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ABSTRACT

With trauma being one of the leading causes of death in the U.S., automated

decision support systems that can accurately detect traumatic injuries and predict

their outcomes are crucial for preventing secondary injuries and guiding care manage-

ment. My dissertation research incorporates machine learning and image processing

techniques to extract knowledge from structured (e.g., electronic health records) and

unstructured (e.g., computed tomography images) data to generate real-time, robust,

quantitative trauma diagnosis and prognosis. This work addresses two challenges:

1) incorporating clinical domain knowledge into deep convolutional neural networks

using classical image processing techniques and 2) using post-hoc explainers to align

black box predictive machine learning models with clinical domain knowledge. Ad-

dressing these challenges is necessary for developing trustworthy clinical decision-

support systems that can be generalized across the healthcare system. Motivated by

this goal, we introduce an explainable and expert-guided machine learning framework

to predict the outcome of traumatic brain injury. We also propose image processing

approaches to automatically assess trauma from computed tomography scans.

This research comprises four projects.

In the first project, we propose an explainable hierarchical machine learning frame-

work to predict the long-term functional outcome of traumatic brain injury using

information available in electronic health records. This information includes demo-

graphic data, baseline features, radiology reports, laboratory values, injury severity

scores, and medical history. To build such a framework, we peer inside the black-box

machine learning models to explain their rationale for each predicted risk score. Ac-

xiii



cordingly, additional layers of statistical inference and human expert validation are

added to the model, which ensures the predicted risk score’s trustworthiness. We

demonstrate that imposing statistical and domain knowledge “checks and balances”

not only does not adversely affect the performance of the machine learning classifier

but also makes it more reliable.

In the second project, we introduce a framework for detecting and assessing the

severity of brain subdural hematomas. First, the hematoma is segmented using a com-

bination of hand-crafted and deep learning features. Next, we calculate the volume of

the injured region to quantitatively assess its severity. We show that the combination

of classical image processing and deep learning can outperform deep-learning-only

methods to achieve improved average performance and robustness.

In the third project, we develop a framework to identify and assess liver trauma by

calculating the percentage of the liver parenchyma disrupted by trauma. First, liver

parenchyma and trauma masks are segmented by employing a deep learning backbone.

Next, these segmented regions are refined with respect to the domain knowledge about

the location and intensity distribution of liver trauma. This framework accurately

estimated the severity of liver parenchyma trauma.

In the final project, we propose a kidney segmentation method for patients with

blunt abdominal trauma. This model incorporates machine learning and active con-

tour modeling to generate kidney masks on abdominal CT images. The resultant of

this component can provide a region of interest for screening kidney traumas in future

studies.

Together, the four projects discussed in this thesis contribute to diagnosis and

prognosis of trauma across multiple body regions. They provide a quantitative as-

sessment of traumas that is a more accurate measurement of the risk for adverse

health outcomes as an alternative to current qualitative and sometimes subjective

current clinical practice.
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CHAPTER I

Introduction

Trauma is the primary cause of mortality for individuals younger than 46 years old

and the leading cause of years of life lost in the U.S. (Rhee et al., 2014). Traumatic

Brain Injury (TBI) and abdominal trauma contribute to most of this traumatic mor-

tality and morbidity (Maas et al., 2008; Faul et al., 2010; Jansen et al., 2008; Taghavi

and Askari , 2019).

A traumatic brain injury occurs when direct or indirect trauma disrupts the brain’s

normal function. TBI which contribute substantially to traumatic mortality and

morbidity, are frequently referred to as the silent epidemic (Faul et al., 2010). Each

year, about 1.7 million people sustain TBIs in the U.S., of whom approximately

52,000 die and another 126,000 experience long-term impairment or disability (Faul

et al., 2010). One-third of patients who died because of TBI were able to talk or obey

commands before their death. This suggests the effect of secondary injuries, rather

than the initial injuries at the time of trauma, is an important contributor to mortality

(Moppett , 2007). Thus, the early diagnosis, prognosis, and management of TBI,

particularly during the “golden hour”, the period of time following the incident, could

significantly minimize mortality and progression of secondary injuries. TBI can cause

Subdural Hematoma (SDH), diffuse axonal injury, cerebral contusions, lacerations,

and other injuries. SDH is one of the most common sequelae of TBI and the most
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frequent indication for craniotomy following trauma. Hence, its early diagnosis and

evacuation can improve patient outcomes. In addition to early detection of TBI,

early and accurate prediction of TBI long-term functional outcomes is important for

guiding physicians and families through care management and early resuscitation.

Traumatic abdominal injury can lead to multiple complications including lacera-

tion of major organs such as the liver and kidneys. Due to its anterior location, size,

and fragile parenchyma, the liver is the most frequently injured abdominal organ in-

volved in blunt abdominal trauma (Ahmed and Vernick , 2011; Taghavi and Askari ,

2019; Badger et al., 2009; Arumugam et al., 2015). In fact, approximately 5% of all

trauma admissions are attributed to liver trauma (Taghavi and Askari , 2019). How-

ever, clinical signs alone are insufficient to diagnose stable abdominal injuries, and

missed injuries are a common cause of morbidity and late mortality (Jansen et al.,

2008).

One of the most important initial tests performed on trauma patients to evaluate

injury severity is Computed Tomography (CT) imaging (Wintermark et al., 2015;

Badger et al., 2009; Buquicchio et al., 2018). It provides critical information such

as severe brain or liver hematomas that are found to be significant predictors of

trauma severity and outcome (Wintermark et al., 2015; Badger et al., 2009; Buquicchio

et al., 2018). Their existence may specify the urgent need for surgical intervention,

which if delayed may lead to death. Traditional visual examinations of CT scans

are still the only investigation done by clinicians, which are time consuming, prone

to human error, and costly. Moreover, traumatic injury severity is conventionally

assessed by measurements derived primarily from a single 2D CT slice. For example,

the maximum depth of a hemorrhagic region in one slice can be used to determine

the severity of liver laceration, or the thickness of a lesion will be used to assess

brain hemorrhage. This kind of measurement, while simple, may not exploit other

characteristics of the injured area, such as volume, which could potentially make

2



diagnosis more accurate.

Based on this information, there is a need for an automated, generalizable decision

support system to improve diagnosis accuracy and prevent delayed or misdiagnosis

by extracting knowledge from heavily underused data sources. My dissertation aims

to fill this need by developing algorithmic solutions for a trauma decision-support

system. This system has two general components: outcome prediction and image

processing.

1.1 Outcome Prediction

During the outcome prediction phase, patient-level data from Electronic Health

Records (EHR) was used to develop predictive models to support and enhance clinical

decision-making for TBI.

Prognosis of the long-term functional outcome of TBI is essential for personalized

management of that injury. Nonetheless, accurate prediction remains unavailable.

Although machine learning has shown promise in many fields, including medical di-

agnosis and prognosis, such models are rarely deployed in real-world settings due to

lack of transparency and trustworthiness. To address these drawbacks, we sought

to develop a machine learning-based framework that is explainable and aligns with

clinical domain knowledge.

1.2 Image Processing

During the image processing phase, we used CT scans to detect and quantify

two key abnormalities in the brain and abdominal cavity regions: brain subdural

hematoma and liver parenchymal disruption. In addition, kidney masks are seg-

mented as a region of interest for screening for kidney traumas. Current image

processing methods can be categorized into two main groups: 1) classical image
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processing techniques mainly driven by clinical domain knowledge about the under-

lying disease and 2) deep learning techniques that are end-to-end black box models.

Deep convolutional neural networks have recently been successfully applied to med-

ical image segmentation tasks and have been proven to outperform classical models

in terms of average performance (Esteva et al., 2021). However, in failure cases,

these deep learning models may make mistakes that classical models will not. This

non-robustness can be attributed to lack of reasoning and might primarily affect the

minority cases (Esteva et al., 2021) because of automation bias. In this thesis, we

focused on integrating clinical domain knowledge into the deep learning model. The

resulting algorithms can act as safeguards or triage tool for alerting radiologists and

clinicians to potentially moderate and severe injuries.

1.3 Specific Aims

In Chapter II, we propose a novel framework to predict the long-term functional

outcome of TBI patients. This framework incorporated additional layers of statisti-

cal inference and human expert validation to create an intelligible machine learning

framework. To build our intelligible model, we explained, validated, and accordingly

revised a machine learning classifier to align it with clinical domain knowledge. To ex-

plain the rationale behind the decision-making process of the machine learning model,

we used SHAP (SHapley Additive exPlanations) post-hoc explainer that estimates

the contribution of each variable to the final decision at both patient and population

levels. Next, we validated the contribution of each variable at the population level.

We identified the variables that were non-robust or showed counterintuitive behaviors

and excluded them from the variable set. Contents of this chapter are accepted for

publication (Farzaneh et al., 2021b).

In Chapter III, we investigate the use of deep learning to diagnose and assess SDH

for patients with potential TBI. We first segmented SDH from CT images. This auto-
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mated segmentation of SDH was then used to quantify the injury using a volumetric

measurement, which enabled the detection of moderate and severe SDH subjects. For

the SDH segmentation task, we developed a new combinatory pipeline that benefits

from both classical image processing and deep learning approaches. The proposed

algorithm employs a joint feature representation of domain knowledge-driven hand-

crafted features and data-driven deep learning features to train a random forest model

that achieved greater accuracy and robustness compared to deep learning-only meth-

ods. The hand-crafted features in this algorithm reflected human domain knowledge

that can compensate for the limitations in deep model performance on unobserved

regions of the input data distribution, leading to this improved result. Contents of

this chapter were partially published in (Farzaneh et al., 2017b) and (Farzaneh et al.,

2020).

Chapter IV moves on from TBI and focuses on developing an automated frame-

work to identify and assess liver trauma from contrast-enhanced CT scans. This

framework started by segmenting initial masks of both liver parenchyma (including

both normal and affected portions) and regions affected by trauma. Next, during

the post-processing step, we integrated human domain knowledge about the location

and intensity distribution of liver trauma into the model to avoid false positive re-

gions. After generating the liver parenchyma and trauma masks, liver parenchymal

disruption involvement was computed as the volume of liver parenchyma that was

disrupted by trauma. The liver parenchymal disruption involvement is one of the

main criteria in determining the American Association for the Surgery of Trauma

(AAST) liver injury scale - the primary tool currently in use to assess the extent

of the liver trauma and guide management. Contents of this chapter were partially

published in (Farzaneh et al., 2017a) or are under review for publication in (Farzaneh

et al., 2021a).

In Chapter V, we focus on developing a kidney segmentation method for trauma
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injury patients. We first used machine learning classifiers to detect an initialization

mask inside each kidney. The boundary of each mask was then evolved using an

active contour modeling technique. The results indicates an accurate performance of

the proposed model in segmenting kidneys in CT scans with various contrast phases.

The resultant of this project provides the region of interest to search for kidney

traumas. Contents of this chapter were partially published in (Farzaneh et al., 2016)

and (Farzaneh et al., 2018).

Finally, Chapter VI provides an overall discussion of the results of this dissertation,

potential impacts of the developed models, and possible future directions.
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CHAPTER II

Predicting the Long-Term Functional Outcome of

Traumatic Brain Injury Patients

2.1 Introduction

Traumatic Brain Injury (TBI), often referred to as the “silent epidemic”, is the

leading cause of death among young Americans (Faul et al., 2010; Rhee et al., 2014).

While accurate early prognostication of TBI outcomes can guide physicians and fam-

ilies through early resuscitation and treatment planning, such a prognostic system

remains unavailable. After initial resuscitation, most patients with severe brain in-

jury die as a result of withdrawal of life-sustaining treatment. Consequently, there is

a critical need for accurate tools that can identify and prevent early withdrawal from

treatment in severe TBI patients who still have a reasonable chance for a favorable

outcome (Hemphill III and White, 2009; Geurts et al., 2014). Even experienced neu-

rosurgeons and neurocritical care practitioners frequently overestimate the likelihood

of poor neurological outcome in comparison with validated prediction scores (Moore

et al., 2013). By accurately predicting long-term functional outcomes, physicians can

make more evidence-based and informed decisions in such cases.

Over the last four decades, several studies aimed to produce prognostic models by

using patient responsiveness (Committee on Medical Aspects of Automotive Safety ,
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1971; Teasdale and Jennett , 1974; Wijdicks et al., 2005), radiographic images (Maas

et al., 2005; Marshall et al., 1991; Stenberg et al., 2017), or said images in combination

with other risk factors (Stenberg et al., 2017; Steyerberg et al., 2008; Collaborators ,

2008; Junior et al., 2017; Rizoli et al., 2016; Hukkelhoven et al., 2005). However, the

accuracy and applicability of these models over complex and heterogeneous cohorts

are questionable (Deepika and Shukla, 2016; Majdan et al., 2017). A primary reason

for the failure of these models is the oversimplification of the risk assessment method

employed, in which only a limited number risk factors are considered.

Artificial intelligence has shown great promise in enhancing the medical decision-

making process, specifically when there is a significant complexity and uncertainty

involved with the risk assessment task (Rajkomar et al., 2019). Machine learning

algorithms enable integrating multiple sources of information in a complex non-linear

fashion for accurate data-informed prognostication. A few recent studies sought to

tackle the oversimplification in previous TBI prognosis studies by employing machine

learning methods (Rau et al., 2018; Matsuo et al., 2020). However, this approach

comes with a trade-off: a sophisticated machine learning model’s rationale for an

individual decision is not readily interpretable by clinicians. The black box nature

of such algorithms prevents them from being integrated into medical practice where

transparency is imperative(Elshawi et al., 2019; Fogel and Kvedar , 2018; Vellido, 2019;

Kelly et al., 2019; Holzinger et al., 2017). Acceptance of such models by clinicians

in real-world settings requires the underlying reasoning of a model to be explainable,

understandable, and trustworthy (Kelly et al., 2019; Holzinger et al., 2017; Caruana

et al., 2015).

Another concern is the susceptibility of machine learning models to poor perfor-

mance over unobserved data, which is also known as a major problem called over-

fitting. This is particularly acute in medical applications where, due to privacy and

intellectual property issues, it is costly and often impractical to have an ideal data set
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that is sufficiently large and heterogeneous to represent all subtypes of the condition

under study. Thus, during the training stage, machine learning can potentially learn

unrealistic cohort-specific patterns that are not generalizable (Kelly et al., 2019) or

clinically significant. Such models introduce additional sources of bias to the predic-

tion model (Kelly et al., 2019), which will not be readily detectable if employed in a

black box fashion.

In this chapter, we propose a novel machine learning framework that incorpo-

rates additional layers of statistical inference and human expert validation to create

an intelligible model for predicting long-term functional outcomes of TBI patients

using data available at the time of hospital admission. Inspired by Caruana et al.

(Caruana et al., 2015), an intelligible model is defined as a model that is both inter-

pretable and aligned with clinical domain knowledge. The proposed machine learning

framework constructs an intelligible model through performance explanation, human

expert validation, and final model training. To explain the decision-making process

of the machine learning model, Shapley values were used to estimate the contribution

of each variable to the final decision (Lundberg and Lee, 2017; Lundberg et al., 2018).

Next, the contribution of each variable was clinically validated at the population level,

with variables determined to be non-robust or exhibiting counterintuitive behaviors

subsequently excluded. The results of this process suggest that including counterin-

tuitive features introduces bias to the model. To further explore this hypothesis, a

case study was performed on one of the features with counterintuitive behavior in

which its impact on model bias was analyzed.

2.2 Materials

In this study, as in most recent TBI clinical trials, the long-term functional out-

come after TBI is assessed using the Glasgow Outcome Scale-Extended (GOSE), a

global scale for functional outcomes, at 6 months after injury. The original Glas-
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gow Outcome Scale (GOS) and its more detailed and recent revision, the GOSE, are

the most widely accepted systems to rate TBI outcomes, having been used in more

than 90 percent of high-quality TBI randomized trials. The GOSE has been exten-

sively validated, is the most widely cited measure of acute brain injury outcomes,

and is recommended by both the US National Institutes of Health (NIH) and the UK

Department of Health (McMillan et al., 2016). In this study, GOSE 1–4 (death, per-

sistent vegetative state, and severe disability) were regarded as unfavorable outcomes,

while GOSE 5-8 (moderate disability, and good recovery) correspond to patients with

favorable outcomes.

This is a secondary analysis of the Progesterone for the Treatment of Traumatic

Brain Injury III (ProTECT) data set that includes adults who experienced a moderate

to severe brain injury caused by blunt trauma (Wright et al., 2014). This multi-site,

randomized clinical trial (ClinicalTrials.gov identifier NCT00822900) ensured that all

racial, ethnic, and geographical variations were appropriately incorporated. Patients

were excluded from ProTECT III if they had an initial Glasgow Comma Scale (GCS)

of 3, bilateral dilated unresponsive pupils, or were otherwise determined to have non-

survivable injuries. The data set includes electronic data for 882 patient (Wright et al.,

2014). Among the 882 patients, 831 met the inclusion criteria. Of 831 individuals

admitted to the hospital, 348 were identified to have experienced poor outcomes, with

the remaining 483 attaining a favorable recovery at six months.

A rich source of patient-level information is available in the EHR contained within

the ProTECT III data set. This information includes demographic data, baseline fea-

tures, radiology reports, laboratory values, injury severity scores, and medical history.

Demographics and clinical characteristics of the patient cohort are summarized in Ta-

ble 2.1. In this study, only data available at the time of hospital admission was used.
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Table 2.1: Demographic and clinical characteristics of study subjects.

Characteristic GOSE ≤ 4 GOSE >4 p-value
Total Subjects, n 348 483
Female, n 97 (27.87%) 127 (26.29%) >0.05
Age, median [Q1, Q3] 45 [29, 59] 31 [22, 45] <0.001
Abbreviated injury score [Q1, Q3] 29 [22, 36] 22 [14, 29] <0.001
Head injury severity Score, median
[Q1, Q3]

4 [4, 5] 3 [3, 4] <0.001

Cause of injury
Motor vehicle collision, n 99 (28.45%) 204 (42.24%) <0.001
Motorcycle/scooter/ATV/bicycle
crash, n

82 (23.56%) 126 (26.09%) >0.05

Pedestrian struck by moving
vehicle, n

66 (18.97%) 42 (8.70%) <0.001

Fall, n 63 (18.10%) 70 (14.49%) >0.05
Assault, n 24 (6.90%) 22 (4.55%) >0.05
Other or Unknown, n 14 (4.02%) 19 (3.93%) >0.05
Initial Glasgow Coma Scale
Motor response, median [Q1, Q3] 4 [3, 5] 5 [4, 5] <0.001
Eye opening response, median
[Q1, Q3]

1 [1, 2] 2 [1, 3] <0.001

Verbal response, median [Q1, Q3] 1 [1, 2] 2 [1, 2] <0.001

2.3 Methods

2.3.1 Outcome Prediction Framework and Experimental Design

The proposed framework for TBI outcome prediction is outlined in Fig. 2.1.

First, a machine learning classifier is trained to predict the risk score for each patient

(Section 2.3.3), with SHAP (SHapley Additive exPlanations) values being used to

explain the model’s predictions (Section 2.3.4). Next, the global behavior of the SHAP

values for each input variable is evaluated, with only those shown to be statistically

robust selected for further consideration. These robust variables are then validated

by a multidisciplinary team of clinical experts, with features with counterintuitive

behavior investigated further and excluded to avoid potential sources of bias (Section

2.3.5.2). Although excluding counterintuitive variables might negatively affect the
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overall accuracy, it is an essential step to develop a sensible and trustworthy algorithm

that can be used operationally in a clinical setting.

Figure 2.1: The proposed framework for developing an intelligible TBI prognostic
model. After training an initial machine learning model, input features are selected
based on statistical robustness and clinical validity. The machine learning model is
retrained after each step of feature selection (Farzaneh et al., 2021b).

The experimental design is outlined in Fig. 2.2. To ensure that the final prognostic

model is not affected by the test set, 25% of the whole data set will be randomly

selected and set aside. This test data set will remain untouched until the prognostic

model is trained and finalized.

2.3.2 Data Pre-processing

First, among all EHR variables available in the ProTECT III data set, those

available at the time of admission were selected. Next, these selected variables were

reviewed by an expert board-certified physician in neurology and neurocritical care,

with all those deemed clinically relevant chosen as input variables. Information re-

garding race or ethnicity was excluded, as this information could reinforce an un-

wanted retrospective bias and/or discrimination rather than a direct cause of the

predicted outcome (Paulus and Kent , 2017, 2020).

Missing values were replaced by the average of available cases in the training set.
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Figure 2.2: Experimental design and evaluation strategy for developing an intelligible
TBI prognostic model. (a) At study onset, 25% of the data was set aside for final
evaluation. The remaining 75% was used to develop the model, either in (b) the
bootstrap step for variable selection, or (c) training the prognostic model using 5 fold
cross-validation (Farzaneh et al., 2021b).

2.3.3 Machine Learning Module

The XGBoost (eXtreme Gradient Boosting) algorithm was employed to classify

each patient as experiencing either a favorable or unfavorable outcome at 6 months

and to estimate its corresponding probability. More information regarding the selec-

tion of the XGBoost algorithm is available in Appendix A and Table A.2. XGBoost is

a sequential tree growing algorithm with weighted samples. Compared to other boost-

ing methods, XGBoost incorporates regularization parameters, making it relatively

robust against noise and outliers while reducing over-fitting. The XGBoost package

in Python was used to build this prognostic model (Chen and Guestrin, 2016).

The hyperparameters were optimized for all models using grid search over a spec-

ified subset of the hyperparameter space. For each model, the combination of the

hyperparameters that yielded the maximum F1 score was selected. This combination

was calculated based on the validation set performance.
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2.3.4 Explanation Module

The outcome predictions of the machine learning model were explained using

the SHAP (SHapley Additive exPlanations) method, which is based on the Shapley

value from cooperative game theory Lundberg and Lee (2017); Lundberg et al. (2018).

In game theory, the Shapley value fairly distributes both gains and costs between

multiple players with different skill sets in a coalition. Inspired by this concept, in the

machine learning context, SHAP values can fairly distribute a predicted probability

among input features. This distribution can be either positive or negative. The

positive contribution of a variable indicates that it increases the prediction probability,

while a negative contribution denotes a reduction in that probability. The Shapley

contribution of feature i for patient x is defined as

Shapleyi(x) =
∑

S⊆F\{i}

|S|!(|F | − |S| − 1)!

|F |!
[fS∪i(xS∪i)− fS(xS)] (2.1)

where f corresponds to the prediction model to be explained, while F is the complete

set of variables, and S ⊆ F \{i} corresponds to all possible subsets of F after excluding

variable i.

Accordingly, SHAP values enable model interpretation at both the individual

patient and population levels. At the patient level, SHAP estimates the contribution

of each variable to the predicted outcome. It provides a sense of which variables are

contributing to the predicted outcome and to what extent. In the aggregate, the

distribution of SHAP values over the whole data set reveals the global behavior of

the trained model and input features.
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2.3.5 Intelligible Variable Selection Module

2.3.5.1 Step 1 - Statistical analysis to identify variables with robust con-

tributions behaviors

While the global behavior of SHAP values for some variables is robust regard-

less of the sampled training set, there are variables for which their global contribu-

tion distribution vary based on the selected training sample set. For example, the

global behavior of creatinine contribution is highly sensitive to the training sample

set. As shown in Fig. 2.3 depending on the randomly selected training sample set,

the marginal effect of creatinine contribution significantly fluctuates. To identify

and exclude variables with non-robust and unreliable SHAP contribution behavior, a

bootstrap-based procedure was employed. 1000 bootstrap samples were drawn with

replacement from the training set. For each bootstrap sample a separate XGBoost

model was trained. Next, the SHAP contribution behavior was estimated for each

variable using Kendall’s τ correlation coefficient. Kendall’s τ is a summary statistic

that in this usage assesses the strength and direction of the association between a vari-

able and its SHAP contribution. For each variable, if its correlation coefficient, either

positive or negative, is marginally significant with p-value < 0.1, variable is selected

to be included in the remainder of the process. The choice of the p-value is arbitrary.

In this study, since there is a subsequent variable selection step that examines vari-

able behavior in detail from a clinical perspective, only variables whose behavior was

strongly non-significant (p-value > 0.1) were excluded during the statistical inference

process.

2.3.5.2 Step 2 - Clinical expert validation of input variables

Once the robust features are selected, the XGBoost classifier is again trained and

its predictions are explained using SHAP values. Next, human experts investigated
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the model explanation in order to complement the machine learning approach. An

interdisciplinary team of an expert board-certified physician in neurology and neuro-

critical care, data scientists, and engineers studied each input variable’s contribution

to the final outcome prediction. SHAP values of the whole population are used to

investigate each variable’s marginal effect on the predicted probability. If a variable

showed a counterintuitive behavior it was further studied for potential sources of bi-

ases. If no logical explanation could be derived, the variable was excluded from the

study. Finally, using a robust and medically justified subset of the variables in the

XGBoost model, the TBI prognostic model was developed.

2.4 Results

2.4.1 Intelligible Variable Selection Using Computational Analysis and

Human Validation

Among 62 candidate variables that were extracted from the EHR (see Table A.1 for

the full list of EHR variables and their definitions), 21 were shown to be statistically

robust. The robustness was estimated with respect to the global distribution of SHAP

contribution. Table 2.2 shows the Kendall’s τ correlation coefficients of the robust

variables and the corresponding p-values.

Of the initial 62 features, the 21 selected features are not necessarily those with

the highest contributions. For example, creatinine, WBC, and potassium were among

the top features in terms of the amount of contribution; however, their behavior was

not statistically robust (Fig. 2.3, Fig. A.1, and Fig. A.2).

The 21 automatically selected robust variables where then carefully evaluated to

identify those with unexpected or counterintuitive behaviors. Three variables were

identified by a physician board-certified in neurology and neurocritical care to exhibit

behavior contrary to clinical domain knowledge: active substance abuse (Fig. 2.4a
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Table 2.2: The Kendall’s τ correlation coefficients and the corresponding p-values of
21 variables that demonstrated robust SHAP global behavior.

Variable Name Median p-value
Age 0.7414 <0.001
Best motor response -0.7484 <0.001
Best eye opening response -0.6552 0.003
Best verbal response -0.7602 0.007
Subdural hematoma (#) 0.6794 0.019
Subdural hematoma (max width) 0.6372 0.018
Subarachnoid hemorrhage (#) 0.7907 <0.001
Intra-ventricular hemorrhage 0.5969 <0.001
Intraparenchymal hematoma (max width) 0.2781 0.066
Brain contusion (#) 0.4964 0.086
Brain contusion (max width) 0.5591 0.018
DAI finding (#) 0.4493 0.025
Third ventricle compression 0.5856 0.012
Transtentorial herniation 0.5200 0.006
Glucose 0.5210 0.054
Hgb -0.7648 0.003
Platelets 0.6718 0.039
aPTT 0.5862 0.087
INR 0.6223 0.089
Active gastrointestinal disease -0.3998 0.086
Active substance abuse -0.6506 0.088

and Fig. 2.5), inactive gastrointestinal disease (Fig. 2.4b), and platelet count (Fig.

2.4c). The results show that the existence of either active substance abuse or active

gastrointestinal disease lowers the risk of poor outcomes, which is contrary to clinical

domain knowledge. The decrease in platelet count was observed to be associated

with better outcomes which also contradicts medical literature (Maegele, 2013; Joseph

et al., 2014). These counterintuitive associations might be either derived from the

collinearity between variables, thereby representing an (un)known proxy variable, or

induced by noise in the data set, both of which can introduce bias into the model

if not addressed properly. The collinearity effect becomes of crucial importance if it

exists between these risk factors and the level of care patients received, which can lead

to self-reinforcing positive feedback (Paulus and Kent , 2020). For example, patients
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(a) (b)

(c) (d)

Figure 2.3: An example of a variable with non-robust contribution behavior. (a), (b),
(c), and (d) are the SHAP contribution of creatinine levels to the predicted risk score
when training on different bootstrapping sample sets (Farzaneh et al., 2021b).

with active gastrointestinal disease, substance abuse, or coagulation dysfunction (low

platelet) might receive more aggressive care that affects their outcome. However,

if this bias is not accounted for at the algorithm development level, in real-world

settings the model will assess these patients as having a lower chance of unfavorable

outcome, resulting in them potentially receiving less aggressive care that they would

have otherwise.

These biases are studied in the case study on active substance abuse in the follow-

ing section. Regarding active gastrointestinal disease and platelet count contributions,

no meaningful correlation or explanation was observed in the data set. It is possible

that they reflect a latent variable or the observed behavior is merely specific to the

study cohort.

These three variables were excluded from the study, leaving 18 EHR variables
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(a) (b) (c)

Figure 2.4: SHAP contribution for variable with robust counterintuitive behavior.
(a) shows the contribution of active substance abuse. It shows that active substance
abuse yields a negative contribution. (b) shows the contribution of presence of ac-
tive gastrointestinal disease contribution, while (c) shows the contribution of platelet
count. In (a) and (b), the center line and box limits correspond to median and upper
and lower quartiles, respectively (Farzaneh et al., 2021b).

to be included in the final prognostic model. The selected variables include features

from radiology reports, laboratory values, and baseline clinical features (Fig. 2.6a, see

Table A.1 for detailed information). Fig. A.3 shows the population level contribution

of each of 18 selected variables.

2.4.1.1 Case study: active substance abuse

In this section, the contribution of active substance (alcohol and non-prescribed

drug) abuse to risk prediction, along with its possible underlying explanations and

potential concerns if not properly addressed, is evaluated. As shown in Fig. 2.4a,

active substance abuse negatively contributes to the predicted risk of poor outcome,

which is counterintuitive as alcohol and substance abuse are independent predictors

of mortality risk.

However, in the study data set, patients with active substance abuse tend to be

younger (Fig. 2.5a); thus, this variable might reflect the residual effect of age of a

patient. Moreover, the active substance abuse value is correlated with injury etiology,

being more common in patients experiencing TBI due to assault (ρ = 0.19, p-value

< 0.01), and head ISS (Injury Severity Score) (ρ = −0.12, p-value < 0.01). Although
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(a) (b)

Figure 2.5: Variables with counterintuitive behaviors. (a) shows the difference in age
distribution between active substance abusers and others, (b) shows difference in the
predicted risk scores of the test population if the active substance abuse value is set
zero or one (Farzaneh et al., 2021b).

no causal correlation can be drawn, we speculate that in the proposed model active

substance abuse is a confounding variable due to its simultaneous association with

injury severity and assault.

To quantify the effect of active substance abuse on the final prediction, an ex-

periment was performed in which the active substance abuse value was manually set

to either zero or one for each test patient. The difference in the predicted risk δp is

calculated as

δpi = p̂(yi = 1|Xi,i 6=a, Xa = 0)− p̂(yi = 1|Xi,i 6=a, Xa = 1), (2.2)

where yi corresponds to the outcome while Xi and Xa are the complete variable set

and active substance abuse variable, respectively. Fig. 2.5b shows the histogram of

the difference in the predicted risk on the test data set. The average, minimum, and

maximum value of δp are 0.014, 0.001, and 0.042, respectively. Based on these results,

it can be concluded that in a scenario in which two TBI patients are admitted to a

hospital with identical characteristics except for substance abuse, the patient with
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substance abuse would be predicted to have on average 1.4% (and up to 4.2%) higher

chance of a favorable outcome. To address such collinearity-induced biases, variables

that exhibited counterintuitive contribution behaviors were excluded from the variable

set.

2.4.2 Prognosis of Traumatic Brain Injury Functional Outcome

An XGBoost classifier was implemented to predict the functional outcome - GOSE

at 6 months. The classifier was trained, validated, and tested once using the full set

of 62 candidate variable, once using 21 identified robust variables, and once using the

final 18 intelligible variables (Table 2.3). Although the performance on the training

set decreased slightly after excluding non-robust and counterintuitive variables; Area

Under the Receiver Operating Curve (AUROC or AUC), accuracy, and F1 score per-

formance on the validation and test sets were well-preserved throughout this process.

These results support the conclusion that the excluded features do not affect the

performance of the model.

2.4.3 Explaining the Rationale Behind Predicted Risk Scores

The SHAP contribution values provide a detailed view into the risk factors leading

to the probability risk score at both the population and individual levels. At the

population level, age and the number of brain regions with subarachnoid hemorrhage

are by far the most impactful features in determining the elevated risk of poor outcome

(Fig. 2.6a). As can be observed in Fig. 2.6a, the contribution of a variable may vary

across different patients even if the patients share the same value for that variable.

For example, compression of the third ventricle can increase the risk of poor outcome

from 3.97% to 6.60% depending on the combination of other risk factors.

At the individual level, each feature returns a contribution. The aggregate of all

feature contributions yields the predicted risk score. For example, for patient shown
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Table 2.3: Performance of the TBI prognostic model trained using all candidate vari-
ables, only robust variables, and robust and clinically validated variables. Numbers
in parentheses are standard deviations. Standard deviation is calculated over 5 cross-
validation folds.

All candidate variables
Sample Set Training Validation Test
AUC (%) 93.72 (2.36) 78.22 (1.26) 80.94
Accuracy (%) 85.22 (3.27) 75.00 (1.69) 75.36
F1 score (%) 82.81 (3.60) 71.29 (1.90) 70.52
Sensitivity (%) 84.77 (3.05) 74.34 (4.89) 70.11
Specificity (%) 85.54 (4.40) 75.49 (4.56) 79.17
Precision (%) 81.06 (5.29) 68.80 (3.30) 70.93

Excluding non-robust variables
Sample Set Training Validation Test
AUC (%) 90.80 (2.49) 78.77 (1.77) 80.46
Accuracy (%) 81.65 (3.17) 74.84 (2.50) 74.40
F1 score (%) 78.55 (3.44) 71.04 (2.99) 68.64
Sensitivity (%) 80.08 (3.19) 73.94 (5.27) 66.67
Specificity (%) 82.79 (4.50) 75.49 (4.39) 80.00
Precision (%) 77.22 (4.98) 68.62 (3.29) 70.73
Excluding non-robust & counterintuitive variables
Sample Set Training Validation Test
AUC (%) 89.12 (2.52) 78.36 (1.89) 80.85
Accuracy (%) 80.53 (2.85) 74.51 (2.55) 74.88
F1 score (%) 77.40 (3.75) 70.76 (3.15) 70.45
Sensitivity (%) 80.18 (6.37) 73.93 (5.70) 71.26
Specificity (%) 80.78 (2.38) 74.94 (4.43) 77.50
Precision (%) 75.00 (2.52) 68.13 (3.29) 69.66

in Fig. 2.7a, the presence of subarachnoid hemorrhage in two brain regions increases

the predicted risk by 1.84%, while the eye opening response at the time of admission

reduces the risk by 4.03%.

The most impactful features for the patient shown in Fig. 2.7a are age, eye opening

response, subarachnoid hemorrhage, brain contusion, and subdural hematoma are

different from the features that contribute to predicted risk score of the patients

shown in Fig. 2.7b.
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(a)

(b)

Figure 2.6: (a) The summary plot of the contribution of all variables in the final
model. Each point corresponds to one patient, while color corresponds to the value of
the variable, with the spectrum from blue to pink associated with low to high values.
(b) shows variables in order of their importance, where importance of a variable is
defined by the average of the absolute SHAP values. Variable types are denoted as
rad : radiology report and lab: laboratory value (Farzaneh et al., 2021b).

2.5 Discussion

This was a secondary analysis of data from the ProTECT III data set, a large clin-

ical trial of patients with moderate and severe TBI. An explainable, expert-guided

23



(a)

(b)

Figure 2.7: SHAP force plots corresponding to predicted risk scores for individuals (a)
and (b). The base value corresponds to the average model output over the training set
and is the proportion of the training samples belonging to the class GOSE 1-4. Red
and blue arrows, respectively, depict the amount of positive and negative contribution
of variables to the predicted risk score. The model output value corresponds to the
predicted risk score. For example, the patient shown in plot (a) has a 33% probability
of experiencing GOSE 1-4. Variable types are denoted as rad : radiology report and
lab: laboratory value (Farzaneh et al., 2021b).

machine learning framework was developed to automatically predict the long-term

functional outcome of TBI patients as defined by GOSE (Fig. 2.1). It is widely

acknowledged that transparency and trustworthiness of machine learning models are

important factors in real-world applicability, particularly in medical diagnostic and

prognostic systems. The proposed framework seeks to move beyond the black box

application of machine learning algorithms. Aggregated SHAP values were used to

estimate the contribution of each variable to the predicted risk scores at both the

population and individual levels. Studying the contributions at the global level en-

ables two rounds of variable selection to be performed, based on: 1) robustness of the

contribution of a variable, and 2) clinical domain knowledge.

Among 62 candidate variables from EHR, 21 demonstrated robust global behav-
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ior where the global behavior was modeled using Kendall’s τ correlation coefficient.

Of the 21 robust variables, 3 variables (active substance abuse, active gastrointesti-

nal disease, and platelet count) showed counterintuitive effects on the predicted risk

score. Based on the observed behaviors patients with active substance abuse and

active gastrointestinal disease were determined to have a better chance of favorable

outcome. The lower platelet count was found to be associated with favorable out-

comes, which contradicts the clinical literature (Maegele, 2013; Joseph et al., 2014).

These three variables were excluded from the study as well, leaving 18 robust and

clinically validated variables to be included in the final prognostic model.

Finally, an XGBoost classifier was trained to classify patients as having unfavor-

able (GOSE ≤ 4) or favorable (GOSE > 4) expected outcomes. The final model

achieved an AUC, accuracy, and F1 score of 0.8085, 0.7488, and 0.7045, respectively,

on the test set. Importantly, the results show that the performance of the model is

not negatively affected by reducing the input variable set after imposing the statis-

tical and domain knowledge constraints (Table 2.3). Tree-based models, including

XGBoost, are prone to overfitting in the presence of many initial variables. This is

evinced in Table 2.3, where the performance of XGBoost on the training set decreased

after removing non-robust and counterintuitive variables.

In the final model, age and the total number of brain regions with subarachnoid

hemorrhage were the most impactful features in predicting the risk score. These vari-

ables were followed by GCS motor score, intra-ventricular hemorrhage, GCS eye open-

ing response, and third ventricle compression. Among laboratory values, hemoglobin,

glucose, aPTT (activated Partial Thromboplastin Time), and INR (International Nor-

malized Ratio) were determined to be appropriate predictors.

At the individual level, the model enabled the predicted risk score to be analyzed

with respect to which risk factors contributed to a particular decision and to what

extent. This tool enables end-users to judge the rationale behind the models’ decision
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making and act accordingly.

To our knowledge, no prior study has used explanatory methods such as SHAP

values to intelligibly select variables for black box machine learning classifiers. Us-

ing SHAP values for model explanation has become increasingly popular (Ma and

Tourani , 2020). It is a powerful tool to peer inside black box models and understand

how they arrive at a particular decision. Multiple recent studies used only SHAP val-

ues for variable selection (Ma and Tourani , 2020; Ogura et al., 2020; Janizek et al.,

2018; Bhandari et al., 2020; Bi et al., 2020), however, only the variables with the

greatest impact as defined by average absolute SHAP value were chosen. This is in

contrast to this study, in which it was shown that variables with the greatest con-

tribution are not necessarily robust (Fig. 2.3 and A.2). For example, in the initial

model, creatinine level was among the most impactful variables, while through the

bootstrapping experiment it was shown to have non-robust behavior (Fig. 2.3). More-

over, the selected high impact features might not align with domain knowledge. For

example, in Ogura et al. (Ogura et al., 2020), the total number of traumatic injuries

was attributed to a lower risk of death. Thus, our study proposes a novel framework

to “intelligibly” select variables using SHAP values, and highlights the importance of

collaboration with domain experts.

GOSE at 6-months is the global gold standard functional outcome classification

score in TBI prognostication studies. This score is commonly used in major clinical

trials, such as ProTECT (Wright et al., 2014) and RescueICP (Hutchinson et al.,

2016). However, TBI patient functional outcome can be influenced by non-TBI-

related post-injury adverse events. For example, in the test data set, there was a

40-year-old patient that was admitted to the hospital with a 23 mm unilateral sub-

dural hematoma, with no sign of subarachnoid hemorrhage or increased intracranial

pressure (e.g., third ventricle compression and transtentorial herniation) indicated in

the radiology report. This patient’s best motor and eye opening responses were both
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4 and within their respective upper quartiles. The patient was predicted to have a

27% chance of poor outcome; however, in reality, the patient died. Looking into post-

admission information, the patient developed pneumonia after discharge from the the

hospital at day 86 post-injury, leading to the patient’s death. This is not the only case

of non-TBI-related adverse events experienced post-injury. In the training set there

was a 36-year-old subject that, except for 9 mm-wide intraparenchymal hematoma

in one brain region, showed no other head abnormalities based on the radiology re-

port. This patient was discharged to home at day 5 post-injury but died of a gun

shot at day 87 post-injury. Although it is important, the information about non-TBI

adverse events is not recorded for all patients, and even for the patients with such

information, it is not mentioned in the data set whether functional GOSE outcome

is derived by non-TBI adverse events or TBI alone. To avoid any subjective input,

in particular in non-death cases, we did not consider post-injury clinical consolidated

comorbidities as an exclusion criteria in this study. Though this limitation of GOSE

introduces noise into the ground truth labels that can adversely affect machine learn-

ing performance, it is nonetheless the current best proxy for TBI outcomes. It should

also be noted that the choice of thresholds, such as a GOSE > 4 being defined as

a favorable outcome in this study, is somewhat arbitrary and lacks nuance. Ideally,

equally validated but more detailed and objective means to measure TBI outcomes

will become available for future studies.

It is also important to acknowledge that there can be “self-fulfilling prophecies”

in clinical settings that can influence model performance in ways that are very chal-

lenging to mitigate. Self-fulfilling prophecies occur when a perceived poor prognostic

factor is present, leading to early withdrawal of care, which then is seen as providing

evidence that the prognostic factor is valid (Williamson and Rajajee, 2018; Becker

et al., 2001; Hemphill III and White, 2009).

In addition to imperfect labels, the input variables are susceptible to bias or error.
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ProTECT III was conducted at 49 trauma centers in the United States (Goldstein

et al., 2017). Given this fact, there exists a potential level of noise or measurement

error due to the subjectivity involved in radiology readings, the intrinsic differences

in tools for measuring laboratory values, human error during data entry process,

among other sources. These measurement errors in EHR can lead to potential loss of

predictive power as well (Duan et al., 2016). Given these aforementioned limitations

- imperfect labeling, self-fulfilling prophecy, and measurement error - it is important

to be cautious when applying models to individual patients.

2.6 Conclusion

In conclusion, we proposed an intelligible machine learning framework for predict-

ing long-term functional outcomes of TBI patients. This framework enables explain-

ing the rationale behind predicted risk scores at both the individual and population

level. With the help of a human expert, such an explainable model identifies sources

of bias in the prediction model that would not be readily detectable if employed in

a black box fashion. Avoiding such biases can ultimately accelerate the adoption of

machine learning models in clinical settings.
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CHAPTER III

Automated Detection and Severity Assessment of

Subdural Hematoma in Traumatic Brain Injury

Patients

3.1 Introduction

Subdural hematoma is one of the most common types of traumatic intracranial

hemorrhage encountered in neurosurgical practice. It refers to the accumulation of

blood in the potential space between the arachnoid mater surrounding the brain and

below the skull and dura mater. As the blood accumulates in the subdural region, it

can compress the underlying brain parenchyma and lead to focal neurological deficits,

unconsciousness and death. Therefore, the existence of SDH may require emergency

treatment by surgically evacuating the blood.

The total volume of hematoma is an important factor in diagnosis and prognosis

of TBI patients (Marshall et al., 1991, 1992; Saatman et al., 2008; Gennarelli and

Wodzin, 2008). For instance, widely accepted Marshall scale for TBI severity rating

and treatment planning considers the hematoma volume as one of its few key metrics

(Marshall et al., 1992). However, manual measurement is time consuming, and almost

impossible to implement in practice. Automated image analysis could rapidly measure

total hematoma volume and quantify other clinically relevant measurements that
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are not typically available from a conventional review. Moreover, an automated

diagnosis system enables earlier detection, thereby alerting the radiologists for higher

prioritization of the imaging study. However, automated detection of SDHs can be

challenging due to variability in size, location, and brightness/intensity observed in

a head CT scan. The intensity of blood varies substantially over time depending

on chronicity of SDH leading to three main types: acute, subacute, and chronic.

Acute hematoma is most frequently encountered following severe head injury, and in

a head CT scan is identified by its relative brightness (intensity) compared to normal

brain tissue. Subacute hematoma develops over weeks, with its brightness similar to

normal brain tissue. Chronic hematoma tends to occur in elderly patients with brain

atrophy, often as a result of minimal trauma occurring weeks or even months before

presentation, and looks darker than normal brain tissue on CT scans.

Automated imaging analysis can act as a safeguard or triage tool for alerting

radiologists and clinicians of potentially moderate and severe injuries. Additionally,

automated analysis can also quickly measure clinically relevant image features that are

difficult to quantify by conventional visual inspection. In the case of SDH, guidelines

for surgical intervention and many treatment decisions are based on simple measure-

ments of maximum hematoma width at a single CT slice. Hematoma volume is not

typically measured or reported because the accurate measurement is difficult and

time-consuming. Automated image analysis could rapidly measure total hematoma

volume and quantify other clinically relevant measurements that are not typically

available from a conventional review. Since subdural hematomas frequently expand

and sometimes require multiple surgical interventions, another application can be us-

ing quantitative volumetric measurements to accurately assess both progression of

disease and response to surgical intervention.

Consequently, the goal of this study is to design an automated platform to detect

SDH and assess its severity by measuring its volume in patients with potential TBI.
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Moreover, we perform an inter-physician variability analysis to determine a human

performance benchmark. The resulting algorithm could enable timely intervention,

thereby improving survival while lowering the risk of secondary injuries.

For the SDH segmentation task, classical image processing approaches were inte-

grated with a deep convolutional neural network model to overcome the limitations of

each method. The proposed algorithm employs a joint feature representation of do-

main knowledge-driven hand-crafted features and data-driven deep features to train

a random forest model.

3.2 Related Works

To the best of our knowledge, there is no prior published work that describes auto-

mated methods to detect and segment the different types of SDH. However, there are

several techniques developed for acute hematoma detection/segmentation which are

reviewed here. These techniques fall into semi- or fully-automated categories regard-

ing human interaction. These segmentation techniques either implement traditional

rule-based methods (Yuh et al., 2008; Liao et al., 2009, 2010; Chan, 2007; Liu et al.,

2008) or employ machine learning methods (Bhadauria et al., 2013; Shahangian and

Pourghassem, 2013, 2016; Grewal et al., 2018; Chilamkurthy et al., 2018).

Yuh et al. (Yuh et al., 2008) evaluate the presence or absence of acute intracranial

blood from CT scans in an automated fashion. Their findings include the presence

or absence of: (1) SDH or epidural hematoma, (2) subarachnoid hemorrhage, and

(3) intraparenchymal hematoma. First, regions with intensity similar to blood are

detected using thresholding. Then, the detected potential region is categorized into

one of the above three categories based on its location, size, and shape. If a blood

cluster is contiguous to the skull, it is defined to be SDH or epidural hematoma. Oth-

erwise, it is further divided into subarachnoid or intraparenchymal based on shape

and location. However, this study only accounts for acute hematoma. Liao et al.
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(Liao et al., 2009) focus on hematoma in different brain locations. In their method,

all patient images with subacute (with the same brightness as normal brain tissue),

and/or chronic (darker than normal brain tissue) hematoma regions are manually

excluded. For other images, they focus on a single pre-selected CT slice containing

the largest intracranial area. Within that slice, the largest hyperdense component is

found. Next, a level set method is applied to evolve the segmentation. In a more

recent study (Liao et al., 2010), the same research group proposed a multiresolution

binary level set method to identify the hematoma for patients with neurological dis-

orders. As in their previous work, only acute hematoma is considered. Moreover, all

of the included CT images are from patients who underwent brain surgery. These

restrictions result in selected slices having a large portion of blood, making detection

less challenging. Chan et al. (Chan, 2007) introduce a method to segment small acute

brain hematoma. This method first detects bright objects by simple thresholding and

then searches for right-left asymmetry of brain tissue to select candidates. Finally,

acute hematoma regions are identified based on both anatomical location and image

features. The proposed symmetry analysis, however, is highly dependent on the fact

that axial slices are perfectly parallel to the axial plane, which is not always the case.

The method proposed in Li et al. (Liu et al., 2008) aims to segment acute intracranial

hemorrhage. In this method, an information gain algorithm is implemented to adap-

tively determine the hematoma intensity interval. In this model, it is assumed that

all the images have hematoma, negating the need to identify non-hematoma images.

A Fuzzy C-Means (FCM) clustering and active contour model are employed in

Bhadauria et al. (Bhadauria et al., 2013) to segment acute hematoma. First, FCM is

used to group the brain tissue based on image intensity. An active contour model is

then applied to refine the contours of the clusters detected by FCM. The number of

clusters in the FCM algorithm must be predefined; however, this number is subject

to change based on the presence/absence of hematoma and also other types of TBIs.
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In Shahangian et al.(Shahangian and Pourghassem, 2013) a fixed threshold is applied

on images to approximate acute hemorrhage regions. Then, multiple textural and

geometrical features are extracted from a selected region to classify it as intracranial,

epidural hematoma, or SDH. This work is further improved in Shahangian et al. (Sha-

hangian and Pourghassem, 2016) by applying an adaptive threshold instead of a fixed

value. There are a few research studies related to brain hematoma detection that em-

ploy convolutional neural networks. The focus of (Grewal et al., 2018; Chilamkurthy

et al., 2018) is to determine the presence or absence of acute hematoma in CT images

without investigating the hematoma segmentation and severity assessment.

One problem with most of the aforementioned studies is that they narrowly focus

on anatomic location and size of hematoma. For instance, only hematoma thickness

larger than 4 mm is considered in Liao et al. (Liao et al., 2009). Additionally, none

of the referenced studies focus on different types of hematoma, even though subacute

and chronic SDHs are widely presented in specific patient populations such as in the

elderly, who frequently present with a combination of acute and chronic hematomas-

Moreover, for the rule-based models, algorithmic hyperparameters are often manually

selected by analyzing the whole data set, rather than just the training set, potentially

producing a model overfitted to the particular data set. Additionally, except for

Bardera et al. (Bardera et al., 2009), no other work takes advantage of available 3D

information. The use of 2D images alone fails to consider spatial coherency that can

help avoid false positive or false negative regions.

In our preliminary work (Farzaneh et al., 2017b), we reported on 35 CT scans

included in the current study. The current study expands on this by including a much

larger sample size, substantially improving the segmentation algorithm by integrating

domain knowledge into data-driven deep models, performing further analyses, and

comparing performance with a human benchmark.
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3.3 Materials

3.3.1 Patient Population

This HIPAA Compliant, Institutional Review Board (IRB) approved retrospec-

tive study utilized a data set of TBI patients aged 18 years or older admitted to the

University of Michigan Neurological Intensive Care Unit (ICU) or Emergency Depart-

ment from January 1, 2010, to August 10, 2015. In this study, the written informed

consent from patients is waived by IRB because the research involves no more than

minimal risk to the subjects. The only risk to subjects is breach of confidentiality

and loss of privacy. Safeguards were in place to prevent this from happening. More-

over, research could not practically be carried out without the waiver or alteration

because this study exclusively involved the secondary analysis of information that

was collected as a part of routine medical care. A number of patients to be included

in the study could have been died or lost to follow-up so could not conceivably be

contacted to provide consent. We included 98 consecutive patients with SDH at the

cerebral convexities as well as 12 subjects with normal head CT scans. We did not

include interfalcine hematomas in the midline.

3.3.2 CT Image Setting

All the images used to develop our method were acquired in the axial plane on 64

slice CT scanners (either LightSpeed VCT or Discovery CT HD750, GE Healthcare

Milwaukee, USA). Images were stored on a McKesson Picture Archiving and Com-

munication System (PACS). All CT scans were acquired with 0.625 mm thickness

and reformatted to 5 mm slice thickness for storage purpose while the pixel spacing

in the axial plane ranges from 0.4297 mm to 0.4883 mm.
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3.3.3 CT Image Annotation

In order to train our model, we used images annotated by two skilled fellowship

trained neuroradiologists with 29 and 16 years of experience respectively. The “Free

Hand” tool of the MicroDicom DICOM viewer software was employed to annotate CT

scans (MicroDicom, Accessed: May 1, 2020). Both neuroradiologists were blinded to

other information. Although annotating images from multiple experts could minimize

inter-physician variability and thereby improve label accuracy, performing this process

is labor-intensive and prevents creation of large training set. Therefore, in our study

the data set was divided into two parts and each part was annotated by one of

the neuroradiologists. All annotations were then reviewed and adjudicated by an

expert board-certified physician in neurology and neurocritical care. If any annotation

done by one of the neuroradiologists appeared to include a potential human error (as

adjudicated by the neuro ICU physician), the other neuroradiologist was asked to

review and revise the annotation if indicated. In this way, annotation uniformity

was optimized and improved. The adjudicated annotations are used as the ground

truth throughout the chapter. A subset of 20 CT scans was annotated by both

neuroradiologists to determine the inter-physician variability.

3.4 Methods

3.4.1 Subdural Hematoma Assessment Framework and Experimental De-

sign

The study design for SDH segmentation and severity assessment are shown in Fig.

3.1. We first developed a machine learning model using 10 fold cross-validation to

segment SDH regions. Then, we employed the automatically segmented region to

assess the severity of SDH.

Fig. 3.2 demonstrates a high-level overview of the proposed method. Given a
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Figure 3.1: Experimental design and evaluation strategy for SDH segmentation and
severity assessment (Farzaneh et al., 2020).

head CT scan, we first performed pre-processing to identify the region of interest

(ROI). Next, potential discriminative patterns were extracted from the ROI, followed

by using a random forest classifier to identify SDH regions. Finally, in the post-

processing step, morphological operations and Gaussian kernel smoothing were used

to improve overall segmentation performance.

Figure 3.2: A schematic diagram of the proposed SDH segmentation method
(Farzaneh et al., 2020).

3.4.2 Subdural Hematoma Segmentation

3.4.2.1 Pre-processing

Pre-processing began with the generation of a 3D representation of the CT slices

from a sequence of 2D images, and was followed by intensity normalization of images

according to the provided metadata, skull segmentation, and extracting ROI. Then,

intracranial pixels (i.e., pixels enclosed by the skull) were grouped into superpixels

that were used throughout the feature extraction and classification steps.
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Contrast Adjustment and Skull Segmentation

First, the brain tissue intensity was normalized with respect to the CT metadata

parameters including window center and window width. Although these parameters

are used to adjust and normalize the intensity of normal brain tissue, they may not

cover the pathologic tissue intensity range. To solve this problem, the window width,

ww, was expanded to cover a larger range of pixel values as:

wwnew = α× wwold (3.1)

where α > 1.

To normalize the pixel intensities, we performed a linear mapping shown in (4.3)

to adjust the contrast based on wwnew, and window center, wc.

Ica(i, j) =


0 I(i, j) < a

Imax I(i, j) > b

I(i,j)−a
wwnew

× Imax O.W.

(3.2)

In (4.3), a = wc − wwnew

2
and b = wc + wwnew

2
. I and Ica correspond to input

and contrast adjusted images, respectively. According to (4.3), the range of [a, b] was

mapped to the range of [0, Imax] where Imax was set to 255. Since wwnew was lower

than Imax no textural information was lost by this method of mapping.

Next, the skull was segmented with respect to its Hounsfield unit. The range of

pixel values belonging to each part of the body can be identified by its radiodensity

which is quantified according to Hounsfield scaling parameters.
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Extracting the region of interest

In our database, even the most severe case of SDH was not deeper than 3.2 cm

from the skull. Therefore, the ROI was defined as the intracranial region within 3.2

cm of the inner skull. A level-set method was employed to segment the intracranial

region enclosed by the skull in case there were any openings in the skull boundary

(Fig. 3.3). These openings can exist due to either normal anatomy such as the eye

cavity or traumatic injury such as a fracture. If the skull was closed in the axial

(a) (b) (c)

Figure 3.3: Intracranial region segmentation by implementing the level-set method in
skulls that have openings. (a) Initial region, (b) modified output after 20 iterations,
(c) final result after 50 iterations; the transparent red region indicates our segmented
inner skull region (Farzaneh et al., 2017b)

.

plane, simply, all pixels enclosed by it were selected as the intracranial region.

Sampling

Once the ROI was delineated, the image was divided into non-overlapping regions

of connected pixels with approximately similar gray value. Superpixels were used

instead of pixels to reduce redundant information. In this work, we used the Simple

Linear Iterative Clustering (SLIC) algorithm (Achanta et al., 2012) for generating

superpixels.
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3.4.2.2 Feature Extraction

Feature extraction was performed to derive patterns and statistics that repre-

sent superpixels. These features were later used as inputs to the machine learning

classifiers to discriminate SDH superpixels from non-SDH ones. In this study, we

considered hand-crafted textural and spatial features, as well as deep image features.

Additionally, the patient’s age is incorporated as an auxiliary variable into the ma-

chine learning algorithms. Age-related brain atrophy predisposes patients to chronic

SDH formation and can also lead to subdural hygroma, the accumulation of cere-

brospinal fluid within the skull, which can be mistaken for chronic SDH. A full list of

extracted features can be found in Table B.1.

Histogram and filter analyses were performed to extract hand-crafted local tex-

tural information from the images. In order to derive local appearance information,

a window with a fixed size of 25 × 25 pixels was localized around the center of each

superpixel from which the corresponding features were derived. However, if the win-

dow was centered on superpixels close to the skull, where SDH tends to occur, the

selected window would include pixels from skull. Thus, extracted textural features

from the window would be affected by skull pixels and might not correctly represent

SDH characteristics. For example, features that normally represent the orientation

of brain/hematoma texture, would instead represent the skull orientation, which is

not informative. Since SDH tends to occur adjacent to the skull extracting correct

features in this region is especially important for our purposes. In order to deal with

this challenge, we removed the skull from the image and padded the image with a

symmetric mirror reflection across the inner surface of the skull. As the boundary of

the brain is not a straight line, we could not employ standard padding techniques.

Instead, we proposed to iteratively pad the image across the irregular border of the

intracranial region. This task was performed by maintaining two masks: the inner

mask that shrank in each iteration, and the outer mask that grew in each iteration.
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The region grown during each iteration was filled using the nearest pixel on the inner

mask. Fig. 3.4 illustrates the intracranial region before and after padding, as well as

the corresponding filtered image by applying a Gabor filter. The used Gabor filter

highlights the textural component in the 3π
4

orientation. In Fig. 3.4b, though there is

no significant textural component in the 3π
4

orientation, the filter enhances the border

incorrectly within the region enclosed in yellow. As shown in Fig. 3.4d, this issue

was resolved using the proposed padding method.

(a) (b)

(c) (d)

Figure 3.4: The effect of padding on a Gabor descriptor. (a) The original image
before padding, (b) the magnitude response for a Gabor filter at 3π

4
, (c) the image

after applying the proposed padding method, (d) the magnitude response for the
Gabor filter at 3π

4
applied on (c) (Farzaneh et al., 2020).
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Histogram-based Statistical Features

For each superpixel, a histogram of pixel intensity inside the corresponding win-

dow was generated. The histogram-derived features included minimum, maximum,

average, and standard deviation, σ, of pixel intensity. The average intensity of pixels

within the superpixel was also calculated. Other features were skewness, kurtosis,

entropy, and smoothness. There are various definitions of “smoothness”. In our

approach, smoothness was calculated using Equation (3.3).

smoothness = 1− 1

1− σ2
. (3.3)

Filtering-based Features

To integrate more textural information, a group of features was extracted by

convolving Gabor and Laplacian of Gaussian filters with the images.

Gabor filters were used to extract image features at multiple orientations and

frequencies. The Gabor filter was calculated by Equation (3.4), where u0 is the

frequency of a sinusoidal carrier along the x-axis, and σx and σy are respectively the

constant of the Gaussian envelope along the x and y axes. To build the filter for

orientations other than 0◦ a rigid rotation of the x-y coordinate was performed (Jain

and Farrokhnia, 1991).

h(x, y) = exp

(
−1

2

[
x2

σ2
x

+
y2

σ2
y

])
· cos(2πu0x) (3.4)

In this study, we used Gabor filters in 8 evenly spaced orientations {0, π
8
, ..., 7π

8
}

(Fig. 3.5), each at 4 wavelengths of the sinusoidal carrier ranging from 2 to 16

pixels/cycle. Each of these filters detects the edges along the particular direction and

we used the median of a filtered window as a feature in our model.

The Laplacian of Gaussian filter determines the edge content of the images in a lo-
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Figure 3.5: Real parts of Gabor filter in 8 implemented orientations (Farzaneh et al.,
2017b).

calized region. This filter measures the second spatial derivative of a smoothed image

and highlights the edges. Gaussian filters with five different kernels were implemented

to smooth the image.

Location-based Features

As mentioned above, subdural hematomas are more likely to occur in specific

regions. Thus, location information was incorporated into our model by extracting

features in a spherical coordinate system. These parameters are radial distance,

azimuth angle, and elevation angle. The origin was fixed on the center of the mass

of the skull on the lowest selected slice. As shown in Fig. 3.6, the elevation angle, ϕ,

determines the angle between the horizontal plane and the line connecting the point

to the origin. The azimuth angle, θ, corresponds to the angle between the projection

of the line connecting the point to the origin on the horizontal plane and the brain

midline that separates it into two hemispheres. The radial distance, r, measures the

distance of the point to the origin. As proximity of a point to the skull increases

the likelihood of injury, in addition to the radial distance, we considered the distance

between the point and the inner surface of the skull, r′.

Deep Features

In this work, the U-net architecture was employed to extract data-driven deep

features. The U-net architecture was proposed by Ronneberger et al. (Ronneberger

et al., 2015) in 2015 and has subsequently become one of the most widely used con-

volutional neural network architectures for biomedical applications, specifically those
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Figure 3.6: Illustration of location-based features of point p within the region of
interest (Farzaneh et al., 2020).

with limited access to annotated data. First, a baseline U-net model shown in Fig.

3.7 was trained for SDH segmentation and then activations of the second layer before

the output layer were employed as deep features. The layer used for deep feature ex-

traction is marked by blue in Fig. 3.7 and yields 64 features for each superpixel. To

ensure that deep features were not influenced by the test set, n-fold cross-validation

was performed, in which n different models generated n sets deep features. Later, the

same cross-validation folds were used to train the random forest model.

3.4.2.3 Classification

Once the aforementioned features were extracted for each superpixel, a random

forest model was trained to classify each superpixel sample as hematoma or non-

hematoma. As the number of negative sample points (superpixels) was approximately

eight times more than positive sample points, the classes were highly imbalanced. To

overcome this challenge, undersampling on the negative samples was performed, in

which all positive points were kept and an equal number of points from the negative

class were randomly selected to be used in the training phase.
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Figure 3.7: Illustration of the baseline U-net architecture used for segmentation. The
activations of the layer marked in blue are used as deep features (Farzaneh et al.,
2020).

3.4.2.4 Post-processing

Using the label calculated for each superpixel in the classification step, the ini-

tial SDH mask was formed. However, this initial SDH mask was generated without

accounting for information in neighboring pixels.

Multiple disjoint subdural hematomas may occur simultaneously. However, pix-

els within each distinct hematoma must be connected. This contextual information

was ignored during the previous superpixel classification step. As such, there might

be misclassified superpixels that can be corrected by considering their neighboring

regions. In order to resolve this issue, small sparse components were first excluded

from the initial 2D SDH mask. Next, morphological operations were applied to fill

the small holes and gaps between the segmented mask and the skull. Additionally, 2D

masks disconnected within the third dimension were excluded. In addition to apply-

ing morphological operations, the segmented mask was filtered using a 3D Gaussian

smoothing kernel to smooth jagged contours and increase spatial coherency.
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3.4.3 Hematoma Volumetric Measurement for Severity Assessment

Hematoma volume is a key metric used in TBI severity ratings, such as the widely

used Marshall scale(Marshall et al., 1992). However, because its manual measurement

is not easy, subdural hematoma width rather than total volume is much more routinely

used in clinical practice. For the purpose of severity assessment, we categorized

hematoma severity based upon volume: < 25 cc - non-hematoma/mild; and ≥ 25

cc - moderate/severe. To quantify the hematoma volume, we used the segmented

SDH regions as a binary mask, and calculated the volume of lesion using the CT slice

resolution from the CT scan metadata.

3.4.4 Inter-physician Variability Analysis

To create a benchmark with which to evaluate segmentation performance, we

sought to determine the inter-physician variability of subdural hematoma annotation.

In this analysis, a set of 20 SDH patients representing the same volumetric distribution

as the original 98 patients were selected. We asked two skilled neuroradiologists to

independently annotate the selected set. The Dice similarity coefficient was used to

compare the two sets of annotations.

3.5 Results

3.5.1 Classification Result

To train the classifiers, the data set of 110 patients was partitioned into 10 folds for

cross-validation. The folds were generated to include a roughly balanced distribution

of SDH types. The random forest yielded the average AUC of 0.9777 in classifying

superpixels using the combination of hand-crafted and deep features.
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3.5.2 Subdural Hematoma Segmentation

Table 3.1 compares the segmented SDH region with the ground truth. Dice is a

summary measure of spatial overlap between the segmented region and the ground

truth. Dice, sensitivity, precision, and specificity evaluation metrics are defined as:

Dice =
2× |S ∩GT |
|S|+ |GT |

Recall =
|S ∪GT |
|GT |

Precision =
|S ∪GT |
|S|

Specificity =
|S ∩GT |
|GT |

(3.5)

where GT and S refer to the manually annotated ground truth and the algorithm

segmentation, respectively. | . | denotes set cardinality and A is the complement of A.

Table 3.1 shows that applying post-processing increased the average Dice and de-

creased its variation. Since there was no SDH and hence no ground truth region

annotated for patients without SDH, Dice, recall, and precision values were not de-

fined for such subjects and therefore they are not included in the table. For these

subjects, specificity was calculated to determine what portion of negative pixels within

the defined ROI was correctly classified. For healthy subjects, our algorithm reached

an average specificity (± standard deviation) value of 99.89 (±0.36)%.

Table 3.1: A comparison of the mean of the segmentation performance metrics before
and after post-processing as well as the performance of the baseline U-net architecture.
Numbers in parentheses are standard deviations.

Performance
Metric

Proposed Method
without Post-processing

Proposed Method U-net

Dice (%) 73.63 (16.20) 75.35 (15.62) 73.20 (19.98)
Recall (%) 80.72 (16.75) 78.61 (19.09) 70.93 (21.31)
Precision (%) 70.75 (17.40) 76.12 (15.04) 79.61 (20.10)

It is noteworthy that in Table 3.1, the standard deviations of both the proposed
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model and U-net are calculated at the pixel-level and not at the patient-level. The

results of the proposed segmentation algorithm at different stages are shown in Fig.

3.8 and 3.9. These images cover various combinations of size and type of subdural

hematoma.

Figure 3.8: SDH segmentation results on mild and moderate subjects. (a) The original
CT image, (b) the probability map corresponding to the output of the classifier, (c)
the segmented region before post-processing, (d) the segmentation result after post-
processing, (e) the ground truth. Cases 1 and 2 are mild (< 25 cc of blood) patients,
and cases 3 and 4 are moderate (25-50 cc of blood) ones. Cases 1, 3 and 4 are acute
SDH while case 2 is an example of chronic hematoma (Farzaneh et al., 2020).

Next, the generalizability of the proposed segmentation approach was further val-

idated by analyzing segmentation performance with respect to different ranges of

hematoma volume (Fig. 3.10). The reference volume was calculated using the ground

truth, and discretized by thresholding at 25, 50, 100, and 200 cc. It can be concluded
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Figure 3.9: SDH segmentation results on severe (> 50 cc of blood) subjects. (a)
The original CT image, (b) the probability map corresponding to the output of the
classifier, (c) the segmented region before post-processing, (d) the segmentation result
after post-processing, (e) the ground truth. Cases 5 and 6 are severe patients with
total blood volume of less than 100 cc, while cases 7 and 8 have total blood volume
of 100 to 200 cc, finally case 9’s SDH volume is over 200 cc. Cases 5, 8 and 9 contain
a mix of acute and chronic hematoma. Case 6 is an example of chronic hematoma
while case 7 is acute (Farzaneh et al., 2020).

from Fig. 3.10 that Dice values for subjects with mild SDH (47.67%) were lower than

for those with more severe SDH (79.97%), possibly because the smaller regions were

less represented in the classifier. Moreover, for small lesions, even a small deviation

in segmentation has a large impact on the Dice similarity value.
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Figure 3.10: The Dice similarity coefficient based on the severity of hematoma. Error
bars represent ± 1 Standard Error of the Mean (SE), the 68% confidence interval.
Red dashed line indicates the human benchmark (Farzaneh et al., 2020).

Table 3.1 also provides a comparison between the performance of the proposed

method and the U-net model. To ensure a fair comparison, both models were trained

using 10 fold cross-validation. As shown in Table 3.1 the proposed method outper-

forms U-net in terms of both the average Dice value and the standard deviation.

Moreover, the summary statistics in Fig. 3.11 evince that compared to U-net, the

proposed method yields less variability for all severity levels. Likewise, the lower

extreme of the proposed method is greater than the lower extreme of U-net in all cat-

egories. In particular, for mild hematomas with less than 25 cc of blood, more than

25% of U-net’s Dice values are lower than any of those from the proposed method.

The lower average performance and higher variability of U-net may be because deep

learning approaches require a large and representative sample of annotated images.

Thus, a deep learning model trained on limited data sets may fail to reflect the unseen

spectrum of the real-world data distribution. Integrating hand-crafted features that

reflect human domain knowledge can compensate for this limitation of deep models,

yielding segmentation results that are more consistent and robust.
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Figure 3.11: A box plot comparing the Dice similarity coefficients of the proposed
algorithm and U-net with respect to the severity of hematoma (Farzaneh et al., 2020).

3.5.3 Generalizability of the Segmentation Model over Different Types

of SDH

We investigated the performance of the proposed algorithm with respect to sub-

dural hematoma type (Table 3.2). We used the metrics defined in Equation (4.3) to

compare the algorithm’s segmentation results with the manually annotated ground

truths.

Table 3.2: Mean of the segmentation performance metrics for acute, subacute and
chronic types, and their mixture. Numbers in parentheses are standard deviations.

Performance
Metric

Acute
(n=37)

Subacute
(n=4)

Chronic
(n=10)

Mixture
(n=47)

Dice (%) 67.05 (19.73) 76.93 (15.33) 80.54 (11.27) 80.66 (8.93)

Recall (%) 73.00 (25.10) 75.59 (25.27) 83.49 (14.70) 82.26 (12.09)

Precision (%) 68.88 (18.16) 81.20 (4.98) 78.60 (11.01) 80.85 (11.20)

In Table 3.2, the standard deviations of both the proposed model and U-net are

calculated at the pixel-level and not at the patient-level. Based on Table 3.2, it might

be concluded that the overall performance on subjects with acute SDH was lower than

the other three types. However, chronic and mixed subdural hematomas tend to be

larger in elderly patients because there is more space for the hematoma to expand
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without symptoms due to brain atrophy. Thus, the proportion of the subjects with

acute SDH and less than 25 cc of blood is higher than other types, and, as discussed

earlier, these small hematoma regions are more challenging to detect. Thus, in order

to have a valid comparison, the subjects were first grouped according to volume, after

which the performance was compared for different types. Fig. 3.12 shows the average

Dice similarity coefficient for each category. Based on this plot, for moderate and

severe SDH, the performance of the proposed segmentation algorithm was consistent

among different subdural types. We do not have enough sample size to either reject

or accept performance consistency among different types of the mild (< 25 cc) SDH

subjects.

Figure 3.12: The Dice similarity coefficient based on both the severity and type of
hematoma. Error bars represent ± 1 SE, the 68% confidence interval. The number of
samples for each category is shown on the corresponding bar (Farzaneh et al., 2020).

3.5.4 Inter-physician Variability Analysis

Fig. 3.13 illustrates the comparison between the two neuroradiologists, as well as

a comparison of our algorithm’s segmentation against the adjudicated ground truth

with respect to the selected 20 patients. The average inter-rater Dice similarity

coefficient on the selected subset of 20 SDH CT scans is 73.71%, while this coefficient
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is 50.20% and 77.85%, respectively, when stratifying lesions based on <25 cc and ≥25

cc of blood. On the same subset the algorithm’s average Dice similarity coefficient

value reached 77.81% for moderate and severe SDHs compared to 77.85% for human

raters.

Figure 3.13: Comparison of the Dice similarity coefficient between reference 1, refer-
ence 2, and the result of our segmentation algorithm. Error bars represent ± 1 SE,
the 68% confidence interval (Farzaneh et al., 2020).

3.5.5 Hematoma Volume Assessment for Severity Analysis

Total hematoma volume was measured for all patients and then used to stratify

hematomas by severity. Fig. 3.14a illustrates a linear regression between the volume

resulting from the algorithm and the ground truth volume for 110 studied patients.

From this plot, it can be concluded that the algorithm tends to under-segment larger

lesions while it overestimates the smaller ones. The linear regression relation is 0.96

(SE 0.02, p-value < 0.01).

Next, Bland-Altman analysis was performed to determine the agreement between

the reference and computed volumetric measurements. Fig. 3.14b shows the corre-

sponding Bland-Altman plot. This result shows a bias close to zero: -1.33 cc (95%

confidence interval -46.44 to 44.00), suggesting that there is no systematic error in

52



calculating SDH volume using the algorithm.

(a) (b)

Figure 3.14: Linear regression relation and Bland-Altman analyses. (a) Linear re-
gression relation between the computed volume and reference volume. Each point
corresponds to one patient. (b) Bland-Altman plot that indicates the normality of
error (Farzaneh et al., 2020).

One of the application of this analysis was to develop tools that will alert med-

ical providers when a patient requires immediate intervention, which in the con-

text of subdural hematoma corresponds to the ability to identify volumetrically large

hematomas. Table 3.3 shows the confusion matrix in classifying patients according

to severity based on their lesion volume as defined above. The recall, specificity and

F1 score in detecting moderate/severe patients (more than 25 cc of SDH volume) are

98.81%, 92.31%, and 98.22%, respectively.

Table 3.3: Confusion matrix for classifying subdural hematoma severity by volume.

Reference \Calculated 0 - 25 cc >25 cc
0 - 25 cc 24 2
>25 cc 1 83
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3.6 Discussion

By developing a machine learning technique (i.e., a classifier) to divide brain tis-

sue pixels to SDH and non-SDH followed by applying a post-processing step, we

performed the SDH segmentation and achieved an average Dice similarity coefficient

of 75.35% in segmenting subdural hematoma. The Dice similarity coefficient was

79.97% for moderate and severe SDHs. Our segmentation algorithm reached an av-

erage specificity value of 99.89% for healthy subjects, which indicates the algorithm’s

high performance in avoiding false positive pixels in healthy subjects. The model was

shown to be generalizable to different types of SDHs with more than 25 cc of blood.

Besides evaluating the method by using Dice, precision, and recall, we performed a

Bland-Altman analysis to see if there is any systematic error or bias in the computed

volumetric measurement and found neither of these. Next, SDH patients were cat-

egorized to severe and non-severe ones and achieved the recall, specificity and F1

score of 98.81%, 92.31%, and 98.22%, respectively, in detecting moderate or severe

subjects. However, we should acknowledge that the control cases are from patients

with no brain injuries and do not include scans with non-SDH mass lesions. For the

population of interest, moderate and severe hematoma cases (i.e., more than 25 cc of

SDH), our model is shown to be robust in segmentation of all types of SDH.

In our inter-physician variability study to create a human benchmark, we created

two independent sets of ground truth from a representative subset of CT scans. We

showed that there is 73.71% agreement between the ground truths created by two

skilled neuroradiologists. This finding indicates that there is uncertainty in the gold

standard (i.e., manual) labels. This issue is due to the fact that in lesion studies,

including hematoma detection, the border between the affected region and the adja-

cent healthy brain is not necessarily well-separated. Using inaccurate labels to train

a machine learning algorithm can adversely affect its performance as well.

To our knowledge, no prior study has previously described automated methods to
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identify the different SDH types. Given the significant variations in size and intensity

of SDHs in CT scans, developing a generalizable algorithm is challenging, but essential

because many patients (in particular the elderly) present with a combination of both

acute and chronic hematomas. In this work, we sought to address these challenges by

proposing a learning algorithm that employs the advantages of both classical image

processing and deep learning approaches.

Although the results are comparable with the human benchmark, there are limita-

tions in this study. One of the limitations is the lack of enough samples to investigate

the generalizability of the algorithm over different types of blood for mild SDHs. This

reflects the pathophysiological mechanism of this type of traumatic injury. Chronic

and mixed SDH are more prevalent in the elderly population for whom there is more

space inside the skull for the hematoma to expand before experiencing symptoms.

Another limitation is that the model is trained on anisotropic resolution images with

low resolution retrieved from PACS. PACS down-samples the images along the longi-

tudinal axis while storing them, which can reduce the image resolution. For instance,

the pixel spacing along the longitudinal axis after saving them could be over 10 times

greater than the spacing along the sagittal and frontal axes (e.g., 5 mm vs less than 0.5

mm). This anisotropic resolution could lead to discontinuity along the longitudinal

axis after down-sampling and hence affecting the recall of the algorithm specifically

for small hematoma regions.

3.7 Conclusion

Even though quantitative CT characteristics improve diagnosis and outcome pre-

diction, traditional visual examinations — which are qualitative, subjective, and

costly — remain the only investigation clinicians perform. Automating the detec-

tion and quantitative measurement of moderate and severe SDH could provide a ba-

sis to improve diagnostic accuracy and prevent delayed diagnosis. Thus, accurately
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detecting and quantifying larger and, therefore, more clinically significant subdural

hematomas can facilitate timely identification of patients in greatest need of early

treatment interventions.

In this chapter, a fully automated approach for segmentation and severity as-

sessment of subdural hematoma is proposed. First, a SDH segmentation model was

developed using a combination of deep learning and classical image processing ap-

proaches. This model was proven to be robust and generalizable with respect to

hematoma type and severity. Next, based on the automatically measured hematoma

volume, SDH patients were categorized as severe and non-severe. This model en-

ables the accurate quantification of hematoma severity, which otherwise is almost

impossible due to the time-consuming manual process.
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CHAPTER IV

Automated Detection and Severity Assessment of

Liver Trauma

4.1 Introduction

Approximately 5% of all trauma admissions are attributed to liver trauma (Taghavi

and Askari , 2019). Due to its anterior location, large size, and fragile parenchyma,

the liver is the most frequently injured abdominal organ involved in blunt abdominal

trauma (Ahmed and Vernick , 2011; Taghavi and Askari , 2019; Badger et al., 2009).

Early detection and severity assessment of liver trauma with adequate treatment may

result in significant reduction of morbidity and mortality (Piper and Peitzman, 2010;

Doklestić et al., 2015; Barrie et al., 2018).

Contrast-enhanced CT is considered the gold standard technique in evaluating

liver trauma and monitoring its progression over time (Badger et al., 2009; Buquic-

chio et al., 2018). Contrast enhancement is the process whereby the optimal visible

difference among adjacent structures (e.g., a lesion and the normal surrounding struc-

ture) is obtained by injecting a contrast agent. Depending on the timing of the CT

scan capture after initiation of contrast agent injection, abdominal CT contrast phase

can be divided into different phases such as arterial, portal venous, nephrographic and

delayed (Birnbaum et al., 1996). The CT-driven AAST (American Association for the
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Surgery of Trauma) scale is the primary tool currently in use to assess the extent of

the liver trauma and guide management (Croce et al., 1991; Gwinn and Park , 2020).

AAST is a six-point scale with grade I signifying a small subcapsular hematoma

(<10% surface area) or laceration ( <1 cm parenchymal depth) and grade IV signify-

ing larger laceration with parenchymal disruption affecting 25-75% of either liver lobe

or 1-3 liver segments (Couinaud) (AAST , Accessed: February, 2021). However, the

literature suggests significant intra- and inter-observer variability when visually as-

sessing liver injury using the AAST grading system (Powers et al., 2012; Nellensteijn

et al., 2009). In addition to being error-prone, visual examination might be incapable

of real-time accurate quantification of the size and severity of abnormalities. Novel

big data analytics and computational frameworks, however, are keys to solving such

problems in digital health technology (Choy et al., 2018).

One of the main CT imaging criterion in determining AAST grade is the percent-

age of liver parenchyma that has been disrupted by laceration or intraparenchymal

hematoma (Croce et al., 1991). This measurement is referred to as the liver disruption

involvement (LDI) in the remainder of this chapter. Both liver laceration and intra-

parenchymal hematoma typically present as regions of low density as compared to

adjacent unaffected/normal liver parenchyma. However, the size and shape of liver

parenchymal injuries vary significantly depending on the mechanism of injury and

severity of the trauma (Badger et al., 2009).

The primary aim of this study is to develop a fully automated image processing

and deep learning framework that provides clinicians with quantitative assessment

of LDI. This framework can act as a triage tool by rapidly assessing liver injury

and its severity. To this end, both the whole liver parenchyma and liver trauma

regions are automatically segmented in 3D abdominopelvic CT scans. Accordingly,

the percentage of liver parenchyma that is affected by trauma will be computed.

To the best of our knowledge, except for Drezin et al. (Dreizin et al., 2021),
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no published study has proposed an automated method to segment liver trauma

utilizing CT scans. However, since the goal of Drezin et al. is to detect major

hepatic artery injury, it focuses on more severe cases and only includes cases with

visible liver trauma (no control cases with normal liver) for training and validation

purposes. Thus, it takes advantage of prior knowledge that the liver is definitely

traumatically injured. Regarding automated liver segmentation, there is a body of

literature that has investigated this task, however, all are focused on non-traumatic

livers. Those liver segmentation techniques either implement deep learning methods

(Ahmad et al., 2019; Lu et al., 2017; Christ et al., 2016) or employ classical image

processing techniques (Farzaneh et al., 2016, 2017a; Lebre et al., 2019a,b; Okada et al.,

2008). Probabilistic atlases and active shape modeling are among the most popular

classical approaches for the liver segmentation task. Farzaneh et al. (Farzaneh et al.,

2016, 2017a) proposed a hierarchical approach based on location and customized

intensity probabilistic atlases to segment the liver. Lebre et al. (Lebre et al., 2019a,b)

used a location probabilistic atlas in combination with shape modeling. Rafiei et al.

(Rafiei et al., 2019) also employed a location-based probabilistic model to generate

an initial segmentation, which was then refined using an adaptive region growing

technique. Okada et al. (Okada et al., 2008) and Shi et. al (Shi et al., 2017) used a

probabilistic atlas to generate the initial segmentation mask and then refined it using

statistical shape modeling.

The proposed framework enables an objective quantitative assessment of liver

trauma as opposed to the sometimes subjective AAST grading system used in cur-

rent clinical practice. The output of this study can enhance real-time liver trauma

diagnostics and be used as a triage tool. Moreover, it can quantitatively measure the

volumetric progression or improvement of traumatic injuries at multiple time points,

guiding further investigation and management (Badger et al., 2009; Cuff et al., 2000).
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4.2 Materials

Before the initiation of this research project, IRB approval (HUM00098656) was

obtained. Patient informed consent was not required given that this was a retro-

spective investigation. This study included 77 patients presented to the University of

Michigan Health System (UMHS) Department of Radiology for CT imaging for the

evaluation of abdominal blunt force trauma between 01/01/2009 and 8/30/2014, as

well as those CTs ordered by the Emergency Department. In total, the 77 CT scans

comprised 8072 axial CT slices. Average patient age was 41.43 years, with a range of

18-88 years. Of the 77 patients included in this investigation, 34 had evidence of liver

trauma and 43 had no evidence of liver parenchymal disruption on contrast-enhanced

CT scan.

All CT scans were acquired in the axial plane using either GE Medical Systems

(LightSpeed VCT or Discovery CT750 HD models) or SIEMENS (Emotion 16 model).

Trauma protocol CT scans often include both an arterial and portal venous phase to

evaluate for both arterial (e.g., aortic) and solid organ injury. Only the portal venous

phase was utilized in this study as this phase is optimal for the detection of hepatic

parenchymal injuries.

To generate ground truth for all 77 patients, livers were manually annotated, which

meant that the margins of the liver itself were outlined. Next, any liver laceration or

hematomas were manually annotated for 34 CT scans with visible liver parenchymal

disruption. CT scans. Each CT scan was manually annotated slice by slice to generate

binary masks (i.e., ground truth) for injury and organ. All annotations were verified

by a fellowship-trained abdominal radiologist with 5 years of post-training experience.
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4.3 Methods

4.3.1 Liver trauma assessment framework

The study design for liver trauma segmentation and severity assessment is shown

in Fig. 4.1. First, deep learning-based models are developed to segment both liver

organ and trauma regions. Then, to assess the severity of the liver trauma, the

automatically segmented regions are processed to measure liver disruption volume

and, accordingly, calculate the proportion of the liver tissue affected by those injuries

(i.e., LDI).

Figure 4.1: A high-level study design for liver trauma segmentation and severity
assessment (Farzaneh et al., 2021a).

.

4.3.2 Liver segmentation

Fig. 4.2 demonstrates a high-level overview of the proposed liver segmentation

method.

Figure 4.2: A schematic diagram of the proposed liver segmentation method
(Farzaneh et al., 2021a).

With a contrast-enhanced CT scan, we first employed a U-net model (Ronneberger
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et al., 2015) to generate the initial liver mask. In the proposed model, data augmen-

tation was performed by rotating, re-scaling, and translating the images to enhance

the training data set. Next, the post-processing module transformed the volumetric

masks from the U-net model into the final segmentation map. To that end, the initial

mask was filtered using 3D Gaussian kernel smoothing to achieve spatial coherency

and smooth binary mask contours according to the neighboring pixels. Finally, mor-

phological operations were used to remove small, sparse regions; fill the holes in axial

planes; and exclude any region that was not connected to the largest 3D connected

component.

4.3.3 Liver disruption segmentation

As shown in Fig. 4.3, a second U-net backbone model was trained to segment

the liver trauma regions. The post-processing module comprises the volumetric re-

construction of the U-net output, during which human domain knowledge regarding

the location and intensity distribution of liver trauma was integrated into the model.

Considering that trauma regions are within the liver parenchyma, if more than 50% of

the initial segmented trauma mask fell outside the segmented liver, the region would

be excluded.

Figure 4.3: A schematic diagram of the proposed liver trauma segmentation method
(Farzaneh et al., 2021a).
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Pre-existing conditions such as fatty livers (Fig. 4.4b) or congestive hepatopathy

(Fig. 4.4c) lead to the different representation of non-trauma liver parenchyma on

CT scans (Bydder et al., 1981; Sass et al., 2005; Wells et al., 2016). In theory, these

pre-existing conditions could cause the U-net model to falsely detect trauma given

the presence of low-attenuation of the parenchyma at baseline (Fig. 4.4a). To exclude

regions falsely segmented as trauma (e.g., part of the normal liver parenchymal), two

intensity distributions were generated, corresponding to: 1) pixels of the CT image

segmented as the liver, and 2) pixels of the CT image segmented as liver trauma (Fig.

4.4). Next, the means of these two distributions were compared using a two-sample

t-test. If the test statistic value was less than a fixed threshold, we concluded that

the two intensity distributions were from the same texture and thus the segmented

trauma region was part of the non-trauma liver parenchyma. Correspondingly, these

false positive components were excluded from the segmentation using the intensity

distribution.

Next, the 3D Chan-Vese Active Contour Model (ACM) (Chan and Vese, 2001)

was used to iteratively evolve the boundary of the initial segmentation according to

local intensity and spatial coherence. The energy function F (s1, s2, S) was defined as

F (s1, s2, S) = µ · A(S) + ν · V (S)

+ λ1

∫
inside(S)

|I(x, y, z)− s1|2 dx dy dz

+ λ2

∫
outside(S)

|I(x, y, z)− s2|2 dx dy dz,

(4.1)

where S is the current surface, and s1 and s2 respectively correspond to the average

intensities inside and outside the surface S. I(x, y, z) denotes the intensity value of

a pixel at the (x, y, z) coordinate. Moreover, A(.) and V (.) calculate the area and

volume of a surface respectively. In Equation (4.1), parameters µ, ν, λ1, and λ2 are
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(a)

(b)

(c)

Figure 4.4: Liver trauma and organ segmentation results as well as ground truth
annotations in patients with trauma or pre-existing conditions. (a) CT image shows
an intraparenchymal hematoma in the left liver lobe. (b) CT image shows diffuse
low attenuation of the the right liver lobe relative to the spleen, consistent with fat
deposition. This is a non-traumatic pre-existing condition. (c) CT image shows
heterogeneous enhancement of the right liver dome due to congestive hepatopathy,
a non-traumatic pre-existing condition. In (a), (b), and (c), the first column cor-
responds to the original CT image; the second column corresponds to the ground
truth annotations; and the third column corresponds to the automated segmentation
results before post-processing. In both ground truth annotations and segmentation
results, the green line shows the liver contour while the red line marks the contour
of trauma regions. The fourth column compares the pixel intensity distribution in-
side the segmented liver and the segmented trauma region. As the t-test indicated
the difference between the two means of the aforementioned distributions was small
for both examples of (b) and (c), the corresponding segmented injured regions were
excluded during the post-processing step (Farzaneh et al., 2021a).
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constants. Following the Chan-Vese paper, parameters λ1 and λ2 were set to 1. The

parameter µ, which specifies the degree of smoothness of the segmented region, was

set to 0.1 based on prior work on an independent medical image processing problem

(Farzaneh et al., 2018). Finally, the parameter ν controls contraction bias, which

specifies the tendency of the active contour to grow outward. This parameter was

determined using a grid search. To evolve the contour, at each iteration a Sparse-Field

level-set method, similar to the one proposed in Whitaker et al. (Whitaker , 1998) was

implemented. After each iteration, the mask was modified to exclude the added pixels

that fell outside the automatically segmented liver. Finally, morphological operations

were applied to remove small, sparse regions and fill the holes in the axial plane. The

effect of the post-processing step is analyzed in the result section.

4.3.4 Liver disruption involvement measurement

After segmenting both liver and trauma regions (when present) as binary masks,

the volumes were estimated according to respective pixel maps and the unit pixel

volumes (i.e., number of pixels from the binary mask × unit pixel volume). The unit

pixel volume was calculated using slice spacing and pixel spacing values extracted

from CT scan metadata.

LDI is then estimated as

LDI(%) =
V̂ (trauma)

V̂ (liver)
× 100, (4.2)

where V̂ (.) corresponds to the estimated volume of a segmented region. For patients

with no detected traumatic injury to the liver, the trauma region volume was set to

zero.
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4.3.5 Statistical Analysis

A comprehensive evaluation of the segmentation model’s performance was per-

formed on the validation sets using Dice similarity coefficient, recall, precision, Rela-

tive Volume Difference (RVD), and Volumetric Overlap Error (VOE). RVD and VOE

error measures were calculated according to definition from Heimann et al. (Heimann

et al., 2009) as

RVD =
|S| − |GT |
|GT |

VOE = 1− |S ∩GT |
|S ∪GT |

,

(4.3)

where GT and S correspond to the ground truth and segmented masks, respectively,

while | . | computes the number of pixels in the corresponding mask.

To measure the variability in the LDI estimates, linear regression analysis was

performed in which the computed and reference LDI measurements were plotted

against each other. The linear regression relation between the two measures was then

calculated. Moreover, to better perceive the algorithm’s agreement with the ground

truth and potential systematic errors, a Bland-Altman analysis was employed (Bland

and Altman, 1986, 2010).

4.4 Results

For this investigation, the presence and extent of liver trauma were assessed using

the percentage of the liver affected by traumatic injuries. To compute the percentage

of liver disruption, both liver and trauma regions were segmented using deep learning

and image processing techniques.

This is a secondary study of an internal data set from the UMHS that includes 77

patients, among whom 34 experienced trauma-related liver parenchymal disruption
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and 43 had no evidence of liver parenchymal disruption at imaging. To train and

validate the segmentation models, patient-wise five-fold cross-validation was imple-

mented. Folds were created to include a roughly balanced distribution of the trauma

severity in terms of the reference LDI. The cross-validation folds remained the same

for both liver and trauma segmentation tasks.

4.4.1 Liver segmentation

The performance of the proposed liver segmentation algorithm is shown in Table

4.1. Our algorithm yielded mean Dice, recall, and precision values of 96.13%, 96.00%,

and 96.35%, respectively, when tested on the internal UMHS data set. In order

to evaluate our segmentation model, in addition to the UMHS data set, we used

the publicly available 3DIRCAD data set that includes 20 pathological CT scans

with hepatic tumors in 75% of the cases (3DIRCAD , Accessed: February, 2021).

Although the imaging parameters and underlying pathology of the internal UMHS

and 3DIRCAD data sets are different, the 3DIRCAD data set was only employed for

testing purposes using the U-net trained only on the UMHS data set. Based on Table

4.1, it can be concluded that the overall performance of the proposed algorithm is

comparable with the state-of-the-art models even without tuning the weights of U-

net, which indicates the generalizability of the proposed model on an unobserved data

set.

Fig. 4.5 shows the average Dice similarity score stratified by severity of trauma.

As shown, the performance on severe cases with more than 20% of liver disruption is

slightly lower as compared to smaller injuries (average Dice = 94.14%); this could be

due to extensive injuries distorting the contour of the liver itself.
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Table 4.1: Performance of our proposed liver segmentation approach compared with
state-of-the-art methods. Numbers in parentheses are standard deviations. For the
cited studies, scores are reported as presented in the original papers. Ahmad et al.
used a different definition of VOE. NR: not reported.

Method Data set
Dice
(%)

Recall
(%)

Precision
(%)

RVD
(%)

VOE
(%)

Proposed Method
UMHS
Data set
(n=77)

96.13
(1.49)

96.00
(2.83)

96.35
(2.09)

-0.30
(4.24)

7.40
(2.69)

Proposed Method
3DIRCAD
(n=20)

94.64
(2.18)

95.06
(4.07)

94.38
(2.75)

0.83
(5.79)

10.10
(3.85)

(Ahmad et al., 2019)
Subset of
3DIRCAD
(n=5)

91.83
(1.37)

NR NR
5.59
(6.49)

6.09
(1.21)

(Lu et al., 2017)
3DIRCAD
(n=20)

NR NR NR
0.97
(3.26)

9.36
(3.34)

(Christ et al., 2016)
3DIRCAD
(n=20)

94.3 NR NR -1.4 10.7

(Lebre et al., 2019a)
3DIRCAD
(n=20)

88
(3)

87
(5)

89
(4)

NR NR

4.4.2 Liver disruption segmentation

Table 4.2 and Fig. 4.6a compare the liver trauma segmentation results with the

ground truth. To investigate the generalizability of the algorithm with respect to

injury severity, the results are stratified based on the reference LDI level. These

results show that the post-processing step improves the performance in terms of

the Dice similarity score. The final model achieved an average Dice of 51.21% in

segmenting liver disruption while this value reached 72.45% for considerable liver

disruptions that involved more than 5% of the liver. Possible etiologies for the lower

performance measurements for smaller injuries with less than 2% of LDI include: 1)

those subtle injuries are inherently more challenging to segment, and 2) for smaller

regions, even small deviations have a greater adverse impact on the performance

metrics.

Since the performance metrics including Dice, recall, and precision are not de-

68



Figure 4.5: The Dice similarity coefficient for liver segmentation stratified based on
the liver disruption involvement. Error bars represent ± 1 standard errors, the 68%
confidence interval (Farzaneh et al., 2021a).

Table 4.2: Performance of our proposed liver trauma segmentation approach stratified
based on the severity of the injury. Numbers in parentheses are standard deviations.

Method
% Liver
Disruption

Dice
(%)

Recall
(%)

Precision
(%)

RVD
(%)

VOE
(%)

Proposed Method
0 – 2 %
(n=15)

28.06
(23.09)

32.15
(32.90)

35.66
(27.01)

15.83
(113.41)

81.68
(16.01)

Proposed Method
2 – 5 %
(n=4)

58.35
(17.91)

54.78
(25.39)

66.21
(6.93)

-19.16
(30.85)

57.05
(18.64)

Proposed Method
>5 %
(n=15)

72.45
(11.82)

73.84
(18.60)

75.35
(11.51)

1.86
(36.03)

42.02
(13.64)

Proposed Method
All
(n=34)

51.21
(27.74)

53.20
(32.56)

56.76
(27.21)

5.55
(78.88)

61.29
(24.07)

U-net (No
Post-processing)

All
(n=34)

47.75
(27.61)

47.32
(31.13)

56.64
(28.97)

-2.71
(63.10)

64.50
(23.80)

fined for the cases without any liver trauma, to evaluate the non-trauma cases, the

computed LDI was used, which, ideally, should be zero for non-trauma patients. Fig.

4.6b compares this value for non-trauma cases before and after applying the post-

processing step. The average LDI for these cases is 0.27% after post-processing, with

none over 2.6%. This close to zero performance shows the accuracy of the algorithm

in avoiding false positives. The patient marked by “Patient X” in Fig. 4.6b is the pa-
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tient with congestive hepatopathy, a pre-existing condition shown in Fig. 4.4c. Fig.

4.4c shows the falsely segmented region before post-processing. This false positive

region was excluded through the post-processing step with respect to the customized

intensity distribution of the intact liver. As a result, the computed LDI of Patient X

is reduced to 1.61% from 8.27%.

(a) (b)

Figure 4.6: (a) A box plot comparing the Dice similarity coefficients of the proposed
injury segmentation algorithm and U-net with respect to the percentage of liver dis-
ruption. (b) A box plot comparing the computed LDI for cases without liver trauma.
The reference LDI is zero (Farzaneh et al., 2021a).

The results of the proposed liver and trauma segmentation approaches are shown

in Fig. 4.7. The images cover various severity levels of liver trauma. These results

demonstrate that the proposed deep learning-based framework can accurately assess

liver trauma, a heterogeneous clinical problem, in an automated and quantitative

fashion.

4.4.3 Liver disruption involvement (LDI) measurement

LDI measures the percentage of the liver parenchyma affected by blunt traumatic

injuries. Fig. 4.8a compares the computed versus reference LDI measures for all 77

studied patients. The linear regression relation is 0.95 with p-value < 0.01.
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(a)

(b)

(c)

Figure 4.7: Liver trauma and organ segmentation results along with ground truth
annotations in three separate patients with different levels of LDI. (a) a CT image
from a patient with a very subtle 0.62% liver disruption. (b) a CT image from a
patient with 2.25% reference LDI. (c) a CT image from a patient with 15.26% reference
LDI. In (a), (b), and (c), the first column corresponds to the original CT image; the
second column corresponds to the ground truth annotations; and the third column
corresponds to the automated segmentation results. In both ground truth annotations
and the segmentation results, the green line shows the liver contour while the red line
marks the contour of trauma regions (Farzaneh et al., 2021a).

Bland-Altman analysis was also performed to understand the potential systematic

errors in computing the hepatic disruption involvement. It can be concluded from
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(a) (b)

Figure 4.8: Linear regression relation and Bland-Altman analyses. (a) Linear regres-
sion relation between the computed and reference LDIs. Each point corresponds to
one patient. (b) Bland-Altman plot that indicates the normality of error (Farzaneh
et al., 2021a).

Fig. 4.8b that there is a negligible bias (-0.13%) with 95% confidence interval of -4.93

to 4.67%. Moreover, the Bland-Altman plot indicates two outliers that are marked

as “Patient Y” and “Patient Z” in both Fig. 4.8a and 4.8b. Patient Y (Fig. 4.9a)

presented with a massive liver disruption affecting 40% of the liver parenchymal,

which is over 1.6 times greater than the next largest liver disruption. Since the

model had not seen such a large injury in the training phase, it can be concluded

that it failed to learn such a pattern, and did not segment the whole injured region.

Patient Y’s recall and precision scores are, respectively, 63.68% and 92.24%, indicating

the algorithm’s high performance in avoiding false positives. Patient Z’s CT scan

shows a strong beam hardening artifact (Lebre et al., 2019a). This streaking artifact

appeared as a dark band and was misdiagnosed by the algorithm. This error might

have occurred as there were no similar cases in the training folds. These issues can

potentially be addressed by extending the data set in the future.
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(a)

(b)

Figure 4.9: Liver trauma and parenchymal segmentation results on two patients who
were determined to be outliers based on Bland-Altman analysis. (a) a CT image
from Patient Y in Fig. 4.8. Patient Y has the largest trauma region in our dataset.
(b) a CT image from Patient Z in Fig. 4.8. Patient Z’s CT image is distorted
by linear streak artifact, which leads to a large false positive region of segmented
trauma. In (a) and (b), the first column corresponds to the original CT image; the
second column corresponds to the ground truth annotations; and the third column
corresponds to the automated segmentation results. In both ground truth annotations
and the segmentation results, the green line shows the liver contour while the red line
marks the contour of trauma regions (Farzaneh et al., 2021a).

4.5 Discussion

The purpose of this study is to develop an end-to-end framework that can detect

and quantitatively assess the severity of liver traumas with respect to the percentage

of liver parenchyma injured. For this purpose, the percentage of the liver parenchymal

affected by traumatic injuries was automatically computed, as it is one of the main

measurements considered in the AAST liver injury scale. The proposed framework
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provides real-time quantitative information about the injury that was not accessible

before due to the cumbersome manual process to annotate all images included in a

3D CT scan. As a result, we envision that this system enables objective, continuous

injury severity scoring in the future as an alternative to the current AAST grading.

Moreover, this system can be used as a triage tool by rapidly assessing liver injury

and its severity as well as for monitoring volumetric progression or improvements of

the trauma region at multiple time points.

The proposed algorithm employed a deep learning backbone to segment the ini-

tial liver parenchyma and trauma masks. These masks were then refined during a

post-processing step by integrating human domain knowledge about the location and

intensity of injury into the model. The model achieved Dice similarity coefficients of

96.13% and 51.21%, respectively, in segmenting liver and trauma regions. The Dice

score for liver trauma segmentation reached 72.45% for considerable injuries with over

5% of LDI. Moreover, of the 43 non-trauma cases, 40 patients were detected to have

<1% of LDI showing high performance of the model in avoiding false positives. With

regard to creating the diagnostic model, our algorithm achieved a linear regression

relation of 0.95 between the computed versus reference LDI measurements. It can

be concluded that the proposed algorithm can accurately quantify the extent of liver

parenchymal trauma.

To our knowledge, no prior study has previously described automated methods

to identify and assess the severity of liver trauma using abdominopelvic CT images.

The mechanism and severity of trauma can lead to significant variations in the size

and shape of injured regions on CT scans. Moreover, non-traumatic pre-existing con-

ditions, such as fatty liver and congestive hepatopathy, may significantly affect the

liver parenchymal’s attenuation in CT scans. Given these sources of variation, devel-

oping a generalizable algorithm is challenging but necessary. In this work, we sought

to address these challenges by integrating human domain knowledge about the loca-
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tion and intensity distribution of injuries into the model during the post-processing

step. We also took advantage of classical image processing techniques, including 3D

active contour modeling, to bring spatial coherency and intensity homogeneity to the

segmented region.

The present study has a few limitations. First, despite a comprehensive process to

generate the ground truth, the reference labels used to train and evaluate the models

are best estimates rather than a definitive label. This is because the edges of the injury

and organs are not always distinctly visible in CT images. This issue introduces not

only noise into the training phase but also uncertainty into the labels against which

the performance is measured that can adversely affect the performance metrics. For

example, as shown in Fig. 4.7a and 4.7c, although the ground truth and automated

segmentation results for trauma do not thoroughly overlap, the segmented regions

do not visually appear to be less accurate than the ground truth. The adverse effect

of these inconsequential deviations on the performance metrics is greater on smaller

regions.

In addition to imperfect labels, artifacts introduced into CT scans during image

collection (Fig. 4.9b) are another source of noise. In this study, the CT scans affected

by artifacts are not excluded as long as radiologists can make a diagnosis. While

the results on CT scans with strong artifacts are not perfect, excluding those scans

from the study would make the study less representative of routine clinical practice.

Another limitation involves the lack of enough massively injured cases (Fig. 4.9a)

in our data set to effectively learn their patterns. The low representation of massive

cases could be because those patients went straight to surgery and did not have a CT

scan prior to intervention.
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4.6 Conclusion

This chapter focused on the development of a framework to assess the severity of

liver parenchymal trauma. The model employs a deep learning backbone to generate

initial liver parenchyma and trauma masks in a 3D fashion. The initial mask is then

refined with respect to the domain knowledge regarding the location and intensity

distribution of intact parenchyma and trauma. Next, the severity of liver trauma is

quantified as the proportion of the liver parenchyma that is disrupted by the injury.

This model is generalizable to heterogeneous-appearing livers in CT scans of patients

with pre-existing liver conditions, including fatty liver and congestive hepatopathy.

The accuracy of the model for both blunt trauma and non-trauma patients supports

this system’s potential for enhancing the medical decision-making process.
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CHAPTER V

Automated Kidney Segmentation for Patients

with Abdominal Trauma

5.1 Introduction

Automated decision support systems could help physicians in clinical diagnosis,

prognosis and ultimately treatment planning. Since the main inputs of such systems is

images, a major component of these systems is image processing, and in particular im-

age segmentation. Anatomical structures and other regions of interest are delineated

using image segmentation techniques. However, due to biological variations, existing

noise and artifacts that are inherent components of medical images, grayscale simi-

larity between the border of an organ and neighboring tissue, and different scanner

settings, medical segmentation is a challenging task. In the past three decades, many

segmentation techniques have been proposed for different medical applications such

as anatomical structure segmentation (Lin et al., 2006; Skalski et al., 2017; Khalifa

et al., 2016, 2017; Wolz et al., 2012, 2013) and pathology detection (Liu et al., 2015;

Soler et al., 2001; Park et al., 2001; Vorontsov et al., 2017). The aims of these meth-

ods are to improve upon conventional user-guided segmentation methods and also

to delineate images for further quantitative analysis (e.g., volumetric measurement)

(Lin et al., 2006), which provides important information for diagnosis/prognosis. The
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availability of such information in real-time for trauma injury patients is of utmost

importance as time is crucial to outcome. Therefore, developing fast and accurate

computational methods to segment the organs and detect injuries is of great value.

In this chapter, we focused on trauma injury patients and designed an automated

method to segment the kidneys from CT scans. Contrast-enhanced CT scans is the

modality of choice to detect kidney injuries. Each contrast phase highlights certain

types of kidney trauma and thus contrast phase knowledge leads to more accurate CT

image segmentation and lesion classification (Kawashima et al., 2001; Dayal et al.,

2013). However, this information is often missing or inaccurate (Sofka et al., 2011).

Therefore, it is important for an algorithm to be generalizable over all types to be

applicable in real clinical settings.

A number of automated methods have been proposed to segment the kidneys using

CT scans. Lin et al. (Lin et al., 2006) categorized kidney segmentation methods to

1) thresholding and region-based; 2) knowledge-based; and 3) deformable methods.

They also designed a method using the geometric location of kidney to detect seed

points as well as adaptive region growing to segment the kidneys. This method

was based upon the assumption that kidney is visible in the middle slice of the set of

abdominal CT scan, which might not be always true. Skalski et al. presented a kidney

segmentation model that falls in the category of deformable models (Skalski et al.,

2017). In this work, ellipsoid shape constraints were incorporated into the level-set

formulation. In addition to three kidney segmentation categories introduced in (Lin

et al., 2006), over the last decade a body of literature has focused on machine learning

approaches such as deep learning and ensemble learning (such as random forest)

methods to address this problem. Khalifa et al. (Khalifa et al., 2016, 2017) designed

a 3D kidney segmentation algorithm using a random forest classifier and adaptive

shape modeling. Wolz et al. (Wolz et al., 2012, 2013) introduced a hierarchical

subject-specific atlas generation model to address high inter-subject variability. This
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model required a large training data set to be practical. Additionally, all of the CT

scans were captured at the portal venous contrast phase; therefore, although this

model showed promising results its accuracy and generalizability over heterogeneous

cohorts in different clinical settings are questionable.

In this chapter, we proposed an automated kidney segmentation method by imple-

menting machine learning and active contour modeling. This algorithm was designed

based on CT scans without prior knowledge of contrast phase. Moreover, our focus

was on patients admitted to the trauma service which adds to heterogeneity in our

medical data.

5.2 Materials

In total, 1750 axial CT images from 35 patients were studied. All CT scans were

collected from patients who were admitted to the trauma service at UMHS. Among

35 patients, 22 were transferred to the ICU, 7 of them to a general admission and

non-specialty unit bed, 5 to the operating room and 1 patient died. All images were

collected using the GE Medical System scanner and shared the same slice thickness

of 5 mm, however, contrast phases were different and unknown. The ground truth

kidney annotations were verified by an expert radiologist. It is noteworthy that

generating the ground truth labels is time consuming and so never performed in

clinical settings.

5.3 Methods

5.3.1 Kidney Segmentation Framework

The schematic diagram of the proposed method is depicted in Fig. 5.1. In order to

detect the kidneys, we first localized and aligned the abdominal cavity. Towards this

end, we adjusted the image contrast, segmented the main bones’ mask, and accord-
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ingly registered each 3D CT image set using orientation, scaling and transformation

functions. Next, a 3D initialization mask was be detected within the abdominal

cavity. For this purpose, we divided the abdominal cavity to small patches using a

superpixel algorithm, and for each patch we extracted multiple features. These fea-

tures were then used in our random forest classifier to detect potential initialization

pixels. Finally, an adaptive contour model was designed to evolve the boundary of

the mask. This method was performed twice to segment the left and the right kidneys

independently, after which the results from each execution were combined to produce

the final segmentation.

5.3.2 Abdominal Cavity Alignment

CT scans from different patients did not necessarily have the same abdominal size

in terms of the diameter and length in transverse plane. Moreover, abdominal regions

were not all placed at the same orientation and location in a 2D axial image. Thus,

in order to extract features for kidney segmentation, images should be normalized

to have the same location, size and rotation angle. For this purpose, first, a CT

image was selected as a reference image. Having a new set of slices, the contour of

abdominal region was calculated and images were oriented, translated, and scaled to

have the same rotation angle, center, and size as the reference slice.

5.3.2.1 Abdominal Contour Calculation

In order to make the mentioned transformation, we first need a criterion to define

abdominal area in an image. We used bones such as ribs, sternum, and vertebral

column to find the abdominal area. Therefore, the first step was to detect bones in

an image.

In each slice, bones were enhanced using linear contrast adjusting based on Hounsfield

unit and then segmented using a thresholding method. In each slice, since abdom-
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Figure 5.1: Schematic diagram of the proposed kidney segmentation method.

inal bones were not all connected, they barely represented the contour around the

abdominal region. Therefore, estimation of the whole bone contour was needed. To

estimate the contour, bones in the first top N slices were selected and all the bones

were stacked (i.e., superimposed) in one image. In other words, if I1, ...,IN show the

top N slices after bone segmentation, we created the image Is = I1|I2|...|IN where ‘|’

shows the logical or operator. After stacking, the component with the largest area
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was chosen as the best representative of abdominal contour. Since the acquired com-

ponent was not necessarily a closed curve, the smallest convex–hull containing the

entire component was calculated using a combination of the QuickHull and general

dimension Beneath–Beyond algorithms Barber et al. (1996). The resulting convex

hull was a coarse estimation of the shape and size of the abdomen, and its mass

center was a coarse estimation of the abdominal location in an axial slice.

5.3.2.2 Orientation

As mentioned earlier, since there was a variation among different CT scans in

terms of amount of tilt angle, it was necessary to find this orientation angle.

As the acquired convex hull was a good estimation of the abdominal region, it

was used to find the orientation. After calculating the convex-hull, an ellipse was

fitted to the result using the second moment of the area. The second moment of

area for a simple polygon on a two dimensional plane can be computed by summing

contributions from each edge of the polygon as:

Ix =
1

12

n∑
p=1

(y2
p + ypyp+1 + y2

p+1)(xpyp+1 − xp+1yp)

Iy =
1

12

n∑
p=1

(x2
p + xpxp+1 + x2

p+1)(xpyp+1 − xp+1yp) (5.1)

Ixy =
1

24

n∑
p=1

(xpyp+1 + 2xpyp + 2xp+1yp+1 + xp+1yp)

× (xpyp+1 − xp+1yp)

where i goes over all vertices, and (xp , yp) (with xn+1 = x1, yn+1 = y1) are the

coordinates of the polygon formed by connecting vertices of the convex hull.

By decomposing the matrix of second moments of area into the product of a
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rotation matrix Q and a diagonal matrix Λ, the properties of ellipse can be found.

I =

 Ix Ixy

Ixy Iy

 = QΛQT . (5.2)

5.3.2.3 Translation

The mass center of the acquired convex hull is a coarse estimation of the abdominal

region center before the translation:

(Xcenter−old, Ycenter−old) = (icm, jcm) (5.3)

where icm and jcm are the mean of x-coordinate and y-coordinate respectively.

By placing the old center at the middle of the image, all images are aligned at the

center. Assuming nc and nr respectively show the number of columns and rows, and

are constant in all images, new center is calculated using:

(Xcenter−new, Ycenter−new) = (
nc

2
,
nr

2
) (5.4)

Having the old and new centers, each pixel needs to be shifted by (∆x,∆y) where:

∆x = Xcenter−new −Xcenter−old

∆y = Ycenter−new − Ycenter−old

(5.5)

5.3.2.4 Scaling

To detect the scale parameter in X and Y directions, width and height of the

convex hull were calculated as Wold and Hold. By having the width and height of the
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reference shape as new scale, the scaling operation is defined as:

(x, y)→ (ax, ay) (5.6)

where a = (Wnew +Hnew)/(Wold +Hold). Wnew and Hnew correspond to the width and

height of abdominal cavity in the reference images, respectively. Fig. 5.2 shows the

original image before and after registration.

(a) (b)

Figure 5.2: Abdominal cavity alignment. (a) shows the original CT image before
registration, and (b) shows the same image after registration (Farzaneh et al., 2016).

5.3.3 Initialization Mask Detection

For segmentation purpose, we used ACM (Active Contour Modeling) whish is an

efficient segmentation method. ACM starts with an initialization mask and evolves

this mask throughout a number of iterations. In order to accurately segment the

kidney using this technique, it is crucial to choose an initial mask accurately. To

accomplish this, a machine learning algorithm was used to determine the probability

of each pixel belonging to the kidney region. An adaptive thresholding method was

then applied on the probability values to determine a 3D volume as the initial mask.

84



5.3.3.1 Machine Learning Classification Model

Next, potential discriminative features were extracted for each pixel in the ab-

dominal cavity. However, extracting features for every single pixel is computationally

intensive while providing redundant information. Thus, we first grouped sets of ad-

jacent pixels in axial CT scans to build superpixels using the SLIC (Simple Linear

Iterative Clustering) algorithm (Achanta et al., 2012). Next, we selected a window

W of 25 × 25 pixels, around the center of the mass of each superpixel. A set of

location, histogram, and filtering-based features were extracted from each superpixel

using its corresponding W (Table C.1). Histogram information included minimum,

maximum, average, standard deviation, skewness, kurtosis, smoothness, and entropy

of intensities of pixels within W . Textural information consisted of Gaussian, Lapla-

cian of Gaussian, and Gabor filter-based features. Gabor features were calculated in

eight evenly spaced orientations and four different frequencies. Laplacian of Gaussian

highlights sharp intensity changes and is useful for edge detection. Finally, spatial

features were determined as the location of a superpixel in the Cartesian coordinate

system.

To determine the probability score of each superpixel belonging to the kidney re-

gion, a random forest classifier was trained using patient-wise 10 fold cross-validation.

5.3.3.2 Adaptive Probability Thresholding

Conventionally, in machine learning classification models a fixed threshold is ap-

plied as a cut-off on the probability score of each sample point to determine its class.

However, due to heterogeneous representations of kidneys in CT scans, mainly due

to various contrast phase and inter-patient anatomical variability, we did not apply

a fixed threshold to the probability score. Instead, we applied an adaptive threshold

model to segment out a 3D initialization volume inside the kidney. To calculate this

threshold, T , we started with the maximum threshold value of 1 and gradually de-
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crease the threshold value by ∆ until we segmented out a 3D connected component

larger than a predefined volume Vmin. Therefore, the optimum cutoff threshold was

computed by:

T = max

{
1− k∆|V1−k∆ > Vmin, k = 0, 1, ...,

⌊
1

∆

⌋}
(5.7)

where VT is the volume of the current largest connected component by applying cutoff

value of T .

5.3.4 Kidney Surface Modeling using Active Contour Model

At this stage, the boundary of the initialization mask calculated in the previous

section was evolved by using 3D active contour modeling. Active contour modeling

evolved the initialization mask in an iterative process to be entirely constrained by

the border of the desired object. As in many CT scans the edges between kidneys

and neighboring organs such as liver were smooth, or injuries might have blurred the

boundaries, edge-based active contour models were not effective. Thus, we imple-

mented an active contour model known as Chan-Vese that was proposed to segment

objects without well-defined edges (Chan and Vese, 2001). The Chan-Vese model is

based on a level-set formulation and Mumford-Shah segmentation techniques, and is

widely used in medical image processing.

In this work, after each fixed number of iterations (10), the evolved region was

first refined based on intensity and then by its 3D representation (Fig. 5.3).

To refine the region based on intensity, the mean, µ, and standard deviation, σ,

of the corresponding evolved region on the original CT image were calculated first.

Then, pixels with intensity values outside [µ − σ, µ + σ] were excluded from the

segmentation. Due to the contrast phase or imaging settings, the pixels’ intensity of

kidney and liver might be very close to each other and hence part of the liver might

86



(a) (b) (c)

Figure 5.3: Evolving the kidney initialization mask iteratively. (a) The initialization
mask is superimposed on the original image. (b) The result of mask evolution after
4 iterations. (c) Final segmentation (Farzaneh et al., 2018).

be falsely segmented as kidney. Thus, approximate mean intensity values of kidneys

and liver were used to find CT scans with such characteristics. Mean intensity of

kidneys was calculated by averaging the pixel intensity of the current mask. In order

to estimate the mean intensity of the liver, we used the liver probability atlas (see

Appendix C for details) (Farzaneh et al., 2016). We selected all pixels belonging to

the liver with the highest probability and calculated their mean intensity value.

For a CT scan with low intensity contrast between liver and kidneys, a stricter

condition was applied to exclude all pixels with intensity less than µ - 0.5 × σ (Fig.

5.4). Next, only pixels belonging to the largest connected component were selected as

the kidney has a contiguous representation. Moreover, to prevent over-segmentation

and minimize the running time, the volume of the current mask was calculated. If

the volume was larger than a hard threshold, the iterative process was terminated.

This threshold was based on the maximum of kidney volumes.

5.4 Results

We compared our segmentation results with the manually annotated ground truth

verified by a radiologist. We used 10 fold cross-validation to train the random for-

est initialization mask detection model. Each fold included CT scans from 3 or 4
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(a) (b)

Figure 5.4: The effect of considering customized contrast information on kidney seg-
mentation.(a) The original CT image exhibits low contrast between the kidneys and
the liver. (b) The yellow contours show the result without considering the relative
intensity distribution of liver and kidney in which the segmentation evolves into the
liver. The red contours are the result after incorporating liver probability atlas infor-
mation. The red contours overlay the yellow ones (Farzaneh et al., 2018).

patients. Except for the left kidney in one patient who was in shock, our algorithm

correctly detected the initialization mask entirely within the kidney region. Our final

segmentation results show pixel-wise Dice, recall, precision value of 88.9% , 92.6% ,

and 86.4%, respectively.

Table 5.1: Performance of our proposed kidney segmentation approach stratified
based on the kidney location. Numbers in parentheses are standard deviations.

Segmentation
Result

Dice
(%)

Recall
(%)

Precision
(%)

RVD
(%)

VOE
(%)

Left kidney
88.58
(16.55)

90.81
(17.71)

87.20
(17.05)

4.19
(16.21)

18.09
(17.11)

Right kidney
89.03
(8.12)

94.50
(7.03)

85.56
(12.49)

13.87
(25.52)

18.91
(12.14)

Fig. 5.5 shows variations caused by contrast phase and trauma and the resultant

segmentations.

Table 5.2 compares the performance of our model and state-of-the-art methods.

Note that each model is developed on a different data set with different imaging set-

tings and potentially different populations of interest, thus direct comparison cannot
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(a) (b) (c)

(d) (e) (f)

Figure 5.5: Kidney segmentation result for CT images with various contrasts between
the liver and kidneys. (a)-(c) CT images with various contrasts between adjacent
kidney and liver. (d)-(e) The red marks represent the ground truth kidneys contours
(Farzaneh et al., 2018).

be made from this table. For example, Khalifa et al. developed their method on

CT images collected from 20 subjects while each subject has high resolution CT scan

(slice thickness of 0.9 mm) at 3 known contrast phases as pre-, post-, and delayed

contrast phases (Khalifa et al., 2017).

Moreover, although our results are promising, in one severe case our algorithm was

unable to segment cysts - non-trauma pre-existing abnormal fluid-filled sacs; while in

ground truth these were considered as parts of the kidneys (Fig. 5.6).

5.5 Conclusion

In this chapter, we investigated the use of machine learning and active contour

modeling in kidney segmentation. A random forest classifier was employed to detect

a high-probability initialization mask inside the kidney. This initialization was then
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Table 5.2: Performance of our proposed kidney segmentation approach compared with
other methods in the literature. Numbers in parentheses are standard deviations. For
the cited studies, scores are reported as presented in the original papers.

Method
Patient
Population

Contrast
Phase

CT Slice
Spacing
(Resolution
along the
Z-axis)

Dice
(%)

Proposed Method
(n=35)

Blunt
abdominal
trauma

Different and
unknown

5 mm
88.88
(9.34)

(Lin et al., 2006)
(n=30)

Pathological Not reported 8-10 mm
88
(2.57)

(Khalifa et al., 2017)
(n=20)

Not reported
Three known
contrast phases
for each patient

0.9 mm
97.27
(0.83)

(Skalski et al., 2017)
(n=10)

Renal cancer Known 1-3 mm
86.2
(3.9)

Figure 5.6: Kidney segmentation result for a patient with kidney cyst. The green
contours represent the ground truth (including cysts). The red contours are the
algorithm final result. The ground truth overlays some parts of segmented result
(Farzaneh et al., 2018).

iteratively evolved using active contour modeling to fit the boundary of the kidney.

The process was performed independently for each kidney. Since the right kidney

is adjacent to the liver, the resulting segmentation was refined after each batch of

iterations with respect to the intensity distribution of the segmented right kidney

90



and the liver.

Unlike previous methods, our algorithm was developed and evaluated on CT im-

ages collected from trauma patients at dissimilar contrast phases. Except for the left

kidney in one patient who was in shock, the initialization mask was placed entirely

inside the kidney parenchyma for all instances. Considering a high degree of vari-

ation (biological or induced by contrast phase, pre-existing conditions, and trauma

injuries), the result shows robustness and generalizability of the proposed machine

learning classifier in localizing kidneys.

In the future, when a larger data set is available, the applicability of deep convo-

lutional neural network models can be investigated. Moreover, with access to enough

kidney trauma cases, this type of injury can be automatically detected and assessed

in future works.
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CHAPTER VI

Concluding Remarks and Future Directions

Trauma is a major worldwide public health problem and the leading cause of

death among Americans younger than 46. Traumatic brain injuries and abdominal

trauma are among the major contributors to traumatic mortality and morbidity.

Early diagnosis of traumatic injuries and development of an accurate prognosis are

critical for optimal triage and patient management. Current trauma protocols utilize

CT assessment of injuries in a subjective and qualitative (vs. quantitative) fashion,

shortcomings that could both be addressed by automated computer-aided systems

capable of generating real-time, reproducible and quantitative information.

This study outlines multiple frameworks for quantitative diagnosis and prognosis

of traumatic injuries. The overarching focus of this study was to infuse clinical domain

knowledge in the state-of-the-art artificial intelligence black box models to achieve

greater generalizability and trustworthiness.

In this chapter, we summarize the key achievements of this dissertation and discuss

potential directions for future research.
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6.1 Predicting the Long-Term Functional Outcome of Trau-

matic Brain Injury Patients

In Chapter II, a machine learning framework was proposed that enabled the cre-

ation of a robust explainable model for individualized prediction of TBI functional

outcomes as defined by GOSE. The proposed framework is transparent with respect to

understanding how input variables result in the model’s decision at both the individ-

ual and patient population levels. To achieve the robustness, a bootstrapping method

was employed to only select the variable with consistent population-level contribution

behavior. Such a model can achieve high accuracy, avoid collinearity-induced biases,

and ultimately accelerate adoption of machine learning models in clinical settings.

6.1.1 Main Findings

Among 62 candidate variables from EHR, 18 were identified to be robust and have

a contribution behavior aligned with clinical domain knowledge for TBI prognosti-

cation. Among 18 variables included in the final model, both age and the number

of brain regions with subarachnoid hemorrhage were ranked as the most impactful

variables in predicting TBI outcome. These variables were followed by GCS motor

response, intra-ventricular hemorrhage, GCS eye opening, third ventricle compres-

sion, and SDH. The four laboratory values determined to be appropriate predictors

were hemoglobin, glucose, activated Partial Thromboplastin Time (aPTT), and In-

ternational Normalized Ratio (INR). Overall, the results showed that imposing the

statistical and expert “checks and balances” did not adversely affect model perfor-

mance.
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6.1.2 Future Directions

In the future, this framework can be applied to similar tasks to determine potential

sources of bias in a black box model as indicated by counterintuitive population-level

contribution behaviors. Understanding biases in a predictive model is of a crucial

importance, specifically if they are driven by self-reinforcing positive feedback. For

example, patients with a particular pre-existing condition might receive a more ag-

gressive level of care that can potentially lead to a favorable outcome. As a result, a

machine learning model might learn the pattern that the existence of the pre-existing

condition, regardless of treatment plan, lowers the risk of unfavorable outcome. Once

applied in a real-world setting, this self-reinforcing positive feedback can result in

patients with the particular pre-existing condition receiving less aggressive care than

they would have otherwise.

6.2 Automated Detection and Severity Assessment of Sub-

dural Hematoma in Traumatic Brain Injury Patients

In Chapter III, we proposed a fully automated approach for segmentation and

radiographic severity assessment of SDH by analyzing head CT scans. First, a SDH

segmentation model was developed by integrating hand-crafted features with data-

driven deep features. Based on the automatically measured hematoma volume, we

categorized SDH patients as severe and non-severe. This model enables the accu-

rate quantification of blood, which is otherwise almost impossible due to the time-

consuming manual process.

6.2.1 Main Findings

Compared to deep learning models, integrating hand-crafted features with data-

driven deep features leads to a higher overall accuracy as well as greater consistency
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and robustness in segmenting SDH regions. Moreover, the proposed model was shown

to be more generalizable to different types and severity levels of SDHs. The primary

reason for this result is that the hand-crafted features reflect human domain knowl-

edge that can compensate for limitations in deep model performance on unobserved

regions of the input data distribution.

6.2.2 Future Directions

The proposed model was trained on CT scans captured using LightSpeed VCT

or Discovery CT750 HD systems, both from GE, the U-M vendor of choice. CT

scans from other manufacturers could be incorporated into future models to create a

vendor-agnostic model.

We should recognize that the proposed algorithm should be tested and validated

against a larger population from an external data set and obtain regulatory approval

and clinician acceptance before it can be incorporated into clinical practice. The

predictive power of the SDH volumetric measurement should also be evaluated against

a representative data set that covers different variations of SDH in traumatic brain

injury patients.

6.3 Automated Detection and Severity Assessment of Liver

Trauma

This study is the first to automatically identify and assess liver parenchymal trau-

mas utilizing contrast-enhanced CT without taking advantage of any prior knowledge

about the presence of the injury. We developed a fully automated framework capable

of providing objective and quantitative information about the presence and extent

of liver trauma. For this task, deep convolutional neural networks are employed to

generate liver parenchyma and trauma segmentation masks. Next, human domain
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knowledge regarding the location and intensity distribution of liver trauma was in-

tegrated into the model to refine the initial segmentation masks. The severity of

trauma was quantified as the proportion of the liver tissue affected by those injuries

(i.e., liver disruption involvement).

6.3.1 Main Findings

Non-traumatic pre-existing conditions, such as fatty liver and congestive hep-

atopathy, may affect the liver parenchyma’s appearance in CT scans. As a result,

the injury assessment for patients with these pre-existing conditions (minority class)

might suffer from automation bias due to less representation in the training phase.

In this study, we showed that human domain knowledge regarding the location and

intensity distribution of liver trauma can effectively address such bias to achieve a

more generalizable model.

The high performance of the model in both assessing blunt liver trauma and avoid-

ing false positives in non-trauma (control) patients supports its potential applicability

to enhance the clinical decision-making process.

6.3.2 Future Directions

One of the study’s limitations is its low sample size, which leads to a lack of

enough massive traumas or CT scans with strong beam hardening artifacts in the

training phase. Due to low representation, the model is not effectively optimized for

such cases. Further improvements can be achieved through more extensive studies in

which massive trauma and non-trivial image artifacts are adequately represented.

In future studies, other major types of liver trauma, including subcapsular hematoma

and active arterial bleeding, should also be automatically assessed to develop a com-

prehensive liver trauma assessment tool. Automated detection of active arterial bleed-

ing would be a critical
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6.4 Automated Kidney Segmentation for Patients with Ab-

dominal Trauma

Chapter V focuses on segmenting kidneys for patients with blunt abdominal

trauma. We developed a framework using machine learning classifiers that iden-

tify pixels belonging to kidneys with high probabilities. These initial masks are then

evolved to fit the boundary of the kidney without crossing the border between kid-

ney and liver. Localizing kidneys is a challenging task due to the heterogeneous

representation of kidneys on CT scans. This variation can be attributed to factors

such as normal biological variations (e.g., displacement of kidneys), contrast phase,

pre-existing conditions (e.g., cyst), or potential injuries (e.g., laceration, shock). Con-

sidering a high degree of variations, the result shows robustness and generalizability

of machine learning classifiers in localizing kidneys.

6.4.1 Future Directions

The applicability of deep learning models can be investigated by expanding the

data set in the future.

The small number of cases with kidney trauma prevented us from developing

models for detection and severity assessment of such injuries. Thus, the analysis was

limited to kidney segmentation. As more kidney trauma data is collected, future

investigations could focus on segmentation and quantification of this type of trauma

as well.

6.5 Perspective on Image Processing Model Selection

Different choices of image processing models were employed in this dissertation

research depending on the underlying assumptions of each problem. The method used

for subdural hematoma segmentation that incorporates a joint feature representation
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of hand-crafted and data-driven is shown to generate more accurate and robust initial

segmentation masks compared to U-net alone. However, this model was not appli-

cable in analyzing abdominal CT scans due to the fact that extracting hand-crafted

features for large regions of interest, such as the abdominal cavity (vs. intracranial

region), is time-consuming, leading to models that might be incapable of real-time

analysis. Thus, U-net alone was applied to generate the initial masks for the liver

parenchymal and trauma segmentation task. Thus, in time sensitive applications, for

small volumes, we propose to use the combinatory approach proposed in Chapter III,

and for larger volumes the deep convolutional neural network architectures alone are

preferable.

A critical step in developing reliable image processing techniques for health-care

applications is an extensive investigation of the potential effects of pre-existing con-

ditions on radiographic images and the final performance. This a critical process to

systematically post-process segmentation maps.

6.6 Future Perspective on Polytrauma Assessment

In the future, the generalizability of each of the proposed models needs to be

validated on an external data set. This was not undertaken in this study due to

limited data availability. However, we believe that incorporating human domain

knowledge into the model can potentially compensate for the lack of generalizability

inherent in most black box machine learning and deep learning methods. Involving

clinicians in the model development process can help eliminate biases and error modes

from a model, thereby increasing the likelihood that physicians will utilize the model.

Moreover, the utility of the proposed models needs to be determined prospectively in

a clinical setting prior to its incorporation into the standard practice. These systems’

utilities can potentially be tested with clinicians of different ages and experience levels

since these characteristics might indicate how comfortable a clinician is with using a
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new automated method and rate how useful it was beyond one’s usual practice.

Overall, this thesis is part of a greater effort for a comprehensive polytrauma

decision support system. In addition to liver, kidney, and brain subdural hematoma,

the polytrauma decision support system comprises assessment of acute intracranial

hemorrhage, spleen trauma, and pelvic bone fracture. Together, these components

contribute to improving trauma diagnosis and prognosis accuracy, and help prevent

delayed- or missed-diagnoses. Our long-term goal is to develop a fully automated

system that can provide quantitative trauma severity assessments and a personalized

treatment plan.
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APPENDIX A

Additional Information for Chapter II

Machine Learning Algorithm Selection

To select the machine learning algorithm to be used in this study, we trained

five different algorithms including XGBoost, deep learning, logistic regression, and

support vector machine using the initial 62 candidate features. For deep learning, we

used feed forward neural network with 4 hidden layers. The model that performed the

best on the validation set is then chosen for the remainder of the process. Table A.2

compares the performance of the candidate machine learning algorithms. Although

the performance on the validation is used to select the model, for more information, we

included the performance on the training and test sets in Table A.2 as well. XGBoost

model outperformed the other methods and was chosen in our TBI prognostication

study.
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(a)
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(a)

Figure A.1: Summary of SHAP contribution in the initial and intermediate model.
(a) shows the summary of contributions in a model trained using the 62 candidate
variables, (b) shows the summary of contributions in a model trained using the se-
lected 21 robust variables. Variable types are denoted as follows - rad : radiology
report, lab: laboratory value, Hx : medical history, and ISS : injury severity score
(Farzaneh et al., 2021b).
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(a)

(b)

Figure A.2: SHAP importance plot. Variables are shown in order of their average
impact on the predicted risk, where impact is defined as the average absolute SHAP
value. (a) corresponds to the initial model with 62 candidate features. Only 21
variables with the highest impact are shown in the plot. (b) corresponds to the model
with 21 robust variables. Variable types are denoted as follows - rad : radiology report,
lab: laboratory value, Hx : medical history, and ISS : injury severity score (Farzaneh
et al., 2021b).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.3: Detailed contribution of the 18 selected features to the predicted risk for
TBI functional outcome (Farzaneh et al., 2021b).
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APPENDIX B

Additional Information for Chapter III
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Table B.1: The comprehensive list of the utilized hand-crafted and deep features for
subdural hematoma segmentation.

Feature Type Feature/Feature Class

Domain knowledge-driven

Age

Location-based

Radial distance
Azimuth angle
Elevation angle
Distance to skull

Histogram-based

Minimum
Maximum
Average
Standard deviation
Skewness
Kurtosis
Entropy

Filtering-based
Gabor
Laplacian of Gaussian

Data-driven Deep features
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APPENDIX C

Additional Information for Chapter V

Liver Probability Estimation

For liver probability estimation two parameters of position and intensity were

considered for each pixel of the image. In this section, generation of the position

based probability atlas and intensity based probability atlas are discussed.

Position probability provides the probability of each pixel being liver based on

its coordinates. In order to make the position probability model, in each slice of the

annotated set, the value of pixels labeled as liver was set to 1, and the value of pixels

not labeled as liver was set to 0. Then, for each slice in a CT scan, the corresponding

slices in all subjects (i.e., registered images) were averaged. The resulting values

would be from 0 to 1, stating the probability of pixel being liver based on its position

in an image.

By having annotated liver regions on CT scans, a profile of liver pixel intensities

was generated. The same profile was generated for background pixels (i.e., anything

outside the liver boundary in the abdomen). To calculate the probability of being

liver for a pixel with intensity I, we divided the number of pixels within the liver
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mask having the intensity I by the total number of pixels in both foreground and

background having the same intensity I. This way the probability of pixel being

liver based on its intensity was calculated for all possible intensity values of I. To

calculate the probability of each pixel belonging to the liver, these two location- and

intensity-based probabilities were multiplied.
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Table C.1: The comprehensive list of the utilized hand-crafted features for kidney
segmentation.

Feature Class Feature

Location-based
X-coordinate
Y-coordinate
Z-coordinate

Histogram-based

Minimum
Maximum
Average
Standard deviation
Skewness
Kurtosis
Entropy

Filtering-based
Gabor
Gaussian
Laplacian of Gaussian
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