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ABSTRACT

Modeling the time-dependent transient behavior of nuclear reactors with high-fidelity
pin-resolved detail has increased importance when the operating power of the reactor is in-
creased to improve the economic performance. In previous research, the efficiency of the solu-
tion of the steady-state neutron transport equation (NTE), which provides the initial condition for
the transient, was improved with the development of advanced methods such as the Multilevel-
in-Space-and-Energy Diffusion (MSED). However, the application of the MSED method was ul-
timately limited by numerical instabilities in the presence of cross section feedback. The first
objective of this research is to improve the efficiency of the steady-state solution by investigat-
ing and eliminating the numerical instability of accelerated neutron transport iterations when there
is cross section feedback.

The second objective of the research here is to address the computational costs of per-
forming transient simulations by improving the performance of the Transient Multilevel (TML)
method in the MPACT code. Specifically, the run time of the Coarse Mesh Finite Difference
(CMFD) solver in TML dominates the run time, so a one-group acceleration method is developed
and added. Automated time-stepping methods were also not previously available for TML. The
research here significantly improves the efficiency of the transient calculation by accelerating the
CMFEFD solver and using adaptive time-stepping methods. Improving the stability and efficiency of
the transient whole-core neutron transport calculations is the main significant and original contri-
bution of this work.

The specific contributions of this thesis for the steady-state calculation are the theory, devel-
opment, and implementation of the nearly-optimally partially converged CMFD (NOPC-CMFD)
method and the X-CMFD method in MPACT. As its name suggests, the NOPC-CMFD method
stabilizes the iteration scheme by determining and utilizing the nearly-optimal partial convergence
of the diffusion solutions. The X-CMFD method is an original method that stabilizes the iteration
by applying the feedback at the power iteration level of the low-order diffusion eigenvalue problem.
Compared to the default iteration scheme in MPACT, the methods developed here demonstrate the
same stability compared to CMFD-accelerated transport iterations in problems without feedback,

and reduce the overall run time of the full-core multi-state depletion problem by ~43%.
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The principal original work of this thesis for the transient simulations is the introduc-
tion of a one-group CMFD (1GCMFD) acceleration method and the development of adap-
tive time-stepping methods to further accelerate the TML scheme. The 1GCMFD method is shown
to reduce the overall computational time of CMFD by as much as 50% for practical large-scale
applications. The adaptive time-stepping method introduced adjusts the time step so that the max-
imum magnitude of the relative error is smaller than 1% for the applications considered in this
research. Other innovative methods include the usage of the Spectral Deferred Correction (SDC)
method to solve the point-kinetics equation and the use of Strang Splitting (SS) to replace Lie Split-
ting for coupling the neutronics and the TH solvers. The implemented SDC method is A-stable for
orders up to 8, and the SS addresses the inconsistency between the error and time step size when
the time step size is varied.

When the 1IGCMEFD acceleration and the adaptive methods are applied together, the perfor-
mance of the TML scheme for the Special Power Excursion Reactor Test (SPERT) test 86 problem
is reduced by ~22% and the maximum magnitude of the relative error is reduced from ~1.8% to

~0.4%, compared to the use of TML with the default parameters.
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CHAPTER 1

Introduction

1.1 Motivation and Historical Review

Accurate and high-fidelity modeling of nuclear reactors by solving the whole-core neutron trans-
port problem has been the state-of-the-art for nuclear reactor simulation for over a decade [1, 2, 3,
4, 5]. Programs such as Consortium for Advanced Simulation of Light Water Reactors (CASL) and
Nuclear Energy Advanced Modeling and Simulation (NEAMS) have supported the development
of advanced methods in the high-fidelity simulations. The high-fidelity simulations are important
because they can help provide insight into several complex phenomena in nuclear reactor analysis.

A principle focus is modeling the transient behavior of a nuclear reactor with pin-resolved
detail. The basis is to solve the Boltzmann neutron transport equation (NTE) directly without
spatial homogenization and low-order approximations such as diffusion theory [6]. The procedure
to perform transient simulation consists of two parts. The first part is the solution of the steady-state
NTE that is an eigenvalue problem. The steady-state neutron transport calculation provides the
initial condition for the second part, that is the solution of the time-dependent NTE.

The CASL and NEAMS programs advance the state-of-the-art of the high-fidelity multiphysics
simulation significantly [4, 7], However, the neutron transport simulation is computationally ex-
pensive due to its high-dimensionality. Furthermore, there are considerable challenges with the
feedback from other physics that is always present in power reactors. Therefore, the issues that
the iterative method for solving the steady-state NTE is not robust and that it can be formidable to
maintain suitable accuracy while minimizing computational resources for realistic transient prob-
lems still exist.

The lack of robustness of the current iteration scheme in the steady-state calculation, and the
relatively long run time for the transient calculation are the motivations for the work in this thesis.
This thesis work is comprised of two topics. One focuses on improving the robustness of the
steady-state iterative methods. The other focuses on improving the efficiency of the transient

methods.



1.1.1 Steady-state Methods

Historically, the whole-core neutron transport problem without feedback has been well studied with
both deterministic codes [8, 4], and stochastic codes [9, 10]. Successful acceleration methods have
been developed to make the solution of the whole-core high-fidelity neutronics problem tractable.
One widely-used technique is the Coarse Mesh Finite Difference (CMFD) method [11, 12], which
can be understood as a generalization of Nonlinear Diffusion Acceleration (NDA) [13] that also
coarsens on the spatial grid. NDA, and its variants, utilize the solution of the low-order diffusion
calculation to “precondition” (or synthetically accelerate) the high-order transport solution. Con-
siderable research has been performed to improve the convergence rate, stability and efficiency of
CMED over the past decade [14, 15, 16, 17, 18].

However, nearly all of this work has not considered the multiphysics problem in the theoretical
formulation and analysis of the NDA/CMEFD solvers. The development of the iteration scheme for
modeling the multiphysics problem is always treated as a completely separated task.

For the multiphysics simulation, there have been numerous research efforts that have attempted
to improve the robustness and performance—primarily through numerical experimentation [19, 20,
21, 22]. Most of these works have relied on the use of fixed-point iteration schemes (e.g. Picard
iteration) [3, 4, 23, 24, 25, 26, 27, 28, 29, 30]. The wide use of the Picard iteration approach
is due to its simplicity of implementation, and also results from the context that the software for
simulating the different reactor physics usually comes from separate, stand-alone codes. In this
type of “code-coupling”, the convergence of the steady-state problem is generally assumed to be
achieved when the solutions of the different solvers stop changing (i.e. a fixed point is reached).

In nearly all implementations of the Picard iteration in this context, issues such as the slow rate
of convergence or the lack of robustness have been observed. This can be shown for some simple
numerical cases [26, 31] and has also been reported for more realistic problems [32, 23, 33, 34].
In these previous works, there are two basic approaches used to address the issues of stability and
robustness; these approaches involve implementing under-relaxation or partially converging each
physics[22, 35]. Sometimes these two strategies are used in tandem. The motivation for using
relaxation is grounded in that (i) this is a simple thing to try when the iterations become oscilla-
tory, and (i) it usually works. The logic for only partially converging the iterations is intuitive in
the sense that the method should not “waste time” converging an intermediate iterate of the trans-
port equation where we know the coefficients are not well converged. These approaches will not
necessarily work for every problem, and therefore they are not ideal.

Methods such as the Jacobian-free Newton-Krylov (JFENK) method [36, 34] and the Anderson
acceleration (AA) method [37, 38] are more stable than Picard iteration, and have been introduced
into the nuclear reactor simulation. These methods are proposed mathematically to couple equa-
tions of different physical fields. The JFNK method requires a significant change in the codes
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involved. Therefore, it is not suitable for most of the code-coupling systems such as the Virtual
Environment for Reactor Analysis (VERA) supported by CASL [4]. The AA method is proposed
to mix the solutions of previous iterations adaptively. It is much easier to implement compared to
the JFENK method. Very recent research [38] has shown it helps to achieve much better stability and
efficiency for the CMFD-accelerated transport scheme. Since the AA method can be understood as
a method with more complicated relaxation factors, its performance may be limited as suggested
by [39].

Nevertheless, the coupling of the feedback from other physics with the CMFD-accelerated
neutron transport is the Picard method implemented by most high-fidelity neutronics codes, in-
cluding DeCART [40], nTRACER [3], STREAM [41], and Michigan Parallel Characteristics
Transport (MPACT) [4]. Within the multiphysics iteration, the transport problem is solved with
one CMFD-accelerated “outer” transport iteration, and then relaxation is applied (typically to the
power, but potentially the temperature or density) when exchanging the data with a different feed-
back solver.

For this Picard iteration scheme, an important and perhaps counter-intuitive observation made
recently with respect to the use of CMFD acceleration, is that when one more tightly converges the
low-order diffusion solutions, the coupled iteration scheme converges more slowly and becomes
less stable. As better acceleration methods for neutronics problems, such as the Multilevel-in-
Space-and-Energy Diffusion (MSED) method, are being developed for problems without feed-
back, the tight convergence of the low-order diffusion solutions creates the issue of having a less
robust multiphysics iteration scheme. This ultimately leads to having to impose a penalty on the
convergence rate (through relaxation) of the acceleration scheme [32].

The first contribution of this thesis is the work in developing novel methods to improve the
robustness of the whole-core steady-state simulations. Prior to this work, the slow convergence
rate of the advanced acceleration method in problems with feedback was not fully understood. This
work seeks to analyze the stability of the CMFD-accelerated transport scheme in problems with
feedback and propose methods that let the iteration scheme have an almost constant convergence

rate irrespective of the presence of the feedback.

1.1.2 Transient Methods

Historically, researchers have performed a considerable amount of research to solve the time-
dependent NTE directly [40, 42, 43, 44]. However, direct transient simulation without accel-
eration requires thousands of time steps for simulating a typical super-prompt critical transient.
Therefore, novel methods have been investigated to speed up the transient simulation. One of the

recently successful pin-resolved transient transport methods [45, 46, 47] developed is Transient



Multilevel (TML). This method has been recently implemented into MPACT to accelerate the
transient transport calculation. The method makes it feasible to run three-dimensional (3D),
full-core time-dependent simulations with pin-resolved details for nuclear reactors in a reasonable
time [48, 49, 50, 51].

The TML scheme is a multilevel algorithm using three levels with 3D-transport coupled to
3D-CMFD and 3D-CMFD coupled to the exact point-kinetics equations (EPKEs) to effectively
capture the evolution of the flux. In each level, the flux solution is estimated with a predictor with
coarse time step size and is factorized as a shape function and an amplitude function. The shape
function is assumed to vary more slowly than the amplitude function in time, while the amplitude
function is solved with a fine time-step corrector. The TML scheme is a method based on the ideas
of Improved Quasi-static (IQS) method in [52] and the Multigrid Amplitude Function (MAF)
method in [45], while employing the Predictor-Corrector Quasi-Static method (PCQM) [53] on
both the transport/CMFD coupling and CMFD/EPKESs coupling.

The TML scheme has been shown to increase the efficiency of running the transient transport
simulation without degradation of accuracy [54]. It has been shown that the TML scheme reduces
the total computation time by around 80% compared with the pure 3D-transport transient scheme
with averaged numerical relative error less than 1% in for Special Power Excursion Reactor Test
(SPERT) problem [51].

However, even with the advancements of TML, the total calculation time is still quite large for
some problems. The total calculation time for the SPERT [55, 56] test 86 case with 2880 cores
on the Titan compute cluster at Oak Ridge National Laboratory (ORNL) was around 2 hours [51].
One of the most important contributions to the long run times is that the CMFD solver run time
dominates the total calculation time. Therefore, it is a key component to improve to speed up
the overall calculation. There are two reasons why the CMFD solver takes a relatively large por-
tion of the computational effort (i) the Multigroup CMFD (MGCMFD) system constructed during
each time step is nearly singular or ill-conditioned and therefore IS hard to solve; (ii) the num-
ber of CMFD calculations per time step is large to capture the changes of the cell-wise amplitude
functions; (ii1) the parallel CMFD calculation is inefficient.

An additional challenge is that when the TML is used for the transient simulation, no strategy
is used to determine the time step size and the number of CMFD calculations. For most of the
simulations, the time step size is set manually, and the number of CMFD calculations on the
CMFED level is a constant for each time step. What can be expected for this case is that the time
step size can be too coarse to capture the variation of the fast-changing physical fields, and be too
fine to achieve optimal accuracy when the solution varies slowly. Therefore, the current practice
of TML still has some notable inefficiencies in trying to balance the accuracy and computational

cost.



The second contribution of this thesis is the work in developing novel methods to improve the
efficiency of the TML [54] scheme. This work seeks to reduce the run time of CMFD solver and
develop the adaptive time-stepping (ATS) methods for TML to further improve the efficiency of
the transient calculation.

The overarching goal of this research is to develop a set of methods so that practical 3D
whole-core time-dependent neutron transport simulation coupled with multiphysics is robust and

efficient.

1.2 Outline

The remainder of this thesis is structured as follows.

In Chapter 2, a general introduction of the theory and numerical methods for performing neu-
tron transport simulations is provided. Starting from the time-dependent continuous neutron trans-
port problem, various approximations are applied to obtain the formulations for the problems of
interest: the multigroup steady-state neutron transport equation and the multigroup time-dependent
neutron transport equation. The state-of-the-art numerical methods, and the important details for
solving these equations are described to the extent required to understand the work in this thesis.
These methods include the CMFD acceleration, iteration schemes to solve the steady-state NTE
coupled with feedback from other physics, the transient methodology for time-dependent NTE, and
the methods to couple the neutronics and feedback. No new theory is developed in this chapter.

Chapter 3 focuses on the analysis of the steady-state eigenvalue problem that is the initial condi-
tion for the transient simulation. Specifically, a Fourier analysis for a simplified CMFD-accelerated
neutron transport problem with feedback from flux-dependent cross sections is developed to pro-
vide theoretical insight into observable numerical instabilities in the steady-state neutron transport
calculation. The Fourier analysis result is used to derive the relationship between relaxation and
the partial convergence of the CMFD accelerated transport. Using this relationship a new and more
robust relaxation-free multiphysics iteration scheme is developed. This method eliminates the need
for a relaxation factor by developing equations to nearly-optimally partially converge the CMFD
equations used to iteratively accelerate the convergence of the multiphysics transport sweep. This
new method is called the nearly-optimally partially converged CMFD (NOPC-CMFD) method. It
is one of the significant and original contributions in this thesis.

The implementation of the new method developed in Chapter 3 is applied to various test cases
that are presented in Chapter 4. Chapter 4 focuses on developing a methodology for estimat-
ing “a key problem-dependent parameter”, the feedback intensity, required by the NOPC-CMFD
method. Next, the implementation of NOPC-CMFD in MPACT is described and several numeri-

cal calculations are performed. Problems ranging from a single pressurized water reactor (PWR)



fuel rod to a full-core PWR cycle depletion are analyzed to assess the performance and robustness
of NOPC-CMFD over a wide range of conditions that consider multiple forms of multiphysics
feedback.

The conclusions of Chapter 3 suggest a number of ways to achieve robustness. The
NOPC-CMFD method is the first one and modifies the existing iterative methods. Chapter 5
presents a more fundamental rethinking of the state-of-the-art algorithms and considers the prob-
lem of feedback from the beginning. The results show that the current iteration scheme can have
the largest region of stability when the multiphysics feedback is applied at the power iteration of
the low-order eigenvalue problem. The new method is called the X-CMFD. The key feature of the
X-CMFD method is that the more tightly the low-order diffusion solution is converged, the more
stable the iteration scheme is. Therefore, sophisticatedly determining the partial convergence as
NOPC-CMFD does can be avoided. The X-CMFD method is also implemented in MPACT and
optimized for the practical simulations. Numerical results that range from a single PWR fuel rod
to a PWR 33 core are presented.

Chapter 6 shifts the focus to the transient problem. The one-group CMFD (1GCMFD) sys-
tem is introduced to accelerate the transient calculation. 1GCMFD primarily accelerates the
convergence of the source for MGCMEFD calculations through 1G/MGCMFD iteration. And a
new 1GCMFD level is introduced into the TML method to alleviate the computation expense of
MGCMED. The new TML with four computational levels is referred to as TML with one-group
CMFD level (TML-4). Various numerical cases are used to investigate the practicality of the
1G/MGCMEFD iteration and TML-4 scheme. Numerical results show that using 1G/MGCMFD
iteration with the dynamic iteration strategy alone does better to capture the evolution of the am-
plitude function when the scalar flux distribution in energy space varies rapidly, and thus provides
more accurate results. However, TML-4 is only more efficient in capturing the variation of the
energy-integrated amplitude when cross section changes are small, and feedback dominates the
change of the reactivity. It does not help significantly when there are large Cross Section (XS)
perturbations like when a control rod is ejected. Therefore, the TML-4 scheme is limited in that it
does not in general improve the overall accuracy of the transport calculation using TML, and only
addresses the computational inefficiency of the CMFD level.

This motivates some simple but effective modifications to improve the overall accuracy of the
transient calculation with the TML scheme. These modifications are the focuses of Chapter 7.
First is the adoption of the Spectral Deferred Correction (SDC) method that is introduced to re-
place the backward Euler (BE) in the solution of the EPKEs. It is shown that the SDC method is
A-stable [57] for orders up to 8. For practical simulations, it is found that the SDC solver could let
the TML scheme produce comparably accurate results compared to the TML scheme with ultra-
fine EPKE steps. Next, the TML scheme is decoupled from the multiphysics in the CMFD level.



This modification improves the accuracy of the TML scheme in problems with control rod move-
ment, and helps develop a new implementation of the 1GCMEFED level for TML-4. The new TML-4
is more accurate compared to what was presented in Chapter 6. Lastly, the operator splitting (OS)
to couple the neutronics solver and the Thermal Hydraulics (TH) solver is changed from Lie Split-
ting (LS) to Strang Splitting (SS). It is observed that LS would produce inconsistent behavior
between the error and the time step size. In practical simulations, SS has comparable efficiency to
LS, but produces more accurate results.

Finally, in Chapter 8, the ATS methods are developed for the TML scheme in problems with the
feedback. Two adaptive methods are developed separately to limit the errors from the neutronics
solution and the OS. An additional method to determine the number of CMFD steps in the CMFD
level is also proposed. The two ATS methods are derived based on point-kinetics equation (PKE)
models. The PKE models are used to estimate the temporal error and predict the maximum error
in a time range. The time step size is calculated so that all the errors estimated by the two models
are smaller than the user-specified error tolerances, and the number of CMFD steps is adjusted
accordingly. Numerical results indicate that the current default time step size for time-dependent
simulation is neither fine enough to capture the variation of flux when reactivity is being inserted,
nor efficient after the reactivity insertion. Compared to the old scheme, the ATS methods generally
improve the accuracy at the cost of efficiency for stages of reactivity insertion, and improve the
efficiency after the reactivity insertion.

Finally, Chapter 9 provides conclusions and areas of future work.



CHAPTER 2
Background

This chapter provides the theoretical and numerical backgrounds needed to understand the work
in this thesis. The chapter starts with the introduction of the continuous neutron transport equa-
tion (NTE) in Section 2.1. Forms of both the steady-state and the time-dependent NTE are briefly
introduced. They are the fundamental equations for high-fidelity nuclear reactor simulations. Sec-
tion 2.2 describes the basic methods to solve the NTE, and introduces the discretization and approx-
imations made to arrive at the multigroup NTE suitable for numerical computation. The methods to
solve the steady-state NTE are introduced in Section 2.3, and the methods for the time-dependent
NTE are introduced in Section 2.4.

2.1 Neutron Transport Equation

In this section, both the time-dependent and the steady-state k-eigenvalue neutron transport equa-

tion are presented.

2.1.1 Time-dependent Neutron Transport Equation

The high-fidelity time-dependent transport simulation must solve the 3D time-dependent Boltz-

mann neutron transport equations and delayed neutron precursor equations given by
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Sr and S, are the total fission neutron source and delayed neutron source, respectively. These

terms are defined as
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The initial eigenvalue kgf s of the steady-state NTE is included in the fission source term to ensure
the criticality of the initial state. k;gf 7 1s obtained by solving the steady-state NTE, that is discussed
in Section 2.1.2. The independent variables are ¢, r, {2 and £/, which form the phase-space of the
solution. The definition of the terms in Egs. (2.1) to (2.4) are summarized in Table 2.1. It should
be noted that S and Y4 are typically obtained by fission-source weighting, since delayed neutron

fractions and spectra are different for different fissionable isotopes.
The term of the greatest interest for the time-dependent simulation is the neutron scalar flux,

defined as
o(t,r, E) = / o(t,r, E,Q)dQ, (2.5)
4n

where the angular flux, ¢, is the fundamental unknown of the NTE.
An accurate pin-resolved scalar flux result is very important for the analysis of the nuclear
reactor. It can provide insight into several complex phenomena on the sub-pin level to researchers,

and it is used by designers in nuclear reactor safety analysis.

Table 2.1: Definition of terms in time-dependent transport equations.

Term Definition Term Definition
Y Angular flux 0] Scalar flux
Q Direction of neutron flight E Energy
T Position v Velocity
> Total cross section IR Scatter cross section
2y Fission cross section v Fission neutron yield
C Delayed neutron precursor density k Precursor group index
Xp Prompt fission neutron spectrum X« Delayed fission neutron spectrum
o) Delayed neutron fraction A Precursor decay constant
Sp Prompt fission neutron source Sy Delayed fission neutron source

K the maximum number of precursor groups.




2.1.2 Steady-State Neutron Transport Equation

The transient simulation relies on the initial condition which must be obtained via the steady-state
neutron transport calculation, where the time derivative terms are neglected. Therefore, Eq. (2.1)

is simplified as:

x(r, E)
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This is the steady-state neutron transport equation, and is a generalized eigenvalue problem. Yy is
the averaged fission spectrum weighted by prompt, x,,, and delayed fission neutron, x4, spectrums.
The quantities of interest are the eigenvalue, k.rr, and the corresponding eigenvector, ¢. The
krs, which is also called as multiplication factor in the nuclear reactor physics field, indicates the
criticality of the system. If k.;; is one, then the system is critical and will remain at the current
conditions unless otherwise changed. A ks less than one indicates that the system is subcritical,
and that the reactor system is unable to sustain the chain reaction of nuclear fission reactions to
produce power. Finally, a ks greater than one indicates that a system is supercritical and, if not
changed, will increase in power. It must be noted the ks of the modeled reactor is seldom one
due to modeling error even though its corresponding realistic problem is critical. Compared to
Eq. (2.1), the dimensionality of Eq. (2.6) is reduced by one. However, this 6-dimension equation

is still hard enough to solve.

2.1.3 Feedback in the Neutron Transport Equation

The NTE becomes considerably more difficult to solve because of the inherent multiphysics in
a reactor. The most important forms of feedback come from such physics as TH and nuclide
transmutation. If the feedback from other physics is taken into account, the macroscopic cross

sections must be written with a new dependent variable as

Si(r, B t) = Si(r, S, E,t) ZN (S,E,t)o¢(r,S,E,t) i=ts, f, (2.7)

where S is the vector of state variables determined by other equations that cause a change in the
macroscopic cross section. For example the water density will affect the atomic number density,
N, and the temperature can determine the microscopic cross section, o., where e is the index of

the elements.
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The equations to determine the state variables will typically have some terms that depend on
the solution of the NTE, hence we refer to this process as feedback. Examples of quantities in
S can be temperature, moderator density, equilibrium Xenon, boron concentration, etc. The state
variables are obtained from the solutions of other physics equations. The coupled equations are

expressed in operator form as:
H(T?P(SF)7¢aEiaSakeffat) S(T):O, (28)

where H is the operator dependent on the state variables, transport solutions and time. Variable ¢
is present to generalize the time-dependent perturbation and the differential operator in time. ks
is included to show the equation for the physics problem such as critical boron search. P(Sk) is
the thermal power generated by the fission.

For example, a simplified model to determine the temperature distribution is written as:

oT(t
re 595 "oV VT " Sr), (2.9)

where ¢ is the heat generation rate. And the equations for the concentrations of the Iodine-135

and Xenon-135 are

dN
=L = 1 SE = A\NT, (2.10a)
dt
dNXe > / / /
d = )\]N] + fYXeSF — )\XeNXe — O'X&G(E )NX6¢<T, E )dE . (210b)
0

~r and vx. are the effective fractions of fission products for I and Xe, respectively. And A is the
decay constant. The full sets of the equations of other physics are omitted, since they are out of

scope in this thesis.

2.2 Overview of the Principle Methods

The realistic neutron transport problem can only be solved with the help of numerical methods.
Two different classes of numerical methods have been developed in the field—the stochastic method

and the deterministic method.

2.2.1 Monte Carlo Methods

The stochastic, or Monte Carlo (MC), methods simulate the behavior of individual particles rep-

resenting the neutrons in the nuclear reactor [9, 58, 10, 59]. During the iteration, the MC code
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randomly samples the probability distributions of all aspects of the phase-space for a given prob-
lem, i.e., the birth of a fission neutron, the direction of flight, the energy of the neutron, the distance
to the next collision and the type of reactions, etc. The MC code tracks the behavior of a neutron
till the neutron leaks out of the reactor or is absorbed. If the absorption causes a fission, the fission
sites will be recorded and used for the next iteration. The process is repeated for all the neutrons
in the same iteration, that is referred to as batch. The iterative k-eigenvalue can be calculated by
ratio, that is the number of new-generated neutrons simulated for the next batch to the number of
neutrons simulated for the current batch.

Since the number of particles simulated is far smaller than the number of neutrons in the nu-
clear reactor and a finite number of batches are simulated, the results provided by the MC method
are the estimates of the solutions associated with statistical uncertainties. Since much fewer as-
sumptions and approximations are made in the MC codes compared to the deterministic codes,
the MC solutions are widely considered as being able to provide the most accurate results. How-
ever, for the large-scale problem, the number of neutron particles simulated is tremendously large
in order to acquire the results with reasonable uncertainties. Meanwhile, the computational time
scales with the amount of the tallied quantities. MC methods also have the added challenge that the
randomness of the events makes locating the position of the data in memory more time-consuming
because modern memory architectures assume high degrees of spatial and temporal coherency in
the memory accesses of programs. Therefore, Monte Carlo codes are still considered to be too

expensive for the whole-core multiphysics transport calculation.

2.2.2 Deterministic Methods

The deterministic codes make many more approximations to solve the neutron transport equation
compared with MC methods. The accuracy and efficiency of the codes are highly affected by the
assumptions made in the numerical methods. The methods based on the Method of Characteris-
tics (MOC) have been the most popular in recent decades [60, 7]. Due to high computational re-
quirements of the direct 3D-MOC calculation, a variant of MOC, the 2D/1D method [1, 2, 3,4, 41]
has been popular in recent years.

The 2D/1D method takes advantage of the fact that the most significant heterogeneity in a Light
Water Reactor (LWR) is in the radial direction, and there is less heterogeneity in the axial direction
of a typical reactor core design. The essential idea of the 2D/1D method is to perform a highly
accurate transport solution radially and a lower-fidelity nodal transport or diffusion solution axially.
The 2D MOC is usually used as the radial solver, and axial solvers include various 1D methods,
such as the Nodal Expansion Method (NEM), S Py, Sy, etc [61]. The coupling between the 2D and

1D solvers involves the radial and axial transverse leakage terms [61, 62]. The Michigan Parallel
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Characteristics Transport (MPACT) code has the capability of modeling with either a 3D-MOC
calculation, or a 2D/1D calculation, therefore it is the representative of the modern deterministic
high-fidelity codes [61, 63].

The methods presented in this thesis are implemented in MPACT. Therefore, the focus of the
background is on the deterministic methods used in MPACT. Many of the details of the 3D-MOC
scheme and 2D/1D scheme can be found in [1, 2, 4, 41, 61, 63, 64, 40, 65], so they are omitted

here. However, the salient traits relative to this dissertation are described in the following sections.

2.2.3 Common Approximations for Deterministic Codes
2.2.3.1 Multigroup Approximation

Multigroup approximation is one of the most common approaches to discretize the energy space.
In the multigroup approximation, the energy space is separated into G groups. The energy group
is indexed with the conventional notation ¢ ranging from 0 to G.

The bounds of the g* energy group are [E,, E, 1], with Ey = E,4, and Eg = 0, where E,,q,
is the maximum energy considered for a neutron, typically, 20 MeV'. In the energy space, the

scalar and angular fluxes are discretized into G groups, and the ¢'* component is defined as:

Ey 1
gag(’r,Q):/ o(r,Q, E)dE, 2.11)
Eg
Eg_1
%(T)Z/ o(r, E)dE . (2.12)
Eg

The multigroup cross section is defined by preserving the reaction rate:

S Sig(r, Byw(r, B)AE
[ZoVw(r, B)dE

Eq

Yig(r) =

, 1 =1,8,9,.... (2.13)

A suitable weighting function, w, has been introduced. The w is typical the scalar flux solution of
the self-shielding calculations [66]. Usually, v are provided together with group-dependence,
1.e.

fgggfl y(r, E’)Eﬁg('r'7 E)w(fr’ E)dE
[F= w(r, E)dE '

Eyq

VS, (r) & (2.14)

The group-wise fission emission spectrum is obtained by integrating the energy along the interval,

written as: .
g—1
Xg(7) = / x(r, E)dE. (2.15)

Eq
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And for the neutron velocity
fEE dF

E,_ 1 '
ngg ' v(E) dE

(2.16)

Ug:

Next the time-dependent multigroup neutron transport equation is obtained by integrating

Eq. (2.1) over each group’s domain, and is written as:

1 0y, (r, Q2,1
—Mmt,g(r, )y (r, ) + Q- Vi, (r,Q,1)
Vg ot
G 4
=y / Yagiog (1, Q- 1) 0 (r, Q' 1)dQY (2.17)
g=1"0

Xd,g(r) t)Sd (T‘, t)

+ iXp,g(r’ t) [1 —B(r1) } S () +

AT ’
with the total fission source rewritten as
1 G
Sp(r,t) = W D USpg(r)ey (r) (2.18)
e g=1

Following the same procedure, the steady-state multigroup neutron transport equation is

G
Q- Vi, (1) + Sy (r. ) = 2470 S0y () by (1) +

g'=1

G 4 (219)
Z / Ysg'—g (r, Q- Q,) Py’ (r, Q/)dQ/ .
g'=1 0

2.23.2 TCP, Scattering

The neutron scattering microscopic cross section is a complicated function of the € - €2, and is

expanded via Legendre polynomials [67]:

o0

olr,-Q) =)

n=0

2n +1
T

Po( - Q)0 g (7). (2.20)

Here, i is the index of isotopes, and P, is the n'* Legendre polynomial.

o (r)z/4 P.(Q - Q) (r, - Q)dY . (2.21)

sn,g'—g 8,9'—g

Using high-order scattering moment significantly increases the computational cost. Therefore, in

MPACT, it is common to use an isotropic scattering cross section, which means that all but the 0"
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scattering moment are neglected. Then the macroscopic cross sections used are
50 g'—=g = Z N; 030 9’ =g (222)

where N is the atomic number density.

The resulting steady-state transport equation becomes much easier to solve and is given by

[9 LV + Et,g(’l")}cpg(’r, Q) =

1 < (2.23)
In Z Xs0,9/-9(T) Py 47Tk‘ef Z Vg (T)dg (),
g'=1
and the time-dependent neutron transport equation is given by
1 0p, (r,Q,t
1 9y, (r, 2, 1) + [Q V4 Et,g<r)} 0o(r, Q) =
Vg ot
(2.24)

1 ¢ Xpg (1 1) |1 = B (1, 8) | S () S (1
E!],Z:lﬁso,gqg(r)%/(r) + [ = } n Xd,g(T 4)7T a(r,t) '

The isotropic approximation, however, makes the results less accurate. Therefore, Transport-
Corrected Fy (TCPy) method is used [68, 69]. The scattering cross section matrix and the total
cross section are artificially altered to offset losses in accuracy. The approach may result in nega-
tive cross sections and cause convergence problems for the transport solver.

Since all the numerical simulations in this thesis are performed with TCP, the TCP,, correction

is applied to the scattering term for all the derivations shown later in this chapter.

2.2.3.3 Angular Discretization

In the angular space, the discrete ordinates method or Sy [70], is used to discretize the angular
variable. The angular space is discretized into P representative directions of travel. Each direction
2, has a corresponding weight w, that can be used for numerical integration over the angular

variable as follows:

P
/ A~ w, f(8,). (2.25)
4m p=1
Then the scalar flux is given by
P
= wygp(r). (2.26)
p=1
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The Sy form of neutron transport equation can now be written as

1
9V 420, (0) | ean(r) = Tas(r). (227)
where, ¢,(r) is the source and is defined by:
. Xy(T) .
Go(T) =D Tangsg(T)dy (r) + drkess D U8 (1) (1) + Qeatyg(T) | (2.28)
g'=1 € g'=1

where (), 4 is the source from time discretization, delayed neutron precursor, etc.

Eq. (2.27) is further solved with the MOC method. Along the direction €2, Eq. (2.27) is written
as

% + Dt g(rpo + Sﬂp)] Pgp(Tpo + 582p) = ﬁqsi(""p,o +58,), (2.29)

that is formulated as an ordinary differential equation. Here r,  is an arbitrary reference point.

The equation Eq. (2.29) can be solved exactly provided the exact source ¢, and cross sections.
In practice, the problem is discretized into a lot of fine spatial meshes, and cross sections Y. and
the source g, are assumed to be constants for each spatial region. Recently, a linear source ap-
proximation has been introduced to capture the spatial variation of the source inside each cell and
provide better accuracy and efficiency [71, 72, 73]. The flat source approximation or linear source
approximation is valid when the mesh size is small. The corresponding mesh is referred to as the
fine mesh in this thesis.

It should be noted, in real problems, ¢ is not predefined. It is obtained via iteration.
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2.3 Steady-State Iteration Methods

2.3.1 Source Iteration

Source iteration is the simplest method and the most basic method to solve the NTE. And either
2D/1D method or the 3D-MOC method can be generalized as a source iteration process. For sim-
plicity, the steady-state k-eigenvalue neutron transport equation is represented in operator notation

with \-eigenvalue as:

Lo = 4i [S + AXJ-"] . (2.30)
I
with
¢ = Moy, (2.31a)
1
= (2.31b)
Kty
Here
[c]g - [9 V48, ()] 231c)
G
[8]9 =3 S gg(r)(), 2.31d)
=1
gG
F=> vipg(r)(), (2.31e)
g'=1
x| =xo()0). (231
G
Mi= [ Q)= wQ(-),i=1,2--. (2.31g)
4 p=1

¢ and ¢ are the vectors of the group-wise scalar fluxes and angular fluxes, respectively. The
basic approach to solve the neutron transport problem is the source iteration scheme illustrated in
Algorithm 1. To avoid misleading, we use the script ™ to index the iteration, and " for the n*"
power. Though such details of the source iteration as the procedure of MOC and 2D/1D scheme
are omitted, the algorithm can still show the overall procedure of source iteration without loss of
generality. The source iteration is equivalent to the power iteration method for the solution of
k-eigenvalue problems.

Generally, the convergence rate of the source iteration scheme is prohibitively slow for prac-
tical problems, and should never be the method used for realistic problems. The modern iterative

methods make use of convergence acceleration schemes [74, 39]. However, in the solution of the
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Algorithm 1 Source iteration scheme for k-eigenvalue neutron transport problem.

1: Input maximum outer iteration number /N, inner iteration number V;; tolerance e, €; initial
guess ¢, \©),

2: forn=0,1,..., N do

3. Let ™% < ¢™, and calculate the fission source

QM = \"xFep™ (Alg 1.1)
forn, =0,1,..., N, do
5: Compute the angular flux via transport sweep:
1
Lt D = — [Sgm) + Q] (Alg 1.2)
6: Update the Scalar flux
"D = Moplmmth (Alg 1.3)
:  end for
8 Let "™V « NV,
:  Update the eigenvalue
o

At = \() (Alg 1.4)

10: Let k1Y < 1/A0+0),

e i K5 = k)| < ecand [ Fot — Fo || < ¢ | Fg V|| then
12: break

13:  end if

14: end for
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acceleration equations, the power iteration is still used. The next section describes the state-of-the-

art acceleration method that is a major focus of this thesis.

2.3.2 CMFD Acceleration

One of the most popular acceleration methods for the NTE is the CMFD method. It is a variant
of NDA for the general problems [13]. There are two distinct equations involved in the CMFD
acceleration. The first is a high-order problem, that is the multigroup transport problem. The
second is a low-order multigroup diffusion problem, that is solved with a much coarser spatial
mesh. The spatial mesh where the solution of low-order diffusion problem is performed is referred

to as the coarse mesh.

2.3.2.1 CMFD Equation for Steady-State Calculation

In the CMFD scheme, the low-order multigroup diffusion problem has the form:

G
=V - DyVoy(r) + i 4(r)dy(r) — Z Ys0.9'—+9(T)bg (1)
_ (2.32)
g(r)
= AN () (r).

g'=1

The equation is obtained by integrating Eq. (2.23) over the whole angular space. Eq. (2.32) is also
generalized so that its solution, ®,(r) is equivalent to that obtained from Eq. (2.31c¢).

In the CMFD problem, the domain is decomposed into M coarse cells, or coarse meshes,
indexed with m. The solution of the low-order problem is coarse-cell-wise, while the high-order
transport sweeps are performed on a much finer mesh. The derivation of the low-order diffusion
problem for CMFD acceleration is illustrated as below.

Integrating Eq. (2.32) over the space of each coarse cell, the k-eigenvalue NTE is transformed

into the neutron balance equation:

G
Z F(m,m’)J(m,m’),g + (Et,m,gq)m,g - Z EsO,m,g/~>g(I)m,g/) Vin
)

m/eN(m g'=1

o (2.33)

=Xy Y Sty Pong Vi, 1<g<@G, 1<m<M.

g'=1

Here (m,m’) denotes the surface of the m" coarse mesh and its neighboring m/*" cell with the

outward-pointing normal vector to m'*" cell. I (n,m) 1s the area of the surface and V,, is the volume
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of the coarse cell. N(m) represents the collection of the neighboring cells of mesh m.  is used
to represent the coarse-mesh flux solutions.

The net current .J(,,, ,,,/) 4 Tepresents the net outflow of neutrons from coarse mesh m to m’, and

J(m7m/)7g = _J(m/7m)7g : (234)

To obtain Eq. (2.33) as a diffusion equation, the traditional CMFD representation of the net current
is introduced. Here the net current is calculated by the finite difference approximation of the

generalized Fick’s Law containing the nonlinear correction, D, /) 4:

Jinmy.g = =Dimm),g(Prmrg = Prng) + Dianmr) o(Prmg + P g) (2.35)

The diffusion coefficient on a surface is defined as:

~ 2D, .D,.
Dmmry,g = L : 2.36
mmD9 = (D3 Do )t (2.36)
and the nonlinear correction term is defined as
D( ) o Jgﬁn,m’),g + D(mvm,)vg(QfZ,g - ®£;Sll,g) (2 37)
mym’),g — = s . .
(Dfn’7g + ¢$n,g
In this fashion,
D(m,m’),g = _[)(m’,m),gv (2.383)
D(m,m’),g = D(m’,m),g . (238b)

The nonlinear correction term, 15 is used to enforce the equivalence of the diffusion balance
equation with the transport equation. The superscript ** denotes the quantities are from the transport
solution.

Inserting Egs. (2.35) to (2.37) into Eq. (2.33) yields the neutron balance equation:

Z Fm,m’

m/eN(m)

- D(m,m’),g(q)m’y - CI)m,g) + D(mm’),g@)m,g + (I)mﬂg)]

G G
+ (Zt,m,gq)m,g - Z E‘<50,17"L,g/ﬁgq)m,g/) Vm = )\Xg Z Ef,m,g’(I)rn,g"/m )

g'=1 g'=1
1<9g<G, 1<m<M.

(2.39)
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Eq. (2.39) is the multigroup CMFD equation for the k-eigenvalue problem.
The coefficients of Eq. (2.37) and Eq. (2.39) are homogenized from the k-eigenvalue neutron

transport equation in the flux volume-weighted way [32, 51]:

freCm Q%S (T)dv

(i)fvi,g _ Vm (2.40a)
Jree,, Zeg(T )¢t5( )dv
Yrma = re y Dg = g, 2ig0y 2f - - 2.40b
. l/EtS tS(e)dV
Xomg = frECm Xg( )Z =1 ng ( ) 7 (2.40¢)

frecm Z =1 VEtS (bf,s/("")dv

where C,, is the domain of the m'* coarse cell. Writing the solution as a vector, the 3D CMFD

k-eigenvalue equation in operator notation is
(M —-S)® = \xFo. (2.41)

This is a generalized eigenvalue problem with ® € RM% M, S € RMGXMGE | ¢ RMXMG gpd
€ RMGXM

When @ is ordered in node-major fashion, it is written as:
S=[®, P Puy - Purc]” - (2.42)
The operators are then defined in a similar way as

[M‘ﬁ] (m=1)G+g — Et,m,gq)m,g

+ Z D(m m’) ((I)m’,g — q)m,g) + ﬁ(m,m’),g(q)m,g -+ (I)m’,g) , (2.43a)
m/eN(m
[S(I) (m—-1)G+g — Z Z50 Mg —>g m,g’ s (243b)
G
F®lp =Y 08 mgPmg (2.43¢)
g'=1
G
XF®)(n-1)G4+g = Xmg D V5 fumg Py - (2.43d)
g'=1

For boundary cells, typical Marshak boundary conditions are used. D and D are then modified

to take the boundary conditions into account.
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Since Eq. (2.41) is an eigenvalue problem, a normalization condition must be applied to ensure

a unique solution. The typical normalization is defined so that ||[F®||, = C, where C'is a constant.

2.3.2.2 CMFD Acceleration

Once the low-order diffusion problem is solved, the low-order solution ® is used to update the

fine-mesh scalar flux by:
¢ (r) = == ¢(r), r € Cp. (2.44)

The corrected fine mesh solution is used to calculate the scattering source and the fission source
with the eigenvalue calculated in low-order calculation. The angular flux at the boundary is also
scaled by using Eq. (2.44) (or something similar). The algorithm of the CMFD acceleration is
illustrated in Algorithm 2.

For the k-eigenvalue problem, CMFD acceleration reduces the spectral radius of the iteration

scheme from nearly 1 to around 0.4 for a typical reactor [16, 75, 76].

Algorithm 2 CMFD acceleration for k-eigenvalue problems

1: Input maximum outer iteration number [V, inner source iteration number Vy; tolerance e, €y;

initial guess ¢¥, J(©, A©),

2: forn=0,1,..., N do

3:  Compute D by Eq. (2.37) using the current estimate in the transport system.

4:  Solve the CMFD eigenvalue problem Eq. (2.41) to obtain the scalar flux on the CMFD
spatial grid ®@(™+1/2) and the eigenvalue \(*1/2),

5:  Update the fine mesh flux o™ via Eq. (2.44) and use corrected flux and eigenvalue ¢
to generate the fission source.

6:  Perform NV, iterations (i.e. sweeps) on the transport problem. During the sweeps, the fission
source and eigenvalue are fixed. The scalar fluxes on the transport grid and the current at
the interfaces of CMFD cells are stored.

7. Let k,g;}‘l) «— 1/)\(n+1/2)’ ¢(n+l) « ¢(n,N1).

s if K — k| < ¢, and Hf¢<"> . f¢<"+1>H < e Hf¢<”+1>H then

n+1/2)

eff eff
9: break
10:  end if
11: end for

2.3.3 Methods for the Multigroup Diffusion Eigenvalue Problem

The problem of interest for the CMFD equation is the multigroup diffusion eigenvalue problem.

In reactor physics, it is a generalized eigenvalue problem of the following form:
Mo = \F¢. (2.45)
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In this general eigenvalue problem, only M is invertible. Note that M and F in Eq. (2.45) are
the M — S and xF in Eq. (2.41), respectively. The goal of an eigenvalue problem is to compute
the eigenvalue(s) A and obtain the corresponding eigenvectors.

2.3.3.1 Wielandt Shifted Power Iteration

The simplest method to obtain the solution to Eq. (2.45) is Power Iteration (PI), which is guaranteed
to converge to the smallest eigenvalue of the system. The detail is shown in Algorithm 3. The
convergence rate of the PI is determined by the dominance ratio of the system:

A

DRp; = M . (2.46)

A
Here, )\, is the smallest eigenvalue in magnitude, and )\, is the second smallest. For most problems
in reactor physics, the dominance ratio of the system is close to 1, and PI converges too slowly for

practical use.

Algorithm 3 Power iteration algorithm.

1: Input maximum power iteration number L, initial guess & normalization factor ®; for
solving Eq. (2.45).

2: for!{=0,1,2,--- ,L—1do

3:  Solve the WS linear system:

M (F3) = \ORpe®) (Alg 3.12)
|re?]

A+ WW . (Alg 3.1b)
2

4:  Normalize the eigenvector solution by

@(l—‘rl) _ (I’(H_ )
)

o H(I)(H

D, . (Alg 3.1c)

N [N

end for
return \(), &L

AN

Therefore, the more popular method is the Wielandt shifted (WS) Power iteration.

M — AF¢p = (A — \,)Fo. (2.47)
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The algorithm is shown in Algorithm 4. Assume A\, > 0. The method can significantly reduce
the dominance ratio of a system when the provided shift parameter ), is close to the eigenvalue of

interest, since the dominance ratio becomes

|>‘1_>‘8|

P SE— 2.48
Da — | (2.48)

DRwspr =

Algorithm 4 Wielandt shifted power iteration algorithm.

1: Input maximum power iteration number L, eigenvalue \(), initial guess &), normalization
factor @, for solving Eq. (2.45).

:for!=0,1,2,--- L —1do

Determine the WS parameter AD,

4:  Solve the WS linear system:

W N

[M - A@F} p(+3) = [/\(l) _ )\g’)] Fol) (Alg 4.1a)
r2?)]
XD 304 30 50 L (Alg 4.1b)
HF@(”?) ‘
5. Normalize the eigenvector solution by

P (1+3)
D _ S—y (Alg 4.1c)

H(I)(H'E) ‘

6: end for
7: return A2, dL)

In order to achieve a minimum spectral radius in Algorithm 4, one must choose A, as close to
A as possible. However, for practical simulation, A\, cannot be very close. Otherwise, over-shift
(As > A\) may happen, and the converged ) is not the smallest eigenvalue. Or the condition number
of the linear system M — \,F becomes very large, and the linear system becomes hard to solve for
iterative solvers [77].

In practice, two approaches are taken: (1) choosing some reasonable fixed value for \,, and (2)
defining AP as a function of the current eigenvalue estimate \(),

A thorough review of the methods to determine )4 has been provided, and more sophisticated
schemes have been proposed in[78]. In MPACT, we typically choose A,,;, = 1/3. The Purdue
Advanced Reactor Core Simulator (PARCS) shift [6] and the more advanced methods from [78]

are also available.
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2.3.3.2 Multilevel-in-Space-and-Energy Diffusion (MSED) Method

There are other eigenvalue solvers such as multilevel diffusion solvers [32, 79, 80]. These meth-
ods reduce the computational cost of solving the eigenvalue by preconditioning the system. The
multilevel solvers treat the multigroup diffusion problem as a high-order problem, and construct

additional low-order problems on coarser spatial grids, coarser energy grids or both.

Algorithm 5 Simplified algorithm of MSED solver.

1: Input Lyq, Lar

2: fOI'lmg: 1,2,--- Ly do

3:  Collapse the operators M, Fue in multigroup CMFD equations to the operators
M, Fi¢ and obtain initial guess of the solution ®, in grey diffusion equations using
the latest multigroup fluxes ® ;¢

4:  Solve the grey diffusion eigenvalue equation:

Mic®i¢ = MicFic®ic, (Alg 5.1)

with Wielandt shift parameter A, and Lgr grey power iterations.
5:  Solve the multigroup fixed source problem

Muyc®ye = MiexvcFie®ia, (Alg 5.2)

where X, 1s the matrix form of the multigroup fission spectrum.
6:  Update the eigenvalue \.
7. Check the convergence of the residual of CMFD Solutions.
8:  if converged then
9

break
10: end if
11: end for

12: return \, ®,,¢

The multilevel solver of interest in this work is the MSED solver. It is a multilevel method
composed of a fixed source multigroup diffusion equation and a grey diffusion eigenvalue prob-
lem. The Wielandt shifted power iterations are performed for the grey diffusion equation, where
the coefficients are collapsed from the multigroup diffusion equation. For MSED, the number
of energy groups of the grey diffusion equation is one, in other works the equation is typically
two-groups. However, one-group is preferred here because the fission emission spectrum is only
dependent on the energy integrated fission source. Therefore, the grey equation is a one-group
CMFD (1GCMFD) equation, and the results are used to approximate the fission source of the
multigroup diffusion equation. The multigroup fluxes are obtained from the multigroup fixed
source CMFD problem. Additionally, in the spatial domain, the MSED algorithm utilizes the
multigrid [81] method to solve the linear system of the diffusion problem. Several iterations be-
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tween the multigroup level and the grey diffusion level are performed until the convergence criteria
of the MSED solver is met. A simplified version of the algorithm for the MSED solver is shown
in Algorithm 5. L, is the number of iterations performed for the MGCMEFD system, and Lgpr
is the number of power iterations for the IGCMFD system. Compared to the standard MGCMFD
solver in MPACT, the computational cost of MSED is much less. Moreover, the maximum number
of power iterations performed in MSED method is L, Lar, that is much larger than the number
of WS power iterations to solve the MGCMEFD system in the default method. Therefore, MSED

helps the iteration scheme converge faster.

2.3.4 Other Solvers

There are other solvers such as the Generalized Davidson method [82] and Jacobian-free Newton-
Krylov (JENK) method [83]. The performance of these methods in practical high-fidelity simula-

tions remains to be investigated.

2.3.5 Coupling with Other Physics Solver
2.3.5.1 Picard Iteration

In the state-of-art nuclear reactor modeling, the feedback from other physics is taken into account.
The neutronics problem is usually coupled with the feedback (e.g. Thermal Hydraulics) via a Pi-
card iteration [84, 26, 3, 23, 4, 24, 25]. The Picard iteration is the preferred multiphysics iteration
in these tools because frequently the physics codes are developed separately, and need to function
independently, of each other. Consequently, the major whole-core, high-fidelity simulation codes:
DeCART [2], nTRACER [3], STREAM [41], NECP-X [33] and MPACT/VERA-CS [4] use this
approach. In these codes, the multiphysics coupling occurs at the “outer” iteration in which a
CMFD-accelerated transport iteration is performed, then the thermal-hydraulics (TH) solver per-
forms the solution. The appropriate solution fields are exchanged between the physics after each
iteration. The flowchart of the implementation of the Picard iteration scheme is shown in Fig-
ure 2.1. It should be noted that the Picard scheme presented here is slightly different from what
has been presented in [20, 85], where the neutronics solver is fully converged and then coupled
with solvers of other physics.

In realistic simulations, it has been observed that this iteration scheme is not stable. As a result,
the under-relaxation has to be used. The under-relaxation may be applied to any number of state
variables. The most common approach is to apply relaxation to the power distribution. Other com-
mon forms of relaxation may also be applied to the material density or material temperatures. If n

is used as the index of the outer iteration, then the pin power distribution pﬁf ) (r) that is transferred

26



Initialize

Start New Outer
Iteration n

!

e N\
Calculate Pin Power
Transfer Power

] <«— Relaxation

Solve Other Physics ]

Apply Feedback

Update Macro XS

Homogenlze ]
L2
Solve CMFD Equatlon ]

Update Source
v

Transport Sweep

o Y e Y cn Y e B e Y e

[ Finalize ]

Figure 2.1: Flowchart of multiphysics scheme for steady-state calculation in MPACT. This scheme
is also used in codes DeCART, nTRACER, STREAM and NECP-X. “XS” stands for cross section.

to the other physics solver is calculated by

per(r) = (1= B)p"(r) + Bp™(r), (2.49)

where £ is the relaxation factor and p™ (r) is the pin power distribution calculated by the neutron-
ics solver at the n'" outer iteration. There is no standard way to determine the relaxation factor,
therefore, the factor is invariably chosen in an empirical way. Sufficient and optimal relaxation
factors are known to be problem-dependent. Thus, in practice, it is quite common to encounter
problems that converge considerably slower or diverge compared to the non-feedback cases.

For this Picard iteration scheme, an important and perhaps counter-intuitive observation made
recently with respect to the use of CMFD acceleration, is that when one more tightly converges the
low-order diffusion solutions, the coupled iteration scheme converges more slowly and becomes
less stable. As better acceleration methods for neutronics problems are being developed for prob-
lems without feedback, the tight convergence of the low-order diffusion solutions creates the issue
of having a less robust multiphysics iteration scheme. This ultimately leads to a penalty on the

convergence rate of the acceleration scheme [82, 32].

27



2.3.5.2 Other Iteration Methods

Besides the Picard iteration, other methods have been developed and introduced to coupling the
neutronics and other feedback. These methods include the JENK [36, 20] method and the Ander-
son acceleration (AA) [37]. The JENK is a modified newton method without explicitly formulating
the Jacobian matrix. The implementation of JENK, however, still requires significant changes to
the current iterations schemes and the computational efficiency for the neutron transport calcula-
tion is still limited [86]. The AA is a method that mixes the solutions of previous several outer
iterations adaptively to stabilize the calculation. Compared to the JFNK method, it is much eas-
ier to implement. Early results in [87, 19] did not show a substantial benefit from AA. Results
from [38] in n'TRACER, have shown AA helps to achieve much better stability and efficiency and

is potential for practical simulations in the future.

2.3.6 Stability of Iteration schemes

Stability is used in a lot of chapters in this thesis. In the steady-state problem, it is used to show
whether the iterative method can converge. A stable method is a method that with the number
of iterations taken increasing, the iterative solution ¢ (z) approaches and eventually converges
to the actual solution of the discretized steady-state problem ¢(z). Particularly, in a mathematics
form, we want a method to be stable so that:

lim ¢™(z) = ¢(z). (2.50)

n—oo

The stability for the iterative scheme is different from the stability for the time-dependent solver

that will be presented later in this chapter.
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2.4 Transient Methods in MPACT

The Transient Multilevel (TML) method is used in MPACT to simulate the transient behavior of
the reactor, and is briefly introduced here. More details can be found in [54]. The TML scheme is
a multilevel algorithm using three levels with 3D-transport coupled to 3D-CMFD, and 3D-CMFD
coupled to the EPKEs. This effectively captures the evolution of the flux. In each level, the flux
equation is predicted with a coarse predictor time step, and corrected with a fine corrector time step.
This requires the flux factorized as a shape function and amplitude function. The shape function is
assumed to vary more slowly than the amplitude function in time. In the 3D-transport/3D-CMFD
coupling, the angular flux is factored as a shape function in angular space multiplying a cell-wise
amplitude function. The angular and sub-pin flux shape distribution are computed in transport
calculation first with a coarse time step. Then the cell-wise amplitude function will be corrected
by the cell-wise scalar flux calculated from the CMFD equations using multiple finer steps. In the
3D-CMFD/EPKE:s level, the cell-wise amplitude function of each CMFED step is treated as a shape
function, and the whole-core amplitude function is corrected by the EPKEs solution. The EPKEs

are solved with finer time steps.

2.4.1 Multigroup Transient Fixed Source Problem

To start, the multigroup time-dependent NTE is written as:

L2209+ 0]l ) =
1 G Xp,g(ra t) 1-p (’l", t) Sk ('I‘,t) ,1)S , T
Eng:l Eso,g’ﬁg(r)gbg’ (’l") + [ y= i| + Xd,g('r' 4)7T d ('I" ) '

(2.24 revisited)
The time domain must be discretized for numerical simulation. In this section, n is used to index

the time point rather than the outer iteration. The outer iteration is indexed with £ instead.
2™ = z(t,) (2.51)

i.e., 2™ is used to represent the variable x at the n** time point ¢,,. The n'* time step size at the
time ¢, is At,. The time derivative term in Eq. (2.24) is discretized with the BE method using the

isotropic approximation

10e(r ) 1 0(r) 65" (r) — oy Vir)

R~ ~ 2.52
Vg ot drv, Ot drv,At, (252)
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The isotropic approximation is used to overcome the practical difficulty for explicitly solving and
storing the angularly dependent time-derivative term, and is reasonably accurate for practical sim-
ulations when At,, is small [44]. The exponential transformation method is also applied to treat the
time derivative term in order to capture the rapid change of the flux and increase the stability region

for the time step size [51]. With the exponential transformation, the scalar flux is decomposed as:
by (t,1) = D (¢ 1), toy <t <ty (2.53)

The o™ is computed at the beginning of each time step by solving the EPKEs, which are presented
later in this section, with the estimated reactivity. For the fully-implicit BE discretization, the time

derivative term of the scalar flux is rewritten as:

3¢gat(7°) — a(n)qggn)(fr) + eaw(t"_t”l)%htn
; (I)(n) r) — @(”_1) r
~ a(n)¢én) ('r) + ea( )Atn 9 ( ) Atng ( ) (254)
n) 1 (n ¢(n) ('I‘) - ea(")Atn¢(n*1) (T)
:Oé( )gbé )(T)+ g Atn 3 :

The delayed neutron precursor equations are treated using the analytical integration method:

tn
O (r) = O (r)e N MAN / B, 1) S (r, )N Mt (2.55)
tn—1

with A(7,t) assumed to be constant )\,(Cn) (r) fort € [t,—1,t,]. A second-order approximation is

then made to treat the delayed fission source term Sy (r,t)Sg(r,t) as

Bl 1)Sp(r, 1) & 57 (1)SL) (1) Ll
A DS V() (1 - Eoghget)

) 2 tAt(At ’ (2.56)
+6,72(r) Sk () T A
f=t—t,1,y="2".

Then the delayed fission neutron source term can be expressed as
S (r) = W™ (r)SE (r) + 8¢V (r) (2.57)

where w(”) is the term to denote the contribution from the fission source at the current time step
and S ) is the term related to the delayed neutron precursors and fission source of the previous

two time steps. Making use of Eq. (2.52) and Eq. (2.57) reduces the time-dependent Boltzmann
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transport equation to the following discretized equation

n n n X r n
Q- Vol (r,Q) 1 0 ()l (r,0) = XelT gl () 4

A
G (n) (2.58)
n n Sirg(T)
D By (1) 8 () + =2
g'=1
Here
X)) = X)L = 8] + x5 )8 ) (2.59)
and
Siy(r) = Ag(r)o) (r) + By(r) Sy () + CM(r), (2.60a)
1
(n) - _ (n)
AV (r) %A%ﬂ+a At,), (2.60b)
Bén)(r) = va o (r) [w® () — g® (r)], (2.60c)
aMAt, 1(n—1)
C (1) = Xa(r)SY ™V (r) + %9 ( ), (2.60d)
(AN

formulate a fixed source problem denoted as Transient Fixed Source Problem (TFSP). In
Egs. (2.60), A may be viewed as a cross section, whereas B may be viewed like a fission spectrum,

and (' is the transient source from delayed fission neutrons and time discretization.

2.4.2 Source Iteration and CMFD Acceleration

For this TFSP, the source iteration scheme is also used. In operator form, the TFSP is represented

as:
1
£¢:—{S+xﬂ¢+gm (2.61a)
47

Here
Qun =Adp+ BF¢p+C (2.61b)

¢ is the vector of group-wise scalar flux; S and A are G x G matrices; F is the fission operator,
i.e. arow vector; x and B are column vectors are applied to the scalar quantities; C is the column
vector.

The details for the source iteration are shown in Algorithm 6. We use / to index the source

iteration, since n has been used to index the time point. And, n and k., are omitted for brevity.
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Algorithm 6 Source iteration scheme for TESP.

1: Input maximum outer iteration number L, inner iteration number L;; tolerance ¢; initial guess
¢(0)_

2: for(=0,1,...,Ldo

3 et ¢(e,o) — qb(g), and calculate the fission source

QY = xFo! + ApY + BFY +C. (Alg 6.1)
4. forl;=0,1,...,L; do
5: Compute the angular flux via transport sweep:
Lpthtl) S¢ &0 4 o (Alg 6.2)
6: Update the scalar flux
d)(Z,El-‘rl) — MOSD(Z,51+1) ) (Alg 63)
end for

g Let Y « g6l
it |76 - Fo|| < | 4| then

10: break
11: end if
12: end for

Following the same derivation of CMFD acceleration for the k-eigenvalue problem, the neutron

balance equation for the TFSP on the coarse mesh is:

_pm (n) (n) (n)
Z me [ (m,m’)79(¢m/79 q> )+D(mm,)g(®m,g+‘bm’,g)}

m/eN(m

G
(n) n (n) (n)
+(Etm9q>7(”)9 Zzsomg%gq)mg)v - (XmgSFm+Strmg)Vm’

g'=1
1<g<G, 1<m<M.

(2.62)
The definition of the coefficients are
ts
Ay = Jocc, 4 (t)qb r)dy , (2.63a)
erCm ¢QS( )dv
C,(r)dV
Crng = Jreci Vg( ) : (2.63b)
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Jrec,, Ba(r)SE(r)dV

By = - (2.63¢)
T e, SE()AV
This 3D-CMFD TFSP can be solved efficiently [51, 54] when written as
(M-S—xF-A-BF)®=C, (2.64)
with A € RMGxME B ¢ RMGXM apnd C € R. The operators are defined in the way as
[S®) (11619 = Z S s0mg’ g Prag’ (2.65a)
G
IXFR = Xing OV fng P - (2.65b)
g'=1
[A(I)] (m—-1)G+g — Am g(I)m g (2650)
G
[BF®](n-1)cg = Bing Y _ VS g Pong (2.65d)
g'=1
[C} (m—1)G+g = Cm7g . (2.656)

Eq. (2.62) is a fixed source problem which can be solved directly using a linear solver, rather
than an eigenvalue problem as Eq. (2.39) which must be solved via iteration for practical simula-
tions. However, this TFSP is quite large and nearly singular, and the solution is computationally

expensive.

Algorithm 7 CMFD acceleration for TFSP.

1: Compute D using the current estimate of the angular flux in the transport system.

2: Solve the CMFD TFSP problem to obtain the scalar flux on the CMFD spatial grid.

3: Scale the angular flux in the transport problem using the new scalar flux from the CMFD
problem. Also, use the CMFD scalar flux to generate a new fine-grid fission source.

4: Perform iterations on the transport problem (i.e., transport sweeps). During the sweep, the
fission source is fixed.

5: Repeat steps 1-4 until convergence.

More than a simple accelerator for the transport TESP, the CMFD solver is also an important
component of the TML. It is the intermediate level that connects the transport and EPKE solutions.
As illustrated in the next section, the CMFD TFSP is formed on the finer time grid. Its solutions
are used to calculate the coefficients for the EPKEs, which in turn provides a solution to correct

the CMFD solutions. The CMFD solutions are then used to correct the transport results.
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2.4.3 Exact Point Kinetics Equation

Integrating Eq. (2.62) with the initial adjoint flux @}, (0) over space and energy, the multigroup
CMFD transient equation is simplified to

_ gelf
dzit) _p®) - 5) (t)p( f+ ﬁ Xk: A (8)Ex() (2.66)
and
d&(t) _ w eff(t)p(t) —M&D), k=1,2,-- K. (2.67)

d  A@)"*
The equations are EPKEs. The initial adjoint flux is used to reduce the error resulting from inac-
curacies in the shape function [88].

When the coefficients are not obtained from the latest transport solution, they are referred to as
the PKEs. It should be noted that, in this dissertation, the term EPKE is only used to denote the
point-kinetics equation obtained with transport solution. Otherwise, the term PKE is used.

p¢/1 is the effective delayed neutron fraction. For brevity, the superscript // is omitted for the

£ shown later in the thesis.
Let the vector P(t) = {p(t),&1(¢), - - £,.(t)}, and define

p(H—B() A1(t) A2(t) . . Ak (t)

A A0 A©) N
—Ai(t) APt
E(t) = ) @5 | . (2.68)

A0
k() S Bk (1)
The system of EPKEs now can be expressed in operator notation as:

dP(t
A =E(t)P(t). (2.69)
dt
To solve Eq. (2.69), the BE is adopted. To avoid the matrix inversion, the precursor integration
methods such as first-order precursor integration (FP) or second-order precursor integration (SP)

are used. Eq. (2.67) is now rewritten as:

dg, (1) =)
dt

= [Net) + d%zft)}ek(km(”m_l)) = %ﬁk(t>p<t)eki”)“"‘”> . 270)
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Only the first-order approximation is introduced here. Here the superscript (™ is used to index the
time point, since the subscript ;, is used to index the delayed neutron precursor. The derivation of

the second-order method can be found in [51].

BMp@)

O) in time is approximated by:

ﬁlgn)p( n) t — t(n—1)

Betp(t) B VpnY v
A T ) e

Ay A LT

2.71)

Substituting Eq. (2.71) into Eq. (2.70), and integrating Eq. (2.70) in [t~ ()], we have:

n—1) (n— {1 (n n) (n n—1) (n— 1 (n
5(n) _ g(n_l)ew}mn —A i(f )P( Y ’100\1(6 )) 5( )p( : Bl(f )P( > lﬁ(/\;(v ))
k k T 0T AG-D A A A(n—1) NI
k k
2.72)

where ko(z) = 1 — exp(—z), k() = 1= 1-ro(z) )\(n = )\(n At,, Ay = A(0). Then

K K n) ~(n—1) _x(n) K n—1 I (n I(n
1y et _ T MG e S0 B ko) = A ey
Ay Pt kook Ay An—1) b (2.73)
L X A m >>p<n>
An) ’

Using BE to solve Eq. (2.66), we obtain

K

(n) _ p(n—1) (n) _ gn)
p p P B (n) 1 (n) ~(n)
= — A : 2.74
At A P+ A(); P ( )
Defining
n B () AO {1 (n
Q) = )\k o LAY (2.75a)
K n—1) _3(n) n—1 1(n
g _ i Mg Ve o B o) = sG]y (2.75b)
Ao G- L '
K n
o 2o N B (2.75¢)
Ao
and substituting Eq. (2.73) into Eq. (2.74), yields
nfl Sn A
pM = + (2.762)
v FOSECyv.
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5;5;%1)]9(”_1)/\0

A A (n-1) o) = mi (A7) (2.76b)
k

n n—1) —x(® n) (n
gl(c ) :fé 1)6 A Atn_‘_Qé )p( )_|_

2.4.4 Transient Multilevel Scheme

So far, we have shown the numerical methods to solve the time-dependent transport equation,
CMFD equation and the EPKEs. These methods are then used in the TML scheme to solve the
time-dependent NTE efficiently.

P EPKE (f )
¢7rrgn,gpor[(r7E? Q7 r) ¢ (r E f) EPKE llpdafe
CMFDN" 27> 4
) Transport update . CMED update ) Y,

Figure 2.2: Illustration of the TML Scheme. Courtesy of Ang Zhu [51, 54]. The scheme is a
multilevel method composed of three levels—transport, CMFD and EPKE. The solutions for the
solver with coarser time steps are corrected by the solutions of the solver with finer time steps

The original TML (TML-3) method is a multilevel PCQM [53] based on the coupling between
the transport level and the CMFED level, and the coupling between the CMFD level and the EPKE
level.

For the coupling between the transport TFSP and CMFD TFESP, the angular flux in a coarse
mesh C,, is factorized as

o (r, Q1) = P ()T, (r, Q, 1), (2.77)

with the normalization condition

1
— / / U, (r, Q,1)dQdV = 1. (2.78)
Vm reCny J47

Vin 18 the volume of the whole space. It has been shown that the equation for the coarse-mesh-wise
amplitude function, P,,(t), is the same as ®,,(¢) in the time-dependent CMFD equation [54]. The
superscript © is introduced to indicate that the angular flux solution is predicted.
As a result, in the PCQM scheme, the angular flux is corrected with the CMFD TFSP solution
by
05 4(1)

(& _ P m,
(pg (T‘, Qat> - QOg (Ta Qat) ®£7Z(t)

,TEmM, (2.79)

36



The ®” is homogenized from the transport solution, and ®¢ is the solution of the CMFD TFSP.
The CMFD level is solved with finer time steps with the coefficients interpolated between ¢,,_; and
L.

In the coupling between the CMFD TFSP and EPKE:s, the coarse mesh scalar flux is factorized

as
Dy (t) = p(t) Wi y(t), (2.80)
with the constraints
< o, .(0) . o= C. (2.81)
g

Here the operator < - > is defined as

< >=3 ) Val). (2.82)

n' is introduced to index the time point of CMFD level in [t,_1,t,], so the CMFD scalar flux is
corrected by

P C
(I)m,g (tn’)p (tn’)c

* ¢5L,1 (tn’)
< Oy (0)—mrs >

Vg

O (tw) = : (2.83)
where p® (t,,/) is calculated by the EPKEs using finer time steps. The coefficients in the EPKEs are
again interpolated between the coefficients at ¢,,,_; and ¢,,; on the CMFD level.

Parametric studies in [51, 54] show that the TML structure of a 5 ms time step for the transport
calculation, 1 ms time step for CMFD, and 0.2 ms time step for EPKEs is reasonable for Light
Water Reactor (LWR) super-prompt critical transient simulations. Therefore, in MPACT, using
the TML scheme with 5 ms transport time step size, and 5 CMFD steps per transport step, is the
default setting. 10 EPKE steps per CMFD step are used as the default to further decrease the error
from the EPKEs calculation.

2.4.5 Coupling with Other Physics

For transient analysis of the nuclear reactor, the feedback from the thermal-hydraulics (TH) prob-
lem is always taken into consideration. In MPACT, the TH problem is either solved by a simpli-
fied internal TH solver [89] or externally by the sub-channel code COBRA-TF (CTF) [90]. For
transient simulations performed in the thesis, the simplified TH model is used. In the simplified
model, a certain fraction (e.g. 98%) of the total power of a fuel pin is assumed to be deposited
homogeneously in the fuel pin. A simple fuel conduction problem is then solved. The ring-wise

temperature that determines the effective cross sections generation is then updated. For the tran-
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sient process, the model performs transient conduction to the fuel rod surface using an adiabatic
boundary condition. All the transient problems investigated in this thesis are the super-prompt
critical transients. Therefore, the adiabatic boundary condition works well for these transients.

The TH problem and neutronics problem are coupled in an operator splitting way. The neu-
tronics problem is solved by the TML methodology first, and the TH field is updated with the
latest pin power distribution. Then the TH field is synchronized with the neutronics solution at
the transport time steps. Special attention has been paid to applying the feedback to the TML.
On the 3D-CMFD level, the start of the CMFD coefficients is homogenized with the cross section
updated by the temperature but using the flux at the end of the time point. The numerical results
in [51, 48] show that the current coupling method can achieve reasonable accuracy for solving the
super-prompt critical problem with a fixed 5 ms time step. However, the current limitations of the
accuracy of TML are now likely the result of the temporal coupling of the multiphysics. One as-
pect to address in particular would be the proper incorporation of the Doppler effect on reactivity,
which influences the amplitude change. In the current scheme, a potential inefficiency of the TML
may result by requiring that the transport time step be sufficiently small to accurately capture the
Doppler effect which is not explicitly treated (e.g. we do not solve the transient conduction equa-
tion) in the coarse levels of the TML framework. Developing an adaptive time-stepping strategy
and developing a method for synchronizing the TH and neutronics solutions at the CMFD step [47]
are very important to improve the efficiency of the TML scheme.

2.4.6 Flowchart of Transient Multilevel Method

The overall flowchart for TH feedback in the TML algorithm is shown in Figure 2.3. The left ver-
tical blocks represent the general transport transient iteration scheme with TH feedback, where the
angular and sub-pin flux shapes are assumed to be accurate. The middle vertical blocks show that
the pin-wise amplitude function of the transport solution is corrected using intermediate time steps
by performing CMFD steps. The global shape function predicted by the CMFD steps is assumed
to be accurate, and the whole-core amplitude is corrected by the fine EPKE steps illustrated in the

right-most vertical blocks.

2.4.7 Stability of Time-dependent NTE

The time-dependent problem is an initial value problem and is also a dynamic system. The term
“stability” has been introduced to characterize the dynamic behavior of the system. Suppose that

we have a simple ordinary differential problem:

dy _
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Figure 2.3: Flowchart for TML coupled with TH feedback. Courtesy of Ang Zhu [51, 54].

The solution is stable if for every € > 0, there is a § > 0 such that when ||gy — yo|| < ¢ then
llg(t) —y(t)|| < e. Here y(t) is the solution of the problem with a perturbed initial value o [91]. It
can be expected that for the time-dependent NTE, when a positive reactivity is inserted and there
is no feedback, the problem is unstable. It can also be expected that when the feedback is weak

initially, the temporal system is also unstable. A small perturbation can introduce a large difference
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CHAPTER 3

Derivation of Nearly-optimally Partially Converged
CMFD

In this chapter, we develop the Fourier analysis for a simplified Coarse Mesh Finite Differ-
ence (CMFD)-accelerated neutron transport problem with feedback from flux-dependent cross
sections to provide a theoretical explanation, and gain insight into, the observable phenomena
in multiphysics calculations with CMFD. These observations are (i) if the acceleration equations
are tightly converged every iteration, the overall multiphysics iteration becomes less stable; and
(i1) properly loosening the convergence criteria of the acceleration equations at each iteration can
stabilize the overall scheme [92, 82, 39].

The Fourier analysis result is used to derive the relationship between relaxation and the par-
tial convergence of the CMFD accelerated transport calculation. Using this relationship we de-
velop a new, more robust multiphysics iteration scheme, nearly-optimally partially converged
CMFD (NOPC-CMED). It is shown that the NOPC-CMFD method in problems with feedback
(1) has stability properties comparable to CMFD in problems without feedback, and (ii) requires
no relaxation factor. The results presented in this chapter provide a theoretical foundation for the
development of a robust multiphysics iteration scheme for nuclear reactor modeling. The imple-

mentation of the method and application to various test cases are presented in Chapter 4.

3.1 Theory and Methodology

In this section, the problem of interest, the model problem to be analyzed, and the basis of NDA are
presented. The Nonlinear Diffusion Acceleration (NDA) method, rather than the CMFD method,
is introduced first because the NDA equations illustrate the process of the iteration scheme, with-
out loss of generality, and they are much simpler to show. The steps to go from NDA to CMFD
involve developing a second spatial grid for the low-order problem and associated prolongation
and homogenization operators. A complete treatment of this may be found in a number of refer-
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ences [11, 12, 14, 18, 75, 76]. Although the derivation of the CMFD result is not shown, results
for CMFD are shown in Section 3.2.

3.1.1 Model Problem

To analyze the stability of the iteration scheme using Fourier analysis, Eq. (2.6) is simplified to a
homogeneous, mono-energetic problem in slab geometry with isotropic scattering and reflective

boundary conditions.

p P s 080 (o) = L[5 8) 4 Wy (0. 8) |0, Gala)
/ b (e 1) dp, (3.1b)

w<o u) ¥(0, —p), 0<p<l, (3.1c)

O(X,—p) . —1<p<o0, (3.1d)

X/ / U (X, p) dpde = Py . (3.1e)

X is the size of the problem. Reflective boundary conditions are set on both sides of the problem
domain. The transport problem of interest is given in Eq. (3.1a). The transport equation, with
its boundary conditions, are given in Eq. (3.1a), and Egs. (3.1c) and (3.1d). The normalization
condition is given in Eq. (3.1e).

The mechanism of the feedback physics is generalized by assuming that the macroscopic cross
sections are linearly dependent on the scalar flux. The linear model is required for the Fourier

analysis. It is written as:

Si(z, §) & S, 6) & S+ S [6(x) = B, i = t,0,50, f,... (3:2)
with 5
B = ot (3:3)

The scalar-flux dependence of the macroscopic cross-sections is used as a simple proxy to more
complicated multiphysics feedback phenomena, such as temperature-dependent Doppler broaden-
ing from a heat conduction and/or fluid dynamics calculation, or nuclide density effects from a
fuel-performance or multi-phase fluid dynamics simulation. The linear flux-dependent feedback
model is a reasonable representation since the fuel temperature and xenon concentration are de-
pendent on the local pin power, that is mainly determined by the local, energy-integrated, scalar

neutron flux. The parameters for the linear-in-scalar-flux macroscopic cross sections are given as
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Y0 and X;1, with ¢ representing any of the supported reaction pathways. It should also be noted
that whatever the feedback is, the linearization approximation in Eq. (3.2) should be valid as long
as the iterative solution is close to the exact solution, where a first-order Taylor expansion is ac-
curate. This approximate model is also supported by the numerical findings that the pin-cell-wise
one-group cross sections are nearly linearly dependent on the localized one-group flux [39] in
MPACT [4, 65, 93] with a simplified TH model [89]. This leads to an analytic scalar flux solution
to the given problem that is constant in space and equal to the average scalar flux normalization
value of ®j. The normalization factor @, is used to define the unique eigenfunction ¢ (z, u).

Therefore, the true solution of this model problem is

ZaO
A= 3.4
T (3.42)
¢ (x) = Do, (3.4b)
®
O (z, 1) = 70 (3.4¢)
For simplicity, the eigenvalue problem in Eq. (3.1a) is rewritten in operator notation,
1
Lv =3 |s+aF|e, (3.5)
with
b= MyV, (3.6)
in which
d
L=p—+23, (3.7a)
dx
S=3,, (3.7b)
F=vEy, (3.7¢)
1
M= | p()dp,i=0,1---. (3.7d)

-1

The operators here are strictly the one-group, homogeneous ones, and are not the ones defined in
Section 2.3.

3.1.2 Nonlinear Diffusion Acceleration

The variants of NDA utilize the solution of the low-order diffusion problem to accelerate a high-

order transport calculation [13]. For continuous cases, the low-order problem can be derived by
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integrating Eq. (3.1a) over the angular variable to formulate the neutron balance equation as:

dJ (z)
dx

Y, ()6 (x) = [zs (2) + W3, (2) |6 (2) . (3.8)

The neutron current J is next approximated by Fick’s law with a nonlinear correction, and the

derivative of current is rewritten as:

dJ(x) B i do(x) .
s =D (@) =+ D (@) 6(x), (3.9)
with
1
and
. dJTS d d TS
D)= [ L ) O sy 3.10)

in which, the current J79(x) and scalar flux ¢7(z) are transport solutions denoted by 7%, i.e.,
I =My (3.10c)

Introducing Eq. (3.9) into Eq. (3.8), the neutron balance equation may be rewritten as a diffu-

sion eigenvalue problem:

d - d(x)
—%D(as) dx

+z, (x)+[)(a:)]¢(x)=)w2f (2) ¢ (z) . 3.11)

Though there are numerous methods to solve this generalized eigenvalue problem (such as the
generalized Davidson method [82], JENK method [83]), the most popular method in the nuclear

reactor analysis field is still the WS power iteration method shown in Algorithm 4.

3.1.2.1 Partial Convergence

One common “mistake” or inconsistency in other analyses of the low-order problem is to assume
the eigenvalue problem is fully converged [75, 94, 76, 18]. In practice, this eigenvalue problem
is only partially converged. To account for the partial convergence, we introduce the parameter
[ as an index for the power iteration with the maximum value L. DeCART [2], nTRACER [3],
MPACT [93], and likely other CMFD-accelerated deterministic transport codes all make use of
L as an input to specify the maximum number of power iterations allowed per outer iteration.
Methods reviewed in [78] have been used to determine the WS parameter, )\, in problems without
feedback. These methods improve the convergence rate of the low-order problem without increas-

ing the computational burden in most cases. However, it is difficult to analyze these methods since
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Algorithm 8 NDA iteration scheme for the neutron transport problem with feedback.

1: Input iteration number N, L, tolerance €, €, initial guess ) ) A0
2: forn=20,1,2,--- , N do

3:  Apply the feedback. For the model problem with flux-dependent feedback, the cross section
is updated by:
2 (@) = T + Tt [9)(2) — o) .
(When the spatial discretization is used, the coarse mesh wise cross sections are homoge-
nized with updated cross sections on the fine mesh of the transport problem.)
4:  Compute the diffusion coefficient and the nonlinear current correction factor for the
low-order diffusion equation with .J™ and o™ using Eqgs. (3.10).
5:  Solve the eigenvalue system with L power iterations using Algorithm 4 with initial guess
208
6:  Update the transport flux and eigenvalue with ®"1/2) L) \(+1/2)  \(n.L),
7:  Perform a transport sweep with the solution from the low-order problem:
£ gnts) = % S 4 A(ntz) Fm| g (n+3) | (Alg 8.1)
8:  Update the scalar flux, current, and eigenvalue estimates for the next iteration by:
w(n-ﬁ-%)
JOH) = @ M - (Alg 8.2a)
H M, w(”ﬁ)
g (nt3)
B — gy 0 e (Alg 8.2b)
st
0:  Let AHD ¢ A+3) R l7ED 1 /20,
10 if |k — K| < ecand || FOO0) — FrDgrD|| < e || FOHD @D || then
11: break
12:  endif
13: end for
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they are dependent on iterative solutions. To simplify the analysis in this study, A, is assumed to

be proportional to the eigenvalue with a fixed WS ratio r, i.e:
r=—. (3.12)

In practice, the partial convergence of the low-order diffusion solution is determined by the aggres-
siveness of the WS parameter \; and the power iteration number, L. Therefore, to study the effect
of the partial convergence of the low-order problem is to study the effect of the power iteration
number L and the WS ratio r.

3.1.3 Picard Iteration for NDA with Feedback

The overall iteration scheme for the NDA is shown in Algorithm 8. The scheme is a simplified
version of the scheme shown in Figure 2.1.

We are aware that in practice there may be an inner loop to solve Eq. (Alg 8.1) for converging
the scattering source. However, to reduce the number of parameters to be investigated in the
analysis presented in this chapter, it is assumed that only one transport sweep is performed with no

inner iterations on the scattering source.

3.2 Fourier Analysis

The process of Fourier analysis starts with the linearization of the equations comprising the itera-
tion scheme, and then introduces the Fourier Ansatz, that is a guess for the representative form of
the general solution in terms of its Fourier modes. In this section we show the analysis procedure
of NDA while that of CMFD is shown in Appendix A.2.

3.2.1 Linearization

To perform the linearization, it is assumed that the solution estimates of the nth outer iteration are
close to the true solution. This is equivalent to expanding the terms in the equations of Algorithm 8

in terms of the exact solution, and a small error term dependent on the iteration index. Substituting
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this expansion yields:

0Dy = 2t "M ) 1 0, (3.13a)
oM () = By + e\ (z) + O(e?) (3.13b)
D) (@) = 0o + eo" () + O(e), (3.130)
I (z) = eJ (z) + O(?) (3.13d)
A — 3+l L o). (3.13¢)

Then the cross sections updated with the linear flux-dependent model are expanded as:
2 (2) = i + €810 (z) + O(€2) . (3.14)

During the WS power iteration, the iterates are linearized in a similar way as:

¢(n,l)< ) (I)0+6¢(nl ( )+O(€2)7 (3153)
A = g+ eA™ + 0(), (3.15b)
w o A 1 O(), 3150

Substituting Egs. (3.13) and (3.14) into the equations involved in the process of NDA and neglect-
ing the O(€?) terms gives the relations for the propagation of the leading order errors through the

iteration scheme. This result is given in Egs. (3.16).

o (x) = ¢ (x) (3.16a)
1 d2¢(n J+1) (l‘) .
e a1 r)Sed )
dJM (@) 1 B2\ (x) . §
= ldx + 350 dlﬁ + Do (z) — (1 — r) S0t (2), (3.16b)
o ) = o), (3.160)
(n+3)
B . ] . )
“%a—(m Sott ™ (e, ) = 550 [ébg "2 () = 74 (@), (3.16d)
X
e (3.16€)
o — pgp(m3) (3.16)
A =0, (3.162)
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where

2al Efl) 2a0
— _ D, . (3.16h)
7 <2ao Sr0) T C

A detailed discussion about 7 is given in [39]. In summary, the parameter v notionally rep-
resents the intensity or magnitude of the cross section feedback due to the perturbation of the
feedback. A positive 7 indicates that the system has negative feedback, which is a key factor for
having a physically stable reactor. In this thesis, 7y is referred to as the feedback intensity.

The typical v for PWRs is on the order of 1074, with a maximum + less than 2 x 1073, We
also note that v may be treated as a local quantity, though it is expressed here with ®,. Further
discussion on this point is given in Chapter 4. The expression used here in Eq. (3.16h) is to present
a way to calculate the feedback intensity that we will make use of in Chapter 4.

After simplification, it may be found that \; = 0, indicating that the feedback analyzed for the
iteration scheme should be independent of the global parameter, k. Therefore, the feedback effect

from the critical boron search will not be explicitly analyzed.

3.2.2 Fourier Ansatz

Now the Fourier Ansatz is introduced by assuming:

gn) (z) = 0" eiwztOfE, (3.17a)
I () = gripyeSor (3.17b)
¢§n,1) () = ena(l)eiwztox’ (3.17¢)
§n+%)(x) — g GyeiTr0r (3.17d)
(@, p) = 0 a(p)e =0 (3.17¢)

0 is the iterative eigenvalue, w is the Fourier frequency, and (s, a and « are the magnitudes of the
error at the very first iteration. Eqs. (3.17) are substituted into Egs. (3.16) for the errors to obtain
f as a function of w, the frequency-dependent eigenvalues of the iterative method (or iteration

matrix).

[ (1) (1 )| Zea =

3
2
[— why — %61 + 98— (1=7)(1—c)aW |y, (3.182)
o =p,, (3.18b)
By =alP, (3.18¢)
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arctan (w)

05, = (Bs —B1) , (3.18d)

_ arctan (w)

w

o=~ [1 (Bs—2B) . (8o

3.2.3 Fourier Analysis Result

The Fourier analysis results consist of the final expressions of the spectral radius for both the

partially converged NDA and partially converged CMFD.

3.2.3.1 NDA

After simplification of Egs. (3.18), the iterative eigenvalue # of the error with frequency w is

0 (w) = [AL (w) = 7] frs (W) + [1 — A (w)] [fNDA (w) — % s (W) |, (3.19)
with
frs (W) = %n(w) (3.20a)
Frpa (@) = (14 ) frs () = 55, (3.200)
d=1-(1-r)(1-2c), (3.20¢)
A(w) = % (3.20d)
3

frs is the iterative eigenvalue for the source iteration, and fypa is the iterative eigenvalue for
the classical NDA method. The phrase classical CMFD refers to the NDA/CMFD-accelerated
scheme, where the CMFD solution is fully converged. ¢ is the effective scattering ratio, and A is
the error decay rate per power iteration.

The spectral radius is then given by:

= max O(w;)|, (3.21)

with the allowable Fourier modes being of the following discrete form to satisfy the reflective

boundary conditions:

s
s i=1.2. ... . 3.22
w] j EtOX I j » < ( )
The range of the parameters involved in this analysis is specific to the PWR problem and given in
Table 3.1.
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Table 3.1: Range of parameters used in Fourier analysis.

Symbol | c | y | r ¢
Definition | Scattering Feedback WS ratio Problem
Ratio intensity Size (mfp)
Range | <096 |[0.00025,0.002]| [0,1) | [0,500]
3.2.3.2 CMFD

The spectral radius for CMFD is presented in this section, with the detailed derivation presented
in Appendix A.2. When the coarse cell has the width A and contains ¢ evenly-spaced fine mesh
cells, the error transition matrix T (w) has the following definition:

BA (A% — 1)G (w) +73(TA)* 2 H (w)

T(w) = Hw)(1 —~) — |1 — A" 2
(@) = Hw)(1 = 7) - |1 - A ()] o0 (550 . 623)
with
1-¢
A(w) = =TT (3.24a)
3(LA)?
HeC™ GTeCl ueCl 1eC. (3.24b)

H is the error transition matrix for the fine mesh scalar flux due to the discretized transport
sweep operator. G is the operator for the coarse mesh surface net current obtained from the fine
mesh surface angular flux. The definition of these two terms can be found in [16, 94]. A more
recent and thorough discussion of these terms is presented in [76]. The term u is the spatial pro-
longation operator for the coarse mesh to fine mesh scalar flux. In [94], /3 is used for this operator.
However, In this chapter we use 3 to represent relaxation. Unless specified otherwise, the flat pro-
longation operator of classical CMFD is used, and u is 1. The incorporation of linear (or higher
order) spatial prolongation operators is easily handled through modification of u, and in general
affects the spectral radius in a fundamentally different way than the inclusion of feedback. The re-
sults obtained here and corresponding discussions with respect to feedback and partial convergence
are expected to hold true for the CMFD variants discussed in [94]-including linear prolongation.

The iterative eigenvalue from the coarse mesh operator for the Fourier mode with frequency w;
is:

f(w;) = max ‘Eigs <T(wj)) : (3.25)
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with the allowable Fourier frequencies:

wj:jﬁ,jzlﬂf--,{]—l, (3.26)
where J is the number of coarse meshes in the model problem. w; possesses a limit range due to
aliasing:

T(w;) = T(wj_27) = T(way_;) - (3.27)
The spectral radius is again given by the maximum of all the iterative eigenvalues over the fre-

quency shown by Eq. (3.21).

3.2.3.3 Fully Converged NDA/CMFD with Flux Relaxation

The expression of the spectral radius of the fully converged NDA/CMFD with flux under-relaxation
is presented in this section. The NDA with flux relaxation is given by Algorithm 3 in [39]. The
flux relaxation is different from the pin power relaxation, that is given in Algorithm 2 in [39] and
adopted in most practical simulation codes. It has been shown in [39] that the NDA with flux
relaxation can be more stable than NDA with pin power relaxation when the problem domain
optical thickness is larger than 50 mean free path (mfp).

The flux relaxation factor (3 is applied to update (1) by
3(m+2) = pa("t2) 4 (1 - g™ (3.28)

when solving Eq. (Alg 8.1). The iterative eigenvalue of the Fourier modes is written as:

(1 5 7> frs (w) + 8 [ Fypa (@) — % frs (w)] . NDA, (Algorithm 3) in [39],

) = max ‘Eigs (T(w))‘ : CMFD,

(3.29a)
with

BLA (™A — 1)G (w) + 73(TA)* 2 H (w)

T (w) =H(w) (1 —7) — fu 2 — 2cos (X Aw)

(3.29b)
The detailed derivation process for the spectral radius of CMFD is shown in Appendix A.2

and omitted here for brevity. It should be noted that for the transport sweep, step-characteristics is

assumed to be used, so the results can be more instructive for applications with the MOC solver.
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3.2.4 Validation of Fourier Analysis Results

The expressions are first verified through careful examination of Egs. (3.19) to (3.23) and their

limits.

A% is the term denoting the effect of the partial convergence of low-order diffusion solutions.
With L and r increasing, the partial convergence term should decrease continuously and

vanish eventually when the NDA has been fully converged. This is verified by taking the

limits:
lim A” (w)=0, (3.30)
L—oo
and
lim A* (w) =0 =0, (3.31)
r—1
because ) .
—C
A = > € 10,1
@) =m0

* When v 1s 0, 1.e. no feedback is present, with both L — oo and » — 1, the expression for

the iteration eigenvalue 6 (w) in the continuous problem is simplified:

0w) = 1+ ) frs (@)~ 5 (.32

which is just the expression of 6 for the classical NDA. When 7 is not zero with both . — oo

and » — 1, the expression is simplified as

() = fupa (@) =21+ ) frs () (3.33)

which is the expression for the spectral radius of the Algorithm 2 or 3 analyzed in [39]

without relaxation.

* For the discretized problem, when no feedback is present and the CMFD problem is fully

converged, the error transition matrix T (w) in Eq. (3.23) is simplified as

38 A (™A — 1)G (w)
2 — 2cos (B1Aw)

Tw) =H(w)-1 (3.34)

which is the same error transition matrix of classical CMFD as defined in [16].

To validate the Fourier analysis results, the spectral radii were measured from the numerical

simulations of a 1D test code using the model problem and compared to the values predicted by
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Eq. (3.21) for NDA and CMFD with partial convergence from various combinations of power iter-
ation number L and WS ratio r. All simulations for this chapter were run with a Gauss—Legendre
quadrature set of order 16. The transport discretization was Sy with step-characteristics. For the
continuous case, the problem was discretized into 4000 spatial cells, while for the discretized prob-
lem, 100 coarse mesh cells were used with 5 fine cells per coarse cell. The feedback intensity

adopted was 0.00121 (taken from [39]), and the scattering ratio c used was 0.94.

0.50 y=1.21e-03 c=0.94 y=1.21e-03 c=0.94 =5
0] — L=3r=0.9FA Iy
0.45 A D /.r'"""\x»"‘“‘""f"‘"‘"‘""“_‘ ’ L=10r=0.8 FA I
f A o0.8] —— L=20r=0.7 FA
0.40 / = L=3r=0.9 NM
e i e o L=10r=0.8 NM
0 h 0 0.7 =010,
20.35¢ / 2 A L=20r=0.7 NM
-] i T
e i S o6
= 0301 | -
g Ju
E 0.25 - % g T e 8T e~ -g— 0o o—-o--o E 0.5
-3 g/ Qo
n wn 0.4
0.20
—— L=3r=0.9 FA = L=3r=0.9NM 0.3
0.15 L=10r=0.8 FA e L=10r=0.8 NM
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Problem Optical Thickness Z.X Coarse Mesh Optical Thickness Z:A
(a) (b)

Figure 3.1: Comparison between Fourier analysis and numerical results. FA stands for Fourier
analysis and NM stands for Numerical. (a) shows the results of the NDA in continuous problem.
(b) illustrates the spectral radii of CMFD in the spatially discretized problem.

The spectral radii plotted in Figures 3.1 show that the Fourier analysis results and the numerical
results from the 1D test code are in very good agreement. There are some outliers for which
the spectral radius measured from the numerical simulation is smaller than that from the Fourier
analysis. This is likely due to the fast error modes in the numerical simulations. The differences
between the spectral radii estimated from numerical simulation and Fourier analysis are smaller
than 1%. This verifies the Fourier analysis results. Therefore, we conclude that the Fourier analysis
results presented in this section provide a way to analyze the effect of the partial convergence of
the low-order diffusion problem of NDA or CMFD on the stability of the iteration scheme for
multiphysics simulations.

Though Fourier analysis is a semi-quantitative approach to analyze the stability of the iterative
methods, many applications of Fourier analysis have shown that the behavior of real problems is
well predicted by the Fourier analysis [74, 16]. It will also be shown in Chapter 4 that what
is predicted for the partially converged NDA/CMFD with linearly flux-dependent cross sections
in this chapter is consistent with what is observed in the simulation of realistic problems using
MPACT.
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3.2.5 Effect of Partial Convergence

The plots shown in Figures 3.2 to 3.3 show the effect of the partial convergence of low-order
diffusion solutions on the stability of the overall acceleration scheme. Several observations are

made from these figures:
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Figure 3.2: Spectral radius as a function of power iteration Number L. (a) shows how L affects
the spectral radius in the problem without feedback. (b) shows how L affects the spectral radius in
the problem with feedback.
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Figure 3.3: Spectral radius as a function of the WS ratio . (a) shows how r affects the spectral
radius in the problem without feedback. (b) shows how r affects the spectral radius in the problem
with feedback.

* In Figure 3.2a and Figure 3.3a the spectral radius of the iteration scheme decreases with L

or r increasing. This illustrates that a more tightly converged low-order problem is desirable
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for simulations without feedback to achieve optimal convergence rates. Therefore, fully

converged NDA provides a theoretically optimal algorithm for the case without feedback.

When the domain size is large (e.g., 2, X = 300), the power iteration number L has to
be larger than 30 or the WS ratio r has to be very close to 1 to achieve the theoretically
optimal spectral radius of NDA p = 0.2247. The results imply the conventional WS power
iteration may not be an effective method since a very large L or a near-unit r makes the
NDA much more computationally expensive. This is likely why recent research has focused
on developing or applying more advanced methods such as the multilevel method [32] or
Generalized Davidson method [82], respectively, to solve the low-order diffusion eigenvalue

problem more efficiently.

Figure 3.2b and Figure 3.3b illustrate the effect of the partial convergence for problems with
feedback. If the low-order solutions are too tightly converged, the iteration scheme becomes
unstable. Under this scenario, as shown in Figure 3.2b, loosening the convergence criteria
by reducing the power iteration number L or aggressiveness of the WS makes the scheme
more stable. These results agree with what has been observed in [32]. Moreover, it can
be seen that (i) an optimal convergence rate exists for some combinations of L and r; (ii)
the optimal combination is problem-dependent. Therefore, the partial convergence of the
low-order problem should be within a specific, problem-dependent range to enable NDA to
achieve a fast rate of convergence. It is also observed that when the low-order equation is
solved to the same convergence criteria for two problems that are identical in all regards—
except one possesses feedback and the other does not—the iteration scheme may perform

better in the problem with feedback.

The plots illustrated in Figure 3.2b and Figure 3.3b are qualitatively similar to plots illustrat-
ing the effect of relaxation shown in [39] implying the effect of partial convergence should be
interpretable from the perspective of relaxation. The looseness/tightness of the convergence

of the low-order problem can induce too much or little under-relaxation.

3.2.6 Partial Convergence vs Relaxation

The link between partially converging the low-order diffusion problem of NDA/CMFD and re-

laxation arises from the structure of the power iteration. The initial guess of the power iteration

solution is the scalar flux from the previous iteration step &™) and the solution converges to the

exact solution of the low-order equation ®;

(n+3)

(f denotes fully-converged) as L. — oo and

r — 1. When the low-order equation is not fully converged, the scalar flux on the right-side of
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1
2>. This is analogous to the

. ) ) . +1
formulation of relaxation that uses a linear combination of ®™ and <I>J<cn 2 )

Eq. (Alg 8.1) is just an intermediate value between ®™ and ‘I>J(fn+

The partial convergence can be shown to be equivalent to a very special under-relaxation, and
this relationship can be expressed mathematically. Comparing Eq. (3.19) and Eq. (3.23) with
Egs. (3.29), it can be found that these two sets of equations have the exact same form, with S in
Eqgs. (3.29) defined as:

Bw)=1-A(w). (3.35)

The implicit under-relaxation due to the partial convergence is slightly different from the common
under-relaxation. In Egs. (3.29), the relaxation factor is a constant with respect to the Fourier
frequency. Conversely, as Eq. (3.35) illustrates, the under-relaxation from the partial convergence
of the low-order equations is w-dependent.

Figure 3.4a shows how (3 (w) varies with the Fourier frequency for both the spatially continuous
and discretized cases. Here, it is observed that 4(w) monotonically increases from 0 to 1 with w
increasing. The results show that the under-relaxation from partial convergence is mainly imposed
on the relatively flat error modes. This observation helps explain why the partial convergence of
the low-order diffusion solution can stabilize the iterations of problems with feedback, since the
flat error modes are shown to be the source of instability in [39], and under-relaxation must be
applied to reduce the spectral radius. The partial convergence mainly relaxes the relatively flat
error modes and does not affect the high-frequency error modes. This follows from the power
iteration procedure as fixed-point iterations generally eliminate the high-frequency modes very
quickly. Therefore, when the partial convergence of low-order problem is used, the instability
from the relatively flat error modes will be suppressed without altering (or amplifying) the high-
frequency error modes.

Figure 3.4b compares the effect of a constant relaxation factor and the effect of the implicit w-
dependent relaxation arising from the partial convergence in the continuous problem. In the figure,
the constant relaxation factors are the optimal relaxation factors that make the spectral radius of
NDA/CMEFED the smallest. It can be observed that even with the optimal relaxation factors, the
NDA cannot converge at the same rate as classical NDA without feedback. The reason is that
the relaxation factor that reduces the magnitude of the iterative eigenvalues of the relatively flat
error modes amplifies the high-frequency error modes. As a result, the spectral radius inevitably
becomes larger than the spectral radius of classical NDA. This degradation becomes more severe
as the model problem size increases because the relaxation factor S must be closer to 0 to dampen
the flat error modes. Under these circumstances #(w) =~ frgs(w), for which the spectral radius

approaches 1.
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Figure 3.4: ($(w) and |#(w)| as function of Fourier frequency. (a) shows how relaxation factor
f (w) varies with w for both NDA and CMFD. (b) compares the iterative eigenvalues of error
modes for fully converged NDA with optimal constant flux relaxation factor and NDA with par-
tially converged low-order diffusion solutions. (c) compares the iterative eigenvalues of different
error modes for fully converged CMFD with optimal constant flux relaxation factor and CMFD
with partially converged low-order solutions.

For the discretized problem, as Figure 3.4c shows, CMFD with partial convergence cannot
achieve the same spectral radius as the classical CMFD. However, the difference is small, and the
spectral radius is still smaller than that of CMFD with an optimal relaxation factor.

The concept of an w-dependent relaxation factor is somewhat strange. In practice, this may be
straightforward to implement for spectral methods, but it does not have an obvious analog for the
iteration schemes described here. However, we may understand the w-dependent relaxation factor
as being like a multi-level operator, rather than applying a fixed parameter, where an iteration is

performed on a different grid that targets a specific Fourier frequency.
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3.3 Relaxation-free Iteration Scheme

The previous section showed that the partial convergence of the low-order problem in NDA/CMFD
introduces the notion of a Fourier frequency-dependent relaxation. This behavior makes it possible
to develop a robust relaxation-free method based on the nearly-optimal partial convergence of the
low-order equations. Consequently, the spectral radius of the classical NDA/CMFD schemes can
be achieved for NDA/CMEFD in problems with feedback. The effect of partial convergence on the
stability of CMFD is close to that of NDA. Therefore, in this section, we first develop the nearly-
optimal relaxation-free method to partially converge the low-order diffusion problem of NDA, and
then apply the algorithm directly to CMFD.

3.3.1 NOPC Algorithm

In NDA the source of the instability for problems with feedback arises from the flat error modes.
As a result, the nearly-optimal partial convergence should make the )9 (wp) ’ as small as possible.
Here, w, is a relatively flat Fourier mode (w, ~ 0) that is used to predict the nearly-optimal partial
convergence. As shown later in this part, the parameter can be determined with the feedback
intensity.

Substituting Eq. (3.35) into Eq. (3.19) yields the following expression for 6 (w,):

0 (wp) = |1 =B (wp) =7 — B(wp) % frs (wp) + B (wp) fnpa (wp) - (3.36)

p

The iteration eigenvalue of the relatively flat Fourier mode is:

frs (wy) = 1, (3.37)

with w, ~ 0. To minimize the magnitude of 6(w,) in Eq. (3.36) is equivalent to setting the coeffi-

cient of frg:

3y
1_5("‘}1))_7_5(“’10)_2:0' (3.33)
(Up
Rearranging this equation yields:
l—7
B (wp) = T % . (3.39)
Since
B(wy) =1—A(w,), (3.35 revisited)
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1-¢
1—c’+w—3’%

d=1-(1-¢)(1—r), (3.20c revisited)

Awp) = , (3.24a revisited)

the nearly-optimal WS ratio r and the power iteration number L to achieve the nearly-optimal
partial convergence can then be calculated by:

1—Bw)t
—1— i , 3.40
AR TE (ro (40
or
L = Logag,) [1 — B (w,)] - (3.40b)

The formula to determine the optimal 7 is preferred to the formula for L because r can take any
value in the range [0, 1), but L can only take discrete integer values. This means r has more
flexibility to achieve the optimum.

The nearly-optimal partial convergence is problem-dependent. It depends on the size and the
feedback intensity of the problem. Upon revisiting the results in Figures 3.2 and 3.3, it can be
observed that there is a shared region for the partial convergence for problems of size >, X = 100
and ;X = 300—where the method has the same spectral radius as the classical NDA method.
Therefore, it should be possible to find a problem-independent w,, or w, dependent only on the
feedback, to estimate the nearly-optimal partial convergence irrespective of the problem domain
size.

Two important reasons for searching for a w, independent of the problem size are that in prac-
tical problems, (i) it is difficult to define the equivalent model optical thickness; and (ii) even the
partial convergence estimated using the optical thickness of the simulated problem may not be
suitable since the practical problem is not fully consistent with the model problem (which is a
homogeneous, mono-energetic, reflective problem with isotropic scattering). Consequently, our
motivation to heuristically determine a limiting w,, is analogous to an attempt to recover generality
that is lost in the simplifications made to define the model problem. As we show in Chapter 4, this
approach is successful.

To better illustrate the relationship between w, and the stability of the iteration scheme, the
maximum spectral radius p,, of the partially converged NDA in problems with sizes ranging from
;X = 100 to >, X = 500 (with various w, and L used to estimate the partial convergence) are

plotted and shown in Figures 3.5. The p,, is defined as:

m: 2X7 . 3.41
p Etxrer[lla(;gﬁoo}p(t 7(wp)) (3.41)
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Figure 3.5: Relation between the maximum spectral radius and the w, used to estimate the nearly-
optimal partial convergence. The feedback intensities 7 of these four figures are 2.5 x 1074, 5 x
107%,1 x 1073 and 2 x 1073,

It can be seen that when the L < 6, p,, is close to the optimal threshold of 0.2247. However,
there is no universal w, that can make p,, the same as 0.2247 for all cases. Nevertheless, the
deviation of p,, from 0.2247 is relatively small.

When a fixed w, is desired for different problem sizes, it is suggested that w, € [555, 155)
is a reasonable parameter range to estimate the nearly-optimal partial convergence. The p,, in
this range is ~0.274. Compared to the classical NDA, the total iteration number to reach the
convergence criteria € for the partially converged NDA with p = 0.274 is increased by:

_ logo.arae ~ In(0.2247)

= —1l=——"—-1~15%. 342
g lOg()_2247€ ln(0274) ¢ ( )
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Figure 3.6: Investigation and verification of the w, to estimate the nearly-optimal partial conver-
gence. (a) shows that the applicable range of w,, for various feedback intensities. The vertical line
representing the application range of w, for feedback intensity . The dashed line is the plot of the
formula Eq. (3.43) to determine the wy, in the applicable range based on . (b) shows that the spec-
tral radius of the NDA with the partial convergence estimated by Algorithm 9 is nearly-optimal.

For the case with a typical convergence criteria of ¢ = 1077, the total number of outer transport
iterations, [V, is increased by 1. Therefore, the overhead of a single additional iteration out of
O(10) may be considered negligible.

If a better nearly-optimal partial convergence estimation is desired, the w, can be determined
based on the feedback intensity . The applicable range of w, with L = 20 that allows the par-

tially converged NDA to achieve the spectral radius close to the classical NDA is searched and is

illustrated in Figure 3.6a. The formula

18y +0.013, ~ € [107% 1.5 x 1073, (3.43)

wp(y) =
/80, v >1.5x1073,

is suggested to be used from this study. The plot of this expression is the dashed line in Figures 3.6.

The algorithm to determine the nearly-optimal partial convergence is now presented and
shown in Algorithm 9. The estimate r should not be very close to 1 because the linear system,
Eq. (Alg 4.1a), will become nearly singular and difficult to solve by most conventional iterative
methods. In this study, the upper bound of the WS ratio 7 is set to be 0.98 [6]. The WS ratio cannot
be smaller than 0, either. Otherwise, the eigenvalue from the power iteration may not converge to

the fundamental mode. Therefore, when the calculated r is too small i.e., in this case r < 0.1,
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the WS ratio will be set to 0.1 and the maximum number of power iterations will be updated by

Eq. (3.40b). The minimum power iteration number L,, is also introduced as a lower limit.

Algorithm 9 Nearly-optimal partial convergence estimation.
Input:PI Number L; minimum PI number L,,; feedback intensity ~.
Output: WS ratio r, PI Number L.
1: Calculate w, with Eq. (3.43), or use a fixed w, from the suggested range [ 575, 7551
2: Calculate the WS ratio r with Eq. (3.40a), and make the r in a rational range by:

r < min(r, 0.98) .

3. if r < 0.1 then

4.  r<+0.1.

5. Update the power iteration number L using Eq. (3.40b), and
L =max(L, Ly,) .

6: end if

3.3.2 Stability of NOPC-stabilized Method

The spectral radius of NDA with nearly-optimal partial convergence, estimated using the feedback-
dependent w,, in Eq. (3.43), is shown in Figure 3.6b. It is observed that in all the cases, the
iteration scheme has a very similar or even smaller spectral radius compared with the classical
NDA. Therefore, the new relaxation-free NDA method for problems with feedback in which the
low-order diffusion problem is nearly-optimally partially converged is named as nearly-optimal
partially converged NDA.

The algorithm is next applied to the discretized model problem. And the method is referred to
as the NOPC-CMFD. We first apply this to the conventional CMFD method, where the flat pro-
longation is used for updating the transport solutions. The procedures developed in [16] are used
here to optimize the diffusion coefficients. The spectral radius results are shown in Figures 3.7.
From these results, it is observed that in utilizing the nearly-optimal partial convergence, the op-
timally diffusive Optimally Diffusive CMFD (odCMFD) problem with feedback can have almost
identical convergence behavior compared to odCMFD without feedback. Therefore, we conclude
that the nearly-optimal partial convergence method can (theoretically) make the iteration scheme
in the practical simulations with feedback have the same performance as the classical CMFD in
the simulations without feedback. Again we demonstrate this numerically in Chapter 4.

Next, we apply Algorithm 9 to the IpCMFD [95, 18] where the linear prolongation is used to

update the fine mesh transport solutions. The results are shown in Figures 3.8. Here, it is observed
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that not only does the ]pCMFD with the nearly-optimal partial convergence have almost the same

spectral radius as IpCMFD for the region where IpCMFD is stable, but that it is also more stable

than IpCMFD without feedback for the problem where the coarse mesh size is quite large. The

odCMFD or IpCMFD with nearly-optimal partial convergence is called nearly-optimal partially

converged odCMFD or nearly-optimal partially converged IpCMFD. It can be concluded that the

nearly-optimal partially converged IpCMFD is a potentially unconditionally stable variant of the
CMFD method for problems with feedback.
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Figure 3.7: Stability of the nearly-optimally partially converged odCMFD. L in (a) and (b) are 6
and 20, respectively.
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3.3.3 Discussions of the Relaxation-free Method
3.3.3.1 Applicable Range

In the previous sections, the stability of the new relaxation-free method based on the nearly-optimal
partial convergence is investigated in a relatively small parameter space. In this section, the stabil-
ity of the scheme over a wider range of feedback intensities, 7, and scattering ratios, ¢, for NDA
are studied. The predefined number of power iterations L in Algorithm 9 is 20 and L,, is 5. The
problem size is assumed to be as large as >; X = 500, which is larger than the size of typical
nuclear reactors. These results are shown in Figure 3.9. It can be seen in Figure 3.9 that the new
algorithm is predicted to be stable for a wide range of conditions with different scattering ratios

and orders of feedback intensity.
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Figure 3.9: Spectral radius of NDA with Algorithm 9 in problems with various combinations of ¢
and .

However, the method converges slowly or becomes unstable in the region with small ¢ and ~,
or with larger c and large v. When the scattering ratio is smaller than 0.9 and feedback intensity
is smaller than 1.5 x 1073, the spectral radius will not reach the optimal value of 0.2247, though
it is smaller than 1. A more aggressive WS parameter can resolve this issue when 7 is allowed to
be larger than 0.98. Nevertheless, in this parameter space, the method will not perform worse than
methods using power iteration, that are also limited by the aggressiveness of the WS parameter.
When 7 is larger than 2.5 x 1073, the scheme will become unstable with a sufficiently large scatter-
ing ratio. Presently, it is not assumed that this is a big issue for the modeling of PWRs because the
~v in a PWR seldom becomes larger than 1.5 X 1073, Furthermore, the scattering ratio of the fuel
region is seldom smaller than 0.9. We would also expect the method to be suitable in fast reactor

analysis where scattering ratios are smaller. However, for other highly scattering, and therefore
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thermal, reactor designs that might have extremely strong or sensitive reactivities, this numerical
scheme will likely have reduced efficacy. Although, a problem with a large value for v and high
scattering ratio is likely not representative of a sensible nuclear reactor design. The definition of ~y

Yan Efl) 24,0 (Zm Zf1)
S e Dy = (221 — Z01) gy(1 — ). (3.44)
7 (za,o Sr0) S0 20 T\ S0y T3y, ) B

is

This equation shows that as c increases, v becomes smaller, so a design with large c and large -y is

not likely possible.

3.3.3.2 Validity of Assumptions

In the model problem, it is assumed that v is a constant across the whole problem domain. How-
ever, in realistic problems, the temperature distribution and the flux distribution are not flat. Since
~ can be expressed as a local term dependent on the local flux and cross sections (or temperature).
We devote substantial focus on how to define a suitable global ~y to calculate the nearly-optimal
partial convergence parameters in Chapter 4.

Another implicit assumption is that convergence to the fundamental mode eigenvalue is quite
fast. However, there is a spectrum of eigenvalues in all problems, and a less aggressive WS param-

eter may affect the convergence to the dominant eigenvalue.

3.3.3.3 Implementation of the Relaxation-free Method

The relaxation-free CMFD method, i.e., nearly-optimal partially converged CMFD, should be easy
to implement in high-fidelity whole-core simulation codes that already have something like Algo-
rithm 8. The only modification compared to the current Picard scheme, is that some routines must
be added to estimate the feedback intensity and estimate the nearly-optimal partial convergence.
The overall structure of the iteration scheme is not altered. However, estimation of y can be non-
trivial as discussed in Chapter 4. Ultimately, we present this method as a relatively simple way to
enhance the robustness of high-fidelity whole-core simulators, such as MPACT, for problems with
feedback in the cross sections. Other methods are being developed and demonstrated to address
robustness in multiphysics iterations [34, 38], but we consider these approaches to be more com-
plex to adopt (sometimes considerably), and so far have only been shown to yield similar efficacy
as to the method we propose here. Nevertheless, these other works also present important current
future alternatives to the method described in this chapter. Another robust relaxation-free method
in this thesis, X-CMFD, is investigated in Chapter 5.
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3.3.3.4 Importance of the Relaxation-free Method

The Fourier analysis results show that the nearly-optimal partially converged NDA/CMFD method
(or relaxation-free method), has a spectral radius comparable with the classical NDA/CMFD in
a wide range of problems with feedback. The work is important because it enables the same
effectiveness of NDA/CMFD acceleration for problems without feedback to that for problems with
feedback. It eliminates the need for a user-defined and problem-dependent relaxation factor—where
one does not know the optimal relaxation factor a priori. Additionally, from the neutronics solver
perspective, the computational resource requirements will not vary much for the problems with
and without feedback, so long as the solvers for the other physics are much less computationally
expensive to evaluate compared to the neutronics solver. Lastly, the proposed method is developed
from well-grounded theory and mathematical analysis techniques; it is not determined strictly

through comparing results of numerical experiments and parametric studies.

3.4 Summary

In this chapter, the stability of partially converged NDA and CMFD to accelerate k-eigenvalue
neutron transport problems with feedback was studied. The relationship of partial convergence
and relaxation was derived, and a new relaxation-free iteration scheme was proposed. The results
of the Fourier analysis are well-grounded and provide a theoretical foundation for the development
of a robust relaxation-free multiphysics iteration scheme with NDA.

The investigation of the partial convergence of NDA and CMFD is motivated by the fact that
the low-order diffusion eigenvalue problem in most applications of NDA and CMFD is typically
solved with a limited number of WS power iterations. Therefore, the partial convergence is first
theoretically parameterized with the number of power iterations and the WS ratio. The Fourier
analysis results show that fully converging the NDA and CMFD is desired for problems with-
out feedback, however, this approach is detrimental for problems with feedback. The theoretical
results support the observation that the typical Picard iteration presented in the chapter is not un-
conditionally stable, and the convergence criteria on the low-order problem should be loosened to
achieve good convergence rates.

The partial convergence is then related to a more conventional flux relaxation factor. It is
shown that the partial convergence of the low-order problem introduces an implicit relaxation on
the Fourier modes—an intuitive result of the partial convergence. The relaxation depends on the
frequency of the Fourier modes and mainly affects the most slowly converging modes. This result
is significant for three reasons. First, this work provides the theoretical explanation as to why

partially converging the low-order problem of NDA/CMFD can stabilize 