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ABSTRACT

Nature abounds with examples of shape morphing systems where an entity either grad-

ually grows into a complex 3-D shape pattern or rapidly morphs into a new configuration.

Inspired by the shape shifting capabilities of biological systems, in this work we study the

response of natural and synthetic morphing systems through a few examples. These include

the in vitro adaptive contraction of a cardiac muscle cell inside a constraining hydrogel,

inflation of architectured rubber membranes, and a shape morphing soft robot.

Cardiac muscle cells (cardiomyocytes), have an intrinsic mechano-chemo-transduction

(MCT) mechanism that enable them to automatically convert mechanical loads into bio-

chemical signals to actively regulate their amplitude and speed of contraction. At the molec-

ular level, this is attributed to the morphing of regulatory and motor proteins (actin and

myosin filaments) to facilitate muscle contraction. The underlying MCT mechanisms, how-

ever, are unclear and currently under investigation. To help decipher these mechanisms, we

develop a mathematical model, as a companion tool for the experimental in vitro Cell-in-Gel

system of our collaborators, to analyze the time-dependent, 3-D strains and stresses within

a cardiomyocyte contracting in a viscoelastic medium. The model utilizes the exact ana-

lytical solution of the viscoelastic Eshelby inclusion boundary value problem as an efficient

computational tool to simulate the mechanical fields inside and outside the cardiomyocyte.

In a second study, we investigate the inflation of shape morphing synthetic soft com-

posites with architectured geometry and material properties. Such shape morphing systems

could have desirable applications in space deployable systems where there is a growing de-

mand for energy-efficient lightweight and low-cost structures. These structures possess an

exceptionally high mechanical packaging efficiency and very small stowage volume, which

makes them attractive candidates for space applications including antenna reflectors, solar

arrays, inflatable rovers, re-entry equipment, and human habitats. In particular, we explore

several feasible 3-D shapes that can be achieved through the inflation of an initially flat

rubber membrane with nonuniform geometrical and material properties. Our rubber-based

prototypes provide a convenient basis for conceptual scientific and design explorations in

shape morphing inflatable structures.

In a third study, we explore the idea of shape shifting in the design and fabrication of

synthetic soft robots with active components. Motivated by the swimming mechanisms of

xii



jellyfish, we develop a novel concept for a soft biomimetic underwater robot that imitates

the shape and kinematics of the typical animal. The robot swims by harnessing the buckling

instability of its soft body to quickly morph from an initially flat into a deformed dome-

shaped configuration, which generates the required thrust for underwater locomotion. Joule

heating of an embedded pre-stretched shape memory alloy spring, serves as an artificial

muscle for the robot to make this shape morphing possible. The proposed synthetic shape

morphing system introduces a new idea in design of simple, compact, and biomimetic robots

with smart artificial muscles.
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CHAPTER 1

Introduction

1.1 Shape morphing systems

Shape morphing systems are those that are capable of changing their shapes from an

initially stable configuration into other (usually stable) configurations in response to ex-

ternal stimuli or change in the environmental conditions. Nature abounds with biological

systems that morph their shapes in order to reach to a configuration that enables a special

functionality. The most tangible examples of such natural shape-changing mechanisms are

the morphogenetic processes in botany, usually observed in plant leaves (Figure 1.1) as they

grow over the early stages of their life-span [1, 2, 3]. These changes usually happen very

slowly, on the order of days or months.

Other types of shape-changes in plants generally happens as the movement of one organ in

relation to the whole plant. These categories of morphing are quite widespread in occurrence

and are known to be related to a single physiological process, the change in volume of special

motor cells. One fundamentally important example of such particular shape-changes, is the

opening and closing of stomata, which provides a basic control of photosynthesis and is often

much quicker than the morphogenetic processes, usually on a time scale of minutes [4].

Shape morphing in plants can also occur rapidly (on a time scale of milliseconds), such

as the snap of the insectivorous trap of Dionaea (Venus flytrap), the pollination movement

of the Stylidium (trigger plant) [6, 4, 7], or the thigmonastic movements in the sensitive

plant Mimosa pudica [8]. These rapid shape-changes, happen as a result of external stimuli,

generally in the form of an externally applied physical force, electrical potential, heat, etc.

Moreover, shape morphing in natural systems are either reversible such that the original

shape and configuration can be recovered after the shape-change or irreversible such that

the change in shape is permanent and irrecoverable. The morphogenesis growth of plant

leaves is an example of irreversible shape-shifting processes while the snap of Dionaea’s trap

is a reversible shape-change.
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Figure 1.1: Morphogenetic processes in botany, from [2]. (A) 3D morphologies of orchid
petals with their corresponding buckling configurations, (B) twisting croton mammy
(codiaeum variegatum) leaf and, (C) edge-waving fern tree (filicium decipiens) leaf.

Shape morphing is also observed in animals. An outstanding example is the recently

discovered frog species, known as the “Punk Rocker” frog (scientifically named Pristimantis

mutabilis) which is capable of shifting its skin shape from smooth to a textured (spiny)

configuration in under six minutes [9]. It is believed that its thorn-like spine helps the

animal to camouflage into its mossy surrounding, by changing its skin shape, a process that

has not been observed in any other vertebrate.

Also, it is commonly observed that birds actively morph the shape of their wings during

flight in order to control and stabilize their flight paths [10]. In addition, a common practice

among birds is the span-wise bending of the wing tip feathers (Figure 1.4) in order to

enhance the efficiency of flight through reduction of the drag forces [11]. They achieve

their morphing capability by incorporating flexible lifting surfaces that are actuated through

structural elements connected to their wing muscles.

Despite the anatomical and structural differences, the cellular level difference are re-

sponsible for the differences in shape morphing between plants and animals. In animals,
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Figure 1.2: Closing of Venus flytrap in response to stimuli. (A) Effect of mechanical
stimulation by a cotton thread, (B) feeding by gelatin, and (C) and by electrical 14 µC
stimulus. From [5].

Figure 1.3: Time frames of skin texture variation in one individual frog (Pristimantis
mutabilis) from Reserva Las Gralarias (Pichincha, Ecuador). From [9].

shape morphing depends primarily on the action of cellular contractile proteins which rely

on mechano-chemo-transduction (MCT) mechanisms to transduce biochemical into mechan-

ical energy. This is possible because unlike plant cells and tissues, most animal tissues are

soft and can be easily morphed into a different shape. Plants are built from vacuolated cells

surrounded by walls which are usually relatively rigid. This makes it highly unlikely that

contractile proteins can function to generate concerted movement in a similar way to that in

animals [4]. Plants do have contractile systems but they operate based on intracellular mech-

anisms like cytoplasmic streaming and chromosomal movement [4]. To achieve movement,

plants use a change in hydrostatic or turgor pressure in special motor cells which leads to a

change in volume and length; and it is the latter which produces the required displacement

[4].

Shape morphing is also observed at cellular level. Cardiac and skeletal muscle cells

(myocytes) are magnificent examples of biological structures that are capable of actively
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Figure 1.4: Different morphologies of wingtip feathers in birds. (A) Kea. (B) Pacific
Brown Pelican. (C) Red Tailed Hawk. (D) Bald Eagle. (E) Northern Hawk Owl. (F)
Great Blue Heron. The slotted configuration of wingtip feathers is thought to reduce
the lift-induced drag caused by wingtip vortices. From [12].

deforming their originally relaxed shapes into a contracted configuration in response to bio-

chemical signals. Within each myocyte are long filaments known as myofibrils which are in

turn composed of smaller units known as sarcomeres Figure 1.5. A sarcomere is the func-

tional unit of cardiac and skeletal muscle cells and these are arranged end-to-end, creating

a long chain of contractile “springs in series”. A parallel array of sarcomeres contracting in

unison are able to initiate a large force in the muscle.

Contraction of sarcomeres is essentially achieved through the interplay of two types of

myofilaments inside each sarcomere: thick filaments composed primarily of the contrac-

tile myosin protein and thin filaments, composed primarily of the contractile actin protein.

Hundreds of thin filaments of actin are attached to the capping Z-disc at each end of the

sarcomere, and thick filaments of myosin, cross-linked at the center by the M-line, are inter-

digitated with the actin filaments. The straited pattern observed by microscopy, results from

the overlapping (anisotropic) and non-overlapping (isotropic) regions of actin and myosin. It

is the cross-bridging of these two filaments that is responsible for the sarcomere’s contraction.

In particular, the myocin head and tropomyosin, which is a helically coiled protein around

the actin myofilament, morph their shapes to allow myosin head to anchor to the actin fila-

ment and initiate the contraction (Figure 1.6), analogous to a ratchet and pawl mechanism.

Myocytes can also regulate the extent of their contractility in response increased load on
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Figure 1.5: The hierarchical structure of a skeletal muscle, an active contracting system.
Inside, each muscle fiber is composed of myofibrils, which are in turn composed of
sarcomeres, the individual units of contraction. Motion is achieved by the grasping of
actin by myosin, which draws the filaments together. Reproduced from [13].

them. This is achieved using hierarchical principles, triggered when the released calcium

ions (Ca2+) into the cytosol, diffuse into and bind to the myofilament proteins which results

in macroscale contraction from staggered fibrous structures. This process is defined as the

excitation–contraction coupling (ECC) which describes the rapid communication between

electrical events occurring in the plasma membrane of the muscle fibres and Ca2+ release

from the sarcoplasmic reticulum (SR), which leads to contraction [14].

As demonstrated in Figure 1.6, the myosin heads at both ends of the thick filament bind

to the open sites on the actin filaments and generate a power stroke in a process called the

cross-bridge cycle following the sliding filament theory of striated muscle contraction. In a

sense, the myosin heads ‘walk’ along the actin filament, producing sliding of the actin and

myosin filaments and sarcomere shortening. Cross-bridge cycling occurs in the presence of

Ca2+ and uses adenosine triphosphate (ATP) as an energy source [16]. In skeletal muscles

the reduction in the distance between Z-units, and thus the length of the sarcomeres, can

be around 70% [17]. Contraction of the sarcomeres adds together in series to produce a cell

contraction magnitude that is nearly proportional to the change in sarcomere length. Muscle
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Figure 1.6: The excitation–contraction coupling in a skeletal muscle contraction. The
myocin head and tropomyosin (the helically coiled protein around actin) morph their
shapes to allow myosin head to anchor to the actin filament, [15].

fibers are then bundled into muscle fascicle, which define the direction of contraction of the

muscle tissue and enable the complex motions enabled by muscles [17]. These range from the

486 m s−2 acceleration achieved by the chameleons tongue to the exquisite shape control of

cuttlefish papillae [17, 18, 19]. The degree of macroscale muscle contraction varies between

approximately 20–40% [17, 20].

Analogous to biological systems, synthetic architectured composites can adapt and reg-

ulate their response and performance to the change in environmental conditions or external

stimuli, simulating, in this way, the behavior of natures materials. These systems can be

designed to meet specific requirements and adapt to the needs of users through tailored prop-

erties which can be either composed of passive components or active components (usually

through “smart” materials) or a combination of both. The shape deformation capability, as

an intrinsic material characteristic of adaptive materials (shape memory alloys, shape mem-

ory polymers electrostrictive, magnetostrictive, photostrictive, ...), offers a great advantage

as it allows small component dimensions in comparison to conventional systems and enables

to perform a task at a lower energy use, emission, harm to the ecosystem, and smaller size

(higher energy-density). These materials have the characteristic to detect an external stim-
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ulus and to initiate appropriate action by adapting their material properties. The creation

of synthetic systems that can morph in a controlled manner, as seen in nature, has recently

driven advances in many fields of fundamental and applied sciences.

Figure 1.7: Selected time frames of a composite morphing wing design idea developed
by NASA. The wing is constructed from building-block units made of advanced carbon
fiber composite materials. Reproduced from [21].

The tremendous interest in self-shaping materials stems from a wide range of applications

for these materials, ranging from biomedical devices to aircraft design [22, 23, 6]. A morphing

aircraft wing is a great example of a synthetic shape morphing system that allows tuning the

span-wise shape of the wing based of the aerodynamic needs at a specific speed or maneuver.

A prototype example of a morphing wing idea developed by NASA is shown in Figure 1.7.

The wing is constructed from building-block units made of advanced carbon fiber composite

materials. These building blocks are assembled into a lattice, or arrangement of periodic

structures [24]; the way that they are arranged determines how they flex. The wing also

features actuators and computers that make it morph and twist to achieve the desired wing

shape during flight. This concept allows having a wing that is more efficient, as a rigid wing

with a limited number of moveable surfaces is only a compromise and can not be the most

efficient shape of any given flight phase. Such an efficient morphing design would yield a

better fuel economy which would in turn reduce the overall weight of the aircraft.

Shape memory alloys (SMAs), as a family of smart and adaptive materials, have also been

explored in shape morphing structures. A well-employed application of such active shape
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morphing systems is found in the design and fabrication of reconfigurable composite chevrons

that are effective for noise reduction at the exhaust of jet engines. Figure 1.8 demonstrates

Boeing’s design for a morphing chevrons that uses SMA beams as active elements for shape

shifting.

Figure 1.8: Boeing’s morphing geometry chevron actuated using SMA beams. From
[25], originally reproduced from [26].

Soft materials like elastomers and hydrogels are also desirable structural components

for the design of synthetic shape morphing structures. They enjoy unique characteristics,

including biocompatibility, adaptability, multifunctionality, low cost, and tunable stiffness

and strength [27, 28] and are promising components for synthesizing new materials that can

acquire a pre-programmed shape in response to stimuli [29, 6]. Soft materials can be tailored

to induce simple bending, twisting and wrinkling motions through modulation of structural

elements [30, 31, 32] or can be programmed to attain a complex 3D shapes in response to

stimuli [33, 34, 35, 36, 37]. Such soft synthetic shape reconfigurable structures can find

applications in drug delivery [38], tissue engineering [39], actuators [40], and soft robotics

[41]. An example of a mesostructured elastomer plate that undergoes a fast, controllable

and complex shape transformations under applied pressure is demonstrated in Figure 1.9.

The geometric restrictions are overcome by precisely controlling the local growth rate and

direction through a specific network of airways embedded inside the rubber plate.

1.2 Overview

Inspired by the shape shifting capabilities of biological systems, in this work, the re-

sponse of natural and synthetic morphing systems are studied through a few examples.

8



Figure 1.9: Shape programming of a pneumatic shape-morphing elastomeric face, re-
produced from [37]. From left to right: the target shape, the corresponding deformation
contour lines, the network of channels computed to give rise to the target metrics, and
two pictures of the morphed geometry.

These include the in vitro adaptive contraction of a cardiac muscle cell inside a constrain-

ing hydrogel, inflation of architectured rubber membranes with nonuniform geometrical and

material properties, and a shape morphing soft underwater robot.

Chapter 2 focuses on an example of natural shape morphing systems, contraction of heart

muscle cells, and aims to attain a better understanding of the mechanisms through which each

cardiac muscle cell (cardiomyocyte) regulates its amplitude and speed of contraction. We

develop a mathematical viscoelastic Eshelby inclusion model, as an efficient computational

companion tool for the in vitro Cell-in-Gel system of our collaborators, to analyze the time-

dependent, three-dimensional (3D) strains and stresses within a cardiomyocyte contracting in

a viscoelastic medium. A new mathematical feedback framework is demonstrated to account

for the mechano-chemo-transduction (MCT) mechanism that captures the load-adaptive

autoregulatory response of the cell. This work provides important clues to uncovering the

cellular and molecular mechanisms that underlie the autoregulation pathways that adjust

the force and contractility of cardiomyocytes in healthy hearts. Part of the findings of this

chapter has been published in [42], and the most recent results are now under review in a

peer-reviewed journal.

Chapter 3 investigates the shape morphing ability of architectured soft composites with

passive components. In particular, several feasible 3D shapes that can be achieved via infla-

tion of an initially flat circular rubber membrane with nonuniform geometrical and material

properties, are explored. Design, fabrication, and testing of these membranes are presented

in this chapter and finite-element simulations are accompanied to perform a study on the

design parameters. Our rubber-based prototypes provide a convenient basis for conceptual

scientific and design explorations of shape morphing inflatable structures.

Chapter 4 explores an application of compliant shape morphing systems in the framework

of a synthetic soft underwater robot. A novel concept in the design of a robotic jellyfish

that imitates the shape and kinematics of the typical animal is demonstrated. The robot
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swims by harnessing the buckling instability of its soft body to morph from an initially

flat configuration into a deformed shape which generates the required thrust for underwater

locomotion. The main contribution of this work is the simplicity of design, requiring only a

soft rubber matrix with a single embedded SMA spring acting as the artificial muscle. The

results and findings of this chapter have been published in [43, 44]

Finally, conclusions and future work are summarized in Chapter 5.
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CHAPTER 2

Analysis of Cardiac Myocyte Contraction in a 3D

Viscoelastic Medium

2.1 Introduction

The heart is a remarkably “smart” pump. During each heartbeat, cardiac muscle cells

in the left ventricle generate contractile forces to pump blood against systemic vascular

resistance, while maintaining adequate cardiac output in the presence of blood pressure

changes that accompany our various daily activities (e.g. posture change and exercise). The

heart’s intrinsic ability to adapt to changing mechanical loads is manifested in the Frank-

Starling and Anrep effects, first reported over a century ago [45, 46, 47]. The cellular and

molecular origins of the heart’s autoregulation, however, remain incompletely understood [48,

49, 50, 51]. Studies suggest that cardiomyocytes have intrinsic mechano-chemo-transduction

(MCT) mechanisms that sense and transduce mechanical loads into biochemical signals to

regulate the contractile force [51, 52, 53]. Multiple MCT pathways have been hypothesized

in an effort to clearly identify the mechano-sensors and chemo-transducers that regulate

the Ca2+ signaling system and contractility [54]. These pathways appear to provide closed-

loop feedback between the mechanical loading and the excitation-Ca2+ signaling-contraction

coupling, which enables the cardiomyocyte to autoregulate contractility in compensatory

response to varying physiological loads. Such MCT pathways may be diminished or absent in

certain diseases, and even in healthy hearts, excessive load can cause Ca2+ dysregulation and

contractile dysfunction that lead to cardiac arrhythmias and heart failure. The mechanical

stress levels that cause such failure in cardiomyocytes, however, have never been quantified.

To help decipher the MCT mechanisms at the single-cell level, we developed the Cell-

in-Gel system in which freshly isolated live cardiomyocytes are embedded in a constraining

hydrogel and then stimulated to undergo excitation-Ca2+ signaling-contraction [55]. The

hydrogel is a 3-D polymer matrix immersed in a physiological solution in vitro that mimics
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the extracellular matrix by providing a viscoelastic medium to impose mechanical resistance

during cardiomyocyte contraction. In physiological (healthy) conditions, the cardiomyocyte

contracts and relaxes in synchrony with surrounding cells to pump blood in the presence

of chamber pressure. In pathological conditions, such as infarction, fibrosis, arrhythmias

and asynchronous contraction, the cardiomyocyte may contract asynchronously against its

neighbors and experience more severe multiaxial mechanical stresses. While it is extremely

difficult to mimic the exact in vivo conditions, the Cell-in-Gel system enables us to study the

impact of mechanical stresses on a single cardiomyocyte in a controlled way [55]. To simulate

the normal or overload in healthy or diseased states, hydrogels of various viscoelastic moduli

are used to systematically vary the afterload during cardiomyocyte contraction in the Cell-in-

Gel experiments. Although the mechanical strains during cell contractions can be measured

by optical microscopy, the mechanical stresses in the cell cannot be directly measured and

must be inferred by analysis.

Herein, a mathematical model to quantify all mechanical fields is presented, as a compan-

ion tool to help guide ongoing Cell-in-Gel experiments and to interpret the experimental data.

The model is based on the classical Eshelby problem of an ellipsoidal inclusion embedded in

an elastic matrix, which has a known analytical solution [56, 57]. We used this previously

to analyze Cell-in-Gel experiments by treating the gel as a purely elastic (non-viscous) ma-

trix and the cell as an elastic inclusion that undergoes an eigenstrain (spontaneous inelastic

strain) to simulate contraction [58]. To improve the fidelity of the analysis, the previous

model is extended in this work to account for two important features:

(1) viscoelastic properties of the hydrogel and the cardiomyocyte,

(2) the cardiomyocyte’s autoregulation in response to changes in mechanical afterload.

To address item (1), the viscoelastic solution of the Eshelby inclusion problem is applied

to the Cell-in-Gel system. The Correspondence Principle of Linear Viscoelasticity was first

used to extend the Eshelby solution in [59], although used for a very different purpose (to

estimate the effective mechanical properties of synthetic particulate composites). We use a

similar approach, but rather than employ the eigenstrain concept as a mathematical artifice

to seek a homogenized solution to a heterogeneous composite, we seek the explicit mechanical

fields to a biomechanics problem. Importantly, the eigenstrain of the inclusion here has a

physical interpretation as muscle cell contractility.

To address item (2), we propose a mathematical feedback model to capture the up-

regulation in cytosolic Ca2+ transients in response to elevated mechanical stress in the cell.

The increased Ca2+ in turn, leads to enhanced cell contractility in the mathematical form
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of an amplified eigenstrain (contractility). The viscoelastic Eshelby solution takes the time-

dependent eigenstrain as the input and calculates the cell’s stress as the output to complete

the feedback loop. Differential equations are proposed in the feedback model, and these are

calibrated to a few Cell-in-Gel experimental measurements for the first time. We believe

this framework is novel, and it can be easily adapted and refined as more extensive data sets

become available from ongoing Cell-in-Gel experiments. Our ultimate aim, by developing

an accurate mechanical analysis of the 3-D stresses in the cardiomyocyte, is to establish

a mathematical and physical foundation to better understand how the cell senses multi-

axial stresses, activates mechano-sensors at various locations, transduces those stresses to

biochemical signals, and autoregulates contractile force in adaptive response to load changes.

This paper begins with an overview of the Cell-in-Gel experiments in Section 2.2, followed

by a brief review of linear viscoelasticity theory and the mechanical characterization of

both gel and cell materials in Section 4.2.2. In Section 4.3, the boundary value problem

is defined in the context of the elastic Eshelby inclusion problem. Its analytical solution is

leveraged to solve the corresponding viscoelastic problem by exploiting the Correspondence

Principle of Viscoelasticity and a Discrete Fourier Transform (DFT) analysis to enable fast

computations of periodic time-dependent mechanical fields. Section 2.5 provides an example

simulation of a baseline case, followed by a parameter study to investigate the influence

of material properties and cell geometry. Each simulation predicts the interior (cell) and

exterior (hydrogel) displacement fields that can be compared to experimental measurements.

The model is used to calculate the multiaxial stress state inside the cell (affecting internal

mechano-sensors), the traction distribution on the cell surface (affecting surface mechano-

sensors), and the mechanical work and power generated by the cell (related to metabolic

expenditure). The mechanical analysis is then embedded in a proposed feedback control

framework, which links the stress-dependent Ca2+ transients to the cell’s adaptive contractile

response. Finally, a summary and conclusions are provided in Section 2.6.

2.2 The Cell-in-Gel system

The Cell-in-Gel system was developed by us as an experimental tool (see Figure 2.1) to

apply controlled 3-D mechanical loading on a single cardiomyocyte to enable an in-depth

investigation at the cellular and molecular levels. Ventricular myocytes (Figure 2.1A) were

freshly isolated from a healthy rabbit heart [60] and loaded with the fluorescent Ca2+ indi-

cator Fura-2 [55]. The cells were then embedded in the hydrogel and continuously perfused

with Tyrodes solution (Figure 2.1B). The hydrogel consisted of polyvinyl alcohol (PVA) and

polyethylene glycol (PEG)-boronate cross-linked polymer matrix immersed in an aqueous
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solution. It provided a soft and viscous medium, against which the contracting cell encoun-

tered mechanical resistance. The boronate-base crosslinker also binds to the glycosylated

molecules on the cell surface to attach the cell to the polymer matrix. As the cell contracted

and relaxed, the hydrogel deformation could also be tracked via confocal microscopy by the

motion of embedded microbeads.

SL

A. Rabbit left ventricular
myocyte

Gel Chamber

Microbead

Perfusion

Confocal
Microscope

Cell

Electric Field
Excitation 

B. Schematic of setup

In-Gel

Gel
Dissolve

Load-Free (LF)

Stim

Fura-2
(arb. u.)

C. Cytosolic Ca2+ (Fura-2) and sarcomere
length (SL) histories

Figure 2.1: The Cell-in-Gel system and typical results.

The in-gel cardiomyocyte was paced at approximately 0.5 Hz frequency using electric field

excitation pulses (suprathreshold, 4 ms) to undergo excitation-Ca2+ signaling-contraction

cycles. As depicted in Figure 2.1C, intracellular cytosolic Ca2+ transients (
[
Ca2+

]
i
, shown
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in upper panel) and cell contractions (shortening of sarcomere length, shown in lower panel)

were measured simultaneously using epi-fluorescence microscopy. Measurements on a single

cardiomyocyte were first performed when the cell was contracting in-gel under mechanical

load (left panel). The gel was then dissolved to release the cell inside the solution, and

contraction of the same cell was measured again under load-free conditions (right panel) [?].

Such self-control experiments clearly showed that the cardiomyocyte had significantly larger

Ca2+ transients under mechanical load than when load-free. Hence, the mechanical load

exerted by the surrounding hydrogel was sensed by the cell and transduced to biochemical

signal to upregulate the Ca2+ transients. This MCT mechanism led to a MCT-Ca2+ gain

that enhanced the contractility of the cardiomyocyte in response to increased load. (It will

be shown in Section 2.5 that a smaller change in SL would have occurred without this gain.)

In the classical paradigm of cardiac excitation-contraction coupling, the action potential

causes the Ca2+ transient which in turn results in muscle contraction. Previous mechanistic

studies mostly focused on the forward action from the electrical system to the Ca2+ signaling

system, and then to the contractile system. The Cell-in-Gel method enables one to control

the afterload on a single cardiomyocyte and provides new information on how mechanical

load feedback affects the Ca2+ signaling system. Consistent with control theory, such closed-

loop feedback enables autoregulation of contractility in response to load changes. For more

than a century it is known that the heart has the remarkable ability to autoregulate con-

tractility to compensate for mechanical load changes in order to maintain constant cardiac

output. However, the molecular structures responsible for the autoregulation observed at

the heart and tissue level remain unclear. The Cell-in-Gel technique provides a modern tool

for in-depth investigation of MCT mechanisms at the single cell, sarcomere, and molecular

levels. Ongoing Cell-in-Gel experiments, which will be reported elsewhere in experimen-

tal papers, have generated extensive structural and functional data to probe the origins of

MCT mechanisms. The main focus of this modeling paper is to illustrate how a precise 3-D

mechanical analysis of the strain and stress fields of the cardiomyocyte in a viscoelastic en-

vironment can be determined, thereby interpreting the experimental data, in order to better

understand the MCT mechanisms in a quantitative way.

2.3 Materials characterization

The mechanical analysis of Section 4.3 requires that the constitutive behaviors of the

hydrogel and the cardiomyocycte be known. Both are treated here as viscoelastic materi-

als. Our hydrogel consists of three main constituents: PVA, PEG-boronate cross-linker, and

physiological solution (e.g. Tyrodes or phosphate-buffered saline). Each of these components
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has a considerable effect on the viscoelastic properties of the hydrogel, so the magnitude of

the applied mechanical load can be fine-tuned by adjusting the concentrations of these con-

stituents. Hydrogels of various cross-link densities are used in the Cell-in-Gel experiments

to systematically vary the mechanical resistance to cardiomyocyte contraction. This section

provides a brief review of linear viscoelasticity theory, followed by the mechanical character-

izations of the hydrogel and the cardiomyocyte.

2.3.1 Linear viscoelasticity

According to the theory of linear viscoelasticity, the constitutive (stress-strain) response

of the material can be expressed as a convolution integral in terms of a relaxation modulus

and a prescribed strain history. That is, for a given shear strain history γ(t), the shear stress

τ(t) history is expressed in terms of the relaxation shear modulus G(t) as

τ(t) = G(t) γ(0+) +

∫ t

0+
G(t− s)γ̇(s) ds, (2.1)

where γ̇ = dγ/dt is the strain rate. If the strain input is a step function at time t = 0

according

γ(t) =

0, t < 0

γ0, t ≥ 0
(2.2)

where γ0 is a constant, the response is simply τ(t) = γ0G(t). Thus, the relaxation modulus

G(t) = τ(t)/γ0 is the stress response to a unit step strain input. For a typical viscoelastic

solid the stress jumps to an initial value G0 at time t = 0+ and then decays monotonically

as t→∞ to a smaller positive value G∞.

To capture the viscoelastic behavior of real hydrogels from rheology data with reason-

able accuracy, the relaxation modulus G(t) is approximated here by a generalized Maxwell

viscoelastic model, consisting of a spring of stiffness G∞ assembled in parallel with multiple

Maxwell elements. The relaxation modulus is then mathematically represented by a Prony

series according to [61]

G(t) = G∞ + ∆G
Nτ∑
j=1

ξj e
−t/τj , (2.3)

where G∞ is the asymptotic value as t → ∞, ∆G = G0 − G∞, τj (j = 1, 2, . . . , Nτ ) are

relaxation time constants (not to be confused with the shear stress), and ξj represent ‘phase
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fractions’ that apportion the amount of material that relaxes according to each time constant

τj. To ensure it is physically reasonable and to preserve the interpretation of G0 and G∞

as instantaneous short-term and long-term values, respectively, the fractions must be non-

negative ξj ≥ 0 (for all j = 1, 2, . . . , Nτ ) and satisfy
∑Nτ

j=1 ξj = 1.

If strain input is oscillatory, say γ(t) = γ0 sinωt where ω is a prescribed angular frequency,

the resulting shear stress history, τ(t) by Equation (2.1), is

τ(t)

γ0

= G′ sinωt+G′′ cosωt−∆G
Nτ∑
j=1

ωτjξj
1 + ω2τ 2

j

e−t/τj , (2.4a)

G′ = G∞ + ∆G
Nτ∑
j=1

ω2τ 2
j ξj

1 + ω2τ 2
j

, (2.4b)

G′′ = ∆G
Nτ∑
j=1

ωτjξj
1 + ω2τ 2

j

. (2.4c)

After a sufficiently long time the decaying part in Equation (2.4a) can be neglected, leaving

the steady oscillatory response

τ(t)

γ0

= G′ sinωt+G′′ cosωt. (2.5)

The quantity that characterizes the in-phase portion of the response G′ is called the

storage modulus, while that for the out-of-phase portion G′′ is called the loss modulus.

These are frequency-dependent functions which can be measured in a modern dynami-

cal mechanical analyzer. To see the phase δ explicitly, one can rewrite Equation (2.5) as

τ(t)/γ0 = |G| sin (ωt+ δ), where tan δ = G′′/G′ and |G| =
√

(G′)2 + (G′′)2.

Alternatively, using complex variables1, suppose the input strain history is oscillatory

according to γ̂(t) = γ0e
iωt = cosωt + i sinωt (by Euler’s relation) with i =

√
−1 and

the complex relaxation function is Ĝ = G′ + iG′′. Repeating the convolution integration

Equation (2.1) and neglecting the decaying part, gives the response as

τ(t)

γ0

= [G′ + iG′′] eiωt = [G′ cosωt−G′′ sinωt] + i [G′ sinωt+G′′ cosωt] . (2.6)

The real part is the response to a cosine input, and the imaginary part is the response to a

1Complex-valued quantities are denoted with a hat, such as γ̂.
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sine input. Moreover, the convolution integral Equation (2.1) can now be replaced by

τ(t) = Ĝ(ω) γ0e
iωt (2.7)

in terms of complex variables, when one is only interested in the limit cycle response after

transients have died out.

2.3.2 Hydrogel characterization

Rheometry measurements were performed on PVA-PEG-boronate hydrogels using a tor-

sional dynamical mechanical analyzer with cone and plate platens (Figure 2.2A). In all cases

the shear strain γ amplitude was 2 %, and frequency scans were performed between 0.1

and 100 rad/s. Hydrogels of 10 % PVA (89-98 kDa) for several different cross-linker (CL)

concentrations C = {2.5, 5, 7.5, 10, 12.5, 15}% were examined. Each case was run on three

or four samples at 25 oC.

As an example, the results of a 10 % CL hydrogel sample are shown in Figures 2.2B–

2.2E. The angular frequency was converted to cyclic frequency (f in Hz) according to ω =

2πf , and frequency results are shown on a logarithmic scale for clarity. In Figures 2.2B

and 2.2C, the open symbols mark experimental data, and the solid lines are fits according

to Equations (2.4b) and (2.4c). In this case, and all others, G∞ = 0 was prescribed, since

the G′ was quite small at low frequencies (see the lefthand tail in Figure 2.2B). This means

the hydrogel actually behaves more like a viscoelastic fluid than a viscoelastic solid.

The fits for G′ and G′′ are reasonably good. This was achieved by selecting time con-

stants at equal increments along a logarithmic scale, τj = {2−10, 2−9, . . . , 22}, and then fitting

the parameters ξj (j = 1, 2, . . . , 13) and ∆G. For most of the hydrogel samples, an uncon-

strained fit resulted in a distribution of ξ versus log τ (relaxation spectrum) that resembled

a Gaussian distribution. Consequently, the relaxation spectra for all of the results herein

were constrained to lie along a Gaussian distribution according to

ξj = ξ(τj) = ξ0 exp

[
−
(

log(τj/τ0)

σ0

)2
]
, (2.8)

where τ0 is the mean time constant, σ0 is the standard deviation (characteristic width) of

the distribution, and ξ0 is a normalizing constant to make
∑Nτ

j=1 ξj = 1. The resulting

spectrum is shown in Figure 2.2E. This reduced the number of fitting parameters down to

only three {G0, τ0, σ0} for each hydrogel sample. The only tradeoff is that tan δ is somewhat

over-predicted at very low frequencies (see Figure 2.2D).

A summary is provided in Figure 2.3, showing the trends of the three fitting parameters
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Figure 2.2: Example torsion rheology measurements on a C = 10 % cross-linked hy-
drogel. Solid lines are fits using a Gaussian relaxation spectrum.

across all CL cases. The data points shown were obtained by fitting each frequency scan,

similar to Figure 2.2. The elastic shear modulusG0 generally increases with CL concentration

in a non-linear manner, although the scatter between samples becomes progressively larger.

The mean time constant τ0 also increases with CL concentration but trends almost linearly.

The width of the relaxation spectrum σ0 is nearly constant, except at the smallest CL

concentration.
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Figure 2.3: Summary of hydrogel viscoelastic parameters at different cross-link concen-
trations (C).

The lines in Figure 2.3 are CL-dependent fits of the fitting parameters according to

G0(C) =
g0

2
[1 + tanh (g1 (C − g2))] , (2.9a)

τ0(C) = h0 + h1C + h2C
2, (2.9b)

σ0(C) = s0

[
1− e−s1C

]
. (2.9c)

Values of the fitting constants are provided in Table 2.1. This resulted in master fit functions

for the complex shear moduli as a function of frequency and CL concentration.

Table 2.1: Fitting parameters.

G0 τ0 σ0

g0 = 14.7 (kPa) h0 = 0.00486 (s) s0 = 0.58
g1 = 34.4 h1 = 1.17 (s) s1 = 55
g2 = 0.0866 h2 = −2.62 (s)

2.3.3 Cardiomyocyte characterization

The elastic modulus of the cardiomyocyte was estimated using available data from the lit-

erature. [62] performed uniaxial force-stretch measurements on a single ventricular myocyte

stimulated at 1.0 Hz frequency using coated micro-rods (Figure 2.4A). The cross-sectional

area (A0) of the gauge section of the myocyte between the rods was estimated from the

micrograph assuming the out-of-plane depth was the same as the cell width, allowing the

axial stress (σxx = Fx/A0) to be calculated from the axial force (Fx). According to the

extracted stress-strain response curve shown in Figure 2.4B, the cell had an approximate

Young’s modulus of EI ≈ 25 kPa when electrically stimulated. Assuming the cell is an

incompressible linear elastic solid, the effective shear modulus was GI = EI/3 ≈ 8.3 kPa.
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A. Figure from [62].
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49 kPa

E=25 kPa
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B. Estimated responses

Figure 2.4: Single cell uniaxial response.

To our knowledge, unfortunately, no viscoelastic data on a single cardiomyocyte currently

exists in the literature.

2.4 Eshelby analysis

This section provides an analysis of the mechanical response of a live cardiomyocyte

embedded in a viscoelastic hydrogel and paced to perform periodic beat-to-beat contraction.

Our previous mechanical analysis of Cell-In-Gel experiments [58] was based on the Eshelby

inclusion problem [56], where the cell was treated as an ellipsoidal inclusion that undergoes

an eigenstrain (transformation strain) inside an infinite elastic matrix. The present work

extends the Eshelby boundary value problem (BVP) to account for viscoelasticity of the

constituents. Before the viscoelastic analysis is presented, however, a brief review is provided

of the purely elastic Eshelby BVP.

2.4.1 Elastic Eshelby analysis

When the elastic properties in the inclusion and matrix are the same, the boundary

value problem is called the homogeneous inclusion problem [56]. The inclusion occupies a

subvolume V I , assumed here to have the shape of an ellipsoid, and is embedded and bonded

to the matrix at its periphery (Figure 2.5). The matrix, occupying the complementary

volume VM, is assumed to be of infinite extent, so the remote boundaries are traction and
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Figure 2.5: The Cell-in-Gel boundary value problem.

displacement free. The inclusion (here, the cell) is assumed to undergo an inelastic strain

β, called the eigenstrain. This simulates the strain of the cell when it contracts load-free

(unconstrained by any matrix). The mechanical resistance of the matrix (here, the gel),

however, causes the magnitude of the inclusion strain ε to be somewhat less. This tug-of-

war causes self-equilibrated residual stress fields in the inclusion and the matrix.

With respect to the Cartesian coordinate system2 shown in Figure 2.5b, the displacements

ui, strains εij, and stresses σij for the elasto-static problem are

ui(x) = Bijk(x)βjk, (2.10a)

εij(x) = Dijkl(x)βkl, (2.10b)

σij(x) = Cijkl [εkl(x)− Γ(x)βkl] , (2.10c)

with Γ(x) ≡

{
1, x ∈ V I ,
0, x ∈ VM,

(2.10d)

where x = xiei is the position vector with Cartesian components {xi} = {x, y, z} and

orthonormal base vectors ei (i = 1, 2, 3). Cijkl are the constant components of the 4th-

2Scalar quantities are denoted in normal type, while bold-face symbols denote vector or higher-order
tensor quantities. The Einstein summation convention is used for repeated lower case latin subscripts within
a term, as in xiei = x1e1 + x2e2 + x3e3.
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order elastic stiffness tensor C. The quantities Bijk(x) and Dijkl(x) are position-dependent

components of 3rd-order and 4th-order tensors, respectively, originally defined in [56, 57].

Within an ellipsoidal inclusion, the solution is

εij = S0
ijklβkl, (2.11)

where S0
ijkl = Dijkl(0) are the components of the classical Eshelby tensor S. S0

ijkl are

constants, computed from elliptic integrals, which for isotropic material depend only on

Poisson’s ratio ν and the dimensions of the ellipsoid {a, b, c}. Thus, although strain and stress

fields are quite non-uniform in the matrix, they are uniform within an ellipsoid inclusion (the

only known shape for which this is true).

If the elastic properties of the inclusion CI and matrix CM are different, the BVP

is called the inhomogeneous inclusion problem. It is solved by introducing an equivalent

eigenstrain β∗ that satisfies

σIij = CIijkl
[
S0
klmn β

∗
mn − βkl

]
= CMijkl

[
S0
klmn β

∗
mn − β∗kl

]
. (2.12)

The equivalent eigenstrain components β∗ij, calculated from Equation (2.12), ensure the

correct stresses are recovered after the inclusion elastic properties are replaced by those of

the matrix CI → CM. As shown in [56], this clever mathematical artifice converts any

inhomogeneous inclusion problem to the homogeneous Eshelby problem (with its known

analytical solution), and one just proceeds as before after replacing the actual eigenstrain

by the equivalent eigenstrain (β → β∗). Equation (2.10) then becomes

ui(x) = Bijk(x)β∗jk, (2.13a)

εij(x) = Dijkl(x)β∗kl, (2.13b)

σij(x) = CMijkl [εkl(x)− Γ(x)β∗kl] . (2.13c)

For the Cell-in-Gel problem, the hydrogel (matrix) and cell (inclusion) are treated as

isotropic and incompressible materials. The Young’s modulus E and shear modulus G are

related by 2G = E/(1 + ν), so in the limit ν → 1/2 the shear modulus is G = E/3.

The dilatation in this case is zero (εkk = 0), and the deformation is isochoric (volume

preserving). The eigenstrain components are taken as β11 = β, β22 = β33 = −β/2, and

β12 = β23 = β31 = 0, where β is the eigenstrain along the cell’s long axis. Explicit formulas

for the computed equivalent eigenstrains can be found in [58]. The nonzero equivalent

eigenstrains {β∗11, β
∗
22, β

∗
33} are proportional to β and depend nonlinearly on the ellipsoid

dimensions and the shear modulus ratio η ≡ GM/GI . They are isochoric (β∗kk = 0), and
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β∗12 = β∗23 = β∗31 = 0. The stresses then become

σij(x) = 2GM
[
εij(x)− Γ(x) β∗ij

]
+ p(x) δij, (2.14)

where the mean stresses in the inclusion and matrix are

p(x) =


3GMβ∗11

[
I1(0)

4π
− 1

3

]
, x ∈ V I

3GMβ∗11

[
I1(λ)− Λ(λ)x2

1 α
2
1(λ)

4π

]
, x ∈ VM

(2.15)

and expressions for I1(λ), Λ(λ), α1(λ), and λ(x) are provided in [58].

The use of an ellipsoidal inclusion is reasonable, given that a typical cardiac cells is brick-

like with jagged narrow ends in geometry. Using high-resolution finite element simulations,

Kazemi-Lari et al. [42] recently showed that the strain and stress fields within a brick-shaped

inclusion are no longer uniform (as expected), gently varying mostly along the inclusion’s

long axis. However, it was verified that the volume-averaged values of the stress components

were reasonably similar between ellipsoidal and brick-shaped inclusion of the same aspect

ratios.

2.4.2 Viscoelastic Eshelby analysis

Now we wish to account for the viscosity of the cell and gel in the framework of the

Eshelby inclusion analysis. This causes all mechanical field quantities to become dependent

on time t.

According to correspondence principle of linear viscoelasticity [61], if the linear elastic

solution is known for a body that undergoes quasi-static motion, the solution to the corre-

sponding problem in linear viscoelasticity can be constructed by substituting constitutive

and load parameters with their time-dependent counterparts. The correspondence principle

takes advantage of time-space separability by solving the time-dependent portion of the prob-

lem in the Laplace or Fourier domain. The principle however, is restricted to problems where

the boundary location remains fixed in the reference configuration and boundary conditions

do not change type over time. That is, while the surface tractions or displacements may

be time-dependent, points on the surface must remain traction-specified, or displacement-

prescribed, or displacement-traction coupled for all time. Ours is the last type.

The application of the correspondence principle has been used before to obtain the so-

lution to the viscoelastic Eshelby inclusion problem in order to estimate the properties of

composite materials. A recent paper [63] contains a summary of relevant papers. The ap-
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plication of the viscoelastic Eshelby problem to cardiomyocytes in this paper is new.

Taking the Fourier transform of the field equations in Equation (2.13b), the pseudo-elastic

solution is solved in the frequency domain by

ûi(x, ω) = B̂ijk(x)β̂∗jk(ω), (2.16a)

ε̂ij(x, ω) = D̂ijkl(x)β̂∗kl(ω), (2.16b)

σ̂ij(x, ω) = 2ĜM(ω)
[
ε̂ij(x, ω)− Γ(x) β̂∗ij(ω)

]
+ p̂(x, ω) δij. (2.16c)

An arbitrary eigenstrain history can be expressed as the Complex Fourier Series

β(t) =
∞∑

n=−∞

β̂ne
i ωnt, (2.17)

where the coefficients are complex valued β̂n = β′n + i β′′n. Since β(t) are real valued, the

coefficients β̂n and β̂−n are complex conjugates.

The stress response to Equation (2.17) is just the superposition of responses at each

individual frequency, since the viscoelastic constitutive relations and kinematics are linear.

Thus, the generalization of Equation (2.16c) is the stress tensor (suppressing the spatial

arguments)

σ(t) =
∞∑

n=−∞

σ̂ne
i ωnt, (2.18a)

σ̂n = ĜMn

[
ε̂n − Γ β̂∗n

]
+ p̂n δ. (2.18b)

where ĜMn = ĜM(ωn) is the complex relaxation moduli of the matrix at each frequency.

This relation provides the steady state oscillatory response to a periodic eigenstrain input.

The coefficient β̂n is found in the usual way by multiplying Equation (2.17) through by

e−i ωmt with ωm = 2πm/T , integrating across the period of the interval t ∈ [−T/2, T/2], and

exploiting orthogonality of integrals involving exp(i2π(n−m)t/T ), resulting in

β̂n =
1

T

∫ T/2

−T/2
β(t) e−i 2πnt/T dt. (2.19)

If the eigenstrain input is measured at N equal time increments (∆t = T/N) within the
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period, the discrete sequence is

βm = β(m∆t), for integers m = −N
2
, . . . ,

N

2
− 1. (2.20)

which assumes N is even3. This leads to the Discrete Fourier Transform (DFT), where

Equation (2.19) is approximated by

β̂n ≈
1

N

N/2−1∑
m=−N/2

βm e
−i 2πnm/N , n = −N

2
, . . . ,

N

2
− 1, (2.21)

and the inverse DFT, replacing Equation (2.17), is

βm =

N/2−1∑
n=−N/2

β̂n e
i 2πnm/N . (2.22)

Finally, using Equation (2.18b) the stress response at discrete times becomes

σm = σ(m∆t) =

N/2−1∑
n=−N/2

σ̂n e
i 2πnm/N . (2.23)

Note that the ordering of frequencies needs to be done with care to ensure the complex

modulus is summed over complex conjugate pairs. That is, we need G′(ωn) = G′(−ωn) and

G′′(ωn) = −G′′(−ωn) when using Equation (2.4) with real frequency ωn = 2πn/T , which

is why we prefer the quasi-symmetric summation about n = 0 (rather than the often used

n = 0, . . . , N − 1).

Once the stress in the inclusion is known, the mechanical power output P I of the cell

(inclusion) can be calculated. This is related to the product of the instantaneous stress σ(t)

and strain rate ε̇(t)in the cell, as

P I(t) = −
∫
V I
σij(t)ε̇ij(t) dV = −σij(t)ε̇ij(t)V I , (2.24a)

and the work done per cycle is

W I =

∫ t0+T

t0

P I(t) dt. (2.24b)

The volume of the ellipsoidal inclusion is V I = (4/3)πabc (see Figure 2.5B), and t0 is the

3If N is odd, m = −N−1
2 , . . . , N−12
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start time of a cycle. One should recognize that W I is the net mechanical work done by the

cell on the gel, which is apart from other internal energy expenditures of the cell to maintain

metabolic homeostasis, ionic homeostasis, and Ca2+ signaling.

The internal stress, strain, and strain rate provide volume-averaged values of relevant

mechanical quantities that may be felt by interior mechano-sensors in the cell. Notably, the

3-D mechanical analysis also provides important clues to the locations of various mechano-

sensors in the cell [52]. The mechanical loading sensed by surface mechano-sensors of the

cell can be estimated by calculating the traction vector te on the surface of the ellipsoid

(interface of the cell and gel, ∂V I). The traction components are

tei (x) = σIij nj(x), x ∈ ∂V I , (2.25)

where nj are the components of the surface unit normal n.

2.5 Simulation results

In this section, the results of our mechanical analysis are interpreted and compared to real

biological data. The viscoelastic Eshelby model is used to calculate the multiaxial stress and

strain states and the time-dependent mechanical responses of the cardiomyocyte contractions

in the Cell-in-Gel experiments. First, simulation results are shown for a baseline case in the

absence of MCT gain, which focuses on characterizing the mechanical field distributions

inside and outside the cell. Next, a parameter study is performed to examine the influence

of the hydrogel’s viscoelastic properties, the cell’s aspect ratio, and the cell’s stiffness, on

the cell’s mechanical response. Finally, a feedback model is proposed and integrated into

the mechanical analysis to incorporate the MCT gain and autoregulation of Ca2+ transients

seen in the actual cardiomyocyte. This is shown to be an important ingredient to achieve

good agreement between the simulations and the Cell-in-Gel measurements.

2.5.1 Baseline case

Consistent with the cardiomyocyte in the Cell-in-Gel experiment (Figure 2.1), the ellip-

soidal inclusion has dimensions 2a = 131.2 µm and 2b = 18.4 µm, resulting in an aspect ratio

of a/b = 7.13. From here on, in the absence of an out-of-plane measure, we assume c = b for

simplicity. This is a reasonable estimate for many myocytes, and our results are not greatly

affected even if c = 1.5b (as measured in certain myocytes.) The cell is treated as a con-

tractile, elastic object with a shear modulus of GI0 = 8.3 kPa (consistent with Figure 2.4B)

inside a viscoelastic hydrogel with GM0 = 4.7 kPa at a CL density of C = 7.6 %.
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A. Strain histories B. Stress histories

Figure 2.6: Baseline case: cell strain and stress responses.

The Cell-in-Gel experiment recorded the axial strain history of a cardiomyocyte electri-

cally stimulated at about 0.5 Hz after many cycles while embedded in the gel. A repre-

sentative cycle, where t = 0 is the time of electrical stimulation, is shown in Figure 2.6A.

The thin red line shows the in-gel strain history of the cell, with a maximum contraction

near εIxx = −13 % strain. The gel was then dissolved away (leaving a nearly inviscid saline

solution), and the strain history of the same myocycte was measured under nearly load-free

conditions (thin blue line in Figure 2.6A). The maximum contraction in this case was slightly

smaller, about −12.4 % strain. This load-free strain history is used as the eigenstrain input

β(t) in the viscoelastic Eshelby analysis of Section 4.3.

The predicted in-gel axial strain history (simulated εxx, shown by the bold black line in

Figure 2.6A) has the right qualitative character, but the peak contraction (−7.3 % strain)

is less than the experimental value (−13 %). As was shown in Figure 2.1C, the actual

myocyte significantly upregulates its intracellular Ca2+ transient by the MCT mechanism

to increase contractility in response to the mechanical load. This adaptive feature is not

captured here in the Eshelby model which treats the cell as an MCT-free passive entity,

but will be included in Section 2.5.3. Also, as expected for a contractile inclusion inside

a viscoelastic gel, the times of peak eigenstrain, peak inclusion strain, and peak inclusion

stress are somewhat different. The minimum eigenstrain β occurs at t = 0.72 s, while the

maximum axial stress σIxx = 1.53 kPa occurs about 0.17 s earlier and the minimum axial

strain εIxx occurs about 0.15 s later. The minimum strain measured in the myocyte reaches

its minimum value at t = 0.74 s which happens 0.13 s earlier than the simulated minimum

axial strain εIxx. The stress state in the inclusion is multi-axial, but the peak lateral stresses

are quite small (minimum σIzz = −0.015 kPa) due to the slenderness of the ellipsoid.

Selected field quantities in the cell and gel, including the displacements, longitudinal
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A. Deformed grid (|u| × 2) B. Displacement magnitude contours

−7.4 %

C. Axial strain field contours

0.94 kPa

D. Axial stress field contours

Figure 2.7: Baseline case: interior and exterior mechanical fields in the y = 0 plane at
the time of minimum cell strain (t = 1.1 s).

strain, and longitudinal stress, are shown in Figure 2.7 at the time of maximum contraction

within the symmetry plane y = 0. The problem is also symmetric with respect to the plane

x = 0 (mid-span) and axisymmetric about the x-axis (since b = c). The stress and strain

fields inside the cell (inclusion) are uniform at any given time instant. The fields in the gel

(matrix), however, are non-uniform with a local strain and stress concentration just outside

the cell’s ends (x = ±a), but these decay quickly to zero away from the cell.

Figure 2.7A shows a deformed grid, where the displacements have been magnified two-

fold to clearly show the constrained cell which pulls on the surrounding hydrogel along

the axial direction (x) yet pushes outward on the gel along the transverse direction (z).

Figure 2.7B presents a contour plot of the magnitude of the displacement (|u|) normalized

by the cell’s half-length (a). Streamlines are overlaid to show the directions of displacements

during contraction, again showing how the gel is drawn inward toward the ends of the cell at

(x, y, z) = (±a, 0, 0), yet is pushed away from the cell at the mid-span (0, 0,±c). The contour

plot also shows that non-zero displacements in the gel are localized to the vicinity of the cell,

and rapidly approach zero by |x| > 2a, or so. Thus, the map provides useful information
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Figure 2.8: Baseline case: traction distribution along the cell boundary at the time of
peak stress (t = 0.55 s).

about the expected displacements in the gel, which can be compared to the displacements

of the micro-beads in the Cell-in-Gel experiments. Contour plots of the axial strain (εxx)

and axial stress (σxx) are provided in Figures 2.7C and 2.7D, respectively, showing uniform

strain and stress fields inside the cell. In the gel, both plots exhibit ‘hot spots’ near the cell

ends and at the mid-span (although much less severe). The maximum stresses and strains

in the gel are quite local, less than a/4 in extent near the cell ends.

To give a sense of the magnitude and direction of the traction along the boundary points,

a scaled schematic of the traction vector distribution along the entire cell’s boundary is

provided in Figure 2.8A. A more quantitative view of the traction distribution is provided

in Figure 2.8B, taken at the moment (t = 0.55 s) of peak cell stress (σIxx = 1.53 kPa). The

traction vector te on the surface of the ellipsoid is decomposed into normal σn and shear

τn components relative to the surface (see inset schematic), and these are normalized by

the Young’s modulus of the cell EI . Because of the symmetry with respect to x = 0 and

z = 0 planes, the traction components are only plotted in the positive quadrant of the y = 0

plane. The outward unit normal to the cell surface is n, the tangential unit vector is s,

and they are orthogonal (sini = 0). Figure 2.8B shows that the normal component of the

traction σn = teini, acting perpendicular to the surface, changes from slight compression

(over about 50 % of the length) to rapidly increasing tension, reaching a maximum value
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of about 0.061EI at the cell end (x = a). The shear component of the traction τn = teisi,

acting tangent to the cell’s surface, starts zero at the mid-span (x = 0) and rises across the

length until it reaches a maximum of about 0.031 EI , before dropping sharply to zero at

the cell end. Since the ellipsoid here is axisymmetric (c/b = 1), the same results would have

been obtained if the tractions were plotted in the positive quadrant of any other plane that

includes the x-axis.

A. Mechanical power B. Mechanical work

Figure 2.9: Baseline case: cell output power and work histories.

Using Equation (2.24), the output power and work of the cell during one contraction

cycle are quantified in Figure 2.9. Interestingly, the power history in Figure 2.9A exhibits

two local maxima near t = 0.38 s at 3.36 pW (picowatts) and t = 1.10 s at 1.96 pW, due to

the out-of-phase stress and strain histories. Integrated from the power, the corresponding

mechanical work history is provided in Figure 2.9B. After a latency of about 0.2 s, the cell

does positive work on the gel during systole, the gel momentarily does work against the

cell as it decelerates, and then the cell again does work on the gel as the cell elastically

lengthens during diastole. Overall, the (MCT-free) cardiomyocyte outputs a total work of

W = 2.42 pJ/cycle during beat-to-beat contraction inside the viscoelastic hydrogel.

2.5.2 Parametric study

Numerous simulations were performed to understand the parametric sensitivities of the

Cell-in-Gel system with respect to the gel crosslink (CL) concentration, the cell aspect ratio,

and the cell stiffness. Each parameter is varied one at a time, while holding the other

parameters fixed at their base case values. The viscosity of the cell itself was also investigated,

but it had a relatively minor influence on the response so it is not shown. All cases calculated

below use the same load-free eigenstrain history β(t) as before.

As demonstrated in Figure 2.10A, the hydrogel’s CL concentration (C) has a strong

effect on the cell contraction. As C is increased, the predicted magnitude of cell’s axial
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strain is significantly reduced and the phase difference between the stimulus signal and the

contraction response is increased. In addition, Figure 2.10B shows how the magnitude of the

axial stress increases and the stress recovery becomes delayed with increasing C. Cross-plots

of the corresponding stress-strain responses are provided in Figure 2.10C. Each response is

a hysteretic loop, where the enclosed area is related to the (output) mechanical work done

by the cell on the gel. The hysteresis is small at low CL concentration (C = 2 %), large

at intermediate concentrations (6 %), and small again at large concentrations (10 %). The

calculated output work per cycle is plotted in Figure 2.10D after normalizing by the cell

volume to give a work density (Ŵ = W/V I). This shows that the work density starts at

zero for C = 0, grows to a maximum value near 132 J/m3 at C = 6 %, and then decreases

for larger C. This non-monotonic trend is to be expected, since W = 0 at the two extremes,

C = 0 (no gel, zero cell stress) and C → 1 (nearly rigid gel, zero cell strain).

8 %
6 %

4 %
2 %

A. Strain histories

 8 %
 6 %

 4 %

 2 %

B. Stress histories

8 % 

6 % 

4 % 

2 % 

C. Stress-strain loops D. Work density

Figure 2.10: Effect of gel’s cross-link concentration C on the cell response (a/b = 7.13,
GI = 8.3 kPa).

The effect of cell’s aspect ratio has a similar non-monotonic effect on the cell response as
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shown in Figure 2.11. As the cell becomes more slender (larger a/b), reduced contractions and

larger stresses are predicted (Figures 2.11A and 2.11B). This trend can also be understood

by examining the extreme cases. A spherical inclusion (a/b = 1) is the most able to contract,

but its short length generates only a small displacement (for a fixed eigenstrain). A thin

needle (a/b → ∞) would not be able to contract at all, since its axial cross-sectional area

tends to zero. Likewise, the axial force would become very small, and the cell’s attempted

contraction would be supressed by the resisting gel. As seen in Figures 2.11C and 2.11D,

increasing the cell’s aspect ratio from a small value (a/b ≈ 1) initially causes the stress-strain

hysteresis and work density to increase. The work density reaches a peak at about 125 J/m3

at a/b = 4, and then decreases thereafter.

A. Strain histories B. Stress histories

C. Stress-strain loops D. Work density

Figure 2.11: Effect of cell aspect ratio a/b on the cell response (C = 7.6 %, GI =
8.3 kPa).

The cell’s shear modulus (GI), by contrast, has a monotonic influence as shown in Fig-

ure 2.12. A stiffer cell is able to contract more (Figure 2.12A), and this generates larger

stresses (Figure 2.12B). The stress-strain loops (Figure 2.12C) and the work density (Fig-
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ure 2.12D) become larger. This makes sense, as a relatively compliant cell (GI � GM0 ) could

not contract much against the gel, while a nearly rigid cell’s contraction would approach the

eigenstrain history, εIxx(t)→ β(t).

Despite the wide range of parameters examined, none of the responses appear to ap-

proach the measured in-gel strain history of the actual cell. Admittedly, each parameter

C, a/b, and GI has an uncertainty. The crosslink concentration was measured carefully,

but the viscoelastic properties do have some scatter (see again Figure 2.3). We also note

that in the Cell-in-Gel experiment, the crosslinker had to be mixed in gently to avoid killing

the myocytes, so it is possible that some spatial nonuniformity in CL concentration could

have existed in the chamber. That, if anything, would have likely decreased the effective

CL concentration, not increased it. The aspect ratio of the cell was measured optically, so

we expect the in-plane aspect ratio is known reasonably accurately, although we could not

measure the out-of-plane dimension. Based on the dimensions of many myocytes measured,

one would not expect c to be much different than b, and even if it was 50 % different calcu-

lations show that it would not matter much. The elastic modulus of the cell is perhaps the

parameter with the largest uncertainty, since we did not actually measure it (estimated from

literature data [62] for a rodent ventricular myocyte) and is subject to unknown variability

between myocyte isolations and animal species. Nevertheless, the range of GI we considered

appears to be extreme, and even in the case GI → ∞ the calculation still did not trend to

the experimental result.

The missing feature in our (MCT-free) simulations so far is that the actual myocyte

clearly has an autoregulation in response to afterload (as observed in the intact heart).

We can envision two possible mechanical manifestations, either the cell increases its elastic

stiffness and/or the cell adapts its eigenstrain. Based on our results above, the discrepancy

between our predictions and the actual myocyte’s in-gel response cannot be explained by

changes in the cell stiffness alone. The cell stiffness cannot change the delay in the peak

contraction compared to the experimental in-gel strain history, and the calculation does not

match the prolonged contraction decay in the actual strain history. It appears, therefore,

that the autoregulation in response to afterload at the single cell level is primarily associated

with an altered eigenstrain history.
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A. Strain histories B. Stress histories

C. Stress-strain loops D. Work density

Figure 2.12: Effect of cell stiffness GI on the cell response (a/b = 7.13, C = 7.6 %).

2.5.3 Autoregulation model

We hypothesize that the MCT mechanism effectively alters the eigenstrain history in

response to the mechanical load on the cell. That is, the real cell can sense the increased load

and increases the Ca2+ transient to enhance contractility. The MCT-Ca2+ gain is clearly

observed in our experiments, but the exact MCT mechanism is incompletely understood.

A well-calibrated mechanical analysis should provide clues that will inform the ongoing

investigation of MCT mechanisms and functional consequences in cardiomyocytes.

Our approach to mathematically capture the cardiomyocyte’s autoregulatory response

is depicted in the block diagram of Figure 2.13. The complete feedback loop requires two

additional mathematical “links” (shown in the bold green boxes) to the VE Eshelby analysis.

The first link is the known enhancement of contractility due to the amplified Ca2+ transient

(Ca2+Contractility Coupling), and the second is the Ca2+ gain due to the self-sensed afterload

(Stress-Ca2+ MCT). Each is described below.

Ca2+-Contractility Coupling: This first link is described by the following first-order ki-
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+

Ca2+-Contractility
Eqs. (26, 27)

Stress-Ca2+ MCT
Eq. (28)

[Ca2+]i gain
Δμ

eigenstrain
β

strain
ε

Viscoelastic Eshelby Analysis

stress
σ

LF [Ca2+]i
μ0

Figure 2.13: Control loop diagram for autoregulation of cardiomyocyte contraction to
afterload.

netic model that connects the cytosolic Ca2+ concentration µ =
[
Ca2+

]
i

to the eigenstrain

β (contractility),

β(t) + a1β̇(t) = f [µ(t)], 0 ≤ t < T, (2.26)

where a1 is a time constant, f [µ(t)] is a functional of the Ca2+ transient µ(t), and the initial

condition is β(0) = 0 at the start of the cycle. The right-hand side of Equation (2.26) is

a “forcing function” (f), chosen to capture the system dynamics. Figures 2.14A and 2.14B

show measured time histories of the strain and Ca2+ respectively, comparing load-free and

in-gel responses. Recall that the experiment in Figure 2.1 began with the cell contracting

in the cross-linked gel and then the crosslinker was dissolved, allowing the cell to contract

in Tyrode’s solution (essentially load-free). It should be emphasized that the figure shows

representative cycles for each case (in-gel and load-free) measured on the same cell, and

this provides a direct comparison that avoids complications from cell-to-cell variability. As

noted earlier, Figure 2.14A shows that the cell achieves an even slightly larger contraction

in-gel than when load-free. Due to the presence of the gel, however, the cell is unable to fully

recover its deformation and a residual strain of almost −4 % remains at the end of each cycle.

The in-gel Ca2+ oscillations exhibit an MCT gain (∆µ ≈ 1) compared to the load-free case

in Figure 2.14B, indicating a significant upregulation of the intracellular Ca2+ transient, as

measured by the standard Fura-2 fluorescence ratiometric method [55]. Cross-plots of strain

versus Ca2+ for the LF and in-gel cases are provided in Figure 2.14C, showing a much larger

hysteresis for the in-gel case.

From the observed behaviors in Figure 2.14, the following nonlinear function is proposed
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LF

in-gel

A. Measured strain
histories

Δμ

LF

in-gel
μ

(arb. u.)

B. Measured Ca2+ histo-
ries

μ (arb. u.)
C. Strain-Ca2+ loops

Figure 2.14: Comparison of load-free (LF) and in-gel responses from the gel-dissolve
experiment of Figure 2.1.

for f ,

f [µ(t)] =
−b0 µ̄

1 + b1 e−b2[µ(t)−µ̄]
µ(t), (2.27a)

µ̄ =
1

T

∫ T

0

µ(t)dt, (2.27b)

where µ̄ is the average of the Ca2+ transient during one actuation cycle and {b0, b1, b2} are

positive constants. The magnitude of f in Equation (2.27a) is essentially proportional to

µ(t) when µ(t) > µ̄, yet f ≈ 0 when µ(t) < µ̄ due to the exponential in the denominator

getting large. The resulting response is very nearly periodic, β(0) = β(T ), since we choose

a small value for a1 (a1 � T ) and f ≈ 0 during the last half of the time interval.

Overall, the coupled eigenstrain-Ca2+ model in Equations (2.26) and (2.27) has four

parameters {a1, b0, b1, b2}. Identification of these parameters was done recursively using a

numerical nonlinear least-squares minimization algorithm in Mathematica [64]. The model

parameters were first calibrated to the measured load-free axial strain and Ca2+ histories,

giving the values in Table 2.2. The resulting model was then tested using the measured
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in-gel Ca2+ history to predict the upregulated eigenstrain.

Table 2.2: Eigenstrain-Ca2+ parameter values.

a1 (s) b0 b1 b2

0.100 0.046 6.507 20.986

Figure 2.15 demonstrates an excellent fit of the model’s load-free eigenstrain, βLF (dashed

blue line), against the experimentally measured load-free axial strain, Exp εLF (solid blue

line). The load-free eigenstrain is the calculated response of the model, Equations (2.26)

and (2.27), to the load-free Ca2+ transient in Figure 2.14B. The upregulated eigenstrain of

the model, βMCT, in Figure 2.15 is the calculated response of the model to the in-gel Ca2+

transient of Figure 2.14B. This accounts for mechano-chemo-transduction, which produces

a peak MCT eigenstrain of −24 % compared to the peak load-free (MCT-free) eigenstrain

of −13 %. It also produces a faster transient, with the peak βMCT occurring about 0.2 s

sooner. Thus, the contractility of the cell is enhanced in both its amplitude and rate.

Exp εLF βLF

βMCT

Figure 2.15: Simulated histories (dashed lines) of the load-free and MCT eigenstrains
(β) calculated from Equations (2.26) and (2.27).

Using the predicted MCT eigenstrain (βMCT), the baseline study simulation is repeated

to capture the influence of Ca2+ upregulation on the cell deformation and stress. Figure 2.16

shows the simulated upregulated (εMCT) axial strain and stress histories during a periodic

cycle. Peak strains and stresses are identified with unfilled circles. The previous MCT-free

simulated results (gray lines) are shown for reference. The agreement is now much better

between the measured and simulated strain histories in Figure 2.16A. The magnitude of

the simulated peak contraction is much closer and the time lag discrepancy is only 0.04 s.
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Importantly, the maximum predicted axial stress resulting from the MCT eigenstrain is

almost twice the MCT-free case in Figure 2.16B.

Sim ε (MCT-free)

Sim εMCT

Exp ε (in-gel)

βMCT

A. Axial strain histo-
ries

MCT-free

MCT

B. Axial stress histo-
ries

Figure 2.16: In-gel simulated cell strain and stress responses with (MCT) and without
(MCT-free) Ca2+ upregulation.

With regard to the mechanical energy, the effect of MCT upregulation is even more

significant. A comparison of the mechanical power and work histories between the MCT and

MCT-free simulations are plotted in Figure 2.17. The increases in mechanical power and

work are quite large, since the strain magnitude, strain rate, and stress magnitudes are all

enhanced in the MCT model. The calculated mechanical work delivered by the upregulated

cell at the end of a cycle is W = 8.53 pJ, which is about 3.5× larger than the MCT-free cell.

Stress-Ca2+ MCT: To complete the feedback loop, this second link relates the sensed

afterload to the increase in Ca2+ transient. As mentioned earlier, we do not yet know the

molecular identity or location of cell mechanosensors. For simplicity, our phenomenological

model assumes that MCT-Ca2+ gain is a function of the cell’s internal axial stress, since

this is the dominant stress component and the stress is uniform throughout the ellipsoid.

Accordingly, the input of the proposed model is the time-dependent MCT-upregulated axial

stress, σIxx, and the output of the model is the increase in Ca2+ transient, according to,

∆µ(t) + c1∆̇µ(t) =
d0

[
σIxx(t) + d1

]
1 + t4 [σIxx(t) + d1] /d2

, (2.28)

where ∆µ = µMCT − µLF is the difference (MCT gain) between the in-gel and load-free

cytosolic Ca2+ in Figure 2.14B at every moment and {c1, d0, d1, d2} are four constant pa-

rameters. The calibrated parameters of the proposed model for the current cell, identified
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MCT

MCT-free

A. Power histories

MCT

MCT-free

B. Work histories

Figure 2.17: Simulated mechanical power and work output of the cell with (MCT) and
without (MCT-free) upregulation of Ca2+.

recursively, are listed in Table 2.3. The quantity in brackets on the right-hand side is always

positive due to the addition of d1 to the cell stress. Note also the explicit time dependence

(t4) in the denominator on the right-hand side which grows large as time progresses and

drives the right-hand forcing function to zero.

Table 2.3: Ca2+ gain-stress parameter values.

c1 (s) d0 d1 (kPa) d2 (kPa s4)

0.18 0.37 3.37 0.10

Figure 2.18 compares the Ca2+ gain of the model with experimentally measured data.

The predicted time-dependent Ca2+ gain (∆µ), by a numerical solution of Equation (2.28),

matches well with the measured history (Figure 2.18A). It is also worth mentioning that

the MCT-upregulated axial stress inside the cell (Figure 2.16B) leads the Ca2+ gain time-

response by about 0.06 s. The resulting Ca2+ gain versus the (simulated) cell axial stress

in Figure 2.18B exhibits an oddly hysteretic response, but the important segment in the

response appears to be the rising, nearly linear, portion (with the arrow).

With these two proposed links established, the MCT process forms a closed-loop wherein

the mechanical force is sensed by the cell’s mechanosensors and in response the cytosolic

Ca2+ transient is increased by ∆Ca2+(t). The upregulated Ca2+ transient in turn, magnifies

the eigenstrain (β-MCT) and enhances the contractility of the cell.

Cell Viscoelasticity: Until now, the cell’s passive mechanical properties have been mod-

eled as purely elastic, but even better agreement with the experimental data can be achieved
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Figure 2.18: Comparison of the measured Ca2+ gain to the in-gel MCT simulation
calculated from Equation (2.28).

by incorporating the viscosity of the cell itself (Figure 2.19). This final step is of secondary

importance compared to the effect of upregulation, and it is somewhat speculative since we

could not directly measure the viscosity of the cell. In the absence of better information,

we chose the simplest possible viscoelastic constitutive model, a three-parameter viscoelastic

solid (Equation (2.3) with Nτ = 1) with GI0 = 9.6 kPa, GI∞ = 4.0 kPa, and τI1 = 0.6 s. The

same βMCT from Figure 2.16A is used as the input to the simulation. As seen in Figure 2.19A,

this produces a remarkably good match with the measured strain response of the cell (see

0.4 s < t ≤ 2.1 s), such that the calculated peak strain of εIxx = −12.9 % is quite close

to the measured value of −13.0 % and the time lag discrepancy is almost eliminated. The

fact that the simplest possible viscoelastic model generates such good agreement provides

us confidence that the assumed parameter values are reasonable and the important effects

of the cell’s viscosity are captured. Accordingly, Figure 2.19B provides our best estimate of

the MCT cell’s axial stress history during the in-gel portion of the Cell-in-Gel experiment.

The peak stress of σIxx = 3.27 kPa occurs at t = 0.40 s, and the minimum stress (maximum

compression) of σIxx = −2.18 kPa occurs at t = 1.06 s.
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A. Axial strain histories B. Axial stress history

Figure 2.19: Simulated MCT cell strain and stress responses (in-gel) including cell
viscoelasticity, showing good agreement with the measured cell strain response.

2.6 Conclusions and perspectives

This study developed a computationally efficient mathematical model to analyze all me-

chanical fields associated with the contraction of a single cardiac muscle cell in an infinite

viscoelastic medium. The mathematical model is based on the inhomogeneous Eshelby

inclusion problem, a classical 3-D elasticity boundary value problem with a known exact an-

alytical solution. By exploiting the Correspondence Principal of Viscoelasticity, the model

is extended here, for the first time, to account for the viscoelastic properties of the cell and

the surrounding hydrogel as used in ongoing Cell-in-Gel experiments. The model simulates

the cardiomyocyte as a contractile ellipsoid embedded in an infinite 3-D viscoelastic medium

and produces an exact solution of the time-dependent mechanical fields.

The existence of an analytical solution, along with a discrete Fourier transform of the

periodic contractions, provides an efficient computational tool to quantify the periodic time

histories of displacement, strain, and stress fields inside and outside of the cell. In particular,

the stresses in the cell and gel, not directly measurable in the Cell-in-Gel experiments, must

be inferred by analysis. The ability to accurately quantify the mechanical stress in the cell

now makes it feasible to answer the important question “how much stress in a cardiomyocyte

is a lot?” It also allows the mechanical energy and output power requirements of the myocyte

under afterload to be quantified. The parametric study herein shows that the strain, stress,

and mechanical work of the cell are significantly influenced by the viscoelastic properties of

the gel and the aspect ratio of the cell (slenderness). While the internal strain and stress

fields within an ellipsoidal cell are uniform (or nearly so in an actual myocyte) at any time
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instant, the surface traction is strongly non-uniform with a distinct maximum near the ends

(near intercalated discs).

The viscoelastic inclusion model can provide quantitative predictions of the mechanical

properties and behavior of live biological cells with an active autoregulation mechanism. For

example, the geometry and stiffness of the cardiomyocytes are determined by the cell type

and pathophysiological state. In particular, mammalian ventricular myocytes are stout;

whereas, atrial myocytes tend to be slender [65, 66]. In addition, the cell’s stiffness may

change during development, aging, or with genetic mutations [67, 68, 69]. Moreover, the

multiaxial strains and stresses inside the cell are expected to influence internal mechanosen-

sors such as titin [70], while the surface traction and transverse compression are expected

to influence surface mechanosensors such as dystroglycans and integrins [71]. Furthermore,

genetic mutations of some mechanosensors such as dystroglycans are known to cause mus-

cular dystrophy cardiomyopathy [72, 73]. The comprehensive mechanical analysis of the

3-D strains and stresses in cardiomyocytes provided by this model is therefore useful to un-

derstand how the cell might sense multiaxial stresses, activate various mechanosensors, and

transduce the strains and stresses to biochemical signals to regulate the heart’s function.

Cell-in-Gel experiments show that a healthy cardiomyocyte can adapt to increased after-

load by upregulating the cytosolic Ca2+ transient to enhance contractility. The developed

viscoelastic Eshelby model initially assumed the cell to be a contractile but otherwise pas-

sive (MCT-free) inclusion, and it analyzed the in-gel cell response based on the load-free cell

strain history (eigenstrain). Discrepancies between the simulated and measured strain tim-

ing and amplitude in-gel, however, led us to introduce an enhanced MCT-eigenstrain. The

eigenstrain history was made dependent on the measured cytosolic Ca2+ transients through a

proposed first-order differential equation. The model’s parameters were calibrated using the

load-free strain and Ca2+ measurements, and then the model was used to predict the MCT-

eigenstrain history based on in-gel Ca2+ measurements. Using this upregulated eigenstrain,

the viscoelastic Eshelby model then accurately predicted the enhanced contractility of the

cell in response to afterload. Moreover, in an effort to complete the autoregulation (feed-

back) loop, another first-order differential equation model was introduced to provide a link

between the mechanical stresses and the increase in Ca2+ transient during each contraction.

The model provides a computational tool to investigate the cardiomyocyte autoregulatory

response to external mechanical loads.

To summarize, the important contributions of this work are two-fold. The first is the ap-

plication of the viscoelastic Eshelby inclusion problem to the Cell-in-Gel system. The second

contribution is the development of a new mathematical feedback framework to account for

the MCT mechanism in cardiomyocytes in response to afterload. The viscoelastic inclusion
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model developed here provides a rigorous 3-D mechanical analysis to inform biological studies

of the cellular and molecular mechanisms that enable the heart to autoregulate contractility

under physiological loads but fail under pathological conditions in heart diseases.
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CHAPTER 3

Inflation of Circular Rubber Membranes With

Nonuniform Thickness and Material Properties

3.1 Introduction

Inflatable structures have gained considerable attention recently due to the growing de-

mand for lightweight and low-cost structures. These structures possess an exceptionally high

mechanical packaging efficiency and very small stowage volume, which gives them a wide

scope of applicability ranging from space deployable structures, such as scientific balloons

[74], antenna reflectors [75, 76, 77, 78], solar arrays [79], inflatable rovers [80, 81], re-entry and

descent technology [82], human habitats [80, 83], and other implementations in automotive

and civil engineering industries [84, 85, 86].

Of particular interest, is to achieve a desired shape upon inflation in order to meet

certain criteria or perform a specific task. Green and Adkins [87] were among the first

to use the theory of nonlinear membranes to study the problem of inflating an initially flat

circular membrane. Their formulation consisted of using eight ordinary differential equations

to determine eight unknowns numerically using a trial-and-error approach to a two-point

boundary value problem. Yang et al. [88] extended this study to investigate other simplified

solution approaches for finding the axisymetric deformation of nonlinear membranes through

only three first-order ordinary differential equations with explicit derivatives. They used the

equilibrium equations in the meridian, tangential and normal directions and employed the

Mooney-Rivlin constitutive model to simulate the response of three different axisymmetric

membrane structures, inflation of flat membrane, longitudinal stretching of a tube, and

flattening of a semispherical cap. Feng et al. [89], later extended their previous work to study

the response of nonlinear axisymmetric membranes using the principle of minimum potential

energy in the framework of the Ritz method. They also explored the non-axisymmetric

inflation of rectangular membranes in the context of the principle of minimum potential
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energy using a series of kinematically admissible functions to approximate the deformed

configuration [90].

Although the above mentioned solution methodologies were successfully implemented,

their application was limited to simple geometries. Oden [91] and coworkers were the first

to use the finite-element method in the context of large deformation membrane problems.

They used flat triangular elements to discretize the domain. Later, Leonard and Verma

[92] extended the developed theory to curved membrane elements and obtained good results

for axisymmetric membrane inflation problems. Free and constrained inflation of elastic

membranes in relation to thermoforming processes was studied both experimentally and

numerically by Charrier et al. [93, 94] for axisymmetric and non-axisymmetric problems.

They experimentally investigated the large-deformation pressure inflation of heated poly-

meric membranes against relatively cold mold surfaces and presented a finite-element formu-

lation for stress analysis under axisymmetric and non-axisymmetric conditions. Their ax-

isymmetric analysis explored the free and constrained inflation of a flat circular membrane,

the latter with respect to inflation against different geometries including a circular cylindrical

surface, a 60° conical surface, and a horizontal plate. For the non-axisymmetric experiment,

they investigated the free and constrained inflation of an elliptical membrane with uniform

properties. They were the first to include developing contact boundary conditions in their

hyperelastic finite-element formulation and used the single-parameter Neo-Hookian energy

density model to approximate the constitutive behavior. For validation purposes, they com-

pared the experimentally measured deformation profiles and principal stretches with the

finite-element predictions and were able to show reasonable agreement.

Despite the extensive research on inflation of hyperelastic (rubber-like) materials in the

literature, most of the studies used uniform geometries or uniform material distributions.

Also, most of the problems investigated were limited to axisymmetric geometries, with only

rare attention paid to non-axisymmetric inflation. In this study, the inflation of circular

rubber membranes with nonuniform thicknesss and material properties is investigated. While

a membrane with uniform material properties and constant thickness can only achieve a

certain deformed configuration upon pressurization, changing the distribution of stiffness

and thickness over the membrane surface can result in a wider range of axisymmetric and

non-axisymmetric configurations. Here, an experimental study is performed to explore the

mechanics of several inflated circular membranes of uniform and heterogeneous thickness and

material property distributions. Large deformation, hyperelastic finite-element simulations

are validated to the experimental results, and additional simulations are performed to study

parameter sensitivities and other possible inflation shapes.

This chapter proceeds as follows. Section 3.2 presents how the membrane specimens are
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made and how the rubber material is mechanically characterized. Section 3.3 describes the

experimental inflation setup and the data collection. Section 3.4 presents the experimental

results of the inflation of axisymmetric membranes with different thickness distributions,

This is followed by associated numerical results and a parameter study of potential insta-

bilities. Section 3.5 presents the inflation results of non-axisymmetric membranes having

either nonuniform thickness or nonuniform materials properties. Summary and conclusions

are provided in Section 3.6.

3.2 Material characterization

Multiple tests were performed to mechanically characterize and fit the constitutive be-

havior of available silicone rubber materials with an appropriate hyperelastic strain energy

density function assuming isotropy and incompressibility. These constitutive tests include

(1) uniaxial tension, (2) planar tension, and (3) equi-biaxial tension. Although other loading

conditions (such as simple compression and volumetric compression) could also be inves-

tigated, these three experiments are sufficient to encompass the stress states experienced

during membrane inflation. To determine the parameter values of the strain energy den-

sity function, a nonlinear least squares optimization is used to simultaneously fit the three

types of constitutive data. For each constitutive test, multiple samples were tested and a

representative sample from each set was chosen for fitting.

3.2.1 Specimen synthesis and preparation

The specimens for the constitutive tests were made by mixing two-parts silicone rubber

(EcoFlex 00-30, DragonSkin 20, and DragonSkin 30, obtained from Smooth-On, Inc.) in

equal mass amounts and casting them into the corresponding mold for each test. A 1%

weight-ratio white pigment was added to the mixture to produce a uniform white color to

improve contrast during optical imaging. The liquid mixture was then allowed to cure in the

mold at room temperature for several hours. After curing, a thin wax paper stencil that had

been laser cut with an appropriate grid for markers, was placed on top of each specimen.

A small amount of the same liquid rubber mixture was again prepared, this time with a

10% weight-ratio black pigment added to the mixture. The black mixture was then sprayed

across the stencil and allowed to cure for a few hours. Finally, the wax paper was removed

from the sample, leaving black imprints of the grid behind.

The black dots on the specimens were used to measure the deformation of the specimens

over time using 3D photogrammetry. For this purpose, a camera was placed in front of

the uniaxial and planar tension specimens and high contrast images were taken at a fixed
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frequency during the constitutive tests. The change in the distance between the black dots

was used to measure strains and stretches in different directions. Equi-biaxial data was

collected by 3D tracking of black dots during the inflation of a uniform circular membrane,

as the state of stress is equi-biaxial in the vicinity of the crown (center) of the membrane. For

this purpose (and for all the subsequent membrane experiments), a setup with nine cameras

tracked the 3D position of black dots on the surface of the membrane at fixed time intervals.

After calibrating the cameras, the 3D coordinates of each black dot was obtained using the

PhotoModeler software ([95]) at each time instant.

3.2.2 Constitutive tests

Uniaxial tension: Uniaxial tension samples were made according to the ASTM D412-26

standard. As shown in Figure 3.1A, the uniaxial tension specimen is a dog-bone shaped

specimen that was cast in a mold to produce a relatively long gage section of L0 = 33 mm,

width of w0 = 13 mm, and uniform thickness of h0 = 6.4 mm. Despite knowing the depth of

the mold, the thickness of each specimen was measured by a micrometer before each tested.

Figure 3.1B shows a typical uniaxial tension specimen installed in pneumatic grips within

an axial load-frame before the test.

113 mm33 mm

13 mm

25 mm

X

Y

A. schematic B. photograph of specimen within grips

Figure 3.1: Uniaxial tension specimen.

Consistent with the mechanical response of soft monolithic elastomers, the rubber mate-

rial is assumed to be incompressible and the deformation is isochoric (volume preserving).

The uniaxial tension (pure tension) state is described by the deformation gradient (F ) and
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Cauchy stress (σ) tensors

Funiax =

λ 0 0

0 λ−1/2 0

0 0 λ−1/2

 , σuniax =

σ 0 0

0 0 0

0 0 0

 , (3.1)

where the principal stretches are λ1 = λ (along the tension axis) and λ2 = λ3 = λ−1/2

(lateral and out-of-plane). In addition, for an isotropic incompressible material, the axial

Cauchy stress σ1 = σ can be calculated by differentiating the strain energy density function

W (I1, I2) with respect to the I1 and I2 invariants of the left Cauchy-Green deformation

tensor (B = FF>) according to

σ = −qI + 2

[
∂W

∂I1

B − ∂W

∂I2

B−1

]
, (3.2)

where q is a scalar field that enforces the incompressibility constraint. Under plane stress

conditions, q is found by setting the out-of-plane principal stress σ3 = 0. The first two

principal invariants of B are defined as

I1 = λ2
1 + λ2

2 + λ2
3, I2 = λ1λ2 + λ2λ3 + λ3λ1, (3.3)

where λ1, λ2, and λ3 are the principal stretch ratios. The third principal invariant of B

is I3 = λ2
1λ

2
2λ

2
3, which is equal to unity here since the deformation is isochoric (λ1λ2λ3 =

1). Equating the uniaxial stress state of Equation (3.1) to the Cauchy stress tensor of

Equation (3.2), the unknown hydrostatic pressure q and axial stress σ can be obtained.

Planar tension: Since the deformation at the clamped edge of a membrane during infla-

tion is pure shear with λ2 = 1, the planar tension test is intended to provide a similar loading

state. The planar tension specimen, as shown in Figure 3.2, is a wide rectangular sample

subjected to vertical tension across a short gage length. The specimen, when installed in the

grips, has a L0 = 25 mm gauge length, w0 = 200 mm width, and thickness of h0 = 2.5 mm.

The thickness of each specimen was measured after the sample was cured to account for any

possible inconsistency in casting. The objective is to constrain the lateral (width) direction

such that all specimen thinning occurs in the thickness direction. As shown in Figure 3.2B,

the planar tension specimen is gripped along its longer (horizonal) edges to constrain the

width stretch ratio (λ2 = 1) while stretching the short (vertical) dimension (λ1 = λ > 1).

During testing, the specimen draws inward somewhat at the left and right right edges, so the

markers were used to confirm that most of the width (away from the free edges) maintained

its initial dimensions.
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200 mm

25 mm44 mm

X

Y
A. schematic

B. photograph of specimen in load-frame

Figure 3.2: Planar tension specimen.

Similar to the formulation for a pure tension stress and strain state, the planar tension

state of an isotropic incompressible nonlinear elastic material is

Fplanar =

λ 0 0

0 1 0

0 0 λ−1

 , σplanar =

σ 0 0

0 σ2 0

0 0 0

 . (3.4)

Accordingly, the unknown hydrostatic pressure q and in-plane principal stresses σ1 = σ and

σ2 can be calculated by equating the planar tension stress state of Equation (3.4) to the

Cauchy stress tensor of Equation (3.2).

Equi-biaxial tension: The equi-biaxial test data is often obtained using a biaxial load-

frame simultaneously stretching a thin cruciform specimen in two perpendicular directions.

Here, however, we opted to measure the pressure and the deformation near the crown of

an inflated uniform circular membrane for that purpose. At the vicinity of the crown, the

two principal curvatures and stretches of the inflated membrane are equal (λ1 = λ2 = λ)

and the stress state of an isotropic membrane is equi-biaxial (σ1 = σ2 = σ). A flat circular

specimen with uniform geometry and material was prepared (Figure 3.3). The specimen was
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cast in an aluminum mold with an overall diameter of D = 178 mm (7 in) and depth of

h0 = 3.2 mm (0.125 in), as shown in Figure 3.3A. Once clamped in the inflation setup, the

effective diameter of the membrane is D0 = 152 mm (6 in).

152 mm 178 mm

A. schematic B. photograph of installed specimen

Figure 3.3: Membrane inflation specimen used to obtain equi-biaxial tension (crown)
data.

For this experiment, the deformation gradient and the stress tensor at the crown are

Fbiax =

λ 0 0

0 λ 0

0 0 λ−2

 , σbiax =

σ 0 0

0 σ 0

0 0 0

 (3.5)

Similarly, the equi-biaxial stress σ can be obtained from equations Equation (3.2) and Equa-

tion (3.5).

3.2.3 Hyperelastic strain energy models

To model the constitutive behavior of the rubber material, we considered several hypere-

lastic strain energy density functions (W ), including the Mooney-Rivlin, Gent, Gent-Mooney,

Gent-Gent, Yeoh, and Ogden models. (Other models, such as Neo-Hooken and Arruda-Boyce

which have no I2 dependence, were not included, since our materials exhibited a dependence

on I2.) These models were simultaneously fitted to the measured stress-stretch data of the

three constitutive tests. These hyperelastic models differ in their range of applicability, the

number of parameters, and their ability to predict the constitutive response of real rubber

materials. The energy density function of each model along with their parameters and the
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corresponding small-strain shear modulus (µ0) of each model are summarized and tabulated

in Table 3.1.

Table 3.1: The hyperelastic strain energy density models considered.

Model W Parameters µ0

Mooney-Rivlin c1(I1 − 3) + c2(I2 − 3) c1, c2 2 (c1 + c2)

Gent −c1Jm ln
(

1− I1−3
Jm

)
c1, Jm 2c1

Gent-Mooney −c1Jm ln
(

1− I1−3
Jm

)
+ c2 (I2 − 3) c1, Jm, c2 2 (c1 + c2)

Gent-Gent −c1Jm ln
(

1− I1−3
Jm

)
+ 3c2 ln

(
I2
3

)
c1, Jm, c2

2
3

(3c1 + c2)

Yeoh
3∑
i=1

ci(I1 − 3)i c1, c2, c3 2c1

Ogden
3∑
i=1

µi
αi

(λαi1 + λαi2 + λαi3 − 3) µ1, µ2 , µ3,

α1, α2, α3
1
2

3∑
i=1

αiµi

Since in this study the experimental measurements will be interpreted with respect to

their reference (initial) dimensions, the Cauchy stress (σ) of Equation (3.2) must be divided

by the amount of stretch in its corresponding direction (λ) to obtain the engineering (first

Piola-Kirchhoff) stress σeng = σ/λ. The results of simultaneous curve fitting to experimental

data of the Smooth-On’s EcoFlex 00-30 silicone rubber, the most prevalent rubber material

in this research, is presented in Figure 3.4 for each strain energy model. The best fit was

obtained with the Ogden model, with the Gent-Mooney and Gent-Gent models being next

best, for stretches in the range 1 ≤ λ < 3. Table 3.2 summarizes the value of coefficients

obtained for each energy density function.
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A. Mooney-Rivlin B. Gent C. Gent-Mooney

D. Gent-Gent E. Yeoh F. Ogden

Figure 3.4: Simultaneous fitting of different hyperelastic models to the experimentally
measured data for EcoFlex 00-30. The constitutive tests include pure, planar, and
equi-biaxial tension. Experimental data (dots) and hyperelastic model fit (solid lines).
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Table 3.2: Coefficient values of each energy density model, obtained from simultaneous
fitting to the experimental data of EcoFlex 00-30.

Model Coefficients µ0 (kPa)

Mooney-Rivlin c1 =11.73 kPa, c2 =1.55 kPa 26.56

Gent c1 =12.39 kPa, Jm =26.05 24.78

Gent-Mooney c1 =12.41 kPa, Jm =28.50, c2 =0.20 kPa 25.21

Gent-Gent c1 =11.90 kPa, Jm =25.27, c2 =3.64 kPa 26.22

Yeoh c1 =12.13 kPa, c2 =0.26 kPa, c3 =0.01 kPa 24.26

Ogden µ1 =50.42 kPa, µ2 =1.41 kPa, µ3 = −0.82 kPa,
α1 =0.89, α2 =4.48, α3 = −2.32 26.53
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3.3 Inflation apparatus and data collection

The membrane inflation setup, shown in Figure 3.5, is an experimental apparatus custom-

built for the purpose of the membrane inflation experiments in this research. The setup is

designed to use pressurized air for inflation. (It could be modified to use liquids, e.g. glycerin,

as well). The effective diameter of the inflation chamber is 152.4 mm (6 in) to accommodate

“hand-size” membranes.

A. View 1 B. View 2

Figure 3.5: Experimental setup for circular membrane inflation.

Compressed shop air (approximately 100 psi pressure) initially enters a circuit of tubing

before being delivered to the inflation chamber. As shown in Figure 3.5A, the compressed

air is first regulated using a pressure regulator at the upstream of the circuit. It then passes

through a fine-adjust needle valve to enter a mass flow controller (MFC) that can be set to

provide a specific flow rate of gas (air here) to the inflation chamber. In this setup, the MFC

(AAlborg GFC 17) can be set to provide a volume flow rate between 0-200 cubic centimeter

per minute (ccm) which can be either specified locally on the device or remotely set using

a data acquisition (DAQ) system. A pressure transducer (Omega PX309-015AV) is placed

in line with the circuit, just before the MFC inlet to measure and monitor the upstream

pressure. The air coming out of the MFC is than passed through an air-hose to the bottom

of the inflation chamber. The inflation chamber is equipped at the bottom with a second

pressure transducer (Omega PX309-005AV) to measure the pressure underneath the inflated

membrane.

A National Instruments (NI) 16-Bit USB-6251 DAQ (16 analog inputs at 1.25 MS/s,

2 analog outputs at 2.86 MS/s) is used to collect the pressure data from the two pressure

transducers and volume flow rate data from the MFC. The DAQ also sets the desired value

of the MFC volume flow rate and triggers the nine cameras for synchronized imaging. All
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data collection and device control commands are performed in NI LabView software through

a custom-written program.

Through the use of multiple CCD cameras (nine here), digital photos are taken simulta-

neously at constant time increments during each experiment. All cameras, although having

different CCDs, are 5 Megapixel machine-vision monochromes with 25 mm wide-angle lenses,

and the cameras are triggered by the DAQ system to obtain synchronized sets of images dur-

ing the inflation process. Prior to the experiments, each camera is calibrated using multiple

photos of a calibration grid (Figure 3.6) at different orientations. The photogrammetry

technique is utilized to measure the non-uniform deformation of the inflated membrane by

tracking the black dots on its surface. PhotoModeler software (Version 2020.2.1) is used to

obtain the 3D locations of each black dot on the membrane by ray tracing, and each dot

must be in the view of at least three cameras (hence the need for so many).

Figure 3.6: PhotoModeler grid used to calibrate the cameras.

As shown in Figure 3.7A, every membrane was painted with nearly equally spaced black

dots in a polar grid. After a small amount of radial pre-stretch is applied, the membrane

is clamped in the inflation setup using 10 capscrews. The X-Y plane of the cartesian co-

ordinates coincides with the top surface of the undeformed membrane and Z is the normal

(vertical) direction. (Since the membranes are thin relative to their radius, the usual kine-

matic assumption in membrane theory of using the midsurface is only a minor discrepancy.)

Moreover, since the reference membrane is circular, it is also convenient to use a cylindrical

frame with (R,Θ, Z) coordinates, where X = R cos Θ, Y = R sin Θ, and Z = Z. In this way,

Θ = 0° and Θ = 90° correspond to the positive X and positive Y directions, respectively.

Corresponding current coordinates are denoted by lower case variables (x, y, z) and (r, θ, z)

in the respective cartesian and cylindrical frames.

Using the photogrammetry data, the typical initial distribution of the black dots is mea-

sured (Figure 3.7B). In this schematic the black dots are shown as red, green, and blue

nodes for illustration purposes, and a Delauney grid with triangular elements is constructed
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to connect these nodes. The grid serves as a finite-element mesh to reconstruct the 3D

surface deformation of the membrane. Although perhaps not obvious in the photograph

(Figure 3.7A), the installed membrane sags downward slightly, due to the the self weight

of the membrane and the small inward radial extrusion during clamping. The upper flange

of the inflation fixture also has an array of stationary markers that are used to define the

coordinate frame during membrane inflation. For each experiment, the 3D history of black

dots on the membrane are post-processed using a self-developed Mathematica code, and the

results are presented in terms of deformation profiles, stretch ratios, and invariants of the

left Cauchy-Green deformation tensor.

A B

Figure 3.7: Array of black dots on the circular membrane. (A) Photograph of the
painted membrane in the setup before inflation begins and (B) a plan view of the 2D
polar grid of the dots measured by photogrammetry.

3.4 Axisymmetric membrane inflation

This section presents the experimental and numerical results of the inflation of initially

flat circular rubber membranes with axisymmetric thickness distributions. Three different

membrane thickness distributions are studied and compared, including a uniform thickness

(distribution D0), radially increasing thickness (distribution D1), and radially decreasing

thickness (distribution 2). For these axisymmetric membranes, the thickness varies linearly

from the center towards the outer radius (R0) as

h(R) = h0

[
(η − 1)

R

R0

+ 1

]
, (3.6)

where R is the reference radial coordinate, η = h1/h0, is the normalized slope, h0 is the

thickness of the membrane center, and h1 is the thickness at the clamped edge. Moreover,
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it is required that h(R) > 0. Distribution D0 has η = 1, distribution D1 has η > 1, and

distribution 2 has 0 < η < 1. The material used in all three cases is Ecoflex 00-30 (EF30)

silicone rubber.

The uniform thickness (and material) circular membrane has been extensively studied

(mostly numerically) in literature, and is used as a baseline for material characterization

and validation of the finite-element analysis (FEA). The experimentally measured data for

each thickness distribution is first presented, followed by a numerical finite-element study

that compares the experimental measurements to FEA predictions. Subsequently, a para-

metric study on the effect of thickness distributions on the deformation and instability of

axisymmetric circular rubber membranes is presented.

3.4.1 Distribution D0 (uniform thickness)

Experimental results for the uniform thickness membrane (Figure 3.8A) are presented

below. The initial average thickness is about 2.97 mm (0.117 in), measured by a micrometer

at multiple locations across the membrane. Figures 3.8C–3.8F show snapshots from one of

the nine cameras at four time instants during inflation.

The pressure p and volume V (the change in the enclosed volume by the membrane)

histories during inflation are provided in Figures 3.9A and 3.9B. The volume history can

be obtained in two ways: (1) measure the volume by time integration of the output of

the MFC, and (2) use the 3D deformed surface of the membrane, constructed by delauney

triangulation of the black dot locations, to calculate the enclosed volume. This is obtained

by summing the signed projected area (on the Z = 0 plane) of each triangular element

multiplied by its centroidal height. As shown in Figure 3.9A, the two approaches yield the

same result. It should be mentioned, however, that the second approach is only feasible when

all (or most) of the black dots are tracked successfully (are in view of at least three cameras)

during inflation, such that the deformed surface of the membrane can be approximated to

acceptable accuracy. The pressure-volume cross plot is shown in Figure 3.9C, which exhibits

the sigmoid-like trajectory typical of inflated membranes. It is observed that after an early

small nonlinear segment, the pressure-volume response follows a straight line up to about

p = 2 kPa. After p = 2 kPa, the pressure-volume response reaches a ‘knee’ and the slope

decreases to a smaller value where a small increase in p is accompanied by a large increase

in V .

Figure 3.10 provides information about the membrane’s response near the crown (R = 0),

in terms of the equi-biaxial stretch ratio λ0, curvature κ0 and Cauchy stress σ0. In particular,

the pressure-crown stretch data is shown in Figure 3.10A. The membrane starts from a

nearly undeformed state (λR = λΘ = λ0 ≈ 1) and the crown reaches a stretch ratio of
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A. Membrane cross-section B. t = 0 s

C. t = 125 s D. t = 250 s

E. t = 500 s F. t = 827.5 s

Figure 3.8: Photographs of the uniform membrane (distribution D0) at selected times
during inflation.

about λ0 = 2.9 at p = 2.7 kPa. (Note, while a bit unconventional, the subscripts R and Θ

refer to the reference coordinates rather than the current ones, considering line elements in

these reference directions as being convected to their current directions. This notation helps

to make the directions unambiguous, especially later in Section 3.5 when considering non-

axisymmetric membrane inflations.) Due to axisymmetry, both principal stretch ratios, the

radial stretch λR(R) and the hoop stretch λΘ(R), are verified to be essentially independent

of Θ throughout the membrane (only functions of R), and at the crown the two stretch

ratios are equal at any time instant. The curvature of the crown (chosen positive when

concave downward) with increasing pressure is provided in Figure 3.10B. The dimensionless

curvature of the crown (κ0R0) starts slightly negative due to the initial membrane sag, but

then quickly becomes positive as inflation progresses. Interestingly, it initially increases up

to about p = 2.2 kPa, but then reaches a maximum and decreases thereafter. Moreover,
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A. Volume history B. Pressure history C. Pressure-volume

Figure 3.9: Structural response of the uniform membrane (distribution D0).

because of the axisymmetry, the two principal curvatures are equal at the crown, κR(0) =

κΘ(0) = κ0. The Cauchy stress at the crown as a function of pressure is also plotted in

Figure 3.10C. At the crown, the state of stress is equi-biaxial in the two principal directions,

σR(0) = σΘ(0) = σ0, and the stress can be readily calculated from the curvature and stretch

at that point, according to

σ0 =
p

2hκ0

=
pλ2

0

2h0κ0

(3.7)

where h = λZh0 is the current thickness of the membrane at the crown and λZ = λ−2
0 is

the third principal stretch ratio in the through-thickness direction by the incompressibility

assumption Equation (3.5). As is conventional, plane stress conditions are assumed since the

membrane is thin enough that the direct stress due to the pressure (normal to the membrane

surface) is negligible compared to the in-surface stresses.

A. pressure-stretch B. pressure-curvature C. pressure-stress

Figure 3.10: Measured data at the crown of the uniform membrane (distribution D0).

The measured distribution of the two principal stretch ratios, λR and λΘ, are plotted

against the dimensionless radius of the reference configuration (R/R0) in Figure 3.11 at the
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time of maximum inflation. To verify the axisymmetric deformation, the results are plotted

at eight radial directions. If all the dots are tracked successfully, the values of λR and λΘ

can be calculated at a maximum of 19 and 20 points, respectively, by simply calculating

the ratio of current length to reference length between adjacent dots. Comparing the two

principal stretch ratios, we can see that for this uniform thickness membrane, λR > λΘ at

each R, except at the crown where the two are equal (Figure 3.11C). Moreover, it can be

seen that the hoop stretch ratio reaches λΘ = 1 at the clamped boundary, at which point

λR > 1. This confirms that the state of deformation progresses from equi-biaxial tension

at the crown (Equation (3.5)) to pure shear (Equation (3.4)) at the edge for axisymmetric

inflation.

A. Radial stretch B. Hoop stretch C. Θ-averaged

Figure 3.11: Radial distributions of the two principal stretches in the uniform membrane
(distribution D0) at the time of maximum inflation.

A. Y = 0 plane B. X = 0 plane

Figure 3.12: Measured deformation profiles (gray lines) and displacement histories of
dots (colored lines) during inflation of the uniform membrane (distribution D0).

The dimensionless deformation profiles of the inflated membrane (gray lines) at selected

times during inflation are depicted in Figures 3.12A and 3.12B on two planes (Y = 0 and
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X = 0) cutting through the membrane diameter. In addition, the trajectories of the black

dots during the inflation processes are provided (colored lines). It is observed that the black

dot at the crown (X = Y = 0) displaces only vertically in the Z direction, while other dots

(except at the clamp ring) displace both vertically and radially outwards.

Figure 3.13: Plan view of the displacement history of the crown (red) and the eight
adjacent dots (green) during inflation of the uniform membrane (distribution D0).

Viewed from above the membrane, the deformation histories of the crown and eight

equally spaced dots around the crown are shown in Figure 3.13. The figure suggests that

the deformation is not completely axisymmetric, as supposed to be, but it is very close to

that. The deviation from axisymmetry originates from various sources, mainly due to some

offset in the original placement of the membrane between the upper and lower flanges of the

inflation setup, as well as inconsistencies during tightening of the bolts of the clamps. Other

sources of deviation, although of secondary importance, include a slight nonuniformity in

the thickness and material distributions during fabrication of the membrane.

The distributions of the left Cauchy-Green deformation tensor (B = FF>) invariants

across the surface of the membrane are examined next. The principal invariants in Equa-

tion (3.3), which do not depend on the rigid body motion of material elements, are often

used in phenomenological hyperelastic functions, such as the Mooney-Rivlin and Gent mod-

els. Incidentally, these are the same invariants of the right Cauchy-Green deformation tensor

(C = F>F ), as viewed in the reference configuration. Figure 3.14 provide 3D contour plots

of I1 and I2 mapped onto the deformed configuration at the same times as in Figure 3.8. In

the undeformed configuration (λ1 = λ2 = λ3 = 1) the invariants are I1 = I2 = 3, so these are

subtracted off the results. The quantities I1− 3 and I2− 3 correspond to two portions of the

strain energy density, before they are weighted by a selected constitutive model. Overall,

each time instant has a nearly axisymmetric distribution with a monotonic distribution from

small values at the clamping ring to large values at the crown. The noisy patchwork-like pat-

tern arises from the discretized mesh of constant I1 and I2 (constant strain) triangles used in
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the post processing and the small experimental uncertainties in dot locations. Nevertheless,

the results conform to expectations for a uniform inflated membrane.

A. t = 125 s

B. t = 250 s

C. t = 500 s

D. t = 827.5 s

Figure 3.14: Measured contours of I1(B) and I2(B) for the uniform membrane (distri-
bution D0).

3.4.2 Distribution D1 (radially increasing thickness)

The experimental results of the second axisymmetric case, a circular membrane with

radially increasing thickness, are presented here. The membrane was fabricated using a

conical mold with a negative slope (about −4.76°), resulting in a thickness difference of

6.35 mm (0.25 in) between the center and outer radius. Figure 3.15A shows the linear

thickness distribution from 1.92 mm (0.076 in) at the center to 8.27 mm (0.326 in) at the

edge, giving η = 4.31. Figures 3.15B–3.15E show snapshots of the membrane at four time
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instants during inflation. In this case, the deformed shapes are more prolate (vertically

oriented) than the uniform membrane in Figure 3.8.

A. Membrane cross-section

B. t = 240 s C. t = 360 s

D. t = 480 s E. t = 658 s

Figure 3.15: Photographs of the nonuniform thickness membrane (distribution D1) at
selected times during inflation.

The structural response, in terms of the inflation volume and pressure histories, are

plotted in Figures 3.16A and 3.16B. The pressure-volume cross plot, shown in Figure 3.16C,

exhibits an ‘S-shape’ response, qualitatively similar to the uniform thickness membrane

(shown by the thin gray line). The pressure in this case, however, is larger, indicating a

stiffer membrane overall. (The volume of rubber material in this membrane is about 2.2×
that of the previous uniform thickness membrane.)

The response at the crown, shown in Figure 3.17, is qualitatively similar to the uniform

membrane case but quantitatively different. The pressure-stretch data (Figure 3.17A) shows

a monotonic increase of the crown stretch ratio from the undeformed state (λ0 =1) to a
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A. Volume history B. Pressure history

D0

D1

C. Pressure-volume

Figure 3.16: Structural response of the nonuniform membrane (distribution D1).

stretch ratio of about λ0 = 3.65 at p = 4.3 kPa. The evolution of crown curvature with

pressure is presented in Figure 3.41B. It can be seen that the dimensionless curvature of

the crown (κ0R0) initially increases up to about p =3.2 kPa and then decreases thereafter.

Consistent with the more prolate shape, the maximum crown curvature is larger than that

for the uniform membrane. (It is unclear if the non-monotonic bump near κ0R0 = 0.4 is real,

since the curvature calculation is problematic with even slightly noisy position data.) The

Cauchy stress at the crown as a function of pressure is shown in Figure 3.17C. The crown

stress values here are much larger than those of the uniform membrane (Figure 3.10C), since

the membrane center is thinner and causes a larger crown stretch ratio.

D0

D1

A. pressure-stretch

D0

D1

B. pressure-curvature

D0

D1

C. pressure-stress

Figure 3.17: Measured crown data of the nonuniform membrane (distribution D1).

The two principal stretch ratios, λR and λΘ, in the radial and hoop directions, respec-

tively, are plotted at the time of maximum inflation as a function of R/R0 in Figure 3.18.

To verify that the inflation response is axisymmetric, the results are plotted at eight radial

directions between Θ = 0° and 360°. Comparing the two principal stretch ratios, in this case

λR(R) ≈ λΘ(R) (Figure 3.18C), unlike the uniform membrane case where λR(R) ≥ λΘ(R)

(Figure 3.11C). Moreover, unlike distribution D0, λR decreases almost linearly in this case.
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A. Radial stretch B. Hoop stretch C. Θ-averaged

Figure 3.18: Radial distributions of the two principal stretches in the nonuniform mem-
brane (distribution D1) at the time of maximum inflation.

The dimensionless deformation profile history of the inflated membrane at selected in-

stants of time are plotted in Figures 3.19A and 3.19B in two planes cutting through the

membrane. Compared to the uniform thickness membrane, the deformation profiles bulge

outward less while the vertical displacement is nearly the same. Viewed from above the

membrane, the deformation histories of the crown and eight equally spaced dots around the

crown are shown in Figure 3.20. The figure shows that the deformation is not perfectly

axisymmetric, as it leans slightly towards the positive X direction. Nevertheless, the radial

displacements are larger than in the uniform thickness case (Figure 3.13).

A. Y = 0 plane B. X = 0 plane

Figure 3.19: Measured deformation profiles (gray lines) and displacement histories of
dots (colored lines) during inflation of the nonuniform membrane (distribution D1).

Variations of the invariants of the left Cauchy-Green deformation tensor (B) across the

surface of the membrane are studied next. Figure 3.21 demonstrate the 3D contour plots of

the quantities I1 − 3 and I2 − 3 on the deformed configuration at various instants of time.
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Figure 3.20: Plan view of the displacement history of the crown (red) and the eight
adjacent dots (green) during inflation of the nonuniform membrane (distribution D1).

A. t = 240 s

B. t = 360 s

C. t = 480 s

D. t = 658 s

Figure 3.21: Measured contours of I1(B) and I2(B) for the nonuniform membrane
(distribution D1).

67


	Dedication
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Introduction
	Shape morphing systems
	Overview

	Analysis of Cardiac Myocyte Contraction in a 3D Viscoelastic Medium
	Introduction
	The Cell-in-Gel system
	Materials characterization
	Linear viscoelasticity
	Hydrogel characterization
	Cardiomyocyte characterization

	Eshelby analysis
	Elastic Eshelby analysis
	Viscoelastic Eshelby analysis

	Simulation results
	Baseline case
	Parametric study
	Autoregulation model

	Conclusions and perspectives

	Inflation of Circular Rubber Membranes With Nonuniform Thickness and Material Properties
	Introduction
	Material characterization
	Specimen synthesis and preparation
	Constitutive tests
	Hyperelastic strain energy models

	Inflation apparatus and data collection
	Axisymmetric membrane inflation
	Distribution D0 (uniform thickness)
	Distribution D1 (radially increasing thickness)



