
Synthesis and Evaluation of Automated Vehicles

by

Songan Zhang

A dissertation submitted in partial fulfillment
 of the requirements for the degree of

Doctor of Philosophy
(Mechanical Engineering)

in the University of Michigan
2021

Doctoral Committee:

Professor Huei Peng, Chair
Professor Brent Gillespie

Assistant Professor Alex Gorodetsky
Professor Jing Sun

Songan Zhang

songanz@umich.edu

ORCID iD: 0000-0002-3238-5406

© Songan Zhang 2021

 ii

Acknowledgements

Four years have passed since 2016, the start of my journey of pursuing the Ph.D. degree.

During this journey, I have always been full of passion and curiosity. As I reach the end of this

road, I would like to extend my sincere and heartfelt obligation towards all the personages who

have helped me in this endeavor. Without their active guidance, help, cooperation, and

encouragement, I would not make headway in this journey.

First, I would first like to thank my advisor, Professor Huei Peng, whose expertise was

invaluable in formulating the research questions and methodology. His insightful feedback

pushed me to sharpen my thinking and brought my work to a higher level. Besides, he also

taught me how to balance my life, family, and research and gave me sincere suggestions about

my career choice. His noble example inspired me to greater efforts, and I am grateful to have a

chance to work with him.

Second, I would like to acknowledge my committee members: Professor Jing Sun,

Professor Brent Gillespie, and Professor Alex Gorodetsky. Without your help, I could never

reach the point where I stand now. The meetings with you were an amazing source of

information and ideas, and I received a great deal of help.

I want to thank my brothers and sisters in the Vehicle Dynamic Lab. Ding, Shaobing,

Pingping, Yiqun, Steven, Yuxiao, Ziheng, Xianan, Su-Yang, Geunsoab, Nauman, Bopi,

Xingpeng, Yuanxin, Minghan, Lu, Zhong, and Juhui, without you guys, my life in Ann Arbor

will never be so colorful.

I would also like to thank my husband, Fucong Wang, for your unconditional love.

During this journey, you are always by my side and support me whenever and wherever.

Finally, my greatest appreciation goes to my parents, Weilong Zhang and Ping Hu. Thank

you for always being there for me. Without the two of you, I do not know where I would be. If I

have learned anything while being away from you, it is that you are the most important people in

my life, and I love you both more than anything.

 iii

Table of Contents

Acknowledgements ii

List of Tables vi

List of Figures vii

List of Abbreviations ix

Abstract xi

Chapter 1 Introduction 1

1.1 Background and Motivation Introduction 1

1.2 Literature Review 5

1.2.1 Synthesis Approaches for the Decision-making of Automated Vehicles 5

1.2.2 Evaluation Approaches for Automated Vehicles 8

1.3 AV Synthesis Problem 14

1.4 AV Evaluation Problem 15

1.5 Contributions 17

1.6 Outline of the Dissertation 18

Chapter 2 Synthesis of the Autonomous Vehicle’s Policy Using Reinforcement Learning 19

2.1 Literature Reviews on Discretionary Lane Change Decision-making Approaches 19

2.2 Reinforcement Learning Fundamentals 20

2.2.1 Dynamic Programming 21

2.2.2 Temporal Difference Method 22

2.2.3 Policy Gradient Methods 25

2.2.4 Exploration-exploitation Trade-off and Current Methods 26

2.3 Model-based Exploration of Reinforcement Learning 27

2.3.1 Simulator and Reward Function 28

2.3.2 Environment model 29

2.3.3 Intrinsic reward 32

2.3.4 Model and policy update strategy 34

2.3.5 Baseline Exploration Method 35

2.3.6 Training Setups 36

 iv

2.4 Training Results 36

2.5 Summary 39

Chapter 3 Evaluation of the Autonomous Vehicle’s Policy Using Subset Simulation 40

3.1 Literature Reviews on Evaluation Approaches and Their Limitations 40

3.1.1 Importance Sampling Method 41

3.1.2 Limitations and Motivations 43

3.2 Variance Reduction Techniques: Subset Simulation 45

3.2.1 Subset Simulation Algorithm 45

3.2.2 Modified Metropolis Algorithm 47

3.3 Naturalistic Driving Data and Environment Model 50

3.3.1 Naturalistic Driving Data 50

3.3.2 Environment Model 54

3.3.3 Rosenblatt Transformation 58

3.4 Simulation and Results 59

3.4.1 Advanced Emergency Braking System under Test 59

3.4.2 Simulation Setups 60

3.4.3 Evaluation Results 62

3.5 Summary 64

Chapter 4 Evaluation of the Autonomous Vehicle’s Policy Using Learning-Based Approach 66

4.1 Motivations 66

4.1.1 Difficulties of implementing IS and SS with different environments 66

4.1.2 Decision-making System Evaluation 67

4.2 Literature Reviews on Attacking Deep Neural Networks 68

4.2.1 Attacks on Deep Neural Network 68

4.2.2 Attacks on Deep Reinforcement Learning 69

4.3 Methodology 70

4.3.1 Markov Game 71

4.3.2 Attacker’s Training Environment 72

4.3.3 Socially Acceptable Attacks 72

4.3.4 Reward Considering Socially Acceptable Attack 73

4.4 Training Setups 78

4.4.1 The Victim AV under test 78

4.4.2 Training Setups for the Attacker 79

4.5 Attacker’s Training Results and The Victim AV Evaluation Results 80

 v

4.6 Summary 82

Chapter 5 Meta Reinforcement Learning for Synthesis Adaptive Decision-making Policy 83

5.1 Motivation and Objective 83

5.2 Literature Review and Meta Reinforcement Learning Preliminary 84

5.2.1 Mathematical Formulation 84

5.2.2 Literature Review 85

5.3 Efficient Off-policy Meta Reinforcement Learning Method 87

5.3.1 Learning and Modeling Latent Contexts 88

5.3.2 Advanced Exploration via Posterior Sampling 89

5.3.3 Off-Policy Meta-Reinforcement Learning 90

5.4 Discretionary Lane Change Environment Distribution 91

5.4.1 Environments with Attackers 91

5.4.2 IDM-Mobil Driver Model Environments 92

5.5 Training Setup 94

5.5.1 Baselines for the Meta Training and Adaptation 94

5.5.2 Training Hyperparameters 95

5.6 Results 96

5.6.1 Training Results 96

5.6.2 Evaluation Results 97

5.7 Summary 100

Chapter 6 Conclusions and Future Works 101

6.1 Conclusions 101

6.2 Future Works 103

6.2.1 Designing Robust Decision-making Systems of Other AV Scenarios 103

6.2.2 Online Monitoring Environment Changes 103

6.2.3 Extrapolate rather than Interpolate 104

Bibliography 105

 vi

List of Tables

Table 1.1 Summary of Levels of Automation for On-road Vehicles...2

Table 1.2 Automotive Companies Announced AV Plans and Status at 2020................................3

Table 1.3 Serious Accidents involving AVs [11] ...4

Table 1.4 Major Naturalistic Field Operational Test Databases.. 10

Table 2.1 Implementation Hyperparameters .. 36

Table 3.1 Lane Change Model Features ... 52

Table 3.2 Correlation Matrix of the 8 Variables ... 53

Table 3.3 Parameters for the Subset Simulation ... 62

Table 3.4 Evaluation Results Summary ... 64

Table 4.1 Reward Design for Responsibility-sensitive Attack.. 77

Table 4.2 Hyperparameters for Training the Attacker .. 79

Table 4.3 Number of Crashes during Evaluation ... 81

Table 5.1 Mobil parameters for different driver behaviors ... 94

Table 5.2 Implementation Hyperparameters for PEARL .. 95

Table 5.3 Crash Rate with Different Numbers of Data in the Attacker Environments 99

Table 5.4 Crash Rate with Different Numbers of Data in the IDM-Mobil Environments 99

 vii

List of Figures

Figure 1.1 Autonomous Vehicle Technology Companies [10] ...3

Figure 1.2 Iterative Vehicle Dynamic Control Evaluation Process [42]9

Figure 1.3 The Procedure of the Accelerated Evaluation [69] .. 12

Figure 1.4 Overview of the Typical Hierarchical Architecture of AVs [12] 16

Figure 2.1 Comparison of the backup diagrams of Monte-Carlo, Temporal-Difference learning,

and Dynamic Programming for state value functions [83] ... 24

Figure 2.2 Different Types of Objective Functions for the Policy Gradient Methods [86] 25

Figure 2.3 Model-based Exploration ... 28

Figure 2.4 Three Lane Highway Simulator. .. 28

Figure 2.5 Conditional variational auto-encoder model with the vehicle kinematics model 31

Figure 2.6 Intrinsic Reward ... 34

Figure 2.7 Training procedure for CVAE and DDQN .. 35

Figure 2.8 Average reward from evaluation roll-outs confidence bound 37

Figure 2.9 Average reward of last 50 episodes with the confidence bound 37

Figure 2.10 Average intrinsic reward and the CVAE training loss over training iterations 37

Figure 2.11 Animation result of ε-greedy method .. 39

Figure 2.12 Animation result of model-based exploration method ... 39

Figure 3.1 Subset Simulation Process .. 47

Figure 3.2 Schematic Diagram of Modified Metropolis Algorithm .. 48

Figure 3.3 Lane Change Scenario Features .. 50

Figure 3.4 Data Processing for Querying the Lane Change Data .. 52

Figure 3.5 2nd Order Polynomial Fitting Examples .. 52

Figure 3.6 Schematic Diagram for the GMM, GGMM, and BGGMM 55

Figure 3.7 AIC and BIC Value of the BGGMM with Component Number from 3 to 20 56

Figure 3.8 BGGMM Fitting Results (Marginal Distribution PDF) for 8 Variables 58

Figure 3.9 Layout of the AV Control System [5] ... 59

 viii

Figure 3.10 Samples Expended by SS using the Baseline 3-variable Model 63

Figure 3.11 Samples Expended by SS using the 8-variable BGGMM Model 64

Figure 4.1 Sequential Search of Danger Regions ... 67

Figure 4.2 Generating Adversarial Patches against YOLOv2 [138] ... 69

Figure 4.3 Attacks on Deep Reinforcement Learning .. 70

Figure 4.4 Attacker's Training Environment .. 72

Figure 4.5 No Car on the Lane Marker .. 75

Figure 4.6 Only One Car on the Lane Marker and Crash with the Car in the Target Lane 75

Figure 4.7 Both Cars are on the Different Lane Markers .. 76

Figure 4.8 Three lane highway simulator. The blue box: the AV; red boxes: 6 nearest

surrounding vehicles; empty boxes: unobserved surrounding vehicles 78

Figure 4.9 Training Curve of the Attacker ... 80

Figure 4.10 An example of the AV-responsible crash. .. 81

Figure 5.1 Illustrating the Inner and Outer Loops of Training [159] ... 85

Figure 5.2 Multi-MDPs adaptation problem as a POMDP problem ... 87

Figure 5.3 Collected experience can then be used to update the belief during adaptation [169] .. 89

Figure 5.4 Examples of environments with different numbers of attackers (red boxes) 92

Figure 5.5 The highway-env environment [171] .. 92

Figure 5.6 Meta Testing Average Returns during Meta Training in Attacker Environments 96

Figure 5.7 Meta Testing Average Returns during Meta Training in IDM-Mobil Environments .. 97

Figure 5.8 Evaluation Average Returns ... 98

Figure 6.1 Procedure for developing an AV’s decision-making system 102

 ix

List of Abbreviations

A2C Advantage Actor Critic

AC Actor-Critic

ACC Adaptive Cruise Control

AEB Autonomous Emergency Braking

AIC Akaike Information Criterion

AV Automated Vehicle

BEE Best Evasive Effort

BGGMM Bounded Generalized Gaussian Mixture Model

BIC Bayesian Information Criterion

c.o.v. Coefficient of Variation

CDF Cumulative Distribution Function

CE Cross Entropy

CMC Crude Monte Carlo

C-NCAP China New Car Assessment Program

CNN Convolutional Neural Network

CV Connected Vehicle

CVAE Conditional Variational Auto-Encoder

DDQN Double Deep Q-Network

DNN Deep Neural Network

DP Dynamic Programming

DQN Deep Q-Network

DRL Deep Reinforcement Learning

EDR Event Data Recorder

ELBO Evidence Lower BOund

FC Failure Code

FMVSS Federal Motor Vehicle Safety Standards

FSM Finite State Machines

GAIL Generative Adversarial Imitation Learning

GES General Estimates System

GGMM Generalized Gaussian Mixture Model

GMM Gaussian Mixture Model

HV Human-controlled Vehicle

IDM Intelligent Driver Model

IS Importance Sampling

 x

ISD Importance Sampling Distribution

IVBSS Integrated Vehicle-Based Safety Systems

KB Knowledge Base

MAML Model Agnostic Meta-Learning

MC Monte Carlo

MCMC Markov Chain Monte Carlo

MCTS Monte Carlo Tree Search

MDP Markov Decision Process

MEE Minimal Evasive Effort

MLD Mixed Logical Dynamical

MMA Modified Metropolis Algorithm

MOT Moving Objects Tracking

MPC Model Predictive Control

MRL Meta Reinforcement Learning

NCAP New Car Assessment Program

N-FOT Naturalistic Field Operational Test

NHTSA National Highway Traffic Safety Administration

NMVCCS National Motor Vehicle Crash Causation Survey

PCPO Parallel Constrained Policy Optimization

PDF Probability Density Function

PEARL Probabilistic Embeddings for Actor-critic RL

PG Policy Gradient

POMDP Partially Observed Markov Decision Process

RL Reinforcement Learning

RNN Recurrent Neural Network

RSS Responsibility-Sensitive Safety

SAA Socially Acceptable Attack

SAC Soft Actor-Critic

SAE Society of Automobile Engineers

SAS Safety Assist Score

SIS Sequential Importance Sampling

SMM Student's-t mixture model

SPMD Safety Pilot Model Deployment

SS Subset Simulation

TD Temporal Difference

TRPO Trust Region Policy Optimization

TSD Traffic Signalization Detection

TTC Time-To-Collision

V2V Vehicle-to-Vehicle

VAE Variational Auto-Encoder

 xi

Abstract

This dissertation focuses on the synthesis of a decision-making system for Automated

Vehicles (AVs), and then evaluates the safety and robustness of the system with an eye toward

improving the system design.

We begin with a synthesis of an AV’s decision-making system in a specific driving

environment. We model the environment as a Markov Decision Process (MDP), with the goal of

determining the optimal strategy (that is, policy) for this particular MDP. We propose a novel

Reinforcement Learning (RL) method using model-based exploration. This method allows the

training agent to explore the MDP state space by maximizing the notion of an agent’s surprise

about its experiences via intrinsic motivation. The optimal strategy will be deemed to be a

global-optimal policy by which the AV can travel more efficiently.

We then evaluate the decision-making system in a naturalistic driving environment. We

focus on lane change maneuvers, modeling the differences between AVs and Human-controlled

Vehicles (HVs) using the Safety Pilot Model Deployment Program’s naturalistic driving data.

The probability of crashes serves as the primary metric for evaluating the safety of AV systems.

In general, testing a system in a naturalistic driving environment is time-consuming and not cost-

effective. To overcome this problem, we propose an accelerated evaluation method called Subset

Simulation (SS), which can significantly reduce evaluation time and beat the baseline

Importance Sampling (IS) method. This technique is not only capable of evaluating a system

with a high-dimension state space, but also has the potential to conduct evaluations of more

complicated systems (e.g., object detection systems).

The SS method is limited, however, in that the “danger regions” are searched only as the

test procedure unfolds. If the environmental statistics change, the crash rate cannot be estimated

accurately. Therefore, we prefer to evaluate the decision-making system without including the

environmental statistics. To this end, we propose an evaluation method based on the two-player

Markov game. We introduce an attacker into the environment which keeps “attacking” the AV in

a socially acceptable fashion. The attacker tries to lure the AV into AV-responsible crashes (as

 xii

opposed to “crazy” crashes). Once the attacker has completed training, the AV is evaluated by

introducing the attacker. The crash rate of the system then becomes 50 times greater in the

environment with the attacker, which allows the system to register fatal flaws in the original

training environment design.

Introducing attackers capable of generating socially acceptable attacks makes the

behavior of the surrounding vehicles more diverse. Our goal is to improve the original policy so

as to design a safe and robust decision-making system under situations with different types of

drivers in the environment, different traffic densities, and differing numbers of total surrounding

vehicles. We tackle this problem by implementing the state-of-the-art Meta-Reinforcement

Learning (MRL) method to train an agent to quickly adapt to different environments with limited

data. The MRL-trained policy can significantly decrease the crash rate with a small amount of

data across different environments. This technique has tremendous potential for helping the AV

quickly adapt to varying conditions such as different locations, weather, and lighting.

 1

Chapter 1 Introduction

1.1 Background and Motivation Introduction

Automated Vehicle (AV) is a very active research area during the past decade. From

2004 to 2013, the U.S. Department of Defense’s research arm, DARPA, sponsored the “Grand

Challenge” and later the “Urban Challenge,” which played a key role in creating excitement and

accelerating the development of AV technologies. In 2014, as shown in Table 1.1, the Society of

Automobile Engineers (SAE) defined six levels of automated driving in their document J3016

[1]. The key features of an AV are the ability to monitor the driving environment, control

steering, brake and throttle, the capability to handle a variety of driving situations, and the need

for a human driver as the fallback. This document was issued, in part, to speed up the delivery of

an initial regulatory framework and a practice to guide the automotive companies in the safe

design, development, testing, and deployment of AVs. Perhaps more importantly, this 6-level

definition shows an evolutionary rather than a revolutionary roadmap for technology

deployment.

Several government documents were also published around 2014, including the U.S.

National Highway Traffic Safety Administration level (NHTSA level) [2] and the Germany

Federal Highway Research Institute level (BASt level) [3], which are also listed in Table 1.1. As

further explained in [4], level 2 automation is known as a “hands off” feature where the

automated system takes full control of the vehicle, but the driver must monitor the driving and

serve as the fallback. Level 3 automation is known as “eyes off” where the driver can safely turn

their attention away from the driving tasks. At level 4 automation, no driver attention is required.

Therefore it is a “mind off” system. And at level 5 automation, no human intervention is required

for all scenarios. Some researchers believe Level 5 is just an aspirational goal and cannot be

achieved.

 2

Table 1.1 Summary of Levels of Automation for On-road Vehicles
S

A
E

 l
ev

el

SAE name

Execution of
Steering and

acceleration/

deceleration

Monitoring

of driving
environment

Fallback
performance

of dynamic

driving task

System
capability

(driving

modes) B
A

S
t

le
v

el

N
H

T
S

A
 l

ev
el

0
No

Automation
Human Human Human n/a

Driver

only
0

1
Driver

Assistance

Human and

system
Human Human

Some driving

modes
Assisted 1

2
Partial

Automation
System Human Human

Some driving

modes

Partially

automated
2

3
Conditional

Automation
System System Human

Some driving

modes

Highly

automated
3

4
High

Automation
System System System

Some driving
modes

Fully
automated

3/4

5
Full

Automation
System System System

All driving

modes
n/a

Automotive companies widely follow the SAE’s definition, and most took an

evolutionary roadmap, while many “tech companies” seem to embrace the revolutionary

approach. Zhao et al. [5] summarized the AV production plans of several major car companies

back in 2016. Four years later, few had delivered according to their plans. Table 1.2 lists the

original AV production plans and the status of several major car manufacturers. Most of the AVs

on the markets today are lower level (Levels 1-2) automated vehicles with Adaptive Cruise

Control (ACC) and sometimes lane-keeping assist. Currently, according to [4], the only vehicle

that is generally accepted to be at level 3 automation is the Audi A8 (equipped with the Traffic

Jam Pilot), which only works on congested highways. Tesla has blurred the lines with recent

software updates [6]. Most researchers agree that the Tesla “Autopilot” system (which has been

denounced by the German and South Korean authorities as confusing and misleading to the

general public) is only at Level-2. Still, the marketing language promised that “full self-driving”

is coming in future over-the-air updates, which seems to imply they will have Level-5

capabilities. Technology companies like Google, Amazon, Apple, Baidu, and Intel also have

high-level AV programs. Starting in the mid-2010s, start-ups joined the race. Here, we showed

some of these companies in Figure 1.1.

 3

Table 1.2 Automotive Companies Announced AV Plans and Status at 2020

Manufacturer
SAE

level

Original

plan of

launch year

First

Model

Current status in 2020

Status
Launch

year

Volvo 2 2015 XC90 Level 2: Pilot Assist 2018

Audi 2-3 2016 A8
Level 2-31 [7]: Traffic Jam

Pilot
2018

BMW 2-3 2017 5 Series
Level 2: Active Driving

Assistant
2017

Mercedes Benz 2-3 2017
E-class

S-class
Level 2: Drive Pilot 2017

Volkswagen 2 2017 Passat Level 2: Travel Assist 2017

Ford 2-3 2017 Fusion Level 2: Co-Pilot 360 2019

General Motors 2-3 2018 XTS Level 2: SuperCruise 2018

Nissan 3 2020 Leaf
Level 2-32 [8][9]: ProPilot,

Japan market only
2020

Lexus 3 2020 LS
Planned for service during

the 2020 Olympic Games
-

Figure 1.1 Autonomous Vehicle Technology Companies [10]

1 Audi equipped the A8 with all the components necessary to make Traffic Jam Pilot work, but it had not enabled

the feature due to the current regulation, claimed by Audi.
2 Different news editors from Forbes have different opinions on this level. And after reviewing both articles, we

think the automation level of Nissan leaf is between level 2 to level 3.

 4

As can be seen from Table 1.2, most of the AVs on the market today are at SAE level 2.

The difficulties for AVs to “level up” to SAE Level 3 or above come from two perspectives.

First, there must be a trust-worthy evaluation method for these AV systems. Type approval is

required in some markets like in EU or China, and desired in the US to address the questions and

concerns of public trust. We list several fatal accidents, under the control of an AV system, in

Table 1.3. One of the goals of this research is to develop evaluation methods for the AV system

before their wide deployments on the public road so that they are safer.

Table 1.3 Serious Accidents involving AVs [11]

Date
System

manufacturer
Vehicle type

SAE

level
Location Fatality

20 Jan 2016 Tesla (Autopilot) Model S 2 Hebei, China 1: Driver

7 May 2016 Tesla (Autopilot) Model S 2 Florida, U.S. 1: Driver

18 Mar 2018 Uber Upfitted Volvo 3 Arizona, U.S. 1: Pedestrian

23 Mar 2018 Tesla (Autopilot) Model X 2 California, U.S. 1: Driver

1 Mar 2019 Tesla (Autopilot) Model 3 2 Florida, U.S. 1: Driver

19 Sep 2019 Tesla (Autopilot) Model 3 2 Florida, U.S. 1: Driver

Another difficulty lies in the synthesis of high-level AV systems. The main difference

between SAE level 2 and level 3 automation is that whether the system can monitor the driving

environment [1] reliably enough so that a human fallback is not needed. The presence of a driver

monitoring system is not enough to trigger an uptick in the automation level. At level 3, the

system needs to do what a driver does: keep an eye on all factors that might affect safety and

deal with them. The driver on a level 3 AV does not need to pay attention to the road

continuously. Level 3 AVs need a perception system and a reliable decision-making system,

which can fulfill path planning and motion planning functions [12].

This dissertation will focus on the efficient synthesis of the decision-making system of an

AV. We will present new ideas and results that contribute to both the evaluation and synthesis of

AVs at level 2 or higher.

 5

1.2 Literature Review

The field of synthesis and evaluation of the Automated Vehicle (AV) system has a rich

history, with early demonstrations in the 1990s [12] and continuous improvement. In this section,

past approaches for both synthesis and evaluation problems are reviewed.

1.2.1 Synthesis Approaches for the Decision-making of Automated Vehicles

The autonomy system of AVs is typically organized into at least two parts: perception

and decision-making [12]. The decision-making system usually contains several sub-systems:

route planning, path planning, behavior selection, motion planning, and control [12]. In this

dissertation, we focus on the behavior selection subsystem of the decision-making system.

The behavior selection subsystem is responsible for choosing the behavior, such as lane

selection, intersection handling, traffic light handling, etc. During the DARPA Urban Challenge

era, the Finite State Machines (FSM), a rule-based decision-making method, was implemented

[13] by the Stanford team (which won second place). However, that competition only includes a

limited set of urban scenarios, much simpler than what an AV could experience in the real world.

For a more complex lane change scenario on highways involving multiple lanes, Kesting et al.

[14] developed a general lane-changing model (named as MOBIL) based on the Intelligent

Driver Model (IDM) [15]. This MOBIL model analyzes the potential acceleration of the ego car

and surrounding cars to make decisions of whether to change lanes or not. This method depends

on the IDM model, and therefore, if the surrounding vehicle’s behavior is different from the

embedded IDM model, the lane change decision may not work well.

Another type of approach used in designing behavior selection is the ontology-based

method. Ontology-based techniques studied the frameworks of knowledge representation that

can be used to model its concepts and their relations. In [16], Zhao et al. used ontology-based

Knowledge Base (KB) to model traffic regulations and sensor data, and the KB is constructed

manually. This method requires an accurate world model, including road topologies and traffic

rules. Recently, Zhao et al. [17] improved their previous work to use only a small part of the

original KB and reduced the computation time. However, a key challenge remains: the KB is still

being constructed manually.

The behavior selection problem can also be solved using optimization-based methods.

Nilsson et al. [18] formulated the decision-making problem of choosing the desired lane and

velocity as a Model Predictive Control (MPC) problem. The dynamics are modeled as a Mixed

 6

Logical Dynamical (MLD) system and are solved through MPC using a mixed-integer program.

However, the equation to be optimized and cost functions are also designed by hand. Moreover,

mixed-integer programming suffers from combinatorial complexity, and the required

computational time is strongly affected by the dimension of the problem's state space.

Recently, as more and more data is collected from human driving in the real world,

researchers start to utilize the imitation learning method to train a model that maps perceptual

inputs to control commands. In [19], researchers from NVIDIA trained a Convolutional Neural

Network (CNN) to directly map raw images from a front-facing camera to steering angle

outputs. With training data from human demonstrations, their system learns to do car following

on local roads and highways. In [20], Codevilla et al. proposed command-conditional imitation

learning: during training, the commands resolve ambiguities in the perceptuomotor mapping,

thus facilitating learning; during testing, the commands serve as a communication channel that

can be used to direct the controller. A key obstacle is that imitation learning requires big data.

Moreover, the policy learned from human drivers’ demonstration can be at most as good as the

human driver, while AVs promise to surpass human drivers. Finally, the policy learned from a

database may perform poorly in unseen scenarios. Therefore, methods that do not rely on

experts’ demonstration for supervised learning are desired.

The Markov Decision Processes (MDP) is a framework that models the decision

making in situations where the outcomes are also affected by exogenous inputs. The MDP can be

solved via Dynamic Programming (DP) and Reinforcement Learning (RL). As for the Dynamic

Programming (DP) approach, Guan et al. [21] deduced the optimal policy using the value

iteration method. The learned policy achieves safe and efficient driving. However, using the DP

method to solve an MDP optimization problem requires an explicit environment transition

model, which is not always available considering the complexity of human driver behaviors.

Moreover, the DP method is time-consuming and cannot be implemented in real-time for

systems with more than 3-4 states plus control variables with today’s computation technology.

The MDP can also be solved using Reinforcement Learning (RL), which does not

require an exact mathematical model of the environment transition probability. Reinforcement

learning does not require big data collected before training, and it focuses on collecting data from

the environment and finding a balance between exploration (of uncharted territory) and

exploitation (of current knowledge). RL methods have been successfully implemented in AV

 7

applications. Cao et al. [22] used a Monte Carlo Tree Search (MCTS) method to design a

highway exiting planner for autonomous vehicles. Compared to a basic rule-based exiting

planner, the RL-training algorithm improved the successful exiting rate by around 50%.

Mukadam et al. [23] implemented a Deep Q Network with the Q-masking method to make lane

change decisions. By using Q-masking, they were able to incorporate prior knowledge and thus

an interface between the higher-level planner and the lower level controller. Nageshrao et al. [24]

use the Double Deep Q Network method to design a discretionary lane change planner for a

three-lane highway with manually designed exploration strategies and rule-based short-horizon

safety checks. Wen et al. [25] used the Parallel Constrained Policy Optimization (PCPO)

reinforcement learning method for decision-making of multi-vehicles at an intersection,

achieving a safe crossing planner.

To train an optimal decision-making policy for AVs, three essential components are

needed. The first is a good simulator or a training environment [26]. If the training environment

cannot represent the real environment accurately, the trained policy likely will not work well in

real-world driving. The second component is a good reward function. The RL method requires a

reward function that can represent the objective of the task well. However, the reward function

may not be readily available for realistic applications. Therefore, researchers developed an

inverse reinforcement learning method to find the reward function from the expert

demonstrations that could represent the expert behavior [27]. Different RL methods will be

discussed in more detail in Chapter 2.

In recent years, researchers started to design end-to-end systems that optimize all

processing steps simultaneously. They argued that end-to-end systems would lead to a smaller

system since the perception, decision-making, and motion planning functions are combined. The

smaller system can be trained more efficiently. In [28], Kuutti et al. use the CarMaker simulator

to train an Advantage Actor-Critic (A2C) network for longitudinal driving. The policy takes

sensor readings from the CarMaker simulator as input and the pedal action as the output. Jaritz et

al. [29] use the TORCS car racing game as the simulator and train a racing policy that can win

the game. The policy takes the camera image from the game as an input and the pedal and

steering as the outputs. In this dissertation, we will not consider this end-to-end reinforcement

learning method since it requires a perception-built-in simulator.

 8

1.2.2 Evaluation Approaches for Automated Vehicles

The evaluation for vehicle’s passive safety (crashworthiness) has been studied for

decades, e.g., the Federal Motor Vehicle Safety Standards (FMVSS) [30] from the U.S., the New

Car Assessment Program (NCAP) [31] and the United Nations Economic Commission for

Europe (UNECE) regulation [32] and China New Car Assessment Program (C-NCAP) [33]. The

methods behind those regulation tests are a combination of worst-case scenarios and test matrix

evaluation. The worst-case scenario evaluation method was developed to test the most

challenging cases for a vehicle. In [34] and [35], the authors applied the worst-case evaluation

method on rollover and jackknifing cases to evaluate the safety of the vehicle based on a

dynamic game theory. In [36], Kou implemented the method to evaluate an integrated chassis

control system. In general, the vehicle can be modeled mathematically, and the worst-case

evaluation can be considered as an optimization problem to solve for a sequence of control

inputs (e.g., a sequence of steering, braking, or pedal inputs) that maximizes a cost function [36].

For test matrix evaluation methods, a series of scenarios are first defined. The vehicle

then goes through these selected scenarios, one by one. Back in 1973, Moore et al. [37] from

General Motor started to use a test matrix evaluation method for vehicle emission systems. To

test the safety of vehicles, the choice of scenarios is mainly based on crash databases. A series of

research on pre-crash scenarios was conducted in [38]–[40]. As described in [5] and [41], the

“44-crashes typology” was developed by General Motors based on the General Estimates System

(GES) and National Motor Vehicle Crash Causation Survey (NMVCCS) databases [38]. The

authors [41] further used the GES, NMVCCS, and Event Data Recorder (EDR) databases to

generate the top five scenario groups: car-following, lane-change, left-turn, intersection crossing,

and driving in the opposite direction scenarios.

The text matrix evaluation can be combined with the worst-case evaluation method [42],

as shown in Figure 1.2. Ungoren et al. identified a worst-case scenario with steering input that

looks like a lane change maneuver, which results in rollover for the vehicle with different vehicle

dynamic control setups (matrix). As mentioned at the beginning of Section 1.2.2 , the passive

safety testing regulation is also designed based on worst-case and test matrix ideas. In Euro

NCAP [43], the vehicle needs to go through the full-width rigid barrier crash test, offset

deformable barrier crash test, side mobile barrier crash test, side pole crash test, Autonomous

Emergency Braking (AEB) test, and the whiplash test to get the overall star rating for adult

 9

occupant protection. The Euro NCAP [43] also designed the Safety Assist Score (SAS) for

additional award points. The SAS is based on the electronic stability control test, seatbelt

reminder test, speed assistance test, AEB interurban test, and the lane support test.

Figure 1.2 Iterative Vehicle Dynamic Control Evaluation Process [42]

Even though the worst-case evaluation and test matrix evaluation methods have been

successfully implemented in traditional vehicle safety tests, there are many difficulties to

overcome in testing the safety of AV. For worst-case evaluation methods, they did not consider

the probability of occurrence of these worst-case scenarios. Moreover, for different AVs, the

worst-case scenarios could be different. Therefore, the results do not offer enough information

about the crash rate and risk level in real-world driving and could not provide a fair way to

evaluate different vehicles from different companies. For test matrix evaluation methods, the test

scenarios are predefined and fixed. Therefore, the control systems may be tweaked to achieve

good scores in these tests, but the control systems' performances under broader conditions are not

sufficiently evaluated. Moreover, the selected scenarios are usually based on a crash database, in

which all the crashes were caused by human drivers. This may not accurately reflect the safety-

critical cases for AVs [5].

The AV control systems can also be tested (or verified) by formal methods, which are

mathematical approaches, to prove or disprove that the system satisfies its requirements

(correctness) if it is defined by formal requirements. Formal methods can exhaustively consider

uncertainties from initial states, disturbances, and sensor noise. Formal methods contain several

different approaches, including reachability analysis, temporal logic model checking, and

 10

simulation-based falsification. Althoff et al. use reachability analysis to verify the safety of AVs

[44]–[46]. In [47], they use the reachability analysis method to calculate a drivable area under a

certain obstacle setup, and the drivable area can be seen as a measure of critical scenarios.

Computing the reachability set requires both the environment dynamic model and the AV’s

dynamic model, which are not always available. The temporal logic model checking relies on an

exhaustive search of the state space of a finite state system [48]. Therefore, it suffers from the

state explosion problem and hard to be implemented in industrial-size systems [49]. In [50],

Tuncali used the simulation-based falsification approach to search for the initial condition that

can falsify the AV system. However, the simulation-based falsification approach is a semi-

formal method, which checks the formal requirements for each simulation but does not guarantee

that the system fulfills the requirement at all states. Therefore, it cannot prove the correctness of

the system.

Table 1.4 Major Naturalistic Field Operational Test Databases

Database name
Released

by
Labeling

Labeled

frames
Sensor

Waymo [51] Waymo 4 classes 2D/3D 1.2M 5 cameras, 5 lidars

Lyft-Level-5 [52] Lyft 23 classes 3D 55k
7 cameras (Stereos),

GPS/IMU, 3 lidars

nuScenes [53] Aptiv 23 classes 3D 1.4M
6 camera (Stereos), GPS/IMU,

1 lidar, 1 radar

H3D [54] Honda 8 classes 3D 1.1M
3 cameras,

GPS/IMU, 1 lidar

KITTI [55] KIT 8 classes 2D/3D 16k 1 lidar, 4 cameras, GPS/IMU

One widely used method for “evaluating” AVs is the Naturalistic Field Operational

Tests (N-FOTs) [56]. In an N-FOT, the testing vehicles need to be driven in naturalistic

conditions over a long time [57]. The most famous N-FOTs project in the U.S. is the Google

Waymo AV testing project [58]. Based on the Waymo’s Safety Report [58] published in 2018,

Waymo’s AVs were tested on public roads in 25 cities from 6 states for over 5 million miles (by

Jan 2020, the accumulated mileage is 20 million miles [59]). This project allows Waymo

engineers to validate the technologies they have developed. By Jan 2018, the company’s AVs

have encountered 36 crashes. Most of these crashes involved been rear-ended or side-swiped by

a human-driven vehicle. Other major N-FOTs projects in the U.S. include the Safety Pilot Model

Deployment (SPMD) program [60]–[62] and the Integrated Vehicle-Based Safety Systems

 11

(IVBSS) program [63]. Recent N-FOT databases deliver raw camera and lidar data, many of

them with human-generated labels. These data are useful for training object detection and

tracking algorithms. Some major N-FOT databases with the raw camera and lidar data are listed

in Table 1.4.

The downsides of using N-FOTs for evaluation are obvious. Conducting such N-FOT

projects to evaluate the safety of an AV is both time-consuming and expensive. Under

naturalistic driving conditions, the probability of encountering conflict scenarios is very low. In

2013, [64] estimated that an N-FOT project could not be conducted with less than 10 million

USD. From a newsletter [65] in 2016, Google claimed to pay Arizona drivers 20 USD per hour

to test self-driving cars. It was estimated that Google might have spent 2-3 million on test drivers

alone. The hardware of each test vehicle costs at least one million dollars. Kalra et al. [66]

approximate that one has to test AV for 440 million km (273.4 million miles) to demonstrate that

they are safer than human drivers with a 95% confidence level, and this is approximately

equivalent to 12.5 years of test driving with 100 AVs. For evaluation proposes, during the N-

FOTs period, the control system design of tested AV should not change. Therefore, a more

effective evaluation method for testing AV is necessary.

Researchers also built stochastic models based on naturalistic driving data for Monte

Carlo (MC) simulations to assess AVs' safety. In [67], Yang et al. evaluated collision avoidance

systems by building an “errorable” driver model. Jurecki et al. [68] tested drivers’ behavior in

simulated traffic. Driver reaction time was found to be a function of Time-To-Collision (TTC),

which characterizes accident risk situations.

A major benefit of MC simulation is that the simulated cases can be based on naturalistic

driving statistics. Moreover, since the tests are conducted through simulations, the cost is much

lower than N-FOTs3. However, if the MC simulation approach is used directly, the probability of

encountering conflict scenarios is still very low.

This is when the accelerated evaluation approach is developed. The accelerated

evaluation concept was first introduced for AV evaluations by Zhao [5] in 2016. By skewing the

statistics of the driver behavior of the surrounding vehicles, the evaluation can focus on higher-

3 Even though the MC simulator is built based on the naturalistic database, after designing the simulator, different

AVs are tested in this simulator and no new data collection is needed.

 12

risk cases and thus saves time, i.e., the evaluation procedure is accelerated. The procedure of

accelerated evaluation is shown in Figure 1.3, which includes six steps:

1. Collect a large quantity of naturalistic driving data.

2. Extract scenarios that have potential conflicts between an AV and surrounding

human-controlled vehicles.

3. Model the behavior of the surrounding vehicles as a probability distribution 𝑓(𝒙),

where 𝒙 represents the random variables vector, which captures features of each

scenario.

4. Skew this distribution4 to a 𝑓∗(𝒙) to emphasize higher-risk situations.

5. Conduct MC tests with the skewed (accelerated) distribution and get the test results.

6. “Skew back” the results to reconstruct the performance of the AV under naturalistic

driving conditions.

Figure 1.3 The Procedure of the Accelerated Evaluation [69]

The accelerated evaluation approach has been successfully implemented in a lot of

studies. The math behind this approach is the Importance Sampling (IS) method. In [69], the

authors extracted car-following scenarios from the SPMD database and applied the importance

sampling method to evaluate the crash, injury, and conflict rates for a simulated AV. In [70],

they extended the method to lane change scenarios. They use the cross-entropy approach to

search for the optimal accelerated distribution’s parameters. Then the probabilities of conflicts,

crashes, and injuries are estimated for a tested AV using that distribution, and the achieved

4 In the original work by Ding et al. [5], they use importance sampling method to calculate an accelerated

distribution 𝑓∗(𝒙) and replace the original 𝑓(𝒙).

 13

accelerated rate is around 2000 to 20,000. Huang et al. [71] further improved the accelerated

evaluation by using piecewise mixture distribution models instead of single parametric

distribution models. Simulation results showed that the piecewise mixture distribution

outperformed single parametric distribution methods in accuracy and efficiency. O’Kelly et al.

[72] implemented the adaptive importance-sampling methods to evaluate systems that employ

deep-learning perception and control algorithms and developed a scalable end-to-end

autonomous vehicle testing framework.

Although the accelerated evaluation approach is efficient and has a lot of potential in the

field of AV testing, importance-sampling is not necessarily the best approach for “skewing” the

distribution. First, the IS method suffers from the curse of dimensionality problem. When the

environment model has a high dimension, extra care must be taken in the choice of model

structure of the IS Distribution (ISD). Otherwise, the estimation may “degenerate,” giving results

that do not reflect the true results [73]. This is a serious issue for the IS method in the AV

evaluation. If the environment model has a small number of random variables, it can be analyzed

directly and completely by formal methods. For problems with many random variables, the IS

method cannot provide reliable results. This will be expounded in Chapter 3. Another issue of

the IS method is that for evaluating the safety of AVs, a common choice for ISD is to “skew”

toward the “danger region.” However, the “danger region” of a specific AV is not known

beforehand. Not knowing the “danger region” means that some searching algorithms need to be

used, and a common choice is the cross-entropy method [74]. However, a searching algorithm

requires tests for identifying the “danger region,” which will drain the accelerating rate.

Therefore, a more versatile and advanced method is needed.

Recently, Feng et al. [75], [76] use a reinforcement learning-based approach to improve

the case searching process in high-dimensional test scenarios. Feng et al. first formulated the test

scenario library generation problem as a Markov Decision Process (MDP) in the car-following

case. The value function of this MDP is then defined directly by the probability of failure and

then trained with Temporal-Difference (TD) reinforcement learning (RL). Although the RL

algorithm can help to search the “danger region” on a high-dimensional state space, the authors

only implement this method in the car-following scenario. The reason is that in the car-following

scenario, avoiding a crash is the rear car’s responsibility. In other scenarios, without certainty on

the responsibility of the crash, it is not straightforward to find the “danger region.” Therefore,

 14

implementing a searching algorithm without naturalistic driving data requires clarifying the

responsibility of crashes and conflicts. This will be discussed in detail in Chapter 4.

1.3 AV Synthesis Problem

The objective of our work on the synthesis problem is to build an AV decision-making

subsystem that can drive the vehicle safely and efficiently. As explained in Section 1.2.1 , the

Reinforcement Learning (RL) method is a promising approach to find the optimal policy in a

complicated environment. Therefore, we will focus on using the RL method for synthesis.

To design an optimal decision-making policy, a simulator for the driving environment is

needed. First of all, given a complicated environment, solving for the optimal policy is not easy.

Therefore, in the first setup of assumption, we assume having a perfect simulator, and we are

trying to find the optimal policy in that simulator. However, the simulator can be inaccurate or

totally off the real environment. For example, the driving environment in New York is different

with that in Alabama. Therefore, in the second setup of assumption, we assume having a

distribution of environments. The second setup of assumption will be elaborate at the end of this

section.

For the first setup, we assume that:

1. The simulator for training and testing the decision-making policy is accurate.

2. The AV is surrounded by only Human-controlled Vehicles (HVs).

3. We do not have a human driver behavior model. Instead, we can only get

information from observations from the simulations.

4. The perception and actuation subsystems of the AV are perfect.

Under these assumptions, the objective of the synthesis problem is to design an optimal

decision-making subsystem using reinforcement learning. To find an optimal policy, one needs

to tackle the exploration-exploitation trade-off of reinforcement learning. This will be elaborated

in Chapter 2.

No matter how carefully we design the simulator, it cannot represent the real world

totally accurately. There are many reasons. First, the lack of data. We can collect as much data as

we want, but it is never complete. For example, right now, all surrounding vehicles are human-

controlled vehicles (HVs). While in the future, AV may interact with both human drivers and

other AVs. Moreover, we cannot enumerate all the environments in various locations, which will

 15

also require tremendous amounts of data. Therefore, it is necessary to study the synthesis

problem under the assumption that the environment model or the simulator is not accurate.

Regarding the above-mentioned situation, we assume that:

1. The simulator for training and testing the decision-making policy is not accurate.

2. We are not training the decision-making policy using only one specific simulator. We

are training the policy in the distribution of simulators.

3. We do not have a model of human driver behaviors. We can only get information

from observations and infer human driver behaviors indirectly.

4. The perception and actuation subsystems of the AV are perfect.

As may have already been noticed, a new assumption was added to require the

probability distribution of these simulators, which requires more data. The objective of the

synthesis problem under the second set of assumptions is to train a decision-making policy that

can fast adapt to different environments. Therefore, the distribution of simulators is used to train

the adaptation ability of the policy. So, the distribution does not need to be very accurate, just

enough to cover a range of possibilities. After training, we hypothesize that the policy will have

the ability to adapt to different environments more quickly given a small quantity of data. The

second synthesis problem is elaborated in Chapter 5.

1.4 AV Evaluation Problem

The objective of the evaluation problem studied in this work is to evaluate the

performance of the AV control system. As shown in Figure 1.4, the typical hierarchical

architecture of AVs includes the perception system (where TSD denotes Traffic Signalization

Detection and MOT denotes Moving Objects Tracking) and the decision-making system. In this

work, we do not discuss any perception-related problem. We assume a perfect perception system

is available.

 16

Figure 1.4 Overview of the Typical Hierarchical Architecture of AVs [12]

In this dissertation proposal, we study the evaluation problem under two sets of

assumptions. For the first setup, we assume that:

1. The testing AV is surrounded by only Human-controlled Vehicles (HVs).

2. We have access to a large amount of naturalistic driving data, which captures the

behavior of human drivers.

3. We do not have access to the control system of the testing AV, which means we

cannot calculate the AV’s state (e.g., the position and velocity) directly from a model.

We can only observe the state, i.e., it is black-box testing.

4. We do not know anything about the “danger region” of the model, which means we

cannot “skew” the distribution directly.

The objective of the evaluation problem under the assumptions above is to estimate the

crash rate and in general, the safety performance of an AV system accurately and efficiently.

More specifically, the goal is to develop a new accelerated evaluation method that can overcome

the curse of dimensionality issue and perform “black-box” testing (by searching the state space)

with a comparable accelerated rate achieved by the state-of-the-art methods.

Moreover, we will consider another set of assumptions when naturalistic driving data is

not available. Usually, even when a large amount of data is collected, they are from a limited

 17

region or country. The driver behaviors in different cities or countries can be very different. This

is a common problem for any data-driven control systems that assume “data is available.” In

addition, there will be more and more AVs and Connected Vehicles (CVs) on the road in the

future, and consequently, the environmental statistics will change with time. Therefore, simply

relying on one fixed database to evaluate AVs is not good enough. Due to these reasons, we have

a second set of assumptions:

1. We do not have access to a large quantity of naturalistic driving data.

2. We do not have access to the control system of the AV, and thus, we perform black-

box testing.

3. We have access to the AV’s output and thus can conduct searching and learning.

4. We assume this work will be performed only under computer simulations or

hardware-in-the-loop simulations since real-world testing is too slow and expensive.

The objective of the evaluation problem under the second set of assumptions is to find the

“danger region” in the state space, meaning that we want to find a time-series of inputs from the

environment which will lure the AV to a crash that is the responsibility of the AV.

1.5 Contributions

In this dissertation, we proposed new synthesis approaches and new evaluation

approaches and make contributions in the following three aspects:

• We developed a reinforcement-learning-based method to solve the synthesis

problem and designed a discretionary lane change policy that helps the AV travel

safely and efficiently on a highway.

• To evaluate this discretionary lane change policy and its low-level safeguard, we

developed two evaluation approaches.

o We extended the accelerated evaluation method introduced in [5] and

developed a novel approach to accelerate the evaluation further and to test

the low-level safeguard system in a more complex environment.

o We developed an evaluation method that does not need environmental

statistics. The approach can generate socially acceptable attacks that can

lure the AV to AV-responsible crashes.

 18

• Given the evaluation results and socially acceptable attacks, we use meta

reinforcement learning to design an adaptive policy that can quickly adapt to

different attacks from the environments. It results in a low crash rate in all

situations.

1.6 Outline of the Dissertation

The remainder of this dissertation is organized as follows. In Chapter 2, we designed a

discretionary lane change decision-making policy using the reinforcement learning method. In

Chapter 3, the lower level safeguard system of the prior designed policy is evaluated with an

advanced accelerated evaluation method named subset simulation. In Chapter 4, the whole policy

is evaluated by designing a socially acceptable perturbation that keeps challenging the learned

policy. In Chapter 5, we developed an adaptive lane change decision-making policy that has

robust performance when facing attackers and other different driving conditions. Finally, we

discuss future research directions and conclude our work in Chapter 6.

 19

Chapter 2 Synthesis of the Autonomous Vehicle’s Policy Using Reinforcement Learning

One of the major synthesis problems for AVs is to design a reliable decision-making

subsystem. In this chapter, we will study this synthesis problem under the first set of assumptions

described in Section 1.3 .where we assume a perfect simulator, and we try to solve the

discretionary lane change decision-making problem. We use the Markov Decision Processes

(MDP) framework to represent the randomness in the environment from other road users. We

solve the MDP by using the Reinforcement Learning (RL) approach discussed in Section 1.2.1 .

The RL agent needs to deal with the tradeoff between exploitation and exploration. In this

chapter, we develop a new model-based exploration approach that guides the agent to explore

the state space more efficiently.

2.1 Literature Reviews on Discretionary Lane Change Decision-making Approaches

Discretionary Lane Change (DLC) usually happens when a driver wants to drive faster,

keep a greater following distance, have a better line of sight, maintain better ride quality, etc. The

AV needs to solve a decision-making problem considering multiple objectives by utilizing the

surrounding vehicles’ information for efficient and safe operation.

Recently, the DLC decision-making problem has been researched using a variety of

approaches. In [14], Kesting et al. developed a rule-based general lane change strategy called

Mobil that depends on the total acceleration potential gain or loss of the ego vehicle and

surrounding vehicles. The acceleration potential of each vehicle is calculated from the Intelligent

Driver Model (IDM). However, this method requires a politeness parameter and a threshold

parameter beforehand, and therefore, it depends on human experience or data to tune the

parameters. In [77], the authors modeled the lane change behavior using the game theory under

Vehicle-to-Vehicle (V2V) circumstance by finding the Nash equilibrium of two interacting

vehicles. The game theory approaches are widely used in computer game applications. However,

it needs to model multiple agents' intentions, which is not feasible under our assumptions.

 20

Another method for solving the DLC decision-making problem is Deep Reinforcement

Learning (DRL). The state-of-the-art DRL techniques have been proven to be useful for

automatically learning policies for difficult decision-making problems like winning the Go game

[78]. Unlike traditional controller design methods, reinforcement learning can generate control

policies without relying on explicit system dynamics. Several published papers demonstrate

DRL's ability to solve the DLC decision-making problems [24], [79]. However, the trained

policy still suffers from the exploration problem. Currently, the researchers are using rule-based

exploration approaches, which correspond to the reward function [23], and this method goes

against the assumption that the MDP is unknown. Therefore, it is necessary to develop a generic

and versatile exploration method.

2.2 Reinforcement Learning Fundamentals

In this section, the background knowledge of reinforcement learning is introduced. In

reinforcement learning, an agent tries to learn an optimal policy to maximize the future

discounted cumulative reward by directly interacting with the environment. The problem is first

modeled as a Markov decision process (MDP), which is defined as a 5-tuple: 𝑀 = (𝑆, 𝐴, 𝑃, 𝑟, 𝛾),

where 𝑆 ⊆ 𝑅𝑛 is the state, 𝐴 ⊆ 𝑅𝑚 is the action, and 𝑃: 𝑆 × 𝐴 → Δ(𝑆) is the stochastic transition

dynamics, where Δ(𝑆) is a probability distribution on 𝑆. 𝑟: 𝑆 × 𝐴 → 𝑅 is the reward function,

while 𝛾 ∈ (0,1] is the discount factor. The discounted cumulative reward is 𝑟0:𝑡 = ∑ 𝛾𝑡𝑟𝑡
∞
𝑡=0 ,

where 𝑟𝑡 is the reward at time 𝑡.

For each time step 𝑡, the agent is trying to learn a policy 𝜋𝛼(𝑠𝑡) = 𝑎𝑡 with parameters 𝛼,

where 𝑠𝑡 ∈ 𝑆 is the state at time 𝑡 and 𝑎𝑡 ∈ 𝐴 is the action at time 𝑡 . The expectation of future

discounted cumulative reward starting from state 𝑠 following policy 𝜋𝛼 can be described as:

 𝑉(𝑠|𝜋𝛼)  =  𝐸𝜋𝛼,𝑀 [∑𝛾𝑡𝑟𝑡

∞

𝑡=0

 |𝑠0 = 𝑠] (2.1)

where 𝑉 is the value function. And the action-value function Q is defined as:

 𝑄(𝑠, 𝑎|𝜋𝛼)  =  𝐸𝜋𝛼 ,𝑀 [∑𝛾𝑡𝑟𝑡

∞

𝑡=0

 |𝑠0 = 𝑠, 𝑎0 = 𝑎] (2.2)

 21

The objective of RL is to maximize the expected discounted cumulative reward, i.e.,

𝐸𝜋,𝑀[∑ 𝛾𝑡𝑟𝑡
∞
𝑡=0]. For problems with discrete action space, we can get the optimal policy by

learning an accurate Q function 𝑄∗ and thus we have 𝜋(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄
∗(𝑠, 𝑎).

2.2.1 Dynamic Programming

The optimal policy for an MDP can be found by using Dynamic Programming (DP) when

we know the MDP’s identities (i.e., the transition model, reward function, etc.) Given the

complete model, we can write the Bellman optimality equations, break the problem into

subproblems and then solve them. There are two ways of using DP to solve MDP: policy

iteration and value iteration.

The algorithm first starts with a random policy. The policy iteration method consists of

two steps. The first step is the policy evaluation step, and the second step is the policy

improvement step. During the policy evaluation step, we find the value function of that policy.

And then, during the policy improvement step, the policy is improved based on the previously

learned value function. In this process, each policy is proved mathematically to be a strict

improvement over the previous one. We have summarized the policy iteration algorithm in

Algorithm 2.1.

Algorithm 2.1: Policy Iteration Algorithm

Initialization: 𝑉(𝑠) ∈ 𝑅 and 𝜋(𝑠) ∈ 𝐴 are initialized arbitrarily for all 𝑠 ∈ 𝑆

Policy Evaluation:

while 𝛥 > 𝜃 do

Set 𝛥 = 0

for 𝑠 ∈ 𝑆 do

Set 𝑡𝑒𝑚𝑝 = 𝑉(𝑠)
𝑉(𝑠) = ∑ 𝑝(𝑠′|𝑠, 𝜋(𝑠))[𝑟(𝑠, 𝑠′, 𝜋(𝑠)) + 𝛾𝑉(𝑠′)]𝑠′ , where 𝑠′ is the next state

𝛥 = max(𝛥, |𝑡𝑒𝑚𝑝 − 𝑉(𝑠)|)

Policy Improvement:

Set 𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑡𝑟𝑢𝑒

for 𝑠 ∈ 𝑆 do

Set 𝑡𝑒𝑚𝑝 = 𝜋(𝑠)
𝜋(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎∑ 𝑝(𝑠′|𝑠, 𝑎)[𝑟(𝑠, 𝑠′, 𝑎) + 𝛾𝑉(𝑠′)]𝑠′ , where 𝑠′ is the next state

if 𝑡𝑒𝑚𝑝 ≠ 𝜋(𝑠): set 𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑓𝑎𝑙𝑠𝑒

if 𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑡𝑟𝑢𝑒: terminate; else: go to # Policy Evaluation.

 22

We start with a random policy and value function for value iteration methods, then using

the collected data to find an improved value function iteratively until reaching the optimal value

function. The value iteration method is the result of directly applying the optimal Bellman

operator to the value function in a recursive manner. After finding the optimal value function, the

optimal policy can be easily derived from it. The value iteration algorithm is summarized in

Algorithm 2.2.

Algorithm 2.2: Value Iteration Algorithm

Initialization: 𝑉(𝑠) ∈ 𝑅 and 𝜋(𝑠) ∈ 𝐴 are initialized arbitrarily for all 𝑠 ∈ 𝑆

Value Iteration:

while 𝛥 > 𝜃 do

Set 𝛥 = 0

for 𝑠 ∈ 𝑆 do

Set temp = 𝑉(𝑠)
𝑉(𝑠) = 𝑚𝑎𝑥

𝑎
∑ 𝑝(𝑠′|𝑠, 𝑎)[𝑟(𝑠, 𝑠′, 𝑎) + 𝛾𝑉(𝑠′)]𝑠′ , where 𝑠′ is the next state

𝛥 = max(𝛥, |𝑡𝑒𝑚𝑝 − 𝑉(𝑠)|)

Output: a deterministic policy 𝜋(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎 ∑ 𝑝(𝑠′|𝑠, 𝑎)[𝑟(𝑠, 𝑠′, 𝑎) + 𝛾𝑉(𝑠′)]𝑠′

Both algorithms work theoretically, and there is no significant difference between the

policy iteration and the value iteration algorithms. The value iteration is simpler, but it is

computationally heavy, while the policy iteration is simpler, and it is relatively computationally

cheap. However, they require the MDP transition probability function and reward function,

which is not feasible in our application.

2.2.2 Temporal Difference Method

Different from the DP methods, the Temporal Difference (TD) method is model-free,

which does not require any information of the MDP. The TD method learns the optimal policy

by bootstrapping from the current estimation. TD method can be used to learn both the value

function and the Q function. The simplest TD method is the State–action–reward–state–action

(SARSA) algorithm. SARSA learns by interacting with the environment and collect the 5-tuple

(state, action, reward, next state, next action), i.e. (𝑠, 𝑎, 𝑟, 𝑠′, 𝑎′), and then update the Q function

based on the TD method. The SARSA algorithm is summarized in Algorithm 2.3.

 23

Algorithm 2.3: SARSA Algorithm

Initialization: 𝑄(𝑠, 𝑎) ∈ 𝑅 is initialized arbitrarily for all 𝑠 ∈ 𝑆

Iteration to estimate the Q function:

for each episode do

Choose the action 𝑎 given the state 𝑠 using policy derived from Q (𝜖-greedy)

for each timestep of this episode do

Apply the action 𝑎 and observe the reward 𝑟 and the next state 𝑠′
Choose the next action 𝑎′ given 𝑠′ using policy derived from Q (𝜖-greedy)

𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝛼[𝑟 + 𝛾𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)], where 𝛼 is the learning rate

Set 𝑠 = 𝑠′; 𝑎 = 𝑎′

Output: a deterministic policy 𝜋(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑠, 𝑎)

Different from the SARSA algorithm, Q learning updates the Q function using the

maximum Q over all possible actions for the next step. i.e., 𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝛼[𝑟 +

𝛾𝑚𝑎𝑥𝑎𝑄(𝑠′, 𝑎) − 𝑄(𝑠, 𝑎)]. Since the action used for updating the policy (𝑎 =

𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑠′, 𝑎)) is different from the action being taken at state 𝑠′ (with 𝜖 possibility to be a

random action), the Q learning method is an off-policy RL method. While the SARSA updates

the policy using the action that will be taken at state 𝑠′, then the SARSA is an on-policy RL

method.

Algorithm 2.4: DQN Algorithm

Initialization:

𝑄(𝑠, 𝑎; 𝛽) ∈ 𝑅 network is initialized with random parameter 𝛽

Target Q function �̂�(𝑠, 𝑎; 𝛽−) is initialized with parameter 𝛽− = 𝛽

Initialize replay buffer 𝐷 with capacity 𝑁 to store past experience

Iteration for estimating Q function:

for each episode do

Initialized the episode with a random starting state

for each timestep of this episode do

Choose the action 𝑎 given the state 𝑠 using policy derived from Q (𝜖-greedy)

Apply the action 𝑎 and observe the reward 𝑟 and the next state 𝑠′
Store the tuple (𝑠, 𝑎, 𝑟, 𝑠′) in 𝐷

Sample random minibatch of tuples (𝑠, 𝑎, 𝑟, 𝑠′) from 𝐷

Set target Q value: 𝑦 = 𝑟 + 𝛾𝑚𝑎𝑥𝑎�̂�(𝑠′, 𝑎; 𝛽
−)

Perform a gradient descent step on (𝑦 − 𝑄(𝑠, 𝑎; 𝛽))2 for 𝛽

Every 𝐶 steps, reset �̂� = 𝑄, i.e. 𝛽− = 𝛽

Output: a deterministic policy 𝜋(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑠, 𝑎)

 24

To solve a high dimensional or continuous state space MDP problem, a functional

approximation (e.g., a neural network that approximates Q function) becomes necessary to

ensure the solution's tractability. However, directly implementing the Q-learning method for

continuous state space MPD problem with approximation could cause the Q function to diverge.

The Deep Q-Network (DQN) method in [80] has successfully demonstrated its value function

convergence with empirical results using techniques such as “experience replay” and

“periodically updated target network.” The algorithm is summarized in Algorithm 2.4.

 There are many extensions of DQN to improve the training performance, such as dueling

DQN [81], which estimates the value function and advantage function (𝐴(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) −

𝑉(𝑠)) with shared network parameters. And the Double DQN (DDQN) [82], which estimate the

target Q value by 𝑦 = 𝑟 + 𝛾�̂�(𝑠′, 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑠′, 𝑎; 𝛽); 𝛽
−). DDQN method uses the Q network

rather than the target Q network to choose the next step action for estimating the Q value. DDQN

shows benefits in reducing overestimating Q value with very little computational burden.

Here, we will also briefly introduce the Monte Carlo (MC) method that can also be used

to solve the MDP problem. MC method does not belong to the category of TD methods. Instead

of using the Bellman equation to estimate the value function or the Q function, MC directly

calculates the true value for each episode and then updates the policy by 𝑉(𝑠𝑡) = 𝑉(𝑠𝑡) +

𝛼(𝐺(𝑠𝑡) − 𝑉(𝑠𝑡)), where 𝐺(𝑠𝑡) = ∑ 𝛾𝑘−𝑡𝑟𝑘−𝑡
𝑇
𝑘=𝑡 is called the empirical return, which is

calculated from a complete episode. The difference between DP, MC, and TD methods are

summarized in Figure 2.1.

Figure 2.1 Comparison of the backup diagrams of Monte-Carlo, Temporal-Difference learning,

and Dynamic Programming for state value functions [83]

 25

2.2.3 Policy Gradient Methods

Most methods mentioned above aim to learn the value function or Q function first, and

then the select actions. The Policy Gradient (PG) methods learn the policy directly with a

parameterized function with respect to 𝜃, i.e., 𝜋(𝑠; 𝜃) ∈ 𝐴. The policy is updated by gradient

ascend with respect to the objective function:

 𝐽(𝛽) =∑𝑑𝜋(𝑠)

𝑠∈𝑆

∑𝜋𝜃(𝑠)𝑄
𝜋(𝑠, 𝑎)

𝑎∈𝐴

 (2.3)

where the 𝑑𝜋(𝑠) is the stationary distribution of this MDP under the policy 𝜋𝜃(𝑠). To maximize

the objective method, researchers have developed a variety of algorithms. Here we will not

expand them into details. The simplest policy gradient method is the REINFORCE algorithm,

which relies on an estimated return by Monte Carlo methods using episode samples (i.e., the

𝐺(𝑠)) to update the policy parameter 𝜃 via gradient ascent [84]. However, the vanilla

REINFORCE algorithm suffers from noisy gradients and high variance problems [85], which

contribute to the instability and slow convergence of the REINFORCE method.

To improve the policy gradient method, researchers use other estimation of the

cumulative return instead of the sampled episodes. In Figure 2.2, we summarize the classic

variants of policy gradient methods. Except for the REINFORCE algorithm, in other methods

shown in Figure 2.2, researchers introduced some type of the “value function” in addition to the

policy, which is proven to be useful in reducing the instability of the gradient [86]. That will

result in having two networks, one for the policy (which is called the Actor) and one for the

“value function” (which is called the Critic). Therefore, these methods are also called Actor-

Critic (AC) methods. Specifically, researchers use the Q function [87] (Q Actor-Critic),

advantage function [87](Advantage Actor-Critic) and TD function [87] (TD Actor-Critic) as

objective function.

Figure 2.2 Different Types of Objective Functions for the Policy Gradient Methods [86]

 26

It is natural to expect the policy gradient-based methods are more useful in continuous

action space. Because there is an infinite number of actions to estimate the values for and hence

the value-based approaches are way too expensive computationally. However, for discrete action

space, using two networks (the actor network and the critic network) is not necessarily better

than the TD methods (e.g., DQN and DDQN). Moreover, policy gradient methods require more

training loops and generally less data-efficient than the TD methods. Therefore, if the action

space of the MDP is discrete, TD methods will perform better. Since our application has a

discrete action space, the backbone RL method we implement is the DDQN method.

2.2.4 Exploration-exploitation Trade-off and Current Methods

Exploration-exploitation trade-off is a critical topic in reinforcement learning. We want

the RL agent to learn the best policy as fast as possible. However, the agent has no data to play

with at the beginning. It needs to explore the state space (i.e., the environment) and collect data

to update the policy. If the collected data are bad experiences, it could lead to local minima or

total failure. The deep RL algorithms use a neural network that optimizes for the best returns can

achieve exploitation quite efficiently, while exploration remains an open topic.

When solving the DLC decision-making problem, studies [24], [88] mainly focus on

building the environment simulator and then use a simple ε-greedy exploration strategy.

However, these papers' backbone RL methods still struggled with the exploration-exploitation

challenge and provided only heuristic exploration approaches. In [24], the authors stated that the

standard DRL approach might require a lot of samples before learning the situations when action

would lead to a collision, thus leading to learning inefficiency. Therefore, they implemented

human-designed short-horizon safety checks to guide the exploration by eliminating unsafe

actions in certain conditions. Similarly, in [88], the authors developed a DRL method with rule-

based constraints. These exploration methods are heavily guided by human design, which is

contradictory to the spirit of deep learning (to learn without the human-designed feature), or full

exploration (without presumptions or crutches). Therefore, an advanced exploration method is

needed.

Previous methods are reviewed here first to find a systematic exploration technique for

the DLC decision-making application. From the beginning of reinforcement learning history,

researchers started to realize the importance of exploration. Thrun [89] and Kaelbling [90]

https://lilianweng.github.io/lil-log/2018/02/19/a-long-peek-into-reinforcement-learning.html
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html

 27

developed an exploration strategy for the agent to choose its action based on some fixed

distributions randomly. These methods are now known as the undirected exploration strategy.

However, undirected exploration strategies are not efficient. Therefore Thrun developed a

counter-based and a recency-based method that the agent can explore based on how many times

it has visited different states [91]. Kolter extended the idea by setting the initial reward of all

states to a high value, which will decrease during exploration in [92]. In [93], Brafman

introduced the R-max method, where the transition environment model is built and updated by

counter-based results. These methods are now known as the directed exploration strategy.

However, for high-dimensional environments, it is inefficient to explore the whole state space,

and it is hard to implement these methods in continuous state environments. Motivated to

overcome these problems, Achiam introduced surprise-based intrinsic reward in [94], where the

agent is excited to see outcomes that run contrary to its understanding of the world. Also, in [95],

the authors first map states to feature space and then define the difference between the estimated

feature and the true feature as the curiosity intrinsic reward. In [96], the authors use variational

auto-encoder (VAE) to build the environment model and help with exploration. These methods

are known as model-based exploration because they all explore based on environment model.

However, in these papers, the authors did not focus on how to build the environment model.

Instead they focus on how to construct the intrinsic reward. Therefore, in this chapter, we will

develop a better exploration method that can help finding the optimal policy.

2.3 Model-based Exploration of Reinforcement Learning

The objective of this section is to develop a method to learn and use the environmental

model to guide the exploration of the agent to “unfamiliar” states. The agent would form a

concept of “the world” around it and intrinsically seek outcomes that run contrary to, or

deviating from, its understanding of the world. Therefore, we propose a model-based exploration

method as shown in Figure 2.3. Four key components are needed for our implementation task.

First, the reinforcement learning backbone Double Deep Q Network (DDQN); second, building

an environment model; third, define intrinsic reward for exploration based on the model; and

finally, the model updating and policy learning strategy.

 28

Figure 2.3 Model-based Exploration

2.3.1 Simulator and Reward Function

In this section, the state space and the action space of the discretionary lane change

decision-making problem, the objective related original reward (without the intrinsic reward

modification), and the simulation environment are introduced. For benchmark purposes, the

problem definition and the simulation environment are the same as the one used in [24].

Figure 2.4 Three Lane Highway Simulator.

The simulator used in this work is a three-lane highway simulator based on [24]. The host

vehicle is driving with the information of the surrounding six nearest vehicles (three vehicles in

front, three vehicles behind) as shown in Figure 2.4. The blue box is the host vehicle, and the six

red boxes are the nearest surrounding vehicles whose states are observed. The remaining boxes

are environment vehicles whose states are not observed. The surrounding vehicles’ driving

strategy is also described in [24].

The state-space 𝑆 ⊆ 𝑅𝑛 of the learning agent (host vehicle) includes the host vehicle's

lateral position 𝑦, host vehicle's longitudinal velocity 𝑣𝑥 and the relative longitudinal position of

the 𝑖th surrounding vehicle Δ𝑥𝑖, and the relative lateral position of the 𝑖th surrounding vehicle

 29

Δ𝑦𝑖 and the relative longitudinal velocity of the 𝑖th surrounding vehicle Δ𝑣𝑥
𝑖 . Therefore, in total,

we have a continuous state space of 2 + 3 × 6(cars) = 20 dimensions, i.e., 𝑆 ⊆ 𝑅20.

The actions of both the host vehicle and surrounding vehicles are discrete. As defined in

[24], we consider four action choices along the longitudinal direction 𝑎𝑥, namely, maintain

speed, accelerate, brake, and hard brake. Whereas for lateral direction actions 𝑎𝑦, we assume

three choices, lane keep, change lane to right, and change lane to left. In total, we define 12

different discrete actions 𝑎 = [𝑎𝑥 , 𝑎𝑦].

The original reward from the environment 𝑟𝑒 (not considering intrinsic reward) is defined

as in [24]. It is formulated as a function of (𝑑𝑥, 𝑦, 𝑣𝑥), where 𝑑𝑥 is the distance between the host

vehicle and its lead vehicle, 𝑦 is the lateral position of the host vehicle and 𝑣𝑥 is the longitudinal

velocity of the host vehicle. The reward is defined as follows.

 𝑟𝑥 = {
exp (−

(𝑑𝑥 − 𝑑𝑥𝑠𝑎𝑓𝑒)
2

10𝑑𝑥𝑠𝑎𝑓𝑒
) − 1 if 𝑑𝑥 < 𝑑𝑥𝑠𝑎𝑓𝑒

0 otherwise

 (2.4)

 𝑟𝑦 = exp (−
(𝑦 − 𝑦𝑑𝑒𝑠)

2

𝑦𝑛𝑜𝑟𝑚
) − 1 (2.5)

 𝑟𝑣 = exp (−
(𝑣𝑥 − 𝑣𝑑𝑒𝑠)

2

𝑣𝑛𝑜𝑟𝑚
) − 1 (2.6)

where the 𝑑𝑥𝑠𝑎𝑓𝑒, 𝑦𝑑𝑒𝑠 and 𝑣𝑑𝑒𝑠 are the safe longitudinal distance to the lead vehicle, the target

lane position, and desired speed, respectively. These three rewards are normalized by 10𝑑𝑥𝑠𝑎𝑓𝑒,

𝑦𝑛𝑜𝑟𝑚 and 𝑣𝑛𝑜𝑟𝑚, respectively, so that no reward dominates the total reward. Then we have 𝑟𝑒 =

1

3
(𝑟𝑥 + 𝑟𝑦 + 𝑟𝑣) with no collision and 𝑟𝑒 = −2 if there is a collision.

2.3.2 Environment model

In this section, we developed an environment model that will be used for deriving

intrinsic reward (Section 2.3.3). As defined in Section, we have a 20-dimension state-space 𝑆.

To take advantage of general application domain background knowledge (vehicle kinematics),

the model of environmental vehicles is factorized into two parts, the deterministic vehicle

 30

kinematics model and the statistical human behavior model. Given the action 𝑎𝑖 = [𝑎𝑥
𝑖 , 𝑎𝑦

𝑖] of

the 𝑖th surrounding vehicle, the action 𝑎 = [𝑎𝑥 , 𝑎𝑦] of the host vehicle and the current state 𝑠, the

next state 𝑠′ is deterministically derived from the vehicle kinematics model:

 Host car: {
𝑦′ = 𝑦 + 𝑎𝑦Δ𝑡

𝑣𝑥
′ = 𝑣𝑥 + 𝑎𝑥Δ𝑡

 (2.7)

 𝑖th car:

{

 (Δ𝑥𝑖)

′
= Δ𝑥𝑖 + Δ𝑣𝑥

𝑖Δ𝑡 +
1

2
(𝑎𝑥

𝑖 − 𝑎𝑥)Δ𝑡
2

(Δ𝑦𝑖)
′
= Δ𝑦𝑖 + (𝑎𝑦

𝑖 − 𝑎𝑦)Δ𝑡

(Δ𝑣𝑥
𝑖)
′
= Δ𝑣𝑥

𝑖 + (𝑎𝑥
𝑖 − 𝑎𝑥)Δ𝑡

 (2.8)

The question now is how to infer the ai from the human behavior model. Traditional

human driver models usually have fixed structures based on various assumptions and do not best

represent driver behavior when the scenario varies [14], [97]. In our application, it is best to learn

a model that can infer a wide range of feasible actions with their corresponding probabilities.

Therefore, in this work, we choose the Variational Auto-Encoder (VAE) to represent human

behavior.

The VAE is typically used for learning latent representation 𝑧 in an unsupervised manner.

Because of the fact that any distribution can be generated by mapping a normal distribution

through a sufficiently complicated function, the distribution of 𝑧 is asserted to be standard

normal distribution 𝑁(0, 𝐼). An auto-encoder network is actually a pair of two connected

networks, an encoder 𝑞, and a decoder 𝑝. An encoder network 𝑞 takes in an input and converts it

into a smaller, dense representation, which the decoder network 𝑝 can convert it back to the

original input. VAEs have already shown promise in representing many kinds of complicated

data, as in [98]. In our application, we take the current state 𝑠 and the action 𝑎 of the host vehicle

as an input of the model and predict the next state 𝑠′, therefore we build the VAE to condition on

[𝑠, 𝑎], which is called Conditional Variational Auto-Encoder (CVAE) [99].

The whole model structure is shown in Figure 2.5. Given the current state 𝑠 and the host

vehicle's action 𝑎, the predicted action of the 𝑖th environment vehicle 𝑎�̂� is estimated from the

decoder of CVAE. Then both 𝑎�̂� and [𝑠, 𝑎] is given to the vehicle kinematics model, and the next

state 𝑠 ′̂ is estimated. The CVAE is trained with the next state 𝑠′ as the target value. If the

observed surrounding vehicles change in one time-step, there will a sudden jump in

 31

corresponding dimensions of the next state 𝑠′. To solve this problem, we remap these id-changed

surrounding vehicles' corresponding state to correct position according to the expected action �̂�

and set newcomer or disappeared vehicles' state to the default value.

Figure 2.5 Conditional variational auto-encoder model with the vehicle kinematics model

 The loss function for training a CVAE is derived from the objective function that aims to

guess the next state best. Formally speaking, the objective function is to maximize the

conditional log-likelihood log𝑝θ (𝑠
′|𝑠, 𝑎) with parameter θ. As shown in [99], this objective

function is normally intractable, so the authors apply the stochastic gradient variational Bayes

(SGVB) framework to train a statistical aggregated model. Therefore, the variational lower

bound (also called Evidence Lower BOund, i.e., ELBO) of the log-likelihood is used as the

objective function. In our application, conditional log-likelihood is written as:

 log 𝑝𝜃(𝑠′|𝑠, 𝑎)

= 𝐾𝐿(𝑞𝜙(𝑧|𝑠′, 𝑠, 𝑎)||𝑝𝜃(𝑧|𝑠′, 𝑠, 𝑎))

+ 𝐸𝑞𝜙(𝑧|𝑠′,𝑠,𝑎)[− 𝑙𝑜𝑔 𝑞𝜙(𝑧|𝑠′, 𝑠, 𝑎) + 𝑙𝑜𝑔 𝑝𝜃(𝑧, 𝑠′, 𝑠, 𝑎)]

(2.9)

where 𝑝θ is the decoder with parameter θ, 𝑞ϕ is the encoder with parameter ϕ and 𝐾𝐿(⋅ || ⋅) is

the KL-divergence function. And the evidence lower bound (ELBO) can be derived as:

 32

 log 𝑝𝜃(𝑠′|𝑠, 𝑎) ≥ −𝐾𝐿(𝑞𝜙(𝑧|𝑠′, , 𝑎)||𝑝𝜃(𝑧|𝑠, 𝑎)) + 𝐸𝑞𝜙(𝑧|𝑠′,𝑠,𝑎)[log 𝑝𝜃(𝑠′|𝑧, 𝑠, 𝑎)] (2.10)

Recall that 𝑝θ(𝑧|𝑠, 𝑎) ~ 𝑁(0, 𝐼) and 𝑞ϕ(𝑧|𝑠
′, 𝑠, 𝑎) ~ 𝑁(μ(𝑠′, 𝑠, 𝑎), Σ(𝑠′, 𝑠, 𝑎)) denoted as

𝑁(μ, Σ), the first term on the right-hand side of Equation (2.10) can be computed in closed form.

For the second term, using the reparameterization trick described in [100], we can have the

empirical lower bound as:

 𝐿𝐶𝑉𝐴�̂� ≔ −
1

2
(tr(Σ) + μ𝑇μ − 𝑘 − logdet(Σ)) +

1

𝐿
∑log𝑝𝜃 (𝑠

′|𝑧𝑙 , 𝑠, 𝑎)

𝐿

𝑙=1

 (2.11)

where 𝑘 is the dimension of the distribution, 𝑧𝑙 is a sample from 𝑞ϕ(𝑧|𝑠
′, 𝑠, 𝑎) and 𝐿 is the total

number of samples. In our application, the predicted next states are continuous. Therefore the

𝑝θ(𝑠
′|𝑧, 𝑠, 𝑎) is modeled by an i.i.d. Gaussian distribution, i.e. 𝑝θ(𝑠

′|𝑧, 𝑠, 𝑎)~𝑁(𝑓(𝑧, 𝑠, 𝑎), σ2𝐼),

where 𝑓(𝑧, 𝑠, 𝑎) is the output of the decoder and σ is a hyperparameter controlling how precise

the model is. In more detail, from [98], log𝑝θ (𝑠
′|𝑧𝑙 , 𝑠, 𝑎) = −

𝑛

2
log 2πσ2 −

1

2
‖𝑠′ −

𝑓(𝑧𝑙, 𝑠, 𝑎)‖2/σ2. We could sample 𝑧𝑙 ~ 𝑞ϕ(𝑧|𝑠
′, 𝑠, 𝑎) to estimate it, but getting a good estimate

would require passing many samples of 𝑧𝑙 through 𝑓(𝑧𝑙, 𝑠, 𝑎), which would be inefficient.

Therefore, as is standard in stochastic gradient descent, we take one sample of 𝑧 ~ 𝑞ϕ(𝑧|𝑠
′, 𝑠, 𝑎)

to approximate
1

𝐿
∑ log𝑝𝜃 (𝑠

′|𝑧𝑙 , 𝑠, 𝑎)𝐿
𝑙=1 . In summary, we have:

 log𝑝θ (𝑠
′|𝑠, 𝑎) ≥ ELBO ≈ 𝐿𝐶𝑉𝐴�̂� (2.12)

2.3.3 Intrinsic reward

In this section, we derive the surprise-based intrinsic reward from the CVAE model

shown in Section 2.3.2 to help the agent explore states that run contrary to its understanding of

the world. As defined in [94], the exploration incentive is:

 η 𝐸𝑠,𝑎~𝜋 [𝐾𝐿(𝑝(𝑠′|𝑠, 𝑎)||𝑝𝜃(𝑠′|𝑠, 𝑎))] (2.13)

where η is a weighting factor, and 𝑝 represents the ground truth environment model. It is the on-

policy average KL-divergence of 𝑝θ from 𝑝 and is intended to measure the host vehicle's surprise

about the observation 𝑠′. The model 𝑝θ, corresponding to the decoder in the CVAE model (with

vehicle kinematics model), should only be close to 𝑝 in regions of the state space that the host

 33

vehicle has already observed and captured the transition rule. Therefore, the KL-divergence of

𝑝θ and 𝑝 will be higher in unfamiliar places. Essentially, this encourages the agent to go where it

has not been modeled correctly, which in term implies the places it is unfamiliar. As derived in

[94], adding the surprise exploration incentive in Equation (2.13) gives the net effect of

performing a reward shaping of the form:

 𝑟′(𝑠′, 𝑠, 𝑎) = 𝑟𝑒 + η(log𝑝 (𝑠′|𝑠, 𝑎) − log𝑝θ (𝑠
′|𝑠, 𝑎)) (2.14)

where 𝑟′ is the new reward, 𝑟𝑒 is the original environment reward defined in Section 2.3.1 .

Practically, the ground truth environment transition model 𝑝 is unknown. Therefore, they use the

cross-entropy approximation of the 𝐾𝐿(𝑝||𝑝𝜃)[𝑠, 𝑎] instead:

 𝐾𝐿(𝑝||𝑝𝜃)[𝑠, 𝑎] = 𝐻(𝑝, 𝑝𝜃)[𝑠, 𝑎] − 𝐻(𝑝)[𝑠, 𝑎] ≈ 𝐻(𝑝, 𝑝𝜃)[𝑠, 𝑎] (2.15)

where 𝐻(𝑝, 𝑝𝜃)[𝑠, 𝑎] ≔ 𝐸𝑠′~𝑝[− log𝑝𝜃 (𝑠
′|𝑠, 𝑎)] is the cross-entropy for distributions 𝑝 and 𝑝θ.

For a detailed explanation, please refer to [94]. Then, this approximation results in a reward

shaping of the form:

 𝑟′(𝑠′, 𝑠, 𝑎) = 𝑟𝑒 − η log𝑝θ (𝑠
′|𝑠, 𝑎) (2.16)

From Equation (2.12), we have derived the lower boundary of conditional log-likelihood

log𝑝θ (𝑠
′|𝑠, 𝑎). Therefore, the upper boundary of the second term in Equation (2.16) is

−η𝐿𝐶𝑉𝐴�̂� . Also, as shown in [98], the difference between 𝐿𝐶𝑉𝐴�̂� and log𝑝θ (𝑠
′|𝑠, 𝑎) will

vanished as the model becomes more and more accurate. Therefore, we use the upper boundary

as the surprise-based intrinsic reward denoted as 𝑟𝑠𝑝, i.e.:

 𝑟𝑠𝑝 ≔ −η𝐿𝐶𝑉𝐴�̂� (2.17)

 𝑟′(𝑠′, 𝑠, 𝑎) = 𝑟𝑒 + 𝑟𝑠𝑝 (2.18)

Similar to [94], we keep the average intrinsic reward 𝑟𝑠𝑝 upper-bounded by adjusting η at each

iteration:

η =

η0

max (1,
1
|𝐵|

∑ 𝑟𝑠𝑝(𝑠,𝑎,𝑠′)∈𝐵)

(2.19)

 34

where 𝐵 is the batch of data used for the policy update step. For every batch of tuple data

(𝑠𝑡, 𝑎, 𝑠𝑡+1, 𝑟
𝑒), the 𝑟𝑡

𝑠𝑝
 is calculated from the current CVAE model, as shown in Figure 2.6.

Figure 2.6 Intrinsic Reward

2.3.4 Model and policy update strategy

The final algorithm is summarized in Figure 2.7. Same as traditional DDQN algorithm,

after initialization, samples (𝑠, 𝑎, 𝑠′ , 𝑟𝑒) from the environment are collected by the agent

following its current policy and stored in the replay buffer. During training the DDQN, a batch of

samples is sent to CVAE to calculate 𝑟𝑠𝑝, then used for updating the DDQN policy network.

Also, we update the CVAE model every 100 episodes with samples (𝑠, 𝑎, 𝑠′) from the replay

buffer. The expected outcome is that the CVAE model becomes more and more accurate, and we

have a well-explored DDQN policy. Finally, at the end of the training, the intrinsic reward

should vanish, and the learned policy should be optimized corresponding to environment reward

𝑟𝑒 only.

 35

Figure 2.7 Training procedure for CVAE and DDQN

2.3.5 Baseline Exploration Method

The proposed model-based exploration method is compared with annealing 휀-greedy

exploration and rule-based safety check exploration. In the annealing 휀-greedy exploration, in

which the agent chooses an action based on:

 𝜋(𝑎|𝑠) = {
1 − 휀, if 𝑎 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑠, 𝑎)

휀, random action
 (2.20)

where the 휀 is a small probability on which the agent will choose random action. It decreases

with the training process as 휀 = max(𝑒−𝑖𝐶 , 휀0), where 𝑖 is the training episode, and 𝐶 is the

annealing factor.

Meanwhile, the short-horizon safety check baseline method will replace dangerous action

before applying it. If the action chosen by the DDQN is unsafe, it will be replaced by Intelligent

Driver Model (IDM) and Advanced Emergency Braking (AEB) system based action. The key

safety check includes:

For longitudinal actions without changing lane:

• Check the safe distance and time to collision (TTC) with the leading vehicle. If

the action violates the safety check, it will be replaced by a safe longitudinal

action.

For lane change action:

• If the ego vehicle is in the left-most lane, change to the left is not valid, similar for

the right lane.

 36

• The safe distance and TTC to the target lane vehicle are continuously monitored.

If it is violated, the lane change action will be either not initiated or aborted.

• If the ego vehicle is on the lane marker, the next lateral action will choose from

change lane to right and change lane to the left, which means the ego vehicle

would not stay on the lane marker.

2.3.6 Training Setups

The experiments are conducted with hyperparameters listed in Table 2.1. All three

exploration methods are learning policies with the same deep network structure.

Table 2.1 Implementation Hyperparameters

 Description Value

𝑧 The dimension of the CVAE latent variable 𝑧 6

𝜎2 Hyperparameter for CVAE decoder 1 2𝜋⁄

𝜂0 Weight factor in Equation (2.19) for 𝑟𝑠𝑝 1.0

𝐸 Number of evaluation episodes 10

𝛾 Discount factor 0.9

Δ𝑡 Sampling time 0.1 sec

𝜌 Learning rate 1 × 10−6

휀0 Starting value for 휀-greedy exploration 0.2

𝐶 Annealing factor for 휀-greedy exploration 2 × 10−6

2.4 Training Results

In this section, we compare our proposed CVAE model-based exploration strategy with

two baseline exploration methods described in Section 2.3.5 .

 37

Figure 2.8 Average reward from evaluation roll-outs confidence bound

Figure 2.9 Average reward of last 50 episodes with the confidence bound

Figure 2.10 Average intrinsic reward and the CVAE training loss over training iterations

 38

During training, the updated policy is tested by random rollouts using the environment

reward 𝑟𝑒 only. Figure 2.8 reports the average reward per action for ten evaluation rollouts. The

training curve obtained by rule-based safety check exploration has very narrow confidence

intervals and converges fast. The rule-based safety check helps the agent collecting smart data,

and the reinforcement learning part is more or less like a fitting process. Meanwhile, the training

curve of ε-greedy shows that by only randomly choosing an action, the agent is learning slowly.

While for our proposed CVAE model-based exploration method, the result shows that its

performance is as good as our target rule-based safety check exploration method, and during the

early stage, it is trying to explore unfamiliar states, which leads to sudden drops in the average

reward curve. Also, in Figure 2.9, the average reward of the last 50 episodes are reported. Our

method performs twice as well as the ε-greedy baseline. In the end, the ε-greedy method

converges to a suboptimal policy that learns to stay in one lane without any intention of a lane

change. And if the agent learns to perform good lane following, the average reward would be

around −0.2.

The intrinsic reward from CVAE and the CVAE training loss is also reported in Figure

2.10. During training, the CVAE becomes more and more accurate while the intrinsic reward

vanishes at the end of the training. Therefore, the agent is eventually learning a good policy

corresponding to the environment reward.

These experiments confirm that the work presented in this chapter outperforms the

baseline ε-greedy method and converge almost as fast as the oracle method exploration. As

shown in Figure 2.11, the AV agent trained by the baseline ε-greedy method will converge to a

no-lane change policy. Even if cars in the adjacent lane travel faster, the AV agent will not

change lanes to achieve a higher speed. This is due to the poor exploration during learning,

which leads the AV agent to a local optimal no-lane change policy. While for the AV agent

trained by the model-based exploration method, as shown in Figure 2.12, it can change lane to

the adjacent lane where cars travel faster. These results show that the model-based exploration

method can find the global-optimal policy (i.e., the oracle policy trained by rule-based safety

check exploration), while when using the baseline ε-greedy method, the AV agent will easily be

stuck in a local-optimal policy.

 39

Figure 2.11 Animation result of ε-greedy method

Figure 2.12 Animation result of model-based exploration method

2.5 Summary

In this work, we proposed a type of model-based exploration method via intrinsic reward.

In particular, an environment transition model structured as a CVAE model with vehicle

kinematics is learned during network training. In parallel, this model is encoded in a surprise-

based intrinsic reward exploration for the policy training. The experiments we conduct show that

the model-based exploration method we proposed leads to a faster convergence solution (i.e.,

better data efficiency) than the baseline ε-greedy approach and as good as the oracle rule-based

safety check exploration method.

As shown in the simulation results, the policy learned by the baseline ε-greedy method

will converge to a local-optimal policy that the AV agent will stay in one lane even when the

cars in the adjacent lane travel faster. The model-based exploration method we developed can

help the agent explore the state that runs contrary to their understanding of the environment and

thus result in a thorough exploration. And as shown in the simulation result, the AV agent learns

to change lane to travel both safer and faster.

The method we developed shows both theoretical and practical advantages in solving the

discretionary lane change problem. The AEB used in short-horizon safety check will be

evaluated in Chapter 3, and the trained policy will be evaluated in Chapter 4.

40

Chapter 3 Evaluation of the Autonomous Vehicle’s Policy Using Subset Simulation

In this chapter, we evaluate the Advanced Emergency Braking (AEB) system

implemented as the lower level safeguard controller in the short horizon safety check in Section

2.3.5. The evaluation problem under the first setup of assumptions (described in Section 1.4) is

studied. Given the naturalistic driving data from the SPMD database, environment stochastic

models were built. The approach developed in this chapter is based on the Subset Simulation

(SS) method. The SS approach is demonstrated in the lane change scenario with two

environment stochastic models. The crash rate and accelerated rate are calculated and compared

to the baseline Importance Sampling (IS) method.

3.1 Literature Reviews on Evaluation Approaches and Their Limitations

As briefly mentioned in Section 1.2.2, variation reduction techniques have been proposed

as a solution to the limitations of N-FOTs and other approaches [5]. Here we expound on

variation reduction techniques used in past studies and their limitations.

In general, Monte Carlo simulations were very inefficient since much real-world driving

consists of non-safety-critical interactions between the host vehicle and its surrounding vehicles.

To address this limitation, Zhao et al. [5], [69], [70] applied the IS method to estimate the

probability of rare events and use that to achieve significantly faster AV evaluations than the

conventional Monte Carlo approach. Instead of relying upon the initial distribution of naturalistic

driving data, the IS estimator samples according to the Importance Sampling Distribution (ISD).

This distribution is the result of a bijective transformation, and therefore testing under this

framework can focus on safety-critical scenarios while retaining the probability of such

scenarios. Consequently, results under IS can be interpreted in the context of the original

distribution, and thus the probability of rare events can be accurately estimated much more

quickly. This technique has been used for testing AEB in lane changing scenarios in [70] and

was found to accelerate testing by around 50 times compared with the Crude Monte Carlo

method.

 41

3.1.1 Importance Sampling Method

To introduce the importance sampling method, let us first formulate the problem under

the language of mathematics. The objective of using the IS method is to accurately and

efficiently approximate rare events probability (failure probability 𝑃𝐹 in our application)

 𝑃𝐹 = ℙ(휀), 휀 ⊂ Ω (3.1)

where Ω denotes the variable space of all possible events, and 휀 denotes the set of rare events.

The indicator function of the event 휀 is defined as

 𝐼𝜀(𝒙) = {
1, if 𝒙 ∈ 휀
0, otherwise

 (3.2)

where 𝒙 denotes the vector of random variables that describes the surrounding vehicles. Let 𝑓(𝒙)

denote the joint Probability Density Function (PDF) of the environment distribution, then the

failure probability 𝑃𝐹 can be written as

 𝑃𝐹 = 𝔼𝑓[𝐼𝜀(𝒙)] = ∫ 𝐼𝜀(𝒙)𝑓(𝒙)dx
𝒙∈𝜀

 (3.3)

where 𝔼𝑓[𝐼𝜀(𝒙)] means the expectation of 𝐼𝜀(𝒙) and 𝒙~𝑓(𝒙). 𝑃𝐹 can be estimated by the Crude

Monte Carlo (CMC) simulation as

 �̂�𝐹
𝐶𝑀𝐶 =

1

𝑁
∑𝐼𝜀(𝑥𝑖)

𝑁

𝑖=1

, 𝑥𝑖~𝑓(𝒙) (3.4)

where 𝑁 is the total number of samples used to estimate the 𝑃𝐹, and 𝑥𝑖 is the 𝑖𝑡ℎ independent and

identically distributed (i.i.d.) sample from the environment distribution 𝑓(𝒙). The CMC

estimation �̂�𝐹
𝐶𝑀𝐶 is an unbiased estimator [101] of 𝑃𝐹 with mean 𝔼[�̂�𝐹

𝐶𝑀𝐶] and variance 𝕍[�̂�𝐹
𝐶𝑀𝐶]

easily being derived as

 𝔼[�̂�𝐹
𝐶𝑀𝐶] = 𝑃𝐹 , and 𝕍[�̂�𝐹

𝐶𝑀𝐶] =
𝑃𝐹(1 − 𝑃𝐹)

𝑁
 . (3.5)

In reliability analysis, the standard measure of the accuracy of an unbiased estimator �̂�𝐹 is its

coefficient of variation (c.o.v.) [101], defined as 𝛿(�̂�𝐹) = √𝕍[�̂�𝐹] 𝔼[�̂�𝐹]⁄ . Therefore, we can

calculate the c.o.v. expression for CMC estimator:

 42

 𝛿(�̂�𝐹
𝐶𝑀𝐶) = √𝕍[�̂�𝐹

𝐶𝑀𝐶] 𝔼[�̂�𝐹
𝐶𝑀𝐶]⁄ = √

1 − 𝑃𝐹
𝑁𝑃𝐹

 . (3.6)

The idea of c.o.v. will permeate this chapter as a standard measure. It is obvious that the c.o.v. of

the CMC estimator is related to the failure probability 𝑃𝐹 and the total number of samples 𝑁.

Considering estimating the probability of rare events, i.e. 𝑃𝐹 ≪ 1, then 𝛿(�̂�𝐹
𝐶𝑀𝐶) ≈ 1 √𝑁𝑃𝐹⁄ .

For example, if 𝑃𝐹 = 10−7 (which is the magnitude of human driver crash rate), and if the c.o.v.

𝛿(�̂�𝐹
𝐶𝑀𝐶) = 10% is desirable, then 𝑁 = 109 samples are required. That is the reason we

introduce the Importance Sampling (IS) technique.

The IS technique [102] aims to increase the estimation accuracy by constructing some

Importance Sampling Distribution (ISD). The basic idea of the IS method is to take advantage of

the information about the rare event to generate samples that lie more frequently in the important

region, or in our application, the “danger region.” We denote this ISD as 𝑓∗(𝒙), and we can redo

the analysis as in CMC. The failure probability 𝑃𝐹 can be derived as

 𝑃𝐹 = ∫ 𝐼𝜀(𝒙)𝑓(𝒙)𝑑𝒙
𝒙∈𝜀

= ∫
𝐼𝜀(𝒙)𝑓(𝒙)

𝑓∗(𝒙)
𝑓∗(𝒙)𝑑𝒙

𝒙∈𝜀

= 𝔼𝑓∗ [
𝐼𝜀(𝒙)𝑓(𝒙)

𝑓∗(𝒙)
] . (3.7)

Now the IS estimator can be constructed similarly as

 �̂�𝐹
𝐼𝑆 =

1

𝑁
∑

𝐼𝜀(𝑥𝑖)𝑓(𝑥𝑖)

𝑓∗(𝑥𝑖)
=
1

𝑁
∑𝐼𝜀(𝑥𝑖)

𝑁

𝑖=1

𝐿(𝑥𝑖)

𝑁

𝑖=1

, 𝑥𝑖~𝑓
∗(𝒙) (3.8)

where 𝑥𝑖 is the 𝑖𝑡ℎ i.i.d. sample from the ISD 𝑓∗(𝒙), and 𝐿(𝑥𝑖) = 𝑓(𝑥𝑖) 𝑓
∗(𝑥𝑖)⁄ is the importance

weight of the sample 𝑥𝑖. The IS estimator converge to 𝑃𝐹 as 𝑁 → ∞ by the strong law of large

numbers, if and only if the support of 𝑓∗(𝒙), i.e., the domain where 𝑓∗(𝒙) > 0, contain the

support of 𝐼𝜀(𝑥𝑖)𝑓(𝑥𝑖). By choosing the ISD appropriately, the IS method can obtain an

estimator with a smaller variance. The variance of the IS method can be derived as

𝕍[�̂�𝐹
𝐼𝑆] =

1

𝑁2
∑𝕍𝑓∗[𝐼𝜀(𝒙)𝐿(𝒙)]

𝑁

𝑖=1

=
1

𝑁
(𝔼𝑓∗[𝐼𝜀(𝒙)𝐿

2(𝒙)] − 𝑃𝐹
2)

 . (3.9)

 43

It is straightforward to derive that the optimal choice of ISD which minimize the variance of IS

estimator in Equation (3.6)

 𝑓𝑜𝑝𝑡
∗ =

𝐼𝜀(𝒙)𝑓(𝒙)

𝑃𝐹
= 𝑓(𝒙|𝑥 ∈ 휀) (3.10)

which is simply the original PDF 𝑓(𝒙) conditional on the rare event domain. The 𝑓𝑜𝑝𝑡
∗ is called

the zero-variance distribution, which zeroes the variance of the IS estimator. Therefore, with

zero-variance distribution as the ISD, the IS estimator can accurately approximate 𝑃𝐹 at 100%

confidence level with only 1 sample. This is the big promise of the IS method.

3.1.2 Limitations and Motivations

However, zero-variance distribution is just a theoretical result. Finding this distribution

for the IS estimator is not easy. It requires knowledge of the AV’s algorithm, which is not

available under our assumptions, nor is it a practical requirement in general. If we treat the AV

as a black-box system, some Adaptive Importance Sampling (AIS) technique is needed. The

Cross-Entropy (CE) method [103] is a normal choice of AIS techniques, which use the Monte

Carlo method to minimize the CE between the optimal ISD (i.e., zero-variance distribution) and

the proposed ISD

 𝐻 (𝑓𝑜𝑝𝑡
∗ (𝒙), 𝑓∗(𝒙)) = −∫𝑓𝑜𝑝𝑡

∗ (𝒙) log(𝑓∗(𝒙))𝑑𝒙
Ω

 (3.11)

where 𝐻 (𝑓𝑜𝑝𝑡
∗ (𝒙), 𝑓∗(𝒙)) denotes the CE. And substituting Equation (3.10) into Equation (3.11),

we have

 𝐻 (𝑓𝑜𝑝𝑡
∗ (𝒙), 𝑓∗(𝒙)) = −∫

𝐼𝜀(𝒙)𝑓(𝒙)

𝑃𝐹
log(𝑓∗(𝒙))𝑑𝒙

Ω

 . (3.12)

Therefore, minimizing the CE is to maximize ∫
𝐼𝜀(𝒙)𝑓(𝒙)

𝑃𝐹
log(𝑓∗(𝒙))𝑑𝒙

Ω
 which is proportional to

∫ 𝐼𝜀(𝒙)𝑓(𝒙)log(𝑓
∗(𝒙))𝑑𝒙

Ω
. Furthermore, we assume that the 𝑓∗(𝒙) can be determined by

parameter 𝜃, and thus the objective function of the CE method can be rewritten as

 max
θ
∫𝐼𝜀(𝒙)𝑓(𝒙)log(𝑓

∗(𝒙; 𝜃)) 𝑑𝒙 . (3.13)

 44

This can be solved recursively by MC sampling method, and as derived in [104], the 𝑘𝑡ℎ step

update equation for 𝜃 is

 𝜃𝑘 = argmax
 𝜃

1

𝑁
∑𝐼𝜀(𝑥𝑖)

𝑓(𝑥𝑖)

𝑓∗(𝑥𝑖; 𝜃𝑘−1)
log𝑓∗(𝑥𝑖; 𝜃)

𝑁

𝑖=1

, 𝑥𝑖~𝑓
∗(𝒙; 𝜃𝑘−1) (3.14)

where the 𝑥𝑖 is the 𝑖𝑡ℎ i.i.d. sample from the 𝑘 − 1 step ISD 𝑓∗(𝒙; 𝜃𝑘−1) and 𝑁 is the total

number of samples for 𝑘𝑡ℎ step. However, it requires a lot of additional samples before the

testing procedure, which will drain the accelerated rate. This is the first motivation for the

research in this chapter.

Furthermore, the IS method suffers from the high dimension degeneration problem [105],

or the curse of dimension problem. A geometric explanation as to why IS is often inefficient in

high dimensions is given in [106], and the theoretical analysis of this problem is addressed in

Section 2.6.6.1 in [73]. Since the illustration of the problem will take too much effort, here we

just give the conclusion and simple explanations. The conclusion is that the failure probability 𝑃𝐹

is found to be severely underestimated in high dimension environment from their numerical

experiments [106], the underestimation becoming worse as the dimension increases. A simple

explanation is that even if the ISD 𝑓∗(𝒙) is close to the optimal ISD 𝑓𝑜𝑝𝑡
∗ (𝒙), it still has some

possibility that the support of 𝑓∗(𝒙) does not cover the support of 𝑓𝑜𝑝𝑡
∗ (𝒙) in some dimension,

which will lead to underestimation of the 𝑃𝐹. And the higher the problem dimension, the worse

IS underestimates.

To solve the curse of dimensionality problem, Sequential Importance Sampling (SIS)

techniques can be used. In the SIS methods [107], the ISD is iteratively refined to represent rare

events. However, fitting ISD requires predefining the model or structure of this ISD. Knowing

nothing about the “danger region” of the testing AV leaves no clue for the structure of this ISD.

For example, if we choose the Gaussian Mixture Model (GMM) as the structure for this ISD,

what should be the component number of this GMM? How can we be sure this GMM is the “best

model” and will not overfit? We cannot ensure this GMM is the best model without further

Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC) testing. Moreover,

we do not need the posterior distribution. We only need the failure probability 𝑃𝐹. This is another

motivation for the following research.

 45

3.2 Variance Reduction Techniques: Subset Simulation

The above-mentioned limitations of the IS method lead us to study another sampling

method, the Subset Simulation (SS), to address the black-box and high-dimensionality problems.

SS is an advanced stochastic simulation method for estimating the low failure probability of a

system based on the Markov Chain Monte Carlo method [73], [108], [109]. It has been used to

estimate the structural reliability of civil, aerospace, and nuclear systems. Moreover, SS has

proven useful in other applications such as sensitivity analysis, design optimization, and

uncertainty quantification [73].

3.2.1 Subset Simulation Algorithm

The basic idea behind the Subset Simulation (SS) method is to represent a very small

probability (the failure probability in our application) 𝑃𝐹 as a product of relative larger

probabilities of “more-frequent” events. Then the larger probabilities are estimated separately.

To construct a sequence of sets of events, let us consider a potentially non-explicit function 𝑌(𝑥)

to indicate the performance of the system. The rare event set 휀 in Equation (3.1) can be rewritten

as

 휀 = {𝒙: 𝑌(𝒙) < 𝑏} (3.15)

where 𝑏 is the threshold of the performance for the rare event set. Then we can construct a

sequence of sets of events as

 Ω ≡ 휀0 ⊃ 휀1 ⊃ 휀2… ⊃ 휀𝑀 ≡ 휀 (3.16)

where 𝑀 is the total number of levels in the simulation and 휀𝑚 = {𝒙: 𝑌(𝒙) < 𝑏𝑚} is the subset at

the level 𝑚 simulation. Then we have 𝑏 = 𝑏𝑀 < 𝑏𝑀−1 < ⋯ < 𝑏1 and 휀 = ⋂ 휀𝑚
𝑀
𝑚=0 . Therefore,

as far as we can construct such a sequence of nested subsets, the failure probability 𝑃𝐹 can be

calculated as a product of conditional probabilities

 𝑃𝐹 = ℙ(휀) = ℙ(⋂ 휀𝑚

𝑀

𝑚=0

) =∏ℙ(휀𝑚|휀𝑚−1)

𝑀

𝑚=1

=∏𝑃𝑚

𝑀

𝑚=1

 (3.17)

where 𝑃𝑚 ≡ ℙ(휀𝑚|휀𝑚−1) is the conditional probability at the 𝑚𝑡ℎ level and ℙ(휀1|휀0) = ℙ(휀1).

In this way, the original problem of estimating a small failure probability 𝑃𝐹 becomes 𝑀

 46

intermediate problems corresponding to larger conditional probabilities. In the implementation of

SS, the total number of subsets (or levels) 𝑀 and the values of intermediate thresholds {𝑏𝑚} are

chosen adaptively.

The next question is to estimate these conditional probabilities. First, we can further

define the indicator function for each level

 𝐼𝜀𝑚(𝒙) = {
1, if 𝒙 ∈ 휀𝑚 , i.e., 𝑌(𝒙) < 𝑏𝑚
0, otherwise

 (3.18)

and the PDF of the conditional distribution of each level can be derived as

 𝑝𝑚(𝒙) ≡ 𝑓(𝒙|휀𝑚−1) =
𝐼𝜀−1(𝒙)𝑓(𝒙)

ℙ(휀𝑚−1)
 (3.19)

Since ℙ(휀0) = 1, the first probability can be estimated by the CMC method. Estimating the

remaining probability is more challenging and need to sample from the conditional distribution

in Equation (3.19). This seems to be a trivial task, noticing that a sample from 𝑝𝑚(𝒙) is just one

drawn from 𝑓(𝒙) that lies in 휀𝑚−1. However, it is not efficient to draw a sample from 𝑓(𝒙) and

abandon it if it is not lies in 휀𝑚−1. Instead, in standard SS, samples from the conditional

distribution 𝑝𝑚(𝒙) are generated by the Modified Metropolis Algorithm (MMA) [108], which

belongs to the family of MCMC. Details of MMA will be elaborated in the next Section 3.2.2 .

The splitting strategy for each simulation level (𝑚) is introduced here first and

summarized as follows:

1. The estimation of first level (𝑚 = 1) conditional probability is conducted by CMC,

which directly draw 𝑁 samples 𝑥1
(1)
, . . . , 𝑥𝑁

(1)
 from the original environment

distribution 𝑓(𝒙).

2. The performance function 𝑌(𝒙) is used to characterize failures; 𝑌(𝑥𝑖
(1)
) is evaluated

for each 𝑥𝑖
(1)

, which is the 𝑖𝑡ℎ sample from the CMC sampling; all 𝑌(𝑥𝑖
(1)
) are then

sorted in ascending order to get the list {𝑦1
(1)
≤. . . ≤ 𝑦𝑁

(1)
}.

3. Set the 𝑃1 (defined in Equation (3.17)) percentile of the list {𝑦1
(1)
≤. . . ≤ 𝑦𝑁

(1)
},

denoted as 𝑏1, to be the threshold for the 2nd subset level. This means that 휀1 =

{𝒙: 𝑌(𝒙) < 𝑏1}; those samples inside the 휀1 are “seeds” for the 2nd level. We denote

seeds using {𝜃𝑗
(1)
}.

 47

4. In the 2nd level, we sample from the conditional distribution 𝑝1(𝒙). It is inefficient to

use CMC; thus, we choose the MMA sampling method for this task.

5. After collecting samples 𝑥1
(2)
, . . . , 𝑥𝑁

(2)
, repeat step 2 and obtain 𝑏2 and 휀2 =

{𝒙: 𝑌(𝒙) < 𝑏2}. Once again, those samples inside 휀2 are seeds for the 3rd level and

denoted as {𝜃𝑗
(2)
}.

6. Repeat step 3 to 5 for samples of the next level until 𝑏𝑚 ≤ 𝑏 or 𝑚 + 1 > 𝑀.

This process is illustrated in a two-dimension variable space in Figure 3.1. In Figure 3.1

(a), the hollow dots (circles) are the samples from the original distribution 𝑓(𝒙). They are then

tested by the performance function 𝑌(𝒙) and the testing results are sorted in ascending order.

The red crosses (are also sampled from the 𝑓(𝒙)) in Figure 3.1 (a) are the top 𝑃1 percent results

and thus become the seeds for level 1. In the subset 휀1, level 1 samples (the black dots in Figure

3.1 (a)) are drawn from the seeds by MMA. Then level 1 samples are also tested by performance

function 𝑌(𝒙) and the testing level 1 results are also sorted in ascending order. The blue crosses

in Figure 3.1 (b) are the top 𝑃2 percent of the level 1 results, and thus become the seeds for level

2. Repeat these steps until the terminal condition reached.

(a) Level 0 – Level 1 (b) Level 0 – Level 2

Figure 3.1 Subset Simulation Process

3.2.2 Modified Metropolis Algorithm

In the procedure outlined in Section 3.2.1 , the critical problem is the efficient sampling

at each level from the conditional probability distribution 𝑝𝑚(𝒙) ≡ 𝑓(𝒙|휀𝑚−1), i.e. to estimate

 48

 𝑃𝑚 = ∫ 𝑝𝑚(𝒙)𝑑𝒙
𝒙∈𝜀

= ∫
𝐼𝜀−1(𝒙)𝑓(𝒙)

ℙ(휀𝑚−1)
𝑑𝒙 .

𝒙∈𝜀

 (3.20)

To approach this issue, we consider Markov Chain Monte Carlo (MCMC), which is a class of

sampling methods for distributions that cannot be directly sampled efficiently. The basic idea of

this method is to construct a Markov Chain whose stationary distribution is the one of interest.

By drawing from the Markov Chain, the samples will, in the end, be distributed with the

conditional probability distribution 𝑝𝑚(𝒙). The MCMC used in SS is the Modified Metropolis

Algorithm (MMA).

The MMA algorithm is a component-wise version of the original Metropolis algorithm

[110]. It is specifically tailored for sampling from high-dimensional conditional distributions.

This approach uses the seeds as described before and evolves according to the proposal

distribution 𝑞𝑘(⋅ | ⋅), 𝑘 = 1, … ,𝐾, which corresponds to the 𝑘𝑡ℎ dimension of the original

distribution 𝑓(𝒙). For level 𝑚, we have 𝑁 × 𝑃𝑚−1 seeds, where 𝑁 is the number of samples from

the previous level, and 𝑃𝑚−1 is the level probability. The MMA process at each level is described

in Algorithm 3.1 and illustrated in Figure 3.2 (in two-dimension variable space).

Figure 3.2 Schematic Diagram of Modified Metropolis Algorithm

 49

Algorithm 3.1: Modified Metropolis Algorithm for each seed 𝜃𝑗
(𝑚−1)

 in level 𝑚

Input:

Initial state: 𝜃𝑗
(𝑚−1)

, which is denoted as 𝑥0 for each Markov Chain.

Total number of states of the Markov Chain: 𝑁𝑐.
Original distribution: 𝑓𝑘(⋅) for dimension 𝑘.

Proposal distribution: 𝑞𝑘(⋅ | ⋅) for dimension 𝑘.

for 𝑖 = 1,… , 𝑁𝑐 do

Generate candidate state 𝜉

for 𝑘 = 1,… ,𝐾 do

Sample 𝜉𝑘~𝑞𝑘(⋅ |𝑥𝑖−1
(𝑘)
)

Calculate the acceptance ratio for MCMC

 𝑟 =
𝑓𝑘(𝜉𝑘) ⋅ 𝑞𝑘(𝑥𝑖−1

(𝑘)
|𝜉𝑘)

𝑓𝑘(𝑥𝑖−1
(𝑘)
) ⋅ 𝑞𝑘(𝜉𝑘|𝑥𝑖−1

(𝑘)
)
 (3.21)

Accept or reject 𝜉𝑘:

 𝜉𝑘 = {
𝜉𝑘 , with probability min(𝑟, 1)

𝑥𝑖−1
(𝑘)
, with probability 1 − min(𝑟, 1)

 (3.22)

Obtain 𝜉 = [𝜉1, … , 𝜉𝐾]
𝑇

Check whether 𝜉 ∈ 휀𝑚−1 by testing. Accept or reject 𝜉:

 𝑥𝑖 = {
𝜉, if 𝜉 ∈ 휀𝑚−1
𝑥𝑖−1, otherwise

 (3.23)

Output: Samples 𝑥0, … , 𝑥𝑁𝑐−1, 𝑁𝑐 states of a Markov Chain for each seed 𝜃𝑗
(𝑚−1)

 in level 𝑚.

By applying the MMA algorithm, the resulting stationary distribution will be the

conditional distribution 𝑝𝑚(𝒙). Here we observe that the total number of samples in level 𝑚 is

𝑁 × 𝑃𝑚−1 ×𝑁𝑐. For convenience, if we set 𝑁𝑐 = 𝑃𝑚−1
−1 , then at each level, we will have the same

number of total samples. The MCMC method is known to handle high-dimensional stochastic

models efficiently, which is an important consideration because the stochastic model for a

realistic environment of an AV can be complicated.

One important assumption of this MMA algorithm is that the 𝐾 dimension random

variables are independent. This assumption is not a limitation since, in simulation, one always

starts from independent variables to generate correlated excitation histories. The modification of

the original distribution 𝑓(𝒙) for MMA will be elaborated in Section 3.3.3 . Other parameter

selection will be elaborated in Section 3.4.2 .

 50

 It is derived in [73], [108] that, given the failure probability 𝑃𝐹, 𝑃𝑚, and the total number

of samples 𝑁, the c.o.v. of the SS estimator can be derived as

 𝛿2(�̂�𝐹
𝑆𝑆|𝑃𝐹 , 𝑃𝑚 , 𝑁) =

(1 + 𝛾)(1 − 𝑃𝑚)

𝑁𝑃𝑚(ln𝑃𝑚−1)𝑟
(ln𝑃𝐹

−1)𝑟 (3.24)

where 2 ≤ 𝑟 ≤ 3 and 𝛾 is approximately a constant that depends on the state correlation of the

Markov chain at each level. Numerical experiments show that 𝑟 = 2 gives a good approximation

to the c.o.v. and that 𝛾 ≈ 3 if the variance of the proposal distribution is chosen appropriately

[73], [108], [111]. This will be elaborated in Section 3.4.2 . As shown in Equation (3.6), the

c.o.v. of CMC is 𝛿2(�̂�𝐹
𝐶𝑀𝐶) ∝ 𝑃𝐹

−1, while for SS, 𝛿2(�̂�𝐹
𝑆𝑆) ∝ (ln𝑃𝐹

−1)𝑟. This is the reason why

SS can dramatically improve the efficiency of CMC in rare event simulation.

3.3 Naturalistic Driving Data and Environment Model

3.3.1 Naturalistic Driving Data

The lane change scenario is used as a case study to show the evaluation results and the

advantages of SS over CMC and IS techniques. In the lane change scenarios, two vehicles are

involved, which are the following vehicle and the lane change vehicle (as shown in Figure 3.3).

In the US, around 4 ~ 10% of all freeway crashes are related to lane change [112], i.e., around

240,000 to 610,000 reported lane-change crashes every year [113]. Therefore, we aim to develop

an advanced evaluation procedure for AV systems under lane change scenarios.

Figure 3.3 Lane Change Scenario Features

 51

To test the AV system under the lane-change scenario, we first need to analyze the

human drivers’ behaviors. Early studies focus mainly on the gap acceptance [114] and other

driver models [115] with short horizons and limited control settings. As more and more

naturalistic driving data were collected, researchers started to analyze the lane change behavior

in depth. Zhao et al. [116] analyzed the safety-critical features in mandatory and discretionary

lane changes for heavy trucks. Fitch et al. [117] studied 100 cars to analyze the lane change

events and crashes. In [5], Zhao built a lane change statistical model from the Safety Pilot Model

Deployment (SPMD) project and demonstrated its usefulness for evaluating the safety of an

Advanced Emergency Braking (AEB) system. The model contains only three variables, which

are the lane change vehicle’s velocity at a lane change 𝑣𝐿(𝑡𝐿𝐶), the range at lane change 𝑅𝐿(𝑡𝐿𝑐)

and the Time-To-Collision (TTC) at lane change time which is defined as

 𝑇𝑇𝐶𝐿 = −
𝑅𝐿

�̇�𝐿
 (3.25)

where �̇�𝐿 is the derivative of 𝑅𝐿. Moreover, these three parameters are modeled as independent

random variables and are generated for the testing separately. During the lane change, Zhao

further assumed that the lane change vehicle’s velocity would not change. This is also not very

realistic. Therefore, in this work, we build another stochastic model that can capture lane change

behaviors more comprehensively.

First, we queried the lane change scenarios from the SPMD database [61], [62]. As

shown in Figure 3.4, instead of just focusing on the information at the lane change initiation, we

record the entire lane change trajectory of the two cars. Following the process, we queried more

than 400,000 lane change cases. One lane change case can be represented by three sets of time

series data, which are the longitudinal velocity curve of the lane change vehicle and the

following vehicle and the lateral position curve of the lane change vehicle, together with the

initial range. To further simplify the model, we fit the two velocity curves with a 2nd order

polynomial (examples are shown in Figure 3.5). And the lateral position curve is fitted by a half-

sine function [118], which can be further reduced to only one parameter, i.e., the lane change

duration. Together with the initial range, the lane change cases can be represented by eight

variables (as listed in Table 3.1).

 52

Figure 3.4 Data Processing for Querying the Lane Change Data

(a) Lane change from right to left (b) Lane change from left to right

Figure 3.5 2nd Order Polynomial Fitting Examples

Table 3.1 Lane Change Model Features

𝑥1~𝑥3 𝑥4~𝑥6 𝑥7 𝑥8

Following vehicle’s speed Lane change vehicle’s speed Lane change duration Initial range

Parameters of 2nd order

polynomial:

(𝑣𝐹
(2))

2

𝑡2 + 𝑣𝐹
(1)𝑡 + 𝑣𝐹

(0)

Parameters of 2nd order

polynomial:

(𝑣𝐿
(2))

2

𝑡2 + 𝑣𝐿
(1)𝑡 + 𝑣𝐿

(0)

𝑇 𝑅0

 53

Table 3.2 Correlation Matrix of the 8 Variables

 𝑣𝐹
(0)

 𝑣𝐹
(1)

 𝑣𝐹
(2)

 𝑣𝐿
(0)

 𝑣𝐿
(1)

 𝑣𝐿
(2)

Duration

𝑇

Initial

range 𝑅0

𝑣𝐹
(0)

 1 −0.81 10−5 0.20 -0.13 0.01 -0.02 -0.02

𝑣𝐹
(1)

 - 1 0.21 -0.26 0.27 0.28 0.18 0.26

𝑣𝐹
(2)

 - - 1 -0.07 0.13 0.94 0.71 0.87

𝑣𝐿
(0)

 - - - 1 -0.88 -0.06 -0.05 -0.09

𝑣𝐿
(1)

 - - - - 1 0.09 0.09 0.14

𝑣𝐿
(2)

 - - - - - 1 0.68 0.88

𝑇 - - - - - - 1 0.64

𝑅0 - - - - - - - 1

To select the right stochastic model for these eight variables, we first calculate the

correlations between every pair of random variables. The correlation coefficient between two

random variables 𝑋 and 𝑌 is defined as

 𝑐𝑜𝑟𝑟(𝑋, 𝑌) =
𝔼[(𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌)]

𝜎𝑋𝜎𝑌
 (3.26)

where 𝜇𝑋 and 𝜇𝑌 are the expectations of random variables 𝑋 and 𝑌, while 𝜎𝑋 and 𝜎𝑌 are the

standard deviations of 𝑋 and 𝑌. And the correlation coefficient is symmetric, i.e., 𝑐𝑜𝑟𝑟(𝑋, 𝑌) =

𝑐𝑜𝑟𝑟(𝑌, 𝑋). The value of a correlation coefficient ranges between −1 and +1. The correlation

coefficient is +1 in the case of a perfect direct (increasing) linear relationship (correlation), −1

in the case of a perfect decreasing (inverse) linear relationship (anticorrelation) [119]. The

correlation coefficient of each pair of the abovementioned eight variables is listed in Table 3.2

In Table 3.2. The eight variables are correlated, which means they are not independent.

Some of these pairs have strong correlations (in red) or anticorrelations (in blue). Therefore,

rather than using the model developed in [5], which has three independent variables, we choose

the multivariate Gaussian Mixture Model (GMM), which can characterize the correlation.

 54

3.3.2 Environment Model

In this work, we focused on capturing the entire lane change trajectory instead of just gap

acceptance [77], [116], [120]. Recently, as more and more data became available, researchers

start to use more complex models to represent human driver behavior. Angkititrakul et al. [121],

[122] use a Gaussian Mixture Model (GMM) to characterize the driver behavior. Huang et al.

[123] use GMM to develop a measure of robot driver etiquette in the car-following scenario.

Below we provide a simple introduction to the Gaussian Mixture Model (GMM) [124]. A

GMM is a stochastic model that assumes all the data points are generated from a mixture of a

finite number of Gaussian distributions. For a given distribution, we use several Gaussian

functions to fit it (as shown in Figure 3.6 (a)). The PDF for each component of the GMM is

defined as

 𝜙𝑗(𝒙) =
𝜋𝑗

√2𝜋 ⋅ det(𝛴𝑗)
exp (−

1

2
(𝑥 − 𝜇𝑗)

𝑇
𝛴𝑗
−1(𝑥 − 𝜇𝑗)) (3.27)

where 𝜇𝑗 is the mean value vector of the 𝑗𝑡ℎ component, Σ𝑗 is the covariance matrix of the 𝑗𝑡ℎ

component, and 𝜋𝑗 is the weight for the 𝑗𝑡ℎ component.

Some data cannot be fitted by combinations of Gaussian distributions. Therefore

researchers introduced another distribution called Generalized Gaussian Mixture Model

(GGMM) [125], [126] and added a parameter 𝜆 to control the shape of different peak. The PDF

of each component of GGMM is given by

 𝑇𝑗(𝒙) = 𝜋𝑗𝐴(𝜆𝑗) exp (−𝐵(𝜆𝑗) |(𝑥 − 𝜇𝑗)
𝑇
𝛴𝑗
−1(𝑥 − 𝜇𝑗)|

𝜆𝑗/2

) (3.28)

where the 𝐴(𝜆𝑗) and 𝐵(𝜆𝑗) are functions controlling the shape of each Gaussian distribution

[126] and are defined as

 𝐴(𝜆𝑗) =
𝜆𝑗√Γ(3/𝜆𝑗)

2 det(Σ𝑗) Γ(1/𝜆𝑗)√Γ(1/𝜆𝑗)
 (3.29)

 𝐵(𝜆𝑗) = (
Γ(3/𝜆𝑗)

Γ(1/𝜆𝑗)
)

𝜆𝑗/2

 (3.30)

In Equation (3.30), the Γ(⋅) denotes the gamma function. Each 𝜆𝑗 ≥ 0 controls the shape of each

GGMM component.

 55

One drawback of GMM and GGMM is that their distributions are unbounded with a

support region of (−∞,+∞), while real data has boundaries. Therefore, Nguyen et al. [126]

further introduced the Bounded Generalized Gaussian Mixture Model (BGGMM), which simply

normalized the GGMM to the bounded support region while getting significant improvement.

The PDF of each component of BGGMM is defined as

 𝛹𝑗(𝒙) =
𝑇𝑗(𝒙)𝐻(𝒙)

∫ 𝑇𝑗(𝒙)
 (3.31)

where 𝐻(𝒙) is the bounded support region indicator which is equal to 1 within the bounded

support region and 0 in other regions. The GMM, GGMM, and BGGMM fitting examples in

[126] are reproduced and shown in Figure 3.6 (b), where the SMM is the Student's-t mixture

model (SMM) that has similar performance as GGMM. The BGGMM fits the data the best.

(a) Schematic diagram of the GMM
(b) Examples for the fitting of GMM, SMM,

GGMM and BGGMM [126]

Figure 3.6 Schematic Diagram for the GMM, GGMM, and BGGMM

We choose the Bounded Generalized Gaussian Mixture Model (BGGMM) as the

stochastic model for the lane change scenarios since the eight variables, which represent the lane

change scenario, have physical bounds. The BGGMM model is fitted by the standard

Expectation Maximization (EM) algorithm [127]. However, we still need to select the

component number for the BGGMM model. To quantify the model selection results, two

information criteria are introduced, which are the Akaike Information Criterion (AIC) and the

Bayesian Information Criterion (BIC). The AIC and BIC values are criteria for model selection

 56

among a finite set of models. The model with the lowest AIC or BIC is preferred. They are

based, in part, on the likelihood function [128]. The AIC value of a model is defined as

 𝐴𝐼𝐶 = 2𝑘 − 2 ln �̂� (3.32)

where 𝑘 is the number of total parameters that need to be estimated, and �̂� is maximum value of

the likelihood function for the model. The AIC value rewards goodness of fit , but it also

includes a penalty on model complexity. The BIC value is highly related to the AIC value and

defined as

 𝐵𝐼𝐶 = ln(𝑛) ⋅ 𝑘 − 2 ln �̂� (3.33)

where 𝑛 is the total number of data samples. For the same number of data samples, there is no

big difference between AIC and BIC values.

Figure 3.7 AIC and BIC Value of the BGGMM with Component Number from 3 to 20

The AIC and BIC values are calculated for GMM, GGMM, and BGGMM with

increasing component numbers from 3 to 20, and the results are shown in Figure 3.7. We choose

the BGGMM with ten components as the stochastic lane change model. And the GMM, GGMM,

and BGGMM with ten components fitting results are shown as the marginal distribution of each

of the eight variables in Figure 3.8. Accurately capturing the distribution of the features of lane

change will help estimate the crash rate of a specific system. In Section 3.4 , this BGGMM

model will be used to sample test cases for the AEB system (details will be introduced in Section

3.4.1).

https://en.wikipedia.org/wiki/Likelihood_function
https://en.wikipedia.org/wiki/Goodness_of_fit

 57

(a) Marginal distribution of 𝑣𝐹
(2)

 (b) Marginal distribution of 𝑣𝐹
(1)

(c) Marginal distribution of 𝑣𝐹
(0)

 (d) Marginal distribution of duration 𝑇

(e) Marginal distribution of 𝑣𝐿
(2)

 (f) Marginal distribution of 𝑣𝐿
(1)

 58

(g) Marginal distribution of 𝑣𝐿
(0)

 (h) Marginal distribution of initial range 𝑅0

Figure 3.8 BGGMM Fitting Results (Marginal Distribution PDF) for 8 Variables

3.3.3 Rosenblatt Transformation

The BGGMM is used to model the dependent lane change variables. As shown in Section

3.2.2 , one requirement for implementing MMA is that the distribution model has independent

random variables. To address this issue, we introduce the Rosenblatt transformation method

[129]. The Rosenblatt transformation is an isoprobabilistic transformation, which can transfer

dependent random variables space 𝑋 to a space 𝑈 consisting of independent standard normal

random variables by one-to-one mapping 𝑇: 𝑋 → 𝑈. The transformation is conduct as follows.

𝑇1: 𝑋 → 𝑌 =

(

𝐹1(𝑥1)
……
𝐹𝑘|1,…,𝑘−1(𝑥𝑘|𝑥1, … , 𝑥𝑘−1)
……
𝐹𝐾|1,…,𝐾−1(𝑥𝐾|𝑥1, … , 𝑥𝐾−1))

𝑇2: 𝑌 → 𝑈 = (
Φ1(𝑦1)
……

Φ𝐾(𝑦𝐾)
)

𝑇 = 𝑇1𝑇2: 𝑋 → 𝑈

(3.34)

where 𝐹𝑘|1,…,𝑘−1(⋅) is the Cumulative Distribution Function (CDF) of the conditional random

variable 𝑥𝑘|𝑥1, … , 𝑥𝑘−1, Φ𝑘 is the CDF of the standard normal distribution, and the random

variable vector 𝒙 is in 𝐾-dimension. After the transformation, random variables in space 𝑈 are

independent and thus are ready for MMA. Moreover, the transformation is a one-to-one function,

 59

and the inverse Rosenblatt transformation can be derived [130]. Therefore, even the MMA is

conducted in the random variable space 𝑈, the results can be analysis in the original random

variable space 𝑋.

3.4 Simulation and Results

3.4.1 Advanced Emergency Braking System under Test

To conduct the SS method for AV safety evaluation and compare it with the IS method,

we test the ACC+AEB system previously studied in [5]. This model is also used as the lower

level safeguard controller in the short horizon safety check in Chapter 2. In this evaluation, the

lane change vehicle is controlled by a human driver (HV) who attempts to change lanes in front

of the AV, while the following vehicle is the AV under test. The AV's AEB system is a black-

box and unknown to the SS procedure and is taken from [5]. This AEB system is extracted from

a production vehicle: 2011 Volvo V60.

As shown in Figure 3.9, the AV is controlled by the Adaptive Cruise Control (ACC)

algorithm when the situation is normal and safe. The AEB algorithms become active when a

threat is detected. If the AEB fails to prevent the crash, the simulation terminates. Otherwise, the

control is returned to the ACC, and the test terminates as the lane change finishes. The ACC is

approximated by a discrete Proportional-Integral controller, and the AEB is activated based on a

threshold value 𝑇𝑇𝐶𝐴𝐸𝐵 of “Time-To-Collision” defined in Equation (3.25). For the details of the

ACC and AEB controller, please refer to [5].

Figure 3.9 Layout of the AV Control System [5]

 60

The ACC+AEB system is not a sophisticated AV system. It is selected as an example to

demonstrate the difference between the SS evaluation method and the IS evaluation method.

3.4.2 Simulation Setups

In this section, we evaluate the AEB system with two different setups. In [5], Zhao

evaluates the Volvo AEB system using a three-dimension independent random variable model.

The variables are the lane change vehicle’s velocity at the lane change initiation 𝑣𝐿0, the range at

the lane change initiation 𝑅0 and the Time-To-Collision (TTC) at lane change time 𝑇𝑇𝐶0. In the

following, the SS is used to evaluate the AEB system using these three independent random

variable model in order to compare with the results using the IS method [5]. The AEB system is

also tested under the 8-variable BGGMM introduced in Section 3.3.2 . For easy differentiation,

the baseline three independent random variables model is denoted as 𝑓𝐵𝐿(𝑣𝐿0, 𝑇𝑇𝐶0, 𝑅0) =

𝑓1(𝑣𝐿0)𝑓2(𝑇𝑇𝐶0)𝑓3(𝑅0) and the 8-variable BGGMM is denoted as 𝑓𝐵𝐺𝐺𝑀𝑀(𝒗𝑭, 𝒗𝑳 , 𝑅0, 𝑇), where

𝒗𝑭 = [𝑣𝐹
(0), 𝑣𝐹

(1), 𝑣𝐹
(2)] is the random variable vector for the parameters of the following vehicle’s

velocity, and 𝒗𝑳 = [𝑣𝐿
(0), 𝑣𝐿

(1), 𝑣𝐿
(2)] is the random variable vector for the parameters of lane

change vehicle’s velocity.

Before testing under this BGGMM, preprocessing is needed. When sampling for test

cases, we can only sample the initial speed of the AV (i.e., the following vehicle) and have no

control of its subsequent speed. Therefore, we need to calculate the marginal distribution of the

AV’s speed parameters other than the initial speed parameter (𝑣𝐹
(0)

). Thus, we sample from

 𝑓𝐵𝐺𝐺𝑀𝑀(𝑣𝐹
(0), 𝒗𝑳, 𝑅0, 𝑇) = ∬ 𝑓𝐵𝐺𝐺𝑀𝑀(𝒗𝑭, 𝒗𝑳, 𝑅0, 𝑇)𝑑𝑣𝐹

(1)

𝑣𝐹
(1)
,𝑣𝐹
(2)

𝑑𝑣𝐹
(2)

 (3.35)

Then we transform these dependent random variables to a space 𝑈 consisting of independent

standard normal random variables by the Rosenblatt transformation introduced in Section 3.3.3 .

Using the Rosenblatt transformation, the SS can explore the space of 𝑈 and inverse map to space

𝑋 to test the AV. If variables of the 𝑓𝐵𝐿(𝑣𝐿0, 𝑇𝑇𝐶0, 𝑅0) model are independent, then no

Rosenblatt transformation is needed.

In the lane change scenario, the performance function 𝑌(𝒙) is the minimum range during

the entire lane change. Therefore, the set of actual crash events is 휀 = {𝒙: 𝑌(𝒙) < 0}. Using this

 61

performance function, we can also define “crash events” to have a minimum range smaller than

𝑏𝑀−1 > 0, i.e., 휀𝑀−1 = {𝒙: 𝑌(𝒙) < 𝑏𝑀−1}. Following this procedure, a sequence of sets is

constructed: 휀𝑀 ≡ 휀 ⊂ 휀𝑀−1 ⊂ ⋯ ⊂ 휀1 ⊂ 휀0 = Ω, and the corresponding performance criteria

are𝑏𝑀 ≡ 𝑏 = 0 < 𝑏𝑀−1 < ⋯ < 𝑏1 < 𝑏0 = +∞.

Implementation details of SS, in particular, the choice of level probability 𝑝𝑚 defined in

Equation (3.19) and proposal distributions 𝑞𝑘(⋅ | ⋅) for each dimension, are discussed in [111]. It

has been confirmed that 𝑃𝑚 = 0.1 proposed in the original paper [108], is nearly optimal. While

the choice of the proposal distribution 𝑞𝑘(⋅ | ⋅) in MMA is more delicate. Any one-dimensional

distribution centered at the seed could suffice, but the shape of the distribution may affect the

efficiency of the MMA in a non-trivial way: proposal 𝑞𝑘(⋅ | ⋅) with both small and large

variance tend to increase the correlation between successive samples, making statistical

estimation of the conditional probability (level probability) 𝑃𝑚 = ℙ(휀𝑚|휀𝑚−1) in Equation (3.17)

less efficient. The most well-studied candidate distribution is the normal distribution, i.e.

𝑞𝑘(· |𝑥𝑖) = 𝑁(𝑥𝑖, 𝜎𝑘), where 𝑥𝑖 is the mean value and 𝜎𝑘 is the standard deviation. In [73],

[108], [111], the optimal standard deviation was found to be related to the “roughness” 𝐼 of a

PDF 𝑓, defined as

 𝐼 = 𝔼𝑓[((log𝑓)
′)2] = ∫

(𝑓′(𝑥))
2

𝑓(𝑥)
𝑑𝑥

+∞

−∞

 (3.36)

which is given by 𝜎𝑘 ≈ 2.4/√𝐾𝐼𝑘 in [111], where 𝐾 is the dimension of original distribution and

𝐼𝑘 is the “roughness” of the 𝑘𝑡ℎ dimension PDF.

The SS parameters used in our simulations are summarized in Table 3.3. The variance of

each proposal distribution is calculated accordingly. The total number of samples for each level

is 5000, and the total number of states for each MCMC chain is 10. The simulation terminates

when the performance criterion for the next level is smaller than 0 or the iteration level reaches

10. Our termination conditions mean that either the crash cases are found or the crash rate of the

testing AV is as low as 10−10.

 62

Table 3.3 Parameters for the Subset Simulation

 3-variable Stochastic Model BGGMM

Original distribution

𝑓(𝒙)
𝑓𝐵𝐿(𝑣𝐿0, 𝑇𝑇𝐶0, 𝑅0)
= 𝑓1(𝑣𝐿0)𝑓2(𝑇𝑇𝐶0)𝑓3(𝑅0)

𝑓𝐵𝐺𝐺𝑀𝑀(𝑣𝐹
(0), 𝒗𝑳, 𝑅0, 𝑇)

Proposal distribution

𝑞𝑘(⋅ | ⋅)

𝑁(𝑥𝑖|𝜎), where

𝜎 = {

1, 𝑥𝑖~𝑓1(𝑣𝐿0)

0.11, 𝑥𝑖~𝑓2(𝑇𝑇𝐶0)

0.003, 𝑥𝑖~𝑓3(𝑅0)

In space 𝑈 (Equation (3.34)):

𝑁(𝑢𝑖|𝜎), 𝜎 ≈ 1.07

Performance function

𝑌(𝒙)
min𝑅 during the entire lane change

Level probability 𝑃𝑚 0.1 for each level 𝑚

Total samples for

each level 𝑁
5000

Number of seeds for

each level 𝑁 × 𝑃𝑚−1
5000 × 0.1 = 500

Total state for each

Markov Chain 𝑁𝑐
𝑁𝑐 = 𝑝𝑚

−1 = 10

Stop criteria 𝑚 + 1 > 10 or 𝑏𝑚+1 < 0

3.4.3 Evaluation Results

The ACC+AEB system is tested by the initial condition sampled from the baseline 3-

variable stochastic model. The three variables are the initial range, initial lane change vehicle's

speed, and initial TTC. The samples tested using SS are shown in Figure 3.10, with the x-axis

being the initial range, the y-axis being the initial lane change vehicle speed and the z-axis being

the initial TTC. Only the first four levels are shown. The failure probability 𝑃𝐹 = 3.1 × 10−7 is

calculated by Equation (3.17) using only 32,000 test results from SS. This is less than half of the

74,100 cases needed by the IS technique [5], with the same c.o.v. value.

 63

(a) Level 0 samples (b) Level 1 samples (c) Level 2 samples (d) Level 3 samples

Figure 3.10 Samples Expended by SS using the Baseline 3-variable Model

As shown in Figure 3.10, the test cases continue to converge to lower TTC values from

level to level. The lower the TTC, the shorter time for the ACC+AEB to react to. The results also

show that three clusters of risky cases emerge: (1) low initial range with various initial lane

change vehicle's speed from 2m/s to 35m/s; (2) low initial lane change vehicle's speed with a

range from 2m to 75m; (3) high initial TTC (around 2600s) with short initial range and high

initial lane change vehicle's speed. Seeds in level 4 give dangerous cases that would happen with

probability 10−4.

The ACC+AEB system is tested using the environment model BGGMM. The samples

tested at each level using SS are shown in Figure 3.11, with the x-axis being the initial range, the

y-axis being the initial lead vehicle speed and the z-axis being the average acceleration of the

lead vehicle during a lane change. The red points are those chosen to be the seeds for the next

level. In total, 18,500 cases are tested, and in level 5, 𝑏5 < 0, thus the simulation is terminated.

Calculating from Equation (3.17), the failure probability is 𝑃𝐹 = 3.45 × 10
−4. It is much higher

than using the baseline 3-variable stochastic model, which is 𝑃𝐹 = 3.1 × 10
−7. This is because

during the lane change, the BGGMM enables the lane change vehicle to decelerate, which will

endanger the following AV. The evaluation results are summarized in Table 3.4.

 64

(a) Level 0 samples (b) Level 1 samples (c) Level 2 samples (d) Level 3 samples

Figure 3.11 Samples Expended by SS using the 8-variable BGGMM Model

Table 3.4 Evaluation Results Summary

3-variable Stochastic Model 8-variable BGGMM

Subset

Simulation

Importance

Sampling

Subset

Simulation

Importance

Sampling

Crash Rate 3.1 × 10−7 2.1 × 10−7 3.45 × 10−4 -

Total Tests 32,000 74,100 18,500 -

As can be seen in Figure 3.11 (d), the ACC+AEB performs poorly when the lead vehicle

decelerates during a lane change and when the initial range is short. However, we do not see

obvious clusters like in the baseline 3-variable stochastic model. The reason is that the SS only

selects the top 10% of most dangerous cases at each level and when the lane change vehicle can

decelerate, cases with lower initial range are more dangerous than other cases at the same

probability level. Also, when the lane change vehicle's speed is between 20m/s (45mph) to 40m/s

(89mph), it is more likely to decelerate during a lane change. Another factor to note is that

Figure 3.11 only shows three dimensions.

3.5 Summary

In this chapter, we proposed the Subset Simulation (SS) as an adaptive sampling method

for the accelerated evaluation of automated vehicles. The SS has two main advantages. First, SS

can deal with black-box systems, i.e., no information about the AV control algorithm is needed.

Moreover, as described in Section 3.2.2 , the Markov Chain Monte Carlo (MCMC) method is

 65

used in SS (particularly MMA) to extend inside the variable space. This property enables SS to

deal with high dimension stochastic models. These two advantages are very important when

assessing AV's safety. We demonstrate the ability of SS to accelerate the evaluation in Section

3.4.3 . In general, SS is a variance reduction technique aiming to use fewer tests to estimate the

performance and have better-accelerating performance than the importance sampling method

(twice data-efficient than the importance sampling method).

In this chapter, an 8-variable BGGMM stochastic model is developed to describe the

vehicle motions during lane changes. This model allows the leading vehicle to accelerate or

decelerate during lane changes and is more comprehensive than the baseline 3-vairable stochastic

model used in the literature.

The limitation of the SS method is that it cannot calculate the c.o.v. during the evaluation,

thus not able to fix the number of testing. Moreover, the “danger regions” are searched as the test

procedure unfolds. If the environmental statistics change, the crash rate cannot be estimated

accurately.

 66

Chapter 4 Evaluation of the Autonomous Vehicle’s Policy Using Learning-Based Approach

The evaluation method proposed in the previous Chapter requires the knowledge of the

environment statistics. However, environmental statistics information is not always available and

may not be time-invariant. For instance, variations can be due to normal hours vs. rush hours,

weather conditions, etc. In this chapter, we study the evaluation problem using another set of

assumptions (the 2nd set of assumptions listed in Section 1.4) that we do not have access to the

environmental statistics. Moreover, the prior developed subset simulation method cannot be

used to test an active control system or a decision-making system. It lacks the ability to trigger

the active motion. Therefore, in this chapter, we develop a learning-based evaluation method that

can trigger the active lane change of the AV we designed in Chapter 2 and generate reasonable

perturbation without the environment statistics.

4.1 Motivations

4.1.1 Difficulties of implementing IS and SS with different environments

 It is necessary to clarify the difficulties of implanting IS and SS methods when the

environmental statistics are changing with time. If the IS or SS can be implemented across

different environments, there is no need to develop approaches assuming not having access to

environmental statistics.

For the IS method, assuming a black-box AV system, we need to search for the ideal

ISD, i.e., the zero-variance distribution derived in Equation (3.10). However, the ideal ISD

highly depends on the original environment distribution. Even if we managed to find the zero-

variance distribution in one environment, its convergence performance is unknown in other

environments. Searching for zero-variance distribution for a new environment is time-consuming

and laborious, and convergence is not guaranteed if we are evaluating under several

environments. This difficulty increases exponentially if the environment model is in high

dimensions, which means it is necessary to implement sequential IS or sequential MCMC

 67

(e.g., SS) method. To elaborate this problem, a schematic diagram is used. As illustrated in

Figure 4.1, the system has two danger regions, A and B, and we assume not knowing any of

them. Imaging, we first evaluate the system (using SS or other technique) in environment I

(Figure 4.1 (A)), danger region A is revealed, and the crash rate is estimated to be 1 − 99.9% =

%0.1. Then we want to evaluate the system in environment II (Figure 4.1 (B)), and we know the

distribution of environment II. If we estimate the crash rate use danger region A, without redoing

the sequential search, the crash rate is calculated as 1 − 99.9999% = 0.0001%. However, the

true crash rate under environment II should be 1 − 99.9% = 0.1%, since another danger region

B should be revealed and dominate the result in environment II. Therefore, sequential IS or

sequential MCMC need to be redone from the beginning, which makes it very time consuming if

we are evaluating under several environments.

(a) Environment I (b) Environment II

Figure 4.1 Sequential Search of Danger Regions

Inspired by these reasons, we aim to find the set of failure cases 휀 directly. And then,

given a specific environment, we can calculate the crash rate from the probability of the set of

failure cases 𝑃(휀) without additional tests.

4.1.2 Decision-making System Evaluation

As may have been noticed, the evaluation method we developed in Chapter 3 was applied

to a level 2 AV control feature, i.e., the ACC+AEB system. It is easy to evaluate a passive or

reactive control algorithm since, in this case, and the environment produces a disturbance, and

 68

the system under testing reacts to the disturbance. However, when evaluating a decision-making

system, we need to design tests to trigger the active motion of the AV and evaluate the

consequence.

There are papers reporting the work on evaluating AV features other than ACC and AEB.

In [50], [131], Tuncali et al. developed a simulation-based falsification method to generate the

worst cases for a side collision avoidance system and a rear collision avoidance system. In [132],

Tuncali et al. extended the method to evaluate an AV system with object detection components

and tested it in a left-turn scenario. Formally verifying an AV algorithm’s “correctness” requires

that the “dangerous situations” are caused by other drivers. Moreover, it is hard to address the

evaluation of deep learning-based systems, which makes formal verification methods intractable.

In [72], O’Kelly et al. trained a Deep Neural Network (DNN) environment model using

the Generative Adversarial Imitation Learning (GAIL) method with highway driving data

collected on I-80, California. For testing AV, an adaptive IS method is used to find the optimal

ISD, and the test procedure is accelerated. Even though the DNN-based environment model can

test high automation level features, it derives from a naturalistic driving database and thus run

contrary to our assumption. Therefore, a more advanced method is needed.

4.2 Literature Reviews on Attacking Deep Neural Networks

The objective of the study in this chapter is to evaluate the decision-making system we

developed in Chapter 2 without environmental statistics. Since the decision-making system we

developed is trained by Deep Reinforcement Learning (DRL) and the policy is represented via a

Deep Neural Network (DNN), the robustness analysis method for the traditional control system

is not applicable. To develop an evaluation method that can test the DRL policy (trained in

Chapter 2), we first did a thorough literature review on how to attack the DNN and DRL policy.

4.2.1 Attacks on Deep Neural Network

Over the past two decades, deep learning algorithms and deep natural networks (DNN)

have been widely used in fields including image recognition and classification [133], speech

recognition [134], and natural language processing [135]. Recent research shows that DNNs may

be vulnerable to adversarial perturbations and attacks. In [136], the authors found that adversarial

image patches can lead white-box DNNs to erroneous classification results. Papernot et al. in

 69

[137] further developed an attack using synthetic data generation to craft adversarial image

examples misclassified by black-box DNNs. In [138], the authors successfully fooled the

YOLOv2 algorithm by sticking specially designed pattens to the human body; an example is

shown in Figure 4.2. A more comprehensive overview of the adversarial attack on DNN can be

found in [139].

Figure 4.2 Generating Adversarial Patches against YOLOv2 [138]

4.2.2 Attacks on Deep Reinforcement Learning

DNNs have also been introduced in the field of deep reinforcement learning (DRL),

where the goal is to train an agent to maximize the expected return. DNN works as an actor net

or a critic function either to provide the optimal policy or to estimate the expected future return.

Not surprisingly, the DRL policies are also vulnerable to adversarial perturbations. In [140], the

authors characterize different types of attacks on DRL, as shown in Figure 4.3. DRL policies can

be attacked by adding perturbation to observations, actions, or environment transition

probabilities. To perturb observations, researchers first followed the same ideas as attacking

DNN, which leads the DRL policy to use a different action [141], [142], or the observation can

be modified directly or indirectly. For attacks applied to the action space, in [140] the author

claimed that the action outputs could be modified by installing some hardware virus in the

actuator executing the action. In [140], the environment transition model is also perturbed.

However, as pointed out by the authors, these attacks are useful only under very specific

conditions.

 70

In the field of autonomous vehicles (AV), researchers also tried to attack existing AV

systems for the purpose of evaluation or faster synthesis. In a recent report [143], Tencent’s

Keen Security Lab showed how they were able to bamboozle a Tesla Model S into switching

lanes to drive directly into the oncoming traffic by manipulating the input video. This attack is in

the category of observation attack. To our best knowledge, there is little study on attacking by

varying the environment transition model, which is the focus of this chapter.

Figure 4.3 Attacks on Deep Reinforcement Learning

4.3 Methodology

As described before, the objective is to evaluate the decision-making system we

developed in Chapter 2 without environmental statistics. To address this problem, we developed

a simulation-based falsification method. We name the AV under testing the victim and model

the victim as playing against an opponent (the attacker) in a two-player Markov game [144].

Our threat model assumes the attacker cannot directly control the victim.

As described in the literature reviews in Section 4.2.2 , DRL policy can be attacked by

adding perturbations to observations, actions, or environment transition probabilities. As we

assume our decision-making system has perfect observation and perfect actuator, we will focus

on perturbing the environment transition probabilities to attack and evaluate the policy.

In this work, we model the victim training an attacker agent who will ‘set up” the victim

into crashes that are the victim’s responsibility. The simulation-based falsification method we

developed is based on a two-player Markov game [144].

 71

4.3.1 Markov Game

A two-player Markov game can be denoted as 𝑀 = ((𝑆𝛼, 𝑆𝜈), (𝐴𝛼, 𝐴𝜈), 𝑃, (𝑟𝛼, 𝑟𝜈), 𝛾),

where we denote the attacker and victim by subscript 𝛼 and 𝜈 respectively. It consists of the state

set 𝑆𝛼 and 𝑆𝜈 , action set 𝐴𝛼 and 𝐴𝜈, and a joint state transition function 𝑃: 𝑆𝛼 × 𝑆𝜈 × 𝐴𝛼 × 𝐴𝜈 →

Δ(𝑆) where Δ(𝑆) is a probability distribution on 𝑆. The reward function 𝑟𝑖: 𝑆𝛼 × 𝑆𝜈 × 𝐴𝛼 ×

𝐴𝜈 → 𝑅 for player 𝑖 ∈ {𝛼, 𝜈} depends on the current state, next state, and both player’s actions.

And 𝛾 is the discounted factor. Each player wishes to maximize their (discounted) sum of

rewards.

The attacker is allowed unlimited black-box access to actions sampled from the victim’s

policy 𝜋𝑣, but is not given any white-box information such as weights of its DNN function. We

further assume the victim follows a fixed stochastic policy 𝜋𝑣, corresponding to the common

case of a pre-trained model deployed with static weights. Safety-critical systems are particularly

likely to use a fixed or infrequently updated model due to the considerable expense of real-world

testing.

Since the victim policy 𝜋𝑣 is held fixed, the two-player Markov game 𝑀 reduces to a

single-player MDP 𝑀𝛼 = (𝑆𝛼 , 𝐴𝛼 , 𝑃𝛼 , 𝑟𝛼, 𝛾) that the attacker must solve. The state space and

action space of the attacker are the same as in 𝑀, while the transition and reward function has the

victim policy 𝜋𝑣 embedded: 𝑃𝛼 (𝑠, 𝑎𝛼) = 𝑃 (𝑠, 𝑎𝛼 , 𝑎𝜈) and 𝑟′𝛼(𝑠, 𝑎𝛼) = 𝑟𝛼(𝑠, 𝑎𝛼, 𝑎𝜈), where

the victim’s action is sampled from the stochastic policy 𝑎𝜈 ∼ 𝜋𝜈(· | 𝑠). The goal of the

attacker is to find an adversarial policy 𝜋𝛼 maximizing the sum of discounted rewards:

 ∑ 𝛾 𝑟𝛼(𝑠
(𝑡), 𝑎𝛼

(𝑡)
, 𝑠(𝑡+1))∞

𝑡=0 , where 𝑠(𝑡+1) ∼ 𝑃𝛼 (𝑠, 𝑎𝛼) and 𝑎𝛼 ∼ 𝜋𝜈(· | 𝑠) (4.1)

Note the MDP’s dynamics 𝑃𝛼 will be unknown even if the Markov game’s dynamics 𝑃

are known since the victim policy 𝜋𝜈 is a black-box policy. Consequently, the attacker must

solve an RL problem.

In our application, the 𝜋𝜈 is what we learned in Chapter 2 and thus the 𝑃𝛼 (𝑠, 𝑎𝛼) =

 𝑃 (𝑠, 𝑎𝛼, 𝑎𝜈) can be acquired by sampling 𝑎𝜈 ∼ 𝜋𝜈. And we can train the attacker to see the

learned policy as part of the attacker’s environment. Thus, the next question would be how we

should define the reward function for the attacker? In the next section, we will first describe the

attacker’s training environment’s state space and action space. And then, in the following

sections, we will describe the reward function design for the attacker.

 72

4.3.2 Attacker’s Training Environment

To train the attacker, we first define the state space and the action space. The state-space

includes information from up to 6 surrounding vehicles and the victim AV. As defined in

Chapter 2, the information of each vehicle includes its relative longitudinal position, relative

lateral position, and relative speed. In addition, we also include the victim AV's state and action

in the attacker's state space. Therefore, in total, we have a 2 (the attacker’s state) + 3

(surrounding vehicle’s state) × 7 (cars) + 1 (the victim’s action) = 24-dimension state space,

i.e. 𝑆 ⊆ ℝ24. The states are scaled for efficient neural network training. The action space of the

attacker is the same as the victim, which is described in Section 2.3.1 .

At initialization, the attacker is located near the victim AV. As shown in Figure 4.4, the

attacker (the red box) can be observed by the victim AV (the blue box). Although the attacker

can observe the state variable values, the attacker does not have direct access to the victim AV's

policy. Moreover, the victim AV does not explicitly know which car is the attacker. Therefore,

we are performing a black-box attack. The green boxes represent the surrounding vehicle that the

attacker can observe.

Figure 4.4 Attacker's Training Environment

4.3.3 Socially Acceptable Attacks

Before discussing the reward function design for the attacker, we would like to illustrate

what is going on from the victim’s perspective. In Chapter 2, we trained the victim policy, i.e.,

the discretionary lane change policy, using the reinforcement learning method. It results in

giving us an optimal policy in a certain MDP environment. If now we add an attacker to the

environment, the transition probability will be different, and the trained policy will no longer be

optimal. Therefore, adding an attacker to the environment and perturbing the transition

probability will definitely fail the victim. However, we may end up getting a “crazy” attacker

 73

and getting useless results. Therefore, we need to constrain the perturbation by additional

requirements.

A reasonable additional requirement is related to who is responsible for the crash. It is

easy to deliberately ram into a victim AV by designing a “crazy” attacker, but coming up with

reckless or unavoidable crash scenarios does not help to design a better AV. On the other hand, if

the victim AV is lured into a situation and subsequent actions of the attacker result in a crash that

is the responsibility of the victim AV according to common traffic rules, such an attack is useful

for a subsequent redesign of the AV. We call this kind of attack the “socially acceptable attack.”

The objective of this study is to design an attacker to generate “socially acceptable

attacks” to the victim AV. In the rest of this chapter, the policy trained in Chapter 2 is under test

and denoted by “the victim AV,” while the training agent is “the attacker.”

4.3.4 Reward Considering Socially Acceptable Attack

The key component for training an attacker to generate Socially Acceptable Attacks

(SAAs) is the reward. The attacker is rewarded if it causes a collision between the victim AV and

one of the surrounding cars (not necessarily be the attacker), in which the victim AV is at fault.

In this work, we use the ideas from Responsibility-Sensitive Safety (RSS) [145] model and

encode the traffic rules through associated rewards to train the attacker. First, we recall the 5

“common sense” rules followed by RSS:

1. Do not hit someone from behind.

2. Do not cut-in recklessly.

3. Right-of-way is given, not taken.

4. Be careful of areas with limited visibility.

5. If you can avoid an accident without causing another one, you must do it.

The first three “common sense” principles above are related to traffic rules and can be

implemented through associating rewards with the pre-crash state. The fourth is not applicable in

our application since we assume perfect perception. To implement the fifth, we refer to another

related paper from Shashua et al. [146]. They implemented the RSS model on NHTSA pre-crash

scenarios, where they define “proper response” to dangerous situations (related to the fifth rule)

as using Minimal Evasive Effort (MEE). MEE deals with cases in which extra caution is applied

to prevent potential situations in which responsibility might be shared. Here we develop a similar

 74

concept, the Best Evasive Effort (BEE), to the responsible vehicle, which defines the best action

the responsible vehicle can take to avoid the crash. To explain, let us assume the victim AV is

the responsible vehicle, and we find an SAA resulting in the victim AV crashing into its front

vehicle without doing the BEE (i.e., hard brake). Then, this SAA should be reward more since it

finds a fatal case of the victim AV.

In reinforcement learning, the reward function is 𝑟(𝑠, 𝑎), where the 𝑠 is the state and 𝑎 is

the attacker's action at state 𝑠. To clearly define the responsibility of a crash, we predict the

situation at the next time-step with the victim AV's action and the attacker's action at the current

time-step, getting the next state 𝑠′. Since the simulator is deterministic, the reward function can

be further extended to 𝑟(𝑠, 𝑎, 𝑠′). If at the next state 𝑠′ the victim AV crash, then the 𝑠 is the pre-

crash state.

In this work, instead of implementing the whole RSS model [145], which considers an

entire pre-crash scenario, we only consider one pre-crash state. Therefore, no blame time concept

as in [146] is implemented in this application. In the future, if one wants to implement the RSS

model considering the entire scenario, we recommend modeling the attacker's policy with a

recurrent neural network and design the reward function accordingly.

The BEE is implemented in the reward corresponding to each pre-crash situation. As only

one timestep is being considered and the action space is discrete, we define the right choice of

action as BEE for each pre-crash state. In this work, we only define the BEE for the responsible

car for simplicity, but the BEE for the irresponsible car can also be defined similarly. In the

future, if one wants to implement the BEE concept in the environment with continuous action

space, the BEE should be calculated according to the RSS model, as conducted in [146]. The

pre-crash state can be categorized as 1) no car is on the lane marker; 2) only one car is on the

lane marker; 3) both cars are on the lane marker. For each pre-crash state, we separate the

responsibility and define the choice of BEE, then assign reward accordingly.

As shown in Figure 4.5, when no car is on the lane marker, the rear car (the blue one) is

always responsible when a crash happens between these two vehicles. And the right choice of

action as BEE for the rear car in this pre-crash state is the hard brake. If the rear car is the

victim AV and the action of it is not the BEE (i.e., hard brake), then the reward for the attacker is

1, since the attacker triggered a fatal failure of the victim. If the rear car is the victim AV and the

action of it is the BEE (i.e., hard brake), then the reward for the attacker is 0.5. While if the rear

 75

car is not the victim AV, the attacker will be punished. The reward for no car is on the lane

marker case is summarized in the first row of Table 4.1.

Figure 4.5 No Car on the Lane Marker

In the second type of pre-crash state, where there is only one car on the lane marker,

the crash can happen between the lane change car and the car in the original lane or between the

lane change car and the car in the target lane. When the car on the lane marker crashes with the

car in the original lane, the reward is designed similar to the situation when no car is on the lane

marker (as described above). Figure 4.6 shows the other situation, in which only one car is on the

lane marker, and it crashes with the car in the target lane. In this case, the lane change car (the

blue one) is responsible if a crash happens. Then the BEE of the responsible car should be

abandoning the lane change. If the lane change car is the victim AV and the action of it is not

the BEE (i.e., abandoning the lane change), then the reward for the attacker is 1, since the

attacker triggered a fatal failure of the victim. If the lane change car is the victim AV and the

action of it is the BEE (i.e., abandoning the lane change), then the reward for the attacker is 0.5.

While if the lane change car is not the victim AV, the attacker will be punished. The reward for

only one car is on the lane marker case is summarized in the second and third row of Table 4.1.

Figure 4.6 Only One Car on the Lane Marker and Crash with the Car in the Target Lane

In the third type of pre-crash state, where both cars are on the lane marker, they can on

the same lane marker or on different lane markers. When both cars are on the same lane marker,

 76

the reward is designed as analogous to the situation when no car is on the lane marker. When

cars are on different lane markers, as shown in Figure 4.7, according to multiple traffic laws

[147]–[149], both cars are at fault. According to the Chinese traffic law [147], the vehicle from

the left lane should yield to the vehicle from the right lane. While in the Texas traffic law [148],

the vehicle from the right lane should yield. And the right-of-way is not clarified in the New

York traffic law [149]. Here we take the Chinese traffic law as an example, i.e., the left car (blue

car) is mainly responsible for the collision and is expected to abort the lane change to avoid a

crash. Therefore, the BEE of the main responsible car should be abandoning the lane change. If

the mainly responsible car is the victim AV and the action of it is not the BEE (i.e., abandoning

the lane change), then the reward for the attacker is 0.8. If the mainly responsible car is the

victim AV and the action of it is the BEE (i.e., abandoning the lane change), then the reward for

the attacker is 0.2. While if the mainly responsible car is not the victim AV, the attacker will be

punished. The reward for the case when both cars are on the lane marker is summarized in the 4th

and 5th row of Table 4.1.

Figure 4.7 Both Cars are on the Different Lane Markers

The attacker also has a time cost of −0.05 per step, which encourages the attacker to

cause the victim AV to collide as soon as possible. An episode is terminated if either of the

following happens:

1. The victim AV crashes with another car, and the reward is given to the attacker

according to the pre-crash state of the victim AV (as in Table 4.1).

2. The attacker crashes with a car other than the victim AV, and the reward for the

attacker is −1.

 77

3. The AV leaves the neighborhood of the attacker, i.e., not being one of the six

surrounding cars of the attacker, and the reward is −1.

We also record the Failure Code (FC) for each episode, as shown in Table 4.1. The

definition of each code is described as follows:

0: The other car is responsible for the crash, and the action of it is not the BEE.

1: The other car is responsible for the crash, and the action of it is the BEE.

2: The AV crashes into the front vehicle without a hard brake (BEE in this case).

3: The AV crashes into the front vehicle with a hard brake (BEE in this case).

4: The AV changes lanes and crashes with the target lane vehicle without BEE.

5: The AV changes lanes and crashes with the target lane vehicle with BEE.

6: The AV changes lanes from the left to the middle lane and crashes with the car

changing lane from the right to the middle lane, and its action is not BEE.

7: The victim changes the lane from the left to the middle lane and crashes with the car

changing lane from the right to the middle lane, and its action is BEE.

Table 4.1 Reward Design for Responsibility-sensitive Attack

Pre-crash situation
Responsible

car

Best Evasive Effort

(BEE)
Attacker’s reward

FC
Responsible

car

The

other car
Fault BEE Reward

No car is on the

lane marker
The rear car Hard brake -

Not the

Victim

No -1 0

Yes -0.5 1

Victim

AV

No 1 2

Yes 0.5 3

Only one car is on the lane marker and crashes with the car in the original lane: Same as no car

is on the lane marker

Only one car is on

the lane marker:

crash with the car

in the target lane

The lane

change car

Abandon

the lane

change

-

Not the

Victim

No -1 0

Yes -0.5 1

Victim

AV

No 1 4

Yes 0.5 5

Both cars are on the same lane marker: Same as no car is on the lane marker

Both cars are on

the lane marker:

different lane

markers

Shared fault:

but the left

car is of the

principal

fault

Abandon

the lane

change

-

Not the

Victim

No -0.8 0

Yes -0.3 1

Victim

AV

No 0.8 6

Yes 0.2 7

 78

As shown inTable 4.1, the AV-responsible crashes, in which the action of the victim AV

is not BEE, are valued most by the attacker (i.e., Failure Code: 2, 4, and 6). This kind of crash is

the most deadly crash. Moreover, the action chosen by the victim AV's policy before these

crashes deserves a closer look and may require revision. In summary, instead of finding a crazy

attacker, we trained an attacker to generate “socially acceptable attacks,” which explores the

weakness of the victim AV and helps to improve its policy.

4.4 Training Setups

4.4.1 The Victim AV under test

We study a discretionary lane change decision-making problem in this chapter. The state

space, action space, the victim training reward, and the simulation environment are introduced in

Chapter 2. We evaluate exactly the same lane change decision-making policy that we trained in

Chapter 2 for comparison. This victim AV agent will be evaluated by both the SAPs and in the

original environment in this chapter.

Figure 4.8 Three lane highway simulator. The blue box: the AV; red boxes: 6 nearest

surrounding vehicles; empty boxes: unobserved surrounding vehicles

Here is a brief refresher of the original victim AV policy. The driving environment used

to train the victim AV in this work is a three-lane highway simulator. The AV is driving with up

to six surrounding vehicles (three vehicles in front, three vehicles behind), as shown in Figure

4.8. The blue box is the AV, and the six red boxes are the six surrounding vehicles whose states

are observed. The remaining boxes are environment vehicles whose states are not observed by

the victim AV. The surrounding vehicles’ driving strategy is also described in Chapter 2.

Additional to the policy, we also implement the short-horizon safety check we described

in Section 2.3.5 The short-horizon safety check method will replace dangerous action before

 79

applying it. If the action chosen by the victim AV is unsafe, it will be replaced by IDM and AEB

system-based action. However, as will be shown in Section 4.4.2 , this safety check cannot cover

all the situations. The attacker can still find a way to fail the victim AV with an AV-responsible

crash.

4.4.2 Training Setups for the Attacker

In this section, the simulation setup for training the attacker is described. The

reinforcement learning algorithm we use is DDQN. The hyper-parameters used during training is

shown in Table 4.2. To accelerate the training and achieve better exploration, we use two replay

buffers, one for storing trajectories without any crash or with AV-irresponsible crash and the

other for storing AV-responsible crash cases, while implementing the model-based exploration

method described previously in Chapter 2. The reward for socially acceptable attacks and the

failure code is a way to prioritize the collected samples. The use of two replay buffers is a

simpler version of prioritized experience replay as discussed in [150], which has been

implemented in [24]. The model-based exploration method presented in Chapter 2 can help the

attacker to explore the weakness of the victim AV based on its understanding of the victim AV’s

policy.

Table 4.2 Hyperparameters for Training the Attacker

 Description Value

𝛾 Discount factor 0.9

Δ𝑡 Sampling time 0.1 sec

𝜌 Learning rate 1 × 10−6

휀0 Starting value for 휀-greedy exploration 0.2

𝐶 Annealing factor for 휀-greedy exploration 2 × 10−6

𝑇 Steps for each episode 200

𝐸 Total training episode 1 × 105

After training the attacker, the victim AV is evaluated in the original environment

(without the attacker) and then the same environment with only one attacker. The AV is

evaluated in both environments, with the total number of cars being 10, 15, and 20. The AV is

 80

evaluated for 1 × 106 episodes, and each episode lasts for 200 steps unless terminated early due

to a crash.

4.5 Attacker’s Training Results and The Victim AV Evaluation Results

In this section, both the training curve of the attacker and the evaluation results of the

victim AV in different environments are reported. Then, the attacker and the evaluation results

will be used to improve the policy design of the original victim AV in Chapter 5.

As shown in Figure 4.9, the attacker is trained for 1 × 105 episode and evaluated by ten

roll-outs every 100 episodes to be sure the attacker’s policy is trained properly. We train the

attacker ten times, starting with random initial DNN parameters and average the total rewards of

the evaluation rollouts (shaded area represents mean ± standard error). As can be seen from

Figure 4.9, the attacker's policy start to converge after 4 × 104 training episodes, which means

the attacker is ready to generate socially acceptable attacks to the victim AV.

Figure 4.9 Training Curve of the Attacker

The victim AV is then evaluated in the original environment and the environment with

this trained attacker. The detailed crash results are shown in Table 4.3. We have summarized the

number of crash cases with different Failure Code (FC), respectively. The definition of FC is

described in Section 4.3.4 . And here, we only focus on the victim AV's responsible crashes (FC

1 to 7). In each environment (with or without the attacker), we evaluate the victim AV with

different numbers of total environment vehicles for a more comprehensive evaluation. In the

bottom rows of Table 4.3, we report both the number of crashes between the attacker and the

 81

victim AV (the first number), and the total number of crashes of the victim AV (the second

number).

Table 4.3 Number of Crashes during Evaluation

of env. cars
Failure Code

Crash rate
1 2 3 4 5 6 7

w/o.

attacker

10 0 0 5 0 46 0 0 5.1 × 10−5

15 0 0 14 0 55 0 0 6.9 × 10−5

20 0 0 12 0 33 0 0 4.5 × 10−5

w.

attacker

10 656/657 239/239 180/186 43/78 101/156 504/504 9/9 1.8 × 10−3

15 447/448 172/172 163/164 26/45 63/88 283/283 3/3 1.2 × 10−3

20 419/598 168/168 137/139 20/32 59/64 237/273 1/1 1.1 × 10−3

As can be seen from Table 4.3, there are many more crashes when one attacker is

introduced. For crashes with Failure Code (FC) 2, 4, and 6, where the victim is liable, and the

result crashes are fatal, the number of crashes jumps from 0 to hundreds. The total crash rates

also increased around 50 times when including one attacker in the environment. This is a solid

indication that our proposed method can generate Socially Acceptable Attacks (SAAs) by

training an attacker, which provides useful insight into how the AV policy can be further

improved.

Figure 4.10 An example of the AV-responsible crash.

In Figure 4.10, we show one example of the AV-responsible crash. The victim AV (blue

car), instead of braking and crashed by the following attacker (red car), changed lane and crashed

into the target lane front car result in an AV-responsible crash. There are many similar crashes,

and these crashes indicate the flaws in the original victim AV reward design described in Section

2.3.1 . The original victim AV will be punished −200 if there is a crash, no matter whose

responsibility is the crash. Therefore, the trained victim AV from Chapter 2 does not learn to

 82

separate responsibility. Moreover, as can be seen from the animation results, the victim AV does

not know how to drive around the attacker. The victim AV sometimes will stop changing lanes

in the middle of a lane change when the surrounding attacker also changes lanes. This indicates

the original victim AV training environment does not contain enough diverse surrounding drivers

and the trained DNN policy is not robust to SAAs. In the next chapter, we will solve the

robustness problem of the trained DNN policy using the attacker we developed in this chapter.

4.6 Summary

In this chapter, we show that the AV policy learned by deep reinforcement learning (in

Chapter 2) can be fragile, i.e., can still result in collisions even when the vehicles around it

behave in a socially acceptable fashion.

We first design an attacker under the two-player Markov game framework to challenge

the AV. The attacker can perceive the AV’s behavior only through observations, and thus it tries

to attack a black-box system. The attacker is trained to generate socially acceptable attacks by

well designing the reward function that considers the accident's responsibility. The responsibility

is separated by the pre-crash scenario, and if the attacker can lure the victim AV end up into an

AV-responsible crash, it will be rewarded more. After the attacker’s policy is trained to

converge, the victim AV is evaluated in the environment with one attacker.

The evaluation results show that the attacker can lure the AV into many AV-responsible

crashes, and the average crash rate increases 50 times more than the crash rate in the original

training environment. The attacker will be further used to improve the robustness of the AV

policy in Chapter 5.

 83

Chapter 5 Meta Reinforcement Learning for Synthesis Adaptive Decision-making Policy

In Chapter 4, the trained AV policy is tested in both the original environment and the

environment with one attacker. The results show that the AV policy is not robust towards the

perturbation in the environment transition probabilities. In this chapter, we will focus on design a

robust DLC policy for a wide range of MDPs with different transition probabilities. The trained

policy will perform safely and efficiently not only in the original environment and the

environment with one attacker but also perform safely and efficiently in unseen environments

after adapting with limited data.

5.1 Motivation and Objective

In the previous Chapters, we first designed an AV agent using the state-of-the-art RL

method, which can travel in the designed highway environment safely and efficiently. However,

when it is driving in an environment with a different transition probability function, the crash

rate soars. We have shown that, on the one hand, the Reinforcement Learning (RL) methods are

powerful. It can solve the Markov Decision Process (MDP) problems with high-dimension state

space. While on the other hand, it seems like the RL methods are useless to real-world

applications.

The reason behind such observation is that the DNN is fragile, and DRL use DNN to

represent its policy. Although DRL can find the optimal policy with respect to one MDP, it can

fail in a similar MDP. Researchers have developed approaches to analyze the robustness of a

DNN. In [151], the authors evaluate the robustness of a DNN with respect to input with

geometric transformations in a worst-case regime and propose a new adversarial training scheme

to improve the invariance properties of DNNs. And in [152], Liu et al. explicitly analyze the

datapaths of the noise to improve the robustness of the DNN under noise. There are also some

studies related to improving the robustness of DRL policy. In [153], [154], the authors try to

adversarially perturb the simulation by choosing parameters that determine a simulation's

dynamics, such as mass, the center of gravity, or friction during training. This method is called

 84

the domain randomization method. The learned policies are more robust to a distribution shift in

the underlying physics from simulation to real-world [153], [154]. However, the studies only

consider the situations which have perturbations on the underlying physics models. And they are

model-based methods. Another kind of approach is the verification method based on a formal

method that finds theoretically proven bounds on the maximum output deviation, given a

bounded input perturbation [155]–[157]. The difficulties in this approach are from the non-liner

activation functions in the DNN. Also, it is computationally inefficient and can be inapplicable to

some complicated problems. Therefore, a more efficient and generic approach is necessary.

Moreover, in our application, we are dealing with multi-MDPs environments with respect

to the transition probabilities. Drivers in different locations [123], at a different time [158], or in

different weather conditions [158] behave differently. It is necessary to solve this large

variability in driving behavior by designing an adaptive system that can recognize the condition

(implicitly) and adapt its policy accordingly.

By these motivations, we derive our objectives. The objective of this chapter is to

develop the training and adapting approach that can teach the policy to adapt to different unseen

environments with limited data quickly. The environments are different with respect to the

transition probabilities. And we assume having the distribution of the environments.

5.2 Literature Review and Meta Reinforcement Learning Preliminary

5.2.1 Mathematical Formulation

First, we give the mathematical formulation of the previously described problem. In

Chapter 2, we were trying to solve a single MDP problem, and the target is to solve for:

 𝛼 = 𝑎𝑟𝑔𝑚𝑎𝑥𝛼𝐸𝜋𝛼 ,𝑀 [∑𝛾𝑡𝑟𝑡

∞

𝑡=0

] = 𝑓𝑅𝐿(𝑀) (5.1)

where the 𝛼 is the parameter vector of policy π, 𝑟 is the reward function, and 𝛾 is the discount

factor. It can be written as a function of the MDP 𝑀, i.e. 𝑓𝑅𝐿(𝑀). To solve such a problem, we

have introduced some algorithm in Section 2.2 .

Now, instead of solving a single MDP problem, we are trying to solve the multi-MDPs

adaptation problem in the form:

 85

 𝜃 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃∑𝐸𝜋𝜙𝑖 ,𝑀𝑖
[∑𝛾𝑡𝑟𝑡

∞

𝑡=0

]

𝑁

𝑖=1

 (5.2)

 𝜙𝑖 = 𝑓𝜃(𝑀𝑖) (5.3)

where the 𝜃 is the parameter of the adaptation function 𝑓𝜃(𝑀𝑖), and 𝑀𝑖 is the 𝑖th MDP

environment 𝑀𝑖 = (𝑆𝑖 , 𝐴𝑖 , 𝑃𝑖 , 𝑟𝑖, 𝛾𝑖). From Equation (5.2), we are learning an agent that after the

adaptation, it can perform well in a set of environments (in total 𝑁 environments).

The terms used in the multi-MDPs adaptation problem for numerically solving Equation

(5.2) and (5.3) are the Outer loop/meta optimization and the Inner loop/adaptation. In [159], the

authors provide a good schematic of them. As shown in Figure 5.1, the outer loop trains the

parameter weights 𝜃, which determine the policy of the inner-loop agent (part of its parameters

or its parameters initialization). The inner loop agent interacts with a given environment for

some episodes. For every iteration of the outer loop, a new environment is sampled from a

distribution of environments, which share some common structure.

Figure 5.1 Illustrating the Inner and Outer Loops of Training [159]

5.2.2 Literature Review

Approaches for solving the multi-MDPs adaptation problem can be categorized by its

meta optimization and adaptation steps. In the first kind of approach, the agent can learn to

identify the environment by training an identifier using supervised learning. And then, for each

model, the MPC or the DP method can be used to learn the policy. While during adaptation, we

 86

can identify the model and switch to the corresponding controller. For instance, in [160],

Nagabandi et al. use meta learning to train a dynamics model prior. And this prior can be rapidly

adapted to the local context when combined with recent data. And the controller is extracted

using model predictive path integral control. However, we need to enumerate the model with its

structure, limiting the agent’s generalization ability.

In other studies, researchers use behavior cloning to make the adaptation. For example, in

[161], [162] Yu et al. present Domain-Adaptive Meta-Learning, a system that allows robots to

learn from a single video of a human via prior meta-training data collected from related tasks.

During training, the agent is provided with demonstration data. And we teach the agent how to

infer a policy from one demonstration. And during testing, we provide an expert demo, and the

agent runs behavior cloning. However, we don’t assume to have a demonstration for the behavior

cloning step.

There are also some model-free Meta Reinforcement Learning (MRL) that can solve the

adaptation problem. In [163]–[165] the authors use a Recurrent Neural Network (RNN) to

encode the MDP’s information as the hidden memory of the RNN. And the policy contains that

information in its weight to adapt to the different environments. However, there is no

mathematical convergence proof for the RNN-based MRL policies. We cannot guarantee that the

RNN-based MRL methods converge to a good adaptation function or even converge at all.

Therefore, a more consistent MRL method is needed.

Another class of MRL methods uses the policy gradient approach for both the meta

training and adaptation step [166]–[168]. In [166], Finn et al. developed the famous Model

Agnostic Meta-Learning (MAML) method. The idea is that the agent is trying to find the

parameter 𝜃, such that when the agent takes a few gradient steps on that 𝜃, it will get to a 𝜃∗

which is optimal for a given MDP. However, policy gradient method suffers in sparse reward

environments. The agent cannot update its policy using trajectories with no reward.

Moreover, both the RNN-based and gradient-based approaches use on-policy RL

methods (introduced in Section 2.2.2) for both the meta training and adaptation step and thus are

data inefficient. The adaptation step is inherently on-policy learning since, given a new

environment, the agent needs to collect new data using the current policy. However, the meta

training step is not necessarily being on-policy learning. Therefore, Rakelly et al. [169]

developed an off-policy meta training step based on the Soft Actor-Critic (SAC) [170] RL

 87

approach and the stochastic encoder as the adaptor. The developed method is called the

Probabilistic Embeddings for Actor-critic RL (PEARL). The PEARL MRL method is consistent,

data-efficient, and has an advanced exploration strategy, being the state-of-the-art MRL

approach. Therefore, we implemented this method in our application. In the next section, the

details of PEARL will be expounded.

5.3 Efficient Off-policy Meta Reinforcement Learning Method

Solving the multi-MDPs adaptation problem can also be viewed as solving a Partially

Observed Markov Decision Processes (POMDPs) problem. In a POMDP, the agent’s decision

processed is modeled assuming the system dynamics are an MDP, but the agent cannot directly

observe the underlying state. Suppose each environment or task is modeled as an MDP, then an

agent is trying to find the optimal policy without fully observe the hidden state (ℎ𝑡 in Figure 5.2).

Figure 5.2 Multi-MDPs adaptation problem as a POMDP problem

 To solve a POMDP problem, we can either directly solve the policy or explicitly estimate

the hidden state. The PEARL [169] MLR method build on the second way. The agent learns

from the experience collected in past environments to approximate its belief on a given

environment. And to adapt, the agent will condition its policy on that belief. To capture

uncertainty in the belief over the task, the agent learns a probabilistic latent representation of

prior experience. Moreover, to achieve better data efficiency during meta-trading, the off-policy

RL is implemented. In Section 5.3.1 , the model of the probabilistic latent representation of prior

 88

experience is introduced. And then, in Section 5.3.2 , the detail of the adaptation step is

elaborated. Finally, in Section 5.3.3 , we will explain the off-policy MRL method for the meta-

training step.

5.3.1 Learning and Modeling Latent Contexts

First of all, the environments’ information should be encoded by the latent context 𝑧 to

enable fast adaptation. In PEARL [169], a variational inference approach is implemented. The

latent belief 𝑧 is inferred by an inference netwok 𝑞𝜙(𝑧|𝑐) given the context 𝑐 (set of collected

data), parameterized by 𝜙 which estimate the true posterior distribution 𝑝(𝑧|𝑐). Typically, the

objective is to optimize 𝑞𝜙(𝑧|𝑐) to reconstruct the environment by learning the reward and

transition function of the MDP. However, this is a model-based approach, and here we do not

assume knowing the structure of the MDP reward and transition function. In a model-free

manner, 𝑞𝜙(𝑧|𝑐) can be optimized the maximize returns through the policy over the distribution

of tasks. Therefore, the variational lower bound of the objective function is:

 E𝑇~𝑓(𝑇) [E𝑧~𝑞𝜙(𝑧|𝑐
𝑇
)
[𝑅(𝑇, 𝑧) + 𝛽 × 𝐾𝐿 (𝑞𝜙(𝑧|𝑐

𝑇)||𝑝(𝑧))]] (5.4)

where the 𝑇 is the current task or environment, 𝑓(𝑇) is the distribution that each task sampled

from, 𝑝(𝑧) is a standard normal distribution 𝑁(0, 𝐼) over 𝑧 and the 𝑅(𝑇, 𝑧) can be a variety of

objectives in task 𝑇 at timestep 𝑡. We can understand the KL divergence term as a variational

approximation to an information bottleneck that constrains the mutual information between 𝑧 and

context 𝑐. Intuitively, this bottleneck constrains 𝑧 to contain only information from the context

that is necessary to adapt to the task at hand, mitigating overfitting to training tasks [169]. This

technique is also implemented in Section 2.3.3 The parameter 𝜙 will be learned though meta-

learning, and during adaptation, the inference network will be used to infer the belief 𝑧 from

collected trajectories.

The inference network architecture design should be expressive enough to capture

sufficient statistics of task-relevant information without modeling irrelevant information. Recall

that encoding of a fully observed MDP should be permutation invariant. If we want to infer what

the task is or identify the MDP model, it is enough to have access to a collection of transitions

(𝑠, 𝑎, 𝑠′, 𝑟) without regard for the order in which these transitions were observed. Therefore, in

 89

PEARL, the 𝑞𝜑(𝑧|𝑐1:𝑁) network is modeled as permutation-invariant representation, i.e., as a

product of independent factors:

 𝑞𝜑(𝑧|𝑐1:𝑁) ∝∏ Ψ𝜙(𝑧|𝑐𝑛)
𝑁

𝑛=1
 (5.5)

where the Ψ𝜙(𝑧|𝑐𝑛) = 𝑁(𝑓𝜙
𝜇(𝑐𝑛), 𝑓𝜙

σ(𝑐𝑛)), which results in a Gaussian posterior so that the

method is tractable. The 𝑓𝜙 represent a DNN that predicts the mean 𝜇 and variance σ.

5.3.2 Advanced Exploration via Posterior Sampling

Modeling the latent context as probabilistic allows the agent to use the posterior sampling

method for efficient exploration at adaptation time. In PEARL [169], the agent directly infers a

posterior 𝑞𝜙(𝑧|𝑐) over the latent context 𝑐 (e.g., set of transitions (𝑠, 𝑎, 𝑠′, 𝑟)), which encode a

specific MDP’s information. We choose to encode the value function in our application since the

backbone RL method we use is based on the value function. The meta-training procedure

leverages training MDPs to learn a prior over 𝑧 (𝑞𝜙(𝑧)) that captures the distribution over MDPs

and learns how to use the experience to guide exploration. At adaptation time, the belief 𝑧 is

sampled from the prior (𝑞𝜙(𝑧)) first and the adapted policy is executed give the sampled 𝑧 for an

episode, thus exploring in a temporally extended and diverse manner. The agent can then use the

collected experience to update our posterior and continue exploring coherently in a manner that

acts more and more optimally as our belief narrows, akin to posterior sampling.

Figure 5.3 Collected experience can then be used to update the belief during adaptation [169]

 90

5.3.3 Off-Policy Meta-Reinforcement Learning

In this section, we explain the meta-training procedure. The inefficiency of the meta-

training process is largely elaborated in prior works [166]–[168], which is because of using

stabel but relatively inefficient on-policy algorithms. However, implementing the off-policy RL

method in meta-RL algorithms is non-trivial. During adaptation, the agent needs to collect new

data in the new environment using the current policy, which is inherently on-policy data. And

since at adaptation time, on-policy data will be used to adapt, on-policy data should be used

during meta-training to train the encoder.

To solve this problem, we separate the data used to train the encoder from the data used

to train the policy. The policy can treat the context 𝑧 as part of the state in an off-policy RL loop,

while the uncertainty in the encoder provides the stochasticity of the exploration process

𝑞𝜙(𝑧|𝑐). The actor and critic are always trained with off-policy data sampled from the entire

replay buffer B. We define a sampler 𝑆𝑐 to sample on-policy context batches for training the

encoder. By doing so, we have a separate off-policy meta-training and an on-policy adaptation

step. The meta-training process of the PEARL algorithm is summarized in Algorithm 5.1.

Algorithm 5.1: PEARL Meta Training Algorithm

Initialization:

Batch of training tasks {𝑇𝑖} from task distribution 𝑓(𝑇)
Replay buffers: 𝐵𝑖 for each training task

for each training episode do

for each 𝑇𝑖 do

Initialized context 𝑐𝑖 = {}
for 𝑘 = 1……𝐾 do

Sample belief 𝑧 from inference network 𝑞𝜙(𝑧|𝑐𝑖)

Gather data using current policy 𝜋𝜃(𝑎|𝑠, 𝑧) and add to 𝐵𝑖
Update 𝑐𝑖 = {(𝑠𝑗 , 𝑎𝑗 , 𝑠𝑗+1, 𝑟𝑗)}𝑗:1,…,𝑁~𝐵𝑖

for step in training steps do

for each 𝑇𝑖 do

Sample context using on-policy sampler, i.e. 𝑐𝑖~𝑆𝑐(𝐵𝑖)
Sample RL off-policy training data 𝑏𝑖~𝐵𝑖
Sample 𝑧~𝑞𝜙(𝑧|𝑐𝑖)

Calculate loss function for the actor network 𝐿𝑎𝑐𝑡𝑜𝑟
𝑖 , critic network

𝐿𝑐𝑟𝑖𝑡𝑖𝑐
𝑖 and the stochastic encoder network 𝐿𝑆𝐸

𝑖

Update actor network, critic network and stochastic encoder network using the

corresponding cumulative loss ∑ 𝐿𝑖𝑖

Output: Stochastic encoder network, actor network and critic network

 91

During the adaptation step (shown in Algorithm 5.2), the parameters of all the networks

will not be updated. The agent will first sample the belief 𝑧 from the prior and then collected data

using 𝜋𝜃(𝑎|𝑠, 𝑧) given sampled 𝑧. Then the collected data will be used to update the belief, and

thus, the agent can adapt to different environments. The backbone used to do the meta training is

the standard state-of-the-art off-policy RL algorithm, i.e., SAC. For more details of the SAC,

please refer to [170].

Algorithm 5.2: PEARL Meta Testing

Initialization:

Test task 𝑇 from the distribution 𝑓(𝑇)
Initialized context 𝑐𝑇 = {} and reply buffer 𝐵𝑇 = {}

for 𝑘 = 1……𝐾 do

Sample belief 𝑧 from inference network 𝑞𝜙(𝑧|𝑐𝑇)

Gather data using policy 𝜋𝜃(𝑎|𝑠, 𝑧) given sampled 𝑧 and add to reply buffer 𝐵𝑇

Update 𝑐𝑇 = 𝑐𝑇 ∪ 𝐵𝑇

Output: The adapted actor network and critic network

5.4 Discretionary Lane Change Environment Distribution

In this section, the discretionary lane change environment distribution will be introduced.

The previously introduced approaches will be used to train an agent that can adapt to that

distribution of environments. As a continuity work from Chapter 4, we want to tackle the

environments with a various number of trained attackers and decrease the overall crash rate by

on-line adaptation. For a more realistic application, we also implement the PEARL in the

distribution of environments with a broader range of driver behavior, which uses the IDM and

Mobil model.

5.4.1 Environments with Attackers

In Chapter 4, we showed that the trained attacker could find failure cases that are the AV

agent’s fault, thus increase the crash rate. In this chapter, we want to show that by implementing

MRL, the trained AV agent can adapt to different environments and thus lower the crash rate

again. Therefore, as shown in Equation (5.6), we developed the distribution of environments

with three variables: 1) the traffic density variable 𝛼𝑑𝑒𝑛 , which is a scale of average distance

between vehicles; 2) the number of total vehicles 𝑛𝑐𝑎𝑟, which can be sampled from 10 to 30; and

 92

3) the number of attackers 𝑛𝑎𝑡𝑡, which indicate how many attackers are put around the AV, is

sampled from 0 to 3. The attackers will be put around the AV randomly.

 𝑀𝑖 = {𝛼𝑑𝑒𝑛 , 𝑛𝑐𝑎𝑟 , 𝑛𝑎𝑡𝑡}, 𝛼𝑑𝑒𝑛~𝑈(0.5, 1.5), 𝑛𝑐𝑎𝑟~𝑈{10, 30}, 𝑛𝑎𝑡𝑡~𝑈{0,3} (5.6)

Those variables are uniformly sampled and will decide the initial condition of one environment.

The 𝛼𝑑𝑒𝑛 can continuously sample from 0.5 to 1.5, which means at the beginning, the

longitudinal distance between two cars in the same lane can sample from 9 meters to 240 meters.

While the 𝑛𝑐𝑎𝑟 and 𝑛𝑎𝑡𝑡 can only be sampled from integers within the boundaries. After

sampling these three variables, we will have a variety of environments, as shown in Figure 5.4.

The reward functions for different environments keep the same as in Section 2.3.1 .

Figure 5.4 Examples of environments with different numbers of attackers (red boxes)

5.4.2 IDM-Mobil Driver Model Environments

We also implement the PEARL algorithm in another distribution of environments. In this

experiment, we build the distribution of environments based on the highway-env [171]

environment.

Figure 5.5 The highway-env environment [171]

 93

The state-space 𝑆 ⊆ 𝑅𝑛 of the learning agent (the green box in Figure 5.5) includes the

host vehicle's lateral position 𝑦, host vehicle's longitudinal velocity 𝑣𝑥 and the relative

longitudinal position of the 𝑖th surrounding vehicle Δ𝑥𝑖, and the relative lateral position of the 𝑖th

surrounding vehicle Δ𝑦𝑖 and the relative longitudinal velocity of the 𝑖th surrounding vehicle Δ𝑣𝑥
𝑖 .

Therefore, in total, we have a continuous state space of 2 + 3 × 6(cars) = 20 dimensions, i.e.,

𝑆 ⊆ 𝑅20. The actions of the learning agent are the steering angle and acceleration, which are

both continuous. The steering angle’s range is [−𝜋 4⁄ , 𝜋 4⁄], and the acceleration’s range is

[−6 𝑚/𝑠2, 6 𝑚/𝑠2].

In the highway-env environment, the lane change policy for the surrounding vehicles is

the IDM-Mobil model, and the vehicle will change lane when:

 �̃�𝑐 − 𝑎𝑐 + 𝑝[(�̃�𝑛 − 𝑎𝑛) + (�̃�𝑜 − 𝑎𝑜)] > Δ𝑎𝑡ℎ (5.7)

 �̃�𝑛 > −𝑏𝑠𝑎𝑓𝑒 (5.8)

where the 𝑎𝑐 is the ego vehicle’s acceleration in the current lane and �̃�𝑐 is the potential ego

vehicle’s acceleration if it changes lane. New and old successors are denoted as 𝑛 and 𝑜, the

corresponding 𝑎 is the current acceleration and the �̃� is the potential if the ego vehicle changes

lane. The 𝑝 is the politeness factor and the Δ𝑎𝑡ℎ is the switching threshold. Therefore, the

aggressiveness of the surrounding vehicle can be represented by the parameter 𝑝 and Δ𝑎𝑡ℎ. And

Equation (5.8) is the safety criterion guarantees that after the lane change, the deceleration of the

successor in the target lane does not exceed a given safe limit 𝑏𝑠𝑎𝑓𝑒 . Since the politeness factor

and the switching threshold are correlated for one kind of driver behavior, we do not sample

them separately. Instead, we designed three different kinds of driver behavior: the aggressive

driver, the normal driver, and the conservative driver. The corresponding parameters are listed

in Table 5.1. From the table, we can see that the aggressive driver will not consider other

surrounding vehicles and will change lanes with a small acceleration gain, while the conservative

driver will consider other surrounding vehicles and will change lanes when there is a big

acceleration gain. The normal driver is just in between.

 94

Table 5.1 Mobil parameters for different driver behaviors

Parameters Aggressive driver Normal driver Conservative driver

𝑝 0 0.3 0.5

Δ𝑎𝑡ℎ 0.8 𝑚/𝑠2 1 𝑚/𝑠2 1.2 𝑚/𝑠2

𝑏𝑠𝑎𝑓𝑒 2 𝑚/𝑠2 1 𝑚/𝑠2 0.5 𝑚/𝑠2

Then one environment is decided by the following variables: the traffic density variable

𝛼𝑑𝑒𝑛 , which is a scale of the average distance between vehicles; the total number of vehicles 𝑛

which is the sum of the number of aggressive drivers 𝑛𝑎𝑔𝑔, the number of normal drivers 𝑛𝑛𝑜𝑟

and the number of conservative drivers 𝑛𝑐𝑜𝑛. To sample an environment, we first uniformly

sample the traffic density variable 𝛼𝑑𝑒𝑛 from 0.5 to 1.5 and the total number of vehicles 𝑛 from

10 to 30. Then the numbers of different driver behaviors (i.e. 𝑛𝑎𝑔𝑔, 𝑛𝑛𝑜𝑟 and 𝑛𝑐𝑜𝑛) are sampled

from the multinomial distribution 𝑀𝑢𝑙𝑡𝑖(𝑛, 𝑘), where 𝑛 is the total number of vehicle and 𝑘 =
1

3
.

By sampling from 𝑀𝑢𝑙𝑡𝑖(𝑛, 𝑘), we will have 𝑛𝑎𝑔𝑔 + 𝑛𝑛𝑜𝑟 + 𝑛𝑐𝑜𝑛 = 𝑛 and the probability of

sampling from each category is the same. The reward functions [171] for different environments

are the same and is composed of a velocity term and collision term:

 𝑅(𝑠, 𝑎) = 𝛼 (
𝑣−𝑣𝑚𝑖𝑛

𝑣𝑚𝑎𝑥−𝑣𝑚𝑖𝑛
) − 𝛽𝑟𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 (5.9)

where 𝑣, 𝑣𝑚𝑖𝑛, and 𝑣𝑚𝑎𝑥 are the current, minimum, and maximum speed of the agent,

respectively, and 𝛼, 𝛽 are two coefficients. For the details of the reward design, please refer to

[171].

5.5 Training Setup

5.5.1 Baselines for the Meta Training and Adaptation

To show the PEARL approach's data efficiency, we compare its meta training process

with the gradient-based MRL method MAML’s [166] meta training process. The results are

compared with the x-axis being the total collected data. And the retunes of each algorithm are

averaged across five random runs. Both the hyperparameters of the PEARL and MAML are

tuned carefully (PEARL: manually; MAML: by the optuna [172] package), which is an open-

source hyperparameter optimization framework to automate hyperparameter search.

 95

For the adaptation step, we compare the PEARL adaptation step with the MAML

adaptation step and a fine-tune method based on the Trust Region Policy Optimization (TRPO)

[173] method with safety check implemented (from Section 2.3.5). The fine-tune method will

just keep updating the initial policy in a new environment. The adaptation results will be

compared with the x-axis being the data collected in the new environment. We will sample 104

different environments and evaluate all three adaptation approaches. To evaluate the safety of the

trained policy, we also calculate each trained agent's crash rate.

5.5.2 Training Hyperparameters

In this section, the hyperparameters used for PEARL are listed in Table 5.2. The

hyperparameters are tuned using the Optuna [172] package. As shown in Table 5.2, the agent

will be meta trained in 8 environments, and at each episode, it will be meta tested in 2 unseen

environments.

Table 5.2 Implementation Hyperparameters for PEARL

 Description Value

𝑛𝑡𝑟𝑎𝑖𝑛 Number of tasks used for meta training 8

𝑛𝑡𝑒𝑠𝑡 Number of unseen tasks used for meta testing 2

𝑛𝑒𝑣𝑎𝑙
After the meta training, the agent will be evaluated in 𝑛𝑒𝑣𝑎𝑙
numbers of randomly sampled tasks

104

𝐸 Number of episodes for each task in meta testing 2

Δ𝑡 Sampling time 0.1 sec

𝛾 Discount factor 0.9

𝑛𝑝𝑟𝑖𝑜𝑟 Number of transitions collected per task with 𝑧~𝑞𝜙(𝑧|𝑐𝑖) 200

𝐾 Number of SAC iterations in each episode 1000

𝜂 Reward scale for the backbone SAC method [170] 100

𝜌 Learning rate for the SAC method [170] 3 × 10−4

𝑏𝑚𝑒𝑡𝑎 Number of tasks to average the gradient across 8

𝑏𝑅𝐿 Number of transitions in the SAC batch [170] 256

 96

5.6 Results

5.6.1 Training Results

This section shows the meta testing returns of the PEARL method and MAML method

during the meta training. Results for the attacker environment described in Section 5.4.1 are

shown in Figure 5.6. In Figure 5.6 (a), we show the before and after adaptation of PEARL and

MAML in the logarithmic axis. The x-axis is the total environment steps representing how much

data they use for training. As can be seen from the figure, the PEARL method converges after

collecting 105 data points, meanwhile the MAML converge after collecting 107 data points.

PEARL is one hundred times more data-efficient than MAML. Moreover, if we look at the

before and after adaptation curve of each approach, we can see that the agent trained by the

PEARL method shows good adaptation. While for the MAML method, there is almost no

adaptation.

 If we zoom in on the last ten iterations of MAML and PEARL and put them together, we

can have this Figure 5.6 (b). The red dashed line is the crash line. The average reward below this

line indicates there are crashes in that iteration. And you can see, the MAML not only shows no

adaptation, but there are also still many crashes at the end of the training. While for PEARL, we

can see that there is no crash after adaptation.

(a) Total environment steps (b) Last 10 iterations

Figure 5.6 Meta Testing Average Returns during Meta Training in Attacker Environments

 97

(a) Total environment steps (b) Last 10 iterations

Figure 5.7 Meta Testing Average Returns during Meta Training in IDM-Mobil Environments

Results for the IDM-Mobil environment described in Section 5.4.2 are shown in Figure

5.7. In Figure 5.7 (a), we show the before and after adaptation of PEARL and MAML in the

logarithmic axis, and in Figure 5.7 (b), we offer the last ten iterations of the MAML and PEAR

training curve. We can have a similar conclusion that the PEARL method is much more data-

efficient than the MAML method. Moreover, let us look at the before and after adaptation curve

of each approach. We can see that the PEARL agent shows good adaptation that the after

adaptation reward is much higher than the before adaptation reward. Since the reward design of

the IDM-Mobil is different from the attacker’s environment, there is no intuitive crash line.

Therefore, we only summarize the crash rate in Table 5.4 in Section 5.6.2 .

5.6.2 Evaluation Results

In this section, we evaluate the trained agent with 104 random tasks sampled from each

distribution of environments. We compared the PEARL approach with the MAML and the fine-

tune approach in which we keep training the policy in a new environment. The x-axis is how

much data we provide for the adaptation step after training. As you can see, after collecting two

trajectories of data (400 data points), the PEARL can adapt to new environments well in both

distributions of environments. However, the MAML and fine-tune methods do not show

 98

improvement even with ten trajectories of data. This is because that the collected data in the new

environment are not useful for the MAML agent and fine-tune agent to update its policies.

(a) Attackers Environment (b) IDM-Mobil Environment

Figure 5.8 Evaluation Average Returns

Next, we report the different agents’ crash rates during evaluation in Table 5.3 and Table

5.4 for the attacker environments and IDM-Mobil environments, respectively. All the methods

are evaluated in 104 random environments. On the leftmost column, we have the benchmark

policy from Chapter 2. The crash rate of the trained agent in the original environment is very

low. However, when we test it in random environments, the crash rate increases significantly in

both setups. For the fine-tune approach, the result shows that the agent cannot adapt to new

environments with limited data, so the crash rate in new environments is around the same level

for both setups.

In the attacker environments, the MAML keeps getting worse and worse, give the data.

This due to insufficient exploration during the adaptation. Meanwhile, the PEARL can adapt to a

new environment quickly with limited data. The crash rate of the PEARL agent reaches a very

small number, which can compare to the benchmark's crash rate in the original environment.

 99

Table 5.3 Crash Rate with Different Numbers of Data in the Attacker Environments

Crash Rate
Benchmark

(Safety Check)

Fine Tune

(Safety Check)

MAML

(No Safety Check)

PEARL

(No Safety Check)

In orig. task ~10−3% ~10−3% - -

Before adapting

17.8%

13.2% 19.4% 59.1%

1 trajectory 13.4% 22.5% 7.3%

2 trajectories 14.1% 24.9% 0.099%

3 trajectories 13.3% 27.3% 0.077%

5 trajectories 13.7% 31.4% 0.015%

10 trajectories 13.8% 36.9% 0.0062%

Table 5.4 Crash Rate with Different Numbers of Data in the IDM-Mobil Environments

Crash Rate Benchmark Fine Tune MAML PEARL

In orig. task ~4% ~4% - -

Before adapting

50.3%

52.6% 50.4% 60.3%

1 trajectory 51.9% 32.6% 26.7%

2 trajectories 49.5% 36.7% 18.1%

3 trajectories 49.8% 34.5% 12.7%

5 trajectories 48.2% 32.2% 10.5%

10 trajectories 47.6% 31.8% 5.2%

In IDM-Mobil environments, the MAML agent has better crash rates with more and more

given data. However, the improvement still not significant enough compared to the PEARL

agent. As can be seen from Table 5.4, the PEARL can adapt to a new environment quickly with

limited data. The crash rate of the PEARL is comparable to the benchmark's crash rate in the

original environment. Since in the IDM-Mobil environments, there is no short-horizon safety

check, the benchmark crash rate is higher than the attacker environment. Moreover, in the IDM-

Mobil environments, the agent controls the steering angle and the acceleration directly without

any robust lower level controller. This causes a higher crash rate compared to the attacker

environment. The crash rate results show that the PEARL trained agent can achieve the

benchmark level crash rate with only ten trajectories of data in both setups.

 100

5.7 Summary

In this chapter, we showed that it is necessary to solve the multi-MDPs problem in

designing the DLC policy. At a different time of the day or in different weather conditions,

drivers can behave differently. And from Chapter 4 we know that the DNN-based policy will fail

with perturbations.

To solve the multi-MDPs problem and design a robust DLC policy, we can try to encode

the knowledge from previously experienced environments and utilize it in some unseen

environments. This chapter implements the state-of-the-art method meta reinforcement learning

(MRL) method PEARL to encode the knowledge into a stochastic encoder.

Two distributions of environments are designed in this chapter, i.e., the environments

with attackers and the IDM-Mobil environments in Section 5.4 . From the results, we can see

that, in both distributions of environments, the trained policy can adapt to unseen environments

with limited data. While the baseline fine-tune method cannot adapt to unseen environments with

the same amount of data. Moreover, we also calculate the crash rate of the trained agent. As

shown in the results, the crash rate of the trained agent decreases dramatically after the

adaptation. With only ten trajectories, the crash rate can drop significantly to the crash rate of the

benchmark policy trained in the original environment. From the results, we can see that the MRL

method has huge potentials in solving the AV decision-making problem and can provide a robust

policy concerning the MDP transition probability.

 101

Chapter 6 Conclusions and Future Works

6.1 Conclusions

To develop an automated vehicle with higher automation levels, designing the

discretionary lane change (DLC) policy is critical. However, the DLC policy is hard to design

using the conventional method since it needs to consider complicated environment information

and different conditions. Therefore, in Chapter 2, we first proposed a novel RL method that uses

the model-based exploration method via intrinsic reward to synthesize the DLC policy. In

particular, an environment transition model is trained as a notion of an agent’s surprise about its

experiences guide the exploration. The agent thus can explore the state space thoroughly and

result in an optimal global policy. The experiments we conduct show that the model-based

exploration method we proposed leads to a faster convergence solution and designed a DLC

policy that can travel more efficiently. The model-based exploration method we developed offers

both theoretical and practical advantages in solving the DLC problem.

After designing a decision-making system, the policy must be evaluated thoroughly

before its release and deployment. In Chapter 3, we evaluated the policy designed in Chapter 2.

To assess the policy efficiently in a high dimensional state space, we implemented the Subset

Simulation (SS) as an adaptive sampling method for accelerated evaluation. We demonstrated

the ability of SS to accelerate the evaluation in Chapter 3. The SS method is proved to have

better-accelerating performance than the Importance Sampling (IS) method, and it can evaluate

the system in the environment with a high dimension while the IS method cannot.

The limitation of the SS method is that the “danger regions” are searched as the test

procedure unfolds. If the environmental statistics change, the crash rate cannot be estimated

accurately. Therefore, we developed a novel evaluation method in Chapter 4 that does not need

environmental statistics. In Chapter 4, we first design an attacker under the two-player Markov

game framework to challenge the AV. The attacker is trained to generate socially acceptable

attacks by well designing the reward function that considers the accident's responsibility. The

attacker’s objective is to lure the AV to end up in AV-responsible crashes. After the attacker’s

 102

policy is trained to converge, the AV is evaluated in the environment with one attacker. The

evaluation results show that the attacker can lure the AV into many AV-responsible crashes, and

the average crash rate increases 50 times.

Introducing attackers that can generate socially acceptable attacks makes the behavior of

the surrounding vehicles more diverse. The trained policy from Chapter 2 failed in such varied

environments. This problem can be viewed as designing a robust policy with respect to multiple

MDPs. In Chapter 5, we solved this multi-MDPs problem. In detail, we encode the knowledge

from previously experienced environments and utilize it in some unseen environments. We

implemented the state-of-the-art method meta reinforcement learning (MRL) method PEARL to

encode the knowledge into a stochastic encoder. Two distributions of environments are designed

in this chapter, i.e., the environments with attackers and IDM-Mobil environments. From the

results, we can see that the trained policy can adapt to unseen environments with only two

trajectories of data in both distributions of environments. Moreover, the crash rate of the trained

agent decreases dramatically after the adaptation to the crash rate of the benchmark policy

trained in the original environment. From the results, we can see that the MRL method has huge

potentials in solving the AV decision-making problem.

This dissertation discussed the design procedure (as shown in Figure 6.1) of the DLC

policy, from the designing stage to the evaluating stage and, finally, using the evaluation results

to further improve the policy. The developed evaluation methods and MRL method have great

potentials to solve for robust policies concerning a wide range of conditions in different

applications.

Figure 6.1 Procedure for developing an AV’s decision-making system

 103

6.2 Future Works

The developed designing and evaluation methods proposed in this dissertation can be

used in solving more decision-making problems. While we successfully applied them in solving

the DLC problem, more can be done to extend the methods to other scenarios. A few research

directions that can be exploited in future research are discussed as follows.

6.2.1 Designing Robust Decision-making Systems of Other AV Scenarios

New training approaches need to be developed for more application, considering different

weather conditions, road topology, and a more comprehensive range of human behaviors. More

works are also required to design a decision-making system for the AV in other scenarios, i.e.,

the highway merging and exiting problem, roundabout entering problem, etc.

Moreover, to implement the learned policy in the real-world application, it is necessary to

calibrate the distribution of the simulators. This requires collecting vast amounts of real-world

data to ensure that the built simulators cover the range of behavior and conditions in the real

world.

Finally, to implement the learned policy in an AV system in practice, we also need to

consider integrating the decision-making system with other systems. Challenges can come from

sensing, perception/detection, motion planning, and control systems. These integration problems

should also be studied carefully to get a safe and robust AV product.

6.2.2 Online Monitoring Environment Changes

The MRL method we implement can only start to adapt to the new environment when

noticed manually. However, the fully automated vehicle needs to decide when to adapt by itself.

Therefore, online MRL methods also need to be developed. Online MRL considers a setting

where either the agent monitors the environment changes and adapts when necessary, or just

keeps adapting. There are some potential methods [174], but more works are needed to

implement them to the AV applications.

 104

6.2.3 Extrapolate rather than Interpolate

One of the assumptions under the MRL is that the training environments and the testing

environments are sampled from the same distribution. This means the adaptation step is basically

running some “interpolation.” Current MRL approaches are either not able to extrapolate well or

can do so at the expense of requiring vast amounts of online collecting data. Solving the

extrapolation problem is an open question. It requires the implementation of some structure that

represents common knowledge or reasoning inside the policy. This is the next big step towards

human-level intelligence.

 105

Bibliography

[1] Society of Automotive Engineers, “Taxonomy and Definitions for Terms Related to On-

Road Motor Vehicle Automated Driving Systems,” 2014.

[2] National Highway Traffic Safety Administration, “Preliminary Statement of Policy

Concerning Automated Vehicles,” 2013.

[3] Germany Federal Highway Research Institute, “Legal consequences of an increase in

vehicle automation,” 2013. doi: 1100.5409013.01.

[4] Wikipedia, “Self-driving car,” Wikipedia Foundation, Inc. 2020, [Online]. Available:

https://en.wikipedia.org/wiki/Self-driving_car.

[5] D. Zhao, “Accelerated Evaluation of Automated Vehicles,” 2016.

[6] Teslapedia, “Release Notes: 2019.40.50.1,” Teslascope. 2019, [Online]. Available:

https://teslascope.com/teslapedia/software/2019.40.50.1.

[7] P. Bigelow, “Why Level 3 automated technology has failed to take hold,” Automotive

News, 2019.

[8] R. Bishop, “OEDR: The Key Differentiator Between SAE Level 2 And Level 3

Automated Driving,” Forbes, 2019.

[9] P. Lyon, “Nissan Reveals Revolutionary Hands-Off Self-Driving Tech,” Forbes, 2019.

[10] J. Stewart, “All the Startups and Companies Working on Self-Driving Cars,” WIRED,

2017. https://www.wired.com/2017/05/mapped-top-263-companies-racing-toward-

autonomous-cars/ (accessed Aug. 02, 2020).

[11] Wikipedia, “List of self-driving car fatalities,” Wikipedia Foundation, Inc. 2019, [Online].

Available: https://en.wikipedia.org/wiki/List_of_self-driving_car_fatalities.

[12] C. Badue et al., “Self-Driving Cars: A Survey,” 2019, [Online]. Available:

http://arxiv.org/abs/1901.04407.

[13] M. Montemerlo et al., “Junior: The Stanford entry in the urban challenge,” J. F. Robot.,

vol. 25, no. 9, pp. 569–597, Sep. 2008, doi: 10.1002/rob.20258.

[14] A. Kesting, M. Treiber, and D. Helbing, “General Lane-Changing Model MOBIL for Car-

Following Models,” Transp. Res. Rec. J. Transp. Res. Board, vol. 1999, no. 1, pp. 86–94,

2007, doi: 10.3141/1999-10.

[15] M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states in empirical

observations and microscopic simulations,” Phys. Rev. E - Stat. Physics, Plasmas, Fluids,

Relat. Interdiscip. Top., vol. 62, no. 2, pp. 1805–1824, 2000, doi:

10.1103/PhysRevE.62.1805.

 106

[16] L. Zhao, R. Ichise, T. Yoshikawa, T. Naito, T. Kakinami, and Y. Sasaki, “Ontology-based

decision making on uncontrolled intersections and narrow roads,” in IEEE Intelligent

Vehicles Symposium, Proceedings, 2015, vol. 2015-Augus, pp. 83–88, doi:

10.1109/IVS.2015.7225667.

[17] L. Zhao, R. Ichise, Z. Liu, S. Mita, and Y. Sasaki, “Ontology-based driving decision

making: A feasibility study at uncontrolled intersections,” IEICE Trans. Inf. Syst., vol.

E100D, no. 7, pp. 1425–1439, 2017, doi: 10.1587/transinf.2016EDP7337.

[18] J. Nilsson and J. Sjoberg, “Strategic decision making for automated driving on two-lane,

one way roads using model predictive control,” in IEEE Intelligent Vehicles Symposium,

Proceedings, 2013, pp. 1253–1258, doi: 10.1109/IVS.2013.6629638.

[19] M. Bojarski et al., “End to End Learning for Self-Driving Cars,” 2016, Accessed: Apr. 23,

2020. [Online]. Available: http://arxiv.org/abs/1604.07316.

[20] F. Codevilla, M. Miiller, A. Lopez, V. Koltun, and A. Dosovitskiy, “End-to-End Driving

Via Conditional Imitation Learning,” in Proceedings - IEEE International Conference on

Robotics and Automation, 2018, pp. 4693–4700, doi: 10.1109/ICRA.2018.8460487.

[21] Y. Guan, S. E. Li, J. Duan, W. Wang, and B. Cheng, “Markov probabilistic decision

making of self-driving cars in highway with random traffic flow: a simulation study,” J.

Intell. Connect. Veh., vol. 1, no. 2, pp. 77–84, Jun. 2018, doi: 10.1108/jicv-01-2018-0003.

[22] Z. Cao et al., “Highway Exiting Planner for Automated Vehicles Using Reinforcement

Learning,” IEEE Trans. Intell. Transp. Syst., 2020.

[23] M. Mukadam, A. Cosgun, A. Nakhaei, and K. Fujimura, “Tactical Decision Making for

Lane Changing with Deep Reinforcement Learning,” Neural Inf. Process. Syst., no. Nips,

pp. 1–10, 2017, Accessed: Apr. 03, 2020. [Online]. Available:

https://openreview.net/forum?id=B1G6uM0WG.

[24] S. Nageshrao, E. Tseng, and D. Filev, “Autonomous Highway Driving using Deep

Reinforcement Learning,” 2019, [Online]. Available: http://arxiv.org/abs/1904.00035.

[25] L. Wen, J. Duan, S. E. Li, S. Xu, and H. Peng, “Safe Reinforcement Learning for

Autonomous Vehicles through Parallel Constrained Policy Optimization,” no. 2012, 2020,

[Online]. Available: http://arxiv.org/abs/2003.01303.

[26] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA: An Open

Urban Driving Simulator,” 2017, Accessed: Apr. 23, 2020. [Online]. Available:

http://arxiv.org/abs/1711.03938.

[27] C. You, J. Lu, D. Filev, and P. Tsiotras, “Advanced planning for autonomous vehicles

using reinforcement learning and deep inverse reinforcement learning,” Rob. Auton. Syst.,

vol. 114, pp. 1–18, Apr. 2019, doi: 10.1016/j.robot.2019.01.003.

[28] S. Kuutti, R. Bowden, H. Joshi, R. De Temple, and S. Fallah, “End-to-end Reinforcement

Learning for Autonomous Longitudinal Control Using Advantage Actor Critic with

Temporal Context,” in 2019 IEEE Intelligent Transportation Systems Conference, ITSC

2019, 2019, pp. 2456–2462, doi: 10.1109/ITSC.2019.8917387.

[29] M. Jaritz, R. De Charette, M. Toromanoff, E. Perot, and F. Nashashibi, “End-to-End Race

Driving with Deep Reinforcement Learning,” in Proceedings - IEEE International

 107

Conference on Robotics and Automation, 2018, pp. 2070–2075, doi:

10.1109/ICRA.2018.8460934.

[30] National Highway Traffic Safety Administration, “Federal Motor Vehicle Safety

Standards,” 1998. [Online]. Available: https://www.nhtsa.gov/laws-regulations/fmvss.

[31] National Highway Traffic Safety Administration, “New Car Assessment Program,” 2006.

[32] The World Forum for Harmonization of Vehicle Regulations, “United Nations Economic

Commission for Europe Regulations,” 1998.

[33] The China Automotive Technology and Research Center, “C-NCAP Management

Regulation,” pp. 1–222, 2018, [Online]. Available: http://www.c-ncap.org.cn/c-

ncap_en/ep/2012english.pdf.

[34] W. H. Ma and H. Peng, “Worst-case evaluation methods for vehicle control systems,” in

American Society of Mechanical Engineers, Dynamic Systems and Control Division

(Publication) DSC, 1996, vol. 58, pp. 83–90, Accessed: Feb. 12, 2020. [Online].

Available: https://deepblue.lib.umich.edu/handle/2027.42/131268.

[35] W. H. Ma and H. Peng, “A worst-case evaluation method for dynamic systems,” J. Dyn.

Syst. Meas. Control. Trans. ASME, vol. 121, no. 2, pp. 191–199, 1999, doi:

10.1115/1.2802454.

[36] Y. Kou, “Development and Evaluation of Integrated Chassis Control Systems,” 2010.

[37] M. L. Moore, “Assurance and control of vehicle emission testing,” 1973, doi:

10.4271/730534.

[38] W. G. Najm et al., “Description of Light-Vehicle Pre-Crash Scenarios for Safety

Applications Based On Vehicle-to-Vehicle Communications,” 2013. Accessed: Feb. 13,

2020. [Online]. Available: https://rosap.ntl.bts.gov/view/dot/9980.

[39] W. G. Najm, J. D. Smith, and M. Yanagisawa, “Pre-Crash Scenario Typology for Crash

Avoidance Research,” Security, no. April, p. 128, 2007, Accessed: Feb. 13, 2020.

[Online]. Available: https://rosap.ntl.bts.gov/view/dot/6281.

[40] W. G. Najm and J. D. Smith, “Development of Crash Imminent Test Scenarios for

Integrated Vehicle-Based Safety Systems,” no. April, p. 57p, 2007, Accessed: Feb. 13,

2020. [Online]. Available: https://rosap.ntl.bts.gov/view/dot/8883.

[41] W. G. Najm, S. Toma, and J. Brewer, “Depiction of priority light-vehicle pre-crash

scenarios for safety applications based on vehicle-to-vehicle communications,” 2013.

Accessed: Feb. 13, 2020. [Online]. Available: https://rosap.ntl.bts.gov/view/dot/9887.

[42] A. Y. Ungoren and H. Peng, “Evaluation of vehicle dynamic control for rollover

prevention,” Int. J. Automot. Technol., vol. 5, no. 2, pp. 115–122, 2004, Accessed: Feb.

13, 2020. [Online]. Available:

https://pdfs.semanticscholar.org/357b/5b978b6cb732d8601d442a90fbc09864a0ea.pdf.

[43] Euro NCAP, “Adult Occupant Protection.” https://www.euroncap.com/en/vehicle-

safety/the-ratings-explained/adult-occupant-protection/.

[44] M. Althoff, “Reachability Analysis and its Application to the Safety Assessment of

Autonomous Cars,” 2010.

 108

[45] M. Althoff and J. M. Dolan, “Online verification of automated road vehicles using

reachability analysis,” IEEE Trans. Robot., vol. 30, no. 4, pp. 903–918, 2014, doi:

10.1109/TRO.2014.2312453.

[46] M. Althoff, D. Althoff, D. Wollherr, and M. Buss, “Safety verification of autonomous

vehicles for coordinated evasive maneuvers,” in IEEE Intelligent Vehicles Symposium,

Proceedings, 2010, pp. 1078–1083, doi: 10.1109/IVS.2010.5548121.

[47] M. Althoff and S. Lutz, “Automatic Generation of Safety-Critical Test Scenarios for

Collision Avoidance of Road Vehicles,” IEEE Intell. Veh. Symp. Proc., vol. 2018-June,

no. Iv, pp. 1326–1333, 2018, doi: 10.1109/IVS.2018.8500374.

[48] E. Clarke, O. Grumberg, D. Kroening, D. Peled, and H. Veith, Model Checking. MIT

press, 2018.

[49] E. M. Clarke, W. Klieber, M. Nováček, and P. Zuliani, “Model checking and the state

explosion problem,” in Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2012, vol. 7682

LNCS, pp. 1–30, doi: 10.1007/978-3-642-35746-6_1.

[50] C. E. Tuncali, G. Fainekos, B. Amor, J. Kapinski, and A. Shrivastava, “Search-based Test

Generation for Automated Driving Systems: From Perception to Control Logic,” no. May,

2019.

[51] Waymo, “Waymo open dataset,” 2020. https://waymo.com/open/.

[52] lyft, “Lyft Level 5 Dataset,” 2020. https://level5.lyft.com/dataset/.

[53] Aptiv, “NuScenes by Aptiv,” 2020. https://www.nuscenes.org/.

[54] A. Patil, S. Malla, H. Gang, and Y. T. Chen, “The H3D dataset for full-surround 3D multi-

object detection and tracking in crowded urban scenes,” in Proceedings - IEEE

International Conference on Robotics and Automation, Mar. 2019, vol. 2019-May, pp.

9552–9557, doi: 10.1109/ICRA.2019.8793925.

[55] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The KITTI

dataset,” Int. J. Rob. Res., vol. 32, no. 11, pp. 1231–1237, Sep. 2013, doi:

10.1177/0278364913491297.

[56] FESTA-Consortium, “FESTA Handbook Version 2 Deliverable T6. 4 of the Field

opErational teSt supporT Action,” 2008.

[57] M. Ljung Aust, “Evaluation Process for Active Safety Functions: Addressing Key

Challenges in Functional, Formative Evaluation of Advanced Driver Assistance Systems,”

2012, Accessed: Feb. 14, 2020. [Online]. Available:

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Improving+the+Evaluat

ion+Process+for+Active+Safety+Functions+Addressing+Key+Challenges+in+Functional

+Formative+Evaluation+of+Advanced+Driver+Assistance+Systems#1.

[58] Waymo, “On the road to Fully Self-driving - Waymo Safety Report,” 2018. doi:

10.1016/B978-0-08-037539-7.50012-0.

[59] Wikipedia, “Waymo,” Wikipedia Foundation, Inc. 2020, [Online]. Available:

https://en.wikipedia.org/wiki/Waymo.

 109

[60] UMTRI, “Safety Pilot Model Deployment.” http://safetypilot.umtri.umich.edu/.

[61] D. Bezzina and J. Sayer, “Safety pilot model deployment: Test conductor team report,”

2015.

[62] Booz, Allen, and Hamilton, “Safety Pilot Model Deployment – One Day Sample Data

Environment,” 2015.

[63] J. Sayer et al., “Integrated Vehicle-Based Safety Systems Field Operational Test Final

Program Report,” Transp. Res., no. June, 2011, Accessed: Feb. 15, 2020. [Online].

Available: www.ntis.gov.

[64] M. Akamatsu, P. Green, and K. Bengler, “Automotive technology and human factors

research: Past, present, and future,” International Journal of Vehicular Technology, vol.

2013. 2013, doi: 10.1155/2013/526180.

[65] J. Golson, “Google will pay Arizona drivers $20 per hour to test self-driving cars,” The

Verge, 2016. https://www.theverge.com/2016/5/12/11668548/google-self-driving-arizona-

hiring-operator.

[66] N. Kalra and S. M. Paddock, “Driving to safety: How many miles of driving would it take

to demonstrate autonomous vehicle reliability?,” Transp. Res. Part A Policy Pract., vol.

94, pp. 182–193, 2016, doi: 10.1016/j.tra.2016.09.010.

[67] H. H. Yang and H. Peng, “Development and evaluation of collision warning/collision

avoidance algorithms using an errable driver model,” in Vehicle System Dynamics, 2010,

vol. 48, no. SUPPL. 1, pp. 525–535, doi: 10.1080/00423114.2010.515745.

[68] R. S. Jurecki and T. L. Stańczyk, “Driver reaction time to lateral entering pedestrian in a

simulated crash traffic situation,” Transp. Res. Part F Traffic Psychol. Behav., vol. 27, no.

PA, pp. 22–36, 2014, doi: 10.1016/j.trf.2014.08.006.

[69] Di. Zhao, X. Huang, H. Peng, H. Lam, and D. J. Leblanc, “Accelerated Evaluation of

Automated Vehicles in Car-Following Maneuvers,” IEEE Trans. Intell. Transp. Syst., vol.

19, no. 3, pp. 733–744, 2018, doi: 10.1109/TITS.2017.2701846.

[70] D. Zhao et al., “Accelerated Evaluation of Automated Vehicles Safety in Lane-Change

Scenarios Based on Importance Sampling Techniques,” IEEE Trans. Intell. Transp. Syst.,

vol. 18, no. 3, pp. 595–607, 2017, doi: 10.1109/TITS.2016.2582208.

[71] Z. Huang, H. Lam, D. J. Leblanc, and D. Zhao, “Accelerated Evaluation of Automated

Vehicles Using Piecewise Mixture Models,” IEEE Trans. Intell. Transp. Syst., vol. 19, no.

9, pp. 2845–2855, 2018, doi: 10.1109/TITS.2017.2766172.

[72] M. O’Kelly, J. Duchi, A. Sinha, H. Namkoong, and R. Tedrake, “Scalable end-to-end

autonomous vehicle testing via rare-event simulation,” in Advances in Neural Information

Processing Systems, 2018, vol. 2018-Decem, pp. 9827–9838, Accessed: Feb. 18, 2020.

[Online]. Available: http://papers.nips.cc/paper/8189-scalable-end-to-end-autonomous-

vehicle-testing-via-rare-event-simulation.

[73] S. K. Au and Y. Wang, Engineering Risk Assessment with Subset Simulation, vol.

9781118398. 2014.

[74] L. MARGOLIN, “On the Convergence of the Cross-Entropy Method,” Ann. Oper. Res., p.

 110

14, 2005, doi: 10.2307/2307868.

[75] S. Feng, Y. Feng, C. Xu, Y. Zhang, and H. X. Liu, “Testing Scenario Library Generation

for Connected and Automated Vehicles, Part I: Methodology,” Intell. Transp. Syst. IEEE

Trans., May 2019.

[76] S. Feng, Y. Feng, H. Sun, S. Bao, Y. Zhang, and H. X. Liu, “Testing Scenario Library

Generation for Connected and Automated Vehicles, Part II: Case Studies,” Intell. Transp.

Syst. IEEE Trans., May 2019, Accessed: Feb. 19, 2020. [Online]. Available:

http://arxiv.org/abs/1905.03428.

[77] A. Talebpour, H. S. Mahmassani, and S. H. Hamdar, “Modeling Lane-Changing Behavior

in a Connected Environment: A Game Theory Approach,” Transp. Res. Procedia, vol. 7,

pp. 420–440, 2015, doi: 10.1016/j.trpro.2015.06.022.

[78] D. Silver et al., “Mastering the game of Go with deep neural networks and tree search,”

Nature, vol. 529, no. 7587, pp. 484–489, 2016, doi: 10.1038/nature16961.

[79] C.-J. Hoel, K. Wolff, and L. Laine, “Automated Speed and Lane Change Decision Making

using Deep Reinforcement Learning,” 2018, [Online]. Available:

http://arxiv.org/abs/1803.10056.

[80] I.-A. Hosu and T. Rebedea, “Playing Atari Games with Deep Reinforcement Learning and

Human Checkpoint Replay,” Jul. 2016, Accessed: Jul. 30, 2020. [Online]. Available:

http://arxiv.org/abs/1607.05077.

[81] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and N. de Freitas, “Dueling

Network Architectures for Deep Reinforcement Learning,” no. 9, 2015, doi:

10.1109/MCOM.2016.7378425.

[82] H. van Hasselt, A. Guez, and D. Silver, “Deep Reinforcement Learning With Double Q-

Learning,” pp. 2094–2100, 2016, [Online]. Available: http://arxiv.org/abs/1606.04615.

[83] D. Silver, “Lecture 4: Model-Free Prediction.” https://www.davidsilver.uk/wp-

content/uploads/2020/03/MC-TD.pdf (accessed Jul. 30, 2020).

[84] OpenAI, “Vanilla Policy Gradient — Spinning Up documentation.”

https://spinningup.openai.com/en/latest/algorithms/vpg.html (accessed Jul. 30, 2020).

[85] Chris Yoon, “Understanding Actor Critic Methods – Towards Data Science.”

https://towardsdatascience.com/understanding-actor-critic-methods-931b97b6df3f

(accessed Jul. 30, 2020).

[86] T. Mitchell, “0703 Deep Reinforcement Learning Policy Gradient Methods-Part 2,” 2018.

[87] J. Schulman, P. Moritz, S. Levine, M. I. Jordan, and P. Abbeel, “High-dimensional

continuous control using generalized advantage estimation,” 2016, Accessed: Jul. 30,

2020. [Online]. Available: https://sites.google.com/site/gaepapersupp.

[88] J. Wang, Q. Zhang, D. Zhao, and Y. Chen, “Lane Change Decision-making through Deep

Reinforcement Learning with Rule-based Constraints,” in Proceedings of the

International Joint Conference on Neural Networks, 2019, vol. 2019-July, doi:

10.1109/IJCNN.2019.8852110.

[89] K. Murphy, “Dynamic Bayesian Networks: Representation, Inference and Learning,”

 111

Univ. California, Berkeley, p. 223, 2002, doi: 10.1.1.129.7714.

[90] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning: A survey,” J.

Artif. Intell. Res., vol. 4, pp. 237–285, 1996, doi: 10.1613/jair.301.

[91] S. B. Thrun, “Efficient Exploration In Reinforcement Learning,” Science (80-.)., no.

January, pp. 1–44, 1992, doi: 10.1109/IJCNN.2001.939497.

[92] J. Z. Kolter and A. Y. Ng, “Near-bayesian exploration in polynomial time,” in ACM

International Conference Proceeding Series, 2009, vol. 382, doi:

10.1145/1553374.1553441.

[93] R. I. Brafman and M. Tennenholtz, “R-MAX - A general polynomial time algorithm for

near-optimal reinforcement learning,” in IJCAI International Joint Conference on

Artificial Intelligence, 2001, vol. 3, pp. 953–958, Accessed: Jun. 29, 2020. [Online].

Available: http://www.jmlr.org/papers/v3/brafman02a.html.

[94] J. Achiam and S. Sastry, “Surprise-Based Intrinsic Motivation for Deep Reinforcement

Learning,” pp. 1–13, 2017, doi: 10.1051/0004-6361/201527329.

[95] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-Driven Exploration by

Self-Supervised Prediction,” IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.

Work., 2017, doi: 10.1109/CVPRW.2017.70.

[96] G. Vezzani, A. Gupta, L. Natale, and P. Abbeel, “Learning latent state representation for

speeding up exploration,” 2019, [Online]. Available: http://arxiv.org/abs/1905.12621.

[97] W. Schakel, V. Knoop, and B. van Arem, “Integrated Lane Change Model with

Relaxation and Synchronization,” Transp. Res. Rec. J. Transp. Res. Board, vol. 2316, no.

2316, pp. 47–57, 2012, doi: 10.3141/2316-06.

[98] C. Doersch, “Tutorial on Variational Autoencoders,” pp. 1–23, 2016.

[99] K. Sohn, H. Lee, and X. Yan, “Learning Structured Output Representation using Deep

Conditional Generative Models,” Adv. Neural Inf. Process. Syst., pp. 3483–3491, 2015,

[Online]. Available: http://papers.nips.cc/paper/5775-learning-structured-output-

representation-using-deep-conditional-generative-models.

[100] D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes,” no. Ml, pp. 1–14,

2013, [Online]. Available: http://arxiv.org/abs/1312.6114.

[101] K. Zuev, “Subset Simulation Method for Rare Event Estimation: An Introduction,” 2015,

doi: 10.1007/978-3-642-36197-5_165-1.

[102] A. Lagnoux, “Rare Event Simulation,” Probab. Eng. Informational Sci., vol. 20, no. 01,

pp. 45–66, 2005, doi: 10.1017/S0269964806060025.

[103] R. Rubinstein and D. Kroese, The cross-entropy method: a unified approach to

combinatorial optimization, Monte-Carlo simulation and machine learning. 2013.

[104] R. Rubinstein and B. Melamed, Modern simulation and modelling. 1998.

[105] S. K. Au and J. L. Beck, “Important sampling in high dimensions,” Struct. Saf., vol. 25,

no. 2, pp. 139–163, 2003, doi: 10.1016/S0167-4730(02)00047-4.

[106] L. S. Katafygiotis and K. M. Zuev, “Geometric insight into the challenges of solving high-

 112

dimensional reliability problems,” Probabilistic Eng. Mech., vol. 23, no. 2–3, pp. 208–

218, 2008, doi: 10.1016/j.probengmech.2007.12.026.

[107] J. S. Liu, Monte Carlo Strategies in Scientific Computing. 2004.

[108] S. K. Au and J. L. Beck, “Estimation of small failure probabilities in high dimensions by

subset simulation,” Probabilistic Eng. Mech., vol. 16, no. 4, pp. 263–277, 2001, doi:

10.1016/S0266-8920(01)00019-4.

[109] I. Papaioannou, W. Betz, K. Zwirglmaier, and D. Straub, “MCMC algorithms for Subset

Simulation,” Probabilistic Eng. Mech., vol. 41, pp. 89–103, 2015, doi:

10.1016/j.probengmech.2015.06.006.

[110] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller,

“Equation of state calculations by fast computing machines,” J. Chem. Phys., vol. 21, no.

6, pp. 1087–1092, 1953, doi: 10.1063/1.1699114.

[111] K. M. Zuev, J. L. Beck, S. K. Au, and L. S. Katafygiotis, “Bayesian post-processor and

other enhancements of Subset Simulation for estimating failure probabilities in high

dimensions,” Comput. Struct., vol. 92–93, pp. 283–296, 2012, doi:

10.1016/j.compstruc.2011.10.017.

[112] L. Barr and W. Najm, “Crash Problem Characteristics for the Intelligent Vehicle

Initiative,” Natl. Res. Counc. (U.S.). Transp. Res. Board. Meet. (80th 2001 Washington,

D.C.). Prepr. CD-ROM, no. 01, p. 30 p., 2001, Accessed: Mar. 02, 2020. [Online].

Available: https://trid.trb.org/view/675725.

[113] G. M. Fitch, S. E. Lee, S. Klauer, J. Hankey, J. Sudweeks, and T. Dingus, “Analysis of

Lane-Change Crashes and Near-Crashes,” Final Rep. DOT HS 811 147, US Dep. Transp.

Natl. Highw. Traffic Saf. Adm., no. June, pp. 1–88, 2009, doi: DOT HS 811 147.

[114] D. S. Gurupackiam and S. Jones, “Characterization of Arterial Traffic Congestion

Through Analysis of Operational Parameters (Gap Acceptance and Lane Changing),”

Report, no. 07112, 2010, [Online]. Available:

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Characterization+of+Ar

terial+Traffic+Congestion+Through+Analysis+of+Operational+Parameters#1%5Cnhttp://

scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Characterization+of+Arterial

+Traffi.

[115] Z. Zheng, “Recent developments and research needs in modeling lane changing,” Transp.

Res. Part B Methodol., vol. 60, pp. 16–32, 2014, doi: 10.1016/j.trb.2013.11.009.

[116] D. Zhao, H. Peng, K. Nobukawa, S. Bao, D. J. LeBlanc, and C. S. Pan, “Analysis of

mandatory and discretionary lane change behaviors for heavy trucks,” arxiv.org, 2017,

Accessed: Mar. 02, 2020. [Online]. Available: https://arxiv.org/abs/1707.09411.

[117] T. A. Dingus et al., “The 100-Car Naturalistic driving Study Phase II – Results of the 100-

Car Field Experiment,” 2006. doi: DOT HS 810 593.

[118] R. N. Jazar, Vehicle dynamics: Theory and Application, vol. 24, no. 4. 2014.

[119] Wikipedia, “Correlation and dependence,” Wikipedia Foundation, Inc. 2020, [Online].

Available: https://en.wikipedia.org/wiki/Correlation_and_dependence.

 113

[120] V. Ramanujam, “Lane Changing Models for Arterial Traffic,” Environ. Eng., no. 2005,

2007, [Online]. Available: http://hdl.handle.net/1721.1/39286.

[121] P. Angkititrakul, C. Miyajima, and K. Takeda, “Stochastic Mixture Modeling of Driving

Behavior During Car Following,” J. Inf. Commun. Converg. Eng., vol. 11, no. 2, pp. 95–

102, 2013, doi: 10.6109/jicce.2013.11.2.095.

[122] P. Angkititrakul, C. Miyajima, and K. Takeda, “Modeling and adaptation of stochastic

driver-behavior model with application to car following,” IEEE Intell. Veh. Symp. Proc.,

no. Iv, pp. 814–819, 2011, doi: 10.1109/IVS.2011.5940464.

[123] X. Huang, S. Zhang, and H. Peng, “Developing Robot Driver Etiquette Based on

Naturalistic Human Driving Behavior,” IEEE Trans. Intell. Transp. Syst., vol. 21, no. 4,

pp. 1–11, Apr. 2019, doi: 10.1109/tits.2019.2913102.

[124] D. Reynolds, “Gaussian Mixture Models,” Encycl. Biometrics, no. 2, pp. 659–663, 2009,

doi: 10.1007/978-0-387-73003-5_196.

[125] Z. Ju and H. Liu, “Fuzzy Gaussian mixture models,” Pattern Recognit., vol. 45, no. 3, pp.

1146–1158, 2012, doi: 10.1016/j.patcog.2011.08.028.

[126] T. M. Nguyen, Q. M. Jonathan Wu, and H. Zhang, “Bounded generalized Gaussian

mixture model,” Pattern Recognit., vol. 47, no. 9, pp. 3132–3142, 2014, doi:

10.1016/j.patcog.2014.03.030.

[127] G. Lee and C. Scott, “EM algorithms for multivariate Gaussian mixture models with

truncated and censored data,” Comput. Stat. Data Anal., vol. 56, no. 9, pp. 2816–2829,

2012, doi: 10.1016/j.csda.2012.03.003.

[128] K. P. Burnham and D. R. Anderson, “Multimodel inference: Understanding AIC and BIC

in model selection,” Sociological Methods and Research, vol. 33, no. 2. pp. 261–304,

Nov. 2004, doi: 10.1177/0049124104268644.

[129] M. Rosenblatt, “Remarks on a Multivariate Transformation,” Ann. Math. Stat., vol. 23, no.

3, pp. 470–472, 1952, doi: 10.1214/aoms/1177729394.

[130] K. Aas, C. Czado, A. Frigessi, and H. Bakken, “Pair-copula constructions of multiple

dependence,” Insur. Math. Econ., vol. 44, no. 2, pp. 182–198, 2009, doi:

10.1016/j.insmatheco.2007.02.001.

[131] C. E. Tuncali, S. Yaghoubi, T. P. Pavlic, and G. Fainekos, “Functional gradient descent

optimization for automatic test case generation for vehicle controllers,” in IEEE

International Conference on Automation Science and Engineering, 2017, vol. 2017-

Augus, pp. 1059–1064, doi: 10.1109/COASE.2017.8256245.

[132] C. E. Tuncali, G. Fainekos, D. Prokhorov, H. Ito, and J. Kapinski, “Requirements-driven

Test Generation for Autonomous Vehicles with Machine Learning Components,” IEEE

Trans. Intell. Veh., pp. 1–1, 2019, doi: 10.1109/tiv.2019.2955903.

[133] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep

convolutional neural networks,” Commun. ACM, vol. 60, no. 6, pp. 84–90, 2017, doi:

10.1145/3065386.

[134] A. Hannun et al., “Deep Speech: Scaling up end-to-end speech recognition,” arxiv.org,

 114

2014, Accessed: Mar. 09, 2020. [Online]. Available: https://arxiv.org/abs/1412.5567.

[135] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural

networks,” in Advances in Neural Information Processing Systems, 2014, vol. 4, no.

January, pp. 3104–3112, Accessed: Mar. 09, 2020. [Online]. Available:

http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-.

[136] T. B. Brown, D. Mané, A. Roy, M. Abadi, and J. Gilmer, “Adversarial Patch,” no. Nips,

2017, [Online]. Available: http://arxiv.org/abs/1712.09665.

[137] N. Papernot, P. Mcdaniel, and I. Goodfellow, “Practical Black-Box Attacks against

Machine Learning,” 2017.

[138] S. Thys, W. Van Ranst, and T. Goedeme, “Fooling automated surveillance cameras:

Adversarial patches to attack person detection,” in IEEE Computer Society Conference on

Computer Vision and Pattern Recognition Workshops, Apr. 2019, vol. 2019-June, pp. 49–

55, doi: 10.1109/CVPRW.2019.00012.

[139] E. R. Balda, A. Behboodi, and R. Mathar, “Adversarial examples in deep neural networks:

An overview,” in Studies in Computational Intelligence, vol. 865, Springer Verlag, 2020,

pp. 31–65.

[140] C. Xiao et al., “Characterizing Attacks on Deep Reinforcement Learning.” Accessed: Mar.

09, 2020. [Online]. Available: https://arxiv.org/abs/1907.09470.

[141] S. Huang, N. Papernot, I. Goodfellow, Y. Duan, and P. Abbeel, “Adversarial Attacks on

Neural Network Policies,” 5th Int. Conf. Learn. Represent. ICLR 2017 - Work. Track

Proc., 2019, Accessed: Mar. 09, 2020. [Online]. Available:

http://rll.berkeley.edu/adversarial.

[142] Y. Lin, Z. Hong, Y. Liao, M. Shih, M. Liu, and M. Sun, “Tactics of Adversarial Attack on

Deep Reinforcement Learning Agents,” 2017.

[143] Tencent Keen Security Lab, “Experimental Security Research of Tesla Autopilot,” p. 38,

2019, [Online]. Available:

https://keenlab.tencent.com/en/whitepapers/Experimental_Security_Research_of_Tesla_A

utopilot.pdf.

[144] L. S. Shapley, “Stochastic Games,” in Stochastic Games and Applications, 2003, pp. 1–7.

[145] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “On a Formal Model of Safe and

Scalable Self-driving Cars,” pp. 1–37, 2017, doi: 1708.06374v2.

[146] A. Shashua, S. Shalev-Shwartz, and S. Shammah, “Implementing the RSS Model on

NHTSA Pre-Crash Scenarios,” 2018.

[147] “中华人民共和国道路交通安全法.” http://www.gov.cn/banshi/2005-

08/23/content_25575.htm (accessed May 18, 2020).

[148] “TRANSPORTATION CODE CHAPTER 545. OPERATION AND MOVEMENT OF

VEHICLES.” https://statutes.capitol.texas.gov/docs/TN/htm/TN.545.htm (accessed May

18, 2020).

[149] “Article 25 Vehicle Law | Driving Right Overtaking Passing.”

http://ypdcrime.com/vt/article25.htm#t1128 (accessed May 18, 2020).

 115

[150] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience replay,” 4th Int.

Conf. Learn. Represent. ICLR 2016 - Conf. Track Proc., pp. 1–21, 2016.

[151] C. Kanbak, S. M. Moosavi-Dezfooli, and P. Frossard, “Geometric Robustness of Deep

Networks: Analysis and Improvement,” Proc. IEEE Comput. Soc. Conf. Comput. Vis.

Pattern Recognit., pp. 4441–4449, 2018, doi: 10.1109/CVPR.2018.00467.

[152] M. Liu, S. Liu, H. Su, K. Cao, and J. Zhu, “Analyzing the Noise Robustness of Deep

Neural Networks,” 2018 IEEE Conf. Vis. Anal. Sci. Technol. VAST 2018 - Proc., no.

October, pp. 60–71, 2018, doi: 10.1109/VAST.2018.8802509.

[153] A. Rajeswaran, S. Ghotra, B. Ravindran, and S. Levine, “EPOpt: Learning Robust Neural

Network Policies Using Model Ensembles,” Oct. 2016, Accessed: Nov. 14, 2020.

[Online]. Available: http://arxiv.org/abs/1610.01283.

[154] F. Muratore, F. Treede, M. Gienger, and J. Peters, “Domain Randomization for

Simulation-Based Policy Optimization with Transferability Assessment,” 2nd Conf. Robot

Learn. (CoRL 2018), no. CoRL, pp. 1–14, Oct. 2018, Accessed: Nov. 14, 2020. [Online].

Available: http://proceedings.mlr.press/v87/muratore18a.html.

[155] V. Tjeng, K. Xiao, and R. Tedrake, “Evaluating robustness of neural networks with mixed

integer programming,” arXiv. arXiv, Nov. 20, 2017, Accessed: Nov. 14, 2020. [Online].

Available: http://arxiv.org/abs/1711.07356.

[156] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer, “Reluplex: An efficient

smt solver for verifying deep neural networks,” in Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 2017, vol. 10426 LNCS, pp. 97–117, doi: 10.1007/978-3-319-63387-9_5.

[157] A. Lomuscio and L. Maganti, “An approach to reachability analysis for feed-forward

ReLU neural networks,” arXiv. arXiv, Jun. 22, 2017, Accessed: Nov. 14, 2020. [Online].

Available: http://arxiv.org/abs/1706.07351.

[158] F. Chang, P. Xu, H. Zhou, J. Lee, and H. Huang, “Identifying motorcycle high-risk traffic

scenarios through interactive analysis of driver behavior and traffic characteristics,”

Transp. Res. Part F Traffic Psychol. Behav., vol. 62, pp. 844–854, Apr. 2019, doi:

10.1016/j.trf.2019.03.010.

[159] M. Botvinick, S. Ritter, J. X. Wang, Z. Kurth-Nelson, C. Blundell, and D. Hassabis,

“Reinforcement Learning, Fast and Slow,” Trends in Cognitive Sciences, vol. 23, no. 5.

Elsevier Ltd, pp. 408–422, May 01, 2019, doi: 10.1016/j.tics.2019.02.006.

[160] A. Nagabandi et al., “Learning to adapt in dynamic, real-world environments through

meta-reinforcement learning,” arXiv, pp. 1–17, 2018, Accessed: Nov. 20, 2020. [Online].

Available: https://sites.google.com/berkeley.edu/metaadaptivecontrol.

[161] C. Finn, T. Yu, T. Zhang, P. Abbeel, and S. Levine, “One-shot visual imitation learning

via meta-learning,” arXiv. 2017, Accessed: Nov. 20, 2020. [Online]. Available:

https://arxiv.org/abs/1709.04905.

[162] T. Yu et al., “One-Shot Imitation from Observing Humans via Domain-Adaptive Meta-

Learning.” Accessed: Nov. 20, 2020. [Online]. Available:

https://sites.google.com/view/daml.

 116

[163] Y. Duan, J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever, and P. Abbeel, “RL^2: Fast

Reinforcement Learning via Slow Reinforcement Learning,” 2016, Accessed: Aug. 19,

2020. [Online]. Available: http://arxiv.org/abs/1611.02779.

[164] J. X. Wang et al., “Learning to reinforcement learn,” 2016, Accessed: Nov. 21, 2020.

[Online]. Available: http://arxiv.org/abs/1611.05763.

[165] N. Heess, J. J. Hunt, T. P. Lillicrap, and D. Silver, “Memory-based control with recurrent

neural networks,” 2015, Accessed: Nov. 21, 2020. [Online]. Available:

http://arxiv.org/abs/1512.04455.

[166] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast adaptation of

deep networks,” 34th Int. Conf. Mach. Learn. ICML 2017, vol. 3, pp. 1856–1868, 2017.

[167] J. Rothfuss, D. Lee, I. Clavera, T. Asfour, and P. Abbeel, “PROMP: Proximal Meta-

Policy Search,” arXiv. Oct. 15, 2018, Accessed: Nov. 21, 2020. [Online]. Available:

http://arxiv.org/abs/1810.06784.

[168] A. Gupta, R. Mendonca, Y. X. Liu, P. Abbeel, and S. Levine, “Meta-reinforcement

learning of structured exploration strategies,” arXiv. 2018, Accessed: Nov. 21, 2020.

[Online]. Available: http://papers.nips.cc/paper/7776-meta-reinforcement-learning-of-

structured-exploration-strategies.

[169] K. Rakelly, A. Zhou, D. Quiilen, C. Finn, and S. Levine, “Efficient off-policy meta-

reinforcement learning via probabilistic context variables,” in 36th International

Conference on Machine Learning, ICML 2019, 2019, vol. 2019-June, pp. 9291–9301,

Accessed: Aug. 05, 2020. [Online]. Available: https://github.com/katerakelly/oyster.

[170] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft Actor-Critic: Off-Policy Maximum

Entropy Deep Reinforcement Learning with a Stochastic Actor,” 2018, [Online].

Available: http://arxiv.org/abs/1801.01290.

[171] E. Leurent, “An environment for autonomous driving decision-making,” Github, 2018.

https://github.com/eleurent/highway-env.

[172] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A Next-generation

Hyperparameter Optimization Framework,” dl.acm.org, pp. 2623–2631, Jul. 2019, doi:

10.1145/3292500.3330701.

[173] J. Schulman et al., “Trust Region Policy Optimization,” 2015, doi:

10.1080/03004279.2014.996242.

[174] C. Finn, A. Rajeswaran, S. Kakade, and S. Levine, “Online meta-learning,” 36th Int. Conf.

Mach. Learn. ICML 2019, vol. 2019-June, pp. 3398–3410, 2019.

