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ABSTRACT

Autonomous vehicle (AV) prototypes have been deployed in increasingly varied

environments in recent years. An AV must be able to reliably detect and predict the

future motion of traffic participants to maintain safe operation based on data collected

from high-quality onboard sensors. Sensors such as camera and LiDAR generate high-

bandwidth data that requires substantial computational and memory resources. To

address these AV challenges, this thesis investigates three related problems: 1) What

will the observed traffic participants do? 2) Is an anomalous traffic event likely to

happen in near future? and 3) How should we collect fleet-wide high-bandwidth data

based on 1) and 2) over the long-term?

The first problem is addressed with future traffic trajectory and pedestrian behav-

ior prediction. We propose a future object localization (FOL) method for trajectory

prediction in first person videos (FPV). FOL encodes heterogeneous observations

including bounding boxes, optical flow features and ego camera motions with multi-

stream recurrent neural networks (RNN) to predict future trajectories. Because FOL

does not consider multi-modal future trajectories, its accuracy suffers from accumu-

lated RNN prediction error. We then introduce BiTraP, a goal-conditioned bidi-

rectional multi-modal trajectory prediction method. BiTraP estimates multi-modal

trajectories and uses a novel bi-directional decoder and loss to improve longer-term

trajectory prediction accuracy. We show that different choices of non-parametric

versus parametric target models directly influence predicted multi-modal trajectory

distributions. Experiments with two FPV and six bird’s-eye view (BEV) datasets

show the effectiveness of our methods compared to state-of-the-art. We define pedes-

trian behavior prediction as a combination of action and intent. We hypothesize that

current and future actions are strong intent priors and propose a multi-task learning

RNN encoder-decoder network to detect and predict future pedestrian actions and

street crossing intent. Experimental results show that one task helps the other so

they together achieve state-of-the-art performance on published datasets.

To identify likely traffic anomaly events, we introduce an unsupervised video

anomaly detection (VAD) method based on trajectories. We predict locations of
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traffic participants over a near-term future horizon and monitor accuracy and consis-

tency of these predictions as evidence of an anomaly. Inconsistent predictions tend

to indicate an anomaly has happened or is about to occur. A supervised video action

recognition method can then be applied to classify detected anomalies. We introduce

a spatial-temporal area under curve (STAUC) metric as a supplement to the existing

area under curve (AUC) evaluation and show it captures how well a model detects

temporal and spatial locations of anomalous events. Experimental results show the

proposed method and consistency-based anomaly score are more robust to moving

cameras than image generation based methods; our method achieves state-of-the-art

performance over AUC and STAUC metrics.

VAD and action recognition support event-of-interest (EOI) distinction from nor-

mal driving data. We introduce a Smart Black Box (SBB), an intelligent event data

recorder, to prioritize EOI data in long-term driving. The SBB compresses high-

bandwidth data based on EOI potential and on-board storage limits. The SBB is

designed to prioritize newer and anomalous driving data and discard older and nor-

mal data. An optimal compression factor is selected based on the trade-off between

data value and storage cost. Experiments in a traffic simulator and with real-world

datasets show the efficiency and effectiveness of using a SBB to collect high-quality

videos over long-term driving.
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CHAPTER I

Introduction

1.1 Motivation

Figure 1.1: This dissertation proposes an EDR (red oval), then investigates its overlap
with AV perception (blue oval). Machine learning solutions are proposed for trajec-
tory and behavior prediction of traffic participants as well as anomaly detection. The
arrows from A to B means A can be used by B or A is a part of B.

Autonomous vehicles (AVs) have the potential to transform the world as we know

it, revolutionizing transportation by making it faster, safer, and less labor intensive.

The AV perception system (blue oval in Fig. 1.1) detects, localizes and tracks on-

road objects, predicts their trajectories and behaviors [5, 6, 7, 8, 9], parses driving

scenes [10, 6], and constructs informative maps [5, 11, 8] using high-bandwidth sensors

such as camera, radar and Light Detection and Ranging (LiDAR). Due to the broad

range of potential conditions necessitating use of machine learning, AV systems need

to be tested for billions of driving miles for validation and verification (V&V) before
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being deployed in real life. This motivates the emergence of intelligent event data

recorder (EDR) units to efficiently records events of interest (EOIs, e.g., anomalous

data) that challenge AV perception (red oval in Fig. 1.1). For collision avoidance,

a perception system needs to understand and predict the trajectory (i.e., the path

a participant will follow) and behavior (e.g., crossing street or turning left) of sur-

rounding traffic participants. To ensure valuable data is recorded, the intelligent EDR

needs these functions to detect anomalies that challenge a perception system, shown

by the overlap of the two ovals in Fig. 1.1. This dissertation tackles all these prob-

lems. Specifically, we explore methods for trajectory and behavior modeling, leverage

trajectory prediction to develop traffic video anomaly detection (VAD) methods and

finally design an intelligent EDR system based on them. This dissertation describes

machine learning research with video data recorded from on-board cameras since

video provides richer scene and object information than radar, and cameras are less

expensive and easier to distribute and deploy than LiDAR units.

1.1.1 Trajectory and Behavior Prediction in Driving Videos

(a) Future vehicle localization in HEV-I dataset [7] (b) Predestrian behavior prediction in PIE dataset [12]

Figure 1.2: Understanding and predicting behavior of traffic participants is essential
for autonomous driving systems. Typical tasks include but are not limited to (a)
Vehicle trajectory prediction and (b) Pedestrian trajectory and intent prediction.

It is important for AV systems to accurately perceive and safely react to the

extremely diverse driving scenarios in the real world. This requires AV perception

systems to understand the behavior of surrounding traffic participants (e.g., vehicles,

pedestrians and cyclists) and accurately predict their future trajectories and behav-

iors. For example, in Fig. 1.2(a), is the ego car (the car with this camera mounted on

it) allowed to go straight or turn left? By accurately predicting the future locations of

the white car and the red car in the image, we might decide to stop or yield to avoid
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collision. Similarly, in Fig. 1.2(b), the ego car needs to wait a couple of seconds,

yielding to the pedestrian who has the intent to cross the street to reach the goal

(the sidewalk to the right). In this dissertation, we define object future trajectory as

the sequence of positions in bird’s eye view (BEV), or bounding boxes in first-person

view (FPV) coordinates. We separately consider the vehicle and pedestrian trajec-

tory modeling problems due to their different visual features, motion patterns and

roles in traffic. We define the behavior as the semantic action (e.g., walking, standing,

crossing) of an object and the intent of that object to conduct a specific action (e.g.,

will cross).

Our early work [7] reveals that vehicle modeling from driving videos is relatively

straightforward, since vehicles usually follow basic traffic rules and routines with strict

motion constraints. For example, a car usually would not run into a sidewalk nor

would it suddenly make a 180◦ turn. However, pedestrian behavior is more compli-

cated and difficult to predict due to a pedestrian’s interactions with the environment

and unconstrained motions. For example, a pedestrian walking into an intersection

could suddenly stop, run or turn around, any of which should impact how AV sys-

tems make decisions. Therefore, pedestrian behavior and trajectory prediction are

considered crucial and difficult problems that we need to address [13, 12, 14, 15].

1.1.2 Anomaly Detection in Driving Videos

Figure 1.3: Overview of anomaly detection, localization and classification in ego-
centric traffic videos [1]

Trajectory and behavior of traffic participants are usually modeled from normal

traffic scenarios where no accident or near-accident happens, e.g., a vehicle making a

proper turn at an intersection or a person walking across a street without redundant

action. However, AV systems can be confused and even fail in anomalous situations,
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for example when a pedestrian suddenly stops in the middle of the road or when a

car cuts into the ego car’s lane with insufficient space. Existence of such challenging

scenarios requires an AV to effectively detect, localize and classify anomalies (Fig. 1.3)

in different driving scenarios [16, 17, 18]. Moreover, detecting anomalies can guide an

intelligent event data recorder (i.e., a Smart Black Box) to collect challenging data

for V&V purposes as will be introduced in Section 1.1.3. Supervised classification

methods [19, 20, 21] require large amounts of annotated training data that are difficult

to generate due to the fact that anomalous events are rare in naturalistic traffic videos.

Therefore this dissertation pursues unsupervised methods for VAD in driving videos.

We also present benchmarks of supervised video action recognition and online action

detection methods for completeness.

1.1.3 Intelligent Event Data Recorder

Naturalistic Field Operation Tests (NFOTs) have been performed to enable AV

V&V [22], which requires millions or billions of miles of data before enough events of

interest (EOIs) occur to accurately measure system performance [23]. Emerging AVs

with redundant high-bandwidth sensors (e.g., camera and LiDAR) generate as much

as 1 GB/second of raw data, a figure that scales to around 2160 TB/year given an

average driving time per person of 660 hours per year [24]. Therefore, effective capture

of this large data for NFOT is challenging, making it necessary to develop methods for

efficient data compression and discard capabilities. This dissertation presents a value-

driven, high-bandwidth EDR to tackle the aforementioned problems called the Smart

Black Box (SBB). Levering the VAD and anomaly classification methods mentioned

above, the SBB recognizes valuable data (e.g., anomalous event data) and applies

proper compression factors to optimize the usage of on-board storage in long-term

driving data collection processes.

1.2 Problem Statement and Research Approach

This dissertation aims to: 1) Extend state-of-the-art (SOTA) in traffic participant

trajectory and behavior modeling; 2) Develop effective unsupervised methods for

traffic VAD in driving videos; 3) Design an intelligent EDR that efficiently collects,

compresses and manages long-term high-bandwidth data (i.e., videos). This section

defines the problems involved in the above three tasks which will be used across this

dissertation.
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1.2.1 Trajectory and Behavior Prediction

Trajectory prediction forecasts future location (in BEV) or bounding boxes (in

FPV) of traffic participants (i.e., vehicles, pedestrians) and is also called future object

localization (FOL) [7] in FPV scenarios. We define the trajectory prediction problem

as:

Ŷ = TrajectoryPredictor(X, I,E), (1.1)

where X = {Xt−τ+1, Xt−τ+2, ..., Xt} is the past trajectory of a traffic participant, I =

{It−τ+1, It−τ+2, ..., It} is the observed image sequence, and E = {Et−τ+1, Et−τ+2, ..., Et}
is past ego motion. For BEV,Xt = [xt, yt] is location coordinates, while for FPV,Xt =

[leftt, topt, rightt, bottomt] is bounding box coordinates. Y = {Yt+1, Yt+2, ..., Yt+δ} is

a single future trajectory for single-modal trajectory prediction. For multi-modal tra-

jectory prediction, Y is either a set of possible future trajectories or a distribution of

future trajectories.

Chapter IV proposes a multi-stream recurrent neural network (RNN) encoder-

decoder (ED) model to encode X and I object features and predict future trajectories.

An ego-motion ED stream is added to predict ego car odometry as compensation to

FOL in FPV. Then we introduced a goal-conditioned bi-directional trajectory predic-

tor which estimates multi-modal goals first and then predicts multi-modal trajectories

using a bi-directional RNN decoder.

Behavior prediction is defined as a combination of semantic action detection and

prediction, and intent detection:

ât = ActionDetector(X, I), (1.2)

[â]t+δt+1 = ActionPredictor(X, I), (1.3)

ît = IntentDetector(X, I), (1.4)

where ât is the detected present action at t, [â]t+δt+1 is the predicted action over the

future δ frames, and ît is the detected intent at t.

In Chapter IV, we propose a multi-task learning approach for behavior prediction.

Past image observations are encoded, and a decoder is used to predict the future

action. The future action prediction output is used as an extra input to the encoder

to estimate the present action and intent.
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1.2.2 Video Anomaly Detection

Video anomaly detection (VAD) has been extensively studied for surveillance cam-

era applications, action recognition, and scene understanding. VAD takes continuous

video frames as input and computes one anomaly score for each frame, as shown in

Eq. (1.5):

s1, s2, ..., sT = V AD(I1, I2, ..., IT ), (1.5)

where I1, I2, ..., IT are T continuous video frames and s1, s2, ..., sT are corresponding

anomaly scores.

Chapter V tackles the VAD problem by modeling normality in traffic partici-

pant motion and appearance features in an unsupervised manner. Specifically, we

adapted the FOL method to an online mode and trained it on normal driving data

to learn trajectory normality. The FOL model is then deployed on videos containing

anomalies to detect inaccurate or inconsistent predictions as anomalies. This model

is further extended towards multi-normality learning [1] using a margin learning ap-

proach [25]. We further combine this trajectory based method with an appearance

based method [2], resulting in an Ensemble VAD method.

1.2.3 Intelligent Event Data Recorder

Current high-quality AV sensors generate high-bandwidth data (e.g., HD videos,

LiDAR point clouds) that cannot be all stored onboard or uplinked in long-term

driving. Moreover, datalink may not be continuously available or may incur nontrivial

costs when a car is not parked near open wifi. To this end, we introduce an intelligent

EDR called the Smart Black Box to realize memory-efficient high-bandwidth data

collection. The SBB addresses three core problems: 1) How do we quantify data

value? 2) How do we manage each data recording buffer? 3) How do we optimize the

usage of on-board storage to save the most valuable data? Chapter VI investigates

each problem respectively and conducts experiments on simulation and real-world

data to evaluate the performance of the proposed SBB.

1.3 Innovations and Contributions

Specific innovations of this dissertation are:

• A new task for future vehicle localization in ego-centric videos, and an innovative
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multi-stream architecture that combines both object-motion and ego-motion

prediction in one model.

• A bi-directional trajectory predictor based on multi-modal goal estimation. Our

work is the first to carefully compare multi-modal trajectory prediction results

with different latent distribution models.

• A novel multi-task formulation for pedestrian behavior prediction that leverages

future action prediction as an important indication of pedestrian intent.

• A new unsupervised traffic VAD method in ego-centric videos that is robust to

moving cameras. A new anomaly metric using prediction consistency that is

robust to object detection/tracking failures.

• A novel evaluation metric called spatial-temporal area under curve (STAUC) to

better evaluate the ability of unsupervised video anomaly detection algorithms

to localize anomalies in spatial and temporal domains.

• Our work is first to use real time anomaly detection to prioritize high-bandwidth

data collection for on-road vehicles.

Specific contributions of this dissertation are:

• Smart Black Box (SBB) software for intelligent event data recording and a

corresponding simulation test bed.

• Software for a multi-stream RNN encoder-decoder network for FOL in driving

videos, which achieves SOTA performance on two FPV datasets.

• Software for a bi-directional trajectory prediction algorithm that achieves SOTA

performance on two FPV datasets and six BEV datasets.

• Software for a multi-task pedestrian behavior prediction algorithm that achieves

SOTA results on the PIE dataset [12].

• Software implementing an unsupervised anomaly detection algorithm for driving

video anomaly detection which achieves SOTA performance on three datasets.

• Three published datasets with annotations: one for future vehicle localization

and two for traffic video anomaly detection. Benchmarks of baselines and SOTA

methods on our datasets are provided.
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1.4 Outline

Chapter III introduces the datasets we have collected, annotated and published

for this work. Annotation methods, dataset statistics and comparative studies with

existing datasets are presented to show the advantages of our datasets. Chapter IV

summarizes our work on object trajectory prediction and pedestrian behavior predic-

tion. We first introduce future object localization (FOL) in FPV. We then investigate

object goal estimation and present a bi-directional trajectory prediction method to

improve long-term (e.g., 4.8 seconds to the future) trajectory prediction accuracy.

Finally, we present a multi-task behavior prediction method by using future action

prediction as an important indication of pedestrian crossing intent. Experiments on

real-world datasets (HEV-I [7], KITTI [5], JAAD [26], PIE [12], ETH-UCY [27, 28],

nuScenes [8]) show the effectiveness of our methods.

Chapter V presents our work on unsupervised video anomaly detection (VAD)

in driving videos. We propose object trajectory modeling methods and combine

models with a scene prediction method to explore VAD for autonomous driving. A

novel spatio-temporal evaluation metric is introduced as a supplement to existing

VAD evaluation methods. Benchmarks of state of the art VAD, action recognition

and online action detection methods on our datasets are provided to support further

research.

Chapter VI introduces the design of a Smart Black Box (SBB), an intelligent

driving event data recorder (EDR) pipeline to record high-bandwidth raw data as

a supplement to current low-bandwidth EDR. Extensive simulation and real-world

data collection results show the efficiency and effectiveness of the SBB for long-term

data recording. Chapter VII concludes the dissertation and discusses future work

directions.
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CHAPTER II

Related Work

This chapter reviews the literature referenced throughout the dissertation. Each

of the following subsections contains background corresponding to each subsequent

research investigation.

2.1 Object Trajectory Prediction

Trajectories in Birds’-eye View (BEV) and First-person View (FPV). Tra-

jectory prediction in BEV predicts future position sequences represented by (x, y)

coordinates. Early work in this area includes social force [29], Gaussian procession

regression [30] and inverse reinforcement learning (IRL) [31] that assumes a single-

modal future and predicts a single best trajectory. Recently, recurrent neural networks

(RNNs) such as long short-term memory networks (LSTMs) and gated recurrent units

(GRUs) have been applied in an encoder-decoder (ED) format to encode past obser-

vations and decode future trajectory. Heterogeneous information such as neighbors,

maps, and semantic actions are used as extra inputs to improve trajectory prediction

accuracy. As one of the earliest and most important work, Alahi et al. [32] proposed

a Social-LSTM to model pedestrian trajectories as well as their interactions with

neighbors. Following this trend, recent work models context and interactions by im-

proved social-pooling [33, 34], attention networks [35], gated relation networks [36],

and graph models [15].

While the above methods are designed for third-person views from static cameras,

recent work has considered vision in first-person (egocentric) videos that captures the

natural field of view of the person or agent (e.g., vehicle) hosting or ”wearing” the cam-

era to study that agent’s actions [37, 38], trajectories [39], interactions [40, 41], etc.

Object trajectory prediction in FPV predicts future bounding box sequences or human
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keypoint sequences. Bhattacharyya et al. [42] predict future locations of pedestrians

from vehicle-mounted cameras, modeling observation uncertainties with a Bayesian

LSTM network. Yagi et al. [43] predicts pedestrian trajectories in first-person videos

using a convolution-deconvolution framework. We propose future vehicle localization

(FVL), a multi-stream GRU-ED to predict future locations of vehicles. FVL is one of

the earliest works that focus on FPV [7]. Dash camera ego-motion is modeled using

another GRU stream to compensate prediction in [42] and our following work [44].

Human biomechanical models [45] and disentangled pose key-points [46, 14] have

been used as extra cues to enhance prediction accuracy in FPV. Malla et al. [9] and

Rasouli et al. [12] incorporated semantic action and intention detection as a prior to

boost trajectory prediction accuracy.

Multi-modal Trajectory Prediction. Multi-modal trajectory prediction meth-

ods estimate trajectory distributions therefore cover different possible futures, making

them appropriate for applications such as path planning in robotics and autonomous

driving [47, 48, 49]. Bayesian LSTMs or confidence regression modules are used to esti-

mate epistemic and aleatoric uncertainty [42, 50]. However they are still single-modal

methods that assume a single Gaussian distribution for future trajectories. A num-

ber of researchers have developed GAN and CVAE methods for multi-modal trajec-

tory prediction. GAN-based methods generate multi-modal trajectories from sampled

unit Gaussian noise thus cannot explicitly learn trajectory distributions [51, 52, 53].

Gupta et al. [51] develop Social-GAN which captures global context for a Generative

Adversarial Network. Sadeghian et al. [52] build an attentive GAN to better leverage

the social and physical constraints for the trajectories. Kosaraju et al. [53] design

a bicycle-GAN with local and global discriminators to tackle interactions in differ-

ent scales. Probabilistic approaches, particularly conditional variational autoencoder

(CVAE) based models, have been developed for multi-modal trajectory prediction.

Different from GANs [51, 53], CVAEs can explicitly learn the form of a target distribu-

tion conditioned on past observations by learning the latent distribution from which it

samples. Some CVAE methods assume the target trajectory follows a non-parametric

(NP) distribution thus produce multi-modal predictions by sampling from a Gaussian

latent space. Lee et al. [54] first used CVAE for multi-modal trajectory prediction by

incorporating Gaussian latent space sampling to a long short-term memory encoder-

decoder (LSTM-ED) model. CVAE with LSTM components has since been used

in many applications [55, 56, 57]. Other CVAE-based methods assume parametric

trajectory distributions. Ivanovic et al.[58] assumed the target trajectory follows a

Gaussian Mixture Model (GMM) and designed a Trajectron network to predict GMM
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parameters using a spatio-temporal graph. Trajectron++ [48] extended Trajectron

to account for dynamics and heterogeneous input data. Our work extends existing

CVAE models to include goal estimation and shows improved multi-modal predic-

tion results. Our work also provides novel insights in comparisons between CVAE

target distributions (NP and GMM). We propose a bidirectional trajectory predictor

(BiTraP) [49] and present a through comparison between NP and parametric GMM

models in CVAE-based multi-modal trajectory prediction.

Trajectory Conditioned on Goals. Incorporating goals has been shown to im-

prove trajectory prediction. Rehder et al. [59] proposed a particle-filter based method

to estimate goal distribution as a prior for trajectory prediction. We drew inspiration

from [60] that computed forward and backward rewards based on current position

and goal. The path is planned using Inverse Reinforcement Learning (IRL). Our

work is distinct due to its bi-directional temporal propagation and integration com-

bined with a CVAE to achieve multi-modal prediction. Rhinehart et al. [61] estimated

multi-modal semantic action as goals and planned conditioned trajectories using im-

itative models. Deo et al. [62] used IRL to estimate goal states and fused results

with past trajectory encodings to generate predictions. Most recently, Mangalam et

al. [63] designed a PECNet which showed state-of-the-art results on BEV trajectory

prediction datasets. However, PECNet only concatenated past trajectory encodings

and end-point encodings, which we believe did not fully take advantage of goal infor-

mation. We have designed a bi-directional trajectory decoder [49] in which current

trajectory information is passed forward to the end-points (goals) and goals are re-

currently propagated back to the current position. Experiment results show that

our goal estimation can help generate more accurate trajectories than achieved in

previous studies.

2.2 Pedestrian Action and Intent Detection

Pedestrian action and intent detection have been considered as a branch of the

greater video action recognition problem. Most existing work detects pedestrian

action or intent by detecting pedestrian bounding boxes or skeleton first and then

performing action recognition on local features.

Action Recognition attempts to assign video frames or clips into categories, and

thus can be applied to traffic anomaly classification, e.g. front-collision, turning-

collision, vehicle-pedestrian collision, etc. Two-stream networks [64] and temporal

segment networks (TSN) [65] leverage RGB and optical flow data. Tran et al. [66]
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first proposed 3D convolutional networks (C3D) for spatio-temporal modeling, fol-

lowed by an inflated model [67]. Recent work substitutes 3D convolution with 2D

and 1D convolution blocks (R(2+1)D [68]) to improve effectiveness and efficiency. Fe-

ichtenhofer et al. [69] propose the SlowFast model to extract video features from low

and high frame rate streams. Online action detection in untrimmed, streaming videos

is addressed by De Geest et al. [70], while Gao et al. [71] propose a reinforce encoder-

decoder (RED) to tackle action prediction and online action recognition. Shou et

al. [72] model temporal consistency with a generative adversarial network (GAN).

Xu et al. [73] propose a temporal recurrent network (TRN) that predicts future ac-

tions to aid in online action detection. Gao et al. [74] use reinforcement learning to

detect the start time of actions.

Pedestrian Intent and Action Detection tries to classify semantic actions (i.e.

walking, crossing etc.) and a pedestrian’s intent to cross the road (e.g., will cross vs.

will not cross). Compared to generalized action recognition, pedestrian action and

intent has not been widely studied until recently. Rasouli et al. [75] created a joint

attention in autonomous driving (JAAD) dataset for pedestrian action and intent

studies. Along with the JAAD dataset, an image classification method using AlexNet

and a fully convolutional network (FCN) was presented as the baseline for action

(walking and looking) and intent detection (will cross and will not cross) [75]. Local

visual features are extracted from the image regions located at pedestrian bounding

boxes as the context information for neural networks. Following JAAD, Rasouli et

al. [12] introduced the Pedestrian Intent Estimation (PIE) dataset. Bounding box

trajectories and context features are combined to predict pedestrian intent of crossing

a road. Bouhsain et al. [76] added a bounding box prediction encoder decoder in

parallel to an intent detection encoder decoder to improve the accuracy, resulting

in a multi-task network. Pedestrian pose (skeleton) key points, as more informative

features than bounding boxes, have been used to predict crossing intent [77, 78].

Wei et al. [79] used 3D pose obtained from an RGB-D camera to characterize human

attention and then predict intent. Researchers have also studied how interactions

with the environment and traffic participants influence pedestrian crossing intent.

Xie et al. [80] proposed to learn the environment’s attractive force on a pedestrian

using a bird’s eye view map. Pedestrian intent is then detected by predicting the

optimal trajectories of all pedestrians in the scene. Leveraging recent advances in

graph convolutional networks (GCN), Liu et al. [15] built traffic graphs centered at

either the pedestrian or the ego car to model the relation between pedestrian intent,

ego car motion, and other traffic participants. Schneemann et al. [81] detected context
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such as road edges, crosswalks, and waiting areas using semantic segmentation and

detect pedestrian intent with a support vector machine (SVM). Zhang et al. [82]

processed heterogeneous information such as vehicle speed, pedestrian speed, cross

walk detection, etc., using an attended LSTM network and detect crossing intent by

an SVM.

Distinct from crossing intent, pedestrian action is multi-class and scenario de-

pendent, e.g., walking, standing, participating in a phone call, loading a car, etc.

Despite significant progress in the field of video action recognition, few researchers

have studied pedestrian action detection. Liang et al. [33] combined pose key points,

image features, semantic features and interaction features to detect human action

in surveillance cameras. Malla et al. [9] introduced a Trajectory Inference using

Targeted Action priors Network (TITAN) dataset which contains more detailed hi-

erarchical action annotations in driving videos and provided results from baseline

action recognition methods I3D [67] and R3D [68]. TITAN is considered more of a

trajectory prediction dataset than a pedestrian action dataset. Our work considers

pedestrian intent as their future action and proposes an entangled model to detection

pedestrian intent by predicting his/her future action.

2.3 Anomaly Detection for Autonomous Vehicles

Traditional Anomalous Event Detection can be straightforwardly accomplished

based on pre-defined rules or safety envelope violations such as sudden deceleration or

insufficient following distance [22, 83]. Other events can be detected from driver be-

havior recognition or driving environment characterization. Driver behavior has been

assessed to-date by training statistical models or feature extraction models based on

CAN bus signals [84, 85, 86] and driver observation camera data frames [87]. Most

environment detection research focuses on recognizing behaviors in surrounding ve-

hicles [88, 89, 90] and/or pedestrians [91, 92, 93], after which an EOI analysis of

human-vehicle interaction is possible. The detection of road conditions such as pot-

holes has also been investigated in [94]. Although many event and anomaly detection

techniques have been designed for automated driving and risk recovery [84, 95], few

are used to guide data collection and compression.

Existing Video Anomaly Detection (VAD) datasets are typically from surveil-

lance cameras. For example, UCSD Ped1/Ped2 [96], CUHK Avenue [97], and Shang-

haiTech [2] were collected from campus surveillance cameras and include anomalies

like prohibited objects and abnormal movements, while UCF-Crime [98] includes ac-
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cidents, robbery, and theft. Anomaly detection in egocentric traffic videos has very

recently attracted attention. Chan et al. [19] propose the StreetAccident dataset of

on-road accidents with 620 video clips collected from dash cameras. The last ten

frames of each clip are annotated as anomalous. We [44] proposed the A3D dataset

containing 1,500 anomalous videos in which abnormal events are annotated with start

and end times. Fang et al. [99] introduce the DADA dataset for driver attention pre-

diction in accidents, while Herzig et al. [21] extract a collision dataset with 803 videos

from BDD100K [6]. Our newer DoTA dataset is much larger (4,677 videos) and, more

importantly, contains richer annotations that support traffic video anomaly analysis

from spatial, temporal and categorical perspectives.

Existing VAD models mainly focus on detecting the start and end of anoma-

lous events and implicitly relate to spatial localization. Hasan et al. [100] propose

a convolutional Auto-Encoder (ConvAE) to model the normality of video frames by

reconstructing stacked input frames. A Convolutional LSTM Auto-Encoder (ConvL-

STMAE) is used in [101, 102, 103] to capture regular visual and motion patterns.

Luo et al. [104] propose a stacked RNN for temporally-coherent sparse coding (TSC-

sRNN). Liu et al. [2] detect anomalies by looking for differences between predicted

future frames and actual observations. Gong et al. [105] propose an MemAE network

to query pre-saved memory units for reconstruction, while Wang et al. [106] design

generalized one-class sub-spaces for discriminative regularity modeling. Other work

has recently studied object-centric approaches. Ionescu et al. [107] propose K-means

to cluster object features and train multiple support vector machine (SVM) classifiers

with confidence as anomaly score. Morais et al. [46] model human skeleton regular-

ity with local-global autoencoders and compute per-object anomaly scores. VAD in

egocentric traffic scenarios is a challenging problem due to dynamic foreground and

background, perspective projection, and complicated scenes. We benchmark state-

of-the-art VAD methods and their variants on DoTA dataset.

2.4 Intelligent Event Data Recorder

The automobile event data recorder (EDR) was developed by manufacturers to

analyze precursor and crash data with impact-triggered recording [108][17]. The EDR

captures low-bandwidth data including but not limited to vehicle speed, engine speed,

throttle, brake status, and acceleration. Improvements on EDRs have extended the

event list an EDR can detect [83] and support system execution replay [109]. An

in-vehicle data recorder was proposed in [110] to record heterogeneous data from
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asynchronous onboard sensors. However, these publications do not address the trade-

off between data compression losses and finite storage constraints that exist in long-

term high-bandwidth data collection.

We design the Smart Black Box (SBB), an intelligent EDR that operates long-term

to record high-bandwidth data without human intervention. An essential challenge is

to selectively remove recorded data as needed to make room for new data. Two models

have been adopted in previous data recorders. The most common data recorder

continuously writes data until the storage is full then terminates the recording. The

newest data is discarded in this model once storage is filled. Some EDR systems use

circular buffers to record data so that once the storage is full, the oldest data is aged

out with a first-in-first-out (FIFO) queue. This model values new data over old data

without processing data contents. In [111], multi-resolution storage was supported

by generating coarse representations of raw data, called summaries. Summaries in

the database are then aged out by a user-defined aging function. Such an approach

was applied in [112] where the elimination process considered the frequency at which

data is queried. This method focuses on database maintenance and query instead

of on-line data collection. In this dissertation, we age out data based on data value

metrics and storage limits. The optimization of compression quality is solved and

the reproducibility of computer vision algorithms such as object detection [3] and

semantic segmentation [4] on compressed data is analyzed.
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CHAPTER III

Datasets

This chapter summarizes the datasets we have created and published in our work,

including one dataset for future vehicle localization (HEV-I) and two datasets for

video anomaly detection (A3D and DoTA). Content, annotations, and statistical

summaries of each dataset are described below.

3.1 Honda Egocentric View-Intersection (HEV-I) Dataset

Figure 3.1: HEV-I dataset samples. HEV-I contains videos collected from urban (row
1) and suburban (row 2) intersections. Different weather and lighting conditions (row
2 and row 3) are included for diversity.

The problem of future object localization in egocentric cameras is particularly

challenging when multiple vehicles execute different motions (e.g. an ego-vehicle is

turning left but yields to another moving car). However, to the best of our knowl-

edge, most existing autonomous driving datasets are proposed for scene understand-

ing tasks [5, 10] that do not contain diverse motions. We introduce a new egocentric
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vision dataset, Honda Egocentric View-Intersection (HEV-I), that focuses on

intersection scenarios where vehicles exhibit diverse motions due to complex road lay-

outs and vehicle interactions. HEV-I was collected from different intersection types

in the San Francisco Bay Area, and consists of 230 videos each ranging between 10

to 60 seconds. Videos were captured by an RGB camera mounted on the windshield

of the car, with 1920 × 1200 resolution (reduced to 1280 × 640 in this paper) at 10

frames per second (fps). Figure 3.1 shows samples of HEV-I video frames. Different

scenarios are included for diversity.

(a) Tracklet length [# of frames] (b) Ego-vehicle yaw angle

(c) Training set trajectory length [# of pixels] (d) Testing set trajectory length [# of pixels]

Figure 3.2: HEV-I dataset statistics.

Table 3.1: Comparison with KITTI dataset. The number of vehicles is tallied after
filtering out short sequences.

Dataset # videos # vehicles scene types

KITTI 38 541 residential, highway, city road
HEV-I 230 2477 urban intersections

Statistics of HEV-I are shown in Fig. 3.2. As shown, most vehicle tracklets are

short in Fig. 3.2 (a) because vehicles usually drive fast thus leave the field of the

first-person view quickly. Fig. 3.2 (b) shows the distribution of ego vehicle yaw angle

(in rad) across all videos, where positive indicates turning left and negative indicates

turning right. It can be seen that HEV-I contains a variety of different ego motions.

Distributions of training and test sample trajectory lengths (in pixels) are presented
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in Fig. 3.2 (c) and (d). Although most lengths are shorter than 100 pixels, the

dataset also contains numerous longer trajectories. This is important because longer

trajectories are typically more difficult to predict. Compared to existing data like

KITTI, the HEV-I dataset contains more videos and vehicles, as shown in Table 3.1.

Most object vehicles in KITTI are parked on the road or driving in the same direction

on highways, while in HEV-I, all vehicles are at intersections and performing diverse

maneuvers. This dissertation develops a future object localization (FOL) network

evaluated on the HEV-I dataset. Baselines such as linear and quadratic fitting and

a state-of-the-art 1D convolutional network method [43] are also benchmarked on

HEV-I for comparative study. The HEV-I dataset can be found at: https://usa.

honda-ri.com/hevi.

3.2 AnAn Accident Detection (A3D) Dataset

To evaluate our methods on realistic traffic scenarios, we introduce a new dataset

AnAn Accident Detection (A3D) of on-road abnormal event videos compiled

from 1500 video clips selected from a YouTube channel of dashboard camera streams

from different cars in East Asia. Each video contains an abnormal traffic event at

different temporal locations. We labeled each video with anomaly start and end times

under the consensus of three human annotators. The annotators were instructed to

label the anomalies based on common sense, with the start time defined to be the

point at which the accident is inevitable and end time the point when all participants

recover a normal moving condition or fully stop.

We compare our A3D dataset with existing video anomaly detection datasets in

Table 3.2. A3D includes a total of 128,175 frames (ranging from 23 to 208 frames per

clip) at a rate of 10 frames per second and is clustered into 18 types of traffic accidents

each labeled with a brief description. A3D includes driving scenarios with different

weather conditions (e.g., sunny, rainy, snowy, etc.), places (e.g., urban, countryside,

etc.), and participant types (e.g., cars, motorcycles, pedestrians, animals, etc.). In

addition to start and end times, each traffic anomaly is labeled with a binary value

indicating whether the ego-vehicle is involved to provide a better understanding of

the event. Note that this data could especially benefit the first-person vision commu-

nity. For example, rear-end collisions are the most difficult to detect from traditional

anomaly detection methods. About 60% of accidents in the dataset involve the ego-

vehicle; others are observed from a third-person perspective. The A3D dataset can

be found at: https://github.com/MoonBlvd/tad-IROS2019.
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3.3 Detection of Traffic Anomaly (DoTA) Dataset

To further extend our A3D dataset, we introduce DoTA, the first publicly-

available traffic video anomaly dataset with temporal, spatial, and categorical an-

notations. To build DoTA, we collected more than 6,000 video clips mainly from

two YouTube channels 12 which provides traffic accident videos for driver education

purposes. We selected diverse dash camera accident videos from different areas (e.g.,

East Asia, North America, Europe etc.) under different weather (e.g., sunny, cloudy,

raining, snowing, etc.) and lighting conditions (day and night). We avoided videos

with accidents that were not visible or where the camera dislodged during the acci-

dent, resulting in 4,677 videos with 1280 × 720 resolution. Each video contains one

and only one anomalous event. Though the original videos are at 30 fps, we ex-

tracted frames at 10 fps for annotations and experiments. Table 3.2 compares DoTA

with other ego-centric traffic anomaly datasets. The DoTA dataset can be found at:

https://github.com/MoonBlvd/Detection-of-Traffic-Anomaly.

We annotated the dataset using a custom tool based on Scalabel3. Labeling

traffic anomalies is subjective, especially for properties like start and end times. To

produce high quality annotations, each video was labeled by three annotators, and

the temporal and spatial (categorical) annotations were merged by taking average

(mode) to minimize individual biases.

Temporal Annotations. Each DoTA video is annotated with anomaly start

and end times, which separates it into three temporal partitions: precursor, which

is normal video preceding the anomaly, the anomaly window, and post-anomaly,

which is normal activity following the anomaly. Duration distributions are shown

in Fig. 3.4(a). Since early detection is essential for on-road anomalies [19, 20], we

asked the annotators to estimate the anomaly start as the time when the anomaly

was inevitable. The anomaly end was approximated as the time when all anomalous

objects are out of the field of view or are stationary. Our annotation is different from

[99] where a frame is marked as an anomaly start if half of an anomaly participant

appears in the camera view; such a start time can be too early because anomaly

participants often appear for a while before they start to behave abnormally. Our

annotation is also distinct from [19] and [44] where the anomaly start is marked when

a crash happens, which does not support early detection.

1https://youtube.com/user/CarCrashesTime
2https://youtube.com/channel/UC-Oa3wml6F3YcptlFwaLgDA
3https://scalabel.ai/
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Table 3.2: Comparison of published driving video anomaly datasets. The top section
shows surveillance datasets, the middle section shows previous driving video datasets
and the bottom section presents our A3D and DoTA datasets.

Dataset type # videos # frames Annotations

UCSD Ped [113]

Surveillance

98 18.5K (30fps) temporal
CUHK [97] 37 30.6K (30fps) temporal
UCF-Crime [98] 1,900 13,8M (30fps) temporal
ShanghaiTech [104] 437 317K (30fps) temporal

StreetAccident [19]
Dashcam

620 62K (20fps) temporal
DADA [99] 2,000 648K (30fps) temporal, spatial (eye-

gaze)

A3D [44]
Dashcam

1,500 128K (10fps) temporal
DoTA [1] 4,677 732K (10fps) temporal, spatial (track-

lets), categories

Table 3.3: Traffic anomaly categories in the DoTA dataset.

ID Short Anomaly Categories

1 ST Collision with another vehicle that starts, stops, or is stationary
2 AH Collision with another vehicle moving ahead or waiting
3 LA Collision with another vehicle moving laterally in the same direction
4 OC Collision with another oncoming vehicle
5 TC Collision with another vehicle that turns into or crosses a road
6 VP Collision between vehicle and pedestrian
7 VO Collision with an obstacle in the roadway
8 OO Out-of-control and leaving the roadway to the left or right
9 UK Unknown

Spatial Annotations. DoTA is the first traffic anomaly dataset to provide de-

tailed spatio-temporal annotation of anomalous objects. Each anomaly participant

is assigned a unique track ID, and each participant’s bounding box is labeled from

anomaly start to anomaly end or until the object is out of view. We consider seven

common traffic participant categories: person (pedestrian), car, truck, bus, motor-

cycle, bicycle, and rider, following the BDD100K style [6]. Statistics of object cate-

gories and per-video anomalous object numbers are shown in Figs. 3.4(c) and 3.4(d).

DADA [99] also provides spatial annotations by capturing video observers’ eye-gaze

for driver attention studies. However, researchers have shown that eye-gaze does not

always coincide with the anomalous region, and that gaze can have ∼1 to 2 seconds

of delay from anomaly start. Our tracklets thus provide improved annotation for

spatio-temporal anomaly detection studies.

Anomaly Categories. Each DoTA video is assigned one of the 9 categories listed

in Table 3.3 as defined in [114]. We have observed that the same anomaly category
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Figure 3.3: DoTA Samples. Spatial annotations are shown as shadowed bounding
boxes. Short anomaly category labels with * indicate non-ego anomalies.

(a) Duration distribution (b) Anomaly category distribution

(c) Object categories (d) # anomalous objects (e) Ego-car involvement

Figure 3.4: DoTA dataset statistics.

with different viewpoints are visually distinct, as shown in Fig. 3.3. Thus we split each

category into ego-involved and non-ego (marked with *), resulting in 18 categories

total. Sometimes the category can be ambiguous, particularly when one anomaly is

followed by another. For example, an oncoming out-of-control (OO*) vehicle might

result in an oncoming collision (OC) with the ego vehicle. In such cases, we annotate

anomaly category as the dominant one in a video, typically the longer-lasting anomaly.

Video distribution statistics are shown in Fig. 3.4(b).
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CHAPTER IV

Object Trajectory and Behavior Prediction

4.1 Introduction

Understanding and predicting traffic objects (i.e. pedestrians, vehicles, etc.)

movement behaviors is crucial for autonomous systems to safely navigate interactive

environments. By correctly forecasting pedestrian trajectories, a robot or autonomous

vehicle can plan safe and socially-aware paths in traffic [32, 33, 47, 115] and produce

alarms about anomalous motions (e.g., crashes or near collisions) [46, 44, 1, 116, 117].

Early work in trajectory prediction often assumed a deterministic future, where only

one trajectory is predicted for each object given past observations [118, 29, 30]. De-

spite that strict traffic rules and physical constraints apply to on-road objects, they

can still move with a high degree of stochasticity so multiple plausible and distinct

future behaviors can exist [51, 119]. Recent studies [120, 54, 121, 58, 48] have shown

predicting a distribution of multiple potential future trajectories (i.e., multi-modal

prediction) rather than a single best trajectory can more accurately model future

motions of pedestrians.

Recurrent neural networks (RNNs), notably long short-term memory networks

(LSTMs) and gated recurrent units (GRUs), have demonstrated success in trajectory

prediction [33, 45, 7, 12]. In ego-centric view, visual and optical flow features provide

reach information on object appearance and motion. In this Chapter, we first present

the Future Object Localization (FOL), a multi-stream RNN encoder decoder network

that combines bounding box sequences, optical flow features and vehicle ego motions

to predict future bounding box sequence. FOL encodes past trajectories and optical

flow features using two RNN encoders and predicts the future trajectory from the

fused hidden state with an RNN decoder. A third RNN stream is used to predict

future ego motion which is used as an extra input to the trajectory decoder.
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Most RNN based models recurrently predict future trajectories based on previ-

ous output thus their performance tends to deteriorate rapidly over time (> 560

ms) [119, 122]. In this Chapter, we propose to address this problem with a novel

goal-conditioned bi-directional trajectory predictor, named BiTraP. BiTraP first es-

timates future goals (end-points of the future trajectories) of pedestrians and then

predicts trajectories by combining forward passing from current position and back-

ward passing from estimated goals. We believe that predicting goals can improve

long-term trajectory predictions, as pedestrians in real world often have desired goals

and plan paths to reach these goals [63]. Compared to existing goal-conditioned meth-

ods [63, 59, 61] where goals were used as an input to a forward decoder, BiTraP takes

goals as the starting position of a backward decoder and predicts future trajectories

from two directions, thus mitigating the accumulated error over longer prediction

horizons.

Recently, generative models such as the generative adversarial network (GAN)

[51] and conditional variational autoencoder (CVAE) [123, 54], were developed to

predict multi-modal distributions of future trajectories. Our BiTraP model predicts

multi-modal trajectories based on CVAE which learns target future trajectory dis-

tributions conditioned on the observed past trajectories through a stochastic latent

variable. The two most common forms of the latent variable follow either a Gaus-

sian distribution or a categorical distribution, resulting in either a non-parametric

target distribution [54, 63] or a parametric target distribution model such as a Gaus-

sian Mixture Model (GMM) [58, 48]. There has been limited research on how latent

variable distributions impact predicted multi-modal trajectories. To fill this gap, we

conducted extensive comparison studies using two variations of our BiTraP method:

a non-parametric model using Gaussian latent variables (BiTraP-NP) and a GMM

model using categorical latent variables (BiTraP-GMM). We implemented two types

of loss functions, best-of-many (BoM) L2 loss [124] and negative log-likelihood (NLL)

loss [48] to evaluate different predicted trajectory behaviors (e.g., spread and diver-

sity). We show that latent variable distribution choices are closely related to the

diversity of predicted distributions, which provides guidance for selecting trajectory

predictors for robot navigation and collision avoidance systems.

This chapter presents methods to model two typical traffic participant types: vehi-

cle and pedestrian. This Chapter first introduces FOL, a multi-stream RNN encoder

decoder networks for vehicle trajectory prediction in ego-centric driving videos [7] in

Section 4.2. Following FOL, a bi-directional model for multi-modal trajectory pre-

diction (BiTraP) [49] is introduced in Section 4.3. The pedestrian action and intent
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detection is then discussed and corresponding experiment results are presented in

Section 4.4, followed by a conclusion section in Section 4.5.

4.2 Future Object Localization (FOL)

We proposed a FOL problem which predicts the long-term (≥ 1s) future locations

and scales of vehicles in image coordinates. Consider a vehicle visible in the egocentric

field of view, and let its past bounding box trajectory be X = {Xt−τ+1, Xt−τ+2, ..., Xt},
where Xt = [cxt , c

y
t , wt, ht] is the bounding box of the vehicle at time t (i.e., its cen-

ter location and width and height in pixels, respectively). Similarly, let the future

bounding box trajectory be given by Y = {Yt+1, Yt+2, ..., Yt+δ}. Given image evidence

observed from the past τ frames, O = {Ot−τ+1, Ot−τ+2, ..., Ot}, and its corresponding

past bounding box trajectory X, our goal is to predict Y. We designed a two-stream

encoder-decoder architecture [7] for FVL as shown in Fig. 4.1. Our method can be

generalized to predict trajectories of other traffic participants. Therefore we call it

future object localization (FOL) and use this term through the paper.

Figure 4.1: Future object localization (FOL) framework.

4.2.1 Two-stream Encoder

Location-Scale Encoding One straightforward approach to predict the future

location of an object is to extrapolate a future trajectory from the past. However, in

perspective images, physical object location is reflected by both its pixel location and

scale. For example, a vehicle located at the center of an image could be a nearby lead

vehicle or a distant vehicle across the intersection, and such a difference could cause a

completely different future motion. Therefore, this paper predicts both the location
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and scale of participant vehicles, i.e., their bounding boxes. The scale information

is also able to represent depth (distance) as well as vehicle orientation, given that

distant vehicles tend to have smaller bounding boxes and crossing vehicles tend to

have larger aspect ratios.

Motion-Appearance Encoding. Another important cue for predicting a vehicle’s

future location is pixel-level information about motion and appearance. Optical flow

is widely used as a pattern of relative motion in a scene. For each feature point,

optical flow gives an estimate of a vector [u, v] that describes its relative motion from

one frame to the next caused by the motion of the object and the camera. Compared

to sparse optical flow obtained from traditional methods such as Lucas-Kanade [125],

dense optical flow offers an estimate at every pixel, so that moving objects can be dis-

tinguished from the background. Also, dense optical flow captures object appearance

changes, since different object pixels may have different flows, as shown in the left part

of Fig. 4.1. In this paper, object vehicle features are extracted by cropping and resiz-

ing operation using bilinear interpolation from the optical flow map. The cropping

region is expanded from the bounding box to contain contextual information around

the object, so that its relative motion with respect to the environment is also encoded.

The resulting relative motion vector is represented as Ot = [u1, v1, u2, v2, ...un, vn]t,

where n is the size of the pooled region.

We use two encoders for temporal modeling of each input stream and apply the

late fusion method:

hXt = GRU
X

(φ
X

(Xt−1), hXt−1; θ
X

) (4.1a)

hOt = GRU
O

(φ
O

(Ot−1), hOt−1; θ
O

) (4.1b)

H = φH(Average(hXt0 , h
O
t0

)) (4.1c)

where GRU represents the gated recurrent units [126] with parameter θ, φ(·) are

linear projections with ReLU activations, and hxt and hot are the hidden state vectors

of the GRU models at time t.

4.2.2 Ego-Motion Cue

Ego-motion information of the moving camera has been shown to be necessary for

accurate future object localization [7, 42]. In this work, the ego-motion is represented

by 2D rotation matrices Rt+1
t ∈ R2×2 and translation vectors T t+1

t ∈ R2 [43], which

together describe the transformation of the camera coordinate frame from time t to
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t + 1. The relative, pairwise transformations between frames can be composed to

estimate transformations across the prediction horizon from the current frame:

Rt0+i
t0 =

t0+i−1∏
t=t0

Rt+1
t (4.2a)

T t0+i
t0 = T t0+i−1

t0 +Rt0+i−1
t0 T t0+i

t0+i−1 (4.2b)

The rotation and translation matrix are then converted to a ego-motion vector Et =

[ψtt0 , x
t
t0
, ztt0 ], where t > t0, ψtt0 is the yaw angle extracted from Rt

t0
, and xtt0 and ztt0 are

translations from the coordinate frame at time t0. We use a right-handed coordinate

fixed to ego vehicle, where vehicle heading aligns with positive x. Estimated future

motion is then used as input to the trajectory decoding model.

We predict the future ego-motion by using a separate RNN encoder-decoder mod-

ule to encode ego-position change vector Et − Et−1 and decode future ego-position

changes E = {Êt+1−Et, Êt+2−Et, ..., Êt+δ −Et}. We use the change in ego-position

to eliminate accumulated odometry errors. The output E is then combined with the

hidden state of the location-scale decoder to form the input into the next time step.

4.2.3 Trajectory Decoder

We use another GRU for decoding future bounding boxes. The decoder hidden

state is initialized from the final fused hidden state of the past bounding box encoder

and the optical flow encoder:

hYt+1 = GRU
Y

(f(hYt , Et), h
Y
t ; θ

Y
) (4.3a)

Yt+i −Xt = φout(h
Y
t+i) (4.3b)

f(hYt , Et) = Average(φ
Y

(hYt ), φe(Et)) (4.3c)

where hYt is the decoder’s hidden state, hYt = H is the initial hidden state of the

decoder, and φ(·) are linear projections with ReLU activations applied for domain

transfer. Instead of directly generating future bounding boxes Y, our RNN decoder

generates the relative location and scale of the future bounding box from the current

frame as in (4.3b), similar to [43]. In this way, model output is a relative trajectory

which improves the performance.
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4.2.4 Experiments on HEV-I and KITTI Dataset

Baselines and Ablations. We compare the performance of the proposed method

with several baselines: 1) Linear Regression (Linear) extrapolates future bounding

boxes by assuming the location and scale change are linear; 2) Constant Acceleration

(ConstAccel) assumes the object has constant horizontal and vertical acceleration in

the camera frame, i.e. that the second-order derivatives of X are constant values; 3)

Conv1D is adapted from [43], by replacing the location-scale and pose input streams

with past bounding boxes and dense optical flow. To evaluate the contribution of each

component of our model, we also implemented multiple simpler baselines for ablation

studies: 1) RNN-ED-X is an RNN encoder-decoder with only past bounding boxes

as inputs; 2) RNN-ED-XE builds on RNN-ED-X but also incorporates future ego-

motion as decoder inputs; 3) RNN-ED-XO is a two-stream RNN encoder-decoder

model with past bounding boxes and optical flow as inputs; 4)RNN-ED-XOE is our

best model as shown in Fig.4.1 with awareness of future ego-motion.

Evaluation Metrics. To evaluate location prediction, we use final displacement

error (FDE) and average displacement error (ADE) [32, 43], where ADE emphasizes

more on the overall prediction accuracy along the horizon. To evaluate bounding box

prediction, we propose a final intersection over union (FIOU) metric that measures

overlap between the predicted bounding box and ground truth at the final frame.

4.2.4.1 Results on HEV-I Dataset

Quantitative Results. As shown in Table 4.1, we split the testing dataset into

easy and challenging cases based on the FDE performance of the ConstAccel baseline.

A sample is classified as easy if the ConstAccel achieves FDE lower than the average

FDE (58.00), otherwise it is classified as challenging. Intuitively, easy cases include

target vehicles that are stationary or whose future locations can be easily propagated

from the past, while challenging cases usually involve diverse and intense motion, e.g.

the target vehicle suddenly accelerates or brakes. In evaluation, we report the results

of easy and challenging cases, as well as the overall results on all testing samples.

Our best method (RNN-ED-XOE ) significantly outperforms naive baselines in-

cluding Linear and ConstAccel on all cases (FDE of 24.92 vs. 72.37 vs. 58.00). It

also improves about 15% from the state-of-the-art Conv1D baseline. The improve-

ment on challenging cases is more significant since future trajectories are complex and

temporal modeling is more difficult. To more fairly compare the capability of RNN-
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Table 4.1: Quantitative results of proposed methods and baselines on HEV-I dataset
with metrics FDE(↓)/ADE(↓)/FIOU(↑).

Models Easy Cases Challenging Cases All Cases

Linear 31.49 / 17.04 / 0.68 107.93 / 56.29 / 0.33 72.37 / 38.04 / 0.50
ConstAccel 20.82 / 13.86 / 0.74 90.33 / 49.06 / 0.35 58.00 / 28.05 / 0.53
Conv1D [43] 18.84 / 12.09 / 0.75 37.95 / 20.97 / 0.64 29.06 / 16.84 / 0.69

RNN-ED-X 23.57 / 11.96 / 0.74 43.15 / 22.24 / 0.60 34.04 / 17.46 / 0.67
RNN-ED-XE 22.28 / 11.60 / 0.74 42.27 / 22.39 / 0.61 32.97 / 17.37 / 0.67
RNN-ED-XO 17.45 / 8.68 / 0.78 32.61 / 16.72 / 0.66 25.56 / 12.98 / 0.72
RNN-ED-XOE 16.72 / 8.52 / 0.80 32.05 / 16.63 / 0.66 24.92 / 12.86 / 0.73

ED and convolution-deconvolution models, we compare RNN-ED-XO with Conv1D.

These two methods use the same features as inputs to predict future vehicle bound-

ing boxes, but rely on different temporal modeling frameworks. The results (FDE of

25.56 vs 29.06) suggest that the RNN-ED architecture offers better temporal mod-

eling compared to Conv1D, because the convolution-deconvolution model generates

future trajectory in one shot while the RNN-ED model generates a new prediction

based on the previous hidden state. Ablation studies also show that dense optical

flow features are essential to accurate prediction of future bounding boxes, especially

for challenging cases. The FDE is reduced from 34.04 to 25.56 by adding optical flow

stream (RNN-ED-XO) to RNN-ED-X model. By using future ego-motion, perfor-

mance can be further improved as shown in the last row of Table 4.1.

Qualitative Results. Fig. 4.2(a) shows four sample results of our best model

(in green) and the Conv1D baseline (in blue). Each row represents one test sample

and each column corresponds to each time step. The past and prediction views are

separated by the yellow vertical line. Example (a) shows a case where the initial

bounding box is noisy because it is close to the image boundary, and our results

are more accurate than those of Conv1D. Example (b) shows how our model, with

awareness of future ego-motion, can predict object future location more accurately

while the baseline model predicts future location in the wrong direction. Examples

(c) and (d) show that for a curved or long trajectory, our model provides better

temporal modelling than Conv1D. These results are consistent with our evaluation

observations.

Failure Cases. Although our proposed method generally performs well, there are

still limitations. Fig.4.2(b) (a) shows a case when the ground truth future path is

curved due to uneven road surface, which our method fails to consider. In Fig.4.2(b)

(b), the target vehicle is occluded by pedestrians moving in the opposite direction,
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which creates misleading optical flow that leads to an inaccurate bounding box (espe-

cially in t = t0 frame). Future work could avoid this type of error by better modeling

the entire traffic scene as well as relations between traffic participants.

4.2.4.2 Results on KITTI Dataset

Table 4.2: Quantitative results on KITTI dataset. We compare our best model with
baselines for simplicity.

Models FDE ↓ ADE ↓ FIOU ↑

Linear 78.19 38.21 0.33
ConstAccel 55.66 25.78 0.39
Conv1D [43] 44.13 24.38 0.49

Ours 37.11 17.88 0.53

We also evaluate our method on a 38-video subset of the KITTI raw dataset,

including city, road and residential scenarios. Compared to HEV-I, the road surface

of KITTI is more uneven and vehicles are mostly parked on the side of the road

with occlusions. Another difference is that in HEV-I, the ego-vehicle often stops at

intersections to yield to other vehicles, resulting in static samples with no motion

at all. We did not remove static samples from the dataset since predicting a static

object is also valuable.

To evaluate our method on KITTI, we first generate the input features following

the same process of HEV-I dataset, resulting in ∼ 8000 training and ∼ 2700 testing

samples. Performance of baselines and our best model are shown in Table 4.2. Both

learning-based models are trained for 40 epoches and the best models are selected.

The results show that our method outperforms all baselines including the state-of-

the-art Conv1D (FDE of 37.11 vs 78.19 vs 55.66 vs 44.13). We also observe that both

learning-based methods did not perform as well as they did on HEV-I. One possible

reason is that KITTI is much smaller so that the models are not fully trained. In

general, we conclude that the use of the proposed framework results in more robust

future vehicle localization across different datasets.
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(a) Qualitative results on HEV-I dataset (better in color).

(b) Failure cases on HEV-I dataset (better in color).
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4.3 Bi-direction Trajectory Prediction with Goal Estimation

In this section, we introduce Bi-directional Trajectory Prediction (BiTraP), a

multi-modal trajectory prediction network with estimation based on a conditional

variational autoencoder (CVAE).

4.3.1 Preliminaries

A CVAE is a conditional generative model designed to output target data Y based

on latent variable Z and observation X [123]. A CVAE consists of three modules:

a conditional prior network pθ(Z|X) to model latent variable Z conditioned on

observation X, a recognition network qφ(Z|X, Y ) to capture dependencies between

Z and target Y , and a generation network pψ(Y |X,Z) to generate the target Y ,

where φ, θ, and ψ represent network parameters. Stochastic latent variable Z ∈ Rd

is sampled from a pre-defined distribution format such as a Gaussian distribution.

The CVAE samples Z and generates target Y conditioned on observation X. The

objective of a typical CVAE model is to maximize its variational lower bound

max
θ,φ,ψ

Eqφ(Z|X,Y )

[
log pψ(Y |X,Z)

]
−KL

(
qφ(Z|X, Y )||pθ(Z|X)

)
, (4.4)

where the first term maximizes the expectation of the log-likelihood of the target

in the predicted distribution; the K-L (Kullback–Leibler) divergence term minimizes

the difference between the recognition network and the conditional prior network. We

designed a modified CVAE with two generation networks and optimize both networks

end-to-end.

Our BiTraP model performs goal-conditioned multi-modal bi-directional trajec-

tory prediction in either first-person view (FPV) or bird’s eye view (BEV). Let

Xt = [Xt−τ+1, Xt−τ+2, ..., Xt] denote observed past trajectory at time t, where Xt

is bounding box location and size (x, y, w, h) in pixels for FPV [7, 12] and (x, y) po-

sition in meters for BEV [48]. Given Xt, we first estimate goal Gt of the person then

predict future trajectory Yt = [Yt+1, Yt+2, ..., Yt+δ], where τ and δ are observation

and prediction horizons, respectively. Define goal Gt = Yt+δ as the future trajectory

endpoint, which is given in training and unknown in testing. We adopt a CVAE

model to realize multi-modal goal and trajectory prediction. BiTraP contains four

sub-modules: conditional prior network pθ(Z|Xt) to model latent variable Z from

observations, recognition network qφ(Z|Xt,Yt) to capture dependencies between

Z and Yt, goal generation network pω(Gt|Xt, Z), and trajectory generation
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network pψ(Yt|Xt, Gt, Z) where φ, θ, ω and ψ represent network parameters. Either

parametric or non-parametric models can be used to design networks pψ and pω for

CVAE. Non-parametric models do not assume the distribution format of target Yt

but learn it implicitly by learning the distribution of Z. Parametric models assume

a known distribution format for Yt and predict distribution parameters. We design

non-parametric and parametric models in Sections 4.3.2 and 4.3.4, respectively, and

explain different loss functions to train these models in Sections 4.3.3 and 4.3.5.

4.3.2 BiTraP with Non-parametric (NP) Distribution

BiTraP-NP is built on a standard recurrent neural network encoder-decoder (RNN-

ED) based CVAE trajectory predictor as in [54, 63, 124, 56], except it predicts goal

first and then predict trajectories leveraging goals. Following previous work, we

assume Gaussian latent variable Z ∼ N (µZ , σZ) and a non-parametric target distri-

bution format. Fig. 4.3 shows the network architecture of BiTraP-NP.

Figure 4.3: Overview of our BiTraP-NP network. Red, blue and black arrows show
processes that appear in training only, inference only, and both training and inference,
respectively.

Encoder and goal estimation. First, observed trajectory Xt is processed by a

gated-recurrent unit (GRU) encoder network to obtain encoded feature vector ht. In

training, ground truth target Yt is encoded by another GRU yielding hYt . Recog-

nition network qφ(Z|Xt,Yt) takes ht and hYt to predict distribution mean µZq and

covariance ΣZq which capture dependencies between observation and ground truth

target. Prior network pθ(Z|Xt) assumes no knowledge about target and predicts µZp

and ΣZp using ht only. Kullback–Leibler divergence (KLD) loss between N (µZp ,ΣZp)

and N (µZq ,ΣZq) is optimized so that dependency between Yt and Xt is implicitly

learned by the prior network. Latent variable Z is sampled from N (µZq ,ΣZq) and

concatenated with ht to predict multi-modal goals Ĝt with goal generation network
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pω(Gt|Xt, Z). In testing, we directly draw multiple samples from N (µZp ,ΣZp) and

concatenate ht to predict estimated goals Ĝt. We use 3-layer multi-layer perceptrons

(MLPs) for prior, recognition and goal generation networks.

Trajectory Decoder. Predicted goals Ĝt are used as inputs to a bi-directional

trajectory generation network pψ(Yt|Xt, Ĝt, Z), the trajectory decoder, to predict

multi-modal trajectories. BiTraP’s decoder contains forward and backward RNNs.

The forward RNN is similar to a regular RNN decoder (Eq. (4.5)) except its output is

not transformed to trajectory space. The backward RNN is initialized from encoder

hidden state ht. It takes estimated goal Ŷt+δ = Ĝt as the initial input (Eq. (4.6)) and

propagates from time t+δ to t+1 so backward hidden state is updated from the goal

to the current location. Forward and backward hidden states for the same time step

are concatenated to predict the final trajectory way-point at that time (Eq. (4.7)).

These steps can be formulated as

hft+1 = GRUf (h
f
t ,W

i
fh

f
t + bif ), (4.5)

hbt+δ−1 = GRUb(h
b
t+δ,W

i
b Ŷt+δ + bib), (4.6)

Ŷt+δ−1 = W o
f h

f
t+δ−1 +W o

b h
b
t+δ−1 + bo, (4.7)

where, f , b, i and o indicate “forward”, “backward”, “input” and “output” respec-

tively, and hft and hbt+δ are initialized by passing ht through two different fully-

connected networks.

4.3.3 Residual Prediction and BoM Loss for BiTraP-NP

Instead of directly predicting future location [12] or integrating from predicted

future velocity [48], BiTraP-NP predicts change with respect to the current location

based on residuals Ŷt+δ = Yt+δ − Xt. There are two advantages of residual predic-

tion. First, it assures the model will predict the trajectory starting from the current

location, providing smaller initial loss than predicting location from scratch. Second,

the residual target can be less noisy than the velocity target due to the fact that

trajectory annotation is not always accurate. Standard CVAE loss includes NLL loss

of the predicted distribution which is not applicable to NP methods due to their un-

known distribution format. L2 loss between predictions and targets can be used as

a substitution [54]. To further encourage diversity in multi-modal prediction, we use

best-of-many (BoM) L2 loss as in [124]. The final loss function for BiTraP-NP is a

combination of the goal L2 loss, the trajectory L2 loss and the KL-divergence loss
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between prior and recognition networks, written as

LNP = min
i∈N

∥∥∥Gt −Xt − Ĝi
t

∥∥∥+ min
i∈N

t+δ∑
τ=t+1

∥∥∥Yτ −Xt − Ŷ i
τ

∥∥∥+KLD, (4.8)

where Ĝt and Ŷτ are the predicted goal and trajectory waypoints with respect to

current position Xt.

4.3.4 BiTraP with GMM Distribution

Figure 4.4: Latent space sampling and decoder modules of BiTraP-GMM. The ellipse
shows one of K GMM components at each timestep. The rest of the network is the
same as BiTraP-NP in Fig. 4.3.

Parametric models predict trajectory distribution parameters instead of trajec-

tory coordinates. BiTraP-GMM is our parametric variation of BiTraP assuming a

GMM for the trajectory goal and at each way-point [58, 48]. Let p(Yt+δ) denote a K-

component GMM at time step t+δ. We assume p(Yt+δ) =
∑K

i=1 πiN (Yt+δ|µit+δ,Σi
t+δ),

where each Gaussian component can be considered the distribution of one trajec-

tory modality. Mixture component weights πi sum to one thus form a categorical

distribution. Each πi indicates the probability (confidence) that a person’s motion

belongs to that modality. We design latent vector Z as a categorical (Cat) vari-

able Z ∼ Cat(K, π1:K) parameterized by GMM component weights π1:K rather than

separately-computed parameters. Similar to BiTraP-NP, we use three 3-layer MLPs

for the prior, recognition and goal generation networks, and a bi-directional RNN

decoder for the trajectory generation network. Instead of directly predicting trajec-

tory coordinates, generation networks of BiTraP-GMM estimate the µit+δ and Σi
t+δ

of the ith Gaussian components at time t + δ. In training, we sample one Z from

each category to ensure all trajectory modalities are trained. In testing, we sample Z

from Cat(K, π1:K) so it is more probable to sample from high-confidence trajectory

modalities.
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4.3.5 Bi-directional NLL Loss for BiTraP-GMM

Similar to [48], our BiTraP-GMM models the pedestrian velocity distribution as a

GMM at each time step. The velocity GMM is then integrated forward to obtain the

GMM distribution of trajectory waypoints Yt+δ as shown by blue blocks in Fig. 4.4.

We assume linear dynamics for pedestrian and use a single integrator as in Eq. (4.9).

The loss function is then the summation of negative log-likelihood (NLL) of the

ground truth future waypoints over the prediction horizon, formulated as

GMMYt+δ(π̂
1:K
t+δ , µ̂

1:K
t+δ , Σ̂

1:K
t+δ ) = Xt +

∫ t+δ

t

GMMvτ (π
1:K
τ , µ1:K

τ ,Σ1:K
τ )dτ, (4.9)

NLLfwd =
t+δ∑
τ=t

− log p(Yτ |π̂1:K
τ , µ̂1:K

τ , Σ̂1:K
τ ), (4.10)

where π1:K
τ , µ1:K

τ , Σ1:K
τ are velocity GMM parameters at time τ ∈ [t+1, t+δ], and the

·̂ symbol indicates location GMM parameters obtained from integration. p(·) is the

GMM probability density function. Such an NLL emphasizes earlier waypoints along

the prediction horizon because a waypoint at time t+ 1 is used in integration results

over t + 2, t + 3, ..., while these later waypoints are not used when computing t + 1.

This goes against our proposed idea which is to leverage a bi-directional temporal

model. Therefore, we compute bi-directional NLL loss with reverse integration from

the goal, formulated as

GMM ′
Yt(π̃

1:K
t , µ̃1:K

t , Σ̃1:K
t ) = Gt −

∫ t

t+δ

GMMvτ (π
1:K
τ , µ1:K

τ ,Σ1:K
τ )dτ, (4.11)

NLLbwd =
t∑

τ=t+δ

− log p′(Yτ |π̃1:K
τ , µ̃1:K

τ , Σ̃1:K
τ ). (4.12)

where p(·)′ is the backward GMM probability density function, the ·̃ symbol indicates

backward location GMM parameters. The final loss function for BiTraP-GMM can

be written as

LGMM = − log p
G

(Gt|π̂1:K
G , µ̂1:K

G , Σ̂1:K
G ) +NLLfwd +NLLbwd +KLD, (4.13)

where the first term is NLL loss of the goal estimation, +NLLfwd and NLLbwd

are computed from forward and backward integration, the KLD term is the KL-

divergence similar to Eq. (4.8).
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4.3.6 Implementation Details

In this section, we empirically evaluate BiTraP-NP and BiTraP-GMM models

on both first-person view (FPV) and bird’s eye view (BEV) trajectory prediction

datasets. We also provide a comparative study and discussion on the effects of model

and loss selection.

Two FPV datasets, Joint Attention for Autonomous Driving (JAAD) [75] and

Pedestrian Intention Estimation (PIE) [12], and two benchmark BEV datasets,

ETH [27] and UCY [28], were used in our experiments. JAAD contains 2,800 pedes-

trian trajectories captured from dash cameras annotated at 30Hz. PIE contains 1,800

pedestrian trajectories also annotated at 30Hz, with longer trajectories and more com-

prehensive annotations such as semantic intention, ego-motion and neighbor objects.

ETH-UCY datasets contain five sub-datasets captured from down-facing surveillance

cameras in four different scenes with 1,536 pedestrian trajectories annotated at 2.5Hz.

We used the standard training/testing splits of JAAD and PIE as in [12]. A 0.5-

second (15 frame) observation length and 1.5-second (45 frame) prediction horizon

were used for evaluation. For ETH-UCY, a standard leave-one-out approach based on

scene was used per [51, 48]. We observed trajectories for 3.2 seconds (8 frames) and

predicted the paths for the next 4.8 seconds (12 frames). We used hidden unit size 256

for all encoders and decoders in BiTraP across all datasets. All models were trained

with batch size 128, learning rate (LR) 0.001, and an exponential LR scheduler [48]

on a single NVIDIA TITAN XP GPU.

4.3.7 Experiments on JAAD and PIE Datasets

Baselines. We compare our results against the following baseline models: 1) Linear

Kalman filter, 2) Vanilla LSTM model, 3) Bayesian-LSTM model (B-LSTM) [42], 4)

PIEtraj, an attentive RNN encoder-decoder model, 5) PIEfull, a multi-stream atten-

tive RNN model, by injecting ego-motion and semantic intention stream to PIEtraj,

and 6) FOL-X [7], a multi-stream RNN encoder-decoder model using residual predic-

tion. We also conducted an ablation study for a deterministic variation of our model

(BiTraP-D), where the multi-modal CVAE module was removed.

Evaluation Metrics. Following [7, 12, 42], our BiTraP model was evaluated using:

1) bounding box Average Displacement Error (ADE), 2) box center ADE (CADE) and

3) box center Final Displacement Error (CFDE) in squared pixels. For our multi-modal

BiTraP-NP and BiTraP-GMM, we compute the best-of-20 results (the minimum ADE

and FDE from 20 randomly-sampled trajectories), following [51, 48, 52]. We also
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report the Kernel Density Estimation-based Negative Log Likelihood (KDE-NLL)

metric for BiTraP-NP and BiTraP-GMM, which evaluates the NLL of the ground

truth under a distribution fitted by a KDE on trajectory samples from each prediction

model [48, 127]. For all metrics, lower values are better.

Results. Table 4.3 presents trajectory prediction results with JAAD and PIE

datasets. Our deterministic BiTraP-D model shows consistently lower displacement

errors across various prediction horizons than baseline methods such as PIEtraj and

FOL-X indicating our goal estimation and bi-directional prediction modules are effec-

tive. Our BiTraP-D model, based only on past trajectory information, also outper-

forms the state-of-the-art PIEfull, which requires additional ego-motion and semantic

intention annotations. Table 4.3 also shows that non-parametric multi-modal method

BiTraP-NP performs better on displacement metrics while parametric method BiTraP-

GMM performs better on the NLL metric. This difference illustrates the objectives

of these methods: BiTraP-NP generates diverse trajectories, and one trajectory was

optimized to have minimum displacement error, while BiTraP-GMM generates tra-

jectory distributions with more similarity to the ground truth trajectory.

Table 4.3: Results on JAAD and PIE datasets. The center row shows deterministic
baselines including our ablation model BiTraP-D; the bottom row shows our proposed
multi-modal methods. NLL is not available for deterministic methods since they
predict single trajectories. Lower values are better.

Methods
JAAD PIE

ADE CADE CFDE NLL ADE CADE CFDE NLL
(0.5/1.0/1.5s) (1.5s) (1.5s) (0.5/1.0/1.5s) (1.5s) (1.5s)

Linear [12] 233/857/2303 1565 6111 - 123/477/1365 950 3983 -
LSTM [12] 289/569/1558 1473 5766 - 172/330/911 837 3352 -
B-LSTM [42] 159/539/1535 1447 5615 - 101/296/855 811 3259 -
FOL-X [7] 147/484/1374 1290 4924 - 47/183/584 546 2303 -
PIEtraj [12] 110/399/1280 1183 4780 - 58/200/636 596 2477 -
PIEfull [12] - - - - -/-/556 520 2162 -

BiTraP-D 93/378/1206 1105 4565 - 41/161/511 481 1949 -
BiTraP-NP (20) 38/94/222 177 565 18.9 23/48/102 81 261 16.5
BiTraP-GMM (20) 153/250/585 501 998 16.0 38/90/209 171 368 13.8

Fig. 4.5 shows trajectory prediction results on sample frames from the PIE dataset.

We observed that when a pedestrian intends to cross the street or change directions,

the multi-modal BiTraP methods yield higher accuracy and more reasonable predic-

tions than the deterministic variation. For example, as shown in Fig. 4.5(b), the

deterministic BiTraP-D model (top row) can fail to predict the trajectory and the

end-goal, where a pedestrian intends to cross the street in the future; the multi-modal

BiTraP-NP model (bottom row) can successfully predict multiple possible future tra-
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jectories, including one where the pedestrian is crossing the street matching ground

truth intention. Similar observations can be made in other frames. This result indi-

cates multi-modal BiTraP-NP can predict multiple possible futures, which could help

a mobile robot or a self-driving car safely yield to pedestrians. Although BiTraP-NP

samples diverse trajectories, it still predicts distribution with high likelihood around

ground truth targets and low likelihood in other locations per Fig. 4.5(b)-4.5(d).

(a) (b) (c) (d)

Figure 4.5: Qualitative results of deterministic (top row) vs multi-modal (bottom row)
bi-directional prediction. Past (dark blue), ground truth future (red) and predicted
future (green) trajectories and final bounding box locations are plotted. In the bottom
row, each BiTraP-NP likelihood heatmap fits a KDE over samples. The orange color
indicates higher probability.

4.3.8 Experiments on ETH-UCY Datasets

Baselines. We compare our methods with five multi-modal baseline methods: S-

GAN [51], SoPhie [52], S-BiGAT [53], PECNet [63] and Trajectron++ [48]. PECNet

and Trajectron++ are most recent. PCENet is a goal-conditioned method using

non-parametric distribution (thus directly comparable to our BiTraP-NP) while Tra-

jectron++ uses a GMM trajectory distribution directly comparable to our BiTraP-

GMM. Note that all baselines incorporate social information while our methods fully

focus on investigating trajectory modeling and do no require social information input.

Evaluation Metrics. Following [51, 63, 52], we used best-of-20 trajectory ADE

and FDE in meters as evaluation metrics. We also report Average and Final KDE-

NLL (ANLL and FNLL) metrics as a supplement [127, 48] to evaluate the predicted

trajectory and goal distribution.

Results. Table 4.4 shows the best-of-20 ADE/FDE results across all methods.

We observed that BiTraP-NP outperforms the state-of-the-art goal based method
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(PECNet) by a large margin (∼ 12%−51%), demonstrating the effectiveness of our bi-

directional decoder module. BiTraP-NP also obtains lower ADE/FDE on most scenes

(∼ 12%-24% improvement) compared with Trajectron++. Our BiTraP-GMM model

was trained using NLL loss, so it shows higher ADE/FDE results compared with

BiTraP-NP. This is consistent with our FPV dataset observations in Section 4.3.7.

Nevertheless, BiTraP-GMM still achieves similar or better results than PECNet and

Trajectron++.

Table 4.4: Trajectory prediction results (ADE/FDE) on BEV ETH-UCY datasets.
Lower is better.

Datasets S-GAN [51] SoPhie [52] S-BiGAT [53] PECNet [63] Trajectron++ [48] BiTraP-NP BiTraP-GMM

ETH 0.81/1.52 0.70/1.43 0.69/1.29 0.54/0.87 0.43/0.86 0.37/0.69 0.40/0.74
Hotel 0.72/1.61 0.76/1.67 0.49/1.01 0.18/0.24 0.12/0.19 0.12/0.21 0.13/0.22
Univ 0.60/1.26 0.54/1.24 0.55/1.32 0.35/0.60 0.22/0.43 0.17/0.37 0.19/0.40
Zara1 0.34/0.69 0.30/0.63 0.30/0.62 0.22/0.39 0.17/0.32 0.13/0.29 0.14/0.28
Zara2 0.42/0.84 0.38/0.78 0.36/0.75 0.17/0.30 0.12/0.25 0.10/0.21 0.11/0.22

Average 0.58/1.18 0.54/1.15 0.48/1.00 0.29/0.48 0.21/0.39 0.18/0.35 0.19/0.37

To further evaluate predicted trajectory distributions, we report KDE-NLL results

in Table 4.5. As shown, BiTraP-GMM outperforms Trajectron++ with lower ANLL

and FNLL on ETH, Univ, Zara1 and Zara2 datasets. On Hotel, Trajectron++

achieves lower NLL values which may be due to the possible higher levels of inter-

personal interactions than in other scenes. We observed improved ANLL/FNLL on

Hotel (-1.88/0.27) when combining the BiTraP-GMM decoder with the interaction

encoder in [48], consistent with our hypothesis.

Table 4.5: Average-NLL/Final-NLL (ANLL/FNLL) results on ETH-UCY datasets.
Lower is better.

Datasets S-GAN [51] Trajectron++ [48] BiTraP-NP BiTraP-GMM

ETH 15.70/- 1.31/4.28 3.80/3.79 0.96/3.55
Hotel 8.10/- -1.94/0.25 -0.41/1.26 -1.60/0.51
Univ 2.88/- -1.13/2.13 -0.84/2.15 -1.19/2.03
Zara1 1.36/- -1.41/1.83 -0.81/1.85 -1.51/1.56
Zara2 0.96/- -2.53/0.50 -1.89/1.31 -2.54/0.38

We also computed KDE-NLL results for both Trajectron++ and BiTraP-GMM

methods at each time step to analyze how BiTraP affects both short-term and longer-

term (up to 4.8 seconds) prediction results. Per Fig. 4.6, BiTraP-GMM outperforms

Trajectron++ with longer prediction horizons (after 1.2 seconds on ETH, Univ, Zara1,

and Zara2 ). This shows the backward passing from the goal helps reduce error with

longer prediction horizon.
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Figure 4.6: KDE-NLL results on the ETH-UCY dataset per timestep up to 4.8 sec-
onds.

Fig. 4.7 shows qualitative examples of our predicted trajectories using the BiTraP-

NP and BiTraP-GMM models. As shown, BiTraP-NP (top row) generates future

possible trajectories with a wider spread (more diverse), while BiTraP-GMM gener-

ates more compact distributions. This is consistent with our quantitative evaluations

as reported in Table 4.5, where the lower NLL results of BiTraP-GMM correspond

to more compact trajectory distributions. To intuitively present model performance

in collision avoidance and robot navigation, we conducted a robot path simulation

experiment on ETH-UCY dataset and report collision related metrics in the supple-

mentary material.

(a) Hotel (b) Univ (c) Zara2 (d) ETH

Figure 4.7: Visualizations of BiTraP-NP (first row) and BiTraP-GMM (second row).
Twenty sampled future trajectories are plotted. For BiTraP-GMM, we also plot
end-point GMM distributions as colored ellipses. Size indicates component Σk and
transparency indicates component weight πk.

Ablation study. We conducted two ablation experiments. To show bi-directional

decoder effectiveness, we removed the backward decoder from BiTraP-NP and com-

pared its performance with the original BiTraP-NP model (w/o backward (TraP-NP)

vs w/ backward). To show bi-directional loss effectiveness in BiTraP-GMM, we com-
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pared two BiTraP-GMM models trained with forward loss and bi-directional loss (w/o

bi-loss vs w/ bi-loss). A comparison of ADE/FDE and ANLL/FNLL results is pre-

sented in Table 4.6. Using a bi-directional decoder (BiTraP-NP) improves ADE/FDE

by 10%-28% (ANLL/FNLL by ∼0.4) from the model without backward decoder. By

using bi-directional loss (bi-loss), the ADE/FDE of BiTraP-GMM model improves by

5-18% on ETH, and ANLL/FNLL improves by ∼0.25.

Computational time. We provide model inference time of Social GAN [51],

Trajectron++ [48] and our BiTraP-NP and BiTraP-GMM models in Table 4.7. Tra-

jectron++ generates scene graphs before running the model so computation time is

summed over scene graph generation and model inference. For Social GAN and our

method, total time consists of model inference time only. We show computational

times for number of samples 20 and 2000. Time differences of BiTraP models between

the two numbers are ∼ 3ms, while the difference of S-GAN is extremely large as it

generates samples one-by-one. BiTraP-GMM is ∼ 3ms slower than Trajectron++,

not significant since both methods run at ∼ 70ms per frame (∼ 14 FPS) on average.

BiTraP-NP is about 8x faster than Trajectron++ and BiTraP-GMM since it does not

fit a GMM model or perform dynamic integration. Adding the bi-directional decoder

slows inference by ∼ 3ms (TraP-NP vs BiTraP-NP). All experiments are conducted

on the same machine used for training.

Table 4.6: Ablation study results (ADE/FDE and ANLL/FNLL). Lower is better.

Method
BiTraP-NP BiTraP-GMM

w/o backward (TraP-NP) w/ backward w/o bi-loss w/ bi-loss

ADE/FDE ANLL/FNLL ADE/FDE ANLL/FNLL ADE/FDE ANLL/FNLL ADE/FDE ANLL/FNLL
ETH 0.44/0.96 4.20/4.45 0.37/0.69 3.80/3.79 0.43/0.80 1.11/3.81 0.40/0.74 0.96/3.55
Hotel 0.13/0.23 -0.17/1.64 0.12/0.21 -0.41/1.26 0.16/0.25 -1.32/0.80 0.13/0.22 -1.60/0.51
Univ 0.21/0.43 -0.21/2.78 0.17/0.37 -0.84/2.15 0.20/0.41 -1.16/2.06 0.19/0.40 -1.19/2.03
Zara1 0.15/0.31 -0.37/2.27 0.13/0.29 -0.81/1.85 0.19/0.35 -0.90/2.12 0.14/0.28 -1.51/1.56
Zara2 0.12/0.23 -1.70/1.54 0.10/0.21 -1.89/1.31 0.13/0.25 -2.38/0.64 0.11/0.22 -2.54/0.38

Table 4.7: Computational times with 20/2000 samples.

Method Scene Graph Model inference Total

S-GAN[51] N/A 103/10445 ms 103/10300 ms
Trajectron++[48] 11ms 55/58 ms 66/69 ms

TraP-NP N/A 5.3/5.9 ms 5.3/5.9 ms
BiTraP-NP N/A 8.3/9.1 ms 8.3/9.1 ms

BiTraP-GMM N/A 69/72ms 69/72ms
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4.3.9 Experiments on NuScenes Dataset

To further present the performance of BiTraP in bird’s eye view autonomous

driving scenarios, we evaluate on the nuScenes dataset [8]. The nuScenes dataset

contains trajectories collected from 850 scenes, 700 for training and 150 for testing [8].

We followed [48] to extract training and testing trajectories and trained our model

using the same configurations as in ETH-UCY experiment. Note that we treat the

pedestrian/vehicle position at 4 seconds in the future as the target of our goal or

end-point during training.

Evaluation metrics. To be comparable with [48], the most-likely (ML) prediction

is used to compute the final displacement error (FDE). We also use the kernel density

estimation negative log-likelihood (KDE NLL) as in our other experiments.

Table 4.8: Pedestrian-only trajectory prediction results on nuScenes dataset.

Method
KDE NLL FDE ML

@1s @2s @3s @4s @1s @2s @3s @4s

Trajectron++ base [48] -2.69 -2.46 -1.76 -1.09 0.03 0.17 0.37 0.60
Trajectron++

∫
, map [48] -5.58 -3.96 -2.77 -1.89 0.01 0.17 0.37 0.62

BiTraP-GMM (ours) -6.08 -4.21 -2.98 -2.05 0.02 0.15 0.35 0.58

Table 4.9: Vehicle-only trajectory prediction results on nuScenes dataset.

Method
FDE ML

@1s @2s @3s @4s

Trajectron++ base [48] 0.18 0.57 2.25 2.24
Trajectron++

∫
, map [48] 0.07 0.45 1.14 2.20

BiTraP-GMM (ours) 0.08 0.43 1.06 1.99

Results. As can be seen in Table 4.8, adding dynamic integration and map encoding

to the base Trajectron++ improved the distribution accuracy by a large margin

but does not affect the FDE ML, indicating similar modes but smaller variances of

the predicted distributions. Trajectron++ based methods used interactions and/or

encoded map as inputs while our BiTraP-GMM only takes target pedestrians past

trajectory. As in Table 4.8, BiTraP-GMM improves the KDE-NLL at all evaluated

time steps and also improves FDE after 2 seconds, showing how does the bi-directional

strategy improves prediction accuracy. Note that the Trajectron++ benchmark lacks

a ablation with integration but not map encoding (e.g. Trajectron++
∫

) to show
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the necessity of map. However, our experiment shows that map may not be a very

important information when predicting pedestrian trajectories on nuScenes dataset

since BiTraP-GMM outperforms “Trajectron++
∫

, map”.

4.3.10 Robot Navigation Simulation Experiment Using BiTraP

To quantitatively analyze application of the BiTraP-GMM and BiTraP-NP models

to robot navigation tasks, we designed a simulated robot navigation experiment based

on the ETH-UCY bird’s-eye view dataset. In this experiment, given predicted pedes-

trian trajectory distributions in a scene using our BiTraP models and pre-planned

paths for a robot, we show that we are able to compute the collision likelihood for

each path, and thus are able to predict collision rate and select the safest path for

the robot. Assuming a mobile robot navigates among pedestrians, we present results

on two tasks: 1) Select the safest path for the robot and 2) Predict whether a path

will collide with any other pedestrians in the scene. In this section, we first introduce

our experiment setup. Then, we present evaluation results of our BiTraP models on

path selection and collision prediction tasks.

Figure 4.8: Generation of Monte Carlo (MC) robot trajectories for collision detection
experiments using Bezier curves. We illustrate five MC trajectory samples including
start (robot icon) and end (red star) waypoints. Predicted trajectory distributions of
neighbor pedestrians are plotted as a heat map; their walking directions are indicated
by black arrows.

Experimental Setup. We selected all samples with more than one pedestrian in the

test split [51] from ETH-UCY. Each sample has a node pedestrian (the pedestrian

used for testing in previous work) and several neighbor pedestrians (the pedestri-

ans used for social modeling in previous work) as in [51, 48]. We regard the node

pedestrian as a ”robot” navigating among other neighbor pedestrians. The starting

and goal points of the ”robot” are the same as the current position and goal point
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of the node pedestrian. A sample scene with one “robot” navigating among four

other pedestrians is shown in Fig. 4.8. For the robot, 100 Monte Carlo (MC) paths

were generated from start state to end point following quadratic and cubic Bezier

curves [128]. Other more complex path planners could be used to generate additional

experimental datasets. We assume the robot must reach the designated goal in 12

time steps, matching the prediction horizon for the pedestrian node in each scene. We

uniformly generate waypoints along the path and randomly shift each by up to ±50%

of the step length, resulting in a trajectory sequence containing 12 random waypoints.

Other pedestrians follow their original (ground truth) trajectories in the scene. For

each neighbor pedestrian, we run BiTraP-NP and BiTraP-GMM separately. Each

method samples 2000 future trajectories to fit one Gaussian Kernel Density Estima-

tion (KDE) model for each pedestrian as the predicted future distribution. Then,

we compute the maximum KDE log-likelihood of all the waypoints on all robot MC

paths and treat this log-likelihood value as a collision score. The higher the collision

score, the more likely a collision will happen along this path. Given these collision

scores, we compute the safest path collision rate (SPCR) as reported in Task 1 below.

Receiver operating characteristic (ROC) and precision-recall (P-R) curve results are

reported in Task 2.

Task 1: Predict the Safest Path. We mark the robot MC path in each scene

with minimum collision score as the “safest” (lowest collision likelihood) path. Then,

we compute Euclidean distances between each safest path waypoint and other pedes-

trians’ ground truth future trajectories. A collision is tallied if the minimum distance

between a path and any pedestrians in the scene is less than 0.2 meters. Collision

rate is computed as the number of paths with collision divided by the total num-

ber of safest paths. Due to the randomness in MC path generation, we conducted

the simulation experiment five times with BiTraP-NP and BiTraP-GMM predictors

separately and report collision rate mean (µ) and standard deviation (σ) values in

Table 4.10. As a comparison, we also present the collision rate of a randomly se-

lected path among the 100 MC paths. The randomly selected paths do not have very

high collision rates since the paths are planned based on pedestrian ground truth

start and goal positions which are less likely to be involved in a collision. Compare

to randomly selected paths, paths selected by our methods reduce the SPCR by a

large margin. This shows that our predictors are effective for safest path selection.

Both of our BiTraP methods achieve collision rate lower than 1% on ETH, Hotel and

Zara1 datasets. The Univ dataset is more difficult due to its high pedestrian density,

and Zara2 is most difficult because many pedestrian trajectories are quite close to
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each other. BiTraP-GMM shows lower SPCRs than BiTraP-NP on four datasets,

indicating that it predicted more accurate (compared to ground truth) distributions.

On Zara1, BiTraP-NP outperforms BiTraP-GMM by a small margin. BiTraP-NP

ANLL and FNLL metric values as reported in the main paper are still higher than

BiTraP-GMM values. A possible explanation is that BiTraP-NP predicts more diverse

distributions thus detects some collisions not identified by BiTraP-GMM.

Task 2: Predict Collision for Any Path. The collision rate metric above only

evaluates the safest path as selected by a trajectory predictor thus neglects all other

paths. In the real-world, a trajectory predictor must be sufficiently accurate for the

robot to accurately predict future collisions with high precision with a low missing

rate (high true positive rate, TPR) and a low false alarm rate (low false positive

rate, FPR). To show the performance of BiTraP-NP and BiTraP-GMM predictors in

terms of these metrics, we plotted the collision prediction ROC curve and P-R curve

as follows. First, we collected all MC paths for the robot and tallied their collision

scores. By setting a threshold γ, we can classify a path as collided (positive) or not

collided (negative) and compute the TPR (i.e., recall), FPR and precision values.

The ground truth label of each path is computed in the same way as before. By

decreasing γ from a maximum value to minimum value (6 and -10 in this work), we

plot the ROC and P-R curves shown in Fig. 4.9. The corresponding area under curve

(AUC) and average precision (AP) are presented in Table 4.10. In this work, AP is

computed by equally spaced recall levels {1/40, 2/40,...,1} following [129].

Table 4.10: SPCR(µ ± σ), AUC and AP results of our methods on ETH-UCY data
group.

Random from 100 BiTraP-NP BiTraP-GMM
(SPCR) (SPCR/AUC/AP) (SPCR/AUC/AP)

ETH 0.6± 0.4% 0.3± 0.1%/ 92.3/ 24.2 0.1± 0.1%/95.5/26.0
HOTEL 0.4± 0.3% 0.1± 0.1%/ 86.4/ 22.4 0.0± 0.0%/91.6/29.1

Univ 8.5± 1.4% 5.8± 0.5%/ 81.0/ 33.4 3.6± 0.2%/87.6/43.4
Zara1 2.4± 0.5% 0.6± 0.2%/ 88.9/ 38.6 0.8± 0.3%/90.4/41.6
Zara2 6.1± 0.6% 3.2± 0.1%/ 81.0/ 44.0 2.5± 0.3%/87.5/52.6

As shown in Fig. 4.9 and Table 4.10, both BiTraP-NP and BiTraP-GMM meth-

ods achieve high AUCs (e.g., > 90 on ETH ). Generally, BiTraP-GMM outperforms

BiTraP-NP by a small margin in terms of both AUC and AP (e.g., 95.5 vs 92.3

AUC, and 26.0 vs 24.2 AP on ETH ). Note that in real-world mobile robot applica-

tions missed collision detection (false negative) is unacceptable due to safety. That
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is to say, a high TPR (recall) is required. As can be observed in the higher TPR

regions (x-axis) of the P-R curves, BiTraP-GMM outperforms BiTraP-NP on ETH

(Fig. 4.9(a)) and Hotel (Fig. 4.9(b)), and both methods perform similarly on Zara1

(Fig. 4.9(d)). On Univ (Fig. 4.9(c)) and Zara2 (Fig. 4.9(e)), when the TPR is greater

than a relatively high value (say 0.8), the FPR are higher (> 0.2) than in the other

datasets, indicating increased chance of false alarms on these two datasets.

Compared to the ROC curve, the P-R curve is more suitable for imbalanced

datasets due to the fact that it evaluates the fraction of true positives among positive

predictions. This fits our case where the ratio of with-collision to no-collision paths

is around 1:140, a large imbalance. On Univ and Zara2 (Fig. 4.9(c) and 4.9(e)),

BiTraP-GMM has higher precision than BiTraP-NP across almost all recall values.

On the other hand, on ETH, Hotel and Zara1 (Fig. 4.9(a) 4.9(b) and 4.9(d)), the two

methods achieve similar precision at higher recall regions (e.g., when recall > 0.6).

This is because when the threshold γ is too low, many paths are predicted as collided

by both methods.

The ROC and P-R curves also verified our observation regarding the diversity

of the predicted trajectory distribution as described in the main paper. At a fixed

TPR on the ROC curves, we observe that BiTraP-NP always has a greater FPR than

BiTraP-GMM, consistent with our hypothesis that BiTraP-NP predicts more diverse

distributions, thus predicts more false alarms. Similarly, with fixed recall in P-R

curves, BiTraP-NP has lower precision due the greater number of false alarms.

In summary, this simulated robot collision experiment demonstrated our proposed

BiTraP trajectory predictor can be used in future robotic applications, such as pre-

dicting collisions and selecting safest paths in robot navigation tasks. Results from

this supplementary experiment are consistent with our main paper’s observations

and further verify our hypothesis regarding the diversity/compactness of predicted

trajectory distributions, i.e., BiTraP-NP predicts more diverse distributions while

BiTraP-GMM predicts more compact distributions. The SPCR, ROC (AUC) and P-

R (AP) metrics used in this experiment act as a supplement to the currently reported

and widely used ADE/FDE and KDE-NLL metrics in the main paper. We believe

these additional metrics and experiments offer an intuitive and complementary per-

formance evaluation of the two proposed BiTraP models (NP and GMM) and their

applications for tasks such as collision prediction and path selection.
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(a) ETH (b) Hotel

(c) Univ (d) Zara1

(e) Zara2

Figure 4.9: ROC (left) and P-R (right) curves of BiTraP-NP and BiTraP-GMM on
ETH dataset.

4.4 Pedestrian Intent and Action Detection

4.4.1 Crossing Intent Detection using Action Detection and Prediction

Pedestrian crossing intent describes a person’s underlying plan to cross a street.

Previous work has defined this problem as a binary classification (i.e. “will cross”

vs “will not cross”) of video clips. Given a fixed-length sequence of observations

{I1, I2, ..., It} for a pedestrian in a video, a classification model predicts the proba-

bility of this person’s crossing intent at time t, notated as it. Instead of video clip

classification, we propose classifying each observed frame based on itself and the past

frames encoded by a RNN network, called online action/intent detection [1, 73]. On-

line detection has two advantages compare to clip classification: 1) The hidden state

contains information from a longer history than a constant video clip; 2) Online de-

tection saves computation time by only processing one frame instead of one clip at

each time. A model trained with only binary class intent supervision might miss infor-

mation that describes pedestrian action and context. For example, a person walking
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Figure 4.10: Intent detection based on action detection and prediction.

towards a crosswalk and a person waiting in front of a crosswalk can both be classified

as “will cross”. However, the difference between their actions and contexts, essential

to the “will cross” intent, are not captured by such a model. Therefore, we propose to

train a multi-task neural network which detects both the crossing intent [i1, i2, ..., it]

and semantic actions [a1, a2, ..., at]. In addition to detecting the present action, we be-

lieve that predicting future action is essential to crossing intent understanding, since

intent describes the underlying action that also can impact the future. For example,

in Fig. 4.10, a predicted “crossing” or “walking towards crosswalk” action indicates a

high confidence in “will cross” intent. Thus, we introduce an action predictor module

which takes the observation feature to predict the actions in δ frames, notated as

[at+1, at+2, ..., at+δ]. In this section, we describe a novel multi-task intent detection

network with action detection and prediction.

Intent-action encoder. First, we extracted visual features from an image patch

around the target pedestrian using a pre-trained deep convolutional neural network

(CNN) as in [12]. As shown in Fig. 4.11, the image patch is a square region defined

by an enlarged pedestrian bounding box that includes not only the person but also

context information such as ground, curb, crosswalk, etc. The bounding box coordi-

nates [top, left, bottom, right] are passed through a fully-connected (FC) network to

obtain location-scale embedding. The intent-action encoder cell (ENCcell) takes the

concatenated feature vector as input and recurrently encodes it (over time). To en-
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Figure 4.11: Our multi-task intent action detection prediction network.

sure the neural network learns features that represent both crossing intent and more

complicated semantic actions, we designed an intent classifier and an action classifier

that use the encoder hidden state to predict the present intent and action at the same

time. We use a multi-layer perceptron (MLP) network for each classifier.

Action predictor. To further take advantage of future action prediction, we

designed a module to predict future action and pass information to the next ENCcell,

similar to the temporal recurrent neural network (TRN) structure [73]. The hidden

state at each iteration is classified by another MLP network to predict the future

action at each forecasting time step. All decoder hidden vectors are collected and the

average is computed as the “future input”. Such a “future input” is concatenated

with the visual and box features to formulate the input to the next ENCcell. During

training, at each time step of the encoder, there are δ actions predicted in the future

δ frames, resulting in T × δ future actions for a training sample with length T .

Multi-task loss. We use binary cross entropy (BCE) loss for the binary intent

detection and cross entropy (CE) loss for multi-class action detection and prediction.

The total loss is written as

Loss =
1

T

T∑
t=1

(
ω1BCE (̂it, it) + ω2CE(ât, at) + ω3CE([â]t+δt+1, [a]t+δt+1)

)
, (4.14)

where T is the training sample length; variables with and without ·̂ indicate the pre-

dicted and ground truth values, respectively; and [·]t+δt+1 indicates predicted sequences

from time t+ 1 to time t+ δ, respectively. The three loss terms are intent detection
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loss, action detection loss and future action prediction loss with weighting parameter

ω1, ω2 and ω3. In this work, we design ω1 to start with value 0 and increase towards 1

over the training process based on a sigmoid function of training iterations. This pro-

cedure ensures the model learns a reasonable action detection and prediction module

which can be used as a beneficial prior for the intent detector. For simplicity, ω2 and

ω3 are both 1 through the training process.

4.4.2 Discussion on Intent Detection Evaluation

Pedestrian intent is defined as a binary classification problem and is commonly

evaluated using accuracy and F1 score [12]. To be specific, a prediction is considered

positive if the score if greater than 0.5, otherwise negative. The accuracy and F1

score are computed as in (4.15) and (4.16). However, due to the potential imbalance

of test datasets, both accuracy and F1 score can be biased towards the majority class.

For example, simply classifying all samples to positive on a test set with positive to

negative ratio of 4 : 1 will result in a high 0.8 accuracy and a 0.89 F1 score.

accuracy =
TP + TN

TP + FP + TN + FN
, (4.15)

F1 = 2 · precision · recall
precision+ recall

=
TP

TP + 0.5 · (FP + FN)
, (4.16)

TPR(recall) =
TP

TP + FN
, FPR =

FP

FP + TN
, (4.17)

∆s =
1

|P |
∑
i∈P

si −
1

|N |
∑
i∈N

si, (4.18)

To address this problem when evaluating imbalanced datasets, we introduce two

additional evaluation metrics for crossing intent detection to supplement accuracy

and F1 score. Inspired by anomaly detection evaluation metrics, we plot the receiver

operating characteristic (ROC) curve and compute the area under curve (AUC) as

additional evaluation metrics for crossing intention detection. ROC and AUC are

better metrics for imbalanced test sets since they reflect both true positive rate (TPR)

and false positive rate (FPR) in shown in (4.17). We also compute the difference

between the average scores of all positive samples and all negative samples as in

Eq. (4.18), notated as ∆s. The greater ∆s, the better a model can distinguish between

crossing and not crossing intent.

We present evaluation results on ROC AUC, ∆s, accuracy and F1 score as follows

in Section 4.4.3.
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4.4.3 Experiments on PIE datasets

We conducted experiments on the Pedestrian Intent Estimation (PIE) dataset [12].

PIE has 1,842 pedestrians with crossing intent annotated, which splits to 880, 243 and

719 for training, validation and testing. The original pedestrian action annotation

contains only two categories, “standing” and “walking”. To make the annotations

more informative for intent detection, we augmented the existing two categories to

seven categories by adding crossing action information (whether the crossing action

will happen or has already happened). The amended annotation labels are presented

in Table 4.11.

Table 4.11: Semantic actions and crossing intent categories in the PIE dataset.

Action Class Explanation

Standing The person is standing and will not cross a street.
Waiting The person is standing and waiting to cross a street.
Going towards The person is going towards a crossing point.
Crossing The person is crossing a street.
Crossed and standing The person finished crossing and is standing.
Crossed and walking The person finished crossing and is walking.
Other walking Any walking that does not belong to above actions.

Intent Class Explanation

Will cross The person is going to cross a street
Will not cross The person is going to cross a street

Implementation Details. The proposed neural network model was implemented

using PyTorch [130]. We used gated recurrent units (GRU) with hidden size 128 for

both ENCcell and DECcell, and a single-layer fully connected (FC) network as the

classifier for intent detection, action detection and action prediction. To generate the

input image patch, we first doubled the pedestrian bounding box width and height

and then squared the new box based on the longer edge. The image patch is cropped

from the resulting box. For boxes that are out of the frame boundary, we padded

with zeros to make square image patches. All input image patches were resized to

224× 224. We used an ImageNet-pretrained VGG16 network as the backbone CNN

to extract features from image patches. During training, we segmented the pedestrian

trajectories to training samples with constant segment length T . Our model detects

intent and action for each time step t ∈ [1, 2, ..., T ] and predicts δ future actions at

each t. Using constant T made batch training feasible for our model. Due to the class

imbalance in PIE [12], we applied a weighted sampler for training data sampling. The
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test data is not balanced to ensure fair comparison with other methods. All models

were trained with sample length T = 30, learning rate 1e−5, and batch size 128 on an

NVIDIA Tesla V100 GPU. During inference, we ran our model on one test sequence

at a time to collect the intent and action detection results for each time step.

Baselines and Ablations. We present results of two naive baseline methods to

show the drawback of existing accuracy and F1 score metrics. The Naive-random

method randomly assigns a crossing confidence score between 0 (“not crossing”) and

1 (“crossing”) to each test sample, while the Naive-1 method assigns score 1 (“cross-

ing”) to all test samples. We also compare to the state-of-the-art (SOTA) method

PIEintent as presented in [12]. PIEintent uses a Convolutional LSTM network to encode

past visual features and then concatenates encoded features and bounding boxes to

predict pedestrian intent at the final frame.

We also evaluate three ablation models of our method: intent only is a basic model

without action detection and prediction modules. It is similar to the PIEintent model

except that we used an average pooling feature extraction and a simpler GRU encoder

to replace the ConvLSTM and LSTM networks in PIEintent. The intent+action model

is a multi-task model with both intent and present action detection modules, and

intent+action+future is our full model with intent detection, present action detection

and future action prediction networks.

Quantitative Results. Table 4.12 shows the intent detection results of baseline

methods and our ablation models. As can be seen in the top three rows, Naive-

1 achieves 0.82 accuracy and 0.90 F1 score, higher than the PIEintent method due

to the fact that the test set of PIE dataset has approximately a 4 : 1 ratio between

“crossing” and “not crossing” classes. This observation verifies our previous discussion

on the inadequacy of using only accuracy and F1 score as evaluation metrics. The

AUC and ∆s metrics, however, are less sensitive to the data imbalance and show

different performance comparison between a naive and a SOTA methods. The ∆s of

naive methods are 0.00 because they do not distinguish crossing and not crossing.

The intent only method is our baseline ablation where action detection and pre-

diction are removed. It achieves similar results with PIEintent in terms of AUC and

∆s, indicating that an average pooling and simple GRU network can perform sim-

ilarly to a more complicated ConvLSTM encoder in PIEintent. Its higher accuracy

and F1 scores may be a result of making more true positive predictions, but its lower

AUC indicates that it also yields more false positives. Both PIEintent and intent-

only have small ∆s (0.06 and 0.07), indicating that the models have low prediction
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Table 4.12: Intent and action detection results on the PIE dataset. The bold num-
bers are the highest results of each metric. Note that only intent+action and in-
tent+action+future methods have the action prediction module.

Method
intent action

Accuracy↑ F1 score↑ AUC↑ ∆s ↑ mAP↑

Naive - random 0.50 0.61 0.50 0.00 N/A
Naive - 1 0.82 0.90 0.50 0.00 N/A
PIEintent [12] 0.79 0.87 0.73 0.06 N/A

intent only 0.82 0.90 0.72 0.07 N/A
action only N/A N/A N/A N/A 0.18
intent + action 0.74 0.83 0.76 0.11 0.21
action + future N/A N/A N/A N/A 0.20
intent + action + future 0.79 0.87 0.78 0.16 0.23

confidences (i.e., , near 0.5) on many test samples. The intent+action model signif-

icantly increased AUC and ∆s, indicating an improved capability in distinguishing

between crossing and not crossing intent. However, its lower accuracy and F1 scores

show that it misses true positives, i.e., some crossing intents were not correctly de-

tected. Together, these metrics show the intent+action model has less false alarms

with crossing intent, and it distinguishes most crossing/not crossing intents better,

but it sacrifices sensitivity to some crossing intent. One explanation is that more

negative (not crossing) samples previously misclassified by the intent only model are

now correctly classified when the action type is known in the intent+action model.

For example, a person stands close to the curb but does not face the road is just

“standing” there instead of “waiting”. The intent+action model recognizes such dif-

ferences and will correctly classify this example as “not crossing”, while the intent

only model may lose that information. However, multi-class action detection is more

difficult than intent detection and can fail in many cases, resulting in failure of detect-

ing crossing intent. The full intent+action+future model further improves the AUC

and ∆s. It also improves the accuracy and F1 scores from the intent+action ablation.

Future action is a more straightforward indicator to intent, e.g., a high confidence

on “waiting” or “crossing” action indicates high possibility that a pedestrian has the

intent to cross the road. The higher ∆s results show that adding future action stream

helps the model to better distinguish different crossing intents.

Qualitative results. Fig. 4.12 shows results of four examples in the PIE dataset.

The top two rows are two examples of pedestrian walking along the road without

crossing intent. Our intent only (int-only) method performs similarly to the PIEintent
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Figure 4.12: Results on four examples in the PIE dataset. The far left column shows
an overview of the scene while the right two image patches are cropped from an
earlier frame and a later frame in the corresponding pedestrian trajectory sequence.
Results are shown to the right of each image patch. The green text shows the ground
truth intent class and the confidence of this class predicted by the state-of-the-art
PIE method and our three ablation models. The orange text shows the ground
truth action class and the confidence of this class predicted by our intent+action and
intent+action+future models.

(PIE), while the intent+action (int-act) and intent+action+future (int-act-future)

methods significantly outperform the other two baselines. The third row shows a

pedestrian walking towards the crosswalk to cross the street. When the person gets

closer to the crossing point, the PIEintent and intent only method predict higher scores

for the crossing intent, while the two models with action modules predict higher scores

consistently, indicating that action supervision helps intent detection. Similarly, in

the fourth row, our methods recognize that the person is waiting in front of a crosswalk

and will cross in the future. Generally, we observe better performance on later frames

than earlier frames due to the fact that with the ego car and the target pedestrian

moving closer to each other, the pedestrian visibility and image quality improves (as

can be seen in all examples), which helps intent detection. In terms of action detection

performance, adding a future module also significantly improves the model, indicating

54



that predicting future action can help the present action detection, especially when

the prediction module captures future action changes (e.g., in row 3, from “walking

towards” to “crossing”). The future prediction module can add extra information to

the encoder module which helps detect present action (“walking towards”). When the

future action does not change (as in rows 1, 2 and 4), the future prediction module

still helps detect the present action as it uses extra memory to extract deeper features

from the sequence and merges them with shallow features in the encoder [73].

Fig. 4.13 shows details of a challenging example where the target pedestrian goes

from the sidewalk to the road to yield on-coming pedestrians, and then walks back

to the sidewalk, resulting in a “fake crossing”. In the leftmost image, the person

moves towards the street, making all methods predict lower scores for the “will not

cross” intent. After the yielding action, the target pedestrian starts to go back to

the sidewalk so that our intent+action+future model has higher confidence that the

person’s action is “other walking” and the intent is “will not cross”. Fig. 4.14 shows

two more challenging cases. In the first row, the person is facing towards the street

but is waiting at a bus station instead of waiting to cross, which confuses the models

and results in a relatively low confidence on the “will not cross” intent. In the second

row, the person is facing the street at first but then turns the orientation, making

all methods predict lower scores for the “will cross” intent. These challenging cases

show the difficulty of pedestrian intent and action detection in real-worlds scenarios,

as there are too many variables and a small change could make a big difference in

neural network performance.

Figure 4.13: An example showing how our method captures a crossing-like case and
distinguishes it from a real crossing intent.
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Figure 4.14: Two examples of challenging cases.

4.5 Conclusion

This chapter first presented FOL, a multi-stream RNN encoder decoder network

for bounding box trajectory prediction in ego-centric videos. We showed that FOL

improves the prediction accuracy by encoding optical flow features as additional in-

put and adding camera ego motion prediction streams as a parallel or side task. We

then introduced BiTraP, a bi-directional multi-modal trajectory prediction method

conditioned on goal estimation. We demonstrated that BiTraP can achieve state-

of-the-art results for trajectory prediction on both first-person view and bird’s eye

view datasets. The current BiTraP models, with only observed trajectories as inputs,

already surpass previous methods which required additional ego-motion, semantic

intention, and/or social information. By conducting a comparative study between

non-parametric (BiTraP-NP) and parametric (BiTraP-GMM) models, we observed

that the different latent variable choice affects the diversity of future trajectory tar-

get distributions. We hypothesized that such differences in predicted distributions

directly influence collision rate in robot path planning and showed that collision met-

rics can be used to guide predictor selection in real world applications.

We also proposed a multi-task learning method for pedestrian crossing intent

detection. Pedestrian semantic action along a trajectory has been carefully segmented

and predicted to help estimate crossing intent. Experiments on the PIE dataset show

the effectiveness of our method for pedestrian crossing intent detection. For future

work, we plan to incorporate scene semantics and social components to further boost

the performance of trajectory prediction and intent detection. We are also interested

in using predicted goals and trajectories to infer and interpret pedestrian intentions

and actions.
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CHAPTER V

Anomaly Detection in Ego-centric Traffic Videos

5.1 Introduction

Figure 5.1: Overview of our method based on future object localization (FOL) us-
ing sampled video from our DoTA dataset.Annotated bounding boxes (filled) and
predicted boxes are presented. For each time step, we collect FOL predictions of
all traffic participants from different past time steps and compute the bounding box
standard deviation, called consistency, as the anomaly score.

Driving has the potential to transform the world as we know it, revolutionizing

transportation by making it faster, safer, cheaper, and less labor intensive. A key

technical barrier is building autonomous systems that can accurately perceive and

safely react to the huge diversity of situations that are encountered on real-world

roadways. The problem is that driving situations obey a long-tailed distribution,

such that a very small number of common situations makes up the vast majority of

what a driver encounters, and a virtually infinite number of rare scenarios — animals

running into the roadway, cars driving on the wrong side of the street, etc. — make

up the rest. While each of these individual scenarios is rare, they can and do happen.
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In fact, the chances that one of them will occur on any given day are actually quite

high.

Existing work in computer vision has applied deep learning-based image classifica-

tion to detect anomalies in video collected by dashboard-mounted cameras [19, 21, 99].

However, the long-tailed distribution of driving events means that unusual events may

occur so infrequently that it may be impossible to collect training data for them, or to

even anticipate that they might occur [2]. In fact, some studies indicate that driver-

less cars would need to be tested for billions of miles before enough of these rare

situations occur to accurately measure system safety [23], much less collect sufficient

training data to make them work well.

An alternative approach is unsupervised video anomaly detection (VAD), which

avoids modeling all possible driving scenarios by training models that recognize “nor-

mal,” safe roadway conditions, and then signaling an anomaly when events that do

not fit the model are observed. Unlike the fully-supervised classification-based work,

these unsupervised approaches may not be able to identify exactly which anomaly

has occurred, but nevertheless may provide enough information for the driving sys-

tem to recognize an unsafe situation and take evasive action. Unsupervised VAD has

been widely applied to static surveillance camera datasets [97, 100, 104, 2, 46, 107] by

training deep neural networks to reconstruct or predict video frames and computing

the reconstruction or prediction errors as anomaly scores. However, these methods

do not generalize well to driving videos since frame prediction and reconstruction is

extremely difficult when cameras are rapidly moving, as in the driving scenario.

We side-steps this difficult problem by detecting objects and predicting their fu-

ture locations, as opposed to trying to predict whole frames. We propose a novel

approach that learns a future object (e.g., cars, bikes, pedestrians, etc.) localization

(FOL) network in the field of view of a dashboard-mounted camera on a moving

ego-vehicle. Our future object localization network consists of two modules: 1) An

ego-motion RNN encoder-decoder to predict future odometry of the ego-vehicle, 2)

A two-stream RNN encoder-decoder incorporating predicted ego-motion into future

object bounding box predictions. This model can be easily learned from massive

collections of dashboard-mounted video of normal driving, and no manual labeling is

required. Existing unsupervised VAD [2, 97, 104, 101, 102, 103] computes prediction

error with respect to ground truth as the anomaly score, which may cause problems

in our case due to imperfect object detection and tracking. To address this issue, we

propose two alternatives: 1) we take object boxes as foreground to generate binary

foreground-background masks and compute the IoU between predicted and ground
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truth masks as anomaly scores; 2) we collect FOL predictions for each time step

from different past time steps and compute the prediction standard deviation, called

consistency, as the anomaly score. We compare proposed methods with prediction ac-

curacy methods and show the effectiveness of prediction consistency metric in traffic

VAD experiments.

We also introduce a new large-scale benchmark dataset for traffic VAD called De-

tection of Traffic Anomaly (DoTA). DoTA contains 4, 677 videos with 18 anomaly cat-

egories [114] and multiple anomaly participants in different driving scenarios. DoTA

provides rich annotation for each anomaly: type (category), temporal annotation,

and anomalous object bounding box tracklets. Current anomaly datasets contain only

temporal annotations, so they cannot be used to evaluate the accuracy of spatial local-

ization — where in the frame an anomaly is occurring. However, accurately locating

the anomalous region is essential for model explainability and downstream applica-

tions such as collision avoidance. Taking advantage of this large-scale dataset with

rich anomalous object annotations, we propose a novel VAD evaluation metric called

Spatio-temporal Area Under Curve (STAUC). STAUC is motivated by the popular

frame-level Area Under Curve (AUC). While AUC uses a per-frame anomaly score

which is usually averaged from a pixel-level or object-level score map, STAUC takes

the score map and computes how much of it overlaps with the annotated anomalous

region. This overlap ratio is used as a weighting factor for true positive predictions

with STAUC such that AUC is the STAUC upper bound. We benchmark existing

VAD baselines and state-of-the-art methods on DoTA using both AUC and STAUC,

and show the advantage of using STAUC.

The DoTA dataset can also be used for video action recognition and online action

detection given its categorical annotations. Video action recognition takes a video clip

as input to predict its anomaly type, e.g. on-coming collision or out-of-control, while

online action detection processes a video frame-by-frame to classify each frame as

normal or one type of anomaly. We provide benchmarks of state-of-the-art methods

such as SlowFast [69] and TRN [73] on on these two tasks. Experiments show that

applying generalized video action recognition and online action detection methods to

traffic anomaly understanding is far from perfect, motivating more research in this

area.

This Chapter is organized as follows: Section 5.2 presented our future object

localization-based unsupervised traffic video anomaly detection method and two anomaly

score computation methods to address problems caused by imperfect object detection

and tracking. Section 5.3 revealed the issue with the current evaluation metric and
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introduced a new spatial-temporal area under curve metric as a supplement. Baseline

VAD methods are introduced in Section 5.4, followed by experiment in Section 5.6

and 5.7, and a conclusion in Section 5.8

5.2 FOL based Traffic Anomaly Detection

Autonomous vehicles must monitor the roadway ahead for signs of unexpected

activity that may require evasive action. A natural way to detect these anomalies is

to look for unexpected or rare movements in the first-person perspective of a front-

facing, dashboard-mounted camera on a moving ego-vehicle. Prior work [2] proposes

monitoring for unexpected scenarios by using past video frames to predict the current

video frame, and then looking for major differences. However, this does not work well

for moving cameras on vehicles, where the perceived optical motion in the frame is

induced by both moving objects and camera ego-motion. More importantly, anomaly

detection systems do not need to accurately predict all information in the frame,

since anomalies are unlikely to involve peripheral objects such as houses or billboards

by the roadside. This paper thus assumes that an anomaly may exist if an object’s

real-world observed trajectory deviates from the predicted trajectory. For example,

when a vehicle should move through an intersection but instead suddenly stops, a

collision may have occurred.

Our model is trained with a large-scale dataset of normal, non-anomalous driving

videos. This allows the model to learn normal patterns of object and ego motions,

then recognize deviations without the need to explicitly train the model with examples

of every possible anomaly. This video dataset is easy to obtain and does not require

hand labeling. Considering the influence of ego-motion on perceived object location,

we incorporate a future ego-motion prediction module [7] as an additional input. At

test time, we use the model to predict the current locations of objects based on the

last few frames of data and determine if an abnormal event has happened based on

three different anomaly detection strategies per Section 5.2.4.

5.2.1 Bounding Box Prediction

Following Section 4.2, we denote an observed object’s bounding boxXt = [cxt , c
y
t , wt, ht]

at time t, where (cxt , c
y
t ) is the location of the center of the box and wt and ht are

its width and height in pixels, respectively. We denote the object’s future bounding

box trajectory for the δ frames after time t to be Yt = {Yt+1, Yt+2, · · · , Yt+δ}, where

each Yt is a bounding box parameterized by center, width, and height. Given the
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Figure 5.2: Overview of the future object localization model.

image evidence Ot observed at time t, a visible object’s location Xt, and its corre-

sponding historical information Ht−1, our future object localization model predicts

Yt. This model is inspired by the multi-stream RNN encoder-decoder framework of

Yao et al. [7], but with completely different network structure [73]. For each frame, [7]

receives and re-processes the previous ten frames before making a decision, whereas

our model only needs to process the current information, making it much faster at

inference time. Our model is shown in Figure 5.2. Two encoders (Enc) based on gated

recurrent units (GRUs) receive an object’s current bounding box and pixel-level spa-

tiotemporal features as inputs, respectively, and update the object’s hidden states.

In particular, the spatiotemporal features are extracted by a crop-resize operation us-

ing bilinear interpolation from precomputed optical flow fields. The updated hidden

states are used by a location decoder (Dec) to recurrently predict the bounding boxes

of the immediate future.

5.2.2 Ego-Motion Cue

Ego-motion information of the moving camera has been shown necessary for ac-

curate future object localization [7, 42]. Let Et be the ego-vehicle’s pose at time

t; Et = {φt, xt, zt} where φt is the yaw angle and xt and zt are positions along the

ground plane with respect to the vehicle’s starting position in the first video frame.

We predict the ego-vehicle’s odometry by using another RNN encoder-decoder mod-

ule to encode ego-position change vector Et − Et−1 and decode future ego-position
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changes E = {Êt+1−Et, Êt+2−Et, ..., Êt+δ −Et}. We use the change in ego-position

to eliminate accumulated odometry errors. The output E is then combined with the

hidden state of the future object localization decoder to form the input into the next

time step.

5.2.3 Missed Objects

We build a list of trackers Trks per [131] to record the current bounding box

Trks[i].Xt, the predicted future boxes Trks[i].Ŷt, and the tracker age Trks[i].age of

each object. We denote all maintained track IDs as D (both observed and missed), all

currently observed track IDs as C, and the missed object IDs as D−C. At each time

step, we update the observed trackers and initialize a new tracker when a new object

is detected. We use a temporarily-missing or occluded object’s previously predicted

bounding boxes to estimate current location, running future object localization with

RoIPool features from predicted boxes (Algorithm 1). Missing object handling is

essential in our prediction-based anomaly detection method to eliminate the impact

of failed object detection or tracking in any given frame. For example, if an object with

a normal motion pattern is missed for several frames, the FOL is still expected to give

reasonable predictions except for some accumulated deviations. On the other hand,

if an anomalous object is missed during tracking [131], we make a prediction using

its previously predicted bounding box whose region can be substantially displaced

thus can result in inaccurate predictions. In this case, some false alarms and false

negatives can be eliminated by using the metrics presented in Section 5.2.4.3.

5.2.4 Traffic Anomaly Detection using FOL

Unsupervised anomaly detection methods compute anomaly scores based on pre-

diction or reconstruction accuracy [100, 2, 46, 107]. In this section, we first present

the basic anomaly metric computed from predicted bounding box accuracy. The key

idea is that object trajectories and locations in non-anomalous events can be precisely

predicted, while deviations from predicted behaviors suggest an anomaly. Next we

propose two different strategies to compute anomaly scores using: 1) the foreground-

background mask generated from predictions and 2) the prediction consistency.

5.2.4.1 Predicted Bounding Box Accuracy

One simple method for recognizing abnormal events is to directly measure the

similarity between predicted object bounding boxes and their corresponding observa-
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Algorithm 1: FOL-Track Algorithm

Input : Observed bounding boxes {X(i)
t } where i ∈ C, observed image

evidence Ot, trackers of all objects Trks with track IDs D
Output: Updated trackers Trks

1 A is the maximum age of a tracker
2 for i ∈ C do // update observed trackers

3 if i /∈ D then
4 initialize Trks[i]
5 else

6 Trks[i].Xt = X
(i)
t

7 Trks[i].Ŷt = FOL(X
(i)
t , Ot)

8 end

9 end
10 for j ∈ D − C do // update missed trackers

11 if Trks[j].age > A then
12 remove Trks[j] from Trks
13 else

14 Trks[j].Xt = Trks[j].Ŷt−1

15 Trks[j].Ŷt = FOL(Trks[j].Xt, Ot)

16 end

17 end

Figure 5.3: Overview of our unsupervised VAD methods. The three brackets corre-
spond to: (1) Predicted bounding box accuracy method (green); (2) Predicted box
mask accuracy method (orange); (3) Predicted bounding box consistency method
(blue). All methods use multiple previous FOL outputs to compute anomaly scores.
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tions. The FOL model predicts bounding boxes of the next δ future frames, i.e., at

each time t each object has a bounding box predicted at each time from t− δ to t−1.

We first average the positions of the δ bounding boxes, then compute intersection

over union (IoU) between the averaged bounding box and the observed box location,

where higher IoU means greater agreement between the two boxes. We average com-

puted IoU values over all observed objects, and then compute an aggregate anomaly

score Lbbox ∈ [0, 1],

Lbbox = 1− 1

N

N∑
i=1

IoU

((1

δ

δ∑
j=1

Ŷ i
t,t−j

)
, Y i

t0

)
, (5.1)

where N is the total number of observed objects, and Ŷ i
t,t−j is the predicted bounding

box from time t− j of object i at time t. This method, which we call FOL-IoU, relies

upon accurate object tracking to match predicted and observed bounding boxes.

5.2.4.2 Predicted Box Mask Accuracy

Although tracking algorithms such as Deep-SORT [131] offer reasonable accuracy,

it is still possible to lose or mis-track objects. We found that inaccurate tracking

particularly happens in severe traffic accidents because of the twist and distortion of

object appearances. Moreover, severe ego-motion also results in inaccurate tracking

due to sudden changes in object locations. This increases the number of false negatives

of the metric proposed above, which simply ignores objects that are not successfully

tracked in a given frame. To solve this problem, we first convert all areas within the

predicted bounding boxes to binary masks, with areas inside the boxes having value

1 and backgrounds having 0, and do the same with the observed boxes. We then

calculate an anomaly score as the IoU between these two binary masks,

I(u,v) =

1, if pixel (u, v) within box X i, ∀i,

0, otherwise,
(5.2)

Lmask = 1− IoU
(
Ît,t−1, It

)
, (5.3)

where I(u,v) is pixel (u, v) on mask I, X i is the i-th bounding box, Ît,t−1 is the predicted

mask from time t − 1, and It is the observed mask at t. In other words, while the

bounding box accuracy metric compares bounding boxes on an object-by-object basis,

this metric simply compares the bounding boxes of all objects simultaneously. The

main idea is that accurate prediction results will still have a relatively large IoU
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compared to the ground truth observation. We denote the mask accuracy-based

method FOL-Mask.

5.2.4.3 Predicted Bounding Box Consistency

The above methods rely on accurate detection of objects in concurrent frames

to compute anomaly scores. However, the detection of anomaly participants is not

always accurate due to changes in appearance and mutual occlusions. We hypothesize

that visual and motion features related to an anomaly do not only appear once it

happens, but are usually accompanied by a salient pre-event. We thus propose another

strategy, called FOL-STD, to detect anomalies by computing consistency of future

object localization outputs from several previous frames while eliminating the effect

of inaccurate detection and tracking.

As discussed in Section 5.2.4.1, for each object in video frame at time t, we can

collect δ bounding boxes predicted from time t − 1, t − 2, .., t − δ. We compute the

standard deviation (STD) between all δ predicted bounding boxes to measure their

similarity,

Lpred =
1

N

N∑
i=1

max
{cx,cy ,w,h}

STD(Ŷ
(i)
t,t−j). (5.4)

where Ŷ
(i)
t,t−j is the bounding box of the ith object in frame at time t predicted from the

frame at time t−j, and cx, cy, w, h are the center coordinates and the width and height

of a bounding box. We compute the maximum STD over the four components of the

bounding boxes since different anomalies may be indicated by different effects on the

bounding box, e.g., suddenly stopped cross traffic may only have large STD along the

horizontal axis. A low STD suggests the object is following normal movement patterns

thus the predictions are stable, while a high standard deviation suggestions abnormal

motion. For all three methods, we follow [2] to normalize computed anomaly scores

for evaluation.

5.2.5 Frame-object Ensemble Anomaly Detection

Our FOL based methods are recognized as object-centric methods by encoding-

decoding object information. Frame-level VAD methods focus on appearance while

object-centric methods focus more on object motion. We are not aware of any method

combining the two. Appearance-only methods may fail with drastic variance in light-

ing conditions and motion-only methods may fail when trajectory prediction is imper-

fect. We propose to combine FOL-STD with frame prediction method AnoPred [2],
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which we call the FOL-Ensemble method. AnoPred predicts one anomaly score per

image pixel while our method predicts one anomaly score per object. We first map

our object anomaly score to per pixel score by putting a Gaussian function at the

center of each object (as introduced in Section 5.3.2). We trained each module of

FOL-Ensemble independently and apply average pooling on the computed per pixel

scores from two modules to compute final anomaly score. We observed this late

fusion is better than fusing hidden features in an early stage and training the two

models together, since their hidden features are scaled differently. AnoPred encodes

one feature per frame, while FOL-STD has one feature per object.

5.3 A New Evaluation Metric

5.3.1 Critique of Current VAD Evaluation

Most VAD methods compute an anomaly score for each frame, and evaluate by

plotting receiver operating characteristic (ROC) curves using temporally concate-

nated scores and compute an area under curve (AUC) metric. AUC measures how

well a VAD method locates an anomaly along the temporal axis but ignores accuracy

on spatial axes since averaged anomaly score lacks spatial information. We argue

AUC is insufficient to fully evaluate VAD performance.

In computing AUC, a true positive occurs when the model predicts a high anomaly

score for a positive frame. Fig. 5.4 shows two positive frames and their corresponding

score maps computed by the four benchmarked VAD methods. Although the maps

are different, the anomaly scores averaged from these maps are similar, meaning they

are treated similarly in AUC evaluation. This results in similar AUCs among all

methods, which leads to a conclusion that all perform similarly. However, AnoPred

(Fig. 5.4(b)) predicts high scores for trees and other noise, while AnoPred+Mask and

FOL-STD (Fig. 5.4(c) and 5.4(d)) predict high scores for unrelated vehicles. Ensemble

(Fig. 5.4(e)) alleviates these problems but still has high anomaly scores outside the

labeled anomalous regions. Note that score maps of FOL-STD and Ensemble are

pseudo-maps introduced in Section 5.3.2.Although these methods yield similar AUCs,

VAD methods should be distinguished by their abilities to localize anomalous regions.

Anomalous region localization is essential because it improves reaction to anomalies,

e.g. collision avoidance, and aids in model explanation, e.g. a model predicts a car-

to-car collision because it finds anomalous cars, not trees or noise. This motivates

a new spatial-temporal metric to evaluate how well the model detects the temporal

and spatial location of the anomaly.
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(a) GT image (b) AnoPred (c) AnoPred+Mask (d) TAD+ML (e) Ensemble

Figure 5.4: Anomaly score maps computed by four methods. Ground truth anomalous
regions are labeled by bounding boxes. Brighter color indicates higher score.

5.3.2 Spatio-temporal Area Under Curve (STAUC)

We designed a spatial-temporal area under curve (STAUC) metric as a comple-

ment to the popular area under curve (AUC) evaluation metric. Although AUC per-

forms well in evaluating per-frame anomaly detection results, it doesn’t evaluate the

model’s ability to spatially localize anomalies. Fig. 5.4 shows how anomaly score is in-

fluenced by changes outside the annotated anomalous region. The STAUC computes

a true anomaly region ratio (TARR) as a representation of how many anomalous pix-

els are located in an annotated anomalous region. The TARR is used as a weighting

factor when computing AUC, resulting in STAUC. Details can be found in [1].

For each positive frame, we first calculate the true anomalous region rate (TARR),

which is a scalar describing how much of the anomaly score is located within the true

anomalous region,

TARRt =

∑
i∈mt ∆I(i)∑
i∈M ∆I(i)

, (5.5)

where ∆I(i) is the anomaly score at pixel i, M represents all frame pixels, and mt

is the annotated anomalous frame region (i.e., the union of all annotated bounding

boxes). TARR is inspired by anomaly segmentation tasks where the overlap between

prediction and annotation is computed [132].

Next, we calculate the spatio-temporal true positive rate (STTPR),

STTPR =

∑
t∈TP TARRt

|P |
, (5.6)

where TP represents all true positive predictions and P represents all ground truth

positive frames. STTPR is a true positive rate where each true positive is weighted

by its TARR. We then use STTPR and the false positive rate to plot an ROC curve

(which we call Spatial-Temporal ROC or STROC) and calculate the area under the

curve, which gives the STAUC. Note that STAUC≤AUC; the two are equal in the
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best case where TARRt = 1 ∀t.
Object-centric VAD [46, 107, 44] computes per-object anomaly scores sk instead

of an anomaly score map ∆I. To generalize the STAUC metric to object-centric

methods, we first create pseudo-anomaly score maps as illustrated in Fig. 5.4(d).

Each object has a 2D Gaussian distribution centered in its bounding box. The pixel

score is then computed as the sum of the scores calculated from all boxes it occupies,

∆Ipseudo(i) =
∑
∀k,i∈Bk

sk e
− |ix−xk|

2

2wk
− |iy−yk|

2

2hk , (5.7)

where ix and iy are coordinates of pixel i and [xk, yk, wk, hk] are center location, width,

and height of object bounding box Bk. For the Ensemble method, we take the average

of ∆I and ∆Ipseudo as the anomaly score map in Fig. 5.4(e). This map is used as ∆I

in Eq. (5.5) to compute TARR and STAUC.

TARR is not robust to anomalous region size mt. When mt � M , TARR could

be small even though all anomaly scores are high in mt. We thus propose selecting

the top N% of pixels with the largest anomaly scores as candidates, and compute

TARR from these candidates instead of all pixels. An extremely small N such as 0.01

may result in a biased candidate set dominated by false or true detections such that

TARR = 0 or 1. To address this issue, we compute an adaptive N for each frame

based on the size of its annotated anomalous region,

Nadaptive =
number of pixels in anomalous region

Total number of pixels
× 100. (5.8)

The average Nadaptive of DoTA is 11.12 with a standard deviation 13.09. The minimum

and maximum Nadaptive values are 0.005 and 95.8, showing extreme cases where the

anomalous object is very small (far away) or large (nearby).

A critical consideration for any new metric is its robustness to hyper parameters.

We have tested STAUC with N = [1, 5, 10, 20, 50, 100, Nadaptive] for different VAD

methods per Fig. 5.5(a), STAUC slightly decreases with N increasing but stabilizes

when N is large indicating STAUC is robust. Fig. 5.5(b) shows that STROC curves

with different N are close, especially when N ≥ 5, and their upper bound is the tradi-

tional ROC. Nadaptive is selected for our benchmarks based on each frame’s annotation

and its corresponding mid-range STAUC value.
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(a) (b)

Figure 5.5: (a) STAUC values of different methods using different top N%; (b) ROC
curve and STROC curves of the Ensemble method with different top N%.

5.4 Video Anomaly Detection Baselines

We benchmark three frame-level VAD method, ConvAE [100], ConvLSTMAE [102]

and AnoPred [2] and their variants as baselines in this paper. We also compare with a

K -Nearest Neighbor algorithm using I3D [67] features as extra baseline. Frame-level

methods detect anomalies by either reconstructing past frames or predicting future

frames and computing the reconstruction or prediction error as the anomaly score.

K -Nearest Neighbor Distance. We segment each video into a bag of short video

chunks with 16 frames. Each chunk is labeled as either normal or anomalous based on

the annotation of the 8-th frame. We then feed each chunk into an I3D [67] network

pre-trained on Kinetics dataset, and extract the outputs of the last fully connected

layer as its feature representations. All videos in the HEV-I dataset are used as

normal data. The normalized distance of each test video chunk to the centroid of

its K nearest normal (K-NN) video chunks are computed as the anomaly score. We

show results of K = 1 and K = 5 in this paper.

ConvAE [100] is a spatio-temporal autoencoder model which encodes temporally

stacked images with 2D convolutional encoders and decodes with deconvolutional lay-

ers to reconstruct the input (Fig. 5.6(a)). The per-pixel reconstruction error forms an

anomaly score map ∆I, and mean squared error (MSE) is computed as a frame-level

anomaly score. To further compare the effectiveness of image and motion features,

we implemented ConvAE(gray) and ConvAE(flow) to reconstruct the grayscale

image and dense optical flow, respectively. The input to ConvAE(flow) is a stacked

historical flow map with size 20×227×227 acquired from pre-trained FlowNet2 [133].
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(a) ConvAE [100] (b) ConvLSTMAE [102] (c) AnoPred [2]

Figure 5.6: Network architecture of benchmarked VAD methods.

We trained both variants using AdaGrad with learning rate 0.01 and batch size 24.

ConvLSTMAE [102] is similar to ConvAE but models spatial and temporal features

separately. A 2D CNN encoder first captures spatial information from each frame,

then a multi-layer ConvLSTM recurrently encodes temporal features. Another 2D

CNN decoder then reconstructs input video clips (Fig. 5.6(b)). We implemented

ConvLSTMAE(gray) and ConvLSTMAE(flow). We trained both variants using

AdaGrad with learning rate 0.01 and batch size 24.

AnoPred [2] is a frame-level VAD method that takes four continuous previous

RGB frames as input and applies UNet to predict a future RGB frame (Fig. 5.6(c)).

AnoPred boosts prediction accuracy with a multi-task loss incorporating image in-

tensity, optical flow, gradient, and adversarial losses. AnoPred was proposed for

surveillance cameras. However, traffic videos are much more dynamic, making future

frame prediction difficult. Therefore we also benchmarked a variant of AnoPred to

focus on video foregrounds. We used Mask-RCNN [3] pre-trained on Cityscapes [10]

to acquire object instance masks for each frame, and apply instance masks to in-

put and target images, resulting in an AnoPred+Mask method that only predicts

foreground objects and ignores noisy backgrounds such as trees and billboards. In

contrast to [100, 102], AnoPred uses Peak Signal to Noise Ratio, as the anomaly score

with better results. Both variants are trained based on the original paper.

5.5 Implementation Details

We used the published implementations of ConvAE, ConvLSTMAE, and AnoPred

and modified the input layer size to suit gray-scale or optical flow input. All these
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models were trained according to the original papers.

We implemented our model in PyTorch [130] and performed experiments on a

system with Pascal Nvidia Titan Xp GPU. We use ORB-SLAM 2.0 [134] for ego

odometry calculation and compute optical flow using FlowNet 2.0 [133]. In our train-

ing data (HEV-I), we used provided camera intrinsic matrix. We used the same matrix

for A3D and SA since these videos are collected from different dash cameras and the

parameters are unavailable. We also set feature numbers 12000 to have a better per-

formance. We use a 5×5 cropping and bilinear interpolation operator to produce the

final flattened feature vector Ot ∼ R50. The gated recurrent unit (GRU) [135] is our

basic RNN cell. GRU hidden state sizes were set to 128 for all models. We randomly

selected 3,275 videos from the DoTA dataset as the training set to train our models.

To learn network parameters, we use the RMSprop [136] optimizer with default pa-

rameters, learning rate 10−4, and no weight decay. Our models were optimized in an

end-to-end manner, and the training process was terminated after 100 epochs using

a batch size of 32.

5.6 Experiments on A3D and SA Dataset

5.6.1 Results on A3D Dataset

Table 5.1: Experimental results on A3D and SA dataset in terms of AUC. AUCs in
parenthesis are results of variant metrics as explained in text.

Methods Input A3D SA [19]

K-NN (K = 1) RGB 48.0 48.2

K-NN (K = 5) RGB 47.8 48.1

Conv-AE(gray)[100] Gray 54.7 55.2

Conv-AE(flow)[100] Flow 54.5 54.4

ConvLSTM-AE(gray)[102] Gray 51.1 50.2

ConvLSTM-AE(flow)[102] Flow 52.1 50.7

AnoPred [2] RGB 57.5 58.4

FOL-IoU Box+Flow 59.1(57.8) 56.7(55.2)

FOL-Mask Box+Flow 59.7 57.8

FOL-STD Box+Flow 64.1(63.0) 58.8(57.1)

FOL-Ensemble RGB+Box+Flow 64.7 60.2
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Quantitative Results. We evaluated baselines, a state-of-the-art method, and our

proposed method on the A3D dataset. As shown in the first column of Table 5.1,

our method outperforms the K−NN baseline as well as Conv-AE [100], ConvLSTM-

AE [102] and the state-of-the-art AnoPred [2] methods. FOL-IoU uses the metrics

in Eq. (5.1), while the result of a variation where we evaluate minimum (rather than

average) IoU over all observed objects is presented in parenthesis. Computing min-

imum results in not only anomaly detection but also anomalous object localization.

However, this minimum metric can perform worse since it is not robust to outliers

such as failed prediction of a normal object, which is more frequent in videos with a

large number of objects. FOL-Mask uses the metrics in Eq. (5.3) and outperforms the

above two methods. This method does not rely on accurate tracking, so it handles

cases including mis-tracked objects. However, it may mis-label a frame as an anomaly

if object detection loses some normal objects. The second last row shows our best

method FOL-STD which uses the prediction-only metric defined in Eq. (5.4). The

result of a variation that computes maximum STD (rather than average) is presented

in the parenthesis as well. Similar to the IoU based methods, the maximum STD

metric finds the most anomalous object in the frame. By using only prediction, our

method is free from unreliable object detection and tracking when an anomaly hap-

pens, including the false negatives (in IoU based methods) and the false positives

(in Mask based methods) caused by losing objects. However, this method can fail in

cases where predicting future locations of an object is difficult, e.g., an object with

low resolution, intense ego-motion, or multiple object occlusions due to heavy traffic.

At last, we present the result of FOL-Ensemble introduced in Section 5.2.5. It can be

seen that merging the outputs of two methods from different modalities can further

improve the anomaly detection performance. More analysis and visualizations of our

methods can be found in Section 5.7.

Qualitative Results. Fig. 5.7 shows two sample results of our best method and

the published state-of-the-art on the A3D dataset. For example, in the upper one,

predictions of all observed traffic participants are accurate and consistent at the be-

ginning. The ego car is hit at around the 30-th frame by the white car on its left,

causing inaccurate and unstable predictions thus generating high anomaly scores. Af-

ter the crash, the ego car stops and the predictions recover, as presented in the last

two images. Fig. 5.7(d) shows a failure case where our method makes false alarms

at the beginning due to inconsistent prediction of the very left car occluded by trees.

This is because our model takes all objects into consideration equally rather than

focusing on important objects. False negatives show that our method is not able to
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detect an accident if participants are totally occluded (e.g. the bike) or the motion

pattern is accidentally normal from a particular viewpoint (e.g. the middle car).

5.6.2 Results on SA dataset

We also compared the performance of our model and baselines on the Street Acci-

dent (SA) [19] dataset of on-road accidents in Taiwan. This dataset was collected from

dashboard cameras with 720p resolution from the driver’s point-of-view. Note that

we use SA only for testing, and still train on HEV-I dataset. We follow prior work [19]

and report evaluation results with 165 test videos containing different anomalies. The

right-most column in Table 5.1 shows the results of different methods on SA. In gen-

eral, our best method outperforms all baselines and the published state-of-the-art.

The SA testing dataset is much smaller than A3D, and we have informally observed

that it is biased towards anomalies involving bikes. It also contains videos collected

from cyclist head cameras which have irregular camera angles and large vibrations.

Figure 5.7(d) shows an example of anomaly detection in the SA dataset.

5.7 Experiments on DoTA Dataset

We benchmarked VAD baselines and our methods on the new DoTA dataset.

DoTA also provides categorical annotations to suit video action recognition (VAR)

and online action detection tasks, thus we provide extra benchmarks for state-of-the-

art methods for these two tasks using the DoTA dataset. We randomly partitioned

DoTA into 3,275 training and 1,402 test videos and use these splits for all tasks.

Unsupervised VAD models must be trained only with non-anomalous data, so we use

the precursor frames from each video for training. VAR and online action detection

models are fully-supervised and thus are trained using all training data.

5.7.1 Task 1: Video Anomaly Detection (VAD)

Overall Results. The top four rows of Table 5.2 show performance of Con-

vAE and ConvLSTMAE with grayscale or optical flow inputs. Generally, using op-

tical flow achieves better AUC, indicating motion is an informative feature for this

task. However, all baselines achieve low STAUC, meaning that they cannot localize

anomalous regions well. AnoPred achieves 67.5 AUC but only 24.4 STAUC, while

AnoPred+mask has 2.7 lower AUC but 17.7 higher STAUC. By applying instance

masks, the model focuses on foreground objects to avoid computing high scores for
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(a)

(b)

(c)

(d)

Figure 5.7: The top three rows are examples of our best method and the AnoPred [2]
method on the A3D and SA dataset. The bottom row shows a failure case of our
method with false alarms and false negatives.
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the background, resulting in slightly lower AUC but much higher STAUC. This sup-

ports our hypothesis that higher AUC does not always imply a better VAD model,

while STAUC better captures the ability to localize anomalous regions.

We also evaluate four variants of our methods: FOL-IoU (prediction accuracy),

FOL-Mask (prediction mask accuracy), FOL-STD (prediction consistency) and FOL-

Ensemble, where FOL-Ensemble is an ensemble model of FOL-STD and AnoPred+Mask.

FOL-Mask outperforms FOL-IoU as it is more robust to inaccurate object tracking.

FOL-STD outperforms FOL-IoU and FOL-Mask by a large margin, which shows

the effectiveness of our proposed consistency metric over the existing accuracy based

metric. Its higher STAUC also shows that FOL-STD is more robust to scenarios

where objects are not accurately detected/tracked. FOL-STD outperforms AnoPred

on both metrics by specifically focusing on object motion and location, both of which

are important indicators of traffic anomalies. The FOL-Ensemble method achieves

the best AUC and STAUC among all methods, indicating that combining frame-level

appearance and motion features is a direction worth investigating in future VAD

research, a conclusion further supported by qualitative results.

Per-class Results. Table 5.3 shows results of AnoPred, AnoPred+Mask, FOL-

STD, and FOL-Ensemble broken out according to the type of anomaly. We observe

that STAUC (unlike AUC) distinguishes performance by anomaly type, offering guid-

ance as researchers seek to improve their methods. For example, Ensemble has com-

parable AUCs on OC (on-coming) and VP (vehicle-pedestrian) anomalies (73.4 vs

70.1) but significantly different STAUCs (56.6 vs 35.2), showing that anomalous re-

gion localization is harder on VP anomalies. Similar trends exist for the AH* (ahead),

LA* (lateral), VP* (vehicle-pedestrian) and VO* (vehicle-obstacle) anoamlies. Sec-

ond, frame-level and object-centric methods compensate each other in VAD as shown

by the Ensemble method’s highest AUC and STAUC values in most columns. Third,

localizing anomalous regions in non-ego anomalies is more difficult, as STAUCs on

ego-involved anomalies are generally higher. One reason is that ego-involved anoma-

lies have better dashcam visibility and larger anomalous regions, making them easier

to detect. Table 5.3 also shows the difficulties of detecting different categories, with

AH*, VP, VP*, VO* and LA* especially challenging for all methods. We observed

that pedestrians in VP and VP* videos become occluded or disappear quickly after

an anomaly happens, making it hard to detect the full anomaly event. AH* has a

similar issue since sometimes the vehicle ahead is significantly occluded by the vehi-

cle it impacts. VO* is a rarer case in which a vehicle hits obstacles such as bumpers

or traffic cones that are typically not detected and are sometimes occluded by the
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Table 5.2: Benchmarks of VAD methods on the DoTA dataset.

Method Input AUC ↑ STAUC ↑

ConvAE (gray) [100] Gray 64.3 7.4
ConvAE (flow) [100] Flow 66.3 7.9
ConvLSTMAE (gray) [102] Gray 53.8 12.7
ConvLSTMAE (flow) [102] Flow 62.5 12.2
AnoPred [2] RGB 67.5 24.4
AnoPred [2] + Mask Masked RGB 64.8 42.1

FOL-IoU Box + Flow 61.2 34.6
FOL-Mask Box + Flow 64.0 35.0
FOL-STD Box + Flow 69.7 43.7
FOL-Ensemble RGB + Box + Flow 73.0 48.5

anomalous vehicle. Vehicles involved in LA* usually move toward each other slowly

until they collide and stop, making the anomaly subtle and thus hard to distinguish.

Qualitative Results. Fig. 5.8(a) shows per-frame anomaly scores and TARRs of

three methods on a video where they all achieve high AUCs. AnoPred+Mask has low

TARR along the video, indicating failure of correctly localizing anomalous regions.

FOL-STD computes high anomaly scores but low TARR in the left example due to

inaccurate trajectory prediction for the left car. In the right image, it finds one of the

anomalous cars but also marks an unrelated car by mistake. Ensemble combines the

benefits of both with anomaly scores for the 20-30th anomaly frames always higher

than normal frames. It computes high TARR during the 10-20th anomaly frames as

shown in the left score map. The right map shows a failure case combining the failure

of AnoPred+Mask and FOL-STD. Although these methods achieve high AUC, their

spatial localization is limited according to TARR. Fig. 5.8(b) shows an ego-involved

ahead collision (AH). AnoPred+Mask computes a high anomaly score in the early

frames by mistake since the prediction of the left car is inaccurate, as shown in the

score map. FOL-STD computes a low anomaly score for this frame and therefore the

Ensemble method benefits. The right example shows the FOL-STD method correctly

computes a high score for the car ahead but also another high score for the bus on the

right. The ensemble benefits from AnoPred+Mask so that it focuses more attention

on the car ahead instead of the bus.

1ST: collision with another vehicle that starts, stops, or is stationary; AH: ahead collision; LA:
lateral collision; OC: on-coming collision; TC: turning or crossing collision; VP: vehicle-pedestrian
collision; VO: vehicle-obstacle collision; OO: out-of-control; UK: unknown.
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Table 5.3: Evaluation metrics of each individual anomaly class (abbreviated as two-
letter short names). Ego-involved and non-ego (*) anomalies are shown separately.
VO and OO columns are not shown because they do not contain anomalous traffic
participants.

Method1 ST AH LA OC TC VP ST* AH* LA* OC* TC* VP* VO* OO*

Individual Anomaly Class AUC:
AnoPred [2] 69.9 73.6 75.2 69.7 73.5 66.3 70.9 62.6 60.1 65.6 65.4 64.9 64.2 57.8
AnoPred [2]+Mask 66.3 72.2 64.2 65.4 65.6 66.6 72.9 63.7 60.6 66.9 65.7 64.0 58.8 59.9
FOL-STD 67.3 77.4 71.1 68.6 69.2 65.1 75.1 66.2 66.8 74.1 72.0 69.7 63.8 69.2
FOL-Ensemble 73.3 81.2 74.0 73.4 75.1 70.1 77.5 69.8 68.1 76.7 73.9 71.2 65.2 69.6

Individual Anomaly Class STAUC:
AnoPred [2] 37.4 31.5 32.8 34.3 33.6 24.9 25.9 15.0 12.5 13.0 20.9 14.0 8.2 8.8
AnoPred [2]+Mask 51.8 51.9 45.1 50.3 47.5 41.0 45.3 31.1 33.8 42.5 40.3 25.3 22.9 33.8
FOL-STD 47.4 55.6 46.3 52.2 47.2 26.6 45.1 33.6 38.5 46.9 39.3 25.6 29.0 44.4
FOL-Ensemble 54.4 60.3 53.8 56.5 54.9 35.2 52.4 36.4 40.8 51.9 44.7 28.6 28.6 43.5

(a)

(b)

Figure 5.8: Per-frame anomaly scores and TARRs of three methods. Selected RGB
frame and score maps are shown. Note that TARR only exists in positive frames.

5.7.2 Task 2: Video Action Recognition (VAR)

VAD detects the temporal range of an anomalous event but does not understand

the anomaly type. The goal of Video Action Recognition (VAR) is to assign each video

77



clip to one anomaly category. Taking advantage of the rich categorical annotation of

the DoTA dataset, we benchmark seven VAR methods: C3D [66], I3D [67], R3D [68],

MC3 [68], R(2+1)D [68], TSN [65] and SlowFast [69]. The previous training/test

split is used. Unknown UK(*) anomalies are ignored, yielding 3216 training and 1369

test videos. We trained all models with SGD, learning rate 0.01 and batch size 16 on

NVidia TItan XP GPUs. Models are initialized with pre-trained weights from Sports-

1M [137] for C3D and Kinetics [138] for the other methods; 0.5 probability random

horizontal flip offers data augmentation. For evaluation, we randomly selected ten

clips from each test video (as in [69]) except TSN which uses 25 clips per video.

Table 5.4 shows the results. Although newer methods R(2+1)D and SlowFast

achieve higher average accuracy, all candidates suffer from low accuracy on DoTA,

indicating that traffic anomaly classification is challenging. First, distant anomalies

and occluded objects have low visibility and thus are hard to classify. For example,

VO (vehicle-obstacle) and VO* are hard to classify due to low visibility and diverse

obstacle types (as observed in Section 5.7.1). AH (ahead)* and OC (on-coming)* are

also difficult since the front or oncoming vehicles are often occluded. Second, some

anomalies are visually similar to others. For example, ST (start/stop/stationary)

and ST* are rare and look similar to AH (ahead) and AH* or LA (lateral) and LA*

(Fig.3.3) since the only difference is whether the collided vehicle is starting, stopping,

or stationary. Third, the anomaly category is usually determined by the frames

around anomaly start time, while the later frames do not reveal this category clearly.

We have observed 2-4% accuracy improvement when testing models only on the first

half of each clip. Additional benchmarks are available in our supplement.

Table 5.4: VAR method per-class and mean top-1 accuracy with the DoTA dataset.

Anomaly Class

Method backbone ST AH LA OC TC VP VO OO ST* AH* LA* OC* TC* VP* VO* OO* AVG

TSN ResNet50 18.2 67.2 52.9 53.8 71.0 0.0 0.0 61.6 0.0 14.7 25.3 6.7 48.1 9.5 0.0 53.4 30.2
C3D VGG16 25.5 61.8 43.9 47.8 57.9 3.3 4.4 52.9 1.2 18.4 36.0 6.7 55.9 8.6 6.0 33.2 29.0
I3D InceptionV1 10.0 62.4 45.8 45.8 62.2 2.8 6.9 66.6 2.4 28.1 24.5 4.7 60.3 9.5 5.0 37.6 29.7
R3D ResNet18 0.0 56.5 49.6 49.8 66.6 4.4 6.2 47.7 1.8 17.6 32.2 1.0 48.3 15.2 6.5 48.0 28.2
MC3D ResNet18 6.4 62.9 40.1 57.7 64.5 16.7 0.0 61.5 2.4 18.1 20.2 4.0 62.2 4.8 6.5 45.6 29.6
R(2+1)D ResNet18 4.5 64.7 42.8 47.6 68.7 25.6 5.6 64.4 9.4 14.3 24.3 2.3 64.7 9.5 0.0 47.8 31.0
SlowFast ResNet50 0.0 70.0 46.0 48.9 67.2 5.6 13.1 68.3 5.9 24.9 37.2 3.3 64.0 0.0 0.0 41.3 31.0

Fig. 5.9 show the confusion matrices of R(2+1)D and SlowFast, two of the best

models evaluated in our experiments. In addition to Table 5 in the paper, the con-

fusion matrix shows the most confusing categories to help us understand challenging

scenarios provided in the DoTA dataset. We make three observations from Fig. 5.9.

First, both models have similar confusion matrices, indicating that they perform sim-

ilarly on DoTA dataset. Second, some categories are confused with other specific
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(a) R(2+1)D (b) SlowFast

Figure 5.9: Confusion matrix of two state-of-the-art VAR methods on DoTA.

categories due to their similarities. Among all categories, TC, TC*, OC and OO*

are four classes for which many categories are confused. One reason is that there

are a large number of samples for these categories in DoTA. Another reason is the

similarities among categories. For example OO* is usually an out-of-control vehicle

swerving on the road and finally leaving the roadway. Other non-ego anomalies, while

having their own features, often result in similar irregular motions, resulting in confu-

sion with OO*. Third, ego-involved categories are usually not confused with non-ego

categories. This indicates that although the per-class recognition is difficult, current

methods could capably distinguish ego-involved and non-ego anomalies.

5.7.3 Task 3: Online Action Detection

Table 5.5: Online Video Action Detection on our DoTA dataset. “*” indicates non-
ego anomaly categories1.

Anomaly Category

Method ST AH LA OC TC VP VO OO ST* AH* LA* OC* TC* VP* VO* OO* mAP

FC 2.5 13.9 10.6 6.2 16.3 0.8 1.2 21.0 0.6 2.9 3.0 0.6 8.0 1.2 0.7 7.6 9.9
LSTM 0.6 19.9 15.1 9.2 25.3 2.4 0.6 34.3 0.6 3.8 5.0 1.5 11.0 1.2 0.5 13.3 12.9
Encoder-Decoder 0.5 20.1 15.6 10.4 28.1 2.9 0.7 39.9 0.8 3.7 7.4 2.5 14.7 1.2 0.5 13.2 14.5
TRN 1.0 22.8 20.6 15.5 30.0 1.5 0.7 32.3 0.7 4.0 10.2 2.9 17.0 1.2 0.7 13.8 15.3

We provide benchmarks for online video action detection on DoTA dataset. On-

line action detection recognizes the anomaly type by only observing the current and

past frames, making it suitable for autonomous driving applications. Since online
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action detection does not have a full observation of the whole video sequence, online

action detection is considered a more difficult task than is traditional VAR. In this

supplementary material, we provide benchmarks of several state-of-the-art online ac-

tion detection methods on DoTA dataset. We use the same four online methods that

have been used in supervised VAD: FC, LSTM, Encoder-decoder and TRN. The

only difference is that the classifiers are designed to predict only one out of the 16

anomaly categories. We use the same training configurations to train these models.

Table 5.5 shows the per-class average precision (AP) and the mean average prediction

(mAP).

Quantitative Results. We observe that although TRN, a state-of-the-art method,

achieves the highest mAP, all methods suffer from low precision on DoTA. Similar

to what we have observed in the paper’s VAD and VAR experiments, online action

detection is also difficult for ST, ST*, VP, VP*, VO and VO*. AH* an OC* are

also difficult due to the highly occluded front of a typical oncoming vehicle. We also

observe that ego-involved anomalies are easier to recognize than non-ego anomalies

due to their higher visibility.

Qualitative Results. Fig. 5.10 shows some examples of TRN results on our DoTA

dataset. The bar plots show the classification confidences of each frame. Cyan colors

represent anomalous frames while gray colors represent background (normal) frames.

We make the following observations from this experiment: 1) Transition frames be-

tween normal and abnormal events are hard to classify. For example class confidences

are low at the frames where color changes, i.e., anomaly start and end frames; 2) Sub-

sequent frames after an anomaly begins can be hard to detect. For example confidence

significantly decreases at around the 40th frame of first example and the 60th frame

of the third example; 3) Visually similar anomalies and gentle anomalies are hard to

detect. In the bottom failure case, the confidence of ground truth anomaly class LA*

is always low. These frames are either classified as background (normal) or AH* due

to the fact that this LA* anomaly is visually similar to a typical AH* anomaly since

this collision is relatively gentle.

5.8 Conclusion

In this Chapter, we proposed a novel FOL-based unsupervised video anomaly

detection (VAD) method for driving videos. A prediction consistency metric was

introduced for computing anomaly scores which is robust to inaccurate object detec-

tion and tracking in driving videos. We further introduced an ensemble method to
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Figure 5.10: Qualitative results of Temporal Recurrent Network (TRN) on our DoTA
dataset. The bar plots show classification confidences of each video frame. Gray bars
are confidences of ”background” (or ”normal”) classes while cyan bars are confidences
of ground truth anomaly classes. The top two rows are two ego-involved anomalies,
while the 3rd row is a non-ego out-of-control anomaly. The 4th row is a case where
TRN fails to detect a lateral collision.

combine object and frame-level VAD methods to boost performance. We proposed

a new spatial-temporal area under curve (STAUC) metric to better evaluate VAD

performance. Experimental results show that our method achieves state-of-the-art

results on DoTA in terms of both AUC and STAUC. Our DoTA dataset also enables

research on video action recognition (VAR) and online action detection in driving sce-

narios; both of these problems are far from solved according to experimental results.

Future work is needed to investigate spatio-temporal localization of anomalies in driv-

ing scenarios, early detection of traffic accidents, and validation and verification of

autonomous driving systems.
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CHAPTER VI

Smart Black Box

This chapter summarizes our work on the Smart Balck Box (SBB), an intelli-

gent event data recorder. The SBB is designed to detect events of interest (EOIs),

estimate data values, optimize data buffers, and prioritize high-value data over the

long-term. Extensive experiments on traffic trajectory simulations and real-world

driving datasets datasets show the efficiency and effectiveness of the SBB.

6.1 Introduction

Autonomous vehicles (AVs) require verification and validation (V&V) to mini-

mize or eliminate the potential for incorrect perceptions, decisions, and actions. The

industry has used the Naturalistic Field Operation Test (NFOT) project to collect a

large amount of driving data and has conducted Monte Carlo simulations to enable

such V&V[22]. However, NFOT data indicate low exposure rates to events of interest

(EOIs) [139], suggesting that a large amount of collected data are of minimal to no

interest thus could be discarded or logged with a very high compression loss factor.

Emerging AVs with redundant high-bandwidth sensors (e.g. camera, LiDAR)

generate as much as 1 GB/second of raw data, a figure that scales to ∼ 2160 TB/year

given an average driving time per person of 660 hours/year [24]. Effective capture

of this raw data fleet-wide over the long-term is therefore challenging, motivating

efficient data compression and discard capabilities. Recent advances in deep learning

and computer vision have motivated AV research in object detection [140, 141, 3],

tracking [142, 143, 131], and semantic scene segmentation [144, 145, 146, 4]. However,

these modules might fail when the raw data is recorded with significant compression.

Fig. 6.1 illustrates how object detection and semantic segmentation are impacted

by application of lossy compression (JPEG). Compression level (1, 0.5, 0.1, 0.01)

represents an image quality parameter where 1 means the highest quality. These
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images show that with significant compression, computer vision algorithms cannot

accurately reproduce results obtained in situ with raw image data even though the

human eye can still succeed.

Figure 6.1: Object detection using Mask-RCNN[3] (left); semantic segmentation using
DeepLabV2[4] (right). From top to bottom the images are compressed with 1, 0.5,
0.1 and 0.01 quality by a JPEG algorithm.

We design a Smart Black Box (SBB) framework [116, 117] to record high-priority

high-bandwidth raw data as a supplement to logging low-bandwidth processed data,

e.g., from a Controller Area Network (CAN) bus. The SBB quantifies data value and

optimizes the trade-off between stored data value and size. A decision indicates how

much a given data frame should be compressed for recording. Buffers containing raw

data are compressed and queued so that low-value long-term data are aged out when

the SBB approaches its finite storage limit.

Designing the targeted SBB functionality is challenging because there is no stan-

dard procedure for quantifying driving data value. Further, no metrics have been

established to optimize long-term data collection for on-road vehicles. Additionally,

globally optimizing data compression and deletion decisions would require buffering

all data over a long-term trajectory. We propose a data value information metric

based on events rarity and/or video anomaly detection to make locally-optimal com-

pression decisions for each short-term buffer. Compressed data and their value are

saved in a long-term priority queue to enable removal of the lowest-value data when

finite storage limits are reached. The SBB has been evaluated with both simulated
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and real-world data. We first generated a simulated NFOT highway traffic dataset

using a simulator [147] that is capable of representing heterogeneous and interactive

multi-vehicle traffic scenarios. Four EOIs are studied in this simulation experiment:

lead car cut-in (cutin), host car hard-braking (hardbraking), cut-in conflict (conflict)

and crash. A frame with none of these EOIs is classified as a normal frame or event.

Values of these events are computed from their likelihood (rarity) among this NFOT

dataset, and SBB compression and storage statistics are analyzed. To show the SBB

performance in real-world data, we combined our DoTA dataset with the validation

videos from BDD100K [6] to create a large-scale dataset containing anomalous events,

called BDD100K+DoTA. A video anomaly detection (VAD) method and an online

action detection(OAD) method are used to detect and classify the anomalous events

in BDD100K+DoTA, and a Bayesian combination algorithm is used to compute the

data value. Details of VAD and OAD methods can be found in Chapter V.

This work offers three primary contributions. First, we formulate a value-based

data recorder, the SBB, to store high-bandwidth long-term driving data based on

data value metrics. This is the first value-based automotive event data recorder to

our knowledge. Second, we propose a deterministic Mealy machine (DMM) to track

incoming data by value and similarity to enable high-value data and data in a com-

mon context to be buffered together. Third, we define a multi-objective constrained

optimization strategy to define lossy compression factor for each buffered data frame

based on computed data value for the current frame, data value for surrounding

frames, and storage cost. We use a simple but effective strategy for managing finite

onboard storage to ensure the highest-value data can be saved over the long-term.

To demonstrate the impact of lossy compression ratio on SBB recorded data, we

test popular deep learning models for object detection and semantic segmentation on

first-person view images from a high-fidelity simulator called The Open Racing Car

Simulator (TORCS) [148]. We show that images compressed by the SBB have much

smaller size for the long run but deep-learning based object detection and semantic

segmentation algorithms can still achieve high accuracy on EOIs data.

This chapter is structured as follows. Section 6.2 introduces the SBB framework

and presents key definitions. Section 6.3 defines EOIs in two scenarios followed by

data value and similarity metrics specifications. Section 6.5 describes the optimization

strategy used along with our value-based algorithm for finite long-term data storage

management. Section 6.6 and 6.7 presents results from simulation and real-world

datasets followed by a brief conclusion in Section 6.8.
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6.2 Smart Black Box Design

We proposes a generalized SBB framework to realize efficient data collection from

emerging high-bandwidth sensors such as LiDAR and cameras given finite local stor-

age [116, 117]. The SBB minimizes the size of recorded data and maximizes recorded

data value by determining how much each data frame should be compressed. The

following questions are addressed in this work:

• How are data values quantified?

• What compression factor should be applied to each data frame to trade off data

value and data storage size?

• How does the SBB select data to discard given finite storage constraints?

• How do we quantify or evaluate data recording performance, i.e., what metrics

should be applied?

Three data storage stages are implemented in the SBB: buffer, long-term storage

and cloud database. Buffers are used to temporally cache seconds or minutes of raw

data in real-time. Long-term storage relies on a finite onboard storage device capable

of recording data collected over days or weeks given normal usage. The cloud database

stores and manages data from vehicle fleets over months and years; data is retrieved

later for post-processing.

SBB functionality is proposed in Fig. 6.2. At each time step one data frame

is collected. Each frame is classified based on event detectors; a scalar in [0, 1] is

computed as frame data value. Similarity between a new frame and adjacent buffered

frames is also computed as a scalar in [0, 1]. A DMM is applied to automatically

manage the data buffering process. The inputs to the DMM are the data value,

similarity and buffer size. It outputs buffer operation instructions, e.g., writing to

buffer and emptying a buffer. The DMM formulation is detailed in Section 6.4. Once

the DMM terminates, an optimization problem is solved over the buffered data to

determine optimal compression quality for each frame. This process is called local

buffer optimization (LBO). A data value filter can be applied to smooth the estimated

value. Buffered raw data are compressed and recorded in long-term storage and are

sorted based on their values. Once onboard data storage is filled, the lowest-value data

are discarded to make room for new high-value data (i.e. prioritized data recording).

Given internet access, stored data can be uploaded to a cloud then removed from local
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Figure 6.2: Flow chart of the SBB data recording process. Gray blocks represent SBB
functions; blue blocks represent data storage and monitoring. Black arrows show the
logic flow while blue arrows show the data flow.

storage. Note that data uploading and cloud database management are not studied

in this paper to focus attention on compression and discard decision-making.

The SBB offers several advantages. First, DMM buffer tracking enables high-

value data and data with a common context to be buffered together. Data value

filtering and local buffer optimization (LBO) ensures contextual frames of EOIs are

considered. Second, by separating LBO and long-term storage prioritization, the SBB

makes locally optimal compression decisions which reduces memory and time com-

plexity relative to long-term (global) optimization. Third, a long-term data storage

prioritization scheme enables rapid identification of the lowest-value data to facilitate

deletion as needed. Note that conventional database management methods are not

applied here since the local storage is designed for data collection with no requirement

for high-speed retrieval.

Some key definitions and mathematical notations used in Fig. 6.2 are introduced

below:

• Long-term storage size: The maximum local storage capacity (e.g. in MegaBytes)

that the SBB can utilize, denoted M .
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• Frame: The sensor data received at each time as well as its value vt and storage

cost (size) ct, represented as ft = (vt, ct, rawDatat).

• Decision: dt ∈ [0, 1] is the desired quality to compress rawDatat, 0 and 1

denote the lowest and highest data qualities, respectively.

• Local buffer: Short-term sequential frames are cached in a local buffer Bk,

where k is buffer index. There is ft ∈ Bk if a frame ft is cached in buffer Bk.

Buffer length is a scalar |Bk| determined by the DMM.

• Recorded buffer: Compressing the local buffer based on LBO output yields

recorded buffer B̂k. Each recorded buffer is saved in the database and can be

retrieved by two key parameters: the temporal index k and/or the flagged event

type of the buffered data. Definition of event types is introduced later.

• Local buffer decision vector: Decisions for every frame in Bk form the

decision vector Dk.

6.3 Data Value and Similarity Estimation

6.3.1 Data Value Estimation in TORCS simulation

We first introduce SBB data collection in multi-lane highway traffic scenarios

simulated in TORCS, where one host vehicle and multiple participant vehicles are

present (see Fig. 6.3) This section introduces a simplified data representation and

events of interest (EOIs) that can be detected from this traffic scenario. The data

value is estimated based on EOIs and then applied in Section 6.4 for buffer definition

and data tracking.

The TORCS data reference frame is depicted in Fig. 6.3, where the origin O is the

projection of host vehicle centroid on the road right edge. We assume full observability

of host and all nearby vehicle locations (x, y) and speeds (ẋ) from processed sensor

data (e.g. CAN Bus, LiDAR, radar, camera). Other physical parameters are ignored

and the lane widths and locations are assumed constant for simplicity. In this paper

we only consider the closest vehicles in six regions: front left (1), rear left (2), front

center (3), rear center (4), front right (5), rear right (6). Also, we compute x1 to xn

as relative distance to the host car so that x0 = 0 can be ignored, resulting in a 20

dimensional feature vector:

X = [y0, ẋ0, x1, y1, ẋ1, ..., x6, y6, ẋ6] (6.1)
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where subscript 0 indicates host vehicle features and 1...6 are the six neighbor cars.

For a region where no vehicle exists, we set xi = 100m, ẋi = 0m/s and yi equal to

the location of the corresponding lane center line.

Figure 6.3: Three-lane traffic scenario and reference frame. Circled numbers indicate
the host vehicle (in red) and closest vehicles in six surrounding regions, separated by
red lines.

We classify each observed data frame as either normal or one of the four EOIs:

cutin, hardbraking, conflict and crash. A normal frame is a frame that is not clas-

sified as any of the EOIs. Note that we use pre-defined physical metrics for anomaly

detection instead of more generalized machine learning based methods [19, 21, 44],

since the simulator we used in experiment is able to provide perfect measurements of

traffic states.

Cutin : A cutin event is recognized when the closest front vehicle, represented by

(xi, yi, ẋi), enters the lane of the host vehicle as shown in Fig. 6.4(a). The cut-in

range is R = xi − x0. Let ẏi be the lateral velocity of the cut-in vehicle, and wln and

wc be the widths of lane and vehicle, respectively. A cut-in event is defined by

0 < yi − y0 <
wln + wc

2
and ẏi < 0

or − wln + wc

2
< yi − y0 < 0 and ẏi > 0

(6.2)

Hardbraking : A hardbraking event occurs when the deceleration of a car is greater

than a hard deceleration threshold ẍhb as in Fig. 6.4(b). In this paper we define

ẍhb ≈ −4.4m/s2 per [83].

Conflict : A conflict event is when the host car is in the proximity zone of the lead

car during the cut-in event as shown in Fig.6.4(c). The proximity zone of a lead car
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is the rectangle area bounds its geometric contour from 4 feet in front of its front

bumper to 30 feet behind its rear bumper [149]. Its length and width are defined as

(lpr, wc).

Crash : A crash event occurs when one car collides with another car from any

direction. Since car yaw angle is ignored for simplicity, we detect a crash by

|xi − x0| ≤ lc and |yi − y0| ≤ wc (6.3)

where lc is vehicle length. Fig. 6.4(d) shows a crash event.

Although multiple EOIs may be detected in a single frame, we mark each frame

with the single highest-value EOI to to simplify value assignment. Therefore the

normal event plus the four EOIs constituted the event space E for data value assign-

ment, defined as:

E = {ε1, ε2, ε3, ε4, ε5} = {normal, cutin, hardbraking, conflict, crash}

The above list of EOIs can be extended and generalized for any data collection

task. Advanced detection models can be applied to detect more complicated EOIs.

In the following section we present a generalized value metrics computation which

can be applied to any EOI as long as an event likelihood probability is provided.

(a) Cutin (b) Hardbraking

(c) Conflict (d) Crash

Figure 6.4: Four pre-defined EOIs for the ego car (red). The blue rectangle is the
proximity zone of the blue car (better in color).

We assume a large naturalistic driving data set which contains all previously

defined EOIs has been collected and processed. Given a frame ft whose corresponding
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(a)

(b)

Figure 6.5: Conditional PDF of inverse cut-in range Pr(R−1|ε2) and the calculated
data value v(Rt, ε2) (normalized)

event type is εj ∈ E, data value is based on the likelihood (rarity) of εj. According to

information theory, a lower-probability event carries more information than a higher-

probability event, so vt = v(εj) can be estimated as the information measure of εj.

We use previously defined EOIs and assume 100% detection confidence for simplicity.

Value estimates of different events are given in this section.

Constant value events. We assume a normal event has constant low value while

hardbraking, conflict and crash events have constant high values. Values of these

events εj ∈ {ε1, ε3, ε4, ε5} are computed using (6.4) given Pr(εj) the event likelihood.

v(εj) = − log2

(
Pr(εj)

)
(6.4)

In this paper we set v(ε5) = 1 (highest value) and the values of other events are

normalized over [0, 1].

Dynamic value event. The value of a cutin event is not a constant but a function

of cut-in range R. Given a cutin event, the conditional probability density function

(PDF) of R is represented by Pr(R|ε2). Large R indicates a low-value cutin, which is

observed in the majority of the dataset. Overly small R (e.g. 15m) and overly large
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R (e.g. 100m) are rare in naturalistic driving data, but only small R contains high

value. Thus the value of a cutin with a measured Rt can be computed from (6.5):

v(Rt, ε2) = − log2

(
Pr(R < Rt|ε2) Pr(ε2)

)
(6.5)

where Pr(ε2) is the probability of cutin events computed from the dataset. In this

work, we use the conditional PDF of R−1 instead of R as suggested in [22] to put

the small R value in the tail of the distribution. Fig.6.5 shows the fitting result of

Pr(R−1|ε2) with Pareto distribution (P), exponential distribution (E), f distribution

(F), beta distribution (B), and gamma distribution (Γ) [22, 150]. We use the Bayesian

Information Criterion (BIC) for distribution fitting model selection since all candidate

models are in the exponential family [151]. The BIC is computed as

BIC(Θ,M) = k lnn− 2
n∑
i=1

ln Pr
(
R−1
t |ε2; Θ,M

)
(6.6)

where n is the number of samples, M∈ {P , E ,F ,B,Γ} is a candidate model, and Θ

is the parameter vector with length k that maximizes the likelihood. The model with

lowest BIC is selected which for this paper is the F distribution with Θ = [θ1, θ2].

The fitted conditional PDF is given in (6.7).

Pr(R−1|ε2) = Pr(R−1|ε2; Θ,F)

=
1

β( θ1
2
, θ2

2
)
(
θ1

θ1

)
θ2
2 R1− θ1

2 (1 +
θ1

θ2

R−1)−
θ1+θ2

2

(6.7)

where β(a, b) = (a−1)!(b−1)!
(a+b−1)!

. Equation (6.5) can be written as (6.8) using the fitted

distribution of R−1.

v(Rt, ε2)

=− log2

[(
1−

∫ R−1
t

0

Pr(R−1|ε2) dR−1
)

Pr(ε2)
] (6.8)

6.3.2 Data Value Estimation with a Real-world Dataset

This section introduces our method to compute data value in a real-world dataset

to enable the DMM module to group buffers and compute optimal compression fac-

tors. Similar to [116, 117], we define the value of a data frame as a measure of data

novelty. The data value is determined by: 1) The anomaly score estimated by a video
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anomaly detection (VAD) module; 2) The anomaly category detected by an online

action detection (OAD) module.

6.3.2.1 Video Anomaly Detection (VAD)

As introduced in Chapter V, a VAD algorithm takes observed image frames and

predicts an anomaly score for each frame as a description of the degree of abnormality

of that frame. Existing VAD algorithms can be categorized as frame-level VAD and

object-level VAD. A frame-level VAD algorithm reconstructs or predicts image frames

(e.g., in RGB or grayscale) and computes the L2 error of reconstruction or prediction

as the anomaly score [100, 102, 2]. An object-level algorithm, on the other hand,

predicts object appearance and/or motions and computes the anomaly score based

on prediction error [107, 46] or consistency [44, 1].

We trained our FOL-STD algorithm (in Chapter V) using the DoTA (in Sec-

tion 3.3) dataset to estimate an anomaly score si of a frame i and use this score

to inform our SBB value estimation. To be specific, we trained the TAD algorithm

in [44] using the DoTA dataset and applied it to our data value estimation module.

6.3.2.2 Online Action Detection (OAD)

While the anomaly score from VAD provides information about anomaly prob-

ability in a frame, it lacks the knowledge of anomaly category, which is important

information for determining data value in long-term driving according to Section 6.3.1.

Categorizing anomalous events is essential to SBB design since: 1) It allows the SBB

to prioritize high value categories when storage limit is encountered; and 2) It allows

the SBB to focus on specific event types based on user requests.

We implement an off-the-shelf OAD algorithm to obtain a confidence score vector

oi for a frame i, which is then combined with anomaly score si to estimate data

value. In this work, we trained an OAD algorithm called the temporal recurrent

network (TRN) [73] using the DoTA dataset [1]. TRN outputs a 17-D vector oi =

[Pi(c1), Pi(c2), . . . , Pi(c17)] for each frame, which represents the confidence score for

each class as defined in [1]. Since
∑17

j=1 Pi(cj) = 1 all confidence scores sum to 1.

6.3.2.3 Independent Bayesian Classifier Combination

Both VAD and OAD provide estimates of the probability that a frame is anoma-

lous; VAD gives the anomaly score value si, while OAD class probabilities for anoma-

lies can be summed to generate a score ti =
∑17

j=1 oi,j. By assuming that these
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two classifiers are conditionally independent, we can apply the Independent Bayesian

Classifier Combination (IBCC)[152] to fuse their outputs into one score.

Let vi be the ground truth anomaly indicator of frame i, and let vi = 1(0) indicate

an anomalous (normal) frame. We assume vi is generated from a binomial distribution

with class probabilities p = [p0, p1], where p0 and p1 are probabilities of normal

and anomaly. p has Dirichlet prior ν = [ν0, ν1]. We then digitize the anomaly

score ŝi and the OAD score ti using a threshold ε so that scores greater than ε are

mapped to 1 and are otherwise 0. We assume that ŝi and t̂i are generated from

binomial distributions conditioned on the ground truth anomaly status vi with class

probabilities π
(s)
k : π

(s)
k,l p(ŝi = l|vi = k) and π

(t)
k : π

(t)
k,lp(t̂i = l|vi = k), respectively,

where l, k ∈ {0, 1}. π(s)
k and π

(t)
k also have Dirichlet priors α

(s)
k = [α

(s)
k,0, α

(s)
k,1] and

α
(t)
k = [α

(t)
k,0, α

(t)
k,1]. π(s) and π(t) are called the confusion matrices for random variables

ŝi and t̂i respectively. Then, with N frames, we have a joint distribution for the IBCC

model [152] given by:

p(p,π(s),π(t),v, s, t|α(s),α(t),ν) =

N∏
i=1

(pviπ
(s)

i,ŝi
π

(t)

vi,t̂i
)p(v|ν)p(π(s),π(t)|α(s),α(t))

(6.9)

We use the Variational Bayes IBCC [152] to approximate the unknown variables

p, π(s), π(t), v. We approximate the posterior distribution over these variables to be:

q(p,π(s),π(t),v) = q(v)q(p)q(π(s))q(π(t)), (6.10)

where q(·) represents the posterior probabilities. Variational Bayes iteratively updates

q(v) and q(p,π(s),π(t)) until the variables converge. The anomaly posterior q(v) is

updated by:

q(vi = k) = Ev[vi = k] =
ρi,k

ρi,0 + ρi,1
, (6.11)

ln(ρi,k) = Ep
[

ln(pk)
]

+
∑

ŝi∈{0,1}

p(ŝi)Eπk

[
lnπ

(s)
k,ŝi

]
+
∑
t̂i∈0,1

p(t̂i)Eπk
[lnπ

(t)

k,t̂i
]. (6.12)

ν, the Dirichlet prior for p, is updated using the current expected number of normal
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and anomalous frames. The posterior q(p) is then re-computed from the prior:

q(p) = Dir(p|ν′), where ν ′k = νk +
N∑
i=1

Ev[vi = k]. (6.13)

The first term for the q(v) update in Eq. (6.12) is computed as:

Ep[ln(pk)] = ψ(ν ′k)− ψ(ν ′0 + ν ′1), (6.14)

where ψ is a Digamma function.

α(s) and α(t), the Dirichlet priors for q(π(s)) and q(π(t)), are updated similarly

using the expected anomaly values. Here, q(π(s)) and q(π(t)) are updated from the

original π(s) and π(t):

q(π
(s)
k ) = Dir(π

(s)
k |α

′(s)),where α
′(s)
k,l = α

(s)
k,l +

N∑
i=1

p(ŝi = l)Ev[vi = k], (6.15)

q(π
(t)
k ) = Dir(π

(t)
k |α

′(t)),where α
′(t)
k,l = α

(t)
k,l +

N∑
i=1

p(t̂i = l)Ev[vi = k]. (6.16)

The second and third terms for the q(v) update in Eq. (6.12) are computed as:

E[ln(π
(s)
k,l )] = ψ(α

′(s)
k,l )− ψ(α

′(s)
k,0 + α

′(s)
k,1 ), (6.17)

E[ln(π
(t)
k,l)] = ψ(α

′(t)
k,l )− ψ(α

′(t)
k,0 + α

′(t)
k,1). (6.18)

Finally, we update q(v) usingEp[ln(pk)], E[ln(π
(s)
k,l )], and E[ln(π

(t)
k,l)] as in Eq. (6.11)

and Eq. (6.12). After convergence, we have Ev[vi = 1] for each frame i as the IBCC

estimated data value vi.

Value Scaling. Some applications may want to bias the data value in favor of or

against specific anomaly classes. We use the OAD output to scale the value according

to user-defined biases. For each anomaly class j except for j = 1, the normal class, the

user may define a bias bj ∈ [−1, 1]. A bias of +1 indicates a heavy bias towards class j,

while a bias of −1 indicates a heavy bias against class j. A bias of 0 indicates no bias

towards or against class j. Then, for frame i, we define scale factor ki = 1+
∑17

j=2 bjoi,j.

Using this scale factor, we compute the scaled value vi = min{kivi, 1} for IBCC value

or vi = min{kisi, 1} for anomaly score value.
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6.3.3 Data Similarity Metrics

We compute a similarity metric ξt(ft, Bk) to represent the similarity of a new

incoming data frame ft with the current buffer Bk. A high similarity between Bk and

ft indicates the two frames may belong to the same driving scenario so that ft might

be appended to Bk for completeness. This similarity metric together with the data

value metric are input to a SBB deterministic Mealy machine (DMM) to determine

whether to buffer ft together with Bk or not, as introduced below in Section 6.4.

Consider the current buffered data time series Bk with sequential feature vectors

[X1, X2, ..., X|Bk|] and a new single frame ft with feature vector Xt. The difference

between Bk and ft, ∆(ft, Bk), is defined as the standardized Euclidean distance be-

tween Xt and previous feature vectors in (6.19). Note that all X are normalized to

[0, 1].

∆(ft, Bk) =

√√√√√ N∑
j=1

(X
(j)
t − µj)2

σ2
j

(6.19)

where X
(j)
t is the jth element of feature vector Xt, N is the total number of features,

and µj and σj are the mean and standard deviation of the jth feature in buffer Bk,

respectively. The similarity score ξ ∈ (0, 1] is computed in (6.20). The higher the ξ

value, the more similar ft is to B.

ξ(ft, Bk) = e−∆(ft,Bk) (6.20)

6.4 Online Data Buffering

The SBB must decide when to start buffering data and when to stop and send

the data to the LBO module, i.e., the start and end points of data segments. We

refer to this decision as buffer tracking. The buffer tracking process is modeled as a

deterministic Mealy machine (DMM) [153] as shown in Fig.6.6. The DMM is defined

as a 6-tuple (S, S0,Σ,Λ, T,G); each element is introduced below.

• States: S = {si}4
i=1 = {active, buffering, waiting, terminate}.

• Start state: S0 = active.

• Input: Σ = {ei}6
i=1, per Table 6.1.

• Output: Λ = {ai}7
i=1; actions ai correspond to buffer decisions per Table 6.2.
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• Transitions T : S × Σ→ S per Fig. 6.6.

• Output function G : S → Λ: mapping from states to outputs, per Table 6.2.

Figure 6.6: DMM for data buffer tracking decisions. The blue box highlights SBB
actions executed when each buffer tracking DMM execution sequence terminates.

6.4.1 Mealy Machine States

Active: The DMM is initialized in the active state with a precursor buffer Bpre

containing contextual data frames. Given input, the DMM transfers to the buffering

or waiting state. Four inputs are possible for this state: {e1, e2, e3, e4}.
Buffering : In the buffering state, a new data frame is stored in “major” buffer

Bmaj. Data in Bmaj will eventually be used for LBO when the DMM terminates. The

DMM can transit to buffering, waiting or terminate states from the buffering state

according to received inputs. All input are possible except e6.

Waiting : In this state, a new data frame is stored in a “wait” buffer Bwait. Bwait

will be emptied when the DMM transits to buffering state or terminates. The machine

can transit to the waiting, buffering or terminate state from waiting state based on

inputs. All input are possible except e5.

Terminate: The DMM terminates once transits to the terminate state and the

resulted Bmaj is sent to the following modules. A new DMM execution cycle will be

initialized to track the next buffer.

6.4.2 Input alphabet:

The input alphabet is generated based on data value, data similarity, major buffer

size, and waiting time. Data value is estimated from (6.4) and (6.8). We set a
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threshold so that a frame ft with value vt > v(ε1) indicates an EOI. Data similarity

ξ(ft, Bk) is computed in (6.20). Note that Bk is the major buffer Bmaj if it is not

empty; otherwise, Bk is the wait buffer Bwait. We set threshold ξ0 so that ξ(ft, Bk) >

ξ0 indicates that frame ft and buffered data Bk are from similar driving scenarios.

The DMM thus appends ft to Bk unless the buffer size limit is reached.

The major buffer size (number of frames) is represented as |Bmaj|. We set a

threshold so that the DMM state transits to terminate when it reaches the largest

allowed size Tmaj (event e5). The waiting time is represented by the size of wait buffer

|Bwait|. When the DMM state is buffering, Bwait is empty so that waiting time is 0.

Each time the state transits to waiting, waiting time will be incremented. We set a

threshold so that the DMM state transitions to terminate when it has been waiting

for more than Twait frames (event e6). The elements in input alphabet Σ are defined

in Table 6.1.

Table 6.1: DMM input alphabet, ξ and v are estimated similarity and value metrics.

Σ Description

e1 ξ ≤ ξ0 and v ≤ v(ε1) and |Bwait| < Twait and |Bmaj| < Tmaj

e2 ξ ≤ ξ0 and v > v(ε1) and |Bwait| < Twait and |Bmaj| < Tmaj

e3 ξ > ξ0 and v ≤ v(ε1) and |Bwait| < Twait and |Bmaj| < Tmaj

e4 ξ > ξ0 and v > v(ε1) and |Bwait| < Twait and |Bmaj| < Tmaj

e5 |Bmaj| ≥ Tmaj

e6 |Bwait| ≥ Twait

6.4.3 Output alphabet

The output alphabet corresponds to buffer operations or actions given the current

state and the input. Buffer operations include writing data to a buffer, writing data

from one buffer to another, and emptying a buffer (see Table 6.2). Typically a buffer

will be emptied when its data is written to another buffer.

In the proposed DMM, a1 to a5 are outputs assigned during the buffer tracking

process; these actions simply write to a buffer or empty a buffer. When the DMM

terminates, either a6 or a7 is applied (Fig. 6.7). If the DMM transfers from the

buffering state to the terminate state, a6 executes. The last L frames of Bmaj are

used as Bpre for the next buffer tracking cycle to provide contextual information. The

previous frames are sent to LBO for data compression decision making. If the DMM
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Table 6.2: DMM output alphabet

S Σ Λ Description

s1
e2/e4 a1 Write from Bpre to Bmaj, empty Bpre

e1/e3 a2 Write from Bpre to Bwait, empty Bpre

s2
e1 a5 Write new frame to Bwait.

e2/e3/e4 a3 Write new frame to Bmaj

e5 a6 Write last L frames of Bmaj to Bpre, the rest of Bmaj is
sent to LBO for long-term storage.

s3
e1/e3 a5 Write new frame to Bwait.

e2/e4 a4 Write frames of Bwait and the new frame to Bmaj, empty
Bwait

e6 a7 Write last L frames of Bwait to Bpre, and the rest of Bwait

to Bmaj. Bmaj is sent to LBO for long-term storage.
Empty Bwait.

transfers from the waiting state to the terminate state, a7 executes. Bwait is then

divided into two partitions; the first (earliest) partition is appended to Bmaj while

the most recent (latest) partition is used as Bpre for the next DMM execution cycle.

Figure 6.7: Buffer operation after DMM terminates.

It is possible for Bmaj to overflow when populating it from Bwait, so the size of

Bpre is computed by:

|Bpre| = max(L, |Bmaj|+ |Bwait| − Tmaj) (6.21)
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where L is a user-specified minimum size of Bpre.

6.5 Local Buffer Optimization and Long-term Storage Man-

agement

This section specifies the LBO problem and proposes a method of decoupling LBO

to facilitate real-time execution. LBO determines optimal compression quality of each

frame in a buffer. A long-term storage management strategy is then introduced to

deal with finite storage limits.

6.5.1 LBO Formulation

LBO is applied to each data buffer obtained from the DMM to determine the

optimal compression quality for each frame of the buffer. This paper formulates LBO

as a nonlinear programming (NLP) problem over design vector D = [d1, ..., d|Bk|].

The objective function is based on three metrics: 1) Minimize total data storage cost;

2) Maximize total data value; 3) Maximize data recording decision continuity. These

metrics are defined below.

Storage cost (size). For data buffer Bk, the total storage cost given decision vector

D is computed as

CBk(D) =

|Bk|∑
i=1

ciφ(di) ≤
|Bk|∑
i=1

ci (6.22)

where ci is the storage cost of the ith frame in Bk, φ(di) is the mapping from com-

pression quality to compression ratio, also called the quality-ratio curve. φ(di) mono-

tonically increases over di ∈ [0, 1]. The form of φ(di) depends on the compression

algorithm and the data type. We use φ(·) of the JPEG compressor in (6.23),

φ(d) = −a1 log2(1− a2 d) + a3 (6.23)

where [a1, a2, a3] is the parameter vector fit by compressing real-world driving videos.

Readers are guided to [116] for further details.

Data value term. The total data value of Bk given D is computed in (6.24):

VBk(D) =

|Bk|∑
i=1

vidi ≤
|Bk|∑
i=1

vi (6.24)
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Data value is presumed proportional to data compression quality in this work.

Decision continuity term. The decision continuity metric discourages abrupt

changes in data frame decision value and is computed as the total change over all

adjacent decisions in D.

WBk(D) =

|Bk|∑
i=2

(di − di−1)2 (6.25)

This continuity term encourages storage of low-value frames when they are in

proximity to high-value frames. Coupling is introduced between any two consecutive

decisions to smooth the compression quality curve.

Objective function. Based on Eqs. (6.22)-(6.25) we define objective function:

min
D

η CBk(D)− ζ VBk(D) +WBk(D)

subject to di ∈ [0, 1], ∀ di ∈ D
(6.26)

Above, η, ζ ≥ 0 are weighting parameters that can be varied to examine solution

sensitivity or represent user preferences. The optimization problem (6.26) may not

be easy to solve because the dimension |Bk| is typically large. In what follows we

introduce a simple but effective value filtering method so that the continuity term

WBk(D) can be dropped. This results in a decoupled LBO problem where a unique

minimizer exists and can be analytically solved.

6.5.2 Decoupled LBO

Estimating data value over sequential frames generates discrete-time value se-

quence {v1, v2, ..., vt, ...}. This value sequence can have impulsive and step behaviors

due to transient data events. The formulated LBO solves this problem by encouraging

decision continuity WBk(D) in (6.25). However, this term introduces coupling to LBO

which results in a high-dimensional NLP. As an alternative, we apply a data value

filtering pre-processing step which suggests the WBt(D) in (6.26) can be eliminated.

Data filtering is based on: 1) Assigning contextual frames of a high-value event high

data value; 2) Preserving (not filtering out) impulsive events or short-term durational

events of high value. The sequential data frame value signal is therefore filtered by

Gaussian functions as shown in (6.27).
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v̂t =


max(vt, vT0e

−(
t−T0
σf

)2

) if t < T0

max(vt, vT1e
−(

t−T1
σf

)2

) if t > T1

vt otherwise

(6.27)

where T0 and T1 are event start and end time, respectively, and σf is data value

deviation that controls Gaussian curve width.

The proposed data value filtering scheme can serve to decouple consideration of

data continuity from LBO computation. We can drop the continuity term in (6.26)

to decouple the overall solution into a series of one-dimensional frame optimization

problems per (6.28). With this strategy, LBO can optimize the data value specifi-

cation for each frame independent of all other frames. Given constant ζ
η
, each LBO

decision is determined by a data frame’s value and size.

min
di

ciφ(di)−
ζ

η
v̂i di,

subject to di ∈ [0, 1].

(6.28)

It has been shown in [116] that the decoupled LBO performs similar to coupled

LBO with much less computation time.

6.5.3 Prioritized Data Recording in Long-term Storage

Once SBB storage limit M is reached and an optimal decision vector for a new

buffer is computed, either the old buffer(s) or the new buffer must be discarded. We

propose storing buffers over a long-term as a priority queue (heap) so that those

with lower values are discarded preferentially. The heap is constructed based on

buffer value, and the lower-value buffers are discarded until heap size is less than

M . Storage limit M can be set to a value smaller than maximum available physical

storage to assure data buffers can be successfully captured.

The total value of the kth buffer is calculated as:

V ∗Bk = (1 + λ)k max
i

(vi · di) (6.29)

where vi is the ith data frame value, and 1 + λ with 0 < λ � 1 is an aging factor

that amplifies the value of the newest data buffer.

Each recorded buffer B̂k contains the compressed data for all ft ∈ Bk. The buffer
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storage cost is CBk as in (6.22) and the buffer value is V ∗Bk . When a buffer is to

be removed, data included in the buffer and their indices can be rapidly located

and pruned; note that pruned indices will not be reused in other buffers. A binary

min − heap queue [154] is constructed to store buffers based on V ∗Bk . Algorithm 2

describes the prioritization sequence.

Algorithm 2: Priority Queue Logic

Input : New buffer Bk, heap HQ, heap size CHQ, maximum available
storage M .

Output: Updated heap HQ
1 HQ.push(Bk)
2 CHQ = CHQ + CBk
3 while CHQ > M do

4 B̂ = HQ.pop() // pop the buffer with the smallest VB̂
5 CHQ = CHQ − CB̂
6 end

6.6 Experiments in TORCS Simulation

This section presents a case study using the pre-defined EOIs from Section 6.3 and

long-term traffic data generated from a simulator. Two case studies are presented an-

alyzing coupled and decoupled LBO parameter selection, respectively. A comparison

between prioritized data recording and FIFO recording with different storage limita-

tions is also provided. Last, we examine the reproducibility of deep learning results

on images compressed by the SBB to demonstrate its utility.

6.6.1 Simulation Environment

A simulator is used to generate three-lane highway traffic trajectories for this case

study. The simulator is developed based on a game theoretic traffic model and is

capable of representing heterogeneous and interactive multi-vehicle traffic scenarios.

More details of the simulator can be found in [147]. We feed data generated from the

simulator into our SBB. This simulator is utilized because it covers a large range of

traffic scenarios over a short period of running time. Note that the proposed approach

can be applied to other datasets also. In this case study, we define one host car and

15 participant cars so that EOIs are not too frequent or rare. The frame rate is 10Hz,

and the trajectory length is 600 seconds.
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Training data. We generated 10, 000 Monte Carlo trajectories with randomly

initialized car locations and velocities to estimate the data value metrics. Each tra-

jectory terminates when the set length is reached or when the host car crashes with

a participant car. Driving data of the host car and all participant cars are collected.

The accumulated driving time of all cars is about 15, 041 hours and the total mileage

is about 0.68 million kilometers.

From the 10,000 MC trajectories, there are 29, 953, 405 cut-in events captured

among all cars as well as 23, 000, 206 hard braking events and 1, 024, 611 conflicts.

Since the simulation is restarted if one host car crash is detected, we compute proba-

bility of crash using only host car crashes; 4, 799 crashes are obtained. Likelihood of

events are computed from (6.30) and listed in Table 6.3. For crash probability, the

denominator is the number of frames for the host car only.

Pr(εj) =
# of frames with εj detected

total # of MC trajectory frames
(6.30)

Table 6.3: Probability and estimated value metrics of normal frames and EOIs. cutin1

and cutin2 have ranges R = 100m and 30m, respectively.

Events normal cutin1 cutin2 hardbraking conflict

Prob. 0.92 0.045 0.010 0.035 0.0015

Value 0.009 0.34 0.53 0.37 0.72

Test data. We simulated a single long-term test trajectory to evaluate SBB per-

formance. This long-term trajectory consisted of 115, 615 frames (around 3 hours 12

minutes) and terminated with a crash. Statistics on test data are shown in the first

and second rows of Table 6.4. We evaluated the SBB with coupled and decoupled

LBO over this trajectory, then compared prioritized data recording with a conven-

tional FIFO queuing model. We also presented the reproducibility of object detection

and semantic segmentation results on SBB compressed data.

Metrics. We define three metrics, average value per frame (aV PF ), average mem-

ory per frame (aMPF ) and value per memory (V PM), to guide parameter selection

for LBO:
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aV PF =

∑
i v̂i di
N

(6.31a)

aMPF =

∑
i ci φ(di)

N
(6.31b)

V PM =
aV PF

aMPF
(6.31c)

6.6.2 Case Study 1: Coupled LBO and Parameter Selection

We first applied the proposed SBB with coupled LBO to the testing data. The

sensitivity of coupled LBO to weighting parameter η and ζ is investigated. Figs. 6.8(a)

to 6.8(b) show the contours of aV PF , aMPF and V PM with η ∈ {0.1, 0.2, ..., 2.0}
and ζ ∈ {0.1, 0.2, ..., 2.0}. Other parameters include: Tmaj = 600, Twait = 30, L = 20,

σf = 10, ξ0 = 0.5.

(a) Average value per frame (aV PF ) (b) Value per memory (V PM)

Figure 6.8: Sensitivity analysis of the coupled LBO method.

Generally, the SBB performance is best when selecting parameters that result in

high V PM value. However, the V PM can be large as long as the aMPF is small

enough, in which case all data are highly compressed. Therefore, users might also have

a minimum expectation regarding aMPF (or aV PF ) of recorded SBB data. Thus,

instead of simply selecting (η, ζ) corresponding to the highest V PM , the trade-off

between V PM and aV PF must be considered. Six example parameter selections (p1

to p6) are shown in Fig. 6.8 and their corresponding aV PF and V PM are presented.

It can be seen that at point P6 there is a high V PM = 0.29 but a low aV PF = 0.012.

Such a selection of (η, ζ) resultrs in high recording efficiency but the data can be too

compressed to provide sufficient information. We select η = 0.9 and ζ = 1.7 for the

following experiment since it results in relatively high V PM and aV PF .

Computational time required to solve the coupled LBO depends on data buffer
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length and frame values. The buffer length obtained by the DMM is from 3 seconds

to 60 seconds with average 7.5 seconds, while the LBO solving time varies from 0.003

seconds to 24.6 seconds with average 0.9 seconds. In conclusion, solving a coupled

LBO is time-consuming with a large buffer containing highly variable data values,

motivating application of decoupled LBO in a deployed SBB. In this study we ran

sequential least squares programming (SLSQP) solver provided by a Scipy (Python)

optimization package on a machine with 16GB RAM and an Intel Xeon(R) CPU

E3-1240 v5 @ 3.50GHZ*8.

6.6.3 Case Study 2: Decoupled LBO and Parameter Selection

The continuity term in the decoupled LBO is dropped, resulting in (6.32). Pa-

rameters [a1, a2, a3] are obtained from quality-ratio curve fitting in [116].

F (di) = φ(di)−
ζ

η
v̂i di

= −a1 log2(1− a2di) + a3 −
ζ

η
v̂ di

(6.32)

The resulting function is convex and derivable in di ∈ [0, 1]. Therefore a unique min-

imum solution can be analytically computed by finding the zero-derivative solution.

The optimal decision is then given by:

d∗i = max(0, − a1

log2 2v̂i
(
ζ

η
)−1 +

1

a2

) (6.33)

Fig. 6.9 shows the objective functions of four constant-value events with different
ζ
η
. The cutin event is not shown since its value is a function of observed cutin range.

This ratio must be selected in an interval such that all EOIs can be recorded with a

high quality while normal frames are compressed with low quality.

Given the fitted parameters, if

dF (di)

ddi

∣∣∣
di=0
≥ 0 (6.34)

then F (di) is monotonically increasing and the minimum is d∗i = 0. We define bound-

ary parameter ζ
η

= a1a2
(log 2v̂i)

by solving the equality condition in (6.34). There is one

boundary parameter for each EOI. Corresponding objective functions are shown by

red dotted curves in Fig. 6.9. Parameter selection must have ζ
η
> a1a2

(log 2v̂)
for all EOIs.
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(a) normal (b) hard braking (c) conflict

Figure 6.9: Objective function of decoupled LBO for each event. Square blocks
indicate optimal solutions. Each red dotted curve indicates the boundary value of
parameter for such an event.

In this case study, to guarantee that the hardbraking event is recorded at high qual-

ity, we select ζ
η
> 0.4. If ζ

η
< 0.2, none of these EOIs are recorded. To avoid recording

normal data with high quality, ζ
η
< 17.3 should be enforced.

Figure 6.10: Value per frame with different weighting parameter ratios for the de-
coupled LBO method. Black points are examples of different parameter selections,
similar to Fig. 6.8.

In Fig. 6.10, V PM decreases significantly when ζ
η
> 0.7. However, aV PF and

aMPF values are extremely small when ζ
η
< 0.7, indicating that most data are highly

compressed. This is consistent with observations from the coupled LBO parameter

selection study. Therefore we recommend ζ
η
> 0.7 but not too large to realize a

reasonable trade-off between V PM and aV PF .

106



6.6.4 Results and Analysis

Below we present SBB results using the coupled LBO method with parameters

selected per Section 6.6.2.

6.6.4.1 SBB data recording statistics

Statistics of SBB data recording on the test data are presented in Table 6.4. The

third and fourth rows show the average and standard deviation of SBB compression

decision (quality) of each event. It can be seen that the qualities on EOIs are much

higher and more stable compared to the quality of normal frames, indicating that

the SBB places high emphasis on all EOI frames but treats normal frames differently

based on how close each frame is to an EOI. Generally, the SBB maintains high

quality for EOIs while compressing normal data frames to save memory.

Table 6.4: Raw test data and SBB data compression statistics.

normal cutin
hard

braking
conflict

Raw data
# of frames 106230 2955 5865 541

Size (MB) 19639.16 547.18 1082.15 101.45

SBB data

Avg. di 0.44 0.76 0.79 0.88

Std. di 0.36 0.019 0.012 0.005

Size (MB) 1511.30 93.02 151.63 22.70

The last row of Table 6.4 summarizes SBB memory requirements for each event

type to support comparison of raw data and SBB storage requirements over normal

and EOI datasets. Most of the recorded driving data frames are normal since the SBB

records all frames unless finite storage is reached and normal frames are dominant in

the test data set. Some normal frames are also contextual frames of EOIs which have

higher value according to the filter and therefore are compressed with high quality.

Table 6.5 indicates the percentage (pct.), quantity, and storage cost of contextual

frames as a fraction of all normal frames acquired from simulations. The contextual

frames here are defined as frames within a specified range (in number of frames) from

an EOI.

For example, we found that 20.27% of the normal frames are located within

±5 frames of an EOI, and their storage cost is about 43.29% of the storage cost of

all normal frames. This indicates that the memory is efficiently utilized to record
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Table 6.5: Statistics on recorded normal frames. The context range is in number of
frames with frame rate 10Hz.

Context range ±5 ±10 ±15 ±20

Quantity pct. 20.27% 34.99% 46.19% 54.80%

Storage cost pct. 43.29% 66.87% 79.46% 83.09%

contextual frames. 83.09% of the storage cost of normal frames are within ±20 frames

of an EOI.

6.6.4.2 Prioritized data recording with long-term storage limits

We apply different storage limitations (M) to the SBB. Recorded event counts are

summarized in Table 6.6. With M = 1500MB, more cutin (∼ 200), hardbraking(∼
500), and conflict(∼ 90) events are missed by the FIFO model compare to the

prioritized model, while the SBB reserves more storage for EOIs by discarding more

normal frames. With M = 500MB, the SBB model saves 40% of the cutin events

and all conflict events, while the FIFO model records 10, 072 more normal frames and

missed 79% of the conflict frames. Note that less hardbraking frames are recorded

by the SBB with M = 500MB because their values are determined to be lower than

for some cutins. These differences show the prioritized data recording scheme is able

to record valuable data happening in the early phase of the trajectory that would be

discarded by a conventional FIFO (circular buffer) data recorder.

Table 6.6: Prioritized (SBB) and FIFO data recording comparison with storage limit
M . Both schemes use LBO to guide data buffer JPEG compression.

M normal cutin hardbraking conflict

1500MB
Ours 74271 2725 5547 541

FIFO 90953 2530 5036 456

500MB
Ours 21135 1182 1599 541

FIFO 31207 738 1719 113

6.6.5 Performance of SBB Data on Deep Learning Model

To evaluate SBB compression with respect to AV percept reproducibility, we ap-

plied object detection and semantic segmentation models on data recorded with SBB
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compression and two comparative baselines. For object detection, we apply Mask-

RCNN [3] pre-trained on the Common Objects in Context (COCO) dataset. Bound-

ing box average precision AP bb [3] is computed as the evaluation metric. For semantic

segmentation tasks, we use DeepLabV2 [4] pre-trained on the CrowdFlower dataset.

We evaluate the performance using pixel intersection over union (IOU) as shown in

(6.35).

PIOU =

∑W,H
i=0,j=0 1(p̂i,j, pi,j)

W ·H
(6.35)

where p̂i,j and pi,j are predicted and ground truth classes of pixel (i, j), respectively,

and 1i,j is an indicator function returning 1 if p̂i,j = pi,j.

The SBB compresses images using the method from Section 6.6.4 resulting in

1778.91MB of stored data; Baseline1 compresses all images with 0.1 quality result-

ing in 1433.6MB of data; Baseline2 compresses all images with 0.5 quality, resulting

in 2355.2MB of data.

Image data is obtained from the TORCS simulator as described above. The

simulator [147] used to generate traffic data has been integrated with TORCS to

assure experimental data is consistent [155]. TORCS-generated images are referred

to as “raw data” in this study and SBB compressed images are “SBB data”. Fig. 6.11

shows an example result with different compression qualities, consistent with Fig. 6.1.

Figure 6.11: Object detection (left) and semantic segmentation (right) on a TORCS
image compressed with 1, 0.5, 0.1 and 0.01 quality (from top to bottom).

The metric values of Mask-RCNN and DeeplabV2 on different data are presented

in Table 6.7. We assume object detection and semantic segmentation results on raw

data are ground truth and report the metrics with SBB and two baseline datasets.

We separately show the results on normal frames and frames contain three EOIs and
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ignore crash frames since no compression is applied with SBB. Both Mask-RCNN

and DeeplabV2 achieve better performance on EOI frames in SBB data compared

to baseline data, indicating that the EOIs saved by the SBB is more reproducible in

these two specific tasks. The performance on normal images recorded by the SBB

is worse than on the images from baselines, consistent with the SBB design goal to

highly compress normal data to save memory for EOIs. The SBB is able to record

more reproducible but less memory-consuming data compared to compressing data

with a preset constant compression ratio.

Another interesting observation is that DeeplabV2 performance is more robust

to JPEG compression compared to Mask-RCNN. One possible reason is that with

JPEG compression, the object feature used for detection is destroyed while the whole

image feature is better maintained, which makes it harder to distinguish an object

from background.

Table 6.7: Mask-RCNN AP bb and DeeplabV2 PIOU on two baseline datasets and
SBB data. Greater numbers indicate better performance.

Data normal cutin
hard

braking
conflict

Mask
RCNN

Baseline1 0.32 0.32 0.38 0.28

Baseline2 0.68 0.68 0.74 0.67

SBB 0.47 0.74 0.80 0.80

DeeplabV2

Baseline1 0.78 0.80 0.79 0.79

Baseline2 0.88 0.90 0.90 0.91

SBB 0.58 0.92 0.92 0.95

6.7 Experiments on BDD100K+DoTA Datasets

We conducted SBB data collection experiments on a large-scale real-world video

dataset and present results in this section. We summarize storage requirements of

SBB compressed data to showcase its preservation of anomalous data. We then

compare our SBB prioritized data recording with a first-in-first-out (FIFO) queue

data recording strategy [117]. Finally, we compare the performance of two different

value estimates: anomaly score value and IBCC combined value.
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6.7.1 BDD100K+DoTA Datasets

The SBB is designed for high-bandwidth data collection in long-term driving where

the onboard storage is limited. Therefore, SBB performance evaluation requires a

dataset that contains a large quantity of high-quality video data with embedded events

of interest (EOIs). To our best knowledge, there is no single dataset that satisfies

all these requirements. The BDD100K dataset [6] is one of the largest high-quality

driving video datasets with 100, 000 video clips, equal to ∼ 1, 100 driving hours.

The DoTA dataset [1] is the largest and newest high-quality video dataset for traffic

anomalies with 4, 677 anomalous video clips. We combined the 10, 000 validation

videos in the BDD100K dataset and randomly interspersed 500 anomalous video

clips from the DoTA dataset, resulting in a large-scale testing video with ∼ 4, 000, 000

frames at 10 FPS. By combining these two datasets, we obtained a > 100-hour high-

quality driving video with the vast majority (∼ 99.5%) of the frames as normal but

still with a large number of EOIs the SBB might recognize and record.

6.7.2 Results

SBB Data Compression. SBB data compression statistics with no memory

limit are presented in Table 6.8. It can be seen that the storage cost of normal

frames is significantly reduced (703.84 GB to 127.92 GB, 82%) by the SBB. This

leads to a 108% increase in the ratio of anomalous data storage to normal data

storage. Both the average (avg.) and median (med.) compression factor decisions

of the SBB are higher for the anomalous frames, indicating that the SBB is able to

identify and preserve anomalous frames over normal ones. Figure 6.12 displays normal

frames which were highly compressed by the SBB along with preserved anomalous

frames. Figure 6.13 shows two failure cases where anomalous frames were mistakenly

compressed. Both of these failures showcase a lack of robustness against cases where

anomalous objects are occluded.

The decision difference between normal and anomaly frames with these real-world

datasets is not as significant compared to the simulation experiment in Section 6.6

due to the fact that the EOI detection in simulation was 100% accurate while VAD on

real-world data is far from perfect per Section 5.7.1. Moreover, the median decision for

a normal frame is significantly lower than the mean, indicating that there are outlier

normal frames with unusually high value scores. The standard deviation (std.) of

anomalous frames is significantly larger than that in simulation experiments (0.36 vs

∼ 0.02), showing how inaccurate VAD and OAD reduces SBB efficiency on real-world
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Table 6.8: Raw and SBB compressed data statistics on the BDD100K+DoTA dataset.

Normal Anomaly Anomaly Ratio

Raw Data
# of frames 3,967,977 16,768
size (GB) 703.84 1.76 0.25%

SBB w/ VAD+OAD
size (GB) 127.92 0.67 0.52%
avg. di 0.51 0.58
med. di 0.55 0.65
std. di 0.24 0.26

SBB w/ ground truth labels
size (GB) 18.04 1.19 6.60%
avg. di 0.00 0.92
med. di 0.00 0.92
std. di 0.03 0.00

data. The limitations of VAD and OAD are further shown by evaluating performance

of the SBB given ground-truth labels as VAD and OAD scores. The anomalous-to-

normal storage ratio increases by 2640%, driven by the substantial differences in

decisions between normal and anomalous frames. This upper-bound performance of

the SBB indicates that as anomaly detection techniques continue to improve, the

performance of the SBB will improve as well.

Table 6.9: Comparison of Prioritized Recording and FIFO.

M Normal Anomaly

25 GB Priority 583,552 5,365
FIFO 804,387 3,568

12.5 GB Priority 308,459 3,739
FIFO 427,466 1,903

Priority Queue vs. FIFO. Table 6.9 compares frames recorded with the SBB

prioritized recording system against frames recorded with a FIFO queue at memory

limits of M = 12.5 GB and 25 GB. These values represent a non-trivial amount of data

to upload assuming only sporadic internet access is available. In both experimental

scenarios, prioritized recording saved fewer normal frames and more anomalous frames

than with the FIFO strategy. Notably, the prioritized recording using 12.5 GB saved

more anomalous frames than the FIFO queue at 25 GB. The prioritization strategy of

the SBB removes ∼ 93% of the normal frames while still recording ∼ 20% anomalous

frames at M = 12.5 GB. Compared with the FIFO queue, the SBB saves ∼ 25%

fewer normal frames and ∼ 50-100% more anomalous frames.
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(a) A normal driving frame (b) A vehicle-object collision (VO) event

(c) Precursor of the TC event (d) An ego turning collision (TC) event

Figure 6.12: Compressed normal frames (left) and preserved anomalies (right).

(a) A non-ego out-of-control (OO*) event
where a windshield wiper is partially
blocking the anomaly.

(b) A non-ego road crossing collision
(TC*) where one vehicle is partially oc-
cluded.

Figure 6.13: Compressed anomaly failure cases.
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Value Estimation Method Comparison. Table 6.10 compares decision statistics

for hybrid value estimation and IBCC value estimation. We note that the VAD-only

method generates the largest decision difference in normal and anomalous frames.

We suspect this is a result of OAD’s inability to consistently differentiate between

anomalous and normal frames per Section 5.7.3. IBCC-based value estimation results

in a relatively low difference in decisions. However, IBCC does lead to lower standard

deviation in the decision indicating that it reduces the outlying anomaly scores which

results in more stable decisions. This is because IBCC makes use of prior distributions

shared between frames for each hidden variable to establish a base expectation for the

anomaly status. On the other hand, the hybrid method takes only the current ob-

servations into account, meaning each frame is considered completely independent of

every other frame. Low decision standard deviation is especially valuable when mem-

ory is limited. With high standard deviation, many normal frames will be assigned

high priority, while many anomalous frames will be assigned low priority. Thus, when

memory capacity is reached, anomalous data mistakenly given low priority may be

discarded.

For applications which value general EOIs, VAD-only value estimation (α = 1,

β = 0) has the greatest ability to distinguish normal and anomalous data. However,

users interested in specific EOIs may opt to use hybrid value in order to incorporate

the EOI classification offered by OAD. In terms of hybrid value parameters, Table 6.10

shows that lower weights result in higher decision differences. However, in situations

where retaining high data quality is critical, higher α and β values may be used to

achieve higher overall decision quality. Additionally, the higher decision differences

as α increases shown in Figure 6.14 indicate once again that VAD contributes more

to the differentiation of normal and anomalous frames than does OAD. Finally, the

low-variance decision-making of IBCC is useful in memory-limited systems when the

retention of most anomalous frames at lower quality is more important than the

retention of fewer anomalous frames at higher quality.

6.8 Conclusion

This chapter has presented a Smart Black Box (SBB) architecture that makes

compression and storage prioritization decisions with a two-stage process. The SBB

first caches raw data in a short-term buffer and determines compression factor based

on data value and size. Data value is computed based on its novelty and the pres-

ence of temporally-proximal high-value data frames. Short-term buffers are managed
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Table 6.10: Compression quality decisions for hybrid and IBCC value estimation.

Value Estimation α β Normal Anomaly

VAD Only 1.0 0.0
avg. di 0.27 0.39
med. di 0.14 0.36
std. di 0.25 0.31

OAD Only 0.0 1.0
avg. di 0.10 0.14
med. di 0.0 0.07
std. di 0.15 0.17

Hybrid

0.9 0.1
avg. di 0.26 0.37
med. di 0.14 0.36
std. di 0.29 0.33

0.5 0.5
avg. di 0.20 0.30
med. di 0.10 0.27
std. di 0.24 0.28

0.1 0.9
avg. di 0.12 0.19
med. di 0.02 0.16
std. di 0.16 0.19

IBCC N/A N/A
avg. di 0.30 0.34
med. di 0.28 0.32
std. di 0.09 0.13

Figure 6.14: Mean normal and anomalous decisions for α + β = 1.

by a deterministic Mealy machine (DMM) so that high-value data or similar data

are buffered together. For long-term data collection given finite onboard storage,

the SBB discards the lowest-value data regardless of age. A simulation case study

generates driving trajectories and first-person view images containing four prede-
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fined EOIs. We show that the local buffer optimization strategy enables the SBB to

record reproducible but less memory-consuming data. Experiments on a large (> 100

hour) BBD100K+DoTA driving video shows how the SBB transfers from simulation

to real-world. By combining video anomaly detection (VAD) and online action de-

tection (OAD) scores, the SBB detects real-world events and records valuable data.

Experiment results also show that SBB efficiency is limited by the accuracy of VAD

and OAD algorithms.

Future work could extend the SBB in several aspects. For example, multiple

clusters can be applied to record different EOIs so that new EOIs can be compared

with existing clusters to avoid recording redundant data. Another potential extension

is to combine static metrics with real-time (dynamic) metrics including available

storage, observed driving and traffic risks, and observed frequency (novelty) of each

event type.
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CHAPTER VII

Conclusion and Future Work

7.1 Conclusion

This dissertation studied three problems: 1) Object trajectory and behavior pre-

diction in driving videos; 2) Anomaly detection in driving videos based on research

in 1); and 3) a Smart Black Box for driving video data collection based on research

in 2). We improved state of the art (SOTA) in traffic object modeling and used these

methods to improve SOTA in traffic anomaly detection. We utilized knowledge of

traffic objects and anomalies to conduct efficient data collection experiments based

on our understanding of traffic scenes.

We introduced the HEV-I, A3D and DoTA datasets created for future object

localization (trajectory prediction) and driving video anomaly detection. A specific

advantage of the DoTA dataset is that it provides not only temporal annotations

for anomalous events, but also specifies event spatial locations in terms of bounding

boxes and a semantic description of the anomaly category. DoTA emphasizes the

importance of explainability in video anomaly detection: 1) Does the model actually

look at the anomalous region on the video? and 2) Does the model understand what

type of anomaly is happening in the video? These two questions are not addressed

in previous research so DoTA is a strong supplement to fill this gap.

Our multi-stream network for ego-centric future object localization (FOL) incor-

porated optical flow and ego-motion information. FOL is one of the first efforts to

address the ego-centric vehicle bounding box prediction problem. Rich optical flow

information from images and ego-motion of the moving car-mounted camera is used

to predict bounding boxes in a ”long-term” future (e.g., 1 second). Our multi-modal

bi-directional trajectory predictor (BiTraP) based on goal estimation mitigates ac-

cumulated prediction error. BiTraP is based on the idea that an object’s trajectory

is significantly influenced by its goal position and how it is approaching that goal.
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BiTraP uses a bi-directional trajectory decoder for goal estimation and completes the

trajectory from start to goal and from goal to start. Without using extra information

from the environment or neighbor objects, BiTraP achieves SOTA results on eight

published datasets, 2 first-person view and 6 bird’s-eye view. BiTraP is the first work

that studies how different latent space distributions impact a multi-modal trajectory

predictor, which inspires future work to carefully select/design the latent space of a

multi-modal trajectory predictor.

For pedestrian behavior prediction we modeled intent and semantic action in a

multi-task learning network to boost detection accuracy for each. Distinct from gen-

eral video action recognition or online action detection tasks, pedestrian behavior pre-

diction is a much less studied area with many concepts not yet carefully defined. This

dissertation hypothesizes that intent describes underlying future action and models

pedestrian behavior as a combination of a pedestrian’s intent and action. Our multi-

task network encodes observed data to predict future action which in turn improves

estimates of present action and intent. Experiments with published datasets show the

effectiveness of our method, especially in scenarios where pedestrian action evolves

over time.

Our video anomaly detection (VAD) work extends our FOL research. Because

previous frame-level VAD methods perform poorly with onboard camera data we in-

troduced an FOL-based VAD method to focus on movable foreground objects and

ignore a potentially noisy moving background. Errors in FOL caused by inaccurate

object detection and tracking motivated our definition of a prediction consistency

based anomaly metric. We close the gap between previous frame-level VAD meth-

ods and our object-level method by introducing an Ensemble method that combines

outputs from each. Our Ensemble method achieves SOTA results on three published

datasets including our A3D and DoTA datasets.

Long-term driving data collection is essential to develop and evaluate AV per-

ception algorithms. We proposed a Smart Black Box (SBB) as an intelligent event

data recorder for high-bandwidth data collection in long-term driving scenarios with

limited onboard storage. Our anomaly detection methods guide the SBB to prior-

itize highly anomalous events over normal driving data. The SBB manages small

data buffers in real-time and compresses data buffers using a compression factor opti-

mized over expected data value and cost. To evaluate SBB performance, we designed

a simulated highway traffic dataset with TORCS and real-world experiments with

BDD100K and DoTA datasets. Given hundreds of GBs of video frames and lim-

ited onboard storage, the proposed SBB compresses or discards most normal frames
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to save space for anomalous event data including context annotations. Collected

anomaly data maintains high-quality and can be used in further research to validate

and verify AV behaviors.

7.2 Future Work

Direct follow-on research and long-term future work is summarized in this sec-

tion. First, object interaction has been assumed an important factor impacting each

traffic participant’s decisions. However, previous research using interaction modeling

in trajectory prediction shows little improvement in accuracy, and results lack ex-

plainability. Future work might design explainable interaction modeling methods to

improve trajectory and behavior prediction accuracy. Also, extracting useful infor-

mation from environment data is a key direction worth further study. For example,

relevant infrastructure features in an image, e.g., stop light illumination, impact traf-

fic participants. Designing a model that recognizes object-environment relations is

important to understand object trajectories and behaviors.

Second, existing traffic video anomaly detection is still far from being sufficiently

accurate for real-world deployment. We introduced the DoTA dataset to help im-

prove models to recognize anomalies in terms of spatial, temporal, and categorical

accuracy. However, addressing all three problems in concert is still difficult, especially

for unsupervised methods. Therefore, it is critical to conduct additional research to

close the gap between supervised and unsupervised VAD methods to find efficient

methods with high explainability in spatial, temporal and categorical domains.

Finally, the SBB design implemented in this dissertation only considers pre-defined

events of interest (EOIs) during data collection. In future work data streams might

be organized in multiple clusters to distinguish different EOIs, to facilitate identifi-

cation of new EOIs in comparison with existing EOI clusters, and to avoid recording

redundant data. SBB functionality can also be improved by combining static metrics

with real-time (dynamic) metrics including available storage, observed driving and

traffic risks, and observed frequency (novelty) of each event type.

Despite the significant advances recently made in trajectory prediction and anomaly

detection, the AV community still faces an important an open question: What will

be required for people to feel confident about perception systems that rely on ma-

chine learning, and how can these systems be safely deployed in future autonomous

vehicle (AV) systems? Emerging work in human-robot systems and artificial intelli-

gence ethics has investigated these broad questions with grounding in fields including
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psychology, precedence, and policy. In the AV industry, validation & verification over

long-term driving uses miles per disengagement (MPD) as a primary metric to justify

the reliability of a vehicle. However, metrics like MPD do not explain the logic behind

every decision made by the AV systems, not to mention logic applied by subsystems

such as machine learning based perception modules. Two metrics are emerging as

critical for a trust-worthy machine learning (ML) based AV system: transferability

and explainability. A transferable ML method does not overfit to a preferred dataset

but can be generalized to different application environments, e.g., from a car to a

truck and from one country to another. An explainable ML method not only predicts

the correct answer but also explains the logic behind the prediction, e.g., a pedestrian

is not going to cross the road because there is a red light. Keeping this confidence

metric in mind motivates several future work trajectories for this dissertation.
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