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ABSTRACT

Modeling the time-dependent transient behavior of nuclear reactors with high-fidelity

pin-resolved detail has increased importance when the operating power of the reactor is in-

creased to improve the economic performance. In previous research, the efficiency of the solu-

tion of the steady-state neutron transport equation (NTE), which provides the initial condition for

the transient, was improved with the development of advanced methods such as the Multilevel-

in-Space-and-Energy Diffusion (MSED). However, the application of the MSED method was ul-

timately limited by numerical instabilities in the presence of cross section feedback. The first

objective of this research is to improve the efficiency of the steady-state solution by investigat-

ing and eliminating the numerical instability of accelerated neutron transport iterations when there

is cross section feedback.

The second objective of the research here is to address the computational costs of per-

forming transient simulations by improving the performance of the Transient Multilevel (TML)

method in the MPACT code. Specifically, the run time of the Coarse Mesh Finite Difference

(CMFD) solver in TML dominates the run time, so a one-group acceleration method is developed

and added. Automated time-stepping methods were also not previously available for TML. The

research here significantly improves the efficiency of the transient calculation by accelerating the

CMFD solver and using adaptive time-stepping methods. Improving the stability and efficiency of

the transient whole-core neutron transport calculations is the main significant and original contri-

bution of this work.

The specific contributions of this thesis for the steady-state calculation are the theory, devel-

opment, and implementation of the nearly-optimally partially converged CMFD (NOPC-CMFD)

method and the X-CMFD method in MPACT. As its name suggests, the NOPC-CMFD method

stabilizes the iteration scheme by determining and utilizing the nearly-optimal partial convergence

of the diffusion solutions. The X-CMFD method is an original method that stabilizes the iteration

by applying the feedback at the power iteration level of the low-order diffusion eigenvalue problem.

Compared to the default iteration scheme in MPACT, the methods developed here demonstrate the

same stability compared to CMFD-accelerated transport iterations in problems without feedback,

and reduce the overall run time of the full-core multi-state depletion problem by ∼43%.

xviii



The principal original work of this thesis for the transient simulations is the introduc-

tion of a one-group CMFD (1GCMFD) acceleration method and the development of adap-

tive time-stepping methods to further accelerate the TML scheme. The 1GCMFD method is shown

to reduce the overall computational time of CMFD by as much as 50% for practical large-scale

applications. The adaptive time-stepping method introduced adjusts the time step so that the max-

imum magnitude of the relative error is smaller than 1% for the applications considered in this

research. Other innovative methods include the usage of the Spectral Deferred Correction (SDC)

method to solve the point-kinetics equation and the use of Strang Splitting (SS) to replace Lie Split-

ting for coupling the neutronics and the TH solvers. The implemented SDC method is A-stable for

orders up to 8, and the SS addresses the inconsistency between the error and time step size when

the time step size is varied.

When the 1GCMFD acceleration and the adaptive methods are applied together, the perfor-

mance of the TML scheme for the Special Power Excursion Reactor Test (SPERT) test 86 problem

is reduced by ∼22% and the maximum magnitude of the relative error is reduced from ∼1.8% to

∼0.4%, compared to the use of TML with the default parameters.
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CHAPTER 1

Introduction

1.1 Motivation and Historical Review

Accurate and high-fidelity modeling of nuclear reactors by solving the whole-core neutron trans-
port problem has been the state-of-the-art for nuclear reactor simulation for over a decade [1, 2, 3,
4, 5]. Programs such as Consortium for Advanced Simulation of Light Water Reactors (CASL) and
Nuclear Energy Advanced Modeling and Simulation (NEAMS) have supported the development
of advanced methods in the high-fidelity simulations. The high-fidelity simulations are important
because they can help provide insight into several complex phenomena in nuclear reactor analysis.

A principle focus is modeling the transient behavior of a nuclear reactor with pin-resolved
detail. The basis is to solve the Boltzmann neutron transport equation (NTE) directly without
spatial homogenization and low-order approximations such as diffusion theory [6]. The procedure
to perform transient simulation consists of two parts. The first part is the solution of the steady-state
NTE that is an eigenvalue problem. The steady-state neutron transport calculation provides the
initial condition for the second part, that is the solution of the time-dependent NTE.

The CASL and NEAMS programs advance the state-of-the-art of the high-fidelity multiphysics
simulation significantly [4, 7], However, the neutron transport simulation is computationally ex-
pensive due to its high-dimensionality. Furthermore, there are considerable challenges with the
feedback from other physics that is always present in power reactors. Therefore, the issues that
the iterative method for solving the steady-state NTE is not robust and that it can be formidable to
maintain suitable accuracy while minimizing computational resources for realistic transient prob-
lems still exist.

The lack of robustness of the current iteration scheme in the steady-state calculation, and the

relatively long run time for the transient calculation are the motivations for the work in this thesis.
This thesis work is comprised of two topics. One focuses on improving the robustness of the
steady-state iterative methods. The other focuses on improving the efficiency of the transient
methods.
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1.1.1 Steady-state Methods

Historically, the whole-core neutron transport problem without feedback has been well studied with
both deterministic codes [8, 4], and stochastic codes [9, 10]. Successful acceleration methods have
been developed to make the solution of the whole-core high-fidelity neutronics problem tractable.
One widely-used technique is the Coarse Mesh Finite Difference (CMFD) method [11, 12], which
can be understood as a generalization of Nonlinear Diffusion Acceleration (NDA) [13] that also
coarsens on the spatial grid. NDA, and its variants, utilize the solution of the low-order diffusion
calculation to “precondition” (or synthetically accelerate) the high-order transport solution. Con-
siderable research has been performed to improve the convergence rate, stability and efficiency of
CMFD over the past decade [14, 15, 16, 17, 18].

However, nearly all of this work has not considered the multiphysics problem in the theoretical
formulation and analysis of the NDA/CMFD solvers. The development of the iteration scheme for
modeling the multiphysics problem is always treated as a completely separated task.

For the multiphysics simulation, there have been numerous research efforts that have attempted
to improve the robustness and performance–primarily through numerical experimentation [19, 20,
21, 22]. Most of these works have relied on the use of fixed-point iteration schemes (e.g. Picard
iteration) [3, 4, 23, 24, 25, 26, 27, 28, 29, 30]. The wide use of the Picard iteration approach
is due to its simplicity of implementation, and also results from the context that the software for
simulating the different reactor physics usually comes from separate, stand-alone codes. In this
type of “code-coupling”, the convergence of the steady-state problem is generally assumed to be
achieved when the solutions of the different solvers stop changing (i.e. a fixed point is reached).

In nearly all implementations of the Picard iteration in this context, issues such as the slow rate
of convergence or the lack of robustness have been observed. This can be shown for some simple
numerical cases [26, 31] and has also been reported for more realistic problems [32, 23, 33, 34].
In these previous works, there are two basic approaches used to address the issues of stability and
robustness; these approaches involve implementing under-relaxation or partially converging each
physics[22, 35]. Sometimes these two strategies are used in tandem. The motivation for using
relaxation is grounded in that (i) this is a simple thing to try when the iterations become oscilla-
tory, and (ii) it usually works. The logic for only partially converging the iterations is intuitive in
the sense that the method should not “waste time” converging an intermediate iterate of the trans-
port equation where we know the coefficients are not well converged. These approaches will not
necessarily work for every problem, and therefore they are not ideal.

Methods such as the Jacobian-free Newton-Krylov (JFNK) method [36, 34] and the Anderson
acceleration (AA) method [37, 38] are more stable than Picard iteration, and have been introduced
into the nuclear reactor simulation. These methods are proposed mathematically to couple equa-
tions of different physical fields. The JFNK method requires a significant change in the codes
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involved. Therefore, it is not suitable for most of the code-coupling systems such as the Virtual
Environment for Reactor Analysis (VERA) supported by CASL [4]. The AA method is proposed
to mix the solutions of previous iterations adaptively. It is much easier to implement compared to
the JFNK method. Very recent research [38] has shown it helps to achieve much better stability and
efficiency for the CMFD-accelerated transport scheme. Since the AA method can be understood as
a method with more complicated relaxation factors, its performance may be limited as suggested
by [39].

Nevertheless, the coupling of the feedback from other physics with the CMFD-accelerated
neutron transport is the Picard method implemented by most high-fidelity neutronics codes, in-
cluding DeCART [40], nTRACER [3], STREAM [41], and Michigan Parallel Characteristics
Transport (MPACT) [4]. Within the multiphysics iteration, the transport problem is solved with
one CMFD-accelerated “outer” transport iteration, and then relaxation is applied (typically to the
power, but potentially the temperature or density) when exchanging the data with a different feed-
back solver.

For this Picard iteration scheme, an important and perhaps counter-intuitive observation made
recently with respect to the use of CMFD acceleration, is that when one more tightly converges the
low-order diffusion solutions, the coupled iteration scheme converges more slowly and becomes
less stable. As better acceleration methods for neutronics problems, such as the Multilevel-in-
Space-and-Energy Diffusion (MSED) method, are being developed for problems without feed-
back, the tight convergence of the low-order diffusion solutions creates the issue of having a less
robust multiphysics iteration scheme. This ultimately leads to having to impose a penalty on the
convergence rate (through relaxation) of the acceleration scheme [32].

The first contribution of this thesis is the work in developing novel methods to improve the
robustness of the whole-core steady-state simulations. Prior to this work, the slow convergence
rate of the advanced acceleration method in problems with feedback was not fully understood. This
work seeks to analyze the stability of the CMFD-accelerated transport scheme in problems with
feedback and propose methods that let the iteration scheme have an almost constant convergence
rate irrespective of the presence of the feedback.

1.1.2 Transient Methods

Historically, researchers have performed a considerable amount of research to solve the time-
dependent NTE directly [40, 42, 43, 44]. However, direct transient simulation without accel-
eration requires thousands of time steps for simulating a typical super-prompt critical transient.
Therefore, novel methods have been investigated to speed up the transient simulation. One of the
recently successful pin-resolved transient transport methods [45, 46, 47] developed is Transient
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Multilevel (TML). This method has been recently implemented into MPACT to accelerate the
transient transport calculation. The method makes it feasible to run three-dimensional (3D),
full-core time-dependent simulations with pin-resolved details for nuclear reactors in a reasonable
time [48, 49, 50, 51].

The TML scheme is a multilevel algorithm using three levels with 3D-transport coupled to
3D-CMFD and 3D-CMFD coupled to the exact point-kinetics equations (EPKEs) to effectively
capture the evolution of the flux. In each level, the flux solution is estimated with a predictor with
coarse time step size and is factorized as a shape function and an amplitude function. The shape
function is assumed to vary more slowly than the amplitude function in time, while the amplitude
function is solved with a fine time-step corrector. The TML scheme is a method based on the ideas
of Improved Quasi-static (IQS) method in [52] and the Multigrid Amplitude Function (MAF)
method in [45], while employing the Predictor-Corrector Quasi-Static method (PCQM) [53] on
both the transport/CMFD coupling and CMFD/EPKEs coupling.

The TML scheme has been shown to increase the efficiency of running the transient transport
simulation without degradation of accuracy [54]. It has been shown that the TML scheme reduces
the total computation time by around 80% compared with the pure 3D-transport transient scheme
with averaged numerical relative error less than 1% in for Special Power Excursion Reactor Test
(SPERT) problem [51].

However, even with the advancements of TML, the total calculation time is still quite large for
some problems. The total calculation time for the SPERT [55, 56] test 86 case with 2880 cores
on the Titan compute cluster at Oak Ridge National Laboratory (ORNL) was around 2 hours [51].
One of the most important contributions to the long run times is that the CMFD solver run time
dominates the total calculation time. Therefore, it is a key component to improve to speed up
the overall calculation. There are two reasons why the CMFD solver takes a relatively large por-
tion of the computational effort (i) the Multigroup CMFD (MGCMFD) system constructed during
each time step is nearly singular or ill-conditioned and therefore IS hard to solve; (ii) the num-
ber of CMFD calculations per time step is large to capture the changes of the cell-wise amplitude
functions; (iii) the parallel CMFD calculation is inefficient.

An additional challenge is that when the TML is used for the transient simulation, no strategy
is used to determine the time step size and the number of CMFD calculations. For most of the
simulations, the time step size is set manually, and the number of CMFD calculations on the
CMFD level is a constant for each time step. What can be expected for this case is that the time
step size can be too coarse to capture the variation of the fast-changing physical fields, and be too
fine to achieve optimal accuracy when the solution varies slowly. Therefore, the current practice
of TML still has some notable inefficiencies in trying to balance the accuracy and computational
cost.
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The second contribution of this thesis is the work in developing novel methods to improve the
efficiency of the TML [54] scheme. This work seeks to reduce the run time of CMFD solver and
develop the adaptive time-stepping (ATS) methods for TML to further improve the efficiency of
the transient calculation.

The overarching goal of this research is to develop a set of methods so that practical 3D
whole-core time-dependent neutron transport simulation coupled with multiphysics is robust and
efficient.

1.2 Outline

The remainder of this thesis is structured as follows.
In Chapter 2, a general introduction of the theory and numerical methods for performing neu-

tron transport simulations is provided. Starting from the time-dependent continuous neutron trans-
port problem, various approximations are applied to obtain the formulations for the problems of
interest: the multigroup steady-state neutron transport equation and the multigroup time-dependent
neutron transport equation. The state-of-the-art numerical methods, and the important details for
solving these equations are described to the extent required to understand the work in this thesis.
These methods include the CMFD acceleration, iteration schemes to solve the steady-state NTE
coupled with feedback from other physics, the transient methodology for time-dependent NTE, and
the methods to couple the neutronics and feedback. No new theory is developed in this chapter.

Chapter 3 focuses on the analysis of the steady-state eigenvalue problem that is the initial condi-
tion for the transient simulation. Specifically, a Fourier analysis for a simplified CMFD-accelerated
neutron transport problem with feedback from flux-dependent cross sections is developed to pro-
vide theoretical insight into observable numerical instabilities in the steady-state neutron transport
calculation. The Fourier analysis result is used to derive the relationship between relaxation and
the partial convergence of the CMFD accelerated transport. Using this relationship a new and more
robust relaxation-free multiphysics iteration scheme is developed. This method eliminates the need
for a relaxation factor by developing equations to nearly-optimally partially converge the CMFD
equations used to iteratively accelerate the convergence of the multiphysics transport sweep. This
new method is called the nearly-optimally partially converged CMFD (NOPC-CMFD) method. It
is one of the significant and original contributions in this thesis.

The implementation of the new method developed in Chapter 3 is applied to various test cases
that are presented in Chapter 4. Chapter 4 focuses on developing a methodology for estimat-
ing “a key problem-dependent parameter”, the feedback intensity, required by the NOPC-CMFD
method. Next, the implementation of NOPC-CMFD in MPACT is described and several numeri-
cal calculations are performed. Problems ranging from a single pressurized water reactor (PWR)
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fuel rod to a full-core PWR cycle depletion are analyzed to assess the performance and robustness
of NOPC-CMFD over a wide range of conditions that consider multiple forms of multiphysics
feedback.

The conclusions of Chapter 3 suggest a number of ways to achieve robustness. The
NOPC-CMFD method is the first one and modifies the existing iterative methods. Chapter 5
presents a more fundamental rethinking of the state-of-the-art algorithms and considers the prob-
lem of feedback from the beginning. The results show that the current iteration scheme can have
the largest region of stability when the multiphysics feedback is applied at the power iteration of
the low-order eigenvalue problem. The new method is called the X-CMFD. The key feature of the
X-CMFD method is that the more tightly the low-order diffusion solution is converged, the more
stable the iteration scheme is. Therefore, sophisticatedly determining the partial convergence as
NOPC-CMFD does can be avoided. The X-CMFD method is also implemented in MPACT and
optimized for the practical simulations. Numerical results that range from a single PWR fuel rod
to a PWR 3×3 core are presented.

Chapter 6 shifts the focus to the transient problem. The one-group CMFD (1GCMFD) sys-
tem is introduced to accelerate the transient calculation. 1GCMFD primarily accelerates the
convergence of the source for MGCMFD calculations through 1G/MGCMFD iteration. And a
new 1GCMFD level is introduced into the TML method to alleviate the computation expense of
MGCMFD. The new TML with four computational levels is referred to as TML with one-group
CMFD level (TML-4). Various numerical cases are used to investigate the practicality of the
1G/MGCMFD iteration and TML-4 scheme. Numerical results show that using 1G/MGCMFD
iteration with the dynamic iteration strategy alone does better to capture the evolution of the am-
plitude function when the scalar flux distribution in energy space varies rapidly, and thus provides
more accurate results. However, TML-4 is only more efficient in capturing the variation of the
energy-integrated amplitude when cross section changes are small, and feedback dominates the
change of the reactivity. It does not help significantly when there are large Cross Section (XS)
perturbations like when a control rod is ejected. Therefore, the TML-4 scheme is limited in that it
does not in general improve the overall accuracy of the transport calculation using TML, and only
addresses the computational inefficiency of the CMFD level.

This motivates some simple but effective modifications to improve the overall accuracy of the
transient calculation with the TML scheme. These modifications are the focuses of Chapter 7.
First is the adoption of the Spectral Deferred Correction (SDC) method that is introduced to re-
place the backward Euler (BE) in the solution of the EPKEs. It is shown that the SDC method is
A-stable [57] for orders up to 8. For practical simulations, it is found that the SDC solver could let
the TML scheme produce comparably accurate results compared to the TML scheme with ultra-
fine EPKE steps. Next, the TML scheme is decoupled from the multiphysics in the CMFD level.
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This modification improves the accuracy of the TML scheme in problems with control rod move-
ment, and helps develop a new implementation of the 1GCMFD level for TML-4. The new TML-4
is more accurate compared to what was presented in Chapter 6. Lastly, the operator splitting (OS)
to couple the neutronics solver and the Thermal Hydraulics (TH) solver is changed from Lie Split-
ting (LS) to Strang Splitting (SS). It is observed that LS would produce inconsistent behavior
between the error and the time step size. In practical simulations, SS has comparable efficiency to
LS, but produces more accurate results.

Finally, in Chapter 8, the ATS methods are developed for the TML scheme in problems with the
feedback. Two adaptive methods are developed separately to limit the errors from the neutronics
solution and the OS. An additional method to determine the number of CMFD steps in the CMFD
level is also proposed. The two ATS methods are derived based on point-kinetics equation (PKE)
models. The PKE models are used to estimate the temporal error and predict the maximum error
in a time range. The time step size is calculated so that all the errors estimated by the two models
are smaller than the user-specified error tolerances, and the number of CMFD steps is adjusted
accordingly. Numerical results indicate that the current default time step size for time-dependent
simulation is neither fine enough to capture the variation of flux when reactivity is being inserted,
nor efficient after the reactivity insertion. Compared to the old scheme, the ATS methods generally
improve the accuracy at the cost of efficiency for stages of reactivity insertion, and improve the
efficiency after the reactivity insertion.

Finally, Chapter 9 provides conclusions and areas of future work.
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CHAPTER 2

Background

This chapter provides the theoretical and numerical backgrounds needed to understand the work
in this thesis. The chapter starts with the introduction of the continuous neutron transport equa-
tion (NTE) in Section 2.1. Forms of both the steady-state and the time-dependent NTE are briefly
introduced. They are the fundamental equations for high-fidelity nuclear reactor simulations. Sec-
tion 2.2 describes the basic methods to solve the NTE, and introduces the discretization and approx-
imations made to arrive at the multigroup NTE suitable for numerical computation. The methods to
solve the steady-state NTE are introduced in Section 2.3, and the methods for the time-dependent
NTE are introduced in Section 2.4.

2.1 Neutron Transport Equation

In this section, both the time-dependent and the steady-state k-eigenvalue neutron transport equa-
tion are presented.

2.1.1 Time-dependent Neutron Transport Equation

The high-fidelity time-dependent transport simulation must solve the 3D time-dependent Boltz-
mann neutron transport equations and delayed neutron precursor equations given by

1

v(E)

∂ϕ (r,Ω, E, t)

∂t
+Σt(r, E, t)ϕ (r,Ω, E, t) + Ω ·∇ϕ (r,Ω, E, t)

=

∫ ∞
0

∫ 4π

0

Σs (r,Ω ·Ω′, E ′ → E, t)ϕ(r,Ω′, E ′, t)dΩ′dE ′

+
1

4π
χp(r, E, t)

[
1− β (r, t)

]
SF (r, t) +

χd(r, E, t)Sd (r, t)

4π
,

(2.1)

and
dCk (r, t)

dt
= βk (r, t)SF (r, t)− λk (r, t)Ck (r, t) , k = 1, 2, . . . K . (2.2)
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SF and Sd are the total fission neutron source and delayed neutron source, respectively. These
terms are defined as

SF (r, t) =
1

k0
eff

∫ ∞
0

ν(E ′)Σf (r, E
′, t)φ(r,E ′, t)dE ′ , (2.3)

and

Sd(r, t) =
K∑
k=1

λk(r, t)Ck(r, t) . (2.4)

The initial eigenvalue k0
eff of the steady-state NTE is included in the fission source term to ensure

the criticality of the initial state. k0
eff is obtained by solving the steady-state NTE, that is discussed

in Section 2.1.2. The independent variables are t, r, Ω and E, which form the phase-space of the
solution. The definition of the terms in Eqs. (2.1) to (2.4) are summarized in Table 2.1. It should
be noted that β and χd are typically obtained by fission-source weighting, since delayed neutron
fractions and spectra are different for different fissionable isotopes.

The term of the greatest interest for the time-dependent simulation is the neutron scalar flux,
defined as

φ(t, r, E) ≡
∫

4π

ϕ(t, r, E,Ω)dΩ , (2.5)

where the angular flux, ϕ, is the fundamental unknown of the NTE.
An accurate pin-resolved scalar flux result is very important for the analysis of the nuclear

reactor. It can provide insight into several complex phenomena on the sub-pin level to researchers,
and it is used by designers in nuclear reactor safety analysis.

Table 2.1: Definition of terms in time-dependent transport equations.

Term Definition Term Definition

ϕ Angular flux φ Scalar flux
Ω Direction of neutron flight E Energy
r Position v Velocity
Σt Total cross section Σs Scatter cross section
Σf Fission cross section ν Fission neutron yield
C Delayed neutron precursor density k Precursor group index
χp Prompt fission neutron spectrum χd Delayed fission neutron spectrum
β Delayed neutron fraction λ Precursor decay constant
SF Prompt fission neutron source Sd Delayed fission neutron source
K the maximum number of precursor groups.
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2.1.2 Steady-State Neutron Transport Equation

The transient simulation relies on the initial condition which must be obtained via the steady-state
neutron transport calculation, where the time derivative terms are neglected. Therefore, Eq. (2.1)
is simplified as:

Ω ·∇ϕ (r,Ω, E) + Σt(r, E)ϕ (r,Ω, E) =
χ(r, E)

4πkeff

∫ ∞
0

ν (()E ′)Σf (r, E ′)φ (r, E ′) dE ′+∫ ∞
0

∫ 4π

0

Σs (r,Ω ·Ω′, E ′ → E)ϕ(r,Ω, E ′)dΩ′dE ′ .

(2.6)
This is the steady-state neutron transport equation, and is a generalized eigenvalue problem. χ is
the averaged fission spectrum weighted by prompt, χp, and delayed fission neutron, χd, spectrums.
The quantities of interest are the eigenvalue, keff , and the corresponding eigenvector, φ. The
keff , which is also called as multiplication factor in the nuclear reactor physics field, indicates the
criticality of the system. If keff is one, then the system is critical and will remain at the current
conditions unless otherwise changed. A keff less than one indicates that the system is subcritical,
and that the reactor system is unable to sustain the chain reaction of nuclear fission reactions to
produce power. Finally, a keff greater than one indicates that a system is supercritical and, if not
changed, will increase in power. It must be noted the keff of the modeled reactor is seldom one
due to modeling error even though its corresponding realistic problem is critical. Compared to
Eq. (2.1), the dimensionality of Eq. (2.6) is reduced by one. However, this 6-dimension equation
is still hard enough to solve.

2.1.3 Feedback in the Neutron Transport Equation

The NTE becomes considerably more difficult to solve because of the inherent multiphysics in
a reactor. The most important forms of feedback come from such physics as TH and nuclide
transmutation. If the feedback from other physics is taken into account, the macroscopic cross
sections must be written with a new dependent variable as

Σi(r, E, t)→ Σi(r,S, E, t) =
∑
e

Ne(S, E, t)σ
e
i (r,S, E, t) i = t, s, f ,̇ (2.7)

where S is the vector of state variables determined by other equations that cause a change in the
macroscopic cross section. For example the water density will affect the atomic number density,
Ne, and the temperature can determine the microscopic cross section, σe, where e is the index of
the elements.
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The equations to determine the state variables will typically have some terms that depend on
the solution of the NTE, hence we refer to this process as feedback. Examples of quantities in
S can be temperature, moderator density, equilibrium Xenon, boron concentration, etc. The state
variables are obtained from the solutions of other physics equations. The coupled equations are
expressed in operator form as:

H (r, P (SF ), φ,Σi,S, keff , t)S(r) = 0 , (2.8)

where H is the operator dependent on the state variables, transport solutions and time. Variable t
is present to generalize the time-dependent perturbation and the differential operator in time. keff
is included to show the equation for the physics problem such as critical boron search. P (SF ) is
the thermal power generated by the fission.

For example, a simplified model to determine the temperature distribution is written as:

ρcp
∂T (t, r)

∂t
= ∇ · k(r, T )∇T + q′′′(r, SF ) , (2.9)

where q′′′ is the heat generation rate. And the equations for the concentrations of the Iodine-135
and Xenon-135 are

dNI

dt
= γISF − λINI , (2.10a)

dNXe

dt
= λINI + γXeSF − λXeNXe −

∫ ∞
0

σXe,a(E
′)NXeφ(r, E ′)dE ′ . (2.10b)

γI and γXe are the effective fractions of fission products for I and Xe, respectively. And λ is the
decay constant. The full sets of the equations of other physics are omitted, since they are out of
scope in this thesis.

2.2 Overview of the Principle Methods

The realistic neutron transport problem can only be solved with the help of numerical methods.
Two different classes of numerical methods have been developed in the field–the stochastic method
and the deterministic method.

2.2.1 Monte Carlo Methods

The stochastic, or Monte Carlo (MC), methods simulate the behavior of individual particles rep-
resenting the neutrons in the nuclear reactor [9, 58, 10, 59]. During the iteration, the MC code
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randomly samples the probability distributions of all aspects of the phase-space for a given prob-
lem, i.e., the birth of a fission neutron, the direction of flight, the energy of the neutron, the distance
to the next collision and the type of reactions, etc. The MC code tracks the behavior of a neutron
till the neutron leaks out of the reactor or is absorbed. If the absorption causes a fission, the fission
sites will be recorded and used for the next iteration. The process is repeated for all the neutrons
in the same iteration, that is referred to as batch. The iterative k-eigenvalue can be calculated by
ratio, that is the number of new-generated neutrons simulated for the next batch to the number of
neutrons simulated for the current batch.

Since the number of particles simulated is far smaller than the number of neutrons in the nu-
clear reactor and a finite number of batches are simulated, the results provided by the MC method
are the estimates of the solutions associated with statistical uncertainties. Since much fewer as-
sumptions and approximations are made in the MC codes compared to the deterministic codes,
the MC solutions are widely considered as being able to provide the most accurate results. How-
ever, for the large-scale problem, the number of neutron particles simulated is tremendously large
in order to acquire the results with reasonable uncertainties. Meanwhile, the computational time
scales with the amount of the tallied quantities. MC methods also have the added challenge that the
randomness of the events makes locating the position of the data in memory more time-consuming
because modern memory architectures assume high degrees of spatial and temporal coherency in
the memory accesses of programs. Therefore, Monte Carlo codes are still considered to be too
expensive for the whole-core multiphysics transport calculation.

2.2.2 Deterministic Methods

The deterministic codes make many more approximations to solve the neutron transport equation
compared with MC methods. The accuracy and efficiency of the codes are highly affected by the
assumptions made in the numerical methods. The methods based on the Method of Characteris-
tics (MOC) have been the most popular in recent decades [60, 7]. Due to high computational re-
quirements of the direct 3D-MOC calculation, a variant of MOC, the 2D/1D method [1, 2, 3, 4, 41]
has been popular in recent years.

The 2D/1D method takes advantage of the fact that the most significant heterogeneity in a Light
Water Reactor (LWR) is in the radial direction, and there is less heterogeneity in the axial direction
of a typical reactor core design. The essential idea of the 2D/1D method is to perform a highly
accurate transport solution radially and a lower-fidelity nodal transport or diffusion solution axially.
The 2D MOC is usually used as the radial solver, and axial solvers include various 1D methods,
such as the Nodal Expansion Method (NEM), SPN , SN , etc [61]. The coupling between the 2D and
1D solvers involves the radial and axial transverse leakage terms [61, 62]. The Michigan Parallel
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Characteristics Transport (MPACT) code has the capability of modeling with either a 3D-MOC
calculation, or a 2D/1D calculation, therefore it is the representative of the modern deterministic
high-fidelity codes [61, 63].

The methods presented in this thesis are implemented in MPACT. Therefore, the focus of the
background is on the deterministic methods used in MPACT. Many of the details of the 3D-MOC
scheme and 2D/1D scheme can be found in [1, 2, 4, 41, 61, 63, 64, 40, 65], so they are omitted
here. However, the salient traits relative to this dissertation are described in the following sections.

2.2.3 Common Approximations for Deterministic Codes

2.2.3.1 Multigroup Approximation

Multigroup approximation is one of the most common approaches to discretize the energy space.
In the multigroup approximation, the energy space is separated into G groups. The energy group
is indexed with the conventional notation g ranging from 0 to G.

The bounds of the gth energy group are [Eg, Eg−1], with E0 = Emax and EG = 0, where Emax
is the maximum energy considered for a neutron, typically, 20 MeV . In the energy space, the
scalar and angular fluxes are discretized into G groups, and the gth component is defined as:

ϕg(r,Ω) =

∫ Eg−1

Eg

ϕ(r,Ω, E)dE , (2.11)

φg(r) =

∫ Eg−1

Eg

φ(r, E)dE . (2.12)

The multigroup cross section is defined by preserving the reaction rate:

Σi,g(r) ≈

∫ Eg−1

Eg
Σi,g(r, E)w(r, E)dE∫ Eg−1

Eg
w(r, E)dE

, i = t, s, g, . . . . (2.13)

A suitable weighting function, w, has been introduced. The w is typical the scalar flux solution of
the self-shielding calculations [66]. Usually, νΣf are provided together with group-dependence,
i.e.

νΣf,g(r) ≈

∫ Eg−1

Eg
ν(r, E)Σf,g(r, E)w(r, E)dE∫ Eg−1

Eg
w(r, E)dE

. (2.14)

The group-wise fission emission spectrum is obtained by integrating the energy along the interval,
written as:

χg(r) =

∫ Eg−1

Eg

χ(r, E)dE . (2.15)
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And for the neutron velocity

vg =

∫ Eg−1

Eg
dE∫ Eg−1

Eg

1
v(E)

dE
. (2.16)

Next the time-dependent multigroup neutron transport equation is obtained by integrating
Eq. (2.1) over each group’s domain, and is written as:

1

vg

∂ϕg (r,Ω, t)

∂t
+Σt,g(r, t)ϕg (r,Ω, t) + Ω ·∇ϕg (r,Ω, t)

=
G∑

g′=1

∫ 4π

0

Σs,g′→g (r,Ω ·Ω′, t)ϕg′(r,Ω′, t)dΩ′

+
1

4π
χp,g(r, t)

[
1− β (r, t)

]
SF (r, t) +

χd,g(r, t)Sd (r, t)

4π
,

(2.17)

with the total fission source rewritten as

SF (r, t) =
1

k0
eff

G∑
g=1

νΣf,g(r)φg (r) . (2.18)

Following the same procedure, the steady-state multigroup neutron transport equation is

Ω ·∇ϕg (r,Ω) + Σt,g(r)ϕg (r,Ω) =
χg(r)

4πkeff

G∑
g′=1

νΣf,g′ (r)φg′ (r) +

G∑
g′=1

∫ 4π

0

Σs,g′→g (r,Ω ·Ω′)ϕg′(r,Ω′)dΩ′ .

(2.19)

2.2.3.2 TCP0 Scattering

The neutron scattering microscopic cross section is a complicated function of the Ω′ · Ω, and is
expanded via Legendre polynomials [67]:

σis(r,Ω
′ ·Ω) =

∞∑
n=0

2n+ 1

4π
Pn(Ω′ ·Ω)σsn,g′→g(r) . (2.20)

Here, i is the index of isotopes, and Pn is the nth Legendre polynomial.

σisn,g′→g(r) ≡
∫

4π

Pn(Ω′ ·Ω)σis,g′→g(r,Ω
′ ·Ω)dΩ′ . (2.21)

Using high-order scattering moment significantly increases the computational cost. Therefore, in
MPACT, it is common to use an isotropic scattering cross section, which means that all but the 0th
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scattering moment are neglected. Then the macroscopic cross sections used are

Σs0,g′→g =
∑
i

Niσ
i
s0,g′→g , (2.22)

where N is the atomic number density.
The resulting steady-state transport equation becomes much easier to solve and is given by[

Ω ·∇ + Σt,g(r)
]
ϕg(r,Ω) =

1

4π

G∑
g′=1

Σs0,g′→g(r)φg′(r) +
χg(r)

4πkeff

G∑
g′=1

νΣf,g′(r)φg′(r) ,
(2.23)

and the time-dependent neutron transport equation is given by

1

vg

∂ϕg (r,Ω, t)

∂t
+
[
Ω ·∇ + Σt,g(r)

]
ϕg(r,Ω) =

1

4π

G∑
g′=1

Σs0,g′→g(r)φg′(r) +
χp,g(r, t)

[
1− β (r, t)

]
SF (r, t)

4π
+
χd,g(r, t)Sd (r, t)

4π
.

(2.24)

The isotropic approximation, however, makes the results less accurate. Therefore, Transport-
Corrected P0 (TCP0) method is used [68, 69]. The scattering cross section matrix and the total
cross section are artificially altered to offset losses in accuracy. The approach may result in nega-
tive cross sections and cause convergence problems for the transport solver.

Since all the numerical simulations in this thesis are performed with TCP0, the TCP0 correction
is applied to the scattering term for all the derivations shown later in this chapter.

2.2.3.3 Angular Discretization

In the angular space, the discrete ordinates method or SN [70], is used to discretize the angular
variable. The angular space is discretized into P representative directions of travel. Each direction
Ωp has a corresponding weight wp that can be used for numerical integration over the angular
variable as follows: ∫

4π

f(Ω)dΩ ≈
P∑
p=1

wpf(Ωp) . (2.25)

Then the scalar flux is given by

φg(r) =
P∑
p=1

wpϕg,p(r) . (2.26)
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The SN form of neutron transport equation can now be written as[
Ωp ·∇ + Σt,g(r)

]
ϕg,p(r) =

1

4π
qg(r) , (2.27)

where, qg(r) is the source and is defined by:

qg(r) ≡
G∑

g′=1

Σs0,g′→g(r)φg′(r) +
χg(r)

4πkeff

G∑
g′=1

νΣf,g′(r)φg′(r) +Qext,g(r) , (2.28)

where Qext,g is the source from time discretization, delayed neutron precursor, etc.
Eq. (2.27) is further solved with the MOC method. Along the direction Ωp, Eq. (2.27) is written

as [ d
ds

+ Σt,g(rp,0 + sΩp)
]
ϕg,p(rp,0 + sΩp) =

1

4π
qg(rp,0 + sΩp) , (2.29)

that is formulated as an ordinary differential equation. Here rp,0 is an arbitrary reference point.
The equation Eq. (2.29) can be solved exactly provided the exact source qg and cross sections.

In practice, the problem is discretized into a lot of fine spatial meshes, and cross sections Σ and
the source qg are assumed to be constants for each spatial region. Recently, a linear source ap-
proximation has been introduced to capture the spatial variation of the source inside each cell and
provide better accuracy and efficiency [71, 72, 73]. The flat source approximation or linear source
approximation is valid when the mesh size is small. The corresponding mesh is referred to as the
fine mesh in this thesis.

It should be noted, in real problems, q is not predefined. It is obtained via iteration.
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2.3 Steady-State Iteration Methods

2.3.1 Source Iteration

Source iteration is the simplest method and the most basic method to solve the NTE. And either
2D/1D method or the 3D-MOC method can be generalized as a source iteration process. For sim-
plicity, the steady-state k-eigenvalue neutron transport equation is represented in operator notation
with λ-eigenvalue as:

Lϕ =
1

4π

[
S + λχF

]
φ , (2.30)

with

φ =M0ϕ , (2.31a)

λ ≡ 1

keff
. (2.31b)

Here [
L
]
g

=
[
Ω ·∇ + Σt,g(r)

]
, (2.31c)[

S
]
g

=
G∑

g′=1

Σs0,g′→g(r)(·), (2.31d)

F =
G∑

g′=1

νΣf,g′(r)(·) , (2.31e)[
χ
]
g

= χg(r)(·) , (2.31f)

Mi =

∫
4π

Ωi(·)dΩ ≈
G∑
p=1

ωpΩ
i
p(·), i = 1, 2 · · · . (2.31g)

φ and ϕ are the vectors of the group-wise scalar fluxes and angular fluxes, respectively. The
basic approach to solve the neutron transport problem is the source iteration scheme illustrated in
Algorithm 1. To avoid misleading, we use the script (n) to index the iteration, and n for the nth

power. Though such details of the source iteration as the procedure of MOC and 2D/1D scheme
are omitted, the algorithm can still show the overall procedure of source iteration without loss of
generality. The source iteration is equivalent to the power iteration method for the solution of
k-eigenvalue problems.

Generally, the convergence rate of the source iteration scheme is prohibitively slow for prac-
tical problems, and should never be the method used for realistic problems. The modern iterative
methods make use of convergence acceleration schemes [74, 39]. However, in the solution of the
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Algorithm 1 Source iteration scheme for k-eigenvalue neutron transport problem.
1: Input maximum outer iteration number N , inner iteration number N1; tolerance εc, εf ; initial

guess φ(0), λ(0).
2: for n = 0, 1, . . . , N do
3: Let φ(n,0) ← φ(n), and calculate the fission source

Q(n) = λ(n)χFφ(n) . (Alg 1.1)

4: for n1 = 0, 1, . . . , N1 do
5: Compute the angular flux via transport sweep:

Lϕ(n,n1+1) =
1

4π

[
Sφ(n,n1) +Q(n)

]
. (Alg 1.2)

6: Update the Scalar flux
φ(n,n1+1) =M0ϕ

(n,n1+1) . (Alg 1.3)

7: end for
8: Let φ(n+1) ← φ(n,N1).
9: Update the eigenvalue

λ(n+1) = λ(n)

∥∥∥Fφ(n)
∥∥∥∥∥∥Fφ(n+1)
∥∥∥ . (Alg 1.4)

10: Let k(n+1)
eff ← 1/λ(n+1).

11: if
∣∣∣k(n+1)
eff − k(n)

eff

∣∣∣ < εc and
∥∥∥Fφ(n) −Fφ(n+1)

∥∥∥ < εf

∥∥∥Fφ(n+1)
∥∥∥ then

12: break
13: end if
14: end for
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acceleration equations, the power iteration is still used. The next section describes the state-of-the-
art acceleration method that is a major focus of this thesis.

2.3.2 CMFD Acceleration

One of the most popular acceleration methods for the NTE is the CMFD method. It is a variant
of NDA for the general problems [13]. There are two distinct equations involved in the CMFD
acceleration. The first is a high-order problem, that is the multigroup transport problem. The
second is a low-order multigroup diffusion problem, that is solved with a much coarser spatial
mesh. The spatial mesh where the solution of low-order diffusion problem is performed is referred
to as the coarse mesh.

2.3.2.1 CMFD Equation for Steady-State Calculation

In the CMFD scheme, the low-order multigroup diffusion problem has the form:

−∇ ·Dg∇φg(r) + Σt,g(r)φg(r)−
G∑

g′=1

Σs0,g′→g(r)φg′(r)

= λ
χg(r)

4π

G∑
g′=1

Σf,g′(r)φg′(r) .

(2.32)

The equation is obtained by integrating Eq. (2.23) over the whole angular space. Eq. (2.32) is also
generalized so that its solution, Φg(r) is equivalent to that obtained from Eq. (2.31c).

In the CMFD problem, the domain is decomposed into M coarse cells, or coarse meshes,
indexed with m. The solution of the low-order problem is coarse-cell-wise, while the high-order
transport sweeps are performed on a much finer mesh. The derivation of the low-order diffusion
problem for CMFD acceleration is illustrated as below.

Integrating Eq. (2.32) over the space of each coarse cell, the k-eigenvalue NTE is transformed
into the neutron balance equation:

∑
m′∈N(m)

Γ(m,m′)J(m,m′),g +

(
Σt,m,gΦm,g −

G∑
g′=1

Σs0,m,g′→gΦm,g′

)
Vm

= λχg

G∑
g′=1

Σf,m,g′Φm,g′Vm, 1 ≤ g ≤ G, 1 ≤ m ≤M .

(2.33)

Here (m,m′) denotes the surface of the mth coarse mesh and its neighboring m′th cell with the
outward-pointing normal vector tom′th cell. Γ(m,m′) is the area of the surface and Vm is the volume
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of the coarse cell. N(m) represents the collection of the neighboring cells of mesh m. Φ is used
to represent the coarse-mesh flux solutions.

The net current J(m,m′),g represents the net outflow of neutrons from coarse mesh m to m′, and

J(m,m′),g = −J(m′,m),g . (2.34)

To obtain Eq. (2.33) as a diffusion equation, the traditional CMFD representation of the net current
is introduced. Here the net current is calculated by the finite difference approximation of the
generalized Fick’s Law containing the nonlinear correction, D̂(m,m′),g:

J(m,m′),g = −D̃(m,m′),g(Φm′,g − Φm,g) + D̂(m,m′),g(Φm,g + Φm′,g) . (2.35)

The diffusion coefficient on a surface is defined as:

D̃(m,m′),g =
2Dm,gDm′,g

(Dm,g +Dm′,g)hm,m′
, (2.36)

and the nonlinear correction term is defined as

D̂(m,m′),g =
J ts(m,m′),g + D̃(m,m′),g(Φ̄

ts
m,g − Φ̄ts

m′,g)

Φ̄ts
m′,g + Φ̄ts

m,g

. (2.37)

In this fashion,

D̂(m,m′),g = −D̂(m′,m),g , (2.38a)

D̃(m,m′),g = D̃(m′,m),g . (2.38b)

The nonlinear correction term, D̂, is used to enforce the equivalence of the diffusion balance
equation with the transport equation. The superscript ts denotes the quantities are from the transport
solution.

Inserting Eqs. (2.35) to (2.37) into Eq. (2.33) yields the neutron balance equation:

∑
m′∈N(m)

Γm,m′

[
− D̃(m,m′),g(Φm′,g − Φm,g) + D̂(m,m′),g(Φm,g + Φm′,g)

]

+

(
Σt,m,gΦm,g −

G∑
g′=1

Σs0,m,g′→gΦm,g′

)
Vm = λχg

G∑
g′=1

Σf,m,g′Φm,g′Vm ,

1 ≤ g ≤ G, 1 ≤ m ≤M .

(2.39)
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Eq. (2.39) is the multigroup CMFD equation for the k-eigenvalue problem.
The coefficients of Eq. (2.37) and Eq. (2.39) are homogenized from the k-eigenvalue neutron

transport equation in the flux volume-weighted way [32, 51]:

Φ̄ts
m,g =

∫
r∈Cm

φtsg (r)dV

Vm
(2.40a)

Σx,m,g =

∫
r∈Cm

Σx,g(r)φtsg (r)dV∫
r∈Cm

φtsg (r)dV
, Σx = Σt,Σs0,Σf . . . , (2.40b)

χm,g =

∫
r∈Cm

χg(r)
∑G

g′=1 νΣts
f,g′φ

ts
g′(r)dV∫

r∈Cm

∑G
g′=1 νΣts

f,g′φ
ts
g′(r)dV

, (2.40c)

where Cm is the domain of the mth coarse cell. Writing the solution as a vector, the 3D CMFD
k-eigenvalue equation in operator notation is

(M− S)Φ = λχFΦ . (2.41)

This is a generalized eigenvalue problem with Φ ∈ RMG, M, S ∈ RMG×MG, F ∈ RM×MG and
χ ∈ RMG×M .

When Φ is ordered in node-major fashion, it is written as:

Φ = [Φ1,1 · · ·Φ1,G · · ·ΦM,g · · ·ΦM,G]T . (2.42)

The operators are then defined in a similar way as

[MΦ](m−1)G+g = Σt,m,gΦm,g

+
∑

m′∈N(m)

Γm,m′

Vm

[
− D̃(m,m′),g(Φm′,g − Φm,g) + D̂(m,m′),g(Φm,g + Φm′,g)

]
, (2.43a)

[SΦ](m−1)G+g =
G∑

g′=1

Σs0,m,g′→gΦm,g′ , (2.43b)

[FΦ]m =
G∑

g′=1

vΣf,m,g′Φm,g′ , (2.43c)

[χFΦ](m−1)G+g = χm,g

G∑
g′=1

vΣf,m,g′Φm,g′ . (2.43d)

For boundary cells, typical Marshak boundary conditions are used. D̂ and D̃ are then modified
to take the boundary conditions into account.
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Since Eq. (2.41) is an eigenvalue problem, a normalization condition must be applied to ensure
a unique solution. The typical normalization is defined so that ||FΦ||2 = C, where C is a constant.

2.3.2.2 CMFD Acceleration

Once the low-order diffusion problem is solved, the low-order solution Φ is used to update the
fine-mesh scalar flux by:

φcorrg (r) =
Φm,g

Φ̄ts
m,g

φ(r) , r ∈ Cm . (2.44)

The corrected fine mesh solution is used to calculate the scattering source and the fission source
with the eigenvalue calculated in low-order calculation. The angular flux at the boundary is also
scaled by using Eq. (2.44) (or something similar). The algorithm of the CMFD acceleration is
illustrated in Algorithm 2.

For the k-eigenvalue problem, CMFD acceleration reduces the spectral radius of the iteration
scheme from nearly 1 to around 0.4 for a typical reactor [16, 75, 76].

Algorithm 2 CMFD acceleration for k-eigenvalue problems
1: Input maximum outer iteration number N , inner source iteration number N1; tolerance εc, εf ;

initial guess φ(0), J (0), λ(0).
2: for n = 0, 1, . . . , N do
3: Compute D̂ by Eq. (2.37) using the current estimate in the transport system.
4: Solve the CMFD eigenvalue problem Eq. (2.41) to obtain the scalar flux on the CMFD

spatial grid Φ(n+1/2) and the eigenvalue λ(n+1/2).
5: Update the fine mesh flux φ(n) via Eq. (2.44) and use corrected flux and eigenvalue λ(n+1/2)

to generate the fission source.
6: Perform N1 iterations (i.e. sweeps) on the transport problem. During the sweeps, the fission

source and eigenvalue are fixed. The scalar fluxes on the transport grid and the current at
the interfaces of CMFD cells are stored.

7: Let k(n+1)
eff ← 1/λ(n+1/2), φ(n+1) ← φ(n,N1).

8: if
∣∣∣k(n+1)
eff − k(n)

eff

∣∣∣ < εc and
∥∥∥Fφ(n) −Fφ(n+1)

∥∥∥ < εf

∥∥∥Fφ(n+1)
∥∥∥ then

9: break
10: end if
11: end for

2.3.3 Methods for the Multigroup Diffusion Eigenvalue Problem

The problem of interest for the CMFD equation is the multigroup diffusion eigenvalue problem.
In reactor physics, it is a generalized eigenvalue problem of the following form:

Mφ = λFφ . (2.45)
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In this general eigenvalue problem, only M is invertible. Note that M and F in Eq. (2.45) are
the M − S and χF in Eq. (2.41), respectively. The goal of an eigenvalue problem is to compute
the eigenvalue(s) λ and obtain the corresponding eigenvectors.

2.3.3.1 Wielandt Shifted Power Iteration

The simplest method to obtain the solution to Eq. (2.45) is Power Iteration (PI), which is guaranteed
to converge to the smallest eigenvalue of the system. The detail is shown in Algorithm 3. The
convergence rate of the PI is determined by the dominance ratio of the system:

DRPI =
|λ1|
|λ2|

. (2.46)

Here, λ1 is the smallest eigenvalue in magnitude, and λ2 is the second smallest. For most problems
in reactor physics, the dominance ratio of the system is close to 1, and PI converges too slowly for
practical use.

Algorithm 3 Power iteration algorithm.

1: Input maximum power iteration number L, initial guess Φ(0), normalization factor Φ0 for
solving Eq. (2.45).

2: for l = 0, 1, 2, · · · , L− 1 do
3: Solve the WS linear system:

MΦ(l+ 1
2) = λ(l)FΦ(l) , (Alg 3.1a)

λ(l+1) = λ(l)

∥∥∥FΦ(l)
∥∥∥∥∥∥FΦ(l+ 1

2)
∥∥∥ . (Alg 3.1b)

4: Normalize the eigenvector solution by

Φ(l+1) =
Φ(l+ 1

2)∥∥∥Φ(l+ 1
2)
∥∥∥Φ0 . (Alg 3.1c)

5: end for
6: return λ(L),Φ(L)

Therefore, the more popular method is the Wielandt shifted (WS) Power iteration.

M− λsFφ = (λ− λs)Fφ . (2.47)
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The algorithm is shown in Algorithm 4. Assume λ2 > 0. The method can significantly reduce
the dominance ratio of a system when the provided shift parameter λs is close to the eigenvalue of
interest, since the dominance ratio becomes

DRWSPI =
|λ1 − λs|
|λ2 − λs|

. (2.48)

Algorithm 4 Wielandt shifted power iteration algorithm.

1: Input maximum power iteration number L, eigenvalue λ(0), initial guess Φ(0), normalization
factor Φ0 for solving Eq. (2.45).

2: for l = 0, 1, 2, · · · , L− 1 do
3: Determine the WS parameter λ(l)

s .
4: Solve the WS linear system:

[
M− λ(l)

s F
]
Φ(l+ 1

2) =
[
λ(l) − λ(l)

s

]
FΦ(l) , (Alg 4.1a)

λ(l+1) = λ(l)
s +

[
λ(l) − λ(l)

s

] ∥∥∥FΦ(l)
∥∥∥∥∥∥FΦ(l+ 1

2)
∥∥∥ . (Alg 4.1b)

5: Normalize the eigenvector solution by

Φ(l+1) =
Φ(l+ 1

2)∥∥∥Φ(l+ 1
2)
∥∥∥Φ0 . (Alg 4.1c)

6: end for
7: return λ(L),Φ(L)

In order to achieve a minimum spectral radius in Algorithm 4, one must choose λs as close to
λ as possible. However, for practical simulation, λs cannot be very close. Otherwise, over-shift
(λs ≥ λ) may happen, and the converged λ is not the smallest eigenvalue. Or the condition number
of the linear system M−λsF becomes very large, and the linear system becomes hard to solve for
iterative solvers [77].

In practice, two approaches are taken: (1) choosing some reasonable fixed value for λs, and (2)
defining λ(l)

s as a function of the current eigenvalue estimate λ(l).
A thorough review of the methods to determine λs has been provided, and more sophisticated

schemes have been proposed in[78]. In MPACT, we typically choose λmin = 1/3. The Purdue
Advanced Reactor Core Simulator (PARCS) shift [6] and the more advanced methods from [78]
are also available.
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2.3.3.2 Multilevel-in-Space-and-Energy Diffusion (MSED) Method

There are other eigenvalue solvers such as multilevel diffusion solvers [32, 79, 80]. These meth-
ods reduce the computational cost of solving the eigenvalue by preconditioning the system. The
multilevel solvers treat the multigroup diffusion problem as a high-order problem, and construct
additional low-order problems on coarser spatial grids, coarser energy grids or both.

Algorithm 5 Simplified algorithm of MSED solver.
1: Input LMG, LGR
2: for lmg = 1, 2, · · ·LMG do
3: Collapse the operators MMG, FMG in multigroup CMFD equations to the operators

M1G, F1G and obtain initial guess of the solution Φ1G in grey diffusion equations using
the latest multigroup fluxes ΦMG

4: Solve the grey diffusion eigenvalue equation:

M1GΦ1G = λ1GF1GΦ1G , (Alg 5.1)

with Wielandt shift parameter λs, and LGR grey power iterations.
5: Solve the multigroup fixed source problem

MMGΦMG = λ1GχMGF1GΦ1G , (Alg 5.2)

where χMG is the matrix form of the multigroup fission spectrum.
6: Update the eigenvalue λ.
7: Check the convergence of the residual of CMFD Solutions.
8: if converged then
9: break

10: end if
11: end for
12: return λ,ΦMG

The multilevel solver of interest in this work is the MSED solver. It is a multilevel method
composed of a fixed source multigroup diffusion equation and a grey diffusion eigenvalue prob-
lem. The Wielandt shifted power iterations are performed for the grey diffusion equation, where
the coefficients are collapsed from the multigroup diffusion equation. For MSED, the number
of energy groups of the grey diffusion equation is one, in other works the equation is typically
two-groups. However, one-group is preferred here because the fission emission spectrum is only
dependent on the energy integrated fission source. Therefore, the grey equation is a one-group
CMFD (1GCMFD) equation, and the results are used to approximate the fission source of the
multigroup diffusion equation. The multigroup fluxes are obtained from the multigroup fixed
source CMFD problem. Additionally, in the spatial domain, the MSED algorithm utilizes the
multigrid [81] method to solve the linear system of the diffusion problem. Several iterations be-
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tween the multigroup level and the grey diffusion level are performed until the convergence criteria
of the MSED solver is met. A simplified version of the algorithm for the MSED solver is shown
in Algorithm 5. LMG is the number of iterations performed for the MGCMFD system, and LGR
is the number of power iterations for the 1GCMFD system. Compared to the standard MGCMFD
solver in MPACT, the computational cost of MSED is much less. Moreover, the maximum number
of power iterations performed in MSED method is LMGLGR, that is much larger than the number
of WS power iterations to solve the MGCMFD system in the default method. Therefore, MSED
helps the iteration scheme converge faster.

2.3.4 Other Solvers

There are other solvers such as the Generalized Davidson method [82] and Jacobian-free Newton-
Krylov (JFNK) method [83]. The performance of these methods in practical high-fidelity simula-
tions remains to be investigated.

2.3.5 Coupling with Other Physics Solver

2.3.5.1 Picard Iteration

In the state-of-art nuclear reactor modeling, the feedback from other physics is taken into account.
The neutronics problem is usually coupled with the feedback (e.g. Thermal Hydraulics) via a Pi-
card iteration [84, 26, 3, 23, 4, 24, 25]. The Picard iteration is the preferred multiphysics iteration
in these tools because frequently the physics codes are developed separately, and need to function
independently, of each other. Consequently, the major whole-core, high-fidelity simulation codes:
DeCART [2], nTRACER [3], STREAM [41], NECP-X [33] and MPACT/VERA-CS [4] use this
approach. In these codes, the multiphysics coupling occurs at the “outer” iteration in which a
CMFD-accelerated transport iteration is performed, then the thermal-hydraulics (TH) solver per-
forms the solution. The appropriate solution fields are exchanged between the physics after each
iteration. The flowchart of the implementation of the Picard iteration scheme is shown in Fig-
ure 2.1. It should be noted that the Picard scheme presented here is slightly different from what
has been presented in [20, 85], where the neutronics solver is fully converged and then coupled
with solvers of other physics.

In realistic simulations, it has been observed that this iteration scheme is not stable. As a result,
the under-relaxation has to be used. The under-relaxation may be applied to any number of state
variables. The most common approach is to apply relaxation to the power distribution. Other com-
mon forms of relaxation may also be applied to the material density or material temperatures. If n
is used as the index of the outer iteration, then the pin power distribution p(n)

tr (r) that is transferred
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Figure 2.1: Flowchart of multiphysics scheme for steady-state calculation in MPACT. This scheme
is also used in codes DeCART, nTRACER, STREAM and NECP-X. “XS” stands for cross section.

to the other physics solver is calculated by

ptr(r) = (1− β)pn−1(r) + βp(n)(r) , (2.49)

where β is the relaxation factor and p(n)(r) is the pin power distribution calculated by the neutron-
ics solver at the nth outer iteration. There is no standard way to determine the relaxation factor,
therefore, the factor is invariably chosen in an empirical way. Sufficient and optimal relaxation
factors are known to be problem-dependent. Thus, in practice, it is quite common to encounter
problems that converge considerably slower or diverge compared to the non-feedback cases.

For this Picard iteration scheme, an important and perhaps counter-intuitive observation made
recently with respect to the use of CMFD acceleration, is that when one more tightly converges the
low-order diffusion solutions, the coupled iteration scheme converges more slowly and becomes
less stable. As better acceleration methods for neutronics problems are being developed for prob-
lems without feedback, the tight convergence of the low-order diffusion solutions creates the issue
of having a less robust multiphysics iteration scheme. This ultimately leads to a penalty on the
convergence rate of the acceleration scheme [82, 32].
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2.3.5.2 Other Iteration Methods

Besides the Picard iteration, other methods have been developed and introduced to coupling the
neutronics and other feedback. These methods include the JFNK [36, 20] method and the Ander-
son acceleration (AA) [37]. The JFNK is a modified newton method without explicitly formulating
the Jacobian matrix. The implementation of JFNK, however, still requires significant changes to
the current iterations schemes and the computational efficiency for the neutron transport calcula-
tion is still limited [86]. The AA is a method that mixes the solutions of previous several outer
iterations adaptively to stabilize the calculation. Compared to the JFNK method, it is much eas-
ier to implement. Early results in [87, 19] did not show a substantial benefit from AA. Results
from [38] in nTRACER, have shown AA helps to achieve much better stability and efficiency and
is potential for practical simulations in the future.

2.3.6 Stability of Iteration schemes

Stability is used in a lot of chapters in this thesis. In the steady-state problem, it is used to show
whether the iterative method can converge. A stable method is a method that with the number
of iterations taken increasing, the iterative solution φ(n)(x) approaches and eventually converges
to the actual solution of the discretized steady-state problem φ(x). Particularly, in a mathematics
form, we want a method to be stable so that:

lim
n→∞

φ(n)(x) = φ(x) . (2.50)

The stability for the iterative scheme is different from the stability for the time-dependent solver
that will be presented later in this chapter.
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2.4 Transient Methods in MPACT

The Transient Multilevel (TML) method is used in MPACT to simulate the transient behavior of
the reactor, and is briefly introduced here. More details can be found in [54]. The TML scheme is
a multilevel algorithm using three levels with 3D-transport coupled to 3D-CMFD, and 3D-CMFD
coupled to the EPKEs. This effectively captures the evolution of the flux. In each level, the flux
equation is predicted with a coarse predictor time step, and corrected with a fine corrector time step.
This requires the flux factorized as a shape function and amplitude function. The shape function is
assumed to vary more slowly than the amplitude function in time. In the 3D-transport/3D-CMFD
coupling, the angular flux is factored as a shape function in angular space multiplying a cell-wise
amplitude function. The angular and sub-pin flux shape distribution are computed in transport
calculation first with a coarse time step. Then the cell-wise amplitude function will be corrected
by the cell-wise scalar flux calculated from the CMFD equations using multiple finer steps. In the
3D-CMFD/EPKEs level, the cell-wise amplitude function of each CMFD step is treated as a shape
function, and the whole-core amplitude function is corrected by the EPKEs solution. The EPKEs
are solved with finer time steps.

2.4.1 Multigroup Transient Fixed Source Problem

To start, the multigroup time-dependent NTE is written as:

1

vg

∂ϕg (r,Ω, t)

∂t
+
[
Ω ·∇ + Σt,g(r)

]
ϕg(r,Ω) =

1

4π

G∑
g′=1

Σs0,g′→g(r)φg′(r) +
χp,g(r, t)

[
1− β (r, t)

]
SF (r, t)

4π
+
χd,g(r, t)Sd (r, t)

4π
.

(2.24 revisited)
The time domain must be discretized for numerical simulation. In this section, n is used to index
the time point rather than the outer iteration. The outer iteration is indexed with ` instead.

x(n) = x(tn) , (2.51)

i.e., x(n) is used to represent the variable x at the nth time point tn. The nth time step size at the
time tn is ∆tn. The time derivative term in Eq. (2.24) is discretized with the BE method using the
isotropic approximation

1

vg

∂ϕ
(n)
g (r,Ω)

∂t
≈ 1

4πvg

∂φ
(n)
g (r)

∂t
≈ φ

(n)
g (r)− φ(n−1)

g (r)

4πvg∆tn
. (2.52)

29



The isotropic approximation is used to overcome the practical difficulty for explicitly solving and
storing the angularly dependent time-derivative term, and is reasonably accurate for practical sim-
ulations when ∆tn is small [44]. The exponential transformation method is also applied to treat the
time derivative term in order to capture the rapid change of the flux and increase the stability region
for the time step size [51]. With the exponential transformation, the scalar flux is decomposed as:

φg(t, r) = eα
(n)(t−tn−1)Φg(t, r) , tn−1 ≤ t ≤ tn . (2.53)

The α(n) is computed at the beginning of each time step by solving the EPKEs, which are presented
later in this section, with the estimated reactivity. For the fully-implicit BE discretization, the time
derivative term of the scalar flux is rewritten as:

∂φ
(n)
g (r)

∂t
= α(n)φ(n)

g (r) + eα
(n)(tn−tn−1)∂Φg(t, r)

∂t
|t=tn

≈ α(n)φ(n)
g (r) + eα

(n)∆tn
Φ

(n)
g (r)− Φ

(n−1)
g (r)

∆tn

= α(n)φ(n)
g (r) +

φ
(n)
g (r)− eα(n)∆tnφ

(n−1)
g (r)

∆tn
.

(2.54)

The delayed neutron precursor equations are treated using the analytical integration method:

C
(n)
k (r) = C

(n−1)
k (r)e−λ

(n)
k (r)∆tn +

∫ tn

tn−1

βk(r, t)SF (r, t)eλ
(n)
k (r)dt , (2.55)

with λ(r, t) assumed to be constant λ(n)
k (r) for t ∈ [tn−1, tn]. A second-order approximation is

then made to treat the delayed fission source term βk(r, t)SF (r, t) as

βk(r, t)SF (r, t) ≈ β
(n)
k (r)S

(n)
F (r) t̃2+t̃γ∆tn

(1+γ)(∆tn)2

+β
(n−1)
k (r)S

(n−1)
F (r)

(
1− t̃2+(γ−1)∆tn t̃

γ(∆tn)2

)
+βn−2

k (r)Sn−2
F (r) t̃2−t̃∆tn

(1+γ)γ(∆tn)2 ,

t̃ = t− tn−1 , γ = ∆tn−1

∆tn
.

(2.56)

Then the delayed fission neutron source term can be expressed as

S
(n)
d (r) = ω(n)(r)S

(n)
F (r) + S̃

(n−1)
d (r) , (2.57)

where ω(n) is the term to denote the contribution from the fission source at the current time step
and S̃(n−1)

d is the term related to the delayed neutron precursors and fission source of the previous
two time steps. Making use of Eq. (2.52) and Eq. (2.57) reduces the time-dependent Boltzmann
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transport equation to the following discretized equation

Ω ·∇ϕ(n)
g (r,Ω) + Σ

(n)
t,g (r)ϕ(n)

g (r,Ω) =
χg(r)

4π
S

(n)
F (r) +

G∑
g′=1

Σ
(n)
s0,g′→g (r)φ

(n)
g′ (r) +

S
(n)
tr,g(r)

4π
.

(2.58)

Here
χ(n)
g (r) = χ(n)

p,g (r)
[
1− β(n)(r)

]
+ χ

(n)
d,g (r)β(n)(r) , (2.59)

and

S
(n)
tr,g(r) = Ag(r)φ(n)

g (r) +Bg(r)S
(n)
F (r) + C(n)

g (r) , (2.60a)

A(n)
g (r) = − 1

vg∆tn
(1 + α(n)∆tn) , (2.60b)

B(n)
g (r) = χd,g(r)

[
ω(n)(r)− β(n)(r)

]
, (2.60c)

C(n)
g (r) = χd,g(r)S̃

(n−1)
d (r) +

eα
(n)∆tnφ

(n−1)
g (r)

vg∆tn
, (2.60d)

formulate a fixed source problem denoted as Transient Fixed Source Problem (TFSP). In
Eqs. (2.60), Amay be viewed as a cross section, whereasB may be viewed like a fission spectrum,
and C is the transient source from delayed fission neutrons and time discretization.

2.4.2 Source Iteration and CMFD Acceleration

For this TFSP, the source iteration scheme is also used. In operator form, the TFSP is represented
as:

Lϕ =
1

4π

[
S + χF

]
φ+Qtr . (2.61a)

Here

Qtr = Aφ+ BFφ+ C , (2.61b)

φ is the vector of group-wise scalar flux; S and A are G × G matrices; F is the fission operator,
i.e. a row vector; χ and B are column vectors are applied to the scalar quantities; C is the column
vector.

The details for the source iteration are shown in Algorithm 6. We use ` to index the source
iteration, since n has been used to index the time point. And, n and keff are omitted for brevity.
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Algorithm 6 Source iteration scheme for TFSP.
1: Input maximum outer iteration number L, inner iteration number L1; tolerance εf ; initial guess
φ(0).

2: for ` = 0, 1, . . . , L do
3: let φ(`,0) ← φ(`), and calculate the fission source

Q(`) = χFφ(`) +Aφ(`) + BFφ(`) + C . (Alg 6.1)

4: for `1 = 0, 1, . . . , L1 do
5: Compute the angular flux via transport sweep:

Lϕ(`,`1+1) =
1

4π

[
Sφ(`,`1) +Q(`)

]
. (Alg 6.2)

6: Update the scalar flux
φ(`,`1+1) =M0ϕ

(`,`1+1) . (Alg 6.3)

7: end for
8: Let φ(`+1) ← φ(`,L1).
9: if

∥∥∥Fφ(`) −Fφ(`+1)
∥∥∥ < εf

∥∥∥Fφ(l+1)
∥∥∥ then

10: break
11: end if
12: end for

Following the same derivation of CMFD acceleration for the k-eigenvalue problem, the neutron
balance equation for the TFSP on the coarse mesh is:

∑
m′∈N(m)

Γ(m,m′)

[
− D̃(n)

(m,m′),g(Φ
(n)
m′,g − Φ(n)

m,g) + D̂
(n)
(m,m′),g(Φ

(n)
m,g + Φ

(n)
m′,g)

]

+

(
Σ

(n)
t,m,gΦ

(n)
m,g −

G∑
g′=1

Σ
(n)

s0,m,g′→gΦ
(n)
m,g′

)
Vm =

(
χ(n)
m,gS

(n)
F,m + S

(n)
tr,m,g

)
Vm ,

1 ≤ g ≤ G , 1 ≤ m ≤M .

(2.62)

The definition of the coefficients are

Am,g =

∫
r∈Cm

Ag(r)φtsg (r)dV∫
r∈Cm

φtsg (r)dV
, (2.63a)

Cm,g =

∫
r∈Cm

Cg(r)dV

Vm
, (2.63b)
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Bm,g =

∫
r∈Cm

Bg(r)StsF (r)dV∫
r∈Cm

StsF (r)dV
. (2.63c)

This 3D-CMFD TFSP can be solved efficiently [51, 54] when written as

(M− S− χF−A−BF)Φ = C , (2.64)

with A ∈ RMG×MG, B ∈ RMG×M and C ∈ R. The operators are defined in the way as

[SΦ](m−1)G+g =
G∑

g′=1

Σs0,m,g′→gΦm,g′ , (2.65a)

[χFΦ]m = χm,g

G∑
g′=1

vΣf,m,g′Φm,g′ , (2.65b)

[AΦ](m−1)G+g = Am,gΦm,g , (2.65c)

[BFΦ](m−1)G+g = Bm,g

G∑
g′=1

vΣf,m,g′Φm,g′ , (2.65d)

[C](m−1)G+g = Cm,g . (2.65e)

Eq. (2.62) is a fixed source problem which can be solved directly using a linear solver, rather
than an eigenvalue problem as Eq. (2.39) which must be solved via iteration for practical simula-
tions. However, this TFSP is quite large and nearly singular, and the solution is computationally
expensive.

Algorithm 7 CMFD acceleration for TFSP.

1: Compute D̂ using the current estimate of the angular flux in the transport system.
2: Solve the CMFD TFSP problem to obtain the scalar flux on the CMFD spatial grid.
3: Scale the angular flux in the transport problem using the new scalar flux from the CMFD

problem. Also, use the CMFD scalar flux to generate a new fine-grid fission source.
4: Perform iterations on the transport problem (i.e., transport sweeps). During the sweep, the

fission source is fixed.
5: Repeat steps 1-4 until convergence.

More than a simple accelerator for the transport TFSP, the CMFD solver is also an important
component of the TML. It is the intermediate level that connects the transport and EPKE solutions.
As illustrated in the next section, the CMFD TFSP is formed on the finer time grid. Its solutions
are used to calculate the coefficients for the EPKEs, which in turn provides a solution to correct
the CMFD solutions. The CMFD solutions are then used to correct the transport results.
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2.4.3 Exact Point Kinetics Equation

Integrating Eq. (2.62) with the initial adjoint flux Φ∗m,g(0) over space and energy, the multigroup
CMFD transient equation is simplified to

dp(t)

dt
=
ρ(t)− βeff (t)

Λ(t)
p(t) +

1

Λ(0)

∑
k

λk(t)ξk(t) , (2.66)

and
dξk(t)

dt
=

Λ(0)

Λ(t)
βeffk (t)p(t)− λk(t)ξk(t) , k = 1, 2, · · ·K . (2.67)

The equations are EPKEs. The initial adjoint flux is used to reduce the error resulting from inac-
curacies in the shape function [88].

When the coefficients are not obtained from the latest transport solution, they are referred to as
the PKEs. It should be noted that, in this dissertation, the term EPKE is only used to denote the
point-kinetics equation obtained with transport solution. Otherwise, the term PKE is used.

βeff is the effective delayed neutron fraction. For brevity, the superscript eff is omitted for the
β shown later in the thesis.

Let the vector P(t) = {p(t), ξ1(t), · · · ξn(t)}, and define

E(t) =



ρ(t)−β(t)
Λ(t)

λ1(t)
Λ(0)

λ2(t)
Λ(0)

· · · · · · λK(t)
Λ(0)

−λ1(t) Λ(0)
Λ(t)

β1(t)

−λ2(t) Λ(0)
Λ(t)

β2(t)
. . . ...
· · · −λK(t) Λ(0)

Λ(t)
βK(t)


. (2.68)

The system of EPKEs now can be expressed in operator notation as:

dP(t)

dt
= E(t)P(t) . (2.69)

To solve Eq. (2.69), the BE is adopted. To avoid the matrix inversion, the precursor integration
methods such as first-order precursor integration (FP) or second-order precursor integration (SP)
are used. Eq. (2.67) is now rewritten as:

dξk(t)e
λ

(n)
k (t−t(n−1))

dt
=
[
λ

(n)
k ξk(t) +

dξk(t)

dt

]
eλ

(n)
k (t−t(n−1)) =

Λ(0)

Λ(t)
βk(t)p(t)e

λ
(n)
k (t−t(n−1)) . (2.70)
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Only the first-order approximation is introduced here. Here the superscript (n) is used to index the
time point, since the subscript k is used to index the delayed neutron precursor. The derivation of
the second-order method can be found in [51].

β(t)p(t)
Λ(t)

in time is approximated by:

βk(t)p(t)

Λ(t)
=
β

(n−1)
k p(n−1)

Λ(n−1)
(1− γ) +

β
(n)
k p(n)

Λ(n)
γ , γ =

t− t(n−1)

t(n) − t(n−1)
. (2.71)

Substituting Eq. (2.71) into Eq. (2.70), and integrating Eq. (2.70) in [t(n−1), t(n)], we have:

ξ
(n)
k − ξ

(n−1)
k e−λ

(n)
k ∆tn = Λ0

[
β

(n−1)
k p(n−1)

Λ(n−1)

κ0(λ̃
(n)
k )

λ
(n)
k

+

(
β

(n)
k p(n)

Λ(n)
− β

(n−1)
k p(n−1)

Λ(n−1)

)
κ1(λ̃

(n)
k )

λ
(n)
k

]
,

(2.72)
where κ0(x) = 1− exp(−x), κ1(x) = 1−κ0(x)

x
, λ̃(n)

k = λ
(n)
k ∆tn, Λ0 = Λ(0). Then

1

Λ0

K∑
k=1

λ
(n)
k ξ

(n)
k =

∑K
k=1 λ

(n)
k ξ

(n−1)
k e−λ̃

(n)
k

Λ0

+

∑K
k=1 β

(n−1)
k [κ0(λ̃

(n)
k )− κ1(λ̃

(n)
k )]

Λ(n−1)
p(n−1)

+

∑K
k=1 β

(n)
k κ1(λ̃

(n)
k )

Λ(n)
p(n) .

(2.73)

Using BE to solve Eq. (2.66), we obtain

p(n) − p(n−1)

∆tn
=
ρ(n) − β(n)

Λ(n)
p(n) +

1

Λ0

K∑
k=1

λ
(n)
k ξ

(n)
k . (2.74)

Defining

Ω
(n)
k =

β
(n)
k

λ
(n)
k

Λ0

Λ(n)
κ1(λ̃

(n)
k ) , (2.75a)

S(n) =

∑K
k=1 λ

(n)
k ξ

(n−1)
k e−λ̃

(n)
k

Λ0

+

∑K
k=1 β

(n−1)
k [κ0(λ̃

(n)
k )− κ1(λ̃

(n)
k )]

Λ(n−1)
p(n−1) , (2.75b)

τ (n) =

∑K
k=1 λ

(n)
k Ω

(n)
k

Λ0

, (2.75c)

and substituting Eq. (2.73) into Eq. (2.74), yields

p(n) =
p(n−1) + S(n)∆tn

1− τ∆tn − ρ(n)−β(n)

Λ(n) ∆tn
, (2.76a)
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ξ
(n)
k = ξ

(n−1)
k e−λ

(n)
k ∆tn + Ω

(n)
k p(n) +

β
(n−1)
k p(n−1)Λ0

λ
(n)
k Λ(n−1)

[κ0(λ̃
(n)
k )− κ1(λ̃

(n)
k )] . (2.76b)

2.4.4 Transient Multilevel Scheme

So far, we have shown the numerical methods to solve the time-dependent transport equation,
CMFD equation and the EPKEs. These methods are then used in the TML scheme to solve the
time-dependent NTE efficiently.

Figure 2.2: Illustration of the TML Scheme. Courtesy of Ang Zhu [51, 54]. The scheme is a
multilevel method composed of three levels–transport, CMFD and EPKE. The solutions for the
solver with coarser time steps are corrected by the solutions of the solver with finer time steps

The original TML (TML-3) method is a multilevel PCQM [53] based on the coupling between
the transport level and the CMFD level, and the coupling between the CMFD level and the EPKE
level.

For the coupling between the transport TFSP and CMFD TFSP, the angular flux in a coarse
mesh Cm is factorized as

ϕPg (r,Ω, t) = Pm(t)Ψg(r,Ω, t) , (2.77)

with the normalization condition

1

Vm

∫
r∈Cm

∫
4π

Ψg(r,Ω, t)dΩdV = 1 . (2.78)

Vm is the volume of the whole space. It has been shown that the equation for the coarse-mesh-wise
amplitude function, Pm(t), is the same as Φm(t) in the time-dependent CMFD equation [54]. The
superscript P is introduced to indicate that the angular flux solution is predicted.

As a result, in the PCQM scheme, the angular flux is corrected with the CMFD TFSP solution
by

ϕCg (r,Ω, t) = ϕPg (r,Ω, t)
ΦC
m,g(t)

ΦP
m,g(t)

, r ∈ m, (2.79)
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The ΦP is homogenized from the transport solution, and ΦC is the solution of the CMFD TFSP.
The CMFD level is solved with finer time steps with the coefficients interpolated between tn−1 and
tn.

In the coupling between the CMFD TFSP and EPKEs, the coarse mesh scalar flux is factorized
as

Φm,g(t) = p(t)Ψm,g(t) , (2.80)

with the constraints
< Φ∗m,g(0)

Ψm,g(t)

vg
>= C . (2.81)

Here the operator < · > is defined as

< · >=
M∑
m=1

G∑
g=1

Vm(·) . (2.82)

n′ is introduced to index the time point of CMFD level in [tn−1, tn], so the CMFD scalar flux is
corrected by

ΦC
m,g(tn′) =

ΦP
m,g(tn′)p

C(tn′)C

< Φ∗m,g(0)
ΦP

m,g(tn′ )

vg
>
, (2.83)

where pC(tn′) is calculated by the EPKEs using finer time steps. The coefficients in the EPKEs are
again interpolated between the coefficients at tn′−1 and tn′ on the CMFD level.

Parametric studies in [51, 54] show that the TML structure of a 5 ms time step for the transport
calculation, 1 ms time step for CMFD, and 0.2 ms time step for EPKEs is reasonable for Light
Water Reactor (LWR) super-prompt critical transient simulations. Therefore, in MPACT, using
the TML scheme with 5 ms transport time step size, and 5 CMFD steps per transport step, is the
default setting. 10 EPKE steps per CMFD step are used as the default to further decrease the error
from the EPKEs calculation.

2.4.5 Coupling with Other Physics

For transient analysis of the nuclear reactor, the feedback from the thermal-hydraulics (TH) prob-
lem is always taken into consideration. In MPACT, the TH problem is either solved by a simpli-
fied internal TH solver [89] or externally by the sub-channel code COBRA-TF (CTF) [90]. For
transient simulations performed in the thesis, the simplified TH model is used. In the simplified
model, a certain fraction (e.g. 98%) of the total power of a fuel pin is assumed to be deposited
homogeneously in the fuel pin. A simple fuel conduction problem is then solved. The ring-wise
temperature that determines the effective cross sections generation is then updated. For the tran-
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sient process, the model performs transient conduction to the fuel rod surface using an adiabatic
boundary condition. All the transient problems investigated in this thesis are the super-prompt
critical transients. Therefore, the adiabatic boundary condition works well for these transients.

The TH problem and neutronics problem are coupled in an operator splitting way. The neu-
tronics problem is solved by the TML methodology first, and the TH field is updated with the
latest pin power distribution. Then the TH field is synchronized with the neutronics solution at
the transport time steps. Special attention has been paid to applying the feedback to the TML.
On the 3D-CMFD level, the start of the CMFD coefficients is homogenized with the cross section
updated by the temperature but using the flux at the end of the time point. The numerical results
in [51, 48] show that the current coupling method can achieve reasonable accuracy for solving the
super-prompt critical problem with a fixed 5 ms time step. However, the current limitations of the
accuracy of TML are now likely the result of the temporal coupling of the multiphysics. One as-
pect to address in particular would be the proper incorporation of the Doppler effect on reactivity,
which influences the amplitude change. In the current scheme, a potential inefficiency of the TML
may result by requiring that the transport time step be sufficiently small to accurately capture the
Doppler effect which is not explicitly treated (e.g. we do not solve the transient conduction equa-
tion) in the coarse levels of the TML framework. Developing an adaptive time-stepping strategy
and developing a method for synchronizing the TH and neutronics solutions at the CMFD step [47]
are very important to improve the efficiency of the TML scheme.

2.4.6 Flowchart of Transient Multilevel Method

The overall flowchart for TH feedback in the TML algorithm is shown in Figure 2.3. The left ver-
tical blocks represent the general transport transient iteration scheme with TH feedback, where the
angular and sub-pin flux shapes are assumed to be accurate. The middle vertical blocks show that
the pin-wise amplitude function of the transport solution is corrected using intermediate time steps
by performing CMFD steps. The global shape function predicted by the CMFD steps is assumed
to be accurate, and the whole-core amplitude is corrected by the fine EPKE steps illustrated in the
right-most vertical blocks.

2.4.7 Stability of Time-dependent NTE

The time-dependent problem is an initial value problem and is also a dynamic system. The term
“stability” has been introduced to characterize the dynamic behavior of the system. Suppose that
we have a simple ordinary differential problem:

dy

dt
= f(y, t) , y(0) = y0 . (2.84)
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Figure 2.3: Flowchart for TML coupled with TH feedback. Courtesy of Ang Zhu [51, 54].

The solution is stable if for every ε > 0, there is a δ > 0 such that when ||ŷ0 − y0|| < δ then
||ŷ(t)−y(t)|| < ε. Here ŷ(t) is the solution of the problem with a perturbed initial value ŷ0 [91]. It
can be expected that for the time-dependent NTE, when a positive reactivity is inserted and there
is no feedback, the problem is unstable. It can also be expected that when the feedback is weak
initially, the temporal system is also unstable. A small perturbation can introduce a large difference
in the solutions at some time points.
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CHAPTER 3

Derivation of Nearly-optimally Partially Converged
CMFD

In this chapter, we develop the Fourier analysis for a simplified Coarse Mesh Finite Differ-
ence (CMFD)-accelerated neutron transport problem with feedback from flux-dependent cross
sections to provide a theoretical explanation, and gain insight into, the observable phenomena
in multiphysics calculations with CMFD. These observations are (i) if the acceleration equations
are tightly converged every iteration, the overall multiphysics iteration becomes less stable; and
(ii) properly loosening the convergence criteria of the acceleration equations at each iteration can
stabilize the overall scheme [92, 82, 39].

The Fourier analysis result is used to derive the relationship between relaxation and the par-
tial convergence of the CMFD accelerated transport calculation. Using this relationship we de-
velop a new, more robust multiphysics iteration scheme, nearly-optimally partially converged
CMFD (NOPC-CMFD). It is shown that the NOPC-CMFD method in problems with feedback
(i) has stability properties comparable to CMFD in problems without feedback, and (ii) requires
no relaxation factor. The results presented in this chapter provide a theoretical foundation for the
development of a robust multiphysics iteration scheme for nuclear reactor modeling. The imple-
mentation of the method and application to various test cases are presented in Chapter 4.

3.1 Theory and Methodology

In this section, the problem of interest, the model problem to be analyzed, and the basis of NDA are
presented. The Nonlinear Diffusion Acceleration (NDA) method, rather than the CMFD method,
is introduced first because the NDA equations illustrate the process of the iteration scheme, with-
out loss of generality, and they are much simpler to show. The steps to go from NDA to CMFD
involve developing a second spatial grid for the low-order problem and associated prolongation
and homogenization operators. A complete treatment of this may be found in a number of refer-
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ences [11, 12, 14, 18, 75, 76]. Although the derivation of the CMFD result is not shown, results
for CMFD are shown in Section 3.2.

3.1.1 Model Problem

To analyze the stability of the iteration scheme using Fourier analysis, Eq. (2.6) is simplified to a
homogeneous, mono-energetic problem in slab geometry with isotropic scattering and reflective
boundary conditions.

µ
∂ψ (x, µ)

∂x
+ Σt (x,S)ψ (x, µ) =

1

2

[
Σs (x,S) + λνΣf (x,S)

]
φ(x) , (3.1a)

φ (x) =

∫ 1

−1

ψ (x, µ) dµ , (3.1b)

ψ (0, µ) = ψ(0,−µ) , 0 < µ ≤ 1 , (3.1c)

ψ (X,µ) = ψ (X,−µ) , −1 ≤ µ < 0 , (3.1d)

1

X

∫ X

0

∫ 1

−1

ψ (X,µ) dµdx = Φ0 . (3.1e)

X is the size of the problem. Reflective boundary conditions are set on both sides of the problem
domain. The transport problem of interest is given in Eq. (3.1a). The transport equation, with
its boundary conditions, are given in Eq. (3.1a), and Eqs. (3.1c) and (3.1d). The normalization
condition is given in Eq. (3.1e).

The mechanism of the feedback physics is generalized by assuming that the macroscopic cross
sections are linearly dependent on the scalar flux. The linear model is required for the Fourier
analysis. It is written as:

Σi(x,S) ≈ Σi(x, φ) ≈ Σi0 + Σi1

[
φ(x)− Φ0

]
, i = t, a, s0, f, . . . , (3.2)

with
Σi1 =

dΣi

dφ
|φ=Φ0 . (3.3)

The scalar-flux dependence of the macroscopic cross-sections is used as a simple proxy to more
complicated multiphysics feedback phenomena, such as temperature-dependent Doppler broaden-
ing from a heat conduction and/or fluid dynamics calculation, or nuclide density effects from a
fuel-performance or multi-phase fluid dynamics simulation. The linear flux-dependent feedback
model is a reasonable representation since the fuel temperature and xenon concentration are de-
pendent on the local pin power, that is mainly determined by the local, energy-integrated, scalar
neutron flux. The parameters for the linear-in-scalar-flux macroscopic cross sections are given as
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Σi0 and Σi1, with i representing any of the supported reaction pathways. It should also be noted
that whatever the feedback is, the linearization approximation in Eq. (3.2) should be valid as long
as the iterative solution is close to the exact solution, where a first-order Taylor expansion is ac-
curate. This approximate model is also supported by the numerical findings that the pin-cell-wise
one-group cross sections are nearly linearly dependent on the localized one-group flux [39] in
MPACT [4, 65, 93] with a simplified TH model [89]. This leads to an analytic scalar flux solution
to the given problem that is constant in space and equal to the average scalar flux normalization
value of Φ0. The normalization factor Φ0 is used to define the unique eigenfunction ψ (x, µ).
Therefore, the true solution of this model problem is

λ =
Σa0

νΣf0

, (3.4a)

φ (x) = Φ0 , (3.4b)

ψ (x, µ) =
Φ0

2
. (3.4c)

For simplicity, the eigenvalue problem in Eq. (3.1a) is rewritten in operator notation,

LΨ =
1

2

[
S + λF

]
Φ , (3.5)

with
Φ =M0Ψ , (3.6)

in which

L = µ
d

dx
+ Σt , (3.7a)

S = Σs , (3.7b)

F = νΣf , (3.7c)

Mi =

∫ 1

−1

µi(·)dµ, i = 0, 1 · · · . (3.7d)

The operators here are strictly the one-group, homogeneous ones, and are not the ones defined in
Section 2.3.

3.1.2 Nonlinear Diffusion Acceleration

The variants of NDA utilize the solution of the low-order diffusion problem to accelerate a high-
order transport calculation [13]. For continuous cases, the low-order problem can be derived by
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integrating Eq. (3.1a) over the angular variable to formulate the neutron balance equation as:

dJ (x)

dx
+ Σt (x)φ (x) =

[
Σs (x) + λνΣf (x)

]
φ (x) . (3.8)

The neutron current J is next approximated by Fick’s law with a nonlinear correction, and the
derivative of current is rewritten as:

dJ(x)

dx
= − d

dx
D (x)

dφ(x)

dx
+ D̂ (x)φ(x) , (3.9)

with
D(x) =

1

3Σt(x)
, (3.10a)

and

D̂ (x) =
[dJTS(x)

dx
+

d

dx
D (x)

dφTS(x)

dx

]
/φTS(x) , (3.10b)

in which, the current JTS(x) and scalar flux φTS(x) are transport solutions denoted by TS , i.e.,

JTS =M1Ψ . (3.10c)

Introducing Eq. (3.9) into Eq. (3.8), the neutron balance equation may be rewritten as a diffu-
sion eigenvalue problem:

− d

dx
D (x)

dφ(x)

dx
+
[
Σa (x) + D̂ (x)

]
φ (x) = λνΣf (x)φ (x) . (3.11)

Though there are numerous methods to solve this generalized eigenvalue problem (such as the
generalized Davidson method [82], JFNK method [83]), the most popular method in the nuclear
reactor analysis field is still the WS power iteration method shown in Algorithm 4.

3.1.2.1 Partial Convergence

One common “mistake” or inconsistency in other analyses of the low-order problem is to assume
the eigenvalue problem is fully converged [75, 94, 76, 18]. In practice, this eigenvalue problem
is only partially converged. To account for the partial convergence, we introduce the parameter
l as an index for the power iteration with the maximum value L. DeCART [2], nTRACER [3],
MPACT [93], and likely other CMFD-accelerated deterministic transport codes all make use of
L as an input to specify the maximum number of power iterations allowed per outer iteration.
Methods reviewed in [78] have been used to determine the WS parameter, λs, in problems without
feedback. These methods improve the convergence rate of the low-order problem without increas-
ing the computational burden in most cases. However, it is difficult to analyze these methods since
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Algorithm 8 NDA iteration scheme for the neutron transport problem with feedback.

1: Input iteration number N,L, tolerance εk, εf , initial guess Φ(0), J (0), λ(0).
2: for n = 0, 1, 2, · · · , N do
3: Apply the feedback. For the model problem with flux-dependent feedback, the cross section

is updated by:
Σ

(n)
i (x) = Σi0 + Σi1

[
φ(n)(x)− Φ0

]
.

(When the spatial discretization is used, the coarse mesh wise cross sections are homoge-
nized with updated cross sections on the fine mesh of the transport problem.)

4: Compute the diffusion coefficient and the nonlinear current correction factor for the
low-order diffusion equation with J (n) and Φ(n) using Eqs. (3.10).

5: Solve the eigenvalue system with L power iterations using Algorithm 4 with initial guess
Φ(n).

6: Update the transport flux and eigenvalue with Φ(n+1/2) ← Φ(n,L), λ(n+1/2) ← λ(n,L).
7: Perform a transport sweep with the solution from the low-order problem:

L(n)Ψ(n+ 1
2) =

1

2

[
S(n) + λ(n+ 1

2)F (n)
]
Φ(n+ 1

2) . (Alg 8.1)

8: Update the scalar flux, current, and eigenvalue estimates for the next iteration by:

J (n+1) = Φ0
M1Ψ(n+ 1

2)∥∥∥M0Ψ(n+ 1
2)
∥∥∥ , (Alg 8.2a)

Φ(n+1) = Φ0
M0Ψ(n+ 1

2)∥∥∥M0Ψ(n+ 1
2)
∥∥∥ . (Alg 8.2b)

9: Let λ(n+1) ← λ(n+ 1
2

), k(n+1)
eff ← 1/λ(n+1).

10: if
∣∣∣k(n+1)
eff − k(n)

eff

∣∣∣ < εc and
∥∥F (n)Φ(n) −F (n+1)Φ(n+1)

∥∥ < εf
∥∥F (n+1)Φ(n+1)

∥∥ then
11: break
12: end if
13: end for
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they are dependent on iterative solutions. To simplify the analysis in this study, λs is assumed to
be proportional to the eigenvalue with a fixed WS ratio r, i.e:

r =
λs
λ
. (3.12)

In practice, the partial convergence of the low-order diffusion solution is determined by the aggres-
siveness of the WS parameter λs and the power iteration number, L. Therefore, to study the effect

of the partial convergence of the low-order problem is to study the effect of the power iteration

number L and the WS ratio r.

3.1.3 Picard Iteration for NDA with Feedback

The overall iteration scheme for the NDA is shown in Algorithm 8. The scheme is a simplified
version of the scheme shown in Figure 2.1.

We are aware that in practice there may be an inner loop to solve Eq. (Alg 8.1) for converging
the scattering source. However, to reduce the number of parameters to be investigated in the
analysis presented in this chapter, it is assumed that only one transport sweep is performed with no
inner iterations on the scattering source.

3.2 Fourier Analysis

The process of Fourier analysis starts with the linearization of the equations comprising the itera-
tion scheme, and then introduces the Fourier Ansatz, that is a guess for the representative form of
the general solution in terms of its Fourier modes. In this section we show the analysis procedure
of NDA while that of CMFD is shown in Appendix A.2.

3.2.1 Linearization

To perform the linearization, it is assumed that the solution estimates of the nth outer iteration are
close to the true solution. This is equivalent to expanding the terms in the equations of Algorithm 8
in terms of the exact solution, and a small error term dependent on the iteration index. Substituting
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this expansion yields:

ψ(n+ 1
2)(x, µ) =

Φ0

2
+ εψ

(n+ 1
2)

1 (x, µ) +O(ε2) , (3.13a)

φ(n)(x) = Φ0 + εφ
(n)
1 (x) +O(ε2) , (3.13b)

φ(n+ 1
2)(x) = Φ0 + εφ

(n+ 1
2)

1 (x) +O(ε2) , (3.13c)

J (n)(x) = εJ
(n)
1 (x) +O(ε2) , (3.13d)

λ(n+ 1
2) = λ0 + ελ

(n+ 1
2)

1 +O(ε2) . (3.13e)

Then the cross sections updated with the linear flux-dependent model are expanded as:

Σ
(n)
i (x) = Σi0 + εΣi1φ

(n)
1 (x) +O(ε2) . (3.14)

During the WS power iteration, the iterates are linearized in a similar way as:

φ(n,l)(x) = Φ0 + εφ
(n,l)
1 (x) +O(ε2) , (3.15a)

λ(n,l) = λ0 + ελ
(n,l)
1 +O(ε2) , (3.15b)

λ(n,l)
s = rλ0 + rελ

(n,l)
1 +O(ε2) . (3.15c)

Substituting Eqs. (3.13) and (3.14) into the equations involved in the process of NDA and neglect-
ing the O(ε2) terms gives the relations for the propagation of the leading order errors through the
iteration scheme. This result is given in Eqs. (3.16).

φ
(n,0)
1 (x) = φ

(n)
1 (x) , (3.16a)

1

3Σt0

d2φ
(n,l+1)
1 (x)

dx2
−
(

1− r
)

Σa0φ
(n,l+1)
1 (x)

=
dJ

(n)
1 (x)

dx
+

1

3Σt0

d2φ
(n)
1 (x)

dx2
+ Σt0γφ

(n)
1 (x)−

(
1− r

)
Σa0φ

(n,l)
1 (x) , (3.16b)

φ
(n+ 1

2)
1 (x) = φ

(n,L)
1 (x) , (3.16c)

µ
∂ψ

(n+ 1
2)

1 (x, µ)

∂x
+ Σt0ψ

(n+ 1
2)

1 (x, µ) =
1

2
Σt0

[
φ

(n+ 1
2)

1 (x)− γφ(n)
1 (x)

]
, (3.16d)

φ
(n+1)
1 =M0ψ

(n+ 1
2)

1 , (3.16e)

J
(n+1)
1 =M1ψ

(n+ 1
2)

1 , (3.16f)

λ1 = 0 , (3.16g)
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where
γ =

(
Σa1

Σa0

− Σf1

Σf0

)
Σa0

Σt0

Φ0 . (3.16h)

A detailed discussion about γ is given in [39]. In summary, the parameter γ notionally rep-
resents the intensity or magnitude of the cross section feedback due to the perturbation of the
feedback. A positive γ indicates that the system has negative feedback, which is a key factor for
having a physically stable reactor. In this thesis, γ is referred to as the feedback intensity.

The typical γ for PWRs is on the order of 10−4, with a maximum γ less than 2 × 10−3. We
also note that γ may be treated as a local quantity, though it is expressed here with Φ0. Further
discussion on this point is given in Chapter 4. The expression used here in Eq. (3.16h) is to present
a way to calculate the feedback intensity that we will make use of in Chapter 4.

After simplification, it may be found that λ1 = 0, indicating that the feedback analyzed for the
iteration scheme should be independent of the global parameter, k. Therefore, the feedback effect
from the critical boron search will not be explicitly analyzed.

3.2.2 Fourier Ansatz

Now the Fourier Ansatz is introduced by assuming:

φ
(n)
1 (x) = θnβ1e

iωΣt0x , (3.17a)

J
(n)
1 (x) = θniβ2e

iωΣt0x , (3.17b)

φ
(n,l)
1 (x) = θnα(l)eiωΣt0x , (3.17c)

φ
(n+ 1

2
)

1 (x) = θnβ3e
iωΣt0x , (3.17d)

ψ
(n)
1 (x, µ) = θna(µ)eiωΣt0x . (3.17e)

θ is the iterative eigenvalue, ω is the Fourier frequency, and βs, a and α are the magnitudes of the
error at the very first iteration. Eqs. (3.17) are substituted into Eqs. (3.16) for the errors to obtain
θ as a function of ω, the frequency-dependent eigenvalues of the iterative method (or iteration
matrix).[

− ω2

3
− (1− r) (1− c)

]
Σt0α

(l+1) =[
− ωβ2 −

ω2

3
β1 + γβ1 − (1− r) (1− c)α(l)

]
Σt0 , (3.18a)

α(0) = β1 , (3.18b)

β3 = α(L) , (3.18c)
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θβ1 =
arctan (ω)

ω
(β3 − γβ1) , (3.18d)

θβ2 = − 1

ω

[
1− arctan (ω)

ω

]
(β3 − γβ1) . (3.18e)

3.2.3 Fourier Analysis Result

The Fourier analysis results consist of the final expressions of the spectral radius for both the
partially converged NDA and partially converged CMFD.

3.2.3.1 NDA

After simplification of Eqs. (3.18), the iterative eigenvalue θ of the error with frequency ω is

θ (ω) =
[
ΛL (ω)− γ

]
fTS (ω) +

[
1− ΛL (ω)

][
fNDA (ω)− 3γ

ω2
fTS (ω)

]
, (3.19)

with

fTS (ω) =
arctan (ω)

ω
, (3.20a)

fNDA (ω) = (1 +
3

ω2
)fTS (ω)− 3

ω2
, (3.20b)

c′ = 1− (1− r)(1− c) , (3.20c)

Λ (ω) =
1− c′

1− c′ + ω2

3

. (3.20d)

fTS is the iterative eigenvalue for the source iteration, and fNDA is the iterative eigenvalue for
the classical NDA method. The phrase classical CMFD refers to the NDA/CMFD-accelerated
scheme, where the CMFD solution is fully converged. c′ is the effective scattering ratio, and Λ is
the error decay rate per power iteration.

The spectral radius is then given by:

ρ = max
j>0

∣∣∣θ(ωj)∣∣∣ , (3.21)

with the allowable Fourier modes being of the following discrete form to satisfy the reflective
boundary conditions:

ωj = j
π

Σt0X
, j = 1, 2, · · · . (3.22)

The range of the parameters involved in this analysis is specific to the PWR problem and given in
Table 3.1.
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Table 3.1: Range of parameters used in Fourier analysis.

Symbol c γ r ΣtX

Definition Scattering
Ratio

Feedback
intensity

WS ratio Problem
Size (mfp)

Range < 0.96 [0.00025, 0.002] [0, 1) [0, 500]

3.2.3.2 CMFD

The spectral radius for CMFD is presented in this section, with the detailed derivation presented
in Appendix A.2. When the coarse cell has the width ∆ and contains q evenly-spaced fine mesh
cells, the error transition matrix T (ω) has the following definition:

T(ω) = H̃(ω)(1− γ)−
[
1− ΛL(ω)

]
u

3Σt∆(eiΣt∆ω − 1)G̃ (ω) + γ3(Σt∆)2 1T

q
H̃ (ω)

2− 2cos (Σt∆ω)
, (3.23)

with

Λ (ω) =
1− c′

1− c′ + 2−2cos(Σt∆ω)

3(Σt∆)2

, (3.24a)

H̃ ∈ Cq×q, G̃T ∈ Cq, u ∈ Cq, 1 ∈ Cq . (3.24b)

H̃ is the error transition matrix for the fine mesh scalar flux due to the discretized transport
sweep operator. G̃ is the operator for the coarse mesh surface net current obtained from the fine
mesh surface angular flux. The definition of these two terms can be found in [16, 94]. A more
recent and thorough discussion of these terms is presented in [76]. The term u is the spatial pro-
longation operator for the coarse mesh to fine mesh scalar flux. In [94], β is used for this operator.
However, In this chapter we use β to represent relaxation. Unless specified otherwise, the flat pro-
longation operator of classical CMFD is used, and u is 1. The incorporation of linear (or higher
order) spatial prolongation operators is easily handled through modification of u, and in general
affects the spectral radius in a fundamentally different way than the inclusion of feedback. The re-
sults obtained here and corresponding discussions with respect to feedback and partial convergence
are expected to hold true for the CMFD variants discussed in [94]–including linear prolongation.

The iterative eigenvalue from the coarse mesh operator for the Fourier mode with frequency ωj
is:

θ(ωj) = max
∣∣∣Eigs

(
T(ωj)

)∣∣∣ , (3.25)
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with the allowable Fourier frequencies:

ωj = j
π

Σt0∆J
, j = 1, 2, · · · , J − 1 , (3.26)

where J is the number of coarse meshes in the model problem. ωj possesses a limit range due to
aliasing:

T(ωj) = T(ωj−2J) = T(ω2J−j) . (3.27)

The spectral radius is again given by the maximum of all the iterative eigenvalues over the fre-
quency shown by Eq. (3.21).

3.2.3.3 Fully Converged NDA/CMFD with Flux Relaxation

The expression of the spectral radius of the fully converged NDA/CMFD with flux under-relaxation
is presented in this section. The NDA with flux relaxation is given by Algorithm 3 in [39]. The
flux relaxation is different from the pin power relaxation, that is given in Algorithm 2 in [39] and
adopted in most practical simulation codes. It has been shown in [39] that the NDA with flux
relaxation can be more stable than NDA with pin power relaxation when the problem domain
optical thickness is larger than 50 mean free path (mfp).

The flux relaxation factor β is applied to update Φ(n+ 1
2) by

Φ(n+ 1
2) = βΦ(n+ 1

2) + (1− β)Φ(n) , (3.28)

when solving Eq. (Alg 8.1). The iterative eigenvalue of the Fourier modes is written as:

θ (ω) =


(

1− β − γ
)
fTS (ω) + β

[
fNDA (ω)− 3γ

ω2fTS (ω)
]
, NDA, (Algorithm 3) in [39] ,

max
∣∣∣Eigs

(
T (ω)

)∣∣∣ , CMFD ,

(3.29a)

with

T (ω) = H̃ (ω) (1− γ)− βu
3Σt∆(eiΣt∆ω − 1)G̃ (ω) + γ3(Σt∆)2 1T

q
H̃ (ω)

2− 2cos (Σt∆ω)
. (3.29b)

The detailed derivation process for the spectral radius of CMFD is shown in Appendix A.2
and omitted here for brevity. It should be noted that for the transport sweep, step-characteristics is
assumed to be used, so the results can be more instructive for applications with the MOC solver.
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3.2.4 Validation of Fourier Analysis Results

The expressions are first verified through careful examination of Eqs. (3.19) to (3.23) and their
limits.

• ΛL is the term denoting the effect of the partial convergence of low-order diffusion solutions.
With L and r increasing, the partial convergence term should decrease continuously and
vanish eventually when the NDA has been fully converged. This is verified by taking the
limits:

lim
L→∞

ΛL (ω) = 0 , (3.30)

and
lim
r→1

ΛL (ω) = 0L = 0 , (3.31)

because
Λ (ω) =

1− c′

1− c′ + ω2

3

∈ [0, 1) .

• When γ is 0, i.e. no feedback is present, with both L → ∞ and r → 1, the expression for
the iteration eigenvalue θ (ω) in the continuous problem is simplified:

θ (ω) = (1 +
3

ω2
)fTS (ω)− 3

ω2
, (3.32)

which is just the expression of θ for the classical NDA. When γ is not zero with both L→∞
and r → 1, the expression is simplified as

θ (ω) = fNDA (ω)− γ(1 +
3

ω2
)fTS (ω) , (3.33)

which is the expression for the spectral radius of the Algorithm 2 or 3 analyzed in [39]
without relaxation.

• For the discretized problem, when no feedback is present and the CMFD problem is fully
converged, the error transition matrix T (ω) in Eq. (3.23) is simplified as

T (ω) = H̃ (ω)− 1
3Σt∆(eiΣt∆ω − 1)G̃ (ω)

2− 2cos (Σt∆ω)
, (3.34)

which is the same error transition matrix of classical CMFD as defined in [16].

To validate the Fourier analysis results, the spectral radii were measured from the numerical
simulations of a 1D test code using the model problem and compared to the values predicted by
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Eq. (3.21) for NDA and CMFD with partial convergence from various combinations of power iter-
ation number L and WS ratio r. All simulations for this chapter were run with a Gauss–Legendre
quadrature set of order 16. The transport discretization was SN with step-characteristics. For the
continuous case, the problem was discretized into 4000 spatial cells, while for the discretized prob-
lem, 100 coarse mesh cells were used with 5 fine cells per coarse cell. The feedback intensity γ
adopted was 0.00121 (taken from [39]), and the scattering ratio c used was 0.94.
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Figure 3.1: Comparison between Fourier analysis and numerical results. FA stands for Fourier
analysis and NM stands for Numerical. (a) shows the results of the NDA in continuous problem.
(b) illustrates the spectral radii of CMFD in the spatially discretized problem.

The spectral radii plotted in Figures 3.1 show that the Fourier analysis results and the numerical
results from the 1D test code are in very good agreement. There are some outliers for which
the spectral radius measured from the numerical simulation is smaller than that from the Fourier
analysis. This is likely due to the fast error modes in the numerical simulations. The differences
between the spectral radii estimated from numerical simulation and Fourier analysis are smaller
than 1%. This verifies the Fourier analysis results. Therefore, we conclude that the Fourier analysis
results presented in this section provide a way to analyze the effect of the partial convergence of
the low-order diffusion problem of NDA or CMFD on the stability of the iteration scheme for
multiphysics simulations.

Though Fourier analysis is a semi-quantitative approach to analyze the stability of the iterative
methods, many applications of Fourier analysis have shown that the behavior of real problems is
well predicted by the Fourier analysis [74, 16]. It will also be shown in Chapter 4 that what
is predicted for the partially converged NDA/CMFD with linearly flux-dependent cross sections
in this chapter is consistent with what is observed in the simulation of realistic problems using
MPACT.
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3.2.5 Effect of Partial Convergence

The plots shown in Figures 3.2 to 3.3 show the effect of the partial convergence of low-order
diffusion solutions on the stability of the overall acceleration scheme. Several observations are
made from these figures:
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Figure 3.2: Spectral radius as a function of power iteration Number L. (a) shows how L affects
the spectral radius in the problem without feedback. (b) shows how L affects the spectral radius in
the problem with feedback.
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Figure 3.3: Spectral radius as a function of the WS ratio r. (a) shows how r affects the spectral
radius in the problem without feedback. (b) shows how r affects the spectral radius in the problem
with feedback.

• In Figure 3.2a and Figure 3.3a the spectral radius of the iteration scheme decreases with L
or r increasing. This illustrates that a more tightly converged low-order problem is desirable
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for simulations without feedback to achieve optimal convergence rates. Therefore, fully
converged NDA provides a theoretically optimal algorithm for the case without feedback.

• When the domain size is large (e.g., ΣtX = 300), the power iteration number L has to
be larger than 30 or the WS ratio r has to be very close to 1 to achieve the theoretically
optimal spectral radius of NDA ρ = 0.2247. The results imply the conventional WS power
iteration may not be an effective method since a very large L or a near-unit r makes the
NDA much more computationally expensive. This is likely why recent research has focused
on developing or applying more advanced methods such as the multilevel method [32] or
Generalized Davidson method [82], respectively, to solve the low-order diffusion eigenvalue
problem more efficiently.

• Figure 3.2b and Figure 3.3b illustrate the effect of the partial convergence for problems with
feedback. If the low-order solutions are too tightly converged, the iteration scheme becomes

unstable. Under this scenario, as shown in Figure 3.2b, loosening the convergence criteria
by reducing the power iteration number L or aggressiveness of the WS makes the scheme
more stable. These results agree with what has been observed in [32]. Moreover, it can
be seen that (i) an optimal convergence rate exists for some combinations of L and r; (ii)
the optimal combination is problem-dependent. Therefore, the partial convergence of the
low-order problem should be within a specific, problem-dependent range to enable NDA to
achieve a fast rate of convergence. It is also observed that when the low-order equation is
solved to the same convergence criteria for two problems that are identical in all regards–
except one possesses feedback and the other does not–the iteration scheme may perform
better in the problem with feedback.

• The plots illustrated in Figure 3.2b and Figure 3.3b are qualitatively similar to plots illustrat-
ing the effect of relaxation shown in [39] implying the effect of partial convergence should be
interpretable from the perspective of relaxation. The looseness/tightness of the convergence
of the low-order problem can induce too much or little under-relaxation.

3.2.6 Partial Convergence vs Relaxation

The link between partially converging the low-order diffusion problem of NDA/CMFD and re-
laxation arises from the structure of the power iteration. The initial guess of the power iteration
solution is the scalar flux from the previous iteration step Φ(n) and the solution converges to the

exact solution of the low-order equation Φ
(n+ 1

2)
f (f denotes fully-converged) as L → ∞ and

r → 1. When the low-order equation is not fully converged, the scalar flux on the right-side of
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Eq. (Alg 8.1) is just an intermediate value between Φ(n) and Φ
(n+ 1

2)
f . This is analogous to the

formulation of relaxation that uses a linear combination of Φ(n) and Φ
(n+ 1

2)
f .

The partial convergence can be shown to be equivalent to a very special under-relaxation, and
this relationship can be expressed mathematically. Comparing Eq. (3.19) and Eq. (3.23) with
Eqs. (3.29), it can be found that these two sets of equations have the exact same form, with β in
Eqs. (3.29) defined as:

β (ω) = 1− ΛL (ω) . (3.35)

The implicit under-relaxation due to the partial convergence is slightly different from the common
under-relaxation. In Eqs. (3.29), the relaxation factor is a constant with respect to the Fourier
frequency. Conversely, as Eq. (3.35) illustrates, the under-relaxation from the partial convergence
of the low-order equations is ω-dependent.

Figure 3.4a shows how β (ω) varies with the Fourier frequency for both the spatially continuous
and discretized cases. Here, it is observed that β(ω) monotonically increases from 0 to 1 with ω
increasing. The results show that the under-relaxation from partial convergence is mainly imposed
on the relatively flat error modes. This observation helps explain why the partial convergence of
the low-order diffusion solution can stabilize the iterations of problems with feedback, since the
flat error modes are shown to be the source of instability in [39], and under-relaxation must be
applied to reduce the spectral radius. The partial convergence mainly relaxes the relatively flat
error modes and does not affect the high-frequency error modes. This follows from the power
iteration procedure as fixed-point iterations generally eliminate the high-frequency modes very
quickly. Therefore, when the partial convergence of low-order problem is used, the instability
from the relatively flat error modes will be suppressed without altering (or amplifying) the high-
frequency error modes.

Figure 3.4b compares the effect of a constant relaxation factor and the effect of the implicit ω-
dependent relaxation arising from the partial convergence in the continuous problem. In the figure,
the constant relaxation factors are the optimal relaxation factors that make the spectral radius of
NDA/CMFD the smallest. It can be observed that even with the optimal relaxation factors, the
NDA cannot converge at the same rate as classical NDA without feedback. The reason is that
the relaxation factor that reduces the magnitude of the iterative eigenvalues of the relatively flat
error modes amplifies the high-frequency error modes. As a result, the spectral radius inevitably
becomes larger than the spectral radius of classical NDA. This degradation becomes more severe
as the model problem size increases because the relaxation factor β must be closer to 0 to dampen
the flat error modes. Under these circumstances θ(ω) ≈ fTS(ω), for which the spectral radius
approaches 1.

55



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Fourier Frequency 

0.0

0.2

0.4

0.6

0.8

1.0
Re

la
xa

ti
on

 
(

)
=1.21e-03

NDA c′=0.9 L=6
NDA, c′=0.991, L=6
NDA, c′=0.995, L=2

t =0.3, c′=0.9, L=6
t =0.3, c′=0.991, L=6
t =0.3, c′=0.995, L=2
t =0.6, c′=0.9, L=6
t =0.6, c′=0.991, L=6
t =0.6, c′=0.995, L=2
t =1.0, c′=0.9, L=6
t =1.0, c′=0.991, L=6
t =1.0, c′=0.995, L=2

(a)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Fourier Frequency 

0.0

0.2

0.4

0.6

0.8

1.0

It
er

at
iv

e 
Ei

ge
nv

al
ue

 |
(

)|

=1.21e-03
 tX=50, =0.69
 tX=100, =0.35
 tX=200, =0.12

tX=200,c′=0.991, L=6
classical NDA

=0.2247

(b)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Fourier Frequency 

0.2

0.4

0.6

0.8

1.0

1.2

It
er

at
iv

e 
Ei

ge
nv

al
ue

 |
(

)|

=1.21e-03
tX=100, t =0.2, =0.34
tX=100, t =0.2,c′ = 0.991,L=6
tX=100, t =0.2,classical CMFD
tX=200, t =0.4, =0.12
tX=200, t =0.4,c′ = 0.991,L=6
tX=200, t =0.4,classical CMFD

(c)

Figure 3.4: β(ω) and |θ(ω)| as function of Fourier frequency. (a) shows how relaxation factor
β (ω) varies with ω for both NDA and CMFD. (b) compares the iterative eigenvalues of error
modes for fully converged NDA with optimal constant flux relaxation factor and NDA with par-
tially converged low-order diffusion solutions. (c) compares the iterative eigenvalues of different
error modes for fully converged CMFD with optimal constant flux relaxation factor and CMFD
with partially converged low-order solutions.

For the discretized problem, as Figure 3.4c shows, CMFD with partial convergence cannot
achieve the same spectral radius as the classical CMFD. However, the difference is small, and the
spectral radius is still smaller than that of CMFD with an optimal relaxation factor.

The concept of an ω-dependent relaxation factor is somewhat strange. In practice, this may be
straightforward to implement for spectral methods, but it does not have an obvious analog for the
iteration schemes described here. However, we may understand the ω-dependent relaxation factor
as being like a multi-level operator, rather than applying a fixed parameter, where an iteration is
performed on a different grid that targets a specific Fourier frequency.
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3.3 Relaxation-free Iteration Scheme

The previous section showed that the partial convergence of the low-order problem in NDA/CMFD
introduces the notion of a Fourier frequency-dependent relaxation. This behavior makes it possible
to develop a robust relaxation-free method based on the nearly-optimal partial convergence of the
low-order equations. Consequently, the spectral radius of the classical NDA/CMFD schemes can
be achieved for NDA/CMFD in problems with feedback. The effect of partial convergence on the
stability of CMFD is close to that of NDA. Therefore, in this section, we first develop the nearly-
optimal relaxation-free method to partially converge the low-order diffusion problem of NDA, and
then apply the algorithm directly to CMFD.

3.3.1 NOPC Algorithm

In NDA the source of the instability for problems with feedback arises from the flat error modes.
As a result, the nearly-optimal partial convergence should make the

∣∣∣θ (ωp)
∣∣∣ as small as possible.

Here, ωp is a relatively flat Fourier mode (ωp ≈ 0) that is used to predict the nearly-optimal partial
convergence. As shown later in this part, the parameter can be determined with the feedback
intensity.

Substituting Eq. (3.35) into Eq. (3.19) yields the following expression for θ (ωp):

θ (ωp) =
[
1− β (ωp)− γ − β (ωp)

3γ

ω2
p

]
fTS (ωp) + β (ωp) fNDA (ωp) . (3.36)

The iteration eigenvalue of the relatively flat Fourier mode is:

fTS (ωp) ≈ 1 , (3.37)

with ωp ≈ 0. To minimize the magnitude of θ(ωp) in Eq. (3.36) is equivalent to setting the coeffi-
cient of fTS:

1− β (ωp)− γ − β (ωp)
3γ

ω2
p

= 0 . (3.38)

Rearranging this equation yields:

β (ωp) =
1− γ
1 + 3γ

ω2
p

. (3.39)

Since

β (ωp) = 1− ΛL(ωp) , (3.35 revisited)
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Λ(ωp) =
1− c′

1− c′ + ω2
p

3

, (3.24a revisited)

c′ = 1− (1− c)(1− r) , (3.20c revisited)

the nearly-optimal WS ratio r and the power iteration number L to achieve the nearly-optimal
partial convergence can then be calculated by:

r = 1− [1− β (ωp)]
1
L

1− [1− β (ωp)]
1
L

ω2
p

3(1− c)
, (3.40a)

or
L = LogΛ(ωp) [1− β (ωp)] . (3.40b)

The formula to determine the optimal r is preferred to the formula for L because r can take any
value in the range [0, 1), but L can only take discrete integer values. This means r has more
flexibility to achieve the optimum.

The nearly-optimal partial convergence is problem-dependent. It depends on the size and the
feedback intensity of the problem. Upon revisiting the results in Figures 3.2 and 3.3, it can be
observed that there is a shared region for the partial convergence for problems of size ΣtX = 100

and ΣtX = 300–where the method has the same spectral radius as the classical NDA method.
Therefore, it should be possible to find a problem-independent ωp, or ωp dependent only on the
feedback, to estimate the nearly-optimal partial convergence irrespective of the problem domain
size.

Two important reasons for searching for a ωp independent of the problem size are that in prac-
tical problems, (i) it is difficult to define the equivalent model optical thickness; and (ii) even the
partial convergence estimated using the optical thickness of the simulated problem may not be
suitable since the practical problem is not fully consistent with the model problem (which is a
homogeneous, mono-energetic, reflective problem with isotropic scattering). Consequently, our
motivation to heuristically determine a limiting ωp is analogous to an attempt to recover generality
that is lost in the simplifications made to define the model problem. As we show in Chapter 4, this
approach is successful.

To better illustrate the relationship between ωp and the stability of the iteration scheme, the
maximum spectral radius ρm of the partially converged NDA in problems with sizes ranging from
ΣtX = 100 to ΣtX = 500 (with various ωp and L used to estimate the partial convergence) are
plotted and shown in Figures 3.5. The ρm is defined as:

ρm = max
ΣtX∈[100,500]

ρ (ΣtX, r(ωp)) . (3.41)
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Figure 3.5: Relation between the maximum spectral radius and the ωp used to estimate the nearly-
optimal partial convergence. The feedback intensities γ of these four figures are 2.5 × 10−4, 5 ×
10−4, 1× 10−3 and 2× 10−3.

It can be seen that when the L ≤ 6, ρm is close to the optimal threshold of 0.2247. However,
there is no universal ωp that can make ρm the same as 0.2247 for all cases. Nevertheless, the
deviation of ρm from 0.2247 is relatively small.

When a fixed ωp is desired for different problem sizes, it is suggested that ωp ∈ [ π
200
, π

150
]

is a reasonable parameter range to estimate the nearly-optimal partial convergence. The ρm in
this range is ∼0.274. Compared to the classical NDA, the total iteration number to reach the
convergence criteria ε for the partially converged NDA with ρ = 0.274 is increased by:

η =
log0.274ε

log0.2247ε
− 1 =

ln(0.2247)

ln(0.274)
− 1 ≈ 15% . (3.42)
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Figure 3.6: Investigation and verification of the ωp to estimate the nearly-optimal partial conver-
gence. (a) shows that the applicable range of ωp for various feedback intensities. The vertical line
representing the application range of ωp for feedback intensity γ. The dashed line is the plot of the
formula Eq. (3.43) to determine the ωp in the applicable range based on γ. (b) shows that the spec-
tral radius of the NDA with the partial convergence estimated by Algorithm 9 is nearly-optimal.

For the case with a typical convergence criteria of ε = 10−7, the total number of outer transport
iterations, N , is increased by 1. Therefore, the overhead of a single additional iteration out of
O(10) may be considered negligible.

If a better nearly-optimal partial convergence estimation is desired, the ωp can be determined
based on the feedback intensity γ. The applicable range of ωp with L = 20 that allows the par-
tially converged NDA to achieve the spectral radius close to the classical NDA is searched and is
illustrated in Figure 3.6a. The formula

ωp(γ) =

18γ + 0.013 , γ ∈ [10−4, 1.5× 10−3] ,

π/80 , γ > 1.5× 10−3 ,
(3.43)

is suggested to be used from this study. The plot of this expression is the dashed line in Figures 3.6.

The algorithm to determine the nearly-optimal partial convergence is now presented and
shown in Algorithm 9. The estimate r should not be very close to 1 because the linear system,
Eq. (Alg 4.1a), will become nearly singular and difficult to solve by most conventional iterative
methods. In this study, the upper bound of the WS ratio r is set to be 0.98 [6]. The WS ratio cannot
be smaller than 0, either. Otherwise, the eigenvalue from the power iteration may not converge to
the fundamental mode. Therefore, when the calculated r is too small i.e., in this case r < 0.1,
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the WS ratio will be set to 0.1 and the maximum number of power iterations will be updated by
Eq. (3.40b). The minimum power iteration number Lm is also introduced as a lower limit.

Algorithm 9 Nearly-optimal partial convergence estimation.
Input:PI Number L; minimum PI number Lm; feedback intensity γ.
Output:WS ratio r, PI Number L.

1: Calculate ωp with Eq. (3.43), or use a fixed ωp from the suggested range [ π
200
, π

150
].

2: Calculate the WS ratio r with Eq. (3.40a), and make the r in a rational range by:

r ← min(r, 0.98) .

3: if r < 0.1 then
4: r ← 0.1.
5: Update the power iteration number L using Eq. (3.40b), and

L = max(L,Lm) .

6: end if

3.3.2 Stability of NOPC-stabilized Method

The spectral radius of NDA with nearly-optimal partial convergence, estimated using the feedback-
dependent ωp in Eq. (3.43), is shown in Figure 3.6b. It is observed that in all the cases, the
iteration scheme has a very similar or even smaller spectral radius compared with the classical
NDA. Therefore, the new relaxation-free NDA method for problems with feedback in which the
low-order diffusion problem is nearly-optimally partially converged is named as nearly-optimal
partially converged NDA.

The algorithm is next applied to the discretized model problem. And the method is referred to
as the NOPC-CMFD. We first apply this to the conventional CMFD method, where the flat pro-
longation is used for updating the transport solutions. The procedures developed in [16] are used
here to optimize the diffusion coefficients. The spectral radius results are shown in Figures 3.7.
From these results, it is observed that in utilizing the nearly-optimal partial convergence, the op-
timally diffusive Optimally Diffusive CMFD (odCMFD) problem with feedback can have almost
identical convergence behavior compared to odCMFD without feedback. Therefore, we conclude
that the nearly-optimal partial convergence method can (theoretically) make the iteration scheme
in the practical simulations with feedback have the same performance as the classical CMFD in
the simulations without feedback. Again we demonstrate this numerically in Chapter 4.

Next, we apply Algorithm 9 to the lpCMFD [95, 18] where the linear prolongation is used to
update the fine mesh transport solutions. The results are shown in Figures 3.8. Here, it is observed

61



that not only does the lpCMFD with the nearly-optimal partial convergence have almost the same
spectral radius as lpCMFD for the region where lpCMFD is stable, but that it is also more stable
than lpCMFD without feedback for the problem where the coarse mesh size is quite large. The
odCMFD or lpCMFD with nearly-optimal partial convergence is called nearly-optimal partially
converged odCMFD or nearly-optimal partially converged lpCMFD. It can be concluded that the
nearly-optimal partially converged lpCMFD is a potentially unconditionally stable variant of the
CMFD method for problems with feedback.
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Figure 3.7: Stability of the nearly-optimally partially converged odCMFD. L in (a) and (b) are 6
and 20, respectively.
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Figure 3.8: Stability of the nearly-optimally partially converged lpCMFD. L in (a) and (b) are 6
and 20, respectively.
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3.3.3 Discussions of the Relaxation-free Method

3.3.3.1 Applicable Range

In the previous sections, the stability of the new relaxation-free method based on the nearly-optimal
partial convergence is investigated in a relatively small parameter space. In this section, the stabil-
ity of the scheme over a wider range of feedback intensities, γ, and scattering ratios, c, for NDA
are studied. The predefined number of power iterations L in Algorithm 9 is 20 and Lm is 5. The
problem size is assumed to be as large as ΣtX = 500, which is larger than the size of typical
nuclear reactors. These results are shown in Figure 3.9. It can be seen in Figure 3.9 that the new
algorithm is predicted to be stable for a wide range of conditions with different scattering ratios
and orders of feedback intensity.
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Figure 3.9: Spectral radius of NDA with Algorithm 9 in problems with various combinations of c
and γ.

However, the method converges slowly or becomes unstable in the region with small c and γ,
or with larger c and large γ. When the scattering ratio is smaller than 0.9 and feedback intensity
is smaller than 1.5 × 10−3, the spectral radius will not reach the optimal value of 0.2247, though
it is smaller than 1. A more aggressive WS parameter can resolve this issue when r is allowed to
be larger than 0.98. Nevertheless, in this parameter space, the method will not perform worse than
methods using power iteration, that are also limited by the aggressiveness of the WS parameter.
When γ is larger than 2.5×10−3, the scheme will become unstable with a sufficiently large scatter-
ing ratio. Presently, it is not assumed that this is a big issue for the modeling of PWRs because the
γ in a PWR seldom becomes larger than 1.5 × 10−3, Furthermore, the scattering ratio of the fuel
region is seldom smaller than 0.9. We would also expect the method to be suitable in fast reactor
analysis where scattering ratios are smaller. However, for other highly scattering, and therefore
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thermal, reactor designs that might have extremely strong or sensitive reactivities, this numerical
scheme will likely have reduced efficacy. Although, a problem with a large value for γ and high
scattering ratio is likely not representative of a sensible nuclear reactor design. The definition of γ
is

γ =

(
Σa,1

Σa,0

− Σf,1

Σf,0

)
Σa,0

Σt,0

Φ0 =

(
Σa,1

Σa,0

− Σf,1

Σf,0

)
Φ0(1− c) . (3.44)

This equation shows that as c increases, γ becomes smaller, so a design with large c and large γ is
not likely possible.

3.3.3.2 Validity of Assumptions

In the model problem, it is assumed that γ is a constant across the whole problem domain. How-
ever, in realistic problems, the temperature distribution and the flux distribution are not flat. Since
γ can be expressed as a local term dependent on the local flux and cross sections (or temperature).
We devote substantial focus on how to define a suitable global γ to calculate the nearly-optimal
partial convergence parameters in Chapter 4.

Another implicit assumption is that convergence to the fundamental mode eigenvalue is quite
fast. However, there is a spectrum of eigenvalues in all problems, and a less aggressive WS param-
eter may affect the convergence to the dominant eigenvalue.

3.3.3.3 Implementation of the Relaxation-free Method

The relaxation-free CMFD method, i.e., nearly-optimal partially converged CMFD, should be easy
to implement in high-fidelity whole-core simulation codes that already have something like Algo-
rithm 8. The only modification compared to the current Picard scheme, is that some routines must
be added to estimate the feedback intensity and estimate the nearly-optimal partial convergence.
The overall structure of the iteration scheme is not altered. However, estimation of γ can be non-
trivial as discussed in Chapter 4. Ultimately, we present this method as a relatively simple way to
enhance the robustness of high-fidelity whole-core simulators, such as MPACT, for problems with
feedback in the cross sections. Other methods are being developed and demonstrated to address
robustness in multiphysics iterations [34, 38], but we consider these approaches to be more com-
plex to adopt (sometimes considerably), and so far have only been shown to yield similar efficacy
as to the method we propose here. Nevertheless, these other works also present important current
future alternatives to the method described in this chapter. Another robust relaxation-free method
in this thesis, X-CMFD, is investigated in Chapter 5.
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3.3.3.4 Importance of the Relaxation-free Method

The Fourier analysis results show that the nearly-optimal partially converged NDA/CMFD method
(or relaxation-free method), has a spectral radius comparable with the classical NDA/CMFD in
a wide range of problems with feedback. The work is important because it enables the same
effectiveness of NDA/CMFD acceleration for problems without feedback to that for problems with
feedback. It eliminates the need for a user-defined and problem-dependent relaxation factor–where
one does not know the optimal relaxation factor a priori. Additionally, from the neutronics solver
perspective, the computational resource requirements will not vary much for the problems with
and without feedback, so long as the solvers for the other physics are much less computationally
expensive to evaluate compared to the neutronics solver. Lastly, the proposed method is developed
from well-grounded theory and mathematical analysis techniques; it is not determined strictly
through comparing results of numerical experiments and parametric studies.

3.4 Summary

In this chapter, the stability of partially converged NDA and CMFD to accelerate k-eigenvalue
neutron transport problems with feedback was studied. The relationship of partial convergence
and relaxation was derived, and a new relaxation-free iteration scheme was proposed. The results
of the Fourier analysis are well-grounded and provide a theoretical foundation for the development
of a robust relaxation-free multiphysics iteration scheme with NDA.

The investigation of the partial convergence of NDA and CMFD is motivated by the fact that
the low-order diffusion eigenvalue problem in most applications of NDA and CMFD is typically
solved with a limited number of WS power iterations. Therefore, the partial convergence is first
theoretically parameterized with the number of power iterations and the WS ratio. The Fourier
analysis results show that fully converging the NDA and CMFD is desired for problems with-
out feedback, however, this approach is detrimental for problems with feedback. The theoretical
results support the observation that the typical Picard iteration presented in the chapter is not un-
conditionally stable, and the convergence criteria on the low-order problem should be loosened to
achieve good convergence rates.

The partial convergence is then related to a more conventional flux relaxation factor. It is
shown that the partial convergence of the low-order problem introduces an implicit relaxation on
the Fourier modes–an intuitive result of the partial convergence. The relaxation depends on the
frequency of the Fourier modes and mainly affects the most slowly converging modes. This result
is significant for three reasons. First, this work provides the theoretical explanation as to why
partially converging the low-order problem of NDA/CMFD can stabilize the multiphysics iteration.
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Second, it shows exactly how partially converging the low-order problem is inherently different
from a constant relaxation factor. Finally, it predicts that partially converging NDA in problems
with feedback can be done so in a way to achieve the same stability as NDA in problems without
feedback. This result emphasizes the conclusion that partially converging the low-order problem
rather than using relaxation should be the procedure adopted for the multiphysics simulation.

In light of these analysis results, the relaxation-free iteration scheme is proposed by deriving
a formula to compute the WS ratio and the number of power iterations to use when solving the
low-order diffusion at each outer iteration so that the overall spectral radius is practically min-
imized. It is also observed that the scheme could be further optimized through the procedure
in [16] for CMFD with flat prolongation, or implemented directly without optimization for CMFD
with linear prolongation. The relaxation-free method is also shown to have predicted convergence
behavior similar to the NDA/CMFD acceleration in problems without feedback for a large range
of problem parameters.
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CHAPTER 4

Numerical Verification of Nearly-optimally Partially
Converged CMFD

4.1 Introduction

In this chapter, we present the results of numerical studies based on the theoretical work in Chap-
ter 3. The behavior of relaxation and partial convergence of diffusion solutions are first presented,
and the properties of the feedback intensity in Chapter 3 are then investigated. The results in-
dicate the importance of the partial convergence to stabilize the iteration scheme and verify the
assumptions and predictions made. Next, implementation of the relaxation-free method in the
MPACT [93], and numerical results of the method in problems of different scales with feedback
of various forms are introduced. The new method is implemented based on the current CMFD
solvers in MPACT. Compared to the original CMFD methods, the NOPC-CMFD method is much
more stable for problems with feedback, and the convergence performance is demonstrated to be
insensitive to the presence of feedback. The work presented provides well-grounded numerical
verification of Chapter 3 and demonstrates that the proposed method works well for practical ap-
plications.

4.2 Overview of Iteration Schemes

4.2.1 Feedback from Other Physics

The feedback from three different physics: TH, critical boron search (CB), and equilibrium Xenon
(EX), are of interest in this thesis. Coupling neutronics and feedback from other physics is essential
for operational, safety, and design analysis of nuclear reactor cores.

The TH problem can be solved by some simplified-TH model [89], a more advanced sub-
channel TH code like CTF [90], or with computational fluid dynamics (CFD) codes. The critical
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boron search is used to find the boron concentration that yields a k-eigenvalue of unity (or some
other target k). The equilibrium Xenon calculation updates the concentration of Xenon-135 and
Iodine-135 inside the fuel region according to the fission power. More details about these physics
and their solution can be found in [65].

The state variables, i.e., TH field, boron concentration, and Xenon and Iodine concentrations,
are categorized into two groups: local state variables and non-local state variables. This desig-
nation relates to their dependence on the fission power. The boron concentration is a non-local
state variable because it is only dependent on the latest estimate of the global k-eigenvalue in the
calculation, and the feedback is non-local. The concentration of Xe-135, I-135, and the TH fields
are local variables, and their feedback is local. It should be noted that the TH is also non-local
because of convection, but it is only weakly non-local. The fuel temperatures behave much more
like local feedback and typically dominate feedback effects in PWRs.

4.2.2 Wielandt Shifted Power Iteration in Practice

The CMFD equation, i.e. the equation of the low-order diffusion eigenvalue problem has the form
as:

Mφ = λFφ . (2.45 revisited)

Algorithm 4 shows how the CMFD equation is solved with WS power iteration. In practice, to bal-
ance the efficiency and convergence, the algorithm to perform the WS power iteration in MPACT,
DeCART [2], nTRACER [3], STREAM [41], and possibly other CMFD-accelerated transport
codes terminates the power iterations if l reaches the maximum number of power iterations L
or if some other convergence criteria of the CMFD solution are satisfied.

Several parameters have been used to measure the convergence of the CMFD solutions. The
first one is the relative residual fres that is defined by:

f lres =

∥∥(M− λlsF)Φ− (λl−1 − λls)FΦl−1
∥∥ /∥∥FΦl

∥∥
max

(
‖(M− λ0

sF)Φ0 − (λ0 − λ0
s)FΦ0‖/ ‖FΦ0‖ , f(εf )

) , (4.1)

in which f(εf ) is a value determined by the fission source residual convergence specification εf ,
that is used for determining the global convergence and terminating the outer iterations. Other
criteria are based on differences in the fission source and eigenvalue between two successive power
iterations. The fission source difference and the eigenvalue difference are defined in Eqs. (4.2) and
in Eq. (4.3), respectively.

∆f l =

∥∥FΦl − FΦl−1
∥∥

‖FΦl−1‖
, (4.2)
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∆kl =

∣∣∣∣ 1

λl
− 1

λl−1

∣∣∣∣ . (4.3)

The convergence criteria for fres, ∆f and ∆k are represented by rtol, ftol and ktol, respectively. In
MPACT and DeCART, fres and ∆k are used. In STREAM, ∆f and ∆k are used with ftol and ktol
being dynamically controlled depending on the convergence of the transport solver.

4.2.3 CMFD Solvers in MPACT

Two CMFD solvers based on the power iteration are implemented in MPACT and studied here.
They are Multigroup CMFD solver with power iteration (MGPI) and MSED solver [32].

The default CMFD solver MGPI in MPACT solves the full space and energy multigroup diffu-
sion problem. The linear system Eq. (Alg 4.1a) is solved using the GMRES [96, 74] solver from
PETSc [97] preconditioned by the block Jacobi method. The solution process is dramatically slow
for large-scale problems. For most applications with MPACT, the values for the maximum number
of power iterations L, λs, rtol and ktol are 20, 2/3, 10−2, and 10−6. These values were determined
from parametric studies on representative problems to approximately optimize the trade-off be-
tween time spent in the CMFD problem and the convergence rate of the overall iteration scheme.
For some simulations, the iteration-dependent λs, as introduced in [17], are also used.

A more efficient multilevel CMFD solver, the MSED solver [32], has been implemented in
MPACT more recently and has been introduced in Algorithm 5 in Chapter 2. The upper bound
of the number of power iterations performed for grey eigenvalue problem L = LMGLGR can
be much larger than the L used for solving the MGPI system. LMG indicates the number of
iterations between the multigroup level and grey diffusion level, and LGR is used to indicate the
number of grey power iterations performed on the grey diffusion level. The iteration-dependent
λs is also used. These features make the MSED solver much more efficient than the MGPI. The
same convergence criteria are used for the MSED and MGPI solvers. More details about the
MSED method and its performance can be found in [32]. The thought behind developing a more
efficient CMFD solver is that the overall run time of the iteration can be reduced significantly with
a more efficient CMFD solver since the CMFD run time dominates the total run time (at least in
MPACT). The thought for pursuing more accurate CMFD solutions is that it was believed the more
tightly converged the CMFD solution is, the fewer outer iterations are needed to achieve the global
convergence. However, as shown in Chapter 3, this latter assumption only holds when no feedback
or weak feedback is present.
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4.3 Nearly-optimally Partially Converged CMFD Solver

4.3.1 Importance of the Partial Convergence of CMFD solutions

Partially converging the CMFD solution to stabilize the iteration scheme is shown to be a better
approach than introducing relaxation from the Fourier stability analyses in [39] and Chapter 3.
This claim is further supported by the numerical results from simulating the VERA core physics
benchmark progression problem 6 (P6) [98] with MPACT presented in this section. The P6 is a
3D PWR assembly problem that has been used by different codes to assess the performance and
practicality of their multiphysics iteration schemes [84, 23, 33].

Before showing the effect of the partial convergence and relaxation, the number of outer itera-
tions that MPACT takes to converge P6 with zero power and fully converging the CMFD solution
is established. This value is 12, and is considered to be the performance of MPACT with classical
CMFD for P6. To assess the behavior of the partial convergence several P6 cases are used with
varying total power. As shown later in this subsection, if the partial convergence of the CMFD
solution is nearly-optimal, then MPACT can converge the P6 cases with feedback in 12 outer iter-
ations.

4.3.1.1 Effect of Partial Convergence

Figure 4.1 illustrates how the partial convergence of the CMFD solution affects the convergence
behavior of the coupled iteration scheme for P6. The P6 cases with 20% and 100% rated power
are simulated with a fixed WS ratio of r = 0.9 and a varying number of power iterations L. The
WS ratio is defined as:

r =
λs
λ
. (3.12 revisited)

In Chapter 3, we have shown that the partial convergence of the CMFD solutions are determined
by the WS ratio and the number of power iterations. No power relaxation is applied, and the
simplified TH model [89] is used for feedback.

It can be seen that to converge the P6 cases in the minimum number of outer iterations, 12,
the partial convergence of the CMFD solutions can neither be too tight nor too loose. Moreover,
there is an applicable range of the partial convergence of CMFD solution that allows MPACT to
converge optimally. The applicable range is wider for the case with 20% rated power compared to
the case with 100% rated power. These observations support the theoretical findings in Chapter 3–
that there is an optimal range for the partial convergence of CMFD in problems with feedback
that has practically the same convergence rate as classical CMFD in the same problem without
feedback.
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Figure 4.1: Relation between the number of total outer iterations to converge P6 and the number of
WS power iterations. 12 is the minimum number of outer iterations MPACT requires to converge
this problem. The feedback is from TH.

It can also be observed that when the CMFD equations are solved with 4 power iterations,
then MPACT converges the case with 100% nominal power faster than the case with 20% nominal
power. The observation supports the theoretical finding in Chapter 3 that a problem with stronger
cross section feedback may converge faster than the problem with weaker, or no feedback–if partial
convergence of the CMFD solution is relatively loose.

4.3.1.2 Effect of Relaxation

Though the effect of relaxation on the convergence rate of the Picard iteration scheme has been
examined in several different works [20, 39, 31], none of these works have taken the partial conver-
gence of CMFD solution into account. However, it should be noted that the Monte Carlo commu-
nity frequently publishes work involving numerical experiments to assess the number of batches
to run between cross section updates [84, 26, 99, 28]. This is notionally the same idea as the
partial convergence of the fission source–although it differs with respect to the use of a diffusion
acceleration scheme. In this subsection, the convergence behavior of MPACT in simulating the P6
cases using different relaxation factors with both fully converged and partially converged CMFD
solutions is investigated. Here we focus on the cases with nominal power and 140% rated power,
since it is not uncommon to have assembly peaking factors of 1.4 in full-core calculations. The
results are illustrated in Figures 4.2.

When the CMFD solutions are fully converged for each P6 case, as illustrated in Figure 4.2a,
there is an optimal relaxation factor where the total number of outer iterations is the smallest. This
optimal factor varies with the intensity of feedback (i.e. the rated power). For the P6 problem
with 100% nominal power and feedback from TH, the optimal relaxation factor is 0.8 (remarkably
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Figure 4.2: Convergence behavior of MPACT with varying relaxation factor. (a) shows the results
for fully converged CMFD solutions. (b) shows the results with default CMFD that are partially
converged.

close to historical values determined from parametric studies), while for the P6 problem with 140
% nominal power and feedback from TH, Critical boron search and Equilibrium xenon calculation
(TCE), the optimal relaxation is 0.6. Moreover, the stability of the iteration scheme is highly
sensitive to the relaxation factor. If the relaxation factor is varied by 0.1, the number of outer
iterations to converge the P6 cases can change by more than 10 iterations when a nominal power of
140% is used. It can also be observed that the minimum number of outer iterations to converge the
P6 case with 100% power is 20 when the CMFD is fully converged with feedback from TCE. This
number of outer iterations is much larger than the no feedback value, which is 12. Historically,
this may not have been of much concern in full-core nodal diffusion calculations since the cost
of an iteration is fractions of a second. However, in the application of high-fidelity methods, the
computational cost of a single iteration is non-trivial.

When the CMFD equations are partially solved, as illustrated in Figure 4.2b, not only the
applicable range of the relaxation factor that makes the simulation stable is broader, but the minimal
value of the total outer iteration numbers to converge is similar to that for the classical CMFD case
with no feedback. Moreover, the convergence performance of the iteration scheme becomes less
sensitive to the relaxation factor.

Therefore, the partial convergence of CMFD solutions is more important than the relaxation
to stabilize the Picard iteration scheme in CMFD-accelerated transport calculations. There also
exists a range of partial convergence that is nearly-optimal in the sense that the coupled problem
may be converged in the same number of iterations as the uncoupled problem. In the following
subsection, we investigate how to automatically determine a problem-dependent nearly-optimal
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partial convergence (NOPC) parameter, so that the iteration scheme is robust for a wide range of
problems.

4.3.2 Estimation of the Nearly-optimal Partial Convergence

The primary issue that remains is how to estimate the degree of partial convergence of the CMFD
solutions in a problem-dependent way. The theoretical results from Chapter 3 show that the NOPC
is expressible in terms of the WS ratio r and the number of CMFD power iterations L defined
by Eq. (3.40a).

r = 1− (1− β)
1
L

1− (1− β)
1
L

ω2
p

3(1− c)
, (3.40a revisited)

where
β =

1− γg
1 + 3γ

ω2
p

. (3.39 revisited)

However, these expressions depend on knowing the problem dependent feedback intensity param-
eter, γ. In this subsection, we describe an approach to efficiently determine this value. One may
use Eq. (3.40a) to determine an optimal r or L by fixing one and determining the other. Here we
have chosen to fix L as it is a discrete integer value and determine r to achieve NOPC. By choos-
ing to adjust the real number r over the discrete integer L, it should allow one to get closer to the
optimal convergence rate. The NOPC-CMFD is applicable because λs is a natural part of solving
the CMFD equations. In Eq. (3.40a), the most important parameter is γg, which is introduced to
represent the global core-wise feedback intensity [39], and is called the global feedback intensity
in this thesis. γg is problem-dependent and, for practical reasons, is determined by numerical es-
timation. c is the scattering ratio. The ωp is a problem-dependent parameter characterizing the
total optical thickness of the modeled problem (not the optical thickness of a spatially discretized
cell). As shown in Chapter 3, a fixed ωp or a γg-dependent ωp can be used with little degradation
of performance.

The γg used in Eq. (3.40a) must be determined from the localized feedback intensity γ.
In Chapter 3, the expression for γ is

γ =

(
dΣa

dΦ

1

Σa

− dΣf

dΦ

1

Σf

)
Φ(1− c) . (3.16h revisited)

This formula is derived from the NDA method for a homogeneous problem, where the low-
order equation is solved on the same spatial grid as the transport problem–rather than on a coarser
homogenized spatial grid in a heterogeneous problem. Therefore, in [39] and Chapter 3, γg is
γ. This equality does not hold in the realistic problem because γ is space-dependent, since the
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derivative terms are space-dependent. The process to calculate the localized feedback intensity γ
and the process to determine the γg based on γ are described later in this section.

In the Fourier analysis, the NOPC determined by the formula of Eq. (3.40a) results in prac-
tically the same convergence rate in the feedback problem as in the problem without feedback.
However, in the derivation process of the NOPC formula [39], several properties of the feedback
intensities γ and γg have been assumed.

1. Locality: The γ must be local. The word locality refers to the range inside one coarse mesh
cell. It indicates that the physics determining the cross section feedback is mainly affected
by the local neutron flux (or more specifically, the local fission rate).

2. Non-negativity: The γg of the problem is non-negative. A positive γg denotes the negative
feedback of the reactor design, which is generally a requirement for reactor designs.

3. Positive correlation: The γg should be increasing when increasing the power at which the
problem is simulated. Moreover, γg should be nearly proportional to the operating power of
the reactor when the feedback is only from TH.

In the following subsection, we verify these properties of the estimated γ and γg numerically.

4.3.3 Estimation of the Localized Feedback Intensity
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Figure 4.3: Illustration of the Red-Black perturbation.

As shown in Eq. (3.16h), γ is a term related to the derivative of the cross section with respect to
the local scalar flux. A natural way to approximate these derivatives is to use the finite difference
method with local perturbations. The algorithm to perturb the scalar flux to estimate the cross
section derivatives for γ is given by Algorithm 10.

The perturbation is applied in a Red-Black fashion as illustrated in Figure 4.3, so that the γ
of all the coarse meshes can be calculated simultaneously. The details are shown in Algorithm 10,
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Algorithm 10 Perturbing the flux in MPACT for calculating feedback intensity.

1: Input lPerturb {Flag to indicate whether the flux is perturbed}
2: for j1 = 1, 2, · · · , nPin do
3: Calculate the perturbation factor:

η = 1 +
[
mod(j1, 2)− 0.5)

]
× α% . (Alg 10.1)

4: for C1 = 1, 2, · · · , nCoarseMesh(j1) do
5: for f1 = 1, 2, · · · , nFineMesh(C1) do
6: for g = 1, 2, · · ·G do
7: if lPerturb == True then
8: φg,f1 = ηφg,f1 ,
9: else

10: φg,f1 =
φg,f1

η
.

11: end if
12: end for
13: end for
14: end for
15: end for

where nPin is the number of pin-cells in the model; nCoarseMesh(j1) is the number of the coarse
meshes inside the jth1 pin-cell; nFineMesh(C1) is the number of the fine meshes inside the Cth

1

coarse mesh. g is the index of the energy group with G as the total number of energy groups. As
indicated by Eq. (Alg 10.1), the fine mesh fluxes of the pin-cell with the even index are perturbed
by a factor α

2
%, and those of the pin-cell with the odd index are perturbed by −α

2
%. α is a small

value to make the Eq. (4.5) hold and make the computational effort less when calculating the other
physics and applying feedback during the perturbation. The value of α used will be discussed later
in this section. When the fine mesh flux is perturbed in the Red-Black fashion, the averaged TH
parameters of their neighboring pin-cells will vary little. Thus, the perturbation of the feedback is
induced by the variation of the localized flux. Additionally, the perturbed fine mesh flux can be
reset to its unperturbed value without storing the perturbed flux.

The reason that the Red-Black perturbation is applied based on a pin-cell index rather than
coarse mesh index is because the coarse mesh may be smaller than a pin-cell (e.g. a quarter pin-
cell). In this situation the Red-Black sequence cancels out the perturbations over the pin-cell. As a
result, the real γ estimated will not reflect the actual feedback intensity.
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Figure 4.4: Flowchart of feedback intensity calculation. Shielding calculation is only performed
once. But the solutions of the localized feedback needed to be performed twice.

The feedback intensity is calculated with the procedure shown in Figure 4.4. The derivatives
of all the coarse mesh cells are approximated by:

dΣi

dΦ
≈ Σip − Σi0

φip − φi0
, (4.5)

where the subscript p stands for perturbation, and the subscript 0 stands for the unperturbed state.
It should be noted that this approach is akin to obtaining a numerical estimate of a part of the
Jacobian of the multiphysics problem. It is also important to note that the procedure results in a
straightforward estimate of the Jacobian that is ultimately represented by a scalar quantity after
spatial integration.

Our next consideration in the application of Algorithm 10 is the value of α required so that
a relatively accurate γ can be estimated once at the beginning of the calculation. Two problems
from [98] are used to determine an appropriate range of values for α. One is a 3D pin-cell problem
developed by extruding the 2D pin-cell model specified by the VERA core physics benchmark
problem 1a (3D P1). The second problem is P6. Both of these problems are simulated with a
peaking factor of 1.4. Only the feedback from TH is assumed to be present. The TH feedback is
again provided by the simplified TH model.
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During the simulations, the feedback intensity is estimated with different values of α for every
outer iteration. The maximum value γm and the value weighted by the fission rate γ̄, calculated
by Eq. (4.6), are selected to characterize the global feedback intensity of the problem.

γ̄ =

∑
c VcνΣfcΦcγ(c,Φc)∑

c VcνΣfcΦc

. (4.6)

We refer to each of these quantities as representing the characteristic feedback intensity of the
model. As we will show later, these two variables are good approximations of the global feedback
intensity, γg. Plots in Figures 4.5 show how the estimated γm varies with the perturbation factor.
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Figure 4.5: The variation of the estimated γm using different perturbation factors α during the
iteration. (a) shows the results for 3D P1 problem. (b) shows the results for P6 problem.

For both problems, the trend of the variation of γm as a function of iteration number is similar. It
can also be seen that for both cases, all the estimated γm eventually converge to the same value
at the 16th outer iteration. However, the rate at which the estimated γm approaches the converged
value is affected by the magnitude of α. When α < 0.2, the estimated γm lies outside 10% of the
converged value at the 4th outer iteration. The smaller α is, the slower the rate that the iterative
γm converges to the final value. The result indicates that α cannot be too small, or it cannot be
accurately distinguished from the iterative error in the calculation early on in the solution process.
Therefore, the α = 0.5 is used to get a relatively accurate γm before the 3rd iteration.

Plots in Figures 4.6 illustrate how the estimated γ̄ varies with the perturbation factor, α. Com-
pared to γm, γ̄ approaches the converged value quite a bit faster in both problems. The curves of
the weighted feedback intensity estimated with different perturbation factors overlap each other,
indicating the effect of the magnitude of α on γ̄ is practically negligible.

As will be shown later in Section 4.3.5.2, γm and γ̄ may be used to represent γg.
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Figure 4.6: The variation of the estimated γ̄ using different perturbation factors α during the
iteration. (a) shows the results for 3D P1 problem. (b) shows the results for P6 problem.

4.3.4 Verification of Feedback Intensity

It is important to check whether the estimated γ and γg satisfy the assumptions made in the Fourier
analysis in [39] and Chapter 3. Furthermore, as mentioned in the previous subsection, we also
wish to verify these assumptions for the realistic problems of interest. The locality of γ has been
satisfied automatically during the calculation process. The non-negativity of γg is verified by the
results in Figures 4.5 and Figures 4.6. The positive-correlation is then verified on the P6 cases in
this part.

The P6 cases are simulated with feedback from TH and TCE. The power of the cases is varied
from 0.1% to 140% of the rated power. The results are shown in Figure 4.7. It can be observed that
in both problems, the estimated characteristic feedback intensity increases with power. Therefore,
the estimated γg has a positive correlation with respect to power.

When the problems are simulated with feedback from TH, the relation between the feedback
intensity and the power is well represented by a linear fit. The expression for the fit and R2

are illustrated together in Figure 4.7. The R2 is very close to 1, indicating that for the modeled
problem, the feedback intensity is nearly linearly dependent on the power simulated. This agrees
with what has been found previously for a pin-cell problem in [39],

When the power is very small, the feedback intensity is close to 0. This observation agrees
with the intuitive physics of the reactor–that the cross sections of the pin-cells are almost constant
near zero-power. The differences in the estimated γm or γg from TCE and TH are increasing from
0 to a maximum value and then decreasing with increasing power. When power is larger than 20%
of the nominal power, the differences are significant. We assert that it is for this reason that the
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Figure 4.7: The relation between the characteristic feedback intensity and the power for different
feedbacks.

problem modeled becomes harder to converge when the CMFD solutions are fully converged as
shown in Figure 4.2a, if the feedback from equilibrium xenon is also taken into account.

The variation of the differences in the characteristic feedback intensity with respect to power
for cases with feedback from TCE and TH, and the nonlinear shape of the relation between the
feedback intensity and the power when feedback is from TCE, can be explained by the equilibrium
xenon model. The equilibrium xenon concentration is calculated by

NXe =
(λI + λXe)ΣfΦ

λXe + σXea Φ
, (4.7)

where NXe is the number density of xenon atoms in a spatial cell, λ is the radioactive decay
constant, and σXe is the microscopic absorption cross section of xenon. Assuming that the presence
of xenon only affects the absorption cross section, then the additional feedback intensity is

∆γ ∝ Φ
∂NXe

∂Φ
=
λXe(λI + λXe)Σf

(λXe + σXea Φ)2
Φ . (4.8)

The ∆γ will increase from 0 to a maximum value and then decrease to zero with increasing power.
In summary, the work presented in this section not only reproduces the nearly-linear relation of

the feedback intensity to the power when only the feedback from TH is present, but also presents
the non-linearity of the γg-power relationship when feedback is from TCE. This non-linearity is
explained with the equilibrium xenon model.
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4.3.5 Flowchart of the NOPC-CMFD

4.3.5.1 Overall Procedure

The implementation details of the new relaxation-free scheme–the NOPC-CMFD method–are il-
lustrated here. The overall flowchart is shown in Figure 4.8. Compared with the original iteration
scheme shown in Figure 2.1, it can be found that the only modification is to add several modules
to calculate the feedback intensity and determine the NOPC.
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Figure 4.8: Flowchart of NOPC-CMFD iteration scheme. “XS” stands for cross section. For
brevity, the procedures for “Transfer Power”, “Solve other Physics” and “Homogenize” are not
shown in the flowchart, compared to Figure 2.1.

In the new scheme, MPACT estimates the feedback intensity at the beginning of the iteration
with index ncheck. As investigated in Figures 4.6, the suggested value of ncheck is 4. For the multi-
state calculation, the ncheck can be set to 2 for the states other than the first state. Before the γ
and γg are estimated, the default γe is used, which may be specified by a user or code default.
As suggested in Figures 4.6, the feedback intensity for the first few states is very large because
the cross sections and state variables are far from their converged values. To accommodate this–
and to enhance stability–a default feedback intensity should be chosen that bounds the maximum
estimated feedback intensity. Based on the results in Figure 4.7, setting γe to be 1.5 × 10−3 is a
reasonable choice for PWR analysis.
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After the feedback intensity is estimated, the WS ratio that provides the NOPC (Eq. (3.40a))
can be calculated. Another practical consideration for the estimation of the feedback intensity that
has so far been overlooked, is the effect of the resonance self-shielding calculation. If the shielding
calculation is run at the beginning of the outer iteration, the γm is used to estimate the partial
convergence, and the γ̄ is used otherwise. This practice is supported by the sensitivity study results
shown in Section 4.3.5.2.

This NOPC modification can be applied to any methods for solving the CMFD equations, so
long as the Wielandt shifted power iteration is used to obtain the eigenvalue. To demonstrate this
point, we provide numerical results for the default Multigroup CMFD solver with power iteration in
MPACT, and also for the more advanced Multilevel in Space and Energy Diffusion (MSED) solver.
In discussing the results in the following sections, we refer to the MGPI with the NOPC specifi-
cation as MGPC (Multigroup CMFD solver with the nearly-optimal partial convergence specifica-
tion), and MSED with NOPC specification as MSPC (MSED solver with the nearly-optimal partial
convergence specification). Of particular interest to the authors is also the performance of MSPC
compared to MSEDL that was developed in [32] to enhance robustness of MSED in multiphysics
problems. Note that the MGPI solver and MSED solver are different in the solution process. The
basic CMFD equation is derived based on the odCMFD method [16].

4.3.5.2 Sensitivity Study of Feedback Intensity

The motivation to use γm and γ̄ for estimating the NOPC is that these two parameters are the
most natural representatives of the global pin-cell-wise feedback intensities. However, these two
parameters may not be the best estimation of the global feedback intensity.

On one hand, γm represents the maximum localized feedback intensity over all pin-cells. If γm
is used to estimate the NOPC for CMFD, it will ensure the scheme is stable. However, the partial
convergence determined by γm may be too conservative to achieve the best overall convergence.
On the other hand, the γ̄ is a metric of the averaged feedback intensity. Therefore the estimated
value is smaller than γm, and the partial convergence will be tighter. Using the partial convergence
estimated by γ̄ however, may still make the overall scheme unstable. These statements emphasize
the importance of calculating γg so that one has a fast and robust iteration scheme, and further
illustrates that the robustness of this scheme depends on the robustness and accuracy of estimating
γg.

To gain a better understanding of how γg influences the overall performance and stability of
convergence in practical problems, two sensitivity studies are performed by investigating the con-
vergence behavior of the iteration scheme with γg varying in the ranges determined by these two
characteristic parameters. The P6 cases with nominal powers of 100% and 140%, and with feed-
back from TH, TC, and TCE, are simulated with MSPC as the CMFD solver. In both studies, the
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value of γg used to estimate the partial convergence is assumed to be ηγm with η varying in the
range [0.8, 1.5]. The number of total outer iterations to converge the problem is recorded.

For the first study, the resonance self-shielding calculation is performed at each outer iteration.
The sensitivity study is based on the γm, because in the shielding calculation, the parameters (such
as background cross section) to update the cross sections are updated with the TH condition of its
neighboring cells. Although the feedback investigated in this research is local, the presence of the
shielding calculation can propagate the effect of feedback through changes in the local spectrum
or the Dancoff factors. As a result, the γm could be a better indicator of the γg used to estimate the
NOPC. And if not, a correction factor can be applied.

The results are shown in Table 4.1, indicating that γm is a good estimate for the global feedback
intensity. For most of the cases, across the range of γg investigated, the number of total outer itera-
tions to converge the problem is the minimum with the partial convergence specification estimated
with γm. The number of iteration in this case is the same as the optimal number of outer iterations
to converge the P6 without feedback. When the power is 140% rated power and feedback is from
TH or TCE, it takes fewer outer iterations if the partial convergence is estimated with a γg that is
larger than γm. However, the overhead of the total outer iteration number compared to the optimal
value is smaller than 2. Therefore, γm is a reasonable option to use for estimation of the NOPC
parameters when the resonance self-shielding calculation is used to update the cross sections at
each iteration.

Table 4.1: Sensitivity study of the effect of γg = ηγm on the overall convergence rate in P6
(shielding enforced).

Feedback Power Level
η

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

TH
140% 16 14 14 14 12 12 14 14
100% 12 12 12 12 12 13 14 14

TC
140% 18 15 13 13 14 15 16 16
100% 13 12 12 13 13 13 14 16

TCE
140% 16 15 14 13 13 13 13 14
100% 14 13 12 12 12 12 12 12

In the second study, the shielding calculation is triggered by the change in fuel temperature
between iterations. γm is again used to estimate the NOPC parameters at the same outer iteration.
For the outer iteration where the shielding calculation is not performed, the γg used to estimate
the partial convergence is varied in a range incorporating γ̄. Table 4.2 summarizes the total outer
iteration number to converge the problem. It can be seen that using γ̄ to estimate the partial
convergence results in an optimal value for the total number of iterations so long as it is used when
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no self-shielding calculation is performed–or equivalently, the multiphysics solution is close to the
converged.

Table 4.2: Sensitivity study of the effect of γg = ηγ̄ on the overall convergence rate in P6.

Feedback Power Level
η

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

TH
140% 12 12 12 12 12 12 12 12
100% 13 13 13 13 13 13 13 13

TC
140% 13 13 13 13 14 14 14 14
100% 12 12 12 12 12 13 13 13

TCE
140% 12 12 12 12 12 12 12 12
100% 12 12 12 12 12 12 13 13

4.3.6 Summary

This section reviewed the effects of partial convergence and relaxation on a coupled Picard iter-
ation. The case was made that it is more efficient and robust to rely on partial convergence to
stabilize the Picard iteration, rather than relaxation. For simple problems, it was illustrated that
(1) an optimal partial convergence (or relaxation) exists, and (2) that this optimum is problem-
dependent and can be quite sensitive. From work in Chapter 3 we propose to compute an optimal
WS ratio to achieve nearly-optimal partial convergence in a problem-dependent manner. The cal-
culation of this NOPC parameters hinges on the ability to calculate the localized feedback intensity
γ, and the global feedback intensity γg. Calculating γ and γg is non-trivial, and if it is not done
sufficiently well, then the NOPC of the CMFD solution and optimal global convergence of the it-
eration scheme will not be achieved. We developed a few relatively simple procedures to estimate
γ. Then we presented numerical calculations to assess sensitivities and provide overall recom-
mendations as to how to calculate γ and γg so that the multiphysics iteration scheme is stable and
converges nearly optimally (i.e., ensures that it is robust). We demonstrated that for canonical
PWR problems, the convergence of the coupled problem can be achieved in as many iterations as
the uncoupled problem for a wide range of operating conditions. In the next section, we apply the
procedure developed here to several PWR applications from pin cell to full-core configuration to
demonstrate its efficacy for realistic problems.
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4.4 Numerical Results for Realistic Problems

Now the numerical results of the new robust-relaxation free scheme are presented. The perfor-
mance of the two NOPC-CMFD methods is compared to the CMFD methods currently used in
MPACT: MGPI, MSED, and MSEDL. The MSEDL is a variant of MSED that simply limits the
amount of convergence of the diffusion solver in a fixed way [32] by loosening the convergence
criteria and reducing the aggressiveness of λs. This variant was developed because MSED was too
efficient at converging the CMFD problem, resulting in less stable and even unstable multiphysics
iterations. No relaxation is used for NOPC-CMFD methods. For MGPI, MSED, and MSEDL, the
default relaxation factor in MPACT, β = 0.5, is applied when the pin-power is transferred to the
TH solver.

The convergence criteria, the maximum number of power iterations, and the relaxation factor
used for the iteration scheme with these solvers are summarized in Table 4.3. As introduced in
Algorithm 5, LMG is the number of iterations performed on multi-group system for all the solvers.
LGR is the number of power iterations performed on the 1GCMFD system per MGCMFD per fixed
source iteration. For MGPC and MSPC, two values are specified LMG, respectively. The first is the
number of power iterations performed before estimating the feedback intensity and partial conver-
gence. The second is the number of power iterations for estimating the partial convergence. More
power iterations are performed before estimating the partial convergence to let the intermediate
flux get closer to the eigenvector of the dominant k-eigenvalue.

Table 4.3: Convergence specification and relaxation for cases of the CMFD solvers.

CMFD
Solver L LMG LGR ktol rtol λs Relaxation

MGPI LMG 20 - 10−6 10−2 2/3 0.5
MSED LMGLGR 20 5 10−6 10−2 adaptive 0.5

MSEDL LMGLGR 20 5 10−4 5× 10−2 2/3 0.5
MGPC LMG 8/5 - 10−6 10−3 nearly-optimal -
MSPC LMGLGR 5/4 5 10−6 10−3 nearly-optimal -

Since our goal is to have the convergence of the multiphysics problems behave in the same
way as the pure transport problem, the number of outer iterations obtained from the no feedback
case is considered as the practical lower bound for the convergence of the multiphysics problem.
Therefore, we use the number of outer iterations to converge the problem, when no feedback is
present and the MSED solver is used with the tight convergence specified for the CMFD solution,
as the reference result in most problems.
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4.4.1 3D Pin Problem

We first assess the performance of the NOPC-CMFD method, MGPC, against the current CMFD
method in MPACT for a simple problem: 3D P1. The variants of the MSED solver are not yet
investigated at this point.

For the simple single rod problem, the current iteration scheme is degraded and will fail to
converge when feedback is present and becomes stronger. As shown in Figure 4.9, when no feed-
back is present, and the CMFD solution is fully converged each outer iteration, it requires 16 outer
iterations to reach the convergence criteria for the fission source residual, εf = 10−6. This result is
considered as a reference for the number of outer iterations of the classical CMFD method with-
out feedback. The fission source residual decays quickly before the 4th outer iteration after which
the asymptotic convergence rate (i.e., the spectral radius) is observable. At the beginning of the
simulation, the reduction of the residual is determined by the fast-decaying components.
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Figure 4.9: Evolution of the fission source residual with the outer iteration for 3D P1 cases.
The CMFD solutions are fully converged each outer iteration. The feedback is from TH and the
relaxation factor is 0.5. The oscillation of the residual norm is caused by, and addressed with,
relaxation.

When feedback is present, and the CMFD solutions are fully converged each outer iteration,
the fission source residual converges much slower than that in the case without any feedback.
The fission source residual in the cases with feedback oscillates with the outer iteration index
increasing. This indicates that the spectral radius of the iteration scheme in these problems is
complex. The result supports the theoretical prediction in [39] that when relaxation is applied
for the pin powers, the spectral radius of the iteration scheme could be complex. The results
also illustrate that even for the simple pin problem, the CMFD solutions should never be fully
converged. This same convergence behavior can also be observed with Monte Carlo transport [26];
that suggests the fundamental issue is due to over-converging the neutronics between updates from
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the thermal hydraulics–rather than an issue with the discretization of the transport or acceleration
operators.

In practical simulations, we do not always try to converge the CMFD solutions fully. Therefore,
the iteration scheme with the default MGPI method is observed to be stable in most cases, as
shown in Table 4.4. However, the partial convergence of the MGPI solution is determined by a
fixed specification, as shown in Table 4.3. Therefore, in some cases, the partial convergence of the
MGPI is not optimal. This is observed in the MGPI result for the 3D P1 case with TCE feedback
at 140% rated power, or the case with TC feedback at 20% power that has 19 or 18 iterations,
respectively. The results indicate that the partial convergence for the MGPI may be too loose for
the low-power 3D P1 cases and too tight for the high-power 3D P1 cases, but otherwise well-tuned
to the 100% power condition.

In contrast, the MGPC method adjusts the partial convergence of the CMFD solution according
to the feedback intensity of the problem. The method, therefore, allows the CMFD solutions to be
partially converged nearly-optimally. Moreover, the range of the number of total outer iterations is
[15,17]. Compared to the total outer iterations of the classical CMFD, the potential overhead from
being nearly optimal is at most 1 iteration.

Table 4.4: Convergence behavior of different iteration schemes in 3D P1 with different total pow-
ers.

FDB
CMFD
Solver

Power Level (%)
20 40 60 80 100 120 140 20 40 60 80 100 120 140

Outer Iterations Shielding Calculations

TH
MGPI 16 16 16 16 16 16 17 3 3 5 5 6 7 9
MGPC 16 16 16 16 16 16 17 3 4 4 4 4 4 5

TC
MGPI 18 15 15 16 16 16 17 3 5 5 5 7 8 10
MGPC 15 15 15 16 16 16 16 3 5 5 5 6 6 6

TCE
MGPI 15 16 16 16 16 17 19 3 4 5 6 7 8 11
MGPC 15 16 16 16 16 17 17 2 4 5 5 5 5 5

The number of shielding calculations performed in each case is also presented in Table 4.4. The
shielding calculation is triggered if the maximum of the pin-averaged temperature change between
two successive iterations is larger than 5 kelvin. Therefore, the number of shielding calculations
is a metric to indicate how fast the state variables (e.g., temperature) converge. It can be seen that
the number of shielding calculations performed in the MGPC cases are the same as or smaller than
the number of shielding calculations in the MGPI cases.
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Table 4.5: Run time of MPACT with different iteration schemes in 3D P1 with different total
powers.

FDB CMFD Solver
Power Level (%)

20 40 60 80 100 120 140

TH
MGPI t1 (min) 4.4 4.4 4.7 4.8 4.8 5.1 5.5
MGPC t2 (min) 4.5 4.5 4.5 4.5 4.4 4.3 4.9

(t1 − t2)/t1 2% 2% -4% -6% -8% -16% -11%

TC
MGPI t1 (min) 4.8 4.5 4.5 4.9 5.2 5.4 6.0
MGPC t2 (min) 4.2 4.6 4.6 4.9 5.1 5.1 5.0

(t1 − t2)/t1 -13% 2% 2% 0.0% -2% -6% -16.7%

TCE
MGPI t1 (min) 4.1 4.4 4.6 4.8 5.1 5.7 6.7
MGPC t2 (min) 4.2 4.7 4.9 4.9 5.0 5.2 5.2

(t1 − t2)/t1 2% 7% 7% 2% -2% -9% -22%

In terms of the run time, for the cases with power between 20% and 120% rated power, the
MGPI and MGPC have comparable run time. The magnitudes of the differences in the run time
are less than 10% of the run time of the MGPC cases. When power is larger than 100% rated
power, the MGPC cases run faster than the MGPI cases. This happens for 3 reasons: compared to
the MGPI cases, (i) less work is being done in the CMFD solve, (ii) there are fewer outer iterations,
and (3) there are fewer shielding calculations. This allows the run time to be reduced by as much
as 22%. It can also be observed that with increasing power, the total run time of both methods
is also increasing–this is because more shielding calculations are being performed. However, the
time increase of the cases with power from 20% to 140% rated power is less for the MGPC method
than the MGPI method. It can also be observed that for the MGPC cases, the run time of the case
with 120% rated power is shorter compared to that with 20% rated power, though more shielding
calculations are performed in the 120% rated power case when the feedback is just TH. The reason
is again that less work is done to solve the CMFD equations for the 120% rated power case due to
a more loose partial convergence determined by Eq. (3.40a).

Figures 4.10 illustrates the convergence behavior of the fission source residual in the cases
with 20% rated power and 140% rated power. Here it is observed that the convergence behavior of
MGPC is relatively insensitive to the form of feedback, and is as good as or better than MGPI for
various power levels.

The accuracy of the simulations is compared using the data in Table 4.6 and Table 4.7. These
tables show the results of the eigenvalue, k, or critical boron concentration, CB, the maximum
pin-averaged temperature, ∆T , and the position, PT that indexes the pin-cell location at which the
maximum temperature occurs for the MGPI and MGPC cases with different power levels. For a
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Figure 4.10: Comparison of NOPC-CMFD solvers to other CMFD methods for the convergence
in the 3D P1 cases with 20% power and 140% power. The convergence behaviors of the fission
source residual for cases with different solvers and feedback from different physics are compared.
(a) shows that the MGPC method has comparable performance to the MGPI method in low-power
cases, and (b) shows that the MGPC method is more stable than MGPI in the cases with high
power.

good acceleration method we desire that these quantities do not vary outside the convergence crite-
ria, and that is what is observed here. There are slight discrepancies that arise from the resonance
self-shielding calculation not being performed at each iteration. If the resonance self-shielding
calculation is performed for every outer iteration, then the comparison is consistent, and the differ-
ences would be within convergence.

Table 4.6: Results of 3D P1 cases with different iteration schemes with feedback from TH.

Power
Level
(%)

CMFD Solver
DifferenceMGPI MGPC

k
(pcm)

Tmax
(K)

PT
k

(pcm)
Tmax
(K)

PT
|∆k|
(pcm)

|∆T |
(K)

||∆PT ||1

100 1.165904 1077.54 (33) 1.165903 1078.10 (32) 0.1 0.57 1
120 1.162287 1269.37 (32) 1.162279 1269.35 (31) 0.8 0.02 1
140 1.158604 1472.31 (31) 1.158604 1473.01 (33) 0.1 0.70 2

Since the emphasis of the work is to show the efficiency and robustness of the relaxation-free
method, in the following sections, the simulated results CB, k, Tmax and PT are not presented for
brevity. The observations are similar to what has been observed on this single rod problem. Namely
that the method does not lead to significant differences in the solution, although slight, negligible
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Table 4.7: Results of 3D P1 cases with different iteration schemes with feedback from TC and
TCE.

FDB
Power
Level
(%)

CMFD Solver
DifferenceMGPI MGPC

CB
(ppm)

Tmax
(K)

PT
CB

(ppm)
Tmax
(K)

PT
|∆C|
(ppm)

|∆T |
(K)

||∆PT ||1

TC
100 3390.97 1102.57 (44) 3390.99 1102.48 (44) 0.02 0.09 0
120 3363.50 1301.49 (45) 3363.51 1301.96 (45) 0.01 0.47 0
140 3335.47 1510.94 (45) 3335.51 1511.74 (45) 0.04 0.79 0

TCE
100 2993.43 1050.94 (42) 2993.44 1051.21 (43) 0.01 0.27 1
120 2946.55 1239.75 (43) 2946.59 1240.75 (43) 0.04 1.00 0
140 2902.40 1438.92 (43) 2902.45 1439.88 (43) 0.05 0.97 0

differences may result from not performing the subgroup self-shielding calculation every outer
iteration.

4.4.2 Single Assembly Problem

In this section, P6 is used to investigate and compare the performance of different CMFD methods
in the presence of feedback. As mentioned previously, the total number of outer iterations to
converge cases without feedback using the classical CMFD solver is 12. This is taken to be the
reference lower bound.

Table 4.8 summarizes the performance of the different methods for the P6 cases with various
combinations of power and feedback. It is observed that most MGPI cases are stable, and the
number of outer iterations to converge is similar to that of the classical CMFD. However, the
performance of MGPI is significantly degraded, and the number of outer iterations to converge is
much larger than 12, when the power is 140% rated power. The MGPI performance in the P6 case
is also degraded if the feedback is from TC with 20% rated power.

The variants of the MSED solver are much more efficient than the MGPI and MGPC solver
in the steady-state calculations without feedback. For the 20% power case, where the feedback is
not strong, the MSED method converges in the same number of outer iterations as the reference
case. However, the efficient MSED solver makes the iteration scheme less stable as the feedback
intensity increases. For the P6 cases with 140% rated power, the MSED method requires more than
25 outer iterations to converge. The MSEDL method is observed to be more robust than the MSED
method in cases that have greater than 100% rated power–which is by design. Nevertheless, this
method is still not always robust, nor optimal, in multiphysics simulations. This is due to the fact
that the imposed convergence penalty on MSEDL compared to MSED was obtained empirically
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Table 4.8: Convergence behavior of different iteration schemes in P6 with different total powers.

FDB
CMFD
Solver

Power Level (%)
20 60 100 120 140 20 60 100 120 140

Outer Iterations Shielding Calculations

TH

MGPI 13 13 13 13 15 2 5 6 6 7
MGPC 13 13 13 13 12 3 5 5 4 4
MSED 12 13 15 21 27 3 5 7 10 16

MSEDL 16 15 14 13 14 4 4 5 5 7
MSPC 12 12 13 13 12 2 3 4 5 6

TC

MGPI 16 13 12 14 15 2 6 7 8 9
MGPC 12 12 12 13 13 4 5 6 7 7
MSED 12 13 17 25 37 3 6 8 13 22

MSEDL 17 16 16 19 22 4 5 8 11 14
MSPC 12 12 12 12 12 3 5 5 6 7

TCE

MGPI 12 12 13 15 17 3 5 6 7 10
MGPC 13 13 13 13 12 3 5 5 4 4
MSED 12 16 22 32 49 4 6 11 17 29

MSEDL 12 12 14 17 21 4 5 7 9 11
MSPC 12 12 12 12 12 3 5 5 6 7

by numerical experimentation on a few problems. For the cases of 20% rated power with feedback
from TH and TC, the MSEDL method may take more than 16 outer iterations to converge. When
the power is larger than 100% rated power and the feedback is from TC or TCE, the iteration
scheme converges the P6 cases in more than 17 outer iterations. The performance of the MSEDL
method is only observed to be nearly-optimal if the power of the case is 120% rated power.

Contrasting these observations with the results from the NOPC-CMFD solvers in MPACT,
MGPC or MSPC, it is observed that convergence is nearly optimal in all cases. The MGPC or
MSPC methods converge all P6 cases in at most 13 outer iterations, and in most cases it requires
only 12. Therefore, both MGPC and MSPC have comparable performance to the classical CMFD
for the P6 cases. This demonstrates that the NOPC-CMFD can efficiently converge the CMFD
solution in a problem-dependent way, and is robust in the sense that one can expect the same
number of iterations to converge irrespective of the feedback mechanisms or intensity.

In terms of the number of shielding calculations, it can be observed that for the MGPC and
MSPC method, the number of shielding calculations performed in most cases is the same. When
the number of shielding calculations is not the same, the difference in the number of shielding
calculations is no larger than 2. Among all the methods investigated, the number of shielding
calculations taken for the two NOPC-CMFD methods is close to the smallest value. We wish to
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Table 4.9: Run time comparison of different CMFD methods in P6 with different total powers.

FDB
CMFD
Solver

Power Level (%)
20 60 100 120 140 20 60 100 120 140

Run Time (min) Time Difference

TH

MGPI 4.4 5.1 5.8 6.0 6.9 – – – – –
MGPC 4.8 5.0 5.1 4.9 4.6 9% -2% -12% -18% -33%
MSED 3.5 4.1 4.9 6.8 9.2 -20% -20% -16% 13% 33%

MSEDL 4.5 4.3 4.3 4.0 4.7 2% -16% -26% -33% -32%
MSPC 3.3 3.5 3.9 4.1 4.1 -25% -31% -33% -32% -41%

TC

MGPI 5.8 5.4 5.5 6.5 7.2 – – – – –
MGPC 4.8 4.8 5.0 5.5 5.5 -17% -11% -9% -15% -24%
MSED 3.5 4.2 5.5 8.2 12.5 -40% -22% 0% 26% 74%

MSEDL 4.8 4.7 5.3 6.6 7.8 -17% -13% -4% 2% 8%
MSPC 3.5 3.9 3.9 4.1 4.3 -40% -28% -29% -37% -40%

TCE

MGPI 4.7 5.1 5.9 7.0 8.3 – – – – –
MGPC 4.4 4.8 4.9 5.0 5.1 -6 % -6% -17% -29% -39%
MSED 3.8 5.1 7.4 10.8 17 -19% 0% 25% 54% 105%

MSEDL 3.8 3.9 4.8 5.9 7.3 -19% -24% -19% -16% -12%
MSPC 3.6 4.0 4.0 4.2 4.4 -23% -22% -32% -40% -47%
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Figure 4.11: Variation of the fission source residual with the outer iteration for P6 cases. The
convergence behavior of the fission source residual for cases with different solvers and feedback
from different physics are compared. (a) shows the results of cases with 20% rated power with
feedback from TC, while (b) shows the results of cases with 140% rated power with feedback
from TCE.
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note this since the computational cost of the shielding calculation is similar to that of performing a
CMFD accelerated transport iteration, and the number of times it is executed can strongly influence
the total run time.

Table 4.9 shows the run time of each case, and compares the run time of the CMFD methods
with the run time of the current MGPI method. The run time of the MGPC method is a bit longer
than that of the MGPI method in the case with 20% rated power and the feedback from TH.
However, the overhead of the run time of the MGPC method is relatively small. For all the other
cases, the MGPC method takes less time than the MGPI method. At most, the MGPC method was
able to reduce the run time by 33% for the 140% power case.

The MSED and MSEDL cases illustrate the deficiencies demonstrated earlier. MSED generally
more tightly converges the CMFD solutions than MGPI and this results in degraded performance at
high powers. The MSEDL variant does better at high powers, but low power cases converge more
slowly, exposing the fact that the amount of partial convergence needed is problem dependent
and this is not handled by MSEDL. However, incorporating the NOPC with MSED is clearly
demonstrated to be a good strategy as the MSPC method has the fewest number of iterations and
run times in every case, with run time reductions ranging from about 20% to nearly 50%.

Figures 4.11 show the convergence behavior of the fission source residual in the P6 case with
20% rated power and feedback from TC, and the P6 case with 140% rated power with feedback
from TCE. Compared to the fission source residual in the reference (no feedback) case, it can
be seen that the fission source residual of the MGPC cases and MSPC cases are larger at the
first several outer iterations. The reason is that the state variables (and cross sections) are not
well converged and thus vary considerably for the first several iterations. However, after the state
variables and cross sections become close to their converged values, it can be seen that the fission
source residual converges much faster and even faster than that in the reference case, indicating that
the fission source is converged nearly-optimally. The slow convergence of MSEDL and MGPI in
the problem with 20% rated power is caused by the loose partial convergence of CMFD solutions.
As observed in Figure 4.11a, the MGPI and MSEDL converge the fission source asymptotically at
a rate much slower than that of MGPC, MSPC, and the reference cases. The slow convergence of
MSEDL, MSED, and MGPI in the problem with 140% rated power, is caused by converging the
CMFD solutions too tightly for the feedback. It can also be seen that the fission source residual
oscillates in many of the conventional schemes. This observation is similar to what was observed
for the fully converged CMFD solver in Figure 4.9.
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4.4.3 Effect of Iterative T/H Solutions

So far, all the numerical results presented use the simplified TH model for the TH solver, where
the TH solutions can be understood to be fully converged and contain no iterative errors. This is
an assumption that has thus far been applied to the analytic work in Chapter 3 and the numeri-
cal results for more practical problems where we demonstrated that the theory translates well to
practical benefits for problems of interest.

To investigate the performance of the NOPC-CMFD methods in simulations with more com-
plex TH models that rely on iterative solutions as well, the CTF [90] is coupled with MPACT. The
CTF solutions are obtained through iteration and are not fully converged. Since the tight conver-
gence criteria for the fission source residual is used, the tolerance for converging the CTF solution
is determined by

εi = max(1e− 6, ε0resf ) , (4.9)

where resf is the residual of the fission source, and ε0 is the input tolerance for converging the
CTF solutions.

The results are shown in Table 4.10. It can be seen that the cases with the NOPC-CMFD
method, MGPC or MSPC, converge faster than the MGPI cases or MSEDL cases–a result consis-
tent with the simplified T/H solver. The number of outer iterations in the NOPC-CMFD cases is
around 12 and no more than 13, while the outer iterations for the MGPI cases or MSEDL cases are
close to the reference value 12 when the power is neither too low nor too high. Fewer shielding
calculations are performed for the MGPC or MSPC cases than for the MGPI cases or MSEDL
cases. The result indicates that the NOPC-CMFD solvers can be used in simulations with more ac-
curate and complex TH solvers, provided there is sufficient convergence of the T/H solution before

updating cross sections; where “sufficient” is defined by Eq. (4.9).

4.4.4 3× 3 Core Problem

The VERA core physics benchmark problem 4 (P4) is now used to investigate how MPACT with
the NOPC-CMFD solvers performs in problems with control rods and Pyrex (PY) burnable neutron
poison rods inserted [98]. The layout of the P4 assemblies is shown in Figure 4.12. The control rod
bank, i.e., the hybrid silver-indium-cadmium (AIC)/B4C rod cluster control assembly (RCCA), is
located in the central assembly, and the Pyrex rods are in the 2.6% enriched region.

In this section, the position of the RCCA tip is provided in the number of steps withdrawn for
the bank, with the step size being 1.5875 cm. When the RCCA is fully inserted, i.e., the RCCA
movement is at 0 steps withdrawn (SWD), the distance from the tip to the top of the bottom core
plate is 16.285 cm.
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Table 4.10: Convergence behavior of different iteration schemes in P6 with different total powers
with CTF as TH Solver.

FDB
CMFD
Solver

Power Level (%)
20 60 100 120 140 20 60 100 120 140

Outer Iterations Shielding Calculations

TH

MGPI 13 13 14 12 13 3 4 5 6 6
MGPC 13 13 13 12 12 3 4 4 4 4

MSEDL 17 16 15 16 19 4 5 7 8 9
MSPC 12 12 13 12 12 2 3 4 5 5

TC

MGPI 16 12 12 14 15 3 5 6 7 8
MGPC 12 12 12 13 13 3 5 6 6 6

MSEDL 17 16 15 16 19 4 5 7 8 9
MSPC 12 12 12 12 13 2 5 5 5 6

TCE

MGPI 12 13 12 14 16 3 5 6 7 8
MGPC 12 12 12 12 12 2 5 5 5 6

MSEDL 12 13 14 15 18 3 5 6 7 9
MSPC 12 12 12 12 12 2 4 5 5 5

The power, feedback, and the rod position of the cases studies for this problem are summarized
in Table 4.11. The cases of 20% and 100% rated power are used to show the performance of the
methods in the problems of both low and normal power. The rod positions analyzed are from 23
SWD to 92 SWD at an increment of 23 SWD. The problem is simulated in quarter symmetry.
While the authors acknowledge that deeply inserted RCCA’s at the nominal power is never the
case for operation in a PWR due to the rod insertion limits, the simulation is valuable for assessing
the robustness of NOPC-CMFD across broader and more challenging conditions. An example
of the axial power profile is shown in Figure 4.13. It can be seen that the P4 cases are highly
heterogeneous along the axial direction.

Table 4.11: Specification of the P4 cases.

Power Level (%) Feedback Form Control Rod Position (step)

20,100 TH, TC, TCE 23,46,69,92

The MSED solver is not investigated in this section due to its slow convergence in problems
with feedback. The number of outer iterations that MPACT requires with the classical CMFD
method to converge P4 with different RCCA positions are 13, 14, 13, and 13, respectively. These
are taken as the reference results in Table 4.12 and Table 4.14.
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Figure 4.12: Problem 4 assembly, poison and control layout (Figure P4-1 in Ref. [98]).

0

20

40

0.0 0.2 0.4 0.6 0.8
0

20

40

0.25 0.50 0.75 1.000.0 0.2 0.4 0.6 0.8 1.0
Radial Intergrated Power

0.0

0.2

0.4

0.6

0.8

1.0

Ax
ia

l L
ay

er

Figure 4.13: An example of the axial power profile of P4. The top left is inserted with RCCA. The
RCCA is withdrawn 46 steps from the core. The power is 100% rated power, and the feedback is
from TCE.

Table 4.12 and Table 4.14 also present the number of outer iterations to converge these cases
and the number of shielding calculations performed.

For the cases of 20% rated power, it can be seen that the NOPC-CMFD solvers make the
iteration scheme converge the problem with the same number of, or fewer outer iterations, than
the reference cases. The current CMFD method MGPI, requires more outer iterations to converge
compared to the reference cases–when feedback is from TH or TC. The MSEDL method takes 19
outer iterations to converge some cases indicating, again, the shortcoming of using a predetermined
limited convergence factor. In terms of the number of shielding calculations, the different methods
require a different number of shielding calculations, but the differences are small.

Figure 4.14a shows the convergence behavior of the fission source of the P4 problem with
the RCCA withdrawn to 46 steps and with only TH feedback. It can be seen that the MGPI and
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Table 4.12: Convergence behavior of iteration schemes in P4 cases with different control rod
positions (20% rated power).

FDB
CMFD
Solver

Rod Position
23 46 69 92 23 46 69 92

Outer Iterations Shielding Calculations

– Ref 13 14 13 13 – – – –

TH

MGPI 16 16 15 14 4 6 5 5
MGPC 13 14 13 13 4 5 5 5

MSEDL 19 19 17 15 4 5 5 5
MSPC 13 14 13 13 4 5 5 5

TC

MGPI 16 16 15 14 4 5 5 5
MGPC 13 14 13 13 5 5 5 5

MSEDL 19 19 17 14 4 6 5 4
MSPC 13 14 13 13 5 5 5 5

TCE

MGPI 13 14 14 13 4 4 4 4
MGPC 13 13 13 13 3 5 5 4

MSEDL 14 13 14 13 4 4 4 4
MSPC 13 13 13 13 3 3 4 3

Table 4.13: Run time comparison of iteration schemes in P4 cases with different control rod
positions (20% rated power).

FDB
CMFD
Solver

Rod Position
23 46 69 92 23 46 69 92

Run Time (min) Time Difference

TH

MGPI 17.5 19.0 16.6 15.3 – – – –
MGPC 13.8 15.1 13.8 13.5 -21% -21% -17% -12%

MSEDL 13.5 14.0 12.8 11.6 -23% -26% -23% -24%
MSPC 10.2 11.2 10.6 10.6 -42% -41% -36% -31%

TC

MGPI 17.6 18.4 16.6 15.3 – – – –
MGPC 14.4 15.1 13.8 13.6 -18% -18% -17% -11%

MSEDL 13.5 14.5 12.8 10.6 -23% -21% -23% -31%
MSPC 10.7 11.2 10.7 10.7 -39% -39% -36% -30%

TCE

MGPI 13.6 14.9 14.5 13.7 – – – –
MGPC 12.8 13.9 13.7 13.2 -6 % -7% -6 % -4%

MSEDL 11.0 10.3 10.9 10.3 -19% -31% -25% -25%
MSPC 10.0 10.0 10.5 10.0 -26% -33% -28% -27%
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Figure 4.14: Comparison of NOPC-CMFD solvers to other CMFD methods for P4 cases. The
convergence behavior of the fission source residual for cases with different solvers and feedback
from different physics are compared. (a) shows that the results of cases with 20% rated power
with feedback from TH. The RCCA is withdrawn 46 steps. (b) shows that the results of cases with
100% rated power with feedback from TC. The RCCA is withdrawn 92 steps.

MSEDL converge the fission source asymptotically more slowly than the classical CMFD, MGPC,
and MSPC. These results indicate that the partial convergence of the MGPI solutions and the
MSEDL solutions are not tight enough for the iteration scheme. The MGPC and MSPC methods
have more tightly converged the CMFD solutions, therefore they have similar performance to the
classical CMFD. The results agree with what has been observed in the low-power case of the 3D
P1 and P6 problems, and the predictions of the analysis in Chapter 3.

The run time of the cases with 20% rated power for each CMFD method and run time difference
are presented in Table 4.13. The run time difference of the CMFD methods and the MGPI method
is shown in the percentage of the run time of the MGPI method. It can be seen that the MGPC
cases run faster than the MGPI cases. For low-power cases, MSEDL runs faster than the MGPI
method because of its lower CMFD computational cost. However, it converges slowly due to the
loose partial convergence of the CMFD solutions. Consequently, the run time reduction is not as
large as that of the MSPC method. Finally, it can be observed that the run time of MSPC is at
least 26% less and at most 42% less than the run time of MGPI. This result is consistent with
the P6 results indicating that multiple assemblies and partially inserted control rods do not have a
substantial direct effect on the convergence behavior of NOPC.

For the cases of 100% rated power, as shown in Table 4.14, it can be found that the MGPI
converges much faster, and requires a similar number of outer iterations as the reference case. The
MSEDL method in general, does not perform as well as the MGPI method. When the RCCA is
withdrawn 23 steps, and the feedback is from TH only, the MSEDL method requires 17 iterations
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Table 4.14: Convergence behavior of iteration schemes in P4 cases with different control rod
positions (100% rated power).

FDB
CMFD
Solver

Rod Position
23 46 69 92 23 46 69 92

Outer Iterations Shielding Calculations

– Ref 13 14 13 13 – – – –

TH

MGPI 13 13 13 13 5 7 7 7
MGPC 13 13 14 13 5 7 7 6

MSEDL 17 13 15 13 6 8 8 7
MSPC 13 14 14 13 6 6 6 6

TC

MGPI 13 14 13 13 6 7 7 6
MGPC 13 14 14 14 6 7 7 6

MSEDL 13 16 14 13 5 7 7 7
MSPC 14 14 14 14 6 7 7 8

TCE

MGPI 13 14 13 13 7 6 8 6
MGPC 13 13 13 13 6 6 6 6

MSEDL 14 15 13 13 6 8 7 6
MSPC 14 13 13 13 6 6 6 6

to converge. The MGPC and MSPC have comparable performance to the MGPI in terms of the
total outer iterations. Though the MGPI method performs slightly better, it is not guaranteed to do
so for every condition. Compared to the reference cases, the MGPC method takes no more than 1
outer iteration to converge the P4 cases and again remains insensitive to the type of or magnitude
of the feedback.

Figure 4.14b shows the convergence behavior of the fission source of the P4 problem with
RCCA withdrawn 92 steps, and feedback is TC. Here it is observed that the MGPI and MSEDL
converge the fission source asymptotically at a similar rate to the classical CMFD. These results
indicate that the partial convergence of the MGPI solutions and the MSEDL solutions are near-
optimal. However, that happens only for this case, and is not generally true. The MGPC and MSPC
methods converge asymptotically faster than the classical CMFD, and the MGPC and MSEDL.
They take one more outer iteration to converge because of the partial convergence of MGPC and
MSPC for the initial iterations when γ for the problem is not well determined, and the WS factor
is not yet near its optimum.

To verify this claim, γe = 1.2× 10−3 rather than γe = 1.5× 10−3 is used as the initial estimate
for γ before the 4th outer iteration. The convergence behavior of the fission source residual for
these two methods are labeled as MGPCn and MSPCn. It can be seen that the two methods take
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13 outer iterations to converge. Therefore, the MSPCn can converge the fission source similarly
to the classical CMFD. This result also illustrates a drawback of this method: γe is still a user-
specified value. In this thesis, it is recommended that γe be set to 1.5 × 10−3 for PWRs. In
some cases, the partial convergence estimated by this value may not be near-optimal, but it will
degrade the performance of the method only slightly. Ultimately, though we suggest that the overall
performance and robustness of the NOPC-CMFD scheme is far less sensitive to γe than it is to
the relaxation parameter of the traditional Picard iteration scheme. Therefore, the NOPC-CMFD
method is still advantageous despite this drawback.

In terms of run time, as shown in Table 4.15, when the feedback is from TH and TC, the MGPC
has a comparable run time to MGPI because the MGPI cases converge nearly-optimally in these
cases. When the feedback is from TCE, i.e., the feedback becomes stronger, the MGPC method
performs much better. The run time is at least 6% less than the run time of MGPI and can be
as much as 17% less. The run time of MSEDL and MSPC is comparable in most cases, differ-
ences in run time are again mainly caused by the differences in the outer iterations and shielding
calculations.

Table 4.15: Run time comparison of iteration schemes in P4 cases with different control rod
positions (100% rated power).

FDB
CMFD
Solver

Rod Position
23 46 69 92 23 46 69 92

Run Time (min) Time Difference

TH

MGPI 13.9 15.1 15.8 14.5 – – – –
MGPC 14.1 15.7 15.6 15.1 1% 4% -1% 4%

MSEDL 13.3 12 13.1 11.4 -4% -21% -17% -21%
MSPC 11.2 11.8 11.8 11.2 -19% -22% -25% -23%

TC

MGPI 15.4 16.6 15.9 14.7 – – – –
MGPC 14.5 15.9 15.8 15.1 -6 % -4% -1% 3%

MSEDL 10.5 13.2 12 11.5 -32% -20% -25% -22%
MSPC 11.7 12.3 12.3 12.7 -24% -26% -23% -14%

TCE

MGPI 17.1 17.2 17.5 15.7 – – – –
MGPC 14.4 14.7 14.6 14.7 -16% -15% -17% -6%

MSEDL 11.9 13.5 11.8 11.4 -30% -22% -33% -27%
MSPC 12.1 11.5 11.5 11.5 -29% -33% -34% -27%

Therefore, the results indicate that in these P4 problems, the MGPI and MSEDL solutions are
too loosely converged for low power cases, but seem reasonably tuned for intermediate power lev-
els. The MGPC and MSPC methods converge nearly-optimally over a broader range of conditions.
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4.4.5 Full-core Single State Problem

In this section, the verification of the NOPC-CMFD method continues for the full-core problem–
VERA core physics benchmark progression problem 7 (P7). P7 represents Watts Bar Nuclear
Unit 1 at Beginning-of-Life (BOL), with hot full power, equilibrium xenon conditions [98], with
different fuel enrichments of 2.11% (red), 2.62% (green), and 3.10% (blue), respectively, as shown
in Figure 4.15. The feedback of P7 is TCE. More details about this problem can be found in [98,
34].
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Figure 4.15: Assembly and poison layout of the full-core problem (quarter symmetry). This is
regenerated from [98]

.

The convergence criteria for this problem are defined by the tolerance for the fission source
residual εf = 5 × 10−5 and the tolerance of the k−eigenvalue residual εf = 10−6. The reference
result of the number of outer iterations for the classical CMFD method in this problem without any
feedback is obtained using the MSED solver. The value of the reference result is 13. The conver-
gence properties of the other CMFD solvers for simulating P7 are summarized in Table 4.16. All
the simulations of P7 are performed with 464 cores on the Sawtooth high-performance computing
system of the Idaho National Laboratory.

It turns out that MPACT with any of the CMFD solvers converges P7 in 14 outer iterations,
indicating that the MGPI and MSEDL are specifically tuned for the nominal power case. In fact,
the convergence specification for the MSEDL used in this thesis is the same as the convergence
specification adopted to mitigate the instability of MSED in P7 presented in [32]. The reason why
all the solvers converge the P7 in 14 outer iterations is that the convergence of the simulation is
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determined by the convergence of k-eigenvalue rather than the convergence of the fission source.
As shown in Figures 4.16, the fission source has been converged by 9 or 10 outer iterations, while
the k-eigenvalue is converged at the 13th or 14th iteration. In terms of the convergence of the
fission source, it can be seen that MPACT with the NOPC-CMFD solvers and the MSEDL solver
with relaxation can converge the fission source in a similar behavior to the reference result. The
residual of the converged fission source for the NOPC-CMFD methods and the MSEDL method is
much smaller than that for the MGPI solver. Therefore, it can be concluded that the NOPC-CMFD
has comparable performance to the classical CMFD in the P7 problem.

In terms of efficiency, the run time of MPACT with the MGPC method is reduced by around
12% compared to the run time of MGPI. The MSPC method and MSEDL method have similar run
times. Their run time reduction is around 25%.

Table 4.16: Convergence properties of the MPACT with different iteration schemes in P7. The
“Ref” results are obtained without feedback using the MSED solver.

Cases Outer Iterations Shielding Calculations Time (min) Time Difference

Ref 13 - 19.0 -
MGPI 14 7 47.4 -
MGPC 14 6 41.5 -12%

MSEDL 14 6 35.5 -25%
MSPC 14 6 35.3 -26%
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Figure 4.16: Variation of the k−eigenvalue residual and the fission source residual with the outer
iteration for P7. (a) shows that the results of k-eigenvalue residual, while (b) shows that the results
of the fission source residual. The figure shows that the fission source residual is converged at 9th

or 10th outer iteration, while the k-eigenvalue is converged at 13th or 14th outer iteration.
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4.4.6 Multistate Full-core Depletion Problem

The most important verification of the NOPC-CMFD method is the full-core cycle depletion prob-
lem. The problem used in this section is the VERA core physics benchmark problem 9 (P9). The
model is a 32-state depletion problem developed on the basis of the Watts Bar Nuclear Unit 1 Cycle
1. More details about this problem can be found in [4, 98]. No reference result of the performance
for classical CMFD is obtained for this problem, so the performance of the different solvers are
compared with each other. The results are shown in Table 4.17.

Compared to the MGPI case, the reduction of the number of outer iterations from using the
NOPC-CMFD solver is more than 340. The reduction on average is 10 outer iterations per state.
Compared to the MSEDL case, the total reduction in the number of outer iterations is more than
130, roughly 4 outer iterations per state.

It is noted that in this problem, MPACT with the MGPI solver performs the fewest number of
shielding calculations. The cases using the NOPC-CMFD methods perform around 14 (or more)
shielding calculations, which is about 0.44 more shielding calculations per state. More shielding
calculations are performed due to the estimation of the feedback intensity. When the fission power
is perturbed, the change of the state variables at some states will trigger the shielding calculation
to be executed and result in more overall shielding calculations.

In terms of efficiency, it can be seen that the run time reduction for MGPC is 27%. When
the multilevel method is used, the run time reduction can be as large as 43%. The MSPC case
converges faster than the MSEDL case, indicating that the NOPC-CMFD method can improve the
robustness and efficiency of MSED in problems with feedback.

The results presented show the relaxation-free CMFD method–nearly-optimal partially con-
verged CMFD–can improve the efficiency of the current CMFD methods and improve the robust-
ness of the advanced CMFD methods over the PWR operational space.

Table 4.17: Convergence properties of the MPACT with different iteration schemes in P9.

Outer Iterations Shielding Calculations Wall Time (hr) Time Difference

MGPI 861 169 16.1 -
MGPC 514 182 11.8 -27%

MSEDL 647 190 10.0 -38%
MSPC 507 184 9.1 -43%
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4.5 Summary

The work presented in this chapter provided the numerical verification for the NOPC-CMFD
method, a robust relaxation-free multiphysics iteration scheme for CMFD-accelerated neu-
tron transport k-eigenvalue problems Chapter 3. Theoretically, the convergence rate of the
NOPC-CMFD method in the problem with feedback is similar to that of the fully converged CMFD
method in the same problem without feedback. The extensive results presented here essentially
verify this theoretical prediction, and demonstrate that the benefits are observable for realistic
whole-core PWR cycle depletion calculations. The method, to the best of our knowledge, is the
first method that dynamically stabilizes the iteration scheme by adjusting the partial convergence
of the low-order diffusion solutions using problem-dependent information.

First, the convergence performance of the CMFD method in MPACT for the fuel assembly
problem with feedback, VERA core physics benchmark progression problem 6 (P6), was analyzed.
These results showed that:

• the range of the nearly-optimal partial convergence is dependent on the feedback intensity
of the problem;

• the partial convergence of the low-order diffusion solution is more important than the relax-
ation;

• when the low-order diffusion solution is properly partially converged, the number of outer
iterations MPACT takes to converge the problem with feedback is the same as the non-
feedback case.

These findings agree with the predictions in Chapter 3.
Next, the implementation of the NOPC-CMFD method was described. The key to implement-

ing the method is to estimate the global feedback intensity of the problem. In this chapter, it has
been proposed that the pin-wise feedback intensity can be reasonably estimated from a pin-wise
perturbation of the flux in a red-black manner. The assumptions made with respect to the feedback
in Chapter 3 were verified, and a sensitivity study was performed to determine the parameters used
for the estimation of this value. An additional sensitivity study was also performed for deriving
the global feedback intensity from a characteristic feedback intensity. The NOPC-CMFD method
was implemented based on the CMFD solvers available in MPACT–Multigroup CMFD solver with
power iteration (MGPI) solver and the MSED solver. The two new CMFD methods were referred
to as the MGPC method and the MSPC method.

Finally, numerical results were presented to show the performance of these two NOPC-CMFD
implementations for 3D problems with different scales and forms of feedback. The VERA core
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physics benchmark progression problem 1 (fuel pin problem), 6 (fuel assembly problem), 4 (3×3
core problem), 7 (full-core single-state problem) and 9 (full-core multi-state depletion problem)
with feedback from thermal hydraulics, critical boron search and equilibrium Xenon were used.
It was shown that the MGPC and MSPC methods were much more stable and robust than the
current CMFD methods of MPACT over a wide range of PWR problems and conditions. For
the multi-state depletion problem, compared to the MGPI, the reduction in the number of outer
iterations was more than 340 for 32 states. The associated wall time reduction was about 43%.
More importantly, it has been shown that the relaxation-free method in problems with feedback
has similar performance to the CMFD method in problems without feedback.

The work presented in this chapter is important because it is a relaxation-free method de-
rived based on the iteration scheme used in the neutronics simulations. It is also believed that the
NOPC-CMFD method provides a way to improve the stability and robustness of the current CMFD
method and CMFD methods that may be proposed in the future.

The main drawback of the NOPC-CMFD method is that it relies on the estimation of the global
feedback intensity. This parameter is somewhat complex, and not necessarily straightforward to
calculate accurately from realistic simulations. Additionally, the initial guess of the feedback inten-
sity (which should be conservative–but not too conservative) will impact the overall performance
(although not as much as the choice of relaxation factor). However, the NOPC-CMFD method
should still be considered of practical significance and value because it does not require substantial
modification to the iteration schemes that are already widely used by existing high-fidelity whole-
core simulators. The required modifications to these existing codes are merely (1) implementation
of an iteration dependent Wielandt shift, and (2) a step to estimate γ. Therefore, it may be easily
adopted in these codes and guaranteed to improve the stability and robustness of the multiphysics
iterations.

However, the issues that surround the calculation of γ are likely to always persist, so we view
this work as a temporary solution. For the development of better methods, we propose a different
direction where it is more desirable that the method not rely on the estimation of the feedback
intensity.
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CHAPTER 5

Multiphysics Diffusion Acceleration with X-CMFD

In this chapter, we present the derivation and the implementation of the X-CMFD method, where
multiphysics feedback is applied at the power iteration of the low-order eigenvalue solver.

We first formulate, for the same model from Chapter 3, a robust CMFD-based iterative method
that (i) requires no relaxation, and (ii) has convergence properties similar to CMFD for problems
without feedback. The primary idea underpinning the method is to appropriately and explicitly
account for the nonlinear feedback in the low-order problem rather than the partial convergence of
the low-order problem. In the continuous problem, the method is referred to as the Nonlinear Fully
Coupled Diffusion Acceleration (NFCDA) method. The method is shown to be unconditionally
stable, and has the same and even smaller convergence rate in problems with feedback compared
to the NDA in the problems without feedback.

The basic assumption of NFCDA is that the low-order diffusion problem is coupled with feed-
back. However, the solution process of coupling the diffusion and feedback is unstable [100]. The
X-CMFD method can be understood as a method that solves the low-order fully coupled diffusion
problem robustly, therefore, can have the same convergence rate as the NFCDA when the low-order
diffusion is fully converged.

The X-CMFD method is implemented in MPACT and optimized for practical simulations. The
implementation is based on the current CMFD solvers that solve the low-order diffusion equation
formulated from odCMFD [16] in MPACT. The work presented verifies the assumptions and pre-
dictions made in the derivation of the X-CMFD method. And the numerical results are presented
to illustrate the performance of the new method in problems of different scales with feedback of
various forms.

This chapter proceeds with a description of the neutron transport problem (with model non-
linear feedback), and then describes in detail the NFCDA and the X-CMFD iteration scheme in
Section 5.1. The Fourier analysis and results are then provided in Section 5.2. Numerical results
from a 1D simple problem are also provided to confirm the predictions of the Fourier analysis and
demonstrate the robustness of the X-CMFD method for a wide variation of parameters in the model
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problem. Next, the X-CMFD algorithm is implemented in MPACT and the details are shown in
Section 5.3. The stability of X-CMFD and the predictions made in Fourier analysis are eventually
verified in Section 5.4 for some practical problems.

5.1 Motivation and Model Problem

5.1.1 Motivation

The development of a stable iteration scheme irrespective of the convergence of the CMFD solution

and problem feedback intensity is the motivation for developing the X-CMFD method. This is the
same motivation as Chapter 3 and Chapter 4. However, we have the additional motivation that
we wish to construct an iteration scheme that does not rely on the estimation of the problem-
dependent feedback. The basic idea of X-CMFD–coupling the low-order problem in the CMFD-
accelerated scheme to the feedback from other physics to improve the stability –is similar to that
of [101, 34]. However, the previous works did not make any theoretical contribution, or perform a
Fourier analysis which is what we do here. Additionally, the overall procedure shown in Figure 2.1
will not be altered. The eventual Fourier analysis results indicate that the method is different from
the methods implemented in [101, 34].

5.1.2 Model Problem

The model problem used to describe and analyze the X-CMFD method is a slab-geometry, mono-
energetic, isotropically scattering, eigenvalue neutron transport problem with domain size X . The
feedback model assumes cross-sections that depend linearly on the local value of the scalar flux.
This is the same model problem developed in Chapter 3. The model also imposes a normalization
condition to make the eigenfunction unique. Reflective boundary conditions are set on both sides
of the problem domain. The transport problem of interest is given in Eqs. (3.1).

µ
∂ψ (x, µ)

∂x
+ Σt (x,S)ψ (x, µ) =

1

2

[
Σs (x,S) + λνΣf (x,S)

]
φ(x) , (3.1a revisited)

φ (x) =

∫ 1

−1

ψ (x, µ) dµ , (3.1b revisited)

ψ (0, µ) = ψ(0,−µ) , 0 < µ ≤ 1 , (3.1c revisited)

ψ (X,µ) = ψ (X,−µ) , −1 ≤ µ < 0 , (3.1d revisited)

1

X

∫ X

0

∫ 1

−1

ψ (X,µ) dµdx = Φ0 , (3.1e revisited)

Σi(x,S) = Σi(x, φ) = Σi0 + Σi1

[
φ(x)− Φ0

]
, i = t, a, s, f, c . (3.2 revisited)
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5.1.3 The NFCDA Iteration

To solve the NTE coupled with feedback robustly, both [34] and the work presented in this chapter
couple the low-order diffusion problem and the feedback. However, theoretical proof has not been
provided to show that this method is stable for the transport calculation.

In this subsection, we introduce a model problem for the NFCDA method, where the low-order
diffusion problem is fully coupled with the feedback.

As will be shown later in this chapter, the NFCDA is a robust method that is as stable in
problems with feedback as the NDA is without feedback.

The iteration process of NFCDA in the model problem is shown in Algorithm 11.

Algorithm 11 Fully coupled NFCDA for k-eigenvalue problem with feedback

1: Input maximum outer iteration number N ; tolerance εc, εf ; initial guess φ(0), J (0), λ(0).
2: for n = 0, 1, . . . , N do
3: Update the macroscopic cross-section Σ

(n)
i with the latest flux using Eq. (3.2). Calculate the

diffusion coefficient and the nonlinear coupling term, D̂(n).
4: Solve the low-order diffusion eigenvalue problem:

− d

dx
D(n+ 1

2) (x)
d

dx
φ(n+ 1

2) (x) +

(
Σ

(n+ 1
2)

a (x) + D̂(n) (x)

)
φ(n+ 1

2) (x)

= λ(n+ 1
2)νΣ

(n+ 1
2)

f (x)φ(n+ 1
2) (x) ,

(Alg 11.1)

where

Σ
(n+ 1

2)
i (x) = Σi0 (x) + Σi1 (x)

(
φ(n+ 1

2) (x)− Φ0

)
i = t, s, c, γ, f · · · . (Alg 11.2)

5: Perform a transport sweep:

µ
[ ∂
∂x

+ Σ
(n)
t (x)

]
ψ(n+1) (x, µ) =

1

2

[
Σ(n)
s (x) + λ(n+ 1

2)νΣ
(n)
f (x)

]
φ(n+ 1

2) (x) .

(Alg 11.3)

Note here the cross sections on the fine mesh are from step 3.
6: Calculate the scalar flux φ(n+1) and current J (n+1). Let k(n+1)

eff ← 1/λ(n+1/2).

7: if
∣∣∣k(n+1)
eff − k(n)

eff

∣∣∣ < εc and
∥∥F (n)φ(n) −F (n+1)φ(n+1)

∥∥ < εf
∥∥F (n)φ(n)

∥∥ then
8: break
9: end if

10: end for

It should be noted that Eqs. (Alg 11.1) is assumed to be solved exactly without any stability
issues. However, instability in solving the diffusion problem coupled with feedback from other
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physics is well-known [100]. Therefore, the application of NFCDA should be limited by the sta-
bility of the iterative method used to obtain the solution of the low-order diffusion problem.

5.1.4 Iteration Procedure of X-CMFD

The X-CMFD algorithm for the continuous neutron transport eigenvalue problem with nonlinear
feedback is detailed in Algorithm 12. In this algorithm, the steps provided are for the (n + 1)th

iteration of the scheme. Prior to starting the first iteration, user-provided initial guesses are neces-
sary for φ(0) (x), J (0) (x), and λ(0). The essential new feature of the X-CMFD method occurs in
step 6, where the low-order problem is iterated to appropriately converge the flux-dependent cross
sections. It should be noted that the D̂ term is only updated once per outer iteration.

Algorithm 12 X-CMFD for k-eigenvalue problem with feedback
1: Input maximum outer iteration number N , inner coupling iteration number M ; tolerance εc,
εf ; initial guess φ(0), J (0), λ(0).

2: for n = 0, 1, . . . , N do
3: Update the macroscopic cross-section Σ

(n)
i with the latest flux using Eqs. (3.2). Calculate

the diffusion coefficient and the nonlinear coupling term, D̂(n).
4: for m = 0, 2, . . .M − 1 do
5: Update the cross section with the latest flux φ(n,m), and update the diffusion coefficient.
6: Solve the low-order diffusion eigenvalue problem:

− d

dx
D(n,m) (x)

d

dx
φ(n,m+1) (x) +

(
Σ(n,m)
a (x) + D̂(n) (x)

)
φ(n,m+1) (x)

= λ(n,m+1)νΣ
(n,m)
f (x)φ(n,m+1) (x) ,

(Alg 12.1)

with L power iteration using WS ratio r.
7: end for
8: Let λ(n+ 1

2) ← λ(n,M) and φ(n+ 1
2) ← φ(n,M). Then perform transport sweep:

µ
[ ∂
∂x

+ Σ
(n)
t (x)

]
ψ(n+1) (x, µ) =

1

2

[
Σ(n)
s (x) + λ(n+ 1

2)νΣ
(n)
f (x)

]
φ(n+ 1

2) (x) .

(Alg 12.2)

Note here the cross sections on the fine mesh are from step 3.
9: Calculate the scalar flux φ(n+1) and current J (n+1). Let k(n+1)

eff ← 1/λ(n+1/2).

10: if
∣∣∣k(n+1)
eff − k(n)

eff

∣∣∣ < εc and
∥∥F (n)φ(n) −F (n+1)φ(n+1)

∥∥ < εf
∥∥F (n+1)φ(n+1)

∥∥ then
11: break
12: end if
13: end for
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5.2 Fourier Analysis

The details of the Fourier analysis of the model problems are shown in Appendix A. The details
are omitted here for brevity.

5.2.1 Expression for Spectral Radius

For the continuous version, the predicted spectral radius is generally representative of any fine-
mesh discretization. For the discretized problem, there are two spatial meshes–a fine mesh for the
transport sweep and a coarse mesh for the low-order diffusion eigenvalue calculation, with q fine
cells per coarse cell. It is assumed that both meshes are uniform with mesh cell thickness h for the
fine mesh and ∆ = qh for the coarse mesh.

The main Fourier analysis result is the iteration eigenvalue θ, or growth factor for the error.
The derivation of the full result is straightforward but algebraically intensive, and we omit the
details here for brevity, it can be found in Appendix A. The derivation procedure amounts to
a linearization of the X-CMFD algorithm given in the previous section, insertion of a Fourier
Ansatz, and manipulation of the resulting algebraic equations to obtain the iteration eigenvalue as
a function of Fourier frequency.

The spectral radius is then found by maximizing θ over all possible Fourier modes:

ρ = max
ω

∣∣∣θ(ω)
∣∣∣ . (5.2)

5.2.1.1 NFCDA

The iterative eigenvalue for continuous the NFCDA is

θ(ω) =
fNDA (ω)

b (ω)
− γfTS (ω) . (5.3)

Here ω, fNDA and fTS have the same definitions as those in Section 3.2. They are shown again in
Eqs. (5.4) along with a (ω) and b (ω).

5.2.1.2 X-CMFD

The Fourier analysis result for X-CMFD (Algorithm 12) is:

θ(ω) =


(
a(ω) + 1−a(ω)

b(ω)
− γ
)
fTS (ω)− 3

ω2

1−a(ω)
b(ω)

[
1− fTS (ω)

]
, continuous problem ,

max
∣∣∣eig(T

(
ω
))∣∣∣ , discretized problem ,

(5.4a)
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where:

T(ω) = H̃(ω)
(

1− γ
)
−
[
1− a(ω)

]
1

3Σt∆(eiΣt∆ω − 1)G̃ + γ3(Σt∆)2 1T

q
H̃

γ3
(

Σt∆
)2

+ 2− 2cos
(

Σt∆ω
) , (5.4b)

fTS (ω) =
arctan (ω)

ω
, (3.20a revisited)

a(ω) =
[ (

ΛL(ω)− 1
) γ

g(ω)
+ ΛL(ω)

]M
, (5.4c)

b(ω) =
γ

g(ω)
+ 1 , (5.4d)

c̃ = 1− (1− r) (1− c) , (3.20c revisited)

g(ω) =


1
3
ω2 , continuous problem ,

2−2cos

(
Σt∆ω

)
3

(
Σt∆

)2 , discretized problem ,
(5.4e)

Λ(ω) =
1− c̃

1− c̃+ g(ω)
. (5.4f)

In Eqs. (5.4), ω is the Fourier frequency and is a multiple of π
ΣtX

. H̃ is the error transition matrix
for the fine mesh scalar flux due to the discretized transport sweep operator. G̃ is the operator
for the coarse mesh surface net current obtained from the fine mesh surface angular flux. The
definition of these two terms can be found in [16, 94].

We have used a WS power iteration to solve Eq. (Alg 12.1), and thus we incorporate typical
solver parameters such as the shift value and the number of power iterations as parameters in the
Fourier analysis. Therefore, this Fourier analysis includes the factors L and r that apply to the
iterative method used to solve Eq. (Alg 12.1).

For X-CMFD, the nonlinear term is calculated once after every transport sweep. If the nonlin-
ear coupling term is calculated together with the diffusion term in Algorithm 12 by

D̂(n,m) (x) =

d
dx

[
Jn (x) +Dn+ 1

2
,m (x) d

dx
φ(n+ 1

2
,m) (x)

]
φ(n+ 1

2
,m) (x)

, (5.5)

and no feedback is present, the expression for the growth factor is:

θ (ω) = fTS (ω)− 3M

ω2

[
1− fTS (ω)

]
. (5.6)

We will discuss the implications of updating D̂ with the inner cross section update later in Sec-
tion 5.2.2.3, but this is generally not a good idea.
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5.2.2 Analysis Results

5.2.2.1 NFCDA

The spectral radius of the NFCDA method is shown in Figure 5.1. The feedback intensities used
are of different orders of magnitude. It could be seen that the method is stable for a very large
range in the problem with feedback of different intensities. And when feedback is very strong
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Figure 5.1: Stability of the NDA with fully-coupled low-order problem.

γ = 1e− 1, the NFCDA converges faster than the NDA in problem without feedback.
The result is very important, because it indicates that if the low-order diffusion problem is fully

coupled with feedback and can be converged without instability, the NFCDA should have almost

identical or even better performance compared to the NDA in problems without feedback.

5.2.2.2 Validation of Fourier Analysis Results

In Figures 5.2, theoretical spectral radius predictions obtained from the Fourier analysis and numer-
ically-obtained spectral radius estimates are compared for both continuous and discretized equa-
tions to validate the Fourier analysis results of X-CMFD. The NFCDA could not be validated,
because it is a hypothetical method based on the fully-coupled low-order diffusion problem that is
solved robustly. How the low-order diffusion problem is solved is explicitly undefined.

We observe that the Fourier analysis predictions agree well with the numerical results obtained
from a test code. Moreover, plots in Figure 5.2a illustrate that the spectral radius is affected by the
size of the problem domain, i.e. the larger the problem size, the less stable the iteration scheme.
However, it can be observed that when M = 3 and L = 2, this dependence on problem size dis-
appears, and the spectral radii for problems with optical thickness up to 500 mean free paths are
almost constant and around 0.2247 (the optimal convergence rate for NDA in the non-feedback
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problem!). With this combination of M and L, X-CMFD has a nearly identical asymptotic conver-
gence behavior compared to CMFD in the non-feedback discretized problem, which can be found
in Figure 5.2b.

(a) (b)

Figure 5.2: Comparison of Fourier analysis and numerical results of X-CMFD for some example
feedback problems. (a) shows the results of the continuous problem. And (b) show the results of
the discretized problem.

5.2.2.3 Nonlinear Coupling Term

Now we explain why the nonlinear coupling term in Algorithm 12 must be only calculated once at
each outer iteration. Eq. (5.6) is rewritten as:

θ (ω) = fTS (ω)− 3M

ω2
(1− fTS (ω)) = fNDA

[
1− fTS (ω)

]
ω2
[
1− fTS (ω)

]
. (5.7)

Since

lim
ω→0

3

ω2
(1− fTS (ω)) = 1 , (5.8a)

lim
ω→0

fNDA (ω) = 0 , (5.8b)

therefore
lim
ω→0

θ (ω) = M − 1 . (5.9)

For M ≥ 2,
ρ ≥ |θ (ω) | ≈M − 1 . (5.10)
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The results indicate that when the nonlinear coupling term is calculated every inner iteration, the
iteration scheme will become unstable even for the problems without feedback. The explanation
is that the nonlinear coupling term is used as a correction to the Fick’s law approximation of the
neutron current, and in particular that correction should be independent of the diffusion coefficient
(assuming it is correctly defined for each condition of the system). Therefore, only the terms from
the transport sweep should be used. Consequently, the nonlinear coupling term D̂ should only be
calculated once per outer iteration.

5.2.2.4 Fully Converged Low-order Problem

In Chapter 3, it has been shown that if the low-order problem is fully converged, the Picard iteration
scheme used in MPACT becomes unstable. It is worthwhile to see whether using the coupling
between the low-order problem and the feedback will stabilize the calculation, so that when the
low-order problem is fully converged, the convergence becomes better. Here we assume that L =

∞. Therefore,

a (ω) =

(
− γ

g (ω)

)M
. (5.11)

The plot of the spectral radius for the continuous problem is shown in Figure 5.3. The results show
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Figure 5.3: Spectral radius as a function of the problem optical thickness for different M . For
each inner iteration, the diffusion problem is converged first then the feedback is applied.

that if the low-order problem is fully converged, using inner coupling will only reduce the spectral
radius for the problem in which the Picard iteration scheme is already stable. If the Picard iteration
scheme is unstable, i.e. ΣtX > 52, the inner coupling will not be stable.
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5.2.3 X-CMFD Iteration Scheme Design

The results from the previous subsection illustrate that the optimal spectral radius of 0.2247 can be
achieved with some combination of power iteration number L and inner iteration number M in X-
CMFD. Here we attempt to find whether there exists an optimal set of iteration scheme parameters
for X-CMFD that give similar stability behavior as NDA (CMFD) in the non-feedback problem
over a wide range of conditions.

5.2.3.1 Scheme Design

Problem parameters representative of a nuclear reactor at operating conditions are used in this part.
The problem size is set to be 500 mfp, to allow flatter Fourier modes and make the problem more
difficult.

Figure 5.4: The plot shows the effect of the scattering ratio and power iteration number on the
X-CMFD scheme analyzed in this chapter.

Figure 5.4 shows that for the chosen set of problem parameters, the most stable option for the
L parameter in X-CMFD is L = 1, as this value avoids divergence at large scattering ratios. This
result is important because it suggests that the work performed in solving the low-order equation
should be minimized. It also suggests that for more general problems, fixed-point iteration schemes

with NDA or CMFD acceleration should apply a suitable degree of multiphysics feedback at each

power iteration of the diffusion eigenvalue solver. This is consistent with the concept of “why
waste effort converging the low-order problem with the wrong coefficients?”. Also, an aggressive
Wielandt shift parameter should be used to accelerate the convergence of the coupled power itera-
tions. This is desired because the aggressive Wielandt shift has already been used to accelerate the
convergence of the low-order problem [17, 32, 6].
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(a) (b)

Figure 5.5: Spectral radius as a function of scattering ratio and the number of inner iterations for
different γ. (a) shows the results with feedback at nominal PWR conditions. (b) shows the results
without feedback.

Figure 5.5a shows how the spectral radius of X-CMFD varies with the scattering ratio c and
the number of inner iterations M with L = 1. When the system is scattering dominated (c > 0.9),
the spectral radius is about 0.2247 with a small M . This encouraging result shows that for the
problem under consideration, the X-CMFD method converges at the same rate for problems with
feedback as the NDA (CMFD) accelerated scheme does for problems without feedback. However,
if the scattering ratio is very large (c > 0.98), X-CMFD becomes unstable. This problem can be
mitigated by reducing the aggressiveness of the Wielandt shift. Additionally,

γ =

(
Σa,1

Σa,0

− Σf,1

Σf,0

)
Σa,0

Σt,0

Φ0 =

(
Σa,1

Σa,0

− Σf,1

Σf,0

)
Φ0(1− c) , (3.44 revisited)

shows that γ is dependent on the scattering ratio. Therefore, for very high scattering ratio materials,
γ tends to be small, reducing the instability of the iteration scheme.

In practical simulations, the NDA (CMFD) diffusion equation is only partially converged.
Therefore, as suggested by Figure 5.5b, the optimal convergence rate of ρ = 0.2247 for stan-
dard NDA (CMFD) is not achieved for large problems, even without feedback. By comparing
Figure 5.5a and Figure 5.5b, it is found that X-CMFD makes use of the feedback to become more

stable. This result indicates that in reality, the simulation with feedback may take fewer transport
steps to converge than the simulation without feedback for the (otherwise) same problem.

It should be noted that when L is 1, the solution process of the inner coupling turns out to
be the power iteration solution of a low-order diffusion problem coupled with feedback. A more
encouraging result is that the spectral radius is monotonically decreasing and converges to 0.2247
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with inner iteration number M increasing. The observations made here can be interpreted as that
the more tightly the X-CMFD diffusion equation is converged, the faster the iteration scheme
converges. This result indicates that X-CMFD is robust, and it is possible for users to control the
convergence of lower-order diffusion problems without loss of stability. This is not the case for
the Picard iteration scheme, in which extra effort used to fully converge the low-order problem can
lead to instabilities as suggested by results in Chapter 3.

5.2.3.2 Effect of Feedback Intensity and Wielandt Shift

(a) (b)

Figure 5.6: Spectral radius as a function of scattering ratio and the number of inner iterations for
different WS ratios. (a) show the results for r = 0.96, i.e. the Wielandt shift is relatively mild. (a)
show the results for r = 0.99, i.e. the Wielandt shift is relatively aggressive.

The effect of the feedback intensity and Wielandt shift on the stability of the X-CMFD scheme
is investigated in this section. The relative feedback intensity γ0 is used to separate the effects of
feedback from the scattering ratio. γ0 is defined in

γ =

(
Σa,1

Σa,0

− Σf,1

Σf,0

)
Φ0(1− c) = γ0(1− c) , (5.12)

to separate the scattering ratio from the feedback intensity. Figures 5.6 show that the X-CMFD
method is unstable when there is minor positive feedback (γ0 < 0). This indicates that the method
is only applicable for reactor configurations with negative reactivity coefficients. The figure also
shows that the scheme may be unstable for problems with exceedingly strong feedback. However,
Figure 5.6a shows that a less aggressive shift gives the scheme a larger parameter space where it
is stable, indicating that reducing the aggressiveness of the Wielandt shift can help to make the
overall iteration more stable.
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5.2.4 X-CMFD vs NFCDA

The key lesson from the work in this section is that to stabilize the CMFD-accelerated scheme
in problem with feedback, all the relevant physics should be included implicitly in the low-order

diffusion equation. And the feedback should be applied at the power-iteration-level of low-order
eigenvalue solver, i.e. L should be 1. The D̂ term should only after the transport sweep and not in
the inner iteration loop.

For the region where the X-CMFD is stable,

lim
M→∞

θ (ω) = lim
M→∞

(
a (ω) +

1− a (ω)

b (ω)
− γ
)
fTS (ω)− 3

ω2

1− a (ω)

b (ω)

[
1− fTS (ω)

]
,

=
fNDA (ω)

b (ω)
− γfTS (ω) .

(5.13)

The expression is the same as Eq. (5.3), that is the growth factor of the NFCDA-accelerated scheme
assuming that the low-order diffusion is fully coupled with feedback with other physics, and solved
exactly.

Therefore, the X-CMFD for the continuous problem can be interpreted as a variant of NFCDA
that uses the WS PI method to solve the low-order diffusion problem coupled with feedback ro-
bustly. Since NFCDA can have similar performance compared to NDA when the solution of the
low-order problem is robust, the X-CMFD becomes a robust method that has comparable perfor-
mance to the NDA.

It should be noted that the conclusion is made in terms of the solution of the low-order problem,
regardless of the specific type of the CMFD method. Therefore, either the NFCDA method or X-
CMFD method is a generalized method that addresses the stability issues confronted by NDA and
CMFD methods in problems with feedback. We say NFCDA is general because all the methods
that have been developed to couple the diffusion problem with feedback can be applied to solve
the fully coupled low-order diffusion problem. We say X-CMFD is general because all the modi-
fications that have been developed to improve the performance of the CMFD in problems without
feedback [16, 80, 14, 18] are also applicable to the X-CMFD method.

5.3 Numerical Implementation

In this section, we describe how the X-CMFD method is implemented in MPACT. The flowchart
of the X-CMFD iteration scheme is shown in Figure 5.7. Compared to the flowchart shown in
Figure 2.1, the main modification is that “Solve CMFD Equation” becomes the “Solve X-CMFD
Equation”.
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Figure 5.7: Flowchart of X-CMFD iteration scheme in MPACT. For prototype X-CMFD, the only
modified part is “Solve X-CMFD Equation”. For the optimized implementation, modifications
are made in solution of other physics variables and applying the feedback, and homogenizing the
transport cross sections to obtain the CMFD coefficients.

5.3.1 Prototype Implementation

Based on the theoretical formulation presented in Section 5.2, the diffusion problem is solved in
the manner illustrated by Figure 5.8a.

In this approach, the other physics equations are solved and the cross sections are updated every
power iteration. Consequently, this naı̈ve scheme shown in Figure 5.8a is quite computationally
expensive, and it is formidable to use this scheme in a large-scale simulation.

5.3.2 Optimized Implementation

To implement an efficient X-CMFD method, the scheme should be optimized by introducing ap-
proximate feedback models to replace the potentially expensive procedure of solving the other
physics. As we will show in our numerical results, the X-CMFD scheme can be effectively op-
timized by simply linearly interpolating the absorption cross section. The idea of interpolating

118



Solve X-CMFD equation

Calculate Pin Power

Transfer Power

Solving Other Physics 

Apply Feedback

Update Macro Xs

Homogenize

Perform Single 

Wielandt-Shifted 

Power Iteration

Converge?

(a)

Solve X-CMFD equation

Initiate 𝒍𝒕𝒉 Power Iteration

Converge?

Calculate the Fine mesh Absorption 

Cross Section by Interpolation

𝚺𝒂 = (𝚺𝒂
𝒔𝒕𝒑

−𝚺𝐚
𝐬𝐭𝐭)

𝒇𝑱
𝒍 − 𝒇𝒋

𝒔𝒕𝒑

𝒇𝒋
𝒔𝒕𝒕 − 𝒇𝒋

𝒆𝒏𝒅
+ 𝚺𝐚

𝒔𝒕𝒕

Calculate the Normalized Coarse-

mesh-wise Fission Rate 𝒇𝒋
𝒍

Perform Single Wielandt-

Shifted Power Iteration

Fast Homogenization 

of the Removal term

N
Y

(b)

Figure 5.8: Implementation for the solution of X-CMFD equation. (a) shows the implementation
of the prototype X-CMFD. (b) shows the optimized implementation of the X-CMFD.

the absorption cross section is drawn from previous work to optimize the application of JFNK in
[34, 20], where only the absorption cross section is used from the Jacobian. The optimized X-
CMFD accelerated transport scheme is shown in Figure 5.8a with the X-CMFD equation solved
following the description in Figure 5.8b.

Prior to the start of the power iteration, the fine mesh absorption cross section and coarse
mesh fission rate are stored as the endpoints for interpolation. During the power iteration, the
coarse mesh fission rate f l is calculated first, then the absorption cross section on the fine mesh
is interpolated using the fission rate. The endpoints are retrievable after the first two transport
iteration, therefore the X-CMFD calculation is performed from the third outer iteration.

The flowchart of obtaining the endpoints is also shown in Figures 5.8. Several implementation
details are highlighted here:

• When obtaining the endpoints for the absorption cross section interpolation, the state vari-
ables are categorized into two groups: non-local (global) state variables and local state vari-
ables. This categorization is made based on whether the feedback makes a local change to
the cross sections due to a local change in the flux or a non-local change. The treatment on
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the feedback is the same as that in the NOPC-CMFD method. More details can be found in
Section 4.2.1.

• Though memory is required for storing these coefficients, the additional memory cost is
negligible compared to the memory used to store the scattering cross section.

• For the fast homogenization of the removal term of the CMFD coefficients, the removal term
can be calculated by subtracting the within-group scattering term from the homogenized
transport cross section, since the scattering term is not updated, as suggested by

Σrm,g = Σtr,g − Σs,g→g . (5.14)

• For the multilevel CMFD method MSED, the one group removal term can also be calculated
in the same way. For each one-group power iteration, the removal terms are homogenized
with the fine mesh multigroup absorption cross section. The coupling between the low-order
solver and the feedback is on the level of the power iteration for the solution of the grey
problem.

• The ratio |f l − f stt|/|f stp − f stt| is limited to not be larger than 5, and the interpolation is
not performed in the region where the fission rate is not zero. The summation of f is unity.

• The idea of X-CMFD is different from the low-order coupling in [34], where the iterations
are performed in the way where solving the CMFD equations is separated from the solution
of the other physics problem. For the X-CMFD method, it is assumed that the low-order
diffusion problem is a problem that is fully coupled with the other physics. Therefore, the
feedback is applied after every power iteration.

In MPACT, the X-CMFD method has been implemented based on the default MGPI solver
and the MSED solver, both of which solve the diffusion equation derived by odCMFD [16]. In
this chapter, the new two CMFD solvers are denoted as “MGPLC” and “MSPLC”, where “PLC”
is an acronym for the power-iteration-level-coupling, which is the distinguishing feature of the
X-CMFD method.

5.4 Numerical Results for Realistic Problems

In this section, a series of coupled problems with increasing complexity starting from a 3D-pin-cell
problem to the 3×3 core problem are used to verify the stability of the X-CMFD approach. All the
problems are developed from the VERA core physics progression problems [98]. The convergence
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criteria for the eigenvalue residual and fission source residual are both 10−6. The performance of
the X-CMFD solvers is compared with that of the MGPI solver, and the NOPC-CMFD solvers,
MGPC and MSPC. Unless otherwise specified, λs = 2/3 in the linear system of MGPI.

5.4.1 Verification of Prototype

The verification of “X-CMFD” in MPACT starts with verifying the prototype implementation
where the feedback equations are explicitly solved every outer iteration. The prototype is only
verified on the 3D pin-cell problem with feedback from the TH problem. The prototype method is
implemented based on MGPI. Table 5.1 compares the number of outer iterations to converge for
MPACT using the MGPI solver and the X-CMFD method. No relaxation is applied for both meth-
ods just to show that X-CMFD stabilizes the iteration. Note that the low-order problem has been
fully converged. It can be seen that if no relaxation is used, and the CMFD diffusion equation is
converged tightly, the MGPI cases diverge when the power is higher than 80% of the rated power.
The X-CMFD case takes almost a constant number of outer iterations to converge, indicating that
the X-CMFD stabilizes the iteration scheme and its stability is insensitive to the feedback intensity
which varies with power level. When no feedback is present, the number of outer iterations to
converge the P1 case is 16. Therefore, the X-CMFD method does have a similar performance in
3D P1 problem with feedback to the CMFD method in 3D P1 problem without feedback. How-
ever, in terms of run time the prototype X-CMFD method is inefficient because the TH solver is
invoked every power iteration on the CMFD equations. The X-CMFD takes more than 15 minutes
to converge all the cases while the MGPI takes around 5 minutes to converge the cases with power
smaller than 80% rated power. Therefore, this corroborates our assertion that the X-CMFD must
be optimized to use an approximate representation of the physics.

Table 5.1: Number of outer iterations to converge 3D P1 with feedback from TH. div stands for
divergence.

Power Level (%) 20 40 60 80 100 120 140

MGPI 16 16 29 div div div div
X-CMFD (prototype) 16 16 16 16 16 16 17

5.4.2 Single Assembly Problem

The assessment of the X-CMFD method continues with the VERA core physics benchmark pro-
gression problem 6 (P6), a single assembly multiphysics problem. The feedback from TH; TH and
critical boron search (TC); and TH, critical boron search, and equilibrium xenon (TCE) are taken
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into account. Table 5.2 shows how the WS ratio affects the stability of the X-CMFD method. It
can be seen that, with an increasing WS ratio, the number of outer iterations to converge the P6
cases decreases from 13 to 12. The 12 is the number of iterations MPACT takes to converge the
P6 problem without feedback using a tightly converged CMFD solver. The results verify what has
been predicted by the X-CMFD Fourier analysis that the tight convergence of the CMFD solution
will make the scheme converge faster and the X-CMFD method can converge the problem with
feedback at a constant rate without concern over the form or intensity of feedback.

Table 5.2: Number of outer iterations to converge P6 with 140% rated power

CMFD
Solver

Feedback Wielandt Shift Ratio
0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98

MGPLC
TH 12 12 12 12 12 12 12 12 12
TC 13 13 13 12 12 12 12 12 12

TCE 12 12 12 12 12 12 12 12 12

MSPLC
TH 12 12 12 12 12 12 12 12 12
TC 12 12 12 12 13 12 12 12 12

TCE 12 12 12 12 12 12 12 12 12

The convergence performance of the X-CMFD method is then compared to the MGPI and
NOPC-CMFD method. A power relaxation factor of 0.5 is used for the MGPI cases. The WS
ratio used for the MGPLC cases is 0.98, while for MSPLC cases 0.96 is used based on the results
in Table 5.2. These results are shown in Table 5.3. “OI” is the number of outer iterations to
converge the problem and “SC” is the number of shielding calculations. It can be observed that the
X-CMFD cases take the smallest number of outer iterations to converge for the P6 problem with
different power levels. The number of shielding calculations performed for the X-CMFD cases
is close to that for the NOPC-CMFD cases. In terms of run time, overall, X-CMFD cases take a
slightly longer time than the NOPC-CMFD cases when the power level is high. The reason is that
the NOPC-CMFD method adjusts the WS ratio based on the feedback intensity. For high-power
cases, the WS ratio is decreased and the linear system of Eq. (2.47) becomes easier to solve.

M− λsFφ = (λ− λs)Fφ . (2.47 revisited)

For the X-CMFD method, a fixed WS ratio that is close to 1 is used, therefore, the linear sys-
tem is more difficult to solve compared to the system of the NOPC-CMFD methods Eq. (2.47).
More computation effort is also spent on interpolating the cross sections and updating the CMFD
coefficients. Nevertheless, the performance of the X-CMFD method is comparable to that of the
NOPC-CMFD method, and the X-CMFD method is much more stable than the current iteration
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scheme used in MPACT. When power is 140%, the MGPLC cases take at least 24% less run time
to converge compared to the MGPI cases. When MSPLC is used, the run time can be reduced by
more than 42%.

Table 5.3: Convergence comparison of X-CMFD methods to other CMFD methods for P6

Feedback
CMFD
Solver

Power Level (%)
20 60 100 120 140 20 60 100 120 140

OI/SC Wall Time (min)

TH

MGPI 13/2 13/5 13/6 13/6 15/7 4.4 5.1 5.8 6.0 6.9
MGPC 13/3 13/5 13/5 13/4 12/4 4.8 5.0 5.1 4.9 4.6
MSPC 12/2 12/3 13/4 13/5 12/6 3.3 3.5 3.9 4.1 4.1

MGPLC 12/3 12/4 12/4 12/4 12/4 4.6 4.7 4.8 4.9 5.1
MSPLC 12/2 12/3 12/4 12/5 12/5 3.4 3.6 3.8 3.9 4.0

TC

MGPI 16/2 13/6 12/7 14/8 15/9 5.8 5.4 5.5 6.5 7.2
MGPC 12/4 12/5 12/6 13/7 13/7 4.8 4.8 5.0 5.5 5.5
MSPC 12/3 12/5 12/5 12/6 12/7 3.5 3.9 3.9 4.1 4.3

MGPLC 12/3 12/5 12/6 12/6 12/7 4.7 5.2 5.5 5.5 5.7
MSPLC 12/3 12/4 12/6 12/6 12/6 3.6 4.0 4.1 4.2 4.2

TCE

MGPI 12/3 12/5 13/6 15/7 17/10 4.7 5.1 5.9 7.0 8.3
MGPC 13/3 13/5 13/5 13/4 12/4 4.4 4.8 4.9 5.0 5.1
MSPC 12/3 12/5 12/5 12/6 12/7 3.6 4.0 4.0 4.2 4.4

MGPLC 12/3 12/3 12/5 12/5 12/5 4.8 4.9 5.3 5.3 5.4
MSPLC 12/3 12/4 12/5 12/5 12/5 3.7 4.0 4.1 4.1 4.1

5.4.2.1 Effect of the Shielding Calculation

One drawback of using the NOPC-CMFD is that the selection of the method to estimate the feed-
back intensity for the partial convergence depends on whether the shielding calculation has been
performed for that iteration. The advantage of the X-CMFD is that it does not rely on the estimation
of γ, thus the shielding calculation should not affect the performance of X-CMFD.

To confirm this, a series of cases are run and the results are presented in Table 5.4. It can be
seen the numbers of outer iterations to converge for X-CMFD cases with different powers are the
same as those presented in Table 5.2. Thus, it can be concluded that the presence of the shielding
calculation does not affect the performance of the X-CMFD method in P6 cases.
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Table 5.4: Number of outer iterations to converge P6 for X-CMFD (shielding calculation enforced)

CMFD
Solver

Feedback Power Level (%)
20 40 60 80 100 120 140

MGPLC
TH 12 12 12 12 12 12 12
TC 12 12 12 12 12 12 12

TCE 12 12 12 12 12 12 12

MSPLC
TH 12 12 12 12 12 12 12
TC 12 12 12 12 13 12 12

TCE 12 12 12 12 12 12 12

5.4.3 Affect of Iterative T/H Solutions

Like with the NOPC-CMFD analysis in Chapter 4, we also wish to investigate the performance of
the X-CMFD methods in simulations with more complex TH models that rely on iterative solu-
tions. To do this, MPACT uses CTF [90] for TH feedback. CTF obtains solutions through iterations
and is not fully converged. Since the tight convergence criteria for the fission source residual is
used, the tolerance for converging the CTF solution is determined by

εi = max(1e− 6, ε0resf ) , (5.15)

where resf is the residual of the fission source, and ε0 is the input tolerance for converging the
CTF solutions.

The results are shown in Table 5.5. It is again observed that the number of outer iterations in
the MSPLC cases is around 12 and not more than 13, the smallest number of outer iterations is 11.

Table 5.5: Number of outer iterations to converge P6 for MSPLC with CTF as the TH solver.

CMFD
Solver

Feedback Power Level (%)
20 40 60 80 100 120 140

MSPLC
TH 12 12 12 12 13 12 12
TC 12 12 12 13 12 11 13

TCE 12 12 12 12 12 12 12

5.4.4 3×3 Core Problem

The last assessment of the X-CMFD method is performed on the VERA core physics progression
problem 4 (P4) a 3×3 core problem. The RCCA is modeled in this problem. Therefore, there is
a lot of heterogeneity in axial and radial flux distribution. For P4 cases, the power is 20% and
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100% of the rated power, and while we recognize this is not a feasible operational scenario it still
presents a challenging problem for the method. The results are shown in Tables 5.6 and 5.7.

Table 5.6: Convergence comparison of the X-CMFD solvers to other CMFD solvers for P4 cases
at 100% rated power.

FDB
CMFD
Solver

Rod Position
23 46 69 92 23 46 69 92

OI/SC Wall Time (min)

– Ref 13 14 13 13 – – – –

TH

MGPI 13/5 13/7 13/7 13/7 13.9 15.1 15.8 14.5
MGPLC 13/3 13/5 13/4 13/4 14.1 15.7 15.6 15.1
MGPC 13/5 13/6 14/6 13/6 14.8 15.5 15.7 15.4
MSPC 13/6 14/6 14/6 13/6 11.2 11.8 11.8 11.2

MSPLC 13/5 13/6 13/6 13/5 10.9 11.4 11.4 10.9

TC

MGPI 13/6 14/6 13/7 13/6 15.4 16.6 15.9 14.7
MGPC 13/6 14/6 14/7 14/6 14.5 15.9 15.8 15.1

MGPLC 13/6 13/6 13/6 13/5 15.3 15.1 15.7 15.0
MSPC 14/6 14/6 14/7 14/8 11.7 12.3 12.3 12.7

MSPLC 13/6 13/6 13/6 13/5 11.4 11.4 11.4 10.9

TCE

MGPI 13/7 14/6 13/8 13/6 17.1 17.2 17.5 15.7
MGPC 13/6 13/6 13/6 13/6 14.4 14.7 14.6 14.7

MGPLC 13/6 13/7 13/6 13/5 15.7 16.3 15.7 15.3
MSPC 14/6 13/6 13/6 13/6 12.1 11.5 11.5 11.5

MSPLC 14/6 13/6 13/6 13/6 12.3 11.7 11.7 11.7

When power is 100% of the total power, it can be seen that the number of outer iterations to
converge the MGPI cases is close to that of the “Ref” cases. Therefore, in these P4 cases, the
convergence performance of the original iteration scheme is comparable to that of the MGPLC
method and the MGPC method. However, since more shielding calculations are performed for
the MGPI cases when feedback is from TCE, the run time of the MGPC and MGPLC cases is
shorter. For P4 cases with feedback from TCE, the run time for MGPLC cases is reduced by at
most 17%. The X-CMFD methods take a smaller number of outer iterations to converge the P4
cases compared to the NOPC-CMFD methods. The run time of the MGPLC cases is longer than
that of the MGPC cases when the number of outer iterations to converge is the same. The reason
for this is the same as before, in that the linear system of the MGPLC equations is harder to solve.
On the contrary, the run time of the MSPC cases and MSPLC cases is very close indicating that the
efficiency of solving the linear system with the MSED solver can help to mitigate the performance
degradation caused by the aggressive WS ratio. Compared to the MGPI cases, the run time of the
MSPLC cases is reduced by at most 33%.
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Table 5.7: Convergence comparison of the X-CMFD solvers to other CMFD solvers for P4 cases
at 20% rated power.

FDB
CMFD
Solver

Rod Position
23 46 69 92 23 46 69 92

OI/SC Wall Time (min)

– Ref 13 14 13 13 – – – –

TH

MGPI 16/4 16/6 15/5 14/5 17.5 19.0 16.6 15.3
MGPC 13/4 14/5 13/5 13/5 13.8 15.1 13.8 13.5

MGPLC 13/3 14/5 13/4 13/4 14.8 15.5 15.7 15.4
MSPC 13/4 14/5 13/5 13/6 11.2 11.8 11.8 11.2

MSPLC 13/3 14/5 13/4 13/4 9.8 11.3 10.3 10.3

TC

MGPI 16/4 16/5 15/5 14/5 17.6 18.4 16.6 15.3
MGPC 13/5 14/5 13/5 13/5 14.4 15.1 13.8 13.6

MGPLC 13/3 14/4 13/4 13/4 14.6 16.0 14.6 14.5
MSPC 13/5 14/5 13/5 13/5 10.7 11.2 10.7 10.7

MSPLC 13/3 14/4 13/4 13/4 9.9 11 10.3 10.3

TCE

MGPI 13/4 14/4 14/4 13/4 13.6 14.9 14.5 13.7
MGPC 13/3 13/5 13/5 13/4 12.8 13.9 13.7 13.2

MGPLC 13/3 13/4 13/3 13/3 14.0 14.3 13.9 13.8
MSPC 13/3 13/3 13/4 13/3 10.0 10.0 10.5 10.0

MSPLC 13/3 13/3 13/3 13/3 10.1 10.2 10.2 10.2

When power is 20% of the total power, the MGPI cases take more outer iterations to converge.
The X-CMFD cases take the same number of outer iterations as the “Ref” cases. Compared to the
run time of the MGPI cases, the run time of MGPLC and MSPLC cases is reduced by at most 17%
and 44%, respectively.

5.5 Summary

In this chapter, the X-CMFD method for accelerating solving neutron transport problems with
nonlinear feedback has been presented and analyzed via Fourier analysis. The method was imple-
mented in MPACT and optimized based on the current CMFD solvers currently used in MPACT.

First, before introducing the X-CMFD method, the Fourier analysis of a hypothesized iteration
scheme, NFCDA, was present. It is an NDA acceleration method, where the low-order diffusion
problem is fully coupled with feedback. Fourier analysis results show that the NFCDA in problem
with feedback can have comparable performance to the NDA in the problem without feedback.

Then the Fourier analysis of the X-CMFD method was presented. Fourier analysis results sug-
gested that the low-order diffusion eigenvalue problem should be coupled with the feedback, and
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the feedback is applied in the power iteration of the low-order solver. The new X-CMFD method
has significantly improved performance compared to current iteration schemes used in practice.
In particular, for scattering-dominated spatially continuous problems, the X-CMFD spectral radius
approached the familiar value of ρ = 0.2247, while conventional relaxation schemes, such as those
studied in [39] diverge for optically thick problems. Another benefit of the X-CMFD method is
that it requires no estimation of the feedback intensity. X-CMFD can be understood as a variant of
the NFCDA method that solves the fully coupled low-order diffusion problem via Wielandt shifted
power iteration.

Next, the prototype X-CMFD that was analyzed from Fourier analysis was implemented in
MPACT. Results showed that the X-CMFD method can stabilize the iteration. Therefore, the im-
plementation of X-CMFD was optimized in the way that the feedback is approximated by interpo-
lating the cross sections based on the local fission rate. The optimized X-CMFD was implemented
based on the MGPI solver and the MSED solver in MPACT. The two CMFD methods were re-
ferred to as the MGPLC method and the MSPLC method.

Finally, numerical results were presented to show the performance of these two implementa-
tions for 3D problems with different scales and forms of feedback. The numerical results verified
the prediction that the iterative scheme can converge cases faster if the low-order diffusion problem
of the X-CMFD solvers is more tightly converged. The convergence performance of the X-CMFD
method in problems with feedback is almost the same as that of the fully converged CMFD method
in problems without feedback. Compared to the MGPC solver, the MGPLC solver took a longer
run time to converge P6 and P4 cases, because the linear system of the low-order problem is harder
to solve. Using the MSED method reduced the computational cost of solving the linear system.
Therefore, MSPLC cases have comparable run time to MSPC cases.
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CHAPTER 6

Transient Multilevel With One-group CMFD
Acceleration

The methods presented in the previous three chapters help stabilize the steady-state simulations.
Starting from this chapter, the focus is switched on the methods for solving the time-dependent
neutron transport equation. In this chapter, a more advanced Transient Multilevel (TML) scheme
is developed to speed up the current transient calculation by introducing the one-group CMFD
(1GCMFD) system.

In the new scheme, the 1GCMFD equation is utilized to converge the prompt fission source for
the 3D-Multigroup CMFD (MGCMFD) system. The prompt fission source term of the MGCMFD
system can be treated as a part of the fixed source, and therefore the MGCMFD equation becomes
much easier to solve. A dynamic iteration strategy is also developed to minimize the iterations
between 1GCMFD and MGCMFD systems. Additionally, the 1GCMFD level is introduced to the
previously developed 3-level TML scheme to update the MGCMFD flux via MGCMFD/1GCMFD
coupling.

6.1 One Group CMFD Acceleration

The one group or two-group diffusion equation has been well studied and used to accelerate the
higher-order MGCMFD calculations in steady-state simulations [102, 103, 32]. These few-group
methods can be viewed as an extension of the CMFD method, where a lower-order method is used
to accelerate the higher-order method, that is the MGCMFD system. MSED is used to accelerate
the steady-state eigenvalue problem [32] by accelerating the convergence of fission source for
the steady-state CMFD eigenvalue problems. Following the same idea, the 1GCMFD is used to
accelerate the MGCMFD calculations in the transport TFSP.

It is assumed that 1GCMFD is a sufficiently accurate approximation to converge the fission
source, and this has been demonstrated for steady calculations [32]. Therefore, the fission source
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term FΦ in the MGCMFD is moved to back the right-hand side (RHS), and the MGCMFD system
becomes much easier to solve. Though some computation effort is needed to solve the 1GCMFD
system, the number of unknowns in 1GCMFD is much smaller than that in the MGCMFD system.
Consequently, the overall computation time to solve the MGCMFD problem is reduced. The
numerical results presented later in this chapter will support these claims. It should be noted that,
for solving a MGCMFD TFSP system, the 1GCMFD system will be solved for multiple times, and
the 1GCMFD coefficients will be updated every time that MGCMFD flux is updated. The details
are shown in the following sections.

6.1.1 1G/MGCMFD Iteration

6.1.1.1 Methodology

The general procedure for 1GCMFD acceleration of the MGCMFD TFSP problem is derived in
this section.

We already have
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Eq. (2.62) is integrated over the whole energy phase space and the resulting equation is written as:

∑
m′∈N(m)

Γ(m,m′)

[
− D̃n

(m,m′)(Φ
n
m′ − Φn

m) + D̂n
(m,m′)(Φ

n
m + Φn

m′)

]

+

(
Σn
t,mΦn

m − Σn
s,mΦn

m

)
Vm =

(
SnF,m + Sntr,m

)
Vm, 1 ≤ m ≤M .

(6.1)

Here Φn
m is defined as

Φn
m =

G∑
g=1

Φn
m,g , (6.2)

and the cross section, transient source and spectral terms in Eq. (6.1) are

Σn
x,m =

∑G
g=1 Φn

m,gΣ
n
x,m,g

Φn
m

, Σx = A, Σt, vΣf , (6.3a)
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Snm =
G∑
g=1

Snm,g S = C, B . (6.3b)

This process of obtaining the 1GCMFD coefficients based on the MGCMFD coefficients and so-
lutions is referred to as collapsing. And the properties shown in Eqs. (2.38) are not preserved. The
procedure to collapse the diffusion coefficients and the nonlinear correction terms is same as that
described in [32]. The sum and difference of the diffusion coefficients and the nonlinear correction
terms at the surface (m,m′) are calculated with the fluxes of cells m and m′as:

< D̃n
(m,m′) + D̂n

(m,m′) >=

∑G
g=1

(
D̃n

(m,m′) + D̂n
(m,m′)

)
Φn
m,g

Φn
m

, (6.4)

< D̃n
(m,m′) − D̂n

(m,m′) >=

∑G
g=1

(
D̃n

(m,m′) − D̂n
(m,m′)

)
Φn
m′,g

Φn
m′

. (6.5)

Then the one group diffusion coefficients and the nonlinear correction terms are obtained from the
solution of

D̃n
(m,m′) =

< D̃n
(m,m′) + D̂n

(m,m′) > + < D̃n
(m,m′) − D̂n

(m,m′) >

2
, (6.6a)

D̂n
(m,m′) =

< D̃n
(m,m′) + D̂n

(m,m′) > − < D̃n
(m,m′) − D̂n

(m,m′) >

2
. (6.6b)

It can be shown that with this definition, the properties shown in Eqs. (2.38) are also preserved.
Once the 1GCMFD coefficients are calculated, the one group scalar flux is obtained by solving

(M1 − S1 − F1 −A1 −B1F1) Φ1 = C1 , (6.7)

where the subscript 1 denotes the 1GCMFD coefficients. Then the MGCMFD flux is calculated by

(M− S−A−BF) Φ = C + χF1Φ1 . (6.8)

The general procedure for 1GCMFD acceleration of MGCMFD is illustrated in Figure 6.1. The
1GCMFD coefficients are collapsed from the MGCMFD coefficients using the latest multigroup
flux. The 1GCMFD flux is then obtained by solving Eq. (6.7). And solution is used to update the
MGCMFD sources. Eventually, with the fission source from 1GCMFD, the MGCMFD scalar flux
is calculated. Since the coefficients in the 1GCMFD equation are collapsed with the MGCMFD
flux, that is not a fully converged solution, iterations between the 1GCMFD and MGCMFD sys-
tems are advantageous. This iteration process is referred to as 1G/MGCMFD iteration.
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Figure 6.1: Flowchart for 1G/MGCMFD iteration.

6.1.1.2 Dynamic 1G/MGCMFD Iteration Strategy

The introduction of the 1G/MGCMFD iteration increases the complexity of the overall acceleration
method, and creates an opportunity to perform simulations inefficiently. For example, when the
number of 1G/MGCMFD iterations becomes large, the 1G/MGCMFD iteration will becomes more
computationally expensive than solving Eq. (2.64) directly. Conversely, if the number of iterations
is insufficient at the transport level, the fission source calculated with the 1GCMFD flux solution
will not be accurate, and the total calculation time will increase due to the additional transport
sweeps required to converge the pin-wise transient source. Moreover, in the MGCMFD level of
TML, when the number of the 1G/MGCMFD iterations is insufficient, the multigroup scalar flux
of MGCMFD becomes less accurate, and cannot capture the evolution of the amplitude function
of the coarse mesh flux.

To remedy these issues, a dynamic iteration strategy to determine the upper limit of the number
of the 1G/MGCMFD iterations nIter is developed. The idea behind this strategy is to converge
the MGCMFD TFSP to a level that is minimally sufficient. When the transport problem becomes
easier to solve, the computational effort on the 1G/MGCMFD iteration should be decreased. Mean-
while, if the transport problem becomes harder to solve, the solution of the 1G/MGCMFD iteration
should be more tightly converged. The metric for determining the change of the computational
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Figure 6.2: Flowchart of dynamic 1G/MGCMFD iteration strategy.

complexity of the transport problem is the variation of the reactivity or the number of transport
outer iterations from the previous time steps.

The details of the iteration strategy are illustrated in Figure 6.2. For the 3D-transport level, the
initial value of nIter is set to be 3. If the number of transport outer iterations stays unchanged
for 4 time steps (denoted by nStay) or the numbers of transport outer iterations is decreasing for
the previous two steps, then nIter is decreased by 1. However, nIter is set back to 3 when the
reactivity changes by 1% or the number of transport outer iteration has increased for the previous
two time steps. For the MGCMFD level, nIter is set to be 3. The value 3 is used based on the
observed numerical result that using three 1G/MGCMFD iterations is a good balance of efficiency
and accuracy.

6.1.2 1GCMFD Level in TML

Beyond a simple 1GCMFD acceleration of the MGCMFD TFSP, the TML scheme is modified to
include a 1GCMFD level. The new multilevel scheme is referred to as TML-4 because of the 4
computational levels: transport, MGCMFD, 1GCMFD and EPKE. This is illustrated in Figure 6.3.

For the coupling between the MGCMFD level and the 1GCMFD level, two possible approaches
may be adopted.
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Figure 6.3: TML with one-group CMFD level (TML-4).

• Flux-multiplication Approach: The shape function of the coarse mesh scalar flux in energy
space is assumed to vary slowly in time, and the amplitude function needs to be corrected by
the 1GCMFD calculation. Therefore, the multigroup flux is updated by Eq. (6.9):

φCg,m =
ΦC
m∑G

g=1 φ
P
g,m

φPg,m , (6.9)

where ΦP
g,m is the shape of the MGCMFD flux at the predicted MGCMFD step.

• Source-correction Approach: The variation of the shape function is not negligible and
should be solved with the corrected source that is predicted by the 1GCMFD solutions
with Eq. (6.10):

(M− S−A−BF) ΦC = C + χF1Φ
P
1 . (6.10)

Numerical results presented later in this chapter will show that the flux-multiplication approach is
a better practice to balance the efficiency and accuracy.

The 1GCMFD level and EPKE level are coupled with the aid of the MGCMFD flux. The
EPKEs coefficients are calculated with the MGCMFD coefficients, and the solutions that have
been corrected using the 1GCMFD-level solution.

The PCQM is as follows:

(i) Solve the MGCMFD TFSP for MGCMFD step ∆tMG
n′ using Eq. (2.62). The 1GCMFD

coefficients are generated using the equations from Eqs. (6.3) to (6.6).

(ii) Linearly interpolate the 1GCMFD coefficients between tMG
n′−1 and tMG

n′ and solve the 1GM-
CFD problem using the ∆t1Gn′′ = ∆tMG

n′ /N1G. N1G is the number of 1GCMFD time steps per
MGCMFD time step.

(iii) Update the MGCMFD flux using Eq. (6.9) or Eq. (6.10).

(iv) Update the flux and precursor concentration using the MGCMFD/EPKE coupling with time
step ∆tEPKEn′′′ = ∆t1Gn′′ /NEPKE .
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Here n′′ and n′′′ have been introduced to index the time points on the 1GCMFD level and EPKE
level. Figure 6.4 summarizes the TML-4 scheme. The second and third vertical blocks represent
the application of 1GCMFD method to accelerate the transient calculation. For the MGCMFD
TFSP, the 1GCMFD equation is used to converge the source. In the 1GCMFD level, the 1GCMFD
solver is used to reduce the number of MGCMFD time steps. For the TML-4 scheme, the coupling
between the neutronics problem and TH problem is not altered, and is the same as the scheme
presented in [54].

Figure 6.4: Flowchart of TML iteration scheme with 1GCMFD acceleration.

6.2 Numerical Results

The numerical results presented in this section are used to verify the accuracy and the efficiency of
utilizing 1GCMFD to accelerate the TML scheme.

Three problems developed based on those presented in [104] – the 4-mini test problem, 7×7
test problem and a full-core problem – are used. The first and second problems are small-sized
and medium-sized problems, respectively. The efficiency and accuracy of the 1GCMFD accelera-
tion, and the TML-4 scheme described in this chapter are verified with these two problems. The
MGCMFD TFSP Eq. (2.64) of TML-3 can be fully converged within the maximum permitted num-
ber of GMRES iterations. Therefore, the MGCMFD TFSP can be considered as accurate, and the
simulation results of TML-3 are used as reference results. In MPACT, the default Krylov solver
used is the PETSc-based GMRES [96] solver preconditioned by the block Jacobi method. The
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GMRES solver is restarted every 100 iterations. The absolute and relative tolerances for solving
the linear system are 10−10, and the maximum number of GMRES iterations is 400.

The third problem is a large-scale, full-core problem based on the Watts Bar Unit 1, Cycle
1 [98]. Due to the large size of Eq. (2.64) and the degradation of the Krylov solver, the linear
system cannot be fully converged with the user-specified number of GMRES iterations. As a
result, the problem is used to show the efficiency of the 1GCMFD acceleration and the TML-4
scheme in a practical reactivity insertion accident (RIA) simulation of the full-core reactor.

For all three problems, the results from the transient calculation without TML but with finer
steps will not be used as the reference results to verify the accuracy of the method, because the
accuracy of the TML scheme has been investigated in [54] and [50]. Additionally, the focus of the
research is to develop the methods to improve the efficiency of the TML scheme.

6.2.1 4-mini Test Problem

6.2.1.1 Problem Details

The 4-mini test problem is a 3D regression test problem in MPACT used to verify the implementa-
tion of the transient methods. The problem has the same layout with VERA Progression Problem 4
(P4) [98] but with 7×7 assemblies. The core geometry is shown in Figure 6.5a. The assemblies in
red are the regions with 2.11% enriched UO2 and the assemblies in green are the regions with 2.6%
enriched UO2 and with 4 Pryex rods inserted. The corner red assemblies contain 4 stainless steel
rods inserted in the empty locations. The hybrid AIC/B4C RCCA is located in the center assembly.
Unless specified, the composition of the materials and the state variables (inlet temperature, boron
concentration, etc) used in the 4-mini test problem are the same as those used in P4. Compared to
P4, the height of the 4-mini test problem is reduced. The fuel stack is adjusted to be 209.16 cm
rather than 365.76 cm in P4. The poison height of the AIC and B4C is adjusted to be 58.024 cm
and 147.96 cm. The rated power is 19.36 MW, and the rated flow is 131.16 kg/s.

For the initial condition, the RCCA is fully inserted. The transient cases with initial hot zero
power (HZP) and hot full power (HFP) conditions are simulated for 1.0 s, with RCCA withdrawn
out of core over a distance of 36.27 cm in 0.05 s. The initial power of the HZP case is 0.0136% of
the rated power, and the initial power of the HFP case 100% of the rated power.

Seven different cases are run to verify the 1G/MGCMFD iteration and the new TML-4 scheme.
All the cases are run with a 5 ms step size for the transport level. Cases 1 through 4 are used to
assess the performance and accuracy when only the 1G/MGCMFD iteration with the dynamic
iteration strategy is used to accelerate the original TML-3 scheme. 10 finer steps in the MGCMFD
level are used for the solution of the reference case (Case 1). Case 2 uses 1G/MGCMFD iteration to
solve the MGCMFD TFSP with the same time discretization as Case 1. Case 3 uses 5 MGCMFD
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Figure 6.5: Assembly layout and geometry of the 4-mini test problem. (a) shows the assembly,
control rod bank and poison of the problem. (b) shows the geometry of the 4-mini test problem.

time steps per transport step that is the default TML-3 option in MPACT. Case 4 has the same time
discretization as Case 3, but uses the new 1G/MGCMFD iteration acceleration.

The performance and accuracy of the new TML-4 scheme are investigated by comparing the
results of Case 5 through 7 with Case 3. Case 5 and Case 6 use 3 finer steps in both the MGCMFD
and the 1GCMFD levels, while Case 7 only use 3 finer steps in the MGCMFD level. The flux-
multiplication approach is used to correct the multigroup flux in Case 5, while in Case 6 the source-
correction approach is used. The details of these cases are summarized in Table 6.1, where “nMG”
stands for the number of MGCMFD steps per transport time step, “n1G” stands for the number of
1GCMFD steps per MGCMFD step, and “nEPKE” denotes the number ofEPKE steps per CMFD
step.

All the cases are performed with the Chebyshev-Yamamoto quadrature set with 16 azimuthal
angles and 2 polar angles per octant. The spatial discretization use 8 azimuthal flat source regions
per pin-cell, 3 radial rings in the fuel, and 1 ring in the gap, cladding and moderator separately. The
P3 axial solver is used for this case with 30 axial layers. The cases are run on the Lighthouse cluster
with 16 cores (Xeon E5-2680v3 processor) at the University of Michigan. The cross sections for
MPACT are provided from a 51-group library generated at ORNL by CASL [68].

6.2.1.2 Power and Reactivity Results

The run time results are shown in Table 6.2. The run time is given in hours. The following
abbreviations are used to condense the column headers. “TR” gives the total run time required by
the simulation, “CR” presents the run time for the CMFD solver, and “NCR” shows the run time
of the non-CMFD solvers. “TR RD” and “CR RD” represents the run time reduction compared to
the time of the reference cases for “TR” and “CR” respectively.
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The run time differences between Case 1 (TML-3-ref) and Case 2 (TML-3-ref/1G) or Case 3
(TML-3) and Case 4 (TML-1G) show that the CMFD time can be reduced by more than 48% and
the total run time can be reduced by around 17% by using the 1G/MGCMFD iteration. Moreover,
the non-CMFD time varies little when the 1G/MGCMFD iteration is applied, showing that the
dynamic iteration strategy does not degrade the convergence rate of the fine mesh transport flux
solution. The acceleration performance from 1G/MGCMFD is slightly less when the initial condi-
tion is HFP compared to HZP. One reason is that the CMFD solver run time represents a smaller
portion in the total run time for the HFP cases as more time is used in solving the TH equations,
updating the cross sections, etc. The other reason is that the CMFD solver run time reduction in
the HFP cases is also slightly less.

Table 6.1: TML options for seven different cases based on the 4-mini test problem.

Case Name nMG n1G nEPKE
1G/MGCMFD

Iteration
Remark

1 TML-3-ref 10 — 10 No Solution reference
2 TML-3-ref/1G 10 — 10 Yes 1G/MGCMFD iteration used
3 TML-3 5 — 10 No Default TML-3 option in MPACT
4 TML-3-1G 5 — 10 Yes Default TML-3 option with 1G/MGCMFD iteration
5 TML-4-flux 3 3 10 Yes TML-4 scheme (flux-multiplication)
6 TML-4-src 3 3 10 Yes TML-4 scheme (source-correction)
7 TML-3-coarse 3 — 10 No TML-3 scheme with fewest MGCMFD steps

8 TML-4-hybrid
5 — 10 Yes Control rod moving
3 3 10 Yes Stationary control rod

Table 6.2: Run time for different cases based on the 4-mini test problem.

Case
HZP HFP

TR
(hrs)

CR
(hrs)

NCR
(hrs)

TR
RD

CR
RD

TR
(hrs)

CR
(hrs)

NCR
(hrs)

TR
RD

CR
RD

1 (Time Ref) 5.26 2.25 3.02 N/A N/A 5.76 2.39 3.37 N/A N/A
2 4.18 1.149 3.03 21% 49% 4.58 1.25 3.33 20% 48%

3 (Time Ref) 4.60 1.60 3.00 N/A N/A 5.04 1.7 3.34 N/A N/A
4 3.73 0.70 3.04 19% 56% 4.16 0.82 3.34 17% 52%
5 3.86 0.67 3.19 16% 58% 4.22 0.75 3.46 16% 56%
6 4.14 0.98 3.16 10% 39% 4.52 1.05 3.47 10% 38%
7 4.29 1.31 2.98 7% 18% 4.75 1.37 3.38 6% 19%

TML-4-hybrid 3.75 0.71 3.04 18% 56% 4.15 0.81 3.34 18% 52%

The run time differences between Case 3 (TML-3) and Case 5 (TML-4-flux) show that the new
TML-4 scheme can reduce the CMFD run time by more than half when using Eq. (6.9) to correct
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Figure 6.6: Power history for different cases of the 4-min problem. (a) shows the power for the
HZP cases. (b) illustrates the power for HFP cases. In each figure, the power for each case is
overlapping each other.
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Figure 6.7: Error of the power results of different 4-mini test problem cases. (a) shows the results
for the HZP cases while, (b) illustrates the power for the HFP cases.

the multigroup flux. Because the TML-4 scheme solves fewer MGCMFD TFSP linear systems, but
solves more 1GCMFD TFSPs, the run time of the TML-4 scheme is close to the run time of using
pure 1G/MGCMFD iteration to accelerate the default TML-3 scheme. However, the run time of
the TML-4 case is slightly longer than that of the default TML-3 scheme with the 1G/MGCMFD
acceleration due to additional computational effort spent on calculating the reactivity, interpolating
coefficients, building linear system, etc. The run time of the TML-4 scheme with Eq. (6.10) is
longer than the TML-3 scheme with 10 finer MGCMFD steps accelerated by the 1G/MGCMFD
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iteration, indicating much more time has been spent on solving the additional MGCMFD system
of Eq. (6.10).

In terms of the accuracy, Figures 6.6 show that the power history for different cases with the
same initial condition are almost identical. This indicates that the TML scheme is a very efficient
method to capture the evolution of the amplitude and the shape functions. The relative error of the
power solutions in Cases 2 through 7 compared to the reference solution is calculated in order to
more thoroughly quantify the accuracy of the different methods. These comparisons are plotted in
Figure 6.7. The logarithmic scale is used for the x-axis to better resolve the relative error when
the RCCA is being moved. The L∞ norm and L1 norm, i.e., the maximum and the average of the
relative error of power solutions in magnitudes for both the control rod withdrawal stage and the
feedback stage are summarized in Table 6.3.

The L∞ norm of the relative error for the power solution of Case 2 (TML-3-ref/1G) is the
smallest. This norm is smaller than 2 × 10−4, showing that the error from the 1G/MGCMFD
acceleration with the dynamic iteration strategy is negligible, and does not affect the accuracy of
the final solution. The same conclusion is also drawn by examining the norms of the relative error
for Case 3 (TML-3) and Case 4 (TML-3-1G). These are very close in Table 6.3 and plots of relative
errors in Figures 6.7 are overlapping each other.

For the TML-4 scheme, the relative errors of power solutions using the flux-multiplication
approach are larger than those for TML-3 with 5 MGCMFD steps or even with 3 MGCMFD
steps when the control rods are being withdrawn out of the core. The source-correction approach
reduces the error, but both norms of the relative error are still larger than those of the results in
Case 7 (TML-3-coarse). As mentioned above, Case 6 (TML-4-src) takes longer to run than Case
2 (TML-3-ref/1G). Therefore, the source-correction approach is not a good choice. When the
control rods stop moving, feedback dominates the reactivity change. The amplitude of the relative
error of TML-4 decreases rapidly and eventually becomes smaller than the relative error of the
power in Case 3 (TML-3) and Case 4 (TML-3-1G). These results indicate the assumption that
the shape function in the energy space varies more slowly than the energy-integrated function is
not sophisticated enough for transient processes involving control rod movement, but it is very
accurate when reactivity changes more slowly.

In light of these results, a more advantageous way to use the 1GCMFD solution to accelerate
the TML scheme is to apply the 1G/MGCMFD acceleration with the default TML-3 settings when
the control rods are moving, and then to use TML-4 with 3 finer MGCMFD steps per transport
step and 3 finer 1GCMFD steps per MGCMFD step with the flux-multiplication method to correct
the multigroup flux. This method is referred to as the hybrid TML-4 scheme. The details and the
run time are summarized in the last row of Table 6.1 and Table 6.2, respectively. The relative error
of the solutions of hybrid TML-4 scheme is compared with the relative error of solutions of the
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Figure 6.8: Comparison for the core power of the 4-mini test problem with the hybrid method and
the default TML-3 method.

default TML-3 settings and the result is plotted in Figure 6.8. The L1 and L∞ norms of the error
are also summarized in Table 6.3. It can be seen that the relative error of results for the control rod
movement part has been reduced, and the L1 and L∞ norms of the relative error is approximately
the same order as those in the TML-4 cases after the control rod movement. Additionally, the run
time and CMFD time are very close to those of TML-4 with the flux-multiplication approach or
TML-3 with 1G/MGCMFD acceleration.

To summarize, the results from the simple 4-mini regression test problem show that utilizing the
1G/MGCMFD iteration to accelerate the MGCMFD TFSP calculation can reduce the CMFD time
by more than 48% and the total run time by more than 17%. Using the flux-multiplication approach
in the new TML-4 scheme can achieve a similar speedup, and have much more accurate power so-
lutions when feedback dominates the evolution of the reactivity. TML-4 with the source-correction
approach does better to capture the evolution of power than the flux-multiplication approach when
the control rods are being withdrawn from the core, but can not achieve the same accuracy as
TML-3 with 1G/MGCMFD acceleration. The source-correction is also slower than the TML-3
scheme with 10 finer MGCMFD steps accelerated by 1G/MGCMFD iterations. A more advanta-
geous iteration scheme is proposed by using TML-3 with 1G/MGCMFD to simulate the transient
process when the control rods are moving, and using TML-4 with the flux-multiplication method
to simulate the transient process when feedback dominates the change of the reactivity. For the fol-
lowing cases, the performance of the TML-4 scheme with source-correction approach will not be
investigated, due to its drawback in balancing the accuracy and efficiency observed in this problem.
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Table 6.3: L1 and L∞ norm of the relative error for the core power solutions the of 4-mini test
problem.

Case
HZP HFP

Rod Movement Feedback Stage Rod Movement Feedback Stage

L1 L∞ L1 L∞ L1 L∞ L1 L∞

2 (TML-3-ref/1G) 7.00E-06 2.13E-05 5.03E-05 1.41E-04 3.90E-05 1.91E-04 2.60E-06 2.27E-05
3 (TML-3) 3.32E-04 1.21E-03 2.71E-04 5.84E-04 4.83E-04 1.61E-03 1.40E-04 9.00E-04
4 (TML-3-1G) 3.33E-04 1.24E-03 3.14E-04 6.67E-04 5.34E-04 1.67E-03 1.43E-04 9.00E-04
5 (TML-4-flux) 1.48E-03 5.92E-03 7.62E-05 1.60E-04 1.81E-03 6.96E-03 2.63E-05 2.46E-04
6 (TML-4-src) 8.41E-04 3.39E-03 4.79E-05 1.25E-03 1.07E-03 4.19E-03 7.33E-05 1.69E-03
7 (TML-3-coarse) 8.50E-04 2.85E-03 7.82E-04 1.70E-03 1.20E-03 3.95E-03 3.54E-04 3.50E-03
8 (TML-4-hybrid) 3.33E-04 1.24E-03 1.36E-04 4.43E-04 5.34E-04 1.67E-03 4.39E-05 6.93E-04

6.2.2 7×7 Test Problem

The 7×7 test problem is used to assess the performance of the 1G/MGCMFD iteration and TML-4
in a more complex problem with multiple assemblies. The test problem is a hypothetical small
modular reactor (SMR) 7×7 core with 37 standard Watts Bar Unit 1, Cycle 1, 17×17 assemblies.
The layout is illustrated in Figure 6.9, which consists of three regions of assemblies with specific
enrichments. The green region represents the 2.11% enriched UO2, the red region is the 2.62%
enriched region and the blue region is 3.10% enriched. Three different RCCA control banks are
loaded, with index A, B and T. More details about the modeling of the fuel pins, Pyrex rods,
assemblies, and control banks can be found in Ref [98].

Table 6.4: L1 and L∞ norms of the relative error for the core power and reactivity solution of the
7×7 test problem.

Case
Power Reactivity

Rod Movement Feedback Stage Rod Movement Feedback Stage

L1 L∞ L1 L∞ L1 L∞ L1 L∞

2 (TML-3) 1.67E-03 3.33E-03 3.92E-03 1.52E-02 1.31E-03 4.56E-03 4.81E-04 2.01E-03
3 (TML-3-1G) 1.58E-03 3.05E-03 3.59E-03 1.38E-02 1.11E-03 4.14E-03 4.31E-04 1.83E-03
4 (TML-4-flux) 5.32E-03 1.23E-02 3.19E-03 1.15E-02 2.18E-03 7.01E-03 1.87E-04 1.08E-03

5 (TML-4-hybrid) 1.58E-03 3.06E-03 9.13E-04 2.94E-03 1.11E-03 4.14E-03 5.10E-05 3.20E-04

For the initial condition, only the central control bank, T, is fully inserted into the core region.
The other two control banks A and B are fully withdrawn. The transient simulation models the
bank T being fully ejected from the core in 0.1 s. The maximum reactivity inserted is $1.2. The

141



transient process is simulated for 0.8 s. During the whole simulation, Bank A and B remain fully
out of the core.

Five different cases are run. Case 1 is the reference solution using TML-3 with the same
parameters as those in Case 1 of the 4-mini test problem. Case 2 uses the default TML-3 scheme,
and Case 3 uses the same time discretization but adds the 1G/MGCMFD iteration to accelerate the
MGCMFD calculation. Case 4 and Case 5 adopt the new TML-4 scheme with 3 finer MGCMFD
steps, 3 finer 1GCMFD steps and 10 finerEPKE steps, and the flux-multiplication approach to
correct the multigroup flux. The difference between Case 4 and Case 5 is that Case 5 uses the
new hybrid TML-4 scheme. All the cases are run with 32 processors on the Lighthouse cluster at
the University of Michigan, with a transport time step size of 5 ms. The details of the cases are
summarized in Table 6.5.
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Figure 6.9: Geometry of the 7×7 test problem.

The power history, reactivity history and the run time are shown in Figure 6.10a, Figure 6.10b
and Table 6.6, respectively. The results are consistent with the findings in the 4-mini test prob-
lem. The power history and reactivity history of different cases are similar to each other. The
1G/MGCMFD acceleration, the new TML-4 scheme, and the hybrid TML-4 scheme also show
similar performance. The 1G/MGCMFD acceleration and the TML-4 scheme can both reduce the
CMFD time by at least 58% and the total run time by more than 18%.

In terms of accuracy, as shown by Figure 6.11a, Figure 6.11b and Table 6.4, the relative errors
of the power and reactivity using the TML-4 scheme with the flux-multiplication are the largest
with the control rods moving. The L∞ norm of the relative error is larger than 1%. During the
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Table 6.5: Parameters for five different cases based on the 7×7 test problem.

Case Name nMGCMFD n1GCMFD nEPKE
1G/MGCMFD

Iteration
Remark

1 TML-3-ref 10 — 10 No
2 TML-3 5 — 10 No
3 TML-3-1G 5 — 10 Yes
4 TML-4-flux 3 3 (flux-multiplication) 10 Yes

5 TML-4-hybrid
5 — 10 Yes Rod Movement
3 3 (flux-multiplication) 10 Yes Stationary Rod

Table 6.6: Run time for different cases based on the 7×7 test problem.

Case
TR

(hrs)
CR

(hrs)
NCR
(hrs)

TR
RD

CR
RD

1 52.62 24.70 27.91 N/A N/A
2 (Time Ref) 46.07 17.57 28.50 N/A N/A

3 35.85 7.22 28.63 20% 58%
4 36.27 6.43 29.84 18% 63%
5 36.33 6.65 29.79 18% 62%
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Figure 6.10: Power (a) and reactivity (b) histories for the 7×7 test problem. The plots of reactivity
and power for all cases are overlapping each other respectively.

time range 0.1 s–0.2 s in the thermal feedback stage, the relative errors of the TML-4 power results
change little while the relative errors in the power results of the TML-3 cases keep increasing and
become larger than the relative error of the TML-4 results. This observation indicates that the
differences compared to the reference solutions are mainly caused by the differences accumulated
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Figure 6.11: Relative errors of power history and reactivity history of the 7×7 test problem. (a)
shows the relative error of power. (b) shows the relative errors of the reactivity history.

at the control rod movement stage for the TML-4 schemes, and by the time discretization in the
default TML-3 scheme. The amplitude of the relative error of the default TML-3 scheme with
1G/MGCMFD acceleration is smaller than that for the default TML-3 scheme without acceleration.
The norms of the relative error of both solutions are in close agreement, supporting the conclusion
that the error introduced by 1G/MGCMFD iteration is negligible.

The L∞ and L1 norms of the power results are larger for the default TML-3 scheme compared
to the TML-4 scheme when the control rods stop moving. Therefore, it can again be concluded that
the TML-4 scheme does better to capture the power evolution when the cross sections vary slowly.
This conclusion is also supported by the results in illustrated in Figure 6.11b and Table 6.4 that
relative errors of the reactivities for Case 4 (TML-4-flux) and Case 5 (TML-4-hybrid) are smaller
than that for Case 2 and Case 3, when the control rods stop moving.

The proposed hybrid TML-4 scheme, has the smallest relative error, and almost the same per-
formance as 1G/MGCMFD iteration to accelerate the TML-3 scheme with default settings, or the
TML-4 scheme.

6.2.3 Efficiency of 1GCMFD Acceleration

The numerical results in the previous sections have shown that 1GCMFD acceleration can reduce
the MGCMFD calculation time significantly. In this part, more details are provided to support the
efficiency of the 1GCMFD acceleration.

Table 6.7 summarizes the average number of GMRES iterations to solve the linear system
Eq. (2.64) in the TML-3 case and the linear system of Eq. (6.8) in the TML-3-1G case. As men-
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tioned above, the Krylov solver used is the Block Jacobi preconditioned GMRES solver. It can
be seen that when the fission source is moved to the RHS of the system, the number of GMRES
iterations to solve the MGCMFD system for the 4-mini test problem and 7×7 test problem can be
reduced by more than 80%.

Table 6.7: Average number of GMRES iterations to solve the MGCMFD TFSP system.

4-Mini HZP 4-Mini HFP 7×7 Test Problem

TML-3 TML-3-1G TML-3 TML-3-1G TML-3 TML-3-1G

353 56 356 59 330 49
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Figure 6.12: Convergence of the fission source for the Krylov solution method and the
1G/MGCMFD iteration method. (a) shows the results for the 4-mini test problem, while (b)
illustrates the results for the 7×7 test problem. The plot shows that the convergence rate of
1G/MGCMFD iteration approach is much faster than that of solving the MGCMFD system us-
ing Krylov Method.

Table 6.8: Summary of run time and iteration number for solving an MGCMFD TFSP system

State
Point
(ms)

4-mini HFP 7×7 Test Problem

Krylov 1G/MG Krylov 1G/MG

Iter #
Run

Time (s)
Iter #

MG/1G
Run

Time (s)
Iter #

Run
Time (s)

Iter #
MG/1G

Run
Time (s)

5 400 3.6 322/979 2.3 400 51 303/971 38
50 400 3.6 347/997 2.5 400 51 322/1000 38
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The efficiency of the 1GCMFD acceleration is further illustrated by comparing the convergence
of the fission source norm of the two iterative methods, namely solving the MGCMFD TFSP
directly with a Krylov method (Krylov solve) and the 1G/MGCMFD iteration (1G/MG solve). For
consistency, the relative error of the fission source norm is calculated. The reference fission source
distribution is obtained by solving Eq. (2.64) using a Krylov solver directly with the tolerance set
to be 10−10.

For the Krylov method, Eq. (2.64) solution is obtained every 40 GMRES iterations. The
fission source relative error is then calculated. For consistency, the maximum number of itera-
tions for solving the MGCMFD system in the 1G/MG solve is also set to 40, and the number
of 1G/MGCMFD iterations is 10. The fission source relative error is obtained, and the actual
number of GMRES iterations is recorded every 1G/MGCMFD iteration. The MGCMFD TFSP
problem solved is the first MGCMFD TFSP problem at each time step. The results are shown
in Figures 6.12. It is observed that for both the 4-mini HFP test problem and the 7×7 test prob-
lem, the 1G/MGCMFD iteration converges the fission source much faster than the Krylov solver.
The 1G/MGCMFD can take around half of the number of GMRES iterations but achieve a similar
accuracy compared to that of the Krylov solve method.

Table 6.8 summarizes the run time and the total number of GMRES iterations for solving
the MGCMFD TFSP investigated in Figures 6.12. It can be observed that the 1G/MGCMFD
iteration takes both fewer iterations and less time. The time reduction observed here is more
than 25%. However, in the numerical simulations performed in the previous two subsections, the
MGCMFD TFSP is solved with up to 3 1G/MGCMFD iterations. Therefore, better efficiency from
the 1GCMFD acceleration has been observed in Tables 6.2 and 6.6.

6.2.4 Full-core Hot Full Power RIA Problem

In this section, we examine a realistic full-core PWR reactivity insertion accident problem. The
model proposed is based on the end-of-cycle (EOC) condition of Problem 9 (P9) in the VERA
Progression Problem suite [98]. The fuel assembly and poison layouts are shown in Figure 6.13 in
quarter symmetry. The control rod layout is shown in Figure 6.14 in full symmetry. More details
such as materials, geometry, and operating condition can be found in [98]. The simulation of the
problem is performed with the full geometry, not quarter-core symmetry.

For the transient simulation, the initial condition is at full power, with control rod bank D fully
inserted. The control rod bank C is withdrawn to 112 steps based on rod insertion limits. All the
other control rod banks are fully withdrawn from the core. The RCCA located at D12 represents
the highest worth rod in the core and is assumed to be ejected out of the core in 0.1 s at a constant
speed. During the rod ejection, the SCRAM signal is assumed to be triggered to trip the core.

146



However, the RCCA labeled with “STK” in control bank SD is assumed stuck out of the core
during the SCRAM. The transient process is very complex because of the control rod ejection,
reactor trip, SCRAM, and stuck control rod.
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Figure 6.13: Assembly and poison layout of the full-core problem (quarter symmetry). This is
regenerated from [98]

.

During the rod ejection, the trip of the reactor would be triggered when the total core power
reaches 112% of the rated full power (fp), or the rate of change in the total power is larger than
7.5% fp/s. All the control rods are then inserted assuming a delay. This delay is 0.4 s later from
when the SCRAM is triggered by the total power and 0.3 s later if the SCRAM is triggered by the
power changing rate. The control rods are fully inserted in 5.5 s. For the first 2.2 s, the insertion
rate is 70 steps/s. For the later 3.3 s, the insertion rate is 20 steps/s. The length of the step size of
rod movement can be found in [98].

The transient process is simulated for 5 s and divided into 7 periods. The time step sizes used
in each period are summarized in Table 6.9. It is noted that the time step sizes are adopted by the
CASL Team to illustrate the capability to perform large-scale transient simulations. For practical
nuclear reactor simulation, a sophisticated investigation on the time step size is required. However,
this is a focus in later chapters albeit for smaller problems.

The problem is simulated on 6264 cores on the Falcon high performance computing system of
the Idaho National Laboratory with nodes used exclusively by the job. Three different cases are
performed. The first case TML-3 uses the default TML option for MPACT. The 1G/MGCMFD
acceleration is used in the second case TML-3-1G. The third case TML-4 uses the TML-4 config-
uration. For both TML-3-1G and TML-4, the multigrid solver [32] is also used to solve the CMFD
linear system, to see the synergy of both the 1GCMFD acceleration and the multigrid solver in
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Figure 6.14: Control rod layout of the full-core RIA problem. One RCCA (labeled with D12) of
the control bank D is ejected out of the core in 0.1 s. One RCCA (labeled with STK) of control
bank SD is stuck. The problem is performed with full symmetry.

large-scale problems. The “hybrid” method is not investigated because the control rods are essen-
tially moving during the whole transient.

Table 6.9: Time step sizes for the full-core HFP RIA problem.

Time Period Time Step Size Remark

0.00-0.10 s 5 ms Rod Ejection
0.10-0.38 s 5 ms No rod movement
0.38-0.59 s 10 ms Reactor Trip
0.59-2.79 s 50 ms Reactor Trip
2.79-3.89 s 100 ms Reactor Trip
3.89-3.90 s 10 ms Reactor Trip
3.90-5.00 s 100 ms Reactor Trip

6.2.4.1 Results

The core power and reactivity results are presented in Figures 6.15 and 6.16, respectively. It can
be seen that the three different cases have very similar power histories and reactivity histories.
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Figure 6.16 also shows the difference of the reactivities for the TML-3-1G case and TML-4 case
compared to the TML-3 case. The maximum differences in reactivities are less than $0.016.

Figure 6.17 compares the core power and maximum linear heat generation rate (linear power)
for the TML-3-1G and TML-4 cases with those for the TML-3 case. It can be observed that the
relative differences of the core power and maximum linear power share a similar trend, and that
the maximum relative differences of the powers for both cases are smaller than 1.2%. Therefore, it
can be concluded that using 1G/MGCMFD iteration alone or the TML-4 scheme has comparable
accuracy to the current TML-3 scheme with default options. After the SCRAM is triggered and
the control rods are inserted to trip the core, the relative differences of the core power and maxi-
mum linear power for the TML-3-1G case keep decreasing, while for the TML-4 case, they keep
oscillating. This is another indicator that the TML-4 scheme is deficient when the control rods are
moving.

0 1 2 3 4 5
Time (s)

0

50

100

150

200

250

300

350

Pe
rc

en
t 

Po
w

er
 (

%
)

TML-3 Core Power
TML-3-1G Core Power
TML-4 Core Power

Figure 6.15: Power history of the full-core HFP RIA problem.

The run time results of these three cases are summarized in Table 6.10. There are more abbre-
viations used in this table. “MR” stands for the run time of the MOC solver; “NR” stands for the
run time of the nodal solver; “THR” presents the run time of the TH solver, and “OR” is the run
time of other things, including communication, input/output (I/O) reading/writing, etc. It can be
seen that both methods presented in this chapter reduce the CMFD time by more than 70%, and
the total run time is reduced by more than 41% and at most 49%. The TML-4 case takes more
time than the TML-3-1G case. The difference is due to the differences in the run time of the nodal
solver caused by the fluctuation in the communication time on the high performance computing
(HPC) platform. There are in total 34992 cores on the Falcon HPC cluster. The number of cores
used for each job is around one-sixth of the number of all the cores on the cluster. Therefore the
randomness in the allocation of the nodes, the possible sharing of the resources with other tasks,
the latency in the communication between different nodes, and the I/O reading/writing make the
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Figure 6.16: Reactivity history and comparison of the full-core HFP RIA problem. The solid lines
are reactivity histories and the dashed lines are differences.
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Figure 6.17: Core power and maximum linear rate comparison for the full-core HFP RIA prob-
lem. The maximum relative difference is around 1.2% for both methods, indicating the method is
applicable for the realistic full-core problems.

run time for the same case inconsistent for different jobs. This conclusion is supported by simulat-
ing the same TML-3 case for a second time, with run time (labeled with second trial) presented in
Table 6.10. The run time of CMFD solver, MOC sweeper, TH solver, and other solvers for the first
trial and the second trial are very close, but the nodal solver’s run time is different. The difference
in the total run time of these two simulations (that is 5.8 hours) can be directly attributed to the
difference in the run time of the nodal solvers (that is 5.1 hours). Moreover, the run time of the
nodal solver for the first trial is similar to that for the TML-4 case, while the nodal solver run time
for the second trial is similar to that for the TML-3-1G case. Therefore it can still be concluded
that the 1G/MGCMFD iteration and TML-4 have comparable efficiency.

keff results from the steady-state calculation and the adjoint calculation for using multigrid
solver (that is used in TML-4 and TML-3-1G) and Krylov solver (that is used in TML-3) are
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Table 6.10: Run time for different cases of the full-core HFP RIA problem.

Case
TR

(hrs)
CR

(hrs)
MR
(hrs)

NR
(hrs)

THR
(hrs)

OR
(hrs)

TR
RD

CR
RD

TML-3 (first trial) 46.7 23.09 11.55 7.24 1.83 2.99 N/A N/A
TML-3-1G 24.78 6.26 11.42 2.12 1.63 3.4 47% 73%

TML-4 29.15 5.11 11.54 7.07 1.55 3.87 41% 78%
TML-3 (second trial) 40.94 22.63 11.26 2.17 1.72 3.15 N/A N/A

shown in Table 6.11. Theoretically, the keff of the forward problem and the adjoint problem are
identical. The results however indicate that the difference in the keff of two problems is 17 pcm
using multigrid solver, while is 0.02 pcm using Krylov solver. The difference in the keff of the
two methods in the forward problem is 0.57 pcm. Therefore, the current implementation of the
multigrid solver is still problematic for the adjoint calculation and indicates the solution of CMFD
TFSP is inaccurate.

Table 6.11: Comparison of keff for the full-core HFP RIA problem.

Method Forward keff Adjoint keff Forward/Adjoint |∆k| (pcm)

Krylov 0.9932692 0.9932690 0.02
Multigrid 0.9932635 0.9930789 18.46

|∆k| (pcm) 0.57 19.01 N/A

6.3 Summary

In this chapter, the one group CMFD was introduced to accelerate the TML scheme in the MPACT
code. A dynamic 1G/MGCMFD iteration strategy was developed and a new 1GCMFD level was
introduced in the TML hierarchy. The new scheme was referred to as TML-4 for the four levels in
the phase space solution of the transport transient kinetics problem. The 1G/MGCMFD iteration
was shown to be effective by accelerating the convergence of the fission source of the MGCMFD
TFSP problem. For TML-4, in the coupling of MGCMFD/1GCMFD, the multigroup flux was
directly updated with the one group flux. The underlying assumption for this approach was that
the MGCMFD flux could be factorized as the product of a shape function in energy space and a
one-group amplitude function, with the shape function in energy space varying more slowly than
the one-group flux in time. The new TML-4 scheme with correcting multigroup flux directly had
comparable efficiency to using 1G/MGCMFD iteration alone.
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In terms of accuracy, it was observed that the error introduced by the 1G/MGCMFD iteration
was negligible. However, this method did not improve the accuracy of the TML-3 scheme. For
the TML-4 scheme, numerical results show that using TML-4 may not be a good idea when the
control rods are moving. However, when the control rods are not moving, compared with using
1G/MGCMFD iteration alone in the TML-3 scheme with the default option, TML-4 is more ac-
curate and efficient. Therefore, this chapter suggests a hybrid method that uses the default TML-3
option with a 1G/MGCMFD iteration when the control rods were moving and uses TML-4 when
the control rods are not moving. The numerical results show that the hybrid method is more accu-
rate and has comparable efficiency to using the 1G/MGCMFD iteration alone or using the TML-4
scheme.

The effectiveness of the TML-4 method was demonstrated by solving a series of transient test
problems in MPACT ranging from a 4×4 assembly test problem to a full-core practical application.
For smaller problems, the 1G/MGCMFD iteration and the new TML-4 scheme could reduce the
run time of the CMFD solver by 50%, and the total run time by at least 16%. However, for large-
scale full-core problems, the run time of the CMFD solver could be reduced by 78%, and the total
run time was reduced by as much as 47%.

The results of this work show that the TML method with 1GCMFD acceleration improved
the efficiency of the TML scheme and could also improve the accuracy of some transient pro-
cesses. This work reduced the computational burden for full-core transport transient solutions and
improved the feasibility of using the MPACT code for solving practical transient applications.
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CHAPTER 7

Improvements of the Coupled Transient Simulation

The 1GCMFD acceleration in Chapter 6 improves the efficiency of the TML scheme, but does not
improve its accuracy. In this chapter, we describe three modifications to make the TML scheme
more accurate than the scheme presented in [51, 54, 50, 105]–especially in simulations with feed-
back.

The chapter is organized as follows. In Section 7.1, we use the Spectral Deferred Correction
(SDC) method, a stable and robust, efficient, and almost arbitrary-order accurate time-integration
method for the solution of the EPKE problems in TML. In Section 7.2, we modify the approx-
imation of the CMFD coefficients at the beginning of the CMFD level every step and propose a
new implementation of the TML-4 scheme. Finally, in Section 7.3, a better coupling scheme of
the neutronics and feedback is introduced for multiphysics simulations with adaptive time steps.

7.1 Spectral Deferred Correction Method

A lot of methods have been developed to solve the initial value problem. In the time-dependent
neutron transport simulation, most methods used are simple low-order implicit methods. One
example is the backward Euler (BE) method, that is the time-integration method for solutions to
the governing equations on each level of TML. However, BE is just first-order accurate. Although
ultra-fine time steps of 0.1 ms have been used on the EPKE step in the default TML settings, the
time step size is still not small enough.

To motivate the use of the high-order accurate method, a simple numerical study to show the
limitation of the BE method is performed on a PKE problem with the delayed neutron data shown
in Table 7.1. The term PKE rather than EPKE is used here because the parameters of the equations
are not obtained from the transport solutions. The PKE problem is simulated with time steps of
0.1 ms for 0.1 s using the BE scheme. The reference solution is calculated analytically. The results
are shown in Figure 7.1. It can be seen that the relative error of the power result at the end of
the simulation is around 4%, when the initial reactivity is $1.25, and 16% when reactivity is $1.5.
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Table 7.1: Delayed parameters of a PKE problem to show the limitation of BE method. All
the PKE models used in the dissertation uses the parameters listed here unless notified. These
parameters are from the lecture notes of NERS 551 in University of Michigan.

Group
Delayed Neutron Yield

β
Precursor Decay Constants

λ (s−1)
Prompt Neutron Generation

Time Λ (s)

1 2.584E-4 0.0128

2.57E-5

2 1.5200E-3 0.0318
3 1.3908E-3 0.119
4 3.0704E-3 0.3181
5 1.1020E-3 1.4027
6 2.584E-4 3.9286

Here, p is the power. Since the transport solution is eventually corrected by the PKEs solutions, it
would be impossible for the pin power results to become more accurate than the PKEs’ solution.
Therefore, high-order methods that do not exhibit the same behavior as BE should be used.
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Figure 7.1: Accuracy of BE method in various problems. The PKE problem is simulated for 0.1 s
with time steps of 0.1 ms. The relative errors of the power is calculated for each time steps. It can
be seen if a reactivity of $1.5 is inserted into the system, the relative error at the end of simulation
can be as large as 16%. The reference solutions are generated analytically.

The most popular high-order methods are the Theta method, Backward Differential Formula
(BDF), and implicit Runge-Kutta methods. These methods can be classified as “intrinsic high-
order methods” [106]. With the order of accuracy increasing, the implementation of these methods
becomes more complicated, and limited by their stability or efficiency. For example, there exists
no stable BDF method of order greater than six; and high-order implicit Runge-Kutta method can
be extremely computationally expensive [107].
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Alternative approaches for these high-order methods are methods based on accelerating the
convergence of low-order schemes [106]. A representative of these methods, that is first proposed
in [106], is the SDC method. The method is developed from the classical deferred correction
method [108], can be arbitrary-order accurate, and is extremely stable for stiff problems, even
when its order of accuracy is very high. The most attractive feature of SDC is that the method
is constructed based on the low-order problem (BE or forward Euler). The difference between
the SDC method and the classical deferred correction method is that spectral integration, that
is introduced in Section 7.1.1.2, is used. The method is straightforward to implement, and the
order of accuracy can be adjusted readily without altering the implementation. In the field of
nuclear engineering, some researchers have introduced SDC or other deferred correction methods
to solve the point kinetics equations [109, 110]. Researchers in other fields have introduced the
SDC method and its variants to construct high-order stable solvers, and performed stable and
efficient high-order simulations for multiphysics problems [111, 112, 113].

In our research, due to time limitations, we only use SDC to solve the PKEs and improve the
accuracy of the EPKE solver in MPACT because it is the easiest to fix and also critical for the
accuracy of the results. We also develop methods to apply the SDC to the PKE with linear energy
feedback (PKE-EF) [88], which is a simple low-order model for the neutronics problem coupled
with feedback from TH. Though these problems are simple, the methodologies developed for
solving the coupled precursor and feedback equations and PKEs when implementing the SDC do
provide some insights. In the future, the investigations and methods developed here should help in
the development of new, high-order, stable, and efficient solvers for the neutron transport transient
calculations.

7.1.1 Theory

7.1.1.1 Mathematical Preliminaries

The SDC method is developed based on the Picard integral equation. The governing equation of
the initial value problem for the range [a, b] is assumed to be:

dΨ

dt
= F (t,Ψ) , t ∈ [a, b] , (7.1)

Ψ(a) = Ψa , (7.2)

where Ψa, Ψ(t) are in CN , and F : R × CN → CN . N is the dimension and Ψ is the solution
we want to obtain. We also assume that F ∈ C∞(R × CN), i.e. F is infinitely differentiable or
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sufficiently smooth. Then the solution Ψ is

Ψ(t) =

∫ t

a

F
(
τ,Ψ(τ)

)
dτ + Ψa . (7.3)

It should also be noted that the range [a, b] is typically assumed to a time step.
Now, suppose that we have obtained the approximate solution Ψ̃(t). The error of the solution

denoted by δ(t) is calculated by:

δ(t) = Ψ(t)− Ψ̃(t) =

∫ t

a

F
(
τ,Ψ(τ)

)
dτ + Ψa − Ψ̃(t) . (7.4)

The definition of error is substituted back into the Eq. (7.4), then we have

δ(t) =

∫ t

a

F
(
τ, Ψ̃(τ) + δ(τ)

)
dτ + Ψa − Ψ̃(t) . (7.5)

The residual function [106] as suggested by Eq. (7.6) is also introduced.

ε(t) =

∫ t

a

F
(
τ, Ψ̃(τ)

)
dτ + Ψa − Ψ̃(t) . (7.6)

Then we have:

Ψa − Ψ̃(t) = ε(t)−
∫ t

a

F
(
τ, Ψ̃(τ)

)
dτ . (7.7)

Substituting Eq. (7.7) into Eq. (7.5), we can obtain:

δ(t) =

∫ t

a

F
(
τ, Ψ̃(τ) + δ(τ)

)
dτ −

∫ t

a

F
(
τ, Ψ̃(τ)

)
dτ + ε(t) . (7.8)

Next, defining the function G : R× Cn → Cn to be:

G(t, δ) = F
(
t, Ψ̃(t) + δ(t)

)
− F

(
t, Ψ̃(t)

)
, (7.9)

we rewrite Eq. (7.8) in the form:

δ(t)−
∫ t

a

G(τ, δ(τ))dτ = ε(t) . (7.10)

This is governing equation of the error to correct the solution in the classical deferred correction,
and has the similar form to Eq. (7.3).

In the next several sections, how the residual function is calculated and how the error is solved
are presented.
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7.1.1.2 Spectral Integration

To calculate the residual function in Eq. (7.6), the integral:∫ t

a

F
(
τ, Ψ̃(τ)

)
dτ , (7.11)

must be evaluated. In SDC, the spectral integration method is used. The derivation process is
presented here.

The governing equation must be first solved with multiple sub-steps. Therefore, there is a fine
grid inside the time range [a, b]. The time points are referred to as nodes in this chapter, following
the convention used in [106]. M nodes are used with a = t0 < t1 < t2 < · · · t < tM <= tM+1 =

b.
It is also assumed that the approximated solution Ψ̃ has been obtained. The derivatives

F (tm, Ψ̃m) are calculated for m = 1, 2, 3 · · ·M , and F (t) can be obtained via high-order Lan-
grage interpolation. Then, the residual function can be obtained by integrating F (t) analytically.
To illustrate this, let the matrices F = {F1, · · · , Fm, · · · , FM}T (Fm is already a vector) and
I = {

∫ t1
a
Fdτ,

∫ t2
a
Fdτ, · · ·

∫ tM
a

Fdτ}T . It turns out that

I = SF , (7.12)

where S ∈ CM×M , i.e., the process of obtaining I from F is a linear mapping [106]. This is the
general procedure of the deferred correction method. Since Langrage interpolation is affected by
the size of the sub-steps, when b− a changes, the S will change.

Compared to the standard deferred correction method, the improvement from SDC is that time

nodes for the SDC are obtained spectrally. Therefore Eq. (7.11) can be efficiently evaluated via

spectral integration [114].
The matrix S obtained via spectral integration in Eq. (7.12) is called the spectral integration

matrix. Suppose that we have obtained abscissas x and the weights w for the Gauss-Legendre
quadrature set with M points. The mth internal node tm is determined by:

tm =
b+ a

2
+
b− a

2
xm =

b+ a

2
+
h

2
xm . (7.13)

Here h is the step size, i.e., b − a. Let the vector f ∈ C(m) be a column vector of F . Then the
Lagrange interpolation is written as

f̂(t) =
M−1∑
l=0

alP̂l(t) =
M−1∑
l=0

alPl

(
2t− (a+ b)

h

)
, (7.14)
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where Pl is the Legendre polynomial, and

P̂l(t) = Pl

(
2t− (a+ b)

h

)
. (7.15)

The coefficients al are

al =
2l + 1

2

∫ 1

−1

f̂

(
h

2
τ +

a+ b

2

)
Pl(τ)dτ

=
2l + 1

2

M∑
m=1

wmfmPl(xm) = V T
l f ,

(7.16)

where Vl the column vector

Vl =
2l + 1

2
[w1Pl(x1), w2Pl(x2), · · ·wMPl(xM)]T ∈ C(m) . (7.17)

Now, let the matrix
V = {V T

0 , V
T

1 , · · ·V T
M−1} . (7.18)

Substituting Eq. (7.16) into Eq. (7.14), and letting the vector P̂ (t) = {P̂0(t), P̂1(t) · · · P̂M−1(t)},
we have

f̂(t) = P̂ (t)VTf . (7.19)

Following this, we introduce the matrix V ∈ CM×M . The component vl+1,m is defined via the
integral: ∫ tm

a

P̂l(τ)dτ =
h

2

∫ xm

−1

Pl(s)ds =
xm + 1

2

h

2

∫ 1

−1

Pl(s
′)ds′

=
xm + 1

2

h

2

M∑
i=1

Pl
(
(xm + 1)(xi + 1)− 1

)
wi =

h

2
vl+1,m .

(7.20)

The integration term, im now becomes

im =

∫ tm

a

f̂(τ)dτ =
h

2
V[:,m]VTf . (7.21)

Next, defining the column vector i = {i1, i2 · · · iM}T gives

i =
h

2
VVT . (7.22)

We denote the M ×M matrix Sb by:
Sb = VVT . (7.23)
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Sb only depends on M , thus it can be precomputed. Now it should be straightforward to see that
the integration matrix

S =
h

2
Sb . (7.24)

Then Eq. (7.12) is written by

I =
h

2
SbF . (7.25)

[107] provides another derivation for the spectral integration matrix involved with matrix inversion.
The process presented here provides an alternative way to calculate the spectral integration matrix
directly.

Other popular applicable spectral quadrature sets are Chebyshev, and Gauss-Lobatto quadrature
sets [107, 113]. The quadrature sets affect the derivation of spectral integration and slightly affect
the stability region of the SDC. Discussions on the quadrature sets can be found in [107]. We
proceed using the Gauss-Legendre quadrature sets because it is the most popular and commonly
used in the nuclear reactor physics field.

Using the correction, the (M − 1)th-order approximation of the residual function at the time
nodes can be written as

σ(Ψ) = SF−Ψa −Ψ , (7.26)

with
Ψ = {Ψ̃(t1), Ψ̃(t2), · · · , Ψ̃(tM)}T ,

Ψa = {Ψ̃(a), Ψ̃(a), · · · , Ψ̃(a)}T ,

σ,Ψ,Ψa ∈ CM×N .

(7.27)

We use the same notation σ as that in [106] to indicate that σ is a high-order approximation to the
residual ε.

7.1.1.3 Error Correction

The error to correct the solution is obtained by solving Eq. (7.10) with the low-order method. It is
recommended that forward Euler (for non-stiff problems) or BE method (for stiff problems) should
be used [106].

The forward Euler method for the solution of Eq. (7.10) in the non-stiff problem is given by
the formula:

δm+1 = δm +G(tm, δm)hm+1 + σm+1 − σm , (7.28)

and the BE method for the stiff problem is:

δm+1 = δm +G(tm+1, δm+1)hm+1 + σm+1 − σm , (7.29)
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for m = 1, 2, · · ·M , and hm+1 = tm+1 − tm . Sometimes, G can be partitioned as:

G = GI +GE, (7.30)

where GI is stiff and can be solved implicitly, and GE is non-stiff and can be solved explicitly.
Then it is also possible to solve Eq. (7.10) in the implicit-explicit (IMEX) way [111]:

δm+1 = δm +GI(tm+1, δm+1)hm+1 +GE(tm, δm)hm+1 + σm+1 − σm . (7.31)

The Spectral Deferred Correction for the solution of Eq. (7.1) is a prediction-correction process.
During the prediction, the solution is computed with a low-order numerical method at spectral
time nodes t0, t1, · · · , tM+1. The solution is denoted as Ψ

(0)
. During the correction, there are J

correction “sweeps”. For the jth correction, the residual σj is calculated with Ψ
(j)

using Eq. (7.26).
The error can then be calculated with Eqs. (7.28), (7.29) and (7.31), and is used to correct the
solution Ψ

(j−1)
, and the updated solution is Ψ

(j)
.

The algorithm of the SDC method is listed in Algorithm 13. J is the number of corrections.

Algorithm 13 General Procedure for Spectral Deferred Correction.
1: Input the number of corrections; initial solution at time a, i.e., Ψa.
2: Prediction: Compute the initial estimation of Ψ

(0)
at the time nodes t1 · · · tM with the lower-

order solver.
Correction:

3: for j = 1, 2, . . . , J do
4: Compute the residual function σ at each node via spectral integration.
5: Compute the error δ via the low-order solvers.
6: Update the solution for the jth correction by Ψ

(j)
(tm) = Ψ

(j−1)
(tm) + δ(tm).

7: end for

7.1.1.4 Right Endpoint Evaluation

It should be noted that the error is not obtained for time point b as indicated by Algorithm 13.
Suppose that J corrections are used. There are multiple ways to calculate the error or the solution
at b. Some examples are listed here.

• Extrapolation (EP): The solution at b is not calculated for both the prediction and correction.
After J corrections, the solution Ψ(b) is then obtained by the Lagrange interpolation [106,
107]. It is also possible to use the spectral integration:

Ψ(b) =
(
Ψ

(J))T
V1 , (7.32)
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1 ∈ C(m) is a column vector with all the components 1.

• Right-hand Approach [107]: The time step size h = 2
1+xM

(a − b). Then tM = b. The
Ψ(b) = Ψ(J)(tm). This approach is not investigated in here.

• Gaussian Integration (GI): The residual at b is calculated via numerical integration using
Gauss quadrature:

σM+1 =
h

2
Fw . (7.33)

Then the error at b is solved with the residual. So far, we have not found any researchers
report this treatment. However, it is a straightforward implementation. It is possible that
other researchers have already adopted this method.

Some researchers also combine the correction process with solution process together; the de-
tails can be found in [111]. Other groups have investigated using the trapezoidal method in the
prediction and correction steps [115]. The improvement in this case is small because the time
nodes are not equispaced and the resulted SDC is not L-stable.

7.1.1.5 Order of Accuracy and Stability Region

Theoretical proof in [106, 115] and results in [107] show that when F is sufficiently smooth, the
solution computed by SDC converges to the exact solution with order min(M,J + 1) when the
Euler solver is used. Numerical results later shown in this section show that when GI is used
for calculating the residual at the endpoint, the order of accuracy is min(2M,J + 1). The same
maximum order of accuracy has been observed in [116, 117].

The A-stability investigation of the SDC method is performed for the problem:

y′ = −λy, λ < 0 ,

y(0) = 1 .
(7.34)

In this analysis, suppose that the method performs for a single step with the step size h. Defining
z = λh, the value of y at the next step is a function of z, and is denoted as g(z). If |g(z)| < 1 for
Re(z) < 0, then the method is A-stable. If |g(z)| < 1 for π − α < arg(z) < π + α, the method is
A-(α) stable. It is well known that backward Euler is stable, but more specifically, this notation of
“stability” is the A-stability.

The stability regions of SDC based on BE with EP and GI are shown in Figures 7.2. They
are the regions outside the lines. It can be seen that SDC is A-(α) stable for all the orders of
accuracy investigated here. The approach to evaluate the endpoint value is also observed to affect
the stability region. Using GI to calculate the endpoint value can make SDC A-stable for orders up
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to 8. The results presented here verify that SDC can be stable for very large orders. It turns out the
SDC method can be A-(α) stable for orders up to 20 and more details about the stability of SDC
can be found in [106, 107].
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Figure 7.2: Stability region of SDC. |g(z)| < 1 for z outside the lines. All the methods are A-(α)
stable. For SDC with GI for the endpoint evaluation, it can beA-stable up to 8th-order. J = M−1,
so M is the order of accuracy.

7.1.2 SDC for PKE

Procedures mentioned in Section 7.1.1.3 provide a skeleton for implementation of the SDC
method. The actual implementation of the SDC method depends on the low-order solver. Here
we provide implementation details of the SDC solver for PKE.

7.1.2.1 Low-order Solver

In this part, we introduce three different implementations of the low-order solvers for the solution
of the prediction step and error of the correction sweeps in PKEs.
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The PKEs is written in operator notation:

dP(t)

dt
= E(t)P(t) . (2.69 revisited)

The first low-order method is referred to as matrix inversion (MI). Suppose that the PKEs are
solved implicitly. During the prediction step,

Pm+1 = (I − Ehm+1)Pm . (7.35)

For the correction, since the operator E in Eq. (2.69) is linear, G(tm, δm) may be written as:

G(tm, δm) = E(tm)δm . (7.36)

The BE solution of Eq. (7.29) is:

δm+1 = (I− Ehm+1)−1(δm + σm+1 − σm) . (7.37)

This is a direct solution process involving inverting a matrix inversion.
The second solver is the first-order precursor integration (FP) solver to avoid the matrix

inversion [54]. The solution process for the prediction step has been introduced in Section 2.4.3.
For the correction step, the FP method will make the low-order solver for the error slightly com-
plicated. The differential form of Eq. (7.10) is:

dδ(t)

dt
= Eδ(t) +

dε(t)

dt
. (7.38)

The error of delayed neutron precursors δ(ξk) can be approximated with

d

dt

(
δ(ξk)e

λkt
)

= eλkt
dδ(ξk)

dt
+ λke

λktδ(ξk) =
Λ0

Λ(t)
βk(t)δ(p)e

λkt +
dεk(t)

dt
eλkt , (7.39)

and the first-order approximation in time is then applied to the residual as:

dεk(t)

dt
=
σ

(m+1)
k − σ(m)

k

h(m+1)
. (7.40)

In this paragraph, we use superscript (m) to indicate the variable at time tm, σ(m)
k to indicate the

residual of the ξk(tm), and σ(m)
p for the residual of p(tm). Then we have

δ(m+1)(ξk) = δ(m)(ξk)e
−λ̃(m+1)

k + Λ0

[
β

(m)
k δ(m)(p)

Λ(m)

κ0(λ̃
(m+1)
k )− κ1(λ̃

(m+1)
k )

λ
(m+1)
k
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+
β

(m+1)
k δ(m+1)(p)

Λ(m+1)

κ1(λ̃
(m+1)
k )

λ
(m+1)
k

]
+ (σ

(m+1)
k − σ(m)

k )
κ0(λ̃

(m+1)
k )

λ
(m+1)
k

, (7.41a)

δ(m+1)(p) = δ(m)(p) +

[
ρ(m+1) − β(m+1)

Λ(m+1)
δ(m+1)(p) +

1

Λ0

K∑
k=1

λ
(m+1)
k δ(m+1)(ξk)

]
+ σ(m+1)

p − σ(m)
p , (7.41b)

where λ̃(m+1)
k = λ

(m+1)
k h(m+1). Defining

Ŝ
(m+1)
k (δ) =

[
δ(m)(ξk)e

−λ̃(m+1)
k +

Λ0β
(m)
k δ(m)(p)

Λ(m)

κ0(λ̃
(m+1)
k )− κ1(λ̃

(m+1)
k )

λ
(m+1)
k

+ (σ
(m+1)
k − σ(m)

k )
κ0(λ̃

(m+1)
k )

λ
(m+1)
k

]
, (7.42a)

S̃(m+1)(δ) =
1

Λ0

K∑
k=1

λ
(m+1)
k Ŝ

(m+1)
k (δ) , (7.42b)

and substituting Eqs. (7.42) back into Eqs. (7.41), yields

δ(m+1)(p) =
δ(m)(p) + h(m+1)S̃(m+1)(δ) + σ

(m+1)
p − σ(m)

p

1− τ (m+1)h(m+1) − ρ(m+1)−β(m+1)

Λ(m+1) h(m+1)
, (7.43a)

δ(m+1)(ξk) = Ŝ
(m+1)
k + Ω

(m+1)
k δ(m+1)(p) , k = 1, · · ·K . (7.43b)

The variables not introduced here can be found in Section 2.4.3.
The third approach is based on the partitioned approach [111], and is referred to as the operator

splitting (OS) approach here. In this variation, the prediction step is:

p(m+1) =
p(m) + 1

Λ0
h(m+1)

∑K
k=1 λ

(m+1)
k ξ

(m)
k

1− ρ(m+1)−β(m+1)

Λ(m+1) h(m+1)
,

ξ
(m+1)
k =

ξ
(m)
k + h(m+1)β

(m+1)
k

Λ0

Λ(m)p
(m+1)

1 + λ
(m+1)
k h(m+1)

, k = 1, · · ·K .

(7.44)

For the correction sweeps, the following are used:

δ(m+1)(p) =
δ(m)(p) + h(m+1)

∑K
k=1 λ

(m+1)
k δ(m)(ξk) + σ

(m+1)
p − σ(m)

p

1− ρ(m+1)−β(m+1)

Λ(m+1) h(m+1)
,

δ(m+1)(ξk) =
δ(m)(εk) + h(m+1)β

(m+1)
k

Λ0

Λ(m) δ
(m+1)(p) + σ

(m+1)
k − σ(m)

k

1 + λ
(m+1)
k h(m+1)

, k = 1, · · ·K .

(7.45)
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The matrix inversion is avoided through separating the operator applied on p and ξ. The OS
approach can also be understood as

P(m+1) = P(m) + (E
(m+1)
I P(m+1) + E

(m)
E P(m))hm+1 , (7.46)

where

EI(t) =



ρ(t)−β(t)
Λ(t)

−λ1(t) Λ0

Λ(t)
β1

−λ2(t) Λ0

Λ(t)
β2

. . . ...
· · · −λK(t) Λ0

Λ(t)
βK(t)


, (7.47)

and

EE(t) =

(
0 1

Λ0
λ(t)

0 0

)
, (7.48)

with λ = {λ1(t), λ2(t), · · · , λK(t)}. EIP is the implicit part and EEP is the explicit part.

7.1.2.2 Algorithm

The algorithm of the SDC method is listed in Algorithm 14. J is the number of corrections.

Algorithm 14 Spectral Deferred Correction for PKEs.

1: Prediction: Compute the initial estimation of P(0) at the time nodes t0, t1 · · · tM+1 with the
lower-order solver in Section 7.1.2.1.
Correction:

2: for j = 1, 2, . . . , J do
3: Compute the residual function σ at each node via spectral integration. Gaussian integration

is used if the residual function at the right endpoint is needed.
4: Compute the error δ via the low-order solvers in Section 7.1.2.1.
5: Update the solution for the jth correction by P(j)(tm) = P(j−1)(tm) + δ(tm).
6: end for

7.1.2.3 Numerical Results

The parameters from Table 7.1 are used for verifying the accuracy of the SDC method in solving
the PKEs. The test code is implemented in MATLAB. The Gauss-Legendre quadrature sets with
4 time nodes are used. Figure 7.3 shows the effect of the treatment of the solution at the endpoint.
The dashed line represents of the plot for fitted order of accuracy. When ED is used, the maximum
order of accuracy observed is M . When the Gaussian integration is used, the maximum order of
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accuracy observed is ∼ 2M . FP is used as the low-order PKE solver, because it is the default
low-order solver for the EPKEs in MPACT.
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Figure 7.3: Effect of the endpoint calculation on order of convergence. A PKE problem with a
step reactivity insertion of $1.5 is simulated for 0.4 s. “GI” stands for Gaussian integration, while
“EP” denotes the extrapolation.

10 3 10 2

Time Step h (s)

10 16

10 13

10 10

10 7

10 4

10 1

Re
la

ti
ve

 E
rr

or
 

= $1.5

M4J0-MI
M4J0-FP
M4J0-OS
O(h1)

M4J1-MI
M4J1-FP
M4J1-OS
O(h2)

M4J4-MI
M4J4-FP
M4J4-OS
O(h5)

M4J7-MI
M4J7-FP
M4J7-OS
O(h8)

(a)

10 3 10 2

Time Step h (s)

10 12

10 10

10 8

10 6

10 4

Re
la

ti
ve

 E
rr

or
 

max = $1.5 Ramp Reactivity

M4J0-MI
M4J0-FP
M4J0-OS
O(h1)

M4J1-MI
M4J1-FP
M4J1-OS
O(h2)

M4J3-MI
M4J3-FP
M4J3-OS
O(h4)

(b)

Figure 7.4: Effect of low-order solvers for SDC on order of convergence. (a) simulates the PKE
problem with a step reactivity insertion of $1.5 for 0.4 s. The reactivity simulated in (b) increases
linearly from 0 to $1.5 in 0.4 s. Low-order solvers have a minor effect on the accuracy of SDC, but
do not affect the overall order of accuracy. The dashed line is the expected order of accuracy. The
dashed line is the plot of the expected order of accuracy.

Figures 7.4 show how the low-order solvers in Section 7.1.2.1 affect the performance of the
SDC methods for the PKEs. Slight differences in the relative error can be observed. The order in
which the error converges does not depend on the low-order solvers investigated here. The order

166



10 3 10 2

h

10 14

10 12

10 10

10 8

10 6

10 4

10 2

Re
la

ti
ve

 E
rr

or
 

= $5

J=1
O(h2)

J=3
O(h3)

J=5
O(h5)

J=7
O(h8)

10 3 10 2

h

10 16

10 14

10 12

10 10

10 8

10 6

10 4

10 2

Re
la

ti
ve

 E
rr

or
 

= $2

J=1
O(h2)

J=3
O(h4)

J=5
O(h5)

J=7
O(h8)

10 3 10 2

h

10 19

10 16

10 13

10 10

10 7

10 4

Re
la

ti
ve

 E
rr

or
 

= $0.5

J=1
O(h2)

J=3
O(h4)

J=5
O(h5)

J=7
O(h6)

10 3 10 2

h

10 16

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

Re
la

ti
ve

 E
rr

or
 

= $5

J=1
O(h2)

J=3
O(h4)

J=5
O(h7)

J=7
O(h9)

Figure 7.5: Order of convergence of the SDC method for the PKEs with different reactivities.
Gaussian integration is used for the residual at the right endpoint. M is 4. The dashed line is
the plot of the expected order of accuracy. It can be seen that the observed rate of convergence is
around J + 1.

of accuracy observed here is min(2M,J + 1). No instability is observed for the 8th-order accurate
implementation. The results show that SDC is a powerful approach to turn the low-order solver
into a high-order solver without losing stability. Currently, the FP or SP is used to approximate
the fission source in transient problems to fully couple the flux/power to the precursors [51]. The
results here indicate that in the near future, the time-dependent NTE can be developed based on
the partitioned SDC method, and the complexity from precursor integration can be avoided.

The SDC method is eventually verified in PKE problems with different reactivities. The results
are shown in Figure 7.5. It can be seen that the desired order of convergence is observed. Further,
using 1 ms step size for SDC does achieve reasonably accurate results.
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After the accuracy of the SDC solver is verified, the SDC method is implemented in MPACT
to solve the EPKEs. We adopt the Gaussian integration for calculating the residual at the endpoint
of the correction step and FP as the low-order solver. The results of the existing MPACT imple-
mentation with the BE solver are compared to the results of the SDC solver. The time step size of
the SDC solver is 1 ms with M = 10, J = 4. J = 4 is used because the SDC solver is 5th-order
accurate in this case, and the results from Figures 7.4 show a maximum relative error of 10−10 that
is sufficiently accurate. The results from MPACT are shown in Figures 7.6. Refining the time step
size for the BE solver to 1 µs gives the results that are comparable to the SDC results. Therefore,
the implementation of SDC in MPACT is verified. When the default 0.1 ms is used for the solution
of a pin-cell transient problem with a maximum reactivity of $1.98 using BE, it can be seen that
the current BE solver with the default time step size has a maximum relative error of about 6%.
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Figure 7.6: Comparison of results for EPKE solvers based on BE to SDC reference in MPACT.
∆t is the time step size used for the BE solver. (a) is a pin transient problem with a maximum
reactivity of $1.98. (b) is the 4-mini HZP problem.

Since SDC is much more accurate than BE for the EPKEs, the SDC solver is used for all the
results presented later in this dissertation.

7.1.3 SDC for PKE-EF

The SDC method is also used to solve the PKE-EF problem. The PKE-EF is a reduced-order
model of the transient problem coupled to TH. The model is used to improve the coupling scheme
shown later in this chapter, and to develop the adaptive time-stepping scheme in Chapter 8. The
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PKE-EF model [88] can be written as:

dp(t)

dt
=
ρ(t)− β(t)

Λ(t)
p(t) +

1

Λ0

K∑
k=1

λk(t)ξk(t) , (7.49)

dξk(t)

dt
=

Λ0

Λ(t)
βk(t)p(t)− λk(t)ξk(t), k = 1, 2, · · ·K , (7.50)

ρ(t) = ρex(t) + γdQ(t) , (7.51)

dQ(t)

dt
= −λHQ+ p(t)− p(0) , (7.52)

where λH is the single time constant for heat deposition and

λH ≈
1

2 s
. (7.53)

γd is the feedback coefficient and
γd ≈ −0.8 $/fp · s , (7.54)

is typical for “FBR and LWR oxide-fueled power reactors” [88]. ρex is the external reactivity.
We introduce the Implicit-Explicit (IMEX) treatment, i.e.

FE(t,Y) =

(
p(t)− p(0)

0

)
, FI(t,Y) =

(
−λHQ(t)

E(t, Q)P(t)

)
, (7.55)

as the low-order solver. The solution is Y = {Q(t),PT}T . Then the equation to advance the time
step for the IMEX method is:

Ym+1 = Ym + FE(tm,Ym)hm + FI(tm+1,Ym+1)hm . (7.56)

The algorithm for solving the PKE-EF problem is similar to that shown in Algorithm 14 and
is omitted here. For a problem with ρex = $1.5, λH = 0.5/s, γd = −0.8 $/fp·s and the initial
condition p(0) = 10−4 fp, the effect of the number of corrections is shown in Figure 7.7. It can
be seen that the order of the accuracy is again ∼ J + 1, and agrees with the theoretical predictions
in [106]. Since the problem is solved with SDC method based on IMEX treatment, the SDC method
is denoted as SDC-IMEX. It should be noted that this problem is nonlinear since ρ is a function of
Q. The results imply that it is possible to develop SDC for simulating the time-dependent neutron
transport problem with multiphysics feedback.
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Figure 7.7: Convergence study of a PKE-EF solver based on SDC. The dashed line is the plot of
the expected order of accuracy. It can be seen that the order of accuracy is around J + 1.

7.2 Improvement of CMFD Level

7.2.1 Decoupling TH inside the TML

As has been presented in Chapter 6, the TML scheme comprises three levels of calculation: the
transport level, the CMFD level, and the EPKE level. When feedback from TH is considered in
the simulation, the time-dependent neutron transport equation is solved using operator splitting.

𝐓𝐇𝟎 𝐓𝐇𝟏 𝐓𝐇𝟐

Step 1 Step 2Step 0
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𝑡4

𝑚5
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Figure 7.8: Illustration of TH coupling for TML. This figure is reproduced from Fig.2 in [54].

Because of how the CMFD coefficients are constructed in the TML, the feedback from the
TH is implicitly incorporated. As shown in Figure 7.8, steps 0, 1 and 2 represent the transport
steps, and each transport step is subdivided into several fine CMFD steps. For step 2, the CMFD
coefficients are linearly interpolated with time evolving from t0 to t5, i.e., the CMFD coefficients
at intermediate CMFD steps are calculated by:

Σx(ti) = Σx(t0)η + Σx(t5)(1− η), η =
ti − t0
t5 − t0

. (7.57)
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For the original TML implementation, the left endpoint CMFD coefficients, Σx(t0), are obtained
from homogenization with the fine mesh scalar flux at t5, i.e.:

Σx(t0) = Σx

(
TH1,m0, ψ(TH1, t5,m5)

)
. (7.58)

Since the flux at t5 is the solution after feedback is applied, the treatment of Eq. (7.58) takes the
feedback implicitly into account as well. This is approximation 3 in [54].

However, after more experience in simulation cases simulated with the TML scheme, it was
observed that approximation 3 did not perform as well as had been expected. The method could
induce significant errors in some cases. Furthermore, it was found that another approximation,
which determines the CMFD coefficients at t0 by:

Σx(t0) = Σx

(
TH1,m0, ψ(TH0, t0,m0)

)
, (7.59)

predicted more accurate results. This treatment is approximation 2 in [54].
A severe deficiency observed in approximation 3 is that it underestimates the reactivity when

the control rod is withdrawn from the core, and overestimates the reactivity when the control rod

is inserted into the core. The 4-mini HFP test problem is used as an example with results shown
in Figures 7.9. The reference solution is generated with time steps of 1 ms. It can be seen that the
reactivity history and the power history of the approximation are underestimated. The maximum
relative error is 17%. For each transport step, a “dip” shows up on the reactivity profile at the
starting point of the CMFD level. Compared to approximation 3, approximation 2 performs much
better.

We use Figures 7.10 to explain the reason. Assume that the control rod tip is at hb at t0
and is withdrawn to ha at t5. Then the flux at ψ(hb, t0) << ψ(hb, t5). Therefore, using flux
ψ(hb, t5) to calculate the CMFD coefficients at t0 overestimates the absorption cross section, and
underestimates the reactivity. Conversely, if the control rod tip is at ha initially and inserted to
hb at t5, then flux ψ(ha, t0) >> ψ(ha, t5). Therefore, the CMFD absorption coefficients will be
underestimated, and the reactivity overestimated. Since the flux is eventually corrected by the
solution of the EPKEs, for rod insertion and withdrawal, the power will be overestimated and
underestimated, respectively.

The comparison of approximation 2 to approximation 3 for various problems is shown in Ta-
ble 7.2. The problems are simulated with TML-3 with the default time step size of 5 ms, and 5
MGCMFD steps per transport step. The SDC method is used to solve the EPKEs. The 51-group
library is used for the pin problem and the 4-mini test problems [68]. The 47-group library is
used for the SPERT problem. The abbreviation MRE represents the relative error with the largest
absolute value to the reference results, while MAR stands for the absolute error with the largest
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Figure 7.9: Comparison of approximations used for the CMFD coefficients calculation in TML
for the 4-mini HFP test problem. (a) plots the reactivity profile on the CMFD level for different
approximations. It can be seen that approximation 3 underestimates the reactivity when control rod
is withdrawn out of the core. Several dips can be observed for approximation 3. They are at the
start points of the CMFD level. (b) plots the power profile. Due to the reactivity underestimation,
it can be seen that the power also gets underestimated. In contrast, the reactivity profile and the
power profile of approximation 2 are much more accurate.
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Figure 7.10: Illustration of deficiency of approximation 3 in [54]. When control rod tips move
from ha to hb in the period [t0,t5], the flux at ha keeps decreasing. Therefore, using the flux at t5 to
homogenize the cross section will underestimate the absorption. When control rod tips move from
hb to ha in the period [t0,t5], the flux at hb keeps increasing. Using the flux at t5 to calculate the
CMFD coefficients will overestimate the absorption.

absolute value. The unit of absolute error is full power (fp). For the 4-mini test problems, approx-
imation 2 performs much better. And in other cases, approximation 2 has similar performance to
approximation 3. Approximation 2 and approximation 3 have comparable accuracy in terms of
the relative error with the largest absolute value. In terms of the absolute error with the largest
magnitude, approximation 3 does perform better, but this is due to the error cancellation.
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Figures 7.11 investigate the errors of the power results. For approximation 3, as suggested by
case “Approx. 3”, the power gets underestimated during the rod movement (t < 50 ms), and the
relative error reaches its maximum magnitude at t = 50 ms. After the rod movement, the magni-
tude of the relative error keeps decreasing till t = 70 ms, and is bounded by 1% after t = 75 ms.
Using a time step of 0.2 ms, as suggested by the plot of “Approx. 3-fine”, helps mitigate the issue
of power underestimation. But, the magnitudes of both the absolute error and relative error for
t ≥ 75 ms get amplified, compared to the case with constant time step. The results indicate that
the maximum magnitude of the absolute error for the case “Approx. 3” is smaller than that for
the case “Approx. 3-fine”, so it is concluded this is due to error cancellation. The magnitude of
the relative error for the results of approximation 2 during the rod movement is much smaller than
that of approximation 3. However, after the control rod movement, both the relative error and the
absolute error of the results reach their largest magnitude near t=100 ms. The pattern of errors
observed in case “Approx. 2” is similar to that observed in case “Approx. 3-fine”. Therefore, it
may be concluded that the major reason that approximation 2 outperforms approximation 3 for the
SPERT cases is that the error from underestimating the power during the control rod movement
offsets the error in the feedback stage.

Table 7.2: Accuracy comparison of approximation 2 to approximation for various problems. The
description of the pin problem and the SPERT problems can be found in Appendix B.

Problems
MRE MAR (fp)

Approx. 2 Approx. 3 Approx. 2 Approx. 3

Pin -0.5% -1.22% -0.05 -0.06
SPERT-2D-HFP -1.45% -1.08% -0.39 0.11
SPERT-3D-HZP -3.04% -3.00% -4.26 -1.18
SPERT-3D-HFP -3.02% -2.89% -2.78 -0.82

4-mini-HZP -2.09% -14.5% -2E-3 0.02
4-mini-HFP -2.46% -17.04% -0.13 -0.63

Moreover, using approximation 2 helps to reduce the computational cost from cross sections
calculation. In MPACT, for problems where the control rods are heterogeneous axially and mod-
eled explicitly, a time-consuming resonance self-shielding calculation [66] is performed when the
rod position changes. When approximation 3 is used to calculate the CMFD coefficients at t0,
cross sections at t0 must be either recalculated or pre-calculated and stored in memory, since the
flux is calculated with the cross sections at t5. MPACT chooses to recalculate the cross sections
to reduce the memory burden at the cost of efficiency. On the contrary, when approximation 2 is
used, the CMFD coefficients at t0 can be calculated at the beginning of each step. Therefore, there
is no need for recalculation. For the problems shown in Table 7.3, the run time reduction ranges
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Figure 7.11: Error evolution of approximation 2 and approximation 3 for the SPERT-3D-HZP
case. (a) shows the evolution of the relative error, while (b) shows the evolution of the absolute
error. The cases “Approx. 2” and “Approx. 3” use a constant time step of 5 ms, while the case
“Approx. 3-fine” uses a much finer time step size ∆t = 0.2 ms during the control rod movement.
The plots indicate that the using finer time steps for approximation 3 can reduce the errors during
the control rod movement, but the maximum magnitude of the absolute error gets increased. The
comparison verifies that the error cancellation helps to make approximation 3 outperform approx-
imation 2 in terms of the magnitude of the absolute value.

from 3% to 5%. However, it should be much more significant in larger problems that model the
SCRAM.

Table 7.3: Run time comparison of approximation 2 to approximation 3. The run time are given
in hours.

Problem
Method

Approx. 2 Approx. 3

4-mini HZP 4.69 4.55
4-mini HFP 5.11 4.97

7× 7 Test Problem 46.07 44.15

Since we cannot always rely on the error cancellation from approximation 3, and approximation
3 is less efficient, approximation 2 should be set as the new default method to calculate the CMFD
coefficients in MPACT.
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7.2.2 New 1GCMFD Level Implementation

When approximation 2 is used, the MGCMFD flux at t5 from the previous MOC step is close to
the MGCMFD flux at t0 for each transport step. Therefore, the temporal variation of MGCMFD
flux and 1GCMFD system is smoother. Given this, it is possible to develop a new 1GCMFD level
implementation in TML-4.

For the new implementation, it is assumed that the shape function of the MGCMFD flux varies
linearly in space. Then the 1GCMFD coefficients on the 1GCMFD level are obtained from col-
lapsing with the interpolated normalized MGCMFD flux, i.e.:

Σx,m,g(tn′′) =
G∑
g=1

Σx,m,g(tn′′)Φ
P
m,g(tn′′) , x = t, s, f, a , (7.60)

with
Ym,g(tn′′) = Ym,g(tn′)η + Ym,g(tn′+1)(1− η), η =

tn′′ − tn′+1

tn′+1 − tn′
,

Y = ΦP , Σ̃x ,

(7.61)

where

ΦP
m,g(tn′) =

Φm,g(tn′)∑G
g=1 Φm,g(tn′)

. (7.62)

Then after solving the 1GCMFD TFSP, the MGCMFD flux is updated by

φCg,m =
ΦC
m∑G

g=1 φ
P
g,m

φPg,m . (6.9 Revisited)

Figures 7.12 compare the TML-4 with the new implementation (shape-interp) to the TML-4
in Chapter 6 (xs-interp) and the TML-3 with default level settings in the 4-mini HZP problem
and 7×7 test problem. The reference solution is obtained using TML-3 with 10 CMFD steps
per transport step. Approximation 2 is used and the time step size is 5 ms. It is observed that
TML-4 performs about as well as the TML-3 in the 4-mini HZP problem, but produces more
accurate results than TML-3 in the 7×7 problem. Therefore, with approximation 2 and the new
implementation of the 1GCMFD level, there is no need to use the TML-4 in a hybrid way as
suggested in Chapter 6.
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Figure 7.12: Investigation of TML-4 with the new implementation of 1GCMFD level. The new
TML-4 results are compared to the old TML-4 and the default TML-3 results. (a) shows the
comparison results in the 4-mini HZP test problem, and (b) shows the comparison results in the
7×7 test problem. For the new implementation, the shape of the MGCMFD flux is interpolated in
time. The results are indicated by “TML-4-shape-interp”. The results of the old implementation
of TML-4 are indicated by the “TML-4-xs-interp”. It can be seen that the new implementation
is much more accurate than the old implementation, and can be more accurate than the default
TML-3.

7.3 Operator Splitting Scheme

In MPACT, the feedback from TH and neutronics are not fully coupled during the simulation. The
OS technique is used to perform the transient simulations with feedback from other physics. The
details of this were briefly covered in Section 7.2.1. MPACT solves the NTE first to provide the
heat distribution for the TH solver, and the TH solver, in turn, solves the TH field and provides
updated cross sections to the MPACT. The NTE and the TH are both solved holding the variables
from other fields constant first and then coupled together. This operator splitting technique is an
example of the LS method and is, in general, first-order accurate in terms of the time step size. The
flowchart of the coupling scheme is shown in Figure 7.13.

For the coupling scheme based on Lie Splitting (LS), it has been expected that increasing the
time step size will increase the error and decreasing the time step size will make the solution more
accurate. This expectation is valid when the problems are simulated with constant time steps.
However, it is observed that during the simulation, if the time step is varied by either increasing or
decreasing it, the solution is made less accurate.
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Figure 7.13: Multiphysics coupling scheme for transient simulation used in MPACT. The
flowchart on the left side is the illustration of the original coupling scheme of MPACT and TH.
The flowchart on the right side is the new coupling scheme based on SS.

7.3.1 Evidence from PKE-EF Problem

We first notice the lack of consistency with time step size for the LS in the PKE-EF problem, where
the LS is used to couple the PKE to the energy feedback. In the PKE-EF problem, the PKEs are
solved with the SDC method, and the energy deposition is calculated by

Q(n) = Q(n−1)exp(−λH∆tn−1) +
1− e−λH∆tn−1

λH
P (n) = A(∆tn−1)Q(n−1) +B(∆tn−1)P (n) .

(7.63)
n is used to index the time step here. Therefore, both the PKE model and energy deposition
problem are accurately solved, and the error is from operator splitting.

Figures 7.14 show the effect of varying time steps when LS is used. The solution of PKE-EF
with the SDC-IMEX solver is used as the reference. It can be observed that either coarsening or
refining the time steps during the calculations amplifies the error significantly.

Decreasing the time step size generally makes the error more negative while increasing the
time step size positive. The only exception is when the time step size is perturbed at 0.01 ms for
the problem with P0 = 0.01% fp. This error only gets amplified when the time steps are coarsened.
However, if P0 is modified to be 10% fp, the inconsistency between the error and the time step size
can be observed again.
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Figure 7.14: Inconsistency between error of power and time step size in Lie Splitting in PKE-EF
problems. The initial reactivity is $1.2. The default time step size is 1 ms. The time step changes
to 0.1 ms, 0.2 ms, 0.5 ms and 2 ms at tp. tp in (a)–(d) is 0.01 s, 0.1 s, 0.2 s, 0.01 s. The initial value
P0 in (d) is 10% fp, while in other three sub-figures are 0.01% fp. In general, varying the time step
size will amplify the absolute value significantly.

The reason is that when a constant time step is used, the LS technique is similar to the Strang
Splitting (SS), a second-order OS technique that has almost the same computational complexity.
The flowchart of the SS implementation is also shown in Figure 7.13. In the scheme, for each
time step, the TH is solved first with a half time step and provides the TH field to the neutronics
solver. The neutronics solver advances the neutron solution with a full time step, and the governing
equation for the TH problem is solved again with a half time step. When SS is used, the very first
half step of the solution of the TH can be omitted, as a perturbation has not been introduced.
Consequently, the power distribution and TH are constant over the time step. After the first half
step, the two TH solutions can be combined, if error in solving the TH problem is small. For the
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PKE-EF model, it is very simple to see that:

A(∆t)Q(n−1) +B(∆t)P (n) =

A

(
∆t

2

)(
A

(
∆t

2

)
Q(n−1) +B

(
∆t

2

)
P (n)

)
+B

(
∆t

2

)
P (n) ,

(7.64)

i.e. the results after two half-steps are the same as those after one time step. Thus the SS scheme
is simplified to the LS.

When the time step changes, the LS is no longer similar to SS. For the nth time step, the step
size to solve the TH equations is ∆tn when using the LS technique, but should be (∆tn+∆tn+1)/2

to enforce equivalence of LS to SS. Therefore, a temporal error (∆tn − ∆tn+1) appears for the
LS method and the coupling error is no longer second-order accurate. The method becomes be
first-order accurate, and the observed error gets amplified instantly.

To have more consistent behavior between the error and time step size, the SS is used, and the
application is verified with the PKE-EF model. The results are shown in Figures 7.15. It can be
observed that when constant time steps of 1 ms are used, SS and LS can produce the results with
the same error. However, when the time step size changes before the power peak around 0.15 s,
reducing the time step size reduces the absolute value of the error and increasing the time step size
amplifies the magnitude of the error. When the time step size is adjusted after the power peak,
reducing the time step size makes the error accumulate more slowly while increasing the time step
size amplifies the magnitude of the error. There is no sudden amplification of the error after the
time step size modification.

7.3.2 Evidence from MPACT Simulations

Practical examples from a 2D pin-cell transient problem and the 4-mini regression test problem
are used to show the deficiency of LS. A maximum reactivity of $1.0278 is inserted for the pin
problem. The results are shown in Figures 7.16. It can again be seen that either decreasing the time
step size or increasing the time step size will make the solutions less accurate, and the relative error
can be amplified by orders of magnitude. When SS is used, the error change is smooth. Reducing
the step size before the power peak reduces the peak error.

Figures 7.17 show the relative difference between the results of using LS and SS when a con-
stant time step is used. It can be observed that the magnitude of the relative difference is quite
small– less than 0.1% for the cases investigated here. The practical results using LS and SS are not
the same because the TH solver is first-order accurate, and the pin power distribution is calculated
with the cross sections that do not get updated during the TH calculations.
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Figure 7.15: Error for varying time steps in SS for PKE-EF problem. The initial reactivity is $1.
The default time step size is 1 ms. The time step changes to 0.1 ms, 0.2 ms, 0.5 ms and 2 ms at tp.
tp is 0.1 s and 0.2 s in (a) and (b), respectively. The initial value P0 is 0.01% fp. It can be seen
that with finer time steps, the error will not get amplified. When the time step size perturbation is
applied before the power peak near 0.15 s, using a finer time step size will make the error smaller.
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Figure 7.16: Comparison of LS and SS with varying time step sizes. (a) plots the results for a pin
transient problem and (b) shows the results of the 4-mini HZP test problem. When Lie Splitting is
used, altering time steps amplifies the error amplified, while for Strang Splitting , the error changes
smoothly.

To summarize, the error from OS is inconsistent with the time step size when the LS is used
and the time step size is modified. Therefore, LS is not suitable for a scheme where the time step
sizes are adjusted for some time periods, and especially for an adaptive-stepping scheme. As a
result, the LS should never be used, and the coupling scheme should be modified to use Strang
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Figure 7.17: Comparison of LS and SS with constant time step sizes. (a) plots the results for a
pin transient problem and (b) shows the results of the 4-mini HZP problem. When constant time
steps are used, the relative difference between the LS and SS results are quite small compared to
the relative error of the power results observed in Figure 7.16.

Splitting shown in Figure 7.13. For the simulations presented later in this thesis, Strang Splitting
is used.

7.4 Summary

In this chapter, we used the SDC method, a stable, robust, and efficient high-order time-integration
method for the initial value problem to solve the EPKE problems in TML. A possible new approach
for calculating the residual function was proposed and implementation of the low-order solvers in
SDC for PKEs was presented. It is observed that SDC can achieve high-order accuracy without
loss of stability.

Next, the TML scheme was decoupled from the TH feedback. This modifies the approximation
on the CMFD coefficients at the left endpoint of the CMFD level. The new approximation reduces
the error of the simulation when the control rod is moving. A new implementation of the TML-4
scheme was then proposed, and the new scheme is much more accurate than that proposed in
Chapter 6.

Finally, we found that the current multiphysics scheme in MPACT based on Lie Splitting is
deficient via examples from a simple PKE with linear energy feedback model, and the numerical
simulation results with MPACT. Strang Splitting was introduced as an alternative OS for multi-
physics simulations, and demonstrated to be superior to LS.
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It should be noted that using SS to couple the neutronics and feedback from TH may be just
a temporary approach. As suggested by [30], the ultimate goal for the multiphysics simulations
should be solving the fully coupled neutronics-TH problem implicitly with a high-order solver. As
shown in Section 7.1, the SDC method is a promising approach, and further research on this topic
is recommended.
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CHAPTER 8

Adaptive Time-stepping Methodology for Transient
Multilevel

This chapter introduces the adaptive time-stepping (ATS) methodology developed to further im-
prove the efficiency of transient calculation with the Transient Multilevel (TML) scheme. Like
most adaptive methods, it is constructed in such a way that the error is predicted and then kept
below a desired threshold.

In the development of the ATS methods, two errors are controlled. One is from the solution
of neutronics and is referred to as the neutronics internal error. The other is from the coupling via
operator splitting (OS), and is referred to as the coupling error. These errors are predicted by the
reduced-order models, that are developed based on point-kinetics equations (PKEs). Then the time
step size is calculated, so the predicted errors are smaller than the error tolerances. Since there
is some discrepancy between the error tolerances and the maximum errors observed for practical
simulations, a parametric study on the error tolerances is needed. The goal in this chapter is to let
the maximum relative error observed for practical simulations smaller than 1%.

The remainder of the chapter is organized as follows. To start, in Section 8.1 an overview of the
existing ATS methods is provided. The limitations of these methods are discussed. Therefore, we
use the PKE models to estimate the errors. Section 8.2 then describes the development of the ATS
method for controlling the neutronics internal error, while Section 8.3 introduces the development
of the ATS approach for controlling the coupling error. In both sections, the ATS methods are
tested in small cases. The overall flowchart of the ATS methods is shown in Section 8.4. Since the
time step size keeps varying, an adaptive CMFD level in TML is necessary. Therefore, an adaptive
method to adjust the number of CMFD steps per transport step is also developed and presented.
The methods developed in this chapter are then applied together in more realistic problems and the
results are presented in Section 8.5. Finally, in Section 8.6, a summary is provided.
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8.1 Existing ATS Methods

Compared to efforts developing the methodology for solving the time-dependent NTE, signifi-
cantly less effort has been made to develop the ATS methods. In the works that have been pub-
lished, most of the research is based on the calculation of the derivatives [118, 119, 120]. The basic
idea of these methods is to obtain a relation between the local truncation error and the time step
size. Then the time step size is determined with a given error tolerance.

To illustrate this process, let’s assume the initial value problem is written as

y′ = F(y, t) , (8.1)

and is solved with a qth-order accurate method in time. If no error is from spatial discretization,
the error is then only from time discretization, and expressed as:

τ = O(hq+1) = Cy(q+1)hq+1 , (8.2)

where τ is the local truncation error. y(q+1) is the (q + 1)th derivative of y. h is the time step size.
In practical simulations, y is a vector and C is a diagonal matrix representing the undetermined
coefficients.

Given a tolerance on the local truncation error, ε, the time step size is calculated by

h =

(
ε

||Cy(q+1)||p

)1/(q+1)

, (8.3)

with the Lp norm ||Cy(q+1)||p. An alternative way for calculating the time step size is to calculate
the time step size growth ratio by:

hn+1

hn
=

(
ε

||Cy(q+1)hq+1
n ||p

)1/(q+1)

, (8.4)

where n is the index for the time step. More complex models have also been developed in [121].
Whatever the procedure is, the derivative is needed. The major deficiency of this approach is

that only the reduced-order information, that is the norm of the predicted error, is used. There-
fore, these existing ATS methods are applied in some semi-quantitative way though are developed
quantitatively. And, there are limitations for the application of these procedures to TML.

First, approximated derivatives may have significant errors for transient problems, especially
if the solutions change very fast. What has been observed is that the predicted time step sizes are
always oscillating [120]. Using the alpha eigenvalue can help to stabilize the oscillation of the
predicted time step sizes [119] for some simple problems. However, in more realistic problems,
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the oscillation is still observed, even when the transport operator varies smoothly (i.e., when the
control rods stop moving) [120].

Moreover, the direct application of Eq. (8.2) is often inconsistent with the time-integration
method analyzed, thus unnecessary. In real simulations, approaches such as shape transforma-
tion [122, 123, 124], or source splitting techniques [125, 126, 43] are introduced to stabilize the
scheme and reduce the error. These approaches fundamentally change the equations being solved.
For example, it has been observed that using the shape transformation without TML can reduce the
maximum relative error in magnitude by more than a factor of 100 [51] compared to the scheme
without shape transformation. The only reason is that the ||Cy(q+1)||p has been reduced signifi-
cantly.

For complex multilevel methods like TML, the task of defining and calculating C is even
more challenging. For example, researchers in [127] have developed some complex expressions to
estimate Θ for the IQS method. Θ is defined by:

τ = Θhq+1 . (8.5)

They have shown that the errors τ estimated by different methods for Θ are different in orders of
magnitudes [127].

Last but not least, the basic assumption for these methods is that the time-dependent problem is
solved with the neutronics solver fully coupled to the TH solver. However, OS has been introduced
to couple the TH solver and the neutronics solver. Therefore additional error from OS has been
introduced. The error from OS depends on the commutator of the operators, and it vanishes when
the operators involved are commutative [57]. For real problems, this is never the case. Therefore
the attempts to define C or Θ may be made on a “false” problem without considering the errors
from OS [120].

Compared to these “quantitative” methods, using PKE models to estimate the error is a straight-
forward approach, despite the shortcomings of using simpler models. These models are used to
estimate the error from solving the NTE and the error from OS, and are introduced in the next two
sections.

8.2 ATS Method for Neutronics Solver

In this section, we will introduce how the neutronics internal error is calculated and how the time
step size is determined for a given tolerance. Then simple numerical results are provided to verify
the method.
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8.2.1 Neutronics Internal Error Estimation

The procedure to estimate the neutronics internal error is presented in this part. The relative error
in the power growth ratio is introduced to characterize the local error. We do not use the term
“local truncation error” because the error investigated is not obtained analytically.

The power growth ratio is calculated by

rh(tn) =
P (tn)

P (tn − h)
, (8.6)

where h is the time step size.
The relative error of power ratio can be obtained directly from MPACT simulations. It can also

be obtained by a PKE model. Numerical results shown in Figures 8.1 will demonstrate that the
errors estimated from MPACT and the PKE model are in good agreement. Before this, how the
relative errors in the power growth ratio are obtained for these two methods are introduced.

8.2.1.1 Error in Power Growth Ratio

Two problems, which are a pin transient problem and the 4-mini test problem, are used. For
MPACT results, the reference case is simulated with time steps of 0.2 ms for the pin transient
problem, and 0.5 ms for the 4-mini test problem. The time step sizes of the reference cases in
different problems are different to save time. For the same reason, the 8-group library is used in
the 4-mini test problem, while the 51-group library is used for the pin problem. The test cases are
simulated with coarser time steps. Then the local error at tn for the test case simulated with time
step size h is calculated by

empact(tn) = | rh(tn)

rref (tn)
− 1| . (8.7)

For the PKE results, the relative differences in the solutions of two PKE problems are ob-
tained. One PKE problem uses a polynomial reactivity profile. The polynomial is obtained by
using a quadratic or cubic polynomial to fit the discrete reactivity values computed in the CMFD
level of TML. The other problem uses a linear reactivity profile, assuming the reactivity varies
linearly within the time step. The other PKE parameters for each time step are the latest EPKE
parameters in the transport level in the TML scheme. The solution of the PKE system with poly-
nomial reactivity is denoted as pf , and the solution of the PKE system with linear reactivity is
denoted as pl. Then the relative difference is calculated by:

epke(tn) =
∣∣∣ pl(tn)

pf (tn)
− 1
∣∣∣ . (8.8)
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The PKEs are solved with the SDC solver.
The epke (labeled as “PKE”) and empact (labeled as “MPACT”) for each case are plotted and

shown in Figures 8.1. Several observations can be made:
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Figure 8.1: Investigation of characterization of the neutronics internal error. The absolute values
of empact and epke are shown. (a) shows the results for the pin problem. (b) shows the results of the
4-mini test problem.

• For each test case, the evolutions of epke and empact are similar. For the time steps where
empact is a local maximum, epke is also a local maximum or close to the local maximum.
This indicates the model is suitable. There is no axial heterogeneity for the 2D pin cases.
Therefore, the error evolution in the pin problem is smoother. The 4-mini test problem is a
3D problem with control rod movement modeled explicitly. The oscillation of the error is
mainly due to the discontinuity in moving materials and the rod decusping.

• For each test case, epke and empact are similar in orders of magnitudes. But the errors esti-
mated by the PKE model are smaller than the errors observed in MPACT for most time steps.
The reason is that the error estimated here is more like the error in the amplitude function,
and the estimation ignores the error for the shape function.

• The error of the power growth ratio for each step can vary by orders of magnitude in a short
period. This is due to the axial heterogeneity.

From this assessment, the relative difference predicted by the PKE model is considered to be a
reasonable characterization of the local error at each step.
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8.2.1.2 Final Error Estimation

In this part, the estimation of the errors to be controlled for the ATS is presented. Two errors needed
to be controlled. One is the one-step error, that is denoted by ein1 . The other is the multi-step error,
that is denoted by einm . The superscript in stands for “internal”.

The one-step error is the relative difference in the power ratio predicted by the PKE model
presented in Section 8.2.1. The multi-step error is obtained for the maximum relative difference
in magnitudes of the solutions of the two PKE systems for a reasonably long time. The PKEs are
solved with time steps of ∆tn. Therefore, multiple steps used performed. The reactivity profile
inside each time step keeps unchanged. In this chapter, the time range in which the multi-step error
is predicted is referred to as the “prediction horizon”.

Controlling the one-step error is similar to controlling the local truncation error. However,
simply controlling one-step error is not enough, because the error is accumulated. For example, if
the tolerance for the one-step error is 0.001 and the estimated time step size is 1 ms, then in 10 ms,
the accumulated relatively error could be (1 + 0.001)10 − 1 ≈ 0.01, indicating that an additional
1% uncertainty is accumulated in the simulated results for every 0.01 s of simulation.

Algorithm 15 Estimation of the errors to be controlled in TML.
Input:time step size ∆tn.
Output:one-step error ein1 and multi-step error einm

1: For the nth time step, fit the reactivity with high-degree polynomial f(t) and obtain the linear
reactivity profile fl(t).

2: Determine the number of time steps by

N = min (max (10, d0.05

∆tn
e), 20) . (Alg 15.1)

3: Solve the PKE with the reactivity profile f(t) for N steps, with t ∈ [0,∆tn] for each step.
Store the power profile pf .

4: Solve the PKE with the reactivity profile fl(t) for N steps, with t ∈ [0,∆tn] for each step.
Store the power profile pl.

5: Calculate the relative difference of results in the first step, ein1 , and the maximum relative
difference in magnitude, einm , in the prediction range.

The algorithms to estimate the errors are presented in Algorithm 15. The prediction horizon
is 50 ms. However, bounds are imposed on the number of prediction steps performed. The lower
bound 10 is selected so that when the time step size is large, we still perform some estimation of
the multi-step error. A relatively small time step size indicates the error is relatively large from the
previous step, i.e., the perturbations to the system are very fast. In this case, the perturbation will
be significant after 50 ms, so there is no need to perform the estimate for this long time. 20 is used
as the upper bound for the number of prediction steps for the multi-step error.
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When N steps are performed for the prediction, the ratio einm/e
in
1 can be far smaller than N .

Figure 8.2 illustrates the ratio einm/e
in
1 when different time step sizes and the number of prediction

steps are used to estimate the errors in the transient pin problem. The maximum reactivity is
reached after 0.05 s and is $1.43. It can be seen the ratio is not equal to the steps performed
initially. After 0.04 s, the ratio approaches the number of steps. An additional case with ∆t = 1 ms
and N = 50 is performed. The maximum reactivity for the new case is $0.53 and is reached after
0.05 s. It is seen that the ratio is well below 50.
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Figure 8.2: Ratio of the multi-step error to the one-step error for a pin problem. The first nine
cases are from a pin problem with a maximum reactivity of $1.43. The reactivity of the last case is
reduced to $0.53. The maximum reactivity is reached at 0.05 s. When the reactivity is small, the
ratio between einm/e

in
1 is smaller than N .

8.2.2 Step Size Calculation

This part presents the method to calculate the time step size.

8.2.2.1 Determining Time Step Size from One-step Error

For the one-step error, if the PKE system with polynomial reactivity is considered as the reference
and the PKE system with linear reactivity is considered as an approximation, then the local trunca-
tion error can be shown to beO(∆t3). Given a tolerance εin1 , for the one-step error that is estimated
with the time step size ∆tn, the time step size can be estimated by:

∆t1n+1 =

(
εin1

ein1 (∆tn)

)1/3

∆tn . (8.9)
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Due to the heterogeneity of the problem, it is possible that the one-step error can vary too much.
Therefore, it is necessary to evaluate the quality of the prediction. The quality of the prediction is
determined by

η =

ein1 (tn+1)

ein1 (tn)(
∆tn+1

∆tn

)3 . (8.10)

η = 1 denotes that the prediction is relatively accurate, while η 6= 1 indicates that there are some
effects the model cannot capture. Only η > 1 should be considered, because this indicates the
prediction is too optimistic. To correct the time-step for an optimistic prediction, we use

∆t
(1)
n+1 =

∆t
(1)
n+1

max(η1/3, 1)
, (8.11)

for the correction of the predicted time step size. An analogous understanding of Eq. (8.11) would
be the use of a “safety factor”. This has been used to correct the time step size in many areas [128].

8.2.2.2 Determining Time Step Size from Multi-step Error

The error accumulated in the prediction horizon isO(∆t2). Given a tolerance εinm for the multi-step
error, the time step size is

∆t
(2)
n+1 =

(
εinm

einm(∆tn)

)1/2

∆tn . (8.12)

The assumption used is that if the local truncation error is third order, the global error is second
order.

8.2.2.3 Step Size Variation Limit

Considering the next time step size determined by controlling both errors, we have

∆t
(3)
n+1 = max(∆t

(1)
n+1,∆t

(2)
n+1) . (8.13)

However, for practical reasons, the step size should also be limited by other constraints.
First, the time step size cannot increase or decrease too fast. This practice is similar to what

has been adopted in [45, 120, 128], and is a very common approach to control the time step size.
For controlling the internal error,

∆t
(4)
n+1 = max

(
0.5∆tn,min(∆t

(3)
n+1, 1.5∆tn)

)
. (8.14)
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The second limitation is imposed for the power growth ratio. The power growth ratio cannot be
too large or too small. The reason is that the error in the calculation of reactivity is neglected for the
PKE model presented here. And, the reactivity is obtained with the transport solution. When the
power growth ratio is too large or too small, significant errors can be introduced in the estimation
of the reactivity. To control this error, the power growth ratio is also limited by 10 and 1/10. This is
just similar to the approach adopted in [45] to limit the ω∆t assuming the power can be expressed
as Pnexp(ω∆t). Adopting this limit gives:

∆t
(5)
n+1 = min

∆t
(4)
n+1,

∣∣∣ ∆tn

log10
P 1
l

Pn

∣∣∣
 , (8.15)

where P 1
l is the power solution for the first step in the prediction horizon. For most of practical

simulations, the power growth ratio per step rarely violates the limit. If it does, it would indicate
that the power will increase or decrease by a factor 105 in just 5 steps.

The third limitation is the minimum value for the time step size. The ultra-fine time step size
can introduce instabilities and a negative source when solving the TFSP problem [129] for practical
simulations. Therefore, the time step size should not be too small. In this thesis, the minimum time
step size is set to be 1 ms. For the initialization, the first time step size is also set to be 1 ms. This
avoids sophisticated calculations for the first time step. Furthermore, the perturbations for the first
step always introduce singularities, so the smallest time step size is used to ensure minimal error.
As a result, the eventual time step size is given by

∆tinn+1 = max(1 ms,∆t
(5)
n+1) . (8.16)

Here, ∆tinn+1 is the time step size predicted to control the internal error. The algorithm to determine
the time step size is summarized in Algorithm 16.

8.2.3 Simple Numerical Results

The ATS method to control the neutronics internal error is now tested in the pin cell problem and
the 8-group 4-mini test problem. The reference case is simulated with time steps of 0.2 ms for the
pin transient problem, and 0.5 ms for the 4-mini test problem.

191



Algorithm 16 Time step size for control the neutronics internal error.
Input:time step size ∆tn, error tolerances εin1 and εinm .
Output:time step size ∆tinn+1

1: Estimate the one-step error and multi-step error by Algorithm 15 for the time step tn.
2: Calculate time step size ∆t

(1)
n+1 with the provided error tolerance εin1 by Eq. (8.9). The safety

factor is calculated to correct the time step size by Eq. (8.11).
3: Calculate time step size ∆t

(2)
n+1 with the provided error tolerance εinm by Eq. (8.12).

4: The time step size ∆t
(3)
n+1 is obtained from ∆t

(1)
n+1 and ∆t

(2)
n+1 by Eq. (8.13).

5: The time step size variation limits suggested by Eqs. (8.14) to (8.16) are applied to ∆t
(3)
n+1, and

the time step size for the (n+ 1)th step is

∆tinn+1 = max

1 ms,min

∣∣∣ ∆tn

log10
P 1
l

Pn

∣∣∣,max
(

0.5∆tn,min
(

∆t
(3)
n+1, 1.5∆tn

)) .

(Alg 16.1)

8.2.3.1 Transient Pin Problem

The results for the pin cases are shown in Figures 8.3. The problem is simulated for 0.3 s. Com-
pared to the cases run for Figure 8.3a, the cases for Figure 8.3b limit the power growth ratio for
each step by Eq. (8.15). For this problem, we use different εinm and let εin1 = 0.2εinm .
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Figure 8.3: Performance of the adaptive methodology for controlling the internal error of TML.
The power growth ratio is not bounded in (a), while it is controlled in (b). When the power ratio
is not bounded, the power can increase by a factor of 104 for every step. This inevitably induces
the error in estimation of reactivity. Therefore the relative error keeps changing after t = 0.05 s
in (a). The values in parentheses of the legend are the number of steps performed during the rod
movement and the total number of steps for the whole transient process.
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It can be seen that controlling the predicted errors does help to control the overall error when
the reactivity is varying. Using a tighter tolerance leads to a smaller relative error in magnitude for
t < 0.05 s. The maximum relative error observed at 0.05 s is larger than εinm . This is because the
estimated error is smaller than the actual error as suggested by Figure 8.1. This issue can be easily
addressed by using a tighter tolerance.

For t > 0.05 s, it can be seen that the relative error in Figure 8.3a starts decreasing due to error
cancellation. For this period, the PKE model cannot estimate the error accurately because the error
is mainly from the reactivity calculated on the CMFD level, rather than the reactivity profile. The
reason is that in this period, the power growth ratio can be very large. The reactivity varies nearly
linearly when the control rods are fully withdrawn from the core. The error predicted here is of the
order of 10−7. Then the predicted time step size is of the order of 0.01 s. Since the problem is a
super-prompt critical problem with β = 7.2 × 10−3, Λ = 2.03 × 10−5 and ρmax = $1.43236, the
power can be amplified significantly in a single step. The power growth ratio at each step for the
case with εinm = 2 × 10−4 is shown in Figure 8.4. It can be seen that after t > 0.05 s, the power
growth ratio increases from order 1 to order 104 in 0.2 seconds. This large amplification factor
inevitably introduces error in the reactivity estimation. The relative error of the reactivity is also
shown in Figure 8.4. The error in the reactivity is relatively small, that is ∼ 5 × 10−5. But the
problem is a super-prompt critical transient, the error in the power is very sensitive to the error in
the reactivity. Therefore for a period of 0.2 s, a relative error of ∼0.5% is accumulated.

When the time step size is controlled to limit the power growth ratio, then it can be seen that
the relative error for t > 0.05 s varies slowly, because the relative error in the reactivity is reduced
to ∼ 8× 10−6 suggested by Figure 8.4.
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Figure 8.4: Evolution of the power growth ratio in a transient pin problem with the adaptive
method to control the time step size. εinm = 2× 10−4.
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These results motivate limiting the power growth ratio by illustrating what happens if it is not
limited. However, we do not expect that the power increase will be as significant as illustrated for
practical simulations due to the presence of the feedback.

In terms of efficiency, it can be seen that all the cases take fewer steps than the case with the
default time step. The run time savings are from the fewer time steps performed for t > 0.05 s.
For t < 0.05 s, the ATS method does not improve the efficiency. One reason is that the first time
size is 1 ms. Therefore more steps will be performed before ∆t > 5 ms. The other reason is that
the variation of cross section introduces relatively large error. To reduce these errors, the method
developed here will limit the size of the time step.

8.2.3.2 4-mini Test Problem

Results in Figures 8.5 show the effects of different approaches in calculating the time step size for
the 4-mini test problem. The problem is simulated with the 8-group cross section library. Without
controlling the one-step error, as suggested by Figure 8.5a, the relative error of the power can
change significantly. This is observed at about 0.12 s, 0.25 s and 0.33 s.

Therefore, the local error must be controlled. Figure 8.5b shows the results when the time step
size is also limited to control the one-step error. Then it can be seen that for the cases with εinm =

0.002 and εinm = 0.005, the magnitudes of the peaks of the relative error profiles are reduced. When
the correction is also applied with the safety factor from Eq. (8.11), as suggested in Figure 8.5c, the
magnitudes of the peaks for the relative error profiles are reduced further, and the error evolution
becomes smoother.

The results illustrated in Figures 8.5 also show the effect of controlling the multi-step error.
As the tolerance, εinm , becomes smaller, it is observed that the overall relative error in the power
becomes smaller.

These approaches, however, reduce the error at the cost of efficiency. For the case with εinm =

0.005 in Figure 8.5c, ∼130 % more steps are performed compared to the default cases. This is a
necessary cost, because using the default time step size introduces a 2% error in the power.

After the control rod movement, the ATS is able to increase the time step size continuously.
Figures 8.6 show the evolution of the relative error and time step size for the problem that is
simulated for 0.4 s, with εin1 = 0.001. Here it is shown that using the ATS gives power results for
t > 0.05 s that have errors smaller than the default results. Moreover, time step sizes become larger
than 5 ms in a short time after 0.05 s, and eventually reduces the overall run time of the calculation.
The time step size does not exceed 60 ms because of the limitation on the power growth ratio.

As suggested by Figures 8.6 and Figures 8.3, using εinm = 5× 10−3 and εin1 = 10−3 is sufficient
to limit the largest absolute values of the relative error to be smaller than 0.5%. This is used as the
default option for the ATS method in the numerical results shown later. 0.5% is a proper tolerance,
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Figure 8.5: Performance of the ATS method for controlling the internal error of TML in the 4-
mini test problem. Only the multi-step error, einm , is controlled in (a). The one-step error is also
controlled in (b). (c) shows the results with both errors controlled and time step size safety factor
correction applied.

since we would like to let the absolute values of the relative error of simulation results smaller than
1%, and the error from coupling has not been considered yet.

8.3 ATS Method for Coupling

As mentioned earlier, the adaptive time-stepping method should also consider the error from OS
in addition to the neutronics internal error as these are fundamentally different. In this section, we
develop the methodology for estimating and controlling the errors from the OS using a reduced-
order model, that is PKE with linear energy feedback (PKE-EF) [88]. Compared to the model
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Figure 8.6: Evolution of the relative error and the time step size for different tolerances to control
internal error. (a) shows the results for the relative error and (b) shows the results of the time step
size. The values in parentheses are the number of step taken for the simulation.

introduced in Section 7.1.3, the heat release constant λH , and the initial power are assumed to be
zero. Therefore the model is simplified to:

dp(t)

dt
=
ρ(t)− β(t)

Λ(t)
p(t) +

1

Λ0

K∑
k=1

λk(t)ξk(t) , (8.17a)

dξk(t)

dt
=

Λ0

Λ(t)
βk(t)p(t)− λk(t)ξk(t) , k = 1, 2, · · ·K , (8.17b)

ρ(t) = ρex(t) + γdQ(t) , (8.17c)

dQ(t)

dt
= p(t) . (8.17d)

Before presenting the methodology to estimate the error, the PKE-EF model is verified first.

8.3.1 PKE-EF Verification

The PKE-EF model is verified in this section, by showing that the feedback coefficient γe is in-
dependent of the time step size and that the model is very accurate for predicting the peak power
time.

8.3.1.1 Linear Energy Feebdack

This part presents how the γe is calculated and shows that the γe is independent of the time step
size. The flowchart for estimating the feedback coefficient γe from the full TML simulation with
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feedback is shown in Figure 8.7. As indicated by the flowchart, the SS is used here. For each time
step, there are two TH calculations that are solved for ∆tn/2. Supposing that it is the nth step,
the energy generation Q1, and reactivity change, dρ1 due to the feedback from the first TH solve
using ∆tn/2, is calculated after the first TH calculation. After the NTE is solved with ∆tn, another
TH simulation with ∆tn/2 is performed, and the heat generation Q2 and reactivity change dρ2 are
calculated. The γe is then calculated by

γe =
dρ1 + dρ2

Q1 +Q2

. (8.18)
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Figure 8.7: Flowchart of adaptive methodology for coupling.

Since γe is introduced to characterize the feedback from TH in a short time, for simulations
of the same problem with different time step sizes, the estimated parameter should only depend
on the time point and not on the time step size. The properties of γe are verified by results from
the 4-mini test problem simulated with the 8-group library and shown in Figure 8.8. The initial
condition is HZP. It can be seen that, the plots of the estimated γe using different time step sizes
overlap each other. Therefore, it can be concluded that the model constructed at each time point is
independent of time step sizes. It can also be seen in Figure 8.8 that γe converge to a near-constant
value in a very short time after the reactivity insertion. The value is called the converged γe. With
simulation time increasing, the magnitude of the γe becomes smaller because the Doppler feedback
coefficient of reactivity becomes more positive with temperature increasing.

The γe presented in Figure 8.8 is generated after the reactivity insertion. During the reactivity
insertion and the short period after the insertion, the flux shapes change quickly, which makes the
estimation of γe inaccurate. In such regions, it may be possible to compute a positive γe, which is
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Figure 8.8: Evolution of linear energy feedback coefficient. The nominal power of the model used
is more than twice as large as that of the typical reactor, therefore a more negative γe is observed
compared to that is given in [88].

not physical for a reactor. As a result, if γe > 0, the PKE-EF model becomes invalid, because the
system is no longer physically stable. To avoid this issue, we let γe = −|γe|.

8.3.1.2 Peak Power Time

Another verification of the model is to show the model can predict the time of the peak power for
different problems very accurately. The problems investigated here range from 4×4 assemblies to
the SMR problem.

We denote the time when the reactivity insertion is complete as ti. For each problem, the
PKE-EF model is built with the converged γe and the EPKE parameters at ti. Due to the presence
of feedback, there is a peak power. The predicted time of the peak power, that is denoted by tep,
will be compared with the time for the peak power observed in the MPACT simulations, which
is denoted by trp. The PKE-EF model is solved by the SDC-IMEX solver. The results from the
problems developed base on SPERT assemblies are simulated using the 47-group library and time
steps of 0.2 ms. The 4-mini test problem and the 7×7 test problem are simulated with the 51-group
library and 1 ms time steps.

The results of these calculations are shown in Table 8.1. It can be seen that the peak power
times predicted by the PKE-EF model are very close to the times from the MPACT simulations.
For the simple SPERT-2D problems, the predicted time of the peak and the real time of the peak
are the same. For the 7×7 test problem, the difference is just 0.3 ms, which is smaller than the
time step size used in the MPACT simulations. The case where the PKE-EF model does not predict
the peak time so well is the 4-mini-HZP problem. The reason is that the reactivity used is not the
maximum reactivity. The maximum reactivity is slightly larger than $1, and the reactivity at ti is
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slightly less than $1. If the maximum reactivity is used for the PKE-EF model, it can be found that
the PKE-EF model can still predict the peak time accurately. Therefore, it can be concluded that
PKE-EF model is a reasonably accurate reduced-order model for predicting the evolution of the
power.

Table 8.1: Comparison of the peak power times estimated by the PKE-EF model and calculated
by MPACT. The reactivity used is the reactivity calculated at ti. For the 4-mini-HZP problem, the
maximum reactivity is also used, and the peak power time is shown in parentheses.

Problem ti (s) Predicted Peak Time tep (s) Real Peak Time trp (s)

SPERT-2D-HZP 0.05 0.2168 0.2168
SPERT-2D-HFP 0.05 0.0780 0.0780
SPERT-3D-HZP 0.05 0.1396 0.1406
SPERT-3D-HFP 0.05 0.0820 0.0822

4-mini-HZP 0.05 0.8640 (0.7148) 0.723
4-mini-HFP 0.05 0.0784 0.079

7×7 Problem 0.1 0.2937 0.294

8.3.2 Coupling Error Estimation and Adaptive Methodology

Results in Table 8.1 show that the PKE-EF model is accurate to predict the peak power time,
indicating that it can capture the feedback efficiently. Therefore, an ATS based on the PKE-EF
model with the latest EPKE parameters and γe at each time step is proposed.

8.3.2.1 Error Estimation

The ATS method calculates the relative differences in two solutions of the PKE-EF problem. One
solution is obtained by solving the PKE-EF problem with the SDC-IMEX method, and is used as
the reference. The other solution is obtained by solving the problem with OS.

The relative difference of the two solutions is calculated for a prediction horizon of 0.2 s with
time steps of ∆tn. Both the one-step error, ec1, and the multi-step error, ecm, are obtained. The
superscript c stands for coupling. The algorithm for error estimation is illustrated by Algorithm 17.

8.3.2.2 Evolution of Predicted Error

The evolution of the predicted error in the prediction horizon is investigated in this part. The results
are used to show that the effect of coupling error can be understood as the reactivity insertion. The
results are also used to explain why LS rather than SS is used for estimating the coupling error for
the ATS to control the coupling error.
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Algorithm 17 Estimation of the errors to be controlled for coupling.
Input:time step size ∆tn.
Output:one-step error ec1 and multi-step error ecm

1: Calculate the feedback coefficient γe by Eq. (8.18).
2: Determine the number of time steps by

N = min (max (20, d 0.2

∆tn
e), 200) . (Alg 17.1)

3: Solve the PKE-EF using SDC-IMEX solver. The result is pcr(t).
4: Solve the PKE-EF with coupling the SDC solver for PKE and direct integration for energy

deposition Q via LS with ∆tn. The results are pcl (t).
5: Calculate the evolution of the coupling error ec(t) by

ec(t) =
∣∣∣pcl (t)
pcr(t)

− 1
∣∣∣ . (Alg 17.2)

The one-step error ec1 is
ec1 = ec(∆tn) , (Alg 17.3)

and the maximum of the relative difference in magnitude, ecm, in the prediction range is

ecm = max
t∈[0,N∆tn]

ec(t) . (Alg 17.4)
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Figure 8.9: Comparison of one-step error and multi-step error.

The ratio of the multi-step error to the one-step error is computed for each time step for the 8-
group 4-mini test problem after control rod is fully withdrawn from the core. HZP initial condition
is used. The time step size used for error estimation is 5 ms for a period of 0.2 s. So, the PKE-EF

200



model performs 40 steps of calculation as suggested by Eq. (Alg 17.1). It can be observed that for
t ≤ 0.1 s, the ratio

Ae =
ecm
ec1

>> 40 . (8.19)

While for t > 0.3 s, the ratio Ae ≤ 3.
The variation of Ae can be explained from the perspective of reactivity insertion due to the

coupling error. The details are shown here. The PKE-EF models at t = 0.07 s and t = 0.3 s, are
perturbed with a reactivity, δρ0, that is defined by

δρ0 = γeP (t)
∆t

2
. (8.20)

The model is then solved with the SDC-IMEX method for 0.2 s, and the solution is pcp(t). The
relative difference ep(t) is calculated by

ep(t) =
∣∣∣pcp(t)
pcr(t)

− 1
∣∣∣ . (8.21)

The results are shown in Figures 8.10 (labeled as “Perturbed”). For comparison, the evolution of
relative difference calculated by the coupling error estimator, i.e., ep(t) (defined in Algorithm 17)
is shown in Figures 8.10 (labeled as “Predicted”). The error at the first time point for the plots
labeled as “Predicted” in Figures 8.10 is the one-step error, and the maximum relative error is the
multi-step error calculated by Algorithm 17.
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Figure 8.10: Evolution of the relative difference as a function of time. The “Predicted” case
denotes the results are the relative differences for solving the PKE-EF with LS. The “Perturbed”
case denotes the results are the relative differences from solving the PKE-EF with the SDC-IMEX
method but with the initial reactivity perturbation of (δρ0 = γeP∆t/2).
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Figures 8.10 show that when t = 0.07 s, the one-step error of the predicted solution and the
relative difference of the perturbed PKE-EF model at t = ∆t, ep(∆t), are very close for ∆t= 5 ms.
And when the time step size is reduced to 1 ms, the evolution of the relative error of the predicted
solution and the evolution of the relative difference of the perturbed solution agree for a longer
forecast interval. Additionally, for t = 0.3 s, the evolutions of the errors agree well with each other
for the whole time domain regardless of the time step size. Therefore, we can conclude that using
LS for the first step generates the error that induces additional reactivity ∼ P∆tγe

2
. Controlling ecm

is important, because as suggested above, the effect of coupling error will only show up in a long
time.

In the practical simulations, the errors are not only from the OS, but also from the solution
methods for the NTE, TH equations and cross sections models, etc. These errors are first-order
and are ignored if SS is used for estimating the coupling error. Compared to SS, LS introduces
a reactivity of O(P∆t) at the first step, that is first-order. Therefore, the error predicted by LS
provided an estimation of the error of the same order. It should be noted when P is relatively
small, due to the error accumulation, the predicted error multi-step error may not be first-order.
When the P is relatively large, the error accumulation from OS compared to the error from the first
step becomes less significant. The importance of using LS in error estimation is also shown by the
numerical results later.

8.3.2.3 Time Step Size Calculation

Once the errors are predicted from the PKE-EF model, the time step size is calculated. Supposing
that the tolerance for the one-step error is εc1, the time step size is calculated by:

∆t
(1)
n+1 =

(
εc1
ec1

)2

∆tn . (8.22)

This is derived from the first-order assumption about the local truncation error.
Supposing that the tolerance for the multi-step error is εcm, the time step size is calculated by:

∆t
(2)
n+1 =

(
εcm
ecm

)q
∆tn . (8.23)

Here q is obtained by direct numerical estimation. This numerical estimate is calculated from the
multi-step error using time steps of ∆tn and 2∆tn. The order of accuracy is then estimated by:

q =
log10

(
ecm(2∆tn)
ecm(∆tn)

)
log10 2

. (8.24)
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q is estimated because the multi-step error is from accumulation. Numerically calculating q can
approximate the order of the mixed error. The time step size applicable is the minimum of the
calculated time step sizes, i.e., determined by

∆t
(3)
n+1 = min

(
∆t

(1)
n+1,∆t

(2)
n+1

)
. (8.25)

The step size variation limit is also applied. The final time step size is

∆tcn+1 = max
(

1 ms,max
(

0.5∆tn,min
(

∆t
(3)
n+1, 1.2∆tn

)))
. (8.26)

The reason for using a tighter limit on the time step size growth ratio is to reduce the effect of the
uncertainty of the γe in the short time following the reactivity perturbation. Here, ∆tcn+1 is the time
step size predicted to control the coupling error.

8.3.3 Simple Numerical Results

To demonstrate the efficacy of the ATS method for controlling the OS, some numerical results are
analyzed in this section.

The test problems used here are the SPERT-2D problems. The cases from both HZP and HFP
conditions are simulated with the evolution of powers shown in Figures 8.11.

These problems are used to show how the tolerances affect the accuracy of the calculation with
ATS and provide insights into the tolerances that should be used to estimate the time step size. The
goal is to try to make the largest absolute value of the relative error less than 1%.
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Figure 8.11: Evolution of the power as a function of time for the SPERT-2D cases.
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The reference cases are simulated with constant time steps of 0.2 ms. For the reactivity in-
sertion stage (t < 0.05 s), all the test cases are simulated with 1 ms. The numerical error from
the reactivity insertion is much smaller than the error from the feedback stage. Consequently, the
relative error result shown in this section can be considered as the result of using different time
step sizes in the feedback stage.

Apart from the test case performed with the default time step of 5 ms for the feedback stage,
six additional test cases with ATS are considered and the tolerances used are shown in Table 8.2.

Table 8.2: ATS cases performed in the SPERT-2D problem.

Case 1 2 3 4 5 6

εcm 0.1 0.05 0.03 0.03 0.02 0.02
εc1 0.01 0.01 0.015 0.01 0.01 0.005
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Figure 8.12: Relative error of the power and step size as a function of simulation time, for different
error tolerances in the SPERT-2D-HZP problem. In the legend, the values in the first parentheses
are the tolerances (εcm, εc1). The value in the second parentheses is the number of time steps.

Figures 8.12 show the performance in terms of the error evolution and the adaptivity of the time
steps for the SPERT-2D problem with the HZP condition (SPERT-2D-HZP). First, it is observed
with tighter tolerance, the maximum relative error of the power in magnitude becomes smaller.
Therefore, the error of the power is consistent with the tolerance. Moreover, the tolerance ecm is
five times larger than the maximum absolute value of the relative error observed. This indicates
that using LS for the error estimation introduces a conservative estimation of the error sources that
are not directly estimated.

For the evolution of the time step size, the initial time step size increases to a local maximum.
In this phase, the time step size is bounded by the growth ratio 20%. After the maximum, the time
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step size starts decreasing, because the power is increasing, and the feedback becomes stronger.
What is observed is that the time step size changes smoothly, and no oscillation is observed.

During this stage, it can also be observed that εc1 has no effect on the time step size when
εcm = 0.02 or εcm = 0.03. This indicates that the time step size is mainly determined by controlling
the multi-step error. The time step sizes estimated by εcm = 0.1 and εcm = 0.05 are practically the
same. This indicates that the time step size is mainly determined by limiting the one-step error
in these two cases. It can also be observed that the time step size reaches its global minimum
when the power reaches its maximum. For the asymptotic range, the plots of the evolution of the
time step size for cases with the same εc1 eventually overlap, indicating that the time step size is
determined by the εc1. So, controlling ec1 mainly controls how fast the time step size varies in the

asymptotic range.

Compared to the constant time step size 5 ms, the ATS method predicts a larger time step size
when the power is relatively small, and a smaller time step size when the power is relatively large.
This agrees with our expectation that to perform a more efficient calculation, the time step should
be finer when the power is strong, but can be coarser when the feedback is weaker or the power is
in its asymptotic range.

It is noted that when the εcm = 0.05 and εcm = 0.1, the maximum magnitude of relative error
is larger compared to the default case, though the time step size around the peak power is smaller.
This result indicates that the time step size for the period before peak cannot be too large, otherwise
the error during this period accumulates and gets amplified. The selection of an appropriate εcm is
very crucial to balance the efficiency and accuracy.

In summary, the results presented here suggest that the εcm should be mainly used to limit the
maximum magnitude of the relative error, while εc1 is important to determine the growth rate of the
time step size for the asymptotic range. Therefore, in practical simulations, the εc1 can be large, but
εcm should not be too large or too small so that balance in the efficiency and accuracy is achieved.

In terms of efficiency, a similar number of steps are performed using εcm = 0.03 compared to
the default case, but the maximum magnitude of the relative error is reduced by ∼33%. Using the
εcm = 0.02 results in ∼40% more steps, but reduces the largest absolute value of the relative error
from ∼0.8% to ∼0.3%.

Figures 8.13 show the performance of the ATS method in the SPERT-2D with HFP (SPERT-
2D-HFP) problem. It is again observed that εcm mainly determines the time step size during the
pulse. After the peak power, the time step size is eventually determined by the tolerance εc1.

Compared to the results for HZP cases, it can be seen that the maximum magnitude of the
relative error of the adaptive results is smaller compared to the default case with ∆t = 5ms.
However, all the cases perform more time steps. These additional steps are necessary because
the default case fails to achieve a result within the error criteria of being less than 1%.
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Figure 8.13: Relative error of the power and time step size as a function of simulation time, for
different the error tolerances in the SPERT-2D-HFP case. In the legend, the values in the first
parentheses are the tolerances (εcm, εc1). The value in the second parentheses is the number of time
steps.

All the cases indicate using εcm = 0.02 and εcm = 0.03 can produce the results with the maxi-
mum magnitude of the relative error less than 1%. εc1 = 0.01 or εc1 = 0.015 generally works fine
since the tolerance mainly determines the time step size for the asymptotic stage.

It is also worthwhile to see whether the effectiveness of the tolerances for the adaptive method-
ology can be predicted by the PKE-EF model. To investigate this, we reproduce the reduced-order
PKE-EF problem of the SPERT-2D-HZP test problem. The model is solved by SS. Then we ap-
ply the exact same ATS method to the MPACT TML method to determine the time step size for
this problem. Recall that in Table 8.1, the PKE-EF model predicted the time of the peak power
very close to the MPACT result. The PKE parameters used are obtained at the time the reactivity
insertion is complete and the converged γe is used for the test problem.

The results are shown in Figure 8.14. It can be seen that for this case, the evolutions of the
errors for the MPACT and PKE-EF results are very similar. The maximum magnitudes of the
relative errors for the PKE-EF cases are smaller, because the models ignore the errors from solving
the NTE and TH equations, and cross section update. In practical simulations, we should not
see a similar evolution of the error for the PKE-EF problem and the MPACT simulation though,
because the error from the reactivity insertion stage (where control rods are moving) is present for
the MPACT results.

However, we believe the predicted accuracy using the adaptive method on the PKE-EF model
can be used to determine the right tolerance. On the one hand, the predicted number of steps in the
PKE-EF model is very close to the actual number of steps performed in the MPACT simulation.
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Figure 8.14: Comparison of the performance of the ATS method in the SPERT-2D-HZP cases
and the PKE-EF model. “M” in the label stands for MPACT results, and “E” stands for results
from the PKE-EF model. The integer shown in parentheses is the number of steps performed. It is
observed that the performance of the ATS method to control the coupling error in the SPERT-2D-
HZP problem can be predicted by the same method in the PKE-EF problem.

On the other hand, if the maximum magnitude for the PKE-EF model is smaller than 0.5%, then
we have some confidence that the results of adaptive simulations using MPACT will not have a
relative error larger than 1%.

A future research would be to implement a tolerance predictor based on PKE-EF model. This
predictor can adjust the tolerances εcm and εc1 so that the maximum relative error for MPACT results
will be smaller than 1%. This predictor can also provide a rough estimation of the number of time
steps that needed to be performed. It could be even possible to develop some sophisticated method
to plan the time steps in advance, since the PKE-EF model is an accurate reduced-order model
capable of predicting the evolution of the power in a short time.

8.4 ATS Flowchart

In this part, we will show the flowchart for the ATS methods. Before showing the flow, the method
for the adaptive CMFD level in TML is shown. An adaptive CMFD level is important because,
when the predicted time step size is small, it could be unnecessary to use the default number of
steps on the CMFD level in the TML method. To reduce the number of CMFD steps and further
improve the efficiency, the method to adjust the CMFD level is presented before showing the
overall flowchart.
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8.4.1 ATS Method for CMFD Level

The approach is developed by investigating the error of using different numbers of CMFD steps
compared to the reference results on the 4-mini test problems simulated with time steps of 1 ms,
2 ms and 5 ms. The 4-mini model is the same as the model in Chapter 6 that is simulated with the
51-group library. And the reference solutions are generated with 10 MGCMFD steps per transport
step. Since a minimum of 2 MGCMFD steps are required to do quadratic polynomial fitting, the
numbers of MGCMFD steps investigated for TML-3 are 2, 3, and 5 (the default). For TML-4, the
number of 1GCMFD steps per MGCMFD step is fixed to 3, therefore high-order polynomial fitting
can be performed even with 1 MGCMFD step. The numbers of MGCMFD steps investigated for
TML-4 are 1, 2, and 3 (the default).

Table 8.3: Accuracy for different CMFD steps per transport step in the 4-mini test problem. The
problem is simulated with the 51-group library. The largest absolute values of the relative errors are
shown. nMG is the number of MGCMFD steps per transport step. n1G is the number of 1GCMFD
steps per MGCMFD step. When n1G is 0, the TML scheme is TML-3, otherwise, it is TML-4.

MOC
Step Size

CMFD steps (nMG,n1G)

(2,0) (3,0) (5,0) (1,3) (2,3) (3,3)

1 ms 0.06% 0.03% 0.01% 0.12% 0.05% 0.02%
2 ms 0.13% 0.06% 0.02% 0.18% 0.07% 0.04%
5 ms 0.47% 0.21% 0.07% 0.46% 0.13% 0.05%

The results are shown in Table 8.3. The results suggest that to ensure that the maximum of the
relative error is smaller than 0.12%, a minimum of 5, 3 or 2 MGCMFD steps should be used for
times steps of 1 ms, 2 ms and 5 ms, respectively when TML-3 is used. When TML-4 is used, the
minimum number of MGCMFD steps should be 1, 2 or 3 for the investigated time step sizes.

As a result, the adaptive method for adjusting the number of CMFD steps are proposed as

follows:

nMG =



2 ein1 < 5× 10−5

b∆t+ 1e ∆t ∈ [1, 2]

b2(∆t−2)
3

+ 3e ∆t ∈ [2, 5]

5 ∆t ∈ [5,∞)

, for TML-3 ,

nMG =


1 ein1 < 5× 10−5

b∆t−1
2

+ 1e ∆t ∈ [1, 5]

3 ∆t ∈ [5,∞)

, n1G = 3 , for TML-4 .

(8.27)
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Here the b·e stands for the nearest integer, and ∆t is in units of ms. When the reactivity profile on
the MGCMFD level is nearly linear, ein1 is very small, the nMG is also adjusted because there is no
need for multiple steps.

It should be noted that the values shown in Table 8.3 are the maximum relative errors. The error
accumulated per step from using the nMG calculated by Eq. (8.27) should be much smaller, and
will have little effect on the adaptive methodology for controlling the internal TML error. Though
a more sophisticated model can be derived to determine the relation between the nMG and the time
step size, the model in Eq. (8.27) does provide a reasonably accurate result.

Figure 8.15 compares the results of the adaptive calculation with and without Eq. (8.27) for
the 4-mini test problem. It can be seen that using the adaptive CMFD level has little effect on the
evolution of the relative error and the ATS methods.
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Figure 8.15: Accuracy of adaptive CMFD level in the 4-mini test problem with the 8-group library.
The integer shown in parentheses is the number of steps performed.

8.4.2 Overall Flowchart

The overall flowchart for the ATS methodology is presented in Figures 8.16. The error estimation
is performed after the second TH solve. The time step size is calculated, and the time step size
used for the next time step is the minimum of ∆tin and ∆tcn. The CMFD level of TML for the
next time step is adjusted based on the predicted time step size the predicted one-step error using
Eq. (8.27). Then the calculation advances to the next step.
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Figure 8.16: Flowchart of the ATS methods for TML.

8.5 Performance Results

In this section, the performance results of the ATS methods developed in this chapter are verified
with different problems.

8.5.1 4-mini Test Problem

The performance of the adaptive methods is first demonstrated for the 4-mini test problems. All the
cases use the 51-group library. Four test cases are run. The first case is the TML-4 case utilizing
the latest TML scheme in Chapter 7. The other three cases use the ATS methods. The tolerances
are shown in Table 8.4. The evolution of power for the 4-mini test problem has been illustrated in
Section 6.2.1 is omitted here.

The run time results and the number of time steps performed are presented in Table 8.5. RR
stands for the run time during the rod movement, where the time step size is mainly determined
by the ATS method to control the internal error. FR stands for the run time during the feedback
stage. TR stands for the total run time. Two values are presented for the “Steps”. The first one is
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Table 8.4: Tolerances for cases with the ATS methods in the 4-mini test problem.

Case εinm εin1 εcm εc1

TML-4-Adap-1
5× 10−3 1× 10−3

0.02 0.01
TML-4-Adap-2 0.03 0.01
TML-4-Adap-3 0.03 0.02

Table 8.5: Comparison of adaptive simulations to the simulations with default step size for the
4-mini test problem] The run time results of the TML-3 case are from Table 7.3. The run time
results of the TML-4 case are from Figure 7.12a.

Case
HZP HFP

RR
(hr)

FR
(hr)

TR
(hr)

Steps
RR
(hr)

FR
(hr)

TR
(hr)

Steps

TML-3 0.46 4.09 4.55 10/200 0.56 4.41 4.97 10/200
TML-4 0.42 3.43 3.85 10/200 0.42 3.43 3.85 10/200

TML-4-Adap-1 0.75 1.45 2.20 25/100 0.83 2.02 2.85 26/132
TML-4-Adap-2 0.75 1.30 2.05 25/89 0.83 1.77 2.60 26/118
TML-4-Adap-3 0.75 1.20 1.95 25/83 0.83 1.59 2.42 26/98
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Figure 8.17: Relative errors as a function of time in the 4-mini test problems. (a) shows the results
for the HZP problem and (b) shows the results for the HFP problem. The values in parentheses are
the number of steps performed.

the number of time steps during the rod movement. The second one is the number of time steps for
the whole transient process. The evolution of the relative error and the time step sizes are shown
in Figures 8.17 and Figures 8.18.
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Figure 8.18: Time step size as a function of time in the 4-mini test problems. (a) and (b) show the
results for the rod movement period and the feedback stage, for the HZP problem, respectively. (c)
and (d) show the results for the HFP problem. The number of time steps performed are also shown
in parentheses of the label.

It can be seen that the adaptive method to control the internal error improves the accuracy
during the rod movement at the cost of performing more time steps. 2% and 2.5% relative errors
in the power results for using the default scheme are observed during the rod movement in the
HZP problem and HFP problem, respectively, while the relative error observed from using the
ATS methods is less than 0.5%. However, compared to the run time of case TML-4, using the ATS
method does cost 80% more time, as suggested by the RR results.

The maximum reactivity for the HZP problem is very close to $1. Therefore, the transient
process is relatively slow compared to the super-prompt critical cases. It can be seen that the
default 5 ms time step is relatively fine for this problem. The adaptive method to control the
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coupling error adaptively adjust the time step size. Consequently, though the adaptive cases are
not as accurate as the cases with default time step size when the power is relatively large, the largest
absolute values of the relative errors of the results for all the cases are still smaller than 1%.

Controlling the error during the reactivity insertion is very important for the simulation of the
HFP problem. It can be seen that the peak power result of case TML-4 has a relative error of a
magnitude of about 1%, while the absolute values of relative errors for all the cases with the ATS
methods are smaller than 0.5%. After the peak power, the time step size for the adaptive cases is
increased continuously.

Though more time has been spent during the rod movement stage, for both the HZP prob-
lem and HFP problem, the ATS methods reduce the time. Compared to the TML-4, the adaptive
methodology can improve the efficiency by at most 50% and 37% for the HZP problem and the
HFP problem, respectively. Compared to the TML-3, the run time can be reduced by 57% for the
HZP problem, and 50% for the HFP problem.

In terms of the effect of εc1 and εcm, the conclusion made here is the same as what has been
observed in Section 8.3.3. We can conclude that εc1 mainly determines the time step size for the
asymptotic stage, and the εcm controls the error for the peak power. Both εcm = 0.02 and εcm = 0.03

help to make the magnitude of the relative error of the power results smaller than 1%, but using
εcm = 0.03 is more efficient. Using a larger εc1 can further improve the efficiency.

8.5.2 7×7 Test Problem

The performance of the ATS methods is investigated next for the 7×7 test problem. The reference
solution is generated by 1 ms for the first 0.5 s. The peak power is at t = 0.294 s, and the asymptotic
ranges start at t ≈ 0.4 s. Therefore, the first 0.5 s is enough to show the evolution of the power. All
the test cases are simulated for 0.8 s.

The analyses shown in Chapter 6 and Chapter 7 demonstrate that the maximum absolute value
of the relative error from using the 1GCMFD acceleration is smaller than 0.1%. Therefore, for the
power results, only the results of the TML-3-1G case are shown.

Two adaptive cases are performed. They use different tolerances for controlling the coupling
error. The tolerances are shown in Table 8.6. To control the internal error, all the cases are per-
formed with εin1 = 10−3 and εinm = 5 × 10−3. To control the coupling error, the first case is
performed with εc1 = 0.01 and εcm = 0.02 and the second case is performed with εc1 = 0.02 and
εcm = 0.03. These two cases are performed with TML-4, and the CMFD level is adaptively adjusted
during the calculation.

The run time results and the number of time steps taken are shown in Table 8.7. The values
shown for steps are the number of time steps in the rod movement stage and the total number of
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Table 8.6: Settings for cases with adaptive methods in the 7×7 Problems.

Case εinm εin1 εcm εc1

TML-4-Adap-1
5× 10−3 10−3 0.02 0.01

TML-4-Adap-2 0.03 0.02

time steps. The evolution of the time step size is shown in Figures 8.19, and the evolution of the
relative error is shown in Figure 8.20.

Table 8.7: Comparison of the ATS simulations to the simulations with default step size for the
7×7 test problem. The run time results of case TML-3 are from Table 7.3. The run time results of
case TML-4 are from Figure 7.12b.

Case
RR
(hr)

FR
(hr)

TR
(hr)

Steps

TML-3 10.3 33.8 44.1 20/160
TML-3-1G 8.2 26.3 34.5 20/160

TML-4 8.0 26.6 34.6 20/160
TML-4-Adap-1 18.0 20.1 38.1 59/177
TML-4-Adap-2 18.0 15.8 33.8 59/144

It can be observed that, compared to the run time of the TML-3 case and the TML-3-1G case,
the ATS to control the internal error takes about ∼80% and ∼ 120% more time in the control
rod movement stage of the simulation. Compared to the reference case, using the current default
time step size results in a maximum error of 6%, while using the ATS methodology reduces the
error to 0.7%. Therefore, the results indicate that the default time step size is not fine enough for
modeling the rod movement. Also, the time step size keeps oscillating when the control rod is
moving because of the heterogeneity along the axial direction.

For the feedback stage of the transient, the run times of ATS cases are much shorter. The time
step size is larger than 5 ms when the power is relatively small and is smaller than 5 ms during
the time range around the peak power. For the asymptotic range, the time step size continues to
increase smoothly as desired. Therefore, it can be observed that fewer time steps are performed.
Compared to the TML-3 case, the first ATS case reduces the run time by 41% and the second
ATS case reduces the run time by 53%. Compared to the case TML-3-1G, the first ATS case
reduces the run time by 23% and the second case reduces the run time by 41%. In terms of
accuracy, the relative error does not change initially because the error is dominated again by the
rod movement. Immediately after this, the magnitude of the error starts decreasing because of the
error cancellation. Eventually, we can see the maximum magnitudes of the relative errors for the
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Figure 8.19: Time step size as a function of time in the 7×7 test problem. In the label, the values
in parentheses are the number of time steps performed. The results in (a) are the evolution of
the time step size during the rod movement. (b) shows the evolution of the time step size for the
feedback stage.
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Figure 8.20: Comparison of the relative error of the power for different cases of the 7×7 problem.
Compared to the case with default time step size, using the ATS methods developed in the chapter
reduced the maximum relative error from 6% to 0.7%.

ATS cases are smaller than 1%. For the TML-3-1G case, due to the error from the rod movement
stage, its relative error around the peak power is more than 2%.

In terms of the error tolerances, the adaptive method to control the coupling using εcm = 0.02

or εcm = 0.03 yields an efficient simulation overall though.
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8.5.3 SPERT Test 86 Problem

The last problem is the SPERT test 86 problem [56]. This is a HFP problem with the initial core
inlet temperature of 502 ◦F ± 4 ◦F . The initial TH condition is the same as that in a typical
PWR. The initial power is 19 MW, and the withdrawn transient rod worth is $1.17 in 0.105 s. The
simulation is performed for 0.3 s.

The SPERT cases are run in MPACT with 0.05 cm ray spacing and the Chebyshev-Gauss
quadrature set is used with 4 azimuthal and 1 polar angles. The NEM kernel is used for the axial
solution with 20 axial layers. The cross sections are provided from the 51-group library generated
at ORNL by CASL [68]. The thermal-hydraulics feedback for the transient solution is determined
by the simplified-TH model. The cases were run on the Lighthouse cluster with 20 cores (Xeon
E5-2680v3 processor) at the University of Michigan.

Several cases are performed. The reference case is simulated with time steps of 1 ms. As
indicated by Figures 8.21, the simulated results of the reference case are in very good agreement
with the experiment data [56]. The problem is also simulated with TML-3, TML-3-1G, and the
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Figure 8.21: Measured results and the simulated results for the SPERT test 86 problem.

TML-4 with the time steps of the default time step size, 5 ms. For the ATS case, i.e. the case
TML-4-Adap, the error tolerances used are εinm = 5× 10−3, εinm = 1× 10−3, εcm = 0.03, εc1 = 0.02.

It can be seen that, compared to the default TML-3 simulation, using the 1GCMFD acceleration
reduces the run time by more than 24%. Using the ATS methods together with TML-4 can reduce
the run time by 22.5%. The case TML-4-Adap performs slower than the case TML-4 because
more time steps have been for modeling the rod movement. However, it is necessary to have finer
time steps than the default time steps so that the maximum relative error of the power results in
magnitude is smaller than 1%. The relative error of the power is shown in Figure 8.22a. It is

216



observed that the maximum absolute value of the relative error for the adaptive calculation is about
0.4%. And using default time step size introduces the error with the maximum magnitude of 1.8%.
For the feedback stage, the TML-4-Adap case takes 50% less time to run, though the number of
time steps performed is slightly larger than that of TML-4.

Table 8.8: Comparison of adaptive simulations to the simulations with default step size for the
SPERT test 86 problem.

Case
RR
(hr)

FR
(hr)

TR
(hr) Steps

TML-ref 24.2 29.0 53.2 105/300
TML-3 13.0 17.6 30.6 21/60

TML-3-1G 9.9 13.3 23.2 21/60
TML-4 9.4 12.7 22.1 21/60

TML-4-Adap 14.9 8.8 23.7 46/88
TML-4-Adap-E 12.7 8.6 21.3 46/88
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Figure 8.22: Comparison of the relative error of the power and time step size for different cases
of the SPERT test 86 problem. (a) shows that compared to the default case, using ATS methods
developed in the chapter reduced the maximum relative error from 1.8% to 0.4%. (b) shows the
evolution of the time step size, with the number of time steps in the rod movement stage and for
the whole transient process using the adaptive calculation in parentheses.

The evolution of the time step size is shown in Figure 8.22b. The time step size is smaller in
the adaptive calculation for the rod movement stage compared to the default time step size and
the time step size reaches its minimum at the peak power. For the asymptotic stage, the time step
size keeps increasing smoothly and eventually becomes larger than the default time step size. The
simulation is only performed for a transient process of 0.3 s. If a longer transient simulation is
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performed, the speedup from using the ATS methods will be more significant because the time
step size is much larger than 5 ms, during the asymptotic stage.

The ATS case performs more time steps but runs much faster than the TML-4 case after the
rod movement. The reason is that the number of CMFD (both MGCMFD and 1GCMFD) steps
has been reduced. A new case, TML-4-Adap-E, is performed with TML of 1 MGCMFD step and
2 1GCMFD steps per time step. The results are also shown in Table 8.8 and Figures 8.22. It can
be seen the evolution of the relative error for the new case is similar to that of the TML-4-Adap.
The maximum magnitude of the error is still ∼0.4%. But the overall run time reduction is ∼30%.
Therefore the results indicate the efficiency can be further improved by using the minimum number
of CMFD steps required for the ATS methods.

8.6 Summary

In this chapter, the ATS methods based on the PKEs and PKE-EF models for the TML scheme are
presented.

The errors from solving the NTE and the coupling are the ones to be controlled. The PKE mod-
els are used to estimate the evolution of these two errors in a reasonably long prediction horizon.
The ATS methods adjust the time step size based on the error predicted for the next step and the
maximum magnitude of the relative error in the prediction horizon, so that these errors do not ex-
ceed the user-specified tolerances. Parametric studies were performed to determine the tolerances
used that can let the maximum relative error in magnitude of the whole simulation be smaller than
1%.

The effectiveness of the ATS methods was then demonstrated by solving a series of transient
test problems, including a 4×4 assembly test problem, a 7×7 problem, and the SPERT test 86
problem with the TML-4 scheme. It was shown that the ATS methods can reduce the total run
time by more than 50%, and keep the magnitude relative error of the simulation results smaller
than 1% for the 4×4 assembly problem. For the 7×7 test problem, the run time for the period
after the reactivity insertion could be reduced by 40%. The method, however, took much more
time compared to the default scheme in stage with rod withdrawal. The reason is that the time step
size used in the default scheme is relatively coarse. The maximum absolute value of the relative
error observed for the default scheme was 6%. Using ATS reduced the error to less than 1%, but
spent 80% more time in simulating the rod movement. Nevertheless, using the ATS methods still
resulted in a total run time comparable to the TML scheme with 1GCMFD acceleration.

A similar observation was also made in the SPERT test 86 problem. The run time for the period
after the reactivity insertion could be reduced by 50%. Using the ATS methods reduced the largest
magnitude of the relative error from ∼1.8% to ∼0.4% but spent more time in the rod movement
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stage. Nevertheless, using the ATS methods together with the TML-4 could reduce the total run
time by 22.3% and still take a similar run time to the TML cases with 1GCMFD acceleration using
the default time step size.

Therefore, using the ATS methods improves the efficiency for the problem where the default
scheme is relatively accurate, and improves the accuracy for the problem where the default scheme
is not accurate.
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CHAPTER 9

Conclusion & Future Work

9.1 Conclusions

The primary object of this thesis was to develop methods to improve the robustness and the effi-
ciency of time-dependent neutron transport simulations for practical Light Water Reactor (LWR)
applications. The first phase of the research here was the investigation of methods to improve
the initial condition for the transient. In previous research Multilevel-in-Space-and-Energy Dif-
fusion (MSED), that is an efficient Coarse Mesh Finite Difference (CMFD) solver, was shown to
improve the efficiency of the steady-state calculation without feedback, but numerical instabilities
occurred with applying the method to the practical coupled physics problem. An original contri-
bution of the research performed here was the development of methods to stabilize MSED for the
solution of the coupled physics problem which improved the initial condition for practical transient
simulations.

A Fourier analysis was first performed on the CMFD-accelerated scheme coupled with feed-
back and the partial convergence of low-order diffusion problem was analyzed explicitly in Chap-
ter 3. The Fourier analysis results showed that fully converging the Nonlinear Diffusion Acceler-
ation (NDA) and CMFD equations was very effective for problems without feedback. However,
this approach was not adequate for problems with feedback. The Fourier analysis provided a the-
oretical basis for understanding the reasons why partial convergence of the low-order problem of
NDA/CMFD was able to stabilize the multiphysics iteration. Fourier analysis results also predicted
that partially converging low-order diffusion problems of NDA/CMFD in problems with feedback
can be applied to achieve the same stability as NDA/CMFD in problems without feedback. The
result of this research was the development of a relaxation-free iteration scheme and a prescription
for the Wielandt shifted ratio and the number of power iterations that were necessary to solve the
low-order diffusion at each outer iteration in order to minimize the overall spectral radius. The
new method was referred to as the nearly-optimally partially converged CMFD (NOPC-CMFD)
method.
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In Chapter 4, the NOPC-CMFD method was applied using the CMFD solvers in the Michigan
Parallel Characteristics Transport (MPACT) code and numerically verified using practical prob-
lems with feedback ranging from a single pressurized water reactor (PWR) fuel rod to a full-core
PWR cycle depletion. The results verified the theoretical predictions from Chapter 3, illustrating
that the performance of NOPC-CMFD was superior to the existing CMFD or NDA methods with
a reduction of up to 40% in the run time for whole-core depletion problems.

In Chapter 5, a more advanced and robust X-CMFD method was also developed using Fourier
analysis, and was implemented and optimized in MPACT for practical simulations. The X-CMFD
was developed based on the theoretical finding that if the low-order diffusion problem is fully
coupled with feedback and solved robustly, the performance of NDA would not be affected by
the presence of feedback. The key features of X-CMFD are the application of feedback at the
power iteration level of the low-order diffusion problem, and the achievement of stability that is
irrespective of the convergence of the CMFD solution and problem feedback intensity. Numerical
results verified the stability of the X-CMFD and showed that it provided efficiency comparable to
the NOPC-CMFD method when applied to the MSED solver.

Once the stability issue in steady-state simulations was addressed, several methods were de-
veloped to improve the efficiency of time-dependent simulations. In Chapter 6, the one-group
CMFD (1GCMFD) system was introduced to accelerate the Multigroup CMFD (MGCMFD)
solver in TML. A dynamic 1G/MGCMFD iteration strategy was developed, and a new 1GCMFD
level was introduced to provide a 4th level to an improvised Transient Multilevel. The new scheme
was referred to as TML with one-group CMFD level (TML-4). The 1G/MGCMFD iteration and
TML-4 were demonstrated using a series of transport transient kinetics problems in MPACT and
were shown to provide improved efficiency. Additionally, TML-4 had better accuracy, except for
portions of the transient in which there was control rod movement. Therefore, a hybrid method
that used the original TML (TML-3) option with the 1G/MGCMFD iteration when the control rod
was moving and TML-4 when there was no control rod movement was proposed. The numerical
results showed that the hybrid method was more accurate and that for large-scale problems, the run
time of the CMFD solver could be reduced by more than 50%, and the total run time was reduced
by as much as 20%.

In Chapter 7, several improvements were made to improve the accuracy of the TML. First,
it was found that the accuracy of the TML result was constrained by the accuracy of the exact
point-kinetics equations (EPKEs)’ solutions. Therefore, the Spectral Deferred Correction (SDC)
method was introduced to improve the accuracy of the point-kinetics equation (PKE) method. The
implementation of the SDC method was shown to be A-stable for orders up to 8 and the order of
accuracy was verified for PKE problems with a range of different reactivities. A 5th-order SDC
method was then implemented to solve EPKEs in MPACT, and the error from solutions of the
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EPKEs was shown to be negligible. Other improvements to TML in Chapter 7 included modifica-
tions to the manner in which feedback was being applied in the solution algorithm. The existing
application of TML introduced the feedback at the beginning of the CMFD level implicitly, and at
the transport level explicitly via Lie Splitting (LS) in MPACT. The application introduced signifi-
cant errors when the control rods were modeled explicitly or when there were significant increases
or decreases in the time step size. Improvements were therefore investigated in the application
of feedback to account not only for explicit control representation, but also for simulations such
as adaptive time-stepping which would potentially result in variations in the time step size. The
implicit coupling on the CMFD level was removed, and the existing coupling scheme in MPACT
based on LS was modified to a method based on Strang Splitting (SS) which made the error con-
sistent with the time step size.

The research in Chapter 7 provided the framework for the investigation of adaptive methods that
were presented in Chapter 8 which resulted in one of the most significant and original contributions
of the research here in the adaptive time-stepping (ATS) methods. In the ATS methods, two PKE
models were investigated to predict the errors for choosing the time step size. One model estimated
the error in the neutronics solver assuming no feedback and the other estimated the error within
the framework of the coupled solution. The time step size was then adjusted so that errors do not
exceed the error tolerances specified. To further improve the efficiency, a method to determine the
number of CMFD steps on the CMFD level of TML with respect to the time step size was proposed
based on a numerical study. Numerical results showed that when the ATS methods were applied
together with TML-4, the run time reduction for the period without control rod movement can be
as large as 70%, and for Special Power Excursion Reactor Test (SPERT) test 86 problem, 44%.
And the overall time reduction is 22.3%, and the maximum absolute value of the relative error can
be reduced from about 1.8% to 0.4% for the SPERT test 86 problem.

9.2 Future Work

9.2.1 Verification of Steady-state Iteration Scheme

The test problems used in this thesis were based on the PWRs and the performance of some of
the methods, such as X-CMFD has not been verified and assessed for the whole-core problem.
A priority for future work would be to apply X-CMFD to the same whole-core problems that
were used to verify the NOPC-CMFD method. The multiphysics simulations of the boiling water
reactors (BWRs), for which the physics is more complicated and the feedback is stronger, should
then be investigated with the NOPC-CMFD and X-CMFD methods. Extension to other reactor
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types with very different neutron spectra such as high-temperature gas reactors, fast reactors, and
molten salt reactors should then be verified.

The methods derived and demonstrated here assume that the solutions of other physics are
fully converged. In practical simulations, equations of other physics are more likely to be solved
with iterative methods. In this thesis, when COBRA-TF (CTF) was used to solve the Thermal
Hydraulics (TH) equations, the tolerance for converging the CTF solutions was consistent with the
fission source residual, but most likely unnecessarily conservative to optimize the performance.
Future work should also investigate more sophisticated methods to determine the partial conver-
gence for the solutions of other physics solvers such as CTF.

9.2.2 Improvement on Transient Methodology

Several improvements in the transient methodology are proposed for future work, to include more
extensive verification of TML and ATS, as well as high-order methods and the development of
multigrid solver for the CMFD Transient Fixed Source Problem (TFSP). This section will briefly
outline each of these areas.

9.2.2.1 Verification of ATS and TML

The problems used to verify the ATS methods in this research are super-prompt critical transients
in the PWRs with central rod bank ejected. The methods should be verified with other rod banks
ejected, as well as a wider range of transients to include sub-prompt critical events. For example,
the application of the ATS methods to the simulation of the loss-of-coolant accident should be
verified as well as the application of the methods to the BWRs.

In the development of the TML-4 scheme and the adaptive method for adjusting CMFD levels,
it was assumed that the solutions with ultra-fine CMFD steps were accurate. This assumption, how-
ever, should be verified with additional numerical results. If the introduction of the CMFD level is
not sufficiently accurate, then its effectiveness would be compromised for providing a correction
to the flux used to calculate the reactivity and an error estimate for adaptive time-stepping.

9.2.2.2 High-order Methods and a Multigrid Solver for CMFD TFSP

Another improvement that can be made in the future is the development and implementation of
some high-order methods to solve the time-dependent transport calculation with feedback. The
TML scheme is still a first-order method and finer time steps are necessary to further improve
the accuracy of the simulations. However, the potential exists for numerical stability issue and
significantly higher computational costs as the time step size is refined. Therefore, high-order
methods should be considered in the future, which would include the development of an improved
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ATS method. It would be important to perform this work within the framework of the coupled
neutronics and TH field solution. The ultimate goal in the future could be to solve the time-
dependent neutron transport equation (NTE) fully coupled with TH using the high-order methods.

Finally, preliminary numerical results have shown that using 1GCMFD acceleration and a
multigrid solver can reduce the run time of the whole-core simulations by more than 50%. How-
ever, because of limitations in the accuracy of the solver, the current multigrid method is not
suitable for the adjoint problem and CMFD TFSP. An area of future research would be to improve
the multigrid solver so that CMFD TFSP can be solved more accurately and efficiently.
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APPENDIX A

Fourier Analysis of the Stability of the Steady-state
iteration Methods

A.1 Fourier Analysis for Spatially Continuous Problem

In this section, we present the derivation process of the Fourier analysis results shown in Chapter 5
for the spatially continuous problems.

A.1.1 Inner Nonlinear Coupling Term Calculation

To start with, we assume no feedback is present, the low-order diffusion problem is fully converged
and the D̂ and D̃ is calculated for every inner iteration.

Then the solution of the low-order diffusion problem is written as:

− d

dx
D(n,m) (x)

d

dx
φ(n,m+1) (x) +

(
Σa (x) + D̂(n,m) (x)

)
φ(n,m+1) (x)

= λ(n,m+1)νΣfφ
(n,m+1) (x) ,

(A.1)

with

D(n,m) (x) =
1

3Σ
(n,m)
t (x)

, (A.2a)

D̂(n,m) (x) =
d
dx

[
J (n) (x) +D(n,m) (x) d

dx
φ(n,m) (x)

]
φ(n,m) (x)

. (A.2b)

To update the transport source, we let φ(n+ 1
2) = φφ(n+ 1

2),M . Introduce the linearization:

φ(n,m) (x) = Φ0 + εφ
(n,m)
1 (x) , (A.3a)

J (n) (x) = εJ
(n)
1 (x) , (A.3b)
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φ(n+ 1
2) (x) = Φ0 + εφ

(n+ 1
2)

1 (x) , (A.3c)

λ(n,m) = λ0 +O(ε2) . (A.3d)

As introduced in Chapter 3, Φ0 and λ0 are converged solutions. Substituting Eqs. (A.3) and
Eqs. (A.2) into Eq. (A.1), and omitting O (ε2) term we have

−ε d
dx

1

3Σt0

dφ
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dx
+ εΣa0φ
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+ ε

(
dJ
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+
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1
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= εΣa0φ

(n,m+1)
1 .

(A.4)

The Fourier Ansatz is introduced by assuming:

φ
(n)
1 (x) = θnβ1e

iωΣt0x , (A.5a)

J
(n)
1 (x) = θniβ2e

iωΣt0x , (A.5b)

φ
(n,m)
1 (x) = θnα(m)eiωΣt0x , (A.5c)

φ
(n+ 1

2)
1 (x) = θnβ3e

iωΣt0x . (A.5d)

Then we obtain
α(m+1) =

3

ω
β2 + α(m) =

3 (m+ 1)

ω
β2 + α(0) . (A.6)

Since
α(0) = β1 , (A.7)

and the number of inner iterations performed is M . Therefore

β3 = α(M) =
3M

ω
β2 + β1 . (A.8)

In the Fourier analysis of NDA, we have the relation:

θβ1 = fTS (ω) β3 , (A.9a)

θβ2 = − 1

ω

[
1− fTS (ω)

]
β3 . (A.9b)

Therefore multiplying Eq. (A.8) by θ, and substituting Eqs. (A.9) into the multiplied equation, we
obtain

θβ3 = fTS (ω) β3 −
3M

ω2

[
1− fTS (ω)

]
β3 , (A.10)
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that is simplified to

θ (ω) = fTS (ω)− 3M

ω2

[
1− fTS (ω)

]
. (A.11)

A.1.2 NFCDA

Now, assume that the Nonlinear Fully Coupled Diffusion Acceleration (NFCDA) equation is
solved exactly without instability.

The low-order diffusion problem is

− d

dx
D(n+ 1

2)dφ
(n+ 1

2)

dx
+

[
Σ

(n+ 1
2)

a (x) + D̂(n) (x)

]
φ(n+ 1

2) (x) =

λ(n+ 1
2)
[
νΣ

(n+ 1
2)

f (x)

]
φ(n+ 1

2) (x) ,

(A.12)

with

Σ
(n+ 1

2)
i (x) = Σi0 (x) + Σi1 (x)

(
φ(n+ 1

2) (x)− Φ0

)
i = t, s, c, γ, f · · · , (A.13)

and

D(n+ 1
2) (x) =

1

3Σ
(n+ 1

2)
t (x)

, (A.14a)

D̂(n) (x) =
d
dx

[
J (n) (x) +D(n) (x) d

dx
φ(n) (x)

]
φ(n) (x)

. (A.14b)

Introducing the linearization:

φ(n+ 1
2) (x) = Φ0 + εφ

(n+ 1
2)

1 (x) , (A.15a)

J (n) (x) = εJ
(n)
1 (x) , (A.15b)

λ(n+ 1
2) = λ0 +O(ε2) , (A.15c)

then we have the simplified relation,

− d

dx

1

3Σt0

dφ
(n+ 1

2)
1

dx
+ Σa1Φ0φ

(n+ 1
2)

1 +

(
dJ

(n)
1

dx
+

d

dx

1

3Σt0

dφ
(n)
1

dx

)
=

Σa0Σf1

Σf0

Φ0φ
(n+ 1

2)
1 . (A.16)

The Fourier Ansatz is introduced by assuming:

φ
(n)
1 (x) = θnβ1e

iωΣt0x , (A.17a)
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J
(n)
1 (x) = θniβ2e

iωΣt0x , (A.17b)

φ
(n+ 1

2)
1 (x) = θnβ3e

iωΣt0x . (A.17c)

We have
ω2

3
β3 − ωβ2 −

ω2

3
β1 = −γβ3 , (A.18)

that is simplified to

β3 =
3
ω
β2 + β1

1 + 3γ
ω2

. (A.19)

We already obtain

θβ1 = fTS (ω) (β3 − γβ1) , (3.18d revisited)

θβ2 = − 1

ω

[
1− fTS (ω)

]
(β3 − γβ1) . (3.18e revisited)

Therefore solving Eqs. (3.18d), (3.18e) and (A.19) together, we have

θ (ω) =
fNDA (ω)

1 + 3γ
ω2

− γfTS (ω) . (A.21)

A.1.3 X-CMFD

X-CMFD is a specific algorithm to solve the fully-coupled low-order diffusion problem. Assuming
M inner iterations are performed, the solution of low-order diffusion problem becomes

− d

dx
D(n,m)dφ

(n,m)

dx
+
[
Σ(n,m)
a (x) + D̂(n) (x)

]
φ(n,m) (x) =

λ(n,m)
[
νΣ

(n,m)
f (x)

]
φ(n,m) (x) ,

(A.22)

with
Σ

(n,m)
i (x) = Σi0 (x) + Σi1 (x)

(
φ(n,m−1) (x)− Φ0

)
i = t, s, c, γ, f · · · , (A.23)

Then we have the simplified relation,

− d

dx

1

3Σt0

dφ
(n,m)
1

dx
+ Σa1Φ0φ

(n,m−1)
1 +

(
dJ

(n)
1

dx
+

d

dx

1

3Σt0

dφ
(n)
1

dx

)
=

Σa0Σf1

Σf0

Φ0φ
(n,m−1)
1 ,

(A.24)
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Introducing the Fourier Ansatz Eqs. (A.5), we have

ω2

3
α(m) − ωβ2 −

ω2

3
β1 = −γα(m−1) , (A.25)

that is simplified to

α(m) =
3

ω
β2 + β1 −

3γ

ω2
α(m−1) . (A.26)

When the problem is solved with Wielandt shifted (WS) Power Iteration (PI), then

α(m) = ΛLα(m−1) +
(
1− ΛL

)( 3

ω
β2 + β1 −

γ

ω2
α(m−1)

)
. (A.27)

The expression is simplified to

α(m) =
[ (

ΛL − 1
)( γ

1
3
ω2

)
+ ΛL

]m(
β1 −

3
ω
β2 + β1

3γ
ω2 + 1

)
+

3
ω
β2 + β1

3γ
ω2 + 1

. (A.28)

Define

a =
[ (

ΛL − 1
)( γ

1
3
ω2

)
+ ΛL

]M
, (A.29a)

b =
3γ

ω2
+ 1 . (A.29b)

Therefore

β3 = α(M) = a

(
β1 −

3
ω
β2 + β1

b

)
+

3
ω
β2 + β1

b
. (A.30)

We already have

θβ1 = fTS (ω) (β3 − γβ1) , (3.18d revisited)

θβ2 = − 1

ω

[
1− fTS (ω)

]
(β3 − γβ1) . (3.18e revisited)

Then we can obtain

θ (ω) =

(
a+

1− a
b
− γ
)
fTS (ω)− 3

ω2

1− a
b

[
1− fTS (ω)

]
. (A.32)
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A.2 Discretized Problem

A.2.1 Partially Converged CMFD

The derivation of the expression for the stability of the partially converged CMFD starts with the
discretized form of the neutron transport equation:

µp
ψ

(n)
k,p − ψ

(n)

k− 1
2
,p

h
+ Σ

(n)
t,k ψ

(n)
k,p =

Σ
(n)
s,kφ

(n+ 1
2)

k

2
+
νΣ

(n)
f,kφ

(n+ 1
2)

k

2
λ(n+ 1

2) , (A.33a)

1 ≤ k ≤ K , 1 ≤ p ≤ P ,

where

k = integer index which represents the fine cell center flux,

K = integer which represents the number of fine cells,

k ± 1
2

= index which represents the fine cell edge value,

p = integer index which represents the discrete angle,

P = integer which represents the total number of discrete angles,

h = fine cell size.

Closure of the discretized equation is finalized with the auxiliary equations for spatial differ-
encing as defined in Eq. (A.34):

ψ
(n)
k =

1 + αp
2

ψ
(n)
k,p +

1− αp
2

ψ
(n)

k− 1
2
,p
. (A.34)

Here we use
αp = coth

Σth

2µp
− 2µp

Σth
, (A.35)

for step-characteristic differencing.
The balance equation of CMFD is written as shown in Eqs. (A.36).

J
(n+ 1

2)
j+ 1

2

− J(n+ 1
2)

j− 1
2

∆j

+ Σ
(n)
t,j Φ

(n+ 1
2)

j = Σ
(n)
s,j Φ

(n+ 1
2)

j + λ(n+ 1
2)νΣ

(n)
f,jΦ

(n+ 1
2)

j , (A.36a)

J
(n+ 1

2)
j+ 1

2

= −D(n)
j,j+1

[
Φ

(n+ 1
2)

j+1 − Φ
(n+ 1

2)
j

]
+ D̂

(n)

j+ 1
2

[
Φ

(n+ 1
2)

j+1 + Φ
(n+ 1

2)
j

]
, (A.36b)
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of which coefficients are calculated from the homogenization process as:

Φ
(n)
j =

1

q

∑
k∈Cj

φ
(n)
k , (A.37a)

J
(n)

j− 1
2

=
P∑
p=1

wpµpψ
(n)

q(j−1)+ 1
2
,p
, (A.37b)

D
(n)
j,j+1 =

2D
(n)
j D

(n)
j+1

∆jD
(n)
j+1 + ∆j+1D

(n)
j

, (A.37c)

D̂
(n)

j+ 1
2

=
J

(n)

j+ 1
2

+D
(n)
j,j+1

[
Φ

(n)
j+1 − Φ

(n)
j

]
[
Φ

(n)
j+1 + Φ

(n)
j

] , (A.37d)

Σ
(n)
i,j =

∑
k∈Cj

Σ
(n)
i,k φ

(n+ 1
2)

k

Φ
(n)
j

, (A.37e)

where Cj is the range of coarse cell, ∆ is the size of the coarse cell, q is the number of fine cells
per coarse cell. Eqs. (A.36) are solved with WS power iteration as shown in Algorithm 4. The
overall algorithm of the CMFD-accelerated transport iteration is almost the same as Algorithm 8,
and is omitted for simplicity. It is assumed that the solution can be linearized by:

ψ
(n)
k,p =

Φ0

2
+ εψ̃

(n)
k,p , (A.38a)

φ
(n)
k = Φ0 + εφ̃

(n)
k , (A.38b)

J
(n)

j− 1
2

= εJ̃
(n)

j− 1
2

, (A.38c)

Φ
(n)
j = Φ0 + εΦ̃

(n)
j , (A.38d)

φ
(n)
k = Φ0 + εφ̃

(n)
k , (A.38e)

Φ
(n+ 1

2)
j = Φ0 + εΦ̃

(n+ 1
2)

j , (A.38f)

λ(n+1) =
Σa0

νΣf0

+O
(
ε2
)
. (A.38g)

Eqs. (A.38) are then substituted into Eqs. (A.33) to (A.37).
On the fine mesh, when the linear feedback is applied, the cross section is calculated by:

Σ
(n)
i,k = Σi0 + Σi1

(
φ

(n)
k − Φ0

)
= Σi0,k + Σi1,kεφ̃

(n)
k . (A.39)
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Then the coefficients calculated during the homogenization process is rewritten as:

Σ
(n)
i,j =

∑
k∈Cj

(
Σi0 + εΣi1φ̃

(n)
k

)(
Φ0 + εφ̃

(n)
k

)
∑

k∈Cj

(
Φ0 + εφ̃

(n)
k

) = Σi0 + εΣi1

1

q

∑
k∈Cj

φ̃
(n)
k

 ,

= Σi0 + εΣi1

(
Φ

(n)
j − Φ0

)
,

(A.40a)

D
(n)
j,j+1 =

1

3∆Σt0

+ εD̃
(n)
j,j+1 , (A.40b)

D̂
(n)

j− 1
2

=
εJ̃

(n)
j+1 +

(
1

3Σt0
+ εD̃

)
ε
(

Φ̃
(n)
j+1−Φ̃

(n)
j

)
∆

2Φ0 + ε
(

Φ̃
(n)
j + Φ̃

(n)
j+1

) = ε
1

2Φ0

J̃
(n)

j− 1
2

−
ε
(

Φ̃
(n)
j+1 − Φ̃

(n)
j

)
3Σt0∆

. (A.40c)

Therefore Eqs. (A.36) are expressed as:

−
ε
(

Φ̃
(n+ 1

2)
j+1 + Φ̃

(n+ 1
2)

j−1 − 2Φ̃
(n+ 1

2)
j

)
3Σt0∆2

+ ε
J̃

(n)

j+ 1
2

− J̃ (n)

j− 1
2

∆
+
ε
(

Φ̃
(n)
j+1 + Φ̃

(n)
j−1 − 2Φ̃

(n)
j

)
3Σt0∆2

+ε

(
Σa0Φ̃

(n+ 1
2)

j + Σa1Φ̃
(n+ 1

2)
j Φ0

)
= ελ0

(
νΣf0Φ̃

(n+ 1
2)

j + νΣf1Φ0Φ̃
(n+ 1

2)
j

)
.

(A.41)

Cancelling the ε term, the error transition of solving the low-order diffusion problem is

−

(
Φ̃

(n+ 1
2)

j+1 + Φ̃
(n+ 1

2)
j−1 − 2Φ̃

(n+ 1
2)

j

)
3Σt0∆2

+
J̃

(n)

j+ 1
2

− J̃ (n)

j− 1
2

∆
+

(
Φ̃

(n)
j+1 + Φ̃

(n)
j−1 − 2Φ̃

(n)
j

)
3Σt0∆2

+ γΣt0Φ̃
(n)
j = 0 .

(A.42)
When WS power iteration is applied to solve the CMFD equation, the error transition during the
power iteration is

−

(
Φ̃

(n,l+1)
j+1 + Φ̃

(n,l+1)
j−1 − 2Φ̃

(n,l+1)
j

)
3Σt0∆2

+
J̃

(n)
j − J̃

(n)

j− 1
2

∆

+

(
Φ̃

(n)
j+1 + Φ̃

(n)
j−1 − 2Φ̃

(n)
j

)
3Σt0∆2

+ γΣt0Φ̃
(n)
j + (1− c′) Σt0Φ̃

(n,l+1)
j = (1− c′) Σt0Φ̃

(n,l)
j ,

(A.43)

and the error of the solution after L PIs is

Φ̃
(n+ 1

2)
j = Φ̃

(n,L)
j . (A.44)
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The fine mesh flux is corrected with the coarse mesh solution before the transport sweep. Flat
prolongation, linear prolongation and relaxation can be applied. When flat prolongation is applied,
the error of the fine mesh flux inside the jth coarse mesh is calculated by:

φ̃
(n+ 1

2)
k = φ̃

(n)
k + Φ̃

(n+ 1
2)

j − Φ̃
(n)
j , k ∈ Cj . (A.45)

When linear prolongation is used,

φ̃
(n+ 1

2)
k = φ̃

(n+ 1
2)

k +
1

2

(
Φ̃

(n)
j − Φ

(n)
j

)
+
r − 1

2

2q

(
Φ̃

(n+ 1
2)

j+1 − Φ̃
(n)

j+ 1
2

)
+
q − r + 1

2

2q

(
Φ̃

(n+ 1
2)

j−1 − Φ̃
(n)
j−1

)
, k ∈ Cj.

(A.46)

If an additional under-relaxation factor β is applied, the error of the fine mesh flux is

φ̃
(n+ 1

2)
k = φ̃

(n)
k + β

(
φ̃

(n+ 1
2)

k − φ̃(n)
k

)
. (A.47)

With the updated flux, the transport equation of the O(ε) term has the form as:

ε

µp ψ̃(n+1)

k+ 1
2
,p
− ψ̃(n+1)

k− 1
2
,p

h
+ Σt0ψ̃

(n+1)
p,k + Σt1Φ0

φ̃
(n)
k

2


= ε

Σt0
φ̃

(n+ 1
2)

k

2
+ Σs1Φ0

φ̃
(n)
k

2
+

Σa0

Σf0

Σf1Φ0
φ̃

(n)
k

2

 ,

(A.48)

which is simplified as:

µp
ψ̃

(n+1)

p,k+ 1
2

− ψ̃(n+1)

p,k− 1
2

h
+ Σt0ψ̃

(n+1)
p,k = Σt0

φ̃
(n+ 1

2)
k

2
− γΣt0

φ̃
(n)
k

2
. (A.49)

Then the errors of the fine mesh scalar flux and the current for the next outer iteration are obtained
by

φ̃
(n+1)
k =

P∑
p=1

ωpψ̃
(n)
p,k , (A.50a)

J̃
(n+1)

j− 1
2

=
P∑
p=1

ωpµpψ̃
(n)
p,(j−1)q+1 . (A.50b)
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The Fourier Ansatz is

ψ̃
(n)
k,p = A(n)

r,p e
iΣt0∆ωj , (A.51a)

Φ̃
(n)
j = C(n)eiΣt0∆ωj , (A.51b)

Φ̃
(n,l)
j = B(n,l)eiΣt0∆ωj , (A.51c)

Φ̃
(n+ 1

2)
j = R(n)eiΣt0∆ωj , (A.51d)

J̃
(n+ 1

2)
j− 1

2

= G(n)eiΣt0∆ωj , (A.51e)

φ̃
(n+ 1

2)
k = F (n)

r eiΣt0∆ωj , (A.51f)

φ̃
(n)
k = E(n)

r eiΣt0∆ωj . (A.51g)

Then error transition during homogenization is

C(n) =
1T

q
E(n) . (A.52a)

When WS power iteration is used, the relation of the errors involved in the CMFD equation is
written as:[2− 2cos (ωΣt0∆)

3Σt0∆2
+ (1− c′)Σt0

]
B(n,l+1) +

1

∆
G(n)

(
eiωΣt0∆ − 1

)
−
[2− 2cos (ωΣt0∆)

3Σt0∆2
− γΣt0

]
C(n) = Σt0 (1− c′)B(n,l) ,

(A.53)
with

B(n,0) = C(n) . (A.54)

Define
Θ = ωΣt0∆ . (A.55)

Then the error of the coarse mesh fluxed calculated by CMFD equation is:

R(n) = B(n,L) =
[ 1− c′

2−2cos(Σt0∆ω)

3(Σt0∆)2 + 1− c′
]L[

C(n) −
(
α(n) + C(n)

) ]
+
(
α(n) + C(n)

)
, (A.56)

where

α(n) =
−G(n)

Σt0∆

(
eiΘ − 1

)
− γC(n)

2−2cos(Θ)

3(Σt0∆)2

=
−G(n) (3Σt0∆)

(
eiΘ − 1

)
− γ3 (Σt0∆)2C(n)

2− 2cos (Θ)
. (A.57)
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The expression in Eq. (A.56) is eventually simplified as:

R(n) =
(
1− ΛL

)
α(n) + C(n) , (A.58)

with
Λ =

1− c′
2−2cos(Σt0∆ω)

3(Σt0∆)2 + 1− c′
. (A.59)

Thus the error of the corrected fine mesh flux is:

F̃(n) = E(n) +
(
R(n) − C(n)

)
u = E(n) +

(
1− ΛL

)
α(n)u . (A.60)

u ∈ Cq is the vector characterizing how the solution from the CMFD is used to update the transport
solutions. When flat prolongation or linear prolongation, the rth element of u is defined as:

ur =

1 , flat prolongation ,
2q+(2q−2r+1)e−iΘ+(2r−1)eiΘ

4q
, linear prolongation .

(A.61)

In matrix form, the errors of the transport solution and the current at the boundary of the coarse
mesh are written as:

E(n+1) = H̃
(
F(n) − γE(n)

)
, (A.62a)

G(n+1) = G̃
(
F(n) − γE(n)

)
, (A.62b)

The definition of H̃ and G̃ can be found in [16, 76]. Therefore the error of the fine mesh flux E

and the error of the current G at the boundary of the same coarse mesh are related by:

G(n) = G̃H̃−1E(n) . (A.63)

Substituting Eq. (A.60) in Eq. (A.62a), the error of the transport solutions of nth and the next
transport solution are correlated in the form as:

E(n+1) = H̃ (1− γ) E(n) + H̃
(
1− ΛL

)
α(n)u ,

= H̃ (1− γ) E(n) + H̃
(
1− ΛL

)
u
− (3Σt0∆)

(
eiΘ − 1

)
G(n) − γ3 (Σt0∆)2 1T

q
E(n)

2− 2cos (Θ)
,

= H̃ (1− γ) E(n) + H̃
(
1− ΛL

)
u
− (3Σt0∆)

(
eiΘ − 1

)
G̃H̃−1 − γ3 (Σt0∆)2 1T

q

2− 2cos (Θ)
E(n) .

(A.64)
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The relation is reformulated as:

H̃−1E(n+1) =
[
H̃ (1− γ) +

(
1− ΛL

)
u
− (3Σt0∆)

(
eiΘ − 1

)
G̃− γ3 (Σt0∆)2 1T

q
H̃

2− 2cos (Θ)

]
H̃−1E(n) .

(A.65)
Therefore the error transition matrix is

T (ω) = H̃ (1− γ) +
(
1− ΛL

)
u
− (3Σt0∆)

(
eiΘ − 1

)
G̃− γ3 (Σt0∆)2 1T

q
H̃

2− 2cos (Θ)
. (A.66)

If the low-order problem is fully converged, then the error of the solution is calculated by[2− 2cos (ωΣt0∆)

3Σt0∆2

]
R(n)+

1

∆
G(n)

(
eiωΣt0∆ − 1

)
−
[2− 2cos (ωΣt0∆)

3Σt0∆2
−γΣt0

]
C(n) = 0 , (A.67)

which leads to
R(n) = α(n) + C(n). (A.68)

Following the same procedure as shown from Eqs. (A.60) to (A.66), the error transition matrix is

T (ω) = H̃ (1− γ) + u
− (3Σt0∆)

(
eiΘ − 1

)
G̃− γ3 (Σt0∆)2 1T

q
H̃

2− 2cos (Θ)
. (A.69)

When under-relaxation factor β is also used to update the flux, then

F̃(n) = E(n) +
(
R(n) − C(n)

)
uβ . (A.70)

Following the same procedure as shown in Eqs. (A.60) to (A.66), the error transition matrix is

T (ω) = H̃ (1− γ)− uβ
(3Σt0∆)

(
eiΘ − 1

)
G̃ + γ3 (Σt0∆)2 1T

q
H̃

2− 2cos (Θ)
. (A.71)

A.2.2 X-CMFD

Most of the derivation process for the X-CMFD is the same as the partially converged CMFD. The
balance equation of CMFD is written as shown in Appendix A.2.2.

J
(n,m)

j+ 1
2

− J (n,m)

j− 1
2

∆j

+ Σ
(n)
t,j Φ

(n,m)
j = Σ

(n)
s,j Φ

(n,m)
j + λ(n,m)νΣ

(n)
f,jΦ

(n,m)
j , (A.72a)

J
(n,m)

j+ 1
2

= −D(n)
j,j+1

(
Φ

(n,m)
j+1 − Φ

(n,m)
j

)
+ D̂

(n)

j+ 1
2

(
Φ

(n,m)
j+1 + Φ

(n,m)
j

)
. (A.72b)
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The linear discretization is

J
(n,m)

j− 1
2

= εJ̃
(n,m)

j− 1
2

, (A.73a)

Φ
(n,m)
j = Φ0 + εΦ̃

(n,m)
j , (A.73b)

φ
(n,m)
k = Φ0 + εφ̃

(n)
k , (A.73c)

Φ
(n)
j = Φ0 + εΦ̃

(n,m)
j , (A.73d)

λ(n,m) =
Σa0

νΣf0

+O
(
ε2
)
. (A.73e)

On the fine mesh, when the linear feedback is applied, the cross section is calculated by:

Σ
(n,m)
i,k = Σi0 + Σi1

(
φ

(n,m−1)
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)
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Then the coefficients calculated during the homogenization process is rewritten as:
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(A.75)

Note that it has been assumed that the transport flux is updated for every inner iteration, and the
fine mesh is updated and homogenized to obtain the CMFD coefficient. Therefore Appendix A.2.2
are expressed as:
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(A.76)

Cancelling the ε term, the error transition of solving the low-order diffusion problem is

−

(
Φ̃

(n,m)
j+1 + Φ̃

(n,m)
j−1 − 2Φ̃

(n,m)
j

)
3Σt0∆2

+
J̃

(n)

j+ 1
2

− J̃ (n)

j− 1
2

∆

+

(
Φ̃

(n)
j+1 + Φ̃

(n)
j−1 − 2Φ̃

(n)
j

)
3Σt0∆2

+ γΣt0Φ̃
(n,m−1)
j = 0 .

(A.77)
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It is assumed that L WS PIs with WS ratio r are performed to solve the low-order diffusion
problem for each power iteration. Then

Φ̃
(n+ 1

2)
j = Φ̃

(n,M,L)
j . (A.78)

The new Fourier Ansatz is
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(A.79)

When WS power iteration is used, the relation of the errors involved in the CMFD equation is
written as:[2− 2cos (ωΣt0∆)

3Σt0∆2
+ (1− c′)Σt0

]
B(n,m,l+1) +

1
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(A.80)
with

B(n,m+1) = B(n,m,L) . (A.81)

Then the error of the coarse mesh fluxed calculated by CMFD equation for mth inner iteration
is:

B(n,m) =
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(A.82)
After M inner iterations are performed, the error of the CMFD solution is:
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(A.83)
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with

a(ω) =
[ (

ΛL(ω)− 1
) γ3

(
Σt∆

)2

2− 2cos
(

Σt∆ω
) + ΛL(ω)

]M
. (A.84)

Following the same derivation process from Eqs. (A.64) to (A.71), we obtain the error transition
matrix:

T (ω) = H̃ (1− γ)−
[
1− a (ω)

]
u

(3Σt0∆)
(
eiΘ − 1

)
G̃ + γ3 (Σt0∆)2 1T

q
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2− 2cos (Θ) + γ3 (Σt0∆)2 . (A.85)

239



APPENDIX B

Description of Transient Problems

B.1 Pin Test Problem

The pin test problem is developed based on the VERA core physics progression problem 1 in [98].
The fuel material is initially UO2 with 3.1% enrichment.

When the transient problem is simulated with TH, the rated power of the fuel is 179 W, and the
initial power is 100% fp.

For the pin problem in Figures 7.6, the transient process starts with changing the enrichment
from 3.1% to 3.3% in 0.025 s. The maximum reactivity is $1.98.

For the pin problem in Figures 7.11, the transient process starts with changing the enrichment
from 3.1% to 3.2% in 0.025 s. And the maximum reactivity is $1.0278.

For the pin problem with maximum reactivity of $1.43 in Figure 8.2, the transient process starts
with changing the enrichment from 3.1% to 3.24% in 0.05 s.

For the pin problem with maximum reactivity of $0.53 in Figure 8.2, the transient process starts
with changing the enrichment from 3.1% to 3.15% in 0.05 s.

B.2 SPERT-2D Test Problem

SPERT-2D test problem is a 2D layer of a 4×4 mini core problem that models 16 fuel assemblies
with quarter-core geometry. The layout of the core is shown in Figure B.1. The model consists
of four fuel assemblies, which include two 5×5 assemblies, one control rod follower 4×4 assem-
bly, and one transient 4×4 assembly. The transient assembly locates at the lower right corner in
Figure B.1 and contains one quarter of the cruciform transient rod composed of 1.35 wt% borated
steel. All the assemblies are from SPERT III E-Core experiments and the modeling of their ge-
ometries, materials can be found in [55, 92]. The thickness of the layer is 6.942667 cm and the
rated power (full power) is 200 kW.
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Figure B.1: Layout of the SPERT-2D test problem.

The transient process is induced by withdrawing the rod is out of the core in 0.05 s. The
reactivity inserted is around $1.10. For the modeling, the transient rod is replaced with stainless
steel. The initial power is 0.01% full power for the HZP cases, and is 100% for the HFP cases.
The inlet temperature is 533.15 K. The simplified-TH is used for modeling [89]. The problem is
simulated with the 47-group library.

B.3 SPERT-3D Test Problem

SPERT-3D test problem is a 3D transient assembly from SPERT III E-core. The problem is devel-
oped based on the stripped assembly case [54]. The radial geometry is shown in Figures B.2.

The bottom two layers are end-plug and no fuel is present. Above the end-plug are the three
assemblies inserted with a transient blade. The absorber for the two assemblies is simultaneously
replaced with stainless steel in 0.05 s.

The rated power of the problem is 100 kW. The initial power is 0.01% full power for the HZP
cases, and is 100% for the HFP cases. The reactivity inserted is $1.37. The inlet temperature
is 533.15 K. The problem is simulated with the 47-group library. The simplified-TH is used for
modeling [89]. All the boundaries are reflective, except that the bottom boundary is the vacuum.
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(a)

SS-Stainless Fuel

Fuel & SS

Fuel & SS

Fuel & SS

Fuel & SS
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6.096 cm

6.942677 cm

End Plug

End Plug

6.080125 cm
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Fuel & SS

Fuel & SS

Fuel & SS
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End Plug

End Plug
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t=0 s t=0.05 s

(b)

Figure B.2: Layout of the SPERT-3D test problem. (a) is the 2D geometry. (b) is the axial layer
layout.
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