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ABSTRACT

Excitation pulse design and image reconstruction are two important topics in MR

research for enabling faster imaging. On the pulse design side, selective excitations

that confine signals to be within a small region-of-interest (ROI) instead of the full

imaging field-of-view (FOV) can be used to reduce sampling density in the k-space,

which is a direct outcome of the change in the underlying Nyquist sampling rate.

On the reconstruction side, besides improving imaging algorithms’ ability to restore

images from less data, another objective is to reduce the reconstruction time, partic-

ularly for dynamic imaging applications.

This dissertation focuses on these two perspectives: Chapter II is devoted to the

excitation pulse design. Specifically, we exploit auto-differentiation frameworks that

automatically apply the chain rule on complicated computations. We derived and

developed a computationally efficient Bloch-simulator and its explicit Bloch simula-

tion Jacobian operations using such frameworks. This simulator can yield numer-

ical derivatives with respect to pulse RF and gradient waveforms given arbitrary

sub-differentiable excitation objective functions. The method does not rely on the

small-tip approximation, and is accurate as long as the Bloch simulation can correctly

model the spin movements due to the excitation pulses. In particular, we successfully

applied this pulse design approach for jointly designing RF and gradient waveforms

for 3D spatially tailored large-tip excitation objectives.

The auto-differentiable pulse design method can yield superior 3D spatially tai-

lored excitation profiles that are useful for inner volume (IV) imaging, where one

attempts to image a volumetric ROI at high spatiotemporal resolution without alias-
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ing from signals outside the IV (i.e., outer volume). In Chapter III, we propose

and develop a novel steady-state IV imaging strategy which suppresses aliasing by

saturating the outer volume (OV) magnetizations via a 3D tailored OV excitation

pulse that is followed by a signal crusher gradient. This saturation based strategy

can substantially suppress the unwanted aliasing for common steady-state imaging

sequences. By eliminating the outer volume signals, one can configure acquisitions for

a reduced FOV to shorten the scanning time and increase spatiotemporal resolution

for applications such as dynamic imaging.

In dynamic imaging (e.g., fMRI), where a time series is to be reconstructed, non-

iterative reconstruction algorithms may offer savings in overall reconstruction time.

Chapter IV focuses on non-iterative image reconstruction, specifically, extending the

GRAPPA algorithm to general non-Cartesian acquisitions. We analyzed the for-

malism of conventional GRAPPA reconstruction coefficients, generalized it to non-

Cartesian scenarios by using properties of the Fourier transform, and obtained an

efficient non-Cartesian GRAPPA algorithm. The algorithm attains reconstruction

quality that can rival classical iterative imaging methods such as conjugate gradient

SENSE and SPIRiT.

In summary, this dissertation has proposed and developed multiple methods for

accelerating MR imaging, from pulse design to reconstruction. While devoted to

neuroimaging, the proposed methods are general and should also be useful for other

applications.
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CHAPTER I

Introduction

MRI is a relatively slow medical imaging modality compared to other techniques,

such as CT and ultrasound. This makes the acceleration of imaging an essential topic

in MRI research. Various approaches have been developed for this objective, includ-

ing: selective signal excitation, where the Nyquist theorem enables an intrinsically

lower sampling rate of k-space; parallel imaging, where signal redundancies from ex-

tra receive coils afford unaliased reconstructions from acquisitions that do not meet

the Nyquist sampling rate; compressed sensing, where insightful signal priors, (e.g.,

low-rankness and sparsity), enable image retrieval from under-determined signal sys-

tems; and other approaches. In this work, we primarily develop methods and tools

for selective signal excitation and parallel imaging.

1.1 Basics

This section aims to provide basic knowledge of: how magnetizations can be used

to produce biomedical imaging signals; how a scanner materializes these signals with

electric coils; and the coordinate frames for analyzing signals from spin magnetiza-

tions.
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1.1.1 Physics and Signals

Signals in MRI are produced by electromagnetic induction: a population of hydro-

gen nuclear spin magnetizations precess coherently, such that, instead of cancelling

each other out, the spins aggregate into a time-varying macroscopic magnetization.

These spins induce signals in electric receive coils surrounding the population. Spin

magnetizations are vectors in 3D space, M = [Mx,My,Mz]
T; as are 3D magnetic

fields vectors B = [Bx, By, Bz]
T. To prepare such a spin population for imaging, the

object of interest is first immersed into a homogeneous static magnetic field (B0).

Coherence forms as the spins within the object align with the direction of the static

field direction, which is typically marked as the z-direction. These aligned spin mag-

netizations can be studied by exploiting their physical properties in magnetic fields

and signalling.

Two key properties of spin magnetizations are Larmor precession and relaxation:

M precesses about B towards the direction of M × B at frequency γ‖B‖, where γ,

the gyromagnetic ratio, quantifies the linear relation between the angular frequency

and the field magnitude. Meanwhile, the longitudinal part of magnetization recovers

as a function of time (t), Mz(t) = M0 − exp(−t/T1) · (M0 −Mz(0)); the transverse

parts decay as, [Mx(t),My(t)] = exp(−t/T2) · [Mx(0),My(0)]; where T1 and T2 are

relaxation constants, and M0 is the spin equilibrium magnitude at t =∞. The Bloch

equation summarizes the two properties in a differential form:

d

dt


Mx

My

Mz

 =


− 1
T2

γBz −γBy

−γBz − 1
T2

γBx

γBy −γBx − 1
T1



Mx

My

Mz

+


0

0

M0

T1

 , [1.1]

or with cross product notation:

dM

dt
= γM ×B − [

Mx

T2

,
My

T2

,
Mz −M0

T1

]T. [1.2]
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When transverse magnetizations Mx and My are non-zero, their precession about B0

provides the variation needed for inducing electromagnetic signals.

To yield transverse magnetizations from the spin population aligned with B0, one

introduces B1, a second magnetic field perpendicular to the static one. The term

“excitation” describes applying B1 temporarily as a pulse. As characterized by the

Bloch equation, this perpendicular B1 will tip spins out of alignment with the z-

direction. Then, signal reception starts.

1.1.2 MRI System Coils

Exploiting Faraday’s law of induction, MRI systems use electrical coils to generate

controllable magnetic fields. A system of superconductive coils with constant electric

currents cycling parallelly are placed at the two ends of the scanner’s longitudinal

(z) direction, facing each other. The magnetic field generated by this coil system is

relatively homogeneous in the middle, and is used as the B0.

For imaging, to tell apart spins at different locations, we need them to act differ-

ently for signalling. MRI systems achieve this by adding to the B0 field controllable,

simple (e.g., linear) spatial inhomogeneities via gradient coils. There are generally

three sets of such coils, corresponding to the x, y, and z axes, respectively.

The x coil set includes two groups of two coils facing the x-direction. The two

coils within the same group are placed adjacently along direction z, but offset from

the z-axis. Then, the two groups are symmetric about the z-axis in the middle of

the scanner. Currents cycle oppositely in the same group of coils, and in parallel

in each two symmetric coils, and their combined magnetic field generated by them

varies spatially. Near the center of the four coils, the field directions are parallel to

z, and the lateral variation resembles a linear gradient. Set-y is the same as set-x,

except it faces the y-direction, and generates a y directional lateral gradient. For

set-z, similar to B0’s setup, two z-direction facing coils are placed at the two ends
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of the scanner. Their currents cycle oppositely, generating a gradient magnetic field

along z direction. Currents in these gradient coils are manipulated to produce desired

spatially dependent field inhomogeneities during imaging. The region for imaging is

where all three gradient magnetic fields are spatially linear. The point where they

each have a magnitude of 0 determines the origin of the three axes, named isocenter.

These linear gradient fields’ spatial slopes are typically denoted as G, a vector of

three. Its inner product with an offset vector, r, relative to the isocenter yields the

gradient field strength at the corresponding position.

Besides gradient coils, we need one more set of coils to apply the transverse B1 and

to excite the spins to produce signals. These are the RF coils, which are placed next

to and facing the imaging region. For instance, a birdcage coil, which has superior RF

homogeneity, is a single resonant system arranged as a ring surrounding the imaging

region laterally. Their currents are synchronized, such that the transverse magnetic

field they generate rotates at an angular frequency of γ‖B0‖. B1 rotating at this

frequency is most effective at tipping spins. This phenomenon is more intuitive in a

rotating coordinate frame.

The final components are MR signal receivers, coils that are laterally placed

around the imaging region. Exploiting Faraday’s law again, receive coils convert

time-varying magnetic fields generated from spin magnetizations into time-varying

electric currents, giving a dual role to the RF coils. On some systems, the RF coils

are reused as receivers.

1.1.3 Coordinate Frames

A proper coordinate frame can significantly simplify analysis of object behaviors.

For instance, our routine life on spinning earth would be too complicated if we used

the solar system frame.

There are two important frames for MRI: the lab frame and the rotating frame.
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The lab frame is the frame of the origin and axes described in the previous subsection

1.1.2. The rotating frame is defined relative to the lab frame: its origin and z-

axes are the same as the latter, but the frame rotates about the z-axis at angular

frequency γ‖B0‖, identical to the precession frequency. Its x and y directions are

oriented in cross product convention: direction of x × y is the same as direction z.

The rotating coordinate system absorbs the intrinsic spin precession at frequency

γ‖B0‖. Consequently, B0 is omitted in the frame, as its effect on spins is absorbed.

We can thus focus on spin behaviors due to RF and gradients, etc.

In the rotating frame, relaxations are the same as in the lab frame, since both share

the longitudinal (z) axis and the transverse (xy) plane. B1 of frequency γ‖B0‖ now

points in a constant direction, causing spin magnetizations to simply rotate about it.

Due to field inhomogeneities, not all hydrogen spins precess on-resonance at γ‖B0‖

exactly. From the rotating frame perspective, these spins spontaneously precess about

the z-axis in frequencies proportional to the deviation from the local field strength

B0. Thus, virtual magnetic fields of strengths equal to these differences are added

to the rotating frame to explain the relative precession. Overall, by omitting B0 and

introducing virtual fields, the Bloch equation can still characterize spin behaviors

in the rotating frame. Further, spin behaviors become simpler, which facilitates

capturing intuition about them that are useful for controlled excitation.

1.2 Selective Excitation

Excitation is about customizing the excited spins for imaging objectives. The

received signals are integrals of spin-induced signals distributed spatially across the

object, just as macroscopic magnetizations are aggregated from spins. Conceptually,

we divide the volume of the object to be imaged into voxels (i.e., volumetric pixels).

Reconstruction, to finally obtain the object image, is to undo the integrals, to solve

for the contribution of each voxel. Generally, larger volumes containing more voxels
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require more signals for reconstruction. For medical imaging, the volume size is pre-

determined by receive coils, despite the fact that we are often interested in only part

of it, e.g., a slice of a knee, a slab of a brain, etc. However, via selective excitations, to

some extent, we can control which voxels are excited and contribute to induced signal.

Thus, fewer acquisition samples are needed to solve for only the excited volume of

interest, allowing faster imaging.

Excitation selectivity is achieved using pulses of designed RF, B1, and gradients,

G. These pulse lengths are often shorter than 10 ms, which is negligible compared

to typical relaxation coefficients (�10 ms). Ignoring relaxations, at time t, the pulse

effect on spins in the rotating frame Bloch equation form is:

dM(t)

dt
= γM(t)× [B1x(t), B1y(t), G(t)Tr+

∆ω(r)

γ
]T, [1.3]

where ∆ω(r) represents relative precession angular frequency due to local field inho-

mogeneity of B0 imperfection at position r (off-resonance). It yields a virtual field

strength ∆ω(r)
γ

. Let T denote the duration of the pulse. The excitation result, M(T ),

is the temporal integral of this differential equation, given initial state M(0). Finding

RF and gradient waveforms that yield satisfactory M(T ) for excitation objectives,

e.g., selectivity, is the pulse design problem.

The pulse design problem is very challenging in general, due to the matrix differen-

tial equation. A classic simplification to the problem is the small-tip approximation:

omit the off-resonance term for derivation brevity. When M(t) does not deviate much

from z-axis (small-tip) during excitation, Mz is approximately constant M0. Then,

[1.3] becomes,

d

dt
M(t) = γ


0

〈
G(t), r

〉
−B1y(t)

−
〈
G(t), r

〉
0 B1x(t)

0 0 0

M(t),
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as Mz is assumed to stay constant over time. This further simplifies to,

d

dt

Mx(t)

My(t)

 = γ

 0
〈
G(t), r

〉
−
〈
G(t), r

〉
0


Mx(t)

My(t)

+ γ

−B1y(t)

B1x(t)

M0.

Let Mxy := Mx + ιMy. The simplification becomes,

d

dt
Mxy(t) = ιγ(−

〈
G(t), r

〉
Mxy +B1M0),

Using the integrating factor method of differential equation, this yields,

Mxy(r, T ) = ιγM0

∫ T

−∞
B1(t)e−ι2π〈k(t),r〉 dt, [1.4]

where k := γ
2π

∫ T
t
G(τ) dτ . Conventionally, we refer to the domain hosting k(t) as the

excitation k-space. [1.4] establishes a Fourier transform relation between the small-

tip excitation result and the pulse. Therefore, for small-tip excitation, inspecting

the inverse Fourier transform of the desired selectivity profile can guide the design of

pulse waveforms.

Once an excitation pulse selectively excites a region of interest, the spin population

starts precessing and is ready for imaging.

1.3 Parallel Imaging

Raw MRI signals are complex-valued and modulated at the resonant spin preces-

sion frequency γ‖B0‖. In this section, we assume demodulation has been applied.

Also, to simplify signal analysis and focus on the underlying intuition, we further

assume no spin relaxation during signal acquisition, and homogeneous B0, so that

spin precession differences are only caused by controlled linear gradient fields.
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1.3.1 Signal Encoding and k-Space

Typical MRI signal encoding relies on the linear gradient system. Spatially linear

gradient fields impose spatially linear variations of spin precession frequencies. These

variations are proportional to gradient amplitudes: for two positions, r1 and r2, the

frequency difference is γ(r1 − r2)TG. Hence, let t = 0 be the beginning of an acquisi-

tion, and τ be any time during that acquisition. The spin phase increment difference

due to precession difference over time, 2πγ(r1− r2)T
∫ τ

0
G(t) dt, is proportional to the

integral of gradients, and, most importantly, also spatially linear.

Consider the spin population complex image profile p(r) at time t = 0, the phase

increment at time τ becomes a spatially linear phase, φτ (r) := exp(ι2πγrT
∫ τ

0
G(t) dt),

overlaid onto it. Consequently, the induction signal at t = τ , expressed as an integral,

is
∫
p(r)φτ (r) dr, which is also an inner product between an image profile and a

linear phase. In other words, from the Fourier transform perspective, the induction

signal is the spectral value of p(r) at spatial frequency, k(τ) := γ
∫ τ

0
G(t) dt. In MRI

convention, the domain of these spectrum signals is addressed as the k-space. With

knowledge of image processing, the MRI signal system can be spatially discretized

and modelled as a Fourier transform:

x̃ = Fx, [1.5]

where, F ∈ CNk×Nx is a Fourier transform matrix mapping images to the k-space

acquired; x ∈ CNx and x̃ ∈ CNk are discrete image and k-space signals, respectively.

Assume a proper imaging FOV that fully contains the spin population of interest.

A final image can be reconstructed from inverse Fourier transform of a Cartesian

k-space dataset that satisfies the Nyquist sampling theorem.
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1.3.2 Cartesian GRAPPA Parallel Imaging

Parallel MRI uses more than one receive coil to acquire data. Each of these coils

is relatively more sensitive to spin inductions in a certain region. In other words,

each coil sees a different coil image. Let sc(r) denote the spatial sensitivity profile of

coil c. The induced signal this coil receives is thus
∫
sc(r)p(r)φτ (r) dr, which has the

discrete space form:

x̃c = F diag(sc)x, c = 1, . . . C, [1.6]

where sc ∈ CNx . A total number of C coils acquire C sets of x̃c’s. Assume explicit or

implicit knowledge of coil sensitivity profiles. These extra coils afford signal redun-

dancies to solve [1.6] when CNk ≥ Nx, as Nx knowns generally suffice to solve Nx

unknowns in a linear system. Parallel imaging exploits this redundancy to reduce the

number of acquisitions, i.e., under-sampling, for imaging acceleration.

There are many parallel imaging techniques in MRI. For brevity, we focus on

Cartesian GRAPPA, the one most relevant to this dissertation. GRAPPA does not

directly reconstruct the image x from under-sampled k-space data. Instead, it at-

tempts to estimate un-sampled k-space data by linearly combining its sampled neigh-

boring data across coils using certain weights, wc. In this way, Cartesian GRAPPA

restores full k-space data for all coils, and obtains coil images via inverse Fourier

transform. It composes final images by combining these coil images.

The way GRAPPA restores full k-spaces reveals that there are shift-invariant lin-

ear relations among k-space neighboring signals. The math behind this relies on

Fourier transform properties. Here, we assume single coil “parallel” imaging for

derivation brevity. This analysis extends easily to multi-coil scenarios: let Carte-

sian Fourier transform matrix F be unitary. Equation [1.6], by inserting I = FHF ,

becomes,

x̃c = F diag(sc)F
HFx = S̃H

c x̃, [1.7]
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where S̃c is a circulant matrix whose columns are shifted duplicates of s̃c := Fsc. In

other words, a set of neighboring signals in x̃c are inner products between x̃ and a set

of shifted copies of s̃c. Let the un-sampled signal in the set correspond to shift copy

s̃c,0, and assume the set contains NN sampled signals, corresponding to shift copies

S̃c,Na := [s̃c,1, . . . , s̃c,Na ] ∈ CNx×Na . Thus, the estimation error of the un-sampled signal

is, x̃H(s̃c,0 − S̃c,Nawc). Fixing the geometry of neighboring signals, GRAPPA’s shift-

invariance is inherited from the shift-invariance of error vector, ẽc := s̃c,0 − S̃c,Nawc.

Cartesian GRAPPA is reliable for parallel imaging, as long as ‖ẽc‖ is negligible.

1.4 Outline and Contributions

Concluding this chapter, the rest of this dissertation is described, largely based

on the introduction sections above:

Chapter II was published as a pre-print in [38]. This chapter elaborates on our

novel MRI excitation pulse design approach that is based on increasingly popular

auto-differentiation frameworks. Conventional pulse designs are limited, especially for

multidimensional excitation, etc. In our proposed approach, we derived and developed

an efficient auto-differentiable Bloch simulator. Via simulating excitation results of a

pulse, it yields numerical derivatives with respect to the RF and gradient waveforms

to be optimized given arbitrary pulse design loss functions. We successfully applied it

on large-tip excitation designs, which are difficult to address using conventional pulse

design methods.

Chapter III was based on [39, 40]. The work in this chapter proposes a novel

approach to improve 3D inner volume imaging quality for steady state sequences.

Existing inner volume imaging methods are impractical for steady state sequences

due to unsuppressed outer volume signals. We propose to apply a recently devel-

oped method [72] on 3D spatially tailored outer volume excitation pulse design. Such

pulses, combined with an immediate crusher gradient, excite and saturate the mag-
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netization outside a volume-of-interest (VOI). In this way, we clear aliasing artifacts

in under-sampled steady state inner volume imaging.

Chapter IV was published in [37]. In dynamic imaging, where a time-course of im-

ages are to be reconstructed, GRAPPA, a non-iterative fast reconstruction algorithm,

has so far been limited to Cartesian acquisitions. We proposed a computationally ef-

ficient generalization of the conventional GRAPPA algorithm that can be applied to

arbitrary non-Cartesian MRI acquisitions. Like GRAPPA, this generalization restores

images non-iteratively, which can be particularly useful in saving reconstruction time

for dynamic imaging. It can rival common iterative parallel imaging algorithms (e.g.,

cg-SENSE, SPIRiT [43, 56]) in reconstruction quality.

Chapter V summarizes the above chapters and discusses possible future extensions

and directions.

Besides these MRI related works, Appendix A focuses on numerical optimization.

This appendix identifies the problem of finding the optimal diagonal majorizer for the

least square problem as a constrained convex semi-definite programming problem. It

also derives the derivative of the diagonal majorizer, which can be useful for gradient

descent algorithms for finding the optimal majorizer.
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CHAPTER II

Joint Design of RF and Gradient Waveforms

via Auto-differentiation for 3D Tailored Excitation

in MRI

2.1 Introduction

In a magnetic resonance imaging (MRI) experiment, the dynamical system rela-

tionship between the applied radiofrequency (RF) and gradient magnetic fields, and

the instantaneous spin magnetization change they induce, is concisely described by

the Bloch equation1. While it is straightforward to calculate the magnetization pat-

tern resulting from a given set of RF and gradient waveforms and tissue parameters,

inverting the Bloch equation to obtain the waveforms that produce a given desired

excitation pattern can be challenging.

This Bloch inversion task is conventionally called an “RF pulse design” problem,

reflecting the fact that the most common way to design excitation pulses in MRI

is to pre-define the gradients in some way, and then only optimize the (complex)

RF waveform. Even with that simplification, the design problem remains non-linear

and non-convex. Another common simplification is therefore to apply the small-tip

approximation [52] that can give reasonable excitation accuracy even for flip angles

1This chapter was published as a pre-print in [38].
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as high as 90°, at least for conventional 1D (slice-selective) excitations where the

instantaneous flip angle during RF excitation remains relatively low. The small-tip

approximation leads to a linear (Fourier) relationship between applied fields and the

resulting magnetization pattern, and provides intuition about the excitation process

by defining an “excitation k-space” trajectory and viewing RF transmission as de-

positing energy along that trajectory.

The more difficult problem of jointly optimizing both RF and gradient waveforms

has been approached in various ways. Several methods are based on the small-tip

approximation, and on optimizing the gradients over a restricted set of waveform

shapes, such as “spoke” or “kt-point” locations in excitation k-space [9, 19, 44, 81,

82] or parameterized echo-planar or non-Cartesian trajectories [14, 26, 46, 76, 80].

A more general small-tip design approach for 3D tailored excitation was described

in [72], based on a B-spline parametrization of the gradient trajectory that is not

restricted to particular fixed waveform shapes. These approaches work well for small-

tip excitations, but not for applications such as tailored saturation or inversion. In

addition, even when the final desired flip angle is small, the instantaneous flip angle

during RF excitation can be large and thus can violate the small-tip assumption [71].

This model mismatch can result in noticeable differences between the Bloch-simulated

excitation pattern and that predicted by the small-tip model used in the design.

Another limitation of previous approaches is that the design loss functions are

typically limited to certain forms such as least squares (LS) based on the complex

transverse excited magnetization, although adaptations to magnitude least squares

(MLS) costs have been proposed [67]. Adding hardware constraints to the design

formulation adds an additional layer of complexity that is often either ignored during

pulse design, or controlled indirectly via, e.g., Tikhonov regularization of the RF

waveform [19].
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This work2 approaches the Bloch inversion task in a more direct and general

way that is applicable to the joint design of RF and gradient waveforms for tailored

multi-dimensional excitation in MRI. We temporally discretize the pulse, assuming

piecewise constant gradient and RF within every time segment. Our method does

not rely on the small-tip approximation, works for arbitrary sub-differentiable loss

functions, and incorporates hardware constraints. Our approach contains three key

elements: First, we derive analytic expressions for the Jacobian operations needed

for the Bloch inversion for a unit (discrete) time step. Second, we incorporate these

discrete-time Jacobian operations into an automatic differentiation framework [51],

to obtain the Jacobian that relates the final magnetization pattern (at the end of the

pulse) to the RF and gradient waveforms. Third, we enforce hardware limits by a

change of variables that makes the optimization problem effectively unconstrained.

The paper is organized as follows. Section 2.2 gives a general form of the joint de-

sign problem, and derives the explicit Jacobians useful for accelerating the proposed

auto-differentiation pulse design tools. In sections 2.3 and 2.4 we apply our pulse de-

sign tool to two large-tip excitation problems, and validate the results experimentally

on a 3T MRI scanner. Sections 2.5 and 2.6 discuss and conclude this work.

2.2 Theory

2.2.1 Problem Formation

We discretize 3D space on a regular grid with a total nM voxels (”spins”). These

spins can have different parameters, e.g., T1, T2, and off-resonance. Let nT denote

the length (number of time points) of the pulse to be designed. For (single coil)

joint design of blue complex RF waveform b ∈ CnT and gradient g ∈ RnT×3 we are

2Open sourced, github.com/tianrluo/AutoDiffPulses
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interested in tackling the following general problem:

arg min
g∈RnT×3, b∈CnT

L := f(MT (g, b),MD) + λR

s. t. ‖b‖∞ ≤ bmax

‖g‖∞,∞ ≤ gmax

‖Dg‖∞,∞ ≤ smax,

[2.1]

where L is the loss function; MD ∈ RnM×3 is the target (Desired) magnetization

pattern (a 3-dimensional magnetization vector at each spatial location); MT ∈ RnM×3

is the magnetization at the end of the pulse (time T ) obtained by integrating the

Bloch equation; f is the excitation error metric (e.g., a common choice is least-

square error of transverse magnetization, i.e., ‖MT [:, 1:2] −MD[:, 1:2]‖2
F ); and R is

an optional regularizer with weight λ (a common choice is R = ‖b‖2
2 to control peak

RF amplitudes and SAR indirectly). For the constraints, we have bmax, gmax, and

smax for peak RF, gradient, and slew rate, respectively; D ∈ RnT×nT is the temporal

difference matrix divided by δt, i.e., Dg takes the 1st order temporal derivative of g

and yields the slew rate; and ‖ · ‖∞, and ‖ · ‖∞,∞ are entry-wise norm returning the

largest absolute value of the operand elements.

Problem [2.1] is challenging for two main reasons: First, the objective is non-

convex with respect to its arguments, and is constrained. Second, neither MT (g, b),

nor its Jacobians ∂MT/∂g and ∂MT/∂b that would be needed to directly mini-

mize [2.1], have an explicit expression in g and b. To the best of our knowledge,

existing methods all deal with simplifications of problem [2.1] based on, e.g., the

small-tip, or spin domain models. In this work, we minimize [2.1] directly, and as-

sume only that the temporal integration of the Bloch equation is well-approximated

by a discrete-time Bloch simulator.
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2.2.2 Auto-Differentiation

We propose to compute the necessary derivatives3 using auto-differentiation [18],

such that problem [2.1] can be optimized for arbitrary error metric f and regulariza-

tion R. Auto-differentiation tools, e.g., PyTorch [51], decouples computations into

stages, and constructs the Jacobian operations at each stage. These single-stage Ja-

cobians are eventually combined using the chain rule. For instance, with a PyTorch

based Bloch simulator that computes MT (g, b), one implicitly obtains ∂MT/∂g and

∂MT/∂b. The loss derivatives with respect to the variables we wish to optimize,

i.e., ∂L/∂g, and ∂L/∂b, can then be obtained by combining these expressions with

∂L/∂MT . This approach allows us to directly optimize g and b with respect to arbi-

trary losses.

2.2.3 Explicit Jacobian Operations

Auto-differentiation tools provide implicit Jacobian operations (also known as the

default backward operations in auto-differentiation context) formed from tracking all

elementary computations (e.g., addition, multiplication, etc). Such tools also allow

users to substitute default Jacobian operations with their own implementations. In

practice, such explicitly implemented Jacobian operations can be more efficient both

computationally and memory-wise. Bloch simulation is typically the most compu-

tationally expensive stage in relating pulse waveforms to objective costs. Having

explicit Jacobians of the Bloch simulator can therefore accelerate the computation.

To derive discrete time (δt) explicit Jacobians in the rotating frame, for all mag-

netic spins, we assume equilibrium spin magnitudes of 1, relaxation constants e1 :=

exp(−δt/T1), e2 := exp(−δt/T2), and gyromagnetic ratio γ. At time t, the rotating

frame effective magnetic field (B-effective), Bt ∈ R3, causes the magnetic spin state

mt ∈ R3, to precess (rotate) about an axis ut := Bt/‖Bt‖2 by angle φt := −γδt‖Bt‖2.

3Or Clarke generalized subdifferentials for non-smooth objectives [8].
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One iteration of discrete time Bloch simulation can be expressed as:

mt+1 = ERtmt + e, [2.2]

where E := diag([e2, e2, e1]), e := [0, 0, 1− e1]T model the relaxations; Rt = cos(φt)I+

(1 − cos(φt))utu
T
t + sin(φt)[ut]× models the rotation; I is the 3D identity matrix,

diag([1, 1, 1]); and [ut]× denotes the cross product matrix of ut, i.e., [ut]×mt = ut×mt.

The rotation matrix Rt is spatially dependent, as it accounts for B-effective which

incorporates applied gradients, off-resonance, etc. Relaxation terms, as they depend

on the underlying tissue property, are generally also spatially dependent. To avoid

notation clutter, we have not indicated those spatial dependencies in Eq. [2.2]; rather,

Eq. [2.2] can be considered to hold for a single spin isochromat, with the appropriate

Rt and relaxation terms for that isochromat.

One can verify the following recursive expressions for partial derivatives of the

loss with respect to mt and Bt:

∂L
∂mt

= RT
t E

∂L
∂mt+1

=: ht,

∂L
∂Bt

= γδt/φt(utu
T
t − I) ∂L

∂ut
− γδt ∂L∂φtut,

∂L
∂ut

= φt

(
ct(mtu

T
t +mT

t utI) + st[mt]×

)
Eht+1,

∂L
∂φt

= ([ut]×Rtmt)
TEht+1,

[2.3]

where ct :=
(
1− cos(φt)

)
/φt, st := sin(φt)/φt. Given ∂Bt/∂gt and ∂Bt/∂bt (which are

easy to compute), we obtain the necessary derivatives for the joint optimization by

the chain rule:

∂L
∂gt

=
∂L
∂Bt

· ∂Bt

∂gt
,

∂L
∂bt

=
∂L
∂Bt

· ∂Bt

∂bt
.

Using the explicit Jacobians in [2.3] for the Bloch simulator operations halved both

the computation time and memory use compared to the default implicit Jacobian
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s̃0

Figure 2.1:
Turning constrained slew rate s into unconstrained s̃, by change of vari-
able tan−1.

operations provided by PyTorch (v1.3).

The remaining Jacobians, such as ∂L/∂MT , ∂Bt/∂bt, and ∂Bt/∂gt, typically do

not involve complicated computations. Also, they can vary with different objectives,

e.g., switching from LS to MLS; or with different excitation settings, e.g., uniform vs

non-uniform transmit sensitivities. For program generality, we left these remaining

Jacobians to be obtained implicitly by the auto-differentiation framework.

2.2.4 Constraints

Constrained optimization often requires extra effort to ensure solution feasibility,

such as feasible set projection and constraint substitution with penalizations. This

would involve crafting projection algorithms, and tuning penalty parameters. For

problem [2.1], in the absence of convexity, we use a change of variables [4, 68] that

converts the problem into an effectively unconstrained one and avoids such extra

effort during optimization.

Let s ∈ RnT×3 denote the slew rate, i.e., s = Dg. Define s̃ = tan(π/2 · s/smax);
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ρ̃ := tan(π/2 · |b|/bmax), θ := ∠b. We automatically have ‖b‖∞ ≤ bmax and ‖s‖∞,∞ ≤

smax always satisfied (Fig. 2.1). Thus, we reformulate problem [2.1] as:

arg min
s̃∈RnT×3; ρ̃, θ∈RnT

L := f(MT (g, b),MD) + λR

s. t. ‖g‖∞,∞ ≤ gmax

Dg = 2smax/π · tan−1(s̃)

b = 2bmax/π · exp(ιθ) tan−1(ρ̃).

[2.4]

In practice, for change of variable, tan−1 can be replaced with any other strictly

monotone function, e.g., sigmoid, that maps an unconstrained domain to an interval.

Empirically, for 3D tailored pulse design, we observe that, with extended kt-

points initializations [72], gradient amplitudes are well below typical max gradient

constraints (5 G cm−1) prior to and throughout the optimization procedure. Hence,

while problem [2.4] is still constrained formally, its max gradient is practically inactive.

We thus treated it as an unconstrained problem for the results shown in this paper.

2.2.5 Optimization Algorithm

We select initial waveforms g and b that satisfy the constraints. To minimize

[2.4], we alternatingly update ρ̃, θ, and s̃, as shown in Algorithm 1. This alternating

strategy is commonly used in existing joint design approaches [72, 80], and helps

reduce the problem size for the L-BFGS algorithm used in updating the pulse. With

auto-differentiation, the optimization algorithm can be formulated without reference

to the specific loss function, as demonstrated with very different design problems

in section 2.3. We use the L-BFGS optimizer provided by PyTorch for updating

the variables within an iteration. The number of iterations may depend on pulse

initializations. We empirically choose N = 10 for experiments in this work.
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Algorithm 1 Alternating Minimization

Inputs: Variables: g, b; Number of iterations: N
Compute ρ̃, θ and s̃ from g, b
for n = 1 to N do

Fix s̃; Optimize ρ̃, θ, using L-BFGS
Fix ρ̃, θ; Optimize s̃, using L-BFGS

end for
Compute g and b, from ρ̃, θ and s̃
return g, b

2.3 Methods

To demonstrate the utility and generality of our approach, we designed two dif-

ferent kinds of 3D tailored pulses: outer-volume (OV) saturation, and inner-volume

(IV) inversion.

2.3.1 3D Outer-Volume Saturation Pulse Design

Outer-volume saturation pulses can be used to limit the imaging field of view

(FOV), and hence has the potential to reduce both the time needed for data acqui-

sition as well as motion artifacts from [39, 49, 77], e.g., the chest wall or abdomen

in body imaging applications. OV saturation pulses should ideally have a high flip

angle in the OV region (e.g., 90 degrees), while leaving the IV unperturbed. These

pulses are typically followed immediately by a gradient crusher. Since the phase of

OV magnetization prior to the crusher is unimportant, we use MLS loss in design,

and include a regularization term on RF power to indirectly control SAR as well as

to demonstrate the generality of our approach:

L90 = ‖|MT [:, 1:2]| − |MD[:, 1:2]|‖2
2 + λ‖b‖2

2, [2.5]

where, |M [:, 1:2]| := abs(M [:, 1]+ιM [:, 2]), is a vector function computing magnitudes

of spin transverse magnetizations. For the target excitation profile, we set rows in

MD to [1, 0, 0] for OV spins, and [0, 0, 1] for IV spins. We implemented this loss in
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3D	Tailored
Inversion

Tip-Down ReadoutSpoiling

Figure 2.2:
Schematic diagram of the imaging sequence used to characterize (validate)
the 3D tailored inversion pulses.

PyTorch to obtain the Jacobian ∂L90/∂MT as described in the Theory section.

In principle, small-tip based 3D tailored design approaches can also be applied

to this loss by scaling the designed RF pulse to attain the desired 90° flip (although

the resulting pulse may exceed peak RF limits). We therefore compare our approach

with the small-tip method in [72], starting with the same initial b and g waveforms

in both cases (initialized as described in 2.3.3).

2.3.2 Inner-Volume Inversion Pulse Design

Next we designed another type of excitation pulse that is difficult to design using

conventional approaches: an IV inversion pulse. Such a pulse may be useful for, e.g.,

selective inversion of arterial blood for flow territory mapping in perfusion imaging.

For this pulse we propose a very different excitation loss based on the longitudinal

magnetization:

L180 = ‖MT [:, 3]−MD[:, 3]‖2
2 + λ‖b‖2

2. [2.6]

We set rows in MD to [0, 0, 1] for OV spins, and [0, 0,−1] for IV spins. We also

implement this loss in PyTorch.

2.3.3 Pulse Initializations

The loss in problem [2.4] is non-convex, and the choice of initial g and b waveforms

influences the final excitation result. How best to initialize these waveforms is an open
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Figure 2.3:
Experimental phantom, and the two target patterns (IV/OV divisions)
used in our experiments. Top left: Magnitude image of the uniform Agar
phantom. Top right: Observed field map, used in the pulse design to
account for B0 inhomogeneity. A conservative mask that is 1-voxel-wide
larger than the phantom support was used to ensure that the phantom
boundary was included in the design. This expanded mask is the likely
cause for the relatively large B0 values in some pixels at the edge of the
mask (that are likely just outside the phantom). Bottom: Cuboid (left)
and “block-M” (right) target patterns. We prescribed a “don’t care”
(region with arrows) at the boundary between the IV and OV regions
that is excluded when calculating the design loss. For the cuboid pattern,
the don’t care region included the entire 3D IV/OV boundary, whereas
for the block-M pattern, only the top and bottom slices (slices 6 and 11;
slice numbers increase left-to-right and top-to-bottom) were included due
to the low in-plane spatial resolution of the design grid.
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problem. In [72], the initialization problem (in the context of small-tip 3D tailored

excitation) was addressed by evaluating two popular choices for the excitation k-space

trajectory, stack-of-spirals and SPINS [46], along with a novel alternative approach,

“extended kt-points”, that chooses gradients based on the desired (target) excitation

pattern. The extended kt-points approach was shown to produce comparable or better

excitation accuracy as compared with stack-of-spirals or SPINS, and was therefore

chosen for the experiments in this manuscript.

Once the gradients were initialized in this way, we initialized b using the approach

in [79]. These initial RF waveforms were scaled down when necessary to satisfy the

bmax constraint.

2.3.4 B-effective Computation

The particular form of B-effective depends on the excitation objective and other

application-specific components. Besides the RF and gradient waveforms, it often

also contains an off-resonance map (that may vary with time) and transmit sensitivity

maps. Other factors such as gradient non-linearity can also be included in B-effective.

For the single transmit coil phantom studies in this work, B-effective accounts for RF,

gradient, and a static off-resonance map. Specifically, at time t, let bt ∈ C and gt ∈ R3

denote the instantaneous RF and gradients, respectively. For position r relative to

the scanner iso-center, with off-resonance ω(r), the instantaneous B-effective is:

Bt = [R(bt), I(bt), 〈gt, r〉+ ω(r)/γ], [2.7]

where R and I extract the real and imaginary component, respectively.
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Table 2.1: Pulse Duration and TR/TE

Parameters OV90 IV180 IV180M

Pulse Duration 6.5 ms 4.8 ms 4.5 ms
TR / TE 2 s / 15 ms 3 s / minimum TE

2.3.5 Phantom Experiments

We performed validation experiments in an Agar phantom on a GE MR750 3T

scanner. Fig. 2.3 illustrates the experimental setup, including the prescribed IV and

OV regions. All experiments used the same observed off-resonance map in the pulse

design (Fig. 2.3). For all studies, we conducted the 3D design on a 32× 32× 20

voxel grid of FOV 24× 24× 24 cm3; with RF power weighting coefficient λ = 4, and

constraints: bmax = 0.25 G, gmax = 5 G cm−1, smax = 12 G cm−1 ms−1. We quanti-

fied excitation performance in simulations with normalized root mean squared error

(NRMSE). Spins in “don’t care” regions (Fig. 2.3) were excluded when calculating

the NRMSE. We ran our design programs on an NVidia 2080 Ti graphics card. With

the settings above, our method uses around 1.1 GB GPU RAM for all 3 designs. This

includes the intrinsic GPU RAM usage of the PyTorch environment.

We performed three different experiments: 1. OV 90° excitation using the cuboid

target pattern shown in Fig. 2.3 (OV90); 2. IV inversion using that same cuboid

target pattern (IV180); and 3. IV inversion with a block-M target pattern (IV180M).

The experiments were implemented using a vendor-agnostic platform for rapid pro-

totyping of MR pulse sequences [33, 50]. IV dimensions were 9× 9× 4.8 cm3 and

9× 12.8× 4.8 cm3 for the cuboid and block-M target patterns, respectively. We used

a single channel transmit/receive birdcage coil for all experiments and assumed uni-

form RF transmit sensitivity during pulse design. To mitigate Gibbs ringing artifacts,

we acquired the phantom images at a matrix size of 120× 120× 48 and then down-

sized in image space to match the design grid size 32× 32× 20.

We used long TR to wait for spin full recovery from saturation and inversion. For
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the OV90 experiment, as a substantial volume of the phantom is excited with large

angle, we used TE=15 ms to intentionally decay signal intensity and avoid saturating

amplifiers in signal receiver during acquisition. We use minimum TE for the inversion

experiments.

For inversion performance validation, we use the sequence in Fig. 2.2 to obtain

both phase and magnitude phantom images, with tip-down angle set to 10°. We

expect a π phase difference between inverted (IV) non-inverted (OV) regions, as the

excitation pulse should tip inverted and non-inverted spins in opposite directions. In

addition to the IV180 and IV180M excitation pulses, we imaged the phantom using

the same sequence settings (TE/TR, flip angle, matrix size) using a conventional slab-

selective SLR pulse. We normalized the inversion images using this “non-inversion”

image to eliminate receive coil sensitivity weighting (both magnitude and phase)

in the inversion images. For completeness, the unnormalized images are shown in

supplemental materials (Fig. 2.12).

2.4 Results

2.4.1 OV90

Figure 2.4 shows the OV saturation pulses obtained with the proposed method

and the small-tip approach in [72], and Fig. 2.5 shows the corresponding phantom

imaging results. To keep the small-tip RF pulse within peak amplitude limits, we

applied VERSE [11] near the end of the pulse. Our approach required 10 min for

design, longer than the Small-Tip approach (2 min). While the RF waveforms differ

markedly, the (excitation) k-space trajectories are more similar, though differences

are clearly observed in the 3D trajectory plot (Fig. 2.4).

We observe excellent agreement between simulated and acquired excitation pat-

terns (Fig. 2.5). Also, the proposed method produces much lower excitation error
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Figure 2.4:
OV saturation pulses for the cuboid IV (Fig. 2.3), designed with our
approach (Proposed) and the small-tip method in [72] (experiment OV90).
The left panel shows the 3D k-space trajectories and their orthogonal
projections: The two trajectories explore largely overlapping regions in
excitation k-space. The right two panels show RF, gradient, and slew
rate waveforms. Both designs satisfy the constraints, but for the small-
tip design it was necessary to apply the VERSE [11] algorithm near the
end of the pulse (see Discussion). Gradient peak amplitudes remain quite
small (� 5 G cm−1), whereas the gradient slew rates are frequently near
their limit.
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Figure 2.5:
Experimental validation of the pulses shown in Fig. 2.4. The left panel
shows the error map from simulation. Our approach has much smaller (-
46%) NRMSE in simulation compared to Small-Tip. Acquired results
(right) agree with the simulations (middle). Small-Tip approach has
larger error inside the IV: This is expected, as the method produces only
small-tip pulses, that we then scaled to meet the large-tip objective. The
scaling increases excitation error inside IV while reducing error in the
OV. Our approach directly designs large-tip pulses without this type of
‘scaling’ error.
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than the Small-Tip design (46% lower NRMSE error overall); this is expected as the

small-tip assumption is violated after scaling the RF to attain the desired 90° flip

angle in the OV, which reduces the error in the OV at the expense of increased error

in the IV.

2.4.2 IV180

Fig.2.6 shows the results of the cuboid IV inversion experiment. Pulse waveforms

and images from simulation and phantom experiments are shown. Pulse design took

6 min. Simulations and acquired images are in excellent agreement, and indicate

successful inversion within the IV with errors mainly located at the IV/OV boundary

as expected. In particular, we observe dark bands along the IV/OV boundary in the

magnitude image. Spins in this region are not fully inverted, resulting in low signal

intensities in the magnitude image. The phase image shows an abrupt π transition

at the IV/OV boundary, indicating successful IV inversion.

2.4.3 IV180M

Fig. 2.7 shows the results of the block-M IV inversion experiment. Pulse design

took 6 min. Slew rates are near the limit, similar to the IV180 experiment. Simulation

and acquired images again indicate successful inversion. The NRMSE is larger than

in the IV180 experiment, suggesting a trade-off between geometry complexity and

excitation accuracy. Excitation error is largest near the in-plane edge of the block-M,

where target Mz changes sharply from 1 to −1. We again observe dark bands along

the IV/OV boundary, and an abrupt phase change across that boundary, as expected.

2.5 Discussion

We have demonstrated a new approach to joint multi-dimensional excitation pulse

design that directly optimizes both RF and gradient waveforms. Our approach is not
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Figure 2.6:
IV inversion results for the cuboid IV pattern (Experiment IV180). As
desired, the 4.2 ms pulse satisfies all constraints. The gradient waveform is
again far from its peak constraint of 5 G cm−1. Compared to the OV90 ex-
periment, the pulse has more extreme slew rate waveforms. The acquired
magnitude and phase (i.e., the “observed inversion”) were obtained with
the sequence in Fig. 2.2. We observe good agreement between simulated
and acquired inversion patterns. The designed pulse successfully inverts
the IV, as indicated by similar magnitude image intensity in the IV and
OV regions (apart from transmit/receive coil shading) and a π phase shift
across the IV/OV boundary. The dark bands in the acquired images at
the IV/OV boundary are due to spin saturation from incomplete inversion
(and overlap substantially with the prescribed “don’t care” region).
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Figure 2.7:
IV inversion results for the block-M target pattern (Experiment IV180M).
The 4.5 ms pulse satisfies all constraints. The gradient waveforms are
again well below the peak amplitude constraint of 5 G cm−1, and slew rates
are near the constraint for significant portions of the waveform duration.
As in Fig. 2.6, the pulse successfully inverts the IV. The dark bands in the
acquired magnitude image at the IV/OV boundary are due to saturation
effects arising from the finite resolution (excitation k-space extent) of the
pulse – even though only slices 6 and 11 were included in the “don’t care”
region in the design due to the low in-plane spatial resolution of the design
grid (see Fig. 2.3).
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limited to small-tip design problems, and is compatible with quite general loss/design

functions such as those that involve longitudinal and/or magnitude magnetization.

We validated our approach with 3D tailored large-tip objectives. For this type of

application, the “extended kt-points” small-tip initialization [72] led to excellent large-

tip results.

We chose to implement our auto-differentiable Bloch simulator with B-effective

as its input for its generality: one can possibly prepend to it arbitrary functions

that compute B-effective from various parameters, such as multi-coil parallel trans-

mit (pTx) sensitivities, spin movements, and even non-linear response of gradient

amplifiers , gradient delays, etc. This choice that favors generality may require more

memory than software designs that take RF and gradients as inputs directly, and may

require more expensive hardware with adequate memory for high-dimensional design

problems. In particular, an interface that uses RF, gradient and spin location inputs

requires a memory size proportional to (NT +NT ×3+NM×3), whereas our interface

requires memory proportional to (NM × 3×NT +NM × 3). Our implementation can

find use in different scenarios for proof-of-principle designs that one could then follow

by customized simulators that meet specific computational requirements.

For the Bloch simulator, one may alternatively consider using the hard pulse ap-

proximation, which splits the instantaneous rotation matrix Rt into two rotations:

RF rotation, and transversal rotation due to the applied gradients and off-resonance.

The hard pulse approximation is the basis for the Shinnar-Le Roux (SLR) pulse de-

sign algorithm, and is crucial for the development of that algorithm. In our case,

however, such splitting actually increases the number of elementary computations:

when multiplying a vector, RF and transversal rotations require 9 and 4 multiplica-

tions, respectively, while direct multiplication by Rt requires only 9. We therefore

believe that the hard pulse approximation does not confer any particular advantages

on our approach.
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Apart from the explicit Jacobians introduced here, additional steps may be taken

to reduce computation time. Computation time is primarily determined by pulse

length, and not on the grid size (number of voxels) since computations are done

voxel-wise and can be easily parallelized to within GPU RAM limits. Apart from

increasing the simulation expense, longer pulses may also slow down Algorithm 1,

since we used L-BFGS for updating RF and gradients. In the future, to shorten the

optimization time for online pulse design tasks, it may be helpful to use coarser δt in

the Bloch simulation (here we used 4 µs to match our scanner’s hardware dwell time),

or parameterize the gradient waveforms to reduce the optimization problem size (e.g.,

using B-splines as in [72]).

For the experiments presented, we used voxel resolution 7.5× 7.5× 12 mm3 and

grid size 32× 32× 20 for the pulse design. For more complex target excitation pat-

terns and/or a larger FOV (e.g., as in the ISMRM parallel transmit pulse design

challenge [20]), it may be desirable to increase the spatial resolution (maximum ex-

tent in excitation k-space) and/or grid size for finer excitation accuracy control. For

instance, with a larger grid size, we would have space for in-plane “don’t care” re-

gion for the IV180M experiment, which may help reduce excitation error. A larger

grid size will increase the memory usage in simulation, for which the use of multiple

graphics cards may be needed to parallelize simulations across voxels.

In the OV90 experiment (Figs. 2.4–2.5), we were able to apply VERSE [11, 27] to

the pulse designed with the small-tip approach [72] to avoid violating the RF ampli-

tude limit (after scaling to attain 90° flip angle in the OV). However, this adjustment

was possible only because the 6.5 ms pulse happened to exceed peak RF only near the

end of the pulse, allowing us to apply the VERSE strategy in a relatively straightfor-

ward way. In the more general case, where peak RF is exceeded during the middle

of the pulse, it is more difficult to apply the VERSE technique to 3D RF pulses such

as those designed here. We found empirically that in the OV90 experiment, shorter
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pulses designed with the small-tip approach tended to exceed peak RF during one or

more intermediate intervals (after scaling), and that we were therefore unable to carry

out an effective experimental evaluation for the purposes of the comparison presented

here (Figs. 2.4–2.5). The proposed approach avoids this difficulty because peak RF

is constrained as described in 2.2.4; our approach was in fact able to design a shorter

(4 ms) OV saturation pulse with the same excitation error as in Fig. 2.5 (not shown).

Pulse design problems are in general non-convex in terms of b and g. Due to a lack

of theoretical tools for non-convex problem convergence analysis, it is unclear how to

best design an optimization algorithm for such problems a priori. In Algorithm 1,

instead of simultaneously updating both RF and gradient waveforms, we chose to

update them alternatingly as often done in existing small-tip joint designs [5, 44,

72, 80]. In supplemental Figs. S6-S7, we compared the alternating scheme with the

simultaneous scheme, and found empirically that the alternating scheme optimizes

faster than the simultaneous scheme for the specific problem settings we have in

this work. Unfortunately, the non-convexity prevents us from fully comprehending

this behavior, and we make no claims that the alternating approach used here is

optimal over the many possible alternatives. Iteration stopping criteria for updating

b and g are also commonly chosen ad hoc. Besides limiting the maximum number of

iterations as we have done in Algorithm 1, another option can be setting a threshold

to assert large-enough loss decreases and/or updates of the variables at each iteration.

However, due to the tan−1 change of variables, a minuscule update of b and s near

their limits will be mapped to a vast difference in the optimization variables ρ̃ and

s̃, respectively. As an alternative to the updates of variables, one can threshold the

norms of variable derivatives, or the change of b and s as the iteration stopping

criteria.

Our approach may remind readers of optimal control (OC) based pulse design

methods [10, 21]. Comparing the OC formulation with our approach, we can make
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the following observations (ignoring the penalization and relaxation terms): Eq. [2.2]

is the forward propagation of spin states in OC (state equation); the first identity in

Eq. [2.3] is the backward propagation of OC Lagrange multiplier (costate equation);

the second identity in Eq. [2.3] is the derivative for iteratively optimizing B-effective

as the control. Being one step in the computation of excitation losses, our auto-

differentiable Bloch simulator enables reusing the forward and backward iterations

regardless of the actual design loss function chosen, and propagating the derivatives

to the actual controls, i.e., the RF and gradient waveforms. In future works, it may

be beneficial to employ tools from control researches. For instance, optimization

algorithms from OC may accelerate or replace algorithm 1.

Like many other pulse design works [5, 44, 72, 80], our approach assumes that the

off-resonance map is known. This assumption may be violated in, e.g., the presence of

motion or in mixed fat/water voxels. Addressing such model mismatch/uncertainties

requires improving design robustness in these perspectives. Noting the relation of our

tool to the control framework, we anticipate incorporation of robust control methods

can strengthen our design against off-resonance map estimation mismatches.

A major advantage of our approach is that it enables designs involving arbitrary

loss functions, enabling novel design formulations that have so far not been tractable.

For example, we demonstrated in [2.6] a loss involving only longitudinal magneti-

zation. Other possibilities may include the addition of constraints or regularization

terms involving specific absorption rate (SAR) or peripheral nerve stimulation (PNS).

Another important feature is that the method back-propagates derivatives through-

out the Bloch simulator, which may facilitate development of neural network based

pulse design approaches.

A limitation of our method is that it only works for fixed pulse length, as deter-

mined by the initial waveforms. As shown in the pulse plots in Figs. 2.4, 2.6, and

2.7, there are temporal intervals where neither the RF, gradients, nor slew rates are
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hitting their constraints. This may suggest that the pulses can be shortened without

sacrificing excitation accuracy. Pulse shortening can be formed as a minimum-time

pulse design problem [10] in the OC context. Noting the relation of our method to the

OC approach, for future works, we expect employing existing OC tools to be helpful

in overcoming the fixed length limitation.

2.6 Conclusion

In this work, we have proposed a novel approach based on auto-differentiation

tools for the joint design of RF and gradient waveforms, and validated it with multi-

dimensional spatially tailored excitation tasks in MRI. Using short (<5 ms) excitation

pulses and single (body) coil RF transmission, we demonstrated experimentally that

even a fairly complex 3D spatial pattern (block-M) can be selectively inverted. Our

method is not limited to specific design objectives. To reduce computation time

and memory requirements, we derived explicit Jacobians for the Bloch simulator, as

the simulation steps are typically the most computationally demanding. We used a

change of variables to enforce hardware limits, enabling use of simpler unconstrained

optimization. We anticipate that the proposed method will be useful for a broad

range of excitation pulse design problems in MRI.

2.7 Supporting Information

2.7.1 Additional simulation results

For completeness, we present here both the initial pulses designed as described

in III-C in the main text, and the corresponding optimized pulses obtained with the

proposed approach. In the case of OV90, we also include the small-tip pulse. In each

case, we show the simulated excitation pattern for each pulse.

In addition to IV90, IV180, IV180M, we include here a cuboid IV inversion pulse
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based on the B0 field map acquired in the brain of a healthy volunteer. This is done

to demonstrate the feasibility of designing an IV inversion pulse with the proposed

approach using a more realistic B0 map than that shown in Fig. 3. In addition, for

that simulation experiment we compare the optimized pulse with a pulse obtained by

only optimizing the RF waveform, i.e., keeping the gradient waveforms fixed at their

initial shapes. This is done to assess the relative importance of also optimizing the

gradient waveforms.

The key takeaways from these figures are: (1) The excitation patterns produced by

the initial pulses are substantially inferior to the optimized patterns. (2) The initial

and optimized excitation k-space trajectories tend to be similar, suggesting that a

local minimum is obtained. (3) The initial and optimized RF waveforms (amplitude

and phase), on the other hand, differ markedly from each other, suggesting relatively

weak dependence on initial RF waveform. This may be due to the fact that each

RF sample can be optimized independently of the other samples, unlike gradient

waveforms that are subject to slew rate constraints. (4) Despite the similarity between

the initial and optimized gradient waveforms, the optimized waveforms produce a

more accurate excitation than the pulse obtained by optimizing only the RF waveform

(Fig. 2.11).

2.7.1.1 OV90, IV180, IV180M, and Brain Simulation
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Figure 2.8:
OV saturation pulses (and results) for the cuboid IV, designed with our
approach (Proposed) and Sun’s small-tip method (experiment OV90 in
the main manuscript). On the 3D k-space plot, the three trajectories
explore largely overlapping regions in excitation k-space. Our approach
has much smaller (-46%) NRMSE in simulation compared to Small-Tip.
Small-Tip approach has larger error inside the IV: This is expected, as
the method produces only small-tip pulses, that we then scaled to meet
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Cuboid IV inversion (experiment IV180 in the main manuscript). The
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Cuboid IV inversion based on a B0 (off-resonance) map obtained in a vol-
unteer. Three pulses are compared: (1) Initial, (2) ’RF Only’, obtained
by keeping the gradients fixed at their initial shapes and optimizing only
the RF waveform with the proposed auto-differentiation approach, and
(3) the proposed jointly optimized pulse. While our optimized k-space
trajectory is similar to the initial k-space trajectory, the jointly opti-
mized pulse (Proposed) attains an excitation accuracy (NRMSE: 8.1%)
that is 37% better than the ’RF Only’ pulse (NRMSE: 12.9%). This
improvement is also reflected in the convergence (L180 loss history) plot.
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(TR/TE, flip-angle, readout trajectory), except the inversion pulse in
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2.7.2 Unnormalized Inversion Images

In Fig. 2.12, we show the unnormalized images for the 3D spatially tailored inver-

sion experiments (IV180, IV180M). In the main text, we normalized the “Cuboidal”

and “Block-M” images by element-wise division by the “No Inversion” image, which

eliminates the image intensity and phase variations due to receiver coil sensitivity.

2.7.3 Alternating vs Simultaneous Minimization

Here we compare the alternating optimization used in the main text with a si-

multaneous update scheme that optimizes b (RF waveform) and g (the three gradient

waveforms) together at each iteration rather than fixing one and optimizing the other.

We observe empirically that for the L90 and L180 losses defined in the main text, with
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Figure 2.13:
Comparison of alternating (Alter.) and Simultaneous (Simul.) mini-
mization. The two approaches find similar but different local minima ac-
cording to the RF and k-space plots (Left Panel). On the Top Right, the
loss for the first 40 iterations is plotted. The computation time for each
iteration is slightly longer for the simultaneous L-BFGS updates. The
simultaneous updating scheme converges slightly slower, while the even-
tual excitation performance of the two schemes is comparable (Lower
Right).

extended kt-points initializations, the alternating update decreases the design losses

faster than the simultaneous update. However, the two objectives are both non-convex

in terms of b and g, which makes this behavior difficult to analyze. We therefore can-

not claim that this alternating scheme will outperform simultaneous updates in the

general case (i.e., for all other design problems).
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Figure 2.14:
Same comparison as in Fig. 2.13, for the IV180 design. The simultaneous
approach attains a slightly better inversion, but ends with a higher loss
value, in which the RF power penalization is included.

43



2.7.4 Impact of a small Gradient Delay

On modern MRI scanners, the physically realized gradient waveforms are typically

slightly misaligned in time relative to the RF waveform, even after the vendor’s built-

in gradient delay correction is applied. This delay is on the order of the gradient

sampling (dwell, or raster) time, which on our scanner is 4 µs. To assess robustness

against such delays, we simulated the excitation produced by the OV90 and IV180

pulses for delays of 4 µs and −4 µs. As shown in Fig. 2.15, such delays can degrade

the performance of our designed pulses by 2-3 %.
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Simulated excitation performances of our designed OV90 and IV180
pulses under different delays of the applied gradient fields.
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CHAPTER III

Outer Volume Saturation Facilitated Inner Volume

Imaging with Application to Functional MRI

3.1 Introduction

3D volumetric steady-state imaging is an alternative to simultaneous multi-slice

(SMS) [66] imaging that is free from slice profile artifacts, and is less vulnerable

to spin-history effects due to, e.g., blood inflow [16]. In dynamic imaging, such as

functional MRI (fMRI), these advantages can yield improved SNR [70], which may

be exploited to increase spatiotemporal resolution in such applications. Yet, this

SNR benefit requires multi-shot scanning to acquire sufficient 3D k-space signals for

reconstruction, which aggravates imaging susceptibility to between-shot physiological

signal fluctuations.

A major area of interest to mitigate such physiological noise artifacts is to en-

able under-sampling, i.e., reducing the number of shots needed for acquisition and

reconstruction. Common approaches for this objective are based on parallel imaging

[23, 57], and compressed sensing [41]. These two techniques are from the recon-

struction perspective. They exploit signal redundancies that were afforded by extra

receiving coils and from insightful image priors (e.g., transform sparsity), respec-

tively, such that a small subset of k-space signals are sufficient to solve the imaging
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inverse problem. The two techniques can also be combined and/or incorporated with

other image priors (e.g., low-rankness [25]) using model-based image reconstruction

to attain aggressive under-sampling.

Inner volume (IV) imaging is another approach to reduce the necessary shot num-

bers in volumetric imaging acquisition. It is from the excitation perspective. For IV

imaging, the FOV is divided by the boundary of region of interest (ROI). The region

inside the ROI is specified as the IV, and the outside is the OV. Similar to the way

SMS restricts each free induction decay (FID) to be from a set of separated slices,

such that 2D k-space readouts can fulfill acquisitions, IV imaging attempts to confine

the excitation to a restricted ROI, e.g., visual cortex, via 3D spatially tailored exci-

tations. Such spatial confinement can relax the Nyquist sampling distance criteria

in the k-space, requiring fewer shots in the acquisition than needed for imaging the

whole field-of-view (FOV). This imaging strategy is particularly useful for applica-

tions that have an ROI which is much smaller than the FOV, for instance, sensory

system functional MRI.

Despite the sampling benefit, for confined ROI applications like sensory system

fMRI, IV imaging is still not widely used for accelerating volumetric acquisitions,

largely due to its implementation difficulties. Classical 3D IV structural imaging

methods are based on combinations of 1D selective adiabatic refocusing pulses. This

approach has an extensively long spin preparation time, and is large-tip based. Its

requirement for more than one RF pulse to implement makes for a complicated steady

state, and is unsuitable for steady-state dynamic imaging. Lately, multi-dimensional

small-tip excitation pulse design has been increasingly studied. These works rely on

an approximate Fourier relation between the excitation profile and the pulse that was

established by the small-tip approximation. In particular, Sun et al. proposed a 3D

tailored RF pulse design algorithm that jointly designs excitation RF and gradient

waveforms that satisfy hardware constraints [72].
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Sun’s approach can obtain a high peak flip-angle ratio between IV and outer

volume (OV) using conventional single transmit coil MR systems for single-shot 3D

IV excitation [73]. However, despite the high ratio, residual excitation remains in

the OV in small flip angle, and is problematic. Due to the sub-linear dependence

of the signal amplitudes on flip-angles in common steady-state imaging sequences,

small flips in the OV produce “amplified” signal relative to the IV signal level. These

stubborn OV signals undermine the excitation confinement, limiting the shot number

reduction for accelerating acquisition.

In this work, to improve 3D IV imaging signal profile for common steady-state

sequences, such as balanced steady-state free precession (bSSFP), spoiled gradient

echo (SPGR), and small-tip fast recovery (STFR), we propose an approach that

works by prepending the 3D tailored IV excitation with a complementary tailored

OV saturation. We show that this sequence modification can suppress the OV signal

significantly without disturbing the IV signal noticeably. We demonstrate this IV

imaging strategy with a visual cortex IV fMRI study.

3.2 Methods

Fig. 3.1 illustrates how we conduct steady-state OV magnetization saturation.

It shows the saturation strategy for three different steady state sequences: bSSFP,

SPGR, and STFR. Common across all three sequences, each TR starts with an IV

excitation pulse that generates an FID in the ROI. At the end of TR, a 3D tailored

OV pulse is played immediately followed by a spoiler gradient. bSSFP and STFR

add an extra negative gradient spoiler balancer and tip-up pulse, respectively. The

negative gradient spoiler balances the overall gradient moment each TR for obtaining

bSSFP signal contrast. At steady-state, OV magnetizations are thus saturated right

before entering the formation of FID. In this way, while the IV pulse still has residual

excitation outside the IV, the OV spins are already largely saturated by the tailored

48



OV pulse and the spoiler gradient, contributing little signal to the FID.

We design both the IV excitation pulse and the OV saturation pulse using the

methods proposed in [72]. The method starts with a pulse initialization procedure

named extended kt-points [72]: a set of phase-encoding (PE) point locations are

greedily collected from the k-space given a desired excitation profile. The visiting

order of these locations is then determined using the traveling salesman algorithm.

The method connects the PE locations using the algorithm described in [42] and

yields a smooth initial k-space trajectory. The initial RF is then computed for this

trajectory by solving a small-tip RF design problem [79]. This initial RF and k-

space trajectory are then optimized alternatingly, i.e., fixing the RF while optimizing

the k-space trajectory and vice versa, to minimize `2 excitation errors to the target

excitation profiles.

3.2.1 Experiments

To demonstrate the IV imaging performance of our proposed strategy, we conduct

two sets of in vivo experiments on healthy volunteers on a 3T GE MR750 scanner

with a single channel transmit coil and 8-channel receiving head coil. In the first set,

we use Cartesian readout and compare the steady-state signal profile of IV imaging

with and without our proposed OV saturation pulse. We set acquisition parameters

as: TR = 25.3 ms; TE = 1.5 ms; IV flip angle 14°; OV flip angle 60°; image matrix

size 120× 120× 40; FOV = 24× 24× 20 cm3. We use the same division of IV and

OV across all three sequences to compare the performances across sequence types.

Fig. 3.2 illustrates the target (design) 3D excitation, showing the IV, OV, transi-

tion, and background regions, respectively, of this experiment. The target pattern of

the tailored OV pulse is essentially the complement of that of the IV pulse: the IV

excitation pulse aims to only excite IV spins, and the OV pulse aims to only excite

OV spins. A transition region between the OV and IV region is prescribed as a “don’t
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the beginning and the end of each TR, respectively. So for steady-state
imaging, the OV saturation pulse is placed right before the IV excitation
pulse, annihilating OV spin magnetizations. For bSSFP and STFR, an
extra sequence segment of negative spoiler gradient balancer and tip-
up pulse is marked with dashed rectangular, respectively. Before the
OV saturation pulse is an interval of free time that extends the overall
TR to a typical duration in fMRI imaging, so the non-functional signal
profile obtained can help assess the OV saturation strategy performance
in steady-state dynamic imaging.
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care” region, i.e., it is excluded from the cost function in the pulse design procedure.

The second experiment used a stack-of-spirals-in readout to acquire bSSFP fMRI

time series with checkerboard flashing visual stimulus. Due to the banding phe-

nomenon, the bSSFP blood oxygen level dependent (BOLD) fMRI signal level varies

with the off-resonance level in voxels [48, 60]. Specifically, the blood oxygenation level

affects the off-resonance frequencies in voxels. For a voxel near the bSSFP transition

band, a slight change of its off-resonance frequency will cause a large difference in

its steady-state spin magnetization magnitude. This change is then reflected on its

image signal level, and can amplify the BOLD activity to be imaged. Transition

bands are typically very narrow with a width of a few voxels. The BOLD activities

we obtain in this experiment are thus a mixtures of pass band and transition band

signal variation level.

We conduct three acquisitions for this experiment: 1) high-resolution full brain

structural image; 2) high-resolution visual cortex IV brain structural image; 3) low-

resolution visual cortex fMRI images. We set acquisition parameters as: TR = 38 ms;

TE = 21 ms; IV flip angle 36°; OV flip angle 70°; image matrix sizes 240× 240× 240

(high-resolution) and 48× 48× 20 (low-resolution); FOV = 24× 24× 24 cm3.

The two structural scans are fully-sampled, with a readout composed of 240 plat-

ters, each comprised of 12 constant density interleaves. The fMRI scan readout has 20

platters, each comprised of 3 variable density interleaves. It is prospectively under-

sampled with factor R = 3 in a rotating manner (rotated stack-of-spirals), with 1

out of 3 interleaves acquired in each platter. The sampling pattern does not change

across temporal frames.

For the fMRI scanning, we presented 20 s on-and-off flashing full-field visual stimuli

for 5 min. We used the non-Cartesian GRAPPA algorithm from Chapter IV [37] for

under-sampled reconstruction before computing fMRI activation correlation maps.
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Figure 3.2:
Region division and the simulated flip angles for IV and OV respectively.
(a) The whole FOV is divided into 4 regions. The Background region is
excluded in the pulse design. The Transition region is weighted as 0 in
this experiment. IV and OV are the target regions for the 3D IV and OV
pulses, respectively. (b) Reference image acquired with slab excitation.
(c,d) Bloch-simulated one-shot IV and OV excitations, respectively.
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Figure 3.3:
Comparison of 3D SPGR/bSSFP/STFR IV imaging both with and with-
out the proposed 3D tailored OV suppression pulse. The suppression
pulse removes the majority of the OV signal for SPGR and bSSFP. For
STFR, we observe much lower OV signal than in SPGR and bSSFP, both
before and after inserting the proposed OV suppression pulse. This is
expected, as the tip-up pulse in STFR effectively acts as an OV signal
suppression pulse.

3.3 Results

Fig. 3.3 shows the imaging results of the three sequences obtained with and

without the tailored OV suppression RF pulse. We quantify the inner volume im-

age quality with the steady-state average signal intensity ratio of IV over OV. The

ratios with and without the tailored OV saturation are: SGPR, 15.17/5.38; bSSFP,

13.54/6.52; STFR, 20.31/15.69. We observe good OV suppression with the tailored

OV pulse, though some signal in inferior slices remains. For the STFR result, we

observe good OV suppression even without the proposed OV suppression pulse, due

to intrinsic OV suppression from the tip-up pulse used in STFR.

Fig. 3.4 shows images obtained with whole-brain excitation and IV excitation,

respectively, and demonstrates the spatial selectivity of our sequence. These slices

are regularly spaced. With OV saturation, the excited region is mainly confined to

the visual cortex, as intended.

Fig 3.5 shows the bSSFP functional activation results. Time-course correlations
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Figure 3.4:
Structural IV bSSFP image, 1mm isotropic resolution. There are un-
suppressed OV signals (arrow) near the top of the brain (in the sagittal
images); we expect that a larger OV flip-angle can mitigate this problem.

with the stimulus are thresholded at 0.57. We observe high correlations within the

visual cortex as expected. The averaged time-course plot is computed using the voxels

with correlations above a threshold of 0.57. We observe ∼6 % signal changes.

3.4 Discussion and Conclusion

We have proposed an approach for OV signal suppression in 3D IV imaging based

on saturating the OV steady-state signal using a 3D tailored RF pulse combined with

spoiler/echo-shifting gradient(s). We demonstrated the efficacy of this approach for

SPGR, bSSFP, and STFR sequences.

We also demonstrated that it is possible to perform IV bSSFP fMRI with good OV

suppression, using tailored IV excitation and OV saturation pulses of approximately

4 ms duration each, which is short enough for use with the fMRI sequence used here.

Including a pair of balanced gradient spoilers ensures that the sequence is balanced

for IV spins, and unbalanced for OV spins.

For future work, it is of interest to quantifically comparing fMRI activation ac-

quired with and without IV imaging, using metrics such as, ROC plots [69], etc.
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Figure 3.5:
(Left) Temporally-filtered absolute functional activity map overlaid onto
the zoomed-in high-resolution structural image. We primarily observe
activations in the visual cortex as expected. (Right) Time course averaged
across voxels with functional activation (correlation) above 0.57. Yellow
region indicates visual stimuli are on. We observe ∼6 % signal changes
between stimulus on and off.
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CHAPTER IV

A GRAPPA Algorithm for Arbitrary 2D/3D

Non-Cartesian Sampling Trajectories with Rapid

Calibration

4.1 Introduction

Multi-shot 3D volumetric imaging is a potential alternative to single-shot simul-

taneous multislice (SMS) [66] imaging in, e.g., fMRI [70]1. Compared to 2D (slice-

selective) acquisitions, 3D volumetric imaging is free from slice profile artifacts, has

reduced spin-history effects (due to, e.g., in-flow or motion) [16, 61], and can provide

improved image SNR [35, 70]. However, a drawback of multi-shot acquisitions is in-

creased susceptibility to physiological signal fluctuations between shots. To mitigate

physiological noise artifacts, it is beneficial to accelerate the acquisition using parallel

imaging (PI) such that the total acquisition time per volume is reduced (to, e.g., one-

half the heartbeat interval [53, 54]). In addition, non-Cartesian readout trajectories

are desirable due to their high sampling efficiency.

Iterative parallel imaging (PI) methods such as cg-SENSE [56, 57] and SPIRiT

[43] are often chosen due to their ability to handle arbitrary readout trajectories.

However, in applications such as fMRI where a time-series of several hundred images

1This chapter was published in [37].
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must be reconstructed, the total reconstruction time using iterative methods can be-

come prohibitive (since each image is reconstructed independently). To speed up

reconstruction, several groups have adopted dedicated computational hardware, e.g.,

general purpose GPUs [6], but working with such hardware usually requires special-

ized programming expertise making such methods less widely transferable. Therefore,

there is currently a need for an easy-to-implement and robust reconstruction tech-

nique for arbitrary non-Cartesian trajectories that scales well with the total number

of image frames (i.e., short overall reconstruction time for a time-series) even on

common hardware (e.g., CPUs).

The foremost non-iterative alternative to the above-mentioned ways is GRAPPA

[23, 55, 74], which (like SPIRiT) does not require explicit knowledge of receive coil

sensitivity maps. Unfortunately, using GRAPPA with non-Cartesian trajectories has

so far been somewhat awkward. Incomplete remedies have been explored for certain

kinds of readouts. For example, [22, 28] splits stack-of-stars or stack-of-spirals read-

outs into segments, and then performs conventional Cartesian GRAPPA within each

segment. However, this procrustean approach cannot be used with arbitrary 3D non-

Cartesian trajectories, and requires a large amount of ACS data for kernel estimation.

In addition, a trade-off must be made between trajectory segmentation and recon-

struction quality. Alternatively, one can grid a Cartesian dataset from a non-Cartesian

one and apply ordinary GRAPPA thereafter (based on GROG [63, 64]). However,

reliable and accurate gridding may be problematic for under-sampled trajectories due

to its 1D interpolation nature that limits its effectiveness for interpolation beyond 1

k-space sample distance. Another approach that has been used in some applications

is through-time GRAPPA [65], which alternates sampling patterns along time and

extends the reconstruction along the temporal dimension. However, its calibration

may become ill-conditioned when dynamic imaging contrast is predominantly sta-

tionary, e.g., as in fMRI. Finally, PARS [78] and kSPA [34] are non-iterative k-space
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reconstruction methods that are closely related to GRAPPA, however they both rely

on explicit knowledge of receive coil sensitivity maps. PARS needs to calibrate a large

number of kernels which can be time-consuming in practice, while kSPA requires ex-

tra tuning of the order of its polynomial approximations. Neither of the approaches

has become widely adopted.

We propose a conceptually simple method for generalizing GRAPPA to arbitrary

3D non-Cartesian PI acquisitions, and provide an efficient algorithm for its calibration

[36]. For each unsampled k-space location (with a distinct local sampling constella-

tion), our method assigns a unique GRAPPA kernel, whose calibration is efficiently

implemented by utilizing the phase-shift property of the FT and the NUFFT [17, 75].

Like Cartesian GRAPPA, our method does not require explicit coil sensitivity infor-

mation, and reconstruction per image volume (once weights have been calibrated) is

rapid. Apart from choice of GRAPPA kernel size and Tikhonov regularization coef-

ficient (which is also typically used in conventional GRAPPA), our proposed method

is fully automatic and does not require manual parameter selection based on, e.g.,

segments or other trajectory-dependent aspects. Thus, our method (once coded)

requires minimal user expertise and should be broadly applicable to arbitrary non-

Cartesian PI applications. We demonstrate our method in 3D rotated stack-of-stars

[84] and rotated stack-of-spirals [15] structural (T1-weighted) imaging, and 3D ro-

tated stack-of-spirals fMRI, using the same implementation parameters for all three

cases.

4.2 Methods

4.2.1 Background: General Principle of GRAPPA

It is helpful to consider two aspects of the GRAPPA kernel: the local sampling

constellation, and the associated weights. The constellation captures the relative po-
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sitions between the unsampled (”center”) location that we wish to reconstruct and its

sampled local neighbors, and the weights are the coefficients for later reconstruction.

Depending on the sampling trajectory, there are usually many different constellations

in one dataset, and thus multiple sets of weights will be required for the reconstruc-

tion.

GRAPPA works by first identifying all distinct constellations. Then, for each

constellation, to solve for its weights, GRAPPA collects all combinations of data from

the ACS region whose relative positions match that of the constellation. Figure 4.1

(b) shows a simple two-neighbor (upper-left and lower-right) illustrative example for

reconstructing an unsampled (center) location. For each combination, the neighbors

across Nc coils that surround its center form one row of matrix Ã = [Ã1, . . . , ÃNc ],

where the tilde indicates that these signals reside in k-space. The submatrix Ãc ∈

CNk×Nn collects the neighbors from the cth coil. HereNk is the number of combinations

(within the ACS region) one can collect that match the constellation being calibrated,

and Nn is the number of neighbors inside the constellation. In addition, b̃c denotes

the vector of center values from the cth coil. The weights are obtained by solving the

least square (LS) problem

arg min
wc

‖Ãwc − b̃c‖2
2 + λ‖wc‖2

2 ⇒ w?c = (ÃHÃ+ λI)−1ÃH b̃c, [4.1]

where wc ∈ CNc·Nn denotes the vector of weights for reconstructing an unsampled

value for the cth coil, and λ is the Tikhonov regularization coefficient.

When forming Ã and b̃c in this way, the columns of Ã contain the (vectorized)

signals from partially overlapping rectangles, e.g., as shown in Fig. 4.1 (b). In the

limit of a very large ACS region, these rectangles resemble shifted replicas of each

other, apart from differences at the boundary.
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4.2.2 Proposed Non-Cartesian GRAPPA

The procedure described above is well suited for Cartesian acquisitions, where all

locations, whether sampled or not, are on a Cartesian grid. Hence, for any periph-

eral constellation, one can always find matching combinations within the ACS region,

and arrange them into the LS form Eq. [4.1]. For non-Cartesian sampling, given a

fixed size, constellations can be efficiently identified using kd-tree [3]: Specifically,

this algorithm forms a tree-structure given all k-space points of interest; It returns

all neighboring points within a given distance (i.e., prescribed GRAPPA kernel-size)

when queried with a certain (unsampled) location. Following constellation identifi-

cation, the calibration can no longer be directly conducted in the conventional way.

However, while there may be no direct match from the ”on-grid” (Cartesian) ACS

region for an off-grid non-Cartesian GRAPPA constellation, we propose to obtain

such matches through the phase-shift property of the DFT. We first inverse FT the

on-grid ACS data, and then modulate the resulting image by a linear phase corre-

sponding to the wanted off-grid shift. This phase-modulated image is then Fourier

transformed back to k-space. The whole procedure is equivalent to a periodic sinc

interpolation. A simple example of our approach is illustrated in Fig. 4.1 (c), for

a typical constellation β from a spiral readout, where two off-grid (black) neighbors

are assumed sampled and selected to reconstruct the unsampled center. The key idea

is to “synthesize” the corresponding non-Cartesian (off-grid) combinations from an

on-grid ACS dataset. These interpolated ACS data are again arranged as in Eq. [4.1],

yielding the associated GRAPPA weights.

Following the calibration phase, we use the GRAPPA weights (one set for each

unique constellation) to reconstruct unsampled k-space coil data and restore a full

non-Cartesian k-space. We then reconstruct coil images using the NUFFT adjoint

method with Voronoi density compensation [17, 58]. Final images are obtained using

sum-of-squares [23] or linear [59] coil image combinations.
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Figure 4.1:
Comparison of (b) conventional Cartesian GRAPPA, and (c,d) the pro-
posed non-Cartesian GRAPPA calibration. In both methods, the ACS
region consists of densely (Nyquist) sampled (or gridded) Cartesian data,
illustrated in (a). (b) Conventional (Cartesian) GRAPPA reconstruction
using the constellation ”α”, that is composed of two sampled neighbors
and an unsampled center. Several “combinations” are identified from the
ACS region that match the desired constellation (α); in (b), there are
eight such combinations, whose center points form the yellow rectangle in
(b). Each combination gives rise to one row in Ã, and one element in b̃c
(cf. Eq. [4.1]). As a result, the orange and purple rectangles form columns
of Ã (after vectorizing), and b̃c is formed from the yellow rectangle. (c,d)
Proposed non-Cartesian GRAPPA reconstruction. For a non-Cartesian
(local) constellation ”β”, we synthesize off-grid ACS data by using the
phase-shift property of the Fourier transform (d). The GRAPPA weights
for ”β” are then obtained as in conventional GRAPPA (cf. Eq. [4.1]).
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4.2.3 Efficient Implementation of the Proposed Method

Our non-Cartesian approach must calibrate a different set of GRAPPA weights for

every distinct constellation. In the most general case, the number of distinct constel-

lations equals the number of unsampled points. The workload for many applications

may be less, since commonly used trajectories such as rotated stack-of-stars, stack-of-

spirals, and stack-of-cones [24], often possess certain k-space regularities (e.g., regular

sampling along kz) that reduce the number of distinct constellations that must be cali-

brated. Nevertheless, depending on acquisition parameters such as image matrix size

and under-sampling factor, calibration can still be computationally demanding or

even impractical. To address this, we propose the following approximate algorithm

for efficient implementation of our method. Specifically, we accelerate calibration by

avoiding any explicit interpolation to ACS datasets.

In the formation of Ã and b̃c in Eq. [4.1], the signals at the boundary of the ACS

region are normally excluded, as forming matching combinations for them would

require signals residing outside the region. In our fast algorithm, boundaries are in-

cluded, by adopting circulant boundary conditions. In other words, we allow the ACS

region to wrap around as needed to complete a given constellation. The underlying

assumption of this approach is that when the ACS region is sufficiently large, the

impact of these wrap-around combinations is marginal. With the circulant boundary

assumption, the rectangles described above are now fully overlapping in a circularly-

shifted manner, and the columns formed from them, that assemble the matrix Ãc

and the center vector b̃c, are now circularly shifted replicates. This allows efficient

calibration as follows.

Figure 4.2 illustrates our algorithm for efficient weight calibration. We denote

unitary F ∈ CNk×Nk as the (2D or 3D) DFT of the ACS region size. The solution to
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Figure 4.2:
Illustration of our method for fast computation of AHA (Eq. [4.2]). (a)
A (low-resolution) coil image is reconstructed from the ACS data, and
this image is then zero-padded to increase the spatial frequency (Fourier)
sampling density. (b,c) The (m,n)th element of AHi Aj is a pixel-wise mul-
tiplication of coil images bi and bj, each modulated by a linear phase νm
and νn, respectively. The result is a single “coil-product” image bij mod-
ulated by the combined phase image vnm. (d) The frequency component
corresponding to the combined linear phase is efficiently calculated by in-
terpolating the Fourier transform of the zero-padded coil-product images,
in NUFFT-like fashion.
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(1) can now be written as:

w?c = (ÃHÃ+ λI)−1ÃH b̃c = (AHFHFA+ λI)−1AHFHFbc

= (AHA+ λI)−1AHbc, [4.2]

where A = [A1, . . . , ANc ] and bc are in the image domain (tilde symbol removed). In

particular, bc is a low-resolution coil image obtained by inverse FT of all of the ACS

data. Then, we represent AHA and AHbc with block matrices:

AHA =


AH1 A1 · · · AH1 ANc

...
. . .

...

AHNcA1 · · · AHNcANc

 , AHbc =


AH1 bc

...

AHNcbc

 . [4.3]

Due to the circulant attribute, the columns in Ac are essentially bc modulated by

different linear phases, i.e., diag(ν)bc, where ν ∈ CNk is a phase vector. Analytically,

these phase vectors are formed following the Fourier relation. That is, for a k-space

neighbor at position p relative to its constellation center as origin, the qth element in

its corresponding v, which modulates image domain location q, is [v]q = exp (ι2πpTq).

Let m,n = 1, . . . , Nn. In MATLAB notation:

Ai(:,m)HAj(:, n) = bHi diag(νm)H diag(νn)bj = (νHm diag(νn))(diag(bi)
Hbj)

Ai(:,m)Hbj = (νHm)(diag(bj)
Hbj), [4.4]

where i, j = 1, . . . , Nc are coil indices. In other words. the elements of AHi Aj and AHi bj

are inner products between various linear phases and fixed (low-resolution) “coil prod-

uct” images, i.e., these elements are (spatial) frequency components of diag(bi)
Hbj.

Analytically, that is, if for any image domain location q, the element, [vm]q, can be

expressed as exp (ι2πpT q) with the same p, then Ai(:,m)Hbj = [F diag(bj)
Hbj]p, the
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frequency p component. An important property of this formalism is that bc, and hence

all coil product images, are shared across all constellations; therefore we pre-compute

and cache the FT of diag(bi)
Hbj. For non-Cartesian constellation calibration involv-

ing off-grid frequency components of diag(bi)
Hbj, we prepare and cache the dense

frequency spectrum of diag(bi)
Hbj by zero-padding and Fourier transforming (which

only needs to be done once), and then linearly interpolate to the desired off-grid fre-

quency (as commonly done in NUFFT [17]). This algorithm reduces the complexity

of computing AHA and AHbc from Θ(NkN
2
nN

2
c +NkNnNc) to Θ(N2

nN
2
c +NnNc), where

Nk can reach several thousand (e.g., for a 3D ACS region of size 20× 20× 20).

We implemented the proposed calibration in C as it requires efficient indexing

for NUFFT interpolation. Compared to the MATLAB inner-product approach (Eq.

[4.4]), our NUFFT interpolation based approach can speed up the calibration about

20-fold (results not shown). Once the calibration is done, the non-iterative reconstruc-

tion stage for each image frame requires only a few seconds, as opposed to minutes

using iterative methods.

4.2.4 Algorithm and Implementation Details

The proposed non-Cartesian GRAPPA reconstruction procedure comprises the

following list:

Calibration:

1. Prepare a Cartesian ACS dataset: This can be from either direct Cartesian

acquisition at the center of the k-space, or from gridding a Nyquist sampled non-

Cartesian k-space center. An ACS dataset of size 20 × 20 × 20 × Nc has been

found sufficiently large in this work. For consistent Tikhonov regularization

behavior, normalize the ACS dataset by the mean square root energy across

coils.
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2. Identify all the constellations for calibration: From the complete readout tra-

jectories, build a kd-tree including all sampled k-space locations. For each

un-sampled k-space point, query the kd-tree with the prescribed distance (i.e.,

GRAPPA kernel size). This will identify all the neighbors of each center, and

constellations can then be formed with the relative positions between neighbors

and centers. For the un-sampled points located near the center of (the highly

oversampled) k-space, the signals from close neighbors are nearly linearly de-

pendent, and can cause ill-conditioning in calibration when Tikhonov coefficient

is not chosen carefully. It is hence helpful to sift the crowded neighbors, i.e., by

grouping the neighbors by Nyquist ∆k rounded relative positions, and arbitrar-

ily picking one from each group to keep as a neighbor. By sifting the neighbors

such that the relative distances of the remaining neighbors become sufficiently

large, we avoid any linear-dependence issue in calibration. The unique constel-

lations identified in this step are to be calibrated. The number of neighboring

points in each constellations varies from a few points (e.g., 3), when it is in the

peripheral k-space, to 5 × 5 × 5 = 125 capped by sifting with kernel size of 5,

when it is in the center k-space.

3. Maintain a table of un-sampled points and the constellations they correspond

to. With the recorded relative positions, GRAPPA coefficients are calibrated by

the algorithm described in 4.2.3. With a normalized ACS, Tikhonov coefficient

λ = 5 × 10−7 is used in all experiments in the following sections, which was

found to produce consistent reconstruction quality.

Reconstruction:

1. Index the un-sampled points from the under-sampled dataset by the table main-

tained in the calibration step. For each un-sampled point, extract its sampled

neighbors in the constellation it corresponds to, and reconstruct the missing
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signal using the calibrated coefficients.

2. Use NUFFT adjoint method to resolve the reconstructed coil images, and com-

bine them using either sum-of-squares or linear combinations to yield the final

images.

Matlab and C code are opensourced on GitHub2.

4.2.5 Experiments

To evaluate our proposed algorithm from Section 4.2.3 in terms of reconstruction

time and image quality, we first acquired 3D fully-sampled stack-of-stars and stack-

of-spirals spoiled GRE datasets in healthy volunteers on a GE 3T scanner with an

8-channel receive-only head coil. Both the fully-sampled stack-of-stars and stack-of-

spirals readouts contained 20 kz platters. For the stack-of-stars dataset, each plat-

ter contained 315 spokes. Its image matrix size and FOV were 200× 200× 20 and

24× 24× 10 cm3, respectively. For the stack-of-spirals dataset, each platter con-

tained 12 interleaves. The image matrix size and FOV were 240× 240× 20 and

24× 24× 10 cm3, respectively. 8 out of 20 slices are aliased in z direction, due to

the excitation profile being slightly larger than FOVz. Other acquisition parameters

were: TR=15 ms, minimum TE, and flip-angle 8°.

We retrospectively under-sampled these two non-Cartesian acquisitions. Spokes

and interleaves in-plane were regularly skipped to simulate different acceleration fac-

tors. For 3D reconstruction experiments, in the through-plane direction, we rotated

the under-sampling pattern to improve reconstruction quality [15, 84]. This rota-

tion produces a through-plane under-sampling factor that is separately the same as

the in-plane and the overall under-sampling factor. While this rotation may com-

plicate existing non-iterative methods (e.g., [15]), it does not impact our proposed

non-Cartesian method (from the algorithmic viewpoint; it does of course impact the

2Code available at https://github.com/tianrluo/NonCrtGRAPPA
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constellations that will be identified for a given kernel size). For 2D reconstruction ex-

periments, prior to the in-plane regular under-sampling, an inverse Fourier transform

in kz is applied to convert the 3D k-space into 2D.

To compare with iterative methods (cg-SENSE), and evaluate the feasibility of

reducing total reconstruction time for a non-Cartesian time-series acquisition, we ac-

quired a prospectively 3D under-sampled (acceleration factor R=3) multi-interleaf

rotated stack-of-spiral-in fMRI dataset of the motor cortex, with finger tapping stim-

ulus. The readout has 20 kz platters, each containing 9 interleaves (under-sampled to

3 interleaves). Other sequence parameters are: TR=36.2 ms, TE=26.3 ms, flip-angle

8°, image matrix size 88× 88× 20 with 131 temporal frames, FOV 22× 22× 6 cm3.

In this case, the excitation bandwidth was set to match FOVz. In [74], it was sug-

gested that GRAPPA kernels can be pre-calibrated using a separate dataset with

possibly different contrasts. Accordingly, in the subject undergoing fMRI we also

acquired a fully-sampled stack-of-spiral-out dataset with the same FOV as the fMRI

acquisition but with a different contrast: TR=30 ms, minimum TE, flip-angle 8°, im-

age matrix size 220× 220× 20. Again, the experiments were conducted on a GE 3T

scanner using an 8-channel receive-only head coil.

In all experiments, our proposed non-Cartesian GRAPPA only used the k-space

center data for autocalibration. With these data, we compute low-resolution coil-

product images of size 20× 20× nz, (nz slices); and zero-pad them to 128× 128× nz

(~5x larger than ACS size, rounded up to power of 2) to attain the dense frequency

spectrum needed for our efficient algorithm. A smaller padding size suffers from

reduced accuracy, and a larger padding size trades off efficiency for only marginal

improvement in quality. The reconstructed coil images of our method are linearly

combined into final images. The sensitivity maps used in coil-image linear com-

bination, cg-SENSE, and g-factor simulations are estimated using the methods de-
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veloped in [1]. cg-SENSE reconstruction was implemented using MIRT3, and was

preconditioned with density compensation function [58] for acceleration. A quadratic

roughness penalization was used to avoid overfitting the readouts [56]. SPIRiT re-

construction was done using its reference implementation4. We used the g-factor to

measure noise amplification. Since a direct g-factor calculation for non-Cartesian

imaging is intractable, we pseudo-replicated noisy reconstructions [59] in simulation

(1000 times) using coil noise covariance information measured in vivo.

4.3 Results

Figures 4.3 and 4.4 compare our non-Cartesian GRAPPA with cg-SENSE on the

retrospectively under-sampled 3D rotated stack-of-stars and rotated stack-of-spiral

spoiled GRE datasets, respectively. For each comparison, one slice that is rich in

structural detail is displayed (out of total 20 slices). The GRAPPA kernel size is

5×5×5 in the units of the Nyquist sampling distance. Figures 4.5 and 4.6 compare

our non-Cartesian GRAPPA with SPIRiT on the retrospectively under-sampled 2D

star and spiral spoiled GRE datasets, respectively. The kernel size used in both non-

Cartesian GRAPPA and SPIRiT is 7x7. As shown in both sets of comparisons, our

non-Cartesian GRAPPA can rival cg-SENSE and SPIRiT in reconstruction quality

in terms of error map and g-factor map. There is no modification to our algorithm or

implementation across the comparisons, demonstrating the generality of our method.

From these two comparisons, besides noise, we observe edge-like (high-frequency)

reconstruction errors with our method, which is also the case for the cg-SENSE

and SPIRiT reconstructed images. This error behavior is expected, since for high-

frequency (peripheral) k-space regions the non-Cartesian readout generally becomes

sparser, such that fewer (sampled) neighbors are available for reconstruction. In addi-

3Michigan Image Reconstruction Toolbox, http://web.eecs.umich.edu/~fessler/code
4SPIRiT, http://people.eecs.berkeley.edu/~mlustig/Software.html
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Figure 4.3:
3D reconstruction comparison between the proposed non-Cartesian
GRAPPA and cg-SENSE, from retrospectively under-sampled rotated
stack-of-stars dataset. One out of a total twenty slices are shown. Coil
images reconstructed with the proposed method are linearly combined
into final images. (a) (fully-sampled) reference images and under-sampled
aliased images (acceleration factor R=2,3,4) with zoom-in details. The
reference for the proposed method is reconstructed with NUFFT adjoint
[17, 58]. (b) reconstructed under-sampled images of our proposed method
and cg-SENSE. (c) g-factor maps of the two methods. The reported num-
bers are ”max/mean” g-factors within the whole 3D head. (d) error map
of the two methods. The reported numbers are ”root mean squared er-
ror (RMSE)” within the whole 3D head. Our non-Cartesian GRAPPA
algorithm rivals cg-SENSE in reconstruction quality. As expected, recon-
struction error (gray-scale windowed 12.5x) is largest near object edges,
since there are fewer samples available for reconstruction at higher spatial
frequencies. The g-factor maps for the two methods are within a similar
range, as observed in previous work [59].
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Figure 4.4:
A similar comparison as in Fig. 4.3, but for a retrospectively under-
sampled rotated stack-of-spirals dataset. One slice out of twenty is shown.
Without modifying our algorithm and implementation from Fig. 3, our
non-Cartesian GRAPPA algorithm again achieves comparable reconstruc-
tion quality to cg-SENSE (error images’ gray-scale windowed 12.5x).
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Figure 4.5:
A similar comparison as in Fig. 4.3, but in 2D, between the proposed non-
Cartesian GRAPPA and SPIRiT, with large retrospective undersampling
factors (R=3,5,7). Without modifying our algorithm and implementation,
our method achivews comparable reconstruction quality to SPIRiT. The
”max/mean” g-factors, and RMSE are computed within the 2D head
region.
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Figure 4.6:
A similar comparison as in Fig. 4.5, but for retrospectively under-
sampled spiral dataset, with retrospective under-sampling acceleration
factor (R=2,3,4). Our proposed method still attains comparable quanti-
ties in terms of ”max/mean” g-factor, and RMSE within 2D head image
support. The reconstruction errors still contains high-frequency compo-
nents as expected.
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tion, Supporting Fig. S1 shows that in our non-Cartesian GRAPPA calibration, the

influence of adopting a circulant boundary condition on reconstructed image quality

is small.

In the pseudo-replica simulated g-factor maps, we observe that there are regions in

the non-Cartesian GRAPPA case that fall below 1, as observed by others in Cartesian

imaging [59]. We do notice that certain regions for the cg-SENSE case also fall below

one. While Pruessmann et al. [57] have rigorously proven the g-factor to always be

greater than 1 for unfolding (non-iterative) SENSE, the derivation does not apply

to non-Cartesian iterative SENSE (e.g., cg-SENSE). Supporting Fig. S2 addresses

this “g-factor smaller than one” behavior of cg-SENSE by illustrating a simulated 2D

SENSE example where the g-factor falls below 1 analytically, obtained by calculating

noise covariance directly. Basically, when under-sampling improves sampling density

uniformity (e.g., over-sampled center k-space from fully-sampled trajectory), it is

possible for g-factor to fall below 1.

Figure 4.7 compares the functional response obtained from the prospectively

under-sampled image time-series reconstructed using our proposed algorithm, against

that obtained from cg-SENSE. Three slices out of 20 are displayed. For cg-SENSE,

different amounts of roughness penalization are evaluated. In this finger tapping

experiment, as expected, we observe activations in the motor cortex, and, for cg-

SENSE, the activation maps become increasingly blurred as roughness penalization

increases. While the ground truth activation map is unknown, in terms of Dice sim-

ilarity coefficient (dsc) (computed from all active voxels), our result most resembles

the outcome of cg-SENSE at quadratic roughness penalty level λ = 5. However, our

method is considerably faster: for this dataset it required 1 min for calibration and

2 min for time-series reconstruction, significantly shorter than the total cg-SENSE

reconstruction time (15 min) (timed using MATLAB R2016a on a RHEL7.4 server

with 2 Intel E5-2630V4 processors. The NUFFT operations of cg-SENSE are also
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Figure 4.7:
Functional imaging results from a prospectively under-sampled (R=3) ro-
tated stack-of-spirals 3D acquisition, (dsc: Dice coefficient). The vol-
unteer performed a block (stimulus on/off) finger-tapping task, that is
known to reliably activate motor cortex. Shown are activation maps in
three consecutive slices (out of 20) covering the active region of motor
cortex. Images from left to right are reconstructed with: Proposed non-
Cartesian GRAPPA with kernels calibrated using the functional imaging
ACS dataset (a fully-sampled k-space center was obtained by combin-
ing the first 3 under-sampled frames of the fMRI time series); cg-SENSE
with different levels of l2-roughness regularization parameter λ. While the
ground truth activation map is unknown, in terms of Dice coefficient, our
result most resembles the outcome of cg-SENSE at quadratic roughness
penalty level λ = 5; and the activity maps from these two sets matches
well with our expectation (motor cortex), while other activity maps are
either incomplete or blurred. Reconstruction times were 1 min for cali-
bration plus 2 min for reconstruction for the proposed method, and 15
min for cg-SENSE.
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implemented in C subroutines.). Supporting Fig. S3 presents the activation map

reconstructed using GRAPPA kernels calibrated with the separate distinct-contrast

higher resolution dataset. As expected from [74], we obtain an essentially identical

reconstruction compared to the reconstruction using the original GRAPPA kernels

(obtained by combining three subsequent fMRI data frames to form a full-sampled

k-space), with a dsc equal to 1. The image from the separate dataset is presented in

Supporting Fig. S3.

4.4 Discussion

Our proposed non-Cartesian GRAPPA reconstruction is general and applicable

to arbitrary readout trajectories, without modifying or adapting the code. Here we

demonstrated its use with rotated stack-of-stars and rotated stack-of-spirals, using

3D kernels. As stated above, a convenient feature of these trajectories in the context

of the proposed method is that the under-sampling pattern is regular along kz, which

reduces the number of different (unique) constellations. However, in the extreme case,

the number of different kernels can equal the number of unsampled k-space points,

which can require large computer memory. For instance, in 3D high-resolution imag-

ing with 32 receive coils, there are about 400,000 3D kernels to be calibrated, each

of which could contain about 50 neighbors on average, resulting in approximately

76 GB memory/storage demand for the coefficients (for single float precision). Coil

compression [7, 83] can reduce this demand. Another mitigating approach may be to

“interleave” calibration with reconstruction of each distinct constellation in a time-

series; in other words, one can calibrate and cache the GRAPPA weights for a single

constellation (or group of constellations) at a time, reconstruct all the data corre-

sponding to this constellation throughout the whole time-series, then discard these

weights and move on to the next constellation.

We have shown that using circulant boundary conditions (concerning the ACS
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region) permits fast GRAPPA weight calibration, without degrading image quality.

From our retrospectively under-sampled reconstruction experiments (in Supporting

Information), we observe that for certain calibration set-ups (e.g., ACS region size,

GRAPPA kernel size, and Tikhonov regularizer coefficient), allowing the ACS to

wrap around can sometimes even improve reconstruction quality slightly (in terms

of image error and g-factor). This behavior can be dependent on specific subjects

and sampling trajectories. However, we certainly do not expect this behavior to be

a general features of our method; whether the image error is slightly improved or

worsened may depend on various factors such as the sampling trajectory used, or

the subject or receive coil configuration. Overall, the circulant boundary condition

appears to have a marginal influence on reconstructed image quality.

We demonstrated our method by reconstructing retrospectively unsampled k-

space locations. While these locations are a natural choice, our method is not limited

to reconstruct only the ”unsampled” locations; for example, one possibility would be

to reconstruct points on a Cartesian grid. The optimal choice of k-space locations to

reconstruct with respect to, e.g., image quality and overall computation time, is an

open problem.

k-Space reconstruction methods, such as GRAPPA and SPIRiT, are known to

be robust against aliasing when FOV is limited (i.e., smaller than the object being

imaged). Our proposed non-Cartesian GRAPPA is exactly equivalent to ordinary

GRAPPA when the sampling is Cartesian; and hence would be expected to also be

robust to limited FOV. In fMRI, limited-FOV is usually not an issue, as brains are

typically small enough to be fully-covered in scanning. However, this issue could be

significant in cardiac and other body imaging, where the region of interest is not that

isolated from other parts of body. We will study the performance of our method in

cardiac imaging in the future.
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4.5 Conclusion

This paper introduced a flexible and rapid non-iterative reconstruction method

that is a true non-Cartesian generalization of the canonical GRAPPA method. The

method works with arbitrary sampling trajectories, and may be particularly beneficial

in applications such as dynamic imaging (e.g., fMRI) where a large number of images

must be reconstructed.

4.6 Supporting Information

4.6.1 Calibration Boundary Condition: Circulant vs Trimmed

Fig. 4.8 examines the influence of adopting circulant ACS boundary conditions

on 2D reconstruction quality. In general, with proper Tikhonov regularization, the

circulant boundary assumption produces similar reconstruction error as conventional

(“trimmed”) boundaries. The g-factor behavior is more complicated: depending on

the choice of regularization parameter λ, circulant boundaries can do either slightly

better or slightly worse than trimmed boundaries. In this comparison, reconstruction

error with λ = 5× 10−7 is low and difference is small between circulant and trimmed

boundary conditions. This λ represents a compromise between g-factor and image/k-

space error. We used this value throughout our experiments in the main text.
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Figure 4.8:
Reconstruction quality comparison of our non-Cartesian GRAPPA
method using different ACS boundary conditions (circulant and
trimmed), for 2D star (left panels) and spiral (right panels) datasets.
The top row plots the absolute error maps and the digits are their aver-
ages within the object support. The center row plots the g-factor maps
and the digits are their max/average g-factors within the support. The
bottom row plots the absolute error viewed from k-space. We observe that
circulant boundaries can produce similar reconstruction error as trimmed
boundaries. Moreover, for certain Tikhonov regularization setups, circu-
lant boundary outperforms trimmed boundaries.

4.6.2 g-Factor for SENSE with Over-Sampled Center of k-Space

Oversampling, which occurs often near the k-space center for non-Cartesian ac-

quisitions, is a key reason why the g-factor can fall below 1 for SENSE. To see this,

consider a simple 2-pixel example with two noise-uncorrelated coil sensitivities of [1,

0.5] and [0.3, 1], respectively. For the “fully sampled” acquisition, we sample three

times at k=0, and once at k=1; for the “under-sampled” acquisition, we sample once
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at both k=0 and k=1. The acceleration factor, R, in this example is thus 2. Following

the definition of g-factor, a simple calculation would yield g =
√

3/4 < 1.

For a more realistic example, in Fig. 4.9 we simulate a sampling pattern where the

phase-encoding direction is over-sampled by a factor of 4.1 near the k-space center.

The sensitivity maps are estimated from an in vivo data set; a low-resolution (64×64)

matrix size is chosen to enable direct calculation. In this sampling pattern, “full”-

sampling consists of both blue and red locations, while under-sampling only contains

the blue locations. Again, we observe that g falls below 1 in some parts of the

analytically calculated g-factor map. In summary, we conclude that oversampling,

which is common for general non-Cartesian sampling, can cause the g-factor to fall

below 1.
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Figure 4.9:
An illustration of a reconstruction with g-factor smaller than one (in some
regions of the image), using realistic (in vivo) sensitivity maps. Here,
”full” sampling consists of both blue and red locations, while ”under-
sampling” only contains the blue locations. The central k-space region is
oversampled, as is typically the case in non-Cartesian acquisitions. The
center k-space oversampling ratio 4.1 in this example produces off-grid
sampling. In this example, the g-factor is just below 1.0 near the right
and left parts of the image (white regions in the binary black/white image
on the lower left).
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4.6.3 GRAPPA calibration using ACS with different contrast

Talagala et al. observed that GRAPPA kernels calibrated with one acquisition

can faithfully reconstruct other datasets of possibly different contrasts and resolution

configurations (Ref. [13] of the maintext). This protocol can be useful for dynamic

imaging, e.g., fMRI, where a structural dataset is commonly acquired alongside a

number of functional activity datasets. To evaluate the use of an ACS dataset with

contrast different from the to-be-reconstructed (undersampled) images, we tested re-

constructing a finger-tapping dataset with kernels calibrated using a separate struc-

tural dataset. The fMRI results are shown in Fig. 7 of the main text. Here, we again

show the results from Fig 7, but in addition we also show fMRI activation maps

obtained with the proposed method based on ACS data from the structural dataset.

The acquisition parameters are in the Experiments section of the main text.
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Figure 4.10:
Reconstruction quality demonstration of GRAPPA kernel calibrated
with ACS of a different contrast. Dice coefficients (dsc) are labeled
for convenience of assessment. This figure is the same as Fig. 7, except
with two extra columns (from left two right): Proposed non-Cartesian
GRAPPA with kernels calibrated using the structural imaging ACS
dataset; The high-resolution structural image of the same subject, ac-
quired along with the fMRI scanning.

81



CHAPTER V

Future Works

Joint design of excitation RF and gradient waveforms remains a challenging prob-

lem. We can now obtain numerical derivatives for waveform optimization purposes via

the proposed auto-differentiation method, without compromising accuracy by using

simplified excitation modeling, such as the small-tip approximation. Nonetheless, due

to the intrinsic non-convexity of pulse design problems in general, the pulse initializa-

tion step remains difficult and crucial, as it determines the eventual performance of

the optimized pulses. We have shown that the extended kt-points initialization [72]

can be a good choice for 3D spatially-tailored excitation objectives. For future works,

it is of interest to validate different initializations for various excitation objectives,

such as pre-phased simultaneous multi-slice excitations that is of interest for signal

recovery in BOLD fMRI.

Another interesting direction from the pulse design perspective is to explore the

design of error and penalty functions for various excitation objectives, and to incor-

porate scanning hardware modeling into the auto-differentiable Bloch simulation. We

have demonstrated using longitudinal Mz error in the design loss, which is an intuitive

choice for inversion pulse design. Future studies may quantify SAR and PNS to be

included as penalties in the pulse design objective function to directly address such

concerns for in-vivo MRI scanning. Moreover, to more accurately model excitation
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procedures, we may incorporate parameters such as estimated eddy currents, gradient

delays and non-linearity, etc, into the differentiable Bloch simulation.

Finally, as deep learning is gaining increasing popularity, we may explore the

possibility of pulse design using deep neural networks. Specifically, we can build a

neural network that takes as input a desired excitation profile and outputs a pulse.

Then we Bloch simulate and quantify the excitation performance of the pulse, and

obtain derivatives with respect to the pulse, which will be backpropagated to the

pulse design neural network to train it.

Future directions for outer volume (OV) saturated inner volume (IV) imaging

can be broad, e.g., in body imaging, where reducing artifacts from abdominal or

chest motion can speed up acquisition. Specifically, experiments in Chapter II have

demonstrated large-tip OV excitation pulse performances. The OV magnetization

saturation strategy illustrated in Chapter III can fit in common steady-state imaging

sequences. In principle, we can combine OV saturation with simultaneous multi-slice

(SMS) imaging. This combination will likely have drawbacks such as slice profile

artifacts or in-flow effects, but may enable very highly accelerated dynamic imaging.

This may be of interest for high spatiotemporal resolution fMRI studies, helping to

investigate the temporal activity order across brain regions.

For image reconstruction algorithm studies, where deep neural network based

approaches are gaining increased attention, a direct extension of the non-Cartesian

GRAPPA method proposed in Chapter IV may be challenging. Practical future

directions for this method may lie in finding proper dynamic imaging applications.
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APPENDIX A

Optimal Diagonal Majorizer

Majorized minimization is an optimization method that is often used when the

objective function is complicated, but can be majorized by easy-to-minimize surro-

gate functions. In other words, it systematically poses a series of sub-problems of

minimizing simple functions (majorizers) which are everywhere no smaller than the

objective function, such that, the sequence of solutions to these sub-problems converge

to a minimizer of the original objective. Diagonal majorizers are separable quadratic

functions, e.g., ‖D 1
2x‖2

2, where D is a diagonal matrix. They are of particular interest

for, e.g., `1 constrained or regularized least square problems that arise in compressed

sensing. The corresponding sub-problems possess closed form solutions.

The choice of a diagonal majorizer affects the convergence rate, i.e., the number

of sub-problems to be solved to get close to a minimizer of the original objective. In

this work, we show that the design of an optimal diagonal majorizer for least square

terms, which maximizes the convergence rate, can be formed as a convex optimization

problem. We establish the equivalence of this problem to other (unconstrained) prob-

lems, study optimality conditions of the problem, and provide the (sub)derivatives

for minimizing it. When problem size is small, it can be solved using cvx1.

1A software for disciplined convex programming: http://cvxr.com
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A.0 Notations and Basics

This section defines notations and gives basic background knowledge for this chap-

ter. We denote Sn as the space of Hermitian matrices of size n× n.

Theorem A.0.1. The non-zero eigenvalues are invariant under cyclic order permu-

tations of a series of matrix products.

Proof. Without loss of generality, consider two properly sized matrices, A, B, and

their products AB, BA. Study the ith non-zero eigen-pair of AB, λixi = ABxi. Left

multiply both side by B yields, λiBxi = BABxi. Let x̂i :=Bxi, we have λix̂i = BAx̂i,

i.e., λi and x̂i compose the ith non-zero eigen-pair of BA.

Lemma A.0.2. The eigenvalues of the product of two positive semidefinite matrices

are all non-negative.

Proof. Without loss of generality, consider two arbitrary positive semidefinite matri-

ces, H, and D, Because H is Hermitian, it has a decomposition, H = AAH. Hence,

the lemma holds true from theorem A.0.1, as, λi(DH) = λi(A
HDA) ∈ R.

Theorem A.0.3 (Theorem 8.7 of Magunus’s Matrix Differential Calculus [45]). Let

X0 ∈ Sn have a simple eigen-pair λ0u0 = X0u0, where ‖u0‖2 = 1, (i.e., λ0 has

a geometric multiplicity of 1). A real-valued function λ and a vector function u are

defined for all X in some neighbourhood N(X0) ⊂ Rn×n of X0, such that, λ(X0) = λ0,

u(X0) = u0, and, λ(X)u(X) = Xu(X), for X ∈ N(X0). Moreover, the differential

at X0 with respect to the elements of the matrix is dλ = uT0 (dX)u0.

Proof. λ(X) and u(X)’s existence on N(X0) is a result of the implicit function theo-

rem. For the differential, Xu = λu =⇒ (dX)u+X du = dλu+ λ du. Left multiply

both side by uT, and evaluate at X0: uT0 (dX)u0 +uT0X0 du = uT0 u0 dλ+λuT0 du =⇒

dλ = uT0 (dX)u0.
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Lemma A.0.4. Let K be a positive integer, and j ≤ K. The i-th eigenvalue of

properly sized matrices product, λi(
∏K

k=1Xk), is 1-degree positive homogeneous in

Xk. The derivative ∇Xjλi(
∏K

k=1Xk) is 0-degree positive homogeneous in Xj.

Proof. Without loss of generality, λi((αA)B) = αλi(AB), where α ∈ R; A, B are two

properly sized matrices. ∇Xjλi(α
∏K

k=1 Xk) = ∇Xjλi(
∏K

k=1Xk).

Lemma A.0.5. Consider a linear matrix function H(d) :=
∑

jMjdj, where Mi ∈ Sn,

d ∈ Rn. Let H(d) attain a simple ith largest eigen-pair at d0, H(d0)ui = λiui, (i.e.,

λi is the ith largest eigenvalue). Applying the previous Theorem A.0.3, the derivative

of λi with respect to each element dj is, d
ddj
λi = uTi Mjui. The gradient with respect

to d is assembled as, [∇dλiH(d)]j = uTi Mjui

The above statements can be extended to complex domain in the usual way, i.e.,

replacing transpose with Hermitian transpose. The gradient extends to Clarke gener-

alized gradient for non-simple eigen-pair. For non-simple largest, smallest eigenvalue,

which is convex, concave of d, respectively, the Clarke generalized gradient specialize

to sub-, sup- gradient, respectively.

A.1 Motivation

Consider the squared `2 cost, which appears as a term in many optimization

problems (assuming full column-rank for tall system matrix A):

arg min
x

f(x) =
1

2
‖Ax− y‖2

2 =⇒ x? := (AHA)−1AHy . [A.0]

In practice, the (AHA)−1 part can be computationally intractable, and gradient based

iterative algorithms with, limk→∞ x
k → x?, are commonly used. Consider a gradient

step from xk of size τk,

xk+1 ← xk − τk∇fx(xk) . [A.1]
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It can be viewed as a majorized minimization step:

xk+1 = arg min
x

gk(x) := f(xk) +
〈
x− xk,∇fx(xk)

〉
+

1

2τk

∥∥∥x− xk∥∥∥2

2︸ ︷︷ ︸
φk(x)

, [A.2]

where “a typical condition ensuring convergence of xk to a minimizer x? of f(x) is to

require that τk ∈
(

0, 1/
∥∥AHA

∥∥
2

]
” [2].

This condition of τk makes gk(x) a majorizer of f(x), i.e., gk(x) ≥ f(x),∀x,

with equality holds at xk. In this perspective, one can design the 2nd order term,

φk(x), to accelerate the convergence. For instance, let φk(x) = 1
2

∥∥x− xk∥∥2

M
, where

M � H := AHA � 0, [A.1] becomes, (by completing the square):

xk+1 ← xk −M−1∇fx(xk) . [A.3]

In fact, the φk(x) in [A.2] can be viewed as 1
2

∥∥x− xk∥∥2
1
τk
·I , where 1

τk
≥ λmax(H),

(λmax(H) is the largest eigenvalue of H and the Lipschitz constant of f).

The ideal φk for the fastest convergence would be H, which gives the “exact”

majorization, and a Newton step from xk to xk+1. For the `2 cost in [A.0], this will

solve the problem exactly. However, the inversion, H−1 = (AHA)−1, can cost O(n3)

for A ∈ Cm×n, and is unaffordable for large scale problems.

A practical choice of M is diagonal matrice (denoted as D hereafter), as its in-

version costs O(n) in both time and storage complexities. In addition, it is separable

in x, and updates can be parallelized. This is also known as the separable quadratic

surrogates (SQS). Another favorable choice can be KDKH, where efficient ways exist

to compute Kx, e.g., FFT, FWT [47]. This note focus on designing D.
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A.2 Spectral Norm Minimization

A.2.1 v-form, u-form, r-form, the derivatives

In [A.0], the gradient at xk is: (without loss of generality, assume y ≡ Ax? ∈ R(A))

∇xf(xk) = AH(Axk − b) = H(xk − x?).

Substitute rk := xk − x? and ∇xf(xk) into [A.3] (with D ≡ Dd := diag(d), d ∈ Rn
++):

xk+1 − x? = (xk − x?)−D−1
d ∇fx(x

k)

⇐⇒ xk+1 − x? = (I −D−1
d H)(xk − x?) [A.4]

=⇒ rk+1 = (I −D−1
d H)rk. [A.5]

Let vk := D
1/2
d rk, uk := H1/2rk, we have the following transformation of variables:

D
−1/2
d vk = rk = H−

1/2uk , [A.6]

and the updates can be expressed, in two ways, as:

vk+1 = (I −D−1/2
d HD

−1/2
d︸ ︷︷ ︸

Hv(d)

)vk, uk+1 = (I −H1/2D−1
d H

1/2︸ ︷︷ ︸
Hu(d)

)uk. [A.7]

[A.5] and [A.7] are power iterations, whose convergence rates are determined by their

spectral radii2, ρ(I−Hv(d)) and ρ(I−Hu(d)), respectively. Smaller radius yields faster

convergence. Exploiting, Dd � H, which implies I � Hv(d), Hu(d) � 0, the spectral

radii are:

ρ(I −Hv(d)) = 1− λmin(Hv(d))

= 1− 1

λmax(H−1
v(d))

,

ρ(I −Hu(d)) = 1− λmin(Hu(d))

= 1− 1

λmax(H−1
u(d))

.

2The largest singular value, which can also be denoted as Schatten ∞-norm, ‖ · ‖∞.
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Hence, for accelerating the convergence with a diagonal majorizer, we can form the

following two equivalent convex minimization problems:

arg min
d

λmax(H−1
v(d))

s.t. λmin(H−1
v(d)) ≥ 1,

arg min
d

λmax(H−1
u(d)) [P0]

s.t. λmin(H−1
u(d)) ≥ 1,

where both λmin(H−1
v(d)) ≥ 1 and λmin(H−1

u(d)) ≥ 1 imply that Dd � H. We denote d?

as a minimizer to problem [P0].

We call the two objectives in [P0] as v-form and u-form, respectively. Besides

sharing eigenvalues, the eigenvectors of H−1
u(d) and H−1

v(d) are mutually transformable,

as shown by the following lemma:

Lemma A.2.1. Let v[l,d], u[l,d] ∈ Cn be the lth eigenvector of H−1
v(d), H

−1
u(d) respectively.

The following identity holds, up to sign ambiguity:

√
λ[l,d]D

−1/2
d v[l,d] = r[l,d] := H−

1/2u[l,d],

where λ[l,d] is the lth eigenvalue of both H−1
v(d) and H−1

u(d).

Define the element-wise magnitude square of a vector, |·|2 : Cn 7→ Rn, as |x|2 =

diag(conj(x))x, we obtain the derivatives of eigenvalues with respect to d in the fol-

lowing Lemma.

Lemma A.2.2. ∇d λmax(H−1
u(d)) =

∣∣r[1,d]

∣∣2, ∇d λmin(H−1
u(d)) =

∣∣r[n,d]

∣∣2. The derivatives

are positive homogeneous in d of degree 0.

Proof. These are directly from A.0.5, by letting, Mi = (H−1/2[i, :])H(H−1/2[i, :]), where

(H−1/2[i, :]) is the i-th row of H−1/2. The 0-degree positive homogeneity is a direct

result of Lemma A.0.4.
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A.2.2 The KKT Condition of [P0]

Denote convex set DH := {d|Dd � H} =
{
d
∣∣∣λmin(H−1

u(d)) ≥ 1
}

. We give the KKT

condition of the constraint convex problem [P0] in its u-form. The Lagrangian func-

tion of [P0] is:

L(d, µ) = λmax(H−1
u(d)) + µ(1− λmin(H−1

u(d))), µ ≥ 0. [A.8]

Lemma A.2.3. The KKT conditions of the convex problem [P0] are:

Dd? � H, µ? ≥ 0, (primal, dual feasibility),

µ?(1− λmin(H−1
u(d?))) = 0, (complementary slackness),

0 ∈ ∂d λmax(H−1
u(d)) + ∂d(−µ? λmin(H−1

u(d))), (stationarity).

The primal, dual feasibility can be assumed; The complementary slackness is

from observing that, for any d ∈ DH , d/ λmin(H−1
u(d)) is not suboptimal to d, which

suggests that λmin(H−1
u(d?)) = 1; ∂d is the notation of subgradient set. The station-

arity means there exist two subgradients respectively from sets, ∂d λmax(H−1
u(d)) and

∂d(−µ? λmin(H−1
u(d))), that add up to 0. When assuming simple geometric multiplicities

of both λmax and λmin, with Lemma A.2.2, the stationarity becomes,

∣∣r[1,d?]

∣∣2 − µ? ∣∣r[n,d?]

∣∣2 = 0. [A.9]

Beside the KKT conditions , we also have the following geometrical Corollary.

Corollary A.2.3.1. For any d such that, λmin(H−1
u(d)) = 1,

∣∣r[n,d]

∣∣2 defines a support-

ing hyperplane at d for DH , and so is
∣∣r[1,d?]

∣∣2, at a minimizer d?.

Proof. λmin(H−1
u(d)) = 1 implies the following equality:

λmin(H−1
u(d))− 1 = 0 ⇐⇒ vH[n,d]

(
H−1
v(d) − I

)
v[n,d] = 0 ⇐⇒ rH[n,d] (Dd −H) r[n,d] = 0;
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and, further, the following hyperplane definition inequality:

∀e ∈ DH ,
〈
e− d,

∣∣r[n,d]

∣∣2〉 = rH[n,d]

(
De −H − (Dd −H)

)
r[n,d]

= rH[n,d] (De −H) r[n,d] ≥ 0.

For a minimizer d?, fixing u[1,d?], we have,

∀d ∈ DH ,
〈
d− d?,

∣∣r[1,d?]

∣∣2〉 = uH[1,d?]H
−1/2(Dd −Dd?)H

−1/2u[1,d?]

= uH[1,d?]H
−1
u(d)u[1,d?] − uH[1,d?]H

−1
u(d?)u[1,d?] ≥ 0,

which is also a hyperplane definition inequality.

A.3 Equivalent Problems

We are now ready to install some equivalent problems of [P0].

A.3.1 Condition Number Minimization

Lemma A.2.3 has shown that λmin(H−1
u(d)) = 1 is necessary for d to be optimal.

Setting it as a constraint on d leads to a set of problems equivalent to P0:

arg min
d:λmin(H−1

v(d)
)=1

λmax(H−1
v(d)), arg min

d:λmin(H−1
u(d)

)=1

λmax(H−1
u(d)).

λmin(H−1
u(d)) = 1 implies that, λmax(H−1

u(d)) = cond(H−1
u(d)), and cond(H−1

u(d)) is positive

homogeneous in d of degree 0, we can reform the problem as:

arg min
d∈Rn++, ‖d‖1=1

cond(H−1
v(d)), arg min

d∈Rn++, ‖d‖1=1

cond(H−1
u(d)). [P1]

The feasible set of P1 is friendly for projected gradient descent with line-search:

the constraints d ∈ Rn
++ and ‖d‖1 = 1 combined is equivalent d ∈ Rn

++, 1Td = 1.

We can have gradient projection, (I − 1
n
11T)∇d cond(H−1

u(d)), then ensure d ∈ Rn
++
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via line-search during updates. This comes at a cost: P1’s objective is non-convex

(although quasiconfex), and methods like line search are needed to determine the

step-size during an optimization. The gradient of the condition number, by Lemma

A.2.2, can be expressed as:

∇d cond(H−1
u(d)) = ∇d

λmax(H−1
u(d))

λmin(H−1
u(d))

=
λ[1,d]

λ[n,d]

·D−1
d

(∣∣v[1,d]

∣∣2 − ∣∣v[n,d]

∣∣2) , [A.10]

where λ[1,d], λ[n,d] are the largest, and smallest eigenvalue of H−1
u(d) respectively.

A.3.2 Spectral Radius Minimization

We formulate an unconstrained spectral radius minimization problem:

arg min
d∈Rn

‖I −H − 1/2DdH
− 1/2‖∞, [P2]

which is convex, as H − 1/2DdH
− 1/2 is linear in d.

Lemma A.3.1. A sufficient necessary set of conditions for d? to be a minimizer for

the convex problem [P2] includes:

λmax(H
− 1/2Dd?H

− 1/2)− 1 = 1− λmin(H
− 1/2Dd?H

− 1/2), [A.11]

∃µ ≥ 0, s.t., 0 ∈ ∂d λmax(H
− 1/2DdH

− 1/2) + µ∂d(−λmin(H
− 1/2DdH

− 1/2)), [A.12]

Proof. We reformulate [P2] as the following convex problem:

arg min
c,d

c

s.t. c ≥ 0

λmax(H
− 1/2DdH

− 1/2)− 1 ≤ c

1− λmin(H
− 1/2DdH

− 1/2) ≤ c.
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The Lagrangian function of this problem is:

L(c, d, µ1, µ2, µ3) = c− µ1c+ µ2(λmax(H
− 1/2DdH

− 1/2)− (1 + c))

+ µ3((1− c)− λmax(H
− 1/2DdH

− 1/2)). [A.13]

The corresponding KKT conditions are:

c? ≥ 0, µ?1, µ
?
2, µ

?
3 ≥ 0 (primal, dual feasibility)

µ?1c
? = µ?2(λmax(H

− 1/2Dd?H
− 1/2)− (1 + c?))

= µ?3((1− c?)− λmax(H
− 1/2Dd?H

− 1/2)) = 0 (complementary slackness)

0 = 1− µ?1 − µ?2 − µ?3

0 ∈ µ?2∂d λmax(H
− 1/2Dd?H

− 1/2)

+ µ?3∂d(−λmin(H
− 1/2Dd?H

− 1/2)), (stationarity)

and the stationarity condition implies [A.12]. Then, for [A.11], it is verifiable that:

0 /∈ ∂d λmax(H
− 1/2Dd?H

− 1/2), 0 /∈ ∂d(−λmin(H
− 1/2Dd?H

− 1/2)),

for any invertible H. So the stationarity also implies that µ?2, µ
?
3 > 0, which when

combined with the complementary slackness, indicates [A.11].

Theorem A.3.2. If d minimizes [P2], then 1
λmin(H − 1/2DdH

− 1/2)
·d minimizes [P0], and

vice versa.

Proof. Let d̂ = 1
λmin(H − 1/2DdH

− 1/2)
· d, we have λmin(H − 1/2Dd̂H

− 1/2) = 1, which meets

the complementary slackness, and primal feasibility in Lemma A.2.3. For the sta-

tionarity, due to the 0-degree positive homogeneity of the derivatives of eigenvalues

with respect to d, [A.12] is equivalent to the stationarity in A.2.3.

94



A.3.2.1 Reverse problem of [P2]

We define vector inverse (·)−1:Rn 7→ Rn, such that, for i = 1 . . . n, the i-th element

(d−1)[i] = (d[i])
−1, and, if d[i] 6= 0; (d−1)[i] = 0, if d[i] = 0. For convex problem:

arg min
b∈Rn

‖I −H1/2DbH
1/2‖∞, [P3]

we have the following theorem.

Theorem A.3.3. For invertible H, if b minimizes [P3], with λ1 := λmax(H1/2DbH
1/2),

and λn := λmin(H1/2DbH
1/2); then, d := 2λ1λn

λ1+λn
b−1 minimizes [P2], and vice versa.

Proof. This theorem is straightforward:

λmax(H
− 1/2DdH

− 1/2) =
1

λn
· 2λ1λn
λ1 + λn

, λmin(H
− 1/2DdH

− 1/2) =
1

λ1

· 2λ1λn
λ1 + λn

,

so, d satisfies the [A.11]. Moreover, H − 1/2DdH
− 1/2 share the same eigenvectors of

H1/2DbH
1/2, but in the opposite order, since the latter is a scaled inversion of the

former, and the inversion flips the order. Therefore, by Lemma A.0.5, we have:

∂b λmax(H
1/2DbH

1/2) = µ1∂d λmin(H
− 1/2DdH

− 1/2),

∂b λmin(H
1/2DbH

1/2) = µ2∂d λmax(H
− 1/2DdH

− 1/2),

for some µ1, µ2 ≥ 0; and this implies d satisfies the KKT stationarity for [P2].

A.4 Discussion

The simple geometric multiplicity assumption is in general unrealisitic to be based

on for developing efficient algorithms to solve the optimization problem. The non-

uniqueness of subgradients complicates vanilla line-search based optimizations.
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An illustrative convex problem of the complication is:

arg min
x∈R2

+

max(x[1], x[2]),

where x[1], and x[2] are the first and second element of x, respectively. Consider an

initilization, x0, such that x0
[1] > x0

[2] > 0. Without analytical prior knowledge of, max,

line-search fails like coordinate descent: stucking at an x1 that is near the crease of

the cost landscape where x1
[1] is arbitrarily close, but greater than x1

[2]. This example

resembles the majorization problem:

arg min
d∈DH

max(λ1(H−1
v(d)), . . . , λn(H−1

v(d))). [A.14]

As a consequence, practical algorithm for the majorization problem needs to be more

sophisticated than a vanilla line-search. Our adventure cuts out here. Below are some

comments on future works on this problem.

Recognizing that the difficulty is the non-smoothness, an intuitive direction is to

smooth the λmax objective3. In particular, D’Aspremont [12] investigated replacing

the maximum operation in determining the largest eigenvalue with softmax, which,

when applied to [A.14], gives:

arg min
d∈DH

µ log

 n∑
i=1

eλi(H
−1
v(d)

)/µ

 , [A.15]

where µ > 0 tunes the smoothness: as µ → 0, the softmax approaches λmax. Never-

theless, the new loss requires knowing all λi, and is not directly applicable for large

scale problems. To cap at a k � n in softmax, we need to study its impact on

convergence and optimality (e.g., boundness of the solution for [A.15] to the solution

3One might attempt instead smoothing the derivatives using momentum terms like as Nesterov’s
accelerated gradient descent does, which utilizes the Lipschitz constants. However, second order
knowledge of A.14 requires pseudo-inverting H according to Chapter 8.11 of [45].
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for [A.14] as a function of µ). In [13], D’Aspremont further investigated stochastic

smoothing, which avoids full eigen-decompositions, and may be useful here.

Another general approach for handling non-smoothness is the bundle method [62],

which systematically update a local (linear, easy to solve) approximation of the orig-

inal problem. Helmberg et al. extended this approach to semidefinite programing

in their spectral bundle method works [29–31]. Later, Kangal et al. unified the ap-

proach with subspace methods, and provided convergence rate analysis in [32]. It is

of interest to also try applying them on the majorization problem.

Finally, to solve the diagonal majorizer of certain applications, e.g., MRI recon-

struction, we can exploit their system matrix structures to efficiently compute the

eigen-pairs, and the derivatives of d. For instance, let P be a permutation matrix

that reverts the order of elements in a vector, (e.g., P [1, 2, 3]T = [3, 2, 1]T). When

the matrix to be majorized, H, is Hermitian and Toeplitz, let q be one of its eigen-

vector that corresponds to the eigenvalue λ, then conj(Pq), is also an eigenvector

corresponding to λ; and hence we know the optimal d? for this H must be symmetric,

i.e., d? = Pd?.
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