are typically averaged over 24 approximately hours.
Insufficient data for USX75 was available during the simulation time, however, and is thus
excluded from the comparison. Additionally, 133mXe and 135Xe were not compared since
133mXe measurements were found to be unreliable due to difficulty discriminating with 133Xe,
while 135Xe measurements exhibited a background concentration not significantly affected by
the Fukushima events.

6.1.1.2 FLEXPART Configuration

We used FLEXPART to simulate the release of radioactive particles over an 8-day period
from 2011-03-12 to 2011-03-20 UTC from a point source at the approximate center of units
1-4 and a height of 25 m. Particle deposition was disabled to represent the radioxenon
and iodine gases, and the simulation was driven using hourly meteorological data from the
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Figure 6.1: Fukushima Daiichi accident simulation release origin (red triangle) and IMS
radioxenon detectors (green circles).

National Center for Environmental Prediction (NCEP) Climate Forecast System Reanalysis
(CFSRv2) [116] on a 0.5°×0.5° horizontal spatial grid with 37 vertical atmospheric pressure
levels. Simulated receptor measurements averaged over 3-hour periods were taken at all of the
US IMS detectors as well as JPX38 for comparison to actual IMS radioxenon measurements.
Figure 6.1 shows the release origin at the Fukushima Daiichi site as well as the nearest IMS
RN stations of interest.

6.1.1.3 Radioactive Decay Post-processing

The radioactive decay chains for the gaseous radioxenon and iodine isotopes of interest are
shown in Fig. 6.2. In order to account for radioxenon production due to iodine decay, the
decay chains are each broken into two-step decay chains:

I
λI−→ mXe

λX∗−−→ Xe, (6.1)

where X∗ and X, respectively, represent the metastable and non-metastable xenon isotopes.
Then the depletion Eqs. 5.27 for each decay chain take the form

Ṅ(x, t) = ΛN(x, t), (6.2)

where N(x, t) =
[
NI(x, t) NX∗(x, t) NX(x, t)

]T

is the gaseous iodine and radioxenon
amount, and

Λ =

 −λI 0 0

βI→X∗λI −λX∗ 0

0 βX∗→XλX∗ −λX

 , (6.3)
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Figure 6.2: Iodine and xenon radionuclide decay chains

is the radionuclide transmutation matrix with branching ratios βji = βi→j. Equation 6.2 is
solved analytically with the solution

N(x, t) = exp [Λ(t− t0)] N(x, t0) (6.4)

written in terms of the matrix exponential exp [Λ(t− t0)] and initial condition Eq. 5.27b.

Since the gaseous iodine and radioxenon have the same atmospheric transport behavior, the
detector radionuclide concentrations are given by averaging Eq. 6.4 according to Eq. 5.29b for
each decay chain and each emission source period. In particular, the activity concentration
Cj(xi, tk) of radionuclide j at a given detector location xi and time tk is given by the product
of the atmospheric dilution c`(xi, tk) due to a unit source emitted uniformly from t` to t`+∆t`

and the radioactivity of radionuclide j:

Cj(xi, tk) =
∑
`∈L

c`(xi, tk) 〈Aj`(xi, t)〉tk , (6.5)

where L is the set of emission sources and the radioactivity of isotope j due to source ` is

Aj`(x, t) = λjNj`(x, t) = λj {exp [Λ(t− t0)] N`(x, t0)}j , (6.6)
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with no implied Einstein summation. Similarly, we can calculate the averaged emitted
radioactivity for radionuclide j due to emission source ` at x` and the total radioactivity Sj
due to all sources:

Sj` = 〈Aj`(x`, t)〉t` , (6.7a)

Sj =
∑
`∈L

Sj`. (6.7b)

6.1.1.4 Source Estimation

We estimated the source intensities of 131mXe and 133Xe by iteratively varying the emission
magnitude for each isotope and attempting to minimize a metric based on the difference
between the measured and the simulated isotope concentration at each IMS detector averaged
over either a 7- or 14-day period from the first simulated measurement. The iodine emissions
were held fixed at 10% of the inventory, roughly consistent with the literature [19]. Several
different metrics were tested, all of which can be written in the form

L(S) =
1∑D
i=1 wi

D∑
i=1

wi
Ni

Ni∑
j=1

f(Cij, Cij), (6.8)

where wi and Ni are the weights and number of measurements for each detector i, respectively,
and f(Cij, Cij) is a function of the simulated and measured concentrations Cij and Cij,
respectively, with Cij = Cij(S) a function of the emission intensities S. The weights wi
examined were

1. unweighted Ni

2. geographic inverse squared distance Ni/r
2
i

while the functions f(Cij, Cij) examined were

(a) absolute difference
(
Cij − Cij

)2

(b) relative difference
(
Cij/Cij − 1

)2

(c) difference relative to mean 4
(
Cij − Cij

)2
/
(
Cij + Cij

)2.
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6.1.1.5 Results and Analysis

A simple, uniform-time radionuclide release of 100% of the radioxenon inventory was used as
the base source estimate. By varying the radioxenon source magnitude logarithmically from
0.01% to 100% of the radionuclide inventory from Table 6.1 and comparing the metrics for
each source, we determined the optimal radioxenon source to be approximately 100% of the
radioxenon inventory. After determining the optimal emission scaling factor for radioxenon
in the case of a uniform emission, the 8-day emission period was divided into two separate
4-day periods of uniform emission, with each 4-day period having a different source emission
intensity. Four separate weights were tested: 25%-75%, 50%-50%, 75%-25% and 87.5%-12.5%
for the first and second periods, respectively. Performing the same sort of iteration over
these cases resulted in an optimal time-dependent source which favored more of the release
occurring in the first time period.

The unweighted and geographic distance weighted absolute concentration difference metrics
yielded the same optimal estimate since they both emphasized the nearest detector, JPX38,
due to the large absolute concentrations at the nearest detector. Using a 14-day comparison
period also yielded smaller metrics on average than did a 7-day period. Ultimately, the
unweighted concentration difference relative to the mean value of the measured and simulated
concentration, metric 1(c), was used for optimal source estimation, corresponding to wi = Ni

and f(Ci,j, Ci,j) = 4
(
Cij − Cij

)2
/
(
Cij + Cij

)2 in Eq. 6.8. This metric is is relatively
independent of the absolute magnitude of the concentrations and is symmetric in that
simulated values which are greater than or less than the measurements by a given factor will
impact the metric equally. Its value ranges from 0 at best to 4 at worst.

Simulated and measured IMS detector concentrations for 131mXe and 133Xe are shown in Fig.
6.3, and the corresponding metrics for the different detectors, radionuclides and time periods
for which there was sufficiently reliable data are given in Table 6.2. All three US IMS stations
show a relatively good agreement between the measured and simulated concentrations around
the time of the initial peak, followed by a significant dip and resurgence. The Oahu HI
station USX79 shows a time offset of about 6 hours between the measured and simulated dip
time, while the Wake Island station USX77 has an offset of about 12 hours. The Ashland
KS station modeled concentrations show an initial set of two peaks which are not observed
in the IMS data. Additionally, the simulated concentrations at USX77 and JPX38 show
a gap of approximately 12 hours and 4 days, respectively, around the time of the dip not
observed in the IMS data. When comparing the metrics for the base case and optimized
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Figure 6.3: US IMS 131mXe (left) and 133Xe (right) concentrations assuming 100% radioxenon
inventory emissions and 10% iodine emissions with a time-dependent source emitting 87.5%
over the first 4 days and 12.5% over the final 4 days. The solid grey lines are FLEXPART
(FP) predictions, and the dashed lines are IMS detector measurements.

case, the time-dependent optimization benefited both the first and second 7-day periods
of the comparison window for stations USX77 and USX79, while for detectors JPX38 and
USX74, there was a small improvement in the second 7-day period metric. The worst overall
agreement was observed at JPX38, while the best agreement was observed at the US detectors
for 133Xe in the second 7-day period. Using a metric such as 1(a) which more heavily weights
larger concentrations would improve the agreement at JPX38 at the cost of worsening the
agreement at the US stations.

After obtaining the optimal source estimate, using Eq. 6.7a and summing over all emission
sources, we calculated the total emissions for 133Xe to be 8× 103 PBq. Values found in the
literature for the estimated emissions of 133Xe during the Fukushima Daiichi accident vary
from 4.1× 102 PBq [19] to 1.53× 104 PBq [16]. Most previous estimates, however, are on
the order of 104 PBq, so our estimate is roughly in line with what has been found in the
literature. An estimated 60 PBq of 131mXe were also emitted. Using metric 1(a) results in
an optimally estimated emission of 100 PBq and 0.5 PBq for 133Xe and 131mXe, respectively,
which could be viewed as a lower-bound estimate.
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Table 6.2: Iteration summary for metric 1(c) in Eq. 6.8 for the optimized, time-dependent
source plotted in Fig. 6.3.

Detector Time (days) Radionuclide Average131mXe 133Xe

JPX38
0-7 2.92 3.85 3.69
7-14 3.49 1.48 3.28
0-14 3.41 3.56 3.47

USX74
0-7 1.50 1.04 1.25
7-14 0.891 0.542 0.709
0-14 1.09 0.714 0.894

USX77
0-7 0.956 1.56 1.29
7-14 0.650 0.373 0.512
0-14 0.810 1.06 0.942

USX79
0-7 0.583 1.74 1.27
7-14 0.514 0.349 0.432
0-14 0.552 1.23 0.930

Average
0-7 1.08 2.14 1.74
7-14 1.63 0.485 1.15
0-14 1.41 1.48 1.44

6.1.2 Fukushima Daiichi Kalman Filter Estimation

After performing a simple, heuristic-based optimization of the radioxenon and iodine emissions
from the Fukushima Daiichi nuclear accident as described in section 6.1.1, we sought to
perform a more systematic source estimation using a Kalman filter algorithm. The Kalman
filter algorithm is an optimal algorithm in that it is a minimum variance estimation method,
and it is equivalent to a maximum likelihood estimation (MLE) or Bayesian maximum a
posteriori (MAP) estimation method with Gaussian errors [117–119]. As in section 6.1.1,
we used FLEXPART to simulate the emissions over the 8-day period from 2011-03-12 to
2011-03-20 UTC from a point source at the approximate center of units 1-4 and a height of
25 m. We used the same CFSRv2 meteorological data, but the 8-day emission period was
divided into 16 independent 12-hour uniform sources, and simulated receptor concentrations
were averaged over 12-hour periods, consistent with the IMS data.

6.1.2.1 Kalman Filter Description

The discrete-time Kalman filter is the optimal linear filter for estimating the state of linear
dynamical systems [118]. In discrete-time form, the linear dynamical system is characterized
by a linear dynamical model for the state xk ∈ RN at step k and a linear observation model
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for the measurements zk ∈ RM , respectively [118]:

xk = Fk−1xk−1 +Bk−1uk−1 + wk−1, (6.9a)

zk = Hkxk + vk, (6.9b)

where Fk ∈ RN×N is the state transition model, Bk is the control-input model for a control
vector uk, Hk ∈ RM×N is the observation model matrix, and wk ∼ N (0, Qk) and vk ∼
N (0, Rk) are uncorrelated Gaussian white noise processes with covariances Qk ∈ RN×N and
Rk ∈ RM×M , respectively. Thus, Qk is the model or process covariance, while Rk is the
measurement or observation covariance. The purpose of the Kalman filter is to optimally
estimate the true state xk with the estimate x̂k|m based on noisy measurements {zk}k=1,...m

and the model dynamics by minimizing the state covariance matrix Pk|m:

x̂k|m ≡ 〈xk|z1, . . . , zm〉 , (6.10a)

Pk|m ≡
〈[

xk − x̂k|m
] [

xk − x̂k|m
]T∣∣∣ |z1, . . . , zm

〉
. (6.10b)

As is apparent from Eqs. 6.9, the state xk at step k depends only on the state xk−1 from the
previous step. Then the Kalman filter is a recursive algorithm, and it is closely related to the
hidden Markov model [120]. Typically, the Kalman filter algorithm is written in two steps: a
prediction step using the dynamical model Eq. 6.9a and an update step incorporating the
observation Eq. 6.9b. In particular, the Kalman filter predicts the a priori state estimate
x̂k|k−1 at step k using the a posteriori state x̂k−1|k−1 from step k − 1, and the a posteriori
state estimate x̂k|k updates the a priori estimate x̂k|k−1 by incorporating the observation zk

at step k. By taking the ensemble average of Eq. 6.9a, one can show that for k ≥ 1 the a
priori state estimate x̂k|k−1 and covariance Pk|k−1, respectively, from the prediction step are
given by [118]:

x̂k|k−1 = Fk−1x̂k−1|k−1 +Bk−1uk−1, (6.11a)

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Qk−1. (6.11b)

Then the update step incorporates the measurement zk using the observation Eq. 6.9b with
the predicted a priori state estimate x̂k|k−1 to calculate the a posteriori state estimate x̂k|k
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and covariance Pk|k as [118]

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)

−1, (6.12a)

x̂k|k = x̂k|k−1 +Kk(zk −Hkx̂k|k−1), (6.12b)

Pk|k = (IN −KkHk)Pk|k−1, (6.12c)

where Kk ∈ RN×M is the Kalman filter gain matrix, yk = zk −Hkx̂k|k−1 is the innovation or
residual, and Sk = HkPk|k−1H

T
k +Rk is the system or innovation covariance.

6.1.2.2 Results and Analysis

For our observation model, measurements zk consist of the radioxenon isotope concentrations
profiles at the IMS detectors, while the state xk we seek to estimate is the radionuclide
emission source magnitude. In our dynamical model, the state transition matrix is the identity
matrix Fk = IN , and the control vector uk is zero. That is, we assume that the estimated
emission source x̂k|k depends only on the measurements and not a dynamical model or control
system. The measurements vector consists of measurements for the set of radioxenon isotopes
we wish to optimize against at each detector location and time. Similarly, the state vector
consists of the set of radionuclides which are emitted from the set of source locations and
times which contribute to the measured radioxenon isotopes. Thus, the observation or source-
receptor matrix Hk accounts for both radionuclide transmutation and atmospheric dilution
from the FLEXPART model, with each row yielding the radionuclide source contribution
to a given receptor concentration measurement. Then for Nsrc,t = 16 uniform time emission
sources and Nsrc,iso = 8 emitted radioxenon and gaseous iodine isotopes of mass numbers 131,
133, and 135, we have N = Nsrc,tNsrc,iso = 128 source terms to optimize against M = 244

radioxenon detector measurements.

Using the ORIGEN2 inventory from Table 6.1, the initial estimate for x̂0|0 was constructed such
that the radionuclide inventories were allocated uniformly to each time period. Similarly, the
initial error estimate P0|0 was constructed with the assumption that there is 25% uncertainty
in the initial state, which is also used for estimating the model uncertainty Qk. Table
6.3 shows the optimally estimated emissions for each radionuclide, while Fig. 6.4 shows
the optimal 133Xe concentration profiles at the JPX38, USX74, USX77, and USX79 IMS
detector stations. In particular, we estimate the133Xe emissions at 7.0(1)× 103 PBq, which
is relatively consistent with the results of section 6.1.1. Furthermore, as in section 6.1.1, the
133Xe estimated and measured concentration profiles at the IMS detectors are similar in their
trend but often with different magnitudes or peak and trough timing. That is, the peak and
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Table 6.3: Total estimated radionuclide emissions at Fukushima Daiichi from 16 12-hour
uniform emission sources from 2011-03-12 to 2011-03-20 UTC.

Nuclide Sj (PBq)
131mXe 3.07(3)× 102

133Xe 7.0(1)× 103

133mXe 4.74(1)× 103

135Xe 9(2)× 101

135mXe 1.1(4)× 10−1

131I 8.1(4)× 103

133I 1.66(2)× 104

135I 9(2)× 101

trough concentrations often differ by one or two orders of magnitude.

6.1.3 DPRK Weapons Tests

We have simulated several of the DPRK nuclear weapons tests and made comparisons to
local IMS radioxenon data. Here we present an analysis of the most recent and largest
DPRK nuclear weapon test performed on September 3, 2017. We used FLEXPART to
simulate a 24-hour delayed, 72-hour radioxenon emission from the DPRK test site using
both ERA-Interim and CFSRv2 meteorological data. This delay is intended to account for
a delayed leakage from the underground test site, while the 72-hour emission is intended
to capture a sufficiently broad release duration, since the exact timing is unknown. The
simulated concentration measurements were then compared to IMS measurements in order to
estimate the emission intensity. Unfortunately, there was only a single IMS measurement
above the minimum detectable concentration (MDC) of 133Xe ∼ 3 mBq m−3 from USX75 at
Charlottesville, VA on September 30.

6.1.3.1 Results and Analysis

The 133Xe measurement at USX75 was used to scale the emission intensity for each mete-
orological data simulation using a simple linear least-squares estimation. This resulted in
an optimally estimated 133Xe emissions of 20 PBq and 70 PBq when using the CFSRv2 and
ERA-Interim data sets, respectively. Figures 6.5 and 6.6 show the 133Xe plume concentration
profile when scaled by this emission intensity for the CFSRv2 and ERA-Interim data sets,
respectively. Comparing the two figures, it is apparent that the plume is more diffuse when
using the ERA-Interim data set than when using the CFSRv2 data set since there is a larger
region with relatively high concentration (shown in red) in Fig. 6.6 at each time step. This
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Figure 6.4: IMS detector 133Xe concentrations. The solid blue lines are FLEXPART (FP)
predictions, and the dashed black lines are IMS detector measurements.
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Figure 6.5: FLEXPART simulated optimal 133Xe plume concentration profile at 2017-09-16
19:00 UTC (top) and 2017-09-30 22:00 UTC (bottom) using the CFSRv2 meteorological data
set. The DPRK test site is shown by the red star, while the green circles and green triangles
show the US IMS particulate and radioxenon stations, respectively.

explains why a larger emission is predicted by the ERA-Interim data set: the more diffuse
plume requires a larger intensity emission to explain the measurement at USX75.

6.1.4 May 2010 DPRK Radionuclide ATM Analysis

In May 2010 there were several unusual measurements of radioxenon and particulate radionu-
clides from four RN detectors near the Korean peninsula [4, 7]:

• Radioxenon: Korea Institute of Nuclear Safety (KINS) SAUNA station at Geojin, ROK
and JPX38 at Takasaki, Japan

• Particulate: JPP37 at Okinawa, Japan and RUP58 at Ussuriysk, RU
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Figure 6.6: FLEXPART simulated optimal 133Xe plume concentration profile at 2017-09-16
19:00 UTC (top) and 2017-09-30 22:00 UTC (bottom) using the ERA-Interim meteorological
data set. The DPRK test site is shown by the red star, while the green circles and green
triangles show the US IMS particulate and radioxenon stations, respectively.
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Station Time (UTC) 131mXe 133mXe 133Xe 135Xe

Geojin 13 May 23:00 < 0.2 < 0.2 2.45± 0.2 10.01± 0.6

JPX38 15 May 18:46 < 0.02 < 0.06 < 0.10 < 0.61

JPX38 16 May 06:46 0.04± 0.03 < 0.09 0.16± 0.07 < 0.57

JPX38 16 May 18:46 0.05± 0.03 < 0.08 0.23± 0.06 < 0.47

JPX38 17 May 06:46 0.16± 0.07 < 0.09 1.49± 0.11 < 0.20

JPX38 17 May 18:46 < 0.04 < 0.05 0.52± 0.07 < 0.06

JPX38 18 May 06:46 < 0.11 0.10± 0.06 0.79± 0.09 < 0.58

JPX38 18 May 18:46 0.06± 0.03 < 0.02 < 0.10 0.42± 0.23

JPX38 19 May 06:46 < 0.07 < 0.05 0.18± 0.06 < 0.52

Table 6.4: Radioxenon concentrations in mBq m−3 at Geojin, ROK and Takasaki, Japan
which were unusual in their concentration (highlighted in red) for normal civilian activities
[4].

These radioxenon measurements and isotopic ratios are summarized in Tables 6.4 and 6.5.

De Geer and Wright used these measurements to make the following observations and claims:

• The 140La/140Ba isotopic ratio detected at Okinawa was used to estimate an emission
time origin.

• The most likely candidate origin for the measurements at Okinawa and Geojin was
North Korea based on ATM.

• Isotopic ratios were consistent with a nuclear explosion or a nuclear reactor near start-up.

• There may have been a low-yield, decoupled nuclear test by North Korea on 11 May
2010.

However, there were several problems with these claims:

• The Seismic evidence does not support an explosive test at this time and location
[121, 122]

• Some isotopes were not detected.
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Station Time (UTC) 133mXe
133Xe

133mXe
131mXe

133Xe
131mXe

135Xe
131mXe

135Xe
133Xe

Geojin 13 May 23:00 < 0.08 > 12 > 50 4.1± 0.4

JPX38 15 May 18:46

JPX38 16 May 06:46 < 0.56 < 2.25 4.0± 3.5 < 14 < 3.6

JPX38 16 May 18:46 < 0.35 < 1.60 4.6± 3.0 < 9.4 < 2.0

JPX38 17 May 06:46 < 0.06 < 0.56 9.3± 4.1 < 1.25 < 0.13

JPX38 17 May 18:46 < 0.10 > 13 < 0.12

JPX38 18 May 06:46 0.13± 0.08 > 0.91 > 7.2 < 0.73

JPX38 18 May 18:46 < 0.33 < 1.7 7.0± 5.2 > 4.20

JPX38 19 May 06:46 < 0.28 > 2.6 < 2.89

Table 6.5: Radioxenon isotopic ratios at Geojin, ROK and Takasaki, Japan which were
unusual (highlighted in red) for normal civilian activities [5, 6].

• We cannot be certain nuclides came from a nuclear explosion or from the North Korea
Test Site (NKTS) based on ATM

This latter point is based on the fact that the ATM results presented by De Geer and Wright
were relatively simplistic and did not appreciate all of the uncertainties involved in ATM.
Thus, we have analyzed this event by two methods: forward simulation of atmospheric
emissions and backward/adjoint detector sensitivity calculations. Consistent with Wright, we
analyzed three potential emission sites, shown in Fig. 6.7:

• Bolshoi Kamen, RU: Russian naval base near Vladivostok

• Uljin, ROK: nuclear power reactor

• NKTS, DPRK: weapons test site

6.1.4.1 Forward Simulation Results and Analysis

For the forward simulations, we used three potential emission sites at various times in a
48-hour window predicted by De Geer’s 140La/140Ba ratio detected at Okinawa. Emissions
consisted of a unit source release divided into several radionuclides from the iodine and
xenon decay chains for mass numbers 131, 133, and 135. Radioactive decay was coupled to
the transport process using ORIGEN with FLEXPART as described in section 5.5.2. For
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Figure 6.7: Potential emission sites (red stars) as well as RN particulate (green circles) and
radioxenon detectors (green triangles) for the DPRK 2010 RN ATM simulations.
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Emission time (UTC) Emission site Met data 131mXe 133mXe 133Xe 135Xe

10 May 12:00 BK, RU CFSR 1.51e10 8.05e10 2.71e12 9.63e11

ERAI 5.87e11 3.14e12 1.06e14 3.75e13

11 May 06:00
NKTS, DPRK CFSR 2.00e10 1.07e11 3.59e12 1.27e12

ERAI 6.97e13 3.72e14 1.25e16 4.45e15

Uljin, ROK CFSR 4.60e11 2.46e12 8.27e13 2.94e13

ERAI 4.33e12 2.31e13 7.78e14 2.77e14

12 May 18:00
NKTS, DPRK CFSR 5.60e09 2.99e10 1.01e12 3.57e11

ERAI 8.63e10 4.61e11 1.55e13 5.51e12

Uljin, ROK CFSR 3.23e10 1.72e11 5.80e12 2.06e12

ERAI 6.45e11 3.44e12 1.16e14 4.11e13
Table 6.6: Emission levels estimated by source optimization against IMS data for each of the
emission sites, times, and meteorological data sets. Values highlighted in red are relatively
high for the emission source type, while those in blue are relatively low for the type of emission
source. Emission times were selected as potentially significant based on Wright’s analysis [7].

Site Type 131mXe 133mXe 133Xe 135Xe Total

Bolshoi Kamen, RU Naval reactor 1e8-1e9

Uljin, ROK Power reactor 1e9 1e8 1e10 1e10 1e10-1e11

NKTS, DPRK Nuclear weapon test 1e12-1e15
Table 6.7: Typical radioxenon emission levels for the different types of sites [8].

each emission site and time, we used either CFSR or ERA-Interim meteorological data and
measured the simulated concentrations at Takasaki and Geojin, primarily focusing on 133Xe

when comparing to the IMS data. The unit source release was scaled using a simple linear-least
squares optimization against the IMS data in order to estimate actual radionuclide emissions
in becquerel. These emissions, shown in Table 6.6, were compared to typical emission levels
for various source types as shown in Table 6.7.

From these results we can see that the NKTS has emission intensities which are of the
right order of magnitude in two of our simulations, while the other simulations indicate
unreasonable emission magnitudes. However, we cannot conclusively say that this validates
De Geer’s claim that the origin of the radionuclide signatures is from the NKTS because we
have not fully explored the emission parameter space. In particular, the emission intensities
are highly dependent on both the meteorological data and the emission site and time. Figures
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Figure 6.8: 133Xe concentrations at Takasaki, Japan JPX38 IMS station due to an emission
source from Bolshoi Kamen at 2010-05-10 12:00 UTC. The dashed lines are IMS detector
measurements, while the colored markers are optimally estimated FLEXPART concentrations
for each meteorological data set.

6.8 and 6.9, respectively, show the optimal temporal concentration profiles of 133Xe at JPX38
due the emission source from Bolshoi Kamen at 2010-05-10 12:00 UTC and from NKTS at
2010-05-12 18:00 UTC. We observe that the Bolshoi Kamen emission results in a large peak
concentration before the measured data, and the CFSR simulation predicts a peak ∼ 2 days
late. While the NKTS emission yields a temporal trend more similar to the IMS data, the
peak concentration is still underestimated by about an order of magnitude.

6.1.4.2 Backward/Adjoint Detector Sensitivity Analysis

As shown in Tables 6.4 and 6.5, the measurement at Geojin in particular was significant.
Thus, we used this measurement in adjoint simulations to try to estimate spatiotemporal
sensitivities for potential emission sites and times. The 2°×2° regional averages around our
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Figure 6.9: 133Xe concentrations at Takasaki, Japan JPX38 IMS station due to an emission
source from NKTS at 2010-05-12 18:00 UTC. The dashed lines are IMS detector measurements,
while the colored markers are optimally estimated FLEXPART concentrations for each
meteorological data set.
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Emission time (UTC) Met data Location
BK, RU NKTS Uljin, ROK

2010-05-10 00:00 CFSR 8.3e-3 4.5e-2 2.5e-4
ERAI 5.7e-3 1.0e-3 3.6e-5

2010-05-11 06:00 CFSR 4.6e-7 4.7e-3 2.7e-4
ERAI 9.5e-7 0 0

2010-05-12 00:00 CFSR 0 4.6e-3 4.4e-3
ERAI 4.5e-5 5.0e-5 0

Table 6.8: 2°×2° spatial average of regional contribution (in seconds) from 0 to 5 meters AGL
to the Geojin detector measurement. Emission times were selected at the beginning, middle,
and end of the 48-hour window predicted by De Geer.

postulated emission sites of these sensitivities for three different potential emission times are
shown in Table 6.8.

The largest sensitivity does appear to be to the NKTS with an emission time of midnight on
10 May. However, the data also demonstrates that there are several emission sites and times
to which the Geojin detector has similar sensitivity. In particular, the values highlighted in
red show that Bolshoi Kamen, NKTS, and Uljin are nearly equally likely contributors do the
Geojin measurement for various emission times and meteorological data sets.

6.1.4.3 Conclusions

Both the forward and adjoint analysis of the data presented by De Geer show that the
NKTS is a potential emission site for the radioxenon measurements at Geojin and Takasaki.
However, neither of these methods can conclusively (individually or together) determine that
the release site must be the NKTS because there is ambiguity in the emission site, time, and
meteorological conditions. That is, there are a few emission times and locations which show
similar sensitivity to the measured data at Geojin in the adjoint simulations. Furthermore,
the optimally estimated Xe-133 concentration profiles resulting from different meteorological
data sets and emission times and locations have sufficient variability to prevent conclusive
attribution to a particular emission site. This uncertainty in the simulation parameters is
sufficient to question the degree to which one can confidently conclude that the source is even
likely to have been the NKTS.
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6.2 Dry Deposition
6.2.1 Iceland 2010 Volcanic Ash: FLEXPART vs. HYSPLIT

In 2010 there was a volcanic eruption of Eyjafjallajökull in Iceland which created a large ash
cloud. We used this eruption to test the dry deposition model of FLEXPART and HYSPLIT
and make comparisons of the two ATM codes. Specifically, we used the optimally estimated
emission source and ash particle size distribution parameters from a prior study of this
event by Stohl et al. [22] in order to compare the two models. Additionally, we compared
the FLEXPART and HYSPLIT simulated air concentrations with aircraft measurement
data. Figure 6.10 shows the predicted (simulated) and observed (aircraft measured) ash
concentrations. We can see that we are underpredicting ash concentrations relative to the
aircraft data, which could be due to excessive simulated deposition, poorly represented
particle size distribution, or inaccurate aircraft sensor data. We also observe that there are
relatively large differences between the two ATMs.

In addition to the atmospheric ash concentration, we examined the relative error associated
with using different numbers of Lagrangian particles in the emission source. As shown in Fig.
6.11, we observe the expected Monte Carlo statistical error εN = O(N−1/2) for N particles
discussed in section 2.3.5. Thus, in order to minimize statistical errors below a relative error
of e.g. 1% at all times, this simulation required 104 particles per release location and time,
resulting in 6× 107 particles altogether. It is not uncommon for ATM simulations to require
105 to 108 particles for sufficiently small statistical error.

6.3 Grid, Mesoscale, and Microscale Uncertainties
6.3.1 Grid Meteorological Data Uncertainties: Fukushima Daiichi WRF Data

Ensemble

In collaboration with Dr. Matthew Simpson from Lawrence Livermore National Laboratory
(LLNL), we revisited the Fukushima Daiichi nuclear accident gaseous emissions studied in
section 6.1.1. This time, however, we intended to see what the affects of different meteorological
data sets with higher resolution than the CFSRv2 were on the simulated 133Xe IMS detector
concentrations. In particular, we used the WRF code to generate an ensemble of six different
meteorological data sets based on the GFS, CFSRv2, and ECMWF ERA-Interim datasets
with various PBL physics models. These WRF meteorological data sets were then used to
drive the FLEXPART model, and each simulation was optimized using the IMS data to
determine the optimal 133Xe emissions and concentration time profile for each detector.

110



100 102 104 106 108

Observed (ng ⋅ m−3)

10−6

10−4

10−2

100

102

104

106

108

Pr
ed

ict
ed

 (n
g⋅

m
−3

)

FLEXPART
HYSPLIT

Figure 6.10: 133Xe concentrations at Takasaki, Japan JPX38 IMS station using an interpolated
grid averaging uniform kernel. The dashed lines are IMS detector measurements, while
the colored markers are optimally estimated FLEXPART concentrations for each WRF
meteorological data set.
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Figure 6.11: 133Xe concentrations at Takasaki, Japan JPX38 IMS station using an interpolated
grid averaging uniform kernel. The dashed lines are IMS detector measurements, while
the colored markers are optimally estimated FLEXPART concentrations for each WRF
meteorological data set.
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Figure 6.12: 133Xe concentrations at Takasaki, Japan JPX38 IMS station using an interpolated
grid averaging uniform kernel. The dashed lines are IMS detector measurements, while
the colored markers are optimally estimated FLEXPART concentrations for each WRF
meteorological data set.

Figures 6.12 through 6.15 show the measured IMS and FLEXPART estimated 133Xe con-
centrations at the detectors JPX38, USX74, USX77, and USX79 for each of the WRF
meteorological data sets. For each of the WRF data sets, a similar temporal trend is observed
in the 133Xe concentration at each detector in comparison to the IMS data. However, between
the different WRF data sets, very large ensemble fluctuations are observed for any given time
and detector. In particular, at the JPX38 detector closest to the Fukushima emission source,
fluctuations up to 4 orders of magnitude are observed. For the US IMS stations, fluctuations
of one to two orders of magnitude are commonly observed between the different data sets.

Note that the FLEXPART concentration profiles in Fig. 6.12 are determined using the grid
averaging discussed in section 5.4.1, whereas those in Figs. 6.13 through 6.15 are determined
using the receptor parabolic averaging kernel discussed in section 5.4.2. Comparing Figs.
6.12 and 6.16, we see that the FLEXPART concentration profiles at JPX38 when using the
detector averaging parabolic kernel are significantly higher towards the beginning and end of
the simulation period. In the middle of the simulation period—roughly from March 16 to
23—there was no radioxenon detected at JPX38 when using the interpolated grid averaging
uniform kernel, while when using the detector averaging kernel, the simulated concentrations
were substantially below the IMS measurements. In contrast, comparing Figs. 6.15 and 6.17,
the detector averaging parabolic kernel yielded better agreement between the FLEXPART
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Figure 6.13: 133Xe concentrations at Ashland, KS USX74 IMS station using a detector
averaging parabolic kernel. The dashed lines are IMS detector measurements, while the colored
markers are optimally estimated FLEXPART concentrations for each WRF meteorological
data set.
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Figure 6.14: 133Xe concentrations at Wake Island USX77 IMS station using a detector
averaging parabolic kernel. The dashed lines are IMS detector measurements, while the colored
markers are optimally estimated FLEXPART concentrations for each WRF meteorological
data set.
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Figure 6.15: 133Xe concentrations at Oahu, HI IMS station using a detector averaging
parabolic kernel. The dashed lines are IMS detector measurements, while the colored markers
are optimally estimated FLEXPART concentrations for each WRF meteorological data set.

simulated concentration and the IMS measurements than did the grid averaging uniform
kernel. This suggests that perhaps the detector averaging parabolic kernel bandwidth Eqs.
5.20 are unsuitable for nearby emission sources.

6.3.2 Mesoscale Turbulence Fluctuations

In order to understand the mesoscale turbulence model discussed in section 5.2, we simulated
in FLEXPART the emission of 100 particles from the DPRK test site over a period of 24
hours. We then compared the trajectory of the mean 〈U〉, mesoscale umeso, and turbulent
u velocity components in all three directions as is shown in Fig. 6.18. As expected, the
turbulent velocity components have an ensemble average of nearly zero. The mean and
turbulent components in all three directions are at times of similar magnitude, while the
mesoscale turbulent velocity tends to be of smaller magnitude, especially in the vertical
direction.

6.3.3 Microscale Turbulence Parametric Study: Gaussian Puff Model

In order to compare the different dispersion models used for ATM, we used a Gaussian puff
model benchmark study in which we simulated the emission of a puff source in FLEXPART
under several meteorological conditions. The meteorological data FLEXPART uses not only
drive the mean particle trajectory but also dictate the atmospheric stability and turbulence
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Figure 6.16: 133Xe concentrations at Takasaki, Japan JPX38 IMS station using a detector
averaging parabolic kernel. The dashed lines are IMS detector measurements, while the colored
markers are optimally estimated FLEXPART concentrations for each WRF meteorological
data set.
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Figure 6.17: 133Xe concentrations at Oahu, HI IMS station using an interpolated grid
averaging uniform kernel. The dashed lines are IMS detector measurements, while the colored
markers are optimally estimated FLEXPART concentrations for each WRF meteorological
data set.
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Figure 6.18: FLEXPART DPRK test site emission particle trajectory over 24 hours. Five
individual particle trajectories are shown in color, while the ensemble average and standard
deviation over all 100 particles is shown in black. From left to right, the columns show the
mean, turbulent, and mesoscale turbulent components. From top to bottom, the rows show
the velocity components in the x, y, and z directions.

parameterization as described in section 5.3.2. We then compared the resulting Gaussian
plume dispersion parameters obtained in FLEXPART simulation to those predicted by the
PG semi-empirical model, as described in section 4.3. This allowed us to compare the
empirical turbulence models of the two dispersion models as well as the characterization of
the dispersion parameters using the Lagrangian parameters σ2

ui
and T L

i .

6.3.3.1 Meteorological Data

To simulate the assumptions made by the semi-empirical Gaussian puff model in FLEXPART,
we constructed synthetic meteorological data to drive the FLEXPART model. This synthetic
data are constant in time, horizontally homogeneous, and with vertically varying horizontal
velocity U(z), temperature T (z), and pressure p(z) [10]:

U(z) = U(hr)

(
z

hr

)γ
, (6.13)

T (z) = T0 +
∂T

∂z
z, (6.14)

p(z) = p0 exp
(
− z

H

)
, (6.15)
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where hr = 10 m is the reference height, U(hr) is the horizontal velocity at the reference
height, γ is the parameter for velocity power law, T0 = 288 K is the standard atmosphere
surface temperature, ∂T/∂z is the (constant) vertical temperature gradient, p0 = 101.325 kPa

is the standard atmosphere surface pressure, and H = 7400 m is the pressure scale height.
The temperature gradient determined the Pasquill atmospheric stability class A through F
based on Table A.2, while we categorized stability using the Monin-Obukhov length with the
FLEXPART iterative scheme. The vertical pressure gradient used was that of a hydrostatic
atmosphere.

Four parameters were varied over a reasonable range to cover the sample space: U(10 m), γ,
∂T/∂z, and planetary boundary layer height hPBL. In total, approximately 75 simulations were
run with the parameters covering the ranges 0.5 m · s−1 ≤ U(10 m) ≤ 8 m · s−1, 0 ≤ γ ≤ 1,
−2 × 10−2 K ·m−1 ≤ ∂T/∂z ≤ 2 × 10−2 K ·m−1, and 200 m ≤ hPBL ≤ 2000 m to produce
simulations of all Pasquill and FLEXPART stability classes and variations within each
class. This variation was performed first using a heuristic approach and then using a more
systematic maximin distance Latin-hypercube design (LHD) space-filling algorithm [123]. In
the LHD method, this 4D space was divided into 104 equally sized hypercubes from which
the points were sampled using the LHD algorithm. The design was optimized by maximizing
the minimum Euclidean distance between points in the space over 103 LHDs. Ten of the
simulations (corresponding to the 10 hypercube intervals in each dimension) were derived
using the maximin LHD algorithm.

6.3.3.2 Emission and Concentration Configuration

Once the meteorological data was constructed, the concentration profile and Lagrangian
particle trajectories of a unit puff (60 s duration) point source consisting of 105 particles
released at z0 = 25 m were determined as a function of time. The concentration grid spanned
(100 km× 100 km× 1 km) with cells measuring (50 m× 50 m× 50 m) in the x-, y-, and z-
directions, respectively. This covers a large enough range of dispersion for the Gaussian puff
model and should have sufficient spatial resolution for concentration profile curve-fitting.
The FLEXPART turbulence parameterization is only valid within the planetary boundary
layer, and particles which attempt to exceed the planetary boundary layer height will be
reflected downwards [1]. Thus, if hPBL is different from the concentration grid height, the
curve-fitting will not work as well since the concentration profile will either not reflect the
full profile or will contain zeros above the planetary boundary layer. So we focus on the
dispersion parameter comparison in the simulations yielding the best comparison for which
hPBL = 1.0 km.
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6.3.3.3 FLEXPART Benchmark Results

The three methods for calculating the dispersion factors via Eqs. 4.22, 4.28, and 4.29 were
compared in each simulation using the FLEXPART results and the Pasquill-Gifford (PG)
curves. Figures 6.19 through 6.20 show the comparison of the FLEXPART and PG dispersion
factors for two of the sampled parameter sets, representing some of the simulations showing
the best agreement between FLEXPART and the PG curves. The FLEXPART concentration
profile and particle trajectory ensemble dispersion factors agree quite well, while there is still
some discrepancy between the FLEXPART results and the PG curves. Additionally, the class
A (unstable) FLEXPART simulations generally agree better with the PG curves in σy than
σz, while the reverse is true for class F (stable) simulations. This also demonstrates that
in contrast to the PG semi-empirical model, the FLEXPART turbulence parameterization
typically predicts less dispersion in both horizontal and vertical directions, especially in the
case of highly unstable atmosphere.

In the case of the unstable atmosphere, there is a deviation between the first curve-fit of the
horizontal dispersion parameter as well as the curve-fit of the vertical dispersion parameter
for distances approaching 100 km from the Lagrangian parameter and PG curves. The former
discrepancy may be due to the concentration profile only spanning a few concentration grid
cells since it has not undergone much dispersion for these shorter distances. The latter
discrepancy can be attributed to the fact that for these larger distances, the concentration
profile may no longer appear to be Gaussian in this highly unstable atmosphere, as is evident
from both the large error bars and large predicted vertical dispersion of the PG model in this
case.

After using the default FLEXPART turbulence model for σ2
ui

and T L
i in section 5.3.2, we

then modified the FLEXPART model to equate Eqs. 4.28 and 4.29 for a given PG stability
class. This is a simple way of directly incorporating the PG semi-empirical turbulence model
into the FLEXPART turbulence parameterization and may be a more consistent way of
comparing the two dispersion models. As shown in Fig. 6.21, we get much better agreement
between the dispersion parameters in this synthetic model, which validates the relationship
between the Lagrangian parameters and the diffusion coefficient from Eq. 4.27.
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Figure 6.19: Dispersion factors vs downwind distance computed using PG curves (red),
FLEXPART concentration (black), and FLEXPART trajectory ensemble (blue) for PG class
A (unstable) with hPBL = 1000 m.
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Figure 6.20: Dispersion factors vs downwind distance computed using PG curves (red),
FLEXPART concentration (black), and FLEXPART trajectory ensemble (blue) for PG class
F (stable) with hPBL = 1000 m.
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Figure 6.21: Dispersion factors vs downwind distance computed using PG curves (red),
modified FLEXPART concentration (black), and modified FLEXPART trajectory ensemble
(blue) for PG class F (stable) with hPBL = 1000 m.
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Chapter 7

Conclusions

7.1 Summary and Conclusions

In chapter 1 we provided some motivation for the uses of ATM and discussed why it is
essential to understand the complexities, assumptions, and uncertainties associated with
ATM. This requires an understanding of the fundamental physics of the atmosphere and the
mathematical representations of turbulent fluid flows. We derived and discussed the basic
physical conservation laws and stochastic equations of balance necessary to understand the
representations of turbulence in the Earth’s atmosphere in chapter 2.

We have shown how the FLEXPART and HYSPLIT drift-diffusion model representing
turbulent fluid motion can be derived from first principles based on the turbulent Navier-
Stokes equation in section 3.1. In our model, we represent the drift coefficient using a physical
approximation of the Lagrangian time scale T L

i by the mean velocity gradient ∂ 〈Ui〉 /∂xi
as justified through the turbulent Lagrangian velocity autocorrelation function RL

ii(t). The
autocorrelation function, integrated over time, implicitly represents the velocity propagation
and spatial displacement of the fluid particles. Through this approach, we obtained the
correct model for FLEXPART and HYSPLIT, albeit with a slight numerical approximation.
In contrast to other alternate Langevin models proposed by Pope and others, we indicate that
the model we propose correctly represents the drift-diffusion Langevin equation implemented
in FLEXPART and HYSPLIT. In the alternate models, the Lagrangian time scale depends
additionally on the Reynolds stress dissipation rate. These models would also result in an
additional mean velocity gradient term in the Langevin model which does not appear in the
FLEXPART or HYSPLIT models as clarified in section 3.2.4.

We have presented and derived the Eulerian CFD and AD turbulence models, the latter
of which is the basis of the Gaussian puff and plume models in chapter 4. The connection
between the Lagrangian models discussed in chapter 3 is also made through the use of
the particle dispersion parameters of the Gaussian puff model. In chapter 5, we discussed
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in detail the empirical models that FLEXPART and HYSPLIT use for species transport,
characterization, transmutation, and particle averaging. The FLEXPART and HYSPLIT
transport models in particular use the mean fluid flow fields from the meteorological data
input to drive the mean particle trajectory as well as to determine the meso- and microscale
turbulence parameterization for the turbulent velocity models.

Finally, in chapter 6 we presented many studies using the FLEXPART, HYSPLIT, and
Gaussian puff models to showcase the complexities and uncertainties associated with ATM.
Having clarified that the FLEXPART and HYSPLIT Lagrangian velocity drift-diffusion
models represent the turbulent Navier-Stokes equation, one can see that it is of paramount
importance to properly model the drift and diffusion coefficients. In particular, the Lagrangian
time scale T L

i parameters and velocity variances σ2
ui

determine the Lagrangian particle
trajectories as discussed in section 3.1, but they use highly empirical models based on
the local turbulence categorization of section 5.3.2. The Gaussian puff model benchmark
study in section 6.3.3 showed that there are disagreements between the Pasquill-Gifford
parameterization of turbulence and those used by FLEXPART.

Both the Fukushima Daiichi simulations with the WRF meteorological data ensemble pre-
sented in section 6.3.1 and our simulation of the DPRK nuclear weapon test in 2017 in
section 6.1.3 demonstrated that there are considerable uncertainties associated with the
meteorological data on a grid-scale. In particular, the meteorological data can significantly
affect simulated RN concentrations even at detectors near the emission source and thus on
estimated emission intensities. Sections 5.2 and 6.3 discussed the empirical mesoscale model
used by FLEXPART, altogether demonstrating that there are uncertainties at the micro-,
meso-, and grid-scale of the FLEXPART ATM. Ultimately, combining the uncertainties
of the ATM model with the uncertainties and complexities of the available RN data, it
can be difficult to make conclusive statements about sensitive topics such as clandestine
nuclear activities, as shown in section 6.1.4 regarding unusual measurements near the Korean
peninsula in May 2010. This is especially complicated when dealing with particulate matter
and the empirical deposition models as discussed in section 6.2.1 with simulations of volcanic
ash following the eruptions in Iceland in 2010.

7.2 Future Work and Recommendations

Having clearly established the physical basis for the FLEXPART and HYSPLIT drift-diffusion
Langevin models, we recommend additional effort for the direct solution of the turbulent
Navier-Stokes equation that could provide the proper framework and accurate empirical
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formulations with minimal assumptions for enhanced ATM studies. There can be large
differences in expected dispersion of turbulent fluid flows depending on the characterization of
the turbulence parameters chosen in both the drift-diffusion and advection-diffusion models.
This can have significant impact in ATM studies for detection of clandestine nuclear activities
but also for the safety analysis of nuclear power plants. Thus, it is important to use a
turbulence model which is as accurate and physically based as possible for ATM. Such a
microscale turbulence model could be derived using a small scale DNS model.

Given that the ATMs are highly dependent on the meteorological data not only for determining
mean trajectory but also local turbulence closure models, it is thus essential that one use the
most accurate and high resolution meteorological data possible. This requires a sophisticated
physical model and data assimilation scheme such as those used by the ECMWF ERA5
or operational weather data sets. Future studies could thus minimize modeling errors by
using sufficiently accurate meteorological data, possibly in an adaptive manner so as to also
optimize computational cost.

Volcanic ash particulate simulations showed that large numbers of Lagrangian particles are
necessary to minimize statistical errors in LPDMs. Furthermore, it showed that deposition
processes can have a significant impact on estimated species concentrations, especially for
larger particles. Thus, it is important to have reliable deposition models and an accurate
species characterization. This is a non-trivial problem since these models are typically highly
empirical, but it may be possible to produce more physically driven models provided sufficient
computational resources. Coupling these physical deposition processes with chemical and
radionuclide transmutation as well as a transport model closely based on the turbulent
Navier-Stokes equation would then provide an advanced ATM.
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Appendix

Monin-Obukhov similarity theory

Air concentrations of atmospheric species are heavily dependent on the meteorological
conditions of a given sampling site. Meteorology is the study of the atmosphere, including
the interaction and temporal variation of its temperature, air pressure water vapor and mass
flow. The Monin-Obukhov similarity theory [124] is an empirical method which describes the
universal relationships between these non-dimensionalized variables of fluids based on the
Buckingham π theorem [125]. In particular, it is a characterization of the turbulent mixing
in the surface layer of the atmosphere.

A.1 Buckingham π theorem

The Buckingham π theorem is a method for computing sets of dimensionless parameters
from a set of physical variables, even if the form of the equation is unknown. However, the
choice of dimensionless parameters is not unique. The number of dimensionless terms that
can be formed, p, is equal to the nullity of the dimensional matrix, and k is its rank. If there
is a physical equation f(q1,q2, . . . , qn) = 0, where qi are the n physical variables, and they
are expressed in terms of k independent physical units, then the equation can be restated
as F (π1, π2, . . . , πp) = 0, where πi are the dimensionless parameters constructed from qi by
p = n− k dimensionless equations of the form πi = qa11 q

a2
2 · · · qann . Here, the ai are rational

numbers, and they can be taken to be integers by redefining πi to be raised to the power
which clears all denominators.

A.2 Dimensionless parameters

We wish to characterize the turbulent mixing in the atmospheric surface layer using the
following seven variables: ∂ 〈Ux〉 /∂z, z, z0, U?, ρ, g/T0, and 〈qz〉 = ρcp 〈uzθ′v〉. Here,
∂ 〈Ux〉 /∂z is the gradient of the horizontal velocity in the z direction, z is the vertical
coordinate, z0 is the surface roughness, U? =

√
τ0/ρ is the friction velocity, where τ0 is the
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surface shear stress, ρ is the air density, g is the gravitational constant, T0 is the temperature
of the air parcel brought adiabatically from (T, p) to the surface at pressure p0 and is termed
the potential temperature, and qz is the vertical mean turbulent flux, where cp is the specific
heat capacity at constant pressure, and uz and θ′v are the perturbations of the vertical velocity
and virtual potential temperature, respectively. Assuming that the roughness length does not
affect the form of the physical equation but only its shape, we can neglect this parameter to
reduce the set of physical variables to six. There are four independent physical units within
the physical equation relating these variables: mass, length, time and temperature. Thus,
the Buckingham π theorem predicts that there will be two dimensionless parameters in the
physical equation.

The first parameter is called the flux Richardson number and is defined as

Rf = − κgz 〈qz〉
ρcpT0U3

?

,

where κ ≈ 0.40 is the von Kármán constant. The flux Richardson number is equal to the ratio
of the production of turbulent kinetic energy by buoyancy to its production by shear stresses.
Depending on the sign of 〈qz〉, Rf can be positive or negative. When 〈qz〉 > 0⇒ Rf < 0, the
atmosphere is unstable, and a positive fluctuation in velocity uz coincides with a positive
potential temperature fluctuation θ′v; when 〈qz〉 < 0 ⇒ Rf > 0, the atmosphere is stable;
when 〈qz〉 = 0⇒ Rf = 0, the atmosphere is adiabatic (neutral). Since the flux Richardson
number is a dimensionless function of height above the ground, it can be written in terms of
a length parameter [126]

Rf =
z

L
,

where
L = −ρcpT0U

3
?

κg 〈qz〉
(A.1)

is the Monin-Obukhov length. Similar to how the flux Richardson number indicates stability,
L also indicates atmospheric stability, but the two parameters are inversely related, so smaller
values of |L| indicate larger deviations from neutral conditions. Physically, its magnitude is
the height at which the production of turbulent kinetic energy due to mechanical shear stress
and buoyancy are equal.

The second dimensionless parameter is the dimensionless velocity gradient,

κz

U?

∂ 〈Ux〉
∂z

,
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or alternately the temperature gradient,

κz

θ?

∂ 〈θv〉
∂z

.

A.3 Physical equations

Defining the flux Richardson number as the dimensionless length parameter ζ = Rf (only in
the surface layer), we use the Buckingham π theorem to derive a relationship between the
two dimensionless parameters:

∂ 〈Ux〉
∂z

=
U?
κz
ϕM(ζ),

where ϕM(ζ) is the universal function for the mean velocity (i.e. momentum) profile in
the nonadiabatic surface layer. If one instead uses the temperature gradient as the second
dimensionless parameter, we obtain the relationship

∂ 〈θv〉
∂z

=
θ?
κz
ϕH(ζ),

where θ? = −〈uzθ′v〉 /U?, and ϕH(ζ) is the universal function for mean temperature (i.e. heat)
profile in the surface layer.

A.4 Universal functions

Generally accepted forms of the universal functions functions are [10, 127]

ϕM(ζ) =


(1− 15ζ)−1/4 ζ < 0, (unstable)

1 ζ = 0 (neutral)

1 + 4.7ζ ζ > 0 (stable)

,

and

ϕH(ζ) =


ϕH(0)(1− 9ζ)−1/2 ζ < 0, (unstable)

ϕH(0) ζ = 0 (neutral)

ϕH(0) + 4.7ζ ζ > 0 (stable)

,

where ϕH(0) = 0.74.
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Daytime Nighttime

Incoming solar radiation Cloudcover fraction

ux(10 m) (m s−1) Strong Moderate Slight ≥ 4
8

≤ 3
8

< 2 A A-B B
2-3 A-B B C E F
3-5 B B-C C D E
5-6 C C-D D D D
> 6 C D D D D

Table A.1: Pasquill stability class based on the near-surface (10 m) wind, solar radiation, and
cloudiness. Source: [9, 10]

Pasquill stability class σθ at 10 m (degrees) ∂T/∂z (10−2 K m−1)

A (extremely unstable) > 22.5 < −1.9
B (moderately stable) 17.5 to 22.5 −1.9 to −1.7
C (slightly unstable) 12.5 to 17.5 −1.7 to −1.5
D (neutral) 7.5 to 12.5 −1.5 to −0.5
E (slightly stable) 3.75 to 7.5 −0.5 to 1.5
F (moderately stable) 2.0 to 3.75 1.5 to 4.0
G (extremely stable) < 2.0 > 4.0

Table A.2: Pasquill stability class based on the near-surface (10 m) wind direction standard
deviation or surface layer temperature gradient. Source: [11, 12]

A.5 Pasquill stability classes

All of the results in the previous sections rely on the ability to estimate the Monin-Obukhov
length L. There are a number of approaches available to do so, including using measurements.
The simplest approach, however, is to use the Pasquill stability classes [93]. Tables A.1 and
A.2 show two methods for estimating the Pasquill stability class based on different measured
variables.

A.5.1 Estimation of L

The Monin-Obukhov length L is not typically measured but is instead estimated based on
other atmospheric observations. The Monin-Obukhov length can then be parameterized in
terms of the Pasquill stability class and the surface roughness length z0 [128]:

1

L
= a+ b log z0, (A.2)
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Coefficients

Pasquill stability class a b

A (extremely unstable) −0.096 0.029
B (moderately stable) −0.037 0.029
C (slightly unstable) −0.002 0.018
D (neutral) 0 0
E (slightly stable) 0.004 −0.018
F (moderately stable) 0.035 −0.036

Table A.3: Correlation parameters for the estimation of L using Eq. A.2.

with a and b given in Table A.3 for the different stability classes. Note that there are
considerable uncertainties when estimating L using this scheme due to the variability in the
meteorological variables which reside in a particular stability class.
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