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Abstract 

 

Atmospheric aerosols impact climate by scattering or absorbing solar radiation and by 

participating in the formation of clouds and ice crystals. Additionally, the inhalation of aerosol 

particles contributes significantly to cardiovascular and cardiopulmonary diseases, and is a leading 

cause of mortality on a global scale. Despite the climate and health implications of aerosol 

particles, the magnitude of their impacts is still highly uncertain. The physical and chemical 

(physicochemical) properties of aerosol particles determine their impacts, though these properties 

are analytically challenging to measure due to their small size, chemical complexity, and 

continuous evolution in the atmosphere. Single-particle methods are necessary to build upon our 

understanding of the multiphase aerosol processes occurring in the atmosphere, and to elucidate 

the impact of these particles on climate and health. In this dissertation, single-particle microscopic 

and spectroscopic methods were applied to study both ambient and laboratory-generated particles 

to enable better predictions of the climate and health impacts of aerosol particles.   

Secondary organic aerosol (SOA), formed from multiphase reactions between aerosol 

particles and atmospheric gases, was systematically studied in an indoor atmospheric chamber. 

Particles were collected at multiple points during the multiphase reaction for physicochemical 

analysis using electron microscopy, atomic force microscopy, and Raman microspectroscopy. 

Particles underwent physicochemical transformation after heterogeneous reactions, leading to the 

formation of isoprene-derived organosulfate compounds in the particle phase that increased 

particle viscosity and altered the internal structure of particles. This study highlighted the dynamic 

physicochemical properties of SOA, a major fraction of organic aerosol in the atmosphere.  

 Particles emitted from freshwater lakes, known as lake spray aerosol (LSA), were studied 

through laboratory and ambient observations to determine the impacts of this newly identified 

particle type on climate and health. An aircraft campaign used microscopy to show that cloudwater 

and ambient LSA over Lake Michigan have very similar physicochemical properties, suggesting 

the incorporation of LSA into clouds with likely contributions to lake-effect precipitation. In a 

separate study, freshwater was collected during a severe harmful algal bloom (HAB) and analyzed 



 xvii 

for algal toxins using mass spectrometry. Aerosol particles were generated in the laboratory from 

the freshwater samples, with an observed enrichment of hydrophobic toxins in the aerosol phase. 

Following this laboratory-based study, a field campaign was performed at a lake experiencing a 

severe HAB. Freshwater and aerosol samples were analyzed for the presence of algal toxins using 

mass spectrometry and infrared spectroscopy, and the amount of aerosolized toxins in ambient 

environments was determined. These projects highlight a new route of exposure to HAB toxins 

that has implications for people living near or downwind of HABs globally.  

 Lastly, a new analytical spectroscopy method was developed and applied to characterize 

vibrational modes present in submicron aerosol particles. This method combined optical 

photothermal infrared (O-PTIR) and Raman spectroscopy for simultaneous spectroscopic 

acquisition. This project identified the ideal substrate for analysis, characterized single- and multi-

component standards, and showed the first classification of ambient aerosol particles with O-PTIR 

+ Raman. The spectroscopic analysis of submicron particles enabled exploration of samples 

previously unstudied by vibrational spectroscopy, significantly advancing the fields of 

atmospheric and analytical chemistry.  

The methods and results obtained in this dissertation have resulted in detailed 

measurements of particle physicochemical properties, providing new insights into the mechanisms 

of multiphase atmospheric processing and improving understanding of the impacts of aerosols on 

climate and human health. 
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Chapter 1. Introduction 

 

1.1 Characteristics and Formation of Atmospheric Aerosol Particles 

Atmospheric aerosols are a collection of solid or liquid particles suspended in the air.1 

Aerosol particles can range in size from 1 nm to 100 µm in diameter, with modes referring to 

nucleation (< 10 nm), Aitken (10 – 100 nm), accumulation (100 – 1000 nm), and course (>1 µm) 

size ranges.2 Particles are formed from a plethora of natural and anthropogenic sources, each with 

complex physical and chemical (physicochemical) properties that vary for each individual 

particle.1,3 Aerosols can be directly emitted into the atmosphere as solid or liquid particles, 

otherwise known as primary aerosol.1 One example of primary aerosol is the production of lake 

spray aerosol (LSA) from wave-breaking and bubble bursting in freshwater environments.4,5 

Conversely, secondary particles are formed through the oxidation and condensation of atmospheric 

gases onto pre-existing particulate matter.1,6 In addition to secondary aerosol formation, particles 

can undergo modifications resulting from multiphase physicochemical  processing during their 

atmospheric lifetime.1 Particulate matter has a range of possible morphologies, from nearly 

spherical (like secondary aerosol) to amorphous (like LSA) to chain agglomerates (like soot).5,7,8 

Aerosol particles impact climate and human health, with the extent of these impacts dependent on 

particle physicochemical properties.1,3 

1.1.1 Impacts on Climate and Human Health 

Atmospheric aerosol particles affect climate directly by scattering or absorbing solar 

radiation and indirectly by acting as cloud condensation nuclei (CCN) or ice nucleating particles 

(INP).1,6,9 Atmospheric particles represent the largest source of uncertainty in global radiative 

forcing (Figure 1.1) due to their complex and dynamic physiochemical properties, combined with 

high temporal and spatial variability.10 In addition to impacting climate, increased concentrations 

of atmospheric particles are linked to negative health effects,11 with over 4 million premature 

deaths attributed annually to atmospheric pollution.12 Despite the importance of aerosols, 
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mechanistic understanding of many key atmospheric processes remains low, in part due to 

challenges associated with measuring dynamic aerosol physicochemical properties. With aerosol 

impacts closely tied to the properties of individual particles, understanding the chemical 

composition and distribution of species within populations is essential to uncovering the extent of 

their influence. 

 

Figure 1.1. Radiative forcing estimates and uncertainties for greenhouse gases and aerosols. 

Reproduced from Stocker et al.10 

1.1.2 Aerosol Mixing State 

Aerosol physicochemical mixing state is an all-encompassing term that refers to the 

distribution of both chemical and physical features within an aerosol population, and is challenging 

to measure and quantify.3,13,14 The distribution of chemical species within an aerosol population 

can be described in terms of external and internal mixtures. An external mixture consists of 

particles that contain only one pure species per particle (e.g. ammonium sulfate or soot), while an 

internal mixture describes a population where each particle has the same chemical species present 

in the same abundance (e.g. all particles contain the same amounts of sulfate and soot).13 However, 

internal and external mixtures are idealized cases, and neither are representative of most ambient 

aerosol populations. As changes in chemical composition affect particle properties such as 



 3 

reactivity,15,16 hygroscopicity,17 and optical scattering,18,19 it is imperative to understand the 

chemical mixing state of individual particles in a population. Figure 1.2 illustrates the different 

chemical and physical aspects that can be incorporated into aerosol mixing state.3 Despite the 

important implications of mixing state for aerosol impacts on climate, few direct measurements of 

aerosol mixing state exist because this requires the measurement of individual particles which is 

time intensive and analytically challenging. 

 

 

Figure 1.2. Representations of particle composition with increasing complexity and detail. 
Chemical mixing state provides information on primary versus secondary components, but does 

not provide spatial information or other physical properties. Physicochemical mixing state 

provides both chemical detail and spatial information or physical properties. Note that the locations 

of the colors in the chemical mixing state particles are not meant to convey spatial distribution, 

only the presence of both primary and secondary components. Reproduced from Ault and Axson.3 

 

1.2 Physicochemical Characterization of Individual Aerosol Particles 

Single–particle microscopic and spectroscopic methods can be used to study aerosol 

physicochemical mixing state.3 Microscopy provides information on particle size and morphology, 
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while spectroscopic methods yield detailed chemical information regarding elemental composition 

or functional groups present, depending on the type of spectroscopy utilized. The offline and non-

destructive nature of these techniques allows for analysis of the same sample by multiple 

techniques, providing a multimodal approach to characterizing aerosol mixing state. Typically, an 

aerosol impactor with size-resolved stages collects particles onto substrates for various offline 

microscopic and spectroscopic analyses. The single–particle microscopy and spectroscopy 

methods used in this dissertation are described below.  

1.2.1 Electron Microscopy 

Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) has 

been used to characterize the structure and elemental composition of aerosol particles down to 50 

nm in diameter.3,5,20-24 With SEM, an electron beam is focused on the sample to produce images 

of particles impacted onto substrates. The ability to detect different electronic transitions provides 

information on surface structure (if utilizing back-scattered electrons and a thicker substrate) or 

internal features (if utilizing transmitted electrons and a thin sample),3 depending on the substrate 

and sample composition. Recently, tilted-SEM has been used to obtain information on three-

dimensional particle morphology by imaging particles at separate angles.25,26 Electron imaging 

releases element-specific X-rays that can be collected simultaneously to obtain semi-quantitative 

elemental spectra with high spatial resolution (<10 nm).3 Rastering the electron beam across the 

sample, otherwise known as elemental mapping, provides physicochemical mixing state 

information for individual particles with different elemental composition and structure (Figure 

1.3).27 The automation of computer-controlled SEM-EDX (CCSEM-EDX) allows for analysis of 

thousands of particles per sample to increase throughput and enables analysis of a statistically 

representative number of particles.3,23,28 Clustering algorithms have been developed for analysis 

of large CCSEM-EDX datasets to mathematically group individual particles based on 

physicochemical similarity and limit human bias during sorting.29-32 The grouping of similar 

particles enables size-resolved characterization of aerosol sources. 
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Figure 1.3. Example SEM images and EDX maps of lake spray and sea spray aerosol. SEM images 

and EDX elemental maps of representative: (A) SSA and (B) LSA particles collected at UMBS on 

July 16, 68 2014 9:00 – 21:00 EST, as well as LSA generated in the laboratory from (C) Lake 

Superior and (D) Lake Michigan freshwater sample. Reproduced from May et al.27 

1.2.2 Raman Microspectroscopy 

Raman microspectroscopy has been used to characterize aerosol physicochemical 

properties by combining an optical microscope with vibrational spectra that probe functional 

groups present in individual particles > 1 µm.3,22,33-37 Raman spectroscopy probes molecular 

vibrations, rather than the electronic transitions utilized in SEM-EDX, to provide information on 

covalently bonded organic and inorganic functional groups. Raman spectroscopy has the 

sensitivity to differentiate species in slightly different bonding environments (i.e. NaNO3 vs. NO3
-

),38 which can be extremely useful in determining aerosol evolution and aging. Raman has also 

been used to study the relative abundances of acids and their conjugate bases to calculate the pH 

of individual aerosol particles.33,35 This high sensitivity has allowed for the detection of complex 

organosulfate species, an indicator of multiphase isoprene epoxydiol uptake,39-41 in individual 

particles generated in the laboratory34 and observed in the ambient environment.42 Similar to SEM-

EDX, mapping can be performed to identify the location of specific molecular species within an 

individual aerosol particle (Figure 1.4),43 enabling analysis of aerosol physicochemical properties. 

In addition to the detailed chemical information obtained by Raman, another advantage over SEM-

EDX is that Raman analysis is performed under ambient pressure and temperature to limit particle 

distortion and the loss of volatile species. Furthermore, the coupling of relative humidity (RH) 

cells to Raman analysis has enabled study of the hygroscopic growth of particles,44 which is 
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challenging to do under the vacuum conditions of traditional SEM. Recently, a computer-

controlled method (CC-Raman) was developed to enable analysis of hundreds of particles per 

sample.45 Though recent advances of Raman, such as surface enhanced Raman spectroscopy 

(SERS)43,46 and tip enhanced Raman spectroscopy (TERS),47 have allowed for analysis of slightly 

submicron particles, the uneven enhancements observed make it difficult to perform quantitative 

measurements. Similarly, the ability of biological and mineral dust particles to naturally 

fluoresce48,49 can often overwhelm Raman signal and often requires coupling to other vibrational 

spectroscopies, such as infrared (IR). 

 

Figure 1.4. Raman map of an aerosol particle with highlighted regions showing the locations of 

specific vibrational modes. (a) Optical image of aerosol particle, (highlighted in red) against SERS 

substrates, and mapped area (blue box). (b) Map of the aerosol particle (outlined in yellow dashes) 

showing the location of three different enhanced chemical species at 1022 cm−1 (green), 1370 cm−1 

(red), and 1480 cm−1 (blue). (c) Raman spectra accompanying the mapped intensities. Reproduced 

from Craig et al.43 
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1.2.3 Atomic Force Microscopy – Infrared Spectroscopy 

Atomic force microscopy coupled to infrared spectroscopy (AFM-IR) has recently been 

applied to study IR-active vibrational modes in aerosol particles down to 50 nm under ambient 

conditions.50-52 By detecting the photothermal expansion of an individual particle illuminated by a 

tunable IR laser with a cantilever, IR absorption-like spectra can be obtained with < 50 nm spatial 

resolution (Figure 1.5).53-55 This technique enables analysis of samples under the diffraction-

limited resolution of other vibrational spectroscopies, such as Raman and IR. The combination of 

IR spectra with the high-resolution imaging obtained from traditional AFM has enabled study of 

particle hygroscopicity,44,56 polymer degradation,51 and particle phase state.34,50 The ability to 

detect vibrational modes in submicron particles that have relevance to the climate and health 

impacts of particles is a significant breakthrough for both analytical and atmospheric chemistry. 

However, as with any method, there are limitations. The need for the AFM tip to be in contact with 

the samples makes analysis of soft or liquid samples difficult. Additionally, obtaining spectra is 

time intensive, often taking 20+ minutes for a single spectrum and even longer to collect a map. 

Therefore, a contact-less and rapid method is needed for analysis of vibrational modes present in 

submicron aerosol particles under ambient conditions. 

 

  

Figure 1.5. Schematic of AFM-IR operation. Local thermal expansion from the IR laser is detected 

by the cantilever, allowing IR spectra with ∼50 nm resolution to be collected. IR spectra were 

collected from individual ammonium sulfate particles using AFM-IR (this study) and micro-FT-

IR. Reproduced from Bondy et al.50 
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1.2.4 Optical Photothermal Infrared (O-PTIR) + Raman Spectroscopy 

Optical photothermal infrared (O-PTIR) spectroscopy is a new, contact-less analytical 

method that circumvents the diffraction limitations of traditional IR microscopy by using changes 

in the scattering intensity of a continuous wave visible laser to detect the photothermal expansion 

that occurs when a vibrational mode is excited by a tunable IR laser (Figure 1.6).57-61 The change 

in intensity of the elastically (Rayleigh) scattered photons is processed to obtain an IR absorption-

like spectrum. As inelastically (Stokes) scattered photons are also generated, they can be 

simultaneously collected to obtain Raman spectra at the same point and with the same spatial 

resolution as the O-PTIR spectra. Because the spatial resolution is determined by the visible laser 

and not the longer-wavelength IR laser, spectra are obtained with a spatial resolution of ~500 nm, 

orders of magnitude better than previous aerosol analysis using IR microscopy.3 Like all 

previously mentioned techniques, O-PTIR is able to map the location of specific vibrational modes 

located within individual particles,62-64 giving insight into particle physicochemical properties and 

mixing state. O-PTIR + Raman was applied to study the physicochemical properties of laboratory-

generated and ambient particles for the first time as part of this work (Chapter 6). The ability to 

collect multiple types of vibrational spectra simultaneously with < 1 min acquisition times 

significantly furthers throughput of complex particle analysis. The contact-less nature of this 

technique makes it a highly useful method for studying other liquid or heterogeneous samples.  

 

Figure 1.6. Schematic of optical photothermal infrared (O-PTIR) + Raman spectroscopy. Infrared 

and visible light are focused on the sample through a Cassegrain objective, inducing a 

photothermal expansion of the particle. Light scattered from the sample (Δpscat) is proportional to 

the photothermal expansion of the particle (Δh) and absorbance of IR light (AbsIR). Simultaneous 

IR and Raman spectra are obtained from a single point. Reproduced from Olson et al.57  
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1.3 Research Objectives and Scope of Dissertation 

The research presented in this dissertation uses established and novel single–particle 

microscopy and spectroscopy methods to provide detailed information on the physicochemical 

mixing state of aerosol particles from freshwater and secondary organic sources. Chapter 2 

describes a laboratory chamber study that examines the change in particle composition and 

viscosity after reaction with atmospheric gases, providing insight into the dynamic 

physicochemical properties of atmospheric aerosol over the course of their lifetime. This Chapter 

also discusses implications for further heterogeneous uptake and climate-relevant properties such 

as water uptake and cloud formation. Chapter 3 investigates the influence of freshwater-derived 

particles on cloud formation over the Great Lakes, providing evidence that freshwater aerosol can 

contribute to cloud formation in regions with large bodies of freshwater. This Chapter gives insight 

into the climate-relevant properties of this specific particle type, which had not been previously 

studied at the single-particle level. Chapters 4 and 5 explore the aerosolization of harmful algal 

bloom toxins in freshwater environments, with separate focuses on laboratory-based experiments 

(Chapter 4) and ambient measurements (Chapter 5). The identification and quantification of algal 

toxins in aerosol particles highlights potential exposure risks for populations living near algal 

blooms globally, and suggests the importance of simultaneously measuring bulk phase (water 

column) and aerosolized toxins. Chapter 6 describes the application of O-PTIR + Raman 

spectroscopy to characterize vibrational modes present in submicron atmospheric particles for the 

first time. This Chapter also applied O-PTIR + Raman to study heterogeneous aerosol particles, 

showing that this new analytical method can be applied to other fields beyond aerosol science. 

Finally, Chapter 7 summarizes the conclusions of this work and future directions for on-going 

projects. The results presented herein improve our understanding of the physicochemical 

properties of organic and freshwater-derived particles and describe a new method to characterize 

submicron atmospheric particulate matter, ultimately furthering understanding of the climate and 

health impacts of particulate matter.  
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Chapter 2. Reactive Uptake of Isoprene Epoxydiols Increases the Viscosity of the Core of 

Phase-Separated Aerosol Particles 

 

 

Adapted with permission from Olson, N. E., Lei, Z., Craig, R. L., Zhang, Y., Chen, Y., Lambe, A. 

T., Zhang, Z., Gold, A., Surratt, J. D., and Ault, A. P.: Reactive Uptake of Isoprene Epoxydiols 

Increases the Viscosity of the Core of Phase-Separated Aerosol Particles, ACS Earth Space Chem., 

3, 8, 1402-1414, 2019. 

https://doi.org/10.1021/acsearthspacechem.9b00138  Copyright 2019 American Chemical Society 

 

2.1 Introduction 

Climate-relevant aerosol properties, such as the ability to scatter or absorb solar radiation 

and alter cloud or precipitation patterns by acting as cloud condensation nuclei (CCN) and ice 

nuclei (IN),6,65,66 are dependent on individual particle physiochemical properties, including 

chemical composition, aerosol phase, and morphology.6,65,67,68 These properties are dynamic as the 

diurnal cycle of relative humidity (RH) modifies the water content of aerosols and, thus, alters the 

physical state of particles, including particle phase state and viscosity.69-72 Changes in RH and 

particle composition can both lead to transitions of particle phase states,70-75 which range from 

liquid and semi-solid to glassy and crystalline state, and can include the separation of phases within 

individual aerosol particles.76,77 Phase-separated particles typically form when inorganic and 

organic phases are no longer miscible at higher molar concentrations at lower RH.74 Inorganic 

particles, particularly sulfate-containing particles, can react with gas-phase organic species 

generated by gas-phase oxidation of biogenic and anthropogenic volatile organic compounds 

(VOCs).65,74,78,79 For instance, isoprene and -pinene are major VOCs emitted from vegetation,80,81 

while toluene is a ubiquitous anthropogenic VOC.82 Oxidation products of VOCs condensing onto 

existing inorganic aerosols leads to the formation of secondary organic aerosol (SOA), accounting 

for more than 50% of the total organic aerosol mass globally.83,84  

Isoprene, the most abundant non-methane hydrocarbon emitted into the atmosphere (~600 

Tg y-1),80,85 undergoes oxidation by hydroxyl radicals to form large quantities of gaseous isoprene 

https://doi.org/10.1021/acsearthspacechem.9b00138
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epoxydiols (IEPOX) under low-NOx conditions.86,87 The increased molecular functionality and 

associated decrease in vapor pressure that occurs from the oxidation of isoprene (0.62 atm at 293 

K) to IEPOX (3.4 x 10-6 atm at 293 K) facilitates uptake into the particle phase via multi-phase 

chemical reactions,79,83,88-90 particularly under acidic conditions.91,92 IEPOX-derived SOA has 

been shown to contribute up to 40% of submicron organic aerosol mass in isoprene-rich 

environments,93,94 contributing to changes in aerosol physiochemical properties.15,76 However, to 

date, few studies have analyzed changes in SOA physiochemical properties (particle morphology, 

viscosity, and phase) after IEPOX uptake. Individual particle measurements are necessary to 

provide better understanding of the effect of IEPOX uptake on particle morphology and phase, 

which impact how particles participate in light scattering and climate-altering processes.95,96 

Phase separation within atmospheric aerosol particles has a wide range of atmospheric 

implications, including altering SOA formation by modifying the partitioning of organic species 

from the gas to particle phase.97-99 This includes either inhibition15,70-75,98,100 or enhancement of  

reactive uptake  to particles containing more than one phase101 typically an organic outer layer and 

an aqueous-inorganic core.102 Given that these results have primarily been based on 

thermodynamic models, further experimental data is needed on the uptake of key oxidation 

products for phase separated particles. Phase separations have also been shown to increase solar 

radiation scattering and absorption.103 Therefore, determining aerosol phase, phase separations, 

and morphology (e.g. core-shell) is necessary to accurately predict atmospheric SOA formation 

and aerosol impacts on air quality and radiative forcing.  

SOA species can exist in glassy, highly viscous states that alter aerosol reactivity.81,104-106 

Multiphase chemistry of IEPOX in the ambient environment leads to the formation of 

organosulfates,40,42,107,108 polyols,83,108-110 and oligomers90,109,111,112 in the condensed phase, 

thereby increasing particle viscosity. Viscosity alters mixing timescales and diffusion throughout 

the particle, with potential to change the particle phase from homogeneously mixed to phase-

separated.113 Highly viscous organic phases can kinetically inhibit the transfer of mass and, thus, 

inhibit phase transitions and gas-particle partitioning.81,104-106,114-116 More viscous particles have 

lower gaseous uptake,15,81 reactivity,81,106 and limited particle growth,81 impacting particle 

evolution in the atmosphere.70 However, the relationship between reactive uptake, particle 

viscosity, and phase separation is not well characterized for mixed SOA-inorganic particles, the 

dominant particle type, by number, in the Southeastern United States.78  
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To date, laboratory studies investigating phase separation have primarily been conducted 

using inorganic particles coated with organic acids (pimelic,73,117 succinic,73,75,117 glutaric72,75), 

sucrose,75 and decane.8 Additional laboratory studies have investigated phase separation of more 

chemically complex, atmospherically-relevant biogenically-derived SOA, such as -pinene 

SOA.77,100,118 However, investigations of -pinene SOA using imaging methods as direct evidence 

of phase separation77,118 focused on 8.5 – 30 µm particles, a size range that is significantly larger 

than the number and mass modes of atmospheric particulate matter (PM),6 and therefore might not 

be an accurate representation of particle phase at smaller sizes due to the size-dependent kinetic 

effects observed in Veghte et al.117 Virtanen et al.105 found laboratory-generated 100 nm -pinene 

SOA particles exhibited semi-solid behavior based on particle bounce measurements.  However, 

this study was performed at 30% RH, which is much lower than the 50-90% ambient RH reported 

by field studies in the Southeast United States where IEPOX-derived SOA is prevalent,119 and 

therefore might influence the particle phase state observed.77 Studies examining -pinene SOA at 

higher RH found particles to have semi-solid behavior up to 90% RH,120 but particle morphology 

(homogeneous versus phase-separated) was not investigated across the different RH conditions. 

Bertram et al.121 and Ciobanu et al.122 systematically studied phase separation as a function of RH 

for laboratory-generated SOA and inorganic sulfate mixtures using optical microscopy, though 

they used 20–30 µm particles that are much larger than atmospheric SOA particles.  Additional 

studies have analyzed the phase separation of laboratory-generated SOA from 0–100% RH.100,123 

However, most used SOA in the absence of seed particles so the results are not directly comparable 

to the phase states presented herein. Particle coatings in boreal forest regions, where -pinene SOA 

is dominant,124 can behave differently than particle coatings in regions where isoprene and -

pinene emissions are both abundant, as shown recently by Slade et al.76 Additional insights into 

atmospherically relevant sizes of -pinene and isoprene SOA infer phase separation based on 

indirect methods such as an aerosol mass spectrometer (AMS),125 scanning mobility particle sizer 

(SMPS),125,126tandem differential mobility analyzer,127,128 and single particle ablation time-of-

flight mass spectrometer (SPLAT),98,126 providing information on particle size and phase state at 

different RH. Smith et al. found lower efflorescence and deliquescence RHs of isoprene-derived 

SOA127 and -pinene SOA128 coated onto sulfate particles compared to pure ammonium sulfate 

particles, indicating changes in aerosol hygroscopic phase transitions with addition of SOA 

material. You et al.77 showed aerosols can undergo phase separation after extraction of bulk 
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particle organic material from filters. While informative, bulk measurements are unable to 

determine the number and composition of individual phase-separated atmospheric particles, but 

rather show that in 30 µm particles that the bulk SOA phase separates from an aqueous, inorganic 

phase. Song et al.129 measured the phase state of toluene-derived anthropogenic SOA, obtaining 

results demonstrating that pure toluene-derived SOA particles become more viscous at lower RH. 

While these studies made important contributions to understanding biogenic and anthropogenic 

organic aerosol phases, we lack characterization of the changes in particle phase state after the 

reactive uptake of additional gaseous species, particularly for mixed organic-inorganic systems. 

Microscopic studies that directly investigate aerosol phase using single particles of 

atmospherically relevant size, composition, and RH are necessary to determine the factors 

influencing phase separation in particles, and particle phase changes following reaction with 

gaseous species. 

In this study, we analyzed changes in particle phase state and viscosity after uptake of gas-

phase IEPOX onto phase-separated -pinene and toluene SOA-coated inorganic particles. 

Particles were characterized using atomic force microscopy (AFM), scanning electron microscopy 

coupled with energy dispersive x-ray spectroscopy (SEM-EDX), and Raman microspectroscopy 

to study the particle phase, morphology, and composition before and after IEPOX reactive uptake. 

Phase separation was influenced by particle size, with most small SOA particles (< 100 nm) 

remaining homogeneous and particles > 100 nm showing distinct phase-separated core-shell 

morphology, as confirmed by microscopic images and compositional differences between particle 

core and shell. Significant changes to particle core phase and morphology were observed after 

IEPOX reactive uptake, suggesting IEPOX diffusion through the outer organic shell to react with 

the inorganic core and modification of its physiochemical properties. Overall particle viscosity 

increased after IEPOX uptake, as shown by measurements of particle heights and spreading ratios, 

likely driven by a more viscous core. These changes to phase and morphology have important 

implications for further multi-phase chemical reactions and SOA formation.  

2.2 Methods 

2.2.1 Aerosol Generation 

The system for generating SOA-coated sulfate particles was previously described in detail 

in Zhang et al.15 and shown in Figure A.1. Briefly, acidic ammonium sulfate particles (pH = 1.4 ± 
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0.2) were generated by atomizing a solution of 0.06 M ammonium sulfate ((NH4)2SO4, Sigma 

Aldrich, 99% purity) and 0.06 M sulfuric acid (H2SO4, Sigma Aldrich, 98% purity) using a 

constant output atomizer (TSI Inc., Model 3076) to simulate the pH of ambient aerosol particles 

in the southeastern United States.119 Initial particle pH was confirmed using the pH indicator 

method described in Craig et al.130 Aerosols passed through a diffusion drier to remove excess 

water resulting in particle RH of 26 ±3%, remaining near the efflorescence point of 34% RH.131 A 

differential mobility analyzer (DMA, TSI Inc., Model 3080) was used to size select seed particles 

with 100 nm electrical mobility diameter. The DMA operated at a 12:3 sheath:sample flow ratio 

over the mobility size range of 10 – 600 nm, resulting in a number size distribution with a mode 

at 100 nm and a geometric standard deviation of 1.5 for acidic seed particles.15  

A Potential Aerosol Mass (PAM) oxidation flow reactor (OFR; Aerodyne Research Inc.)132 

was used to generate SOA coatings on sulfate seed particles via ozonolysis of 200 ppb -pinene 

or photooxidation of 800 ppb toluene. The OFR was operated in continuous flow mode with a 

mean residence time of 2 min. To establish ozonolysis conditions, 40 ppm O3 was added at the 

inlet of the OFR using an external O3 chamber. To establish photooxidation conditions, the O3 was 

photolyzed at  of 254 nm inside the OFR to generate O(1D) radicals, which reacted with H2O to 

continuously produce hydroxyl (OH) radicals ([OH] ~1010 cm-3). Recent studies suggest that SOA 

particles generated in OFRs have compositions similar to SOA generated in environmental 

chambers116,133-136 and in the atmosphere.137-142  

The aerosol-laden flow exiting the OFR was passed through two Nafion tubes (Perma Pure, 

Model PD-200T-12) to control and vary the RH prior to performing IEPOX uptake in a glass flow 

tube (1 m length, 8 cm ID, 40 s residence time) coated with halocarbon wax (Halocarbon Products 

Corporation) to minimize wall loss. IEPOX uptake was conducted using authentic trans--IEPOX, 

which is the predominant IEPOX isomer in the atmosphere,86 and was synthesized following 

published procedures.143 At the inlet and outlet of the glass flow tube, aerosols were collected for 

microscopy and spectroscopy analysis (details below). Aerosol size distributions were measured 

by a SMPS consisting of a DMA and a condensation particle counter (CPC, TSI Inc., Model 

3022A) at the end of the flow tube.  
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2.2.2 Microscopy and Spectroscopy Analysis 

Aerosol particles were collected for microscopy and spectroscopy analysis before and after 

IEPOX reactive uptake using a 3-stage microanalysis particle sampler (MPS-3, California 

Measurements Inc.). Particles were impacted onto carbon-type-b Formvar coated copper 

transmission electron microscopy (TEM) grids (Ted Pella Inc.), silicon wafers (Ted Pella Inc.), 

and quartz slides (Ted Pella Inc.) for SEM, AFM, and Raman analysis, respectively. Samples from 

stage 3 (aerodynamic diameter (da) < 400 nm) were selected for analysis. Particle morphology was 

classified as homogeneous or phase-separated based on the criteria defined in Veghte et al,117 

where non-phase-separated particles were visually homogeneous and phase-separated particles 

contained two or more immiscible substances. AFM and Raman measurements were performed at 

ambient pressure and RH (30-40%), while SEM was performed under vacuum conditions (10-5-

10-6 Torr). Because the ambient RH at which particles were imaged using AFM (30-40% RH) was 

lower than RH when samples were generated (50% RH), samples were re-humidified to 50% RH 

and imaged with AFM to investigate possible morphology changes resulting from humidity 

changes to the sample. As shown in Figure A.2, re-humidified samples did not show significant 

differences in morphology compared to samples imaged at ambient RH. Therefore, AFM images 

and data in this text were collected at the ambient RH values of 30-40%.  

SEM analysis was performed on an FEI Helios 650 Nanolab Dualbeam electron 

microscope that operated at an accelerating voltage of 10.0 kV and a current of 0.40 nA. The Helios 

microscope was equipped with a high angle annular dark field (HAADF) detector that provided 

contrast between areas of different elemental composition.144 EDX spectra were acquired for 20 

seconds using an EDAX detector and GENESIS EDX software version 5.10 (EDAX Inc., 

Mahwah, NJ). To investigate trends between particle size and phase separation, SEM images were 

analyzed with image processing software (ImageJ, version 1.50i, National Institutes of Health, 

USA) to determine individual particle projected area diameters (diameter of particles after 

impaction onto substrate). Projected area diameters were then converted to volume equivalent 

diameters (dve) to simulate particle diameter before impaction and spreading onto substrate.145 

Volume equivalent diameters were calculated using particle volume (v) data obtained from AFM 

analysis (described below) and the following equation, assuming particles were initially spheres 

before impaction:145 
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Equation 2.1.  Volume Equivalent Diameter (dve) = √
6𝑣

𝜋

3
  

AFM was performed with a PicoPlus 5500 AFM (Agilent, Santa Clara, CA) that operated 

using 300 kHz resonant frequency and 40 N/m spring constant. Tapping mode was performed 

utilizing Aspire CT300R probes (NanoScience, AZ) to obtain phase and height images. Samples 

were scanned in 5 µm x 5µm areas with 0.75 Hz scan rates to obtain 512 pixels per line. Raw data 

was processed using SPIP 6.2.6 software (Image Metrology, Hørsholm, Denmark) to measure 

particle height, radius, and dve. Spreading ratios of individual particles were then calculated using 

the following equation which divides the particle radius (r) by particle height (h):50 

Equation 2.2.   Spreading Ratio = 
 (𝑟)

 (ℎ)
    

T-tests were performed by comparing the mean spreading ratio of each sample to the mean 

spreading ratio of the sulfate seed aerosol. SOA-coated particles exposed to IEPOX were also 

statistically analyzed with respect to SOA-coated particles. Spreading ratios were considered to be 

statistically different for p values < 0.05.  

Raman microspectroscopy was conducted using a Horiba LabRAM HR Evolution Raman 

Spectrometer (Horiba Scientific) equipped with a 50mW 532 nm Nd:YAG laser source, CCD 

detector and coupled to a confocal optical microscope (Olympus, 100x objective). Raman spectra 

were collected in the range 500-4000 cm-1 for 3 accumulations at 10 second acquisition times for 

each particle. A diffraction grating of 600 grove/mm with spectral resolution of 1.7 cm-1 was used. 

2.3 Results and Discussion 

Single particles were analyzed for phase and composition at three experimental points: 1) 

initial acidic ammonium sulfate seed particles with no SOA coating, 2) seed particles coated with 

-pinene or toluene SOA, and 3) seed particles coated with SOA and exposed to IEPOX. Figure 

2.1 is a schematic representing the changes in particle phase and morphology of single particles 

obtained at each step in the experiment. Acidic seed particles were expected to be homogeneous, 

characterized by a single aqueous phase with spherical morphology. Following the coating stage 

of each experiment by either -pinene or toluene SOA, the particles are expected to experience 

phase separation resulting in a core-shell morphology consisting of a viscous organic coating and 

aqueous inorganic core. Modeling the properties of the -pinene or toluene SOA organic layers 

predicts viscosities of 103-109 Pa s for -pinene SOA70,146 and 102-107 Pa s for toluene SOA at 
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50% RH based on O:C measurements from an aerosol chemical speciation monitor (ACSM).129,146 

This range of viscosities corresponds to semi-solid material147,148 with mixing times of 2.8 h for 

-pinene coated SOA and < 1 h for toluene coated SOA at 50% RH for particles < 1 µm 

diameter.129 Uptake of IEPOX vapor is expected to induce particle phase processing that changes 

the phase state of the inorganic core from aqueous to semi-solid following the diffusion of IEPOX 

through the SOA coating.15 The SOA coating inhibited some uptake into the particle, in 

comparison to an uncoated acidic aqueous particle.15 Predicted IEPOX diffusion times through the 

organic coating ranged from 101-104 seconds with a reduction in the reactive uptake coefficient 

(γ) of ~50% for -pinene SOA compared to an uncoated acidic particle.15 Though IEPOX uptake 

was reduced, uptake was sufficient for significant acid-catalyzed particle-phase chemistry to occur. 

The continuing chemistry changed the core of the particles from aqueous to a viscous or semi-

solid core. The phase transitions of the particle core are shown below using a combination of AFM, 

SEM-EDX, and Raman microspectroscopy. 

 

Figure 2.1. Schematic of experimental design to generate SOA particles. First, homogeneous seed 

particles were generated with an atomizer using solutions of ammonium sulfate and sulfuric acid 

to achieve an initial pH of 1.4. Next, seed particles were coated with -pinene or toluene SOA in 

a Potential Aerosol Mass (PAM) reactor to achieve a coating thickness of ~10 nm before impaction 

onto substrates and spreading. SOA-coated seed particles were then exposed to gaseous isoprene 

epoxydiol (IEPOX) in a flow tube.  

To demonstrate the changes in particle phase after coating and IEPOX uptake, AFM and 

SEM images of the three particle types are shown in Figure 2.2. Acidic ammonium sulfate seed 

particles were homogeneous in phase and composition with a circular morphology, indicative of a 
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spherical shape when suspended, before addition of SOA coatings (Figure 2.2a). The circular 

morphology indicates the particles were still liquid and above the efflorescence point,131 per the 

experimental design.15 After coating with SOA, the mixed sulfate-SOA particles exhibited core-

shell morphology117 with a circular sulfate core and SOA shell (Figure 2.2b and 2.2d). These 

coated SOA particles were similar to ambient particles observed during the Southern Oxidant and 

Aerosol Study (SOAS) in the Southeastern United States during a period of high SOA production 

(Figure A.3).78 Following IEPOX uptake, particles still exhibited phase separation, but changes to 

the core morphology were observed for both -pinene SOA/sulfate particles and toluene 

SOA/sulfate particles (Figure 2.2c and 2.2e). Particle cores became non-circular with a variety of 

irregular shapes. The less viscous organic coating filled in along the irregular surface created by 

the viscous core to leave the overall particle morphology spherical, consistent with the outer 

spherical morphology observed before IEPOX uptake These core morphology changes suggest 

IEPOX diffused through the organic shell and reacted with the inorganic core to form viscous 

IEPOX-derived organosulfates.40,42,107,108 AFM showed phase separation after SOA coating and 

core morphology changes after IEPOX uptake at ambient temperature and RH. SEM corroborated 

the phase and morphology observed by AFM. The images in Figure 2.2 show -pinene and toluene 

SOA-coated inorganic sulfate particles generated at 50% RH. Additional samples generated at 

30% RH show similar trends with respect to phase and morphology (Figures A.4 and A.5).  
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Figure 2.2. AFM and SEM images of SOA particles. Representative AFM height images (top 

row), AFM phase images (middle row), and SEM images (bottom row) of seed particles (a), -

pinene SOA/sulfate particles (b), -pinene SOA/sulfate after IEPOX uptake (c), toluene 

SOA/sulfate (d), and toluene SOA/sulfate after IEPOX uptake (e). All particles were generated at 

50% RH. 

 

To quantify the observed changes in particle morphology and phase state shown in Figure 

2.2, AFM height traces from 10 seed particles, SOA-coated particles, and SOA particles exposed 

to IEPOX were averaged (Figure 2.3c and 2.3d). Acidic ammonium sulfate seed particles had 

average heights of 70  10 nm, which is in the range of spreading values observed for liquid 

particles impacted on silicon previously.50 After coating with -pinene- or toluene-derived SOA, 

particle heights increased, indicating particles spread less upon impaction, as depicted in the 

cartoon in Figure 2.4a. -Pinene coated core-shell particles were taller (150  10 nm), on average, 

than toluene coated core-shell particles (110  10 nm). The increase in particle height after 

impaction onto substrates is related to particle viscosity because more viscous particles will spread 

less and will therefore remain taller.50,149 The particle heights observed here are in agreement with 

predicted viscosities of the -pinene (9.3 x 107 Pa s)70,146 and toluene (7.8 x 104 Pa s)129,146,147 SOA 
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at 50% RH in previous work.15,113,129,146,150 The results presented here are only applicable at 50% 

RH, as toluene SOA has higher viscosity than -pinene SOA at lower RH.146 After IEPOX uptake, 

both types of mixed sulfate-SOA particles were taller and larger in diameter than SOA coated 

particles. Average particle height of -pinene SOA + acidic seed particles exposed to IEPOX were 

170  10 nm (20 nm taller than -pinene SOA + acidic seed) and toluene SOA + acidic seed 

particles exposed to IEPOX were 130  10 nm (20 nm taller than toluene SOA + acidic seed). 

Representative 3-dimensional AFM images show particle morphology at the three steps in the 

experiment (Figure 2.3a and 2.3b). With the high volume fraction of organic present, the core 

would not be expected to effloresce at the 30-40% RH values at which the particles were 

imaged.121,127 3D images show particles coated with SOA become taller on the substrate than seed 

particles. Particle cores become taller after IEPOX uptake while the particle shell appeared flat on 

the substrate, suggesting the cores are becoming more viscous through IEPOX uptake and core 

chemistry modification. 

 

Figure 2.3. 3D AFM height images and height traces of SOA particles. Representative 3D AFM 

images of a) -pinene SOA/sulfate and b) toluene SOA/sulfate particles before and after IEPOX 

uptake. 3D images show flat shells for phase-separated SOA and viscous, tall cores. Average 

height traces of 10 particles composed of c) -pinene SOA/sulfate and d) toluene SOA/sulfate 

before and after IEPOX uptake. 

 

To further investigate changes in particle viscosity and account for differences in particle 

diameter, spreading ratios were calculated for individual SOA + acidic seed particles using Eq. 2, 
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which compares particle radius to particle height. Particle spreading is used as an indirect 

measurement of particle viscosity, as more viscous particles will remain taller on the substrate by 

spreading less and will thus have a lower spreading ratio compared to more liquid-like particles of 

lower viscosity.50 Average spreading ratios for ~30 particles per sample measured at 50% RH are 

shown in Figure 2.4. Seed particles had an average spreading ratio of 6.6  0.7. After coating with 

-pinene or toluene SOA, the average spreading ratio decreased to 3.4  0.2 for -pinene SOA + 

acidic seed and 3.9  0.4 for toluene SOA + acidic seed particles, and were thus more viscous, in 

agreement with predictions by Zhang et al.15 This shift to less spreading upon impaction for phase-

separated particles agrees with qualitative observations in Bondy et al.50 for liquid-liquid phase-

separated polyethylene glycol and ammonium sulfate particles. After reactive uptake of IEPOX 

leading to altered core morphology, average spreading ratio further decreased to 2.6  0.2 for -

pinene SOA and 3.4  0.7 for toluene SOA particles. Spreading ratios of -pinene SOA and seed 

particles generated at 30% RH are shown in Figure A.6 and follow similar trends of decreased 

spreading after coating with -pinene oxidation products and further decrease in spreading 

following IEPOX uptake.  
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Figure 2.4. Spreading ratios of SOA particles. a) Diagrams depicting particle spreading onto 

substrates. Particle spreading is inversely related to particle viscosity. Bar charts show average 

spreading ratio of ~30 particles/sample for b) -pinene SOA/sulfate particles before and after 

IEPOX uptake and c) toluene SOA/sulfate particles before and after IEPOX uptake.  Error bars 

represent standard error. Single asterisks denote spreading ratios that are statistically different than 

seed aerosol (p < 0.05). The double asterisk denotes spreading ratio that are statistically different 

than spreading ratio before IEPOX uptake. 

To examine the relationship between particle size, composition, and phase separation, 

particle phase state and dve of ~500 particles per sample were measured and plotted as histograms 

(Figure 2.5). We observed particles under 80 nm (dve) to have homogeneous composition for all 

SOA samples, similar to previously published work.73,117 Before IEPOX uptake, the smallest 

phase-separated particles were 160  10 nm (dve) for -pinene SOA + acidic seed (mode 570 ± 20 

nm) and 127  5 nm (dve) for toluene SOA + acidic seed (mode 342 ± 5 nm), and most often 

resulted in a core-shell morphology. This agrees with Fard et al.151 who stated the most likely 

morphology for phase-separated atmospheric particles greater than 100 nm was core-shell due to 

kinetically fast inorganic diffusion, preventing further nucleation after the first inclusion. After 

IEPOX uptake, the size of the smallest phase-separated particles decreased to 83  3 nm (dve) for 

-pinene SOA (mode 239 ± 3 nm) and 80  3 nm (dve) for toluene SOA (mode 259 ± 3 nm). When 

the particle core contains less water and is a more viscous semi-solid, the organic layer becomes 

less miscible and can initiate a separate phase at smaller particle sizes.71 The transition regime, the 

size range where phase-separated and homogeneous particles both exist,73 became wider for both 
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SOA types after IEPOX uptake, expanding from 150 – 230 nm to 80 – 180 nm after uptake of 

IEPOX onto -pinene SOA + acidic seed and from 130 – 280 nm to 80 – 270 nm for toluene SOA 

+ acidic seed after IEPOX uptake. The widening of the transition region, due to greater variability 

in core composition based on differences in reactive uptake of IEPOX,15 introduces increased 

difficulty for predicting phase for particles within these size ranges. Pie chart insets in Figure 2.5 

show the percent of particles that were phase-separated versus homogeneous. After IEPOX uptake, 

the percent of phase-separated particles decreased from 67.9  0.6% to 58.8  0.2% for -pinene 

SOA and from 68.2  0.2% to 61.6  0.1% for toluene SOA.  

 

Figure 2.5. Plots depicting SOA morphology as a function of particle size. Histograms depicting 

size-dependent morphology behavior of a) -pinene SOA/sulfate, b) -pinene + IEPOX 

SOA/sulfate, c) toluene SOA/sulfate, and d) toluene + IEPOX SOA/sulfate particles. Lognormal 

fits show modes at 570 ± 20 nm for phase-separated -pinene SOA/sulfate, 239 ± 3 nm for phase-

separated -pinene + IEPOX SOA/sulfate, 342 ± 5 nm for phase-separated toluene SOA/sulfate, 

and 259 ± 3 nm for phase-separated toluene SOA/sulfate. After determining modes, sticks 

representing phase-separated particles were offset by 25 nm to visualize differences between 

homogeneous and phase-separated traces. Pie charts represent the percent of particles that were 

phase-separated versus homogeneous.  

Chemical composition plays a key role in determining viscosity, so both -pinene and 

toluene SOA-containing particles were analyzed using SEM-EDX for elemental composition and 

Raman microspectroscopy for functional group composition. Raman spectra of acidic ammonium 
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sulfate seed particles do not show evidence for the presence of organic species (Figure A.7), as 

shown previously.33,35 Once seed particles were coated with -pinene or toluene SOA, separate 

EDX and Raman spectra were taken for the particle core and shell. EDX showed particle cores 

contained sulfur and oxygen, indicative of sulfate, while particle shells contained primarily carbon 

and oxygen, indicative of -pinene or toluene SOA (Figure 2.6). Sulfur is clearly discernable and 

located primarily in the core of particles. Raman spectra show the broad ν(N-H) region around 

3200 cm-1 indicating ammonium and a mode for νs(SO4
2-) was observed at 976 cm-1 in the particle 

core before IEPOX uptake (Figure 2.7).36,45,152-155  Peaks in the ν(C-H) region between 2800-3000 

cm-1 indicate organic materials in the shell of -pinene and toluene SOA-coated acidic seed 

particles. Specifically, methyl ν(CH3) and methylene ν(CH2) symmetric and anti-symmetric 

stretches were detected, along with modes in the organic fingerprint region which are listed in the 

Supporting Information (Table S1). Differences in composition between particle core and shell for 

both SOA types shows that the coating of -pinene or toluene SOA creates chemically distinct 

phases with a primarily inorganic core and organic shell, instead of homogeneously mixed 

particles. After IEPOX uptake, EDX spectra show particle cores contained carbon for both types 

of SOA, suggesting IEPOX reaction forming organic species, possibly organosulfur compounds 

(i.e., organosulfates and oligomers thereof), within the particle core. After IEPOX uptake, SOA 

cores contained methyl ν(CH3) and methylene ν(CH2) symmetric and anti-symmetric stretches in 

the Raman spectra. Particle cores also showed signs of organosulfate formation with peaks around 

1060 cm-1 in the Raman spectra, indicative of νs(RO-SO3).
42 Peaks indicative of organosulfates 

were not observed in the shell for either -pinene and toluene SOA after IEPOX uptake indicating 

that the shells did not mix with the core as it solidified. Future work will investigate conditions for 

organosulfate formation in various types of SOA across a range of RH 

conditions.39,40,98,107,110,156,157  
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Figure 2.6. SEM images and EDX spectra of SOA particles. Representative SEM images and 

EDX spectra of a) -pinene SOA/sulfate particles, b) -pinene SOA/sulfate + IEPOX particles, c) 

toluene SOA/sulfate particles, and d) toluene SOA/sulfate + IEPOX particles showing differences 

between core and shell composition.  Elements with asterisk denote contribution from substrate. 

Images were colored to easily identify phase-separated morphology. Unedited images are shown 

in Figure A.8.  
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Figure 2.7. Raman spectra of SOA particles. Representative Raman spectra of -pinene 

SOA/sulfate particles before and after IEPOX reactive uptake (top) and toluene SOA/sulfate 

particles before and after IEPOX reactive uptake (bottom) showing differences between core and 

shell composition.   

2.4 Conclusions 

The existence of liquid-liquid phase-separated particles in the ambient atmosphere and 

their role in modifying reactive uptake has important consequences for SOA formation and PM 

concentrations. Recent flow tube studies have shown that IEPOX uptake can be reduced by liquid-

liquid phase separations involving coatings of -pinene SOA around an acidic aqueous core rich 

in sulfate.15 This is true even with a pH of 1.5 for the core, typical of pH values for the southeast 

United States (0-2).119,158 Chamber studies have shown that inorganic sulfate can rapidly be 

converted into organosulfates after reaction with IEPOX,159 which are quite viscous. The 

atmospheric implications of the results from this study are that the core of phase-separated 

submicron particles can be converted from aqueous-inorganic to viscous organics, such as IEPOX-
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derived organosulfates, which can further inhibit SOA formation. This viscous core formation 

occurs within acidic inorganic particles coated with both -pinene (biogenic) and toluene 

(anthropogenic) SOA. That the increased core viscosity occurs on the timescale of flowtube 

experiments (< 1 min) indicates that the -pinene and toluene coatings were not sufficiently 

viscous at 50% RH to fully inhibit IEPOX uptake and the subsequent rapid formation of viscous 

organosulfates in the core. The increase in core viscosity and thus diffusion and mixing timescales 

likely limits additional reactive uptake of IEPOX, since acidic particles (pH = 1.5) have been 

shown to form organosulfates that almost completely shut off IEPOX uptake within 40 hours of 

simulated atmospheric aging.159 The prevalence of phase separated and viscous particles may 

impact atmospheric model predictions of IEPOX-derived SOA, as many of these models do not 

consider the kinetic limitations of phase-separated particles on multiphase chemical processes 

yielding SOA.160 Recent modeling has shown that -pinene SOA coatings around acidic cores can 

decrease SOA formation by 33%, even at 55-80% RH,161 but the impact of transforming an 

aqueous acidic core to a diffusion limited viscous core could have an even larger effect, but has 

not yet been evaluated. The increased viscosity and morphologies observed could also impact the 

CCN and INP properties of these aerosols.66,68,162 Therefore, further studies are needed to improve 

understanding of phase separation and viscosity in flowtube, chamber, and ambient particles of 

different and more complex compositions and at different atmospheric conditions.  
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Chapter 3. Lake Spray Aerosol Incorporated into Great Lakes Clouds  

 

Adapted with permission from Olson, N. E., May, N. W., Kirpes, R. M., Watson, A. E., Hajny, K. 

D., Slade, J. H., Shepson, P. B., Stirm, B. H., Pratt, K. A., and Ault, A. P.: Lake Spray Aerosol 

Incorporated into Great Lakes Clouds, ACS Earth Space Chem., 3, 12, 2765-2774, 2019. 

https://doi.org/10.1021/acsearthspacechem.9b00258 Copyright 2019 American Chemical Society. 

3.1 Introduction 

In aquatic environments, breaking waves entrain air beneath the water’s surface and form 

bubbles that then burst at the surface to eject droplets into the atmosphere. Sea spray aerosol (SSA) 

produced by bubble bursting in marine environments has been more extensively studied than lake 

spray aerosol (LSA) production in freshwater environments.5,163,164 SSA production is generally 

modeled as a function of wind speed, with speeds greater than 4 m s−1 inducing wave-breaking 

particle production.163 Similarly, airborne lake-derived particles have been observed during 

aircraft measurements over the Laurentian Great Lakes during the presence of whitecaps at wind 

speeds above 3.5 m s−1.4 The Laurentian Great Lakes, have annual mean wind speeds > 6.6 m s-1 

(other than Lake Ontario)165, indicating the frequent presence of wind speeds necessary to produce 

breaking waves and white caps.166,167 LSA observed from Lake Michigan has been chemically 

characterized for samples collected at the shore in a ground based study5 and after transport inland 

(> 25 km).27 LSA is composed primarily of calcium carbonate, other inorganic ions, organic 

species, and biological material.5,27,168 A regional modeling study suggested that particles produced 

from wave breaking over the Great Lakes could increase surface level aerosol number 

concentrations by ~20% over the remote northern Great Lakes and by ~5% over other parts of the 

Great Lakes region.167 However, the model utilized a parameterization for SSA production and 

only considered ultrafine (< 100 nm) particle production due to limited knowledge, at the time, of 

LSA production.167 More recent laboratory164 and field work4 has identified both ultrafine (80 nm) 

and accumulation (200 nm) modes for nascent LSA,  indicating contributions to aerosol 

concentrations at diameters important for cloud formation.9 However, models have not yet 

evaluated the impact of LSA on regional cloud formation and climate due to a lack of observations.  

https://doi.org/10.1021/acsearthspacechem.9b00258
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Moisture and heat released from the Great Lakes impact clouds and precipitation regionally 

via the lake effect.169 The lake effect is a meteorological phenomenon resulting from the upward 

flux of water vapor and subsequent precipitation when air masses transition from water to land, 

forming clouds and leading to precipitation regionally.169 It is important to determine sources of 

aerosols that may act as cloud condensation nuclei (CCN) and ice nucleating particles (INPs) over 

the Great Lakes where the upward flux is adding extra moisture, particularly as many areas in the 

Great Lakes region are relatively pristine with low concentrations of particles (~100 cm-3).167 

Further, decreased winter ice extent170 and increased annual wind speeds171 associated with 

warming of the Great Lakes are predicted to increase emissions of LSA in the future. Thus, given 

the importance of lake-effect meteorology regionally,169 it is essential to quantify the extent that 

LSA are lofted to and entrained in clouds.  

Both CCN and INP activation are dependent on individual particle size and 

composition.9,172-184  Previous studies in marine environments have shown that SSA can act as both 

CCN or INPs,9,175,185-192 with efficiencies varying with seawater composition.186,193,194 Laboratory 

studies suggest increased INP efficiency from freshwater samples containing biological 

material.195-197 Borduas-Dedekind et al.198 discovered increased CCN activity for freshwater 

containing organic matter, suggesting the incorporation of organics into LSA168 likely increases 

the CCN ability of these particles. Notably, recent laboratory studies have shown freshwater INP 

concentrations that are orders of magnitude greater than INPs produced from seawater.197,199 

However, to our knowledge, the CCN and INP efficiency of LSA have not been characterized. 

The identification of droplets in Great Lakes regional clouds200,201 containing primarily calcium, 

the highest concentration cation in Great Lakes freshwater,202 suggests that LSA likely participates 

in cloud formation though the source wasn’t identified at the time. Laboratory studies have shown 

that particles composed of CaCO3, the primary inorganic component of LSA,5 undergo multiphase 

reactions with HNO3 and N2O5, thereby increasing the hygroscopicity and CCN efficiencies of 

these particles.203,204 LSA particles transported inland have been shown to undergo heterogeneous 

processing leading to the formation of Ca(NO3)2,
27 analogous to aging of SSA.205-207 It has also 

been shown that clouds over the Great Lakes contain freshwater bacteria.208 Therefore, the 

incorporation of biological material into LSA168,209 may increase the CCN and INP efficiencies of 

LSA. Taken together, the composition of individual particles emitted from the Great Lakes and 
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their modification after emission is critical to understanding the overall aerosol mixing state in the 

region, a key attribute connected to CCN and INP concentrations and impacts.13,67,210 

In this study, ambient particles and cloud water samples were collected by aircraft over 

northern Lake Michigan during high wind and wave activity on July 12, 2016. In addition, surface 

freshwater samples collected from Lake Michigan at the time of aircraft sampling were used to 

generate LSA in the laboratory. Individual ambient and laboratory-generated LSA particles were 

analyzed by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-

EDX) to determine size-resolved chemical composition and morphology. Residual particles from 

aerosolized cloud water were also analyzed by SEM-EDX to compare with ambient and 

laboratory-generated LSA particle composition. Particle size, morphology, and inorganic 

elemental mole ratios provide evidence that LSA emitted from the Great Lakes are incorporated 

into clouds, indicating that LSA is a potential source of CCN and INPs in regions with large bodies 

of freshwater. 

3.2 Methods 

3.2.1 Aircraft Sampling 

Atmospheric aerosol and cloudwater samples were collected during a flight occurring on 

July 12, 2016 using a Beechcraft Duchess twin-engine aircraft (Purdue University Airborne 

Laboratory for Atmospheric Research).4,201,211 Wind speed and atmospheric pressure were 

measured during aircraft sampling using a Best Air Turbulence (BAT) probe to characterize the 

atmospheric boundary layer.212 Potential temperature was calculated following previously 

established methods.213,214 A flight-modified Picarro cavity ring-down spectrometer (model 

number G2301-f) measured real-time concentrations of water vapor and CH4.
215-217 Size-resolved 

aerosol particle number concentrations were measured using an optical particle counter (model 

1.109, Grimm Aerosol Technik GmbH) that quantified particles from 0.20 − 32 µm.218 Grimm 

particle size data was corrected for inlet transmission efficiency following the method described 

in Peterson et al.218  

Atmospheric particles were collected using a three stage modified Davis Rotating Uniform 

Size-Cut Monitor (DRUM) impactor (model DA400, DRUMAir, LLC). Particle samples in three 

size ranges (stage A: da = 1.2−2.5 μm, stage B: da = 0.34−1.2 μm, and stage C: da = 0.07−0.34 μm) 

were collected onto aluminum foil. Aerosol particle samples were stored in the dark at room 
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temperature.219 A modified Mohnen slotted rod cloud water collector extended out of the top of 

the aircraft for cloud water collection.220 Cloud droplets were impacted onto slotted Teflon rods, 

which are characterized by a 50% cutoff da of ∼5.5 μm,201 and collected into glass vials (sample 

volume ranging from 5 − 15 mL each). Cloudwater samples were frozen upon collection and stored 

at −20 °C until analysis. Prior work has shown that freezing aquatic samples creates minimal 

changes to the size and composition of aerosol particles generated from or insoluble residues 

within a thawed sample.21,168  

Atmospheric particle sampling was conducted from 14:51 – 15:51 EDT on July 12, 2016 

at 600 m above ground level (AGL) over northern Lake Michigan in the area of Manistique Bay 

between Thompson, MI (45.866, -86.406) and Seul Choix Point, MI (45.921, -85.912, Figure 3.1). 

The cloud layer present on July 12 was near the surface (cloud height at 300 m AGL with thickness 

of approximately 70 m) such that the aircraft could not safely fly below, and as a result the particles 

sampled that day were collected above the cloud layer. After particle sampling, two cloud water 

samples (16:20 – 16:50 EDT and 17:00 – 17:30 EDT) were collected over the northern portion of 

Lake Michigan at 300 m AGL (Figure 3.1, Figure B.1). Convective available potential energy 

(CAPE) was obtained from the National Weather Service station 72634 in Gaylord, Michigan, a 

location 100 km southeast from sampling and under cloud coverage at the time of measurement 

(Figure 3.2). CAPE was measured from a sounding 

(http://weather.uwyo.edu/upperair/sounding.html) recorded at 12:00 UTC (08:00 EDT). The 

CAPE value was 556.8 J/kg, indicating a slightly unstable atmosphere (CAPE range 500 − 1000 

J/kg), where the sampled particles and clouds were likely influenced by the atmospheric boundary 

layer.221,222 Wind speed and wave height data were obtained from National Oceanic and 

Atmospheric Administration Great Lakes Environmental Research Laboratory (NOAA GLERL) 

buoy 45022 (45.405, -85.086) located approximately 40 km southeast from sampling. 

3.2.2 Laboratory Aerosol Generation 

Surface freshwater was collected from Lake Michigan at Brevort, Michigan (46.018, -

85.041) on July 12, 2016. The freshwater sampling location corresponds to the area of Lake 

Michigan over which aircraft sampling was conducted. After collection, the freshwater samples 

were frozen (−20 ˚C) and thawed prior to aerosol generation and analysis by ion chromatography. 

Freshwater samples were filtered with a 0.22 µm filter (Celltreat Scientific Products) prior to 

http://weather.uwyo.edu/upperair/sounding.html
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triplicate measurements of sodium, potassium, magnesium, calcium, chloride, and sulfate 

concentrations using Thermo Dionex ICS-1100 (cation) and ICS-2100 (anion) ion 

chromatography columns (Thermo Fisher Scientific, Figure B.2). Freshwater samples were then 

used to generate aerosols in a laboratory LSA generator, described in detail by May et al.164 Briefly, 

the LSA generator circulates 4 L of freshwater sample at 2 L min−1 via a diaphragm pump into 

four plunging jets, which create bubbles that burst at the freshwater sample surface to generate 

aerosol particles. During all experiments the LSA generator was kept at room temperature (23 ± 1 

°C) with a relative humidity (RH) of 85%. Prior to particle generation, particle-free air (HEPA 

capsule filter, Pall) was cycled through the LSA generator to ensure background particle 

concentrations were minimal (< 20 particles cm−3), in comparison to the average total particle 

concentration generated from the freshwater samples (∼ 500 particles cm−3), as measured by a 

condensation particle counter (CPC; TSI Inc., model 3775). Generated LSA passed through two 

silica gel diffusion dryers to achieve an RH of ∼ 15% before measurement, a standard established 

for SSA.163 The aerosol number size distributions (20 – 800 nm, Figure B.3) were measured by a 

scanning mobility particle sizer (SMPS), consisting of a differential mobility analyzer (DMA; TSI 

Inc., model 3082) and a CPC (TSI Inc., model 3775). Particle diameters were converted to 

aerodynamic diameter (da)
145,223 after analysis using a spherical shape factor based on SEM image 

analysis and a particle density of 2.71 g cm-3 representing CaCO3.
27 Laboratory-generated LSA 

were collected for microscopy analysis using a three stage microanalysis particle sampler (MPS-

3, California Measurements Inc.). Cloud water was nebulized using a glass nebulizer (Meinhard, 

Type A, operated at 1 mL/min) before impaction of insoluble residue particles using the MPS-3.224 

Particles were impacted onto carbon-type-b Formvar coated copper transmission electron 

microscopy (TEM) grids (Ted Pella Inc.) for electron microscopy analysis. Samples impacted onto 

MPS-3 stages 2 and 3 (da of 400 – 2800 nm and 70 – 400 nm, respectively) were analyzed.  

3.2.3 Microscopy of Ambient and Laboratory-Generated Particles 

Particles collected on stages A, B, and C (0.07 − 2.5 μm) of the DRUM impactor during 

ambient sampling and on stages 2 and 3 (0.07 − 2.8 μm) of the MPS-3 during laboratory 

experiments were analyzed by manual SEM-EDX and computer controlled SEM-EDX (CCSEM-

EDX). SEM analysis was conducted using a FEI Helios 650 Nanolab Dualbeam electron 

microscope operating at an accelerating voltage of 20.0 kV and a current of 0.40 nA. EDX spectra 
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were acquired for 20 seconds using GENESIS EDAX software version 5.10 (EDAX Inc., Mahwah, 

NJ). The elements detected by EDX were C, N, O, Na, Mg, Si, P, S, Cl, K, Ca, and Fe. Due to the 

overwhelming signal from the Al foil substrate used for ambient sampling, Al was excluded from 

the CCSEM-EDX measurements. A total of 3264 ambient particles and 1993 nebulized cloud 

water residual particles were chemically analyzed by CCSEM-EDX. K-means clustering was 

applied in MATLAB (Mathworks, Inc., version R2015a) to sort particles into 10 clusters based on 

the relative atomic percentages of elements from the CCSEM-EDX spectra.29,225 Particle clusters 

present in each sample were determined by mathematical similarity of spectra to limit human bias 

during sorting. In K-means clustering, the fraction of total error, defined as total distance of particle 

spectra to their cluster centroid divided by the distance of all particles to the centroid of one cluster, 

is used to determine the optimal number of clusters to characterize the data set.30-32,226,227 Particle 

types were identified based on the similarity of elemental composition to EDX spectra reported in 

single particle measurements from previous studies,5,21,27,78,154,168,228,229 and clusters representing 

the same particle types were combined.  

3.3 Results and Discussion 

On July 12, 2016, elevated wave heights resulting from high wind speeds were observed 

on Lake Michigan. During the aircraft particle sampling period, wave heights peaked at 1.4 m, and 

wind speeds peaked at 9.4 m s-1 over northern Lake Michigan (Figure 3.1a). Wave height mapping 

indicated wave heights over 1 m were present over a large area of northern Lake Michigan (Figure 

3.1b), and white capped waves were observed visually on the surface of Lake Michigan during 

aircraft sampling. NOAA HYSPLIT 48 h backward air mass trajectories (Figure 3.1c) and heights 

(Figure 3.1d) show that the air mass measured on July 12 traveled across Lake Michigan from the 

southeast prior to reaching the aircraft sampling area, passing over areas with significant sources 

of anthropogenic pollutants near Chicago, Illinois and Gary, Indiana.230,231 
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Figure 3.1. Map depicting area of aircraft sampling with wind speed and wave height data. (A) 

Wave height and wind speed during ambient sampling. Data were obtained from NOAA GLERL 

buoy 45022, represented by a star in part B. Grey shaded areas show periods of aircraft sampling. 

(B) Wave height maps for July 12, 2016 12:00 EDT during aircraft sampling over Lake Michigan. 

(C) 48 Hour HYSPLIT back trajectory July 12, 2016 13:00 EDT at starting heights of 300 and 600 

m AGL that correspond to heights of cloud water and aerosol sampling, respectively. Circles on 

traces mark the location of air masses every 12 hours. The area of aircraft sampling is displayed 

in a green box on the map. Map data adapted from Google. Copyright 2016.  (D) 48 hour height 

profiles of air masses sampled during aircraft sampling. 

 

A NASA MODIS image shows stratocumulus clouds present over much of northern Lake 

Michigan on July 12 (Figure 3.2a). Boundary layer height and depth were determined from vertical 

profile measurements of potential temperature, water vapor, and CH4 during aircraft ascent (Figure 

3.2b). The top of the boundary layer, occurring at 1050 m, is indicated by the largest rate of change 

in water vapor.213,214 This confirms aircraft particle (600 m) and cloud water (300 m) sampling 

occurred within the boundary layer.  
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Figure 3.2. Map depicting cloud coverage and vertical profile measurements during aircraft 

sampling. (A) NASA MODIS image shows cloud coverage over Lake Michigan on July 12, 2016. 

Green box indicates the area of aircraft sampling. (B) Vertical profiles of potential temperature 

and water vapor obtained from 16:36-17:05 during July 12 sampling.  

Ambient and laboratory-generated particles were examined using SEM-EDX to identify 

LSA particles based on elemental composition and morphology.5,27 Representative images and 

EDX spectra for both ambient and laboratory-generated LSA particles show strong Ca, C, and O 
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peaks (indicative of CaCO3 and organics), minor Na and Mg peaks, and an amorphous solid 

morphology after drying on the substrate (Figure 3.3).5 This Ca-dominant elemental composition 

is consistent with Great Lakes freshwater composition202 (Figure B.2) and previous measurements 

of Lake Michigan LSA chemical composition and morphology, both in the ambient atmosphere5,27 

and laboratory.164,168 The ambient LSA is not believed to be CaCO3 mineral dust, as soil from this 

region is rich in Fe and Al and regional sand is composed primarily of quartz or amorphous silica 

(Si, O).5,232 SEM images and EDX spectra of residual particles generated from ambient cloud water 

also show similar morphology and composition to ambient and laboratory-generated LSA (Figure 

3.3c), suggesting that LSA particles emitted from Lake Michigan become incorporated into clouds 

above Lake Michigan.  
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Figure 3.3. SEM images and EDX spectra of ambient and laboratory-generated LSA. 

Representative SEM images (left) and EDX spectra (right) of individual particles, with asterisks 

denoting elemental contribution from substrate. (A) Ambient LSA particle collected on aluminum 

foil during aircraft sampling on July 12, 2016. Aluminum background was removed from the 

spectrum and is noted by an asterisk. (B) LSA particle generated in the laboratory from the Lake 

Michigan freshwater sample and collected on a TEM grid. (C) Cloud water residual particle 

collected on a TEM grid.  

Elemental mole ratios were calculated for ambient LSA, laboratory-generated LSA, and 

cloud water residual particles using atomic weight percentages of each element measured by 

CCSEM-EDX (Figure 3.4). Elemental mole ratios for Lake Michigan freshwater were obtained 

from ion concentrations reported by Chapra et al.202 The Ca/Na mole ratios of the cloud water 
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residual particles classified as LSA (3.5 ± 0.8) and ambient LSA (3.1 ± 0.1) resembled those of 

the laboratory-generated LSA (3.8 ± 0.3), Lake Michigan freshwater (3.3), and ambient LSA 

previously reported by May et al (3 ± 3).27 Similarly, the Mg/Na mole ratios of the cloud water 

residual particles (2.2 ± 0.2) and ambient LSA (1.9 ± 0.3) were also consistent with those of 

laboratory-generated LSA (1.4 ± 0.2), Lake Michigan freshwater (1.7), and ambient LSA 

previously reported by May et al (1.8 ± 0.5).27 Both Ca/Na and Mg/Na ratios are significantly 

different from seawater (0.02 and 0.1 for Ca/Na and Mg/Na, respectively),206,233,234 emphasizing 

the freshwater origin of these particles. The variability measured for the cloud water residual 

particles is larger than for other particle classes due to potential influence from multiple particle 

types present in the cloud water prior to and during the nebulization process.224,235 Ambient LSA 

collected above the cloud layer and residual particles generated from the collected cloud water 

featured higher S/Ca mole ratios (1.0 ± 0.2 and 0.7 ± 0.2, respectively) compared to laboratory-

generated LSA (0.4 ± 0.1) and Lake Michigan freshwater (0.28). These observations suggest the 

collected LSA had likely undergone either cloud processing, with sulfate formation following 

partitioning of gaseous SO2 into cloud drops and oxidation, or heterogeneous reactions prior to 

droplet formation.236 
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Figure 3.4. Elemental mole ratios of LSA, freshwater, and seawater. Comparison of ambient LSA, 

laboratory-generated LSA, cloud water residual LSA particles, Lake Michigan freshwater, and 

seawater elemental mole ratios. Ambient LSA, cloudwater residual particles, and laboratory-

generated LSA mole ratios were calculated from the atomic weight percentages of each element 

measured by CCSEM-EDX. Error bars represent 95% confidence intervals. Only cloud water 

residual particles that contained the elements Ca, Na, and Mg were classified as LSA and included 

here. Seawater and Lake Michigan freshwater mole ratios were calculated from ion concentrations 

reported by Pilson et al.233 and Chapra et al.,202 respectively. Comparison to ambient LSA mole 

ratios provided by May et al.27 are included. 

 

In addition to LSA, CCSEM-EDX identified two additional ambient particle types: 

secondary organic aerosol (SOA)/biomass burning and dust. Example SEM images and EDX 

spectra of these particles are shown in Figure B.4. LSA was differentiated from SOA and biomass 

burning particles (defined by combinations of C, O, N, and S)78 by the presence of Ca. Both SOA 

and biomass burning are abundant in this region43,76,237 and differentiating them using only SEM-

EDX is challenging because both particle types contain the elements C, O, N, and S and have 

similar morphology.78 Biomass burning is commonly differentiated from SOA by the presence of 

K, which is often not clearly detected by EDX for biomass burning particles with significant SOA 

coatings.78,230 Organics from SOA or biomass burning can be particularly challenging to 

distinguish in resuspended rain, snow, and cloud water samples.224,235,238-240 Therefore, since their 

distinction was not central to the findings of this study, the SOA and biomass burning particle 

types are combined here.  

The CCSEM-EDX data enabled determination of the size-resolved contributions of the 

observed particle types. Ambient LSA particles were primarily observed in the submicron size 

range (Figure 3.5a). LSA particles were the most abundant particle type at the smallest sizes 
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measured (0.17 − 0.23 μm), where they composed 65% of the observed particles, by number, in 

this size range. This is supported by the number mode of laboratory-generated LSA occurring at 

0.20 μm (measured by SMPS operating in the 0.020 – 0.80 μm range), similar to the mode observed 

in ambient particles over Lake Michigan (0.20 μm), as measured by the optical particle counter 

(0.20 – 4 μm, Figure 3.5 and B.3). This analysis shows LSA to exist in a size range241 and with 

composition (CaCO3 + organics) that suggests LSA can act as CCN198,242,243 or INPs.198,244,245 

These size distributions are similar to the previously observed accumulation mode peaks for 

laboratory-generated (0.2 μm)5,164,168 and ambient LSA (0.2 – 0.3 μm).4,5,27 LSA particles likely 

also contributed at smaller diameters, as previous studies have observed a second, ultrafine mode 

(0.02 – 0.08 μm) for LSA particles4,164 (Figure B.3); however, particles at that size were unable to 

be chemically analyzed in this study. In comparison, dust particles primarily contributed to the 

0.75 – 1.4 μm size range, where they accounted for 10–15% of all particles analyzed, by number, 

in this size range. SOA/biomass burning particles accounted for 30–40% of all particles < 0.30 

μm, ~70% of all particles from 0.30 – 1.0 μm, and 70–90% of particles > 1.0 μm. The contribution 

of SOA/biomass burning particles is consistent with the observations by Gunsch et al.,237 who 

identified highly aged biomass burning particles comprising ~80% of 1 – 2.5 micron summertime 

aerosol, by number, at a field site located 75 km from the flight sampling area. Similarly, Sheesley 

et al.246 observed organic aerosol contributing up to 90% of the aerosol population, by mass, in 

this geographic region.   

Similar to the ambient particle analysis, CCSEM-EDX also identified cloud water residual 

particles corresponding to SOA/biomass burning (63%) and dust (11%), in addition to LSA (26%) 

(Figure 3.5b). As cloud water residual particles were resuspended from solution during the 

nebulization process, particle size could not reliably be related to the ambient diameter and, thus, 

was not used as a parameter during classification.224,235,247 Therefore, percentages listed are 

number fractions of the total particles analyzed. The abundance of each particle type identified 

from ambient aerosol particles for SOA/biomass burning (68%), dust (6%) and LSA (26%) were 

similar to the amounts observed in cloud water residual particles (63%, 11%, and 26%, 

respectively). Similar to the ambient particles, the LSA particle type contained Ca, C, and O, with 

additional Na and Mg. SOA/biomass burning particles were characterized by a circular 

morphology and contained elements C, O, and S (Figure B.4), as in the ambient particles. Dust 

particles were characterized by irregular shapes and the elements C, O, Si, and Fe.21,239 Similar to 
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this work, Twohy and Anderson200 previously conducted a flight study that characterized ambient 

particles and cloud water residual particles collected downwind of the Great Lakes. They classified 

8% of the aerosol particles and 6% of the cloud water residual particles as salts containing 

calcium.200 Though the source was not identified at the time, the common Ca elemental 

signature5,27,168 indicates it is likely to have been LSA. Similarly, they identified 3% and 58%, by 

number, as dust and sulfate-containing (SOA or biomass burning) particles, respectively.200 That 

study suggested that the majority of particles > 0.2 μm were activated as CCN because they did 

not find significant changes in the number fractions of each particle type when comparing ambient 

particles to cloud water residues.200 The study by Twohy and Anderson200 occurred over the Great 

Lakes region in wintertime while the current study took place in July. While the two studies were 

performed in different seasons, both found similar atmospheric particle and cloud water 

composition.  
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Figure 3.5. Comparison of ambient particle types observed during aircraft sampling. (A) CCSEM-

EDX size-resolved number fractions of ambient particles collected during aircraft sampling on 

July 12, 2016. Black trace shows the size distribution of ambient particles measured by an optical 

particle counter (0.20 – 4 μm) during aircraft sampling. Grey trace shows the average size 

distribution of laboratory-generated LSA measured by SMPS (0.020 – 0.80 μm) for comparison. 

(B) Number fractions of particle types identified by CCSEM-EDX for cloud water residual 

particles (n = 1993 particles) and ambient particles (n = 3264 particles). Example SEM images and 

EDX spectra of each particle type are shown in Figures 3.3 and B.4.  

3.4 Conclusions 

In this study, a recently identified source of particles, lake spray aerosol (LSA),4,5,27 was 

shown to be lofted to cloud heights and incorporated into clouds over Lake Michigan. This was 

shown through single particle microscopy and chemical analysis comparing laboratory-generated 

LSA to ambient LSA and cloud water. The size, morphology, and elemental composition of 
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laboratory-generated LSA resembled that of ambient particles collected via aircraft over Lake 

Michigan during a wave breaking event. Additionally, 26% of 1993 residual particles generated 

from cloud water collected above Lake Michigan in July 2016 were identified as LSA, identifying 

a new potential source of CCN in regions with large bodies of freshwater.  

The potential for LSA to act as CCN and/or INPs are particularly important in the Great 

Lakes region as air masses transition from water to land with excess water vapor, which condenses, 

forming lake effect clouds, fog, and precipitation, regionally. With the chemical characterization 

in the present study, we suggest that the previously measured calcium-rich droplets in Great Lakes 

clouds200 were LSA from the freshwater lakes. This provides further evidence that freshwater-

generated aerosols can form cloud droplets, likely impacting cloud properties both over and 

downwind of the Great Lakes. Previous studies have identified LSA over 25 km inland from the 

nearest Great Lake,27 suggesting LSA acting as CCN can impact a spatially broad region 

surrounding the Great Lakes. Measurements of the CCN and INP efficiencies of LSA with organic 

and biological components are needed to fully assess their meteorological and climate importance. 

In addition, detailed characterization of LSA production as a function of wind speed, wave height, 

and water composition is necessary for further parametrization in models to assess LSA impacts. 

Further ambient measurements of LSA physicochemical properties are needed to improve 

modeling of the potential wide-ranging climate197,199 and health168,209 impacts of LSA. In addition 

to the Great Lakes region, LSA could potentially impact many other regions containing large 

bodies of freshwater, such as the African Great Lakes, Lake Winnipeg and Great Bear Lake in 

Canada, and Lakes Baikal, Ladoga, and Onega in Russia.  
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Chapter 4. Harmful Algal Bloom Toxins in Aerosol Generated from Inland Lake Water 

 

Adapted with permission from Olson, N. E., Cooke, M. E., Shi, J. H., Birbeck, J. A., Westrick, J. 

A., and Ault, A. P.: Harmful Algal Bloom Toxins in Aerosol Generated from Inland Lake Water, 

Environ. Sci. Technol., 2020, 54, 8, 4769-4780. https://doi.org/10.1021/acs.est.9b07727 Copyright 

2020 American Chemical Society. 

4.1 Introduction 

The frequency and intensity of harmful algal blooms (HABs) from cyanobacteria in 

freshwater are increasing globally due to increased anthropogenic nutrient loading.248-251 Warmer 

global temperatures are also expected to increase HAB frequency and intensity due to longer 

growing seasons and amplified algal growth rates.252-261 Intracellular and extracellular algal toxins 

from cyanobacteria pose a threat to human and animal health.209,262 In 2014, a HAB with high 

concentrations of microcystin in Lake Erie infiltrated the public drinking water treatment facility 

for the city of Toledo, Ohio, causing a do not drink posting for > 400,000 people due to toxin levels 

unsafe for ingestion.263,264 The immediate impact of HAB toxins on human health necessitates a 

deeper scientific understanding of their chemical structure and mechanisms of transport. 

Variations in HAB toxin concentrations and the relative amounts of different toxin congeners (i.e. 

chemical structures) have been observed that are independent of overall HAB biomass 

concentrations.265-268 The physical size of a HAB does not correlate with the concentration of 

toxins produced, which creates difficulty in predicting and mitigating HAB-related health impacts. 

Many genera of cyanobacteria, commonly known as blue-green algae (BGA, e.g. 

Microcystis), and associated cyanotoxins (e.g. microcystin) have been identified within freshwater 

HABs, but there is limited understanding of their impacts on human health.269,270 Microcystin is a 

class of cyclic heptapeptides named by the combination of amino acids in their structure,271 with 

over 200 microcystin congeners identified to date.272-276 However, despite differences in the acute 

toxicities of different congeners, there is minimal overall understanding of HAB toxicity.277,278 

Laboratory studies examining the toxicity of microcystin-containing aerosols administered to mice 

have shown ten times higher sensitivity to inhaled microcystin compared to orally ingested 

https://doi.org/10.1021/acs.est.9b07727
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microcystin.279,280 Therefore, toxic effects from exposure to aerosolized microcystin likely occur 

at lower doses than for microcystin ingestion,281 on which the Environmental Protection Agency 

(EPA) recommendations are based. This raises concerns regarding unexpected exposure that could 

occur for populations living near or downwind of HABs, for occupations that interact with HABs, 

or for recreational users on HAB-impacted water. Studies have observed microscopic lesions in 

both the nasal cavity281 and liver280 after  microcystin inhalation. It is believed that microscopic 

lesions observed in the nasal cavity from microcystin inhalation enhanced absorption into the 

bloodstream leading to systemic impacts.281 The diversity of cyanobacteria and associated toxins, 

as well as our limited knowledge of exposure routes and acute toxicities, necessitate further study 

as this has the potential to negatively impact populations living and working near HABs 

globally.282  

Lake spray aerosol (LSA) is produced by freshwater wave breaking and bubble bursting,164 

similar to the production of sea spray aerosol (SSA) from wave breaking in marine 

environments.163,234,283,284 LSA from freshwater lakes have been observed along lakeshores on the 

ground,5 after transport inland,27 lofted to cloud heights,4,285 and incorporated into cloud water.285 

Modeling of LSA concentrations shows that freshwater aerosol production contributes 

significantly to particle number concentrations over the Great Lakes region.167 LSA are generated 

in a size range important for inhalation exposure with modes in the ultrafine (30-80 nm) and 

accumulation (200-300 nm) size ranges.4,164 LSA have a distinct chemical composition in 

comparison to SSA,234,286 and are composed primarily of calcium carbonate and organic 

carbon.5,164 Recently May et al.168 showed that LSA generated from HABs contained greater 

organic and biological material than LSA generated during non-HAB conditions, demonstrating 

the incorporation of biological material from HABs into LSA. However, little is known regarding 

the incorporation of toxins from freshwater HABs into LSA in the Great Lakes region.  

The few studies of aerosolized HAB toxins in freshwater environments include Backer et 

al., which observed microcystin in ambient LSA emitted from small, inland lakes in 

Michigan287,288 and California.289 Wood et al.290 detected microcystin-containing aerosols at a 

freshwater site 20 m from the shore and 30 m high, demonstrating freshwater aerosol can be 

transported aloft and inland. Cheng et al.291 identified microcystin-containing droplets produced 

from freshwater bubble bursting in the laboratory. These studies confirmed that freshwater toxins 

can become aerosolized, however they all used enzyme-linked immunosorbent assays (ELISA) 
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that are unable to distinguish between the congeners of aerosolized microcystin.292,293 Additional 

questions remain about the relationship between freshwater and aerosolized toxin concentrations. 

Further studies are needed to assess aerosolized toxin congeners with respect to toxin 

concentrations found in bulk water. Toxin incorporation into aerosol is not expected to be uniform 

at the particle-to-particle level, which makes understanding its presence as a function of size and 

at the single particle level (i.e. toxins as a function of aerosol mixing state)3,13,294 important for 

distinguishing the health implications in the Great Lakes region or other regions with HABs (e.g. 

Florida).27,43,230,237,285,295 Characterizing the aerosolization of HAB toxins in freshwater 

environments is crucial for understanding the impacts of toxin inhalation on public health. 

Given the limited information on freshwater HAB toxin aerosolization, it is useful to 

consider what is known about aerosolization of toxins in oceanic environments from red tides and 

other marine blooms. Studies examining toxin aerosolization in oceanic blooms by wave 

breaking296-301 and recreational activities302,303 show adverse respiratory effects after as little as 1 

hour exposure.300,303 Exposure to toxin-containing aerosols particularly impacts people with pre-

existing breathing diseases, such as asthma.301,304,305 Gambaro et al.306 detected microcystin in SSA 

particles generated from seawater artificially spiked with microcystin, showing algal toxin transfer 

from seawater to aerosol particles. Similarly, organic material increases in SSA during 

blooms,36,234,286 impacting water uptake,194 incorporating metals,307 and even emitting whole, 

intact bacterial cells.24 Blanchard et al.308 discovered elevated bacterial cells in aerosol particles 

compared to bulk water concentrations due to aerosolization of the surface-active organics present 

in the sea surface microlayer.309  Brevetoxins produced from red tides contain hydrophobic 

functional groups310 that impact toxin type and potency,311 but further information is needed 

regarding the impact of hydrophobic structures on the aerosolization efficiency of HAB toxins. 

Pierce et al.299 observed marine toxin aerosolization up to one mile inland, suggesting inland 

transport of aerosolized toxins in addition to previously reported inland transport of SSA.27,206 

Toxins in atmospheric particles were transported many kilometers inland without degradation,290 

consistent with the stability of microcystin under a range of chemical and physical conditions.312,313  

The well-established aerosolization, transport, and health consequences of toxins from marine 

blooms highlight the need to study these properties in freshwater environments.  

In this study, freshwater was collected in Michigan from Mona Lake during a HAB and 

high microcystin concentrations and Muskegon Lake in which the microcystin concentrations were 
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below EPA recommended levels. Freshwater samples were analyzed for the presence of BGA and 

microcystin toxins, after which LSA was generated using established methods in the laboratory164 

to gain understanding of fundamental emission processes of nascent LSA in a controlled setting.284 

Microcystin present in the freshwater samples was also detected in aerosol samples. However, 

microcystin congeners were not transferred from freshwater to the aerosol phase uniformly, 

leading to greater enrichment of hydrophobic microcystin congeners in aerosol particle samples. 

Freshwater samples were also analyzed for insoluble organic particles using nanoparticle tracking 

analysis (NTA).238 A relationship between increasing freshwater organic particle concentrations 

and higher aerosol number concentrations was observed. Overall, this study demonstrates the 

emissions of microcystin within particles and suggests that the relative amounts of toxins present 

in the aerosol phase are distinctly different than those present in the water column. These key 

findings improve the currently limited understanding of freshwater HABs toxins in size-resolved 

aerosols, which will ultimately lead to a better understanding of this potential route of exposure 

for HABs toxins and their health impacts.  

4.2 Methods 

4.2.1   Freshwater Sample Collection and Aerosol Generation 

Freshwater samples were collected from the surface of Mona Lake (43.1856, -86.2360) on 

July 11, 2018 and September 4, 2018 and from Muskegon Lake (43.2325, -86.2677) on June 11, 

2015 and October 25, 2015 (Figure 4.1A). Freshwater samples were stored in 8 L carboy LDPE 

containers (United States Plastic Corp) and frozen (–20°C) prior to analysis. After thawing, 

freshwater samples were then used to generate aerosol particles using the method described by 

May et al.164 Briefly, 4 L aliquots of freshwater were cycled through four plunging jets at 2 L/min, 

creating bubbles that burst at the air-water interface to generate aerosol particles. Particles were 

sampled from the headspace of the tank after passing through two silica gel diffusion driers to 

achieve a relative humidity (RH) of ~15%, a standard established for SSA.163 The tank was kept 

at room temperature (23 ± 1 °C) for all experiments. Particle-free air (Pall, HEPA Capsule Filter) 

was cycled through the LSA generator to test for leaks before LSA generation. Background particle 

concentrations were minimal (< 20 particles/cm3) compared to the particle concentrations 

generated from freshwater samples (~500 – 1500 particles/cm3). The aerosol number size 

distributions for each LSA sample were measured by a scanning mobility particle sizer (SMPS) 
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consisting of a differential mobility analyzer (DMA, TSI Inc., model 3082) and a condensation 

particle counter (CPC, TSI Inc., model 3755) for particles ranging from 14.1 – 736.5 nm diameter. 

Particles with diameters from 0.52 – 19.8 µm were measured by an aerodynamic particle sizer 

(APS, TSI Inc., model 3321).  

4.2.2   Bulk Measurement Techniques and Toxin Characterization 

A spectrophotometer (AquaFluor 8000, Turner Designs) measured phycocyanin 

fluorescence of freshwater samples, serving as an indicator of BGA.314 ELISA kits (Thermo 

Fischer Scientific) measured total microcystin concentrations in freshwater samples. For 

comparison, 12 microcystin congeners were also measured using the liquid chromatography triple 

quadrupole mass spectrometry (LC-MS/MS) method developed by Birbeck et al.315 Laboratory-

generated LSA were impacted onto glass fiber filters (Whatman, grade GF/c, 47 mm) using a 

cyclone (URG Crop., model 2000-30ED) and single stage impactor (URG Corp., model 2000-

30FV) that operated at 3 L/min and impacted particles < 2.5 µm aerodynamic diameter (da). 

Impacted particles were extracted following the method described by Wood et al.290 Filters and 5 

mL of 100% methanol were placed into 50 mL beakers covered by ParafilmTM. Samples were 

sonicated for 30 minutes, after which the supernatant of each sample was placed into a glass vial. 

The extraction procedure was repeated for a total of three times. The supernatants from each filter 

were combined, dried under nitrogen, and solubilized in LC/MS grade water before LC-MS/MS 

analysis using a Thermo TSQ Quantiva triple quadrupole MS (Thermo Scientific) equipped with 

an online concentrating column (Thermo Scientific Hypersil GOLD aQ 2.1 x 20 mm, 12 µm).315 

Extract from three filters, each representing sixty minute LSA experiments, were analyzed by LC-

MS/MS, as well as aliquots from each corresponding freshwater sample. The mobile phases 

consisting of 0.1% formic acid in water and 0.1% formic acid in acetonitrile separated the 

microcystin congeners present using gradient analysis with a C18 column (Thermo Accucore aQ, 

50 x 2.1 mm, 2.6 µm) then detected using selective reaction monitoring (SRM) in positive 

electrospray ionization (ESI) mode. Retention times and concentrations of each measured 

microcystin congener were determined by calibration using commercially available standards.  

4.2.3   Single Particle Analysis 

An aerosol time–of–flight mass spectrometer (ATOFMS) measured the size and chemical 

composition of individual LSA particles ranging from 0.1 – 1.5 µm.316 Briefly, particles entered 
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the instrument and were focused into a narrow particle beam by passing through an aerodynamic 

focusing lens. Particle sizes were determined by measuring the time it takes an individual particle 

to pass through two continuous wave lasers (wavelengths of 405 and 488 nm, respectively) 

separated by 6 cm. Particle da was determined after calibration using polystyrene latex spheres of 

known diameters ranging from 0.1 – 1.5 µm. Individual particles were desorbed and ionized by a 

266 nm Nd:YAG laser upon entering the mass spectrometer source region, generating positive and 

negative ions for individual particles. Ions were detected using a dual polarity time–of–flight mass 

spectrometer. A total of 5277 particles were chemically analyzed by ATOFMS from the Mona 

Lake – July sample, 2332 particles from the Mona Lake – September sample, 1616 particles from 

the Muskegon Lake – June sample, and 1007 particles from the Muskegon Lake – October sample. 

Single-particle mass spectra were analyzed using the MATLAB toolkit FATES (Flexible Analysis 

Toolkit for the Exploration of Single-particle mass spectrometry data).317 Mass spectral peak 

assignments correspond to ions identified from previous studies.5,27,168,224,235,239,247,284,294,307,318-320  

 A three-stage microanalysis particle sampler (MPS-3, California Measurements, Inc.) 

impacted LSA particles onto Formvar coated copper microscopy grids (Ted Pella Inc.) for 

scanning electron microscopy coupled to energy dispersive x-ray spectroscopy (SEM-EDX) 

analysis. The MPS-3 operated at 2 L min-1 and impacted particles with diameters 2.5 – 5.0 µm, 0.7 

– 2.5 µm, and < 0.7 µm onto stages 1, 2, and 3, respectively. SEM analysis was performed using 

a FEI Helios 650 Nanolab Dualbeam electron microscope that operated at an accelerating voltage 

of 20.0 kV and a current of 0.40 Na The Helios microscope utilized a high angle annular dark field 

(HAADF) detector to provide contrast between areas of differing chemical composition.144 EDX 

spectra were acquired for 20 seconds using an EDAX detector and GENESIS EDX software 

version 5.10 (EDAX Inc.). Raman microspectroscopy was performed on a Horiba LabRAM HR 

Evolution Raman Spectrometer (Horiba Scientific) to analyze droplets of freshwater placed onto 

quartz substrates (Ted Pella Inc.). The Raman spectrometer contained a 50 mW 532 nm Nd:YAG 

laser, CCD detector, 600 gr/mm grating, and a 100x objective confocal microscope (Olympus Life 

Science). Raman spectra were collected using 3 accumulations at 15 second acquisition times for 

the range 500 – 4000 cm-1. 

4.2.4   Analysis of Insoluble Residues 

Concentrations and number size distributions of the insoluble residues present in each 

freshwater sample were analyzed by NTA using a NanoSight LM10 (NanoSight Ltd.) traditionally 



 50 

applied to nanoparticle analysis,3,321,322 following the method for environmental insoluble residues 

described in Axson et al.238 NTA determines the size-resolved number concentration (i.e. size 

distribution) of individual particles in a liquid medium by illuminating them with a laser and 

monitoring the Brownian motion of particles to determine their 2-D displacement. The Stokes-

Einstein equation is then used to determine the individual particle hydrodynamic diameter.323,324 

Aliquots of each freshwater sample were filtered prior to analysis using a 2 µm glass syringe filter 

before 500 µL was loaded into the LM10 cell housing a 405 nm laser. Freshwater sample flowed 

through the instrument using a syringe pump that operated at 60 rpm. Light scattering was 

measured using a sCMOS camera (Hamamatsu, Orca) coupled to a 20x objective microscope. Ten 

60 second videos of each freshwater sample were analyzed using the NTA 3.2 (Build 60) software. 

The average of the ten videos generated an average size distribution in the range 10 nm – 1 µm for 

each freshwater sample. Droplets of Mona Lake – September freshwater were placed on Raman 

and SEM substrates following previously established methods,325 and the insoluble residues were 

analyzed by SEM-EDX and Raman microspectroscopy after the droplet dried.36,234 The insoluble 

residues were composed of particulate organic carbon (POC, Figure C.1)326,327 and will be referred 

to as POC. 

4.3 Results and Discussion 

BGA and microcystin concentrations present in freshwater samples were analyzed prior to 

aerosol generation. Mona Lake – September had the highest phycocyanin/BGA (1166 µg/L) and 

microcystin concentrations (280 and 230 µg/L for ELISA and LC-MS/MS methods, respectively) 

of all samples (Figure 4.1B). For this reason, we focused on this sample for aerosol generation in 

subsequent laboratory experiments. Mona Lake – July had the second highest concentrations of 

phycocyanin/BGA (192 µg/L) and microcystin (21 and 8 µg/L for ELISA and LC-MS/MS 

methods, respectively). Both Muskegon Lake samples had lower phycocyanin/BGA 

concentrations (93 and 86 µg/L for the June and October samples, respectively). Muskegon Lake 

also had lower microcystin concentrations of 0.3 and 0.8 µg/L (using ELISA) and 0.03 and 0.08 

µg/L (using LC-MS/MS) for the June and October samples, respectively. The microcystin 

concentrations present in Muskegon Lake were below the EPA swimming advisory (8 µg/L total 

microcystin)328 and drinking advisory (1.6 µg/L total microcystin) recommendations,329 while 

Mona Lake samples were above for both guidelines. For all samples, ELISA kits predicted slightly 

higher amounts of algal toxins more than likely due to the simultaneous detection of toxins and 
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their degradation products and differing responses of each congener to ELISA.293,315,330 ELISA is 

not able to differentiate between microcystin congeners like the LC-MS/MS method used.315 

 

Figure 4.1. Map of sampling locations and microcystin concentrations at each location. A) Map 

of Mona and Muskegon Lakes located in Western Michigan, with inset showing location of inland 

lakes relative to the surrounding Great Lakes. B) Total microcystin and phycocyanin (blue green 

algae, BGA) concentrations for each freshwater sample. Inset shows microcystin for Muskegon 

Lake samples. Dashed line shows EPA drinking water advisory of 1.6 µg/L total microcystin. 

Aerosolized microcystin congeners from Mona Lake LSA were quantified with LC-

MS/MS, described in Birbeck et al.315 Figure 4.2A shows the molecular structure of microcystin–

LR (MC–LR), the congener with the highest concentration in the aerosol generated from Mona 

Lake (Figure 4.2B). Chromatograms of the retention times of each microcystin congener measured 
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in Mona Lake LSA are shown in Figure 4.2B, with the chromatogram of microcystin congeners 

detected in Mona Lake freshwater shown in Figure C.2. Retention times and structures for each 

congener are listed in Table C.1315 and illustrated in Figure C.3. The commercially available 

microcystin congeners were previously optimized for select quantitative and qualitative ion 

transitions using known fragmentation patterns from the literature.331-334 The microcystin 

congeners were separated by gradient analysis HPLC and detected using SRM analysis on the 

triple quadrupole MS system. Figure 4.2C shows the mass spectral fragments detected for MC–

LR, with fragmentation patterns illustrated in Figure 4.2A. Quantitative and qualitative fragment 

ions were observed at m/z +135.07 [Ph–CH2–CH(OCH3)]
+, +155.08 [H+Mdha–Ala]+, +163.08 

[C11H14O+H]+, and +212.97 [H+Glu–Mdha]+, and are known fragments of that microcystin 

molecule.331-334 
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Figure 4.2. Chemical structure, chromatogram, and mass spectrum of microcystin-LR. A) 

Structure and fragmentation of microcystin–LR, the microcystin congener with the highest 

concentration in Mona Lake LSA. B) Chromatogram showing microcystin congeners present in 

Mona Lake LSA. Inset shows congeners present at lower concentrations. C) Mass spectrum of 

microcystin–LR identified from Mona Lake LSA. All congener structures, retention times, and 

their abundance in the Mona Lake freshwater sample are provided in the supporting information. 
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  The LC-MS/MS method allows for the quantification of each microcystin congener based 

on calibration with microcystin standards. The congeners detected and quantified in Mona Lake – 

September freshwater are shown in Figure 4.3A and listed in Table 4.1. Microcystin concentrations 

in LSA were determined by extracting LSA impacted onto filters and analyzing the extract with 

LC-MS/MS. Average aerosolized microcystin concentrations from three experiments are shown 

in Figure 4.3B and listed in Table 4.1. Of the eight toxins detected in freshwater, seven were also 

detected in aerosol particles. However, the relative concentrations of specific toxins in the water 

and aerosol phase differed substantially. In our experiments, MC–LR and MC–LA, were more 

concentrated than other congeners in aerosol particles (Figure 4.3B). Enrichment calculations 

(details in the supporting information) show enrichment factors of 830 and 2000 for MC–LR and 

MC–LA, respectively, in the aerosol phase relative to the bulk freshwater (Table 4.1). MC–LR 

and MC–LA contain the amino acid leucine (Figures 4.2A and C.3), a hydrophobic amino acid.335-

338 Conversely, the amino acid arginine is significantly more hydrophilic,336-338 and the congener 

with this structure, MC–RR, was significantly less enriched in the aerosol relative to freshwater 

(enrichment factor of 10). Hydrophobic molecules have been shown to be enhanced in SSA 

particles relative to bulk seawater,17,284,309,339-343 which is believed to be due to hydrophobic and 

low solubility species partitioning to the air-water interface of bubbles as they rise through the 

water column. Octanol-water partitioning coefficients log(Kow) for MC–LR (1.67) and MC–RR (-

0.71)344 support preferential transfer of MC–LR to the aerosol phase, while MC–RR remains 

primarily in the bulk freshwater. De Maagd et al.345 suggested the hydrophobicity of MC-LR 

changes as a function of pH, with higher pH values leading to lower log(Kow) values. Freshwater 

sample pH ranged from 6.9-7.1 (Figure C.4) though it is unclear what the role of pH is with respect 

to toxin emissions into the particle phase and future work is needed in this area. Though 

extracellular microcystin excreted from algal cells generally accounts for 20% of total toxins,270 

this percentage can increase drastically during bloom senescence, algaecide treatment, and lysis.263 

The aerosolized microcystin detected was likely extracellular because the bubble-bursting process 

lyses cells, as noted by the observation of aerosolized bacterial cell components from marine algal 

blooms.24 Additionally, the freshwater samples used within this manuscript were collected near 

bloom senescence and intact cells are unlikely to be aerosolized as the cell size of Microcystis (> 

4 µm)346 is larger than the mass and number modes of the generated aerosol. Therefore, 

extracellular microcystin likely dominated the measurements. 
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Table 4.1. Concentrations of microcystin congeners detected in freshwater and aerosol samples. 

Error bars refer to the standard deviation of triplicate aerosol experiments. MC–HtyR, MC–LY, 

and MC–LW were below the limit of detection (5 x 10-3 µg/L). MC–LF and nodularin were not 

detected in the freshwater samples. Enrichment factors were calculated by dividing the toxin 

concentration in aerosol by the toxin concentration in freshwater (details are provided in the 

supporting information). Octanol-water partitioning coefficients log(Kow) are provided by McCord 

et al.344 
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Figure 4.3.Quantification of microcystin congeners present in Mona Lake freshwater and LSA 

(parts A and B, respectively). Concentrations reported in µg/L refer to the mass of toxin per mass 

of water. Concentrations reported in ng/m3 refer to the mass of toxin per meter cubed of air 

measured. C) Schematic showing the aerosolization of hydrophobic microcystin congeners. 

Toxin concentrations present in the aerosol samples were converted to ng/m3 for 

comparison to previously reported measurements, as mass per volume of air is the standard unit 

for particulate matter and specific particle-phase toxins. We detected 50 ± 20 ng/m3 of total 

aerosolized microcystin (Table 4.1). Backer et al.288 detected aerosolized microcystin 

concentrations up to 23 ng/m3 during ambient sampling on the shore of a small lake in Michigan. 

However, the freshwater microcystin concentrations in that study were significantly lower than 

those observed herein (5 µg/L288 and 230 µg/L, respectively), which likely accounts for the 

difference in aerosolized toxin concentrations observed.  

The size and concentration of LSA and insoluble residues in freshwater were analyzed to 

investigate trends between the properties of organic material of the water and aerosol phases. Mona 

and Muskegon Lake LSA had a mode at 46 nm in the number size distribution (Figures 4.4A and 

4.4B), similar to the Aitken mode observed for LSA generated from Lake Michigan freshwater 

(30 – 80 nm).4,5,164 A larger LSA mode at 270 nm was also observed, corresponding to the 

accumulation mode previously identified in laboratory164,168 and field studies (200 – 300 

nm).4,5,27,285 POC present in Mona Lake – September freshwater as insoluble residues had a number 
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size distribution mode at 155 nm and an average concentration of 1.15 (± 0.04) x 109 POC/mL 

(Figures 4.4A and 4.4C, respectively). Similar concentrations of 1.22 (± 0.03) x 109 POC/mL were 

observed for Mona Lake – July freshwater, with a slightly larger mode at 240 nm. POC 

concentrations for the Muskegon samples were much lower (3.62 ± 0.08 x 108 and 3.32 ± 0.07 x 

108 POC/mL for June and October samples, respectively). These POC distributions correspond to 

mass concentrations of 68, 38, 6, and 7 µg/cm3 for Mona Lake – July, Mona Lake – September, 

Muskegon Lake – June, and Muskegon Lake – October samples, respectively. Average LSA 

number concentrations for Mona Lake – September were 1400 ± 200 particles/cm3 (Figure 4.4C). 

LSA number concentrations were lower for Mona Lake – July and both Muskegon Lake samples 

(260 ± 20 particles/cm3, 270 ± 15 particles/cm3, and 110 ± 6 particles/cm3, respectively).  The 

increase in POC and microcystin for Mona Lake – September corresponded to an increase in 

overall aerosol production, particularly with enhanced aerosol production in the ultrafine size 

range (< 100 nm) resembling the size of observed POC. Incorporation of insoluble residues into 

SSA has been observed347 with aerosol size shifting to that of the insoluble residues,348 similar to 

the results presented herein. A positive relationship between organic content in water and increased 

algal growth has been observed,349-351 demonstrating the importance of simultaneously measuring 

POC and microcystin in freshwater environments. This analysis is the first use of NTA to 

investigate the insoluble residues of freshwater in relationship to aerosol generation, and shows 

that insoluble residues present in freshwater play a role in higher atmospheric aerosol 

concentrations, as well as impacting the size of particles that form.  
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Figure 4.4. Average size distributions for water samples and aerosol experiments. Average aerosol 

and POC number size distributions for A) Mona and B) Muskegon Lake samples. Microcystin 

concentrations for each sample are listed in parentheses. C) Quantification of aerosol and POC 

number concentrations for each freshwater sample. 
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LSA analyzed by single particle mass spectrometry (ATOFMS) were classified into three 

particle types following the criteria used in May et al:168 LSA composed primarily of salt (LSA 

salt), LSA with organic content (LSA organic), and LSA with enhanced biological material (LSA 

biological). Average dual polarity mass spectra of all three particle types are shown in Figure C.5 

with the major ions labeled. Salt particles contained primarily inorganic ions, with the major ions 

present being m/z +40 [Ca+], +23 [Na+], and +24 [Mg+] (Figure C.5).5,27,168 LSA organic particles 

were classified by the presence of m/z +66 [CaCN+] and +82 [CaCNO+]168 (Figure C.5), peaks 

consistent with the presence of organic nitrogen.307 Additional organic ions observed were m/z +74 

[N(CH3)4
+], –45 [CHOO–], –59 [CH3COO/HCNO2

–], and –71 [C3H3O2
–].318 LSA biological 

particles were classified by the presence of m/z –79 [PO3
–]168,307,319,320 and +89, the amino acid 

aspartic acid [Asp–CO2
+].352  

Difference mass spectra, calculated by subtracting the average mass spectra of particles in 

Muskegon Lake from the average spectra of particles in Mona Lake, highlight the compositional 

differences between particles generated from each lake (Figures 4.5A, 4.5B, and C.6). Both 

biological markers were observed in higher concentration in Mona Lake biological LSA (Figure 

4.5B), while organic markers were observed in both Mona and Muskegon Lake LSA organic 

particle types (Figure 4.5A). The identification of salt, organic, and biological particles was 

verified by SEM-EDX analysis (Figure C.7). Salt particles were identified with SEM-EDX by 

containing the elements Na, Mg, Ca, and Cl,168 along with an amorphous morphology similar to 

previous analysis of ambient LSA collected on the shore5 and via aircraft285 over Lake Michigan. 

Organic particles were identified by SEM-EDX by containing only the elements C and O, and a 

circular morphology.168 Biological particles were classified by the presence of elemental P and an 

amorphous morphology similar to previously observed ambient biological particles.20,168 
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Figure 4.5. Mass spectra of biological and organic LSA particles from Mona and Muskegon 

Lakes. Difference spectra calculated by subtracting Muskegon Lake mass spectra from Mona Lake 

spectra of A) LSA organic particles and B) LSA biological particles. 

Freshwater toxin concentrations and aerosol particle types were investigated for each 

freshwater sample. Percentages of microcystin congeners for each freshwater sample were 

calculated using the concentrations obtained by LC-MS/MS to compare relative toxin abundance 

for each lake. MC–RR was the toxin of highest concentration in all samples, accounting for 48% 

(Mona Lake – July), 50% (Mona Lake – September and Muskegon Lake – October), and 67% 
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(Muskegon Lake – June) of microcystin congeners observed (Figure 4.6A). MC–LR was the 

second highest for each sample at 34% (Mona Lake – July and Mona Lake – September), 33% 

(Muskegon Lake – June) and 25% (Muskegon Lake – October). The remaining toxins detected 

were: D–Asp3–RR (1% for both Mona Lake samples, 0% for both Muskegon Lake samples), MC–

YR (8 and 9 % of Mona Lake – July and – September samples, 0 and 12% of Muskegon Lake – 

June and –October), D–Asp3–LR (1% for both Mona Lake samples, 0% for both Muskegon Lake 

samples), MC–HilR (1% for both Mona Lake samples, 0% for both Muskegon Lake samples), 

MC–WR (2% for both Mona Lake samples, 0% for both Muskegon Lake samples), and MC–LA 

(5% for both Mona Lake – July, 2% for Mona Lake –September, 0% for Muskegon Lake – July, 

and 13% for Muskegon Lake – October.). Particle types observed by ATOFMS were combined 

for each freshwater sample. The percentage of particles identified as LSA biological from Mona 

Lake were 10% and 14% for the July and September samples, respectively (Figure 4.6B). 

Biological particles generated from Muskegon Lake freshwater comprised 10% and 6% of all 

particles analyzed from the June and October samples, respectively. Organic particle types were 

also at higher percentages for Mona Lake LSA (80% and 75% for July and September, 

respectively) than Muskegon Lake (67% and 60% for June and October, respectively). Salt 

particles comprised the smallest percentage of LSA generated from Mona Lake freshwater at 10% 

and 11% for July and September samples, respectively. Conversely, salt particles were 23% and 

34% of all particles observed from Muskegon June and October samples, respectively. Mona Lake 

– September had the highest microcystin (230 µg/L) and phycocyanin/BGA (1166 µg/L) 

concentrations, corresponding to an increase in the amount of biological and organic particles 

detected, similar to previous observations.168 The significantly lower contribution of salt particles 

to Mona Lake LSA demonstrate the incorporation of biological and organic material from HABs 

into aerosols. 
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Figure 4.6. Microcystin congeners present at all sampling locations with fraction of particle types 

observed from each location. A) Fraction of microcystin congeners present in all freshwater 

samples. B) Number fractions of ATOFMS particle types generated from Mona and Muskegon 

Lake freshwater. Average phycocyanin/blue green algae (BGA) and microcystin freshwater 

concentrations are shown for each sample.  

4.4 Conclusions 

This study identified HAB toxins, specifically microcystin, in laboratory-generated 

freshwater particles < 2.5 µm, a key size range impacting human health.1 Microcystin congeners 

were quantified in freshwater from a HAB in Mona Lake in Michigan using two microcystin 

measurement methods (ELISA and LC-MS/MS). Aerosol particles were then generated in the 

laboratory and analyzed for the presence of toxins relative to the toxins identified in the freshwater 

samples. Of the eight microcystin congeners detected in the freshwater, seven were also detected 

in LSA particles, demonstrating that toxins are emitted through the aerosolization process in 

freshwater environments.  
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For the first time, we show that hydrophobic microcystin congeners were preferentially 

aerosolized versus hydrophilic microcystin congeners, which suggests that the relative amounts of 

toxins present in the aerosol phase are distinctly different than those present in the water column. 

This is analogous to previous observations of preferentially aerosolized hydrophobic material in 

SSA from marine environments.50,63,84-88 The alignment between aerosol-phase enhancement and 

octanol-water partitioning coefficients log(Kow’s) for different microcystin congeners344 supports 

the finding that hydrophobic congeners partition to the air-water interface of bubbles passing 

through the HAB and are then transferred to the aerosol phase after bubble bursting. The fact that 

aerosol phase concentrations of microcystin cannot be predicted solely based on water 

concentrations, combined with the differing toxicities of microcystin congeners, demonstrates the 

need for further aerosolization studies aimed at predicting concentrations of toxins emitted to the 

atmosphere. 

To improve understanding of the linkages between organic material in freshwater and 

emitted in the aerosol phase, the size and amount of insoluble organic material in freshwater was 

tracked and related to aerosol size. Increased POC number concentrations corresponded to 

increased aerosol number concentrations and a shift in the aerosol size distribution to resemble 

that of the POC size distribution, leading to aerosol production at smaller sizes that are more 

readily inhaled.349-351 Our results demonstrate an enhancement in ultrafine aerosol particles with 

an increase in HAB concentration.  

 Overall this work highlights the potential exposure risks for populations near or downwind 

of HABS. Understanding these exposures is challenging since we show that the hydrophobicity of 

microcystin congeners improves their aerosolization efficiency, leading to different relative 

amounts of congeners in the aerosol phase compared to the freshwater bloom itself. Ambient 

measurements are needed to quantify HAB toxin aerosolization, while accounting for different 

atmospheric (wind speed, turbulence, temperature, RH) and biological (freshwater nutrient levels, 

type and amount of cyanobacteria, cyanobacteria buoyancy and distribution throughout the water 

column) conditions. Additional questions remain regarding the diel patterns of freshwater toxin 

production and associated aerosol emission. Future work is needed to determine relative toxicities 

of each congener and relate these to the atmospheric concentrations and bloom dynamics to fully 

assess the health impacts of toxin-containing LSA.  
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Chapter 5. Harmful Algal Bloom Toxins in Ambient Freshwater Aerosol 

 

Nicole E. Olson,1 Jia H. Shi,1 Madeline E. Cooke,1 Johnna A. Birbeck,2 Judy A. Westrick,2Andrew 

P. Ault1*    

1Department of Chemistry, University of Michigan, Ann Arbor, MI, USA 48109 

2Department of Chemistry, Wayne State University, Detroit, MI, USA 48202 

5.1 Introduction 

Increased anthropogenic nutrient loadings in freshwater environments combined with 

rising temperatures have led to a global increase in harmful algal blooms (HABs).248,250-

252,255,256,258,261 HABs, typically caused by cyanobacteria (blue-green algae, BGA),250,270 release 

toxins (e.g. microcystin) that are a threat to both human health and wildlife.209,262-264 With over 

200 microcystin congeners identified thus far,272-274,276 many questions remain regarding their 

impact on human health.  Drinking water regulations require the monitoring of HAB toxins to 

ensure the amounts present are safe for ingestion.263,264,328,329 However, recent laboratory studies 

have suggested that inhalation of microcystins results in 10 times higher sensitivity compared to 

oral ingestion of these toxins.279-281,353 Therefore, it is crucial to determine the amounts of 

aerosolized HABs toxins in order to predict exposure for populations living near or downwind of 

HABs globally.302,354 

 The physicochemical properties of lake spray aerosol (LSA), produced from wave breaking 

and subsequent bubble bursting in freshwater environments,164 have been extensively studied 

through laboratory studies164,168,355 and in the ambient environment.4,5,27,285 LSA is composed 

primarily of CaCO3,
5,168,285 and can be chemically differentiated from the sodium-rich sea spray 

aerosol (SSA) that is produced in marine environments.27,163,234,283,286 The submicron size of LSA 

suggests it can be important for inhalation exposure.4,5,285,355 In a laboratory-based study, May et 

al.168 observed the incorporation of biological material from HABs into aerosol particles, showing 

that both the organic and inorganic content of freshwater impacts aerosol composition. However, 

questions remain regarding the transfer of algal toxins into aerosol particles and their abundance 

in ambient freshwater environments. 



 65 

Recent laboratory studies have observed microcystin in aerosol particles generated from 

both freshwater291 and seawater,306 highlighting that aerosol particles can contain HAB toxins. 

However, these studies used enzyme-linked immunosorbent assays (ELISA) for microcystin 

measurements, a technique that is unable to distinguish between microcystin congeners.292,293 

Recently, a liquid chromatography tandem mass spectrometry (LC/MS/MS) method was 

developed to separate and quantify microcystin congeners.315 Olson et al.355 used this method and 

observed an enrichment of hydrophobic microcystins in laboratory-generated aerosol particles 

relative to toxins present in the water column. These results highlight the need for simultaneous 

water and aerosolized toxin measurements in ambient environments.  

Aerosolized algal toxins has been reported in ambient studies taking place in 

Michigan,287,288 California,289 and Florida,301,303,356-358 with long-term effects reported after as little 

as one exposure to aerosolized HAB toxins.356 Toxin-containing particles have been observed up 

to 1 mile from shore,290,299 similar to previous observations of LSA lofted to cloud heights4,285 and 

after inland transport.27,206 The stability of microcystin312,313,359 and other cyanobacteria330,360 

suggests minimal degradation after inland transport, thus necessitating measurements of 

aerosolized toxins at several sites around a HAB-infested lake. With toxin incorporation into 

particles not expected to be uniform for every particle, single-particle techniques are needed to 

assess the physicochemical properties of individual toxin-containing particles, and how prevalent 

these particles are in relation to other particle types in the region.  

In this study, freshwater and aerosol samples were collected from five locations around 

Grand Lake St. Marys (GLSM) in Celina, Ohio, United States. This site was chosen due to severe 

annual algal blooms resulting from excessive phosphorus loading from crops and livestock 

operations in a shallow, hypereutrophic environment.361,362 GLSM routinely has Microcystis, the 

bacteria that produces microcystin,363 with microcystin concentrations often exceeding 2000 

μg/L.363 These concentrations are orders of magnitude larger than what the Environmental 

Protection Agency (EPA)329 and World Health Organization (WHO) regulates for drinking 

water.363 Ambient freshwater and aerosol samples were analyzed with LC/MS/MS for microcystin 

speciation and quantification. A transfer of microcystins from the bulk water into aerosol particles 

was observed. In addition, microcystin was characterized with spectroscopic methods which were 

also used to study the aerosol population as a whole in this region. Finally, the size and 

concentration of insoluble residues in the freshwater samples was correlated to the size and 
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concentration of aerosol particles, with increased insoluble residues leading to an increase in 

aerosol particles observed. Overall, this study identified microcystin in aerosol particles in a size 

range critical for inhalation exposure. These findings improve our understanding of microcystin-

containing aerosols in the ambient environment, and have important implications for populations 

living near or downwind of HABs globally.  

5.2 Methods 

5.2.1 Freshwater and Aerosol Collection 

Five freshwater samples were collected from the surface of GLSM (40.5439, -84.5033) on 

August 6, 2019 (Figure D.1) and stored in 8 L carboy LDPE containers (United States Plastic 

Corp) at room temperature (~23°C) until analysis. A spectrophotometer (AquaFluor 8000, Turner 

Designs) measured phycocyanin fluorescence, serving as an indicator of blue-green algae (BGA) 

and microcystin.314 Microcystin congeners were quantified using a previously established 

LC/MS/MS method.315 

A three-stage microanalysis particle sampler (MPS-3, California Measurements, Inc.) 

impacted aerosol particles onto Formvar coated copper microscopy grids and silicon wafers (Ted 

Pella Inc.) for scanning electron microscopy coupled to energy dispersive x-ray spectroscopy 

(SEM-EDX) and optical photothermal infrared (O-PTIR) + Raman analysis, respectively. The 

MPS-3 operated at 2 L min-1 to impact particles with diameters 2.5 – 5.0 µm, 0.7 – 2.5 µm, and < 

0.7 µm onto stages 1, 2, and 3, respectively. Aerosols were impacted onto glass fiber filters 

(Whatman, grade GF/c, 47 mm) for LC/MS/MS analysis using a cyclone (URG Crop., model 

2000-30ED) and single stage impactor (URG Corp., model 2000-30FV) that operated at 3 L min-

1 to collect particles < 2.5 µm in diameter. For comparison, aerosols were also impacted onto baked 

quartz fiber filters (Sigma Aldrich, 47 mm) using a five-stage impactor (TSI Inc., model 130A) 

that impacted particles with diameters 1.4 – 2.5 µm, 0.7 – 1.4 µm, 0.4 – 0.7 µm, 0.25 – 0.4 µm, 

and < 0.25 µm onto stages 1, 2, 3, 4, and 5, respectively. Ambient aerosol number size distributions 

in the range 0.52 – 19.8 µm were measured by an aerodynamic particle sizer (APS, TSI Inc., model 

3321) and averaged every 30 min. 
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5.2.2 LC/MS/MS Toxin Characterization 

Particles impacted onto glass and quartz fiber filters were extracted following the method 

described by Wood et al.290 Filters were mixed with 5 mL of 70% methanol and sonicated for 15 

minutes, after which the supernatant was poured into a glass vial. The extraction procedure was 

repeated for a total of three times. The supernatant of each filter were combined, filtered through 

a nylon syringe filter to remove particulates, dried under nitrogen, and solubilized in LC/MS grade 

water before LC/MS/MS analysis using a Thermo TSQ Quantiva triple quadrupole MS (Thermo 

Scientific).315 Microcystin congeners were separated using gradient analysis (mobile phases of 

0.1% formic acid in water and 0.1% formic acid in acetonitrile) and a C18 column (Thermo 

Accucore aQ, 50 x 2.1 mm, 2.6 µm) before detection using positive electrospray ionization mode. 

Concentrations of each microcystin congener were determined by calibration using commercially 

available standards (Enzo Life Sciences). Extract from the filters and aliquots from each 

corresponding freshwater sample were analyzed by LC/MS/MS to compare toxin concentrations 

present in the water column and aerosol phase. 

5.2.3 Single Particle Analysis 

SEM-EDX was performed using a FEI Helios 650 Nanolab Dualbeam electron microscope 

that operated at an accelerating voltage of 20.0 kV and a current of 0.40 nA. The Helios microscope 

utilized a high angle annular dark field (HAADF) detector to provide contrast between areas of 

differing chemical composition.144 EDX spectra were acquired for 20 seconds using an EDAX 

detector and GENESIS EDX software version 5.10 (EDAX Inc.). O-PTIR + Raman spectroscopy 

was performed on a mIRage infrared + Raman microscope (Photothermal Spectroscopy Corp.). 

The mIRage contained a 40x Cassegrain reflective objective (0.78 numerical aperture, 8.3 mm 

working distance), continuous wave visible laser (532 nm, 200 mW), and two, pulsed tunable IR 

lasers (a quantum cascade laser, QCL, covers 880-1950 cm-1 at 100 kHz, 40-500 ns pulses, and 2 

cm-1 spectral resolution; an optical parametric oscillator, OPO, covers 2700-3600 cm-1 at 150 kHz, 

<10 ns pulses, and 4 cm-1 spectral resolution). Raman spectra were obtained using a Horiba 

iHR320 module (Horiba Scientific) that contained a CCD detector and used a 600 gr/mm grating 

for 4 cm-1 spectral resolution. Raman spectra were collected using 3 accumulations at 5 second 

acquisition times for the range 500 – 4000 cm-1. 
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5.2.4 Analysis of Insoluble Residues 

Concentrations and size distributions of the insoluble residues present in each freshwater 

sample were analyzed by nanoparticle tracking analysis (NTA) using a NanoSight LM10 

(NanoSight Ltd.) and the method for environmental samples described by Axson et al.238 NTA 

determines the size of individual particles in water by illuminating the sample with a 405 nm laser 

and monitoring the Brownian motion of particles, which is then used to determine the individual 

particle hydrodynamic diameter with the Stokes-Einstein equation.323,324 Light scattering was 

measured using a sCMOS camera (Hamamatsu, Orca) coupled to a 20x objective microscope as 

freshwater sample was flowed through the instrument using a syringe pump at 60 rpm. Ten 60 

second videos of each freshwater sample were analyzed using the NTA 3.2 (Build 60) software to 

generate an average size distribution in the range 10 nm – 1 µm for each freshwater sample.  

5.3 Results and Discussion 

Microcystin and phycocyanin concentrations in each freshwater sample were measured 

immediately following sample collection. The Beach sample had the highest toxin concentrations: 

194,000 ppt D-Asp3-MC-RR, 32,000 ppt MC-YR, 5400 ppt D-Asp3-MC-LR, and 370 ppt MC-LR 

(Figure 5.1). The Dock, Spillway, Central, and Prairie Creek samples all had similar toxin 

concentrations of: 14,000, 15,000, 23,000, and 19,000 ppt of D-Asp3-MC-RR, respectively; 0, 

3500, 3500, and 3100 ppt of MC-YR, respectively; 430, 530, 630, and 580 ppt of D-Asp3-MC-LR, 

respectively; and 320, 0, 0, and 350 ppt of MC-LR, respectively. Phycocyanin concentrations 

averaged after triplicate measurements were as follows: 9500 ± 160 µg/L for the Dock sample, 

6400 ± 190 µg/L for the Spillway sample, 9400 ± 670 µg/L for the Beach sample, 9700 ± 220 

µg/L for the Central sample, and 2400 ± 60 µg/L for the Prairie Creek sample. The diversity in 

toxin and phycocyanin concentrations at each freshwater sampling location highlight the need for 

aerosolized toxin measurements at several points around the lake for thorough exposure 

assessments.  
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Figure 5.1. Total microcystin and phycocyanin (blue-green algae, BGA) concentrations for each 

freshwater sample.  

 Aerosol particles extracted from filters were analyzed with LC-MS/MS to compare the 

amounts of toxins present in the aerosol phase to those identified in the water column. Of the 

aerosol samples analyzed thus far, the only toxin detected was D-Asp3-MC-RR at 22 pg/m3 at the 

Central sampling location (Figure 5.2). These results are consistent with Backer et al. who 

observed ambient aerosolized microcystin concentrations up to 52 pg/m3 at a site in California.289 

The aerosol sample collected at the Beach was below the limit of detection for this method (5 ppt). 

Analysis of additional aerosol samples collected at the Dock, Spillway, and Prairie Creek are 

planned and will give insight into the spatial distribution of toxin-containing particles in this 

region. 



 70 

 
Figure 5.2. Aerosolized toxins at Grand Lake St Marys.  

 To identify individual toxin-containing aerosols with single-particle spectroscopy, a 

spectral signature of each toxin is necessary. Halvorson et al. characterized the Raman-active 

vibrational modes for microcystin-LR325 and other microcystin congeners.364 However, to our 

knowledge, no characterization of microcystin with infrared spectroscopy has been performed. 

Microcystin-LR was characterized both at the bulk (droplet) level with conventional Fourier-

transform infrared spectroscopy (FTIR) and as a single particle with O-PTIR (Figure 5.3). Both 

spectra had similar modes, with peaks at 1100 cm-1 representing νas(C-O), ~1415 cm-1 representing 

νas(O-H), 1530 cm-1 representing νas(N-H), ~1655 cm-1 representing νas(C=C), ~1720 cm-1 

representing νas(C=O). The spectral agreement suggests IR techniques can identify algal toxins in 

individual particles. Future work will aim to identify these markers in ambient particles and 

characterize the vibrational modes for other microcystin congeners.  
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Figure 5.3. O-PTIR (solid trace) and FTIR (dashed trace) spectra of microcystin-LR.  

 Following toxin characterization, O-PTIR + Raman was used to identify ambient particle 

types.  LSA particles were classified by ν(O-H) at 1350 cm-1, νas(C-O) at 1414 cm-1, and ν(C=O) 

at 1610 cm-1 in the O-PTIR spectra365-368 and ν(C-O) at 1087 cm-1, δ(C-H) at 1490 cm-1, and ν(C-

H) at 2960 cm-1 in the Raman spectra (Figure 5.4).207,234,369-373 Secondary organic aerosol (SOA) 

particles were identified by νas(SO4
2-) at 1100 cm-1 and ν(C-C) at 1625 cm-1 in the O-PTIR 

spectra50,52,57,374,375 and by νs(SO4
2-) at 1000 cm-1 and ν(C-H) at 2470 and 2924 cm-1 in the Raman 

spectra.22,34,35,45,152,153 Organic particles containing ν(C-H) at 1460 cm-1 and ν(C-C) at 1610 cm-1
 

in the O-PTIR spectra57,365-367 also contained Raman modes representing ν(C-O-C) at 1064 cm-1, 

ν(C=C) at 1340 cm-1, ν(C=C) at 1580 cm-1, and ν(C-H) at 2960 cm-1.57,207,371-373  These modes 

commonly appear in biomass burning,285,376 dust,22,374,377-379 and soot aerosol,374,380,381 which are 

all present in this region.225,382-384 Additional analysis using elemental spectroscopy was necessary 

to separate SOA, biomass burning, and soot particles, and is discussed below. Lastly, biological 

particles were identified by containing ν(C-N) at 1330 cm-1, νa(NO3
-) at 1351 cm-1, ν(C-H) at 1450 

cm-1, and ν(C=N) at 1630 cm-1 in the O-PTIR spectra.50,52,57,385 The same particle contained ν(NO3
-

) at 1068 cm-1, ν(C=N) at 1569 cm-1, and ν(C-H) at 2960 cm-1 in the Raman spectra.33,43,153,386 The 

identification of biological particles generated from HAB-containing water aligns with the findings 
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of prior mass spectrometry analysis,168,355 and provides further evidence that material from HABs 

can become incorporated into aerosol particles.  

 

Figure 5.4. O-PTIR (left, red trace) and corresponding Raman spectra (middle, green trace) of 

representative individual particles defined as LSA, SOA, Biomass burning/soot/dust, and 

biological. Optical images of each particle analyzed are shown on the right. Peaks labeled with * 

in the Raman spectra indicate contribution from the substrate on which the particles were 

collected.  

 In addition to O-PTIR + Raman, ambient particles were also analyzed with SEM-EDX for 

complimentary, elemental spectra. SEM-EDX identified LSA particles by the presence of Ca, C, 

and O in the elemental spectra (indicative of CaCO3) and an amorphous particle structure (Figure 

5.5).5,27,168,285,355 SOA particles had a circular morphology and the elements C, O, and S.20,22,34,76,387 

Biomass burning particles were differentiated from SOA by the presence of K.20,22,387 Soot 

particles were classified by an agglomerate structure and an elemental spectrum dominated by 
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C.20,22,387 Dust particles were identified by the presence of Fe and their supermicron 

size.5,20,238,285,387 Lastly, biological particles were identified by their unique structure and the 

presence of P.20,168,355 The particle types observed with SEM-EDX corroborate the O-PTIR + 

Raman analysis, and give us insight into the particle sources in this region.    

 

Figure 5.5. Scanning electron microscopy images with corresponding energy dispersive x-ray 

spectra of representative individual particles defined as LSA, SOA, biomass burning, soot, dust, 

and biological. Spectral peaks labeled with * indicate contribution from the substrate on which 

the particles were collected.  

 The size and number concentrations of ambient particles were compared to the size and 

concentration of insoluble residues present in the freshwater samples to investigate trends between 

water properties and aerosol formation. Aerosols collected near the Spillway had a size mode of 

790 nm and insoluble residues of 150 nm (Figure 5.6), similar to previous analysis of insoluble 

residues in freshwater environments.355 Aerosol particles collected from the Central and Dock 

locations had slightly larger modes (840 nm and 1000 nm, respectively), but similar modes for 
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insoluble residues (150 nm each). The insoluble residues present in the Prairie Creek freshwater 

sample were the largest (220 nm) and corresponded to an increase in average aerosol size (940 

nm). The Beach location had the largest size of aerosols (1100 nm), and 190 nm sized insoluble 

residues. Quantification of each aerosol and insoluble residue size distribution revealed that the 

concentration of insoluble residues impacted aerosol concentration. The Dock had the highest 

insoluble residue concentration (1.82 ± 0.06 x 109 insoluble residues/mL3) and average aerosol 

concentrations of 22.4 ± 0.5 particles/cm3. The Spillway and Central locations had similar 

insoluble residue (1.64 ± 0.03 x 109 and 1.51 ± 0.06 x 109 insoluble residues/mL3, respectively) 

and aerosol (30.9 ± 0.6 and 32.5 ± 0.7 particles/cm3, respectively) concentrations. The Prairie 

Creek and Beach locations had the lowest amount of insoluble residues (7.66 ± 0.02 x 108 and 1.24 

± 0.01 x 109 insoluble residues/mL3, respectively) and correspondingly lower aerosol 

concentrations were observed in these regions (18.1 ± 0.3 and 23.2 ± 0.4 particles/cm3, 

respectively). Generally, with the exception of the Dock sample, increased insoluble residue 

concentrations in the water column corresponded to increased aerosol production, similar to 

previous observations during late-bloom conditions.355  
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Figure 5.6. A) Average aerosol and POC number size distributions for each sampling location. 

B) Quantification of aerosol and POC number concentrations for each sample. 

5.4 Atmospheric and Health Implications 

The identification of the HAB toxin microcystin in ambient aerosols < 2.5 µm in diameter 

poses a potentially significant human health risk via inhalation. The authors characterized 

microcystin-LR with O-PTIR + Raman for the first time, providing a detailed spectral signature of 

the toxin. This information will be valuable as future measurements will focus on identifying 

microcystin-LR spectroscopically in individual particles. In addition to microcystin 

characterization, ambient particles were characterized with O-PTIR + Raman and electron 

microscopy with elemental spectroscopy. LSA particles represented a significant fraction of the 

ambient particles observed in this region, suggesting that aerosols containing HAB toxins are 

abundant in regions experiencing severe HABs. The size and concentration of aerosol particles 
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was measured at several sites around the lake, with an increase in aerosol concentration generally 

correlated with an increase in insoluble residues in the water column. These observations align 

with previous laboratory measurements355 that reported enhanced ultrafine aerosol production with 

the presence of insoluble organics in the freshwater. Overall, the results obtained from this study 

highlight the potential health impacts of HAB toxin aerosolization in ambient environments.  
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Chapter 6. Simultaneous Optical Photothermal Infrared (O-PTIR) and Raman 

Spectroscopy of Submicrometer Atmospheric Particles 

 

Adapted with permission from Olson, N. E., Xiao, Y., Lei, Z., and Ault, A. P.: Simultaneous 

Optical Photothermal Infrared (O-PTIR) and Raman Spectroscopy of Submicrometer Atmospheric 

Particles, Anal. Chem., 92, 14, 9932-9939, 2020.  

https://doi.org/10.1021/acs.analchem.0c01495 Copyright 2020 American Chemical Society. 

6.1 Introduction 

Atmospheric aerosols impact climate by scattering or absorbing solar radiation, nucleating 

cloud droplets and ice crystals, and undergoing heterogeneous reactions with atmospheric gases.2 

Atmospheric particles represent the largest uncertainty in the evolving radiative balance of our 

changing climate2 due to their complex and evolving physicochemical properties26,295,388 and the 

analytical challenge of measuring them.3,13 Particles with diameters <1 µm almost always account 

for >99% of particles by number in the atmosphere.2,294 Submicrometer particles are the most 

important contributors to the uncertain impacts of aerosols on radiative balance, and thus climate, 

due to their optical and cloud droplet forming properties.2 Submicrometer particles also contribute 

a large fraction of fine particulate matter mass (PM2.5, PM with aerodynamic diameters <2.5 µm), 

the most important size range for impacts on human health.11,389 Inhaled submicrometer 

atmospheric particles deposit deep in the alveoli of the lungs, contributing significantly to 

pulmonary and cardiovascular diseases, and ~8% of global deaths annually from air pollution.390 

Determining the size, chemical composition, phase state (liquid, semi-solid, or solid), and structure 

(e.g., core-shell) of individual particles is crucial for estimating their impacts on climate and 

health.14,74,105,391  

Spectroscopic methods providing both chemical and physical characterization of 

individual particles <1 µm under ambient conditions are limited.3 The most common 

microspectroscopic methods applied to atmospheric particles have traditionally been under 

vacuum, such as electron microscopy with energy dispersive X-ray spectroscopy (EDX) which 

provides elemental information,20,29,206,234,392 but limited information about organic species. 

https://doi.org/10.1021/acs.analchem.0c01495
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Scanning transmission x-ray microscopy coupled with near edge x-ray absorption fine structure 

spectroscopy (STXM/NEXAFS) provides greater spectroscopic detail on carbon-containing 

species,37,234,393 but focuses on electronic transitions and is often under vacuum, which can modify 

particle morphology. In contrast, vibrational spectroscopy methods (i.e., infrared (IR) and Raman) 

provide information on key inorganic species (e.g., sulfate, nitrate, and ammonium) and organic 

functional groups present in atmospheric particles under ambient conditions.3,45 Fourier Transform 

IR (FTIR) performed on bulk samples has shown the ability of vibrational spectroscopy to 

complement the widespread use of mass spectrometry in aerosol analysis.394  

Raman spectroscopy has been used to study vibrational modes in individual atmospheric 

and laboratory-generated particles ~1 µm or larger.22,33,36,37,45,48,49,286 To illustrate the benefits of 

vibrational spectroscopy for analysis of chemical species in atmospheric particles, inorganic 

sulfate ions (SO4
2-) and organosulfates (ROSO3

-) can be difficult to distinguish via aerosol mass 

spectrometry and other mass spectrometers using hard ionization methods,395 but Raman clearly 

differentiates modes for sulfate (973 cm-1), bisulfate (1040 cm-1), and organosulfates (1065 cm-1) 

in model systems,42 particles generated in atmospheric chambers,34 and the ambient atmosphere.42 

Recent advances to push Raman <1 µm include surface enhanced Raman spectroscopy 

(SERS)43,46,396,397 and tip enhanced Raman spectroscopy (TERS),47 but both are challenging due 

to inconsistent enhancements between substrates and for different vibrational modes.46 

Fluorescence emission after excitation by visible lasers provides additional challenges for the 

broad use of Raman spectroscopy for atmospheric particles, and is particularly challenging for 

primary biological, mineral dust, and soot particles, which can all fluoresce.37,48,239  

Atomic force microscopy coupled to photothermal infrared spectroscopy (AFM-PTIR)53 

has recently been applied to study particles and their chemical properties50-52,374,398 by providing 

information on vibrational modes in particles down to 100 nm diameter.50,52 The basic principle of 

AFM-PTIR is that a tunable IR laser, such as an optical parametric oscillator (OPO), scans across 

the mid-IR (i.e., 800-3600 cm-1), while an AFM tip is in contact with a particle or surface.53,55,399,400 

When the laser wavenumber excites a vibrational mode of a molecular species in the sample, the 

sample heats and slightly expands.50,55,401 This photothermal expansion is detected by the AFM tip 

at each frequency as the laser source is scanned across the spectral range to produce an IR 

spectrum. The relationship between IR absorption and photothermal expansion detected by the 

AFM-PTIR tip is shown in Equation 6.1: 
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Equation 6.1   𝑢(𝑡) = 𝑎𝐺𝛼𝑇∆𝑇(𝑡) 

where u(t) is the photothermal expansion of the sample in m2, a is the area of the heated region in 

m2 (e.g., sphere = circle = radius, cube = square = edge length), G is a geometric constant based 

on the shape of the sample (e.g., sphere or cube), αT is the thermal expansion coefficient of the 

sample in K-1, and ∆𝑇(𝑡) is the time-dependent temperature increase of the sample in K.55 The 

thermal expansion of the sample (u) is proportional to the temperature change of the sample after 

absorption of incident IR radiation (∆𝑇), the power absorbed by the sample (Pabs), and the optical 

absorption from the Beer-Lambert Law.55 Thus, IR absorption-like spectra are obtained by 

measuring the photothermal expansion of the sample as a function of wavenumber. See Dazzi and 

Prater for further details.55 AFM-PTIR analysis has been time intensive; often taking 20-30 

minutes to collect a high quality spectrum. Additionally, tip interactions, particularly during the 

analysis of soft or liquid samples, have been challenging.402  

Optical photothermal infrared (O-PTIR) spectroscopy has recently been developed and 

overcomes both the issues of the AFM tip and slow collection time of earlier AFM-PTIR 

instruments.403 With O-PTIR, localized IR absorption is obtained after co-aligning a continuous 

wave (CW) visible laser (532 nm) and a pulsed, tunable IR laser on the sample and measuring the 

photothermal expansion that occurs when the incident frequency of the IR laser matches an IR 

absorption mode of the sample.401,404,405 The resulting modulated photothermal expansion causes 

a change in the intensity of the elastically (Rayleigh) scattered light from the visible laser,406 which 

can be processed to generate an IR spectrum. The photothermal response is shown in equation 6.2:  

Equation 6.2    ∆𝑃𝑃𝑅 ∝
𝜎𝑁

𝐾 𝐶𝑝

𝜕𝑛

𝜕𝑇
𝑃𝑝𝑟𝑃𝐼𝑅  

where PPR refers to the probe (visible laser) power, 𝜎 is the absorption cross section of the sample, 

N is the number density of absorbing molecules in the sample, K is the heat conductivity of the 

sample, Cp is the heat capacity of the sample, n is the refractive index of the illuminated volume 

of the sample, T is the temperature, and PIR refers to the power of the IR laser.62 The generated O-

PTIR spectra resemble FTIR absorbance spectra.62 Unlike traditional FTIR microscopy, O-PTIR 

can achieve submicron spatial resolution67,68 because the spatial resolution is determined by the 

visible laser, not the longer wavelength IR laser. The potential of this new analytical technique has 
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been shown during recent applications where O-PTIR imaged live cells,60,62 tissues,406 

polymers,407,408 and plasmonic nanostructures.409  

Herein, we report simultaneous collection of O-PTIR and Raman spectra to characterize 

submicron atmospheric particles. As the 532 nm probe laser used for O-PTIR also generates Stokes 

and anti-Stokes shifted photons from inelastic scattering, these can be detected simultaneously to 

generate both O-PTIR and Raman spectra. The capability of O-PTIR+Raman to analyze submicron 

particles with <1 minute acquisition times are shown below. Microscopy substrates were tested 

for optimal sample signal and to minimize interferences within OPTIR+Raman spectra. Organic 

and inorganic functional groups were characterized for both laboratory-generated standards and 

ambient aerosol particles. Mapping was performed on two-component, liquid-liquid phase-

separated particles to determine the spatial distribution of chemical species. These results highlight 

the capability of O-PTIR to analyze particles well below the diffraction limited spatial resolution 

of traditional IR microscopy and show the power of the combined O-PTIR+Raman analytical 

method to study physicochemical properties of atmospheric aerosol particles.  

6.2 Methods 

6.2.1 Laboratory-Generated Aerosol Particle Samples 

Standard solutions were prepared using 18.2 MΩ Milli-Q water and the following 

chemicals: ammonium sulfate ((NH4)2SO4, Honeywell Fluka), ammonium nitrate (NH4NO3, 

Acros Organics), ammonium oxalate ((NH4)2C2O4, Sigma-Aldrich), sodium acetate (CH3COONa, 

Sigma-Aldrich), sucrose (C12H22O11, Fisher Scientific), polyethylene glycol (PEG 400, 

C2nH4n+2On+1, Honeywell Fluka), and sodium dodecyl sulfate (SDS, NaC12H25SO4, Research 

Products International). All chemicals were >98% purity and used without further purification. 

Particles were generated by atomizing 50 mM solutions with a Collison nebulizer using HEPA-

filtered air. Samples were inertially impacted onto silicon (Ted Pella Inc., product number 16013), 

quartz (Ted Pella Inc.), germanium (Wafer World Inc.), aluminum foil (Ted Pella Inc.), silver foil 

(ESPI Metals), and gold deposited onto silicon (Platypus Technologies) substrates using a 

microanalysis particle sampler (MPS, California Measurements Inc.). Samples impacted onto 

stage 3 of the MPS (<400 nm aerodynamic diameter before spreading after inertial impaction onto 

the substrates50,410) were analyzed. To provide context with respect to mass of material detected, a 

400 nm particle with a 50 mM concentration of ammonium sulfate contains 160 attograms of 
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sulfate per particle and 60 attograms of ammonium. Liquid liquid phase separated particles were 

generated by atomizing a mixed solution of PEG and ammonium nitrate at a 1:1 mass ratio using 

1% by weight of each compound. All samples were stored in the dark at room temperature 

following established protocols219 and analyzed within 24 hours at room temperature (23 °C) and 

RH (30%). At minimum, ten particles per sample were analyzed to ensure representative and 

reproducible spectra, with details on the number of particles analyzed for each sample available in 

the Supporting Information (Table E.1). All spectra were obtained at a single point (laser spot size 

~450 nm) in the center of particles unless otherwise stated. 

6.2.2 Ambient Particle Sampling 

Atmospheric particles were collected onto silicon substrates in Ann Arbor, MI on February 

4, 2020 from 13:04 – 14:15 EST using an MPS. Stages 1, 2, and 3 (aerodynamic diameters of 2.8 

– 5.0 µm, 0.4 – 2.8 µm, and <0.4 µm, respectively) were analyzed.  

6.2.3 Optical Photothermal Infrared (O-PTIR) Spectroscopy 

This study used a mIRage infrared + Raman microscope (Photothermal Spectroscopy 

Corp.) based on the O-PTIR concept of Zhang et al.,62 which was recently utilized for polymers 

and fibers.58,59,411 The mIRage contains a custom microscope frame with two motorized objectives: 

a visible objective (4×, 0.13 numerical aperture, 17.3 mm working distance, Nikon Plan Fluor) 

and a Cassegrain reflective objective for simultaneous use of IR and visible lasers (40×, 0.78 

numerical aperture, 8.3 mm working distance, 55 µm x 42 µm field of view). The mIRage uses a 

CW laser source (532 nm, 200 mW, ~20% reaches sample) as the probe (detected by a 

photodetector, range 0-1 mV) and two pulsed, tunable infrared lasers to generate photothermal 

enhancement. A quantum cascade laser (QCL) covers 880-1950 cm-1 with tunable repetition rate 

of 100 kHz, 40-500 ns pulses, up to 1 W power per pulse (much lower in practical use, see below), 

and 4 chips with spectral resolution of 2 cm-1. An OPO covers the range 2700-3600 cm-1 with 

tunable repetition rate up to 150 kHz, <10 ns pulses, >250 mW power per pulse, and spectral 

resolution of 4 cm-1.  

Focusing was optimized for each QCL chip at 1726, 1575, 1270, and 1026 cm-1 using the 

IR signal from a polyethylene terephthalate standard within the instrument. IR spectra were 

collected at a scan rate of 100 cm-1/s for 15 s acquisitions and averaged after 3 accumulations.  The 
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IR laser repetition rate was set at 100 kHz and 300 ns per pulse. The powers of the IR and visible 

lasers were set to approximately 4-10 mW each (details in Appendix E and Table E.2). Prior to 

collecting sample spectra, a background profile of the laser was collected from an AFM cantilever 

that absorbs uniformly at all wavenumbers. The sample spectra were then divided by the 

background profile to produce photometrically accurate background compensated spectra across 

the full spectral range. 

6.2.4 Raman Microspectroscopy 

Raman scattering was detected after photons passed back through the Cassegrain objective 

into a Horiba iHR320 module (focal length = 320 mm) with three gratings (600, 1200, and 1800 

groove/mm), spectral dispersion at 500 nm of 2.31 nm/mm, scan speed of 160 nm/sec, and step 

size of 0.002 nm. Spectra were collected across the spectral range of 200–4000 cm-1 using the 600 

groove/mm grating to yield spectral resolution of 4 cm-1. Raman spectra were collected using 5 s 

acquisitions with 3 accumulations and calibrated against the known Raman peaks of silicon and 

acetaminophen.  

6.2.5 O-PTIR Imaging 

PTIR Studio software (version 4.0, Photothermal Spectroscopy Corp.) was used to process 

spectra and IR images. Spectra were not smoothed and raw data is shown. IR images were 

generated by inputting the wavenumber of interest and scanning the field of view with 100 nm 

steps.50 IR absorbance images were generated to show the intensity of IR signal on a color scale 

from 0 – 1 mV. 

6.3 Results and Discussion 

A diagram illustrating the operating principle of O-PTIR+Raman is shown in Figure 6.1a. 

A pulsed IR laser and CW laser of 532 nm are co-aligned and focused through a Cassegrain 

objective onto the sample. If the vibrational energy levels of the sample match the incident 

frequency of IR light, IR light is absorbed by the sample (𝐴𝑏𝑠𝐼𝑅) leading to photothermal 

expansion (∆ℎ) and change in refractive index based on the heat capacity (Cp), heat conductivity 

(K), and absorption cross section of the sample(𝜎).49,52,62 Table E.2 includes available values for 

the compounds used. The change in scattering (∆𝑝𝑠𝑐𝑎𝑡) due to changes in refractive index with 

temperature and photothermal expansion is detected and extracted to give an IR spectrum of the 
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sample.62,406,412 The inelastically scattered photons from the sample pass back through the 

Cassegrain objective to a Raman spectrometer. With O-PTIR+Raman, we are able to observe 

molecular vibrations associated with changes in the dipole moment (IR) and polarizability 

(Raman) of the species analyzed. The ability to detect both IR active and Raman active vibrational 

modes simultaneously from the same spot and with the same submicron spatial resolution allows 

for far more comprehensive sample characterization. As an example, we show the symmetric and 

anti-symmetric stretching modes of sulfate molecules (Figure 6.1b) with the corresponding spectra 

generated from an ammonium sulfate particle (Figure 6.1c). For example, νs(SO4
2-) is not IR active 

as the dipole moment of this symmetric molecule does not change during this molecular vibration, 

however, the polarizability does, making it Raman active. There is a substantial dipole moment 

change for νas(SO4
2-) that corresponds to intense signal in the IR spectrum, but the Raman activity 

of νas(SO4
2-) is weaker. Thus, by obtaining both IR and Raman spectra at the same point 

simultaneously, greater molecular detail can be obtained for a wide range of samples

 

Optimal substrates for both spectroscopies need to be determined as IR and Raman spectra 

have seldom been collected simultaneously, particularly not from the same spot and with the same 

spatial resolution. Interferences for different substrates were explored by impacting ammonium 

sulfate particles onto common microscopy substrates including silicon, quartz, germanium, 

Figure 6.1. Schematic of optical photothermal infrared spectroscopy. A) Infrared and visible light 

are focused on the sample through a Cassegrain objective, inducing a photothermal expansion of 

the particle. Light scattered from the sample (∆𝑝𝑠𝑐𝑎𝑡) is proportional to the photothermal expansion 

of the particle (∆ℎ) and absorbance of IR light (𝐴𝑏𝑠𝐼𝑅). Simultaneous IR and Raman spectra are 

obtained from a single point. B) Molecular vibrations are shown corresponding to anti-symmetric 

(red) and symmetric (green) stretching modes of sulfate. C) IR and Raman spectra obtained from 

a sulfate-containing particle. The peak width of νas(SO4
2-) is broader than νs(SO4

2-) as 3-fold 

degeneracy of Td symmetry breaks down in non-ideal aerosol environment. 
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aluminum foil, silver foil, and Platypus flat gold. IR vibrational modes observed include νas(SO4
2-

) at 1100 cm-1, δ(NH4
+) at 1422 cm-1, ν(N-H) at ~3040 cm-1, with δ(O-H) at 1766 cm-1 and ν(O-H) 

at ~3220 cm-1 from water (Figure 6.2A). Ammonium sulfate modes are comparable to FTIR 

spectra of ammonium sulfate (Figure E.1).50,52,375 Raman spectra contained peaks at 977 cm-1 

representing νs(SO4
2-), 634 cm-1 for an umbrella bend δ(SO4

2-), 471 cm-1 representing a scissoring 

motion for SO4
2-, and ~3168 cm-1 representing ν(N-H) (Figure 6.2B).22,34,35,45 Optical images of 

each particle are shown in Figure 6.2C, with images of blank substrates and peaks from substrates 

listed in Table E.3. Fluorescence was generated with flat gold substrates, which overwhelmed the 

Raman signal of the sample (Figure E.2). Al foil provided weak IR signal, possibly due to the 

rough surface. Quartz showed interference peaks in the IR spectra at 1056 and 1223 cm-1 and an 

uneven baseline in the Raman spectra. While germanium and Ag foil had minimal spectral 

interferences, the IR signal generated from particles on these substrates was lower than with 

silicon. Silicon was determined to be the best substrate and was used hereafter due to minimal 

interference in the Raman spectra (520 and 963 cm-1), no interference in the IR spectra, and intense 

sample signal compared to other substrates tested.  
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Figure 6.2. IR and Raman spectra of ammonium sulfate particles on different substrates. 

Background spectra were taken adjacent to the particle on a clear location of the substrate. Peaks 

labeled with asterisks denote contribution from the substrate and are listed in Table E.2. Optical 

images of the particles analyzed are shown in panel C. All particles had aerodynamic diameters 

<400 nm before spreading after inertial impaction onto the substrates, with spreading ratios 

typically between 4:1 to 10:1.39,57 Intensities on IR and Raman spectra are in arbitrary units, but 

are not related, which is also true for subsequent figures. 

Aerosols from single-component solutions were used to evaluate the ability of O-PTIR to 

study a range of species commonly observed in atmospheric particles. Representative IR and 

Raman spectra of laboratory-generated particles (ammonium nitrate, sodium acetate, sucrose, 

SDS, and ammonium oxalate) on silicon substrates are shown in Figure 6.3, with spectral 
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assignments and corresponding references reported in Table E.4. Optical images of all particles 

analyzed are shown in Figure E.3. The combined O-PTIR+Raman spectra clearly distinguish 

organic and inorganic vibrational modes commonly found in atmospheric particles.  

 

Figure 6.3. IR (left, red trace) and Raman (right, green trace) spectra of laboratory-generated 

standards. A) ammonium nitrate, B) sodium acetate, C) sucrose, D) SDS, and E) ammonium 

oxalate particles. Peaks labeled with * in the Raman spectra indicate contribution from the silicon 

substrate. All particles had an aerodynamic diameter <400 nm before spreading after inertial 

impaction onto the silicon substrates. 

Ambient particles were analyzed with O-PTIR+Raman for the first time. Particles 

containing ammonium nitrate were identified by IR modes at 1351 and 1411 cm-1, indicative of 

νa(NO3
-) and δ(NH4

+), respectively (Figure 6.4A).50,385 The same particle contained Raman modes 
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at 1068 and 3026 cm-1, representing ν(NO3
-) and ν(N-H), respectively.33,43,45 The agreement 

between IR and Raman provide robust evidence for the presence of ammonium nitrate, much 

stronger than either IR or Raman would provide independently due to common peaks in similar 

regions (e.g., organosulfates ~1065 cm-1 in Raman).34,42 Similarly, ambient sulfate-containing 

particles were identified by νas(SO4
2-) at 1107 cm-1 in the IR spectrum50,375 and νs(SO4

2-) at 990 

cm-1 in the Raman spectrum (Figure 6.4C).34,35,45 This particle also contained organic modes 

identified as δ(C-H) in the IR spectrum413 and ν(C-H), ν(CH2), and δ(CH2) in the Raman 

spectrum,370,372 similar to mixtures of sulfate and organic material identified in ambient particles 

with AFM-PTIR50,76,374 and Raman.22,37,43 Additional organic vibrational modes were identified in 

both IR and Raman spectra of ambient particles (Figure 6.4B), resembling modes detected in 

oxalate,368 sucrose,370 and SDS36,413 (Figure 6.3). OPTIR+Raman spectra show that significant 

chemical detail can be obtained from atmospheric particles containing complex mixtures of 

chemical species.13 

Figure 6.4. IR (left, red trace) and Raman (right, green trace) spectra obtained 

from ambient particles. Spectra represent A) ammonium nitrate-containing, B) 

organic, and C) organic- and sulfate-containing particles. Peaks corresponding 

to vibrational modes identified from laboratory-generated standards are labeled. 

Peaks labeled with * in the Raman spectra indicate contribution from the silicon 

substrate. Optical images of each particle analyzed are shown on the right and 

are labeled with the size range of the impactor stage on which the particle was 

collected. Uneven baselines in the Raman spectra are likely from fluorescence. 
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Atmospheric particles are frequently not homogeneous, but rather adopt core-shell and 

other complicated morphologies.74,76,117 To demonstrate the spatial distribution of chemical 

species within an individual particle, IR spectra and maps were collected from liquid-liquid phase-

separated particles containing PEG and ammonium nitrate with aerodynamic diameters <400 nm, 

which spread upon impaction. A line scan (Figure 6.5A) collected spectra every 2.0 µm across a 

two-component, phase-separated particle. IR spectra collected from the core and shell of the 

particle confirm the presence of nitrate primarily in the particle core and PEG primarily in the 

particle shell (Figure 6.5A). The IR peak intensity ratio of 1105 and 1371 cm-1, corresponding to 

ν(C-O)50 and νa(NO3
-),50 respectively, was calculated at each point in the line scan to show the 

enhancement of PEG on the edge of the particle with minimal PEG in the particle core (Figure 

6.5B). Two IR modes representing ν(C-O)50 and νa(NO3
-)50 (1105 and 1371 cm-1, respectively) 

were observed with differing spatial distributions in spectral maps with 100 nm step sizes (Figure 

6.5C). Inorganic components (nitrate) were located primarily in the core of the particle, while the 

outer layer of the particle was primarily organic (PEG), similar to previously observed phase-

separated particles studied in the laboratory34,52,117 and in ambient environments.76 These results 

show that O-PTIR can determine the distribution of chemical species within individual particles 

related to particle morphology, which can be used to study aerosol physicochemical mixing state.13  
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Figure 6.5. IR spectra and maps of a phase-separated particle. A) IR spectra collected from 

the core (point 3 on the line scan) and shell (point 1) of phase-separated PEG + ammonium 

nitrate particle. Shell spectra was multiplied x10 for clarity. The optical image of the particle 

analyzed includes numbers denoting the location of the five spectra acquired during the line 

scan. B) Ratio of the intensity of PEG and nitrate IR peaks obtained during the line scan, 

confirming the presence of PEG primarily in the outer shell of the particle with nitrate in the 

core. C) Optical image of phase-separated PEG + ammonium nitrate particle, with maps 

showing the location of nitrate (1371 cm-1) in the core of the particle and PEG (1105 cm-1) 

in the outer shell using 100 nm step size. It should be noted that repeating scans (2 or more) 

across the sample resulted in minor beam damage to organic compounds and is visible 

through the slightly irregularly-shaped shell.   
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6.4 Conclusions 

The simultaneous spectroscopic and physicochemical analysis of submicron aerosol 

particles is analytically challenging because traditional vibrational spectroscopy techniques, such 

as FTIR, struggle to investigate particles in the size range reported herein (<400 nm aerodynamic 

diameter before spreading after impaction onto the substrates) as the diffraction limit of IR light 

traditionally limits spatial resolution. O-PTIR+Raman was applied to simultaneously collect 

vibrational IR and Raman spectra from individual particles <400 nm aerodynamic diameter under 

ambient conditions, allowing for faster analysis times and complementary chemical information. 

We show the potential of O-PTIR+Raman for single-component model systems, two-component 

phase-separated particles, and ambient aerosol particles. The contactless nature of O-PTIR enables 

analysis of different phase states (liquid, semi-solid or solid).16,34,76 High spatial resolution maps 

of vibrational modes presented within particles demonstrate the ability of this analytical technique 

to determine intra-particle chemical differences, which impact aerosol reactivity in the 

atmosphere.16 Future work will push the analytical capabilities of O-PTIR to even smaller 

particles, with a focus on viscous particles that spread less upon impaction and ambient particles 

whose viscosity changes as a function of relative humidity and temperature. Spectral information 

obtained will enable key insights regarding physicochemical properties of atmospheric particles in 

a critical size range for climate and human health. The power of O-PTIR+Raman, shown above 

for laboratory-generated and atmospheric particles, has applications for a wide range of scientific 

disciplines from materials science to the biosciences. 
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Chapter 7. Conclusions and Future Directions 

 

 

7.1 Conclusions 

The impacts of atmospheric aerosol particles on climate and human health are dependent 

on the physical structure and chemical composition of individual particles. However, aerosol 

physicochemical properties are seldom measured in detail due to the analytical challenges 

associated with determining species present in minute concentrations and the time-intensive 

manner of characterizing the structure of individual particles. This dissertation focuses on the 

development and use of microspectroscopic techniques to characterize the physicochemical 

properties of model and ambient particles in the mid-latitude regions. The multimodal approach 

applied within each chapter gives insight into the complex chemical compositions observed while 

also monitoring the evolving physical structure of particles during their atmospheric lifetime. The 

information discovered helps discern the climate and health impacts of particles and provides 

motivation for future studies.  

Chapter 2 discussed the physicochemical changes to secondary organic aerosol (SOA) 

particles after reactions with gas-phase IEPOX, an isoprene oxidation product. Particles initially 

had two distinct phases: an inorganic core followed by a coating with organic SOA material. After 

exposure to gas-phase organics, the morphology and composition of the particle core changed. 

Organics were present in the particle core (as determined by SEM-EDX) due to the formation of 

organosulfate species (as determined by Raman spectroscopy). The formation of viscous 

organosulfates changed the internal structure of the core and increased the viscosity of the particles 

(as determined by spreading ratios calculated from AFM data). The increase in particle viscosity 

likely inhibits further heterogeneous reactions and climate-relevant properties, such as water 

uptake. This chapter suggests the importance of not only monitoring chemical composition but 

also physical morphology over the atmospheric lifetime of SOA particles.  

Chapter 3 investigated the climate impacts of freshwater-derived lake spray aerosol (LSA) 

particles. An aircraft-based campaign was performed over Lake Michigan to collect ambient 
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particles and cloudwater. SEM-EDX discerned similar structures and compositions for ambient 

and laboratory-generated LSA and the insoluble residues present in ambient cloudwater, 

suggesting the incorporation of LSA into clouds above Lake Michigan. Computer controlled SEM-

EDX was applied to thousands of particles for quantitative measurements of the elements present 

in individual particles as well as the amount of LSA related to other particle types observed. The 

elemental ratios calculated from the insoluble cloudwater residues were similar to those present in 

LSA and Lake Michigan freshwater, providing further evidence of the source of these cloudwater 

residues. Additionally, the amounts of LSA, dust, and SOA observed were similar to previously 

reported measurements in the Great Lakes region. This study suggested the incorporation of LSA 

into clouds above the Great Lakes, a phenomenon that likely occurs in other regions around the 

globe with large bodies of freshwater. The results obtained give insight into the composition and 

formation of lake-effect precipitation in this region.  

Chapters 4 and 5 explored the health impacts of LSA by studying the incorporation of algal 

toxins into aerosol particles. Harmful algal blooms (HABs) are known to release toxins into 

freshwater lakes, but little is known about the transfer of these toxins into the aerosol phase. 

Chapter 4 was a laboratory-based study in which ambient freshwater was collected from a HAB-

infested lake and brought to the lab for analysis. Eight toxins were identified in the freshwater 

sample before aerosols were generated in a controlled laboratory setting, with seven toxins 

detected in the aerosol phase. These results suggest the transfer of toxins from water into the 

atmosphere, with likely impacts on human health through inhalation of HAB toxins. An 

enrichment of the most hydrophobic toxins was discovered in the aerosol particles relative to the 

freshwater samples, suggesting the importance of simultaneous measurement of freshwater and 

aerosolized toxins to fully discern the impacts of HABs on human health. Chapter 5 explored this 

phenomenon through an ambient study performed on Grand Lake St. Mary in Ohio. Similarly to 

Chapter 4, HAB toxins were identified in freshwater and aerosol samples, with an enrichment of 

hydrophobic toxins in the aerosol phase. Together, these chapters explore the health impacts of 

freshwater-derived particles formed during HAB conditions on lakes. 

Chapter 6 applied a new multimodal microspectroscopic method, optical photothermal 

infrared (O-PTIR) + Raman spectroscopy, to study atmospheric particles for the first time. First, 

the ideal substrate was determined based on minimal interferences within both types of spectra 

and intense sample signal. Next, this method was validated by analyzing a variety of standard 
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compounds commonly identified in aerosol particles and comparing the spectra obtained to those 

reported in the literature. Ambient particles were collected in Ann Arbor and analyzed according 

to the vibrational modes identified in the standard particles, providing the first analysis of O-PTIR 

+ Raman to ambient atmospheric particles. Lastly, phase-separated particles were chemically 

analyzed and mapped to show the distribution of chemical species within a single aerosol particle. 

This method significantly enhanced the resolution of IR spectroscopy to allow for analysis of 

submicron particles. Additionally, the ability of this technique to study heterogeneous samples 

advances the fields of both atmospheric and analytical chemistry.  

7.2 Future Directions 

The research described within this dissertation addresses the challenge of physicochemical 

measurements of aerosol particles relevant to the mid-latitude regions, with specific chapters 

focusing on the climate and health impacts of these particles. These five research chapters have 

contributed new insights into aerosol physicochemical characterization using both novel and 

established single-particle microspectroscopic methods. However, further work can be performed 

to understand more about the properties of model systems and ambient aerosol particles. 

In Chapter 2, the effects of heterogeneous reactions on aerosol physicochemical properties 

were studied using model aerosols generated in a laboratory chamber. Though multiple types of 

organic coatings were investigated, these experiments used one type of gas-phase organic species 

(IEPOX), one seed particle (ammonium sulfate), and one relative humidity condition (50%). 

Further studies are warranted that study reactions between different gaseous species (limonene, 

for example), different starting materials (ammonium nitrate, for example), a wider range of 

relative humidity conditions, temperature, size of seed particles, and pH of seed particles. 

Furthermore, the analysis of ambient phase-separated particles from different regions around the 

globe would be useful to fully classify the changing physicochemical properties of aerosol particles 

after reaction with organic gases. Lastly, quantitative particle viscosity measurements are needed 

to assess the effect of viscosity on climate-relevant properties such as water uptake, for example.  

Chapter 3 involved an ambient aircraft campaign that investigated the incorporation of 

freshwater aerosol into clouds above Lake Michigan. This campaign was a case study performed 

in July 2016, warranting additional measurements of particle and cloudwater composition during 

different seasons and in different global regions. Additional measurements of the cloud-forming 
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efficiencies of particles with organic and biological components are needed to fully understand the 

climate-relevance of freshwater particles. Analysis of LSA using a cloud condensation nuclei 

counter would provide quantitative measurements on the cloud forming efficiencies of individual 

particles. Lastly, characterization of freshwater aerosol formation during different atmospheric 

conditions (as a function of wind speed or temperature, for example) are needed to better constrain 

model predictions in the Great Lakes region, as well as other regions around the globe with large 

bodies of freshwater.  

In Chapter 4, the aerosolization of toxins emitted from harmful algal blooms in freshwater 

lakes was investigated through laboratory experiments and bulk analysis of freshwater and aerosol 

samples. Ambient measurements around the globe are needed to fully quantify the amount of 

toxins incorporated into aerosol particles to better estimate the potential health effects associated 

with inhalation of toxins. Single-particle measurements of particles containing algal toxins would 

be useful, though thorough characterization of algal toxins is needed first (using single-particle 

mass spectrometry, for example). Additionally, these experiments focused on one class of algal 

toxins (microcystins), though others are known (such as nodularins, cylindrospermopsins, and 

anatoxins). Further investigation is also needed to assess the relative toxicities of each microcystin 

congener, particularly for inhalation as a route of exposure as most work to date has been done 

with ingestion as the primary mode of exposure. 

In Chapter 5, ambient particles were analyzed to identify the concentration of aerosolized 

harmful algal bloom toxins, as well as the prevalence of freshwater aerosol compared to other 

particle types in the region (soot and dust, for example). Future work should investigate the lifetime 

of toxin-containing particles, particularly how long they can stay aloft and how far they can travel 

inland. To connect these results with those of Chapter 3, identifying if/how much toxins are 

incorporated into clouds and the subsequent precipitation are critical to monitor how far toxins are 

transported. Additional questions remain regarding the stability of aerosolized toxins, particularly 

if they undergo photochemical degradation, for example. All of these future steps will aid in 

estimating exposure to harmful algal bloom toxins.  

In Chapter 6, optical photothermal infrared (O-PTIR) + Raman spectroscopy was applied 

to classify the vibrational modes present in 400 nm laboratory-generated and ambient particles. 

Further work is needed to push the analytical capabilities of O-PTIR to even smaller particles and 

to analyze particles with complex compositions and morphologies (aged soot with an organic 
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coating, for example). Additional ambient particle characterization is needed to study particles 

from different regions and sources. Furthermore, the fabrication of an environmental chamber 

compatible with the O-PTIR + Raman system that can control and monitor temperature and 

relative humidity would enable detailed study of how the physicochemical properties of particles 

change during different environmental conditions. This chamber could also be used to measure the 

dynamic physicochemical properties of particles as they react with different atmospheric gases in 

situ, providing detailed analysis of the reaction products as they are formed. 

This body of work improves current understanding of the physicochemical properties of 

aerosol particles created from organic and freshwater sources. These results highlight the need for 

additional laboratory studies and ambient particle measurement at diverse locations to fully 

understand the dynamic properties of aerosol particles. The future directions outlined above will 

help improve model measurements of aerosol impacts on a global scale.  
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Appendix A. Reactive Uptake of Isoprene Epoxydiols Increases the Viscosity of the Core of 

Phase-Separated Aerosol Particles Supplemental Information1 

 

A.1 Experimental Details 

Experiments were performed using a constant output atomizer (TSI Inc., model 3076) to 

create acidic ammonium sulfate particles generated from a solution of 0.60M ammonium sulfate 

(Sigma Aldrich, 99% purity) and 0.60M sulfuric acid (Sigma Aldrich, 98% purity) . Solution 

pH was 1.37 ± 0.22 measured using a pH meter (Denver instruments, model UB-10). Particle flow 

passed through a differential mobility analyzer (DMA, TSI Inc., model 3080) to size select for 100 

nm electrical mobility diameter before entering a potential aerosol mass (PAM, Aerodyne 

Research, Inc.) reactor. The PAM was used to create organic coatings of -pinene or toluene 

oxidation products onto sulfate seed aerosol. Charcoal denuders were used to remove excess gases 

while Nafion tubes (Perma Pure, Model FC100-80-6-MSS-01) maintained the humidity of 

particles at 30% or 50% relative humidity. A glass flow reactor (1 m length x 8 cm inner diameter) 

was used for IEPOX reactive uptake before particle collection using a microanalysis particle 

sampler (MPS, 3 stages, California Measurements, Inc.). Additional details of experimental setup 

are described in Zhang et al.15 

 

 

                                                 
1 Appendix A details supplemental information corresponding to Chapter 2 
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Figure A.1. Experimental setup to generate SOA particles. Cartoons of particles describe 

particle phase after each addition of chemical species.  

  

Figure A.2. AFM images of SOA particle re-humidified to the RH at which they were generated. 

AFM a) phase and b) height images of re-humidified 200 ppb -pinene SOA/sulfate particles 

created at 50% RH before and after IEPOX uptake. Samples undergo drying between impaction 

onto substrates and analysis; therefore these samples were re-humidified to 50% RH during 

imaging to simulate initial RH. Minimal morphological changes were observed between particles 

analyzed at ambient RH and re-humidified particles analyzed at 50% RH.  
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Figure A.3. SEM images of ambient particles collected during the Southern Oxidant and Aerosol 

Study (SOAS) campaign in Centerville, AL, a rural forested location. These particles were 

collected on June 15, 2016 during a period of high SOA concentration.78  
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Figure A.4. AFM and SEM images of SOA generated at 30% RH. a) SEM images, b) AFM phase 

images, and c) AFM height images of -pinene SOA/sulfate particles generated at 30% RH before 

and after IEPOX uptake. Particles show similar morphology trends to -pinene SOA/sulfate 

particles created at 50% RH. Before IEPOX uptake, particles show core shell morphology. After 

IEPOX uptake, particle shell remains circular while particle core undergoes morphology changes.  
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Figure A.5. SEM images of toluene SOA/sulfate particles generated at 30% RH before and after 

IEPOX uptake. Samples were not available on AFM substrates. Particles show similar morphology 

trends to toluene SOA/sulfate particles generated at 50% RH. Before IEPOX uptake, particles 

show core shell morphology. After IEPOX uptake, particle shell remains circular while particle 

core undergoes morphology changes.  

 

 

Figure A.6. Spreading ratios of SOA particles generated at 30% RH. Average spreading ratio (30 

particles/sample) of -pinene SOA/sulfate particles generated at 30% RH before and after IEPOX 

uptake. Error bars show standard error. Asterisks denote spreading ratios that are statistically 

different than seed aerosol spreading ratio, as determined by t-tests at 95% confidence interval. 

Toluene samples at 30% RH were not available on AFM substrates.  
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Figure A.7. SEM-EDX and Raman spectra of seed particles before SOA coating. a) SEM image 

and EDX spectrum and b) Raman spectrum of ammonium sulfate seed aerosol. Elements with 

asterisks in EDX spectrum denote partial contribution from substrate, sample holder, or detector. 

Seed aerosols were homogeneous and did not become phase separated until coated with organic 

species.  
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Figure A.8. SEM images of SOA particles. Unedited SEM images of a) -pinene SOA, b) -

pinene + IEPOX SOA, c) toluene SOA, and d) toluene + IEPOX SOA coated onto ammonium 

sulfate seed particles. SEM images are shown in color in Figure 2.6 to emphasize phase separation.  

 

 



 103 

Table A.1. Experimentally determined Raman modes and tentative assignments for -pinene and 

toluene SOA/sulfate, based on assignments described in Bondy et al.42  Modes were classified as 

vs (very strong), s (strong), m (medium), and w (weak).  
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Appendix B. Lake Spray Aerosol Incorporated into Great Lakes Clouds Supplemental 

Information2 

 

 

Figure B.1. Aircraft flight path map of July 12, 2016 cloud water sampling. Flight path data are 

not available for July 12, 2016 aerosol sampling.  

  

                                                 
2 Appendix B details supplemental information corresponding to Chapter 3 
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Figure B.2. Inorganic ion concentrations for freshwater collected in Brevort, Michigan during 

aircraft sampling on July 12, 2016. Bars represent average concentration of triplicate 

measurements; error bars show corresponding standard deviations.  Values are compared to 

previous Lake Michigan measurements by Chapra et al.202 Calcium values obtained are slightly 

lower than Chapra et al. due to insoluble CaCO3 residues that are not measured by the IC method 

utilized here.  
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Figure B.3. The average number size distributions of laboratory-generated LSA. Traces represent 

freshwater collected in Brevort, Michigan at the time of aircraft sample collection (July 12, 2016) 

and freshwater collected at Michigan City, Michigan courtesy of May et al.164  
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Figure B.4. SEM images and EDX spectra of particle types identified as dust and SOA/biomass 

burning during SEM-EDX analysis. Aluminum peaks were removed from the spectra and are 

denoted by asterisks to show contribution from aluminum foil substrate.  
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Appendix C. Harmful Algal Bloom Toxins in Aerosol Generated from Inland Lake Water 

Supplemental Information3 

 

 

 

Figure C.1. SEM-EDX and Raman analysis of insoluble residues present in Mona Lake 

freshwater. Mona Lake freshwater samples were drop coated and dried onto substrates for 

chemical analysis of insoluble residues using A) SEM-EDX and B) Raman spectroscopy. Silicon 

was labeled with an asterisk in part A to denote contribution from the silicon wafer substrate. 

Insoluble residues contained peaks representative of organic material43,45,46,168 in both analysis 

methods and resembled particulate organic carbon (POC).326,327 

                                                 
3 Appendix C details supplemental information corresponding to Chapter 4 
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Figure C.2. Chromatograms showing separation of microcystin congeners present in Mona Lake 

freshwater. Inset shows congeners present at lower concentrations. 

 

 

Table C.1. Liquid chromatography retention times of the microcystin congeners observed in Mona 

Lake freshwater. R groups are listed for each congener. Congeners starting with D signify a 

demethylation between the two R groups. Liquid chromatography was performed following the 

method in Birbeck et al.315 
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Figure C.3. Structures of all microcystin congeners analyzed. 
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Figure C.4. pH of freshwater samples measured using pH paper. Mona Lake freshwater had pH 

values of 7.0 ± 0.1 and 7.1 ± 0.1 for the July and September samples, respectively. Muskegon Lake 

freshwater had pH values of 6.9 ± 0.1 and 7.0 ± 0.1 for the June and October samples, respectively.  
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Figure C.5. Representative ATOFMS spectra of Mona Lake LSA classified as A) LSA salt, B) 

LSA organic, and C) LSA biological particles. Spectra were clustered using the markers identified 

by May et al.168 
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Figure C.6. ATOFMS spectra obtained by taking the difference of Mona Lake LSA salt and 

Muskegon Lake LSA salt clusters.  
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Figure C.7. SEM images and EDX spectra of LSA particle types. Representative SEM images 

(left) and EDX spectra (right) of A) LSA salt, B) LSA organic, and C) LSA biological particles 

generated from Mona Lake freshwater sample. Scale bars all represent 1 µm. Particles are similar 

to those previously observed by May et al.168   
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C.1 Enrichment calculations of microcystin in laboratory-generated aerosol 

The enrichments of different microcystins in aerosol samples were calculated as a ratio 

between the concentration of microcystins in all particulate matter (PM) with an aerodynamic 

diameter (da) < 2.55 µm and the concentration of microcystin in the freshwater. The aerosol 

number concentrations during the laboratory experiments were calculated from size distributions 

collected with an aerodynamic particle sizer (APS) and a scanning mobility particle sizer (SMPS) 

distributions, which are shown in the main text. Using the aerodynamic diameter midpoint of each 

bin, the volume of the average particle in each bin was determined. The concentration of aerosol 

in the air was determined by multiplying the volume of each individual particle and the number 

concentration of aerosol determined by the APS (da 698.0 nm - 2.55 µm) and SMPS (da 23.6 - 

694.4 nm) shown below in equation C.1: 

Equation C.1   
𝑉𝑜𝑙𝑢𝑚𝑒 

𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒
∗

𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 (#)

𝑉𝑜𝑙𝑢𝑚𝑒𝑎𝑖𝑟
=  𝑇𝑜𝑡𝑎𝑙 𝑎𝑒𝑟𝑜𝑠𝑜𝑙 𝑣𝑜𝑙𝑢𝑚𝑒   

The electrical mobility diameter (dem) reported by the SMPS was converted to aerodynamic 

diameter (da) using equation C.2, where χ is a spherical shape factor of 1 based on SEM image 

analysis and ρ is the density of freshwater aerosol (1.5 g/cm3):27,145,223,414  

Equation C.2   𝑑𝑎 = 𝑑𝑒𝑚 ∗
𝜒

𝜌
 

The mass concentration of aerosol was then determined using equation C.3, in which aerosol mass 

was calculated by multiplying the aerosol volume by ρ:  

Equation C.3   
𝑉𝑜𝑙𝑢𝑚𝑒𝑎𝑒𝑟𝑜𝑠𝑜𝑙

𝑉𝑜𝑙𝑢𝑚𝑒𝑎𝑖𝑟
∗ 𝜌 =

𝑀𝑎𝑠𝑠𝑎𝑒𝑟𝑜𝑠𝑜𝑙

𝑉𝑜𝑙𝑢𝑚𝑒𝑎𝑖𝑟
 

Utilizing the amount of microcystin detected in the air sampled, the fraction of microcystin in the 

total aerosol mass was determined using equation C.4:  

 

Equation C.4   

𝑀𝑎𝑠𝑠𝑚𝑖𝑐𝑟𝑜𝑐𝑦𝑠𝑡𝑖𝑛
𝑉𝑜𝑙𝑢𝑚𝑒𝑎𝑖𝑟

⁄

𝑀𝑎𝑠𝑠𝑎𝑒𝑟𝑜𝑠𝑜𝑙
𝑉𝑜𝑙𝑢𝑚𝑒𝑎𝑖𝑟

⁄
=  

𝑀𝑎𝑠𝑠𝑚𝑖𝑐𝑟𝑜𝑐𝑦𝑠𝑡𝑖𝑛

𝑀𝑎𝑠𝑠𝑎𝑒𝑟𝑜𝑠𝑜𝑙
 

 

Enrichment was calculated using the ratio of each microcystin detected in the aerosol from 

equation 4 and their respective concentrations in the water, shown below in equation C.5: 

 

Equation C.5 

 



 116 

Appendix D. Harmful Algal Bloom Toxins in Ambient Freshwater Aerosol Supplemental 

Information4 

 

 

 

Figure D.1. Sampling locations around Grand Lake St. Marys. 

 

                                                 
4 Appendix D details supplemental information corresponding to Chapter 5 
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Appendix E. Optical Photothermal Infrared (O-PTIR) and Raman Spectroscopy of 

Submicrometer Atmospheric Particles Supplemental Information5 

 

Because O-PTIR signal is dependent on the heat capacity, heat conductivity, and refractive 

index of the sample,62 the authors gathered these values reported in literature for all standards 

tested. Probe and IR power differed during data collection depending on the sample characteristics 

and sensitivity to the laser beams. Probe and IR power was varied to maximize signal intensity 

without oversaturating the detector. The authors list the probe and IR power used for each sample 

on silicon substrates. The 4 chips for the QCL laser are as follows: 880–1160 cm-1, 1160.1–1420 

cm-1, 1420.1–1700 cm-1, and 1700.1–1950 cm-1.  

The LOD in terms of raw signal is 0.12 mA from the photodiode. Particles used in the 

manuscript were generated from 50 mM solutions. To estimate the LOD based on the initial 

solution concentration, if the volume of a 400 nm volume equivalent diameter (dve) particle is 3.35 

x 107 nm3 (3.35 x 10-20 m3), then there are ~1.01 x 106 molecules of analyte in that particle before 

impaction. After impaction the particle spreads to 1 µm projected area diameter (dpa) on the 

substrate. The spot size of the green laser (λ = 532 nm) should be similar to the 450 nm spot size 

at λ = 550 nm based on manufacturer specs for the Cassegrain objective (40×, 0.78 N.A. 

Schwarzschild Objective, IR Reflective, Pike Technologies Inc.). This means would mean we can 

detect ~4.5 x 105 molecules within the illuminated volume that is determined by the spot size of 

the green laser. 
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Table E.1. Number of particles analyzed for each substrate or compound. 
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Table E.2. Table of heat capacity,415-422 heat conductivity,423,424 and refractive index values425-431 

obtained from literature for all standard compounds tested. On the right, the probe and IR power 

used to obtain O-PTIR spectra from each standard on silicon substrates is listed. 

 

 

 

 

Figure E.1. IR (left, red trace) and Raman (right, green trace) spectra of ammonium sulfate 

crystals, illustrating the crystalline modes observed by Raman.152 O-PTIR and FTIR spectra of 

ammonium sulfate aligns well, similar to previous comparison of photothermal IR and FTIR.50 
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Table E.3. Table listing peaks identified by IR and Raman for each substrate tested. Optical 

images of blank substrates (with no particles) are included on the right.  

 

 

 



 121 

 

Figure E.2. IR (left, red trace) and Raman (right, green trace) spectra obtained from an ammonium 

sulfate particle on a gold substrate. Raman spectra were dominated from fluorescence due to the 

substrate. An optical image of the particle is included on the right.  

 

 

 

 

Table E.4. Table listing all vibrational modes experimentally determined in IR and Raman 

spectra. Literature is referenced to corroborate the spectral assignments.22,33,35,36,43,45,50,52,152,153,365-

373,375,385,386,413,432 
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Figure E.3. Optical images of each particle analyzed in Figure 6.3. All particles had an 

aerodynamic diameter <400 nm before spreading onto the silicon substrate.  
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