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ABSTRACT

One of the greatest challenges facing computational chemistry is the simulation of

electronically nonadiabatic dynamics. While there are several reduced dynamics meth-

ods for doing so, they often rely on restrictive assumptions such as weak coupling be-

tween the electronic and nuclear degrees of freedom (DOF) or between electronic states.

An alternative approach for simulating nonadiabatic dynamics is via mixed quantum-

classical (MQC) and quasiclassical (QC) methods which can handle strong coupling but

their reliability and computational feasibility decrease with increasing simulation time.

In comparison, the generalized quantum master equation (GQME) requires no approxi-

mation in its derivation and scales favorably with increasing simulation time.

In the first chapter of this dissertation, two previous approaches to the GQME will

be examined and a modified approach to the GQME (M-GQME) will be introduced. The

two previous approaches are reliant on splitting the Hamiltonian into system, bath, and

system-bath coupling terms which is neither natural nor convenient for simulating nona-

diabatic dynamics. In comparison, the M-GQME is optimized for simulating nonadia-

batic dynamics. Within the M-GQME, new protocols will be introduced for calculating

the memory kernel via different MQC and QC methods. Through the application of the

M-GQME to a spin-boson model with the memory kernel obtained via the Ehrenfest

method, it will be shown that the M-GQME is more stable and robust compared to the

previous approaches and that limiting the use of Ehrenfest to calculating the memory

kernel enhances its accuracy in comparison to using it to directly simulate the system’s

dynamics.
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In the second chapter, two mapping Hamiltonian (MH) approaches with a QC ap-

proximation will be outlined and utilized to calculate the memory kernel of the M-

GQME. These QC/MH methods have several advantages over the Ehrenfest method,

including describing both the electronic and nuclear degrees of freedom as classical-like

quantities and the ability to have non-Hermitian initial electronic states. By combining

the QC/MH methods with the M-GQME on the spin-boson model, it will be shown that

the M-GQME with the QC/MH methods outperforms both the M-GQME with Ehrenfest

and the direct application of the QC/MH methods.

In the third chapter, forty-four different methods for obtaining the memory kernel

of the GQME are systematically explained and explored, including the three approaches

previously discussed. The ability to calculate the memory kernel of the GQME is rel-

atively new and a thorough examination of the different ways of obtaining the memory

kernel has not been done. Through the study of these many approaches on the spin-boson

model, the impact of the different approaches will be described and the benefits of the

M-GQME compared to other approaches further solidified.

In the fourth and fifth chapters, the M-GQME will be applied to models of the Fenna-

Matthews-Olson (FMO) complex, a photosynthetic system, and the 2,6,-bis(methylene)

adamantyl (BMA) radical cation, which contains a conical intersection. These two sys-

tems represent areas of considerable interest, given the prevalence of photosynthesis and

conical intersections in biologically- and technologically-relevant systems. As will be

shown, the success of the M-GQME with FMO and preliminary failure with BMA illu-

minates future areas where the M-GQME is expected to succeed along with the limita-

tions of its application.
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CHAPTER I

Introduction

I.1 Motivation and Methods for Simulating Electronically

Nonadiabatic Dynamics

Broadly defined, chemical dynamics is the study of processes that involve mass, charge, and

energy transfer in molecular systems. Such processes can be reactive (i.e., involving breaking

and forming chemical bonds) or non-reactive (e.g., charge and energy transfer). Examples in-

clude vibrational and electronic relaxation and oxidation-reduction reactions which are pertinent

to many technologically- and biologically-relevant processes, such as photovoltaics and photosyn-

thesis. Quantum dynamical effects often play a central role in these important processes, including

when they take place in the condensed phase.1–3 As a result, the simulation of quantum dynamics

in condensed-phase systems remains one of the most important challenges facing computational

chemistry. In principle, quantum dynamics in such systems can be simulated by numerically solv-

ing the Schrödinger equation. However, the exponential scaling of the computational cost with

system dimensionality makes the numerically exact simulation of quantum dynamics in complex

molecular systems non-feasible, with the important exception of a subclass of model Hamiltonians

whose form makes such an exact simulation possible.4–10 Because of this, many methods involving

approximations have been proposed to simulate quantum dynamics in the condensed phase.

Nonadiabatic molecular dynamics corresponds to an important class of inherently quantum-

mechanical dynamical processes. Commonly-used approaches for modeling the nonadiabatic
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molecular dynamics are based on Marcus theory,1,11 Fermi’s golden rule (FGR),1,12–18 or the Red-

field quantum master equation.1,19–25 However, these approaches are based on multiple restrictive

assumptions (see Table I.1). In particular, these approaches are perturbative in nature and assume

weak coupling between the electronic and nuclear degrees of freedom (DOF) or between elec-

tronic states. An alternative approach for simulating nonadiabatic dynamics is via mixed quantum-

classical (MQC) and quasiclassical (QC) methods. These methods can handle strong coupling but

their reliability and computational feasibility decrease with increasing simulation time.

In this dissertation, an approach for simulating nonadiabatic molecular dynamics is pursued

that is based on the generalized quantum master equation (GQME). Importantly, the GQME de-

scribes the quantum-mechanically exact dynamics of the electronic DOF and as such is not subject

to the restrictive assumptions underlying the above-mentioned perturbative methods. The GQME

is arguably the most general framework for simulating electronically nonadiabatic reduced dy-

namics, as it requires no approximations in its derivation and has the ability to capture the full

electronic density matrix.26–35 Within the GQME, the memory kernel is the key quantity, as it both

gives the correlation between molecular structure and electronic dynamics and is the most difficult

quantity to calculate. The memory kernel can be calculated from projection-free inputs28 obtained

via MQC and QC methods, which are known to become inaccurate and/or expensive with increas-

ing simulation time. The memory kernel is often short-lived in comparison to the lifetime of the

system, allowing one to restrict the dynamical input to short times. Thus, restricting the use of

MQC and QC methods to calculating the short-lived memory kernel is an important advantage

of the GQME. For example, the Ehrenfest method36 is feasible for complex systems but known

to become increasingly inaccurate with increasing simulation time. Thus, restricting its use to a

short-time learning period circumvents the need to address its inaccuracy at longer times. Another

example is the mixed quantum-classical Liouville method,37–43 which is a robust and accurate

mixed quantum-classical method whose computational cost rapidly increases with increasing sim-

ulation time. Once again, restricting its use to a short-time learning period needed for calculating

the memory kernel allows one to extend the applicability of the mixed quantum-classical Liouville
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method to arbitrarily long times.

Marcus equilibrium FGR nonequilibrium FGR Redfield GQME
Quantum nuclear effects - + + + +

Dynamical nuclear effects - + + + +
Non-Condon effects - + + + +

Non-Gaussian statistics - + + + +
Nonequilibrium initial state - - + + +

Coherence dynamics - - - + +
Non-perturbative - - - - +

Table I.1: Hierarchy of Reduced Dynamics Methods

Direct application of GQME approaches is relatively new, with the first method introduced in

200328 and much of the further expansion and study occurring within the last five years.32,35,44–46

As such, deeper understanding of the approaches and the aspects that lead to better results is yet

to be fully determined. An in-depth review of the various GQME approaches would help with

determining the optimal approach to use in different applications along with identifying features

of the system and approaches that are most impactful. Since the GQME approaches can also be

used with a variety of input methods, creating a framework that can be used with one’s choice

of input MQC or QC method is essential, as different methods offer either greater efficiency or

greater applicability and the choice of method depends on the system being tested.

It is also important for the GQME framework, with all of its options, to be extendable to any

application involving complex molecular systems. Being able to do so will allow for direct insight

into the molecular picture underlying electronically nonadiabatic dynamics, to suggest ways for

improving the efficiency of systems and technologies based on nonadiabatic dynamics.

The GQME-based methodology fills a gap which is not addressed by currently available meth-

ods for simulating electronically nonadiabatic dynamics. Methods based on FGR or the Redfield

equation require assuming weak electronic coupling between electronic states or electronic and

nuclear DOF while direct application of MQC and QC methods that can handle strong coupling

often have decreasing reliability and/or computational feasibility with increasing simulation time.

The GQME-based methodology allows one to restrict the dynamical input to short times while

providing a unified framework that can describe a wide range of coupling strengths. As such,
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it capitalizes on the advantages of both alternative approaches without suffering from the corre-

sponding disadvantages.

I.2 Wave Function v. Density Operator Formalisms

Many formulations of quantum dynamics, including the Schrödinger equation, describe the state

of a system using a time-dependent wave function Ψ(r, t). However, wave functions can only

describe the state of isolated, or “closed,” quantum systems. A different description of the quantum

state is needed when dealing with an open system that constitutes a subsystem of an extended

quantum systems. The density operator offers this necessary flexibility, as it is able to describe the

state of both open and closed quantum systems.

While wave functions represent ket vectors, |Ψ(t)〉, in Hilbert space, the density operator is

represented by a matrix in the same space. Generally speaking, the density operator is given

by ρ̂(t) =
∑
k

pk(t)|ψk(t)〉〈ψk(t)|, where {pk(t)} are real, non-negative numbers that satisfy∑
k

pk(t) = 1 and {|ψk(t)〉} are kets in the Hilbert space of the system. The case where the

sum has only one term corresponds to a pure state while the case where it has two or more terms

corresponds to a mixed state. The density operator has several important properties, including that

it is Hermitian [i.e., ρ̂(t) = ρ̂†(t)]; the diagonal elements of the density matrix are non-negative

and have a trace of 1; the trace of the density operator squared is bound by Tr{ρ̂2(t)} ≤ 1, with

equality iff the system is in a pure state; and the density matrix elements must satisfy the Schwartz

inequality, 〈j|ρ̂(t)|j〉〈k|ρ̂(t)|k〉 ≥
∣∣∣〈k|ρ̂(t)|j〉

∣∣∣2.

For a closed system, the density operator often starts out in a pure state, given by ρ̂(t) =

|Ψ(t)〉〈Ψ(t)|. Furthermore, the state maintains its purity upon time evolution. The equation of

motion for the density operator of a closed system can then be derived using the time-dependent
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Schrödinger equation:

d

dt
ρ(t) =

d

dt

(
|Ψ(t)〉〈Ψ(t)|

)
=

(
d

dt
|Ψ(t)〉

)
〈Ψ(t)|+ |Ψ(t)〉

(
d

dt
〈Ψ(t)|

)
= − i

~
Ĥ|Ψ(t)〉〈Ψ(t)|+ i

~
|Ψ(t)〉〈Ψ(t)|Ĥ

d

dt
ρ(t) = − i

~

[
Ĥ, ρ̂(t)

]
≡ − i

~
Lρ̂(t) (I.1)

where L ≡ [Ĥ, ·] is the quantum Liouville superoperator. Eq. (I.1) is known as the quantum

Liouville equation and describes the dynamics of a closed system when described by the density

operator ρ̂(t).

I.3 Nakajima-Zwanzig Generalized Quantum Master Equa-

tion

In the case of a subsystem of an extended quantum system, the extended system can often be as-

sumed to be a closed system. Therefore, the dynamics of the extended system can be described by

the quantum Liouville equation, Eq. (I.1). Similar to the Schrödinger equation, a numerically exact

solution of the quantum Liouville equation scales unfavorably with system size and is computa-

tionally unfeasible for most systems of practical interest, particularly condensed-phase systems. A

reduced dynamics approach takes advantage of the fact that in many cases, only a few DOF are of

interest and the rest of the DOF only matter insofar as their impact on the dynamics of the DOF of

interest. Mathematically, one can focus on the subsystem of interest by using projection operator

techniques. A projection superoperator P is defined by the idempotence property P2 = P and has

a complimentary projection superoperator Q = 1 − P . The Nakajima-Zwanzig GQME describes

the dynamics of the projected density operator P ρ̂(t):

d

dt
P ρ̂(t) = −iPLP ρ̂(t)−

∫ t

t0

dτPLe−iQL(t−τ)QLP ρ̂(τ)− iPLe−iQL(t−t0)Qρ̂(t0) . (I.2)
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Figure I.1: Fenna-Matthews-Olson (FMO) Complex showing the eight electronic states on one of
the trimers.

The reader is referred to Section 10.4.2 of Ref. 1 for the derivation of this equation. It is important

to note that the general Nakajima-Zwanzig GQME given in Eq. (I.2) is an exact equation of motion

with no approximations made during the derivation.

I.4 Systems of Interest for the GQME

An important attribute of the GQME methodology is its applicability, by design, for simulating

nonadiabatic dynamics in truly complex molecular systems. Many condensed-phase molecular

systems of technological or biological importance are known to have quantum effects that are

not being fully captured by current methods used to study their dynamics. Systems of particular

interest include organic donor-acceptor dyads and donor-bridge-acceptor triads in liquid solution,47

organic photovoltaic materials,48 and photosynthetic systems such as the Fenna-Matthews-Olson

(FMO) complex49 (Fig. I.1)50 and Photosystem II.51
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These systems can be described by an overall Hamiltonian with the following general form:

Ĥ =
Ne∑
j=1

Ĥj|j〉〈j|+
Ne∑
j,k=1
k 6=j

V̂jk|j〉〈k| . (I.3)

Here, Ĥj = P̂/2 + Vj

(
R̂
)

is the nuclear Hamiltonian when the system is in the electronic state

|j〉, R̂ =
(
R̂1, ..., R̂Nn

)
and P̂ =

(
P̂1, ..., P̂Nn

)
are the mass-weighted position and momentum

operators of the Nn nuclear DOF, and
{
V̂jk = Vjk

(
R̂
)}

couple electronic states to each other.

Throughout this dissertation, boldfaced variables, e.g., A, indicate vector quantities; a hat over a

variable, e.g., B̂, indicates an operator quantity; and calligraphic font, e.g., C, indicates a super-

operator.

It should be noted that the electronic states, {|j〉}, are assumed to be independent of R̂ (i.e., the

so-called crude adiabatic basis52). The index j in Eq. (I.3) runs over the Ne electronic states. For

example, a two-state donor-acceptor system would correspond to Ne = 2. Many processes involv-

ing nonadiabatic dynamics in condensed phase systems are described in terms of a Hamiltonian of

the form of Eq. (I.3). Furthermore, describing nonadiabatic dynamics in terms of a crude adiabatic

representation, rather than in terms of Born-Oppenheimer representation, is not an approximation

since the dynamics is independent of the representation employed.52

Importantly, {R̂, P̂} are meant to correspond to the Cartesian positions and momenta of the

individual atoms in a complex molecular system that would typically consist of a large number

(> 102) of atoms. Thus, Vj
(
R̂
)

would typically correspond to the electronic-state-specific po-

tential energy surface (PES) that describes the interaction between the atoms in electronic state

|j〉. The electronic coupling terms,
{
Vjk

(
R̂
)}

, can be R̂-dependent, with the assumption that

they are R̂-independent corresponding to the Condon approximation. Our working hypothesis is

that
{
Vj

(
R̂
)}

and
{
Vjk

(
R̂
)}

can be obtained from on-the-fly electronic structure calculations

and/or semi-empirical force fields (e.g., see Ref. 18).

In most cases of practical importance, the initial state of the overall (nuclear + electronic)
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system would be given by a density operator of the following form:

ρ̂(0) = ρ̂n(0)⊗ σ̂(0) . (I.4)

Here, ρ̂n(0) = Tre{ρ̂(0)} is the reduced density operator that describes the initial state of the

nuclear DOF, where Tre{·} stands for partially tracing over the electronic Hilbert space. Similarly,

the reduced density operator that describes the initial state of the electronic DOF is obtained by

partially tracing over the nuclear Hilbert space:

σ̂(0) = Trn{ρ̂(0)} =
Ne∑
j,k=1

σjk(0)|j〉〈k| . (I.5)

The state of the overall system at a later time t would then be given by:

ρ̂(t) = e−iĤt/~ρ̂n(0)⊗ σ̂(0)eiĤt/~ ≡ e−iLt/~ρ̂n(0)⊗ σ̂(0) . (I.6)

Here, Ĥ is the overall Hamiltonian, Eq. (I.3), and L(·) = [Ĥ, ·] is the corresponding Liouvillian.

The nuclear and electronic states at time t are described by the corresponding reduced density

operators,

ρ̂n(t) = Tre{ρ̂(t)} ,

σ̂(t) = Trn{ρ̂(t)} =
Ne∑
j,k=1

σjk(t)|j〉〈k| . (I.7)

Importantly, knowledge of σ̂(t) would allow for the evaluation of both the electronic populations,

{σjj(t) = 〈j|σ̂(t)|j〉}, and coherences, {σjk(t) = 〈j|σ̂(t)|k〉|j 6= k}. The electronic density

matrix element at time t can be written in terms of overall system quantum correlation functions
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of the form 〈ÂB̂(t)〉 = Tr
{
ÂeiĤt/~B̂e−iĤt/~

}
:

σjk(t) =
Ne∑

u,v=1

σuv(0) Tr
{
ρ̂n(0)|u〉〈v|eiĤt/~|k〉〈j|e−iĤt/~

}
. (I.8)

Here, Tr ≡ TreTrn is the trace over the electronic and nuclear Hilbert spaces.

I.5 Overview of The Dissertation

The rest of this dissertation will be organized as follows. In Chapter II, the previous approaches

to the GQME will be outlined and a modified approach introduced with results provided compar-

ing these approaches on the spin-boson model with the Ehrenfest method as input. In Chapter

III, two mapping Hamiltonian (MH) methods combined with a quasiclassical (QC) approximation

will be introduced and their results as input methods for the modified approach to the GQME (M-

GQME) will be compared with the Ehrenfest method on the spin-boson model. An exploration of

the various approaches to the memory kernel of the GQME will be outlined in Chapter IV along

with the information gleaned from applying these methods to a spin-boson model. In Chapter V,

the Fenna-Matthews-Olson (FMO) complex, a photosynthetic complex with long-lived quantum

coherences, will be introduced and the results from applying the M-GQME to FMO will be pro-

vided and discussed. Another molecular system, the non-Condon 2,6-bis(methylene) adamantyl

(BMA) radical cation will be introduced in Chapter VI along with two other systems of interest for

future work and preliminary results from the application of M-GQME to BMA will be provided. A

short summary of the dissertation and outlook for future projects with the M-GQME will be given

in Chapter VII. Mathematical proofs of equations and additional results for the spin-boson model

from Chapter IV are provided in Appendices A and B, respectively.

9



CHAPTER II

Modified Approach to the Generalized Quantum

Master Equation

II.1 Introduction

The modified generalized quantum master equation (M-GQME) scheme presented herein builds

upon, but is distinctly different from, previously proposed schemes28,29,53 based on the Nakajima-

Zwanzig GQME (NZ-GQME) given in Eq. (I.2).3,26–28,54–61 These previous approaches are built by

first dividing the overall Hamiltonian into a system-bath form,

Ĥ = ĤS + ĤB + ĤBS . (II.1)

Here, ĤS is the system Hamiltonian, ĤB is the bath Hamiltonian, and ĤBS is the coupling between

system and bath. While casting the overall Hamiltonian in the system-bath form has proven to be

extremely useful in many other contexts, it is neither natural nor convenient when dealing with an

overall Hamiltonian of the form of Eq. (I.3). This is because the first term in Eq. (I.3),
Ne∑
j=1

Ĥj|j〉〈j|,

associates a different nuclear Hamiltonian, Ĥj , with each electronic state, |j〉, thereby making it

impossible to come up with a uniquely defined bath Hamiltonian, ĤB. It should be noted that

while it is in principle possible to cast the Hamiltonian in Eq. (I.3) in the form of Eq. (II.1), the

fact that there is no one unique way of accomplishing this can complicate the implementation of a

GQME-based approach which is based on the system-bath form in a number of ways:
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(i) First, when using an approximate method to evaluate the memory kernel, different choices

of ĤB, ĤS , and ĤBS may lead to different results without a clear criterion for choosing

between them.

(ii) Second, the nuclear DOF are often assumed to start out at equilibrium with respect to ĤB,

such that ρ̂n(0) = ρ̂eq
B = exp

[
−βĤB

]
/ZB where ZB is the canonical partition function to

ĤB, which means that the definition of ĤB needs to change whenever the nuclear initial

conditions, i.e., ρ̂n(0), does.

(iii) Third, the system-bath coupling, ĤBS , is often defined so that TrB{ĤBS ρ̂
eq
B} = 0, which

implies that the definition of ĤBS will also be dependent on the choice of ĤB.

(iv) Fourth, the projection operator used to derive the GQME is often defined as P(·) = ρ̂eq
B ⊗

TrB{·}, and would also need to be modified when the definition of ĤB changes.

(v) Fifth, the second term in Eq. (I.3),
Ne∑
j,k=1
k 6=j

V̂jk|j〉〈k|, is purely electronic in the Condon ap-

proximation, V̂jk → Vjk, and therefore part of the system Hamiltonian. However, this term

becomes a system-bath coupling term in the non-Condon case, thereby making it difficult to

create a unified computational framework that can treat both Condon and non-Condon cases.

Therefore, the development of the modified GQME (M-GQME) approach that avoids casting the

Hamiltonian in the system-bath form given in Eq. (II.1) is an improvement over the previous ap-

proaches.

The rest of this chapter is organized as follows. Previous approaches to the GQME that are

based on the system-bath splitting of the Hamiltonian given in Eq. (II.1) are described in Sec. II.2.

The modified approach to the GQME is outlined in Sec. II.3. The method of obtaining the memory

kernel via projection-free inputs is described in Sec. II.4. The procedure for calculating these

projection-free inputs with the Ehrenfest method is outlined in Sec. II.5. The results obtained by

applying the Ehrenfest method with the GQME to a spin-boson model and the discussion of these

results are reported in Sec. II.6. Concluding remarks are given in Sec. II.7.
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II.2 Previous Approaches to the GQME

In previous approaches to the GQME, that Hamiltonian is in system-bath form as given in

Eq. (II.1) and the initial nuclear density matrix in Eq. (I.4) is often given by ρ̂n(0) = ρ̂eq
B =

e−βĤB
/

TrB
{
e−βĤB

}
. It is also often assumed, without loss of generality, that ĤBS is defined

such that 〈ĤBS〉eq
B ≡ TrB

{
ρ̂eq
B ĤBS

}
= 0. As described in Sec. I.3, the dynamics of the projected

state, P ρ̂(t) is given by the NZ-GQME given in Eq. (I.2).1,2,62,63 Using a projection operator of the

form P(·) = ρ̂eq
B ⊗ TrB{·}, substituting it into Eq. (I.2), and tracing over the bath Hilbert space

then leads to the quantum-mechanically exact dynamics of the reduced system density operator,

given by a GQME of the following form:

d

dt
σ̂(t) = − i

~
LSσ̂(t)−

∫ t

0

dτK(τ)σ̂(t− τ) . (II.2)

Here, −iLSσ̂(t)/~ = −i[ĤS, σ̂(t)]/~ and −
∫ t

0
dτK(τ)σ̂(t − τ) correspond to the bath-free and

bath-induced contributions to the system’s reduced dynamics, respectively.

The bath-induced component is dictated by the memory kernel superoperator, K(τ), which,

under the above mentioned conditions, can be written in a variety of different, yet equivalent,

forms:

K(τ) =
1

~2
TrB
{
LBSe−iQLτ/~QLρ̂eq

B

}
=

1

~2
TrB
{
LBSe−iQLτ/~QLBS ρ̂eq

B

}
=

1

~2
TrB
{
LBSe−iQLτ/~LBS ρ̂eq

B

}
=

1

~2
TrB
{
LBSe−iQLQτ/~LBS ρ̂eq

B

}
=

1

~2
TrB
{
LBSQe−iLQτ/~LBS ρ̂eq

B

}
=

1

~2
TrB
{
LBSe−iLQτ/~LBS ρ̂eq

B

}
=

1

~2
TrB
{
LBSe−i(L−LBSP)τ/~LBS ρ̂eq

B

}
. (II.3)
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Here, LBS(·) = [ĤBS, ·] and Q = 1 − P . The memory kernel K(τ) typically vanishes at τ > τc,

where τc is the characteristic finite correlation or memory time of the system.

Simulating the dynamics of the system DOF based on Eq. (II.2) requires knowledge of LS and

K(τ). Obtaining LS is straightforward given knowledge of the Hamiltonian, making the mem-

ory kernel the key quantity needed for simulating the dynamics of the electronic DOF based on

Eq. (II.2). However, the evaluation ofK(τ) is made challenging by the fact that it is time-dependent

and the time dependence of K(τ) is nontrivial because it is dictated by the projection-dependent

propagator, e−iQLτ/~, rather than by the projection-independent propagator, e−iLτ/~. One strategy

for overcoming the latter difficulty is by using a scheme for evaluating K(τ) from projection-free

inputs, i.e., inputs that involve e−iLτ/~ rather than e−iQLτ/~. Combined with exact or approximate

methods for evaluating those projection-free inputs can then lead to a methodology that can be

applied to complex molecular systems.

The following subsections outline two of the previously proposed schemes for calculatingK(τ)

from projection-free inputs. The differences between the schemes can be generally traced back to

which of the forms of the memory kernel, Eq. (II.3), is chosen as the starting point. Each of these

approaches then uses the following general operator identity to determine a scheme for evaluating

K(τ) from projection-free inputs:28,29

e−iBτ/~ = e−iAτ/~ − i

~

∫ τ

0

dτ ′e−iA(τ−τ ′)/~(B −A)e−iBτ
′/~ . (II.4)

II.2.1 Shi-Geva Approach

The original scheme for calculating the memory kernel of the GQME28 was based on the fol-

lowing expression for the memory kernel [see Eq. (II.3)]:

K(τ) =
1

~2
TrB
{
LBSe−i(L−LBSP)τ/~LBS ρ̂eq

B

}
. (II.5)
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SubstitutingA = L and B = L−LBSP into the operator identity in Eq. (II.4), one can then obtain

e−i(L−LBSP)τ/~ = e−iLτ/~ +
i

~

∫ τ

0

dτ ′e−iL(τ−τ ′)/~LBSPe−i(L−LBSP)τ ′/~ . (II.6)

Substituting Eq. (II.6) into Eq. (II.5) leads to the following expression for the memory kernel:

K(τ) = K1(τ) + i

∫ τ

0

K1(τ − τ ′)K2(τ ′) . (II.7)

Here,

K1(τ) =
1

~2
TrB
{
LBSe−iLτ/~LBS ρ̂eq

B

}
(II.8)

and

K2(τ) =
1

~
TrB
{
e−i(L−LBSP)τ/~LBS ρ̂eq

B

}
(II.9)

are auxiliary kernels that are needed in order to calculate the memory kernel.

It should be noted that unlike K1(τ), which is projection-free, K2(τ) is projection-dependent.

As such, calculating K2(τ) involves a similar challenge to that of calculating K(τ). However,

K2(τ) can be evaluated from the following Volterra equation, obtained by substituting Eq. (II.6)

into Eq. (II.9):

K2(τ) = K3(τ) + i

∫ τ

0

dτ ′K3(τ − τ ′)K2(τ ′) . (II.10)

Here,

K3(τ) =
1

~
TrB
{
e−iLτ/~LBS ρ̂eq

B

}
(II.11)

is a projection-free auxiliary kernel. Thus, given the projection-free inputs K1(τ) and K3(τ), the

memory kernel, K(τ), can be obtained with the Shi-Geva (SG-NZ) approach via the two coupled

equations, Eqs. (II.7) and (II.10).
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II.2.2 Zhang-Ka-Geva Approach

An alternative scheme for calculating the memory kernel of the GQME29 was based on writing

the memory kernel in the following form [see Eq. (II.3)]:

K(τ) =
1

~2
TrB
{
LBSe−iQLτ/~QLρ̂eq

B

}
. (II.12)

SubstitutingA = L and B = QL into Eq. (II.4) and plugging that into Eq. (II.12) then leads to the

following Volterra equation for K(τ):

K(τ) = Φ̇(τ) +
i

~
Φ(τ)LS +

∫ τ

0

dτ ′Φ(τ − τ ′)K(τ ′) . (II.13)

Here, Φ(τ) is a projection-free input:

Φ(τ) =
i

~
TrB
{
LBSe−iLτ/~ρ̂eq

B

}
. (II.14)

Therefore, the memory kernel can be obtained with the Zhang-Ka-Geva (ZKG-NZ) approach by

first calculating Φ(τ) and Φ̇(τ) and then calculating the memory kernel via Eq. (II.13).

II.3 The Modified Approach to the GQME

The modified approach starts with a system whose overall Hamiltonian is given by Eq. (I.3),

rather than by Eq. (II.1). As described in Sec. I.3, the dynamics of the projected state, P ρ̂(t) is

given by the NZ-GQME given in Eq. (I.2).1,2,62,63 Next, the projection operator is explicitly defined

as follows:

P(·) = ρ̂ref
n ⊗ Trn{·} . (II.15)

Here, ρ̂ref
n is a reference nuclear density operator of one’s choice (as long as Trn

{
ρ̂ref
n

}
= 1, which

is required for P2 = P). Substituting the projection operator in Eq. (II.15) into Eq. (I.2) and
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tracing over the nuclear Hilbert space then leads to the following GQME for the reduced electronic

density operator σ̂(t):

d

dt
σ̂(t) = − i

~
〈L〉ref

n σ̂(t)−
∫ t

0

dτ K(τ)σ̂(t− τ) + I(t) . (II.16)

Here,

〈L〉ref
n = Trn

{
Lρ̂ref

n

}
(II.17)

accounts for the Hamiltonian and Markovian dynamics generated by the Hamiltonian 〈Ĥ〉ref
n =

Trn
{
Ĥρ̂ref

n

}
, while the remaining two terms on the R.H.S. account for the non-Hamiltonian and

non-Markovian dynamics generated by the coupling between the electronic and nuclear DOF. More

specifically, the memory kernel, K(τ), which accounts for the effect of the nuclear DOF within the

time interval (0, t) on the electronic DOF at time t, is given by

K(τ) =
1

~2
Trn
{
L e−iQLτ/~QLρ̂ref

n

}
(II.18)

and the inhomogeneous term, Î(t), which accounts for the effect of the initial state of the nuclear

DOF on the electronic DOF at time t, is given by

Î(t) = − i
~

Trn
{
Le−iQLt/~Qρ̂n(0)

}
. (II.19)

It should be noted that both K(τ) and Î(t) would typically vanish at τ, t > τc, where τc is the

characteristic finite correlation or memory time of the electronic DOF.

As is well known, there is no one unique choice of ρ̂ref
n in Eq. (II.15) and the specific choice is

dictated by the questions one is asking and convenience.29,64,65 As a result, different choices of ρ̂ref
n

would lead to different versions of the GQME. In this sense, the equation of motion that governs

the dynamics of the electronic DOF is not unique, although the different equations of motion must

all reproduce the same electronic dynamics (as long as the quantum-mechanically exact memory

kernel and inhomogeneous term can be obtained). In practice, it is convenient to choose ρ̂ref
n in a
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manner that will simplify the resulting GQME. The assignment ρ̂ref
n = ρ̂n(0) (the initial state of the

nuclear DOF) is such a convenient choice and leads to the following definition of the projection

operator:

P(·) = ρ̂n(0)⊗ Trn{·} . (II.20)

This choice is convenient because it leads to the elimination of the inhomogeneous term from the

GQME.29 However, it should be noted that this choice also implies that the memory kernel will be

explicitly dependent on the initial state of the nuclear DOF. In other words, changing the state of

the nuclear DOF at the initial time t = 0 [ρ̂n(0)] would alter the equation of motion [see Eq. (II.21)]

that dictates the dynamics of the electronic DOF at later times t > 0. It should also be noted that

the specific form of ρ̂n(0) is dictated by how the system is prepared, which is ultimately dependent

on the experimental setup. Importantly, ρ̂n(0) need not be of the form ρ̂eq
B = Z−1

B e−βĤB . It should

be noted that this is also not required within the ZKG-NZ scheme (see Sec. II.2.2).29

Substituting the projection operator in Eq. (II.20) into Eq. (II.16) leads to the following GQME

for the electronic reduced density operator, σ̂(t):

d

dt
σ̂(t) = − i

~
〈L〉0nσ̂(t)−

∫ t

0

dτK(τ)σ̂(t− τ) . (II.21)

Here, 〈L〉0n (the overall Liouvillian averaged over the initial state of the nuclear DOF, resulting in

a superoperator in the electronic Liouville-subspace) and K(τ) (the memory kernel superoperator)

are given by:

〈L〉0n (·) ≡ Trn {ρ̂n(0)L} (·)

=

 Ne∑
j=1

〈Ĥj〉0n|j〉〈j|+
Ne∑
j,k=1
k 6=j

〈V̂jk〉0n|j〉〈k|, ·

 , (II.22)

and

K(τ) =
1

~2
Trn
{
Le−iQLτ/~QLρ̂n(0)

}
, (II.23)
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respectively.

Importantly, evaluation of the Liouvillian and memory kernel terms in Eqs. (II.22) and (II.23),

respectively, does not require casting the Hamiltonian in system-bath form or that the initial state

of the nuclear DOF corresponds to thermal equilibrium with respect to the bath Hamiltonian. In

what follows, Eq. (II.21) is referred to as the modified GQME (M-GQME), in order to distinguish

it from versions of the GQME which are based on casting the overall Hamiltonian in system-bath

form and assuming that the initial state of the nuclear DOF corresponds to equilibrium with respect

to the bath Hamiltonian (see Sec. II.2).

It should be noted that the expression for the memory kernel, Eq. (II.23), can be further simpli-

fied by introducing the Condon approximation, V̂jk → Vjk, leading to the following equation for

the memory kernel:

K(τ) =
1

~2
Trn
{
Lzero e

−iQLτ/~QLzeroρ̂n(0)
}

. (II.24)

To prove this, let L = Lzero + Lint, where

Lzero(·) = [Ĥzero, ·] =

[
Ne∑
j=1

Ĥj|j〉〈j|, ·

]
,

Lint(·) = [Ĥint, ·] =

 Ne∑
j,k=1
k 6=j

V̂jk|j〉〈k|, ·

 ,

(II.25)

[see Eq. (I.3)] and note that Lint becomes a purely electronic superoperator in the Condon approx-
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imation. As a result:

Trn
{
Linte

−iQLτ/~QÂ
}

= LintTrn
{
e−iQLτ/~QÂ

}
= LintTrn

{[
1− i

~
QLτ +

1

2

(
− i
~

)2

QLQLτ 2 + . . .

]
QÂ

}

= LintTrn

{[
Q− i

~
QLQτ +

1

2

(
− i
~

)2

QLQLQτ 2 + . . .

]
Â

}

= LintTrn {Q[. . . ]} = Lint (Trn {[. . . ]} − Trn {P [. . . ]})

= Lint (Trn {[. . . ]} − Trn {[. . . ]}) = 0 .

(II.26)

This implies that one can replace L by Lzero on the left side of the exponent in Eq. (II.23).

L can also be replaced by Lzero on the right side of the exponent in Eq. (II.23), since

QLintρ̂n(0)σ̂(t) = LintQρ̂n(0)σ̂(t) = Lint [ρ̂n(0)σ̂(t)− P ρ̂n(0)σ̂(t)]

= Lint [ρ̂n(0)σ̂(t)− ρ̂n(0)σ̂(t)] = 0 .

(II.27)

Therefore, in the Condon limit,

K(τ) =
1

~2
Trn
{
Lzeroe

−iQLτ/~QLzeroρ̂n(0)
}
. (II.28)

II.4 M-GQME Memory Kernel and Projection-Free Inputs

Simulating the dynamics of the electronic DOF based on Eq. (II.21) requires knowledge of

〈L〉0n and K(τ). Obtaining 〈L〉0n requires the evaluation of the time-independent averages over the

nuclear DOF at the initial time, 〈Ĥj〉0n and 〈V̂jk〉0n, which are relatively straightforward to calculate,

either fully quantum-mechanically, semiclassically, or fully classically.66

Assuming that 〈L〉0n can be obtained, the memory kernel of the M-GQME, Eq. (II.23), is the key

quantity needed for simulating the dynamics of the electronic DOF based on Eq. (II.21). However,
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unlike 〈L〉0n, the evaluation of K(τ) is made challenging by the fact that it is time-dependent.

Furthermore, the time-dependence of K(τ) is nontrivial because it is dictated by the projection-

dependent propagator, e−iQLτ/~, rather than by the projection-independent propagator, e−iLτ/~.

One strategy for overcoming the latter difficulty is by using a scheme for evaluating K(τ) from

projection-free inputs, i.e., inputs that involve e−iLτ/~ rather than e−iQLτ/~. Combined with exact

or approximate methods for evaluating those projection-free inputs can then lead to a methodology

that can be applied to complex molecular systems.

Substituting A = L and B = QL into Eq. (II.4) results in

e−iQLτ/~ = e−iLτ/~ +
i

~

∫ τ

0

dτ ′e−iL(τ−τ ′)/~PLe−iQLτ ′/~ . (II.29)

Substituting Eq. (II.29) into Eq. (II.23) then leads the following Volterra equation of the second-

kind for K(τ):

K(τ) = iḞ(τ)− 1

~
F(τ)〈L〉0n + i

∫ τ

0

dτ ′F(τ − τ ′)K(τ ′) . (II.30)

Here,

F(τ) =
1

~
Trn
{
Le−iLτ/~ρ̂n(0)

}
. (II.31)

Thus, given the projection-free quantity F(τ), Eq. (II.30) can be solved numerically for the

projection-dependent K(τ) (see Sec. II.4.1). In the Condon case, substituting Eq. (II.29) into

Eq. (II.28) leads to the following Volterra equation of the second-kind for K(τ) in the Condon

limit:

K(τ) = F1(τ)− 1

~
F2(τ)〈Lzero〉0n + i

∫ τ

0

dτ ′F2(τ − τ ′)K(τ ′) . (II.32)

Here,

F1(τ) =
1

~2
Trn
{
Lzeroe

−iLτ/~Lzeroρ̂n(0)
}

, (II.33)

F2(τ) =
1

~
Trn
{
Lzeroe

−iLτ/~ρ̂n(0)
}

. (II.34)
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In contrast to the memory kernel, F(τ), F1(τ), and F2(τ) are not required to have finite lifetimes.

Hence, the problem of calculating K(τ) translates into that of calculating F(τ) and Ḟ(τ) in the

non-Condon case and F1(τ) and F2(τ) in the Condon case.

In practice, K(τ), F(τ), F1(τ), and F2(τ) are each represented by N2
e ×N2

e matrices in terms

of the electronic basis {|j〉|j = 1, . . . , Ne} (e.g. 4 × 4 matrices in the case of a system with two

electronic states). The corresponding matrix elements of F(τ) are given by:

Fjkuv(τ) =
1

~
Tr
{

(|j〉〈k|)†Le−iLτ/~ρ̂n(0)|u〉〈v|
}

=
1

~
Tr
{
ρ̂n(0)|u〉〈v|eiĤτ/~[|k〉〈j|, Ĥ]e−iĤτ/~

}
=

1

~
Tr
{
ρ̂n(0)|u〉〈v|eiĤτ/~

[
Ĥj − Ĥk

]
|k〉〈j|e−iĤτ/~

}
+

1

~

Ne∑
l=1

Tr
{
ρ̂n(0)|u〉〈v|eiĤτ/~

[
V̂jl|k〉〈l| − V̂lk|l〉〈j|

]
e−iĤτ/~

}
(II.35)

Performing similar derivations, the matrix elements of F1(τ) are given by

F1,jkuv(τ) =
1

~2
Tr

{[
Ĥuρ̂n(0)− ρ̂n(0)Ĥv

]
|u〉〈v|eiĤτ/~|b〉〈a|

(
Ĥa − Ĥb

)
e−iĤτ/~

}
(II.36)

and the matrix elements of F2(τ) are given by

F2,jkuv(τ) =
1

~
Tr

{
ρ̂n(0)|u〉〈v|eiĤτ/~|b〉〈a|

(
Ĥa − Ĥb

)
e−iĤτ/~

}
(II.37)

Thus, Fjkuv(τ), F1,jkuv(τ), and F2,jkuv(τ) can be given in terms of expressions of the form:

Tr
{

Ω̂ |u〉〈v|eiĤτ/~ Γ̂ |b〉〈a|e−iĤτ/~
}

. (II.38)

Here, the nuclear operator Ω̂ is ρ̂n(0) for Fjkuv(τ) and F2,jkuv(τ) and
[
Ĥuρ̂n(0) − ρ̂n(0)Ĥv

]
for

F1,jkuv(τ) while the nuclear operator Γ̂ = Γ(R̂) is either

(i) Vj
(
R̂
)
− Vk

(
R̂
)

with a = j and b = k,
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(ii) Vja
(
R̂
)

with a 6= j and b = k, or

(iii) Vbk
(
R̂
)

with a = j and b 6= k

and terms with a 6= j and b 6= k do not occur and options (ii) and (iii) do not occur for F1,jkuv(τ)

and F2,jkuv(τ).

The number of quantities of the form of Eq. (II.38) that needs to be calculated scales rather

favorably with the dimensionality of the electronic Hilbert space (∼N4
e ). It should be noted that

those quantities only need to be calculated once for a given initial state, and that they can be

calculated independently in a trivially parallelized manner.

II.4.1 Numerical Solution of the Memory Kernel Volterra Equation

In this section, the iterative algorithm used for solving Eqs. (II.30) and (II.32) numerically is

outlined. It should be noted that these equations are Volterra equations of the second kind, and as

such have the following general form:

f(t) =

∫ t

t0

ds h(t, s)f(s) + g(t) . (II.39)

Given that h(t, s) and g(t) are known, this equation is solved for f(t). Comparing Eq. (II.39) with

Eqs. (II.30) and (II.32) shows that in our case this is an operator equation with t0 → 0, t → τ ,

s → τ ′, and f(t) → K(τ) in both the Condon and non-Condon cases and h(t, s) → iF(τ − τ ′)

and g(t) = iḞ(τ) − 1
~F(τ)〈L〉0n for a non-Condon system and h(t, s) → iF2(τ − τ ′) and g(t) =

F1(τ)− 1
~F2(τ)〈Lzero〉0n for a Condon system.

The iterative algorithm starts out with f(t) = g(t) as the initial guess. Substituting this initial

guess into Eq. (II.39) generates another estimator of f(t), which is then substituted back into

Eq. (II.39). This procedure is repeated until convergence, where the estimators obtained in two

subsequent steps are indistinguishable within a prescribed tolerance.

In practice, f(t) is a matrix and time is discretized, tn = n∆t with n = 0, 1, 2, ..., Nmax. Let
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f ijk(n∆t) be the value of (j, k)-th matrix element of f after the i-th iteration:

f ijk(n∆t) =

∫ n∆t

0

ds

Ne∑
l=1

hjl(n∆t, s)f i−1
lk (s) + gjk(n∆t) (II.40)

The time integral in Eq. (II.40) is calculated via the extended trapezoidal rule. The results re-

ported in this paper were obtained using the following criterion for convergence:
∣∣∣f ijk(n∆t) −

f i−1
jk (n∆t)

∣∣∣ ≤ 10−10 (for all time steps n and matrix elements jk). For the applications reported

in this chapter, the typical number of iterations necessary for obtaining converged results was 4-16.

II.5 Ehrenfest Method for Obtaining the Projection-Free In-

puts

The methodology outlined in Sec. II.4 is general and can be used for calculating the memory

kernel of the M-GQME via any exact or approximate method of one’s choice.29,32,44,65,67 In this

section, a protocol is outlined for calculating the projection-free inputs Fjkuv(τ), F1,jkuv(τ), and

F2,jkuv(τ) via the Ehrenfest method. This starts by noting that they can be given in terms of expres-

sions of the form of Eq. (II.38). The expression in Eq. (II.38) can be interpreted as the expectation

value of Γ̂ |b〉〈a| at time t when the initial state is given by Ω̂ |u〉〈v| and the dynamics is dictated by

the overall Hamiltonian, Ĥ [see Eq. (I.3)]. However, while Ω̂ always contains ρ̂n(0), which is by

definition a legitimate nuclear density operator, associating |u〉〈v| with an initial electronic density

operator, σ̂(0), is not possible when u 6= v since in this case |u〉〈v| is not Hermitian, has zero trace,

and does not satisfy the Schwarz inequality [ |σjk| ≤ (σjjσkk)
1/2 ].

The fact that |u〉〈v| is not a legitimate density operator when u 6= v can become an obstacle

when one attempts to evaluate Eq. (II.38) via semiclassical or mixed quantum-classical methods. In

this section, this point is demonstrated in the context of the Ehrenfest method. Within this method,

the nuclear DOF are treated classically, the electronic DOF are treated quantum-mechanically, and

the impact of the electronic DOF on the nuclear DOF is treated in a mean-field manner. In practice,
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initial positions and momenta of the nuclear DOF are sampled based on the Wigner transform of

ρ̂n(0), ρn,W (R,P; t = 0), or its classical limit, and expectation values are obtained by averaging

over the corresponding ensemble of classical trajectories. The effect of the nuclear DOF on the

electronic DOF is accounted for by the fact that each classical trajectory of the nuclear DOF, R(t),

corresponds to a different realization of a time-dependent Hamiltonian that govern the dynamics

of the electronic density operator,

Ĥel(t) =
Ne∑
j=1

Vj[R(t)]|j〉〈j|+
Ne∑
j,k=1
k 6=j

Vjk[R(t)]|j〉〈k| . (II.41)

The effect of the electronic DOF on the nuclear DOF is accounted for by propagating the nuclear

DOF on the mean-field PES:

Vmf (R) =
Ne∑
j=1

σjj(t)Vj(R) +
Ne∑
j,k=1
k 6=j

σkj(t)Vjk(R) . (II.42)

Attempting to use the Ehrenfest method when the initial electronic density operator is non-

Hermitian, e.g., σ̂(0) = |u〉〈v| when u 6= v, results in a complex mean-field PES, which in turn

leads to nonphysical complex classical positions and momenta of the nuclear DOF. This problem

can be bypassed by switching to a basis of the electronic Liouville space consisting of operators

that satisfy the conditions for a density operator. The choice of basis is not unique but a relatively

unbiased choice that satisfies hermiticity, trace one, and Schwarz inequality corresponds to:

X̂uv =
1

2

[
|u〉〈u|+ |v〉〈v|+ |u〉〈v|+ |v〉〈u|

]
,

Ŷuv =
1

2

[
|u〉〈u|+ |v〉〈v| − i|u〉〈v|+ i|v〉〈u|

]
.

(II.43)

The results reported in this chapter were obtained based on this choice. It should be noted that

Montoya-Castillo and Reichman32 proposed an alternative approach for resolving the above men-

tioned discrepancies which is based on the identity |u〉〈v| + |v〉〈u| =
∑

k λk|λk〉〈λk| and sep-
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arately simulating Ehrenfest dynamics for each |λk〉〈λk| (here, {|λk〉} are the eigenfunctions of

|u〉〈v|+ |v〉〈u| and {λk} are the corresponding eigenvalues).

In practice, one starts with X̂uv and Ŷuv instead of |u〉〈v| and |v〉〈u| as initial electronic states,

to obtain the Ehrenfest approximations of

Tr
{

Ω̂ X̂uve
iĤτ/~ Γ(R̂)|b〉〈a|e−iĤτ/~

}
,

Tr
{

Ω̂ Ŷuve
iĤτ/~ Γ(R̂)|b〉〈a|e−iĤτ/~

}
.

(II.44)

The corresponding results for |u〉〈v| and |v〉〈u| as the initial electronic states can then be expressed

as linear combinations of the results in Eq. (II.44). For example:

Tr
{

Ω̂ |u〉〈v|eiĤτ/~ Γ(R̂)|b〉〈a|e−iĤτ/~
}

= Tr
{

Ω̂ X̂uve
iĤτ/~ Γ(R̂)|b〉〈a|e−iĤτ/~

}
+ iTr

{
Ω̂ Ŷuve

iĤτ/~ Γ(R̂)|b〉〈a|e−iĤτ/~
}

− 1

2
(1 + i)Tr

{
Ω̂ |u〉〈u|eiĤτ/~ Γ(R̂)|b〉〈a|e−iĤτ/~

}
− 1

2
(1 + i)Tr

{
Ω̂ |v〉〈v|eiĤτ/~ Γ(R̂)|b〉〈a|e−iĤτ/~

}
.

(II.45)

II.6 Results for a Spin-Boson Model

In this section, the applicability and robustness of the M-GQME is demonstrated by obtaining

the memory kernel via Ehrenfest-based projection-free inputs and applying the M-GQME to a spin-

boson model system with two electronic states [donor (D) and acceptor (A)], harmonic electronic

PESs which are shifted in equilibrium energy and geometry, and an electronic coupling coefficient

which is assumed to be constant (Condon approximation). The overall Hamiltonian is given by:

Ĥ = ĤD|D〉〈D|+ ĤA|A〉〈A|+ VDA|D〉〈A|+ VAD|A〉〈D| , (II.46)
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where

ĤD = ε+
Nn∑
i=1

[
P̂ 2
i

2
+

1

2
ω2
i R̂

2
i − ciR̂i

]
,

ĤA = −ε+
Nn∑
i=1

[
P̂ 2
i

2
+

1

2
ω2
i R̂

2
i + ciR̂i

]
,

VDA = VAD = Γ .

(II.47)

Here, Γ is a positive constant, 2ε is the shift in equilibrium energy between the donor and acceptor

states (ε = 0 and ε 6= 0 correspond to the unbiased and biased cases, respectively) and 2ci/ω
2
i is

the corresponding shift in equilibrium geometry along the i-th mode coordinate. Since this system

satisfies the Condon approximation, the projection-free inputs F1(τ) and F2(τ) are used to obtain

the memory kernel as shown in Sec. II.4.

Also compared are the results obtained based on the M-GQME scheme to those obtained from

GQME-based schemes that start out with the overall Hamiltonian in a system-bath form. The

schemes used are the Shi-Geva28 (SG-NZ) and Zhang-Ka-Geva29 (ZKG-NZ) system-bath-based

schemes (see Sec. II.2), that have the form of Eq. (II.1) with the system, bath, and system-bath

terms given by:

ĤS = ε [|D〉〈D| − |A〉〈A|] + Γ [|D〉〈A|+ |A〉〈D|] ,

ĤB =
1

2

[
ĤD + ĤA

]
=

Nn∑
i=1

P̂ 2
i

2
+

1

2
ω2
i R̂

2
i ,

ĤBS = −
Nn∑
i=1

ciRi [|D〉〈D| − |A〉〈A|] .

(II.48)

The values of {ωi} and {ci} (i = 1, ..., Nn) are obtained based on an Ohmic spectral density

with exponential cutoff:

J(ω) =
π

2

Nn∑
i=1

c2
i

ωi
δ(ω − ωi)

Nn →∞
−−−→ π~

2
ξωe−ω/ωc (II.49)
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Here, ξ is the Kondo parameter (a measure of the shift in equilibrium geometry) and ωc is the

cutoff frequency. The discrete set of Nn nuclear mode frequencies, {ω1, ..., ωNn}, and coupling

coefficients, {c1, ..., cNn}, for the Ohmic spectral density with exponential cutoff, Eq. (III.25),

were obtained following the procedure described in Ref. 68:

ωi = −ωc ln

(
1− iω0

ωc

)
(II.50)

ci =
√
ξ~ω0ωi . (II.51)

Here, the i in Eq. (II.50) refers to the number of the mode (rather than the imaginary unit) and

ω0 =
ωc
Nn

(
1− e−ωmax/ωc

)
, (II.52)

where ωNn = ωmax is the frequency of the highest frequency mode.

The value of ωmax is determined using the following procedure. First the parameter α is defined

as

α =

∫ ωmax

0
dωJ(ω)∫∞

0
dωJ(ω)

= 1− e−ωmax/ωc

(
ωmax

ωc
+ 1

)
. (II.53)

The parameter α controls the discretized spectral density. A value close to one yields a spectral

density that covers high frequencies but at the cost of an overall coarse-grained frequency distri-

bution. This could be compensated by an increased number of modes at the expense of increased

computational costs. In practice, the actual value of α is determined in a manner that balances

accuracy with cost. For the calculations reported in this paper, the value of α was set to 0.95.

Given the value of α, ωmax can be determined from Eq. (II.53),

ωmax = −
[
W

(
1− α
e

)
− 1

]
ωc , (II.54)

whereW (x) is the LambertW function,W (xex) = x. W (x) was calculated numerically using the

python library function scipy.special.lambertw(x, i, tol) with x = (α− 1)/e, α = 0.95, i = −1,
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and tol = 10−6, with the result rounded to the next whole integer for ωmax.

The initial state of the nuclear DOF was chosen as:

ρ̂n(0) =
e−βĤB

Trn
{
e−βĤB

} , (II.55)

where ĤB is as in Eq. (II.48) and the initial nuclear position and momenta are sampled based on

the Wigner transform of Eq. (III.26),

ρn,W (R,P; 0) =
Nn∏
i=1

tanh(β~ωi/2)

π~
exp

[
−2 tanh(β~ωi/2)

~ωi

(
P 2
i

2
+

1

2
ω2
iR

2
i

)]
. (II.56)

It should be noted that this particular choice is dictated by our desire to compare the M-GQME

scheme with the SG-NZ and ZKG-NZ schemes, which require that the initial nuclear state corre-

sponds to thermal equilibrium with respect to the bath Hamiltonian, by definition and to eliminate

the inhomogeneous term, respectively. At the same time, it is also important to emphasize that the

M-GQME is designed to accommodate arbitrary initial nuclear states of one’s choice.

Calculations were carried out for five different sets of parameter values (see Table III.1) aver-

aged over 105 trajectories. The memory kernel and projection-free inputs elements were found to

have the following properties:

(i) Kjjuv(τ) = F1,jjuv(τ) = F2,jjuv(τ) = 0 ,

(ii) and Kjkuv(τ) = K∗kjvu(τ) ; F1,jkuv(τ) = F∗1,kjvu(τ) ; F2,jkuv(τ) = −F∗2,kjvu(τ) .

The nonvanishing matrix elements of the memory kernel superoperators, which were calculated

using the Ehrenfest method and the population difference between donor and acceptor states, which

corresponds to the expectation value of σ̂z(t) = |D〉〈D|(t) − |A〉〈A|(t), for models #1-5 are

shown in Figs. II.1-II.5, respectively. Exact results were adopted from Ref. 44 for models #1-4

and from Ref. 69 for model #5. The nonvanishing matrix elements of the projection-free input

superoperators F1(τ) and F2(τ) for models #2 and #3 are given in Figs. II.8-II.9 .
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Table II.1: Model and simulation parameters

model parameters numerical parameters
Model # ε Γ β ξ ωc ωmax Nn ∆t

1 1.0 1.0 5.0 0.1 1.0 5 400 0.02
2 1.0 1.0 5.0 0.1 2.0 10 400 0.02
3 1.0 1.0 5.0 0.1 7.5 36 400 0.02
4 1.0 1.0 5.0 0.4 2.0 10 400 0.02
5 0.0 0.33 3.0 0.1 1.0 5 200 0.02

One observation that can be gleamed from Figs. II.1-II.5 is that the M-GQME and ZKG-NZ

schemes produce memory kernels that are better behaved at long time than those produced by the

SG-NZ scheme. More specifically, with the exception of model #1, the memory kernels obtained

via the SG-NZ scheme are observed to oscillate asymptotically, rather than vanish.

The instabilities of the Ehrenfest-based SG-NZ memory kernels have been reported in previous

studies.32,44 In one previous study,44 these instabilities were dealt with by truncating the memory

kernel at short times. This indeed reproduces the population dynamics reported in Ref. 44, which

also happens to be in excellent agreement with the exact result (see Fig. II.6). For example, in the

case of model #4, this meant truncating the memory kernel at tmem = 1.5 Γ−1.44 However, truncat-

ing the memory kernel at tmem = 1.5 Γ−1 also causes the M-GQME and ZKG-NZ to disagree with

the exact result. A closer inspection of Fig. II.4 reveals that the memory kernel is actually longer

lived and that truncating it at tmem = 10.0 Γ−1 would be more reasonable.70 Indeed, truncating the

memory kernel at tmem = 10.0 Γ−1 rather than at tmem = 1.5 Γ−1 significantly improves the agree-

ment between the population dynamics produced by M-GQME and ZKG-NZ and the exact result

(see Fig. II.4). At the same time, it also causes the population dynamics produced by the SG-NZ

to oscillate asymptotically around the exact result, which is consistent with a similar observation

made in Ref. 44. In another previous study,32 the memory time was determined by a “plateau of

stability” found in the σz(t) dynamics with respect to the memory time. However, as shown in

Fig. II.7 and acknowledged in Ref. 32, this plateau can be short-lived or nonexistent. Additionally,

determination of the plateau of stability without knowledge of the exact results can be challenging.
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Figure II.1: On the left are the real and imaginary parts of the nonvanishing matrix elements of the
memory kernel for model #1 in Table III.1. Shown are memory kernels obtained via the SG-NZ
(dashed red), ZKG-NZ (dashed blue), and M-GQME (solid green) schemes. The memory kernels
of all three schemes perform similarly for this set of parameters, with all elements having finite
lifetimes.
On the right is the electronic population difference as a function of time for model #1 in Table III.1.
Shown are the exact result as well as the results obtained via direct application of the Ehrenfest
method and via SG-NZ, ZKG-NZ, and M-GQME with memory kernel calculated via the Ehrenfest
method. Notably, the direct application of Ehrenfest yields worse results than any of the GQME
approaches that use Ehrenfest as input.

In comparison, σz(t) dynamics within the M-GQME and ZKG-NZ schemes converge smoothly, as

seen in Fig. II.7, which makes finding a plateau of stability unnecessary. The M-GQME and ZKG-

NZ convergence are obtained with a memory time equal to the lifetime of the memory kernel, e.g.,

tmem = 10.0 Γ−1 in the case of model #4.

Another observation is that the population dynamics produced by M-GQME, ZKG-NZ, and

SG-NZ with memory kernels obtained via the Ehrenfest method are in much better agreement

with the exact result than the population dynamics obtained via direct application of the Ehrenfest
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Figure II.2: On the left are the real and imaginary parts of the nonvanishing matrix elements of
the memory kernel for model #2 in Table III.1. Shown are memory kernels obtained via the
SG-NZ (dashed red), ZKG-NZ (dashed blue), and M-GQME (solid green) schemes. The memory
kernels of all three schemes perform similarly for this set of parameters, with some elements having
slightly more erratic behavior than seen in the model #1 memory kernels given in Fig. II.1.
On the right is the electronic population difference as a function of time for model #2 in Table III.1.
Shown are the exact result as well as the results obtained via direct application of the Ehrenfest
method and via SG-NZ, ZKG-NZ, and M-GQME with memory kernel calculated via the Ehrenfest
method. While still showing markedly better results than the direct application of Ehrenfest, the
SG-NZ GQME approach deviates from the exact results at longer times more so than the ZKG-NZ
and M-GQME approaches.

method. At first sight, this is somewhat surprising, given that the memory time, tmem = 10.0 Γ−1,

is comparable to the population relaxation time scale. However, it should be noted that within

the GQME, the effect of the density operator at time t − τ on its dynamics at time t decreases

with increasing τ due to the finite lifetime of the memory kernel. Thus, as the Ehrenfest method

becomes less accurate with increasing time, its contribution to the dynamics through K(τ) dimin-

ishes as well. As a result, using the Ehrenfest method to calculate the memory kernel leads to
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Figure II.3: On the left are the real and imaginary parts of the nonvanishing matrix elements of the
memory kernel for model #3 in Table III.1. The SG-NZ memory kernel (dashed red) has long-
time oscillations not seen in the M-GQME memory kernel (solid green) and ZKG-NZ memory
kernel (dashed blue). All three memory kernels show higher instability compared to the memory
kernels of models #1 and #2, shown in Figs. II.1 and II.2.
On the right is the electronic population difference as a function of time for model #3 in Ta-
ble III.1. Shown are the exact result as well as the results obtained via direct application of the
Ehrenfest method and via SG-NZ, ZKG-NZ, and M-GQME with memory kernel calculated via
the Ehrenfest method. While still performing better than the direct application of Ehrenfest, the
GQME approaches show significant departure from the exact results. The reason for this can be
traced to the breakdown of the validity of the treatment of the nuclear DOF as classical within the
Ehrenfest method when the frequency of the nuclear modes increases.

significantly more accurate results than using the Ehrenfest method to calculate the population

dynamics directly. It should be noted that the authors of Ref. 32 also argued that the improve-

ment of the GQME over direct Ehrenfest could be due to the additional information about the

electronic-nuclear coupling gained through the sampling of nuclear operators within the inputs for

the memory kernel.

Yet another interesting observation is the loss of accuracy and stability of the memory kernels
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Figure II.4: On the left are the real and imaginary parts of the nonvanishing matrix elements of the
memory kernel for model #4 in Table III.1. The SG-NZ memory kernel (dashed red) has long-
time oscillations not seen in the M-GQME memory kernel (solid green) and ZKG-NZ memory
kernel (dashed blue), with some elements of the SG-NZ memory kernel oscillating around values
other than zero. This behavior leads to varying electronic population difference dynamics for the
SG-NZ scheme with different memory times as shown in the graph on the right and in Fig. II.6.
On the right is the electronic population difference as a function of time for model #4 in Table III.1.
Shown are the exact result as well as the results obtained via direct application of the Ehrenfest
method and via SG-NZ, ZKG-NZ, and M-GQME with memory kernel calculated via the Ehrenfest
method. While initially closer to the exact results, the SG-NZ GQME approach shows asymptotic
oscillations at longer times which are not seen in the ZKG-NZ and M-GQME approaches.

with increasing cutoff frequency, ωc (see Figs. II.1-II.3). This can be traced back to the treatment

of the nuclear DOF as classical within the Ehrenfest method. More specifically, increasing ωc

corresponds to increasing the frequency of the nuclear modes and thereby making the assumption

that they can be treated as classical less valid. Along with the increasing instability, another trend

seen in Figs. II.1-II.3 is that with the increasing cutoff frequency, the scale of the memory kernels

also increases.
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Figure II.5: On the left are the real and imaginary parts of the nonvanishing matrix elements of the
memory kernel for model #5 in Table III.1. The ZKG-NZ memory kernel (dashed blue) and M-
GQME memory kernel (solid green) perform similarly while the SG-NZ memory kernel (dashed
red) displays different behavior, with some elements not converging to zero.
On the right is the electronic population difference as a function of time for model #5 in Table III.1.
Shown are the exact result as well as the results obtained via direct application of the Ehrenfest
method and via SG-NZ, ZKG-NZ, and M-GQME with memory kernel calculated via the Ehrenfest
method. For the unbiased case, good agreement is seen between all approaches and the exact
results. This is a notable deviation from the biased cases, where direct application of Ehrenfest is
unable to capture the exact dynamics while the GQME approaches give significantly more accurate
results, particularly for the ZKG-NZ and M-GQME approaches.

Finally, it is interesting to contrast the biased case (ε 6= 0, Figs. II.1-II.4), with the unbiased

case (ε = 0, Fig. II.5). While direct application of the Ehrenfest method appears to produce

rather accurate results in the unbiased case, it is observed to lead to significant deviations in the

biased case. This can be traced back to the Ehrenfest method’s failure to capture detailed balance.

Interestingly, restricting the use of the Ehrenfest method to calculating the memory kernel and sim-

ulating the electronic dynamics through the GQME gives rise to significantly more accurate results
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Figure II.6: Electronic population difference as a function of time for model #4 in Table III.1
with the memory truncated at tmem = 1.5 Γ−1. Shown are the exact result as well as the results
obtained via direct application of the Ehrenfest method and via SG-NZ, ZKG-NZ, and M-GQME
with memory kernel calculated via the Ehrenfest method. Here, the SG-NZ GQME approach
achieves good agreement with the exact results while the ZKG-NZ and M-GQME approaches
show significant differences. However, as seen in Fig. II.4, a memory time of tmem = 10.0 Γ−1

is more reasonable than tmem = 1.5 Γ−1; this leads to the results shown in Fig. II.4, where the
ZKG-NZ and M-GQME approaches obtain better agreement with the exact results than the SG-
NZ approach.

in the biased case. It should be noted that given the quantum-mechanically exact memory kernel,

the GQME is guaranteed to satisfy detailed balance since it corresponds to the exact equation of

motion of the electronic DOF. The fact that it still does rather well even when the memory kernel is

calculated via the Ehrenfest method should be considered as yet another advantage of the GQME

approach.
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II.7 Concluding Remarks

Although the system-bath paradigm has been a central theme in the study of quantum open sys-

tems, there are cases where it is not desirable to cast the overall Hamiltonian in system-bath form,

Eq. (II.1). A prime example is nonadiabatic dynamics, where it is neither natural nor convenient to

cast the Hamiltonian in terms of a system Hamiltonian, which only depends on the electronic DOF,

a bath Hamiltonian, which only depends on the nuclear DOF, and a system-bath interaction term,

which couples them. This is because the overall Hamiltonian underlying nonadiabatic dynamics

associates a different nuclear Hamiltonian with each electronic state, thereby making the definition

of a single bath Hamiltonian non-unique and essentially arbitrary. The lack of a unique system-

bath Hamiltonian can be particularly problematic when approximate methods are used to evaluate

the memory kernel, as would often be the case when dealing with realistic molecular models, since

different choices of bath Hamiltonian may lead to different results without a clear criterion for

choosing between them.

This chapter utilized the fact that the GQME, which represents the exact equation of motion of

the electronic DOF during nonadiabatic dynamics, does not in fact need to be based on casting the

overall Hamiltonian in system-bath form.32,65,71 This form of the GQME is referred to as the M-

GQME. Also presented is a practical scheme for calculating the memory kernel of the M-GQME,

either exactly or approximately, that does not rely on the system-bath form. In doing so, we end up

with a natural and convenient GQME-based approach for simulating the dynamics of the electronic

DOF during nonadiabatic dynamics.

It should be noted that unlike other methods for simulating nonadiabatic dynamics, such as

Ehrenfest, surface hopping, MQCL, and SQC, the approach based on the M-GQME is focused

on the dynamics of the electronic DOF. The dynamics of the nuclear DOF is only captured to the

extent that it impacts the electronic DOF. The memory kernel represents the minimum input of the

nuclear DOF that is required in order to account for their effect on the dynamics of the electronic

DOF. In this respect, the GQME can be thought of as going beyond approaches based on FGR,
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where the coupling between the electronic and nuclear DOF is assumed weak and the impact of

the nuclear DOF on the electronic DOF is captured by the two-time autocorrelation function of the

coupling between nuclear and electronic DOF.1,12–18 Unlike FGR-based approaches, the GQME

does not require assuming weak coupling between electronic states and describes the electronic

dynamics in terms of the full electronic density matrix, rather than in terms of the electronic pop-

ulations, which correspond to its diagonal elements.

On the one hand, the loss of more detailed information on the dynamics of the nuclear DOF

may be viewed as a disadvantage of the GQME-based approach to nonadiabatic dynamics. On the

other hand, focusing on the memory kernel rather than on a complete description of the nuclear

DOF, offers several important advantages. First, it is often the case that the only interesting aspect

of the nuclear dynamics is its impact on the electronic dynamics. Thus, the compactness of the

memory kernel provides an elegant way for focusing on this aspect without needing to figure out

whether or not a given detail of the nuclear dynamics impacts the electronic DOF. Second, the

compactness of the memory kernel and its finite memory time also implies that calculating it via a

given method, either exact or approximate, can be more cost-effective and/or lead to more accurate

results than a direct application of the same method. Third, it should be remembered that most

useful approximate methods describe nuclear dynamics in terms of an ensemble of classical-like

trajectories, and are constructed in such a way that only the ensemble average, rather than indi-

vidual trajectories, can be related to physically meaningful measurable quantities like electronic

populations and coherences. The fact that the memory kernel is defined in terms of a trace over the

nuclear DOF implies that it incorporates this ensemble-averaging automatically and is therefore

directly related to the only relevant measurable quantities.

In summary, the M-GQME provides a rigorous and general approach for simulating electron-

ically nonadiabatic dynamics. Within this approach, the memory kernel superoperator is the key

quantity which dictates how the electronic dynamics is impacted by the nuclear DOF, regardless of

the strength or type of coupling. What makes this approach particularly appealing is the fact that

calculating the memory kernel via exact or approximate methods can be more cost-effective and/or
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accurate than direct application of those methods. Given the non-uniqueness associated with the

choice of basis in Eq. (II.43), which appears to be inherent to the Ehrenfest method, it would

also be highly desirable to explore calculating the memory kernel via approximate methods other

than the Ehrenfest method. The following chapter will explore two different mapping Hamiltonian

methods with a quasiclassical approximation that do not require the Eq. (II.43) and compare their

results as input methods for the GQME to Ehrenfest.
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Figure II.7: Electronic population difference as a function of time for model #4 in Table III.1
with varying memory times for the SG-NZ method and the M-GQME method in the top graph and
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Figure II.8: The real and imaginary parts of the nonvanishing matrix elements of the projection-
free input F1(τ) for model #2 in Table III.1. The lifetimes of the projection-free input F1(τ)
and F2(τ) are more than double the lifetime of the M-GQME memory kernel for the same set of
parameters, as shown in Fig. II.2. Also, theDADD imaginary andDAAD real elements forF1(τ)
and the DADD real, DAAD real, and DAAA real elements for F2(τ) appear to be converging to
values other than zero.

40



−0.2

0.0

0.2

0.4

0.6

0.8

F 1
,D

A
D
D

Real

F1(τ)

−0.24

−0.16

−0.08

0.00

0.08

Imaginary

0

4

8

12

F 1
,D

A
D
A

ξ=0. 1
ωc =7. 5

β=5
ε=1
Γ=1

−3.0

−1.5

0.0

1.5

−2.0

−1.5

−1.0

−0.5

0.0

F 1
,D

A
A
D

−0.6

−0.3

0.0

0.3

0.6

0.9

0 4 8 12 16

Γ t

−0.25

0.00

0.25

0.50

0.75

F 1
,D

A
A
A

0 5 10 15 20

Γ t

−0.45

−0.30

−0.15

0.00

−0.2

0.0

0.2

0.4

0.6

0.8

F 2
,D

A
D
D

Real

F2(τ)

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6
Imaginary

−0.5

0.0

0.5

1.0

1.5

F 2
,D

A
D
A

ξ=0. 1
ωc =7. 5

β=5
ε=1
Γ=1

−0.5

0.0

0.5

1.0

0.0

0.2

0.4

0.6

0.8

F 2
,D

A
A
D

−0.6

−0.4

−0.2

0.0

0 4 8 12 16

Γ t

−1.00

−0.75

−0.50

−0.25

0.00

F 2
,D

A
A
A

0 5 10 15 20

Γ t

−0.75

−0.50

−0.25

0.00

0.25

Figure II.9: The real and imaginary parts of the nonvanishing matrix elements of the projection-
free input F1(τ) and F2(τ) for model #3 in Table III.1. The instability seen within the M-GQME
memory kernel for this set of parameters (Fig. II.3) can also be seen in the projection-free input
F1(τ). The lifetimes of the projection-free input F1(τ) and F2(τ) are closer to the lifetime of the
corresponding memory kernel (Fig. II.3) compared to F1(τ), F2(τ), and K(τ) of model #2, as
seen in Figs. II.8 and II.2.
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CHAPTER III

Mapping Hamiltonian + Quasiclassical

Approximation Methods with the M-GQME

III.1 Introduction

The central quantity within the GQME framework is the memory kernel superoperator. The

compact nature of the memory kernel (a N2
e × N2

e matrix, where Ne is the number of electronic

states involved) and the fact that it contains all the information needed to account for the effect

of the nuclear DOF on the electronic DOF makes it a key quantity when it comes to determin-

ing the correlation between molecular structure and electronic dynamics. The memory kernel is

often found to be short-lived compared to the time scale of the electronic dynamics it impacts,

which suggests that the ability to accurately capture the electronic dynamics can be enhanced by

restricting the use of approximate methods to calculating the memory kernel.53 This is because the

accuracy of the approximate methods often deteriorates with increasing time while the GQME is

exact beyond the approximate method used to capture the short-lived memory kernel.

Several recent studies have pursued such a strategy with the Ehrenfest method as the approx-

imate method of choice for calculating the memory kernel, including the one shown in Chapter

II.30,32,35 The Ehrenfest-based approach has met with considerable success for the benchmark mod-

els it was applied to (see Sec. II.6). However, there are several reasons for why extending the range

of approximate methods used for calculating the memory kernel beyond the Ehrenfest method is

desirable. First, being able to choose from different approximate methods can be beneficial, given
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that the suitability of the approximate method can often be informed by the system and process it

is applied to. Second, the requirement that the electronic density matrix be Hermitian in order for

the mean force experienced by the nuclear DOF within the Ehrenfest method to be real has led to

multiple protocols for calculating the memory kernel, which can give different answers, without

a clear criterion for choosing between them.32,35 Third, as a mixed quantum-classical method, the

Ehrenfest method treats the dynamics of the electronic and nuclear DOF in terms of rather differ-

ent quantities (a wave function or density matrix and phase-space variables, respectively). Treating

both electronic and nuclear DOF as classical-like72 could therefore make it easier to incorporate

the method into existing classical molecular dynamics (MD) codes.

Approximate methods that seem to overcome some of these potential shortcomings of the

Ehrenfest method can be obtained by combining the mapping Hamiltonian (MH) approach72–80

with quasiclassical (QC) approximations, including the linearized semiclassical (LSC) approxima-

tion.41,53,81–90 Within the resulting QC/MH methods, the electronic DOF are mapped onto classical-

like variables, so that the dynamics of the overall system (electronic DOF + nuclear DOF) can be

described in terms of classical-like trajectories. In addition, within LSC, the force on the nuclear

DOF is real even when the initial electronic state is non-Hermitian.

Previous to the research outlined in this chapter, there was one other preliminary study that

used a QC/MH approach for calculating the memory kernel;53 the work presented herein extends

upon it in several ways. First, two different ways of using a QC/MH method to calculate the

memory kernel of the GQME are tested and compared. Second, the implementation is done within

the framework of the recently introduced GQME formalism outlined in Sec. II.3, which is geared

towards simulating electronically nonadiabatic dynamics.35 Third, the accuracy of the QC/MH-

based approaches are tested and compared to the Ehrenfest-based approach on a wider range of

parameter space.

The remainder of this chapter is organized as follows. Two different versions of the QC/MH

method are described in Sec. III.2. The calculation of the GQME memory kernel from projection-

free inputs obtained via the QC/MH method is described in Sec. III.3. The utility and accuracy of
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combining QC/MH with GQME are demonstrated on a benchmark model in Sec. III.4. Concluding

remarks are offered in Sec. III.5.

III.2 The Mapping Hamiltonian (MH) Approach and Lin-

earized Semiclassical (LSC) approximation

The MH approach is based on casting the complete set of purely electronic operators, {|j〉〈k|},

onto an isomorphic set of operators, {Mjk (q̂, p̂)}, that satisfy the same commutation rela-

tions:72,73,91–98

|j〉〈k| 7→Mjk (q̂, p̂) . (III.1)

Here, {q̂, p̂} represents a set of auxiliary Cartesian coordinate and momentum operators associated

with the mapping (not to be confused with the coordinate and momentum operators of the actual

electrons). The motivation for replacing the original set of electronic operators with the mapping

operators can be traced back to the fact that unlike {|j〉〈k|}, {Mjk (q̂, p̂)} have classical-like ana-

logues. As a result, classical-like approximations can be constructed.

Within the MH approach, |u〉〈v| and |k〉〈j| in Eq. (I.8) are replaced by Muv (q̂, p̂) and

Mkj (q̂, p̂), respectively, so that:

σjk(t) =
Ne∑

u,v=1

σuv(0) Tr
{
ρ̂n(0)Muv (q̂, p̂) eiĤt/~Mkj (q̂, p̂) e−iĤt/~

}
. (III.2)

Applying the LSC approximation to Eq. (III.2), we obtain the following approximate expression

for σjk(t):53,83

σLSC
jk (t) =

(
1

2π~

)N Ne∑
u,v=1

σuv(0)

×
∫

dR0

∫
dP0

∫
dq0

∫
dp0 [ρ̂n(0)]W (R0,P0)[Muv]W (q0,p0) [Mkj]W (qt,pt) ,

(III.3)
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where N = Ne + Nn is the total number of DOF of the overall system. The W subscripts in

Eq. (III.3) denote the corresponding Wigner transforms,

[Muv]W (q,p) =

∫
dz e−izp/~

〈
q +

z

2

∣∣∣∣Muv (q̂, p̂)

∣∣∣∣q− z

2

〉
,

[ρ̂n(0)]W (R,P) =

∫
dZ e−iZP/~

〈
R +

Z

2

∣∣∣∣ρ̂n(0)

∣∣∣∣R− Z

2

〉
.

(III.4)

Importantly, {Rt,Pt,qt,pt} are obtained by starting at the initial state {R0,P0,q0,p0} and solv-

ing the classical Hamilton equations based on the following classical-like Hamiltonian:

H(R,P,q,p) =
Ne∑
j=1

Hj(R,P)[Mjj]W (q,p) +
Ne∑
j,k=1
k 6=j

Vjk(R)[Mjk]W (q,p) . (III.5)

The above-mentioned QC/MH approach has several attractive features:

• Advantageous computational cost: The computational cost of calculating σLSC
jk (t) is the

same as that of a classical MD simulation of a classical system with N DOF.

• Captures feedback between nuclear and electronic dynamics: The classical-like Hamil-

tonian in Eq. (III.5) couples (R,P) and (q,p). As a result, the electronic dynamics is

affected by the nuclear dynamics and vice versa. Thus, feedback between the nuclear and

electronic DOF, which is the central feature of electronically nonadiabatic dynamics, is cap-

tured by QC/MH.

• Goes beyond Ehrenfest: The initial electronic state is mapped onto
Ne∑
j,k=1

σjk(0)[Muv]W (q0,p0), which implies a distribution over the initial conditions,

(q0,p0). This distribution arises from two sources: (i) [Muv]W (q0,p0) is typically not a

localized function of (q0,p0) and thereby calls for sampling different initial (q0,p0) and (ii)

unless the system starts in one of the basis states, σ̂(0) = |j〉〈j|, different electronic density

matrix elements will give rise to different (q0,p0) distributions. Importantly, (qt,pt)

depend on (q0,p0) and will differ from one choice of (q0,p0) to another. Furthermore,
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the dynamics of the nuclear DOF takes place on a PES which is explicitly dependent on

(qt,pt):

V (R, t) =
Ne∑
j=1

[Mjj]W (qt,pt)Vj(R) +
Ne∑
j,k=1
k 6=j

[Mjk]W (qt,pt)Vjk(R) . (III.6)

Thus, the same choice of (R0,P0) can lead to multiple (Rt,Pt) since different choices of

(q0,p0) would lead to different (qt,pt) and thereby different forces that the nuclear DOF

are subject to. This is similar to surface hopping methods (although in this case, the force

terms change continuously) but should be contrasted with the Ehrenfest method, where the

force on the nuclear DOF is obtained by averaging over the entire instantaneous electronic

state and thereby does not allow for such multiplicity of nuclear trajectories to emerge.

• Treats electronic populations and coherences on equal footing: Populations and coher-

ences have their own mapping variables {[Mjj]W (q,p) for populations and [Mjk]W (q,p),

with j 6= k, for coherences}. This should be contrasted with the Ehrenfest method, where

states with non-zero coherences can give rise to complex forces on the nuclear DOF, and

with surface hopping methods, which is focused on population transfer between electronic

states and underestimates decoherence.99,100

The actual choice of mapping variables is not unique and multiple choices of mapping variables

have been proposed and employed.95–98 This can be considered an advantage due to the flexibility

it allows for choosing a mapping approach which would be best suited to the problem at hand.

The research presented in this chapter adopted the widely used choice proposed by Stock and

Thoss (ST)74 (sometimes also referred to in the literature as the Meyer-Miller mapping, due to its

similarity to the mapping proposed earlier by Meyer and Miller73).

Within the ST mapping, each electronic state is associated with a different quantum harmonic

oscillator. The creation and annihilation operators of these independent harmonic oscillators,{
âj, â

†
j

∣∣∣ j = 1, ..., Ne

}
, satisfy the following commutation relations:

[
âj, â

†
j

]
= δjk. The elec-
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tronic operators, {|j〉〈k|}, are then mapped onto harmonic oscillator operators74

|j〉〈k| 7→ â†j âk . (III.7)

The mapping in Eq. (III.7) is justified by the fact that {|j〉〈k|} and {â†j âk} satisfy the same com-

mutation relations among themselves. Using Eq. (III.7), the Hamiltonian in Eq. (I.3) can also be

cast in terms of {âj, â†j}:

Ĥ =
Ne∑
j=1

Ĥj â
†
j âj +

Ne∑
j,k=1
k 6=j

V̂jkâ
†
j âk . (III.8)

It should be noted that the electronic closure relation,
Ne∑
j=1

|j〉〈j| = 1̂, maps onto
Ne∑
j=1

â†j âj =

1̂. While the latter identity is clearly not generally true for the sum of number operators of a

system consisting of multiple harmonic oscillators, the fact that
Ne∑
j=1

â†j âj commutes with the overall

Hamiltonian in the ST representation, Eq. (III.8), implies that it is a constant of the motion. This

means that the quantum dynamics in terms of the ST mapping variables is restricted to the subspace

spanned by the singly-excited states of the overall Hilbert space of a system that consists of Ne

harmonic oscillators,

{|11〉 = |1, 0, . . . , 0, 0〉, . . . , |1Ne〉 = |0, 0, . . . , 0, 1〉} . (III.9)

Within this subspace, â†j âk = |1j〉〈1k|. Thus, mapping |j〉〈k| onto |1j〉〈1k| is equivalent to mapping

it onto â†j âk, and guaranteed to give the same results as long as those operators are treated fully

quantum mechanically. However, this is no longer the case when the LSC approximation is applied,

which leads to the two different versions of the LSC approximation described below.

One version of the MH approach can be obtained by expressing â†j and âj in terms of Cartesian

47



coordinates and momenta {q̂j, p̂j}, as follows:

â†j =
1√
2~

(
q̂j − ip̂j

)
,

âj =
1√
2~

(
q̂j + ip̂j

)
.

(III.10)

Combining the mapping in Eq. (III.7) with Eq. (III.10) then yields

|λ〉〈λ| 7→ M̂
(1)
λλ (q̂, p̂)=

1

2~

(
q̂2
λ + p̂2

λ − ~
)

,

|λ〉〈γ| 7→ M̂
(1)
λγ (q̂, p̂)=

1

2~

(
q̂λq̂γ + p̂λp̂γ + iq̂λp̂γ − ip̂λq̂γ

)
,

(III.11)

where λ 6= γ and the indices λ and γ will be used consistently throughout this chapter to indicate

indices that are always not equal. This is opposed to all other indices, e.g., j and k, which can be

equal unless specifically denoted otherwise. The corresponding Wigner transforms are then given

by

[
M

(1)
λλ

]
W

(q,p) =
1

2~

(
q2
λ + p2

λ − ~
)

,[
M

(1)
λγ

]
W

(q,p) =
1

2~

(
qλqγ + pλpγ + iqλpγ − ipλqγ

)
.

(III.12)

Another version of the MH approach can be obtained based on mapping |j〉〈k| onto |1j〉〈1k|

[see Eq. (III.9)]. The corresponding Wigner transforms are then given by (see Sec. III.2.1)

[
M

(2)
λλ

]
W

(q,p) = G(q,p)

(
q2
λ + p2

λ −
~
2

)
,[

M
(2)
λγ

]
W

(q,p) = G(q,p)
(
qλqγ + pλpγ + iqλpγ − ipλqγ

)
,

(III.13)

where G(q,p) is a phase-space Gaussian function,

G(q,p) =
2Ne+1

~
exp

[
−1

~

Ne∑
l=1

(
q2
l + p2

l

)]
. (III.14)

Importantly, according to Eq. (III.3), calculating σLSC
jk (t) calls for integrating over the initial
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conditions, {R0,P0} and {q0,p0}. In practice, this requires being able to sample {R0,P0} and

{q0,p0} based on well-behaved probability densities. While [ρ̂n(0)]W (R0,P0) typically provides

such a well behaved probability density for {R0,P0}, this is not the case for {q0,p0} within

LSCI. This is because
[
M

(1)
λλ

]
W

(q,p) = 1
2~

(
q2
λ + p2

λ − ~
)

and
[
M

(1)
λγ

]
W

(q,p) = 1
2~

(
qλqγ +

pλpγ + iqλpγ − ipλqγ

)
are not bounded functions of {q,p}. Attempting to determine {q0,p0}

by requiring that
[
M

(1)
jk

]
W

(q0,p0) = σjk(0) reveals that it is not possible to find a specific set

of values of {q0,p0} that satisfy this equation (see Sec. III.2.2). This implies that there needs to

be a distribution over {q0,p0}, such that the above-mentioned condition is satisfied on average,〈[
M

(1)
jk

]
W

(q0,p0)
〉

= σjk(0). However, requiring that this condition is satisfied on average does

not uniquely determine the underlying distribution over {q0,p0} (see Sec. III.2.2).

On the other hand, the phase-space Gaussian function G(q,p) in
[
M

(2)
jk

]
W

(q,p) [see

Eq. (III.13)] provides a natural and unique choice of a probability density. Thus, in what fol-

lows, we choose to use Eq. (III.13) at the initial time. However, this still leaves one with a choice

of which of the two mappings to use when evaluating [Mkj]W (qt,pt). This in turn leads to two

different versions of LSC, which we refer to as LSCI and LSCII. More specifically [see Eq. (III.3)]:

σLSCI/II
jk (t) =

(
1

2π~

)N Ne∑
u,v=1

σuv(0)

×
∫

dR0

∫
dP0

∫
dq0

∫
dp0 [ρ̂n(0)]W (R0,P0)

[
M (2)

uv

]
W

(q0,p0)
[
M

(1)/(2)
kj

]
W

(qt,pt) ,

(III.15)

where (1)/(2) corresponds to the choice between Eq. (III.12)/(III.13) for [Mkj]W (qt,pt). There-

fore, the difference between the QC/MH methods is that LSCI uses
[
M

(2)
uv

]
W

(q0,p0) for initial

electronic sampling and
[
M

(1)
uv

]
W

(q0,p0) for the electronic dynamics at time t while LSCII uses[
M

(2)
uv

]
W

(q0,p0) for both initial electronic sampling and the electronic dynamics at time t. It

should be noted that in the literature, LSCI has also been referred as the Poisson-bracket mapping

equation (PBME)101 and LSCII has also been referred as the linearized semiclassical initial value

representation (LSC-IVR).102

49



III.2.1 Derivation of LSCII mapping variables

This section details the derivation of the mapping variables for the electronic populations and

coherences within LSCII, Eq. (III.13). To this end, the harmonic oscillator ground and first excited

state wavefunctions in the position representation are used, given by

ϕ0(qj) =

(
1

π~

)1/4

e−q
2
j /2~ ,

ϕ1(qj) =

(
4

π~3

)1/4

qje
−q2j /2~ .

(III.16)

Using Eq. (III.16), the mapping variables of the electronic populations are given by:

[
M

(2)
λλ

]
W

(q,p) =

∫
dze−izp/~

〈
q +

z

2

∣∣∣∣1λ〉〈1λ

∣∣∣∣q− z

2

〉
=

∫
dzλe

−izλpλ/~ϕ1

(
qλ +

zλ
2

)
ϕ1

(
qλ −

zλ
2

)
×

Ne∏
l=1
l 6=λ

∫
dzle

−izlpl/~ϕ0

(
ql +

zl
2

)
ϕ0

(
ql −

zl
2

)

=
22

~

(
q2
λ + p2

λ −
~
2

)
e−(q2λ+p2λ)/~

Ne∏
l=1
l 6=λ

2e−(q2l +p2l )/~

=
2Ne+1

~

(
q2
λ + p2

λ −
~
2

)
exp

[
− 1

~

Ne∑
l=1

(
q2
l + p2

l

)]
.

(III.17)
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Similarly, the mapping variables of the electronic coherences are given by:

[
M

(2)
λγ

]
W

(q,p)
[
|1λ〉〈1γ|

]
W

(q,p) =

∫
dze−izp/~

〈
q +

z

2

∣∣∣∣1λ〉〈1γ

∣∣∣∣q− z

2

〉
=

∫
dzλe

−izλpλ/~ϕ1

(
qλ +

zλ
2

)
ϕ0

(
qλ −

zλ
2

)∫
dzγe

−izγpγ/~ϕ0

(
qγ +

zγ
2

)
ϕ1

(
qγ −

zγ
2

)
×

Ne∏
l=1
l 6=λ,γ

∫
dzle

−izlpl/~ϕ0

(
ql +

zl
2

)
ϕ0

(
ql −

zl
2

)

=

√
23

~
(qλ − ipλ)e−(q2λ+p2λ)/~

√
23

~
(qγ + ipγ)e

−(q2γ+p2γ)/~
Ne∏
l=1
l 6=λ,γ

2e−(q2l +p2l )/~

=
2Ne+1

~
(qλ − ipλ)(qγ + ipγ) exp

[
− 1

~

Ne∑
l=1

(
q2
l + p2

l

)]
.

(III.18)

III.2.2 Initial conditions within LSCI

In this section, we discuss determining {q0,p0} within LSCI by requiring that[
M

(1)
jk

]
W

(q0,p0) = σjk(0). To this end, we consider a system with two electronic states,

{|D〉, |A〉}, whose initial state is given by σ̂(0) = |D〉〈D|. Requiring that
[
M

(1)
jk

]
W

(q0,p0) =

σjk(0) then leads to the following set of four coupled equations for {qD,0, pD,0, qA,0, pA,0}:

1

2~

(
q2
D,0 + p2

D,0 − ~
)

= 1 , (III.19)

1

2~

(
q2
A,0 + p2

A,0 − ~
)

= 0 ,

1

2~

(
qD,0qA,0 + pD,0pA,0

)
= 0 ,

1

2~

(
qD,0pA,0 − pD,0qA,0

)
= 0 .

However, those four equations are inconsistent and therefore cannot be solved by a unique choice

of {qD,0, pD,0, qA,0, pA,0}. Thus, it appears that the only way to simultaneously satisfy those four

equations is by imposing a distribution over {qD,0, pD,0, qA,0, pA,0} and requiring that the equations
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are satisfied on average.

For example, expressing Eq. (III.20) in terms of action-angle variables {nD,0, uD,0, nA,0, uA,0},

defined by

qj,0 =
√

2~(nj,0 + 1/2) cos(uj,0) ,

pj,0 = −
√

2~(nj,0 + 1/2) sin(uj,0) ,

(III.20)

yields:

nD,0 = 1 , nA,0 = 0 ,
√
nD,0nA,0e

i(uA,0−uD,0) = 0 , (III.21)

which can be satisfied on average by allowing uA,0 − uD,0 to be uniformly distributed between

(0, 2π), such that 〈ei(uA,0−uD,0)〉 = 0. However, this choice is not unique. As an example, one can

add a distribution over the action variables, nD,0 and nA,0, such that 〈nD,0〉 = 1 and 〈nA,0〉 = 0.

The recently introduced symmetrical quasi-classical method (SQC) of Cotton and Miller is based

on such an assumption, where the shape and width of the distribution over nD,0 and nA,0 are picked

so as to maximize efficiency and accuracy.75–80

III.3 QC/MH Methods and the GQME

Previously in Sec. II.5, the procedure for using the Ehrenfest method to obtain the projection-free

inputs, through which the memory kernel and subsequently the reduced dynamics can be calcu-

lated, was outlined. A similar procedure can be used to determine how to calculate the projection-

free inputs using QC/MH methods. The projection-free inputs are built by correlation functions of

the form given in Eq. (II.38). Within the QC/MH methods, these correlation functions are approx-
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imated by [see Eq. (III.15)]:

Tr
{

Ω̂|u〉〈v|eiĤτ/~ Γ(R̂)|b〉〈a|e−iĤτ/~
}

≈ 1

(2π~)N

∫
dR0

∫
dP0 ΩW (R0,P0)

[
M (2)

uv

]
W

(q0,p0) ΓW (Rτ )
[
M

(1)/(2)
ba

]
W

(qτ ,pτ ) .

(III.22)

As noted previously in this section, the QC/MH methods differ from the Ehrenfest method in that

the electronic populations and coherences are treated on equal footing and the initial electronic

state contains a distribution function. This means that QC/MH methods do not need to use linear

combinations when starting in electronic states |u〉〈v|with u 6= v and can instead directly calculate

the correlation functions given in Eq. (III.22), even for non-Hermitian initial electronic states.

III.4 Illustrative applications

In this section, we demonstrate the feasibility and accuracy of calculating the memory kernel

of the GQME via the two versions of the QC/MH method outlined in Sec. III.2. We do so by

applying the method to the spin-boson model and comparing to the quantum-mechanically exact

results.44,69 We also compare to results based on calculating the memory kernel of the GQME via

the Ehrenfest method, shown previously in Sec. II.6, and results obtained by direct application of

the two QC/MH methods and the Ehrenfest method.

The spin-boson Hamiltonian is put in the form of Eq. (I.3):

Ĥ = ĤD|D〉〈D|+ ĤA|A〉〈A|+ VDA|D〉〈A|+ VAD|A〉〈D| , (III.23)
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where

ĤD = ε+
Nn∑
i=1

[
P̂ 2
i

2
+

1

2
ω2
i R̂

2
i − ciR̂i

]
,

ĤA = −ε+
Nn∑
i=1

[
P̂ 2
i

2
+

1

2
ω2
i R̂

2
i + ciR̂i

]
,

VDA = VAD = Γ .

(III.24)

Here, 2ε is the shift in equilibrium energy between the donor (D) and acceptor (A) states and Γ

is a positive constant describing the electronic coupling between the donor and acceptor states.

Since Γ is a constant, this system satisfies the Condon approximation and therefore we will use the

projection-free inputs F1(τ) and F2(τ) to obtain the memory kernel [see Eqs. (II.33) and (II.34)].

The same as in Sec. II.6, the spectral density is assumed Ohmic with exponential cutoff:

J(ω) =
π

2

Nn∑
i=1

c2
i

ωi
δ(ω − ωi)

Nn →∞
−−−→ π~

2
ξωe−ω/ωc . (III.25)

where ξ is the Kondo parameter and ωc is the cutoff frequency. The discretization procedure to

obtain the Nn nuclear mode frequencies and coupling coefficients is given in Sec. II.6. The initial

state of the nuclear DOF was chosen as:

ρ̂n(0) =
e−β(ĤD+ĤA)/2

Trn
{
e−β(ĤD+ĤA)/2

} , (III.26)

and the initial nuclear positions and momenta are sampled based on the Wigner transform of

Eq. (III.26),

ρn,W (R,P; t = 0) =
Nn∏
i=1

tanh(β~ωi/2)

π~
exp

[
−2 tanh(β~ωi/2)

~ωi

(
P 2
i

2
+

1

2
ω2
iR

2
i

)]
. (III.27)

Calculations were carried out for the five different sets of parameter values studied previously

in Sec. II.6 and copied below in Table III.1, with the sole difference being a time step of ∆t =
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0.01 Γ−1 as opposed to ∆t = 0.02 Γ−1. Models 1-3 differ only in increasing cutoff frequency,

model 4 represents a high-friction case, and model 5 corresponds to an unbiased, weakly-coupled

system at higher finite temperature.

The numerical integration scheme was adopted from Ref. 72 with some differences. We start

out by writing the overall system Hamiltonian operator, Eq. (I.3), in the following form

Ĥ =
P̂2

2
+

Ne∑
j=1

Vj(R̂)|j〉〈j|+
Ne∑
j,k=1
k 6=j

Vjk(R̂)|j〉〈k| = Ĥ1 + Ĥ2 . (III.28)

Here,

Ĥ1 =
P̂2

2
,

Ĥ2 = V0(R̂)
Ne∑
j=1

|j〉〈j|+
Ne∑
j,k=1

h̄jk(R̂)|j〉〈k| ,

V0(R̂) =

Ne∑
j=1

Vj(R̂)

Ne

,

h̄jk(R̂) =
[
Vj(R̂)− V0(R̂)

]
δ(j, k) + Vjk(R̂)(1− δj,k) .

(III.29)

Within QC/MH, the dynamics is governed by the corresponding classical-like mapping Hamilto-

nians [see Eqs. (III.12) and (III.13)]:

Ĥ1 =
P2

2
,

Ĥ2 = V0(R) +
1

2~

Ne∑
j,k=1

h̄jk(R)(qjqk + pjpk) .
(III.30)

In the next step, h̄jk(R) is diagonalized:

h̄jk(R) = Cjl(R)El(R)C−1
lk (R) . (III.31)

Here, {El(R)} and {Cjl(R)} are the eigenvalues and eigenvectors of h̄jk(R), respectively. The
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latter can be obtained in closed form for the two-state system used in this paper defined in

Eq. (III.24):103

E1(R) =
√
h̄2

12 + h̄2
11(R) = −E2(R) ,

C11(R) = C22(R) =
h̄12√

[E1(R)− h̄11(R)]2 + h̄2
12

,

C12(R) = −C21(R) =
h̄11(R)− E1(R)√

[E1(R)− h̄11(R)]2 + h̄2
12

.

(III.32)

The propagation of {qt,pt,Rt,Pt} from time τ to time τ + ∆τ is carried out in three steps:

1. Propagate R by half time step from τ to τ + ∆τ/2, based on H1:

Ri

(
τ +

∆τ

2

)
= Ri(τ) + Pi(τ)

∆τ

2
. (III.33)

2. Propagate {q,p,P} by one time step, from τ to τ + ∆τ :

qj(τ + ∆τ) = Cjl(R)C−1
lk (R) (III.34)

×
[

cos

(
El(R)∆τ

~

)
qk(τ) + sin

(
El(R)∆τ

~

)
pk(τ)

]
,

pj(τ + ∆τ) = Cjl(R)C−1
lk (R) (III.35)

×
[

cos

(
El(R)∆τ

~

)
pk(τ)− sin

(
El(R)∆τ

~

)
qk(τ)

]
,

Pi(τ + ∆τ) = Pi(τ)− ∂V0(Ri)

∂Ri

∆τ (III.36)

− 1

2~

Ne∑
j,k=1

∂h̄jk(Ri)

∂Ri

∫ τ+∆τ

τ

dt
[
qj(t)qk(t) + pj(t)pk(t)

]
.
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For the spin-boson model used in this paper, Eq. (III.36) can be put in the following form:

Pi(τ + ∆τ) = Pi(τ)− ∂V0(Ri)

∂Ri

∆τ (III.37)

− 1

2~

2∑
j=1

∂Ej(Ri)

∂Ri

{
q̃2
j (τ) + p̃2

j(τ)− h̄12

h̄jj(R)

[
q̃j(τ)q̃k(τ) + p̃j(τ)p̃k(τ)

]}
,

where,

q̃j(t) =
Ne∑
µ=1

C−1
jµ (R)qµ(t) , p̃j(t) =

Ne∑
µ=1

C−1
jµ (R)pµ(t) . (III.38)

Notably, Eq. (III.37) has an additional term on the R.H.S. which is not included in Eq. (C19)

of Ref. 72. The accuracy of Eq. (III.37) with the above mentioned extra term was verified

numerically by comparing to results obtained by calculating the integral in Eq. (III.36) with

the extended trapezoid method.

3. Propagate R by half time step from τ + ∆τ/2 to τ + ∆τ , based on H1:

Ri(τ + ∆τ) = Ri

(
τ +

∆τ

2

)
+ Pi(τ + ∆τ)

∆τ

2
. (III.39)

The results reported in this paper were obtained by averaging over 200,000 trajectories for each

model and choice of dynamical method. Figs. III.1-III.5 give the nonvanishing matrix elements

of the memory kernel superoperators and the population difference between donor and acceptor

states, which corresponds to the expectation value of σ̂z(t) = |D〉〈D|(t) − |A〉〈A|(t), for models

1-5, respectively. Exact results were adopted from Ref. 44 for models 1-4 and from Ref. 69 for

model 5.

Inspection of the results in Figs. III.1-III.5 gives rise to the following noteworthy observations:

• Direct application fails to capture dynamics at long times: For all the models consid-

ered, simulation of the electronic dynamics by direct application of either LSCI, LSCII, or

Ehrenfest methods gives rise to qualitatively different results that become increasingly less

accurate with increasing time (see Figs. III.1-III.5). More specifically, while direct applica-

57



Table III.1: Model and simulation parameters

model parameters numerical parameters
Model # ε Γ β ξ ωc ωmax Nn ∆t

1 1.0 1.0 5.0 0.1 1.0 5 400 0.01
2 1.0 1.0 5.0 0.1 2.0 10 400 0.01
3 1.0 1.0 5.0 0.1 7.5 36 400 0.01
4 1.0 1.0 5.0 0.4 2.0 10 400 0.01
5 0.0 0.333 3.0 0.1 1.0 5 200 0.01
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Figure III.1: On the left are the real and imaginary parts of the nonvanishing matrix elements of the
memory kernel for model 1 in Table III.1. Shown are memory kernels obtained via the Ehrenfest
(red), LSCI (magenta), and LSCII (blue) methods.
On the right is the electronic population difference, σz(t) = σDD(t) − σAA(t), as a function of
time for model 1 in Table III.1. Shown are the exact result (black circles), the results obtained
via direct application of the Ehrenfest (dashed red), LSCI (dashed magenta), and LSCII (dashed
blue) methods and results obtained based on the GQME with the memory kernel calculated via
the Ehrenfest (Ehr-GQME, solid red), LSCI (LSCI-GQME, solid magenta), and LSCII (LSCII-
GQME, solid blue) methods.
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Figure III.2: On the left are the real and imaginary parts of the nonvanishing matrix elements of the
memory kernel for model 2 in Table III.1. Shown are memory kernels obtained via the Ehrenfest
(red), LSCI (magenta), and LSCII (blue) methods.
On the right is the electronic population difference, σz(t) = σDD(t) − σAA(t), as a function of
time for model 2 in Table III.1. Shown are the exact result (black circles), the results obtained
via direct application of the Ehrenfest (dashed red), LSCI (dashed magenta), and LSCII (dashed
blue) methods and results obtained based on the GQME with the memory kernel calculated via
the Ehrenfest (Ehr-GQME, solid red), LSCI (LSCI-GQME, solid magenta), and LSCII (LSCII-
GQME, solid blue) methods.

tion of LSCI is typically observed to produce a faster relaxation and too small asymptotic

values of σz(t) compared to the exact results, LSCII and Ehrenfest are observed to produce

slower relaxation and larger asymptotic values of σz(t) compared to the exact results (al-

though LSCII is observed to be in somewhat better agreement with the exact results than

Ehrenfest). LSCI and LSCII are also seen to damp the oscillatory behavior of σz(t) more

strongly compared to Ehrenfest.

• Improvement over direct application with the GQME for all methods: Remarkably,
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Figure III.3: On the left are the real and imaginary parts of the nonvanishing matrix elements of the
memory kernel for model 3 in Table III.1. Shown are memory kernels obtained via the Ehrenfest
(red), LSCI (magenta), and LSCII (blue) methods.
On the right is the electronic population difference, σz(t) = σDD(t) − σAA(t), as a function of
time for model 3 in Table III.1. Shown are the exact result (black circles), the results obtained
via direct application of the Ehrenfest (dashed red), LSCI (dashed magenta), and LSCII (dashed
blue) methods and results obtained based on the GQME with the memory kernel calculated via
the Ehrenfest (Ehr-GQME, solid red), LSCI (LSCI-GQME, solid magenta), and LSCII (LSCII-
GQME, solid blue) methods.

despite the rather inaccurate and qualitatively different behavior of the three methods, they

produce similar, and rather accurate, results when their use is restricted to calculating the

memory kernel of the GQME, with LSCII typically leading to the most accurate results,

Ehrenfest to the least accurate results, and LSCI’s accuracy intermediate between them.

• Computational benefit of shorter memory time needed for LSCII-GQME: The mem-

ory kernels produced by LSCI and LSCII tend to have a less oscillatory behavior at longer

times than those produced by the Ehrenfest method, with LSCII producing the most stable
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Figure III.4: On the left are the real and imaginary parts of the nonvanishing matrix elements of the
memory kernel for model 4 in Table III.1. Shown are memory kernels obtained via the Ehrenfest
(red), LSCI (magenta), and LSCII (blue) methods.
On the right is the electronic population difference, σz(t) = σDD(t) − σAA(t), as a function of
time for model 4 in Table III.1. Shown are the exact result (black circles), the results obtained
via direct application of the Ehrenfest (dashed red), LSCI (dashed magenta), and LSCII (dashed
blue) methods and results obtained based on the GQME with the memory kernel calculated via
the Ehrenfest (Ehr-GQME, solid red), LSCI (LSCI-GQME, solid magenta), and LSCII (LSCII-
GQME, solid blue) methods.

kernels (see Figs. III.1-III.5). As a result, in all five sets of model parameters under consid-

eration, it was possible to obtain converged electronic dynamics via LSCII-based memory

kernels using a memory time which is shorter compared to that used to obtain the LSCI-

and Ehrenfest-based memory kernels (see Figs. III.1-III.5), including twice by more than a

factor of 2 compared to Ehrenfest (see Figs. III.2 and III.5). Memory times were determined

by the algorithm outlined in Sec. III.4.1. Given that the calculation of the projection-free

inputs and the subsequent calculation of the memory kernel are the most costly parts of a

GQME-based simulation, being able to cut the memory time corresponds to a significant
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Figure III.5: On the left are the real and imaginary parts of the nonvanishing matrix elements of the
memory kernel for model 5 in Table III.1. Shown are memory kernels obtained via the Ehrenfest
(red), LSCI (magenta), and LSCII (blue) methods.
On the right is the electronic population difference, σz(t) = σDD(t) − σAA(t), as a function of
time for model 5 in Table III.1. Shown are the exact result (black circles), the results obtained
via direct application of the Ehrenfest (dashed red), LSCI (dashed magenta), and LSCII (dashed
blue) methods and results obtained based on the GQME with the memory kernel calculated via
the Ehrenfest (Ehr-GQME, solid red), LSCI (LSCI-GQME, solid magenta), and LSCII (LSCII-
GQME, solid blue) methods.

reduction in computational cost.

• Improvement in results for least-classical set of parameters: The QC/MH approach in-

volves the approximation that the nuclear DOF can be treated classically, which is not always

valid. The high cutoff frequency of model 3 (see Fig. III.3) implies that treating the nuclear

DOF as classical may be the least justifiable for this model. Indeed, the Ehrenfest method

was shown in Sec. II.6 to deviate significantly from the exact result in this case (see Figs. II.3

and III.3).35 Interestingly, while LSCII is also observed to deviate from the exact result in
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this case, it is also seen to significantly outperform Ehrenfest (see Fig. III.3). Since both

Ehrenfest and LSCII treat the nuclear DOF classically, this difference seems to suggest that

the inferior performance of Ehrenfest is partially due to the mean field approximation under-

lying it.

III.4.1 Memory time convergence algorithm

In this section, we outline the algorithm used to obtain the memory time for the dynamics of the

electronic population difference, σz(t) = σDD(t)− σAA(t). For each step, convergence is defined

as

|σz(n∆t)− σz,max(n∆t)| ≤ 0.02 (III.40)

for all n = 0, 1, 2, ..., Nmax, where Nmax∆t is equal to the chosen maximum value of t and

σz,max(n∆t) is the electronic population difference for a memory time tmem, max = Nmax∆t. The

convergence parameter of 0.02 was chosen as it is 1/100th of the maximum range of the σz(t)

values, from −1 to 1.

For the spin-boson model in this paper with parameters given in Table III.1, tmem, max = 15 Γt

for models 1, 3, and 5; tmem, max = 20 Γt for model 2; and tmem, max = 10 Γt for model 4. For models

1-4, tmem, max is equivalent to the maximum time of the exact results while a longer time was chosen

for model 5 because the maximum time of the exact results was shorter than one full oscillation.

The memory time convergence algorithm is as follows:

1. Calculate σz,max(t) with a memory time equal to the maximum value of Γt in Figs. III.1 -

III.5.

2. Calculate σz(t) with a memory time equal to half the maximum value of Γt. There are two

possible scenarios:

• If Eq. (III.40) is satisfied, the memory time is decreased by 2.5 and a boolean, α, is set

to true to denote that the first instance of convergence has been reached.
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• If Eq. (III.40) is not satisfied, the memory time is increased by 2.5 and α = false.

While α = false, continue to calculate σz(t) with the memory time increasing by 2.5

for each loop until Eq. (III.40) is satisfied and α = true.

3. Once α = true, the memory time is decreased by 2.5 and σz(t) recalculated in a loop

until Eq. (III.40) is no longer satisfied, with σz(t) stored as σz,prev(t) each time the loop

restarts. A boolean, η, is then set to true to indicate that non-convergence has occurred

after convergence had been reached previously.

4. Once η = true, the memory time is increased by 2.5 then decreased by 0.25 in a loop while

the recalculated σz(t) satisfies Eq. (III.40), with σz(t) stored as σz,prev(t) each time the loop

restarts. If Eq. (III.40) is no longer satisfied, σz,prev(t) is determined as the converged σz(t)

at the lowest possible memory time (by steps of 0.25).

III.5 Concluding remarks

This chapter introduced two different ways of using the QC/MH method to calculate the memory

kernel of the GQME. The two QC/MH-based approaches were benchmarked against a spin-boson

model, for which the exact results are known, and compared with a previously proposed Ehrenfest-

based approach.

There are several reasons why the QC/MH method can be the method of choice for calculating

the memory kernel of the GQME. First, due to the requirement that the electronic density matrix

be Hermitian in order for the mean force experienced by the nuclear DOF within the Ehrenfest

method to be real, there are multiple protocols for calculating the memory kernel that can give

different answers, without a clear criterion for choosing between them.35 In contrast, within both

LSCI and LSCII, the force experienced by the nuclear DOF is always real regardless of whether

or not the initial electronic state is described by a Hermitian operator. Second, the fact that LSC

treats both electronic and nuclear DOF on the same footing in terms of classical-like phase-space

variables should make it easier to incorporate into existing classical MD codes.
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The results reported in this chapter demonstrate that LSC provides a useful route for calculating

GQME memory kernels. LSCII in particular seems to produce asymptotically better behaved mem-

ory kernels that lead to both computational cost reduction and more accurate electronic dynamics

in comparison to both Ehrenfest and LSCI. Further study of the accuracy and computational cost

of combining QC/MH, as well as other approximate and exact methods, with the GQME approach

would be highly desirable. For example, Saller, Kelly, and Richardson have recently introduced a

new QC/MH-based method that shows great improvement over LSCI and LSCII.104,105 Using their

approach for calculating the memory kernel, which would be desirable in cases where it is seen to

be less accurate on its own, can be achieved following the procedure proposed in this paper. Sev-

eral other recently proposed methods106,107 aimed at simulating the dynamics of systems described

by the Hamiltonian in Eq. (I.3) may also benefit from being combined with the GQME approach.

Along with exploring other input methods, research into extending the range of applications to

models with more than two states, anharmonic PESs, and non-Condon electronic coupling is also

of great interest.
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CHAPTER IV

Exploration of the Various Approaches to Obtain the

Memory Kernel of the GQME

IV.1 Introduction

In Chapter II, the Shi-Geva, Zhang-Ka-Geva, and modified approach to the GQME were intro-

duced. Due to the many variations of the memory kernel, partially introduced in Eq. (II.3), and the

manipulability of the general identity given in Eq. (II.4), these three approaches are only three of

many. Additionally, as introduced in Ref. 32, the projection-free inputs can be calculated various

ways, by calculating the correlation functions (CFs) in the form given in Eq. (II.38) (i) directly

or (ii) following one of three types of expansions involving time-derivatives of other projection-

free inputs or of the time propagation superoperator for the reduced electronic density matrix,

U(τ) = Trn{e−iLτ/~ρ̂n(0)}.

In this chapter, the methods studied include four system-bath approaches and three modified

approaches with Condon and non-Condon variations along with the four possible expansions for

obtaining the projection-free inputs for each, leading to forty-four different methods of obtaining

the GQME. It should be noted that these forty-four different methods are obtained with no approx-

imations, meaning that if an exact input method is used, they would give the same result. However,

with approximate input methods, these different methods could and are expected to give different

results. This thorough investigation of the GQME helps to understand the impact of the different

components of the projection-free inputs and the form of the Volterra equations on the results,
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allowing better selection of the approach to use for future systems and input methods of interest.

In this chapter, the eleven different approaches (the four system-bath approaches and three

modified approaches with Condon and non-Condon variations, with one having two different Con-

don variations) will be introduced in Sec. IV.2. The four expansions possible for each of the eleven

approaches will be outlined Sec. IV.3. The results for these methods on the spin-boson model with

the two QC/MH input methods from Chapter III will be outlined in Sec. IV.4. A discussion of

these results is given in Sec. IV.5. Concluding remarks are given in Sec. IV.6. Additional results

are included in Appendix B.

IV.2 Approaches for obtaining the memory kernel

In this section, the eleven different approaches for obtaining the memory kernel will be dis-

cussed in further detail. The eleven approaches can first be divided into whether they are based

on the system-bath splitting of the Hamiltonian detailed in Sec. II.2 or if they are based on the

modified form of the GQME outlined in Sec. II.3. This distinction will be noted in differentiating

the approaches by including either System-Bath for the former or Modified for the latter in the

approaches’ titles.

The approaches can further be divided based on the number of equations needed to obtain the

memory kernel. Four approaches, one with the system-bath form and three with the modified form,

have two equations to obtain the memory kernel: the first equation is a Volterra integral equation of

the second type to obtain an intermediary projection-dependent input and the second is an equation

to obtain the memory kernel from the projection-free and projection-dependent inputs. These four

approaches are designated by including Two-Equation in their titles and TE in their abbreviations.

The remaining seven approaches all have only one Volterra equation to obtain the memory

kernel directly from the projection-free inputs. These seven approaches can be divided based on

the form of the memory kernel the approach begins with; more distinctly, based on the form of the

exponential within the memory kernel. For the approaches explored in this chapter, the relevant
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forms of the system-bath memory kernel are

K(τ) =
1

~2
TrB
{
LBSe−i(L−LBSP)τ/~LBS ρ̂eq

B

}
, (IV.1)

=
1

~2
TrB
{
LBSe−iQLτ/~QLρ̂eq

B

}
, (IV.2)

=
1

~2
TrB
{
LBSe−iQLτ/~QLBS ρ̂eq

B

}
, (IV.3)

=
1

~2
TrB
{
LBSQe−iLQτ/~LBS ρ̂eq

B

}
; (IV.4)

the relevant forms of the modified non-Condon memory kernel are

K(τ) =
1

~2
Trn
{
L e−iQLτ/~QLρ̂n(0)

}
, (IV.5)

=
1

~2
Trn
{
LQ e−iLQτ/~Lρ̂n(0)

}
; (IV.6)

and the relevant forms of the modified Condon memory kernel are

K(τ) =
1

~2
Trn
{
Lzero e

−iQLτ/~QLzeroρ̂n(0)
}

, (IV.7)

=
1

~2
Trn
{
LzeroQ e−iLQτ/~Lzeroρ̂n(0)

}
. (IV.8)

Looking at the memory kernel forms given in Eqs. (IV.2), (IV.3), (IV.5), and (IV.7), the exponent

has the projection superoperatorQ first and the Liouvillian superoperatorL second. In comparison,

Eqs. (IV.4), (IV.6), and (IV.8) have the projection superoperator Q second and the Liouvillian

superoperator L first in the exponent. For this reason, the four approaches that have memory

kernels of the forms given in Eqs. (IV.2), (IV.3), (IV.5), and (IV.7) are designated as Projection-

First (PF) and the three approaches that have memory kernels of the forms given in Eqs. (IV.4),

(IV.6), and (IV.8) are designated as Projection-Second (PS).

The two-equation, projection-first, and projection-second approaches that use the modified

form of the GQME have both non-Condon and Condon versions, leading to six different ap-

proaches. Additionally, the modified two-equation approach has two different Condon versions,
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giving a total of seven different approaches that use the modified form of the GQME. Combined

with the four approaches that use the system-bath form of the GQME, this gives the eleven dif-

ferent approaches for obtaining the memory kernel. The list of titles and abbreviations of these

approaches is:

• System-Bath Two-Equation (SB-TE);
• System-Bath Projection-First, Version 1 (SB-PF1);
• System-Bath Projection-First, Version 2 (SB-PF2);
• System-Bath Projection-Second (SB-PS);
• Modified Two-Equation Non-Condon (M-TE-NC);
• Modified Two-Equation Condon, Version 1 (M-TE-C1);
• Modified Two-Equation Condon, Version 2 (M-TE-C2);
• Modified Projection-First Non-Condon (M-PF-NC);
• Modified Projection-First Condon (M-PF-C);
• Modified Projection-Second Non-Condon (M-PS-NC);
• Modified Projection-Second Condon (M-PS-C);

and can be visualized using the titles-only tree diagram shown in Fig. IV.1. These eleven ap-

proaches are further detailed in the following subsections and a more detailed tree diagram is

given at the end of this section in Figs. IV.2.

The identities used by the approaches to obtain projection-free inputs have one of the following

general forms:28,29,62,108

e−iBτ/~ = e−iAτ/~ − i

~

∫ τ

0

dτ ′ e−iA(τ−τ ′)/~(B −A)e−iBτ
′/~ , (IV.9)

e−iBτ/~ = e−iAτ/~ − i

~

∫ τ

0

dτ ′ e−iAτ
′/~(B −A)e−iB(τ−τ ′)/~ , (IV.10)

where the first equation was given previously in Eq. (II.4). Additionally, the different approaches

use Liouvillian superoperators based on the splitting of the Hamiltonian. The system-bath Hamil-

tonian is given by Ĥ = ĤS + ĤB + ĤBS [see Eq. (II.1)] and each term has a matching Liouvillian

operator; e.g., LS = [ĤS, · ], LB = [ĤB, · ], and LBS = [ĤBS, · ], respectively. The modi-

fied Hamiltonian can be split into two terms Ĥ = Ĥzero + Ĥint given by Ĥzero =
Ne∑
j=1

Ĥj|j〉〈j|
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Figure IV.1: Tree diagram of the titles for the eleven approaches to obtaining the memory kernel
explored in this chapter.

and Ĥint =
Ne∑
j,k=1
k 6=j

V̂jk|j〉〈k|. Each term has a matching Liouvillian operator as well, given by

Lzero(·) = [Ĥzero, · ] and Lint(·) = [Ĥint, · ], respectively [see Eq. (II.25)].
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IV.2.1 System-Bath Two-Equation Approach (SB-TE)

The system-bath two-equation approach (SB-TE) is the same as the Shi-Geva approach intro-

duced in Sec. II.2.1. While more details are given in Sec. II.2.1, some details are copied below that

are important for understanding the expansions of the projection-free inputs given in Sec. IV.3 and

for comparing to the other methods. The SB-TE approach uses a memory kernel of the form given

in Eq. (II.5):

K(τ) =
1

~2
TrB
{
LBS e−i(L−LBSP)τ/~LBS ρ̂eq

B

}
.

Substituting A = L and B = L − LBSP into the operator identity in Eq. (IV.9) and plugging into

the memory kernel above gives the following expression for the memory kernel [Eq. (II.7)]

K(τ) = K1(τ) + i

∫ τ

0

K1(τ − τ ′)K2(τ ′) ,

where [see Eqs. (II.8) and (II.9)]

K1(τ) =
1

~2
TrB

{
LBSe−iLτ/~LBS ρ̂eq

B

}
,

K2(τ) =
1

~
TrB

{
e−i(L−LBSP)τ/~LBS ρ̂eq

B

}
.

Repeating the process for K2(τ), since it is projection-dependent, leads to the Volterra equation

[see Eq. (II.10)]

K2(τ) = K3(τ) + i

∫ τ

0

dτ ′K3(τ − τ ′)K2(τ ′) ,

where [see Eq. (II.11)]

K3(τ) =
1

~
TrB

{
e−iLτ/~LBS ρ̂eq

B

}
.

Therefore, obtaining the memory kernel via the SB-TE approach requires first calculating K1(τ)

and K3(τ), then calculating K2(τ) through Eq. (II.10), and finally calculating K(τ) via Eq. (II.7).
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IV.2.2 System-Bath Projection-First Approach, Version 1 (SB-PF1)

The system-bath projection-first approach, version 1 (SB-PF1) is the same as the Zhang-Ka-

Geva approach introduced in Sec. II.2.2. While more details are given in Sec. II.2.2, some details

are copied below. The SB-PF1 approach uses a memory kernel of the form given in Eq. (II.12):

K(τ) =
1

~2
TrB
{
LBSe−iQLτ/~QLρ̂eq

B

}
.

Substituting A = L and B = QL into Eq. (IV.9) and plugging that into the memory kernel above

leads to the following Volterra equation for K(τ) [see Eq. (II.13)]:

K(τ) = Φ̇(τ) +
i

~
Φ(τ)LS +

∫ τ

0

dτ ′Φ(τ − τ ′)K(τ ′) ,

where Φ(τ) and Φ̇(τ) are the projection-free inputs [see Eq. (II.14)]

Φ(τ) =
i

~
TrB
{
LBSe−iLτ/~ρ̂eq

B

}
,

Φ̇(τ) =
1

~2
TrB
{
LBSe−iLτ/~Lρ̂eq

B

}
. (IV.11)

Therefore, obtaining the memory kernel via the SB-PF1 approach requires first calculating Φ(τ)

and Φ̇(τ) and then calculating the memory kernel via Eq. (II.13).

IV.2.3 System-Bath Projection-First Approach, Version 2 (SB-PF2)

The system-bath projection-first approach, version 2 (SB-PF2) was previously introduced in

Ref. 32. In the SB-PF2 approach, the memory kernel has the form

K(τ) =
1

~2
TrB
{
LBSe−iQLτ/~QLBS ρ̂eq

B

}
. (IV.12)
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Substituting A = L and B = QL into Eq. (IV.9) and plugging that into Eq. (IV.12) leads to a

Volterra equation of the form

K(τ) = K1(τ) +

∫ τ

0

dτ ′Φ(τ − τ ′)K(τ ′) , (IV.13)

where K1(τ) is as given in Eq. (II.8) and copied above in Sec. IV.2.1 and Φ(τ) is as given in

Eq. (II.14) and copied above in Sec. IV.2.2. Therefore, obtaining the memory kernel via the SB-

PF1 approach requires first calculating K1(τ) and Φ(τ) and then calculating the memory kernel

via Eq. (IV.13). Notably, this approach has projection-free inputs that are also used in the SB-TE

and SB-PF1 approaches, which will help narrow down the effect of the form of the projection-free

inputs and the equations for the memory kernel.

IV.2.4 System-Bath Projection-Second Approach (SB-PS)

The system-bath projection-second approach (SB-PS) was previously introduced in Ref. 32. In

the SB-PS approach, the memory kernel has the form

K(τ) =
1

~2
TrB
{
LBSQe−iLQτ/~LBS ρ̂eq

B

}
. (IV.14)

Substituting A = LQ and B = L into Eq. (IV.10) and plugging that into Eq. (IV.14) leads to a

Volterra equation of the form

K(τ) = K1(τ) +

∫ τ

0

dτ ′K(τ − τ ′)K3(τ ′) , (IV.15)

where K1(τ) is as given in Eq. (II.8), K3(τ) is as given in Eq. (II.11), and both are copied above

in Sec. IV.2.1. Therefore, obtaining the memory kernel via the SB-PF1 approach requires first

calculatingK1(τ) andK3(τ) and then calculating the memory kernel via Eq. (IV.15). Notably, this

approach uses the same projection-free inputs as the SB-TE approach but only a single Volterra

equation is needed to obtain the memory kernel, rather than two coupled equations. Additionally,
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the memory kernel is the first superoperator in the integral whereas in the Volterra equations in the

SB-PF1 and SB-PF2 approaches, it is the second superoperator.

IV.2.5 Modified Two-Equation Approach (M-TE)

IV.2.5.1 Non-Condon Variation (M-TE-NC)

The non-Condon modified two-equation approach (M-TE-NC) starts from a memory kernel of

the form:

K(τ) =
1

~2
Trn
{
LQ e−iLQτ/~Lρ̂n(0)

}
. (IV.16)

Substituting A = L and B = LQ into the operator identity in Eq. (IV.9) and plugging into

Eq. (IV.16) above gives the following expressions for the memory kernel

K(τ) = iḞ(τ)− 1

~
〈L〉0nG(τ) + i

∫ τ

0

dτ ′
[
iḞ(τ − τ ′)− 1

~
〈L〉0nG(τ − τ ′)

]
G2(τ ′) , (IV.17)

where Ḟ(τ) is the time-derivative of F(τ) given in Eq. (II.31), which is equivalent to

Ḟ1(τ) = − i

~2
Trn

{
Le−iLτ/~L ρ̂n(0)

}
, (IV.18)

and G(τ) and G2(τ) are given by

G(τ) =
1

~
Trn

{
e−iLτ/~Lρ̂n(0)

}
(IV.19)

G2(τ) =
1

~
Trn

{
e−iLQτ/~Lρ̂n(0)

}
(IV.20)

Repeating the process for G2(τ), since it is projection-dependent, leads to the Volterra equation

G2(τ) = G(τ) + i

∫ τ

0

dτ ′G(τ − τ ′)G2(τ ′) . (IV.21)
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Therefore, the process of obtaining the memory kernel via the non-Condon M-TE approach (M-

TE-NC) requires first calculating Ḟ(τ) and G(τ), then calculating G2(τ) through Eq. (IV.21), and

finally calculating K(τ) via Eq. (IV.17).

IV.2.5.2 Condon Variation, Version 1 (M-TE-C1)

The Condon modified two-equation approach, version 1 (M-TE-C1) starts from a memory kernel

of the form:

K(τ) =
1

~2
Trn
{
LzeroQ e−iLQτ/~Lzeroρ̂n(0)

}
. (IV.22)

Substituting A = L and B = LQ into the operator identity in Eq. (IV.9) and plugging into

Eq. (IV.22) above results in the following derivation

K(τ) =
1

~2
Trn

{
LzeroQ

[
e−iLτ/~ +

i

~

∫ τ

0

dτ ′ e−iL(τ−τ ′)/~LPe−iLQτ ′/~
]
Lzeroρ̂n(0)

}
=

1

~2
Trn
{
LzeroQe−iLτ/~Lzeroρ̂n(0)

}
(IV.23)

+
i

~

∫ τ

0

dτ ′
1

~2
Trn
{
LzeroQe−iL(τ−τ ′)/~Lρ̂n(0)

}
Trn

{
e−iLQτ

′/~Lzeroρ̂n(0)
}

=
1

~2
Trn
{
Lzero e

−iLτ/~Lzeroρ̂n(0)
}
− 1

~2
Trn
{
Lzeroρ̂n(0)

}
Trn

{
e−iLτ/~Lzeroρ̂n(0)

}
+ i

∫ τ

0

dτ ′
[

1

~2
Trn
{
Lzeroe

−iL(τ−τ ′)/~
(
Lzero + Lint

)
ρ̂n(0)

}
− 1

~2
Trn
{
Lzeroρ̂n(0)

}
Trn

{
e−iL(τ−τ ′)/~

(
Lzero+Lint

)
ρ̂n(0)

}]1
~

Trn

{
e−iLQτ

′/~Lzeroρ̂n(0)
}

= F1(τ)− 1

~
〈Lzero〉0nF2(τ) + i

∫ τ

0

dτ ′
[

1

~2
Trn
{
Lzeroe

−iL(τ−τ ′)/~Lzeroρ̂n(0)
}

+
1

~2
Trn
{
Lzeroe

−iL(τ−τ ′)/~ρ̂n(0)
}
Lint −

1

~2
〈Lzero〉0n Trn

{
e−iL(τ−τ ′)/~Lzeroρ̂n(0)

}
+

1

~2
〈Lzero〉0n Trn

{
e−iL(τ−τ ′)/~ρ̂n(0)

}
Lint

]
G2,zero(τ

′)

K(τ) = F1(τ)− 1

~
〈Lzero〉0nGzero(τ) + i

∫ τ

0

dτ ′
[
F1(τ − τ ′) +

1

~
F2(τ − τ ′)Lint (IV.24)

− 1

~
〈Lzero〉0nGzero(τ − τ ′)−

1

~2
〈Lzero〉0n UM(τ − τ ′)Lint

]
G2,zero(τ

′) ,
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where Lint is able to commute with ρ̂n(0) and move outside of the trace over the nuclear DOF

because it is a purely electronic superoperator in the Condon approximation. F1(τ) is as given in

Eq. (II.33),

F1(τ) = − i

~2
Trn

{
Lzeroe

−iLτ/~Lzero ρ̂n(0)
}

, (IV.25)

and Gzero(τ) and G2,zero(τ) are given by

Gzero(τ) =
1

~
Trn

{
e−iLτ/~Lzeroρ̂n(0)

}
, (IV.26)

G2,zero(τ) =
1

~
Trn

{
e−iLQτ/~Lzeroρ̂n(0)

}
. (IV.27)

Repeating the process for G2,zero(τ), since it is projection-dependent, results in the following deriva-

tion of the Volterra equation

G2,zero(τ) =
1

~
Trn

{[
e−iLτ/~ +

i

~

∫ τ

0

dτ ′ e−iL(τ−τ ′)/~LPe−iLQτ ′/~
]
Lzeroρ̂n(0)

}
=

1

~
Trn

{
e−iLτ/~Lzeroρ̂n(0)

}
(IV.28)

+
i

~

∫ τ

0

dτ ′
1

~
Trn

{
e−iL(τ−τ ′)/~Lρ̂n(0)

}
Trn

{
e−iLQτ

′/~Lzeroρ̂n(0)
}

= Gzero(τ) + i

∫ τ

0

dτ ′
[

1

~
Trn

{
e−iL(τ−τ ′)/~Lzeroρ̂n(0)

}
+

1

~
Trn

{
e−iL(τ−τ ′)/~ρ̂n(0)

}
Lint

]
× 1

~
Trn

{
e−iLQτ

′/~Lzeroρ̂n(0)
}

G2,zero(τ) = Gzero(τ) + i

∫ τ

0

dτ ′
[
Gzero(τ − τ ′) +

1

~
UM(τ − τ ′)Lint

]
G2,zero(τ

′) . (IV.29)

Therefore, the process of obtaining the memory kernel via the Condon M-TE approach, ver-

sion 1 (M-TE-C1) requires first calculating F1(τ) and Gzero(τ), then calculating G2,zero(τ) through

Eq. (IV.29), and finally calculating K(τ) via Eq. (IV.24).

IV.2.5.3 Condon Variation, Version 2 (M-TE-C2)

The Condon modified two-equation approach, version 2 (M-TE-C2) starts from the same mem-

ory kernel as M-TE-C1, Eq. (IV.22), and uses the same identity expression. The difference begins
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in the derivation of the Volterra equation, starting from Eq. (IV.23):

K(τ) =
1

~2
Trn
{
LzeroQe−iLτ/~Lzeroρ̂n(0)

}
+
i

~

∫ τ

0

dτ ′
1

~2
Trn

{
LzeroQe−iL(τ−τ ′)/~Lρ̂n(0)

}
Trn

{
e−iLQτ

′/~Lzeroρ̂n(0)
}

=
1

~2
Trn
{
Lzeroe

−iLτ/~Lzeroρ̂n(0)
}
− 1

~2
Trn
{
Lzeroρ̂n(0)

}
Trn

{
e−iLτ/~Lzeroρ̂n(0)

}
+
i

~

∫ τ

0

dτ ′
1

~2
Trn
{
LQe−iL(τ−τ ′)/~Lρ̂n(0)

}
Trn

{
e−iLQτ

′/~Lzeroρ̂n(0)
}

=
1

~2
Trn
{
Lzeroe

−iLτ/~Lzeroρ̂n(0)
}
− 1

~2
Trn
{
Lzeroρ̂n(0)

}
Trn

{
e−iLτ/~Lzeroρ̂n(0)

}
+
i

~

∫ τ

0

dτ ′
[

1

~2
Trn
{
Le−iL(τ−τ ′)/~Lρ̂n(0)

}
− 1

~2
Trn
{
Lρ̂n(0)

}
Trn

{
e−iL(τ−τ ′)/~Lρ̂n(0)

}]
Trn

{
e−iLQτ

′/~Lzeroρ̂n(0)
}

K(τ) = F1(τ)− 1

~
〈Lzero〉0nGzero(τ) + i

∫ τ

0

dτ ′
[
iḞ(τ − τ ′)− 1

~
〈L〉0nG(τ − τ ′)

]
G2,zero(τ

′)

(IV.30)

whereF1(τ) is as given in Eq. (II.33) and copied in Sec. IV.2.5.2, Gzero is given in Eq. (IV.26), Ḟ(τ)

is given in Eq. (IV.25), G(τ) is given in Eq. (IV.19), and G2,zero(τ) is given in Eq. (IV.27). The ability

of the second term to go from Lzero in the first line to L in the second comes from the fact that in the

Condon approximation, Trn{LintQ[...]} = Lint Trn{Q[...]} = Lint(Trn{[...]} − Trn{P [...]}) = 0,

so this step is essentially adding zero in the form of
1

~2
Trn

{
LintQe−iL(τ−τ ′)/~Lρ̂n(0)

}
in order

to get to the full Liouvillian operator used in Ḟ(τ). Obtaining the Volterra equation for G2,zero(τ)

starts the same way as in the M-TE-C1 approach but stops the derivation at Eq. (IV.28), leading to

G2,zero(τ) =
1

~
Trn

{
e−iLτ/~Lzeroρ̂n(0)

}
+
i

~

∫ τ

0

dτ ′
1

~
Trn

{
e−iL(τ−τ ′)/~Lρ̂n(0)

}
Trn

{
e−iLQτ

′/~Lzeroρ̂n(0)
}

G2,zero(τ) = Gzero(τ) + i

∫ τ

0

dτ ′ G(τ − τ ′)G2,zero(τ
′) . (IV.31)

77



Therefore, the process of obtaining the memory kernel via the Condon M-TE approach, version

2 (M-TE-C2) requires first calculating F1(τ), Gzero(τ), Ḟ(τ), and G(τ), then calculating G2,zero(τ)

through Eq. (IV.31), and finally calculating K(τ) via Eq. (IV.30).

IV.2.6 Modified Projection-First Modified Approach (M-PF)

The modified projection-first approach (M-PF) is the same as the modified approach introduced

in Sec. II.3 and is the approach that is referred to in previous and upcoming chapters as the modified

GQME (M-GQME). While more details are given in Sec. II.3 and Sec. II.4, some details are copied

below that are important for understanding the expansions of the projection-free inputs given in

Sec. IV.3 and for comparing to the other methods.

IV.2.6.1 Non-Condon Variation (M-PF-NC)

The non-Condon modified projection-first approach (M-PF-NC) uses a memory kernel of the

form given in Eq. (II.23):

K(τ) =
1

~2
Trn
{
L e−iQLτ/~QLρ̂n(0)

}
.

Substituting A = L and B = QL into Eq. (IV.9) and plugging the identity into the memory kernel

above leads to the Volterra equation given in Eq. (II.30):

K(τ) = iḞ(τ)− 1

~
F(τ)〈L〉0n + i

∫ τ

0

dτ ′F(τ − τ ′)K(τ ′) ,

where [see Eq. (II.31)]

F(τ) =
1

~
Trn

{
Le−iLτ/~ρ̂n(0)

}
and Ḟ(τ) is as given in Eq. (IV.25). Therefore, the process of obtaining the memory kernel via

the M-PF-NC approach requires first calculating F(τ) and Ḟ(τ) and then calculating K(τ) via

Eq. (II.30).
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IV.2.6.2 Condon Variation (M-PF-C)

The Condon modified projection-first approach (M-PF-C) uses a memory kernel of the form

given in Eq. (II.28):

K(τ) =
1

~2
Trn
{
Lzero e

−iQLτ/~QLzeroρ̂n(0)
}

.

Substituting A = L and B = QL into Eq. (IV.9) and plugging the identity into the memory kernel

above leads to the Volterra equation given in Eq. (II.32):

K(τ) = F1(τ)− 1

~
F2(τ)〈Lzero〉0n + i

∫ τ

0

dτ ′F2(τ − τ ′)K(τ ′) ,

where F1(τ) is as given in Eq. (II.33) and copied above in Sec. IV.2.5.2 and F2(τ) is as given in

Eq. (II.34):

F2(τ) =
1

~
Trn

{
Lzeroe

−iLτ/~ρ̂n(0)
}

.

Therefore, the process of obtaining the memory kernel via the M-PF-C approach requires first

calculating F1(τ) and F2(τ) and then calculating K(τ) via Eq. (II.32).

IV.2.7 Modified Projection-Second Modified Approach (M-PS)

IV.2.7.1 Non-Condon Variation (M-PS-NC)

The non-Condon modified projection-second approach (M-PS-NC) uses the same memory ker-

nel as the M-TE-NC approach, Eq. (IV.16). Substituting A = LQ and B = L into Eq. (IV.9) and

plugging the identity into Eq. (IV.16) results in the Volterra equation

K(τ) = iḞ(τ)− 1

~
〈L〉0nG(τ) + i

∫ τ

0

dτ ′K(τ − τ ′)G(τ ′) , (IV.32)

where Ḟ(τ) is given previously in Eq. (IV.25) and G(τ) is given in Eq. (IV.19). Therefore, the

process of obtaining the memory kernel via the M-PS-NC approach requires first calculating Ḟ(τ)

and G(τ) and then calculating K(τ) via Eq. (IV.32).
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IV.2.7.2 Condon Variation (M-PS-C)

The Condon modified projection-second approach (M-PS-C) uses the same memory kernel as

the M-TE-C1 and M-TE-C2 approaches, Eq. (IV.22). Substituting A = LQ and B = L into

Eq. (IV.9) and plugging the identity into Eq. (IV.22) results in the Volterra equation

K(τ) = F1(τ)− 1

~
〈Lzero〉0nGzero(τ) + i

∫ τ

0

dτ ′K(τ − τ ′)Gzero(τ
′) , (IV.33)

where F1(τ) is given in Eq. (II.33) and Gzero(τ) is given in Eq. (IV.26). Therefore, the process of

obtaining the memory kernel via the M-PS-C approach requires first calculatingF1(τ) and Gzero(τ)

and then calculating K(τ) via Eq. (IV.33).
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System-Bath Form (SB)
d

dt
σ̂(t) = − i

~
LS σ̂(t)

−
∫ t

0
dτ K(τ)σ̂(t− τ)

Two-Equation Approach (SB-TE)
K(τ) = K1(τ) + i

∫ τ

0
dτ ′K1(τ − τ ′)K2(τ ′) (II.7)

K2(τ) = K3(τ) + i

∫ τ

0
dτ ′K3(τ − τ ′)K2(τ ′) (II.10)

Projection-First Approach, Version 1 (SB-PF1)
K(τ) = Φ̇(τ) +

i

~
Φ(τ)LS +

∫ τ

0
dτ ′ Φ(τ − τ ′)K(τ ′) (II.13)

Projection-First Approach, Version 2 (SB-PF2)
K(τ) = K1(τ) +

∫ τ

0
dτ ′ Φ(τ − τ ′)K(τ ′) (IV.13)

Projection-Second Approach (SB-PS)
K(τ) = K1(τ) +

∫ τ

0
dτ ′K(τ − τ ′)K3(τ ′) (IV.15)

Modified Form (M)
d

dt
σ̂(t) = − i

~
〈L〉n0 σ̂(t)

−
∫ t

0
dτ K(τ)σ̂(t− τ)

Two-Equation Approach (M-TE)
Non-Condon (M-TE-NC)

K(τ) = iḞ(τ)−
1

~
〈L〉0nG(τ) + i

∫ τ

0
dτ ′
[
iḞ(τ − τ ′)−

1

~
〈L〉0nG(τ − τ ′)

]
G2(τ ′) (IV.17)

G2(τ) = G(τ) + i

∫ τ

0
dτ ′G(τ − τ ′)G2(τ ′) (IV.21)

Condon, Version 1 (M-TE-C1)
K(τ) = F1(τ)−

1

~
〈Lzero〉0nGzero(τ) + i

∫ τ

0
dτ ′
[
F1(τ − τ ′) +

1

~
F2(τ − τ ′)Lint (IV.24)

−
1

~
〈Lzero〉0nGzero(τ − τ ′)−

1

~2
〈Lzero〉0n UM(τ − τ ′)Lint

]
G2,zero(τ ′)

G2,zero(τ) = Gzero(τ) + i

∫ τ

0
dτ ′
[
Gzero(τ − τ ′) +

1

~
UM(τ − τ ′)Lint

]
G2,zero(τ ′) (IV.29)

Condon, Version 2 (M-TE-C2)
K(τ) = F1(τ)−

1

~
〈Lzero〉0nGzero(τ) (IV.30)

+ i

∫ τ

0
dτ ′
[
iḞ(τ − τ ′)−

1

~
〈L〉0nG(τ − τ ′)

]
G2,zero(τ ′)

G2,zero(τ) = Gzero(τ) + i

∫ τ

0
dτ ′G(τ − τ ′)G2,zero(τ ′) (IV.31)

Projection-First Approach (M-PF)
Non-Condon (M-PF-NC)

K(τ) = iḞ(τ)−
1

~
F(τ)〈L〉0n + i

∫ τ

0
dτ ′ F(τ − τ ′)K(τ ′) (II.30)

Condon (M-PF-C)
K(τ) = F1(τ)−

1

~
F2(τ)〈Lzero〉0n + i

∫ τ

0
dτ ′ F2(τ − τ ′)K(τ ′) (II.32)

Projection-Second Approach(M-PS)
Non-Condon (M-PS-NC)

K(τ) = iḞ(τ)−
1

~
〈L〉0nG(τ) + i

∫ τ

0
dτ ′K(τ − τ ′)G(τ ′) (IV.32)

Condon (M-PS-C)
K(τ) = F1(τ)−

1

~
〈Lzero〉0nGzero(τ) + i

∫ τ

0
dτ ′K(τ − τ ′)Gzero(τ ′) (IV.33)

Figure IV.2: Tree diagram of the approaches to obtaining the memory kernel including equations.
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IV.3 Expansions of the Projection-Free Inputs

The expansions of the projection-free inputs can be categorized based on the nature of their

nuclear operators. The first type of expansion involves direct calculation of the projection-free

inputs as they are given Sec. IV.2 and is therefore called the Bare expansion. The second type

of expansion involves calculating the projection-free inputs with CFs and time-derivatives of CFs

that only have nuclear operators at time t = 0 and is called the Static expansion. The third type

of expansion involves calculating the projection-free inputs with CFs and time-derivatives of CFs

that only have nuclear operators at time t = τ and is called the Dynamic expansion. The fourth

type of expansion involves calculating the projection-free inputs from only the time propagation

superoperator for the reduced electronic density matrix, U(τ) = Trn{e−iLτ/~ρ̂n(0)}, and is called

the Propagator expansion. The expansions of each of the projection-free inputs are summarized

in Tables IV.1 and IV.2. The proofs of each expansion for each projection-free input are given in

Appendix A.

Projection
-Free
Input

Bare
Expansion

Static Expansion Dynamic Expansion Propagator Expansion

K1(τ) Eq. (II.8) i
d

dτ
K3(τ)− 1

~
LSK3(τ)

d

dτ
Φ(τ) +

i

~
Φ(τ)LS

−Ü(τ) +
1

~2
LSU(τ)LS

− i
~

[
U̇(τ),LS

]
+

K3(τ) Eq. (II.11) Eq. (II.11) iU̇(τ)− 1

~
U(τ)LS iU̇(τ)− 1

~
U(τ)LS

Φ̇(τ) Eq. (IV.11)
i
d

dτ
K3(τ) +

i

~
U̇(τ)LS

− 1

~2
LSU(τ)LS −

1

~
LSK3(τ)

d

dτ
Φ(τ) −Ü(τ)− i

~
LSU̇(τ)

Φ(τ) Eq. (II.14) −U̇(τ)− i

~
LSU(τ) Eq. (II.14) −U̇(τ)− i

~
LSU(τ)

Table IV.1: Expansions of the System-Bath Projection-Free Inputs.
In this table, numerical derivatives of projection-free inputs are indicated with d/dτ in front of
them, to differentiate from projection-free inputs that have an overdot in their symbol, e.g., Ḟ(τ)
and Φ̇(τ). However, the numerical derivatives of the time propagation superoperator U(τ) are
denoted with a single overdot for the first derivative and a double overdot for the second derivative,
in order to be compact. Additionally, [A,B]+ = AB + BA denotes the anticommutator.

82



Projection
-Free
Input

Bare
Expansion

Static Expansion Dynamic Expansion Propagator Expansion

Ḟ(τ) Eq. (IV.25)
d

dτ
G(τ)

d

dτ
F(τ) iÜ(τ)

F(τ) Eq. (II.31) iU̇(τ) Eq. (II.31) iU̇(τ)

F1(τ) Eq. (II.33)
i
d

dτ
Gzero(τ)

− 1

~
Lint Gzero(τ)

i
d

dτ
F2(τ)− 1

~
F2(τ)Lint

−Ü(τ)− i

~

[
U̇(τ),Lint

]
+

+
1

~2
Lint U(τ)Lint

F2(τ) Eq. (II.34) iU̇(τ)− 1

~
Lint U(τ) Eq. (II.34) iU̇(τ)− 1

~
Lint U(τ)

G(τ) Eq. (IV.19) Eq. (IV.19) iU̇(τ) iU̇(τ)

Gzero(τ) Eq. (IV.26) Eq. (IV.26) iU̇(τ)− 1

~
U(τ)Lint iU̇(τ)− 1

~
U(τ)Lint

Table IV.2: Expansions of the Modified Projection-Free Inputs.
In this table, numerical derivatives of projection-free inputs are indicated with d/dτ in front of
them, to differentiate from projection-free inputs that have an overdot in their symbol, e.g., Ḟ(τ)
and Φ̇(τ). However, the numerical derivatives of the time propagation superoperator U(τ) are
denoted with a single overdot for the first derivative and a double overdot for the second derivative,
in order to be compact. Additionally, [A,B]+ = AB + BA denotes the anticommutator.

IV.4 Results for a Spin-Boson Model

The 44 different methods of obtaining the memory kernel were tested on the spin-boson model

outlined in Secs. II.6 and III.4. The parameters tested were those of model 2 in Table III.1. In this

model, the energy splitting is 2ε with ε = 1, the off-diagonal coupling is Γ = 1, the temperature is

given via β = 1/kBT = 5, and the number of nuclear number modes is Nn = 400. Calculations

were carried out with 106 trajectories with a time step ∆t = 0.005 Γ−1. The spectral density is the

Ohmic spectral density outlined in Sec. II.6 with a Kondo parameter ξ = 0.1, a cutoff frequency

ωc = 2, and a maximum frequency of ωmax = 10. Exact results were adopted from Ref. 44.

The input methods used were the two QC/MH methods outlined in Chapter III, LSCI and

LSCII. The Ehrenfest method was not used as an input method due to the added difficulty of

tracking the impact on the dynamics of the choice of initial basis outlined in Sec. II.5.
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IV.4.1 System-bath vs. Modified Form

The first comparison we will examine are the approaches based on the system-bath form of the

GQME, outlined in Secs. IV.2.1 - IV.2.4, compared to those based on the modified form of the

GQME, outlined in Secs. IV.2.5 - IV.2.7. All of the results in this section are with a memory time

of 20 Γ−1.

In Fig. IV.3, the electronic population difference results of applying each of the approaches

with the bare expansion are shown, split into three graphs based on the type of approach (i.e., TE,

PF, or PS), with LSCI as input method for the GQME. From this figure, it can be seen that the

system-bath TE and PS approaches have much larger oscillations than their modified counterparts.

The non-Condon M-TE and M-PS approaches have both damped oscillations and underestimate

the dynamics while the Condon M-TE and M-PS approaches have damped oscillations but accurate

estimation of the dynamics. Comparatively, the PF approaches for both system-bath and modified

forms are able to obtain accurate results.

In Fig. IV.4, the electronic population difference results of applying each of the approaches

with the bare expansion are shown, split into three graphs based on the type of approach, with

LSCII as input method for the GQME. From this figure, it can be seen that the problems that

the LSCI-GQME had with the TE and PS approaches for both system-bath and modified forms

seen in Fig. IV.3 have been corrected by using LSCII as input method instead, though the SB-TE

and SB-PS results still have slightly larger amplitudes than the exact results. Additionally, the PF

approaches for both system-bath and modified forms are able to get accurate results with LSCII as

well as LSCI.

From Figs. IV.3 and IV.4, for the bare expansion, there is slight improvement shown with the

M-TE and M-PS approaches compared to the SB-TE and SB-PS approaches but the SB-PF and

M-PF approaches outperform all of the other approaches and yield the same results regardless of

system-bath or modified form. This indicates that the choice of type of approach (i.e., TE, PF, or

PS) has more impact than system-bath v. modified form, though there are some differences seen
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Figure IV.3: Starting from the upper left and moving clockwise, shown are the electronic popula-
tion differences, σz(t) = σDD(t)−σAA(t), for the bare expansion of the two-equation approaches,
the projection-first approaches, and the projection-second approaches. The input method is LSCI,
with the direct application of LSCI results shown on each graph as a solid black line. Exact results
are shown in black circles on each graph.

there for TE and PS approaches. It is also possible that more differences would be seen between the

system-bath and modified forms of the PF approaches for a model that they are unable to capture

the exact results for.

Shown in Fig. IV.5 are the electronic population difference results for the propagator expansion

with LSCII as input method, with the TE approaches shown in the top row and the PF approaches

shown in the bottom row and the time step of the left column results is ∆t = 0.01 Γ−1 whereas

the time step of the right column results is ∆t = 0.005 Γ−1. The results with LSCI as input

method are given in Appendix B rather than this chapter because they show the same trends as
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Figure IV.4: Starting from the upper left and moving clockwise, shown are the electronic popula-
tion differences, σz(t) = σDD(t)−σAA(t), for the bare expansion of the two-equation approaches,
the projection-first approaches, and the projection-second approaches. The input method is LSCII,
with the direct application of LSCII results shown on each graph as a solid black line. Exact results
are shown in black circles on each graph.

the LSCII-GQME results. The results for the Condon M-TE approaches and the PS approaches

are not shown because their results are still being verified. The results in Fig. IV.5 show that the

propagator expansion dynamics are much more sensitive to time step for the system-bath form

compared to the modified form. Results for even smaller time steps are being calculated and

may allow the propagator system-bath results to converge to the modified results but at much

higher computational cost than the modified form approaches. Regardless, the dynamics with the

propagator expansion are much worse compared to the bare expansion shown in Fig. IV.4, with

the propagator expansion giving back the dynamics of the direct application of the input method
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while the bare expansion improves the results compared to the direct application as is normally

seen with GQME. Ref. 71 observed this phenomenon for the SB-PF2 approach with Ehrenfest

method as input and did a Fourier-Laplace transform to show that when the projection-free inputs

are calculated with the time propagation operator U(τ) and its time derivatives, then the results

with the GQME will be equivalent to the dynamics of the direct application of the input method.
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Figure IV.5: In the top row, shown are the electronic population differences, σz(t) = σDD(t) −
σAA(t), for the propagator expansion of the two-equation approaches with a time step of ∆t =
0.01 Γ−1 on the left and a time step of ∆t = 0.005 Γ−1 on the right. In the bottom row, shown
are the electronic population differences for the propagator expansion of the projection-first ap-
proaches with ∆t = 0.01 Γ−1 on the left and a time step of ∆t = 0.005 Γ−1 on the right. The input
method is LSCII, with the direct application of LSCII results shown on each graph as a solid black
line. Exact results are shown in black circles on each graph.
The M-TE-C1 and M-TE-C2 results are not shown in the top row because the results are still being
verified. Similarly, the projection-second results are not shown because results with the modified
form are still being verified.
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IV.4.2 Non-Condon vs. Condon

In Fig. IV.6, the results for the bare and static expansions of the modified two-equation and

projection-second approaches with LSCI as the input method are shown. As can be seen, the non-

Condon approaches slightly underestimate the dynamics while the Condon approaches are more

accurate.
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Figure IV.6: In the top row, shown are the electronic population differences, σz(t) = σDD(t) −
σAA(t), for the bare (left) and static (right) expansions of the modified two-equation approaches.
In the bottom row, shown are the electronic population differences for the bare (left) and static
(right) expansions of the modified projection-second approaches. The input method is LSCI, with
the direct application of LSCI results shown on each graph as a solid black line. Exact results are
shown in black circles on each graph.

Shown in Fig. IV.7 are the bare, static, dynamic, and propagator expansions for the modified

projection-first approaches with LSCI as the input method. The same results with LSCII are given
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in Appendix B. For the bare and static expansions, the non-Condon and Condon M-PF approaches

give the same accurate results. For the dynamic and propagator expansions, results are shown for

time steps of ∆t = 0.01 Γ−1 and ∆t = 0.005 Γ−1 to illustrate that the non-Condon projection-

first approaches have not converged with respect to time step for the dynamic and propagator

expansions. Additionally, the dynamic and propagator expansion results give worse results when

compared to the bare and static expansions. The Condon dynamic and propagator expansion results

for the M-PF approach give the same results as the direct application of LSCI and it is likely that

the non-Condon results will converge to the same dynamics.
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Figure IV.7: In the top row, shown are the electronic population differences, σz(t) = σDD(t) −
σAA(t), for the bare (left) and static (right) expansions of the modified projection-first approaches.
In the middle row, shown are the electronic population differences for the dynamic expansion of
the modified projection-first approaches with a time step of ∆t = 0.01 Γ−1 (left) and a time step of
∆t = 0.005 Γ−1 (right). In the bottom row, shown are the electronic population differences for the
dynamic expansion of the modified projection-first approaches with a time step of ∆t = 0.01 Γ−1

(left) and a time step of ∆t = 0.005 Γ−1 (right). The input method is LSCI, with the direct
application of LSCI results shown on each graph as a solid black line. Exact results are shown in
black circles on each graph.
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IV.4.3 Two Equations vs. One Equation for the Memory Kernel

Four approaches, one with the system-bath form and three with the modified form, have two

equations to obtain the memory kernel; the first equation is a Volterra integral equation of the

second type to obtain an intermediary projection-dependent input and the second an equation to

obtain the memory kernel from the projection-free and projection-dependent inputs. The other

seven approaches, three with system-bath form and four with the modified form, have one Volterra

integral equation of the second type to obtain the memory kernel from projection-free inputs.

In Fig. IV.8, the electronic population difference results are compared for the SB approaches

for the bare, static, and dynamic expansions with LSCI and LSCII as input methods. Notably,

for the bare expansion with LSCI, the SB-TE and SB-PS give the same results while SB-PF1 and

SB-PF2 give the same results as each other, but different from SB-TE and SB-PS. The SB-TE and

SB-PS approaches have the same projection-free inputs, K1(τ) and K3(τ), while SB-PF1 has the

projection-free inputs Φ̇(τ) and Φ(τ), and SB-PF2 shares one projection-free input with each of

the other approaches, with it using K1(τ) and Φ(τ). K1(τ) and Φ̇(τ) are fairly similar projection-

free inputs with nuclear operators at times t = 0 and t = τ butK3(τ) and Φ(τ) are not, withK3(τ)

having a nuclear operator at time t = 0 and with Φ(τ) having its nuclear operator at time t = τ . The

greater success of the SB-PF1 and SB-PF2 approaches, which have Φ(τ), compared to the SB-TE

and SB-PS approaches, which haveK3(τ), seems to run counter-intuitive to the results of the static

and dynamic expansion shown in Fig. IV.8. The static expansion, where projection-free inputs are

built of CFs with only nuclear operators at time t = 0 or time derivatives of the time propagation

superoperator, gives much better results than the dynamic expansion, where the projection-free

inputs are built of CFs with only nuclear operators at time t = τ or time derivatives of the time

propagation superoperator. In fact, the dynamic expansion results give back the dynamics of the

direct application of the input method. As seen in Figs. B.1 and IV.5 and discussed in Sec. IV.4.1,

the propagator expansion of the SB approaches have larger amplitudes than the dynamics of the

direct application of the input method but this is expected to decrease to the dynamics of the direct
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application of the input method with smaller time step, giving the same results as the dynamics

expansion.

Shown in Fig. IV.9 are the results for the bare, static, and dynamic expansions with the modified

form approaches with LSCI as input method. The same results for LSCII are shown in Appendix B.

The bare and static expansions behave the same while the dynamics expansion gives comparatively

worse results. In the bare and static expansions, the M-TE and M-PS approaches do comparatively

worse that the M-PF. The non-Condon M-TE and M-PS approaches give the same results, the

two Condon M-TE approaches give the same, and better, results, and the Condon M-TE and M-

PS approaches giving similar but not the same results. The M-TE-NC and M-PS-NC approaches

use the same projection-free inputs, Ḟ(τ) and G(τ), and the M-TE-C1 and M-PS-C approaches

use the same projection-free inputs, F1(τ) and Gzero while the M-TE-C2 uses all four that the

other approaches use. It is interesting then that the M-TE-C1 and M-PS-C approaches do not

give the exact same results, as was seen with the other approaches that have the same projection-

free inputs, M-TE-NC and M-PS-NC and, shown previously in Fig. IV.8, the SB-TE and SB-

PS approaches. The M-TE-C1 approach has more complicated equations that the M-TE-NC and

SB-TE approaches, with two terms in the linear and integral part of both equations, but the fact

that it obtains the same results as the M-TE-C2 approach, which has simpler equations, seems to

indicate that this is not the cause of the differences between M-TE-C1 and M-PS-C. In the dynamic

expansion results in Fig. IV.9, the M-TE-NC and M-PF-C approaches give back the dynamics of

the direct application of LSCI, gaining no accuracy from using the GQME. The M-PF-NC is more

sensitive to the change in time step than the M-TE-NC and M-PF-C approaches, but it could also

end up giving back the dynamics of the direct application of LSCI with a converged time step.

The M-TE-C1 and M-TE-C2 approaches’ results are not shown because the results are still being

verified. The results for the propagator expansion are not shown in this chapter as they are similar

to the dynamic expansion results, with the graphs given in Appendix B.
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Figure IV.8: Shown are the electronic population differences, σz(t) = σDD(t) − σAA(t), for the
system-bath form approaches. In the top row, the bare expansion is used; in the middle row, the
static expansion; and in the bottom row, the dynamic expansion. The left column is results with
LSCI as input method and on the left are the results with LSCII as input method, with the direct
application of each shown with a solid black line. Exact results are shown in black circles on each
graph.
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Figure IV.9: Shown are the electronic population differences, σz(t) = σDD(t) − σAA(t), for the
modified form approaches. Starting from the upper left and moving counter-clockwise are the
results with the bare expansion, the static expansion, the dynamic expansion with ∆t = 0.005 Γ−1,
and the dynamic expansion with ∆t = 0.01 Γ−1. The input method for the GQME is LSCI, with
the dynamics of the direct application of LSCI shown with a solid black line. Exact results are
shown in black circles on each graph.

IV.4.4 Memory Time Convergence

Shown in Fig. IV.10 are the five approaches, SB-TE, SB-PS, M-PS-NC, M-PS-C, and M-TE-

NC, that do not converge with respect to memory time for the bare expansion with LSCI as the

input method. All of the projection-second approaches and all of the two-equation approaches

except the two Condon approaches fail to obtain converged results with increasing memory time.

For these five approaches with LSCI as the input method, the static and propagator expansions also

do not obtain converged results with increasing memory time but the dynamic expansions do. All
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of the other approaches with LSCI as the input method and all of the approaches with LSCII as

input method give converged results for the bare expansion with increasing memory time, with the

longest memory time needed to converge being 8 Γt.
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Figure IV.10: Shown are the electronic population differences, σz(t) = σDD(t) − σAA(t), of the
five approaches that do not obtain converged results with increasing memory time for the bare
expansion with LSCI as the input method. Starting from the upper left and moving clockwise, the
five approaches are SB-TE, SB-PS, M-PS-C, M-TE-NC, and M-PS-NC. The memory times are
given in the legend in units of Γ−1. The exact results are shown as black circles and the results
from the direct application of LSCI are shown as a solid black line.
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IV.5 Discussion of Results

With the many methods for calculating the memory kernel explored in this chapter, some valu-

able insight can be gained. These insights can be summarized as follows:

• System-bath vs. Modified form: While there are differences between the results of the bare

expansion with LSCI for the TE and PS approaches, the more critical differences seem to

stem from the type of approach (TE, PF, or PS) rather than the form of the Hamiltonian used.

Considering the disadvantages of the system-bath form and the advantages of the modified

form outlined in Chapter II, this makes the modified form the preferable one in general.

• Effect of number of equations for the memory kernel: The TE and PS approaches share

the same projection-free inputs but have a different number of equations needed to obtain

the memory kernel. The TE approaches require first calculating a projection-dependent in-

put with a Volterra equation before calculating the memory kernel with an equation of the

projection-free and projection-dependent inputs. In contrast, the PS approaches have a sin-

gle Volterra equation for the memory kernel. As shown in the results in this chapter, this

difference causes little to no difference between the results (with the only slight difference

seen for the M-PC-C approach compared to the M-TE-C1 and M-TE-C2) and the more crit-

ical differences come from the different projection-free inputs and their expansions than the

number of equations.

• Effect of the projection-free inputs on the memory time convergence in the bare expan-

sion: For LSCI, the two-equation and projection-second approaches struggle to converge

their results with respect to memory time for the bare expansion while the projection-first ap-

proaches do not. The main difference between these approaches stems from the projection-

free inputs that either have nuclear operators at time t = 0 or time t = τ and not both. For

the TE and PS approaches, these projection-free inputs have the nuclear operator at time

t = 0 while the PF approaches have the nuclear operator at time t = τ . Considering the
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first point in this list, it may have been expected then that the TE and PS approaches would

have given better results but instead the opposite is seen. It is possible that the time t = τ

nuclear operators are stabilizing the longer time dynamics. For the model explored here,

the PF approach results are too accurate to see if the memory time becomes unstable for the

static expansion, which would help to prove (or disprove) this point.

• Effect of the expansions: As seen and discussed previously in Refs. 32 and 71, the bare

and static expansions are able to give similar and accurate results while the dynamic and

propagator expansions give back the same dynamics as the direct application of the input

method. This result seems to add credence to the proposition that the sampling of the static

nuclear operators done within the projection-free inputs improves the accuracy of the GQME

compared to the direct application of the input method.

• Overall greater success of the PF approaches: While the TE and PS approaches were able

to give accurate results and converging memory time for some expansions, the PF approaches

were most consistent in giving accurate, converged results. The only area where the PF

approaches struggled compared to the TE and PS approaches is in the convergence of the

non-Condon dynamic and propagator expansions with LSCI. However, since the dynamic

and propagator expansions have been proven to fail to give improvements compared to the

direct application of the input method, this failure of the M-PF-NC approach is essentially

irrelevant, since those expansions should not be used.

IV.6 Concluding Remarks

The GQME is a complex method for obtaining electronic dynamics in the condensed phase. The

relative recency of the derivation of approaches to be able to calculate the GQME means that the

impact of the various components of the GQME is unknown. The memory kernel in particular

can be calculated in a variety of ways without obvious advantages to any particular way. For this

reason, the thorough investigation of the many methods for obtaining the memory kernel explored
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in this chapter adds valuable insight into the GQME.

From the results shown in this chapter and the disadvantages of the system-bath form and the

advantages of the modified form outlined in Chapter II, it can be concluded that the modified

projection-first approach with either the bare or static expansion is the best general method. The

bare expansion of the modified projection-first approach is what has been referred to in previous

chapters and will be referred to in upcoming chapters as the modified GQME (M-GQME). As seen

in Chapters II and III, the M-GQME was already known to perform well but the results in this

chapter show that it outperforms other methods in several ways. The new insight into the success

of the static expansion with the M-GQME could be of use for future systems in which the longer

time dynamics are more erratic and the inclusion of nuclear operators at time t = τ could be

exasperating difficulties with convergence.
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CHAPTER V

Photosynthetic Systems with M-GQME

V.1 Introduction

Photosynthetic light-harvesting systems are of considerable interest due to their prevalence in

nature and the efficiency of excitation energy transfer (EET) within them. Better understanding

of EET in these systems can also help to yield improvements in artificial systems designed to

mimic them.109 The experimental observation of long-lived quantum coherence in some photo-

synthetic systems has led to interest in the importance of quantum effects on photosynthesis.110

The Fenna-Matthews-Olson (FMO) complex was one of the first photosynthetic systems observed

to have long-lived coherences. These coherences were originally designated as electronic coher-

ences111–114 but recent experimental and theoretical advancements indicate a significant contribu-

tion from vibrational coherences, demonstrating the importance of the nuclear DOF on the FMO

dynamics.115–117 These dynamics has been extensively studied, including with exact results for

a model Hamiltonian via hierarchical equations of motion (HEOM).118–120 This makes the FMO

complex an appealing benchmark model system for testing methods for simulating nonadiabatic

dynamics. In this chapter, the robustness and accuracy of the GQME methods with short-lived

inputs obtained via the Ehrenfest method will be tested by applying them to FMO.

The rest of this chapter is organized as follows. The FMO complex is described in Sec. V.2.

The results obtained by applying the Ehrenfest method with the GQME to the FMO complex and

the discussion of these results are reported in Sec. V.3. Concluding remarks are given in Sec. V.4.
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V.2 Fenna-Matthews-Olson (FMO) Complex

FMO is often described by a Frenkel exciton Hamiltonian of the following form119,121 [see

Eq. (I.3)]

Ĥ =
Ne∑
j=1

Ĥj|j〉〈j|+
Ne∑
j,k=1
k 6=j

V̂jk|j〉〈k| . (V.1)

Here, {Ĥj} and {V̂jk} are given by

Ĥj = εj +
Ne∑
k=1

Nn/Ne∑
i=1

P̂ 2
k,i

2
+ Vj

(
R̂
)

,

Vj(R̂) =

Nn/Ne∑
i=1

1

2
ω2
i

(
R̂j,i −

ci
ω2
i

)2

+
Ne∑
l=1
l 6=j

Nn/Ne∑
i=1

1

2
ω2
i R̂

2
l,i ,

V̂jk = Γjk .

(V.2)

Here, Ne = 7 is the number of electronic states; Nn = 1400 is the number of nuclear DOF;

{R̂1,1, ..., R̂Ne,Nn} and {P̂1,1, ..., P̂Ne,Nn} are the mass-weighted position and momentum operators

of the nuclear DOF, respectively; {c1, ..., cNn/Ne} and {ω1, ..., ωNn/Ne} are the mass-weighted cou-

pling coefficients and frequencies for the nuclear normal modes, respectively; εj is the energy of

the electronic state |j〉; and Γjk are the nonadiabatic couplings between electronic states, which

are constant for FMO.

The initial state of the overall system is given by Eq. (I.4), ρ̂(0) = ρ̂n(0) ⊗ σ̂(0), where ρ̂n(0)

and σ̂(0) are the reduced density operators of the initial states of the nuclear and electronic DOF,

respectively. For FMO, the initial nuclear density operator is given by

ρ̂n(0) =

exp

−β Ne∑
j=1

Nn/Ne∑
i=1

P̂ 2
j,i

2
+

1

2
ω2
i R̂

2
j,i


Tr

exp

−β Ne∑
j=1

Nn/Ne∑
i=1

P̂ 2
j,i

2
+

1

2
ω2
i R̂

2
j,i


(V.3)
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and the initial electronic density operator is given by σ̂(0) = |1〉〈1| or σ̂(0) = |6〉〈6| (using the

usual numbering of the BChls, originally chosen by Fenna and Matthews122).

The energies {εj} and couplings {Γjk} of the electronic states are given in cm−1 by119



12410 −87.7 5.5 −5.9 6.7 −13.7 −9.9

−87.7 12530 30.8 8.2 0.7 11.8 4.3

5.5 30.8 12210 −53.5 −2.2 −9.6 6.0

−5.9 8.2 −53.5 12320 −70.7 −17.0 −63.3

6.7 0.7 −2.2 −70.7 12480 81.1 −1.3

−13.7 11.8 −9.6 −17.0 81.1 12630 39.7

−9.9 4.3 6.0 −63.3 −1.3 39.7 12440



. (V.4)

The nuclear normal modes are described by a Debye spectral density

J(ω) =
2λωcω

ω2
c + ω2

(V.5)

where the discrete set of coupling coefficients {ci} and frequencies {ωi} are given by

ωi = ωc tan

[
πNe

2Nn

(
i− 1

2

)]
,

ci = ωi

√
2λNe

Nn

.

(V.6)

Here, ωc = 106.14 cm−1 is the cutoff frequency and λ = 35 cm−1 is the reorganization energy.46

V.3 Results and Discussion

The dynamics of the FMO complex were obtained using the modified approach to the GQME

(M-GQME) as outlined in Sec. II.3 with the projection-free inputs obtained with the Ehrenfest

method, following the same procedure as in Sec. II.5. Since FMO is a Condon system (i.e., the

electronic coupling terms are not dependent on R̂), the projection-free inputs calculated are F1(τ)
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and F2(τ), given in Eqs. (II.33) and (II.34), respectively. The results for the FMO complex were

calculated with a time step of ∆t = 0.25 fs and 35,000 trajectories per initial condition. The

Volterra equation in Eq. (II.32) was solved using an iterative algorithm, outlined in Sec. II.4.1, and

the GQME in Eq. (II.21) was solved using a Runge-Kutta 4th-order algorithm.

Fig. V.1 shows the populations of states 1, 2, and 3 with the dynamics starting in state 1 and

Fig. V.2 shows the populations of states 3, 5, and 6 with the dynamics starting in state 6 for the

direct application of the Ehrenfest method (MF) and for the MF-GQME method with a memory

time of 0.4 ps. It should be noted that for several of these states, the memory time is converged at

lower values (see Fig. V.3) but the memory time given is the value at which all states are converged.

As seen in Figs. V.1 and V.2, the MF-GQME is able to obtain much more accurate results compared

to the direct application of the Ehrenfest method.

While the FMO model has been studied previously with a GQME method in Ref. 46, it was

done using a variation of the Shi-Geva approach (also called the SB-TE approach in Chapter

IV).28,46 As shown previously in Ref. 35 and Sec. IV.4.4, the Shi-Geva approach can have un-

stable results with regards to the memory time for the spin-boson model. For this reason, results

were generated using the Shi-Geva approach following the procedure outlined in Ref. 35 for FMO,

to see if the memory time converged. In Fig. V.4, we can see that these problems with the Shi-Geva

approach apply also to the FMO model while in Fig. V.3 we can see that the results are very stable

with regards to memory time for the M-GQME.

The ability to have stable results with regards to memory time is critical for systems in which

the exact results are not known. With the Shi-Geva approach, a “plateau of stability” method was

used previously, in which the memory time was determined by a memory time range in which

the results were stable.32,44,46 However, the plateau of stability can be small to non-existent and

therefore difficult to determine. Additionally, without exact results, determining where to search

for a plateau of stability can be difficult. With the spin-boson model, it was possible to guess what

the memory time should be based on when the memory kernel elements decay to zero.35,45 For the

FMO model, many of the memory kernel elements are much more erratic, as shown in Figs. V.5
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Figure V.1: Electronic population as a function of time for states 1, 2, and 3 with an initial elec-
tronic state starting in state 1. Shown are the exact results displayed with circle markers as well
as the results obtained via direct application of the Ehrenfest method with dashed lines and via
M-GQME with memory kernel calculated via the Ehrenfest method with solid lines. The state 1
dynamics are red for each method, state 2 results are orange, and stage 3 results are blue.

and V.6, thereby making the determination of the memory time based on the memory kernel ele-

ments less straightforward. With the modified approach to the GQME, even for large systems, the

memory time converges and stays converged even with erratic memory kernel elements, allowing

for greater certainty of the GQME results when the exact results are unknown.

The FMO complex is a well-studied molecular system with exact results but there are many

systems of interest for which exact results have not been or cannot be determined. Therefore, a

GQME approach that is not reliant on the existence of exact results and is able to give converged

results with increasing memory time is critical for these systems.
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Figure V.2: Electronic population as a function of time for states 3, 5, and 6 with an initial elec-
tronic state starting in state 6. Shown are the exact results displayed with circle markers as well
as the results obtained via direct application of the Ehrenfest method with dashed lines and via
M-GQME with memory kernel calculated via the Ehrenfest method with solid lines. The state 3
dynamics are blue for each method, state 5 results are green, and stage 6 results are purple.

V.4 Concluding Remarks

Photosynthetic systems are of considerable interest due to their prevalence in nature and the

efficiency of excitation energy transfer (EET) within them. Better understanding of this EET can

help to yield improvements in artificial photosynthetic systems.109 The observance of long-lived

quantum coherence in some photosynthetic systems has led to interest in the importance of quan-

tum effects on photosynthesis.110 The Fenna-Matthews-Olson (FMO) complex was one of the first

photosynthetic systems observed to have long-lived coherences and its dynamics has been exten-

sively studied, including with exact results via hierarchical equations of motion (HEOM).118–120

This makes the FMO complex an appealing system to test methods for obtaining photosynthetic
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Figure V.3: Memory time convergence for the modified approach to the GQME, with memory
times in ps given in the legend. We can see that by 0.4 ps at the latest, the populations for these
states have converged results, regardless of increasing memory time.

dynamics on.

The M-GQME method has been found to give accurate dynamics for the spin-boson model,

as seen in Chapters II, III, and IV. In this chapter, the M-GQME was shown to also be able to

obtain accurate dynamics for a model of the FMO complex, which increases the complexity of

the dynamics by having seven electronic states compared to only two in the spin-boson model.

Additionally, the M-GQME had converged results with regards to memory time for FMO as well

as the spin-boson model, which is in contrast to the Shi-Geva approach. This result is especially

important moving forward in applying the GQME approach to other photosynthetic systems. Many

photosynthetic systems of interest are not as extensively studied as FMO and do not or cannot

obtain exact results. For these systems, it is important to have an approach that remains converged

with respect to memory time, as it will be much more difficult if not impossible to find the memory

time that gives the correct results if it does not.
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Figure V.4: Memory time convergence for the Shi-Geva approach to the GQME, with memory
times in ps given in the legend. Here we see the failure of the Shi-Geva approach noted in Sec. II.5
of unstable results with increasing memory times, despite accurate results at early memory times.
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Figure V.5: Select memory kernel elements with the modified approach to the GQME. The real
part of the memory kernel element is given in red and the imaginary part in blue.
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Figure V.6: Select memory kernel elements with the Shi-Geva approach to the GQME. The real
part of the memory kernel element is given in red and the imaginary part in blue.
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CHAPTER VI

Linearized Vibronic Coupling Systems with

M-GQME

VI.1 Introduction

Conical intersections (CIs) are believed to play a central role in many photochemical pro-

cesses.13,123–133 Being able to calculate the rates of electronic transitions through CIs in a reliable

and feasible manner is therefore key for understanding such processes and developing rational de-

sign principles towards controlling them. An exact fully quantum-mechanical simulation of the

dynamics of electronic transitions through CIs is limited to relatively low-dimensional molecular

systems and/or simple model Hamiltonians.4,10,73,134 Thus, developing approximate methods for

simulating the dynamics of electronic transitions through CIs in complex molecular systems is

highly desirable.

In Chapters II, III, and V, the modified approach to the generalized quantum master equation

(M-GQME) was shown to have considerable success with the spin-boson model and the Fenna-

Matthews-Olson (FMO) complex. However, neither of these systems include CIs. The goal in this

chapter is to extend the range of applications of the M-GQME to systems with CIs. This is done

in the context of the linear vibronic coupling (LVC) model Hamiltonian.125,135 The choice of the

LVC model Hamiltonian as a benchmark for testing the ability of the M-GQME to describe the

dynamics of electronic transitions through CIs is motivated by the fact that it has been reported

to provide a rather accurate description of CI photophysics in many polyatomic molecules and
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the ability to calculate quantum-mechanically exact electronic transition rates for it. The anal-

ysis was performed on a LVC Hamiltonian parameterized for the 2,6-bis(methylene) adamantyl

(BMA) radical cation polyatomic system. Two other polyatomic systems, fulvene and and the 2-

methylene-6-isopropylidene adamantyl (MIA) radical cation, are also outlined in this chapter as

simulating their dynamics is a goal of future work in this area. The choice of these systems was

motivated by the availability of ab-initio parameter sets and the fact that these systems were used

in the past as benchmarks for equilibrium Fermi’s golden rule (EQ-FGR), nonequilibrium Fermi’s

golden rule (NE-FGR) and LSC approximations with EQ-FGR and NE-FGR.13,17 It should also be

noted that these systems represent the inverted region (fulvene), normal region (BMA), and in the

vicinity of the transition point between those two regions (MIA).

The rest of this chapter is organized as follows. The LVC model and choice of initial state

are described in Sec. VI.2. The models of the aforementioned molecular systems described by the

LVC Hamiltonian, the results obtained by applying the Ehrenfest method with the M-GQME to

BMA, and the discussion of these results are reported in Sec. VI.3. Concluding remarks are given

in Sec. VI.4.

VI.2 The Linear Vibronic Coupling (LVC) Model and Choice

of Initial State

The LVC model Hamiltonian is given by125,135

Ĥ = Ĥ1|1〉〈1|+ Ĥ2|2〉〈2|+ V12(R̂)|1〉〈2|+ V21(R̂)|2〉〈1| , (VI.1)

111



where

Ĥj =
P̂2

2
+ Vjj(R̂) ,

Vjj(R̂) = ∆j +
Nn∑
i=1

1

2
ω2
i R̂

2
i + d

(j)
i R̂i ,

V12(R̂) = V21(R̂) =
Nn∑
i=1

ciR̂i .

(VI.2)

Ĥj represents the nuclear Hamiltonian when the system is in the electronic state |j〉 (j = 1, 2),

V12(R̂) = V21(R̂) are the coupling terms between the two electronic states, and Nn is the number

of nuclear DOF.

Within the LVC Hamiltonian, Eq. (VI.1), the nuclear DOF are given in terms of their mass-

weighted coordinates, R̂ = (R̂1, . . . , R̂Nn), and momenta, P̂ = (P̂1, . . . , P̂Nn). Importantly, the

diabatic potential energy surfaces (PESs), Vj(R̂) =
Nn∑
i=1

[
1
2
ω2
i R̂

2
i + d

(j)
i R̂i

]
, are assumed harmonic

and identical, except for a shift in equilibrium energy and geometry. The electronic coupling terms,

V12(R̂) = V21(R̂), are assumed linear in the nuclear coordinates. The fact that the electronic cou-

pling terms are explicitly R̂-dependent (i.e., in the non-Condon regime) is what makes it possible

for the LVC Hamiltonian to account for CIs.

In what follows, the initial state of the overall system is given by Eq. (I.4), ρ̂(0) = ρ̂n(0) ⊗

σ̂(0), where ρ̂n(0) and σ̂(0) are the reduced density operators that describe the initial states of the

nuclear DOF and electronic DOF, respectively. The initial electronic state, σ̂(0), is assumed to

be given by |1〉〈1| or |2〉〈2|. The initial nuclear state, ρ̂n(0), is assumed to be given by ρ̂n(0) =

e−βĤ2

/
Tr
{
e−βĤ2

}
if σ̂(0) = |1〉〈1| or ρ̂n(0) = e−βĤ1

/
Tr
{
e−βĤ1

}
if σ̂(0) = |2〉〈2|. Here,

β = 1/kBT where T is the absolute temperature and kB is the Boltzmann constant. It should be

noted that this choice corresponds to a nonequilibrium initial state since the nuclear DOF are in

equilibrium with respect to one electronic state while the electronic DOF are described by the other

state.
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The electronic density operator at a later time t is given by

σ̂(t) = σ11(t)|1〉〈1|+ σ22(t)|2〉〈2|+ σ12(t)|1〉〈2|+ σ21(t)|2〉〈1| , (VI.3)

where

σjk(t) = Tr
{
ρ̂n(0)|α〉〈α|eiĤt/~|k〉〈j|e−iĤt/~

}
. (VI.4)

Here, ρ̂n(0)|α〉〈α| is the aforementioned nonequilibrium initial state. σjj(t) corresponds to the

population of the j-th electronic state and σjk(t) (where j 6= k) corresponds to the electronic

coherence between the j-th and the k-th electronic states.

VI.3 Results and Discussion

In this section, the preliminary results of calculations performed on the LVC model are re-

ported for the set of parameters corresponding to the gas-phase molecules the 2,6-bis(methylene)

adamantyl (BMA) radical cation. The sets of parameters corresponding to fulvene and the 2-

methylene-6-isopropylidene adamantyl (MIA) radical cation are outlined as well, as they are of

interest for future work. These parameters were adopted from Ref. 13, where they were ob-

tained from electronic structure calculations and the Köppel diabatization scheme.136–138 Several

key model parameters for the three molecules are shown in Table VI.1. It should be noted that

fulvene corresponds to the Marcus inverted region (|∆E| > Er), while BMA and MIA corre-

spond to the Marcus normal region (|∆E| < Er). For BMA, the initial electronic state is given by

σ̂(0) = |1〉〈1| and the initial nuclear state is ρ̂n(0) = e−βĤ2

/
Tr
{
e−βĤ2

}
(the electronic states are

as labeled in Ref. 13). In the case of fulvene, σ̂(0) = |2〉〈2| and ρ̂n(0) = e−βĤ1

/
Tr
{
e−βĤ1

}
and

for MIA, σ̂(0) = |1〉〈1| and ρ̂n(0) = e−βĤ2

/
Tr
{
e−βĤ2

}
.

The results obtained with the M-GQME were done using the Ehrenfest method outlined in

Sec.II.5. Because BMA is a non-Condon system, the projection-free inputs calculated are Ḟ(τ) and

F(τ), given in Eqs. (IV.25) and (II.31), respectively. Calculations were carried out with 200,000
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fulvene BMA MIA
# modes 30 78 96
|∆E| (a.u.) 0.0989 0.0004 0.0250
Er (a.u.) 0.0887 0.0297 0.0274

Table VI.1: Number of nuclear modes, absolute value of the reaction free energy, |∆E|, and
reorganization energy, Er, for fulvene, BMA, and MIA.

trajectories and a variety of time steps. The preliminary results for BMA are shown in Fig. VI.1.
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Figure VI.1: On the left is the donor population dynamics for the gas-phase BMA radical cation
for time steps of 2.419 × 10−3 fs, 1.209 × 10−2 fs, and 2.419 × 10−3 fs and memory times of
137.826 fs, 149.94 fs, and 149.94 fs, respectively. The results of the direct application of Ehrenfest
(Ehr) for the three time steps are shown with dashed lines while the GQME results with Ehrenfest
as the input method are shown with solid lines. On the right is the donor population with a time
step of 1.209× 10−2 fs are given for the memory times listed in the legend. The dynamics for the
direct application of Ehrenfest are also given with a gray line. The MCTDH results, represented
by a black line, give the exact dynamics for BMA with the LVC model in both graphs.

In the left graph of Fig. VI.1, it can be seen that the M-GQME results for BMA are sensitive to

the time step, much more so than the results from the direct application of Ehrenfest. In Ref. 139,

it was noted that the coherence, σ10(t), is relatively small (∼ 10−3) and oscillates rapidly for the

systems under consideration in this chapter. This means getting converged results for the coherence

requires a significantly larger number of trajectories and smaller time step than the populations. For

Ref. 139, this was not justified because the paper was examining the direct application of QC/MH

methods and the population transfer dynamics were the main quantity of interest. However, for the
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GQME, the coherences need to be converged because they contribute to the projection-free inputs,

meaning that a large number of trajectories and small time step will be needed to get accurate

GQME results. It is possible that the computational cost of obtaining these results could reach

prohibitively costly levels. An interesting option to explore would be to use the static expansion

of the M-GQME described in Sec. IV.3, as the elimination of nuclear operators at time t = τ may

decrease the impact of the erratic coherences and the static expansion was shown to perform as

well as the bare expansion. One concern with this would be how smooth the static projection-free

inputs would be, since their time derivatives could introduce errors if they are not smooth.

As seen in the right graph in Fig. VI.1, BMA also has a memory time as long as the time

for which the MCTDH results are given. This is not surprising given the stepwise dynamics of

BMA, indicating that there is still memory in the system from the initial excitation. For the sake

of obtaining dynamics, this is problematic as the increasing memory time will be computationally

costly. For the GQME, a memory time as long as the dynamics is not ideal, as it increases the time

that the approximate methods used to calculate the projection-free inputs must be used, leading to

higher computational costs and less accurate results.

VI.4 Concluding Remarks

While the goal of the M-GQME is to apply to molecular systems, for the systems outlined in

this section, the use of the M-GQME may not be justified. Because of the rapidly oscillating

coherences, the GQME requires much smaller time steps and greater number of trajectories than

the population dynamics which can be obtained via the direct application of a mixed quantum-

classical or exact method. Additionally, because the memory time of these systems is very long,

the GQME may not give much more accurate results even when converged. This means that the

GQME will be much more costly without necessarily giving much benefit.

For systems with conical intersections, more exploration is needed to determine if the GQME

can provide accuracy and computational benefits as it has been shown to do for Condon systems
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in the previous chapters. This is an important goal of future work with the GQME.
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CHAPTER VII

Conclusion

VII.1 Summary

The simulation of electronically nonadiabatic dynamics in condensed phases is an area of con-

siderable interest and challenge for computational chemistry. The reduced dynamics methods

for simulating electronically nonadiabatic dynamics often rely on restrictive assumptions such as

weak coupling between the electronic and nuclear degrees of freedom (DOF) or between elec-

tronic states. An alternative approach for simulating nonadiabatic dynamics is via mixed quantum-

classical (MQC) and quasiclassical (QC) methods. These methods can handle strong coupling but

their reliability and computational feasibility decrease with increasing simulation time. In compar-

ison, the generalized quantum master equation (GQME) requires no approximation in its derivation

and scales favorably with increasing simulation time.

Within the GQME, the memory kernel is the key quantity and most difficult to calculate. Two

approaches were introduced in 2003 and 2006 for calculating the GQME but they were reliant on

splitting the Hamiltonian into system, bath, and system-bath coupling terms, which is not natural

nor convenient for many systems of interest. In Chapter II, a modified approach to the GQME (M-

GQME) was introduced and compared with the two previous approaches on the spin-boson model

with Ehrenfest as the input method. It was shown that the M-GQME was able to obtain either the

same or better results compared to the previous approaches for all sets of parameters. An important

distinction between the M-GQME and one of the commonly used previous approaches is its ability
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to obtain converged results with respect to increasing memory time. This behavior is critical for

systems in which tuning the memory time to achieve the exact results will not be available.

While the M-GQME with Ehrenfest as input method was able to obtain better results than the

direct application of Ehrenfest for the spin-boson model in Chapter II, it was not able to obtain the

exact results for all sets of parameters. In Chapter III, two mapping Hamiltonian + quasiclassical

approximation (QC/MH) methods, LSCI and LSCII, were introduced and used as input for the

M-GQME. For the same five sets of parameters for the spin-boson model as in Chapter II, these

QC/MH methods combined with the M-GQME were able to obtain more accurate results than

both the direct application of the QC/MH methods and the Ehrenfest method combined with the

M-GQME. Of the three input methods, Ehrenfest, LSCI, and LSCII, LSCII with the M-GQME was

able to obtain the best results with the shortest memory time for most of the sets of parameters.

The modified approach and the two previous approaches are only three of many possible ways

of obtaining the memory kernel. In Chapter IV, forty-four different methods for calculating the

memory kernel were explored and the results of applying these methods to one set of parameters

for the spin-boson model with the two QC/MH methods from Chapter III as input methods were

presented and discussed. This thorough investigation of various ways of obtaining the memory

kernel helped to outline the impact of the forms of the projection-free inputs and the equations for

the memory kernel on the accuracy and convergence of the GQME results. Through this investi-

gation, it was shown that the M-GQME and one of its variants were the most accurate, stable, and

generally applicable methods for obtaining the memory kernel.

In Chapter V, the M-GQME method was applied to the Fenna-Matthews-Olson (FMO) com-

plex with Ehrenfest as the input method. It was shown that the M-GQME was able to obtain much

more accurate results than the direct application of Ehrenfest for the FMO complex. Additionally,

while a GQME method had previously been applied to the FMO complex, it was done with the

previous approach that was shown to have non-converged results with respect to memory time for

the spin-boson model in Chapter II. In Chapter V, it was shown that this issue with the previous

approach also occurs with the FMO complex while the M-GQME is able to obtain converged re-

118



sults with respect to memory time. These results with the FMO complex establish the M-GQME as

a feasible and accurate method for simulating electronically nonadiabatic dynamics in multi-state

photosynthetic systems. Considering the many photosynthetic systems of interest without robust

dynamics results, this is an area that the M-GQME can provide important insight into in the future.

In Chapter VI, the M-GQME was applied to a molecular system containing a conical intersec-

tion (CI). While all of the models studied in the previous chapter satisfied the Condon approxima-

tion (e.g., their electronic coupling terms were not dependent on the nuclear position), any system

that contains a CI must by nature be non-Condon. Considering the importance and prevalence of

systems containing CIs, this represents an area of interest for the applicability of the M-GQME.

In the preliminary results for the 2,6-bis(methylene) adamantyl (BMA) radical cation polyatomic

system studied in Chapter VI with the Ehrenfest method as input, it was found to require a much

smaller time step than the direct application of Ehrenfest in order to obtain the population dynam-

ics due to the osillatory nature of the coherences. The direct application of Ehrenfest is not as

reliant on the convergence of these coherences in order to obtain the population dynamics but for

the M-GQME, the coherences play an important role in obtaining the projection-free inputs and

therefore need to be converged. Additionally, BMA was found to have a memory time at least as

long as the length of the MCTDH results previously calculated. These two facts make the cal-

culation of converged BMA results with the M-GQME computationally costly and possibly not

much more accurate than the input method, due to the long memory time. Further exploration of

BMA and other systems with CIs is important to determining the limitations and applicability of

the M-GQME.

VII.2 Outlook

This dissertation outlined an introduction, exploration, and application of the M-GQME and

provided comparison of the success of the M-GQME in relation to other methods of determining

electronically nonadiabatic dynamics and other approaches to the GQME along with important
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insight into systems of interest where the M-GQME is expected to succeed or fail. Moving forward,

there are many areas in which the M-GQME is expected to provide benefits.

The M-GQME could be further optimized and extended by developing it for lower-dimensional

quantities like electronic populations, electronic coherences, photonic correlation functions, and

other such quantities. For many systems, the full electronic density matrix is not necessarily of

interest and calculating lower-dimensional quantities should provide computational advantages

if not also accuracy benefits. The M-GQME could also provide benefits to currently existing

packages such as multi configuration time dependent Hartree (MCTDH)4 as a multi-scale tool to

get long-time outputs from inexpensive short-time inputs.

While many systems can be adequately described with model Hamiltonians, a goal of the M-

GQME is to apply to truly molecular systems with on-the-fly electronic structure calculations or

with electronic state-specific force fields. One such system of interest is the carotenoid-porphyrin-

C60 molecular triad, a bioinspired molecular triad whose conformations affect its charge transfer

abilities.47 Another area of recent interest is the description of photonic DOF, such as those in

quantum cavities. The M-GQME could provide useful insight into the manipulation of quantum

cavities to control chemical dynamics.
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Appendix A

Proofs of the Expansions of the Projection-Free

Inputs from Chapter IV

This appendix gives the mathematical proofs of the expansions of the projection-free inputs

given in Sec. IV.3.

I.1 System-Bath Expansions

I.1.1 K1(τ)

I.1.1.1 Static Expansion

i
d

dτ
K3(τ) =

i

~
d

dτ
TrB

{
e−iLτ/~LBS ρ̂eq

B

}
=

1

~2
TrB

{
L e−iLτ/~LBS ρ̂eq

B

}
=

1

~2
TrB

{(
LB + LS + LBS

)
e−iLτ/~LBS ρ̂eq

B

}

• The term with LB is equal to zero because, for any operator Â =
∑

j Ŝj ⊗ B̂j where Ŝj and

B̂j are system and bath operators, respectively, because

TrB

{
LBÂ

}
=
∑
j

Ŝj TrB

{
[ĤB, B̂j]

}
︸ ︷︷ ︸

= 0

= 0 . (A.1)
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• Because LS is a purely system superoperator, it can be pulled out of the partial trace over the

bath:

1

~2
TrB

{
LS e−iLτ/~LBS ρ̂eq

B

}
=

1

~2
LS TrB

{
e−iLτ/~LBS ρ̂eq

B

}
=

1

~
LSK3(τ) (A.2)

Putting the terms back together,

i
d

dτ
K3(τ) =

1

~2
TrB

{
LB e−iLτ/~LBS ρ̂eq

B

}
︸ ︷︷ ︸

0

+
1

~2
TrB

{
LS e−iLτ/~LBS ρ̂eq

B

}
︸ ︷︷ ︸

1

~
LSK3(τ)

+
1

~2
TrB

{
LBS e−iLτ/~LBS ρ̂eq

B

}
︸ ︷︷ ︸

K1(τ)

, (A.3)

∴ Kstatic
1 (τ) = i

d

dτ
K3(τ)− 1

~
LSK3(τ) .

I.1.1.2 Dynamic Expansion

d

dτ
Φ(τ) =

i

~
d

dτ
TrB

{
LBS e−iLτ/~ρ̂eq

B

}
=

1

~2
TrB

{
LBS e−iLτ/~Lρ̂eq

B

}
=

1

~2
TrB

{
LBS e−iLτ/~

(
LB + LS + LBS

)
ρ̂eq
B

}

• The term with LB is equal to zero because

LBρ̂eq
B =

[
ĤB, ρ̂

eq
B

]
= 0 . (A.4)

• Because LS is a purely system operator, it can both commute with ρ̂eq
B and move outside of
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the partial trace over the bath:

1

~2
TrB

{
LBS e−iLτ/~LS ρ̂eq

B

}
=

1

~2
TrB

{
LBS e−iLτ/~ρ̂eq

B

}
LS = − i

~
Φ(τ)LS (A.5)

Putting the terms back together,

d

dτ
Φ(τ) =

1

~2
TrB

{
LBS e−iLτ/~LBρ̂eq

B

}
︸ ︷︷ ︸

0
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1

~2
TrB
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LBS e−iLτ/~LS ρ̂eq
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︸ ︷︷ ︸

− i
~

Φ(τ)LS

+
1

~2
TrB
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d

dτ
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i

~
Φ(τ)LS

I.1.1.3 Propagator Expansion

−Ü(τ) = − d2
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• From Eq. (A.4), we know
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So now we have

−Ü(τ) =
1

~2
TrB
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B

}
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• From Eq. (A.1), we know
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Putting this all together, we get
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Plugging in Eq. (A.6) and Eq. (A.7), we reach

K1(τ) = −Ü(τ)− 1

~2
LS U(τ)LS +

i

~

(
− U̇(τ)− i
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I.1.2.1 Dynamic and Propagator Expansion
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From Eq. (A.4), we know the LB term is equal to zero and because LS is a purely system super-

operator:
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{
e−iLτ/~LS ρ̂eq

B

}
=

1

~
TrB

{
e−iLτ/~ρ̂eq

B

}
LS =

1

~
U(τ)LS

Plugging this back in, we get:

iU̇(τ) =
1

~
TrB

{
e−iLτ/~ρ̂eq

B

}
LS︸ ︷︷ ︸

1

~
U(τ)LS

+
1

~
TrB

{
e−iLτ/~LBS ρ̂eq

B

}
︸ ︷︷ ︸

K3(τ)

∴ K
dynamic &
propagator
3 (τ) = iU̇(τ)− 1

~
U(τ)LS (A.6)
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I.1.3 Φ̇(τ)

I.1.3.1 Static Expansion

From Eq. (A.3), we know

i
d

dτ
K3(τ) =

1

~2
TrB

{
LS e−iLτ/~LBS ρ̂eq

B

}
+

1

~2
TrB

{
LBS e−iLτ/~LBS ρ̂eq

B

}
i
d

dτ
K3(τ)+

1

~2
TrB

{
LBS e−iLτ/~LBρ̂eq

B

}
+

1

~2
TrB

{
LBS e−iLτ/~LS ρ̂eq

B

}
=

1

~2
TrB

{
LS e−iLτ/~LBS ρ̂eq

B

}
︸ ︷︷ ︸

1

~
LSK3(τ)

+
1

~2
TrB

{
LBS e−iLτ/~Lρ̂eq

B

}
︸ ︷︷ ︸

Φ̇(τ)

From Eq. (A.4) and because LS is a purely system superoperator, we know

i
d

dτ
K3(τ)+

1

~2
TrB

{
LBS e−iLτ/~LBρ̂eq

B

}
︸ ︷︷ ︸

= 0

+
1

~2
TrB

{
LBS e−iLτ/~LS ρ̂eq

B

}
︸ ︷︷ ︸

− i
~

Φ(τ)LS

=
1

~2
TrB

{
LS e−iLτ/~LBS ρ̂eq

B

}
︸ ︷︷ ︸

1

~
LSK3(τ)

+
1

~2
TrB

{
LBS e−iLτ/~Lρ̂eq

B

}
︸ ︷︷ ︸

Φ̇(τ)

∴ Φ̇static(τ) = i
d

dτ
K3(τ)− i

~
Φ(τ)LS −

1

~
LSK3(τ)

I.1.3.2 Dynamic Expansion

The dynamic expansion is straightforward, so no proof is given.
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I.1.3.3 Propagator Expansion

−Ü(τ) = − d2

dτ 2
TrB

{
e−iLτ/~ρ̂eq

B

}
=

1

~2
TrB

{
Le−iLτ/~Lρ̂eq

B

}
=

1

~2
TrB

{(
LB + LS + LBS

)
e−iLτ/~Lρ̂eq

B

}

From Eq. (A.1), we know the term with LB is equal to zero and because LS is a purely

system superoperator:

1

~2
TrB

{
LSe−iLτ/~Lρ̂eq

B

}
=

1

~2
LS TrB

{
e−iLτ/~Lρ̂eq

B

}

We can expand the L of the above RHS and use Eqs. (A.4) and the fact that LS is a purely

system superoperator to reach

1

~2
LS TrB

{
e−iLτ/~Lρ̂eq

B

}
=

1

~2
LS TrB

{
e−iLτ/~ρ̂eq

B

}
LS +

1

~2
LS TrB

{
e−iLτ/~LBS ρ̂eq

B

}
=

1

~2
LSU(τ)LS +

1

~
LSK3(τ)

Plugging this back in, we get:

−Ü(τ) =
1

~2
LSU(τ)LS +

1

~
LSK3(τ) + Φ̇(τ)

∴ Φ̇(τ) = −Ü(τ)− 1

~2
LSU(τ)LS −

1

~
LSK3(τ)

128



Plugging in Eq. (A.6), we get:

Φ̇(τ) = −Ü(τ)− 1

~2
LSU(τ)LS −

1

~
LS
(
iU̇(τ)− 1

~
U(τ)LS

)
= −Ü(τ)− 1

~2
LSU(τ)LS −

i

~
LSU̇(τ) +

1

~2
LSU(τ)LS

Φ̇propagator(τ) = −Ü(τ)− i

~
LSU̇(τ)

I.1.4 Φ(τ)

I.1.4.1 Static and Propagator Expansion

−U̇(τ) = − d

dτ
TrB

{
e−iLτ/~ρeq

B

}
=
i

~
TrB

{
Le−iLτ/~ρeq

B

}
=
i

~
TrB

{(
LB + LS + LBS

)
e−iLτ/~ρeq

B

}

From Eq. (A.1), we know the LB term is equal to zero and because LS is a purely system super-

operator:
i

~
TrB

{
LSe−iLτ/~ρeq

B

}
=
i

~
LS TrB

{
e−iLτ/~ρeq

B

}
=
i

~
LSU(τ)

Plugging this back in, we get:

−U̇(τ) =
i

~
LS TrB

{
e−iLτ/~ρeq

B

}
︸ ︷︷ ︸

i

~
LSU(τ)

+
i

~
TrB

{
LBSe−iLτ/~ρeq

B

}
︸ ︷︷ ︸

Φ(τ)

∴ Φ
static &

propagator(τ) = −U̇(τ)− i

~
LSU(τ) (A.7)
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I.2 Modified Expansions

I.2.1 Ḟ(τ), F(τ), and G(τ)

The expansions of Ḟ(τ), F(τ), and G(τ) are all straightforward so no proofs are given.

I.2.2 F1(τ)

I.2.2.1 Static Expansion

i
d

dτ
Gzero(τ) =

i

~
d

dτ
TrN

{
e−iLτ/~Lzeroρ̂N(0)

}
=

1

~2
TrN

{
Le−iLτ/~Lzeroρ̂N(0)

}
=

1

~2
TrN

{(
Lzero + Lint

)
e−iLτ/~Lzeroρ̂N(0)

}

In the Condon limit, Lint is a purely electronic superoperator, so this can be written as

i
d

dτ
Gzero(τ) =

1

~2
TrN

{
Lzeroe

−iLτ/~Lzeroρ̂N(0)
}

︸ ︷︷ ︸
F1(τ)

+
1

~2
Lint TrN

{
e−iLτ/~Lzeroρ̂N(0)

}
︸ ︷︷ ︸

1

~
LintGzero(τ)

∴ F static
1 (τ) = i

d

dτ
Gzero(τ)− 1

~
LintGzero(τ)

I.2.2.2 Dynamic Expansion

i
d

dτ
F2(τ) =

i

~
d

dτ
TrN

{
Lzeroe

−iLτ/~ρ̂N(0)
}

=
1

~2
TrN

{
Lzeroe

−iLτ/~Lρ̂N(0)
}

=
1

~2
TrN

{
Lzeroe

−iLτ/~
(
Lzero + Lint

)
ρ̂N(0)

}
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In the Condon limit, Lint is a purely electronic superoperator, so this can be written as

i
d

dτ
F2(τ) =

1

~2
TrN

{
Lzeroe

−iLτ/~Lzeroρ̂N(0)
}

︸ ︷︷ ︸
F1(τ)

+
1

~2
TrN

{
Lzeroe

−iLτ/~ρ̂N(0)
}
Lint︸ ︷︷ ︸

1

~
F2(τ)Lint

∴ Fdynamic
1 (τ) = i

d

dτ
F2(τ)− 1

~
F2(τ)Lint

I.2.2.3 Propagator Expansion

−Ü(τ) = − d2

dτ 2
TrN

{
e−iLτ/~ρ̂N(0)

}
=

1

~2
TrN

{
Le−iLτ/~Lρ̂N(0)

}
=

1

~2
TrN

{(
Lzero + Lint

)
e−iLτ/~

(
Lzero + Lint

)
ρ̂N(0)

}

In the Condon limit, Lint is a purely electronic superoperator, so this can be written as

−Ü(τ) =
1

~2
TrN

{
Lzeroe

−iLτ/~Lzeroρ̂N(0)
}

︸ ︷︷ ︸
F1(τ)

+
1

~2
TrN

{
Lzeroe

−iLτ/~ρ̂N(0)
}
Lint︸ ︷︷ ︸

1

~
F2(τ)Lint

+
1

~2
Lint TrN

{
e−iLτ/~Lzeroρ̂N(0)

}
︸ ︷︷ ︸

1

~
LintGzero(τ)

+
1

~2
Lint TrN

{
e−iLτ/~ρ̂N(0)

}
Lint︸ ︷︷ ︸

1

~2
LintU(τ)Lint

∴ F1(τ) = −Ü(τ)− 1

~
F2(τ)Lint −

1

~
LintGzero(τ)− 1

~2
LintU(τ)Lint

131



Plugging in Eqs. (A.8) and (A.9), we reach

F1(τ) = −Ü(τ)− 1

~

(
iU̇(τ)− 1

~
LintU(τ)

)
Lint −

1

~
Lint

(
iU̇(τ)− 1

~
U(τ)Lint

)
− 1

~2
LintU(τ)Lint

= −Ü(τ)− i

~
U̇(τ)Lint +

1

~2
LintU(τ)Lint −

i

~
LintU̇(τ) +

1

~2
LintU(τ)Lint

− 1

~2
LintU(τ)Lint

F1(τ) = −Ü(τ)− i

~

[
U̇(τ),Lint

]
+

+
1

~2
LintU(τ)Lint

I.2.3 F2(τ)

I.2.3.1 Static and Propagator Expansion

iU̇(τ) = i
d

dτ
TrN

{
e−iLτ/~ρ̂N(τ)

}
=

1

~
TrN

{
Le−iLτ/~ρ̂N(τ)

}
=

1

~
TrN

{(
Lzero + Lint

)
e−iLτ/~ρ̂N(0)

}

In the Condon limit, Lint is a purely electronic superoperator, so this can be written as

iU̇(τ) =
1

~
TrN

{
Lzeroe

−iLτ/~ρ̂N(0)
}

︸ ︷︷ ︸
F2(τ)

+
1

~
Lint TrN

{
e−iLτ/~ρ̂N(0)

}
︸ ︷︷ ︸

1

~
LintU(τ)

∴ F
static &

propagator
2 (τ) = iU̇(τ)− 1

~
LintU(τ) (A.8)
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I.2.4 Gzero(τ)

I.2.4.1 Dynamic and Propagator Expansion

iU̇(τ) = i
d

dτ
TrN

{
e−iLτ/~ρ̂N(0)

}
=

1

~
TrN

{
e−iLτ/~Lρ̂N(0)

}
=

1

~
TrN

{
e−iLτ/~

(
Lzero + Lint

)
ρ̂N(0)

}

In the Condon limit, Lint is a purely electronic superoperator, so this can be written as

iU̇(τ) =
1

~
TrN

{
e−iLτ/~Lzeroρ̂N(0)

}
︸ ︷︷ ︸

Gzero(τ)

+
1

~
TrN

{
e−iLτ/~ρ̂N(0)

}
Lint︸ ︷︷ ︸

1

~
U(τ)Lint

∴ G
dynamic &
propagator
zero (τ) = iU̇(τ)− 1

~
U(τ)Lint (A.9)
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Appendix B

Additional Results of the Various Approaches to the

GQME from Chapter IV

This appendix includes additional results for the various methods to the obtain the GQME out-

lined in Chapter IV.

II.1 Additional Results

II.1.1 System-Bath v. Modified Form

Shown in Fig. B.1 are the electronic population difference results for the propagator expansion

with LSCI as input method, with the TE approaches shown in the top row and the PF approaches

shown in the bottom row and the time step of the left column results is ∆t = 0.01 whereas the

time step of the right column results is ∆t = 0.005. The results with LSCII as input method are

given in Fig. IV.5 and show the same trends as the LSCI-GQME results given here. The results for

the Condon M-TE approaches and the PS approaches are not shown because their results are still

being verified.

II.1.2 Non-Condon v. Condon

In Fig. B.2, the results for the bare and static expansions of the modified two-equation and

projection-second approaches with LSCII as the input method are shown. Contrasting with the
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Figure B.1: In the top row, shown are the electronic population differences, σz(t) = σDD(t) −
σAA(t), for the propagator expansion of the two-equation approaches with a time step of ∆t =
0.01 on the left and a time step of ∆t = 0.005 on the right. In the bottom row, shown are the
electronic population differences for the propagator expansion of the projection-first approaches
with ∆t = 0.01 on the left and a time step of ∆t = 0.005 on the right. The parameters are those of
model 2 in Table IV.1 and the input method is LSCII, with the direct application of LSCII results
shown on each graph as a solid black line. Exact results are shown in black circles on each graph.
The M-TE-C1 and M-TE-C2 results are not shown in the top row because the results are still being
verified. Similarly, the projection-second results are not shown because results with the modified
form are still verified.

results for LSCI as input method shown in Fig. IV.6, the non-Condon approaches are slightly more

or as equally accurate as the Condon approaches.

Shown in Fig. B.3 are the bare, static, dynamic, and propagator expansions for the modified

projection-first approaches with LSCII as the input method. Differing from the same results with

LSCI as input method given in Fig. IV.7, all four expansions show very similar results for the

135



0 5 10 15 20

Γ t

1.0

0.5

0.0

0.5

1.0
σ
z
(t

)

Bare

Two-Equation with LSCII
Exact

LSCII

M-TE-NC

M-TE-C1

M-TE-C2

0 5 10 15 20

Γ t

1.0

0.5

0.0

0.5

1.0

σ
z
(t

)

Bare

Projection-Second with LSCII
Exact

LSCII

M-PS-NC

M-PS-C

0 5 10 15 20

Γ t

1.0

0.5

0.0

0.5

1.0

σ
z
(t

)

Static

Two-Equation with LSCII
Exact

LSCII

M-TE-NC

M-TE-C1

M-TE-C2

0 5 10 15 20

Γ t

1.0

0.5

0.0

0.5

1.0

σ
z
(t

)

Static

Projection-Second with LSCII
Exact

LSCII

M-PS-NC

M-PS-C

Figure B.2: In the top row, shown are the electronic population differences, σz(t) = σDD(t) −
σAA(t), for the bare (left) and static (right) expansions of the modified two-equation approaches.
In the bottom row, shown are the electronic population differences for the bare (left) and static
(right) expansions of the modified projection-second approaches. The input method is LSCI, with
the direct application of LSCI results shown on each graph as a solid black line. Exact results are
shown in black circles on each graph.

Condon and non-Condon M-PF approaches and the M-PF-NC approach is converged with respect

to time step by a time step of ∆t = 0.005. Similar to Fig. IV.7, the dynamic and propagator

expansion results give worse results when compared to the bare and static expansions, giving back

the same results as the direct application of LSCII.
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Figure B.3: In the top row, shown are the electronic population differences, σz(t) = σDD(t) −
σAA(t), for the bare (left) and static (right) expansions of the modified projection-first approaches.
In the middle row, shown are the electronic population differences for the dynamic (left) and prop-
agator (right) expansions of the modified projection-first approaches. The parameters are those of
model 2 in Table IV.1 and the input method is LSCI, with the direct application of LSCI results
shown on each graph as a solid black line. Exact results are shown in black circles on each graph.

II.1.3 Two Equations v. One Equation for the Memory Kernel

Shown in Fig. B.4 are the results for the bare, static, and dynamic expansions with the modified

form approaches with LSCII as input method. Compared to the same results for LSCI shown in

Fig. IV.9, it can be seen that the bare and static expansions again behave the same while the dynam-

ics expansion gives comparatively worse results. However, within each expansion, the approaches

behave very similarly, which can be contrasted with the results shown in Fig. IV.9.

In Fig. B.5, the electronic population difference results for the modified form approaches
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Figure B.4: Shown are the electronic population differences, σz(t) = σDD(t) − σAA(t), for the
modified form approaches. Starting from the upper left and moving counter-clockwise are the
results with the bare expansion, the static expansion, the dynamic expansion with ∆t = 0.005,
and the dynamic expansion with ∆t = 0.01. The input method for the GQME is LSCII, with the
dynamics of the direct application of LSCII shown with a solid black line. The parameters are
those of model 2 in Table IV.1 and exact results are shown in black circles on each graph.

with the propagator expansion with LSCI and LSCII as input method and time steps of ∆t = 0.01

and ∆t = 0.005 are shown. Similar to the dynamic expansion results shown in Fig. IV.9, with LSCI

as input, the M-TE-NC and M-PF-C approaches give the same dynamics as the direct application

of LSCI and the M-PF-NC approach has not converged by a time step of ∆t = 0.005. For LSCII,

all three approaches give the same dynamics as the direct application of LSCII, with the results

converged for the time step ∆t = 0.005.
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Figure B.5: Shown are the electronic population differences, σz(t) = σDD(t) − σAA(t), for the
system-bath form approaches. In the top row, the bare expansion is used; in the middle row, the
static expansion; and in the bottom row, the dynamic expansion. The left column is results with
LSCI as input method and on the left are the results with LSCII as input method, with the direct
application of each shown with a solid black line. The parameters are those of model 2 in Table
IV.1 and exact results are shown in black circles on each graph.
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