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Abstract 

In the design and construction of modern lightweight shipboard structures, wide-spread 

welding-induced distortions have become a major structural producibility issue and an increasing 

structural integrity concern over secondary bending stresses caused by interactions of distortions 

with cyclic service loads. The goal of this dissertation is to develop an effective methodology for 

evaluating the secondary bending effects caused by complex welding-induced distortions on 

fatigue behaviors of lightweight structures. A novel analytical approach based on a divide-and-

conquer approach is taken to obtain the solutions to complex distortion problems in closed-forms 

through an assembly of its solution parts achievable through a decomposition technique. 

A notional load method for providing analytical treatment of distortion curvature effects 

on fatigue behaviors of lightweight shipboard structures within the context of beam theory is first 

presented. Using this method, closed-form analytical formulae can be developed for analyzing 

secondary bending stresses caused by nonlinear interactions between several common distortion 

types and remotely applied load.  

Then, an analytical method for computing the secondary bending stresses at weld locations 

caused by both axial and angular misalignments without curvatures. The model enables a 

consistent definition of each type of misalignment commonly observed in practice. As such, the 

secondary bending stresses caused by misalignments at each weld toe location can be appropriately 

combined for fatigue evaluation purposes.  

All closed-form analytical solutions derived are validated by direct finite element 

computations in various cases. Moreover, the developed analytical solutions are used for 
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interpreting fatigue test data of welded components with misalignments and distortion curvatures. 

An excellent agreement is achieved not only between thin plate lab specimens and full-scale 

stiffened panels but also with the traction structural stress-based master S-N curve scatter band 

adopted by ASME Div. 2 since 2007, further validating their effectiveness in fatigue evaluation of 

welded structures exhibiting general forms of misalignments and distortion curvatures. 

These new closed-form solutions offer some significant insights not only on what types of 

distortions are more detrimental to fatigue performance than others but also on the validity limits 

of the empirical equations stipulated in current Codes and Standards. In addition, parameterized 

limits can now be clearly stated on conditions when straightening effects should be considered 

based on the closed-form solutions. 

Finally, a general distortion mode decomposition-and-assembly procedure is presented. By 

introducing a consistent reference framework, complex distortions regarding both butt-welded 

joints and fillet-welded joints in panel structures can be readily decomposed into various 

elementary distortion modes studied in this dissertation. The final assembly of the constituent 

secondary stress solutions is accomplished through superposition. To facilitate real-world 

engineering applications and support future adoptions of Codes and Standards, the closed-form 

formulae are presented in tabular form for following the workflow of the proposed decomposition-

assembly procedure. Two examples are provided for illustrating how the procedure and closed-

form solutions are used in real engineering applications. 

In summary, this dissertation presents a series of novel analytical treatments for computing 

secondary bending stresses caused by various elementary distortion modes, accompanied by a 

comprehensive distortion decomposition-and-assembly procedure based on a consistent 

framework. These new solutions offer a comprehensive suite of tools to engineers and researchers 
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for a consistent and effective treatment of secondary stresses caused by distortion types unique to 

lightweight shipboard structures in performing fatigue evaluations.  
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Chapter 1 

Introduction 

1.1 Background 

In recent years, the demand for structural lightweighting for transportation vehicles has 

become more intensified as the industry strives for further improved fuel economy and reduced 

environmental emissions [1]. Furthermore, an effective structural lightweighting can help achieve 

an improved weight balance for maneuverability under dynamic conditions, even with increased 

payloads [2–4]. For instance, in the automotive industry, numerous name-brand vehicles have 

recently been replaced by newer models with significantly lighter weight components [5]. For 

example, the new Ford F-150 achieved a 300 kg (14% decrease) weight reduction over its 2014 

model by adopting an aluminum car body structure over an advanced high-strength steel frame 

[2]. In a Department of Energy project, researchers managed to shave off over 600kg of weight 

from the original 2013 Fusion design by adapting a mixed-material Mach-II structure design [6] 

(see Fig. 1.1). In the railroad industry, engineers are also seeking innovative weight reduction 

solutions like using aluminum, sandwich structures, and recently Carbon Fiber-reinforced Plastics 

(CFRP) (see Fig. 1.2) in rail vehicle structures [3,7,8]. In the shipbuilding industry, there is also 

an increasing interest in using high-strength low-density alloys such as aluminum alloys and 

titanium alloys [9,10] or using thinner plate thicknesses in the design [11] (Fig. 1.3) to achieve 

effective lightweighting. 
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Fig. 1.1 Mixed-material lightweight vehicle Mach-II design material distribution [6]. 

 

Fig. 1.2 Load-bearing structure of a rail vehicle subfloor cladding with heavy use of CFRP [3]. 

Despite these novel lightweighting concepts, their use in actual structural designs is still 

limited due to cost considerations [12] or challenges in joining dissimilar materials [13] in today’s 

production environment. As a result, one of the simplest and most cost-effective ways of achieving 

structural lightweighting today is the use of high strength thin gauge steel plates or sheets. As 

reported by Huang et al. [9,14], plates with thicknesses equal to or less than 10 mm have become 

increasingly dominant in lightweight shipboard structures in surface combatants (see Fig. 1.4). As 

such, significant challenges in distortion control during construction have been reported [15–17] 

due to the following reasons. First, since the residual stress developed after welding could easily 

reach the material’s yield strength magnitude [15,18], a higher yield strength means higher residual 

stresses. Second, thin plate sections have significantly lower flexural rigidity, which leads to lower 
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buckling strength and larger deformations under the same residual stress level. Therefore, high-

strength thin gauge steel sheets are much more prone to distortions (see. Fig. 1.5). 

 

Fig. 1.3 Midship cross-section of a case passenger ship with thin deck design [11]. 

 

Fig. 1.4 Percentage of thin steel plate (less than 10 mm) ordered by vessels at NGSS/Avondale Shipyards [9]. 

Such rampant distortions can cause serious issues in both construction and structural 

performance. The first issue is dimensional accuracy control in modular assembly. Severe 
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distortions at part and component levels cause poor fit-up conditions for subsequent welding 

assembly, often require costly distortion corrections. The second problem is that large distortions 

could negatively affect the performance of the structure in service. For example, the distortion may 

affect the buckling strengths of stiffened panels [19]. More importantly, the distortion would also 

introduce additional stress concentration when the structure is loaded and could cause problems 

like stress corrosion cracking, reduced structural strength, and shortened fatigue life at welded 

joints. These problems could lead to a significant reduction of structural life and need to be 

addressed properly, especially their impact on fatigue performance since it is less likely to be 

noticed until severe damage has been done. Therefore, it is necessary to understand how such 

distortions would affect the structure’s fatigue performance in order to establish a concrete 

mechanics basis for facilitating the development of distortion allowance criteria for ensuring the 

operational safety of these new lightweight structures in service. 

 

Fig. 1.5 Severe distortions associated with thin plates observed in shipyards [20]. 
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1.2 Representative Research Efforts on Distortion Effects on Fatigue Performance 

In this section, the state-of-the-art fatigue evaluation approaches relevant to welded 

components, and recent research efforts on distortion effects on fatigue will be reviewed to 

establish areas of further research needs 

1.2.1 Fatigue Evaluation Methods 

It is estimated that 50-90% of the failures which occur in engineering components can be 

related to fatigue [21,22], and welded components show much lower fatigue strengths than those 

of unwelded components, as shown in Fig. 1.6. In welded structures, fatigue failures usually 

happen at welded joints due to stress concentration caused by weld shape and discontinuities [23]. 

Many approaches have been developed for the fatigue assessment of welded joints. These include 

the nominal stress method [24,25], the hot spot stress method [26], the local notch stress method 

[27–29], and the traction structural stress method [30–32]. 

 

Fig. 1.6 Comparison of fatigue strengths between steel plate, notched steel plate, and plate with welded attachments [23]. 

(a) Nominal stress method 
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Fig. 1.7 Net of S-N Woehler curves at constant stress amplitude (steel) [26]. 

Nominal stress is a simple stress state that would exist at a weld location without 

considering geometric discontinuity (local stress concentration), of which strength of materials 

formulae are applicable. It is a stress definition widely adopted by well-recognized national and 

international Codes and Standards [24,25,33]. Since the nominal stress definition cannot 

differentiate variations in stress concentration behaviors resulted from joint types, joint 

dimensions, etc., each unique structural detail is assigned a different S-N curve based on limited 

testing and experience (i.e., one out of many as shown in Fig. 1.7) for fatigue life estimation. 

Although the current codes and standards provide various weld joint detail classifications (e.g., 

BS7608 [24], IIW Recommendations [25]), it is often difficult to determine a proper classification 

for a welded joint in design. Furthermore, the nominal stress could not be clearly defined in 

complex structures, as well as the stress component caused by misalignment and distortions. 

(b) Hot spot stress method 
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Fig. 1.8 Definition of hot spot stress [25]. 

 

Fig. 1.9 Hot spot stress using different extrapolation methods [34]. 

The hot spot stress refers to the stress that includes the stress riser effects of structural 

details but without that from the local weld profile itself [25]. The hot spot stress is determined by 

extrapolating from surface stresses at reference points to the weld toe, as shown in Fig. 1.8, so that 

the stress singularity due to geometry discontinuity is excluded. There are different reference point 

positions and extrapolation methods recommended [25], based on either finite element analysis 

(FEA) results or test measurements (strain gauge readings). However, based on a study by Fricke 

[34], the hot spot stresses obtained using different extrapolation method show a great variation and 

is highly mesh sensitive (as illustrated in Fig. 1.9). This increases the uncertainties of the hot spot 

stress result and is the main drawback of this method. Also, the application of the hot spot stress 

method is limited to weld toe failure since it requires surface stresses. 

(c) Local notch stress method 
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Fig. 1.10 Effective notch root radius [26]. 

The notch stress is the total stress at the root of a notch, obtained assuming linear-elastic 

material behavior [25]. Due to the irregularity of the weld toe and the root configuration, there is 

no well-defined notch radius at welded joints; therefore, an effective notch root radius of 1.0 mm 

was used [26,27] for steel and aluminum alloys, as shown in Fig. 1.10. However, the local notch 

stress method requires extra fine mesh around the notch root (minimum element size about 0.05 

mm, see Fig. 1.11), making it computational expensive and challenging to implement in complex 

engineering structure models. Moreover, the notch stress method is limited to thicknesses 𝑡 ≥ 5 

mm, granting it limited applicability in lightweight structures.  

 

Fig. 1.11 Finite element (FE) mesh of the weld toe with effective notch root radius of 1 mm [27]. 

(d) Traction structural stress and the Master S-N curve method 
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The traction structural stress definition and the Master S-N curve method were originally 

developed by Dong et al. [30–32,35] and have been used in a number of recent studies [36–40] for 

dealing with both weld toe and weld root cracking fatigue failure modes.  

 

Fig. 1.12 Through-thickness structural stresses definition: (a) local stresses from FE model; (b) traction structural stress 

or far-field stress; (c) self-equilibrating notch stress [31]. 

 

Fig. 1.13 Comparison of the traction structural stress results for a cover plate fillet weld: (a) shell element model; (b) 2D 

cross-section showing weld geometry; (c) comparison of traction structural stress at the weld toe with different element 

sizes and types [31]. 
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It can be assumed that the stress at a fatigue prone location, such as the weld toe in Fig. 

1.12a, can be represented by the simple equilibrium-equivalent stress, referred to as the traction 

structural stress (or far-field stress in fracture mechanics, Fig. 1.12b), and self-equilibrating notch 

stress (Fig. 1.12c), both affects the fatigue life of a welded joint. Based on the underlying force 

equilibrium condition of the traction structural stress, nodal forces from FEA output are used to 

calculate the traction structural stress. The calculation procedure has been demonstrated to be 

rather mesh-insensitive (see Fig. 1.13) because the equilibrium of nodal forces is always satisfied 

at nodes [31], unlike the stress output.  

Based on the traction structural stress, Dong et al. further derived an equivalent structural 

stress range parameter [32,35] using fracture mechanics that cover the contribution from the self-

equilibrating notch stress. This parameter can correlate a large amount of S-N data from various 

joint types, thicknesses, loading modes, and forms a narrow scatter band [31,32], which is the basis 

of the master S-N curve, proving its effectiveness in characterizing essential fatigue failure 

mechanisms. This method has been adopted by ASME Div.2 Code since 2007. With the equivalent 

structural stress range parameter, only the master S-N curve is needed for the fatigue assessment 

of various welded joints. 

The above four fatigue evaluation methodologies can all be used for assessing distortion 

effects on fatigue. Nevertheless, the nominal stress method requires much testing with carefully 

controlled distortion (for classification purposes), which is very difficult. The hot spot stress 

method and the local notch stress method rely fully on FE models with explicitly modeled 

distortions; due to their empirical assumptions, the analytical stress solution derived in this 

research cannot be used in these methods. The traction structural stress, however, is based on force 

equilibrium, and thus the analytical solution can be directly added to the traction structural stress. 
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Therefore, the traction structural stress and the master S-N curve is used for fatigue performance 

assessment in this research. 

1.2.2 Distortions in Welded Structures 

It has been well recognized that welding-induced shrinkage is responsible for distortions 

in welded structures [9,15]. Based on their underlying mechanisms, there are two major types of 

welding-induced distortion, i.e., stable distortions and unstable distortions. Stable distortions can 

be directly related to a given residual stress field after welding, often in a strongly nonlinear 

manner. Examples along this line include angular distortions observed around a fillet weld (Fig. 

1.14a) or a butt weld (Fig. 1.14b). Unstable distortions are caused by structural instability, or 

buckling, triggered by compressive residual stresses caused by welding-induced shrinkage. Such 

unstable distortions in thin-walled structures often result in some distinct waveforms, as shown in 

Fig. 1.15. In actual structures, the distortions around welded joints could be much more 

complicated, such as those observed by Lillemäe et al. [41] (Fig. 1.16), because the aforementioned 

two types of distortions may coexist.  

 

Fig. 1.14 Angular distortion: (a) around a fillet weld [42]; (b) around a butt weld [43]. 
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Fig. 1.15 Unstable distortions caused by buckling in a panel structure [9]. 

 

Fig. 1.16 Measured distortion in a structure-level specimen [41]. 

There have been numerous studies on detailed modeling of various types of distortions 

induced by welding [44–48]. As for modeling distortion effects on fatigue [49,50], a systematic 

approach is still not available. For instance, some of these investigations were focused on a specific 

type of distortions (e.g., angular distortions or half sinusoidal wave) observed in lab specimens 

and investigating their effects on fatigue by performing fatigue testing and finite element based 

stress concentration analysis. The findings developed are specific to the distortion types studied 

and difficult to be generalized for applications for actual components that often exhibit rather 

complex distortions. As such, there is a need for a more general approach for characterizing typical 

distortion modes or shapes associated with lightweight shipboard structures such that a consistent 
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stress concentration computational procedure can be developed for each type of distortions, and 

their combined contributions to a weld location can be properly accounted for. 

1.2.3 Distortion Effects on Fatigue Performance 

There have been a number of noted research efforts carried out over the recent years on the 

effects of the welding-induced residual stresses on the structural integrity in the literature, e.g., by 

Dong and Brust [18], Dong et al. [51], and their co-workers [15,52,53], and others [54–56] in the 

context of pressure vessels and piping components. In contrast, discussions on the effects of 

welding-induced distortions on the structural integrity of lightweight shipboard structures have 

been rather limited. For instance, Antoniou [57] and Carlsen and Czujko [58] studied experimental 

observations on some specific types of distortions observed in the ship construction environment. 

These studies mainly focused on structural buckling strength under compressive loading applied 

on plates with thicknesses greater than 10mm and did not address how distortions influence fatigue 

behaviors of welded structures. In current fatigue assessment and fitness-for-service (FFS) 

procedures, there is essentially no procedure for assessing complex distortion effects on structural 

integrity except for some limited provisions given in BS 7910 [59] and DNV-RP-C203 [33] for 

treating both simple axial and angular misalignments in butt-welded joints. Distortion curvature 

effects on fatigue, which may generate significant secondary bending stresses (the stresses 

associated with remote in-plane loading) in thin-section structures, have not been considered in 

any recognized Codes and Standards or recommended practices. Furthermore, the existing 

distortion tolerances in current code and standards stipulated by Class Societies and other Codes 

and Standards are mostly carried over from legacy requirements which were based on data and 

experiences associated with thick-section structures (e.g. [60]) or decades-old (e.g., MIL-STD-

1689A [61]), and may require revisiting for their application in modern lightweight structures. For 
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example, Dong et al. [62] examined the fairness tolerance criteria in MIL-STD-1689A using a 

simple linear beam model and found that the criteria for thin plate could have significant difference 

with those for thick plates, as shown in Fig. 1.17. 

 

Fig. 1.17 Comparison of distortion tolerances for different thicknesses from MIL-STD-1689A and from [62]. 

 

Fig. 1.18 Test study conducted by Lillemäe et al. [41,49]: (a) thin plate butt-welded full- and lab-scale specimens; (b) 

fatigue test data correlation using nominal stress range. 
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Fig. 1.19 Illustration of two joint misalignments: (a) axial misalignment; (b) angular misalignment (or global angular 

distortion) [63]. 

 

Fig. 1.20 Fatigue test data correlation in [63] using equivalent structural stress: (a) without considering misalignments; 

(b) with considering misalignments. 

To address such a need, Lillemäe et al. [41,49] conducted a detailed investigation into how 

complex distortions could impact fatigue behaviors in butt-welded thin plate specimens (see Fig. 

1.18a). The test data plotted in the nominal stress range (Fig. 1.18b) shows a significant level of 

scatter (within each type of specimen) despite the specimens having identical nominal geometry. 

Xing et al. [36,63,64] also studied the effects of joint misalignments (Fig. 1.19) on fatigue failure 

mode transition behaviors in thin plate cruciform joints by performing both experimental and finite 

element studies. The comparison of data correlation without (Fig. 1.20a) and with considering the 

misalignment effects (Fig. 1.20b) demonstrated that joint misalignments, if not properly accounted 

for, can cause a significant data scatter in S-N test data correlation when dealing with thin plate 

joints. Their studies have concluded that both axial and angular joint misalignments (the former 
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caused by poor fit-ups and the latter caused by welding-induced angular distortions) must be 

treated properly for their interaction effects at a weld location. 

The most significant finding from the studies to date on distortion effects on the fatigue of 

welded lightweight components is that fatigue behaviors in thin plate structures tend to show a 

great deal of scattering, much more so than thick plate joints, regardless of stress definitions used 

for data interpretation, e.g., hot spot stress, local notch stress, and structural stress methods, etc. 

Without properly addressing this issue, the existing fatigue design procedures stipulated in Codes 

and Standards cannot be used with confidence, and the applicability of legacy distortion tolerance 

(or fairness) requirements becomes questionable. 

1.2.4 Limitations in Past Studies and Existing Methods 

Based on the above discussions, as far as distortion effects on fatigue are concerned, both 

the existing research efforts and available analysis procedures available today have the following 

limitations: 

(a) Lack of a clearly defined procedure on how to treat complex distortions for computing 

secondary stresses at a joint location of interest, such as the one shown in Fig. 1.21, which 

often represent a combined effect of multiple types of distortions. 

(b) Lack of a more generalizable method, e.g., expressed in a close form, for treating various 

forms of distortions or misalignments without relying on complex FE computations for 

fatigue evaluation of lightweight structures by taking into account actual measured 

distortions, which often introduce additional. 

(c) Lack of an effective means for determining what types of distortions are more important 

than others to fatigue under the same distortion magnitude so that distortion tolerance limits 

in Codes and Standards can be properly defined for cost-effectiveness. 
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To address the above issues, a more fundamental approach is required for identifying and 

decomposing a given distortion shape into a series of basic distortion modes on which the 

secondary stresses generated under a given weld location can be more readily solved in closed 

forms and then assembled to represent the combined stress concentration effects of actual 

distortion shape. 

 

Fig. 1.21 Complex distortion condition with respect to a welded joint. 

1.3 Research Objective and Approach 

The major objective of this research is to develop an effective methodology for evaluating 

the secondary bending effects caused by welding-induced distortions on fatigue behaviors of 

modern lightweight structures. To ensure broad applicability of the method developed, we take a 

novel analytical approach which can be characterized as a “divide-and-conquer” strategy to attain 

the final closed-form solution to a given complex distortion problem through an assembly of its 

solution parts, as described below: 

1. Decompose a given complex distortion problem into a series of sub-set problems 

corresponding to elementary distortion modes. 

2. Develop analytical solutions of secondary bending stresses caused by the resulting 

elementary distortion modes by means of strip beam theory. 

3. Introduce a consistent reference framework for facilitating the final assembly of secondary 

stress solutions corresponding to various elementary distortion modes involved, e.g., 

deformation sign definitions and position references, etc.  

4. Validate the resulting closed-form solutions at both the elementary distortion mode level 

and the final assembled level. 
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5. Further validate the developed approach by examining its ability in effectively correlating 

available fatigue test data under various welding-induced distortion conditions with well-

established traction structural stress-based master S-N curve recently adopted by ASME 

B&PV Div. 2 Code. 

1.4 Dissertation Structure and Topic Outline  

This dissertation is prepared in a multi-manuscript format. Chapter 1 serves as an 

integrated introduction on the state of the art of research in welding-induced distortions in 

lightweight shipboard structures and the importance of addressing their effects on fatigue 

performance of modern lightweight structures. As such, the need for a more rigorous, consistent, 

and general treatment of distortion effects on fatigue is demonstrated, leading to our proposed 

“divide-and-conquer” approach.  

Chapter 2 mainly focuses on the analytical modeling of the distortion curvatures' effects 

on fatigue. The notional load method is presented for providing analytical treatment of complex 

distortion effects on fatigue behaviors of lightweight shipboard structures together with a distortion 

decomposition technique. Two sets of lab-scale specimens and nine full-scale stiffened panel 

fatigue tests involving complex distortion shapes are also analyzed using the closed-form 

analytical solutions developed and achieved an excellent agreement in fatigue test data not only 

between butt-welded thin plate lab specimens and full-scale stiffened panels but also with the 

traction structural stress-based master S-N curve scatter band adopted by ASME Div. 2 since 2007. 

Chapter 3 investigates the effects of axial and angular misalignment. An analytical method 

for computing the secondary bending actions caused by both axial and angular joint misalignments 

is presented with consideration of the joint representation. The closed-form analytical solutions 

presented have been validated by finite element analysis with joint geometry explicitly modeled. 



 19 

In addition, the validity and effectiveness of the analytical solutions have been further proven by 

correlating some well-known fatigue test data of welded components with controlled 

misalignments into a single narrow band. 

Chapter 4 aims to develop a general distortion mode decomposition and assembly 

procedure for the analytical treatment of misalignment and distortion curvature effect. The local 

angular distortion model is first extended to a more general extent to enable the superposition of 

the analytical solutions. Then, a general distortion mode decomposition and assembly procedure 

is established, whose objective is to provide a consistent procedure to reliably divide the 

complicated distortion effect on a welded joint into several sub-problems and combine the result 

from each sub-problem together. 

Chapter 5 summarizes the analytical solutions developed in each chapter and categorizes 

them based on engineering application scenarios. A step by step distortion mode decomposition 

and assembly procedure is provided. Finally, several application examples are provided to 

illustrate how the analytical solutions developed can be used in real engineering problems. 

Chapter 6 concludes the dissertation with key findings and the broach implications of the 

developed analytical approach both for understanding distortion effects on fatigue and supporting 

engineering applications in structural life evaluation involving various forms of distortions. Future 

research areas are also discussed in light of the findings from this investigation. 

1.5 Publications 

The following is a list of publications that have resulted from the work described in this 

dissertation to date.  

• Zhou, W., Dong, P. "An Analytical Method for Modeling Combined Effects of Axial and 

Angular Misalignments on Fatigue of Welded Joints" (Submitted, 2020) 
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Chapter 2 

Analytical Treatment of Distortion Curvature Effects on Fatigue 

2.1 Chapter Introduction 

There are several factors that can cause secondary bending at a welded joint in lightweight 

shipboard structures with distortions. Based on [49,63,65], two major factors that would affect the 

stress concentrations at the welded joint are the curved distortion shapes and misalignments. This 

chapter mainly focuses on the analytical modeling of the distortion curvatures' effects on fatigue. 

The stress concentration caused by initial distortions or geometric imperfections observed 

in thin plate shipboard structures under fatigue loading was recently studied by several researchers. 

Eggert et al. [66] and Lillemäe et al. [67] performed finite element (FE) analyses using FE models 

incorporating detailed distortion measurements of test specimens and found that both the shape 

and magnitude of distortions can have significant effects on stress concentration factors calculated. 

However, a generalized stress concentration analysis method for incorporating various distortion 

modes or types remains to be found. It is worth noting that Chan et al. [68,69] and Gu et al. [70] 

presented a series of analytical solutions based on beam theory with presumed simple geometric 

imperfections described in the form of a half sine wave or a parabolic function. Even though these 

solutions cannot be directly applied for distortion problems of interest here, the analytical approach 

should be of interest for the present applications. Further along this line of analytical approach, 

Liew [71] introduced a notional load approach in which equivalent loads were applied against a 

nominally perfect geometry of a beam or a frame member to re-produce initial imperfections of 

interest for studying nonlinear deformation problems of beams. In a rather similar manner, Dong 



 22 

et and Zhou [62,72] recently presented an analytical treatment of distortion effects on secondary 

stress concentration development in stiffened panel structures in which notional loads were used 

to model nonlinear interactions between a lateral load and out-of-plane distortions. They used their 

analytically calculated stress concentration factors (SCF) and achieved a very good correlation of 

some available fatigue test data on thin-plate butt-welded specimens exhibiting severe distortions 

[41,49]. 

In this chapter, we present a more general analytical method for computing SCF caused by 

various common forms of welding-induced distortions and their interactions with a lateral load 

(perpendicular to weld direction). Starting with some of the typical distortion shapes presented in 

[62,72], we introduce a classic Euler-Bernoulli beam model with notional loads that are used to 

re-produce various distortion modes. Then, an imperfect beam based on Timoshenko beam-

column theory is introduced and solved by taking advantage of the notional loads for modeling 

nonlinear interactions between a distortion mode and lateral load applied. A series of analytical 

SCF solutions are then presented for studying fatigue behaviors observed in thin plate fatigue test 

specimens both at lab-scale and full-scale levels. Finally, for the treatment of complex distortions 

such as those observed in full-scale shipboard components, a general distortion data interpretation 

procedure is also presented for taking advantage of the analytical SCF solutions developed. It is 

found that the analytical SCF solutions developed in this study are effectively for interpreting 

fatigue test data available for both thin plate lab-scale and full-scale components. 

2.2 Analytical Treatment of Distortion Curvatures 

2.2.1 Assumptions 

The analytical developments presented in this section are based on the following 

assumptions, which will be further validated by FE analysis at the end of this section: 
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a) A transverse section of a butt-seam welded or stiffened shipboard panel follows a beam 

theory (consistent with strip beam theory often used for analyzing ship structures) 

b) Beam material is assumed to follow linear material behaviors within the loading range of 

concern while beam deflection and lateral load interactions can be nonlinear or in the 

regime of nonlinear deformation. 

c) The magnitude of pre-existing beam distortions or imperfections is small compared to 

beam length. 

d) Transverse shear deformation is negligible. 

2.2.2 Method of Notional Loads 

Consider the interactions between a pre-existing distortion mode 𝑣0(𝑥) of a beam and its 

axial load 𝑃, as depicted in Fig. 2.1a, where 𝑃 is considered positive when it generates tensile 

stress in the beam, and 𝑣1(𝑥) represents an unknown beam deflection of the beam caused by 𝑃. 

The classic governing differential equation of such a beam with imperfections described by 𝑣0(𝑥), 

incorporating geometric nonlinearity, is given as [73], 
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in which 𝐸  is material Young’s Modulus and 𝐼  represents the moment of inertia. And the 

secondary bending moment 𝑀1 can be expressed as: 
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Eqn. (2.1) can be solved directly with a prescribed simple initial distortion shape function 

𝑣0(𝑥), e.g., a simple one-half sine wave [69,70] or a parabolic shape [68]. For more complex 

distortion shapes, however, Eqn. (2.1) often becomes difficult to solve in closed form. This 

difficulty can be overcome if the concept of notional loads [71] is introduced. As such, consider 
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that an initial distortion 𝑣0(𝑥) is caused by a set of notional loads acting on a linear Euler-Bernoulli 

beam, (e.g., Fig. 2.1b). The resulting 𝑣0(𝑥) shall satisfy: 
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Note that displacement boundary conditions on the linear beam can be imposed in a manner 

that best represents a pre-existing distortion shape of interest and are independent of the ones 

prescribed for the imperfect beam (Fig. 2.1a). To enable the superposition between the imperfect 

beam problem and the linear beam problem, we can add or release boundary restraints of the linear 

beam by replacing them with statically equivalent notional loads. As such, the constrained 

displacements or rotations are consistent between the linear beam and the imperfect beam, as 

illustrated in Fig. 2.1c.  

Then, through a superposition of the two problems described in Fig. 2.1a governed by Eqn. 

(2.1) and Fig. 2.1c governed by Eqn. (2.3), the resulting governing equation becomes:  
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By denoting 𝑣 = 𝑣0 + 𝑣1, Eqn. (2.4) becomes 
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which is the governing equation of a geometrically nonlinear beam with perfect nominal geometry 

(Fig. 2.1d) subjected to the notional loads on the nominally perfect beam (Fig. 2.1c) and the axial 

force 𝑃 applied to the imperfect beam (Fig. 2.1a). 

Hence, the imperfect beam problem in Fig. 2.1a can be solved by first determining the 

loading pattern of notional loads on a linear beam (Fig. 2.1b and Fig. 2.1c) and their values, then 

solving the nonlinear perfect beam problem in Fig. 2.1d, which allows the determination of 𝑣1 =
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𝑣 − 𝑣0 sought. With such a procedure, we can either solve the problem by obtaining the solution 

to the homogeneous equation Eqn. (2.5) or use existing solutions to corresponding nonlinear 

perfect beam problems, avoiding solving the nonhomogeneous equation Eqn. (2.1) for every 

possible distortion shape of concern. 

 

Fig. 2.1 Procedure for solving imperfect beam problems using the method of notional loads: (a) imperfect beam; (b) linear 

beam subjected to notional loads; (c) linear beam with adjusted boundary conditions; (d) nonlinear perfect beam with 

notional loads. 

2.3 Analytical Solutions to Common Distortion Types 

2.3.1 Distortions in Stiffened Panels 

According to the detailed distortion investigations by Dong [31,53] and Yang and Dong 

[17], two typical distortion modes are dominant in lightweight shipboard structures, as illustrated 

in Fig. 2.2. One is referred to as buckling type, resulted from structural instability behaviors 

triggered by compressive residual stresses. Fig. 2.2a shows a LIDAR (LIght Detection and 

Ranging) image of a 16'×20' (4.877m×6.096m) stiffened panel, which clearly exhibits well-
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defined checker-board pattern shown at the lower half of the image. The other type is referred to 

as cosine angular distortion, which is depicted in a sketch for clarity as shown in Fig. 2.2b. If a 

transverse cross-section, say along Section A-A, is considered, the two types of distortions can be 

depicted in Fig. 2.2c and Fig. 2.2d, respectively. Within one stiffener spacing 𝑙, the buckling 

distortion is defined as one-half sinusoidal waveform, while the cosine angular distortion has one-

half cosine shape with no rotation at stiffener locations. For both distortion types, the stiffeners are 

horizontally aligned (i.e., 𝑣0 = 0 at stiffener locations). The amplitude or peak distortion values 

for both cases are given as 𝛿0. In this study, strip beam theory is assumed to be applicable for 

simplicity, and the beams mentioned in this dissertation are all in unit width. 

 

Fig. 2.2 Two major distortion types in thin plate structures [72]. 

2.3.1.1 Cosine Angular Distortion 

According to Fig. 2.1d, an imperfect beam model representing a typical angular distortion 

within one stiffening spacing of 𝑙 is depicted in Fig. 2.3a, in which two beam ends are restrained 

under embedded conditions. Such an initial distortion shape, as discussed in Sec. 2.2.2, can be 

represented by a linear beam subjected to a concentrated notional force 𝐹0 at beam mid-span, as 
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shown in Fig. 2.3b. The magnitude of 𝐹0 can be obtained through classic beam theory by setting 

beam mid-span deflection 𝛿0. The distortion field 𝑣0(𝑥) can then be obtained from the linear beam 

theory. 

 

Fig. 2.3 Beam models used for modeling interactions of angular distortion with load 𝑷: (a) imperfect beam; (b) linear 

beam; (c) nonlinear perfect beam. 

Using the procedure presented in Sec. 2.2.2, the secondary bending stress induced by the 

angular distortion as a result of lateral load 𝑃 can be expressed as the bending stress concentration 

factor 𝑘b (see Appendix A.1 for detailed solution process) at the stiffener location (i.e., 𝑥 = 0, 𝑦 =

𝑡/2): 
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where 𝜆 is an auxiliary variable defined as 

 .
P

EI
 =   (2.7) 

Note that, unless otherwise stated, all 𝑘b solutions refer to the top surface (i.e., 𝑦 = 𝑡/2) in the rest 

of the dissertation and that the second equations given in all 𝑘b expressions are valid before the 

compressive axial loading magnitude reaches the model’s Euler’s critical load beyond which 

buckling occurs. 

2.3.1.2 Buckling Distortions 

Similarly, the buckling distortion shape illustrated in Fig. 2.2c can be represented as the 

deflection of a beam with two pinned ends and a concentrated notional force in the middle, as 

illustrated in Fig. 2.4b. The corresponding imperfect beam problem is illustrated in Fig. 2.4a, and 

the corresponding nonlinear perfect beam model is given in Fig. 2.4c. Then, 𝑘b due to secondary 

bending resulted from the buckling distortion mode with respect to the stiffener (𝑥 = 0) can be 

then obtained as 
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  (2.8) 

The detailed solution process is provided in Appendix A.2. 

 

Fig. 2.4 Beam models used for modeling interactions of buckling distortion with load 𝑷: (a) imperfect beam; (b) linear 

beam; (c) nonlinear perfect beam. 

2.3.2 Distortions in Butt-Welded Plates 

Lillemäe et al. [49] reported some interesting fatigue tests on lab-scale butt-welded 

specimens with distortions characterized as shown in Fig. 2.5. Detailed axial misalignments 𝑒, 

angular distortions measurements in terms of 𝛼L,1 and 𝛼G, as defined in Fig. 2.5, are also given in 

[49]. As a part of this study, 𝛼L,2 is also measured and used for test data analysis.  
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Fig. 2.5 Angular distortion definitions for butt-welded thin plate specimens [49]. 

 

Fig. 2.6 Decomposition of complex angular distortions in butt-welded plate shown in Fig. 2.5: (a) a general distortion 

shape; (b) global angular distortion; (c) local angular distortion. 

To demonstrate how the analytical procedure described in Sec. 2.2.2 can be used for 

characterizing the distortion types shown in Fig. 2.5, axial misalignment 𝑒 is not discussed in this 

chapter since the solutions under various conditions can be found from the recent work by Xing 

and Dong [63] and the solution under nonlinear geometry will be further studied in Chapter 3. As 

far as the angular distortions shown in Fig. 2.5 are concerned, they can be assumed to be symmetric 

about the weld centerline and thus only one half of the specimen needs to be considered, as 

depicted in Fig. 2.6a. Furthermore, the distortions involved in Fig. 2.5 can be decomposed into 

two simple distortion modes: global angular distortion (Fig. 2.6b), which is typically referred to as 

angular misalignment, e.g., in BS 7910 [59], and local angular distortion (Fig. 2.6c). 

2.3.2.1 Global Angular Distortion 



 31 

 

Fig. 2.7 Nonlinear beam model: global angular distortion. 

The global angular distortion shown in Fig. 2.6b does not involve any curvature as pre-

existing distortion. Therefore, no notional load needs to be considered when examining its 

interaction with a beam axial load 𝑃 , according to the method described in Sec. 2.2.2. The 

equivalent nonlinear beam model corresponding to the clamped-end condition is given in Fig. 2.7 

with the global angular distortion defined as 𝜃G. Note that the sign conventions for the rotations 

throughout the rest of this dissertation follows the right-hand rule, which is also given in Fig. 2.7. 

It then can be shown that stress concentration factor 𝑘b with respect to the weld location (𝑥 = 0) 

can be solved as: 
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  (2.9) 

The detailed solution process lead to Eqn. (2.9) is given in Appendix A.3. It is worth 

pointing out that Eqn. (2.9) is exactly the same as the one given in BS 7910 [59] for computing 

secondary stress caused by angular misalignment with fixed-end conditions. However, the source 

of this solution is not given in BS 7910 [59]. This confirms the validity of our approach as 

described in Sec. 2.2.2. 

2.3.2.2 Local Angular Distortion 
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Fig. 2.8 Beam models used for local angular distortion of butt-welds: (a) imperfect beam; (b) linear beam; (c) nonlinear 

perfect beam. 

The treatment of local angular distortion depicted in Fig. 2.6b is shown in Fig. 2.8, 

assuming that the distortion curvature is simple and can be fully described by the rotations at both 

ends 𝜃′1 and 𝜃′2 (Note: based on the coordinate definition, 𝜃′1 is positive and 𝜃′2 is negative in 

Fig. 2.8). Then, this type of local angular distortion can be modeled by a tilted cantilever beam 

loaded with a notional force and a notional moment at the free end, as shown in Fig. 2.8b. The 

relationships between the initial rotations 𝜃′1, 𝜃′2 and the notional loads can be determined by 

classic beam theory as 
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Following the procedure described in Sec. 2.2.2, one can show that, for the nonlinear 

perfect beam shown in Fig. 2.8c, 𝑘b at weld location (𝑥 = 0) can be expressed as 
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2.3.3 Validation Using Finite Element Solutions 

To validate the solutions developed in Secs. 2.3.1-2.3.2, including the assumptions 

introduced, four finite element imperfect beam models incorporating the distortion shapes 

considered in the previous sections are shown in Fig. 2.9. Nonlinear geometry effects are 

considered in all these models. All these beam models have a unit width and the same Young’s 

modulus (𝐸 = 210000MPa). The axial load for the models in Fig. 2.9a and Fig. 2.9b varies from 

𝑃 =  −317.5N (𝜎𝑛 = −50MPa) to 𝑃 =  1587.5N (𝜎𝑛 = 250MPa), while the minimum axial 

load for the models in Fig. 2.9c and Fig. 2.9d is set as 𝑃 =  −114.3N (𝜎𝑛 = −18MPa). The FE-

based 𝑘b at weld location (𝑥 = 0) are calculated and compared with analytical solutions in Fig. 

2.10, demonstrating an excellent agreement between the analytical and FE methods for the entire 

axial load range. 
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Fig. 2.9 FE beam models used for validating the analytical solutions: (a) cosine angular distortion; (b) buckling distortion; 

(c) local and (d) global angular distortion of butt-welds. 

 

Fig. 2.10 Comparison of stress concentration factors (𝒌𝒃) results between FE and analytical solutions: (a) cosine angular 

distortion and buckling distortion; (b) local and global angular distortions of butt-welded plate specimens. 

2.4 Applications in Fatigue Test Data Analysis 
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2.4.1 Lab-Scale Butt-Welded Specimens 

Some fatigue test results on lab-scale butt welded specimens (3 mm in thickness) were 

reported in [49], in which detailed geometric nonlinear finite element analysis of these specimens 

with measured distortions was also performed. In these cyclic tensile fatigue tests, rotations at grip 

positions were fixed during testing and special clamping system was used to avoid additional 

bending from clamping. They evaluated the feasibility of using either surface extrapolated hot spot 

stress or local notch stress method recommended by IIW (Hobbacher, [26]) based on the 

assumption of distortion shapes being simple arcs and the results are shown in Fig. 2.11. The data 

using either the hot spot stress (Fig. 2.11a) or local notch stress (Fig. 2.11b) spread within a factor 

of 10 in fatigue lives at a rather similar stress range level, especially for arc-welded specimens 

which are prone to larger distortions, suggesting that neither method could provide a satisfactory 

correlation of the test data with their assumption on distortion shape. 

 

Fig. 2.11 Test data correlation using nonlinear geometry FEA calculated stress (taken from [49]): (a) IIW’s surface 

extrapolation based hot-spot stress method; (b) IIW’s effective notch stress method. 

By considering the test clamping conditions as well as the distortions involved, these lab-

scale specimens can be modeled as the imperfect beam illustrated in Fig. 2.12. Through a 

comparison between Fig. 2.5 and Fig. 2.12, the butt weld is located at 𝑥 = 0, and the beam end 

angles are 𝜃1 = 𝛼L,1/2, and 𝜃G = 𝛼G/2, where 𝛼G and 𝛼L,1 are defined in Fig. 2.5 and given in 
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[49]. Note that simplified distortion shapes were assumed in [49] and 𝜃2 = 𝛼L,2 values were not 

given, thus a modified local angular distortion model is introduced to accommodate such 

assumption.  

 

Fig. 2.12 Imperfect beam model for modeling lab-scale specimens. 

Based on the development in Sec. 2.3.2, such distortions are first decomposed into global 

angular distortion and local angular distortion as in Fig. 2.6; thus, the global angular distortion is 

𝜃G and the initial rotations in the local angular distortion 𝜃′1 and 𝜃′2 is obtained by 𝜃′1 = 𝜃1 − 𝜃G 

and 𝜃′2 = 𝜃2 − 𝜃G. Since the 𝜃2 values are not available, we adjust the model by setting 𝑚0 = 0 

in the linear beam model shown in Fig. 2.8a, leading to 𝜃′2 = −𝜃′1/2. Then, the distortion induced 

stress concentration factors 𝑘b,global and 𝑘b,local can be obtained through Eqns. (2.9) and (2.11), 

respectively. However, through a close examination of the specimens’ pictures, we found that the 

distortion shape of several arc-welded specimens cannot be well represented by the adjusted model 

and thus their 𝛼L,2values are measured specifically in this study, as summarized in Table 2.1. These 

specimens are then treated using the approach in Sec. 2.3.2 without the adjustment discussed 

above. 

Based upon Eqn. (2.5), we can see that the method of superposition is applicable for 

geometric-nonlinear beams as long as the beams have the same length 𝑙, same bending rigidity 𝐸𝐼, 

and are subjected to the same axial load P, resulting in 𝑘b = 𝑘b,global + 𝑘b,local for each specimen. 

The bending stress concentration caused by axial misalignment (𝑒) is calculated separately using 
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𝑘𝑒 = 3𝑒/𝑡  according to [63] using detailed 𝑒  measurements given in [49]. The equivalent 

structural stress range parameter adopted by ASME Div. 2 Code since 2007 (see Dong [30–32]) 

can then calculated as: 
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where 𝜎𝑠 is calculated by 

 ( )b1s e nk k = + +    (2.13) 

in which 𝜎𝑛 is the nominal stress. In Eqn. (2.12), 𝑡 is the actual thickness of the specimen at the 

crack location, 𝑚 is given as 3.6, and 𝐼(𝑟) is a dimensional polynomial function of bending ratio 

𝑟 = (𝑘𝑒 + 𝑘𝑏)𝜎𝑛/𝜎𝑠. And the structural stress range ∆𝜎𝑠 in Eqn. (2.12) becomes simply Δ𝜎𝑠 =

𝜎𝑠,max − 𝜎𝑠,min. 

 

Fig. 2.13 Data correlation using: (a) nominal stress range; (b) equivalent structural stress range given in 2007 ASME 

master S-N curve incorporating analytically calculated 𝒌𝐛 due to global and local angular distortions and 𝒌𝒆 caused by 

axial misalignments. 
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Table 2.1 Measured 𝜶𝐋,𝟐 values for lab-scale specimens 

Specimen no. 𝛼L,2  

deg 

Arc 7 -1.71 

Arc 9 -0.69 

Arc 10 -1.90 

Arc 11 -1.89 

 

With the equivalent structural stress range in Eqn. (2.12), the same fatigue test results given 

in Fig. 2.11 are replotted in Fig. 2.13b, labeled as “lab-scale” specimens. It can be seen that the 

same test data not only show a significantly improved correlation with a standard deviation of 

0.202, but also exhibit a clearly defined slope. For comparison purpose, the nominal stress range-

based plot of the same test data is also given in Fig. 2.13a and the master S-N curve scatter band 

from ASME [74] as dashed lines in Fig. 2.13b. It is interesting to note that in Fig. 2.13b that the 

butt-welded lab-scale specimen data fall within 2007 ASME’s master S-N curve scatter band 

which represents about 1000 large scale fatigue tests with plate thickness varying from 5mm up to 

over 100mm. 

2.4.2 Full-Scale Stiffened Panels  

Lillemäe et al. [41] also conducted detailed distortion measurements and fatigue tests of 

full-scale stiffened specimens (see Fig. 2.14). Prior to fatigue testing, the distortion profiles were 

measured and documented for a total of nine specimens (Fig. 2.14b) along mid-width, as 

summarized in Fig. 2.15. The fatigue tests were conducted at a load ratio of 𝑅 = 0.1. In what 

follows, a procedure for taking advantage of the analytical approach given in Sec. 2.2.2 will be 

discussed.  
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Fig. 2.14 Full-scale stiffened panel (4-mm thick base plate) and full-scale fatigue test specimen containing a hybrid laser 

butt-weld [41]: (a) Full scale stiffened panel; (b) Illustration of full-scale fatigue test specimen extracted from (a) for 

distortion measurements and fatigue testing. 

 

Fig. 2.15 Out-of-plane distortion profiles measured along mid-width line of nine full-scale fatigue specimens prior to 

fatigue testing [41] (The transverse butt weld is located at 𝒙 = 𝟎). 

2.4.2.1 Distortion Profile Characterization 

As illustrated in Fig. 2.2, there exists a characteristic length scale in terms of stiffener 

spacing (𝑙) for characterizing welding-induced distortions in stiffened shipboard panels. With this 

consideration, a characteristic distance of two stiffening spacing of two-stiffener spacing (2𝑙) or 

one spacing (𝑙) on one side of the butt weld is considered as shown in Fig. 2.15. As a result, 

distortion profiles on one side of the butt weld are considered for further analysis. 
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Fig. 2.16 Characteristic distortion profile serving as initial beam imperfections for treatment of distortions in full-scale 

fatigue specimens 

Upon further inspection, the distortion profiles within one characteristic length 𝑙 from the 

welded joint (Fig. 2.15) can be represented by a characteristic profile illustrated in Fig. 2.16, which 

is used as the initial imperfections of a beam, as discussed in Sec. 2.2.2, with the left end (weld 

location) embedded and the rotation fixed at the right end. As such, 𝜃1, 𝜃2 and 𝜃G are parameters 

that can be adjusted to provide the best fit of the distortion profiles shown in Fig. 2.15. It is worth 

noting that the initial distortion profile described in Fig. 2.16 is, in fact, the same as the one shown 

in Fig. 2.12. Thus, the local and global angular distortion modes discussed in Sec. 2.3.2 can also 

be used to model such distortion. 

 

Fig. 2.17 Cubic polynomial fitting of measured distortions (Specimen 334, right side). 

Without losing generality, consider the distortion profile corresponding to Specimen 334 

(see Fig. 2.15); the corresponding measured distortion profile (the solid line in Fig. 2.17) can be 
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reasonably fitted into a third order polynomial model, i.e., 𝑣0(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 (see 

the dashed lines in Fig. 2.17). Because the beam deflection curve corresponding to the model in 

Fig. 2.16 is also a cubic polynomial function based on the classical beam theory, the good 

agreement shown in Fig. 2.17 should not be surprising at all. In the same manner, a cubic 

polynomial representation for all other distortion profiles in Fig. 2.15 can be established for further 

analytical treatment in secondary bending stress calculations. 

2.4.2.2 SCF Calculation and FE Validation 

With the distortion function 𝑣0(𝑥) given by the third order polynomial (see Fig. 2.17), 

beam end rotations 𝜃1, 𝜃2 can then be obtained by 𝜃1 = 𝑣′
0(0)  and 𝜃2 = 𝑣′

0(𝑙) . The 

corresponding global angular distortion is given by 𝜃G = [𝑣0(𝑙) − 𝑣0(0)]/𝑙 . Similar to the 

procedure discussed in Sec. 2.4.1, the local angular distortions 𝜃′1, 𝜃′2 are obtained by 𝜃′1 = 𝜃1 −

𝜃G and 𝜃′2 = 𝜃2 − 𝜃G. Then, stress concentration factors corresponding to the global and local 

angular distortions can be directly obtained using Eqns. (2.9) and (2.11) in Sec 2.3.2, referred to 

as 𝑘b = 𝑘b,global + 𝑘b,local.  

For validation purpose, two shell element models are used here. One is a full-scale 

specimen model shown in Fig. 2.18a and the other is a local model with only one stiffener spacing 

on each side of the transverse butt weld (or “2𝑙” model in Fig. 2.18b). In both cases, the actually 

measured distortion fields provided in [41] were mapped onto these models as coordinate changes 

in 𝑧-axis before remote tension loading was applied. The 𝑘b  values were calculated using the 

mesh-insensitive method [75] by means of a matrix equation that transforms nodal forces/moments 

from an FE calculation to nodal line force/moments at a specified remote tension load level or 

nominal stress (𝜎𝑛) level. 
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Fig. 2.18 Validation of analytically calculated 𝒌𝐛 using FE models incorporating actual measured distortions: (a) Full-

scale and characteristic length based FE models used; (b) Comparison of 𝒌𝐛 results at weld toe at mid weld length. 

Both FE and analytical results of 𝑘b are compared in Fig. 2.18b. The two FE solutions are 

consistent with each other over the entire remote load (i.e.,𝜎𝑛) range evaluated, suggesting the use 

of a characteristic length of 2𝑙 is a reasonable assumption. When the applied nominal stress is 

greater than 50MPa, the analytical results are consistent with the FE results, being slightly higher 

(about 5%). In a rather low nominal stress region, say below about 30MPa, the strip beam model 

seems too flexible, resulting in an under-estimated 𝑘b. It should be noted that such an under-

estimation in low nominal stress regime tends to have a limited impact on the structural stress 

range calculated since an error in 𝜎𝑠,min is also scaled by a small 𝜎𝑛,min value. Therefore, the 

results in Fig. 2.18b further justifies the approach proposed here by considering a strip beam model 

representing a given longitudinal panel through-thickness section. 

2.4.2.3 Fatigue Data Correlation 

With analytically calculated 𝑘b values for all nine full-scale fatigue test specimens under 

loading ranges documented in [41], and 𝑘𝑒 which is computed in the same manner as in Sec. 2.4.1 
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based on the axial misalignment measured from Fig. 2.15, the test data can be represented using 

the equivalent structural stress range given in Eqn. (2.12)corresponding to fatigue crack locations 

(see [41]) for data correlation purpose. The results are given in Fig. 2.13b, labeled as “full-scale” 

specimens. The nine full-scale test data surprisingly correlate well with one another, forming a 

narrow scatter band near the ASME master S-N curve mean line. The standard deviation (STD) of 

the nine data is calculated as 0.198. In contrast, the nominal stress range based plot in Fig. 2.13b 

for the same set of the data shows no clearly defined trend. Furthermore, both full-scale and lab-

scale tests in Fig. 2.13b fall within the ASME master S-N curve’s mean±2STD scatter band [32], 

suggesting the validity of both sets of test data and applicability of the ASME master S-N curve 

for fatigue evaluation of lightweight shipboard panel structures. 

2.5 Chapter Conclusions 

In this chapter, a notional load method is presented for providing analytical treatment of 

complex distortion effects on fatigue behaviors of lightweight shipboard structures through a 

distortion decomposition technique. Its applications for analyzing secondary bending stresses 

caused by nonlinear interactions between four common distortion types induced by welding and 

remotely applied load are discussed in detail. In addition, two sets of lab-scale specimens and nine 

full-scale stiffened panel fatigue tests involving complex distortion shapes are also analyzed using 

the closed form analytical solutions developed. The analytically calculated stress concentration 

factor results are validated by direct finite element computations in all cases. Furthermore, an 

excellent agreement in fatigue test data is achieved not only between butt-welded thin plate lab 

specimens and full-scale stiffened panels but also with the traction structural stress based master 

S-N curve scatter band adopted by ASME Div. 2 since 2007. Some of the specific findings are 

worth noting, including:  
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(a) With the proposed method of notional loads, the imperfect beam problem is converted into 

a nonlinear perfect beam problem. As a result, existing nonlinear perfect beam solutions 

with a specified loading pattern can be used for deriving closed-form analytical 

𝑘b solutions for typical distortion modes of interest. 

(b) With such an analytical approach, only a few distortion measurements are needed for 

evaluating fatigue performance of weld joints in lightweight structures, significantly 

reducing the needs for full-field distortion measurements and their mapping onto a 

structural FE model. 

(c) Welding-induced distortions are shown to have significant effects on fatigue behaviors in 

welded thin-plate structures. Without appropriate treatment for secondary bending 

stresses, available test data cannot be correlated with existing data that support existing 

Codes and Standards (see Figs. 11 and 13a). The analytical approach presented in this 

paper proves effective for interpreting fatigue test data obtained in welded thin plate 

components. 

(d) The very fact that thin-plate test data (lab-scale and full-scale specimens) fall into the 

scatter band of the master S-N curve adopted by ASME Div. 2 suggests not only their 

relationship to existing thick plate fatigue test data, but also the applicability of the master 

S-N curve method for fatigue evaluation of lightweight structures. 
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Chapter 3 

Analytical Treatment of Modeling Combined Effects of Axial and Angular Misalignments 

on Fatigue of Welded Joints 

3.1 Chapter Introduction 

The demands for structural lightweighting of transportation systems have intensified over 

the last decade or so, largely driven by environmental sustainability concerns [1]. One major trend 

along this line is a significant increase in the use of high strength thin plates in marine structures, 

as recently discussed by Huang et al. [9,14], Xing et al. [36,64], and Lu et al. [38]. The construction 

of these lightweight structures can be particularly challenging since they are prone to various forms 

of welding-induced distortions [15,17,53]. Two common forms of distortions are typically referred 

to as axial and angular misalignments with respect to the load-carrying member (i.e., the horizontal 

member Fig. 3.1). Note that the definition of axial misalignments here also includes the conditions 

corresponding to butt-welded joints between two plates of different thicknesses [76], as illustrated 

in Fig. 3.2, which have become increasingly common in structural lightweighting [9,14], referred 

to as thick “insert” plate into the thin base plate in marine structures or “tailor-welded blanks” in 

automotive structures [77]. These misalignments can cause additional secondary bending stress or 

stress concentration at the weld location and significantly degrade the fatigue performance of 

welded joints subjected to time-varying service loading conditions.  

There have been numerous investigations on both some specific effects of the two types of 

joint misalignments on fatigue performance and how to effectively model the resulting secondary 

bending stresses. Some noted efforts include: analytical and experimental studies such as those on 
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load-carrying fillet-welded cruciform joints by Berge and Myhre [78], Andrews [79], Jakubczak 

et al. [80] and those on butt joints by Wylde and Maddox [81], Iwata et al. [82]; numerical studies 

by Pachoud et al. [83], Ottersböck et al. [84] using local approaches; Lotsberg [85] and Liu et al. 

[86] on the plate thickness mismatch-induced misalignment (see Fig. 3.2) effects on fatigue. These 

studies have shown that seemingly acceptable misalignments can still introduce a rather high stress 

concentration at welded joints, causing significant fatigue performance degradation both in 

laboratory testing and service loading conditions. More recently, fatigue tests done by Xing et al. 

[63,64] have further demonstrated that misalignments have more pronounced effects on thinner 

plate joints, particularly on the weld toe fatigue failure mode in fillet-welded load-carry cruciform 

specimens. These studies have highlighted the importance of determining stress concentration 

factors (SCF) caused by various forms of joint misalignments, particularly in the form of closed-

form solutions for supporting reliable fatigue evaluation of lightweight welded structures.  

 

Fig. 3.1 Two types of joint misalignments [63]: (a) axial misalignment; (b) angular misalignment. 

 

 

Fig. 3.2 Axial misalignment caused by thickness mismatch across a joint [33]. 



 47 

There exist numerous closed-form equations for calculating SCF caused by joint 

misalignments in the literature. Some of the earlier classical SCF equations can be traced back to 

the original work by Berge and Myhre [78] and further evaluated experimentally by conducting 

fatigue testing on welded joints with controlled misalignments [81,87]. Some of these equations 

have been adopted by existing Codes and Standards, such as BS 7910 [59], DNV-RP-C203 [33], 

and IIW Recommendations [25]. Most of the SCF formulae were developed based on either test 

data or FE results, and their validity can only be assured within the confinement of common joint 

configurations considered in their studies. To provide a more general SCF solution to cover more 

cases, particularly on thin-plate joints, Xing et al. [63] analytically derived an SCF solution based 

on beam theory under various boundary conditions and achieved a significantly improved fatigue 

test data correlation. Zhou et al. [88,89] have recently introduced an analytical method for 

incorporating curvature effects into the SCF caused by axial and angular joint misalignments. 

Their studies have demonstrated that the secondary bending effects due to both distortion curvature 

and misalignments can be effectively modeled with a notional load approach, leading to a set of 

closed-form solutions. 

However, a critical assessment of the existing SCF formulae in the literature as discussed 

above reveals the following limitations: 1) most of the classical solutions used in current Codes 

and Standards [25,33,59] rely on empirical data or limited finite element solutions, resulting in 

limited applicability, particularly for thin section lightweight components; 2) in constructing these 

existing SCF expressions, the analytical models used all ignored the physical presence of a welded 

joint which could have significant effects on stress concentration behaviors, e.g., actual positions 

of the weld toe or stiffness change, even in beam-based models; 3) when both the axial and angular 

misalignments are present at a joint, there lacks a consistent procedure for defining joint 
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misalignments so that the resulting SCFs can be superimposed properly at a weld toe position of 

interest; 4) nonlinear geometry effects were only considered for limited conditions, which can have 

significant effects on thin-section structures.  

In this chapter, we present an analytical method for systematically computing the 

secondary bending stresses caused by misalignments by incorporating the presence of a welded 

joint upon which the interactions between angular and axial misalignments can be explicitly 

captured. We first introduce an analytical model containing a fillet-welded joint for which both 

and angular misalignments are assumed to be present and consistently defined. After establishing 

the governing equations in the context of beam bending theory and imposing relevant boundary 

conditions, we then show that both geometrically linear and nonlinear solutions can be found in 

closed forms. For selected cases, finite element solutions are then used for validating the analytical 

developments. Finally, we show that the new analytical solutions can be used to effectively 

interpret fatigue test data of welded components containing both axial and angular misalignments. 

3.2 Analytical Model 

3.2.1 Assumptions 

The following assumptions are made to facilitate the development of the close-form 

solutions: 

a) The material is assumed to follow linear elastic behavior. 

b) The magnitude of axial misalignment is small compared with the structural members' 

length, and the angle of angular misalignment is small (≤ 5°) 

c) Transverse shear effects are negligible. 

3.2.2 Joint and Misalignment Definitions 
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Fig. 3.3 shows a typical load-carrying fillet-welded connection that contains both axial and 

angular misalignment. The joint is represented by the shaded region between Sections A-B and C-

D. Positions A, B, C, D are the four weld toes of interest for SCF evaluations. The base plate on 

the left is referred to as Member 1, which has a thickness of 𝑡1 and a length of 𝑙1b, and the member 

on the right as Member 2, which has a thickness of 𝑡2 and a length of 𝑙2b, respectively. Either 

member is modeled as a beam section with a unit width into the paper. The length of each member 

is measured from the weld toe to the end of that member. In this context, the joint size is defined 

as 𝑙𝑗𝑜𝑖𝑛𝑡 = 2𝑙t in terms of its horizontal span or the distance between Sections A-B and C-D. In 

order to facilitate the analytical derivation process in the next section, a global coordinate system 

(𝑥, 𝑦, 𝜃) and some local 𝑥-coordinates (𝑥1, 𝑥′1, 𝑥2) for each member are also given in Fig. 3.3. 

 

Fig. 3.3 Representation of the joint in analytical model and definitions of axial and angular misalignment. 

Axial misalignment e  is defined as the vertical distance between the center lines of 

Member 1 and that of Member 2 at the joint center position (Position O), as shown in Fig. 3.3. 

Angular misalignment 𝛼G  is defined as the angle formed between the centerlines of the two 

members. The sign of the axial misalignment is positive if the centerline of Member 2 is above 
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that of Member 1 at the joint center and vice versa, as shown in Fig. 3.4a. The sign of the angular 

misalignment is positive when the "arrow" formed by the two center lines points downward and 

vice versa, as illustrated in Fig. 3.4b. The sign of an angular misalignment can also be 

quantitatively determined based on the slope of each member, 𝜃1G and 𝜃2G, as discussed later in 

Sec. 0. 

  

Fig. 3.4 Sign conventions of (a) axial misalignment; (b) angular misalignment. 

3.2.3 Analytical Formulation and Solutions 

In welded structures, joint areas typically have a complex geometric profile, as illustrated 

in Fig. 3.3. The resulting bending stiffness can be treated approximately as a rigid section for 

computing traction structural stresses without losing noticeable accuracy [31]. As such, we denote 

𝑣(1), 𝑀(1), 𝑉(1) and 𝑣(2), 𝑀(2), 𝑉(2) as the final displacement, bending moment, and shear force 

of Member 1 and Member 2, respectively. The slope of each member at weld toe position (i.e. 

𝑥1 = 𝑙1b and 𝑥2 = 0) are 𝜃1G and 𝜃2G, as shown in Fig. 3.5. The angular misalignment can be 

represented by 𝛼G = 𝜃2G − 𝜃1G. It is also assumed that an axial tension load 𝑃 load is applied as 

shown. 

3.2.3.1 Small Deformation Conditions 
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The analytical model defined in Fig. 3.3 is analyzed under small deformation conditions 

(i.e., without geometric nonlinearity) first. The axial load 𝑃 acting on each member is assumed to 

follow the centerline direction of that member to model its interaction with the angular 

misalignment explicitly. 

 

Fig. 3.5 Free body diagram of the joint based on rigid joint behavior. 

Based on the free body diagram of the joint section shown in Fig. 3.5 and the assumption 

of small-angles (𝜃1G, 𝜃2G), we can write the following equilibrium equations: 
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Since the joint is assumed to act as a rigid body, the following geometry relationship can be 

imposed: 
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both of which need to be combined with other boundary conditions at the end of each member, 

e.g., clamped conditions without losing generality. Then, we have: 
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The governing differential equations for both beam sections can be written as: 
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where 𝐼1 = 𝑡1
3/12 , 𝐼2 = 𝑡2

3/12  are the area moment of inertia of Member 1 and Member 2, 

respectively. The bending moment in Member 1 can be then obtained as follows, noting that 𝑥′1 =

𝑙1b − 𝑥1 is the distance from the weld toe position of Member 1, as shown in Fig. 3.3, and the 

angular misalignment angle 𝛼G is in radius. 
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and 
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Similarly, the bending moment in Member 2 can be expressed as: 
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The bending moments at the two weld toe sections (i.e., Sections A-B and C-D in Fig. 3.3) can be 

obtained by plugging 𝑥′1 = 0 into Eqn. (3.5) and 𝑥2 = 0 into Eqn. (3.8), resulting in: 
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The bending stresses at the four weld toe positions (A, B, C, D in Fig. 3.3) can then be obtained 

as: 
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Finally, the secondary bending induced stress concentration factor, 𝑘b , at the four weld toe 

positions can be calculated as: 

  b,
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i

ik i



=    (3.12) 

in which the beam section nominal stress 𝜎n is expressed as 𝑃/𝑡1 by definition, corresponding to 

the average stress in Member 1 or 𝑃/𝑡2 corresponding to the average stress in Member 2. 
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3.2.3.2 Solutions to Some Common Misalignment Cases 

In the previous section, we derived the analytical solutions that can accommodate general 

misalignment scenarios in which Member 1 and Member 2 can have different thicknesses and 

lengths. It would be useful to examine their specific solution forms corresponding to some 

common misalignment configurations for illustrating the applications and implications of the new 

solutions described in the previous section.  

Case 1: Consider a joint containing misalignments between two plates of the same thickness. 

By setting 𝑡1 = 𝑡2 = 𝑡 in Eqn. (3.10), we have: 
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Case 2: Consider a joint containing misalignments between two plates of the same length. By 

setting 𝑙1b = 𝑙2b = 𝑙b in Eqn. (3.10), we have:  
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Case 3: Consider a joint containing misalignments between two plates of the same thickness 

and length. As a result, Eqn. (3.10) can be further simplified to: 
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It is worth noting that if the analytical model does not consider joint representation, i.e., setting 

𝑙t = 0, 𝑙1b = 𝑙1, and 𝑙2b = 𝑙2 in Eqn. (3.10) (also see Fig. 3.6), the resulting stress concentration 

𝑘b from Eqns. (3.11) and then (3.12) can be expressed as: 
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recovering the same expressions given in [63]. The stress concentration factors given in Eqn. 

(3.16) refer to 𝑘b  values defined with respect to Position O in Fig. 3.3, i.e., the idealized 

intersection point between two misaligned beam sections. Although still providing an overall stress 

concentration measure caused by the misalignments, they cannot differentiate joints with different 

sizes, nor do they provide any specific weld toe position information for a consistent treatment of 

axial and angular misalignments when both are present. 

3.2.4 Nonlinear Geometry Effects 

Nonlinear geometry effects are expected to become increasingly important in welded joints 

as plate thickness decreases in lightweight structures. With respect to the model definitions given 
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in Fig. 6, it can be shown that the governing equations incorporating nonlinear geometry effects 

can be written as [73]:  
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Fig. 3.6 Model definition for incorporating nonlinear geometry effects. 

Different from those in Eqn. (3.4) under small deformation conditions (i.e., linear 

geometry), Eqn. (3.17) now contains the interaction of the horizontal axial load 𝑃 with the beam 

deformation, and the rigid body assumption of the joint area has to be removed. Instead, the joint 

area can be treated as an extended part of a beam section, as shown in Fig. 3.6. Note that the length 

of each beam member now extends to the center of the joint (Position O), denoted as 𝑙1 = 𝑙1b + 𝑙t 

and 𝑙2 = 𝑙2b + 𝑙t, respectively. The local coordinate definitions of the two beam members are now 

given as 𝑥′′1 and 𝑥′2, as shown in Fig. 3.6. Although the joint representation is not explicitly 

modeled as a rigid body as used in Sec. 3.2.3, it can be implicitly considered by taking the bending 

moment of the beam at the exact same location as where Sections A-B and C-D are located, i.e., 
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𝑥′′1 = 𝑙t  and 𝑥′2 = 𝑙t . Considering this difference, we can write the force equilibrium and 

geometric relationships with respect to the joint center (Position O in Fig. 3.6) as 
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and  
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Together with the boundary conditions given in Eqn. (3.3), Eqn. (3.17) can be solved, leading to 

the following bending moment expressions for each beam member for 𝑃 > 0:  
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where 𝜆1, 𝜆2 are defined as 

  1,2i

i

P
i

EI
 =    (3.21) 

The detailed expressions of the coefficients 𝜙e
(1)

, 𝜙αG

(1)
, 𝜓e

(2)
, 𝜓αG

(2)
 in Eqn. (3.20) are given in 

Appendices C.2 and C.3. The solutions corresponding to 𝑃 < 0 can also be found in Appendices 

C.2 and C.3. With the above developments, the bending moments at the weld toe positions can be 

obtained by setting 𝑥′′1 = 𝑙t  and 𝑥2 = 𝑙t  in Eqn. (3.20) and the corresponding 𝑘𝑏  can be then 

calculated through Eqns. (3.11) and then (3.12). 
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3.3 Validation using Finite Element Method 

In this section, we will use the finite element method to validate the solutions derived 

previously. The commercial software ABAQUS is used for all finite element computations in this 

section. 

3.3.1 Traction Structural Stress Method 

 

Fig. 3.7 Finite element model and traction structural stress implementation: (a) traction structure stress definition along a 

weld toe section (Section A-B); (b) implementation in 2D finite element analysis. 

The bending stress consistent with the traction-based structural stress at a weld toe position 

can be directly calculated using a mesh-insensitive method developed by Dong et al. [30–32]. The 

method’s effectiveness in achieving mesh-insensitivity and fatigue test data correlation has been 

demonstrated in a number of studies [30–32,36,37]. Given the simple joint configurations and 

loading conditions, only 2D structural stress definition and implementation are needed in this 

study. Further details of the traction stress method and its implementation in 3D analysis for 

complex structures can be found in previous publications [30,31]. 

The normal traction structural stress at a weld toe can be expressed as the sum of a statically 

equivalent membrane component (𝜎m) and bending component (𝜎b) as defined in Fig. 3.7a, as 
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 s m b  = +   (3.22) 

Each of the above two components can be calculated using the nodal forces acting on a 

hypothetical crack path (for example, Path A-B in Fig. 3.7b) from the element set (see the 

highlighted elements in Fig. 3.7b). As shown in Fig. 3.7b, we define 𝑥′ − 𝑦′ as the local coordinate 

system of Path A-B with 𝑥′ being normal to A-B, 𝑡′ as the length of path A-B, 𝐹𝑥′𝑖 as the total 

nodal force in 𝑥′ direction on Node 𝑖 of the output element set, and set 𝒩 = {𝑖|Node 𝑖 being on 

path A-B}. Then, 𝜎m and 𝜎b with respect to Path A-B can be calculated by 
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  (3.23) 

In ABAQUS, the nodal force output is obtained through the extraction of the "NFORC" output 

parameter. 

3.3.2 Finite Element Models and Results 

 

 

Fig. 3.8 A representative FE model used for validation. 

In the finite element analysis, ABAQUS "CPS4" plane stress elements were used, and the 

material properties used are 𝐸 = 206000 MPa (Young's modulus) and 𝜈 = 0.3 (Poisson's ratio). 

Linear geometry was used for the validation of the solutions given by Eqns. (3.10)-(3.12). A joint 

area profile was modeled to be consistent with that seen in a typical cruciform fillet welded 

connection in the FE model, as shown in Fig. 3.8. The left end of the model was fixed for all 

degrees of freedom, while the right end was only allowed to move in 𝑥  direction for 
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accommodating the axial load, which were modeled as an edge pressure. Table 3.1 summarizes 

the detailed dimensions of all eight models analyzed with the definitions given in Fig. 3.3. 

The traction structural stresses at weld toes were calculated using Eqn. (3.23) in terms of 

their membrane and bending components and then presented in the form of SCF, i.e., 𝑘m = 𝜎m/𝜎n 

and 𝑘b = 𝜎b/𝜎n, respectively. For convenience, the nominal stress with respect to Member 1, i.e., 

𝜎n = 𝑃/𝑡1 will be used hereafter for comparing both computational and analytical results under 

various thickness combinations. Then, we have:  
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Both the FE and analytical SCF (𝑘b) results at the weld toe exhibiting the maximum SCF value 

among the four weld toes are compared in Fig. 3.9 in which the analytical results were directly 

calculated using Eqns. (3.10)-(3.12)). The 𝑘b  values calculated without considering the joint 

representation (as given in [63]) are also provided in Fig. 3.9 for comparison purpose (also see 

Table 3.2). The SCFs calculated using the analytical solutions derived in this study are in excellent 

agreement with the FE results (with errors < 2%), as depicted in Fig. 3.9.  

Table 3.1 Dimension details of FE models used 

Case 

no. 

Misalignments Member 1 Member 2 Joint 

e/mm 𝛼G/deg 𝑙1b/mm 𝑡1/mm 𝑙2b/mm 𝑡2/mm 𝑙joint/mm 

1 6.25 0 287 12.5 287 12.5 38.5 

2 6.25 0 280.5 12.5 280.5 12.5 51.5 

3 6.25 0 187 12.5 287 10 38.5 

4 0 1 290 10 290 10 30 

5 0 1 290 10 290 10 34 

6 -0.0873 1 290 10 290 10 30 

7 5 1 190 10 290 10 30 

8 5 1 190 10 290 8 30 
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Fig. 3.9. Comparison of 𝒌𝐛 values under small deformation conditions among FEA, new analytical solution with joint 

representation from this study, and the analytical solution without joint representation [63]. 

Table 3.2. Detailed comparison of calculated 𝒌𝐛 values for all cases based on linear geometry 

Case no. FEA Analytical (this study) Analytical in Ref. [63] 

1 1.3594 1.3629 1.5000 

2 1.3115 1.3184 1.5000 

3 2.0657 2.0301 2.2425 

4 0.7528 0.7592 0.7854 

5 0.7526 0.7553 0.7854 

6 0.7854 0.7835 0.8116 

7 1.7835 1.8066 1.9712 

8 1.9030 1.9338 2.1077 

 

For the validation of the analytical solutions developed in Sec. 3.2.4, as described in Eqn. 

(3.20), two representative cases (e.g., Case 1 and Case 8 in Table 3.1) were further considered by 

performing the corresponding finite element analysis under nonlinear geometry conditions, with 

the edge pressure applied on the end of Member 2 varies from 0 to 𝑡1/𝑡2 × 200 MPa such that the 

nominal stress (with respect to Member 1) is 0 to 200 MPa. The results of 𝑘b as a function of 

applied nominal stress using both FEA and the analytical solution according to Eqn. (3.20) are 

given in Fig. 3.10. The error between the analytical solution and the FE results is less than 1.5%. 
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It clearly shows that the analytical results from Eqn. (3.20) accurately capture the nonlinear 

geometry (or beam straightening) effects. 

 

Fig. 3.10. Comparison of 𝒌𝐛 between FEA and the analytical results of Case 1 and Case 8 under geometric nonlinear 

conditions. 

3.4 Effectiveness in Fatigue Test Data Interpretation 

The validity of the analytical solutions developed in this study can be further demonstrated 

by its effectiveness in correlating fatigue test data available. Andrew [79] performed a series of 

fatigue tests on fillet-welded load-carrying cruciform specimens with controlled axial 

misalignments. The specimens have the thickness 𝑡 = 12.5 mm. The length of each member in 

these test specimens is 300 mm. 

The test data plotted using the nominal stress range (Fig. 3.11a) clearly shows a strong 

misalignment effect, resulting in a wide scatter band with a standard deviation (STD) of 0.3215. 

Next, the test data are plotted in Fig. 3.11b in terms of the traction structural stress range 

 ( )s m b nk k  = +    (3.25) 

where 𝑘m = 1 and 𝑘b were calculated using the analytical solutions given by Eqns. (3.11), (3.12)

, and (3.15), as both Members 1 and 2 in these specimens have the same thickness and length. As 
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to be discussed in the next section, nonlinear geometry effects need not be considered due to the 

relatively large plate thickness, i.e., 𝑡 = 12.5  mm. The data correlation shows a significant 

improvement (see Fig. 3.11b) with a standard deviation of 0.1584 versus 0.3215 in Fig. 3.11a.  

 

Fig. 3.11. Test data in [79] plotted using (a) nominal stress range; (b) traction structural stress range. 

To further evaluate the validity of the test data correlation shown in Fig. 3.11a, it would be 

useful to compare the data trend with the master S-N curve scatter band adopted by ASME Div. 2 

Code [30,31,74]. To do so, the structural stress range computed by the analytical solution by the 

means of 𝑘b in Eqn. (3.25) can be converted to the equivalent structural stress range parameter 

given as [74]: 
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where Δ𝜎𝑠  is calculated using Eqn. (3.25), 𝑡∗ = 𝑡′/(1 𝑚𝑚) is the dimensionless length of the 

hypothetical crack path, 𝑚 takes the value of 3.6 (obtained from a unified representation of both 

short and long fatigue crack growth data [74]), 𝐼(𝑟)1/𝑚 , given in [74], is a dimensionless 

polynomial function of the bending ratio 𝑟 = 𝑘b/(𝑘m + 𝑘b). 

The same set of the fatigue test data in Fig. 3.11b are re-plotted in Fig. 3.12 using the 

equivalent structural stress range parameter in Eqn. (3.26). The master S-N curve scatter band lines 

from ASME [74], which represents about 1000 large scale fatigue tests, are also given in Fig. 3.12 

for comparison purposes. The same fatigue test data are all situated well within the master S-N 

curve scatter band, further confirming both the validity and effectiveness of the developed 

analytical solution in interpreting fatigue test data. 

 

Fig. 3.12. Test data correlation using equivalent structural stress range. 

3.5 Discussions 

3.5.1 Effect of Joint Representation 
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Fig. 3.9 shows that the present analytical solutions incorporating a joint representation are 

in good agreement with the finite element solutions while the analytical solutions without a joint 

presentation [63] seem consistently over-estimate secondary bending stress-induced 𝑘b , 

particularly when the joint area size (i.e., 𝑙joint in Table 3.1) are larger, e.g., comparing Cases 1 

and 2, or there exist an increased degree of asymmetry, e.g., Cases 3, and 7-8. This is because in 

[63], the joint misalignment effects were considered with idealized analytical models containing 

two beams only, and the bending moment calculated is defined with respect to Position O in Fig. 

3.3 instead of weld toe positions. Therefore, the solutions provided in [63] are only able to reflect 

the overall misalignment effect on the secondary stress at the center of a joint location without 

being able to capture joint size effects or distinguish specific weld toe position of interest. The 

solutions based on linear geometry (Eqn. (3.10)) and nonlinear geometry (Eqn. (3.20)) can both 

effectively estimate the secondary bending stress at weld toe positions and reflect the joint size 

effects.  

In terms of fatigue test data interpretation, the analytical solutions developed in this study 

have been shown effective in correlating the plate fatigue test data in [79] (Fig. 3.11a) into a narrow 

band (see Fig. 3.11b) for establishing data transferability. The validity of the data correlation 

shown in Fig. 3.11b can be further proven by the fact that the narrow data scatter band is consistent 

with independent data in the form of the master S-N curve scatter band adopted by ASME Div. 2 

(Fig. 3.12). This suggests that the analytical model, along with its assumptions introduced in this 

study, is reasonable.  

In this study, the geometric joint profile is assumed to be approximately symmetrical with 

respect to the horizontal axis. For unsymmetrical weld profiles, such as single-sided butt joint, the 

additional secondary bending can be readily calculated using FEA-based the traction structural 
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stress method without modeling misalignments. Then, the misalignment induced secondary 

bending stresses calculated from the analytical solutions can be directly superimposed with the 

FEA results.  

Although only the clamped conditions are considered in this paper, the approach presented 

for joint representation can be readily extended to any other boundary conditions of interest by 

replacing Eqn. (3.3) with a specific set of displacement boundary conditions. Additional members 

(i.e., vertical members in a cruciform joint) can also be added to the model. These specific 

applications will be presented in a separate publication at a later date.  

3.5.2 Combined Effects of Axial and Angular Misalignments 

It is common that axial and angular misalignments simultaneously exist in a welded joint, 

which introduce two new issues that have not been clarified in the literature to our best knowledge: 

1) how to define an axial misalignment so that its resulting secondary stresses can be properly 

combined with those caused by an angular misalignment; 2) which weld toe out of the four (e.g., 

as shown in Fig. 3.3) is subjected to the highest 𝑘b and their signs. 

 

Fig. 3.13. Definitions of axial and angular misalignments in Case 6. 

The first issue is resolved in this study by introducing the misalignment definitions based 

on the centerlines of plate members and Position O, as given in Fig. 3.3. It can be shown that, 

without a proper and consistent definition, the misalignments considered can yield significantly 
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different results in determining which weld toe positions is subjected to the highest 𝑘𝑏 . For 

instance, consider the joint geometric details corresponding to Case 6, as shown in Fig. 3.13. The 

effects of angular misalignment, say at 𝛼G = 1°, will not be affected by its specific definition, but 

the effects of an axial misalignment will. One definition of axial misalignment is the vertical 

distance between weld toe A and weld toe C (i.e., eAC  in Fig. 3.13), and the resulting axial 

misalignment will be eAC = 0.175 mm. According to the definitions introduced in Sec. 3.2.2 (Fig. 

3.3), the axial misalignment should be e = −0.0873 mm. Using Eqn. (3.15) (due to the same 

length on both sides and uniform plate thickness), the maximum 𝑘b calculated based on eAC would 

be 0.8078 at weld toe A, while the maximum 𝑘b calculated using the proposed axial misalignment 

definition is 0.7835 at weld toe C. In fact, the FE result shows that 𝑘b = 0.7854 at weld toe C, 

and 𝑘b = 0.7245 at weld toe A. Using the proposed axial misalignment (e) definition, we can 

obtain the correct 𝑘b  and determine which weld toe is subjected to the maximum secondary 

bending stress. 

The second issue is also related to how to properly define misalignments in the analytical 

model, for which a joint presentation is essential, as discussed above. Based on Eqn. (3.10) 

corresponding to linear geometry (or small deformation) conditions or Eqn. (3.20) incorporating 

nonlinear geometry effects, we can clearly see that they represent a linear superposition of axial 

and angular misalignments. With the joint representation considered, we can evaluate the sign of 

the stress at each weld toe location with respect to each of the two types of misalignments and then 

determine which weld toe is subject to tension under both misalignments. Generally, based on the 

coefficients in Eqns. (3.5)-(3.9) and 𝑙1b, 𝑙2b ≫ 𝑙t, the sign of stress at all four weld toes with 

respect to each misalignment type when 𝑃 > 0 can be summarized in Fig. 3.14. Moreover, the 
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analytical solutions provided in this study enables the estimation of misalignment-induced stress 

at all four weld toes. 

 

Fig. 3.14. Sign of secondary bending stress at each weld toe under tensile axial load 𝑷 with respect to (a) axial 

misalignment; (b) angular misalignment. 

3.5.3 Misalignment-induced Bending Stress Formulae in BS 7910 

In BS 7910:2013 [59], the following formulas are provided for calculating bending stress 

(in terms of SCF) caused by axial and angular misalignment (with both members (1 and 2) having 

the same thickness): 
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  (3.27) 

which is derived from a simply supported condition, and 𝜅 is an empirical factor dependent on the 

end restraints, which was determined using stress measurement data or FE results in [78]. 

However, these equations do not contain the consideration of joint size effects and can only 

represent the secondary stress in the middle of an idealized joint (Position O in Fig. 3.3) instead of 

the stress at the weld toe position. Also, there is no information given with Eqn. (3.27) about which 

of the weld toes of this joint have tensile bending stress, whereas Eqn. (3.13) in this study can be 

used to derive the misalignment-induced bending stress at each weld toe position. 
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It has also been shown in [63] that the empirical 𝜅 factor provided in BS 7910 cannot 

adequately represent boundary conditions other than the simply supported condition because the 

solution form would be rather different if other boundary conditions were considered. To 

demonstrate this point, we can compare the expression without considering the joint representation 

to Eqn. (3.27). By taking advantage of the solutions corresponding to Case 2 (𝑡1 = 𝑡2 = 𝑡) and 

ignoring the joint representation (by setting 𝑙𝑡 = 0 , 𝑙1b = 𝑙1 , 𝑙2b = 𝑙2 ), as discussed in Sec. 

3.2.3.2, we can rewrite Eqn. (3.13) and obtain the stress concentration factor (at weld toe A in Fig. 

3.3) as: 
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  (3.28) 

Eqn. (3.28) shows that the secondary bending caused by misalignments under clamped condition 

is a third-order polynomial function of 𝑙1/(𝑙1 + 𝑙2), while Eqn. (3.27) is only a linear function of 

𝑙1/(𝑙1 + 𝑙2). Obviously, the use of 𝜅 in Eqn. (3.27) cannot adequately represent the difference 

between Eqn. (3.27) and Eqn. (3.28) for all 𝑙1/(𝑙1 + 𝑙2). 

3.5.4 Importance of Nonlinear Geometry Effect 

In Fig. 3.10, we can see the straightening effect under axial load (i.e., 𝑘b drops when 𝜎n 

increases) by considering nonlinear geometry effects. Since the model used in the test cases are 

relatively thick, the straightening effect is not significant. However, as thin plates are increasingly 

used for lightweight purposes, nonlinear geometry effects could become more important.  
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Fig. 3.15. Normalized 𝒌𝐛
∗  under different 𝒍/𝒕 ratio. 

To examine under what conditions nonlinear geometry effects should be considered, the 

relationship between general structural dimensions and the importance of the nonlinear geometry 

effects is investigated here by using the analytical model by setting 𝑙1b = 𝑙2b = 𝑙 and 𝑡1 = 𝑡2 = 𝑡. 

The joint size is assumed to be 𝑙t=1.5𝑡, and the axial misalignment is assumed to be e = 0.5𝑡. 

Based on the analytical solutions given in [88,89], the slenderness ratio 𝑙/𝑡 should have a strong 

effect on the straightening behaviors. Therefore, we would compare the 𝑘b  over different 𝜎n 

calculated based on Eqn. (3.20) under different 𝑙/𝑡  ratios, as shown in Fig. 3.15. To gauge 

nonlinear geometry effects, the following normalized 𝑘b
∗  is used. 
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where 𝑘b,nonlinear is the 𝑘b considering nonlinear geometry; 𝑘b,linear is the 𝑘b considering linear 

geometry, which is independent of 𝜎n. It can be seen from Fig. 3.15 that structures with a larger 

slenderness ratio 𝑙/𝑡 have more significant nonlinear geometry effects. For example, at 𝜎n = 200 

MPa, 𝑘b
∗ ≈ 0.91  corresponding to 𝑙/𝑡 = 30  while 𝑘b

∗ ≈ 0.88  corresponding to 𝑙/𝑡 = 70 . This 
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means that the nonlinear geometry effect, compared to the linear geometry-based solution, causes 

a 9% drop in 𝑘b when 𝑙/𝑡 = 30, and causes a 12% drop in 𝑘b when 𝑙/𝑡 = 70. An approximate 

threshold for considering nonlinear geometry effects may be introduced by considering both the 

load level and the slenderness ratio 𝑙/𝑡. For instance, if we choose 𝑘b
∗ = 0.95 at 𝜎n = 100 MPa as 

the threshold, then for cases where 𝑙/𝑡 > 30, we would have 𝑘b
∗ < 0.95 when 𝜎n > 100 MPa and 

the nonlinear geometry effect needs to be considered. 

3.6 Chapter Conclusions 

In this chapter, an analytical method for computing the secondary bending actions caused 

by both axial and angular joint misalignments is presented with consideration of the joint 

representation. Both linear and nonlinear geometry effects are considered. The closed-form 

analytical solutions presented have been validated by finite element analysis with joint geometry 

explicitly modeled. In addition, the validity and effectiveness of the analytical solutions have been 

further proven by correlating some well-known fatigue test data of welded components with 

controlled misalignments into a single narrow band. Furthermore, the resulting test data scatter is 

shown to fall within the master S-N curve scatter band adopted by ASME Div. 2 since 2007, again 

confirming the effectiveness of the analytical solutions developed in this study. The following 

specific findings are worth noting: 

(1) By introducing a rigid body-based joint representation in the analytical model, the force 

equilibrium and geometry relationships about the joint can be established in such a way 

that enables the development of the closed-form analytical solution. 

(2) With the joint definition and the resulting analytical solutions derived in this study, the 

interactions between axial and angular misalignment can be properly combined for 

determining specific secondary bending stress at each of all four weld toe positions. 
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(3) With the analytical solution incorporating nonlinear geometry effects, the joint 

straightening effects on secondary stress development can be clearly captured. It is shown 

that the slenderness ratio 𝑙/𝑡 can be related to the severity of the nonlinear geometry effect: 

the higher the 𝑙/𝑡 becomes, the stronger the nonlinear effect can be seen. 
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Chapter 4 

An Analytical Framework for Treatment of Combined Misalignment and Distortion 

Curvature Effects on Fatigue of Welded Joints 

4.1 Chapter Introduction 

In previous chapters, we have studied common distortion modes’ effects on welded joints 

individually, including axial misalignment, global angular distortion (also referred to as angular 

misalignment), and local angular distortion (also called distortion curvature). We realized all these 

distortion modes could make a significant contribution to the secondary bending in the welded 

joint. Furthermore, in the processing of the distortion measurement data of actual welded structures 

such as those in [41], it is shown that all distortion modes may simultaneously exist with respect 

to a welded joint, causing high complexity in the determination of the secondary bending stress.  

In this chapter, we first bring the analytical treatments of local angular distortions to a 

consistent analytical framework with that of the axial and angular misalignments developed in 

Chapter 3 to enable the superposition of the analytical solutions. Then, we develop a general 

distortion mode decomposition and assembly procedure, whose objective is to provide a consistent 

procedure to reliably divide the complicated distortion effect on a welded joint into several sub-

problems and combine the result from each sub-problem together. 

4.2 Assumptions 

The analytical modeling, decomposition and assembly procedure developed in this chapter 

are all based on the following assumptions: 

a) A transverse section of a butt-seam welded or stiffened shipboard panel follows the beam 
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theory (consistent with strip beam theory often used for analyzing ship structures) 

b) The beam material is assumed to follow linear elastic material behaviors within the loading 

range of concern, while the beam deflection and lateral load interactions can be nonlinear 

or in the regime of nonlinear deformation. 

c) The axial misalignment at the joint is small compared with beam length, and the angular 

distortion angles are small (i.e., ≤ 5°). 

d) Transverse shear deformation is negligible. 

4.3 Analytical Treatment of Unsymmetric Local Angular Distortion 

In Sec. 2.3.2.2, we used the method of notional loads to model the local angular distortion 

(or distortion curvature) in butt-welded plates based on symmetric structure dimensions (i.e., both 

beam members have the same length and thickness) and distortion shape assumption. Chapter 3 

studied the axial misalignment and the global angular misalignment with respect to unsymmetric 

structure dimensions. To formulate a general analytical modeling procedure of the misalignment 

and distortion’s effect on welded joints, we need to extend the local angular distortion model to 

cover general unsymmetric structure dimensions and distortion shapes. With such extension, the 

local angular distortion solution can then be properly superimposed onto the solution developed in 

Sec. 3.2. 

4.3.1 Notional Loads Model 

The local angular distortion, or distortion curvature, refers to the curved part of the 

distortion shape, excluding the global angular distortion or the angular misalignment defined in 

Sec. 3.2.2. A general local angular distortion shape with respect to a butt-welded joint is shown in 

Fig. 4.1. The thicknesses of Member 1 (the base plate on the left) and Member 2 (the base plate 

on the right) are 𝑡1 and 𝑡2, and the lengths of both members are 𝑙1 and 𝑙2, measured from the center 
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of the joint (Position O, which is the joint center, as shown in Fig. 4.1), respectively. The horizontal 

dashed line in Fig. 4.1 is the baseline. 𝑣0(𝑥) is the initial distortion shape function with respect to 

the baseline. Specifically, 𝑣0
(1)

(𝑥1) and 𝑣0
(2)

(𝑥2) are the initial distortion shape of Member 1 and 

Member 2, where 𝑥1 and 𝑥2 are local 𝑥-coordinates of each beam member, as defined in Fig. 4.1. 

The local angular distortion angles (or the slopes) at the ends of each member are given as 

𝜃′11, 𝜃′12, 𝜃′21, and  𝜃′22, and the ends of each member beam is aligned with the baseline (i.e., 

𝑣0
(1)

(0) = 𝑣0
(1)

(𝑙1) = 𝑣0
(2)

(0) = 𝑣0
(2)

(𝑙2) =0), as depicted in Fig. 4.1. We assume the distortion 

shape can be well approximated by the above four local angular distortion angles. The local angular 

distortions in  Fig. 4.1 are plotted in such a way that all local angular distortion angles are positive 

to provide clear definitions. 

 

Fig. 4.1 Illustration of a general local angular distortion. 

The imperfect beam problem of the general local angular distortion is given in Fig. 4.2a, 

which corresponds to a butt-welded joint condition. While the restraints on the model can vary 

depending on the application scenario, we focus on the clamped boundary condition here to 

illustrate the methodology. The translational and rotational degrees of freedom are restrained at 

both ends (𝑥1 = 0 and 𝑥′2 = 𝑙2), and the joint is free to move. 
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Fig. 4.2 Beam models used for general local angular distortion: (a) imperfect beam; (b) nonlinear beam. 

As discussed in Sec. 2.2.2, we first apply notional loads onto an initially straight linear 

beam to obtain the distortion shape. We can also apply displacements on the beam since they can 

always be replaced by equivalent notional loads. To simplify the notional load model, we can split 

the model into two individual cantilever beams by fixating the joint position and apply notional 

loads (in this case, we apply displacements) on the free ends, as shown in Fig. 4.3. 

 

Fig. 4.3 Notional load model used for achieving the general local angular distortion shape. 

After the initial distortion shape is achieved, we then adjust the restraints on the notional 

load model to match those on the imperfect beam model (Fig. 4.2a) by adding or replacing 

constraints with corresponding notional loads. The general principle for modifying the notional 

load model constraints is discussed in Appendix A.6 in detail. In this model, we constrain the 

translational and rotational degrees of freedom at both free ends, release the restraints on the joint 

position (Position O) and apply a notional force 𝐹0  and a notional moment 𝑚0  which would 
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maintain the force equilibrium. 𝐹0 and 𝑚0 can be obtained using the following force equilibrium 

along with the reaction forces at Position O, as shown in Fig. 4.4a: 
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where 𝑀0
(𝑖)

, 𝑉0
(𝑖)

 (𝑖 ∈ {1,2}) are the bending moment and shear force caused by notional loads in 

Member 𝑖. The resulting 𝐹0 and 𝑚0 is given by 
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Fig. 4.4 Force equilibrium at position O in: (a) notional load model; (b) nonlinear beam model. 

With the above notional load model, we can formulate the nonlinear beam problem (Fig. 

4.2b) by superimposing the imperfect beam problem onto the linear beam model used for notional 

loads modeling [88,89]. The imperfect beam problem is governed by 
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where 𝑖 ∈ {1,2} indicates the member number, 𝐼𝑖 is the area moment of inertia of Member 𝑖, 𝑣1
(𝑖)

 

is the unknown deflection caused by the axial load 𝑃. The linear beam model is governed by the 

following classic differential equation: 
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The superposition of Eqn. (4.3) and (4.4) yields the governing equation for a nonlinear beam 

problem, given as 
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where 𝑣(𝑖) = 𝑣0
(𝑖)

+ 𝑣1
(𝑖)

 is the total displacement of Member 𝑖 from the baseline. We need a total 

of 8 equations to solve Eqn. (4.5) for the displacement of both members. For this model, we have 

four boundary condition equations from the clamped condition, and we can write the rest four 

equations based on the force equilibrium and geometry relationships at position O where the two 

members connect. 

After superposition, the force equilibrium about position O of the nonlinear beam model 

(see Fig. 4.4b) can be written as 
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where 𝑀(𝑖) , 𝑉(𝑖) are the total bending moment and shear force in Member 𝑖 . The geometry 

relationships between the two members are simply 
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where 𝑣′(𝑖) is the slope of Member 𝑖. Using Eqns. (4.6) and (4.7) with the clamped boundary 

conditions at both ends, we can solve Eqn. (4.5) and obtain the total deflection for both members. 

Finally, we can derive the bending moment induced by distortion in Member 𝑖, 𝑀1
(𝑖)

, given as 
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The solutions are given in the next section, and more details of the solution procedure is provided 

in Appendix A.5. 

4.3.2 Analytical Solution 

4.3.2.1 Notional Loads 

Based on the model given in Fig. 4.3, the bending moment caused by notional loads in each 

member is (note that 𝑥′1 = 𝑙𝑥 − 𝑥1) 
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The shear force in each member is 
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The notional loads applied on the nonlinear beam (Fig. 4.2b) is then obtained using Eqn. (4.2) as 

 

( ) ( )

( ) ( )

1 11 12 2 21 22

0

1 2

1 11 12 2 21 22

0 2 2

1 2

2 2 2 2

6 6

EI EI
m

l l

EI EI
F

l l

   

   

   + +
= +

   + +
= − +

  (4.11) 

4.3.2.2 Local Angular Distortion-Induced Bending Moment 

The bending moment induced by the local angular distortion in Fig. 4.1 under the clamped 

condition when 𝑃 > 0 takes the form of 
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where 𝜆𝑖 is defined as 
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(1)
 are coefficients associated with Member 2. All coefficients are the function of 𝑙1, 𝑙2, 

𝑡1, 𝑡2, and 𝑃. Detailed expressions of these coefficients and the solution corresponding to 𝑃 < 0 

are given in Appendix C.4. Eqn. (4.12) provides the bending moment of the entire beam model. 

The local angular distortion’s (or distortion curvature’s) effect on the joint can be evaluated by 

setting 𝑥′1 = 0, 𝑥2 = 0 in Eqn. (4.12). If joint representation needs to be considered, the bending 

moment at weld toe position is obtained by setting 𝑥′1 = 𝑙t, 𝑥2 = 𝑙t in Eqn. (4.12) where 𝑙t is the 

distance from Position O to the weld toe. The subsequent secondary bending stress and bending 

stress concentration factor corresponds to the top surface (𝑦 = 𝑡𝑖/2) can be obtained by 
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where 𝜎n is the nominal stress which is expressed as 𝑃/𝑡1 by definition, corresponding to the 

average stress in Member 1 or 𝑃/𝑡2 corresponding to the average stress in Member 2. Note that 

Eqn. (4.12) are valid before the compressive axial loading magnitude reaches the model’s Euler’s 

critical load beyond which buckling occurs. 

4.3.3 Linear Geometry Approximation 

It is difficult to directly obtain the secondary bending moment induced by distortion 

curvatures without considering nonlinear geometry. However, when 𝑃 → 0 , the secondary 

bending in Eqn. (4.12) should approach that acquired with respect to linear geometry. As such, a 

closed-form analytical solution for the distortion curvature effect under linear geometry can be 

derived from Eqn. (4.12), if the joint size effect is ignored, i.e.,  𝑥′1 = 0, 𝑥2 = 0, as 
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where 
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and 
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When the beam members in the joint are less slender and the straightening effect is small, as 

discussed in Sec. 3.5.4, Eqn. (4.15) can be used to approximate the secondary bending induced by 

the local angular distortion or distortion curvatures. 

4.3.4 Simplification Based on Symmetric Nominal Structure 

The solution given in Eqn. (4.12) can be greatly simplified by considering symmetric 

nominal structure, i.e., 𝑙1 = 𝑙2 = 𝑙 and 𝑡1 = 𝑡2 = 𝑡, which is common in application. The solution 

can be further simplified if the effect from the position of the weld toe is neglected (𝑥′1 = 𝑥2 =

0). Since we have a uniform thickness 𝑡, we can unambiguously define the secondary bending 

stress concentration factor as 
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  (4.18) 

𝑘b,s in both members are the same because of the symmetric structure. From Eqn. (4.18), we 

recognize that the secondary bending SCF induced by a general local angular distortion under 

symmetric structure condition is a linear combination of 𝜃′21 − 𝜃′12 and 𝜃′22 − 𝜃′11. By setting 

𝜃′21 = −𝜃′
12 = 𝜃′1 and 𝜃′22 = −𝜃′

11 = 𝜃′2, we can recover the analytical solution given by Eqn. 

(2.11) for symmetric distortion.  

The secondary bending SCF with respect to linear geometry under the same simplification 

assumption can be derived based on Eqn. (4.15), which leads to 
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4.3.5 Validation by Finite Element Method 

This section will use the commercial software ABAQUS to perform finite element (FE) 

calculation for validating the solutions derived previously. In the finite element model, ABAQUS 

“B21” beam elements were used, and all beam models have a unit width. The Young’s modulus 

of the material is 𝐸 = 207000 MPa, and the Poisson’s ratio is 𝜈 = 0.3. Nonlinear geometry was 

considered in the finite element calculation. For convenience, the nominal stress with respect to 

Member 1, i.e., 𝜎n = 𝑃/𝑡1 will be used hereafter for comparing both computational and analytical 

results under various thickness combinations. 

 

Fig. 4.5 Illustration of a representative FE beam model used for validation. 

The initial local angular distortion shape is explicitly modeled in the FE model, as shown 

in Fig. 4.5. The initial distortion shape of Member 1 follows a 3rd-order polynomial based on the 

local angular distortion angles 𝜃′11 and 𝜃′12, and the initial distortion shape of Member 2 follows 

a 3rd-order polynomial based on the local angular distortion angles 𝜃′21 and 𝜃′22. The left end of 

the model was fixed for all degrees of freedom, while the right end was only allowed to move in 

𝑥 direction for accommodating the axial load, which were modeled as a concentrated force, as 

shown in Fig. 4.5. The axial load 𝑃 applied in the analysis is from 0 to 1000 N, such that the 

nominal stress is 𝜎n = 0 to 200 MPa. Table 4.1 summarizes the detailed dimensions of all three 

models analyzed with the definitions given in Fig. 4.1. 
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Table 4.1 Dimension details of FE models used 

Case 

no. 

Member 1 Member 2 

𝑙1/mm 𝑡1/mm 𝜃′11/deg 𝜃′12/deg 𝑙2/mm 𝑡2/mm 𝜃′21/deg 𝜃′22/deg 

1 200 5 1 -1 200 5 1 -1 

2 200 5 1 -1 300 4 1 -1 

3 200 5 1 -1 300 4 1.5 -1 

 

The analytical 𝑘b at the weld location of interest (top surface of Member 2 at 𝑥2 = 0) for 

the cases listed in Table 4.1 are computed based on Eqn. (4.12) for 𝜎n > 0, and Eqn. (4.15) for 

𝜎n = 0. The FE-based 𝑘b with respect to the same weld location of interest are calculated and 

compared with analytical solutions in Fig. 4.6, which clearly exhibits an excellent agreement 

between the analytical and FE results over the entire axial load range with the error being less than 

0.5%. 

 

Fig. 4.6 Comparison of 𝒌𝐛 between FE and the analytical results. 
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4.4 General Distortion Mode Decomposition and Assembly Procedure 

The overall procedure to evaluate the complicated distortion effect on a welded joint can 

be described as a divide and conquer procedure, as shown in Fig. 4.7. First, the distortion’s effect 

on a welded joint goes through a decomposition procedure and is split into three parts (referred to 

as basic distortion modes): 1) axial misalignment; 2) global angular distortion (angular 

misalignment); 3) local angular distortion (distortion curvature). Then, the secondary bending 

moment at the location of interest with respect to each distortion mode can be calculated using the 

analytical solutions developed in 3.2 and Sec. 4.3.2.2. Finally, the obtained secondary bending 

moments are assembled and finally yields the secondary bending caused by the complicated 

distortion effect. This section will first focus on developing a clear and reliable decomposition 

procedure and then derive the formula for the assembly based on the principle of superposition. 

 

Fig. 4.7 Divide and conquer procedure for evaluating the complex distortion effect on a welded joint. 
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4.4.1 Distortion Mode Decomposition 

Suppose a complicated distortion shape around a butt joint in terms of the centerline of the 

beam members (red dash-dot line in Fig. 4.8a) is given after measurement data treatment (e.g., 

curve fitting based on Appendix B.2), with the initial deflection of Member 𝑖 from the baseline 

being 𝑣0
(𝑖)

(𝑥). The structure is subject an axial load of 𝑃. 

The first mode to be extracted is the axial misalignment. Based on 3.2.2, the axial 

misalignment contained in this distortion shape is defined as the vertical distance between the two 

centerlines at Position O, also shown in Fig. 3.3 and Fig. 4.8a. It can be obtained by 

 
( ) ( ) ( ) ( )2 1

0 0 1e 0v v l= −   (4.20) 

The model for the axial misalignment can be then established as Fig. 4.8b; its shape function can 

be described as  

 

( ) ( )
( ) ( )

1

0,axial 1

2

0,axial 2

0

e

v x

v x

=

=
  (4.21) 

where 𝑥1 and 𝑥2 are member-wise 𝑥-coordinate as defined in Fig. 4.1. After the extraction of axial 

misalignment, the remaining distortion shape of Member 𝑖 becomes 𝑣0
(𝑖)

− 𝑣0,axial
(𝑖)

, as illustrated 

in Fig. 4.8c.  

The next step is to separate the global angular distortion and the local angular distortion. 

By connecting Point O (red dot in Fig. 4.8c) and the ends of the beam, we can obtain two angles 

𝜃1G, 𝜃2G using 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1

0 1 0

1G

1

2 2

0 2 0

2G

2

0

0

v l v

l

v l v

l





−
=

−
=

  (4.22) 
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which is used to define the global angular distortion angle 

 
G 2G 1G  = −   (4.23) 

The shape functions for the global angular distortion (Fig. 4.8d) are 

 

( ) ( )
( ) ( )

1

0,global 1 1G 1

2

0,global 2 2G 2 1G 1

v x x

v x x l



 

=

= +
  (4.24) 

After subtracting the global angular distortion from Fig. 4.8c, the remaining distortion is the local 

angular distortion, given in Fig. 4.8e. Its shape functions can be expressed as 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1 1

0,local 0 0,axial 0,global

2 2 2 2

0,local 0 0,axial 0,global

v v v v

v v v v

= − −

= − −
  (4.25) 

The local angular distortion parameters are obtained by 

 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

1

11 0,local

1

12 0,local 1

2

21 0,local

2

22 0,local 2

0

0

v

v l

v

v l









 =

 =

 =

 =

  (4.26) 

As such, the complicated distortion is decomposed into three simple basic distortion modes 

(Fig. 4.8b, d, and e). Note that the axial load in all basis distortion modes are still 𝑃. The secondary 

bending moment caused by the axial misalignment e and global angular distortion 𝛼G  can be 

acquired using the analytical solution developed in 3.2, and the secondary bending moment by the 

local angular distortion can be calculated using the solution derived in Sec. 4.3.2.2. 
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Fig. 4.8 Distortion mode decomposition: (a) complex distortion shape; (b) axial misalignment; (c) distortion after 

extracting axial misalignment; (d) global angular distortion; (e) local angular distortion. 

4.4.2 Assembly of Analytical Solutions 

The secondary bending moment of each distortion mode discussed above can be assembled 

using the principle of superposition. The equation for assembly is simply 

 
( ) ( ) ( ) ( )
distortion axial global 1,local

i i i i
M M M M= + +   (4.27) 

where 𝑀axial
(𝑖)

, 𝑀global
(𝑖)

, 𝑀1,local
(𝑖)

 are the bending moment in Member 𝑖  caused by the axial 

misalignment, the global angular distortion, and the local angular distortion. The following 

notations will also be used in the following derivation: 𝑀0,local
(𝑖)

 and 𝑉0,local
(𝑖)

 are the bending moment 

and the shear force in Member 𝑖 caused by notional loads, 𝑉axial
(𝑖)

, 𝑉global
(𝑖)

, 𝑉1,local
(𝑖)

 are the shear force 

in Member 𝑖  caused by each distortion mode. 𝑀local
(𝑖)

= 𝑀0,local
(𝑖)

+ 𝑀1,local
(𝑖)

, 𝑉local
(𝑖)

= 𝑉0,local
(𝑖)

+
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𝑉1,local
(𝑖)

 are the total bending moment and shear force in Member 𝑖 with respect to the local angular 

distortion mode. 

The derivation of Eqn. (4.27) is given as follows. We assume the boundary conditions on 

both ends of the model in Fig. 4.8a is clamped, i.e., restrained translation and rotation, and the 

model is subject to an axial load 𝑃. The total displacement of Member 𝑖 of each distortion mode 

is denoted as 𝑣axial
(𝑖)

, 𝑣global
(𝑖)

, 𝑣local
(𝑖)

. The governing equations used for all distortion modes 

considering nonlinear geometry are 

 
( ) ( )4 2

mode mode

4 2
0

i i

i

i i

d v d v
EI P

dx dx
− =   (4.28) 

where 𝑖 ∈ {1,2} indicates the beam member referred to, and mode ∈ {axial, global, local} is the 

distortion mode. The boundary conditions of the axial misalignment mode are given as 

 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

1

axial

1

axial

2

axial 2

2

axial 2

0 0

0 0

e

0

v

v

v l

v l

=

 =

=

 =

  (4.29) 

The force equilibrium and the geometry relationships about the joint (Position O) are 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2

axial 1 axial

1 2

axial 1 axial

1 2

axial 1 axial

1 2

axial 1 axial

e 0

0

e 0

0

M l P M

V l V

v l v

v l v

+ =

=

+ =

 =

  (4.30) 

The boundary conditions of the global angular distortion mode are 
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( ) ( )
( ) ( )

( ) ( )
( ) ( )

1

global

1

global 1G

2

global 2 1G 1 2G 2

2

global 2G

0 0

0

0

v

v

v l l l

v



 



=

 =

= +

 =

  (4.31) 

The force equilibrium and the geometry relationships about the joint (Position O) are 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 2

global 1 global

1 2

global 1 global

1 2

global 1 global

1 2

global 1 global 2G 1G

0

0

0

0

M l M

V l V

v l v

v l v  

=

=

=

 = − −

  (4.32) 

The boundary conditions of the local angular distortion mode are 

 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

1

local

1

local 11

2

local 2

2

local 22

0 0

0

0

0

v

v

v l

v





=

 =

=

 =

  (4.33) 

The force equilibrium and the geometry relationships about the joint (Position O) are 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 2

local 1 local 0

1 2

local 1 local 0

1 2

local 1 local

1 2

local 1 local 21 12

0

0

0

0

M l M m

V l V F

v l v

v l v  

= +

= +

=

   = − −

  (4.34) 

Summing up Eqns. (4.29), (4.31), and (4.33) and denoting 𝑣total
(𝑖)

= 𝑣axial
(𝑖)

+ 𝑣global
(𝑖)

+ 𝑣local
(𝑖)

 yields 

 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

1

total

1

total 1G 11

2

total 2 1G 1 2G 2

2

total 2G 22

0 0

0

e

0

v

v

v l l l

v

 

 

 

=

 = +

= + +

 = +

  (4.35) 

Adding up Eqns. (4.30), (4.32), and (4.34) results in 
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1 2

total 1 total 0

1 2

total 1 total 0

1 2

total 1 total

1 2

total 1 total 2G 1G 21 12

e 0

0

e 0

0

M l P M m

V l V F

v l v

v l v    

+ = +

= +

+ =

   = − − − −

  (4.36) 

where 𝑀total
(𝑖)

= 𝑀axial
(𝑖)

+ 𝑀global
(𝑖)

+ 𝑀local
(𝑖)

 and 𝑉total
(𝑖)

= 𝑉axial
(𝑖)

+ 𝑉global
(𝑖)

+ 𝑉local
(𝑖)

. Eqns. (4.35) and 

(4.36) are the same as the boundary conditions, force equilibrium and geometry relationships  

written directly based on the complicated distortion shape in Fig. 4.8a, which validates the claim 

that the total secondary bending moment caused by the complex distortion is the sum of the 

secondary bending moment of each distortion mode. As discussed in Sec. 4.3.2.2, the bending 

moment caused by the notional loads needs to be deducted from 𝑀total
(𝑖)

, and the secondary bending 

moment caused by distortion is 

 
( ) ( ) ( )
distortion distortion 0,local

i i i
M M M= −   (4.37) 

which eventually yields Eqn. (4.27). 

 

4.5 Discussions 

4.5.1 Analysis of Distortion Shape Effect  

In engineering application, one question of interest is which kinds of initial distortion shape 

would cause maximum secondary bending and which kinds will have negligible effect. To 

investigate the effect of distortion shape on secondary bending, we can use the simplified model 

presented in Sec. 4.3.4 in which both members has the same length 𝑙 and thickness 𝑡. Based on the 

notional load model in Sec. 4.3.1, the local angular distortion shape is given as 
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( ) ( )

( ) ( )

1 2 311 12 11 12
0 1 11 1 1 12

2 2 321 22 21 22
0 2 21 2 2 22

2

2

v x x x x
l l

v x x x x
l l

   


   


   − − +
= + +

   − − +
= + +

  (4.38) 

 

Fig. 4.9 Representative local angular distortion shapes 

Since the simplified solution given in Eqn. (4.18) shows its dependency on 𝜃′21 − 𝜃′12 and 

𝜃′22 − 𝜃′11, we can plot some representative local angular distortion shapes at eight positions, 

Point (a)-(i), using Eqn. (4.38) based on different 𝜃′21 − 𝜃′12 and 𝜃′22 − 𝜃′11 (limited to −2° ≤

𝜃′
11, 𝜃′

12, 𝜃′
21, 𝜃′22 ≤ 2° ), as illustrated in Fig. 4.9. The representative distortion shapes 

corresponding to two points that are symmetrical about the origin, for example, Point (b) and (f), 

are symmetric about 𝑦 = 0. As such, only distortion shapes corresponding the top-left half plane 

(Point (a)-(f)) are plotted. Distortion shapes corresponding to Point (g),(h), and (i) are the reflection 

of the distortion shapes of Point (c), (d), and (e), respectively.  

To facilitate a quantitative investigation of the distortion shape’s effect on the secondary 

bending, we denote 
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2 sinh
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 
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 

− + −
 =

− − + −
 =

− + + −
 =

+ + −
 =

  (4.39) 

and we can write Eqn. (4.18) in the following form 

 

( ) ( )

( ) ( )

sym sym

1 21 12 2 22 11

b,s

sym sym

1 21 12 2 22 11

6 0

6 0

l
P

t
k

l
P

t

   

   


     − + −  

= 
      − + −  

  (4.40) 

Clearly, for given 𝑙 and 𝑡, Ψ1
sym

, Ψ2
sym

, Θ1
sym

, Θ2
sym

 are functions of 𝜆 = √12|𝑃|/𝐸𝑡3, and they 

will vary as 𝑃 changes, exhibiting the straightening effect.  

Suppose we are given 𝑙 = 200 mm and 𝑡 = 5 mm. We start from plotting 𝑘b,s when 𝑃 →

0 (using Eqn. (4.19)) over the same range of 𝜃′21 − 𝜃′12 and 𝜃′22 − 𝜃′11 in Fig. 4.9, as shown in 

Fig. 4.10a. We can use |𝑘b,s| as a metric for the secondary bending effect. We can observe that the 

maximum |𝑘b,s| occurs at Point (d) where 𝜃′22 − 𝜃′
11 = −4°, 𝜃′21 − 𝜃′

12 = 4°  and Point (h) 

where 𝜃′22 − 𝜃′
11 = 4°, 𝜃′21 − 𝜃′

12 = −4°, while the minimum |𝑘b,s| is zero, which happens 

along 𝜃′22 − 𝜃′
11 = 𝜃′21 − 𝜃′

12 (see the dashed line in Fig. 4.10a). Then, we plot 𝑘b,s when 𝜎n =

100 MPa in Fig. 4.10b and 𝜎n = −50 MPa in Fig. 4.10c. The maximum |𝑘b,s| still occurs at Point 

(d) and Point (h), but the dashed line indicating minimum |𝑘b,s| (𝑘b,s = 0) has rotated (about the 

origin) clockwise when 𝜎n  increases and counter-clockwise when 𝜎n  decreases. If we further 

decrease 𝜎n to −80 MPa (see Fig. 4.10d), we can see the line 𝑘b,s = 0 rotated even more such that 
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its slope is negative. The maximum |𝑘b,s| now occurs at Point (f) where 𝜃′22 − 𝜃′
11 = −4°, 

𝜃′21 − 𝜃′
12 = −4° and Point (b) where 𝜃′22 − 𝜃′

11 = 4°, 𝜃′21 − 𝜃′
12 = 4°. 

 

Fig. 4.10 𝒌𝐛,𝐬 as a function of 𝜽′𝟐𝟐 − 𝜽′
𝟏𝟏 and 𝜽′𝟐𝟏 − 𝜽′

𝟏𝟐 when: (a) 𝝈𝐧 → 𝟎 MPa; (b) 𝝈𝐧 = 𝟏𝟎𝟎 MPa; (c) 𝝈𝐧 = −𝟓𝟎 MPa; 

(d) 𝝈𝐧 = −𝟖𝟎 MPa. 

The above phenomenon can be explained with the help of the expression for the dashed 

line representing the minimum |𝑘b,s|, which can be obtained by setting 𝑘b,s = 0 in Eqn. (4.18) and 

reorganizing the equation as 
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 − = 

  − − 
 

  (4.41) 

Judging from Eqn. (4.40), we can claim that 𝑘b,s monotonically increases or decreases in the 

normal direction of the line 𝑘b,s = 0. Based on the expression of 𝑘b,s (Eqn. (4.40)) and 𝑘b,s = 0 

(Eqn. (4.41)), we can reveal some insights on the initial distortion shapes’ influence on |𝑘b,s|.  

(a) Importance of 𝜃′22 − 𝜃′
11 and 𝜃′21 − 𝜃′

12 

When 𝑃 → 0, we can see that 𝜃′22 − 𝜃′
11 has the same effect as 𝜃′21 − 𝜃′

12 has on |𝑘b,s|, 

as shown in Fig. 4.10a. When 𝑃 → +∞,  the slope of 𝑘b,s = 0, −Ψ2
sym

/Ψ1
sym

, monotonically 

decreases and finally reaches 

 
sym

2

sym

1

lim 0
P→+


− =


  (4.42) 

resulting in the line 𝑘b,s = 0 being horizontal, which indicates that when the load level is large, 

𝜃′21 − 𝜃′
12 will have greater influence than 𝜃′22 − 𝜃′

11 has on |𝑘b,s|. For 𝑃 < 0, since the line 

𝑘b,s = 0 will continue rotate counterclockwise when 𝑃 decreases, 𝜃′22 − 𝜃′
11 will have greater 

influence than 𝜃′21 − 𝜃′
12 has on |𝑘b,s|. 

(b) Initial distortion shape’s effect on |𝑘b,s| 

Based on the 𝑘b,s  solution when 𝑃 → 0 , we can establish two parameters that can 

approximately describe the initial distortion shape’s effect without calculating detailed 𝑘b,s. The 

first one is  

 ( ) ( )21 12 22 11      − − −   (4.43) 
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which comes from Eqn. (4.19). As shown previously, within the axial fatigue load level of interest, 

|𝑘b,s|  mostly increases when |(𝜃′22 − 𝜃′
11) − (𝜃′21 − 𝜃′

12)|  increases, and Eqn. (4.43) can 

provide a good approximation of the magnitude of |𝑘b,s|. The second one is the integral of the 

initial distortion shape function, given as 

 
0v dx   (4.44) 

For the local angular distortion shape discussed in this section, the integral in the above equation 

equals to 

 

( ) ( )

( ) ( )

1 2

0 0 0
0 0

2 2

21 12 22 11
12 12

l l

v dx v dx v dx

l l
   

= +

   = − − −

  
  (4.45) 

which is proportional to 𝑘b,s given in Eqn. (4.19). As such, |∫ 𝑣0𝑑𝑥| can also provide a good 

estimation of |𝑘b,s|.  

By plotting the above metric, e.g., Eqn. (4.44), in Fig. 4.11 and comparing with the 

representative distortion shapes in Fig. 4.9, we can see that the distortion shapes corresponding to 

Point (d) and (h), which exhibits an “eagle” shape (see Fig. 4.9d), are subject to the most secondary 

bending. Meanwhile, the distortion shapes corresponding to Point (b) and (f), each of which 

contains one sinusoidal-like wave on each side and features a sudden slope change at the joint (see 

Fig. 4.9b and f), and Point (a), which represents all anti-symmetrical distortion shapes, such as a 

sine wave with joint in the middle (see Fig. 4.9a), will introduce little secondary bending. 

Particularly for Point (a), the 𝑘b,s caused by its corresponding distortion shape will always be zero 

regardless of the applied axial load level since 𝑘b,s = 0 always passes through Point (a). 
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Fig. 4.11 |∫ 𝒗𝟎𝒅𝒙| plotted as a function of 𝜽′𝟐𝟐 − 𝜽′
𝟏𝟏 and 𝜽′𝟐𝟏 − 𝜽′

𝟏𝟐. 

4.5.2 Decomposition of Distortions in Stiffened Panels 

The decomposition and assembly procedure developed in Sec. 4.4 can also be applied on 

the distortions between stiffeners in panel structures. Fig. 4.12a shows a typical initial distortion 

profile between two stiffener documented in [41], containing displaced stiffeners and distortion 

curvatures, and the base plate is subject to an axial load 𝑃. Since the base plate is continuous, there 

is no axial misalignment associated with fillet welds at stiffener locations. For simplicity, we also 

assume that the stiffeners are fixed (i.e., restrained translation and rotation) in the structure, and 

Position A, B in Fig. 4.12 are the weld toe positions of interest. 
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Fig. 4.12 Distortion decomposition of a distortion profile in stiffened panels: (a) original distortion; (b) global angular 

distortion; (c) local angular distortion. 

Before the decomposition, we first expand the definition of the basic distortion modes in 

the context of stiffened panels to keep terminology consistent. The global angular distortion 

formed between two stiffeners only involves one member as shown in Fig. 4.12b, characterized 

by 𝜃𝐺 , and the local angular distortion between the stiffeners contains the curved component of 

the initial distortion profile only. As such, the buckling distortion mode and the cosine angular 

distortion mode discussed in Sec.2.3.1 are subtypes of the local angular distortion mode under this 

definition.  

Based on the decomposition rule discussed in Sec. 4.4.1, we can divide the distortion into 

two basic distortion modes: the global angular distortion in Fig. 4.12b and the local angular 

distortion in Fig. 4.12c, which can be represented by the buckling distortion mode in Sec. 2.3.1.2. 

Under the given boundary conditions, we can easily show that the global angular distortion will 

not introduce any secondary bending stress at Positions A, B, i.e., 𝑘b,global = 0. The secondary 

bending caused by the local angular distortion in Fig. 4.12c, 𝑘b,local,  can be calculated using Eqn. 

(2.8) with respect to the buckling distortion mode.  
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Finally, the secondary bending with respect to the distortion profile in Fig. 4.12a is obtained 

by superimposing 𝑘b,global  and 𝑘b,local . In this case, the secondary bending is only related to 

𝑘b,local. 

4.5.3 Substitution of Analytical Solutions 

In Sec. 4.4.2, the assembly procedure is derived based on nonlinear geometry, meaning 

that technically, 𝑀axial
(𝑖)

, 𝑀global
(𝑖)

, 𝑀1,local
(𝑖)

 in Eqn. (4.27) needs to be calculated on a nonlinear 

geometry basis. However, in engineering application, 𝑀axial
(𝑖)

, 𝑀global
(𝑖)

, 𝑀1,local
(𝑖)

 based on linear 

geometry can be used in Eqn. (4.27), partly or wholly, to approximate the total secondary bending 

caused by distortion. For example, in the calculation of the secondary bending in the lab-scale 

specimens in Sec. 2.4.1, because the axial misalignments in the specimens are small, linear 

geometry solution given in [63] is used to calculate 𝑀axial
(𝑖)

; however, 𝑀global
(𝑖)

 and 𝑀1,local
(𝑖)

 are still 

computed using nonlinear geometry solutions given by Eqn. (2.9) and Eqn. (2.11). Such 

substitutions can simplify the calculation process but will sacrifice the accuracy. Therefore, they 

are only preferred when the magnitude of a distortion mode is small, or the nonlinear geometry 

effect is not significant. 

4.6 Chapter Conclusions 

This chapter developed a general analytical modeling procedure for misalignment and 

distortion curvature effects on welded joints. By extending the analytical solution of the local 

angular distortion to a more general extent based on the notional load method and nonlinear 

geometry, the superposition of the local angular distortion mode and the misalignments modes 

discussed in Chapter 3 is enabled. The analytical solution is validated using finite element method. 

Then, the general modeling procedure is designed based on a divide-and-conquer strategy. First, a 

complicated distortion effect at a welded joint is decomposed into several basic distortion mode 
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problems. Next, the analytical solution to each basic distortion mode is obtained using previously 

developed results. And finally, using the principle of superposition, the solutions are added up 

together, leading to the complex distortion effect sought. 

By examining the analytical solution to the local angular distortion, we found that 1) a 

linear geometry approximation of the analytical solution can be obtained by taking the limit of the 

nonlinear analytical solution as 𝑃 approaches zero; 2) based on the symmetric nominal structure 

assumption, the “eagle” shaped distortion curvatures would induce the most secondary bending, 

while distortion shapes that contain a full sine-wave on both members of the joint, or feature anti-

symmetry with respect to the joint position will cause little secondary bending. 

Moreover, the decomposition and assembly procedure can be easily expanded beyond the 

scope of a butt-welded joint following the rule presented, so that different types of joint 

configuration can be covered, such as the distortions in stiffened panel, adding flexibility to the 

developed procedure. Also, by decomposing the complicated distortion problem into several 

simple ones, justifiable simplifications can be applied with respect to each distortion mode, thus 

reducing the difficulty in calculations. 
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Chapter 5 

A Generalized Procedure for Distortion Decomposition and Assembly of Elementary 

Distortion Mode-Based Solutions 

5.1 Chapter Introduction 

This chapter first summarizes the analytical solutions developed in each chapter and 

presents them in tabular form based on engineering application scenarios. A step-by-step distortion 

mode decomposition and assembly procedure are then provided. Finally, two comprehensive 

application examples are provided to illustrate how the analytical solutions developed in this 

research can be used in real engineering problems. 

5.2 Decomposition and Assembly for Treatment of Butt-Welded Plates 

 

Fig. 5.1 Illustration of a welded joint with complex distortions. 

Consider a butt joint with the distortion shown in Fig. 5.1 under clamped boundary 

condition, the secondary bending moment at Position O caused by an axial load 𝑃 on a welded 

joint subject to complex distortions is obtained by 

 
( ) ( ) ( ) ( )
distortion axial global 1,local

i i i i
M M M M= + +   (5.1) 

where 𝑀axial
(𝑖)

, 𝑀global
(𝑖)

, 𝑀1,local
(𝑖)

 corresponds to bending moment induced by axial misalignment, 

global angular distortion, and local angular distortion modes, respectively. The bending stress 
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caused by all distortion modes corresponding to the four weld toe locations (Positions A, B, C, D) 

are given as 

 
( )1

A B distortion
b b 2

1

6M

t
 = − = −   (5.2) 

 
( )2

C D distortion
b b 2

2

6M

t
 = − = −   (5.3) 

And the secondary bending induced stress concentration factor, 𝑘b, at the four weld toe positions 

can be calculated as: 

  b
b

n

A, B, C, D
i

ik i



=    (5.4) 

in which the beam section nominal stress 𝜎n is expressed as 𝑃/𝑡1 by definition, corresponding to 

the average stress in Member 1 or 𝑃/𝑡2 corresponding to the average stress in Member 2.  

𝑀axial
(𝑖)

, 𝑀global
(𝑖)

, 𝑀1,local
(𝑖)

 in Eqn. (5.1) can be calculated using the formulae in the tables in 

this section. The parameter corresponds to each distortion mode is obtained through the 

decomposition procedure provided in Sec. 4.4.1. Table 5.1 provides an index for the tables of 

analytical formulae given in this section. When calculating the secondary bending moments in 

Eqn. (5.1), one should pick one table for each distortion mode based on the application scenario. 

Table 5.1 Index of tables for calculating secondary bending moment caused by each distortion mode. 

Deformation Consider joint 

representation 
𝑀axial

(𝑖)
 𝑀global

(𝑖)
 𝑀1,local

(𝑖)
 

Small deformation Y Table 5.2 Table 5.5 N/A 

N Table 5.3 Table 5.6 Table 5.9 

Large deformation Y Table 5.4 Table 5.7 Table 5.10 

N Table 5.3* Table 5.8 Table 5.11 

*: same as small deformation condition 
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5.2.1 Axial Misalignment Mode 

This section provides several tables of formulae for calculating the bending moment caused 

by the axial misalignment, 𝑀axial
(𝑖)

, derived from the analytical solutions developed in Sec. 3.2. Fig. 

5.2a shows the analytical model of the axial misalignment distortion. The axial misalignment e is 

defined as the vertical distance between the center lines of Member 1 and that of Member 2 at the 

joint center position (Position O), with the sign convention given in Fig. 5.2b. 

 

Fig. 5.2 Illustration of axial misalignment (a) analytical model; (b) sign convention. 

5.2.1.1 Small Deformation (Linear Geometry) Solutions 

Tables provided in this section correspond to small deformation conditions where the 

analytical solutions are derived based on linear geometry. The derivation of the formulae in this 

section is documented in Sec. 3.2.3. 

(a) With consideration of the joint representation. 

The analytical solutions with consideration of the joint representation, which can include 

the joint size effect, are provided in Table 5.2.  
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Table 5.2 Formulae for calculating the bending moment due to axial misalignment in butt joints considering joint 

representation under small deformation condition. 

Type Bending moment 𝑀axial
(𝑖)

 

𝑙1b = 𝑙2b = 𝑙b 

and 

𝑡1 = 𝑡2 = 𝑡 

( )

( )

1 b

axial

b t

2 b

axial

b t

e
2 3

e
2 3

Pl
M

l l

Pl
M

l l

= −
+

=
+

 

𝑙1b = 𝑙2b = 𝑙b 

( ) ( )

( ) ( )

3 3 3

1 b 2 11

axial 6 3 3 3 3 6

b 2 b 1 2 t 1 2 b 1

3 3 3

2 b 1 22

axial 6 3 3 3 3 6

b 2 b 1 2 t 1 2 b 1

7
e

14 24

7
e

14 24

Pt l t t
M

l t l t t l t t l t

Pt l t t
M

l t l t t l t t l t

+
= −

+ + +

+
=

+ + +

 

𝑡1b = 𝑡2b = 𝑡b 

( ) ( )

( ) ( )

3 2 3

2b 1b 1b 2b 2b1

axial 4 3 2 2 2 2 3 4

1b 1b 2b 1b t 2b 1b 2b 1b t 2b 1b 2b 2b

3 2 3

1b 2b 2b 1b 1b2

axial 4 3 2 2 2 2 3 4

1b 1b 2b 1b t 2b 1b 2b 1b t 2b 1b 2b 2b

4 3
e

4 12 6 12 4

4 3
e

4 12 6 12 4

Pl l l l l
M

l l l l l l l l l l l l l l

Pl l l l l
M

l l l l l l l l l l l l l l

+ +
= −

+ + + + + +

+ +
=

+ + + + + +

 

General 𝑙 and 𝑡 

( ) ( )

( ) ( )

3 3 3 2 3 3 3

1 2b 1b 2 1b 2b 2 2b 11

axial 4 6 3 3 3 2 3 3 2 2 3 3 2 3 3 3 3 3 4 6

1b 2 1b 2b 1 2 1b t 2b 1 2 1b 2b 1 2 1b t 2b 1 2 1b 2b 1 2 2b 1

3 3 3 2 3 3 3

2 1b 2b 1 2b 1b 1 1b 22

axial 4 6 3

1b 2 1b 2

4 3
e

4 12 6 12 4

4 3

4

Pt l l t l l t l t
M

l t l l t t l l l t t l l t t l l l t t l l t t l t

Pt l l t l l t l t
M

l t l l

+ +
= −

+ + + + + +

+ +
=

+ 3 3 2 3 3 2 2 3 3 2 3 3 3 3 3 4 6

b 1 2 1b t 2b 1 2 1b 2b 1 2 1b t 2b 1 2 1b 2b 1 2 2b 1

e
12 6 12 4t t l l l t t l l t t l l l t t l l t t l t+ + + + +
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(b) Without consideration of the joint representation. 

The analytical solution without consideration of the joint representation is provided in 

Table 5.3. These equations are applicable when the joint size is not known or the joint size effect 

is of less importance. 

Table 5.3 Formulae for calculating the bending moment due to axial misalignment in butt joints without considering joint 

representation under small deformation conditions. 

Type Bending moment 𝑀axial
(𝑖)

 

𝑙1 = 𝑙2 = 𝑙 

and 

𝑡1 = 𝑡2 = 𝑡 

( )

( )

1

axial

2

axial

e
2

e
2

P
M

P
M

= −

=

 

𝑙1 = 𝑙2 = 𝑙 

( ) ( )

( ) ( )

3 3 3

1 2 11

axial 6 3 3 6

2 1 2 1

3 3 3

2 1 22

axial 6 3 3 6

2 1 2 1

7
e

14

7
e

14

Pt t t
M

t t t t

Pt t t
M

t t t t

+
= −

+ +

+
=

+ +

 

𝑡1 = 𝑡2 = 𝑡 

( ) ( )

( ) ( )

3 2 3

2 1 1 2 21

axial 4 3 2 2 3 4

1 1 2 1 2 1 2 2

3 2 3

1 2b 2 1 12

axial 4 3 2 2 3 4

1 1 2 1 2 1 2 2

4 3
e

4 6 4

4 3
e

4 6 4

Pl l l l l
M

l l l l l l l l

Pl l l l l
M

l l l l l l l l

+ +
= −

+ + + +

+ +
=

+ + + +

 

General 𝑙 and 𝑡 

( ) ( )

( ) ( )

3 3 3 2 3 3 3

1 2 1 2 1 2 2 2 11

axial 4 6 3 3 3 2 2 3 3 3 3 3 4 6

1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1

3 3 3 2 3 3 3

2 1 2 1 2 1 1 1 22

axial 4 6 3 3 3 2 2 3 3 3 3 3 4 6

1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1

4 3
e

4 6 4

4 3
e

4 6 4

Pt l l t l l t l t
M

l t l l t t l l t t l l t t l t

Pt l l t l l t l t
M

l t l l t t l l t t l l t t l t

+ +
= −

+ + + +

+ +
=

+ + + +
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5.2.1.2 Large Deformation (Nonlinear Geometry) Solutions 

Tables provided in this section correspond to large deformation conditions where the 

analytical solution are derived based on nonlinear geometry.  The derivation of the equations in 

this section is documented in Sec. 3.2.4. 

(a) With consideration of the joint representation. 

The analytical solutions with consideration of the joint representation, which can include 

the joint size effect, are provided in Table 5.4.  

Table 5.4 Formulae for calculating the bending moment due to axial misalignment in butt joints considering joint 

representation under large deformation condition. 

Type Bending moment 𝑀axial
(𝑖)

 Remarks 

𝑙1 = 𝑙2 = 𝑙 

and 

𝑡1 = 𝑡2 = 𝑡 

For 𝑃 > 0, 

( )

( )

1

axial t t

2

axial t t

e sinh cosh 1
sinh cosh

2 cosh sinh

e sinh cosh 1
sinh cosh

2 cosh sinh

P l l l
M l l

l l l

P l l l
M l l

l l l

  
 

  

  
 

  

− + 
= − 

− 

− + 
= − + 

− 

 

For 𝑃 < 0, 

( )

( )

1

axial t t

2

axial t t

e sin cos 1
sin cos

2 cos sin

e sin cos 1
sin cos

2 cos sin

P l l l
M l l

l l l

P l l l
M l l

l l l

  
 

  

  
 

  

− − + 
= − 

− 

− − + 
= − + 

− 

 

3

3
2

P

Et
 =  

General 𝑙 and 𝑡 

For 𝑃 > 0, 

( ) ( ) ( )( )
( ) ( ) ( )( )

1 1 1

axial e 1 t e 1 t

2 2 2

axial e 2 t e 2 t

e sinh cosh

e sinh cosh

M P l l

M P l l

   

   

= +

= +
 

For 𝑃 < 0, 

( ) ( ) ( )( )
( ) ( ) ( )( )

1 1 1

axial e 1 t e 1 t

2 2 2

axial e 2 t e 2 t

e sin cos

e sin cos

M P l l

M P l l

   

   

= +

= +
 

1 3

1

2 3

2

3
2

3
2

P

Et

P

Et





=

=

 

Refer to Appendix C.2 for 

𝜙e
(1)

, 𝜓e
(1)

, 𝜙e
(2)

, 𝜓e
(2)

 

𝛾e
(1)

, 𝜒e
(1)

, 𝛾e
(2)

, 𝜒e
(2)
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(b) Without consideration of the joint representation. 

The analytical solutions for the axial misalignment mode without consideration of the joint 

representation are the same as those provided in Table 5.3 and does not exhibit a nonlinear 

geometry effect. 

5.2.2 Global Angular Distortion Mode (Angular Misalignment) 

This section provides several tables of formulae for calculating the bending moment caused 

by the global angular distortion (also referred to as angular misalignment), 𝑀global
(𝑖)

, derived from 

the analytical solutions developed in Sec. 3.2. Fig. 5.3a shows the analytical model of the global 

angular distortion. The global angular distortion 𝛼G is defined as the angle formed between the 

centerlines of Member 1 and Member 2, i.e., 𝛼G = 𝜃2G − 𝜃1G, where 𝜃1G and 𝜃2G are the slope of 

each member with respect to a horizontal baseline. The sign convention of 𝜃1G and 𝜃2G are given 

in Fig. 5.3b. 

 

Fig. 5.3 Illustration of global angular distortion: (a) analytical model; (b) sign convention. 

5.2.2.1 Small Deformation (Linear Geometry) Solutions 

Tables provided in this section correspond to small deformation conditions where the 

analytical solutions are derived based on linear geometry. The derivation of the formulae in this 

section is documented in Sec. 3.2.3. 
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(a) With consideration of the joint representation. 

The analytical solutions with consideration of the joint representation, which can include 

the joint size effect, are provided in Table 5.5. 

Table 5.5 Formulae for calculating the bending moment due to global angular distortion in butt joints considering joint 

representation under small deformation conditions. 

Type Bending moment 𝑀global
(𝑖)

 

𝑙1b = 𝑙2b = 𝑙b 

and 

𝑡1 = 𝑡2 = 𝑡 

( ) ( )1 2 b

global global G
4

Pl
M M = = −  

𝑙1b = 𝑙2b = 𝑙b 
( ) ( )

( ) ( )

3 3 3 3

1 b t 2 b 2 t 11

global G6 3 3 3 3 6

b 2 b 1 2 t 1 2 b 1

3 3 3 3

2 b t 1 b 1 t 22

global G6 3 3 3 3 6

b 2 b 1 2 t 1 2 b 1

7 4

14 24

7 4

14 24

Pt l l t l t l t
M

l t l t t l t t l t

Pt l l t l t l t
M

l t l t t l t t l t





+ −
= −

+ + +

+ −
= −

+ + +

 

𝑡1b = 𝑡2b = 𝑡b 
( ) ( )

( ) ( )

3 3 2 2 2 3

2b 1b t 1b 2b 1b t 2b 1b 2b t 2b1

global G4 3 2 2 2 2 3 4

1b 1b 2b 1b t 2b 1b 2b 1b t 2b 1b 2b 2b

3 3 2 2 2 3

1b 2b t 2b 1b 2b t 1b 2b 1b t 1b2

global 4 3 2

1b 1b 2b 1b

4 2 3 2

4 12 6 12 4

4 2 3 2

4 12

Pl l l l l l l l l l l l
M

l l l l l l l l l l l l l l

Pl l l l l l l l l l l l
M

l l l l l


+ + + −

= −
+ + + + + +

+ + + −
= −

+ +
G2 2 2 3 4

t 2b 1b 2b 1b t 2b 1b 2b 2b6 12 4l l l l l l l l l


+ + + +

 

General 𝑙 and 𝑡 
( ) ( )

( )

3 3 3 3 3 2 3 2 2 3 3 3

1 2b 1b t 2 1b 2b 2 1b t 2b 2 1b 2b 2 t 2b 11

global G4 6 3 3 3 2 3 3 2 2 3 3 2 3 3 3 3 3 4 6

1b 2 1b 2b 1 2 1b t 2b 1 2 1b 2b 1 2 1b t 2b 1 2 1b 2b 1 2 2b 1

3 3

2 1b 2b t2

global

4 2 3 2

4 12 6 12 4

4

Pt l l l t l l t l l l t l l t l l t
M

l t l l t t l l l t t l l t t l l l t t l l t t l t

Pt l l l t
M


+ + + −

= −
+ + + + + +

= −
( )3 3 3 2 3 2 2 3 3 3

1 2b 1b 1 2b t 1b 1 2b 1b 1 t 1b 2

G4 6 3 3 3 2 3 3 2 2 3 3 2 3 3 3 3 3 4 6

1b 2 1b 2b 1 2 1b t 2b 1 2 1b 2b 1 2 1b t 2b 1 2 1b 2b 1 2 2b 1

2 3 2

4 12 6 12 4

l l t l l l t l l t l l t

l t l l t t l l l t t l l t t l l l t t l l t t l t


+ + + −

+ + + + + +
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(b) Without consideration of the joint representation. 

The analytical solution without consideration of the joint representation is provided in 

Table 5.6.  

Table 5.6 Formulae for calculating the bending moment due to global angular distortion in butt joints without considering 

joint representation under small deformation conditions. 

Type Bending moment 𝑀global
(𝑖)

 

𝑙1 = 𝑙2 = 𝑙 

and 

𝑡1 = 𝑡2 = 𝑡 

( ) ( )1 2

global global G
4

Pl
M M = = −  

𝑙1 = 𝑙2 = 𝑙 
( ) ( )

3 3
1 2 1 2

global global G6 3 3 6

2 1 2 1

4

14

Plt t
M M

t t t t
= = −

+ +
 

𝑡1 = 𝑡2 = 𝑡 
( ) ( ) ( ) 2 2

1 2 1 2 1 2

global global G4 3 2 2 3 4

1 1 2 1 2 1 2 2

2

4 6 4

P l l l l
M M

l l l l l l l l


+
= = −

+ + + +
 

General 𝑙 and 𝑡 
( ) ( ) ( ) 2 2 3 3

1 2 1 2 1 2 1 2

global global G4 6 3 3 3 2 2 3 3 3 3 3 4 6

1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1

2

4 6 4

P l l l l t t
M M

l t l l t t l l t t l l t t l t


+
= = −

+ + + +
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5.2.2.2 Large Deformation (Nonlinear Geometry) Solutions 

Tables provided in this section correspond to large deformation conditions where the 

analytical solution are derived based on nonlinear geometry. The derivation of the equations in 

this section is documented in Sec. 3.2.4. 

(a) With consideration of the joint representation. 

The analytical solutions with consideration of the joint representation, are provided in 

Table 5.7.  

Table 5.7 Formulae for calculating the bending moment due to global angular distortion in butt joints considering joint 

representation under large deformation conditions. 

Type Bending moment 𝑀global
(𝑖)

 Remarks 

𝑙1 = 𝑙2 = 𝑙 

and 

𝑡1 = 𝑡2 = 𝑡 

For 𝑃 > 0, 

( ) ( )1 2 G

axial axial t t

1 cosh 1
sinh cosh

2 sinh

P l l
M M l l

l l l

 
 

  

− 
= = − 

 
 

For 𝑃 < 0, 

( ) ( )1 2 G

global global t t

1 cos 1
sin cos

2 sin

P l l
M M l l

l l l

 
 

  

− 
= = + 

 
 

3

3
2

P

Et
 =  

General 𝑙 and 𝑡 

For 𝑃 > 0, 

( ) ( ) ( )( )
( ) ( ) ( )( )

G G

G G

1 1 1

global G 1 t 1 t

2 2 2

global G 2 t 2 t

sinh cosh

sinh cosh

M P l l

M P l l

 

 

    

    

= +

= +
 

For 𝑃 < 0, 

( ) ( ) ( )( )
( ) ( ) ( )( )

G G

G G

1 1 1

global G 1 t 1 t

2 2 2

global G 2 t 2 t

sin cos

sin cos

M P l l

M P l l

 

 

    

    

= +

= +
 

1 3

1

2 3

2

3
2

3
2

P

Et

P

Et





=

=

 

Refer to Appendix C.3 for 

𝜙𝛼G

(1)
, 𝜓𝛼G

(1)
, 𝜙𝛼G

(2)
, 𝜓𝛼G

(2)
 

𝛾𝛼G

(1)
, 𝜒𝛼G

(1)
, 𝛾𝛼G

(2)
, 𝜒𝛼G

(2)
 

Also,  

𝜓𝛼G

(1)
= 𝜓𝛼G

(2)
 

𝜒𝛼G

(1)
= 𝜒𝛼G

(2)
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(b) Without consideration of the joint representation. 

The analytical solutions without consideration of the joint representation are provided in 

Table 5.8. 

Table 5.8 Formulae for calculating the bending moment due to global angular distortion in butt joints without considering 

joint representation under large deformation conditions. 

Type Bending moment 𝑀global
(𝑖)

 Remarks 

𝑙1 = 𝑙2 = 𝑙 

and 

𝑡1 = 𝑡2 = 𝑡 

For 𝑃 > 0, 

( ) ( )1 2 G

global global

cosh 1

2 sinh

P l l
M M

l l

 

 

− 
= = −  

 
 

For 𝑃 < 0, 

( ) ( )1 2 G

global global

cos 1

2 sin

P l l
M M

l l

 

 

− 
= =  

 
 

3

3
2

P

Et
 =  

General 𝑙 and 𝑡 For 𝑃 > 0, 

( ) ( ) ( )

G

1 2 1

global global GM M P  = =  

For 𝑃 < 0, 

( ) ( ) ( )

G

1 2 1

global global GM M P  = =  

1 3

1

2 3

2

3
2

3
2

P

Et

P

Et





=

=

 

Refer to Appendix C.3 for 

𝜓𝛼G

(1)
, 𝜒𝛼G

(1)
 

 

5.2.3 Local Angular Distortion Mode 

This section provides several tables of formulae for calculating the bending moment caused 

by the local angular distortion (also referred to as distortion curvature), 𝑀1,local
(𝑖)

, derived from the 

analytical solutions developed in Sec. 4.3. The local angular distortion is defined as the curvature 

shape of the distortion without misalignments. It is characterized by the four local angular 

distortion angles (or the slopes) at the ends of each member, 𝜃′11, 𝜃′12, 𝜃′21, and  𝜃′22 (see Fig. 
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5.4a).  Fig. 5.4a shows the analytical model of the local angular distortion and the sign convention 

for the local angular distortion angles 𝜃′𝑖𝑗 is given in Fig. 5.4b.  

 

Fig. 5.4 Illustration of local angular distortion: (a) analytical model; (b) sign convention. 

5.2.3.1 Small Deformation (Linear Geometry) Solutions 

Table 5.9 provided in this section corresponds to small deformation conditions. The 

derivation of the formulae in this section is documented in Sec. 4.3.3. The solutions for small 

deformation is only available when the joint representation is not considered. 
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Table 5.9 Formulae for calculating the bending moment due to local angular distortion in butt joints without considering 

joint representation under small deformation condition. 

Type Bending moment 𝑀1,local
(𝑖)

 

𝑙1 = 𝑙2 = 𝑙 

and 

𝑡1 = 𝑡2 = 𝑡 

( ) ( ) ( ) ( )1 2

1,local 1,local 22 11 21 12
24

Pl
M M       = = − − −    

𝑙1 = 𝑙2 = 𝑙 ( ) ( )

( )
( )

( )

( )

( )

1 2 3 3 3 3

1,local 1,local 2 2 1 1 116 3 3 3 3 3 3 6

2 1 2 1 2 1 2 1

3 3 3 3

2 2 1 1 12

3 3 3 3

1 1 2 2 21

3 3 3 3

1 1 2 2 22

9 10
30 4 6 4

2 2 3 5

2 2 3 5

9 10

Pl
M M t t t t

t t t t t t t t

t t t t

t t t t

t t t t









 = = − + +
+ + + +

+ + +

− + +

+ + +


 

𝑡1 = 𝑡2 = 𝑡 ( ) ( )

( )
( )

( )

( )

( )

1 2 2 3 2 3

1,local 1,local 1 1 1 2 2 114 3 2 2 3 4

1 1 2 1 2 1 2 2

2 3 2 3

1 1 1 2 2 12

2 3 2 3

2 2 2 1 1 21

2 3 2 3

2 2 2 1 1 22

9 10
30 4 6 4

2 2 3 5

2 2 3 5

9 10

P
M M l l l l l

l l l l l l l l

l l l l l

l l l l l

l l l l l









 = = − + +
+ + + +

+ + +

− + +

+ + +


 

General 𝑙 and 𝑡 ( ) ( ) ( )

( )

( )

( )

1 2 2 3 3 3 2 3 3 3

1,local 1,local 1 2 1 2 1 2 1 2 1 11

2 3 3 3 2 3 3 3

1 2 1 2 1 2 1 2 1 12

2 3 3 3 2 3 3 3

2 1 2 1 2 1 2 1 2 21

2 3 3 3 2 3 3 3

2 1 2 1 2 1 2 1 2 22

9 10
30

2 2 3 5

2 2 3 5

9 10

P
M M l t l t l l t l t

l t l t l l t l t

l t l t l l t l t

l t l t l l t l t









 = = − + +


+ + +

− + +

+ + +


 

Where 

4 6 3 3 3 2 2 3 3 3 3 3 4 6

1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 14 6 4l t l l t t l l t t l l t t l t= + + + +   

 

5.2.3.2 Large Deformation (Nonlinear Geometry) Solutions 

Tables provided in this section correspond to large deformation conditions where the 

analytical solution are derived based on nonlinear geometry. The derivation of the equations in 

this section is documented in Sec. 4.3. 

(a) With consideration of the joint representation. 
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The analytical solutions with consideration of the joint representation, which can include 

the joint size effect, are provided in Table 5.7.  

Table 5.10 Formulae for calculating the bending moment due to local angular distortion in butt joints considering joint 

representation under large deformation condition. 

Type Bending moment 𝑀1,local
(𝑖)

 Remarks 

𝑙1 = 𝑙2 = 𝑙 

and 

𝑡1 = 𝑡2 = 𝑡 

For 𝑃 > 0, 

( ) ( ) ( )( )
( ) ( )( )
( ) ( )( )
( ) ( )( )
( ) ( )( ) ( ) ( )( )

11 11

12 12

21 21

22 22

11 11 12 12

1 1s 1s

1,local t t 11

1s 1s

t t 12

1s 1s

t t 21

1s 1s

t t 22

1s 1s 1s 1s

t 11 t 12

1,loc

sinh cosh

sinh cosh

sinh cosh

sinh cosh

M P l l

l l

l l

l l

l l

M

 

 

 

 

   

    

    

    

    

     

 

 

 

 

   

 = +


+ +

+ +

+ +

 − + − +


( ) ( ) ( )( )
( ) ( )( )
( ) ( )( )
( ) ( )( )
( ) ( )( ) ( ) ( )( )

11 11

12 12

21 21

22 22

21 21 22 22

2 2s 2

al t t 11

2s 2s

t t 12

2s 2s

t t 21

2s 2s

t t 22

2s 2s 2s 2s

t 21 t 22

sinh cosh

sinh cosh

sinh cosh

sinh cosh

P l l

l l

l l

l l

l l

 

 

 

 

   

    

    

    

    

     

 

 

 

 

   

 = +


+ +

+ +

+ +

 − + − +


 

For 𝑃 < 0, 

( ) ( ) ( )( )
( ) ( )( )
( ) ( )( )
( ) ( )( )
( ) ( )( ) ( ) ( )( )

( )

11 11

12 12

21 21

22 22

11 11 12 12

1 1s 1s

1,local t t 11

1s 1s

t1 t 12

1s 1s

t t 21

1s 1s

t t 22

1s 1s 1s 1s

t 11 t 12

2

1,local

sin cos

sin cos

sin cos

sin cos

M P l l

l l

l l

l l

l l

M P

 

 

 

 

   

    

    

    

    

     



 

 

 

 

   



 = +


+ +

+ +

+ +

 − + − +


=
( ) ( )( )

( ) ( )( )
( ) ( )( )
( ) ( )( )
( ) ( )( ) ( ) ( )( )

11 11

12 12

21 21

22 22

21 21 22 22

2s 2s

t t 11

2s 2s

t t 12

2s 2s

t t 21

2s 2s

t t 22

2s 2s 2s 2s

t 21 t 22

sin cos

sin cos

sin cos

sin cos

l l

l l

l l

l l

l l

 

 

 

 

   

   

    

    

    

     



 

 

 

   

 +


+ +

+ +

+ +

 − + − +


 

3

3
2

P

Et
 =  

Refer to Appendix C.4.3 for 

𝜙𝜃′11

(1s)
, 𝜓𝜃′11

(1s)
, 𝜙𝜃′12

(1s)
, 𝜓𝜃′12

(1s)
, 

𝜙𝜃′21

(1s)
, 𝜓𝜃′21

(1s)
, 𝜙𝜃′22

(1s)
, 𝜓𝜃′22

(1s)
, 

𝜙𝜃′11

(2s)
, 𝜓𝜃′11

(2s)
, 𝜙𝜃′12

(2s)
, 𝜓𝜃′12

(2s)
, 

𝜙𝜃′21

(2s)
, 𝜓𝜃′21

(2s)
, 𝜙𝜃′22

(2s)
, 𝜓𝜃′22

(2s)
, 

𝜁𝜃′11

(1s)
, 𝜅𝜃′11

(1s)
, 𝜁𝜃′12

(1s)
, 𝜅𝜃′12

(1s)
, 

𝜁𝜃′21

(2s)
, 𝜅𝜃′21

(2s)
, 𝜁𝜃′22

(2s)
, 𝜅𝜃′22

(2s)
 

Refer to Appendix C.4.4 for 

𝛾𝜃′11

(1s)
, 𝜒𝜃′11

(1s)
, 𝛾𝜃′12

(1s)
, 𝜒𝜃′12

(1s)
, 

𝛾𝜃′21

(1s)
, 𝜒𝜃′21

(1s)
, 𝛾𝜃′22

(1s)
, 𝜒𝜃′22

(1s)
, 

𝛾𝜃′11

(2s)
, 𝜒𝜃′11

(2s)
, 𝛾𝜃′12

(2s)
, 𝜒𝜃′12

(2s)
, 

𝛾𝜃′21

(2s)
, 𝜒𝜃′21

(2s)
, 𝛾𝜃′22

(2s)
, 𝜒𝜃′22

(2s)
, 

𝜐𝜃′11

(1s)
, 𝜇𝜃′11

(1s)
, 𝜐𝜃′12

(1s)
, 𝜇𝜃′12

(1s)
, 

𝜐𝜃′21

(2s)
, 𝜅𝜃′21

(2s)
, 𝜐𝜃′22

(2s)
, 𝜇𝜃′22

(2s)
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General 𝑙 and 𝑡 For 𝑃 > 0, 

( ) ( ) ( )( )
( ) ( )( )
( ) ( )( )
( ) ( )( )
( ) ( )( ) ( ) ( )( )

( )

11 11

12 12

21 21

22 22

11 11 12 12

1 1 1

1,local 1 t 1 t 11

1 1

1 t 1 t 12

1 1

1 t 1 t 21

1 1

1 t 1 t 22

1 1 1 1

t 11 t 12

2

1,local

sinh cosh

sinh cosh

sinh cosh

sinh cosh

M P l l

l l

l l

l l

l l

M

 

 

 

 

   

    

    

    

    

     

 

 

 

 

   

 = +


+ +

+ +

+ +

 − + − +


=
( ) ( )( )

( ) ( )( )
( ) ( )( )
( ) ( )( )
( ) ( )( ) ( ) ( )( )

11 11

12 12

21 21

22 22

21 21 22 22

2 2

2 t 2 t 11

2 2

2 t 2 t 12

2 2

2 t 2 t 21

2 2

2 t 2 t 22

2 2 2 2

t 21 t 22

sinh cosh

sinh cosh

sinh cosh

sinh cosh

P l l

l l

l l

l l

l l

 

 

 

 

   

    

    

    

    

     

 

 

 

 

   

 +


+ +

+ +

+ +

 − + − +


 

For 𝑃 < 0, 

( ) ( ) ( )( )
( ) ( )( )
( ) ( )( )
( ) ( )( )
( ) ( )( ) ( ) ( )( )

( ) ( )

11 11

12 12

21 21

22 22

11 11 12 12

11

1 1 1

1,local 1 t 1 t 11

1 1

1 t 1 t 12

1 1

1 t 1 t 21

1 1

1 t 1 t 22

1 1 1 1

t 11 t 12

2 2

1,local

sin cos

sin cos

sin cos

sin cos

s

M P l l

l l

l l

l l

l l

M P

 

 

 

 

   



    

    

    

    

     



 

 

 

 

   



 = +


+ +

+ +

+ +

 − + − +


=
( )( )

( ) ( )( )
( ) ( )( )
( ) ( )( )
( ) ( )( ) ( ) ( )( )

11

12 12

21 21

22 22

21 21 22 22

2

2 t 2 t 11

2 2

2 t 2 t 12

2 2

2 t 2 t 21

2 2

2 t 2 t 22

2 2 2 2

t 21 t 22

in cos

sin cos

sin cos

sin cos

l l

l l

l l

l l

l l



 

 

 

   

   

    

    

    

     



 

 

 

   

 +


+ +

+ +

+ +

 − + − +


 

1 3

1

2 3

2

3
2

3
2

P

Et

P

Et





=

=

 

Refer to Appendix C.4.1 for  

𝜙𝜃′11

(1)
, 𝜓𝜃′11

(1)
, 𝜙𝜃′12

(1)
, 𝜓𝜃′12

(1)
, 

𝜙𝜃′21

(1)
, 𝜓𝜃′21

(1)
, 𝜙𝜃′22

(1)
, 𝜓𝜃′22

(1)
, 

𝜙𝜃′11

(2)
, 𝜓𝜃′11

(2)
, 𝜙𝜃′12

(2)
, 𝜓𝜃′12

(2)
, 

𝜙𝜃′21

(2)
, 𝜓𝜃′21

(2)
, 𝜙𝜃′22

(2)
, 𝜓𝜃′22

(2)
, 

𝜁𝜃′11

(1)
, 𝜅𝜃′11

(1)
, 𝜁𝜃′12

(1)
, 𝜅𝜃′12

(1)
, 

𝜁𝜃′21

(2)
, 𝜅𝜃′21

(2)
, 𝜁𝜃′22

(2)
, 𝜅𝜃′22

(2)
. 

Refer to Appendix C.4.2 for 

𝛾𝜃′11

(1)
, 𝜒𝜃′11

(1)
, 𝛾𝜃′12

(1)
, 𝜒𝜃′12

(1)
, 

𝛾𝜃′21

(1)
, 𝜒𝜃′21

(1)
, 𝛾𝜃′22

(1)
, 𝜒𝜃′22

(1)
, 

𝛾𝜃′11

(2)
, 𝜒𝜃′11

(2)
, 𝛾𝜃′12

(2)
, 𝜒𝜃′12

(2)
, 

𝛾𝜃′21

(2)
, 𝜒𝜃′21

(2)
, 𝛾𝜃′22

(2)
, 𝜒𝜃′22

(2)
, 

𝜐𝜃′11

(1)
, 𝜇𝜃′11

(1)
, 𝜐𝜃′12

(1)
, 𝜇𝜃′12

(1)
, 

𝜐𝜃′21

(2)
, 𝜅𝜃′21

(2)
, 𝜐𝜃′22

(2)
, 𝜇𝜃′22

(2)
. 
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(b) Without consideration of the joint representation. 

The analytical solutions without consideration of the joint representation are provided in 

Table 5.11. 

Table 5.11 Formulae for calculating the bending moment due to local angular distortion in butt joints without considering 

joint representation under large deformation conditions. 

Type Bending moment 𝑀1,local
(𝑖)

 Remarks 

𝑙1 = 𝑙2 = 𝑙 

and 

𝑡1 = 𝑡2 = 𝑡 

For 𝑃 > 0, 

( ) ( )

( )

( )

1 2

1.local 1.local

2 2

21 123 3

2 2

22 113 3

cosh 4 sinh 6cosh 6

2 sinh

2 sinh 6cosh 6

2 sinh

M M

l l l l l
Pl

l l

l l l l

l l

    
 

 

   
 

 

=

 − + −
 = − − 

 

 − − + −
 + −  

  

 

For 𝑃 < 0, 

( ) ( )

( )

( )

1 2

1.local 1.local

2 2

21 123 3

2 2

22 113 3

cos 4 sin 6cos 6

2 sin

2 sin 6cos 6

2 sin

M M

l l l l l
Pl

l l

l l l l

l l

    
 

 

   
 

 

=

 − + + −
 = − − 

 

 + + −
 + −  

  

 

3

3
2

P

Et
 =  

General 𝑙 

and 𝑡 

For 𝑃 > 0, 

( ) ( ) ( ) ( )( ) ( ) ( )( )
( ) ( )

11 11 12 12

21 22

1 2 1 1 1 1

1,local 1,local 11 12

1 1

21 22

M M P    

 

     

   

   

 

  = = − + −


 + +


 

For 𝑃 < 0, 

( ) ( ) ( ) ( )( ) ( ) ( )( )
( ) ( )

11 11 12 12

21 22

1 2 1 1 1 1

1,local 1,local 11 12

1 1

21 22

M M P    

 

     

   

   

 

  = = − + −


 + +


 

1 3

1

2 3

2

3
2

3
2

P

Et

P

Et





=

=

 

Refer to Appendix C.4.1 

for  

𝜓𝜃′11

(1)
, 𝜓𝜃′12

(1)
, 𝜓𝜃′21

(1)
, 𝜓𝜃′22

(1)
, 

𝜁𝜃′11

(1)
, 𝜁𝜃′12

(1)
. 

Refer to Appendix C.4.2 

for 

𝜒𝜃′11

(1)
, 𝜒𝜃′12

(1)
, 𝜒𝜃′21

(1)
, 𝜒𝜃′22

(1)
, 

𝜐𝜃′11

(1)
, 𝜐𝜃′12

(1)
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5.3 Decomposition and Assembly for Stiffened Panels 

 

Fig. 5.5 A typical distortion profile in a stiffened panel. 

Fig. 5.5 illustrates a typical distortion shape in a stiffened panel between two stiffeners, 

which contains displaced stiffeners and distortion curvatures. The stiffener spacing is 𝑙, and the 

structure is under an axial loading 𝑃 as shown in Fig. 5.5. Positions A and B are the weld toe 

locations of interest on the top surface. Following the decomposition procedure, such distortion is 

divided into two basic distortion modes: global and local angular distortion. In this research, the 

stiffeners are assumed to be fixed; therefore, the global angular distortion does not cause any 

secondary bending, i.e., 𝑀global
𝑖 = 0 which leads to 

  distortion 1,local A,Bi iM M i=    (5.5) 

Since the thickness is uniform in the model, we can clearly define the stress concentration factor 

at Positions A and B based on the nominal stress 𝜎n = 𝑃/𝑡 as 

 
distortion

b

6 i
i M

k
Pt

= −   (5.6) 

Two types of local angular distortion profiles between stiffeners are studied in Sec. 2.3.1, 

including the buckling distortion mode in Fig. 5.6 and the cosine angular distortion mode in Fig. 

5.7. Both distortion modes are characterized by the maximum initial deflection, 𝛿0. The secondary 

bending induced stress concentration factor, 𝑘b, of these two distortion modes can be calculated 

using the equations in Table 5.12 and Table 5.13. Based on the symmetrical distortion profile and 
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boundary conditions, 𝑘b
A = 𝑘b

B = 𝑘b. With 𝑘b calculated using the formulae in Table 5.12 and 

Table 5.13, the secondary bending induced stress is eventually obtained by 

 b b nk =   (5.7) 

 

Fig. 5.6 Buckling distortion in stiffened panels: (a) Illustration; (b) analytical model. 

 

Fig. 5.7 Cosine angular distortion in stiffened panels: (a) Illustration; (b) analytical model. 

5.3.1 Small Deformation (Linear Geometry) Solutions 

In Table 5.12, 𝑘b provided are based on deformation condition, which is obtained by taking 

the limit of 𝑘b in Sec. 2.3.1 as 𝑃 → 0. 

Table 5.12 Formulae for calculating 𝒌𝐛 due to local angular distortion in stiffened panels under large deformation 

conditions. 

Type Stress concentration factor 𝑘b 

Buckling distortion 
0

b

15

4
k

t


=  

Cosine angular distortion 
0

b 3k
t


=  
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5.3.2 Large Deformation (Nonlinear Geometry) Solutions 

Tables provided in this section correspond to large deformation conditions where the 

analytical solution are derived based on nonlinear geometry. The derivation of the equations in 

this section is documented in Sec. 2.3.1. 

Table 5.13 Formulae for calculating 𝒌𝐛 due to local angular distortion in stiffened panels under large deformation 

conditions. 

Type Stress concentration factor 𝑘b Remarks 

Buckling distortion For 𝑃 > 0, 

( )
0

b 2

cosh cosh 1
82 218

sinh sinh
2 2

l l

k
l lt ll l

 


  

  
−  

= −  
  
   

 

For 𝑃 < 0, 

( )
0

b 2

cos cos 1
82 218

sin sin
2 2

l l

k
l lt ll l

 


  

  
−  

= − +  
  
   

 

3

3
2

P

Et
 =  

Cosine angular distortion For 𝑃 > 0, 

( )
0

b 2

cosh 1
144 4 2 1

sinh
2

l

k
lt ll






 
− 

= − − 
 
 

 

For 𝑃 < 0, 

( )
0

b 2

cos 1
144 4 2 1

sin
2

l

k
lt ll






 
− 

= − + 
 
 

 

3

3
2

P

Et
 =  

 

5.4 Distortion Data Analysis Procedures 

Based on Sec. 4.4, step by step distortion decomposition and assembly procedures for 

calculating distortions’ effect on welded joints in terms of distortion-induced bending stresses at 
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weld positions are summarized in this section. Fig. 5.9 and Fig. 5.11 show the flow chart of the 

procedure, and essential remarks and references with respect to each step are given. 

5.4.1 Distortion Effects on Butt Joints 

Suppose a set of 𝑛 measurement data points, {(𝑥𝑖, 𝑦𝑖)|𝑖 ∈ {1, … , 𝑛}}, of a distortion profile 

is available along the red line in (dots in Fig. 5.8) for a butt joint in the panel, and the panel is 

subject to a remote axial load 𝑃  in the direction shown in Fig. 5.8. Note that, based on the 

characteristic length scale discussed in Sec. 2.3.1 and Sec.2.4.2, for each side of the butt joint, we 

only need to consider the distortion within one stiffener spacing (𝑙) range from the butt weld if 

that side spans more than 𝑙 . Before treatment of the distortion data, structure dimensions 

𝑙1, 𝑙2, 𝑡1, 𝑡2, etc., and Position O (see Fig. 5.1) needs to be determined first. 

 

Fig. 5.8 Illustration of a distortion profile and measurements with respect to a butt weld in a panel structure. 
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Fig. 5.9 Flow chart of the procedure to calculate distortion-induced bending stress in a butt joint. 

1. Fit measurement data 

Perform a 3rd order polynomial fitting for each member.  

2. Distortion decomposition 

2a. Determine axial misalignment e 

Refer to Eqn. (4.20) and determine the axial misalignment e. Refer to Eqn. (4.21) for the 

axial misalignment mode shape 𝑣0,axial. Then, remove 𝑣0,axial from 𝑣0, so the remaining 

distortion is 𝑣0 − 𝑣0,axial.  

2b. Determine global angular distortion 𝛼G 

Refer to Eqn. (4.22) to determine the global angular distortion 𝛼G and Eqn. (4.24) for the 

global angular distortion shape 𝑣0,global. Then, remove 𝑣0,axial from 𝑣0, so the remaining 

distortion is 𝑣0 − 𝑣0,axial − 𝑣0,global.  

2c. Determine local angular distortion parameters 
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The local angular distortion shape is 𝑣0,local = 𝑣0 − 𝑣0,axial − 𝑣0,global . The four local 

angular distortion parameters (𝜃′11, 𝜃′12, 𝜃′21, 𝜃′22) in Fig. 5.4a are obtained via Eqn. (4.26). 

3. Calculate bending moment caused by each distortion mode 

Use Table 5.1 to select the proper table of formulae to calculate 𝑀axial
(𝑖)

, 𝑀global
(𝑖)

, 𝑀1,local
(𝑖)

 at 

the butt joint location. 

4. Assemble bending stress of each distortion mode 

Add up the bending moments in Step 3: 𝑀distortion
(𝑖)

= 𝑀axial
(𝑖)

+ 𝑀global
(𝑖)

+ 𝑀1,local
(𝑖)

. The 

bending stress is obtained via Eqns. (5.2) or (5.3). 

5.4.2 Distortion Effects on Stiffened Panels 

Suppose a set of 𝑛  measurement data, {(𝑥𝑖 , 𝑦𝑖)|𝑖 ∈ {1, … , 𝑛}} , of a distortion profile 

between two stiffeners is available along the red line in Fig. 5.10. The panel is subject to a remote 

axial load 𝑃 in the direction shown in Fig. 5.10. 

 

Fig. 5.10 Illustration of a distortion profile and measurements between two stiffeners. 
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Fig. 5.11 Flow chart of the procedure to calculate distortion-induced bending stress in stiffened panels. 

1. Distortion decomposition 

1a. Determine global angular distortion 𝜃G 

The global angular distortion 𝜃G can be immediately determined by 𝜃G = 𝛿s/𝑙, as shown 

in Fig. 5.5. The global angular distortion mode shape is 𝑣0,global = 𝛿s𝑥/𝑙. 

1b. Transform measurement data 

Transform measurement data by 𝑦𝑖 ← 𝑦𝑖 − 𝛿s𝑥𝑖/𝑙  to eliminate the global angular 

distortion component from the measurement. The transformed measurement data 

corresponds to the local angular distortion. 

2. Fit measurement data 

Perform curve-fitting on the transformed measurement data using the model for buckling 

distortion mode or cosine angular distortion mode (refer to Appendix B.2). The curve-

fitting will directly provide the parameter 𝛿0 for the mode selected. 
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3. Calculate secondary bending induced bending stress 

The global angular distortion 𝜃G  in a stiffened panel does not contribute to secondary 

bending, i.e., 𝜎b,global = 0. For the local angular distortion, use Table 5.12 for the small 

deformation condition or Table 5.13 for the large deformation condition to calculate 𝑘b at 

the fillet weld locations. The bending stress is calculated by𝜎b,local = 𝑘b𝜎n. 

4. Assemble bending stress of each distortion mode 

Since the global angular distortion does not introduce bending stress, the total secondary 

bending stress is 𝜎b,distortion = 𝜎b,local obtained in Step 3. 

5.5 Application Examples 

5.5.1 Butt Joints in Full-Scale Panels 

In this section, we will revisit the distortion profile of Specimen 334 provided in [41], as 

shown in Fig. 5.12. In this example, a set of 13 distortion measurement data based on the global 

coordinate is available for each side of the butt joint (see Fig. 5.13), denoted as ℳ1 and ℳ2. The 

two weld toe positions are given as 𝑥A = −8.43 mm and 𝑥B = −1.34 mm; the stiffener spacing 

is 𝑙 = 400 mm, and the thickness of the plate is 𝑡 = 4 mm. The Young’s modulus of the material 

is 𝐸 = 206000 MPa. The specimen is subject to a tensile cyclic loading with the nominal stress 

𝜎n varying from 0 to 171 MPa. The load direction is shown in Fig. 5.12. 
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Fig. 5.12 Illustration of full-scale fatigue test Specimen 334 and the distortion profile of interest. 

 

Fig. 5.13 Distortion measurements of Specimen 334 and fitted cubic polynomials. 

The x-coordinate of the center of the joint (i.e., Position O in Fig. 5.1) is obtained by 

 A B 4.88 mm
2

O

x x
x

+
= = −   (5.8) 

Then, we use the following equation to transform the x-coordinate of the measurement data points, 

so they follow the local coordinate 𝑥1 (for data points about Member 1) and 𝑥2 (for data points 

about Member 2) in Fig. 4.1. 

 
( ) ( ) 

( ) 
1, 1

2, 2

| ,

| ,

i i O i i

i i O i i

x x x l i i x y

x x x i i x y

= − −  

= −  
  (5.9) 

Then, we can perform third-order polynomial fitting with respect to each member, resulting in 
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( )

( )

1 7 3 5 2 3

0 1 1 1

2 7 3 4 2 2

0 2 2 2

1.3179 10 6.6871 10 8.5784 10 0.6457

1.8045 10 1.2938 10 2.2143 10 0.4814

v x x x

v x x x

− − −

− − −

=  −  +  −

= −  +  −  +
  (5.10) 

The fitting result is plotted in Fig. 5.13 based on the global coordinate, and a good agreement is 

achieved for both sides. 

With the initial distortion shape 𝑣0
(1)

 and 𝑣0
(2)

 ready, we can proceed to decompose the 

distortion. First, the axial misalignment can be calculated by 

 
( ) ( ) ( ) ( )2 1

0 0e 0 0.0393 mmv v l= − = −   (5.11) 

By subtracting 𝑣0,axial
(1)

= 0 from 𝑣0
(1)

 and 𝑣0,axial
(2)

= e from 𝑣0
(2)

, we get 

 

( ) ( )

( ) ( )

1 1 7 3 5 2 3

0 0,axial 1 1 1

2 2 7 3 4 2 2

0 0,axial 2 2 2

1.3179 10 6.6871 10 8.5784 10 0.6457

1.8045 10 1.2938 10 2.2143 10 0.5207

v v x x x

v v x x x

− − −

− − −

− =  −  +  −

− = −  +  −  +
  (5.12) 

Next, the global angular distortion 𝛼G is obtained by 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1

0 0,axial 0 0,axial 3

1G

2 2 2 2

0 0,axial 0 0,axial 3

2G

3

G 2G 1G

0 0
2.9158 10  rads

0 0
0.7356 10  rads

2.1802 10  rads

v l v l v v

l

v l v l v v

l





  

−

−

−

   − − −
   = = 

   − − −
   = = 

= − = − 

  (5.13) 

The shape functions for the global angular distortion, based on Eqn. (4.24), are 

 

( )

( )

1 3

0,global 1G 1 1

2 3

0,global 2G 2 1G 1 2

2.9158 10

0.7356 10 1.1663

v x x

v x l x



 

−

−

= = 

= + =  +
  (5.14) 

Further subtracting 𝑣0,global
(1)

 from 𝑣0
(1)

 and 𝑣0,global
(2)

 from 𝑣0
(2)

, we finally obtain the local angular 

distortion shape functions as 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1 1

0,local 0 0,axial 0,global

7 3 5 2 3

1 1 1

2 2 2 2

0,local 0 0,axial 0,global

7 3 4 2 2

2 2 2

1.3179 10 6.6871 10 5.6625 10 0.6457

1.8045 10 1.2938 10 2.2879 10 0.6457

v v v v

x x x

v v v v

x x x

− − −

− − −

= − −

=  −  +  −

= − −

= −  +  −  −

  (5.15) 

Based on Eqn. (5.15), we can compute the local angular distortion parameters as 

 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

1 3

11 0,local

1 3

12 0,local

2 3

21 0,local

2 3

22 0,local

0 5.6625 10  rads

15.423 10  rads

0 22.879 10  rads

5.9930 10  rads

v

v l

v

v l









−

−

−

−

 = = 

 = = 

 = = − 

 = = − 

  (5.16) 

With the axial misalignment e in Eqn. (5.11), global angular distortion 𝛼G in Eqn. (5.13), 

and the local angular distortion parameters in Eqn. (5.16), we can then calculate the secondary 

bending caused by each distortion mode using the tables provided in Sec. 5.2. Because the plate is 

thin (𝑡 = 4 mm), we need to consider the large deformation condition; and since the butt joint 

geometry size is small, the joint size effect can be neglected. Based on Table 5.1, we would use 

Table 5.3 to calculate 𝑀axial
(𝑖)

, Table 5.8 for 𝑀global
(𝑖)

, and Table 5.11 for 𝑀local
(𝑖)

. Furthermore, the 

structure in this example satisfies symmetric structure condition (𝑙 and 𝑡 are the same for both 

members); thus, we would refer to the row corresponding to the 𝑙1 = 𝑙2 = 𝑙  and 𝑡1 = 𝑡2 = 𝑡 

condition. 

In this example, Specimen 334 is subject to a tensile cyclic loading with the nominal stress 

𝜎n varying from 0 to 171 MPa. Since the minimum load is always 0, we only need to calculate the 

distortion induced bending stress when 𝜎n = 171 MPa, which corresponds to 𝑃 = 𝜎n𝑡 = 684 N. 

Based on Table 5.3,  

 ( ) ( )1 2

axial axial

e
13.441 N mm

2

P
M M= − = − =    (5.17) 



 128 

Based on Table 5.8, 

 
( ) ( )1 2 G
global global

cosh 1
29.880 N mm

2 sinh

P l l
M M

l l

 

 

− 
= = − =  

 
  (5.18) 

And based on Table 5.11, 

 

( ) ( )

( )

( )

1 2

1.local 1.local

2 2

21 123 3

2 2

22 113 3

cosh 4 sinh 6cosh 6

2 sinh

2 sinh 6cosh 6

2 sinh

323.80 N mm

M M

l l l l l
Pl

l l

l l l l

l l

    
 

 

   
 

 

=

 − + −
 = − − 

 

 − − + −
 + −  

  

= 

  (5.19) 

Using the equation for assembly given in Eqn. (5.1), we can obtain the total bending moment 

caused by distortion’s interaction with the axial load 𝑃 as  

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1 1

distortion axial global 1.local

2 2 2 2

distortion axial global 1.local

367.12 N mm

340.24 N mm

M M M M

M M M M

= + + = 

= + + = 
  (5.20) 

Obviously, the maximum bending stress will occur at Position B (see Fig. 5.1), and the bending 

stress at Position B can be finally calculated using Eqn. (5.2) as 

 

( )1

B distortion
b 2

6
137.67 MPa

M

t
 = =   (5.21) 

As such, we have obtained distortion-induced bending stress. We can then calculate the 

total structural stress at Position B by 

 
B B

s m b 171 137.67 308.67 MPa  = + = + =   (5.22) 

where 𝜎m = 𝜎n for axially loaded cases in this example. The above structural stress can then be 

used with the master S-N curve method for fatigue test data interpretation. 

5.5.2 Fillet Welds in Stiffened Panels 
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Fig. 5.14 Illustration of the distortion profile of interest between stiffeners in a panel. 

 

Fig. 5.15 Distortion profile of Specimen 143: (a) distortion measurements; (b) illustration showing the distortion profile 

and weld toe positions. 

In the following example, we will explore the distortion’s effect on fillet welds, which 

connect stiffeners to the plate. Imagine a full panel like the one in Fig. 2.14a, and the distortion 

between two stiffeners has the same profile as that of Specimen 143 in the transverse direction in 

[41]. Fig. 5.14 shows the distortion profile of interest. We also assume that the panel is subject to 

a remote in-plane cyclic fatigue loading, whose direction is also indicated in Fig. 5.14. The nominal 

stress in this example is assumed to be from 0 to 100 MPa. The stiffener spacing is 𝑙 = 400 mm, 

and the thickness of the plate is 𝑡 = 4 mm. The Young’s modulus of the material is 𝐸 = 206000 

MPa. 
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Suppose a set of 20 distortion measurement data, denoted as ℳ , is available for the 

aforementioned distortion profile representing the centerline of the plate, as shown in Fig. 5.15a. 

The root of the two stiffeners (see Fig. 5.15b) are located at (𝑥A, 𝑦A) = (0,0) and (𝑥B, 𝑦B) =

(400,0.8996).  

 

Fig. 5.16 Transformed distortion measurements and fitted curve. 

First, the global angular distortion is determined by 

 3s B A
G 2.2489 10  rads

y y

l l


 −−

= = =    (5.23) 

Then, we can transform the measurement data in ℳ using the following equation to remove the 

global angular distortion mode: 

 ,local Gi i iy y x= −   (5.24) 

Judging from the transformed measurement in Fig. 5.16, we can see that the local angular distortion 

shape is similar to the buckling distortion shape. As such, we would fit the transformed 

measurements using the model for the buckling distortion given in Eqn. (B.14). The resulting 𝛿0 

from the curve-fitting is  

 0 1.7268mm = −   (5.25) 

The curve fitted is plotted in Fig. 5.16, and a good agreement with the transformed measurement 

data is achieved. 
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Since the plate has a small thickness (𝑡 = 4 mm), we would consider the large deformation 

condition and refer to Table 5.13 to calculate the 𝑘b caused by the buckling distortion mode. Again, 

we only need to calculate the 𝑘b when 𝜎n = 100 MPa since the minimum 𝜎n is zero. As such, 𝑘b 

is calculated as 

 
( )

0
b 2

cosh cosh 1
82 218 0.8853

sinh sinh
2 2

l l

k
l lt ll l

 


  

  
−  

= − = −  
  
   

  (5.26) 

The negative 𝑘b means that the weld toe position (Position A in Fig. 5.15b) is under compression 

in this case. Since the global angular distortion does not contribute to the secondary bending, the 

bending stress caused by distortion at Position A under 𝜎n = 100 MPa is given as  

 
A

b b n 88.53 MPak = = −   (5.27) 

And the total structure stress at Position A is  

 
A A

s m b 11.47 MPa  = + =   (5.28) 

where 𝜎m = 𝜎n  for axial loaded condition. For illustration purpose, the bending stress at the 

bottom surface of the plate (Position A’ in Fig. 5.15b), which has the maximum bending stress in 

Section A-A, is also provided as 

 
A'

b b n 88.53 MPak = − =   (5.29) 

And the total structure stress at Position A’ is  

 
A' A'

b m b 100 88.53 188.53 MPa  = + = + =   (5.30) 

5.6 Chapter Conclusions 

In this chapter, we first summarized the analytical solutions developed in Chapter 2 to 

Chapter 4. By categorizing the analytical solutions based on the distortion mode, the small/large 
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deformation condition, and consideration of joint representation, we created 12 tables of analytical 

solution formulae for calculating distortion-induced bending stress. Within each table, specific 

solution forms corresponding to some common joint configurations are provided for illustrating 

their applications in typical engineering problems. An index table is also given as a reference for 

selecting the proper formulae based on the application scenario.  

Then, the distortion decomposition and assembly procedure developed in Sec. 4.4 is 

encapsulated, and step-by-step application procedures are developed for calculating bending stress 

with respect to distortions in butt-welded plates and stiffened panels. Flow charts for the previously 

developed procedures are also developed with essential remarks and references as guidance for 

their application in engineering problems.  

Finally, two comprehensive application examples are provided to illustrate how the 

procedures and analytical formulae developed in this research are used to solve real engineering 

problems. Based on measurement data documented in the literature, the first example illustrated 

the calculation of distortion-induced stress on a butt joint in a full-scale panel structure, and the 

second example showed how the secondary bending-induced stress caused by the distortion 

between stiffeners is computed. Both examples explained how the complicated distortion is 

decomposed into basic distortion modes and how the analytical solutions are finally get assembled 

to get the total secondary bending effect caused by complex distortions. 
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Chapter 6 

Conclusions 

6.1 Key Findings 

This dissertation presented work on the analytical treatment of the secondary bending 

effects caused by complex welding-induced distortions on the fatigue behavior of modern 

lightweight structures. Three elementary distortion modes observed in lightweight structures are 

studied individually based on strip beam theory under linear and nonlinear geometry, and closed-

form analytical solutions are presented for each mode. Furthermore, a comprehensive distortion 

decomposition-and-assembly procedure is developed to attain the final closed-form solution to a 

given complex distortion problem. These new solutions, in addition to offering valuable insights 

on the validity limits of the empirical equations used by the current Codes and Standards, offer a 

comprehensive suite of tools to engineers and researchers for a consistent and effective treatment 

of secondary stresses caused by distortion types unique to lightweight shipboard structures in 

performing fatigue evaluations. Major key findings are summarized as follows: 

(1) With the proposed notional load method, closed-form analytical formulae can be developed 

for analyzing secondary bending stresses caused by nonlinear interactions between 

distortion curvatures and remotely applied loads. 

(2) The notional load method requires only a few distortion measurements for evaluating 

fatigue performance of welded joints in lightweight structures, significantly reducing the 

needs for full-field distortion measurements and their mapping onto a structural FE model. 
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(3) By introducing a rigid body-based joint representation in the analytical model, the force 

equilibrium and geometry relationships about the joint can be established in such a way 

that enables the development of the closed-form analytical formulae for calculating 

secondary bending stress caused by axial and angular misalignments (also called global 

angular distortion) without curvature.  

(4) With the joint definition and the resulting analytical solutions, the interactions between 

axial and angular misalignment can be properly combined for determining specific 

secondary bending stress at each of all four weld toe positions. 

(5) These new closed-form solutions offer some significant insights not only on what types of 

distortions are more detrimental to fatigue performance than others but also on the validity 

limits of the empirical equations stipulated in current Codes and Standards. In addition, a 

set of parameterized limits can now be clearly stated on conditions when straightening 

effects should be considered. It is shown that the slenderness ratio l/t can be related to the 

severity of the nonlinear geometry effect: the higher the l/t becomes, the stronger the 

nonlinear effect can be seen. 

(6) Welding-induced distortions are shown to have significant effects on fatigue behaviors in 

welded thin-plate structures. Without appropriate treatment for secondary bending stresses, 

available test data cannot be correlated with existing data that support existing Codes and 

Standards. The analytical approach presented in this paper proves effective for interpreting 

fatigue test data obtained in welded thin plate components. 

(7) By introducing a consistent reference framework in the general distortion mode 

decomposition-and-assembly procedure, complex distortions regarding both butt-welded 

joints and fillet-welded joints in panel structures can be readily decomposed into various 
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elementary distortion modes with respect to which closed-form solutions have been 

developed in this dissertation or can be more easily developed. 

(8) Based on the distortion mode decomposition-and-assembly procedure, a workflow for 

evaluating the secondary bending stress effects caused by complex welding-induced 

distortions on the fatigue performance in lightweight structures can be established. To 

facilitate real-world engineering applications of the workflow, the closed-form formulae 

developed are presented in tabular form. 

6.2 Recommendations for Future Research Topics 

This work has shown the capability of using the notional load method with the strip beam 

theory based on Föppl-von Kármán equations in the analytical treatment of distortion effects. The 

analytical models, together with the decomposition-and-assembly procedure, have laid a concrete 

framework for studying secondary stresses caused by distortion types unique to lightweight 

shipboard structures in performing fatigue evaluations. Many possible future research topics can 

be generated based on this framework. These include: 

1. Additional basic distortion modes: as the awareness of the impact from distortions on the 

structural integrity of modern lightweight structures increases, more observations of 

welding-induced distortions will be available in the future. It is possible that we observe 

new distortion curvatures that could not be well represented by the distortion modes in this 

dissertation, and additional basic distortion modes could be established by extending the 

notional load method in this dissertation. 

2. Different boundary conditions: in this dissertation, only clamped boundary conditions are 

studied in the analytical model for each distortion mode, which can cover butt-welded 

joints and fillet-welded joints for connecting stiffeners or frames. There are other forms of 
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joints that correspond to different boundary conditions, such as fillet-welded cruciform 

joints. These boundary conditions need to be first defined in the structure context, and then 

corresponding analytical models can be established and solved.  

3. Plate boundary and three-dimensional distortion effect: the analytical treatment in this 

dissertation strictly follows the strip beam theory. Although this assumption is proven 

applicable in fatigue evaluation of panel structures, the effect of the plate boundary and 

three-dimensional distortion (i.e., distortion in the direction orthogonal to the loading 

direction) cannot be revealed and quantified by the analytical solutions in this dissertation. 

By studying the plate boundary and three-dimensional distortion effect, we could gain more 

insights on the validity boundary of our strip beam assumption and potential guidance on 

how our analytical solutions can be simplified. Furthermore, by considering a plate model, 

we should be able to model the buckling behavior of panel structures more precisely than 

using beam models. 

4. Distortion tolerance limits: in engineering applications, it is desired to have a properly 

defined distortion tolerance limit in Codes and Standards for cost-effectiveness. With the 

analytical solutions and the methodology leading to them presented in this dissertation, we 

could analyze the distortion effects mathematically and define a proper parametric 

description of distortion for establishing distortion tolerance limits. 
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Appendix A 

Detailed Solution Processes for Each Distortion Mode 

In this appendix, the detailed solution process for each distortion mode is provided, 

including the cosine angular distortion mode, the buckling distortion mode, the global angular 

distortion mode based on symmetric geometry, and the local angular distortion mode based on 

symmetric geometry. The treatment of boundary conflict between the linear beam model and the 

imperfect beam model is also presented in Appendix A.6. Finally, a simplification technique of 

the solution process is provided in Appendix A.7. 

A.1 Cosine Angular Distortion Mode 

Taking advantage of the symmetry condition at 𝑥 = 𝑙/2 , one can write the boundary 

conditions with respect to the governing equation given in Eqn. (2.3) corresponding to the linear 

beam without imperfections (see Fig. 2.3b), as (𝑉0 = −𝐸𝐼𝑣′′′0 is the shear force in the linear 

beam):  
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Then, the solution that satisfies the above boundary conditions can be found in classical Mechanics 

of Materials textbooks [90]. By setting 𝛿0 = 𝑣0(𝑙 2⁄ ), the corresponding notional load can be 

obtained as 𝐹0 = 192𝐸𝐼𝛿0 𝑙3⁄ . Next, by a close examination of the nonlinear beam model with the 
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initial imperfections prescribed by the now known 𝑣0(𝑥) in Fig. 2.3a, its boundary conditions are 

given as: 
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In (A.2), 𝑉1 represents the secondary shear force caused by axial load 𝑃 and has the following form 

 
( )

( )0 11
1 1 0 1 .

v vM
V P EIv P v v

x x

 +
  = − + = − + +

 
  (A.3) 

Considering the symmetry condition at 𝑥 = 𝑙/2, no constraint is applied on the translation degree 

of freedom and thus 𝑉1 should be zero as given in Eqn. (A.2). 

From Eqns. (A.1) and (A.2), it can be see that the boundary conditions in terms of both 

displacements and rotations are the same between the linear beam and the imperfect beam model. 

Then, Eqns. (A.1) and (A.2) are combined and form the boundary conditions for 𝑣(𝑥) shown in 

Fig. 2.3c (i.e., an equivalent nonlinear beam without initial imperfections):  
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The final nonlinear beam deflection 𝑣(𝑥) can be obtained by solving Eqn. (2.5) with the 

above boundary conditions given in Eqn. (A.4). By substituting 𝐹0 = 192𝐸𝐼𝛿0 𝑙3⁄  into Eqn. (A.4)

, 𝑣(𝑥) corresponding to the beam span from 𝑥 = 0 to 𝑥 = 𝑙/2 is given as: 
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and the expression for the beam span from 𝑥 = 𝑙/2 to 𝑥 = 𝑙 can be obtained by substituting 𝑥 with 

𝑙 − 𝑥 in Eqn. (A.5), as a result of symmetry with respect to 𝑥 = 𝑙/2. 

The distortion-induced secondary moment at the weld location 𝑀1(0) is found as: 
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The resulting 𝑘b at beam the top surface (𝑦 = 𝑡/2) at the weld location (𝑥 = 0) becomes: 
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which yields Eqn. (2.6).  

A.2 Buckling Distortion Mode 

The boundary conditions in Fig. 2.4b to obtain the buckling distortion shape on a linear 

beam can be written as: 
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By setting 𝛿0 = 𝑣0(𝑙 2⁄ ), the corresponding notional load can be obtained as 𝐹0 = 48𝐸𝐼𝛿0 𝑙3⁄ . 

Then, based on constraints on the nonlinear beam model with the initial imperfections prescribed 

by the now known 𝑣0(𝑥) in Fig. 2.3a, its boundary conditions are given as: 
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  (A.9) 

The second boundary condition of the imperfect beam in Eqn. (A.9) constrains the rotation 

while the linear beam model (represented by Eqn. (A.8)) does not. Such conflict needs to be solved 

before Eqn. (A.8) and (A.9) can be added together to form the nonlinear perfect beam problem in 

Fig. 2.4c. The rule to resolve such conflicts is given in Appendix A.6. In this case, the rotation 

degree of freedom at 𝑥 = 0 is constrained in the imperfect beam model but is free in the linear 

beam model. We can easily know from the solution to Eqn. (A.8) that the rotation at 𝑥 = 0 is 

3𝛿0/𝑙, so we replace the second boundary condition in Eqn. (A.8) with 𝑣′
0(0) = 3𝛿0/𝑙, and obtain 

a new set of boundary conditions for the linear beam, given as 
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It can be simply proved that using Eqn. (A.10) (together with 𝛿0 = 𝑣0(𝑙 2⁄ )) will yield the same 

initial distortion obtained by Eqn. (A.8). Then we can proceed to add Eqn. (A.10) and (A.9) 

together to form the nonlinear perfect beam problem shown in Fig. 2.4c as follows: 
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Again, by solving Eqn. (2.5) with the boundary conditions in Eqn. (A.11), we can obtain 

the total deflection 𝑣(𝑥) as 
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and the secondary bending moment caused by distortion can be obtained by  
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Finally, by substituting Eqn. (A.13) into Eqn. (A.7), we obtain the solution in Eqn. (2.8) 

A.3 Global Angular Distortion Mode Based on Symmetric Geometry 

This section contains the global and local angular distortion based on symmetric geometry 

assumption as described in Sec. 2.3.2. 

The secondary bending caused by global angular distortion can be obtained from the model 

in Fig. 2.7 directly without using notional loads. The boundary conditions in this model can be 

written as: 
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Solving Eqn. (2.5) with the above boundary conditions, we can get the total deflection as 
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and the secondary bending as 
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By substituting Eqn. (A.16) into Eqn. (A.7), we can obtain the solution in Eqn. (2.9). 

A.4 Local Angular Distortion Mode Based on Symmetric Geometry 

Given local angular distortion angles 𝜃′1, 𝜃′2 as shown in Fig. 2.8a, we can use a tilted 

cantilever beam and apply a notional force 𝐹0 and a notional moment 𝑚0 to achieve the distortion 

shape. The boundary conditions for the linear beam in Fig. 2.8b is 
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Together with the displacement at 𝑥 = 𝑙,  
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we can get the notional load in Eqn. (2.10). Then, we need to list the boundary conditions of the 

imperfect beam model in Fig. 2.8a.  
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In this example, the imperfect beam model has its translational degree of freedom 

constrained at 𝑥 = 0, and rotational degree of freedom constrained at 𝑥 = 0 and 𝑥 = 𝑙. The linear 

beam model has both translational and rotational degree of freedom constrained at 𝑥 = 0 only. As 

discussed in Appendix A.6, we would constrain the rotational degree of freedom at 𝑥 = 𝑙, giving 

us the following boundary conditions of the linear beam 
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Then, the boundary conditions for the nonlinear perfect beam problem would simply be  
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With Eqn. (A.21), we can solve Eqn. (2.5) and get 
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and the secondary bending moment as 
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  (A.23) 

which can be finally converted into stress concentration factor given in Eqn. (2.11) by substituting 

Eqn. (A.23) into Eqn. (A.7). 

A.5 Local Angular Distortion Mode Based on General Geometry 

Given local angular distortion angles 𝜃′11, 𝜃′12, 𝜃′21, 𝜃′22 as shown in Fig. 4.1, we can the 

notional load model in Sec. 4.3.1, and finally obtain the notional loads shown in Fig. 4.2b given 

by Eqn. (4.11). The solutions to Eqn. (4.5) for both members take the form of: 
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For 𝑃 > 0, 

 

( )

( )

1

1 1 1 1 1 1 1 1 1

2

2 2 2 2 2 2 2 2 2

sinh cosh

sinh cosh

v A x B x C x D

v A x B x C x D

 

 

= + + +

= + + +
  (A.24) 

For 𝑃 < 0, 
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where 𝐴𝑖 , 𝐵𝑖, 𝐶𝑖, 𝐷𝑖 are unknown coefficients. The boundary conditions of the model in Fig. 4.2b 

correspond to the clamped conditions:  
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The force equilibrium and geometry relationships are given in Eqns. (4.6) and (4.7). Note that 

based on von Kármán equation, 𝑀(𝑖) and 𝑉(𝑖) in Eqn. (4.6) are calculated by 
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  (A.27) 

With Eqns. (A.26), (4.6) and (4.7), unknown coefficients in Eqns. (A.24) and (A.25) can be 

solved, leading to Eqn. (4.12). 

A.6 Treatment of Constraint Conflicts 

We refer to the difference in the constrained degrees of freedom between the linear beam 

model and the imperfect beam model as constraint conflicts.  
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The principle for resolving such conflicts is to follow the constraint imposed on the 

imperfect beam. It can be achieved by using equivalent linear beam models. For example, the two 

linear beam problems in Fig. A.1 are equivalent since they yield same 𝑣0(𝑥). 

 

Fig. A.1 Two equivalent linear beam models. 

There are two possible scenarios: 1) If a degree of freedom is constrained in the imperfect 

beam model but not in the linear beam model, we shall replace the corresponding boundary 

condition with a prescribed displacement constraint. The value of the prescribed displacement is 

obtained from the solution to the original linear beam problem. 2) If a degree of freedom is free in 

the imperfect beam model but not in the linear beam model, we shall then release the constraint on 

that degree of freedom in the linear beam and apply the corresponding reaction force/moment at 

that location. The reaction force is calculated based on the solution to the original linear beam 

problem as well. One example for each scenario based on Fig. A.1a are given below. 

Example 1: Suppose the rotational degree of freedom at 𝑥 = 0 is free in the original linear beam 

model, and there is a notional moment acting on 𝑥 = 0 (as in Fig. A.1a), 

 ( )0 0,10M m=   (A.28) 
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The same degree of freedom is constrained in the imperfect beam model. The slope of 𝑣0 at 𝑥 = 0 

is calculated from the original linear beam as 𝜃𝑎1. In this case, we shall fixate the rotational degree 

of freedom at 𝑥 = 0 and replace the boundary condition stated by Eqn. (A.28) with a prescribed 

rotation boundary condition as follows: 

 ( )0 1.av l  =   (A.29) 

Example 2: Suppose the translational degree of freedom at 𝑥 = 𝑙 is constrained in the original 

linear beam model (see Fig. A.1a). The corresponding boundary condition is given as 

 ( )0 0.v l =   (A.30) 

And the reaction force corresponding to this degree of freedom is calculated based on the original 

linear beam model as 𝑉0(𝑙) = −
6𝐸𝐼

𝑙2
(𝜃𝑎1 + 𝜃𝑎2). Suppose in the imperfect beam, the translational 

degree of freedom at 𝑥 = 𝑙 is free. In this situation, we should release the constraint on this degree 

of freedom and replace it with a notional load 𝐹0,2 equal to the shear reaction force at 𝑥 = 𝑙 in the 

original linear beam. The corresponding boundary condition on the translational degree of freedom 

at 𝑥 = 𝑙 then becomes 

 ( ) ( )0 0,2 1 22

6
.a a

EI
V l F

l
 = − = − +   (A.31) 

A.7 Simplifications of the Solution Process 

Based on Eqn. (A.2) in Appendix A.1, Eqn. (A.9) in Appendix A.2, and Eqn. (A.19) above, 

we can see that the values in these boundary conditions are always zero (i.e., either no prescribed 

values for 𝑣1  or no force/moment applied on the imperfect beam), but provides important 

information on what degree of freedom is constrained in the imperfect beam. Therefore, we can 

skip listing out the complete boundary condition equations on the imperfect beam but just note the 

constraint conditions on each degree of freedom. After applying the rule mentioned in Appendix 
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A.6 to constrain/release certain degrees of freedom on the linear beam, we can then acquire the 

boundary conditions for the nonlinear perfect beam problem by simply replacing 𝑣0, 𝑉0, 𝑀0 with 

𝑣, 𝑉, 𝑀, respectively. For example, after we obtain Eqn.(A.20), we can directly write Eqn. (A.21) 

by replacing 𝑣0 with 𝑣, and 𝑉0 with 𝑉. 
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Appendix B 

Distortion Measurement Data Process Procedure 

In this appendix, a systematic distortion measurement data process procedure for notional 

load modeling of the initial distortion is presented. Using a cubic Hermite spline model and 

ordinary least squares method, we can obtain the distortion shape and its corresponding notional 

load model in a mathematical way. 

B.1 Distortion Measurements 

In the notional load method, the characteristics required to describe the distortion shape are 

the displacement and rotations at where notional loads are applied. However, in reality these 

parameters are hard to measure at those exact locations: for translational displacement, the surface 

condition of the plate will greatly affect the measurement, especially around welded joints; for 

rotation angle, there is no direct way to measure the local angular rotation of a plate with distortion 

curvature.  

 

Fig. B.1 Distortion displacement measurement using LIDAR [72]. 
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The most common distortion measurement used in literature is the displacement 

measurement using LIDAR or similar technology, as shown in Fig. B.1. The measurement at a 

sampling point is its distance to a prescribed reference plane. In this research, we only need to 

consider the distortion profile along a cross-section cut of interest, say A-A in Fig. B.1, so only 

the distortion measurements along A-A will be extracted and processed. 

B.2 Curve Fitting using Cubic Hermite Spline and Ordinary Least Squares 

B.2.1 Cubic Hermite Spline 

 

Fig. B.2 Illustration of fitting results: (a) underfitting; (b) overfitting; (c) good fitting with no overfitting or underfitting. 

Having the distortion displacement measurements, the best way to obtain the displacement 

and rotation sought at notional load application location is to perform a curve fitting of the 

measurements. Considering the application in this research, the fitted curve shall satisfy the 

following requirements: 

• No overfitting or underfitting: higher-order fluctuations (e.g. surface conditions) in the 

measurements should be smoothed out, and general distortion shape should be captured, 

see Fig. B.2. 

• Compatible with notional load method, i.e., the fitted curve can be recreated by applying 

certain notional loads onto a linear beam. 
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The deflection of a linear beam, which is governed by Eqn. (2.3), is a piecewise cubic 

polynomial and is continuous in itself and its first derivative (not necessary for second and third 

derivative because of applied concentrated force/moment). Therefore, the distortion shape 

modeled by the notional load method is, by definition in [91], a cubic Hermite spline (all notional 

loads applied on knots of the spline). Furthermore, the spline fitting has the advantage of 

smoothness and less local influence [92], satisfying the first requirement listed above. Thus, the 

best model to be used for fitting the distortion data is the cubic Hermite spline, which is also called 

a C1-spline in mathematics. 

 

Fig. B.3 Illustration of a spline with k+1 nodes. 

Fig. B.3 shows a spline with 𝑘 + 1 knots. The x-coordinate of the knot 𝑖 is 𝜂𝑖 , and the 

displacement and rotation at knot 𝑖 is 𝑣0,𝑖 and 𝑣′0,𝑖, respectively. The expression for the piece of 

spline between knot 𝑖 and knot 𝑖 + 1, or the 𝑖-th interval, Ψ0,𝑖(𝜉𝑖) is given as 
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  (B.1) 

where 𝜉𝑖 = 𝑥 − 𝜂𝑖 is the local 𝑥-coordinate of the 𝑖-th interval as shown in Fig. B.3; 𝑙𝑖 = 𝜂𝑖+1 −

𝜂𝑖 is the length of 𝑖-th interval. The non-zero expression in Eqn. (B.1) can also be written in the 

following form 
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And the entire spline can be written in the following form: 

 ( ) ( )
 
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1,2, ,

i i

i k

x x 
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 =  −   (B.3) 

Suppose that we have a set of 𝑛 distortion measurement points, {(𝑥𝑗 , 𝑦𝑗)|𝑗 ∈ {1,2, … , 𝑛}}, 

with respect to the same global 𝑥 - 𝑦  coordinates in Fig. B.3 (an example of a distortion 

measurement data point is shown in Fig. B.4) and we decide to fit them using the C1-spline model, 

we need to first provide the number of knots (𝑘 + 1) and the 𝑥-coordinates (i.e., {𝜂1, 𝜂2 … , 𝜂𝑘+1}) 

of each knot as the basic characteristics of the spline. They will determine the flexibility of the 

spline. Regarding the application in this research, which is curve fitting for the purpose of notional 

load modeling, usually a 2- or 3-node spline with evenly distributed knots is enough, or the 

problem would become too big. Also, if too many nodes are used, it would cause overfitting 

problem as well. 

B.2.2 Fitting using Ordinary Least Squares 

Assume that we would like to fit a (𝑘 + 1) -node C1-spline from the given set of 𝑛 

distortion measurements (called observations in statistics), we can use the ordinary least squares 

(OLS) method from statistics. Despite that Ψ0(𝑥) is a piecewise function, it is a linear combination 

of unknown parameters and therefore the OLS is applicable. The regression model for the (𝑘 +

1)-node C1-spline based on 𝑛 measurements would be  
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 ( )0=  +y x ε   (B.4) 

where 𝐲 = (𝑦1, 𝑦2, … , 𝑦𝑛)T  is the vector of observed distortion 𝑦𝑗 , 𝑗 ∈ {1,2, … , 𝑛}  (dependent 

variable), 𝐱 = (𝑥1, 𝑥2, … , 𝑥𝑛)T is the vector of 𝑥-coordinate 𝑥𝑗 , 𝑗 ∈ {1,2, … , 𝑛} of each observation 

(independent variable), and 𝛆 = (𝜀1, 𝜀2, … , 𝜀𝑛)T is the error vector. The unknown parameters in 

this model are 𝑣0,𝑖 and 𝑣′0,𝑖 at each node, which will be obtained through the OLS process. Since 

we use a (𝑘 + 1)-node spline for the regression model, we would have a total of 2(𝑘 + 1) 

unknown parameters. We can write these unknown parameters in the following vector form, 

denoted by 𝛃: 
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To use the ordinary least squares, we need to write the model in the following form: 

 = +y Xβ ε   (B.6) 

where 𝐗 is the regressor matrix. Each row in 𝐗 corresponds to an observation. In the (𝑘 + 1)-node 

C1-spline regression, each row in 𝐗 depend on which interval the corresponding observation falls 

into. We can start from a row in 𝐗 , for example, row 𝑗 , which corresponds to distortion 

measurement data point (𝑥𝑗 , 𝑦𝑗). We assume that 𝑥𝑗 falls between knot 𝑖 and knot 𝑖 + 1 (or falls 

in the 𝑖-th interval), as shown in Fig. B.4, i.e., 𝑥𝑗 ∈ [𝜂𝑖 , 𝜂𝑖+1). Based on Eqn. (B.2) and Eqn. (B.3)

, we can obtain Ψ0(𝑥𝑗) as 
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  (B.7) 

 

Fig. B.4 Illustration of a distortion measurement data point. 

In the row vector, the terms related to the 𝑖-th interval are those given in Eqn. (B.2), while the rest 

terms are all zero. We can write Ψ0(𝑥𝑗) in this form for every observation. The only exception 

happens when 𝑥𝑗 equals to the 𝑥-coordinate of the last knot, i.e., 𝑥𝑗=𝜂𝑘+1. In this case, we consider 

this data point falls in the 𝑘-th interval because there is no (𝑘 + 1)-th interval. We can give out 

the general form of the row vector in Eqn. (B.7) for each data point, denoted as 𝐱𝑗: 
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where 01×2(𝑖−1) represents a 1 × 2(𝑖 − 1) zero row vector. With Eqn. (B.8), we can obtain 𝐱𝑗 for 

each observation and the regressor matrix 𝐗 can be written as 
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Finally, the best estimate of unknown parameters 𝛃 is given by [92] 

 ( )
1ˆ −

=β X X X y   (B.10) 

which gives us the fitted translation and rotation values at each knot. 

B.2.3 Treatment of Restrained Degrees of Freedom 

If a degree of freedom (one of the paremeters in 𝛃) is prescribed in the curve fitting, the 

terms in 𝐲, 𝐱𝑗, and 𝛃 corresponds to or affected by that degree of freedom needs to be modified. 

For example, we prescribe the rotation at knot 𝑖 by 𝑣′0,𝑖 = 𝜃. The first modification would be to 

remove 𝑣′0,𝑖 from 𝛃 since it is now a known parameter. The new vector of unknown parameters, 

𝛃′, is 
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Then, for any measurement whose corresponding 𝑥-coordinate falls in the intervals (one or two, 

depending on if the restrained degree of freedom is on the ends or not) associated with this degree 

of freedom (i.e., 𝑥𝑗 ∈ [𝜂𝑖−1, 𝜂𝑖+1)) , the corresponding rows in the 𝐲 vector would become 
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Finally, we remove the column corresponding to the restrained degree of freedom from the 

regressor matrix 𝐗 and obtain a new regressor matrix 𝐗𝐫. In this case, we would remove the 2𝑖-th 

column which corresponds to 𝑣′0,𝑖. We can then plug the updated 𝐲′, 𝐗𝐫, into Eqn.(B.10) to obtain 

the best estimate (𝛃̂′) for the updated 𝛃′. 

B.2.4 Calculate Notional Load From Curve Fitting Result 

As discussed previously, the cubic Hermite spline is the deflection shape of a linear beam 

subject to concentrated force and moments applied at the spline’s knot positions. With the fitted 

spline, the next objective would be to calculate value of the notional loads. 

The basic way would be taking derivatives of the spline and derive results with respect to 

each knot based on beam theory to obtain the notional loads on the knots. Here, we present an 

alternative way for calculating the notional loads: by taking advantage of the vector 𝛃̂ and use the 

matrix-displacement method to calculate the notional loads. From the matrix-displacement 

method, we know the following equation [93] 

 =Kδ F   (B.13) 

where 𝐊 is the stiffness matrix of the structure, 𝛅 is the nodal displacement vector, and 𝐅 is the 

vector of force applied on the nodes. We can immediately see that, with a proper stiffness matrix 

𝐊, we can directly substitute 𝛅 with 𝛃̂ from the curve fitting result and obtain the force vector 𝐅, 

which would be the notional load sought. The stiffness 𝐊 for the notional load model can be easily 

obtained with a straight horizontal beam bending model with 𝑘 + 1  nodes located at 𝑥 =

𝜂1, 𝜂2, … , 𝜂𝑘+1 (corresponds to knots of the spline). The formation of the stiffness matrix is classic 

and can be found in [93]. For analytical approaches in this research, it is preferred that the stiffness 

matrix is kept symbolic during the calculation. 

B.3 Curve Fitting Models for Distortions in Stiffened Panels 
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The local angular distortion in stiffened panels studied in Sec. 2.3.1 can be fitted using a 

cubic Hermite spline with three knots. However, based on the simple notional load models used 

for the buckling distortion mode and the cosine angular distortion mode, we can directly write 

down the expression of the model to be used for curve fitting these two distortion modes. For the 

buckling distortion mode, the curve fitting model is 
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where 𝛿0 is the only parameter to be determined. For the cosine angular distortion mode, the model 

is 

 
( ) ( )

3 2

0 3 2

3 2

0 3 2

16 12 0
2

16 12
2

0 otherwise

x x l
x

l l

l x l x l
y x l

l l





  
− +    
 


 − −
− +   
   




  (B.15) 

where 𝛿0 is the only parameter to be determined. These two models represents specific subsets of 

cubic Hermite splines. 
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Appendix C 

Detailed Expression of the Analytical Solutions 

C.1 Auxiliary Variables 

The following two auxiliary variables, Φt and Φc, are used to simplify the expression 

corresponding to tensile axial loading cases and compressive axial loading cases. 

( ) ( )

( ) ( )

2 2

t 1 2 1 2 1 1 2 2 1 2 1 2 1 1 2 2

2 2

1 2 1 1 2 2 1 2 1 1 2 2

sinh cosh cosh sinh

2 cosh cosh 1 sinh sinh

l l l l l l l l

l l l l

       

       

 = + + +

− − − +
  (C.1) 

( ) ( )

( ) ( )

2 2

1 2 1 2 1 1 2 2 1 2 1 2 1 1 2 2

2 2

1 2 1 1 2 2 1 2 1 1 2 2

c sin cos cos sin

2 cos cos sin s1 in

l l l l l l l l

l l l l

       

       

+

+ − +

 = + +

−
  (C.2) 

where 

 i

i

P

EI
 =   (C.3) 

C.2 Axial Misalignment 

C.2.1 Coefficients for 𝑷 > 𝟎 

 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

1 1 1

1 e 1 1 e 1 1

2 2 2

2 e 2 2 e 2 2

e sinh cosh

e sinh cosh

M x P x x

M x P x x

   

   

  = +

  = +
  (C.4) 

where 

( ) ( ) ( )

( ) 

1 2

e 1 2 1 1 2 2 2 1 1 2 2

t

2

1 2 1 2 1 1 2 2

1
sinh cosh 1 cosh 1 sinh

sinh sinh

l l l l

l l l l

       

   

= − − + −


− +

  (C.5) 
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( ) ( )

( )( )

1 2 2

e 1 2 1 2 1 1 2 2 2 1 1 2 2

t

1 2 1 1 2 2

1
cosh sinh sinh sinh

cosh 1 cosh 1

l l l l l l

l l

       

   
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

− + −

  (C.6) 

( ) ( ) ( )

( ) 

2 2

e 1 2 1 1 2 2 1 1 1 2 2

t

2

1 2 1 2 1 1 2 2

1
cosh 1 sinh sinh cosh 1

sinh sinh

l l l l

l l l l

       

   
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
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  (C.7) 

( ) ( )

( )( )

2 2 2

e 1 2 1 2 1 1 2 2 1 1 1 2 2

t

1 2 1 1 2 2

1
sinh cosh sinh sinh

cosh 1 cosh 1
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l l

       

   

= − − + +


+ − +

  (C.8) 

C.2.2 Coefficients for 𝑷 < 𝟎 

 
( ) ( ) ( )( )

( ) ( ) ( )( )

1 1

1 1 e 1 1 e 1 1

2 2

2 2 e 2 2 e 2 2

e sin cos

e sin cos

M x P x x

M x P x x

   

   

  = +

  = +
  (C.9) 

where 

( ) ( ) ( )

( ) 

2

1 2 1 1 2 2 2 1

1

e

c

2

1 2 2

2

1 2 1 1 1 2 2

sin cos cos s
1

1 in

sin si

1

n
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l l ll

      

   
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
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  (C.10) 
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( )( )
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1

e

c
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
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−

+
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
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  (C.11) 
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( ) 

2

1 2 1 1 2 2 1 1 1 2 2

2

1 2

2

e

1 2 1 2

c

1 2

cos sin sin cos

sin si

1
1 1

n
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      

   

 = − −


+−

−− −
  (C.12) 
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( )( )

2 2

1 2 1 2 1 1 2 2 1 1 1 2 2

1 2 1 1 2

c

2

2

e sin cos sin si
1

1

n

cos 1cos

l l l l l l

l l

      

   

 = − +


−

− − +

+
  (C.13) 

C.3 Global Angular Distortion/Angular Misalignment 
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C.3.1 Coefficients for 𝑷 > 𝟎 

 

( ) ( ) ( )( )
( ) ( ) ( )( )

G G

G G

1 1 1

G 1 1 1 1

2 2 2

G 2 2 2 2

sinh cosh

sinh cosh

M P x x
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 

 

    

    
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  (C.14) 

where 

( ) ( )

( )( )

G

1 2

1 2 1 2 1 1 2 2 1 2 1 1 1 2 2 2 2

t

1 1 1 2 2 2 1 1 2 2

1
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
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  (C.15) 

( ) ( ) ( )

( ) ( ) 

G

1
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t

2 1 1 2 2 1 1 1 2 2

1
cosh cosh 1 cosh 1 cosh

sinh cosh 1 cosh 1 sinh

l l l l l l

l l l l

        

     
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
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  (C.16) 
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( )( )
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t
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cosh sinh sinh sinh

sinh sinh cosh 1 cosh 1

l l l l l l l l

l l l l
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     
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
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  (C.17) 

( ) ( ) ( )

( ) ( ) 

G

2

1 2 1 1 1 2 2 1 2 2 1 1 2 2

t

2 1 1 2 2 1 1 1 2 2

1
cosh cosh 1 cosh 1 cosh

sinh cosh 1 cosh 1 sinh

l l l l l l

l l l l

        

     

= − − + −


− − − −

  (C.18) 

C.3.2 Coefficients for 𝑷 < 𝟎 

 
( ) ( ) ( )( )

( ) ( ) ( )( )
G G

G G

1 1

1 1 G 1 1 1 1

2 2

2 2 G 2 2 2 2

sin cos

sin cos

M x P x x

M x P x x

 

 

    

    

  = +

  = +
  (C.19) 

where 

( ) ( )

( )( )
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1 2 1 2 1 1 2 2 1 2 1 1 1 2 2 2 2

1 1 1 2 2 2 1 1 2

1

2

c
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1
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l l l l l l l l

l l l l
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

 
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+
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  (C.20) 
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( ) ( ) ( )

( ) ( ) 

G 1 2 1 1 1 2 2 1 2 2 1 1 2 2

2 1 1 2 2 1 1 1

1

2 2

c

cos cos cos co
1

s

sin cos cos sin

1 1

1 1

l l l l l l

l l l l

        

     
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−+−

− −

+

   (C.21) 

( ) ( )

( )( )

2

1 2 1 2 1 1 2 2 1 2 2 2 2 1 1 1 1

2 1 1 2 2 1 1 1 2 2

2

c

cos sin sin sin

sin sin cos cos

1

1 1

G
l l l l l l l l

l l l l

         
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−

+

+

  (C.22) 
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( ) ( ) 
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2

c
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1
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1 i1 n

G
l l l l l l
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     
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−+−
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+
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C.4 Local Angular Distortion 

C.4.1 Coefficients for 𝑷 > 𝟎 

 

( ) ( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )
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  (C.24) 

where 

( ) ( ) ( )

( ) ( )
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t 1 1

2 2 2 2 2

2 1 1 2 2 1 2 1 1 1 2 1 1 1 2 1 2 2 2 2 1 1 1 1

2

2 1

1
2 3 sinh sinh 2 2 3 sinh cosh 2 cosh sinh
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
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   (C.26) 
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By taking advantage of  

 2

i

i

P

EI
 =   (C.41) 

we can obtain the following coefficients based on Eqn. (4.9) 
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C.4.2 Coefficients for 𝑷 < 𝟎 
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C.4.3 Coefficients for Symmetric Structure, 𝑷 > 𝟎 
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Appendix D 

Evaluation of magnesium weldment fatigue data using traction and notch stress methods 

This appendix contains an investigation of a set of magnesium weldment fatigue test data 

in literature using finite element-based methods. Within the study, the secondary bending caused 

by axial misalignments is considered using the analytical solution developed in this dissertation, 

illustrating how the distortion effect can be included without explicitly FE modeling by using these 

analytical solutions. 

D.1 Appendix Introduction 

Magnesium alloys have recently gained increasing attention for achieving structural 

lightweighting in the transportation systems, such as magnesium-intensive autobody structures, 

due to their high strength-to-weight ratio, good manufacturability (e.g., weldability), and 

reasonable raw material cost [94–99]. One of the important design criteria in adopting magnesium-

intensive structures is to ensure adequate fatigue capacity of welded joints subjected to time-

varying or cyclic loading conditions in service. 

Unlike conventional structural materials such as structural steels and mainstream 

aluminum alloys for which well-recognized fatigue evaluation procedures are available, e.g. 

[24,74,100], built upon a large amount of experimental test data over decades, magnesium 

weldment test data have only become available more recently. These include experimental testing 

efforts by Tsujikawa et al. [94], Jordon et al. [101], Chowdhury et al. [102] and Shen et al. [103] 

and more recently by Karakas et al. [104]. These investigations have shown that fatigue behaviors 

of welded joints are rather different from those in non-welded components in a similar way to 
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those in other conventional structural metal weldments [21]. However, in terms of how to 

effectively generalize these magnesium weldment test data for use in a structural CAE model for 

fatigue evaluation, there seems no general consensus to date. There exist numerous methods that 

are being considered. These are nominal stress method [24], hot-spot stress method (e.g., [26]), 

local notch stress method [27–29,104], traction structural stress [30–32] and structural strain 

method [105,106], including crack initiation life based theory of critical distance (TCD) and 

averaged strain energy density (A-SED) methods [107–109]. These methods all aim to determine 

a relevant stress or strain parameter that can be shown capable of correlating available test data 

from various joint geometries into a narrow scatter so that such a parameter can be used in CAE 

based fatigue evaluation of complex structures. Since this paper is focused on applications in 

dealing with complex joint types, the mesh-insensitive traction stress and equivalent notch stress 

methods are selected for further evaluation of magnesium weldment data. The former offers the 

simplicity for modeling a complex structure without explicitly representing weld toe or weld root 

notch geometry while the latter can be used as a reference solution for comparison purpose, in 

which notch geometry is modeled in detail. 

One particular set of magnesium weldment test data of interest in this regard is those 

recently published by Sonsino et al. [110] and Karakas et al. [104] on fatigue behaviors of three 

different joint types [104,107,111,112] for which an equivalent notch stress (defined with 1 mm 

notch radius) method was used for correlating the test data and showed promising results. As a 

continuation of that study, it would be useful to examine if the detailed modeling requirements, 

e.g., imposing a 1 mm notch radius, can be relaxed for achieving a similar data correlation. This 

is important in that a complex CAE structural model may not be capable of incorporating such a 

small notch radius in practice. For this purpose, the traction-based structural stress method will be 
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considered here for investigating how the same fatigue test data can be effectively correlated and 

compared with the equivalent notch stress method used in [104]. Furthermore, another question to 

be addressed is if the structural strain based master E-N curve method [106] is applicable for 

representing the test data collected from magnesium weldments. If confirmed, scatter bands 

obtained from other structural metal weldments, e.g., structural steel and aluminum alloys, can be 

used as an approximation for determining confidence levels in structural fatigue evaluation before 

a large amount of data become available for magnesium weldments.  

With the above discussions, the aim of this work to examine if the traction stress method 

is effective in correlating magnesium weldment fatigue test data and how such a correlation can 

be compared with other structural joint data such as aluminum alloy and steel weldments. In this 

paper, we start with a brief description of the fatigue test data obtained on magnesium weldments 

by Karakas [104] for the purpose of providing essential information to be used for performing 

further analysis by using the traction structural stress method. Due to the simple joint types and 

loading mode involved, a two-dimensional (2D) traction stress analysis is then adopted for 

computing traction-based stress concentration factors for each of the three joint types. Next, a 

traction stress-based fatigue parameter is introduced by adapting an earlier development on 

fracture mechanics-based treatment of applied stress ratio. Finally, the proposed fatigue parameter 

is used to demonstrate how all the magnesium weld fatigue data from [104] can be effectively 

correlated into a narrow band. Furthermore, this study shows that the treatment of the applied stress 

ratio can be used in conjunction with the effective notch stress method used by Karakas [104] to 

achieve a similar beneficial effect on data correlation. The implications from weld toe and weld 

throat failure modes will also be discussed in light of the key findings resulted from this 

investigation.  
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D.2 Fatigue Test Data 

 

Fig. D.1 Illustration of three joint types tested [111]: (a) full penetration butt joint; (b) partial penetration butt joint; (c) 

T-joint. 

Fatigue tests on magnesium alloy weldments were carried out by Karakas et al., as reported 

in [104]. Three typical types of joints were investigated: full penetration butt joint, partial 

penetration butt joint and T-joint, as shown in Fig. D.1. Detailed specimen dimensions including 

local joint profiles are also shown in Fig. D.1. The full penetration butt joint, and T-joint specimens 

were manufactured using a MIG welding process, and the partial penetration butt joint specimens 

were made using a TIG welding process. The base material is AZ31 (ISO-MgAl3Zn1) in an 

extruded plate form, and the filler wire is AZ61A type. The thickness of the plate is 5.3 mm. Three 
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different load ratios were used in fatigue testing, i.e., fully-reversed loading (𝑅 = −1), pulsating 

loading (𝑅 = 0), and high tensile mean loading (𝑅 = 0.5). All tests were performed under load-

controlled conditions with frequency 𝑓 = 15~30Hz at room temperature. Further details of the 

tests and specimen details can be found in [104,107,111]. 

Fig. D.2 shows the typical failure modes associated with three types of test specimens. The 

failure mode in all full penetration butt joint and T-joint specimens is weld toe cracking, and the 

failure mode for partial penetration butt joint specimens is weld root or weld throat cracking. 

 

Fig. D.2 Failure modes of the tested specimens [104]: (a) full penetration butt joint; (b) partial penetration butt joint; (c) 

T-joints. 

All test data are summarized in Fig. D.3 using nominal stress range, ∆𝜎𝑛, calculated based 

on base plate cross-section area. As a result, it is not surprising that partial penetration butt joint 

data (weld root failure mode) are situated at the lower side of the plot than other weld toe cracking 

data. Another trend observable in Fig. D.3 is that the applied stress ratio 𝑅  seems to have a 

significant effect, particularly at 𝑅 = −1, regardless of joint types. As expected, the test data from 

three joint types to a large extent form their own scatter bands, which necessitates the weld 

classification approach [24]. For the sake of easy reference in later sections, a standard deviation 
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(STD) of 0.469 represents a scatter measure for all test data in Fig. D.3. Karakas et al. [104] 

performed their analysis of the test data in Fig. D.3 using a local equivalent notch stress method 

with the fictitious notch radius of 𝑟f = 1.0 mm and the results are shown in Fig. D.4. It is worth 

pointing out that the use of the local equivalent notch stress range parameter reduces the scatter 

band from 0.469 to 0.368 in terms of STD. 

 

Fig. D.3 All test data obtained from three joint types plotted using plate nominal stress range 

 

Fig. D.4 All test data obtained from three joint types plotted using local equivalent notch stress range with 𝒓𝐟 = 𝟏 mm 

[104] 

D.3 Data Analysis using Traction Stress Method 
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D.3.1 Traction Structural Stress Determination 

The traction structural stress method was originally developed by Dong et al. [30–32] and 

has been used in a number of recent studies [36,37] for dealing with both weld toe and weld root 

cracking fatigue failure modes. In this study, only 2D structural stress definition and 

implementation are needed, given the three joint configurations and simple cyclic tension loading 

conditions shown in Fig. D.1. Further details of the traction stress method and its 3D 

implementation for complex structures can be found in some previous publications, e.g., [30]. 

 

Fig. D.5 Traction structural stress method: (a) traction structural stress definition; (b) implementation in 2D finite 

element analysis 

The normal traction structural stress 𝜎𝑠 is defined as the sum of the membrane and bending 

traction stress components, 𝜎𝑚 and 𝜎𝑏, as defined in Fig. D.5a. 

 s m b  = +   (D.1) 

In 2D analysis, we first create a 2D finite element (FE) model, as shown in Fig. D.5b; then, we 

define the hypothetical crack path of interest, for example, section A-A in Fig. D.5b. Next, we 

identify the element group for nodal force extraction, which includes all elements next to the 

hypothetical crack path (A-A) on one side, shown as highlighted elements in Fig. D.5b. We define 

a node set N = {i | Node i being on the crack path A-A} which contains the nodes used for nodal 
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force extraction. Finally, we extract the nodal forces from nodes in the set N defined earlier, and 

𝜎𝑚 and 𝜎𝑏 can be calculated from the finite element results by 
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where 𝑥′, 𝑦′ are the local coordinate system with 𝑥′ being the normal direction of the crack path; 

𝑡′ is the length of the crack path A-A, 𝐹𝑥′𝑖 is the total nodal force in 𝑥′-direction on node i of the 

output element group, 𝑦′𝑖 is the 𝑦′-coordinate of node i, as depicted in Fig. D.5b. The required 

nodal force output can be obtained directly with most commercial finite element software, for 

example, “NFORC” in ABAQUS, “NLOAD” in ANSYS, and “GPFORCE” in NASTRAN. A 

good mesh-insensitivity of the traction structural stresses has been demonstrated in previous 

publications [30–32,37], as long as overall joint geometry is correctly represented. 

It should be noted that any joint misalignment present in fatigue specimens can be directly 

treated as a contribution to 𝜎𝑏 in Eqn. (D.1). This can be done either by building a misalignment 

into the FE model or calculated separately if a closed-form solution is available. Since the test 

specimens (Fig. D.1) of interest in this study did not have any documented misalignments [104], 

we assume a near-negligibly small amount of misalignment (𝑒) of 0.1t, where 𝑡 is the base plate 

thickness. This misalignment amount (𝑒/𝑡 =0.1) is uniformly applied for all butt-welded joint 

types. Note that allowable joint misalignments for developing design fatigue S-N curve is 

𝑒/𝑡 =0.25 for offshore structures as stipulated by DNV-RP-C203 [33] and 𝑒/𝑡 =0.5 for thin gauge 

shipboard panels in military ships as discussed by Huang et al. [76]. As recently investigated by 

Xing et al. [63,89], the misalignment induced stress concentration factor (SCF) only contributes 

to weld toe cracking in a noticeable manner and has a negligible effect on weld throat cracking in 
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partial penetration butt welds or fillet welds. For simple butt joint specimens involved in this study, 

the axial misalignment induced SCF for weld toe failure mode simply becomes [63,89] 𝑆𝐶𝐹𝑒 =

3 × (𝑒/𝑡) = 0.3. 

D.3.2 Equivalent Traction Stress  

In addition to the traction stress in range given in Eqn. (D.1), an equivalent traction 

structural stress parameter adopted by the 2007 ASME B&PV Code [32,74] contains a number of 

correction parameters derived based on fracture mechanics principles. For the present purpose, the 

only relevant parameter is the load ratio correction parameter. The load ratio is defined as the ratio 

of applied minimum traction stress to maximum traction stress 
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which can affect the fatigue life of welded joints. As given in [32], by introducing an equivalent 

stress intensity in the form of √∆𝐾+𝐾max proposed by Kujawski [113], the load ratio correction 

against the traction stress range in Eqn. (D.1) can be written as: 
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where m takes a value 3.6 obtained from a unified representation of both short and long fatigue 

crack growth data [114]. Then the equivalent traction stress parameter for fatigue data correlation 

purpose to be used in this study becomes:  
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D.3.3 Traction Stress Analysis of Test Specimens 

Quarter symmetry conditions are used for modeling the butt-welded specimens (both full 

and partial penetrations) in Fig. D.1a and Fig. D.1b. Similarly, one half-symmetry condition is 

used for modeling the T-joint specimens shown in Fig. D.1c, as shown in Fig. D.6. The global 

view of the FE model used for the T-joint specimen is illustrated in Fig. D.6, including modeling 

details involving loading grip representation, remote loading application using element face 

pressure. Fig. D.7 provides the local views showing the elements (highlighted), for which nodal 

forces from FE results are to be extracted for use in Eqn. (D.2) for computing 𝜎𝑠 through Eqn. 

(D.1), corresponding to weld toe cracking in full penetration butt weld (Fig. D.7a), weld root 

cracking in partial penetration butt weld (Fig. D.7b), and weld toe cracking in T-joint (Fig. D.7c). 

By taking advantage of the mesh-insensitivity of the traction stress method, the FE meshes used 

(Fig. D.7) are considered more than adequate [32]. ABAQUS “CPS4” plane stress elements were 

used for modeling all three joint types and linear elastic behavior, based on Young’s modulus (𝐸 =

43000 MPa) and Poisson’s ratio (𝜈 = 0.35) given in [111], were also used. A unit pressure load 

(1 MPa) as shown in Fig. D.6 was used for computing SCF at respective failure locations as shown 

in Fig. D.7. 

 

Fig. D.6 Global view of T-joint FE model 
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Fig. D.7 Local views of FE models: (a) full penetration butt joint; (b) partial penetration butt joint; (c) T-joint 

Based on the failure mode discussed with respect to each joint type, the corresponding 

membrane and bending based SCF can be calculated simply by 𝑆𝐶𝐹𝑚 =  𝜎𝑚/𝜎𝑛  and 𝑆𝐶𝐹𝑏 =

 𝜎𝑏/𝜎𝑛 under unit nominal stress, i.e., 𝜎𝑛 = 1 MPa. The results are summarized in Table D.1. The 

total structural stress concentration factor, 𝑆𝐶𝐹𝑠 = 𝜎𝑠/𝜎𝑛 = 𝑆𝐶𝐹𝑚 + 𝑆𝐶𝐹𝑏, is also given in Table 

D.1. 

Table D.1 Calculated structural stress SCF at critical location of interest 

Joint type 𝑆𝐶𝐹𝑚 𝑆𝐶𝐹𝑏 𝑆𝐶𝐹𝑠 

Full penetration butt joint 1 0.6436 1.6436 

Partial penetration butt joint 1.7667 3.0163 4.7830 

T-joint 1 0.0654 1.0654 
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D.3.4 Data Correlation 

All test data are first plotted in Fig. D.8 in terms of structural stress range ∆𝜎𝑠 = 𝑆𝐶𝐹𝑠 ∙

∆𝜎𝑛, where 𝑆𝐶𝐹𝑠 is given in Table D.1. As can be seen, all three types of joints show an improved 

correlation over the one plotted in terms of the plate nominal stress range, shown in Fig. D.3. The 

standard deviation or STD as a measure of the scatter band is 0.356. It is also interesting to note 

that the STD value is similar to that when the effective notch stress range is used (see Fig. D.4). 

In recognition of the strong R ratio effects on the data behavior discussed in Sec. D.2, the 

equivalent traction stress parameter given in Eqn. (D.5) should be used for data correlation 

purposes. The results are shown in Fig. D.9. A significant improvement in data correlation can be 

seen over that shown in Fig. D.8 when the structural stress range is used and in Fig. D.4 when 

equivalent notch stress range is used. The resulting STD value is now at 0.241. In addition, it is 

important to note that all test data from three joint types no longer exhibits their own respective 

trends in Fig. D.9, indicating the effectiveness of Eqn. (D.4), which was developed for steel and 

aluminum weldments [32].  

 

Fig. D.8 Test data correlation using structural stress range. 
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Fig. D.9 Test data correlation using equivalent traction stress. 

D.4 Discussions 

D.4.1 Weld Toe Failure vs. Weld Root Failure 

It can be seen from Fig. D.9 that the partial penetration butt joint data corresponding to 

weld root failures exhibit a more scatter than the other two joint types corresponding to weld toe 

failures. In practice, e.g., in BS 7609 [24] or the 2007 ASME B&PV Code [74], weld toe fatigue 

failures are treated separately from those corresponding to weld root failures. After separating the 

two failure modes, the results are shown in Fig. D.10. The data corresponding to weld toe failure 

mode (full penetration butt joint and T-joint) now show a rather narrow scatter band of 0.194 in 

standard deviation in Fig. D.10a, while data corresponding to weld root failure mode shows a 

significantly wider scatter band of 0.313 in standard deviation. Such discrepancy validates the 

observations that the weld root failure mode tends to be more significantly influenced by variations 

in weld quality, penetration amount, etc., as described in [36,115,116]. 
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Fig. D.10 Test data correlation using equivalent traction stress range: (a) weld toe failure mode; (b) weld root failure 

mode. 

D.4.2 Equivalent Notch Stress with Load Ratio Correction 

By comparing Fig. D.4 with Fig. D.8, both equivalent notch stress range and traction 

structural stress range seem to show similar effectiveness in correlating the same test data. Then, 

it should be useful to examine if the load ratio correction term given in Eqn. (D.4) can be applied 

in conjunction with the equivalent notch stress range. To do so, the equivalent notch stress values 

used in Fig. D.4 are substituted into Eqn. (D.5) in place of ∆𝜎𝑠. The results are shown in Fig. D.11. 

For all test data plotted together in Fig. D.11a, an improved data correlation can be seen, with a 

standard deviation of 0.267 versus 0.368 before applying the R ratio correction (see Fig. D.4). 
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Once weld toe and weld throat failure modes are separated, Fig. D.11b shows a standard deviation 

of 0.242 for weld toe failure modes and Fig. D.11c shows a standard derivation of 0.313. The 

results in Fig. D.11 clearly shows that the load ratio correction given in Eqn. (D.4) is effective and 

should be considered in conjunction with the equivalent notch stress method. 
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Fig. D.11 Test data correlation using local equivalent notch stress with 𝒓𝐟 = 𝟏 mm with R-ratio correction: (a) all data; (b) 

weld toe failure; (c) weld root failure. 
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D.4.3 Further Validation of Load Ratio Correction 

 

Fig. D.12 Correlation of aluminum test data in [27] using: (a) structural stress range; (b) equivalent traction stress range 

Morgenstern et al. [27] conducted aluminum weldment fatigue tests using the same three 

types of joint types, as shown in Fig. D.1. In these tests, the base plate thickness is at 5 mm and of 

AW-5083 type. The fatigue test results also displayed a clear load ratio effect. Since the test 

specimens and loading conditions are almost the same as those shown in Fig. D.1, the same traction 

stress-based SCFs in Table D.1 for full penetration butt weld and T-joint specimens are directly 

adopted here. For the partial penetration butt joint specimens used in [27], the traction stress based 

SCF is calculated using a separate FE model due to its narrower root gap than the one shown in 

Fig. D.1. The resulting SCF becomes 𝑆𝐶𝐹𝑠 = 𝑆𝐶𝐹𝑚 + 𝑆𝐶𝐹𝑏 = 1.026 + 0.991 = 2.017. Fig. D.12 
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shows the aluminum weldment fatigue results in terms of the traction structural stress range Δ𝜎𝑠 

(Eqn. (D.1)) and equivalent structural stress range (Eqn. (D.5)). It can be clearly seen in Fig. D.12a 

that the test data with a higher R ratio (or higher mean stress) are mostly situated at the bottom of 

the scatter band. Once R ratio is considered according to Eqn. (D.5), the standard derivation is 

reduced from 0.462 to 0.276. The very fact that Eqn. (D.5) is capable of correlating all test data 

over a wide range of R from magnesium weldments in [104] to aluminum weldment data in [27] 

validates the effectiveness of the R ratio correction term given in Eqn. (D.4). 

D.4.4 Comparison with Master E-N Curve Scatter Band 

To examine if the S-N behaviors observed on the magnesium weldments are in some way 

consistent with those already established for other structural metal weldments, all fatigue test data 

from different structural metal weldments can be converted to a structural strain based E-N curve 

plot, referred to as the master E-N curve method [106]. The master E-N curve method, as an 

extension of the traction stress-based master S-N curve method, has already been shown to provide 

an effective correlation of a large amount of fatigue test data from weldments made of structural 

steels, titanium alloys, and aluminum alloys.  

For high cycle fatigue regime of interest in this paper, the master E-N curve [106] can be 

simply obtained by converting the master S-N curve given in ASME Div. 2 Code (since 2007) 

[32] by Young’s modulus 𝐸 of steel, as briefly described as follows. The master S-N curve in [32] 

is expressed in terms of equivalent structural stress, defined as, 
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where ∆𝜎𝑠  is the traction structural stress range; 𝑡∗ = 𝑡/1 𝑚𝑚  is a dimensionless thickness; 

𝐼(𝑟)1/𝑚 is a dimensionless polynomial function of bending ratio 𝑟 = ∆𝜎𝑏/(∆𝜎𝑚 + ∆𝜎𝑏), and 𝑚 =
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3.6 (same as that in Eqn. (D.5)). The thickness correction term 𝑡∗(2−𝑚)/2𝑚
 and bending ratio term 

𝐼(𝑟)1/𝑚 were both derived based on fracture mechanics principles. The structural strain given 

[106] is simply expressed as ∆𝜀𝑠 = ∆𝜎𝑠/𝐸, which represents a through-thickness linear strain 

definition that satisfies the “plane-remaining-plane” condition [106]. By substituting ∆𝜎Es defined 

in Eqn. (D.5) in place of ∆𝜎𝑠 and dividing it by material Young’s modulus E , Eqn. (D.6) then 

becomes: 
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Fig. D.13 Comparison of magnesium weldment fatigue data with master E-N curve scatter band derived from ASME S-N 

curve: (a) weld toe failure mode; (b) weld root failure mode. 
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The resulting master E-N curve representation has the same scatter band (𝑆𝑇𝐷 = 0.240) as 

that associated with the master S-N curve in [32], as shown as lines (mean±2𝑆𝑇𝐷) in Fig. D.13. 

Then, the magnesium test data corresponding to the weld toe failure mode are replotted in Fig. 

D.13a by using Eqn. (D.7). It is worth noting that the magnesium weldment test data are situated 

within ASME’s mean ±2𝑆𝑇𝐷 scatter band, suggesting the similarity of the fatigue characteristic 

of magnesium weldments to those of steel and aluminum alloys, as well as the general applicability 

of these test data provided in [104]. The magnesium weld root failure data (see Fig. D.10b) are 

plotted in Fig. D.13b by using Eqn. (D.7). It is interesting to note that the mean line (not shown) 

seem to be approximately aligned with the mean line of the master S-N curve of the magnesium 

weld root failure data, which is consistent with findings for steel weldment weld root cracking test 

data discussed in Xing et al. [36]. 

D.5 Appendix Conclusions 

In this appendix, some recent magnesium weldment fatigue test data have been analyzed 

using both traction structural stress and equivalent notch stress methods. An equivalent traction 

stress parameter is formulated by incorporating an applied load ratio correction parameter that was 

formulated in an earlier study. This investigation shows that all the test data from three different 

joint types can be correlated into a single scatter band, proving the effectiveness of the equivalent 

traction stress parameter proposed. Furthermore, the load ratio correction parameter can also be 

used in conjunction with the equivalent notch stress parameter for achieving similar effectiveness. 

The similarity of the fatigue characteristic of magnesium alloys and that of steel and aluminum 

alloys and the general applicability of the magnesium weldment test data is further demonstrated 

by their consistency with the master E-N curve scatter band derived from ASME master S-N curve. 

Specifically, the following findings are worth noting: 
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(1) For the thin-gauge magnesium specimens studied, applied load ratio R (or mean stress) 

shows a significant effect on fatigue performance. The proposed R ratio correction is 

effective for use in conjunction with both the traction stress and equivalent notch stress 

methods. 

(2) Weld toe failure modes exhibit a much smaller band that weld root failure modes, 

which is shown to be consistent with that of master S-N curve stipulated in ASME Div. 

2 Code based on over 1000 fatigue tests. 

(3) The large S-N scatter band in S-N curve form associated with weld throat cracking is 

similar to what has been seen in structural steel and aluminum alloy weldments and can 

be attributed to variations in weld penetration from specimen to specimen.  
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