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Abstract 

Epilepsy is a debilitating neurological disorder characterized by recurrent 

spontaneous seizures. While seizures themselves adversely affect physiological 

function for short time periods relative to normal brain states, their cumulative impact 

can significantly decrease patient quality of life in myriad ways. For many, anti-epileptic 

drugs are effective first-line therapies. One third of all patients do not respond to 

chemical intervention, however, and require invasive resective surgery to remove 

epileptic tissue. While this is still the most effective last-line treatment, many patients 

with ‘refractory’ epilepsy still experience seizures afterward, while some are not even 

surgical candidates. Thus, a significant portion of patients lack further recourse to 

manage their seizures – which additionally impacts their quality of life.  

High-frequency oscillations (HFOs) are a recently discovered electrical biomarker 

with significant clinical potential in refractory human epilepsy. As a spatial biomarker, 

HFOs occur more frequently in epileptic tissue, and surgical removal of areas with high 

HFO rates can result in improved outcomes. There is also limited preliminary evidence 

that HFOs change prior to seizures, though it is currently unknown if HFOs function 

as temporal biomarkers of epilepsy and imminent seizure onset. No such temporal 

biomarker has ever been identified, though if it were to exist, it could be exploited in 

online seizure prediction algorithms. If these algorithms were clinically implemented in 

implantable neuromodulatory devices, improvements to quality of life for refractory 
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epilepsy patients might be possible. Thus, the overall aim of this work is to investigate 

HFOs as potential temporal biomarkers of seizures and epilepsy, and further to 

determine whether their time-varying properties can be exploited in seizure prediction.  

In the first study we explore population-level evidence for the existence of this 

temporal effect in a large clinical cohort with refractory epilepsy. Using sophisticated 

automated HFO detection and big-data processing techniques, a continuous measure 

of HFO rates was developed to explore gradual changes in HFO rates prior to seizures, 

which were analyzed in aggregate to assess their stereotypical response. These 

methods resulted in the identification of a subset of patients in whom HFOs from 

epileptic tissue gradually increased before seizures.   

In the second study, we use machine learning techniques to investigate temporal 

changes in HFO rates within individuals, and to assess their potential usefulness in 

patient-specific seizure prediction. Here, we identified a subset of patients whose 

predictive models sufficiently differentiated the preictal (before seizure) state better than 

random chance.  

In the third study, we extend our prediction framework to include the signal 

properties of HFOs. We explore their ability to improve the identification of preictal 

periods, and additionally translate their predictive models into a proof-of-concept seizure 

warning system. For some patients, positive results from this demonstration show that 

seizure prediction using HFOs could be possible. 
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These studies overall provide convincing evidence that HFOs can change in 

measurable ways prior to seizure start. While this effect was not significant in some 

individuals, for many it enabled seizures to be predicted above random chance. Due to 

data limitations in overall recording duration and number of seizures captured, these 

findings require further validation with much larger high-density intracranial EEG 

datasets. Still, they provide a preliminary framework for the eventual use of HFOs in 

patient-specific seizure prediction with the potential to improve the lives of those with 

refractory epilepsy. 
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Chapter I: Introduction 

During the transition toward sleep each night, the physiological rhythms of the 

human body gradually slow until the body is mostly motionless. The brain does not 

follow this trend, however. After wakefulness departs, neural activity in the brain is 

renewed and even intensifies: this is evident first in the waves of high amplitude 

synchronous activity of slow wave sleep, and then in the dramatic flourish of dissociated 

activity known as rapid eye movement sleep (REM sleep) [1]. To a parent observing a 

child dreaming under REM sleep, this veritable symphony in the brain might not be 

physically evident, except perhaps for the light flicker of the eyes beneath their lids. The 

arrival of such a moment for a relieved parent, however, is often the result of a practiced 

nightly routine that might involve pajamas and story books. Indeed for anyone, this 

nightly lapse in consciousness – and the act of sleep in general – requires some 

amount of forethought and preparation to ensure the body’s safety while the mind drifts 

between dream states, blissfully unaware.  

At first glance, it might seem that the serene sleep of a child would have nothing in 

common with the pronounced convulsions of someone experiencing an epileptic 

seizure. If the two are compared in a more abstract sense, however, there are intriguing 

parallels between the phenomena of sleep and seizures. Both sleep and seizures are 

characterized by significant transitions of bodily state that exert powerful control over 

cardiovascular and musculoskeletal functioning [2], [3]. In the brain, these state 
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changes also result in distinct patterns of neural activity that display periods of 

increased synchrony [4]. Crucially, sleep and seizures are both capable of significantly 

altering individual awareness and level of consciousness [4]. Despite the apparent 

similarities between sleep and seizures, however, they have diametrically opposed 

effects on the body: sleep generally rebuilds and restores vital physiological processes, 

but seizures instead disrupt them and even damage them over many occurrences. 

Spontaneous seizures that occur repeatedly – which are a defining characteristic of the 

disease of epilepsy – are associated with increased risk of injury and even death [5]. 

In addition to negative physiological effects, the unseen psychosocial costs of 

recurrent seizures are significant [6]. Seizures strike suddenly and without warning, 

which can leave unconscious or recovering individuals vulnerable to their surroundings, 

and at the mercy of passersby to deliver aid. This is in stark contrast to sleep and the 

nightly bedtime rituals of parent and child described above. Thus, seizures represent an 

unplanned and pathological gap in consciousness that cannot be sufficiently prepared 

for. For those with recurrent seizures and the disease of epilepsy, this looming and 

seemingly random threat is a significant detractor to overall wellness and quality of life 

[7]. Epilepsy does this in a variety of ways, from the disease’s persistent social stigma 

[8], to its negative impact on individual financial health and education possibility [9], and 

by something as simple as not being able to drive a car [7]. Psychosocial effects of 

epilepsy also extend significantly to family members, caretakers, and relatives [10]. 

Still, the chief complaint of those with uncontrolled epilepsy is the random nature of 

seizures [11]. If it were hypothetically possible to know the exact timing of an individual’s 
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seizures in any given day, life’s activities could be planned or rerouted with more ease, 

and more importantly, patient safety could be addressed by preparing for the seizures 

themselves. While seizures likely do not occur in this rigidly deterministic fashion [12], it 

is likely that even limited foresight of future seizure timing could significantly improve 

patient quality of life. This idea is at the center of this work’s ultimate end goal: to 

eventually address patient quality of life by investigating and developing a novel 

biomarker of seizure timing in the context of seizure prediction and probabilistic 

forecasting. 

Background and motivation 

Seizures: A fundamental property of neuronal networks is their ability to exhibit 

seizure-like activity [13]; this is found in simple organisms like fruit flies [14] and 

zebrafish [15], and it is also conserved in more complex and developed organisms like 

mammals [13]. Shown in the intracranial EEG waveforms in Figure 1 below, a seizure 

itself is the paroxysmal firing of large neuronal populations in synchrony [3]. Seizures 

manifest physically in myriad ways [16], and their severity ranges from brief periods of 

impaired awareness to complete loss of consciousness with accompanying rhythmic 

convulsions of limbs and body. This variety is in part because a seizure is not in and of 
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itself a disease, but rather an epiphenomenon of underlying neuronal pathology [3]. 

Approximately 1 in 10 people will have at least one unprovoked seizure in their lifetime 

[17], [18], and the probability of having additional seizures increases every time one is 

experienced [19].  

Epilepsy: The disease of epilepsy is defined as the recurrence of spontaneous 

seizures, and it is one of the most prevalent neurological disorders in the world, 

affecting 60 million total [3], [17], [18]. It is also a highly heterogeneous disease with 

many different types of syndromes, each of which can result from a variety of etiologies 

[20], [21]. After diagnosis –  which is conducted with a thorough review of patient history 

and commonly includes scalp electroencephalogram monitoring (EEG) to identify the 

presence of interictal epileptic discharges (IEDs) – affected patients are typically put on 

a regimen of anti-epileptic drugs, which generally function by calming aberrant 

electrophysiological processes in the brain [22].  

Treatments for refractory epilepsy: Approximately one third of individuals with 

epilepsy do not respond to anti-epileptic drugs (AEDs), however [23]. These patients 

FIGURE 1: Example seizure waveform. This seizure originated in data recorded from patient UMHS-0026. 
Overall the seizure lasts approximately 30 seconds. It begins with a large spike and DC shift in many 
channels; subsequently it evolves and increases in amplitude until reaching a maximum at seizure offset, 
where several bursts of spikes follow. 
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with ‘refractory epilepsy’ typically move through a variety of AED combinations before 

their treating clinicians arrive at the conclusion that other more invasive treatments are 

necessary. There are two last-line therapies available in this regard: 1) resective 

surgery, which removes epileptic tissue thought to be generating seizures, or 2) 

implantable neuromodulatory devices, which deliver electrical impulses either in 

response to certain electrical patterns (referred to as closed-loop or responsive 

stimulation [24]), or in a continuous fashion using a predefined stimulus (open-loop 

stimulation). 

Unmet clinical need in refractory epilepsy: Resective surgery remains the gold-

standard treatment for refractory epilepsy, as the effectiveness of devices still falls 

below [25]–[28]. After one year, however, only 60% of resected patients are seizure-free 

[29]. Further, many patients with refractory epilepsy are not surgical candidates either 

because their seizures originate from multiple foci, or because the seizure-generating 

tissue overlaps with important and vital brain areas related to speech, movement, or 

sight. Thus, there is significant unmet clinical need in the sizable portion of refractory 

epilepsy patients still experiencing seizures.  

 High-frequency oscillations: High-frequency oscillations (HFOs) are a more 

recently discovered electrical biomarker of epilepsy that have begun to address this 

clinical need. HFOs are brief ( < 50 ms) and somewhat rare neuronal events that occur 

in frequencies from 80 - 500 Hz [30]; there is also evidence that they occur in higher 

frequencies as well [31]. Though they can be associated with normal physiological 

processes involving memory and vision [32], [33], brain tissue with comparatively high 
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HFO rates is associated with epileptogenicity [21], [34], [35]. Importantly, surgical 

removal of high HFO tissue can result in better clinical outcomes and increased seizure 

freedom [36]–[40].  

Using microwire electrodes, pathological HFOs were originally discovered 

approximately 20 years ago in humans and in animal models of mesial temporal lobe 

epilepsy (MTLE) [41]. It was quickly confirmed that HFOs are recordable with standard 

intracranial grid, and depth electrodes [42]; recently, they have also been identified with 

standard scalp EEG as well [43]. In the literature, HFOs are commonly subdivided into 

‘ripples’ (80 - 200Hz) and ‘fast ripples’ (250 - 500 Hz). Initially it was thought that fast 

ripples had more of a pathological association [44], but recent evidence questions this 

assumption [45]–[47] To date there are no reliable methods to separate physiological 

and pathological HFOs [48]. The exact biological mechanism for HFO generation is 

unknown, but both epileptic ripples and fast ripples are currently thought to be the result 

of synchronous firing by principal pyramidal cells [49]. 

Recording HFOs: There have been significant advances in the technology used to 

record, and process HFOs since they were first discovered [42], [50]. Initially, clinical 

EEG systems could not adequately address the difficulties involved with recording 

HFOs. In order to accurately discern an HFO waveform, a sampling rate of at least 2 

kHz is required [42], [50], but they are more easily identified as sampling rate increases 

[51]; until somewhat recently, most clinical systems were limited to sampling 

frequencies of 256 Hz. HFOs are also low amplitude events compared to their 

surrounding backgrounds; this signal-to-noise ratio was also a challenge that more 



 

  7 

modern amplifiers had to overcome. But given the increasing demand for HFO 

recordings, clinical EEG manufacturers have responded with the development of 

advanced amplifiers that have low noise floors and high-sampling frequencies. [34] 

Automated identification of HFOs: HFOs were originally identified manually in 

short 10-minute clips of data by visual inspection of raw and filtered waveforms [52], 

[53]. As recordings grew in duration and number, however, it was clear that this labor-

intensive method was prohibitive of more advanced analyses with more patients. Using 

visual inspection as validation, a number of automated HFO detectors were developed 

(see [54] for a review) that could parse a huge amount of intracranial data in a small 

fraction of the amount of time it would take a human reviewer. These detectors have 

allowed the proliferation of numerous HFO studies in the literature today; many of these 

have contributed to the generally accepted understanding that HFOs are spatial 

biomarkers of epileptic tissue.  

Thesis motivation – HFOs. While the spatial aspect of HFOs somewhat 

predominates the literature, other facets and research questions have gone unexplored 

that could still show significant clinical potential. Notably, there are few studies that have 

explored how HFOs change over time, and fewer still that have investigated such 

changes prior to seizure onset. The only two studies in this regard [55], [56] were limited 

by small patient cohorts and few seizures per patient. Still, both identified significant 

changes in preictal (meaning prior to seizure) HFOs in some patients. However, they 

came to opposing conclusions as to whether these changes were stereotyped, and 

additionally whether such preictal changes were truly different from changes in HFOs 
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observed during interictal periods (meaning between seizures). Thus, it is largely 

unknown if HFOs are temporal biomarkers of seizure onset and whether they can be 

used in seizure prediction or forecasting. This open question is the primary motivation 

for the novel investigation of HFOs presented in this thesis.  

Seizure prediction: There is tremendous clinical potential in the pursuit of accurate 

seizure prediction. As such, the prediction of epileptic seizures has been the focus of 

much research over the past two decades. The first prediction studies used large 

numbers of EEG-derived features in small data sets to prove that prediction was 

possible [57]. These studies lacked statistical validation that their prediction algorithms 

performed better than a random chance predictor, however. After this misstep, a set of 

statistical requirements and associated methods were adopted by the field to add rigor 

and consistency to future prediction studies [58]–[60]. These methods include seizure 

time surrogates, where labels on seizure and non-seizure periods are randomly 

permuted [61]; comparisons using a random Poisson predictor [62], and the AUC 

metric, which has since been used in many studies [63]–[65] and is used throughout this 

thesis.  

Neurovista and prospective prediction: In 2013, the defining achievement in 

seizure prediction came from the development of an implantable intracranial monitoring 

device, called the ‘Neurovista’ device [66]. It resulted in chronic recordings of high-

quality ambulatory iEEG for 13 patients; in some patients these recordings spanned 

months and close to years. In addition to recording intracranial data, the device also 

functioned as a seizure forecasting system, and would alert the wearer to their current 
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seizure risk. This aspect of the device used signal features derived from incoming 

intracranial EEG data as the input to a true prospective prediction algorithm – which, to 

this day, stands as the only such instance of its kind. The iEEG data acquired during 

this study has since been used in numerous prediction studies [64], [65], [67]–[71]; 

some of those algorithms evaluated seizure risk retrospectively by evaluating all data at 

once, and others used pseudo-prospective approaches to evaluate seizure risk moving 

forward continuously in time, mimicking the original Neurovista method.  

Thesis motivation – seizure prediction. Along with our evolving understanding of 

epilepsy and seizures, the knowledge gained from early and more recent seizure 

prediction studies is shaping the field’s future. A recent review [12] of seizure prediction 

written by seminal experts in the field detailed a number of strategies and research 

goals to be pursued in future work; these included the following: 1) further development 

of pre-seizure electrical biomarkers, 2) the pursuit of patient- and possibly even seizure-

specific prediction algorithms, and 3) the reformulation of seizure prediction into a 

probabilistic rather than deterministic framework. By exploring HFOs in the context of 

seizure prediction and probabilistic forecasting, the work of this thesis is directly 

motivated by all three items above: given the previously described variability of 

individual outcomes for HFO studies involving temporal changes in the preictal period 

[55], [56], it is possible that HFOs are a patient-specific biomarker of seizure onset, 

capable of use in seizure prediction. Additionally, recent evidence has shown that HFOs 

occurring at the beginning of a seizure can differentiate between two different seizure 

types [72], a finding which is relevant to seizure-specific prediction using HFOs.  
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Thesis aims and organization 

With the ultimate goal of improving quality of life for patients with refractory epilepsy, 

this thesis addresses two general aims: 1) to evaluate HFOs as a temporal biomarker of 

seizure onset and epilepsy, and 2) to assess the relevance of these findings to seizure 

prediction. These aims are addressed across the findings of three independent studies.  

Using a big-data framework that was developed in concert with state-of-the-art HFO 

identification and processing methods, the first study in Chapter II investigates temporal 

properties of preictal HFO rates at the population level to identify the existence of this 

effect, and its potential prevalence within a large clinical cohort. We develop a novel 

continuous measure of HFO rate (cHFO), and use this to analyze preictal and interictal 

time periods together to identify stereotypical patterns – first in individuals, then 

compared at the population level – that differentiate pre-seizure data.    

The second study in Chapter III addresses HFOs as a potential patient-specific 

biomarker of imminent seizure onset. We characterize fluctuations in the distribution of 

HFO rates through time across several sliding windows of different duration. These data 

are used to train logistic regression models – a framework chosen for its probabilistic 

output – to identify differences in preictal versus interictal HFOs. The predictive 

performance of these models with unseen held-out data is cross-validated and then 

assessed with the AUC metric, which affords an overall idea of how well the predictive 

classifiers can differentiate preictal from interictal periods.  
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The third study in Chapter IV is a significant expansion of the techniques and 

analyses presented in Chapter III. It extends the data used for prediction and 

forecasting to include information about HFO signal features. The predictive 

performance of these models is then compared with the performance of models in 

Chapter III to assess their increased utility in seizure prediction. Finally, this study 

demonstrates the practical potential of HFOs in seizure prediction and forecasting by 

providing an implementation of a seizure-warning system. This study is meant to show 

that HFOs could help forecast oncoming seizures, and motivates the use of high 

resolution EEG in future devices.  

Overall this thesis presents several significant contributions to HFO research and 

seizure prediction in epilepsy. The techniques and methodologies for HFO identification 

and processing used in all three studies represent significant advances in the use of 

HFOs in a big data framework – particularly for HFO data around seizures, whose 

accuracy had not sufficiently been addressed. The use of this framework with the HFO 

data of a large clinical cohort provides further validation of these results. The use of 

HFOs in seizure prediction is a novel idea that, prior to this thesis, has not been 

investigated in the literature. It is hoped that these findings can serve as preliminary 

waypoints to further research on the temporal aspects of HFOs, especially in the 

context of seizure prediction.
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Chapter II: Preictal Variability of High-Frequency Oscillation Rates in Refractory 
Epilepsy  

J. M. Scott, S. Ren, S. V. Gliske, and W. C. Stacey, “Preictal variability of high-frequency 
oscillation rates in refractory epilepsy,” Epilepsia, 2020. 

Abstract 

Objective: High-frequency oscillations (HFOs) have shown promising utility in the 

spatial localization of the seizure onset zone for patients with focal refractory epilepsy. 

Comparatively few studies have addressed potential temporal variations in HFOs, or 

their role in the preictal period. Here, we introduce a novel evaluation of the 

instantaneous HFO rate through interictal and peri-ictal epochs to assess their 

usefulness in identifying imminent seizure onset. Methods: Utilizing an automated HFO 

detector, we analyzed intracranial electroencephalographic data from 30 patients with 

refractory epilepsy undergoing long-term presurgical evaluation. We evaluated HFO 

rates both as a 30-minute average and as a continuous function of time and used 

nonparametric statistical methods to compare individual and population-level 

differences in rate during peri-ictal and interictal periods. Results: Mean HFO rate was 

significantly higher for all epochs in seizure onset zone channels versus other channels. 

Across the 30 patients of our cohort, we found no statistically significant differences in 

mean HFO rate during preictal and interictal epochs. For continuous HFO rates in 

seizure onset zone channels, however, we found significant population-wide increases 
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in preictal trends relative to interictal periods. Using a data-driven analysis, we identified 

a subset of 11 patients in whom either preictal HFO rates or their continuous trends 

were significantly increased relative to those of interictal baseline and the rest of the 

population. Significance: These results corroborate existing findings that HFO rates 

within epileptic tissue are higher during interictal periods. We show this finding is also 

present in preictal, ictal, and postictal data, and identify a novel biomarker of preictal 

state: an upward trend in HFO rate leading into seizures in some patients. Overall, our 

findings provide preliminary evidence that HFOs can function as a temporal biomarker 

of seizure onset.  

Introduction 

High-frequency oscillations (HFOs) have shown promise in clinical epilepsy 

research as a biomarker of epileptic tissue. Defined as short bursts of neural activity > 

80 Hz, HFOs occur more frequently in epileptic tissue [30], [35] Numerous studies have 

shown that HFOs accurately delineate the seizure onset zone and potentially improve 

surgical outcomes [36]–[40]. Although most HFO studies concentrate on localization of 

abnormal channels, there is interest in characterizing other aspects of HFOs and 

epilepsy [43]. As high-frequency activity has been shown to increase prior to seizure 

onset both clinically and in experimental models, [73]–[75] some have also 

hypothesized a link between HFOs, the mechanisms of ictogenesis, and preictal brain 

states [49], [72], [74]–[80]. 
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The existence of a preictal state is still unproven, but growing evidence suggests it 

is measurable in many patients [58], [81], [82]. One notable study found differences in 

preictal electroencephalogram (EEG) occurring even hours before seizure onset [82]. 

However, very few studies address HFOs in the preictal period. Early work with small 

cohorts showed that preictal HFOs have subtle changes in the preictal period, such as 

spectral and rate changes [55] or alterations in HFO features [56]. Newer hardware and 

software now make HFO research much more robust, allowing high-quality, larger 

datasets [56], [77], [83]–[86]; the role of HFOs as a preictal biomarker can now be 

answered with much higher rigor. To our knowledge, there is no study of peri-ictal HFO 

rates using modern equipment and algorithms to acquire a robust sample size. This has 

halted further progress toward our understanding of the temporal evolution of HFOs and 

their relationship to mechanisms of seizure generation and termination. Furthermore, it 

has prevented the adoption of HFOs as a temporal biomarker.  

We designed this study to directly address these deficits. Here, we analyze >11 

million automatically detected HFOs from the entire intracranial EEG record of 30 

patients. We adapt the analysis to generate the first robust comparison of peri- and 

interictal HFO rates. We find a subset of patients in whom HFO rates change up to 30 

minutes prior to seizures, which we suggest can be used as a temporal biomarker of 

impending seizure onset in future seizure prediction applications.  
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Methods 

Patient population: Data were acquired from all consecutive patients at the 

University of Michigan who had intracranial EEG (iEEG) monitoring for refractory 

epilepsy with at least 4096 Hz sampling rate from 2016 to 2018. For inclusion in the 

study, patients had to have a total recorded time of at least 24 hours, during which at 

least 1 seizure occurred. Additionally, we required sufficient metadata regarding 

channel mappings, seizure times, and other clinical data. This produced a total of 30 

patients for the study. Electrodes implanted for monitoring included a mix of subdural 

grids, conventional depth electrodes, and stereo-EEG electrodes. Channels were 

labeled as “seizure onset zone,” and seizure onset/offset times were determined, 

according to the official clinical report of the treating epileptologist. Channels were 

labeled as lying within “resected volume” by consultation with the neurosurgeon and 

comparison of pre- and postoperative imaging (when available). Prior to data 

acquisition, full institutional review board approval was obtained, as well as written 

consent from patients to share their deidentified data. All EEG data were acquired with 

a Quantum amplifier (Natus Medical) with a sampling rate of 4096 Hz. Further summary 

of the patient population can be found in Table 1.  

Data processing and analysis: All data were analyzed using custom C++ and 

MATLAB (MathWorks) packages and scripts. As seen in Figure 2, our data analysis 

workflow consisted of three main components: automated HFO detection, indexing and 

windowing operations, and statistical analysis of mean and continuous HFO rates. 

These individual steps are described below. 
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TABLE 1: Clinical data for first study. Abbreviations: M/F: male, female, L/R: left / right, T: temporal, P: parietal, F: frontal, Occ: occipital, 
DNET: dysembryoplastic neuroepithelial tumor, NF1: neurofibromatosis type 1 tumor, NR: not resected, CD: cortical dysplasia, MTS: 
medial temporal sclerosis, PVNH: periventricular nodular heterotopia, PMG: polymicrogyria, VNS: vagal nerve stimulator. 

(hemisphere, (#/min./channel)

region) total ECoG depth SOZ (hours) SOZ OUT SOZ OUT total used

UMHS-0019 59 F II R T Gliosis 106 106 0 2 168.8 400,123 1.99 0.17 156.2 161.6 5 1 X X

UMHS-0020 45 F II R T MTS 25 0 25 9 171.2 55,311 0.36 0.13 172.7 221.8 7 7

UMHS-0021 30 M II R T
Gliosis, PVNH, 

PMG
46 0 46 13 179.5 459,037 1.91 0.47 169.9 166.8 9 6

UMHS-0022 40 M I L T CD, MTS 38 0 38 3 160.8 72,486 1.38 0.06 190.0 182.7 8 5 X

UMHS-0023 29 M NR L T, P PVNH / Neuropace 69 41 28 29 164.3 354,931 0.83 0.34 157.0 166.4 20 9

UMHS-0024 31 M NR L, R T Neuropace 75 55 20 16 177.2 1,124,176 2.62 1.24 152.1 154.6 28 11

UMHS-0025 17 F II L T Gliosis 20 0 20 5 207.7 269,638 1.77 0.88 161.6 172.8 10 3 X

UMHS-0026 22 F NR R T PVNH 52 0 52 3 246.2 390,187 1.52 0.51 165.3 166.3 40 7 X X X

UMHS-0027 26 M NR L Diffuse VNS 91 81 10 3 205.2 1,212,921 2.98 2.19 148.3 154.0 97 8 X

UMHS-0028 14 F I R T Tumor: Glioma 53 47 6 5 79.7 198,968 2.39 0.37 154.3 159.2 7 4 X

UMHS-0029 48 M NR L T, Occ. Neuropace 91 91 0 22 226.3 819,880 0.61 0.72 159.3 168.1 14 7

UMHS-0030 5 M III L T MTS, Gliosis 100 100 0 2 146 378,824 1.01 0.56 152.3 169.0 33 12

UMHS-0031 13 M I L T
Gliosis, Tumor: 

NF1
99 99 0 6 180 371,855 0.75 0.24 150.4 159.4 9 6

UMHS-0032 41 F I R F CD 32 0 32 3 184.3 382,400 2.45 0.64 159.4 170.5 8 6 X X X

UMHS-0033 5 F II R Ins. CD, Gliosis 74 0 74 4 120.7 150,963 0.97 0.30 169.8 219.7 28 19

UMHS-0034 33 F I R F Gliosis 32 0 32 11 136.3 455,089 2.41 1.18 172.2 167.3 17 16

UMHS-0035 50 F I L T Gliosis 57 57 0 2 162.7 122,451 0.67 0.19 147.9 172.4 7 6

UMHS-0036 43 M NR L, R T CD / Neuropace 54 0 54 2 172.5 335,274 1.36 0.60 151.8 163.6 18 12

UMHS-0037 14 M I L F Tumor: DNET 50 0 50 - 219.7 229,207 - 0.30 -  157.3 34 22

UMHS-0038 28 M II L T MTS, Gliosis 61 61 0 - 178.7 746,718 - 1.16 -  156.5 7 2

UMHS-0039 47 M NR R P CD / Neuropace 90 0 90 10 155.2 233,050 0.99 0.22 160.6 184.0 19 7

UMHS-0040 14 F I L P CD, Gliosis 63 55 8 8 196.7 386,462 0.37 0.64 158.7 170.1 7 7 X

UMHS-0041 32 F I R F CD 71 0 71 9 176.5 73,589 0.30 0.04 166.7 191.0 36 3

UMHS-0043 28 M II R T Gliosis 86 0 86 9 182.2 279,124 0.75 0.33 170.9 226.8 46 5 X

UMHS-0044 45 F NR L T, P Neuropace 76 0 76 6 170.2 385,032 1.24 0.45 155.4 179.6 13 4

UMHS-0045 17 F NR L, R T Neuropace 94 0 94 15 331.5 645,420 0.76 0.24 167.3 185.8 6 6

UMHS-0046 23 F I L F CD 30 0 30 9 139.3 16,061 0.12 0.03 166.1 210.8 17 8

UMHS-0047 48 F II R T Gliosis 70 0 70 3 301.7 417,307 0.65 0.22 155.0 196.8 1 1 X

UMHS-0048 22 F NR L, R T Neuropace 86 0 86 8 141.8 271,327 2.29 0.25 164.6 178.0 23 3 X

UMHS-0049 53 F NR L, R T Neuropace 94 0 94 15 176.8 179,259 0.63 0.11 179.6 166.9 17 4

TOTALS / averages 1985 793 1192 232 5459.5 11,417,070 1.29 0.49 162.0 178.1 591 217 7 4 5
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Automatic HFO detection and electromyographic artifact removal: For 

automated HFO detection, we used a previously validated HFO detector [86]. Briefly 

summarized, we use the highly sensitive “Staba” detector [52] on band-passed (80-500 
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FIGURE 2: Schematic diagram showing overall data analysis workflow. A, Quality high-frequency 
oscillation (HFO) detections (quality HFOs [qHFOs]) and their respective interictal and peri-ictal windows 
of analysis are aligned in time to compute mean and continuous HFO rate. EMG, electromyographic. B, 
Analysis windows are created from patient metadata and excluded from further analysis if overlap occurs 
with a number of conditions that would bias results. C1, Remaining peri-ictal windows are further divided 
into preictal, ictal (which includes a 1-minute buffer on either side of the clinically marked seizure time), 
and postictal epochs. C2, Remaining interictal windows are defined as 30-minute epochs. D, Continuous 
HFO rate (cHFO) computed from a single seizure in an individual patient is shown for seizure onset zone 
channels (top row, SOZ) and nonepileptic channels (middle row, OUT). cHFO rates were computed from 
discrete HFO detections, shown as a raster plot of preictal detections (bottom row) and organized by 
channel index. This patient (UMHS-0040) was a member of the “slope responder” subset of patients and 
showed preictal increases in cHFO rate as onset approached. Here cHFO rate is defined as HFOs per 
minute per channel. Dotted lines indicate ±1 standard deviation; blue denotes preictal cHFO rate, and 
green denotes interictal cHFO rate for comparison. The peri-ictal window was truncated for display 
purposes at 40 minutes. E, Example HFO detections for the same patient in interictal, preictal, ictal, and 
postictal periods are visualized in time-frequency plots, each computed with the Morse wavelet.  
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Hz) data, then redact detections likely to be due to artifacts, leaving more specific 

“quality HFOs” (qHFOs). We also applied an additional, published artifact rejection 

method designed to redact activity associated with scalp muscle artifact, which can 

produce many false-positive detections in the lateral temporal lobes [85]. All HFOs 

discussed in this work were subjected to this full process.  

Adjusting HFO detector for peri-ictal periods: All resulting HFOs for a given 

patient were labeled as either interictal baseline or peri-ictal, which we defined to 

include the full period from 30 minutes prior to 30 minutes after a seizure. Interictal 

HFOs were indexed into a successive series of interictal windows whose individual 

duration was 30 minutes. Peri-ictal detections were further subdivided into three 

continuous epochs: preictal, ictal, and postictal. We defined the preictal and postictal 

epochs as beginning 30 minutes before and ending 30 minutes after the ictal epoch, 

respectively. The ictal epoch was defined by the clinical mark of beginning and end, as 

well as an additional 1-minute buffer before and after the seizure. This buffer was added 

to mitigate potential inconsistencies in clinically marked seizure times, which can vary 

between clinicians [87], [88]. A schematic showing the exact timing of these epochs is 

given in Figure 2C.  

Most automated HFO detectors are designed for interictal data, where the EEG 

baseline is assumed to be relatively stable over time; the HFO detection algorithm 

compares with the baseline EEG every 10 minutes, which is assumed to be interictal 

[52]. However, including peri-ictal data presents a new challenge, because a seizure 

changes the “baseline” significantly and disrupts the threshold for HFO detection. To 
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address these considerations, we used two simple modifications to our HFO detection 

process during peri-ictal periods.  

The first modification was designed to align the 10-minute windows correctly to 

ensure ictal data were not present in the preictal epochs. This did not change the 

method of HFO detection, merely the start and stop times for the preictal epochs. 

During peri-ictal periods, the baseline was referenced to the start of the seizure, that is, 

the HFO detector was started 31 minutes prior to each seizure onset, which includes 

the aforementioned 1-minute buffer. From this point, the detector ran in successive 10-

minute segments until reaching the end of the postictal epoch as we have defined it 

above. Aligning the qHFO detector in this manner ensured that ictal EEG activity did not 

contaminate the preictal baseline threshold used to identify HFOs. Note that if baseline 

also increased preictally, this would lead to fewer HFOs being detected during the 

preictal period. Thus, the results herein are a conservative estimate of preictal HFOs.  

Second, we fixed the “baseline” threshold used for ictal and postictal HFO detection 

to the value of the 10-minute preictal segment just prior to the ictal period. This ensured 

that ictal and postictal rates were scaled to preictal baseline, rather than ictal activity. 

This was necessary because ictal data typically have a much higher baseline root mean 

square value than the preictal portion that precedes it, and our understanding of 

“increased HFO rates,” as well as the automated detector, is based upon comparison 

with interictal baseline. This method ensured the ictal and postictal rates would be 

referenced to the preictal baseline, prior to any ictal activity.  
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Window exclusion and alignment: Because the peri-ictal and interictal data have 

different reference points, it is possible that the windows overlap with each other or with 

periods of unreliable data. To ensure data quality and no overlap, we excluded windows 

that could be unreliable (Figure 2B). Specifically, we redacted windows that had overlap 

with any of the following conditions: (1) any other window, (2) file start or stop times, (3) 

gaps in recorded data of 1 minute or more, and (4) known extraoperative mapping 

procedures or other similar periods of poor data quality. Windows meeting any of these 

conditions were labeled unusable and excluded from further analysis. After this 

procedure, there were 217 seizures available for processing in the 30 patients. 

Remaining windows were then sorted according to type (i.e., interictal baseline or peri-

ictal) and aligned in time, which allowed comparison of HFO times across all windows. 

Grouping these windows then allowed computation of average HFO rates as described 

below.  

Computing HFO rate: Our analysis utilized two different representations of HFO 

rate: mean HFO rate and continuous HFO (cHFO) rate. These values were computed 

across two groups of intracranial channels: seizure onset zone channels (hereafter 

abbreviated SOZ), and all channels that were outside of both the SOZ and the volume 

of resected tissue (RV), which we denote OUT. Note that there is usually a great deal of 

overlap between SOZ and RV, but RV often has many channels that were not in the 

SOZ, and may not contain all of the SOZ, depending upon clinical circumstances. Mean 

HFO rate was computed as the average over all usable windows and was defined as 
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the total number of HFOs divided by the product of the number of channels and total 

duration of the windows used.  

cHFO rate: The Nelson-Aalen hazard rate: A robust analysis of temporal 

characteristics of HFOs requires information on their rate as a function of time, rather 

than simply an average over long epochs. We estimated HFO rates as a continuous 

function of time (cHFO rates), with the nonparametric Nelson-Aalen hazard rate model, 

and smoothed its output with kernel methods [89]–[91]. In a general sense, the Nelson-

Aalen model gives the risk of an event's occurrence as a function of time, which is 

equivalent to its instantaneous rate [90]. This method has been used to quantify 

oscillatory activity during sleep [92] as well as the risk of seizures over time [93].  

Kernel smoothing methods can translate discrete events into continuous estimates 

of rate, but they require the selection of a bandwidth parameter, which generally 

controls how jagged or smooth the estimate appears. We fixed this parameter at 1 

minute for all patients, which prevented ictal HFOs from influencing preictal cHFO rates 

as the kernel window moved forward in time.  

We computed cHFO rates with the Nelson-Aalen model in the same general 

manner as mean HFO rates, with one exception. Instead of using all interictal windows 

in the Nelson-Aalen computation, we restricted their number to be equal to the number 

of usable peri-ictal windows, choosing them at random from all usable interictal 

windows. While this allowed us to characterize interictal cHFO rates with the same 

temporal scale as peri-ictal cHFO rates, it also meant that interictal cHFO rates were 
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only calculated from a portion of the available data. To mitigate this, we repeated the 

calculation 10 times with different random selections and report the average of all 10 as 

the final estimate.  

Final analysis and statistical tests:	After determining mean and continuous HFO 

rates for all patients, we compared interictal and peri-ictal rates across all patients. We 

assessed patient-wise differences in mean HFO rate across channel groups (SOZ, 

OUT) and epochs (interictal, preictal) with the Wilcoxon signed rank test, using the 

appropriate Bonferroni correction. We also used the Kolmogorov-Smirnov test to 

compare differences in the population distributions of mean HFO rate across channel 

groups.  

The cHFO rate is a continuous variable that estimates the instantaneous rate at 

every point in time. We first analyzed these results visually and noticed two clear groups 

of patients: (1) most patients had essentially stable cHFO rates preictally, which were 

similar to the interictal values; and (2) some patients had preictal cHFO rates that were 

larger than the interictal values and appeared to increase leading to the seizure. To 

quantify this difference, we fit a line to preictal and interictal cHFO trajectories using 

least squares linear regression. We compared slopes of these lines within and across 

patients with the Wilcoxon signed rank test and further compared their overall 

distributions for different channel groups with the Kolmogorov-Smirnov test.  

For both analyses, we used an unbiased, data-driven approach to identify natural 

clusters of outliers in the distributions by applying a kernel density estimator to the 
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population distribution, then identifying local minima that distinguished any anomalous 

cluster, similar to our previous methods [86]. These minima were used as thresholds to 

identify putative responders.  

Results 

Our automated HFO detector was run on the iEEG data of 30 patients (15 male, 15 

female) from the University of Michigan health system. Patients in the study represented 

a diverse clinical cohort with a variety of ages, seizure foci, and epileptic etiologies. In 

total, > 11.4 million HFOs from nearly 2,000 iEEG channels were detected and analyzed 

across > 225 days of iEEG data. Further patient summary can be found in Table 1.  

Comparison of mean HFO rates: We first compared mean HFO rate across all the 

temporal epochs, an analysis that previously has been restricted almost exclusively to 

interictal periods. As shown in numerous prior studies, we found that SOZ channels had 

significantly higher mean rates than OUT channels for interictal and preictal epochs 

(Figure 3A, P < .001). Similar results occurred in ictal and postictal epochs (not shown, 

P < .001). We also compared mean HFO rates in different epochs across our population 

(not shown); ictal periods had much higher HFO rates than all other epochs (SOZ, OUT: 

P < .001), whereas postictal rates were quite variable among different patients but on 

average tended to be slightly higher than either interictal or preictal epochs, although 
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this did not reach significance in all groups (data not shown). The primary analysis was 

to compare inter- and preictal HFO rates. When averaged across all patients, there was 

no statistically significant difference in mean HFO rate between interictal and preictal 

epochs for either SOZ or OUT channel groups. In certain patients, however, we noticed 

that preictal rates were significantly higher than their interictal values, especially in the 
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FIGURE 3: Population comparisons of mean HFO rate. A, Population box plots of mean high-
frequency oscillation (HFO) rate comparing interictal (INTR) and preictal (PRE) epochs, organized by 
channel group (seizure onset zone channels [SOZ], nonepileptic channels [OUT]). No statistical 
difference in mean HFO rate during interictal and preictal periods was found; mean rate in SOZ 
channels was significantly higher than OUT channels for all epochs (ictal and postictal, not shown: P < 
.001). Statistical comparisons performed (Wilcoxon signed rank test) are denoted by brackets at the 
top of each panel; asterisks show statistical significance, ***P < .001. Differences in raw data during 
interictal and preictal epochs are visualized per patient between box plot groups: “mean rate 
responders”—patients with increased difference in preictal rate in SOZ channels—are shown with red 
lines, whereas other patients are shown with black lines. B, Smoothed and binned population 
distributions of the difference in preictal versus interictal mean HFO rate are shown by channel group. 
OUT channels (blue) are unimodal, but SOZ channels are bimodal and show the presence of a 
“mean rate responder” patient subset (red), each having a difference in rate of 0.58 HFOs/min/ 
channel . 
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SOZ. This led to the possibility that specific patients might have large differences 

between inter- and preictal HFO rates that are not seen when averaged across all 

patients. We plotted the distribution among all patients of the difference between 

preictal and interictal rates for both channel groups. As shown in the histograms of 

Figure 3B, the distribution for OUT channels is centered at zero and is unimodal. In 

contrast, the distribution for SOZ channels appears significantly skewed to the right, 

with several patients comprising the right tail of the distribution. This suggested that a 

distinct subset of “responder” patients in our cohort had significant in- creases in preictal 

HFO rates in the SOZ. Although these patients were too few to allow statistical tests to 

find strong independence of the SOZ and OUT distributions (Kolmogorov-Smirnov test, 

P = .072), they are clearly outliers in the SOZ distribution. The threshold to identify 

these outliers (first local minimum in the distribution of SOZ channels) was 0.58 

HFOs/min/channel, yielding seven total “mean rate responders”—individuals for whom 

the difference in mean HFO rate for preictal and interictal epochs was much higher than 

the rest of the population. Patients who are within this subset are marked in Table 1 and 

labeled red in Figure 3A.  

Comparison of continuous HFO rates: We used the Nelson-Aalen hazard rate 

model to estimate HFO rate as a continuous function of time (cHFO rates). The result of 

this analysis for a single patient is shown in Figure 4, which superimposes the interictal 

and preictal cHFO rates for visual comparison. Calculating the cHFO rate creates a 

time-dependent function, which we evaluated mathematically (see next section). We 

first made visual observations of these functions, comparing the cHFO trajectories 
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between interictal and preictal periods. As seen in Figure 4, this patient's preictal cHFO 

rate is generally higher than the interictal rate.  

In our visual observations, we saw significant temporal variability in preictal cHFO 

trajectories within our patient cohort across channel groups and epochs. We identified 

patients with preictal cHFO trajectories that were similar to interictal ones (examples in 

Figure 5A). There were patients with increased preictal cHFO activity over interictal 

baseline (examples in Figure 5B,C); of these, some had distinct bursts of preictal  
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multiple seizures, comparing preictal (blue) and interictal (green) epochs. This patient's preictal cHFO 
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contribution of individual channels to estimates computed from seizure onset zone channels (SOZ; B) 
and nonepileptic channels (OUT; C). Plots beneath B and C both show cHFO trajectories by individual 
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seizure. The peri-ictal window was truncated for display purposes at 40 minutes. 
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FIGURE 5: Variability of observed preictal continuous high-frequency oscillation (cHFO) rates. A, Many patients 
had few significant differences between interictal and preictal cHFO rates (example patients given in A1 and 
A2). B, Other patients displayed increased preictal cHFO trends relative to those of interictal periods; of these, 
periodic bursts of HFOs were evident in some (B1), whereas others showed more sustained increases in 
preictal HFO rates over interictal (B2). C, Two patients with gradually increasing preictal HFO rates were also 
identified. D, Examples of individual seizures in different patients, whose preictal cHFO rates also gradually 
increased toward onset, similarly to the average preictal trends of C. Here, cHFO rate is defined as HFOs per 
minute per channel. Visual formatting of all subfigures herein is the same as shown in Figure 3B,C. OUT, 
nonepileptic channels; SOZ, seizure onset zone channels; SZ, seizure.	
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cHFOs, and others had more sustained increases (Figure 5B). We also identified 

patients with preictal cHFO trajectories that appeared to increase gradually, leading to 

seizure onset (Figure 5C). These preictal trends were averaged across many seizures, 

but were also observed prior to individual seizures (Figure 5D). Even limited to visual 

inspection, these various changes were visible in at least 12 of the 30 patients. These 

example visual observations of preictal cHFO trends in various patients motivated 

further in-depth quantitative analysis, which we describe in detail below. Also, note that 

Figure 5 shows two patients (UMHS-0029 and -0040) in whom the HFO rate is higher in 

OUT compared with SOZ. As seen in Table 1, these were the only two patients who had 

this effect, which occurred when averaging over the entire region rather than selecting 

specific high-rate channels within the SOZ. Patient UMHS-0029 was not a responder, 

and UMHS-0040 had an atypical response described below.  

Statistical significance of temporal trends: The visual observations in the 

previous section suggested that perhaps the change in the rate as seizures approach, 

rather than simply the magnitude, was associated with impending seizures. To quantify 

the temporal trends shown in Figure 5C, we compared the cHFO rates as mathematical 

functions. We used linear regression to fit a line to the 30-minute trajectory of cHFOs in 

the average preictal and interictal windows in each patient. These values are shown as 

population box plots in Figure 6A, where we define slope (ΔcHFO rate) as the change in 

HFO rate over 30 minutes, with rate given as HFOs per minute per channel. A number 

of patients had high preictal slope in SOZ channels, whereas across the population, 
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interictal slopes were close to zero. We compared the distributions with a signed rank 

test, which takes pairwise differences between the preictal and interictal periods for 

each patient. The SOZ had a significant increase in slope (median ΔcHFO rate, 

PRE−INTR= 0.13, P < .05), whereas in OUT there was no appreciable difference 
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FIGURE 6: Population comparisons of cHFO rate regression slopes. A, Population box plots of 
regression slopes fitted to continuous high-frequency oscillation (HFO) rates of interictal (INTR) 
and preictal (PRE) epochs, organized by channel group (seizure onset zone channels [SOZ], 
nonepileptic channels [OUT]). As a population, increased preictal slopes were observed only in 
SOZ channels (*P < .05, Wilcoxon signed rank test). Differences in raw data during interictal 
and preictal epochs are visualized per patient between box plot groups; “slope responders”—
patients with increasing preictal continuous HFO (cHFO) rates in SOZ and OUT channels—are 
shown with red and blue lines respectively, whereas other patients are shown with black lines. 
B, Smoothed and binned population distributions of preictal cHFO regression slopes are shown 
by channel group; both SOZ and OUT distributions are bimodal. OUT slope responders (blue) 
have a slope threshold of +0.41 over 30 minutes, and SOZ slope responders (red) have a 
slope threshold of +1.08 over 30 minutes. Here, we define cHFO regression slope (ΔcHFOrate)as 
the change in HFO rate over 30 minutes, where HFO rate is defined previously as HFOs/ 
minute/channel.  
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(median ΔcHFO rate, PRE−INTR= 0.01, P = .15). As seen in Figure 6A, the differences 

were primarily due to certain patients with higher rate who were different from the rest of 

the group. To identify these potential outliers, we used a strategy similar to that shown 

in Figure 3B; we made a histogram of preictal slopes, fit them with a kernel density 

estimator, and looked for natural thresholds. In this case, the preictal distributions were 

statistically different from interictal ones for both channel groups (Kolmogorov-Smirnov: 

SOZ, OUT: P < .05, P < .01). The threshold for outliers, that is, “responders,” was OUT 

ΔcHFO rate= +0.41, SOZ ΔcHFO rate = +1.08. This gave a total of four patients in the 

“SOZ slope responder” subset, and five in the “OUT slope responder” 

subset (individuals marked in Table 1, and colored lines in Figure 6A). The responders 

were chosen solely on the basis of their preictal slopes being outliers, but note that the 

difference with interictal ΔcHFOrate,PRE−INTR in each case was also very high. We 

thus conclude that the preictal change in cHFO rates is a novel potential biomarker of 

seizure onset.  

Relationship of responders with clinical metadata:	We evaluated whether any of 

the three responder groups (mean rate, n = 7; SOZ rate, n = 4; OUT rate, n = 5) were 

correlated with clinical factors from Table 1. Of these responders, four had International 

League Against Epilepsy class I outcomes, four had class II, and three did not have 

resections (Table 1). We could not find any consistent demographical or etiological 

factor that was associated with a particular “responder” subset of patients; the rate of 

class I outcomes was similar to that of the whole group, and there were not enough 

patients to have sufficient power to identify specific differences in other factors such as 
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location and pathology. We analyzed whether these results in 30 patients would be 

likely to apply to the larger epilepsy population. We evaluated this with a binomial 

confidence interval, with 30 samples and 11 successes (“responders”); the 95% 

confidence interval is 20%-56% (6-16 patients). Considering that as low as 38% of 

patients with refractory epilepsy achieve lasting seizure freedom after surgery, [94], [95] 

we feel this responder rate is likely to have significant clinical impact as a biomarker. It 

is highly likely to be present in a large number of patients in larger studies.  

Discussion 

We performed a systematic analysis of time-varying HFO rates in a large cohort of 

patients with refractory epilepsy, robustly comparing interictal and peri-ictal rates for the 

first time. Our analysis of mean HFO rate found no difference between preictal and 

interictal rates at a population level. Despite this, we used a data-driven approach to 

identify a putative subset of patients who are “mean rate responders,” in whom there 

was a large difference between preictal and interictal rates. We also found that mean 

HFO rate was highest in SOZ channels, which corroborates existing findings that 

interictal HFOs localize epileptic tissue, [35], [43], [96] although we have confirmed it for 

preictal, ictal, and postictal epochs as well. Mean ictal HFO rates were significantly 

higher than rates for other epochs, a finding also supported in the literature [56], [97], 

[98]. 

Prior HFO work has been based upon average rates over long windows (i.e., 10 or 

30 minutes). Here, we investigated peri-ictal HFO trends as a continuous function of 
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time (cHFO rate), which estimates the “hazard rate” of HFOs occurring at any given 

moment in time. Despite little evidence of population-wide stereotypy, this revealed 

many varied and unique temporal patterns of peri-ictal cHFO trajectories among 

individuals. In our statistical analysis of cHFO rates, we compared the relative 

magnitude of preictal and interictal cHFO trends by their linear slope and again used 

their underlying distributions to identify two subsets of patients (“SOZ slope responders” 

and “OUT slope responders”) with increased preictal cHFO activity relative to other 

patients.  

These results are supported by previous findings, although there have been 

relatively few papers dealing with the effects of preictal HFOs. Early work found that 

HFOs had significant preictal changes in small cohorts of patients [55], [56]. Other 

studies investigated high-frequency activity, but not necessarily discrete HFOs, and 

found similar results. One found that increases in 60-100 Hz power preceded seizure 

onset by as much 20 minutes in patients with refractory neocortical epilepsy [74]. 

Another showed that a predictive classifier of preictal state performed well in a subset of 

seven of 53 patients, each of whom showed distinct changes in preictal high-frequency 

activity that were coupled with slower brain rhythms [99]. The authors noted that their 

algorithm might have been successful in more patients if their cohort were more 

homogenous. Our work has quite similar results with HFOs; in our clinically diverse 

population, there were distinct subsets of patients in whom HFO rate reliably increased 

prior to seizures, albeit in different but complementary ways.  
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We did not identify any factors to predict which patients would be “responders”; 

however, it is important to point out that this is not a major concern, because the 

potential use case for HFOs as a temporal biomarker would require intracranial 

monitoring, which can be used to identify and train an algorithm post hoc. Thus, we do 

not anticipate that clinical metadata alone could be used to stratify which patients could 

be candidates. However, we did a deep analysis of the OUT slope responder group, as 

this indicated patients in whom HFO data suggested possible epileptic pathology 

outside of the SOZ. UMHS-0026 and -0032 were responders in all three groups, 

suggesting HFOs were strong biomarkers across all recorded channels. The other 

three, however, were only OUT slope responders. Two of them (UMHS-0025 and -

0040) had secondary foci identified by the treating clinicians that were not included in 

the final SOZ channels. The other (UMHS- 0027) had seizures with diffuse onsets. 

From this cohort, we hypothesize that high preictal change in HFO rate may be as- 

sociated with the seizure-generating tissue, and may suggest an independent method of 

using HFOs to identify the epileptogenic zone. In other words, the OUT slope 

responders may indicate a previously unrecognized method to use HFOs to identify the 

epileptogenic zone.  

This analysis has some clear limitations. HFO occurrence is not a linear 

phenomenon, so applying a linear regression to the rate cannot capture the complex 

brain dynamics that produce it, and we make no claim that it was the “best fit” to the 

data. This function was chosen as the simplest method to characterize a generic 

increase in HFO rate during the preictal period across patients. Our goal was to 
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investigate gradual changes in preictal HFO rate across many seizures; accounting for 

nonlinear factors that would better model these variable cHFO trends was beyond the 

scope of this study. This analysis was designed to determine whether HFO rates were 

related to seizure onset, but was not designed to “predict seizures,” as it averaged 

preictal behavior across many seizures. Furthermore, this work analyzed only the HFO 

rate; there are numerous additional features of the HFOs such as amplitude, spectral 

content, and duration [100] that will enrich this analysis in future work. There is also 

evidence of preictal EEG changes that may be applicable to HFOs, [56], [81], [101] and 

seizures themselves undergo changes in dynamical states, which may also affect HFOs 

[13], [102], [103]. These varied features provide a rich environment for future analyses, 

using robust methods to compare interictal and preictal data, to assess HFOs as a 

potential seizure prediction biomarker [59], [60].  

Conclusion: Our investigation found that peri-ictal HFO rates and trends vary 

significantly across patients and even within individuals. We found a subset of patients 

in whom HFOs could be a valuable tool to identify the preictal state. This potential 

biomarker could be utilized in future studies on seizure prediction, focusing on in-depth 

characterization of interictal variability of HFO rates and greater numbers of seizures. 

Additionally, such work could better define the role of pathologic high-frequency activity 

in the mechanisms of seizure generation and its implications for the disease of epilepsy 

as a whole.  
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Chapter III: Viability of Preictal High-Frequency Oscillation Rates as a  
Biomarker for Seizure Prediction 

Accepted for publication: Frontiers in Human Neuroscience, 12/07/2020 

Abstract 

Motivation: There is an ongoing search for definitive and reliable biomarkers to 

forecast or predict imminent seizure onset, but to date most research has been limited 

to EEG with sampling rates < 1000 Hz. High-frequency oscillations (HFOs) have gained 

acceptance as an indicator of epileptic tissue, but few have investigated the temporal 

properties of HFOs or their potential role as a predictor in seizure prediction. Here we 

evaluate time-varying trends in preictal HFO rates as a potential biomarker of seizure 

prediction. Methods: HFOs were identified for all interictal and preictal periods with a 

validated automated detector in 27 patients who underwent intracranial EEG monitoring. 

We used LASSO logistic regression with several features of the HFO rate to distinguish 

preictal from interictal periods in each individual. We then tested these models with 

held-out data and evaluated their performance with the area-under-the-curve (AUC) of 

their receiver-operating curve (ROC). Finally, we assessed the significance of these 

results using non-parametric statistical tests. Results: There was variability in the ability 

of HFOs to discern preictal from interictal states across our cohort. We identified a 

subset of 10 patients in whom the presence of the preictal state could be successfully 

predicted better than chance. For some of these individuals, average AUC in the held-



 

  36 

out data reached higher than 0.80, which suggests that HFO rates can significantly 

differentiate preictal and interictal periods for certain patients. Significance: These 

findings show that temporal trends in HFO rate can predict the preictal state better than 

random chance in some individuals. Such promising results indicate that future 

prediction efforts would benefit from the inclusion of high-frequency information in their 

predictive models and technological architecture.  

Introduction 

One of the most debilitating aspects of epilepsy is the uncertainty patients feel, not 

knowing when the next seizure will occur. Though seizures themselves account for an 

extremely small percentage of an individual’s time, [66] the constant threat of a seizure 

can make the planning of normal day-to-day activities an impossibility for some [7]. This 

has led many investigators to search for methods to predict when seizure might occur. 

[12], [58], [62], [104], [105] 

While ‘seizure prediction’ has been an attractive research subject for decades, early 

efforts had many unforeseen challenges. While there was evidence that EEG changed 

in the minutes or hours before seizures, [58] it was difficult to prove that these measures 

could work prospectively. A major breakthrough occurred when rigorous statistics were 

developed—the key was to show that a given algorithm could outperform random 

chance [59], [60]. Several studies then followed using this method, and were able to 

show that intracranial EEG signals could predict the preictal state better than chance.  

[64]–[66] Critical in that work was the unprecedented collection of months of continuous 
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EEG in a clinical trial in Australia, which allowed for rigorous long-term statistics [64], 

[66]. That dataset has become a crucial tool in later work, including international 

competitions, [64] as prediction algorithms have made many further improvements [65], 

[67], [70], [106]. However, the data also have two important limitations: the data were 

acquired at low sampling rate (200 Hz) that does not allow analysis of high resolution 

EEG signals; and more importantly, since the trial ended no similar chronic recordings 

have been collected.  

Thus, while there have been many very promising results in the field of seizure 

prediction, most work has been focused on a single dataset of long term, low resolution 

intracranial EEG. The results have proven that seizure prediction is possible in many 

patients, but clearly are far from optimal. One potential avenue for further improvement 

is the possibility that higher resolution EEG could hold greater information. In particular, 

over the past 20 years it has become increasingly apparent that High Frequency 

Oscillations (HFOs) are a powerful biomarker of epilepsy [30], [35], [43]. HFOs consist 

of short (< 100 ms) oscillations in the 80-500 Hz frequency band, and require sampling 

rates of at least 2000 Hz for accurate identification [51].  HFOs are more likely to occur 

in the epileptogenic zone [35]  and may help guide surgical decisions [38]–[40], [107]. 

One relatively unexplored aspect of HFOs is that their characteristics can also change 

in the 30 minutes prior to seizure initiation in certain individuals [55], [56]. These 

preliminary studies were constrained by small patient cohorts and datasets that were 

not as specific as currently-available methods [83], [108]. Nevertheless, the evidence 

from those studies motivate using HFOs to identify the preictal state. 
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Utilizing population-level inference and a large clinical dataset, our group recently 

found several features of HFO rates that were highly correlated with the preictal state 

[109]. In that work, we averaged the HFO response over all available data per patient 

and compared the responses during interictal and preictal epochs; several patients had 

significant results. However, in order to utilize HFOs to identify the preictal state 

prospectively, a different analysis is necessary. The HFO response in a given segment 

of data must be compared individually to that of other segments, rather than in 

aggregate as in that prior work.  

Robust implementation of seizure detection algorithms requires several months of 

continuous recording, as was accomplished by the Neurovista trial in Australia [66]. 

Such data with sufficient sampling rate to detect HFOs is currently impossible to attain. 

Until such devices are available, the only alternative is to utilize inpatient intracranial 

EEG monitoring, which lasts less than 2 weeks. Although such data are vastly inferior, 

they are also the only current option. Until implantable devices with >1000 Hz sampling 

rate are available, the role of HFOs in the specific context of seizure prediction must first 

be evaluated using only the limited intracranial monitoring data available, which is our 

goal herein. 

With this study, we evaluate the preliminary usefulness of HFOs in patient-specific 

seizure prediction. We employ state-of-the-art automated HFO detection methods on 

the entire recorded intracranial EEG data of a clinically-diverse cohort of 27 patients. 

With more than 10 million detected HFOs in this dataset, we use various features of 

HFO rates as predictors in patient-specific preictal classification models. With robust 
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machine learning methods and statistical techniques to validate our results, we find that 

10/27 patients have excellent classifier performance. These results are limited due to 

the short recording periods, but were very promising. While the technology does not yet 

exist that would allow a full prospective analysis using high resolution data, these 

results motivate future studies that incorporate such technology in the next generation 

of seizure prediction devices. 

Methods 

Patient population: To form our patient cohort, we looked at all patients with 

refractory epilepsy who had undergone intracranial EEG (iEEG) monitoring at the 

University of Michigan from 2016 – 2018. In order to ensure that sufficient data was 

available for training and testing our models, we required patients with the following: 1) 

a defined seizure onset zone, 2) at least three recorded seizures that were each 

preceded by non-zero HFO rates, and 3) the availability of at least 24 hours of data; 

applying these criteria to the 32 available patients resulted in 27 patients. The study was 

approved by the local IRB, and all patients in the study consented to have their EEG 

data de-identified for later analysis. Of note, all data were acquired under standard 

clinical procedures, and the current work was done retrospectively: no data from this 

research had any effect on the clinical care. Further summary of the patient population 

is found in Table 2. 
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TABLE 2: Clinical data for second study. Abbreviations: M/F: male, female, L/R: left / right, T: temporal, P: parietal, F: 
frontal, Occ: occipital, DNET: dysembryoplastic neuroepithelial tumor, NF1: neurofibromatosis type 1 tumor, NR: not 
resected, CD: cortical dysplasia, MTS: medial temporal sclerosis, PVNH: periventricular nodular heterotopia, PMG: 
polymicrogyria, VNS: vagal nerve stimulator. 

 
(hemisphere, (#/min./channel) (window duration, min.)

region) total ECoG depth SOZ (hours) SOZ OUT total used training testing 30 15 10

UMHS-0018 41 M Ib L F CD 32 0 32 4 59.8 108,510 4.18 0.54 3 3 2 1

UMHS-0019 59 F II R T Gliosis 106 106 0 2 168.8 170,946 2.30 0.19 5 3 2 1

UMHS-0020 45 F II R T MTS 25 0 25 9 171.2 54,254 0.38 0.12 7 7 5 2

UMHS-0021 30 M II R T
Gliosis, PVNH, 

PMG
46 0 46 13 179.5 394,398 1.98 0.50 9 7 5 2

UMHS-0023 29 M NR L T, P PVNH / Neuropace 69 41 28 29 164.3 390,134 0.86 0.37 20 9 6 3

UMHS-0024 31 M NR L, R T Neuropace 75 55 20 16 177.2 1,649,380 3.40 1.71 28 11 7 4

UMHS-0025 17 F II L T Gliosis 20 0 20 5 207.7 270,125 1.75 0.86 10 5 3 2

UMHS-0026 22 F NR R T PVNH 52 0 52 3 246.2 382,201 1.28 0.45 40 10 7 3 X X X

UMHS-0027 26 M NR L Diffuse VNS 91 81 10 3 205.2 1,601,359 1.90 1.41 97 11 7 4

UMHS-0028 14 F I R T Tumor: Glioma 53 47 6 5 79.7 140,782 2.95 0.42 7 6 4 2 X X X

UMHS-0029 48 M NR L T, Occ. Neuropace 91 91 0 22 226.3 847,560 0.60 0.71 14 7 5 2

UMHS-0030 5 M III L T MTS, Gliosis 100 100 0 2 146 330,614 0.98 0.56 33 21 14 7 X X

UMHS-0031 13 M I L T
Gliosis, Tumor: 

NF1
99 99 0 6 180 263,676 1.17 0.39 9 4 3 1

UMHS-0032 41 F I R F CD 32 0 32 3 184.3 295,865 3.79 0.96 8 6 4 2

UMHS-0033 5 F II R Ins. CD, Gliosis 74 0 74 4 120.7 233,883 1.40 0.38 28 8 5 3 X X

UMHS-0034 33 F I R F Gliosis 32 0 32 11 136.3 448,718 2.58 1.26 17 16 11 5 X

UMHS-0035 50 F I L T Gliosis 57 57 0 2 162.7 108,147 0.73 0.21 7 4 3 1 X

UMHS-0036 43 M NR L, R T CD / Neuropace 54 0 54 2 172.5 347,928 1.34 0.60 18 12 8 4

UMHS-0039 47 M NR R P CD / Neuropace 90 0 90 10 155.2 266,422 1.02 0.23 19 9 6 3

UMHS-0040 14 F I L P CD, Gliosis 63 55 8 8 196.7 323,180 0.38 0.66 7 7 5 2 X

UMHS-0041 32 F I R F CD 71 0 71 9 176.5 43,350 0.27 0.04 36 3 2 1

UMHS-0043 28 M II R T Gliosis 86 0 86 9 182.2 386,967 1.34 0.42 46 16 11 5 X X

UMHS-0044 45 F NR L T, P Neuropace 76 0 76 6 170.2 414,195 1.29 0.47 13 5 3 2

UMHS-0045 17 F NR L, R T Neuropace 94 0 94 15 331.5 631,551 0.79 0.25 6 6 4 2 X

UMHS-0046 23 F I L F CD 30 0 30 9 139.3 16,575 0.15 0.04 17 5 3 2

UMHS-0048 22 F NR L, R T Neuropace 86 0 86 8 141.8 404,972 2.76 0.33 23 8 5 3 X X X

UMHS-0049 53 F NR L, R T Neuropace 94 0 94 15 176.8 287,303 0.98 0.16 17 5 3 2

TOTALS / averages 1798 732 1066 230 4658.6 10,812,995 1.58 0.53 544 214 143 71 5 8 6

Pathology / 
implant type

Number of                                          
intracranial channels

Total 
recorded 

time
Subject Age Sex

ILAE 
outcome

Seizure 
focus

Total 
number 

HFOs 

Mean                    
HFO                        
rate

Responder window 
subset

Number of  seizures
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Data acquisition: All intracranial recordings were sampled at 4,096 Hz with a 

Quantum amplifier (Natus Medical Inc., Pleasanton, CA); the electrodes implanted for 

monitoring consisted of subdural grid, depth and stereo-EEG electrodes, as deemed 

appropriate for each patient during standard clinical care. All recordings were 

referenced to a lab-standard instrument reference placed midway between Fz and Cz 

when first recorded, and then were re-referenced for HFO detection using common 

average referencing [86], which was applied to all electrodes of the same type, e.g. all 

depths or all grids or strips together.  The treating epileptologist determined which 

channels comprised the seizure onset zone (SOZ channels), as well as the onset and 

offset times of all seizures; we obtained these metadata through the official clinical 

report for a given patient. Channels within the resected volume of tissue (RV channels) 

were identified and labeled through consultation with the neurosurgeon and by pre- and 

post-op imaging comparisons if available. Any channel that was not labeled as an SOZ 

or RV channel was labeled as an OUT channel. Note that a seizure prediction algorithm 

should have knowledge of the SOZ and OUT channels available, as it must be trained 

on previous seizures and would be implemented after these studies are completed. It is 

also important to note that the SOZ is what was determined by the reading clinician and 

does not depend upon being the true epileptogenic zone. We incorporated the analysis 

of OUT channels as a conservative way to account for diagnostic uncertainty and see if 

other channels also had useful information. Channels labeled as RV that did not overlap 

with the SOZ were not used in our analysis, in order to maintain a more conservative 

analysis.  
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Data analysis: All data analysis was conducted with custom MATLAB (Mathworks, 

Natick, MA) and C++ functions and scripts. As described in detail below and shown in 

the block process diagram of Figure 7, this analysis consisted of several steps: first, 

automated HFO detection was performed on all patient data. Then, several features 

across consecutive time windows of varying duration were computed from HFO rates. 

These features were used to train a logistic regression model to distinguish preictal 

versus interictal states. The algorithm was cross validated with held-out data and 

compared versus random chance. Model performance was quantified using ROC 

curves.    

Automated HFO detection: All HFOs were identified with a validated automated 

detector [86] with additional modifications described further below. In summary, this 

detector is based upon the original ‘Staba’ RMS-based detector [52] which then 

increases the specificity by redacting detections that overlap in time with several EEG 

artifacts such as sharp transients, electrical interference and noise, and artifacts from 

signal filtering. To further increase HFO specificity,  we excluded detected events with 

waveforms consistent with features of muscle (EMG) artifact, using another validated 

algorithm [85] as in our previous work [109]. Of note, these algorithms have previously 

been shown to be similar to human reviewers [86], [110].  

We also modified the data processing pipeline of our automated detector to ensure 

that it functioned appropriately within the unique constraints of seizure prediction. Most 

automated detectors operate by processing incoming EEG data in successive epochs of 

fixed length, e.g. 10 minutes, and then assess the background activity of the entire 
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epoch to determine a threshold for detecting HFOs within that epoch. That process 

cannot happen in real-time nor (pseudo)prospectively, because evaluating a potential 

HFO at a specific point in time requires knowledge of background activity that has yet to 

occur. Such a process would not be possible for prospective seizure prediction, in which 

there should be no knowledge of the future. To address this constraint, we modified the 

FIGURE 7: Block process diagram for study analysis. Schematic diagram showing overall data analysis 
workflow. (A) General analysis workflow. After automated HFO detection, continuous HFO rates (cHFO 
rate) are computed in both the SOZ and OUT channel groups. Next, several statistical quantities (features 
of HFO rate) are computed from cHFO rates in three 'feature windows' of different durations: 30-, 15-, and 
10- minute feature windows. After labeling this feature data as either preictal or interictal, observations 
that remain after an exclusion process are randomly divided into training and test data sets. Training data 
is used to train predictive LASSO logistic regression models, which are then tested with unseen testing 
data. The performance of each model with this testing data is assessed by computing the test AUC value, 
which, when averaged over 10x cross-validation runs for each of the three feature windows, are finally 
compared across patients; these results are visualized in Figure 9. (B) Example HFO detection, 
'responder' patient UMHS-0040. The HFO waveform is displayed on the left, while its time-frequency 
decomposition (computed with the Morse wavelet) is visualized on the right. (C) Example of cHFO rates 
computed for patient UMHS-0040. Continuous HFO rates (cHFO rate - defined as HFOs / min / channel) 
are computed in both the SOZ and OUT channel groups separately. The rate features used in the 
proceeding Table D are computed from these cHFO trajectories in 30-, 15- and 10-minute segments. (D) 
Table of rate features. Eight features are applied to cHFO rates per channel group (SOZ and OUT 
channel groups), which yields a total of 16 rate features. Abbreviations shown in this table are used 
throughout the text.  
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detection algorithm to work prospectively. First, we approximated real-time detection by 

only detecting HFOs for 30 seconds at time. Second, we still used 10 minutes of EEG to 

calculate the background, but use the previous 10 minutes of EEG data, relative to the 

end of each of data segment. In effect, the algorithm is identical to the previous one 

except it only reports the HFOs that are detected during the final 30 seconds of a 10 

minute segment, and the same process is repeated by sliding the 10 minute window 

forward 30 seconds. One outcome of this is that the first HFOs detected in any given 

data file start after the first 10 minutes of recording. With these adaptations, our 

automated HFO detection was better suited to the constraints of seizure prediction, and 

more closely resembled a real-time process. Further – and perhaps most importantly for 

preictal HFO detection – these changes also prevented seizure activity from influencing 

the detector.  We compared these results to those of the original detector, and there 

was no appreciable difference in HFO rate (data not shown), which is expected since 

there were no changes inherent to the detector itself, but rather how it was fed data.  

Computation of HFO rate: In order to investigate temporal variations in HFO rate 

with sufficient resolution, we approximated HFO rate (which we define as the number of 

HFOs per minute per channel) in both SOZ and OUT channel groups as a continuous 

function of time (cHFO rate). The cHFO rate was obtained by calculating the estimated 

HFO rate during one minute of data, then sliding the one-minute window forward one 

second and recalculating. This sliding window method approximates a continuous HFO 

rate with a 1 second time resolution. The sliding window was applied to all SOZ or OUT 

channels, which were grouped separately. For a given window segment and channel 
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group, the HFO rate was computed by summing the number of HFOs occurring across 

all channels of the same group; this value was then divided by the total number of 

channels in that respective group, which resulted in an estimate of the average cHFO 

per channel within each group (SOZ or OUT).   

Features of HFO rate: The advantage to using cHFO rate as computed above - 

rather than averaging it over longer periods - is that the temporal resolution of cHFO 

rates can reveal fluctuations and patterns in HFOs down to the scale of a second - 

which could be important in characterizing preictal trends. We quantified the temporal 

variation of cHFO rates with several descriptive statistics, including mean, variance, 

linear slope, quartiles, skewness and kurtosis across a given epoch of time. We also 

compared linear trends in cHFO rates using the slope extracted from linear regression 

applied to cHFO rates for a given epoch of time. All these values were computed 

separately in SOZ and OUT channel groups across three different epochs of time: 30, 

15, and 10 minutes, which we call ‘feature windows’. The feature windows were 

designed to account for possible differences in seizure horizons between patients, as 

we hypothesized that the duration of any preictal state would not be constant across the 

entire cohort. All features were computed from the start of a given data file in 

consecutive 1-minute intervals. Each feature window was analyzed independently of the 

others throughout the entirety of the study.  

Feature data labeling and exclusion: In machine learning, classification 

algorithms used in prediction need labeled observations of data in order to train their 

models. In this case, we label data as either interictal or preictal. Based on our prior 
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data showing HFO features changing up to 30 minutes prior to seizures, [56], [109] we 

defined the ‘preictal period’ as the 31 minutes prior to the start of the seizure. The extra 

minute occurs because we inserted a buffer of one minute just prior to seizure onset, 

which accounts for some interrater variability in seizure onset time [87].  

For each of the feature windows (10-, 15-, or 30-minutes), the ‘preictal’ windows 

were defined as the last window immediately prior to the seizure, but not including any 

of the 1 minute just before seizure onset. Because the calculations slide forward in 1-

minute steps, this means each ‘preictal’ feature window ends between 1-2 minutes prior 

to the clinician-determined seizure onset time. For each feature window length, we only 

included the one ‘preictal’ window immediately before the seizure. Because our prior 

data suggested up to 30 minutes could be considered as the physiological preictal 

period, to be conservative we ignored data during that period that was not in the 

‘preictal’ feature window. Data from those times (the two previous 10-minute windows 

and one previous 15-minute window) were discarded from both the preictal and 

interictal analysis.  

‘Interictal’ was defined as all data starting 11 minutes after a seizure until 31 

minutes prior to the next seizure, which allows a one-minute buffer for uncertainties in 

the start/stop times of the seizure. We note that some research has shown that the 

preictal state may extend beyond 30 minutes [81], [82], so this definition is conservative 

and may not capture all differences. We calculated an ‘interictal’ feature window for 

every consecutive epoch (i.e. every 30 min for the 30-min feature window; every 10 min 

for the 10-min feature window). 
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There were other limited circumstances that we excluded from analysis. To ensure 

that seizures were evaluated independently of other seizures, such as when multiple 

seizures occur sequentially, we redacted preictal observations falling within peri-ictal 

extent (11 min postictal or 31 min preictal) of other seizures. Further, we also redacted 

any observation that overlapped with periods of incomplete or missing data, which could 

result from gaps within a file or from a file’s end. Finally, considering our modifications to 

the HFO detector, any data observation overlapping with the first 10 minutes of a given 

data file was also redacted, as HFOs are not detected for the first 10 minutes. 

Logistic regression model: We used a logistic regression model to classify 

preictal versus interictal data. Logistic regression determines the probability that given 

data is from a specific labeled class, and has been used in seizure prediction studies 

previously [111]. It also has the advantage of allowing us to analyze the relative 

contributions of each feature, rather than being a ‘black box’ approach. We trained 

models for each of the three feature windows (10, 15, 30 min) using 2/3 of the data and 

then testing on the remaining 1/3.  This process was cross-validated 10 times for each 

feature window by randomly-selecting different interictal and preictal data, and re-

running the training and testing step, for a total of 30 models per patient. Random 

selection, rather than chronological, was used because of the limitations of this dataset: 

unlike in the Neurovista dataset that had months for the recordings to stabilize, [112] our 

data is limited to 2 weeks of inpatient monitoring. This unavoidably leads to some 

variability over time due to various factors such as medication taper, sleep disturbances, 

and the settling of electrodes [112]–[114]. Here, we used random selection to reduce 
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the influence of these factors on overall model performance, but this also may reduce 

the effectiveness of the model.  

In order to facilitate the models helping to determine which coefficients were most 

useful in forecasting seizures, we used LASSO logistic regression [111], [115], [116] to 

create the predictive models used in our study. Specifically, in Matlab we used the 

lassoglm function, with the following general syntax: lassoglm(XTrain, yTrain, 'binomial', 

'CV',  k), where XTrain is the feature vector, yTrain is a binary vector with ‘0’ for interictal 

and ‘1’ for preictal, and k is chosen as the number of seizures within the training data. 

This function inherently cross-validates the trained model based upon the number of 

seizures k, which reduces overfitting. In general, LASSO introduces a penalty on the 

absolute value of the coefficients, and optimizes the model by iterating through different 

penalty parameters to find the lowest error, while removing coefficients that have 

minimal effects [115]. Thus, one outcome of the training step is to identify which 

features were the most important for identification of the preictal state. 

Assessing predictive performance: Each cross-validation iteration tests whether 

the predictive model can correctly classify novel preictal versus interictal data. We 

computed the ROC curve for each iteration, then computed the arithmetic mean of all 

the areas under the curve (AUC) across all ten iterations. A random predictor would 

have an AUC of 0.5, while a successful predictor should have an AUC higher than 0.5. 

We chose a nominal threshold of 0.6 to show the minimal improvement above 0.5 that 

would be meaningful. However, that threshold is subjective so we then tested the 

significance of each AUC using bootstrapping by randomizing preictal and interictal 
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labels (n=1000). The statistical significance of these average AUC was determined by 

taking the harmonic mean of the bootstrap p-values, [117] a procedure used in meta-

analysis to combine p-values from multiple tests. Successful tests were those in which 

the average AUC was ≥ 0.6 and p < 0.05. We note that in clinical practice an AUC of 

0.6 might be difficult to implement successfully on its own; however, it is comparable 

with prior seizure prediction work in standard EEG [12], [58], [62], [104], [105].   

Results 

Our heterogeneous patient cohort was comprised of individuals with a variety of 

ages, clinical etiologies and pathologies, and seizure foci. Out of 32 original patients in 

our database, four patients (UMHS-0037, -0038, -0042, -0047) were excluded either 

because of insufficient recorded seizures or undefined seizure onset zones. One patient 

in particular (UMHS-0022) had seizures with no HFOs prior to onset; this patient was 

also excluded, which left a total of 27 patients remaining for further analysis. Across 

these 27 patients, we detected more than 10 million HFOs across over 190 total days of 

intracranial EEG recordings. Over 210 seizures and 3,800 hours of interictal data 

(average of 8 seizures and 141 hours per patient) were used to train and test our 

classification models.  

Comparison of test AUC values: We first assessed the general responses across 

all cross validation models in all patients. Over the 27 patients, with 30 models each 
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(810 total), the model successfully converged to a solution in 403 instances (49.8%). 

The non-converging solutions are easily identified because all coefficients for HFO 

features are 0, and it is obvious that the model could not be used. In such cases, we 

conservatively assigned them a testing AUC value of 0.5 (and a bootstrap p-value equal 

to 1) – the same performance as a random predictor. The remaining patient models 

were composed of linear combinations of HFO rate features. As shown in the histogram 

of Figure 8, the distribution of test AUC values for these models overall showed 
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FIGURE 8: Distribution of test AUC values for tested models.This histogram of testing AUC values, 
computed for all tested models individually over all patients and feature windows, is skewed toward 
predictive performance that is better than random chance, i.e. values higher than 0.5. 
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significant variability and spread from 0.5 (AUC test - maximum: 0.97, minimum: 0.024, 

median: 0.64). The skew of this distribution toward values greater than 0.5 suggests 

that a significant portion of models that used HFO features could perform better than 

random chance at identifying the preictal period. 

We evaluated the consistency and reliability of this result within patients by 

determining if its average test AUC was at least 0.6 and if the average bootstrapped p-

value was < 0.05. These values are shown with statistical significance noted in the bar 

plots of Figure 9. We found 10 out of the 27 patients had a significant response in at 

least one of the feature windows. We denote these 10 patients as ‘responders,’ and 

their average predictive response was robust and consistent. The presence of this 

subset of patients in our cohort suggests that there are measurable changes in preictal 

HFO rate preceding epileptic seizures that deviate from interictal trends. This finding 

shows that HFOs can act as a temporal biomarker of seizure onset in some patients.  

Within the responder group, 4 were significant in only one feature window, while the 

rest had multiple. We compared the three windows (10, 15, 30 min) and found no 

evidence that the performance of one window was better than any other - either by how 

frequently it was significant in these patients, or by how high its overall performance 

was (Chi-square test: p-value = 0.61; Kruskal-Wallis test: p = 0.737). All responders and 

their significant windows are identified in Figure 9 and in Table 2. The p-values and 

associated asterisks indicating statistical significance in Figure 9 were based on 

individual bootstrap tests and not corrected for multiple comparisons.
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FIGURE 9: Bar chart of average test AUC values by patient and feature window. 10 individual responder patients have significant predictive performance 
(average test AUC >= 0.6, significant average bootstrap test p-value < 0.05) in one or more feature windows. The statistical significance of the bootstrap 
test per feature window is indicated with asterisks: *, **, ***; p = < 0.05, < 0.01, < 0.001 respectively.  Note that the significance is based upon how likely 
that patient’s data could produce the given AUC by random chance, not whether the magnitude of the AUC itself is high. 
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Significance of responder predictors: We investigated which features contributed 

to the significant predictive response observed in responder patients. Overall, both the 

combination and relative magnitude of HFO features in responder models varied 

significantly between patients, feature windows, and even between different cross-

validation runs. Considering this variability, we could not evaluate feature importance 

directly by the raw coefficient values that resulted from LASSO logistic regression. 

Instead, we calculated how often a given feature was included among models - 

specifically, how often its corresponding coefficient was non-zero. In this manner, we 

considered the most commonly used features to be the most important to differentiating 

the preictal state from other interictal observations - whether its associated output 

coefficient was positive (which would indicate increased likelihood of an imminent 

seizure resulting from an increase in the feature's value) or negative (i.e. decreased 

seizure likelihood from a feature's increase). These frequencies of non-zero model 

coefficients per feature are shown by feature window in Figure 10, and are sorted in 

order from most to least common within responder models. Though we did not evaluate 

feature magnitude directly, we note that the medians of all responder SLOPE-SOZ 

features by patient and feature window were all positive, which reinforces our prior 

findings that gradually increasing HFO rates anticipate seizure onset [109].  

While there were some observed differences in which features were the most 

common between window durations, there were no statistically-significant differences in 

feature frequency across the three feature windows (Kruskal-Wallis: p = 0.64). In terms 

of the most important features, the linear slope of HFO rate in the SOZ (Slope-SOZ) 
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was most important in both the 30 and 15 minute windows. Also common among 

important features were those computed from cHFO rates in OUT channels – channels 

that might be traditionally considered as less involved in pathological brain networks. 

Yet, there were no statistical differences in frequency between SOZ and OUT channel 

features (Rank-sum tests: p = 0.34, = 0.24, = 0.42 for 30, 15 and 10 minute windows 
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FIGURE 10: Relative importance of rate features in responders. Bar chart showing the relative frequency 
of each rate feature for only significant responder models. The features of HFO rate most important to 
discerning the preictal HFO response in responders are ranked in descending order (top to bottom) 
according to how often their respective model coefficients were non-zero for a given feature window. 
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15 minute feature windows. Also important were features in OUT channels, a novel finding that suggests 
HFOs outside epileptic tissue could still be involved in the process of seizure-generation. 
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respectively), even though SOZ features were highest ranked across feature windows, 

with an average cumulative frequency almost 14% greater than that of OUT channel 

features. This suggests that HFO rates could be used to identify the preictal state 

regardless of their location.  

Clinical factors of responders: Considering the clinical outcomes of responders, 

four were ILAE class I, two were class II, there was one class III, and the others were 

not resected. Comparing various clinical factors, there was no statistical evidence for 

differences in the composition of responder patients compared to the rest of the cohort. 

The ratio of temporal to extra-temporal seizure foci in responders was similar to other 

that of other patients (Fisher exact test: p = 0.68), and while there appeared to be a 

difference in the pathology of resected responders favoring gliosis, this was not 

significant in comparison to the rest of the cohort (Fisher exact test: p = 0.14). Despite 

lacking a clinical factor to differentiate this group from the rest of the population, based 

on our results, we estimate the relative proportion of responders in a given population is 

19-55% of patients (95% binomial confidence interval with a test sample of 10/27), 

which demonstrates that patients with potential for significant HFO rate predictive 

performance could comprise a substantial portion of a large clinical cohort.  

Discussion 

In this first-of-its-kind study, we combined advanced automated HFO detection with 

the intracranial data of a large clinical cohort to investigate the potential use of high-

frequency oscillations in seizure prediction. Across patients, we found significant 
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variation in the ability of time-varying properties of HFO rate to discern a preictal state. 

After applying a statistical benchmark to the average predictive performance of all 

models across our cohort, a subset of patient responders was identified that had 

consistent predictive performance better than random chance. The identification of 

these 10 individuals represents a novel finding and is our study’s most important result. 

It provides firm support that high-frequency oscillations can function as a temporal 

biomarker of seizure onset, and additionally gives preliminary evidence that seizure 

prediction using HFOs is not only possible in a clinical context, it can hold significant 

potential for certain patients.  

Another important outcome is the identification of which HFO rate features are the 

most useful. Ranked by their frequency in responder models across multiple windows of 

time, the most important predictive features of HFO rate included linear slope, variance, 

and the first quartile cHFO rate within the feature window. The most common feature 

was the linear slope, which measures gradual changes in HFO rate (either increasing or 

decreasing), suggesting that these changes are centrally important in determining if a 

seizure is imminent. One surprising finding was that even HFOs outside the SOZ were 

useful features.  Note that it is not possible to compare relative magnitude of these 

feature coefficients directly because of the considerable model variability between 

patients, feature windows, and cross-validation runs. We analyzed the 10 responders 

and found that three of them had clinical situations in which the OUT channels were 

likely to be pathological. One patient had a known secondary seizure focus not included 

in the official SOZ (UMHS-0026), while another had high HFO activity in a non-resected 
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hippocampus that was likely dual pathology from a parietal lesion (UMHS-0040). 

However, the OUT features were not restricted just to those patients, and thus our 

finding of predictive value of HFO features outside the SOZ is an intriguing finding. This 

result suggests that HFOs even outside the SOZ provide important information on 

identifying impending seizures.  

The test AUC values of responder patients we report are within the ranges 

presented in several seizure prediction studies, notably Brinkmann et al. 2016, Karoly et 

al. 2017, and Kuhlmann et al. 2018 [63]–[65]. There is one caveat to using the AUC 

metric in seizure prediction, as the inherent imbalance of interictal and preictal data can 

increase the reported specificity. In order to compare our work with other studies, 

however, this was an acceptable limitation for our analysis. While no prior work has 

evaluated HFOs for seizure prediction, there is evidence for a ‘preictal state’ [81].  HFOs 

have been shown to have different signal features [56] and changes in rate 30 minutes 

before seizures [109]. Further, some studies have shown distinct changes in high-

frequency activity preceding seizure onset; some have also suggested that HFOs could 

be linked to seizure-generating mechanisms [74].  

Despite our positive result, it must be noted that our overall methodology has a 

number of inherent constraints that limit our findings from being more widely applicable 

to seizure prediction in general. First, this analysis was based upon processing several 

minutes of data at a time (10, 15 or 30 minutes) rather than analyzing features of 

individual HFOs. There are a wide range of HFO features that could be incorporated 

into future prediction algorithms. Next, we note that ‘true’ seizure prediction would 
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involve choosing a specific algorithm and testing accuracy prospectively, which was not 

done here. Second, this method requires HFOs to be present and enough seizures to 

develop a predictive model; five of our cohort of 32 did not meet this standard.  Finally, 

as stated before these data are limited to only 2 weeks immediately postoperatively 

during varied medication changes, which is known to be insufficient to have consistent 

EEG signals and sometimes even atypical seizures. Several of our patients had 

inconsistent results, but with so few seizures it is impossible to predict whether this 

would stabilize to an effective solution with more data. A much longer dataset under 

standard living conditions would be necessary to develop robust algorithms, but such 

data are not physically possible at present. Future work with a larger dataset could also 

incorporate additional features of the HFOs themselves (e.g. signal features such as 

frequency data), as well as previous prediction algorithms using standard EEG. This 

type of synergistic analysis on larger datasets could have much greater chance at a 

clinically-realizable seizure prediction algorithm.  

Conclusion: Our results show that HFOs can function as a temporal biomarker of 

seizure onset. We show that changes in the HFO rate are capable of identifying the 

preictal state up to 30 minutes before a seizure in some patients. As a preliminary 

study, our findings are a foundation for future work pursuing individualized seizure-

specific prediction efforts, which we envision could eventually function as a tool inside 

advanced implanted neuromodulation devices that utilize patient-specific and seizure-

specific prediction methodologies. Advancement of this HFO seizure prediction 

framework, however, will require the availability of many chronic high-sampling rate 
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intracranial recordings. While this technology does not yet exist, recent technological 

improvements have brought it closer to realization - which is sufficient impetus to further 

investigate HFOs both as a temporal biomarker of epilepsy, and as a potentially 

powerful predictor of epileptic seizures.  
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Chapter IV: Signal Characteristics of Preictal High-Frequency Oscillations in 
Refractory Epilepsy 

Abstract 

Objective: High-frequency oscillations (HFOs) have become an important spatial 

biomarker of epileptic tissue and epilepsy in general. HFO signal features vary by 

patient, and recent evidence shows that HFO rates change in time prior to seizure 

onset; both are findings with relevance to patient-specific seizure prediction. Still, HFO 

signal features have never been evaluated in the context of seizure prediction. Here we 

analyze time-varying properties of both HFO rates and signal features to fully 

investigate the consistency of the preictal HFO response in a large clinical cohort, and 

to understand additional contributions of signal features. We also highlight the practical 

application of HFOs to seizure prediction with an implementation of a seizure advisory 

system. Methods: We analyzed the HFOs of 27 patients with refractory epilepsy who 

were being evaluated for resective surgery. We characterized changes in HFO rates 

and signal features over time, and assessed their preictal and interictal differences 

using cross-validated logistic regression models, whose predictive performance we 

compared the AUC metric. The implementation of our seizure advisory system used 

these models to generate seizure probabilities through continuous time, and applied two 

iteratively-determined probability thresholds to generate three discrete seizure warning 

levels (low, medium and high) in time. The performance of the advisory system was 
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assessed by comparing the percentage of time spent in each warning level, the 

percentage of seizures correctly identified in each warning level, as well as the average 

warning time until a seizure occurred. Results: There were 13 ‘responder’ patients out 

of 27 with significant preictal HFO characteristics. Evidence that signal-based HFO 

characteristics could improve prediction performance was overall inconclusive; but for 

some patients the magnitude and consistency of prediction performance with HFO 

signal features was significantly increased. The performance of the seizure advisory 

system was within the range of several other notable prediction studies using this 

method. Significance: These findings further reinforce and expand evidence that HFOs 

are temporal biomarkers of seizure onset. They also demonstrate that HFO signal 

features can add meaningfully to prediction for some patients. While the seizure 

advisory system was presented chiefly as a proof-of-concept, its encouraging result in 

many patients is a powerful demonstration of the potential utility of HFOs within patient-

specific seizure prediction. 

Introduction 

Approximately one third of patients with epilepsy do not respond to medication [23]. 

For these individuals, invasive resective surgery is often the only recourse to achieve 

lasting seizure freedom. Yet many still experience seizures after surgery, while others 

are not even candidates for resection [29]. Given their unmanaged seizures, these 

individuals represent a sizeable patient population whose quality of life could benefit 

significantly from an implanted therapeutic device capable of accurate seizure 
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prediction. Though these devices do not currently exist, their eventual clinical realization 

has been a driving motivation for many seizure prediction researchers, which has 

resulted in numerous milestone achievements over the past twenty years [104]. 

The field of seizure prediction is at a crossroads, however. With recent 

advancements in our understanding of seizure mechanisms, it is becoming more 

evident that seizure prediction in actual clinical practice will require patient- and seizure-

specific adaptations [12], [62]. This results from the identification of individual-specific 

factors that can influence seizure mechanisms; endogenous examples include the 

individual variation of diurnal and multiday rhythms [101], the presence of multiple 

dynamical seizure types in a single individual [13], [103], and the phenomenon of 

seizure clustering [62]. So while the direction of future work in seizure prediction is 

clear, the technology to realize its clinical translation has lagged behind [62], as there is 

still only one chronic dataset currently available for prediction research, and it was 

created nearly ten years ago [66]. Perhaps more importantly, however, a reliable 

electrical biomarker of seizure onset has yet to be identified, let alone a more useful 

patient- and seizure-specific indicator [12], [62]. 

Seizure prediction, like clinical interpretation of EEGs, is dependent upon the 

available data and how they are interpreted. Historically, these data have been limited 

to EEG signals below 100 Hz. Most EEG devices sample in this range, and clinicians 

have learned to read EEG accordingly. In fact, one study demonstrated that higher 

resolution EEG did not change clinical interpretation at all: 100 Hz was clinically 

indistinguishable from 1000 Hz [118]. Nevertheless, these electrical biomarkers of 
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epilepsy have been extremely useful in diagnosing, managing and treating the disease 

[21]. However, the introduction of computational algorithms alongside high resolution 

hardware affords a new possibility for identifying signals that clinicians cannot see. The 

discovery of high-frequency oscillations (HFOs) - which occur more frequently in 

epileptic tissue - has aided surgical decision-making, [37] and has improved resective 

outcomes for some [39]. HFOs are now an established biomarker of epilepsy and 

epileptic tissue, but their clinical use was limited until only recently – when more 

sophisticated amplifiers capable of recording high-density low-noise EEG data were 

gradually installed at major centers around the world [42], [50]. Here, the clinical 

relevance of HFOs as a spatial biomarker was somewhat dependent on the technology 

that supported it. But given the mounting evidence that HFOs are highly correlated with 

epileptic tissue [43] along with the development of efficient automated detection 

algorithms and advancing hardware technology, in this study we argue the potential 

benefit of incorporating HFOs into the next generation of seizure prediction devices.  

As justification for this argument, there is recent evidence that HFOs also function 

as temporal biomarkers of epilepsy and imminent seizure onset [109]. There is also 

evidence (presented in the study of Chapter III) that HFO rates could be useful in 

seizure prediction, especially for certain individuals. In addition to HFO rates, various 

signal features of HFO waveforms also have documented temporal aspects, as it has 

been shown that HFO signal features 1) vary in time and location over long periods, 

exhibiting patient-specific patterns [114], 2) differentiate ictal periods from other times 

[119], and 3) differentiate the dynamics of two distinct seizure onset types [72]. Though 
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this evidence suggests a potential role for HFO signal features as possible patient-

specific and even seizure-specific temporal biomarkers, it is currently unknown if these 

measures are at all useful in seizure prediction. A thorough and robust evaluation of 

HFOs in this context, however, is not possible with current technology because no 

device exists that is capable of recording high-density intracranial EEG in a chronic 

ambulatory setting. Still, the identification of a reliable patient-specific pre-seizure 

biomarker would have great clinical potential.  

In this study, we attempt the first comprehensive study on how HFO features – 

including their rates – change over time. Conceived as a significant expansion of the 

ideas and analyses presented in Chapter III, this study directly addresses the 

considerations raised above by evaluating two main objectives: 1) to investigate 

whether HFO signal features add meaningfully to both the identification of preictal states 

and seizure prediction performance, and 2) to provide a practical demonstration of the 

clinical potential HFOs could have in patient-specific seizure prediction – which could be 

vital to the continued development of this novel temporal biomarker. 

Methods 

Many of the methods used in this study are the same as those used previously in 

Chapter III. As such, brief explanations of common methods and data will be provided, 

but for further detail, please refer to the previous chapter.  
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Patient population and data: Both this study and the study presented in Chapter 

III use the same intracranial EEG dataset, which was recorded from the monitoring 

sessions of 27 patients with refractory epilepsy during the years 2016 - 2018. All 

associated patient metadata is also the same (found in Table 2), except that patient 

UMHS-0034 now has a class III surgical outcome (outcome definitions can be found in 

[120]). All patient metadata for both studies is found in Table 2.  

Data analysis: Depicted in Figure 11, the general block process for the analysis 

presented in this paper differs from the previous study of Chapter III in only a few key 

steps. Whereas the analysis of the previous study used only HFO rate information to 

create predictive models (denoted hereafter as the ‘HFO rate analysis’ ) the predictive 

features in this study encompass both rate-based and signal-based HFO information 

(together referred to later as the ‘full HFO analysis’). Further differences between the 

studies are described below.  

TABLE 3: List of full HFO features. A list of HFO features descriptions and their abbreviations, as well as 
their meta-feature names, is provided below. Note that these features are computed independently for 
SOZ and OUT channel groups, which results in a designation of either XXX-SOZ or XXX-OUT for the 
meta-features listed in the last column.  

   Meta-feature operator: 

 Feature description: Abbreviation: 
Mean / Median / Std. Dev. / 

Skewness / Kurtosis 

Rate-based features: Number of HFO detections nDets Mean-nDets, … 

 Inter-detection interval detIdi Mean-detIdi, … 

Signal-based features: HFO Duration dur Mean-dur, … 

 HFO Amplitude * (dB) ampdB Mean-ampdB, … 

 Skewness of waveform skew Mean-skew, … 

 Kurtosis of waveform kurt Mean-kurt, … 

Mean / Std. dev. / Skewness / Kurtosis:: First derivative of signal (rectified) meanD1, … Mean-meanD1, … 

Mean / Std. dev. / Skewness / Kurtosis:: Second derivative of signal (rectified) meanD2, … Mean-meanD2, … 
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Mean / Std. dev. / Skewness / Kurtosis:: Teager-Kaiser energy meanTKE Mean-meanTKE, … 

Power spectrum estimate: Amplitude at peak frequency psePkAmp Mean-psePkAmp, … 

Power spectrum estimate: Peak frequency psePkFreq Mean-psePkFreq, … 

Mean / Std. dev. / Skewness / Kurtosis:: Power spectrum estimate meanPSE Mean-meanPSE 

Power spectrum estimate: Frequency at 25% energy freqPSEnrgQ1 Mean-freqPSEnrgQ1 

Power spectrum estimate: Frequency at 50% energy freqPSEnrgQ2 Mean-freqPSEnrgQ2 

Power spectrum estimate: Frequency at 75% energy freqPSEnrgQ3 Mean-freqPSEnrgQ3 

 

Automated HFO detection and HFO feature computation: To begin, the set of 

HFOs used in this study was identical to those used in the previous study, which 

facilitated later comparison of results between the two. Prior to automated detection, a 
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FIGURE 11: Schematic of overall data analysis workflow. After data acquisition, 1) HFO detection is 
performed. 2) HFO features are computed from newly detected HFOs: first, rate-based and feature-based 
computations take place, then continuous representations of these features are computed. Finally, meta-
features are computed for each of the three different feature windows using the statistical operators of 
mean, median, standard deviation, skewness and kurtosis. These meta-features are also described in 
Table 3 above. After 3) data selection, labeling and exclusion, 4) logistic regression is performed with 
training and testing data over a series of 10 randomized cross-validation runs. 5) Performance 
comparisons of resulting logistic regression models are made with AUC computations. 6) Using the 
predictive models of step 4, the models with the best training AUC as well as an average model made 
from all cross-validation folds are used in the seizure advisory system. This system functions by first using 
these models to determine the probability of a seizure in time, and by applying two iteratively-determined 
thresholds TH1 and TH2, the warning level in time (which can be low, medium or high) is then determined 
from the seizure probability.  
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set of 25 signal features was assembled that we hypothesized would capture important 

temporal variations in HFOs. Listed in Table 3 above, these signal features encompass 

linear and non-linear measurements of individual HFO waveforms in both the time and 

frequency domains. The signal features of all HFO waveforms were computed at the 

time of HFO detection (a process indicated in Figure 11 as ‘signal-based feature 

detection’); prior to this, each waveform was normalized to have unit amplitude, except 

for the computation of HFO amplitude (‘ampDb’ in Table 3), which was not normalized. 

The computation of the two additional rate-based HFO features is described in the next 

section.  

Computation of continuous HFO signal features: HFOs are discrete events, but 

seizure prediction algorithms in practice are evaluated continuously in time. Thus, it was 

useful to transform HFO features into approximations of a continuous process. In this 

study, the computation of these ‘continuous’ features was identical to the method 

detailed in the HFO rate analysis of Chapter III. The only difference was the number of 

inputs to this computation; in the previous paper only HFO rate was used, whereas here 

the 25 signal-based HFO features were used (shown in Table 3), as well as two rate-

based features (the number of detections ‘nDets’, and the inter-detection interval 

‘detIdi’). As such, aggregating HFOs by channel group (either SOZ or OUT channel 

groups) resulted in 54 continuous features.  

Computation of windowed meta-features: We evaluated temporal fluctuations in 

continuous HFO features by characterizing changes in their larger distributions in time 

across three different temporal horizons, or 'feature windows'; these were 30, 15 and 10 
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minutes in width. Though this computation was identical to methods of the previous 

study, here we used a slightly different set of statistical operators to compute the final 

‘meta-features’ that would serve as inputs to logistic regression. Shown in Table 3, 

these operators consisted of the mean, median, standard deviation, skewness and 

kurtosis; they were applied individually to all continuous HFO features across the three 

independent feature windows. Overall, this computation resulted in a total of 270 ‘meta-

features’ per feature window.  

Feature labeling and exclusion: In general, the data labeling and exclusion 

processes employed in this paper are identical to those detailed in the second paper: 

interictal labels were assigned in consecutive and non-overlapping intervals, while 

preictal observations consisted of the last feature window instance just prior to seizure 

onset.  

Logistic regression model: All meta-features were used as predictor variables in 

logistic regression. The LASSO logistic regression procedures used to train the 

predictive models of this study were identical to those used in the rates analysis of 

Chapter III; for details on this specific implementation, please refer to the corresponding 

methods section of Chapter III.  

Assessing predictive performance: We assessed the predictive performance of 

models trained by LASSO regression by averaging their corresponding test AUC values 

over all cross-validation runs. We also applied a bootstrap permutations test to all 

individual test AUC, which provided validation that observed values were statistically 
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different than the performance of a random predictor. Similarly to the test AUC, these 

bootstrap p-values were also averaged over all cross-validation runs using the harmonic 

mean, which has been recommended for averaging the p-values of multiple dependent 

tests [117]. As in Chapter III, we used nominal statistical criteria to determine 

‘responder’ patients: these individuals had at least one feature window with average test 

AUC ≥ 0.60 and corresponding average bootstrap p-values < 0.05. Finally, we used 

non-parametric statistical tests to compare responder and non-responder prediction 

performance. We also used these tests to compare the predictive performance of this 

study’s full-feature HFO analysis with the prior HFO rate analysis of Chapter III. Except 

when indicated, all statistical tests were corrected appropriately for multiple 

comparisons with the Bonferroni correction. 

Implementation of seizure advisory system: The functionality of our advisory 

system is based on notable past work [66], [69]. Those systems were designed to alert 

the user of seizure risk through time by displaying one of three discrete warning levels: 

low, medium, and high risk. In a general sense, the system operates in a continuous 

fashion through time, and for a given moment, it assesses the probability that a seizure 

will occur before its next update ( "!"($) ). It then determines the corresponding warning 

level ( &!"($) ) to be displayed by applying two thresholds ( 'ℎ#, 'ℎ$	) to the current 

seizure probability. In prospective or pseudo-prospective prediction (which describes 

prospective prediction methods using previously obtained data) these thresholds are 

determined and updated dynamically in time, as new information about previous 

seizures is obtained. If the number of seizure observations are limited – as they are in 
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this study – these thresholds are determined only once after all data are collected,  

though this can potentially weaken an outcome’s significance by introducing overfitting. 

Despite this, we chose the latter method of threshold evaluation for this study because 

of limited available data, and because of the original aim of demonstrating (and not 

proving) the potential of HFOs in practical seizure prediction. 

Working within the constraints of this latter threshold evaluation method, we still 

wanted to portray a comparison between what could be considered the advisory 

system’s best possible outcome and how it might actually perform in real-world settings. 

To show precedent in the literature for such a comparison, an analogous approach was 

used recently in [69].  

In this study, the approach with the ‘best possible outcome’, (referred to as the 

average model) was evaluated with knowledge of all data and seizures. Specifically, the 

probability of a seizure in time ( "!"($) ) was derived from the output of a single ‘average 

predictive model’ per feature window; this was created simply by averaging the 

coefficients of individual models over all 10 cross-validation runs. As each cross-

validation fold randomly selected training and testing data from the full temporal extent 

of a dataset, this ‘average’ model was thus likely trained on all seizures and data.  

The model selected to show more realistic real-world performance was simply the 

model with the highest training AUC per feature window, (referred to as the best-trained 

model hereafter). This choice of training AUC did not bias the advisory outcome with 

knowledge of how the model actually tested on held-out seizures and data, and so, 
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these models were effectively trained on only 2/3 of all data and seizures. Except for 

associated warning thresholds, which were optimized over all data, these advisory 

outcomes include performance for held-out seizures, which more closely resembles 

pseudo-prospective seizure forecasting.  

In the approaches of both average models and best-trained models, the model 

output used to form the seizure probabilities over the entire dataset was created by 

inputting all associated meta-feature data, which, for the purposes of the advisory 

system, were evaluated continuously in time in 1-minute intervals. These data were also 

subject to the same exclusion procedures as described before, though their 

computation did not require interictal and preictal labels. Once we determined the 

seizure likelihood in time as above, we iteratively optimized the warning thresholds ('ℎ#, 

'ℎ$) over a large range of values first by determining various performance metrics for 

each threshold pair (described further below). Optimal threshold pairs were then 

identified as those that satisfied the four following conditions: 

+#: maximize the number of seizures correctly identified in high warning  

+$: maximize the percentage of total time spent in low warning 

+%: the number of seizures identified per warning level must monotonically decrease 
going from high to low warning 

+&: the percentage of total time spent per warning level must monotonically 
decrease going from low to high warning. 
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Once the thresholds 'ℎ# and 'ℎ$ were determined as above, the warning level at 

time t –  which would last for a duration of one minute until the next probability update –  

was given by the following:  

&!"($, 'ℎ#, 'ℎ$) = -
0	(low), 													"!"($) < 'ℎ#
	1	(med), 'ℎ# ≤ "!"($) < 'ℎ$
2	(high) 'ℎ$ ≤ "!"($)													

		. 

We used a number of performance metrics to determine the warning thresholds as 

above, and to make final performance comparisons between patients and the two 

different advisory approaches. These included the number of seizures identified per 

warning level, where, for each seizure, the value of the warning level just prior to 

seizure onset was recorded; these values per warning level were then summed over the 

dataset to produce the total number of seizures identified per level. The percentage of 

total time per warning described in conditions +$ and +& above was calculated without 

redacted data. Lastly, we also compared the average prediction horizon for seizures 

correctly identified in high warning (which would constitute a true positive detection), 

which we defined as the duration of time spent in high warning just prior to seizure 

onset averaged over only all true positive detections.   
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Results 

Out of all patient models (810 in number), 387 successfully converged under 

LASSO regression (47.8%). Models that failed to converge with HFO features – either 

signal-based or rate-based – were conservatively assigned test AUC values of 0.5, and 

bootstrap test p values of 1. Of the 387 models that converged to a solution involving 

HFO signal features, there was significant variability in their predictive performance 

(HFO features: AUC test minimum - 0.032, maximum - 0.989, median - 0.651, 

interquartile range: 0.294 ).  

Average test AUC: We identified models with minimally significant predictive 

performance by applying the following criteria: AUC test ≥ 0.6 and bootstrap p value < 

0.05. This was also applied to average test AUC values as well as average bootstrap p 

values, which were averaged using their harmonic mean. These average test AUC 

values for each patient and feature window are shown in the bar plot of Figure 12.  With 

the statistical criteria above, we identified 13 ‘responder’ patients overall with significant 

predictive performance in at least one feature window; utilizing a 95% binomial 

confidence interval, this means that we could reasonably expect between 29.3% - 

67.0% of a larger patient population to be responders. 
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Average testing AUC by window width
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FIGURE 12: Bar chart of average test AUC values by patient and feature window. 13 individual responder patients have significant predictive 
performance (average test AUC ≥ 0.6, significant average bootstrap test p-value < 0.05) in one or more feature windows. The statistical significance 
of the bootstrap test per feature window is indicated with asterisks: *, **, ***; P < 0.05, < 0.01, < 0.001 respectively.  Note that the significance is 
based upon how likely that patient’s data could produce the given AUC by random chance, not whether the magnitude of the AUC itself is high. 
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Differences across feature windows: Considering the three different feature 

windows, there were 10 patients with significant average AUC in the 10 minute window, 

while 8 and 5 responders respectively had significant average AUC in the 15 and 30 

minute feature windows. There were no statistically significant differences among 

feature windows that would suggest a particular window was more frequently significant 

than any other (Chi-square test: P = 0.31).  

Comparing the performance of each feature window by the average AUC of 

significant responder models, the thirty minute window appeared to perform better than 

the 10 minute window (median AUC in 30 minute window: 0.806, 10 minute window: 

0.670), however, this difference was not significant after correcting for multiple 

comparisons (2-sided rank-sum test, P = 0.0280). There were, however, significant 

differences in the significance of the bootstrap test p-values across different windows 

(Kruskal-Wallis: P< 0.05): p-values in the 15 minute window were significantly different 

(lower) from those in the 10 minute window (2-sided rank-sum test, P<0.05).  

Comparing predictive performance of HFO features versus rates: We 

compared the predictive performance of this study’s full HFO models with the results of 

models from the study in Chapter III. Considering either the entire patient cohort or even 

just the group of responder patients separately, there were no statistically significant 

differences or improvements in the magnitude (average test AUC) of prediction 

performance between the HFO rates analysis and the full HFO features analysis 

presented in this paper. Still, this study saw some improvement over Chapter III’s 
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results in the bootstrap p-values that were used to assess statistical certainty of these 

average test AUC. This is described below. 

To analyze how the full HFO features analysis could have improved the statistical 

certainty of better-than-chance AUC, we made a number of comparisons between the 

associated average p-values of the bootstrap test between the HFO rates analysis and 

the full HFO analysis presented here. Considering the entire cohort, median p values for 

the full HFO features analysis were qualitatively lower in the 15 minute feature window 

than for the rates analysis (Full HFO analysis: median bootstrap p value = 0.0025, HFO 

rate analysis: median bootstrap p value = 0.0190). We tested whether the full HFO 

features analysis could improve the statistical significance of patient-wise predictive 

performance when compared to previous HFO rates models. Applying a 1-sided sign 

rank test, bootstrap p-values for the full HFO analysis in the 15 minute feature window 

were nearly less than those for the HFO rates analysis, but this was not significant after 

correcting for multiple comparisons (Signed-rank right-tailed test: p=0.0235). 

Considering the performance of responder patients only (grouped independently by 

study), bootstrap p-values for the 15 minute feature window were again qualitatively 

lower than that of the rates analysis (Responders: Full HFO analysis: median bootstrap 

p-value = 0.00089, Responders: HFO rates analysis: median bootstrap p-value = 

0.00138), yet statistical comparisons of these values were also not significant (Rank-

sum right-tailed test: p=0.0652). Similar comparisons in other feature windows were not 

close to reaching statistical significance.  
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Important features: The choice of a machine learning tool like LASSO regression - 

rather than a black-box approach like deep learning - not only provides robust 

classification ability, but also yields an understanding of which features contribute the 

most to an observed trend, which potentially affords insight into underlying motivating 

mechanisms. Given the increased number of predictors in this study (270 in total) 

relative to the same number of seizures available as before, one of our primary 

concerns was model overfitting. To verify that the regularization of LASSO was 

functioning as intended, we analyzed on average how many variables were eliminated 

with LASSO to produce its final sparse models.  

Considering first all models that converged to a solution using HFO signal features 

(387 in total), the number of non-zero coefficients (variables) used in these models was 

on average significantly less than the total possible number of variables available 

(Number of non-zero coefficients in all convergent models: 30-minute: 6.72 / 270, 15-

minute: 6.96 / 270, 10-minute: 7.90 / 270) – this beneficially resulted in an average of 

97.3% of all possible predictors being eliminated with LASSO in these models. Further, 

the average number of variables in significant responder models was approximately one 

non-zero coefficient less (Responders: number of non-zero coefficients: 30-minute 

feature window: 6.08 / 270, 15-minute: 5.84 / 270, 10-minute: 6.71 / 270).  

One way to understand the importance of a given feature is to compare how 

frequently it was used across all models, that is, how often it was non-zero in models 

that converged. By this measure, the top 20 most important features to significant 

responder models are shown in Figure 13. As depicted in this figure, among the most 
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important features by frequency were those related to HFO rate (i.e. meta-features 

based on the number of detections – ‘nDets’ , or the inter-detection interval – ‘detIdi’). In 

terms of HFO signal features, meta-features based on frequency-domain measures like 

the amplitude at peak frequency in the power spectrum estimate (‘psePkAmp’) were 

among the most frequent. As before with the rates analysis, features in OUT channels 

were among the most important by their frequency, especially for the 30 minute feature 

window, where, with the exception of ‘Std-nDets-SOZ’ in 3rd place, the first eleven 

highest ranked features were computed from OUT channels. 

  

FIGURE 13: Relative frequency of features in significant responder models. The meta-features of 
HFO rate most important to discerning the preictal HFO response in responders are ranked in 
descending order (top to bottom) according to how often their respective model coefficients were 
non-zero for a given feature window. Overall, rate-based features such as the number of 
detections were seemingly most important; features in OUT channels were also significant, which 
is a novel finding that suggests channel location might not be vitally important in determining a 
preictal response in these responders.   
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We also assessed feature importance by directly comparing the magnitude of the 

coefficient values themselves. To make this possible, we first scaled ‘nDet’ features by 

the appropriate number of channels in SOZ or OUT groups by patient. Next, we used 

the median absolute deviation of all coefficients across the cohort (per feature window) 

to rescale individual coefficient values to unitless quantities. Shown in Figure 14, we 

compared these scaled values in significant responder models, and ranked their overall 

importance by feature window with their absolute value. As before with feature 

frequency, the number of HFO detections (nDets) was ranked highly, while signal-based 

FIGURE 14: Relative magnitude of important features in significant responder models. The magnitude of 
meta-features of HFOs most important to discerning the preictal HFO response in responders are 
ranked in descending order of their absolute value (top to bottom). One signal feature above all others 
was most important: the amplitude at peak frequency of the power spectrum estimate (psePkAmp). 
Rate-based meta-features were also important, as before with relative feature frequency. Overall, OUT- 
channel meta-features were significantly important again, especially dominating higher rankings of the 
30-minute feature window.   
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meta-features involving the amplitude at peak frequency of the power spectrum 

estimate of HFO waveforms (‘psePkAmp’) in particular were the highest-ranked signal 

feature in general. The importance of features in OUT channels was further reinforced, 

especially again for the 30 minute feature window, where OUT channel meta-features 

were top-ranked in the first five positions.  

Seizure advisory system results: The purpose of our seizure advisory system 

implementation was to translate the somewhat abstract conclusions of the average AUC 

results to a more meaningful and practical demonstration of their potential relevance to 

a physically realizable system. Similar to [69], we implemented the advisory system in 

two different ways so that it would give 1) an idea of possible predictive performance, 

versus 2) the actual predictive performance of the system when tested on held-out data. 

In Figure 15, a detailed example of the system’s output for patient UMHS-0028 for both 
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average and best trained models is visualized, while advisory output for average and 

best-trained models for all responder models is shown in Figure 16. 
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FIGURE 15: Example of seizure advisory system output. A detailed visualization of the seizure advisory 
system’s output is shown for patient UMHS-0028, a responder with significant average AUC in all three 
feature windows. Seizures are denoted with red diamonds, while preictal periods are visualized with red 
bars. Average model : The second plot row represents the warning system’s output for the average 
model of UMHS-0028 in the 15-minute feature window, which was created by optimizing the thresholds 
TH1 and TH2 in the seizure probability plot above this in the first row, where these probabilities were 
determined by the average model. The same plots are shown in the third and fourth rows, Best-trained 
model: where seizure probabilities were determined instead by the best trained model. In the third and 
fourth plot rows specifically, seizures trained on are represented by blue diamonds, while test seizures 
that were held-out are denoted with red diamonds. In this patient, the average model outperformed the 
best-trained model; both had similar sensitivity but the average model had higher specificity (fewer false 
positives).  
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FIGURE 16: Advisory system output for select responder windows. Similar to Figure 15, visualized 
above are the advisory system’s results for several responder patients and various feature windows. 
Note that these patients include any responder whose average and best models converged to an 
optimum pair of threshold values; for some responders however, the thresholds did not converge and 
that is why such results are not presented above. Overall, in some patients the average model 
performed better, while in others the best-trained model performed just as well, though with higher 
specificity. There were very few instances, however, of the sensitivity of the best-trained models 
exceeding the sensitivity of average models. Again, for average models, red diamonds represent only 
seizures while for best-trained models, blue diamonds represent training seizures, while red diamonds 
represent test seizures that were held out in training.   
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In Table 4 below, we compare the advisory performance of average and best-

trained models for significant responder models. For average responder models, the 

median percentage of time spent in high warning ranged from 13.6% (15 minute 

window) to 17.2% (10 minute feature window). The median performance of the best 

trained responder models was even better considering this metric – ranging from 3.3% 

(30min) - 5.8% (15 min). Next, considering the percentage of seizures correctly 

identified for each warning level, the median values of average models were slightly 

higher (qualitatively) than the best trained responder models; these values ranged from 

72.7% (10min.) to 88.9% (30min) (Best-trained models: 10min.: 56.0% 30min.: 80%). 

Considering seizures identified in low warning (which are essentially false negatives), 

the average models performed better than the best trained models, with 0% false 

negatives for all feature windows. Finally, we consider the average warning time in high 

level before seizure onset occurs (i.e. its prediction horizon). In average responder 

Significant responder models: median performance

Feature window: 30min 15min 10min

Warning level: Average model:

Time in level 
(%)

Seizures 
identified (%)

Avg. 
prediction 

horizon (min.)

Time in level 
(%)

Seizures 
identified (%)

Avg. 
prediction 

horizon (min.)

Time in level 
(%)

Seizures 
identified (%)

Avg. 
prediction 

horizon (min.)
High 13.7% 88.9% 15.2 13.6% 87.3% 11.0 17.2% 72.7% 7.8
Med 25.5% 11.1% - 25.0% 10.6% - 30.1% 10.0% -
Low 55.3% 0.0% - 62.1% 0.0% - 52.2% 0.0% -

Best trained model:

Time in level 
(%)

Seizures 
identified (%)

Avg. 
prediction 

horizon (min.)

Time in level 
(%)

Seizures 
identified (%)

Avg. 
prediction 

horizon (min.)

Time in level 
(%)

Seizures 
identified (%)

Avg. 
prediction 

horizon (min.)
High 3.3% 80.0% 10.6 5.8% 75.0% 8.6 5.0% 56.3% 3.3
Med 18.9% 20.0% - 28.0% 20.0% - 21.4% 16.7% -
Low 77.8% 0.0% - 58.3% 5.0% - 75.7% 10.6% -

TABLE 4: Responder advisory performance comparisons. Median advisory performance for average 
and best-trained models in all feature windows is reported below for the three performance metrics 
compared: the percentage of time spent in a level, the percentage of seizures correctly identified per 
level, and the average prediction horizon in high warning. In general, the sensitivity of average models 
was higher than best-trained models, while this was reversed for prediction specificity. Average 
prediction horizons were significantly longer in average models. (P< 0.05, 30 and 10 min. features 
windows). 

Significant responder models: median performance 

Feature Window: 

!
!"

 : 
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models, this ranged from 7.8 minutes (10minute feature window), to 15.2 minutes (30 

minute feature window). For the best trained models, these values had a range of 3.3 to 

10.6 minutes (10, 30 minute feature windows); these values for average models were 

significantly longer in duration than those for the best trained models (Rank-sum test: 30 

min: P <  0.05, 10 min: P < 0.05).  

Discussion 

We analyzed the temporal characteristics of HFO signal features to evaluate their 

potential contribution to enhanced seizure prediction performance relative to that of 

HFO rates alone. In general, the data and results presented in this study offer further 

supporting evidence that HFOs can act as temporal biomarkers of epilepsy.  

Comparing HFO rates with features: The number of responder patients increased 

by three individuals in this study to a total of 13. Despite these additional responders, 

however, the use of HFO signal features did not result in significant systematic cohort-

wide improvements in seizure prediction performance, as reflected in the average test 

AUC metric. Yet, there were qualitative indications - for the entire patient population and 

separately for responder patients - that the certainty or confidence of this test 

performance against random-chance prediction was increased by HFO signal features. 

While narrowly missing statistical significance, comparisons of this model certainty with 

that of HFO rates nevertheless demonstrated that HFO signal features have the 

potential to improve HFO-based seizure prediction. For certain responder individuals 
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like patient UMHS-0028, the increases in prediction performance resulting from the use 

of HFO signal features were considerable.  

Despite the limitations of this study's short-term intracranial monitoring data, the 

predictive performance of our HFO-based classification algorithm for certain patient 

subsets was reasonably within the range of several notable seizure-prediction studies 

that each used the more ideal chronic Neurovista datasets. The top-ranked 

classification algorithm in the Kaggle seizure prediction contest of 2016, for instance, 

achieved an overall AUC of 0.81, which reduced to 0.76 when tested with held-out data 

[64]. Prediction studies conducted since the 2016 competition have achieved similar 

performance, including one where the range of average AUC by patient was 0.69 - 0.90 

[65]. Given the differences in the data and methods used, it is difficult to directly 

compare our results with these studies. Still, there were five responder patients with 

average test AUC values over 0.80 - which suggests that HFO-based seizure prediction 

performs similarly.  

As in our rates analysis of Chapter III, we also analyzed which HFO features were 

the most important to identifying preictal periods. In responder models, the most 

common features tended to be rate-based, while a varied mix of linear and nonlinear 

signal features in both time and frequency domains were also common. Ranked by the 

absolute value of their magnitude, the features that contributed significantly to 

identifying the preictal state in responders were also rate-based, but one signal feature - 

the amplitude at peak frequency of the power spectrum estimate (abbreviated 

‘psePkAmp’) - emerged as top-ranked. As in our rates analysis of Chapter III, meta-
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features computed across OUT channels were highly ranked, which again suggests that 

HFOs outside the SOZ might be linked to preictal states – this has limited but intriguing 

support in the literature [121].  

With our implementation of the seizure advisory system, we put the positive 

predictive performance of responder models into the context of ‘pseudo-prospective’ 

seizure prediction. For average and best-trained responder models, the percentage of 

time spent in high warning was within the performance reported by the one true 

prospective study (which, for their responder patients, ranged from 30% - 3%) [66]. Next 

considering the percentage of seizures correctly identified for each warning level, all 

values reported for average and best trained responder models were within range of the 

same values reported in a recent pseudo-prospective study using the NeuroVista data 

[69]. In general description, the average models had better sensitivity, and were better 

at identifying seizures in high warning when compared to the best trained models. 

Conversely, the best trained models tended to be more sensitive, with higher 

percentages of time spent in low warning and less false positives. These same 

relationships between average and best trained models were also similarly reflected in 

the performance of the two evaluation methods detailed in [69] – the performance of 

their advisory system was more sensitive when trained with all data, and it was more 

specific when the probabilities were evaluated pseudo-prospectively (or, without 

knowledge of some seizures, as was emulated in our best- trained method).  

These encouraging results were achieved with more limited data. In contrast to the 

study discussed above [69], however, it is important to note here that our advisory 



 

  87 

system cannot truly be considered pseudo-prospective, as the predictive models used 

to generate the probability of a seizure in time were those that had been either cross-

validated over the entire dataset (as in the average models) or those that were trained 

on seizures that could have originated from any particular time within the dataset; and 

thus the division of data for another held-out test set was unrealistic given that the 

number of seizure observations was already very small. As such, the results of our 

advisory system likely represent a 'best possible' outcome (average models) or a more 

realistic outcome (best trained models) because training data (along with test data) 

generated the system's output - and the corresponding average training AUC from 

these data was often extremely high (near 0.90 or above) for many patients (data not 

shown).  

Still, this approach of using the full extent of available data in time was recently 

used in another seizure prediction study based upon the chronic NeuroVista data [69]. 

This 'best-possible' method was presented as a way to discern an upper bound on 

predictive performance by patient - which is essentially a model's predictive potential. 

This bound was then compared with the more realistic performance of a true pseudo-

prospective prediction algorithm, which allowed the authors to estimate potential gains 

in predictive performance that future work could mine with the aid of better methods or 

more ideal datasets. Here, we emulate these methods, because we have limited data, 

but still must show the value of HFOs in seizure prediction. Given that the requisite 

high-density iEEG dataset of sufficient duration does not currently exist, the results of 
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our seizure advisory system thus stand as a proof-of-concept only and are not intended 

as validated evidence of actual pseudo-prospective seizure prediction performance.  

Another concern with the methods of this study could be that of overfitting, which 

can result when too many variables are used to characterize too few observations. 

Though the number of predictors in this study increased to a total of 270, we attempted 

to account for this increased number of variables by the use of LASSO methods: the 

resulting reduction in variables was evident considering that only an average of roughly 

7 out of 270 variables were used in most predictive models. Future work using HFO 

signal features could better account for the reduced number of seizure observations 

relative to high numbers of predictors and interictal baseline data by using more 

advanced forms of dimensionality reduction, or even by using unsupervised prediction 

approaches that characterize excursions in the data without pre-defined labels of what 

‘is’ or ‘is not’ a seizure.  

Conclusion: The findings of this paper add further support to the notion that HFOs 

are temporal biomarkers of seizure onset in refractory epilepsy. These results also 

indicate that the use of many signal-based features might not justify the computational 

cost of including them in future device architectures, as HFO-based seizure prediction 

using only HFO rates performed similarly. Overall, these findings are powerful evidence 

for the development of chronic datasets that support high-density intracranial EEG 

recordings, which will enable future work on HFO-based seizure prediction.   
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Chapter V: Discussion and Conclusion 

This thesis represents a significant contribution to our understanding of high-

frequency oscillations in refractory epilepsy. Enabled by the use of a large clinical 

cohort, as well as methodological advances in peri-ictal HFO processing, each of the 

studies in the preceding chapters successively built and developed a framework of 

evidence to support the novel idea that high-frequency oscillations can act as temporal 

biomarkers of epilepsy and seizure onset. Overall, the strength of this temporal 

association with preictal periods was variable among patients, a finding likely reflective 

of the diverse etiologies of clinical refractory epilepsy. In certain ‘responder’ patient 

subsets, however, this preictal HFO signal was clearly identifiable and consistent. In a 

first-of-its-kind analysis, this thesis also confirmed that it is possible to use the temporal 

properties of HFOs in seizure prediction; again for certain ‘responder’ patients, the 

performance of HFO seizure prediction algorithms was robust and significant.  

This thesis also represents methodological advances related to HFOs and seizure 

prediction. Throughout the three studies presented, a number of novel approaches were 

introduced to identify, process, and analyze HFOs near seizures. First, HFOs that 

resembled muscle activity occurring near the surface of the scalp were redacted as 

artifacts; this increased HFO specificity, especially near or during seizures, given that 

ictal muscle contractions could significantly impact automated detection. These three 

studies are the first to use this technique to improve HFO detection near seizures. 
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Second, the problem of calculating a baseline threshold for HFO detection near 

seizures was addressed by modifying how data were fed to the automated detector, 

which prevented high-amplitude seizure activity from arbitrarily influencing this threshold 

for detection. Lastly, in order to analyze changes in HFOs with sufficient resolution in 

time, HFO characteristics (i.e. their rate or signal features) were transformed into novel 

continuous measures, which also made these quantities more useful in the context of 

seizure prediction. In terms of seizure prediction, specific limitations in iEEG monitoring 

data related to its duration or temporal volatility were addressed by randomly 

partitioning training and testing observations in time, instead of in chronological order. 

While the use of random data sampling is certainly not novel, its intended purpose for 

use in seizure prediction with limited hospital monitoring data can be considered so.  

In general, the use of these methods would not have been possible without first the 

creation of a flexible framework of computer code that could accommodate the messy 

clinical reality of a large epilepsy database. The upfront investment in time and effort for 

the creation of this framework was significant, but this was necessary in order to 

overcome the technical challenges of analyzing millions of very short events occurring 

across 190 days of high-resolution intracranial EEG data, which were recorded from 30 

different patients in an epilepsy database with over 50 terabytes of total data.  

Overall the central goal of this thesis was to evaluate temporal changes in HFOs to 

see whether they could differentiate the preictal brain state from other interictal times.  

The study in Chapter II first assessed whether this preictal effect was at all present in 

individuals, and if so, how prevalent it was across a large clinical cohort. First at an 
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individual level, a potential stereotypical response was evaluated by comparing preictal 

and interictal data trends in aggregate. The extent and prevalence of this preictal effect 

across the entire cohort was then determined with population-level inference. There 

were no population-wide differences in preictal and interictal HFO rates when averaged 

over long periods of time. Using a novel continuous transform of HFO rates, however, 

we identified significant population-wide linearly increasing trends in preictal HFO rates 

occurring within epileptic channels that were absent during interictal times. Examining 

the population distribution of these temporal trends, we further identified a ‘responder’ 

subset of 10 patients, each with significantly increased preictal HFO trends relative to 

others in the cohort.   

These findings are supported by earlier preliminary findings as documented in [56] 

and [55]. Other studies that investigated high-frequency activity before seizures also 

found evidence of stereotyped preictal changes for certain individuals [74], [99]– which 

lends support to our identification and separation of the ‘responder’ patient subset. 

In addition to the limitations mentioned in the discussion section of Chapter II, the 

manner in which data were aggregated for this study’s main analysis – which was 

grouped first by channel group, then by preictal or interictal segments, then at the 

population level – bears some additional consideration. In statistics, repeated 

measurements taken from the same statistical subject – either at different points in time  

or for multiple factors or variables –  are considered dependent. Thus, in order to apply 

population-level statistical inference to these measurements, this dependence must in 

some way be accounted for. Ideally, the manner in which these measurements covary 
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is known. Considering the nature of the HFO data in this study – which originated from 

many different patients with different epileptic foci, pathologies, sleep habits, medication 

protocols, electrode types and configurations, and possibly different seizure types – it 

was apparent from the variability of the findings from patient to patient and even 

between different seizures of the same individual that it would be impossible to fully 

specify this covariance for all patients.  

Still, we utilized two small adjustments in our analysis to ameliorate the influence of 

these unknown covariates. First, we assumed that channels from the same group 

(either SOZ or OUT channels) would covary similarly to one another in order to reduce 

the covariance between individual channels. Whenever possible, we performed paired 

statistical tests like the signed-rank test – which are better suited to repeated measures 

designs [122]. These pairwise comparisons within patients were implemented to reduce 

covariance between individuals when assessing population-level significance. Though 

we did not attempt it here or in the other studies of this thesis, future work comparing 

population-level HFO data in aggregate would benefit from fully specifying the 

covariance between all data observations – though this would potentially require much 

more data than might be available with hospital monitoring sessions. Another potentially 

more feasible approach is to use a statistical method – such as the method of 

generalized estimating equations [123] –  that robustly adjusts estimated data by its 

covariance, even when the structure of this covariance is unknown.  

The studies presented in the third and fourth chapters extend the methods and 

findings of the first study in significant ways. While the first study was centered on 
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population-level comparisons of HFO trends for its analysis, these studies focus on 

patient-specific analyses in order to demonstrate their relevance to seizure prediction. 

To further facilitate their intended context in seizure prediction, they compare preictal 

and interictal data segments individually, rather than in aggregate, as was used in the 

first study.  

The analysis of the third chapter characterized temporal changes in continuous 

HFO rates in a similar manner as the first study. Instead of comparing these values 

using population inference, however, the study in Chapter III used them to create 

logistic classification models that could be used in seizure prediction. The overall 

process of training these predictive models and then testing them with new held-out 

data was cross-validated over ten randomized runs, which allowed for a more realistic 

and consistent assessment of their ability to differentiate preictal and interictal data. We 

used a minimal statistical benchmark to differentiate patient models with better-than-

chance predictive ability; applying this criteria to the average test AUC over all patients 

resulted in the identification of 10/27 ‘responder’ patients, who each had a significant 

result in at least one of the feature windows.  

The methodology of the third study in Chapter IV expanded to incorporate additional 

information about HFO signal features, which we hypothesized could improve seizure 

prediction, based on the usefulness of HFO features in other studies. Other than the 

use of these additional features, the overall methodology of the second and third studies 

was the same. This allowed us to directly test our hypothesis that the use of HFO signal 

features might aid prediction performance. The results from this study identified a total 
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of 13 responder patients – a gain of three responders over the prior study. Despite 

these additional responders, there was no statistical evidence that the use of expanded 

HFO features resulted in higher average test AUC, though the statistical performance of 

these models as reflected in their average bootstrap p values was improved for some 

comparisons. Overall however, this is actually a positive result because it suggests that 

using only HFO rate – which is easier to compute – might be sufficient for accurate 

seizure prediction; this would be especially useful for the translation of our algorithm into 

a physical device.  

There is no direct evidence in the literature to support the findings of the second 

and third papers, because to our knowledge there are no studies that use HFOs in 

seizure prediction. Considering both studies together however, the average test AUC of 

responder patients was well within the range of results reported in many other prediction 

studies in the literature, [63]-[65] and many of these studies had the advantage of the 

much longer Neurovista dataset, while our studies did not.  

Specifically considering the seizure advisory system of the third paper, overall, the 

performance of the average model in responders was quite high, and was within range 

of other prediction studies using the advisory system method [66], [69].  The 

performance of our advisory system for more realistic models that were not trained on 

all seizures was comparatively more variable and reduced. Still, some patients achieved 

excellent results despite their models not being trained on all seizures. Considered 

altogether, the reasonable performance of the seizure advisory system for some 
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patients further demonstrates the potential that HFOs could have in seizure prediction – 

provided that the right data is available for such continued work.  

The studies presented in the second and third chapters do have some inherent 

limitations. The primary limitation for both is the required use of relatively short datasets 

that are characterized by many variable and non-stationary exogenous factors. These 

data are in no way representative of the normal ambulatory setting that a seizure 

prediction device would eventually operate in [12]. As such, the number of seizures 

captured per patient is generally far less than would be minimally required for patient-

specific and seizure-specific prediction. This results in a significant imbalance between 

the number of preictal and interictal observations – and this imbalance is made worse 

when data are evaluated continuously through time, as is the case with these studies. 

This imbalance can result in overtrained models that perfectly identify certain seizures 

while effectively ignoring others. In both studies, however, we attempted to address 

potential overfitting by minimizing cross-validation error during model training.  

The limited number of seizures recorded per patient is also problematic given the 

large number of predictive features used in both studies, especially in the third. This 

imbalance of (many) predictors and (few) observations can also result in model 

overfitting. This consideration was a primary reason for our use of LASSO regression in 

both studies; given that approximately 97% of variables were eliminated with LASSO in 

convergent models of the full HFO analysis of Chapter IV, the imbalance of variables to 

observations in this case was significantly reduced. Even with this reduction, however, 

the possibility for model overfitting existed – which is why only testing performance (i.e. 
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model performance on held-out data) was reported for both studies, which was also 

averaged across all ten randomized cross-validation runs to better inform the 

consistency of this performance in patients.  

In both studies, the last major caveat to consider is also derived from limited 

number of recorded seizures per patient. The AUC performance metric has been a 

standard tool used by many noteworthy prediction studies [63]–[65], [68] to describe the 

overall predictive performance of their seizure prediction models. While the use of this 

single value as a performance metric has many advantages, the imbalance of preictal 

and interictal data can also complicate the interpretation of associated AUC by 

overstating the specificity of a model [62], which, for these studies, is how often interictal 

segments were correctly identified. Additional limitations to our use of AUC in these 

studies also occur because the ratio of interictal to preictal data was not constant across 

patients and feature windows; this was a design choice that was necessary because of 

limited data in many patients. Finally, given the eventual clinical implications of online 

seizure prediction or forecasting algorithms to the patients themselves, it is unlikely that 

an abstract performance metric like AUC would hold any meaning to patients or 

clinicians alike when trying to optimize an algorithm’s efficacy. This is in part the reason 

for concluding the third and final study with the seizure advisory demonstration, for if 

seizure prediction and forecasting algorithms and their results are not interpretable, 

there is likely little chance they will be useful to patients and clinicians – which could 

further stunt their widespread adoption. 
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The studies presented in this thesis form a foundation of preliminary evidence that 

support HFOs as a temporal biomarker in epilepsy. Given the limited data that were 

required for this work, future studies could validate these principal findings in different 

high-density datasets recorded from many clinically diverse patients. Ideally, this 

validation would also systematically account for the significant variability of data 

between different recorded channels, patients, and even between seizures. Using a 

robust statistical tool like the generalized estimating equations in this regard could better 

inform the statistical conclusions of population-level HFO analyses (such as those that 

were conducted in the first study). This could in turn identify certain clinical factors that 

might significantly predispose an individual to being a preictal HFO ‘responder’.  

In the field of seizure prediction, future studies using HFOs in this manner will likely 

require high-density intracranial EEG datasets that are ambulatory and much longer, 

containing many more seizures. If such data existed, future work could rigorously 

investigate HFO-based seizure prediction in the context of patient-specific and even 

seizure-specific algorithms. Such work could use sophisticated non-linear machine 

learning classifiers to finally tease out differences in preictal HFOs by seizure type. Also 

possible in this future work could be the use of unsupervised machine learning 

techniques which have also been used in health diagnostic studies [124], [125]; these 

methods are not as biased as supervised methods such as logistic regression because 

they abandon notions of preictal and interictal periods and instead characterize outliers 

in the data regardless of what or when such excursions are or occur.  
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Conclusion 

The work of this thesis has identified and developed a novel pre-seizure biomarker 

that has significant clinical potential for patients with drug-resistant epilepsy. This work 

confirms that high-frequency oscillations are temporal biomarkers of seizure onset, and 

shows further that HFOs can be used in seizure prediction, especially for certain 

individuals. While there are likely many challenges in the winding road toward seizure 

freedom for many, it is hoped that the work of this thesis eventually contributes in some 

small way to the gathering global effort to reduce and eliminate the influence of seizures 

on the everyday lives of those suffering from epilepsy.  
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