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reactive chemical moieties that are used for subsequent conjugation reactions, small molecules 

like biotin and digoxigenin for immobilization, or direct attachment of fluorophore dyes, or even 

replacement of entire nucleotides by fluorophores. B. Example strategies for preparing 

fluorescently labeled RNA for in vitro studies. Fluorescent labels are shown as red stars. C. 

Example strategies for preparing fluorescently labeled protein for in vitro studies. D. For 

intracellular single molecule studies, RNA can be prepared using many of the methods suitable for 

in vitro work (described in B) and subsequently introduced into cells via microinjection or 

transfection. Alternatively, RNA transcripts can be labeled by inserting stem-loop repeat 

sequences that are bound by their cognate RNA binding proteins, that are expressed as fusions 

with intrinsically fluorescent proteins (RBP-FP). E. Example strategies for preparing fluorescently 

labeled protein for intracellular studies. In contrast to RNA, there is greater overlap between 

strategies for labeling protein that are suitable for in vitro and intracellular work. A small number 

of strategies, such as click chemistry using strained alkynes, can be applied to both RNA and 

proteins. ......................................................................................................................................... 20 

Figure 1-4 Intracellular single molecule visualization A. Microinjection is an effective strategy to 

deliver labeled RNAs into living cells. The injected material can be imaged using various 

fluorescence microscopy techniques. Intracellular Single-molecule High-Resolution Localization 

and Counting (iSHiRLoC) uses HILO illumination to rapidly acquire images with single-molecule 

resolution for particle tracking. B. Injected cells are distinguished from non-injected cells by the 
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presence of an injection marker, a slowly diffusing, fluorescently labeled inert compound. Shown 

here are two cells injected into the nucleus (I) and cytosol (II) with Alexa488-labeled 100 kDa 

Dextran. Labeled miRNAs appear as diffusing, diffraction-limited spots upon time lapse imaging 

of live cells (I, inset) or as diffraction-limited spots in formaldehyde-fixed samples (II, inset). Scale 

bars represent 10 µm. C. I. The intensity profiles of diffraction-limited spots, recorded as pixelated 

point-spread functions, can be analyzed to obtain the spot centers with sub-pixel accuracy, such as 

by fitting the intensity profile to 2D Gaussians. II. Particle-tracking of the spot centers results in 

2- or 3-dimensional diffusion trajectories. III. Displacements in successive frames yield mean-

squared displacement (MSD) profiles, informing about diffusion types. D. Photobleaching 

analysis. Cy5 fluorophores bleach rapidly and in a step-wise manner. The number of discrete step 

drops in intensity is a proxy for the number of molecules in a single diffraction limited spot. 

Adapted with permission from Pitchiaya et al. (2012). E. Correlating the number of fluorescent 

spots in fixed tissue with the number of diffusion filtered trajectories yields an estimate of turnover 

and functionality of the labeled molecules. The open shapes represent counts of a mutant (mutant 

let-7, ml7) and artificial (cxcr4, cx) miRNA co-injected with mRNAs bearing complementary 

binding sites, and the filled shapes represent conditions where the co-injected mRNAs bore 

mismatched (let-7, l7) or no binding sites in the 3'UTR downstream of an ORF encoding Renilla 

luciferase. Adapted with permission from Pitchiaya et al. (2017). ............................................... 27 

Figure 2-1 Validation of in situ miRNA imaging system. (A) Representative pseudocolored and 

contrast-adjusted images of U2-OS cells stained for endogenous Dcp1a (green) via 

immunofluorescence and UGD cells expressing GFP-Dcp1a (green). Nucleus is stained with DAPI 

(blue). Dotted line, cell outline. Scale bar, 10 µm. (B) Scatter plot depicting the number of 

endogenous Dcp1a or GFP-Dcp1a foci in U2-OS and UGD cells respectively (n = 3, 60 cells, N.S., 
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not significant based on two-tailed, unpaired Student’s t-test). (C) Representative pseudocolored 

and contrast-adjusted image of UGD cells expressing GFP-Dcp1a (green) and stained for Rck 

(red). Nucleus is stained with DAPI (blue). Dotted line, cell outline. Scale bar, 10 µm. Orange 5.3 

x 5.3 µm2 inset is zoomed out and deconvolved into individual colors. (D) Mean colocalization 

percentage of endogenous Dcp1a foci from U2-OS cells or GFP-Dcp1a from UGD cells 

respectively, with other PB markers. Color coded scale-bar is also depicted (n = 3, ≥ 15 cells per 

sample). (E-G) Microinjection-based titration assay. (E) Schematic of microinjection setup, 

wherein Cy5 labeled double stranded DNA (dl7-Cy5/dl7*, red) bearing the same sequence as l7-

Cy5/l7* miRNA was co-microinjected along with 500 kDa FITC-Dextran (green), exclusively 

localizes to the cytosol. (F) Representative pseudocolored and contrast-adjusted images of U2-OS 

cells microinjected with various concentrations of dl7-Cy5/dl7*. Scale bar, 10 µm. (G) Plot 

depicting the relationship between dl7-Cy5/dl7* concentration (Conc., µM) in the microinjection 

solution and the number of molecules detected per cell (# Mols / Cell). Dotted line represents fitted 

line. Equation of fitted line and goodness of fit (R2) are also depicted. (H-K) miRNA activity 

assays. (H) Schematic of microinjection-based miRNA activity assay. (I) Representative 

pseudocolored and contrast-adjusted image of U2-OS cells expressing mCherry (mCh, red) 

reporter gene and GFP normalization gene (green), also containing 10 kDa cascade-blue dextran 

(CB-Dex, cyan) and the miRNA (Scr/Scr* - scrambled control, l7/l7* - let-7 miRNA) of interest. 

Scale bar, 10 µm. (J) Scatter plot depicting the mCh : GFP intensity ratio for various conditions 

(n = 3 replicates, total 30 cells; **p < 0.001 based on two-tailed, unpaired Student’s t-test). Mean 

and s.e.m are depicted. (K) Luciferase reporter assays represented as the ratio of luminescence 

form a firefly luciferase (FL) reporter gene containing 6x let-7 MREs (FL-l7-6x) and a renilla 

luciferase (RL) normalization gene in U2-OS cells (n = 12 replicates, ***p < 0.0001 based on two-
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tailed, unpaired Student’s t-test). Mean and s.e.m are depicted. (L-O) Microinjection does not 

affect sub-cellular behavior of PBs and does not induce stress granules. Number (L) and diffusion 

constants (M) of PBs in cells that were not injected (Not Inj., NI) or injected (Inj., I). 

Representative pseudocolored and contrast-adjusted images of U2-OS cells stably expressing 

GFP-G3BP (green), a stress granule (SG) marker, and RFP-Dcp1a (red), which were not injected 

(NI), treated with sodium arsenite (NI + NaAsO2) or co-injected with CB-Dex (cyan) and l7-

Cy5/l7* are shown in N. Scale bar, 10 µm. Quantification of the number of GFP or RFP foci per 

cell is shown in O. (P) Expected phenotype of distinct molecular species in iSHiRLoC assays. 

LCI, live cell imaging; FCI, fixed cell imaging. (Q-R) Dynamics and stoichiometry of l7-Cy5/l7* 

in GFP-Dcp1a expressing HeLa cells are almost identical to those in UGD cells. (Q) Distribution 

of l7-Cy5/l7* miRNA diffusion constants in PB and Cyt within living HeLa cells that are 

expressing GFP-Dcp1a. Green area on the plot depicts the range of PB diffusion constants (n = 3, 

13 cells). Dotted blue line represents distribution of l7-Cy5/l7* miRNA diffusion constants within 

UGD cells, as in Figure 1D. (R) Distribution of l7-Cy5/l7* miRNA stoichiometry as monomeric 

(Mono, 1 photobleaching step) or multimeric (Multi, ≥ 2 photobleaching steps) complexes in PB 

and Cyt within fixed HeLa cells that are expressing GFP-Dcp1a (n = 4, 21 cells).  Dotted blue line 

represents stoichiometry in UGD cells, as in Figure 2-1F. ........................................................... 44 

Figure 2-2 A super-resolution imaging tool for probing RNA-granule dynamics and 

stoichiometry. (A) Schematic of iSHiRLoC assay for probing miRNA-PB dynamics and 

colocalizations. (B and C) Representative pseudo-colored and contrast-adjusted images from live-

cell imaging (B) and fixed cell imaging (C) assays of UGD cells expressing GFP-labeled PBs 

(green) that were microinjected with l7-Cy5/l7* miRNA (red) and imaged 2 h post injection. Scale 

bar, 10 µm. (D) Representative single-particle trajectories of PBs (green) and l7-Cy5/l7* miRNA 
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(red) from yellow and magenta boxes in B, representing diffusing miRNAs in PBs and in the 

cytoplasm (Cyt) respectively. Scale bar, 1 µm. Dotted green circle represents PB outline in the 

first frame of the movie. Distribution of l7-Cy5/l7* miRNA diffusion constants in PB and Cyt are 

also depicted. Green area on the plot depicts the range of PB diffusion constants (n = 3, 15 cells). 

(E) Zoomed-in view of orange and violet boxes in C, from fixed UGD cells. Scale bar, 2 µm. Step-

wise photobleaching trajectories PB- and Cyt-localized l7-Cy5/l7* is also shown. (F) Distribution 

of l7-Cy5/l7* miRNA stoichiometry as monomeric (Mono, 1 photobleaching step) or multimeric 

(Multi, ≥ 2 photobleaching steps) complexes in PB and Cyt within fixed UGD cells (n = 3, 15 

cells). ............................................................................................................................................. 46 

Figure 2-3 miRNAs show diverse spatiotemporal localization patterns at PB core and periphery. 

(A) Schematic and representative time-lapsed images of PBs (green) and l7-Cy5/l7* miRNAs (red) 

in live UGD cells. Scale bar, 1 µm. Embedded numbers in green/red overlay images (far-left and 

far right) represent time in seconds. Dotted green circles in red panels have been included to aid 

in the identification of PB boundaries. White arrow points to an individual RNA particle. Stable 

RNA-PB association patterns (static, dynamic and recruited) are represented in orange whereas 

transient ones (probe and escape) are represented in blue. nPB = number of track localizations 

within PBs, nCyt = number of track localizations in the cytosol. (B)  Schematic and representative 

images of PBs (green) and l7-Cy5/l7* (red) representing the localization of miRNAs within shells 

or cores of PBs in fixed UGD cells. Scale bar, 2 µm. Dotted green and red circles represent 

boundaries of PBs and miRNAs respectively. Relative localization (RL) values of l7-Cy5/l7* for 

these representative colocalizations are embedded in the green panels. (C)  Schematic and 

representative images of PBs (green) and l7-Cy5/l7* (red) representing the enrichment of miRNAs 

in PBs within fixed UGD cells. Dotted yellow and red circles represent PB-miRNA colocalization 
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and cytoplasmic miRNAs respectively. Enrichment of l7-Cy5/l7* per PB (EI) for these 

representative colocalizations are embedded in the green panels. Images are scaled as in B. (D) 

Scatter plot representing the % of RNA or DNA molecules that colocalize with PBs per fixed UGD 

cell (top). Each dot represents a cell. Scatter plot of enrichment of molecules per PB (below) is 

also shown. Each dot represents an individual PB in fixed UGD cells.  n = 3, > 15 cells, ***p ≤ 

0.0001 by two-tailed, unpaired Student’s t-test.  Grey dotted line depicts an EI of one, which 

demarcates PB-enriched (> 1) from PB-depleted (< 1) factors. See also Figure S2. ................... 48 

Figure 2-4 Characterization of miRNA-PB interaction modes and localization patterns (Related 

to Figure 2). (A) Distribution of diffusion constants (top), Dwell time statistics (middle) and 

distribution of the percentage of track length colocalizing with PB (bottom) for each RNA-PB 

interaction type. Dotted black line represents duration of acquisition. Photobleaching corrected 

dwell times that were greater than acquisition window were rounded to the acquisition time span 

(n = 3, 15 cells). (B) Schematic (left) of relative localization (RL) calculation. dCR = distance of 

RNA centroid from PB centroid, dRB = distance of RNA centroid from PB boundary, dCB = 

distance of PB centroid from PB boundary. Representative pseudoclored and contrast-adjusted 

regions of UGD cells (middle) with GFP-Dcp1a (green), stained for eIF4G, eIF4E or Dcp1a (red). 

Green and red dotted circles represent boundaries of PBs and Rck particles respectively. Scale bar, 

2 µm. Relative localization values of top and bottom panels are represented within the images. 

Distribution of protein localization relative to GFP-Dcp1a, which were used to define PB center 

and boundary (n = 3, ≥ 15 cells per sample). Black dotted line represents the RL limit for core 

localizations. Grey boxes denotes the protein factors which were evenly dispersed across the entire 

cytosol and consequently did not have any detectable features (local maxima) for RL calculations. 

(C) Schematic (left) of enrichment index (EI) calculation. Representative pseudoclored and 
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contrast-adjusted regions of UGD cells (middle) with GFP-Dcp1a (green), stained for Rck, 

GAPDH or rRNA (red,). Yellow and red dotted circles represent PB-localized and cytoplasmic 

signal respectively. Scale bar, 2 µm. EI of top and bottom panels are represented within the images. 

Scatter plot of EI (right) for IF signal at PBs. Each dot represents an individual PB colocalization 

event (n = 3, ≥ 15 cells per sample). Grey dotted line depicts an EI of one, which demarcates PB-

enriched (> 1) from PB-depleted (< 1) factors. ............................................................................ 49 

Figure 2-5 miRNA functionality influences miRNA-PB interaction kinetics. (A) Schematic of 

miRNAs used. P, lines and dots represent 5` phosphate, Watson-crick base pairing and wobble 

pairing respectively. (B) Scatter plot representing the % of RNA or DNA molecules that colocalize 

with PBs per fixed UGD cell. Each dot represents a cell. (C) Scatter plot of EI for different 

constructs. Each dot represents an individual PB in fixed UGD cells. Grey dotted line depicts an 

EI of one, which demarcates PB-enriched (> 1) from PB-depleted (< 1) factors. (D) Relative 

distribution of stable and transient interactions per live UGD cell for different miRNAs. (E) 

Comparison of fast and slow miRNA-PB interaction kinetics in live UGD cells. (F) Relative 

distribution of stable and transient interactions per live UGD cell for ml7-Cy5/ml7* RNAs co-

injected with a seed mismatched (RL-l7-2x) or seed matched (RL-ml7-2x) mRNA target. (G) 

Comparison of fast and slow ml7-Cy5/ml7*-PB interaction kinetics in the presence of a seed 

mismatched (RL-l7-2x) or seed matched (RL-ml7-2x) mRNA target in live UGD cells. n = 3, 15 

cells per sample, NS = not significant, **p ≤ 0.001 or ***p ≤ 0.0001 by two-tailed, unpaired 
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Figure 2-6 PB-localization and interaction kinetics of different miRNAs, in the presence or 

absence of cognate targets (Related to Figure 3). (A) Schematic of additional miRNAs used. P, 
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lines and dots represent 5` phosphate, Watson-crick base pairing and wobble pairing respectively. 

(B) Scatter plot representing the % of miRNA molecules that colocalize with PBs per fixed UGD 

cell. Each dot represents a cell. (C) Scatter plot of EI for different constructs. Each dot represents 

an individual miRNA-PB colocalization event in fixed UGD cells. (D) Relative distribution of 

stable and transient interactions per live UGD cell for different miRNAs. (E) Dwell time 

distribution of all miRNAs at PBs in live UGD cells. Black line depicts single or double 

exponential fit. Inset, dwell time distribution of miRNAs inside cells, prior to photobleaching. 

Black line depicts single exponential fit. (F) Comparison of fast and slow miRNA-PB interaction 

kinetics for the additional miRNAs in live UGD cells. (n ≥ 3; ≥ 15 cells, **p ≤ 0.001 by two-tailed, 
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Figure 2-7 mRNAs localize to PBs depending on 3` versus 5` terminal positioning of MREs and 

translation potential. (A) Schematic of assay for probing mRNA-PB dynamics and colocalizations. 

(B and C) Representative pseudo-colored and contrast-adjusted images from live-cell imaging (B) 

and fixed cell imaging (C) assays of UGD cells expressing GFP-labeled PBs (green) and MCP 

tagged FL-l7-6x-MS2 mRNAs (red). Scale bar, 10 µm. (D) Representative single-particle 
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representing diffusing mRNAs in PBs and in the cytoplasm (Cyt) respectively. Scale bar, 1 µm. 
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M) Schematic of different mRNA constructs with various 3` or 5` UTRs. Color-coded symbols 

for each transcript is shown and will be used to depict these respective transcripts from hereon. (H 
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(FL) reporter gene and a renilla luciferase (RL) normalization gene in UGD cells. Data were 

normalized to the FL sample. Mean and s.e.m are represented (n = 12 replicates, ***p < 0.0001 

based on two-tailed, unpaired Student’s t-test). (I and O) Scatter plot representing the % of mRNA 

molecules that colocalize with PBs per fixed UGD cell. Each dot represents a fixed UGD cell. (J 
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ABSTRACT

Eukaryotic RNA-protein complexes have been widely reported to form membrane-less, 

higher-order assemblies inside cells under a range of conditions. How these structures contribute 

to the regulation of intracellular biochemistry remains poorly understood. Recent biophysical 

studies have revealed how phase-separation, a passive, thermodynamically driven process, can 

explain the assembly of such structures, referred to as condensates. 

This dissertation explores the relationship between macromolecular interactions that 

mediate the formation of dynamic condensates and the biochemical consequences of the resulting 

reorganization of the intracellular space. Organized into three parts, it implements and leverages 

new live-cell fluorescence microscopy approaches to visualize the formation of and localization 

of RNAs to condensates in real-time and at single-molecule resolution to address fundamental 

questions around intracellular biochemical regulation. 

First, the dissertation explores the RNA-sequence and protein translation-dependence of 

RNA localization to intracellular condensates called P-bodies. This work revealed that RNAs in 

P-bodies localize differently to the periphery or the core of these condensates depending on their 

translatability, and that stable RNA localization requires specific RNA-protein interactions. 

It next provides evidence for ubiquitous, proteome-wide, homomultimerization-driven 

phase-separation in response to osmotic volume fluctuations. These observations expand the 

molecular grammar of protein domains known to drive phase-separation, suggesting that a large 
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fraction of the proteome may be poised to undergo rapid spatial reorganization upon small 

perturbations in intracellular molecular crowding. Additionally, these results provide possible 

explanations for previously reported features of osmotic stress response, by suggesting that 

hyperosmolarity-induced phase-separation of CPSF6 protein might provide a mechanistic basis 

for the widespread loss of premRNA cleavage activity under such conditions. These observations 

paint a new picture of the nature of the intracellular milieu, in which the organization of the 

intracellular space is inextricably linked with the macromolecular sequence of its constituents, 

where the concentration of individual molecular species can affect both its biochemical function 

and spatial organization. 

In the third part, the thesis discusses evidence that microRNA-induced silencing complexes 

may use a two-pronged strategy to search for mRNA targets inside the cell: on the one hand, 

transient binding and 3D search allow for rapid exploration; on the other hand, induced clustering 

of target mRNAs reduces the search space, such that these complexes can efficiently engage with 

their targets even when the concentration is limiting. Comparing the kinetics of individual 

microRNA-mRNA interactions in the cell across a range of mRNAs differing in the 

number of microRNA binding sites suggests that binding site number, a conserved feature of 

mRNAs, serves to both stabilize microRNA binding and promote AGO2-dependent clustering of 

mRNAs. 

This work refines an emerging paradigm in cell biology in which the intracellular space, 

far from being spatially homogeneous, is highly compartmentalized. Further, it demonstrates that 

such compartmentalization can be highly dynamic, and this dynamic organization is encoded by 

macromolecular sequence and biochemical activity. By applying single particle tracking to 
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understand the assembly of intracellular condensate dynamics, this work opens up new ways for 

studying non-equilibrium phase separation and condensate formation in cells. Studying molecular 

association processes at single-molecule resolution in living cells represents a significant advance 

in quantitative cell biology by bridging single-molecule measurements in vitro and qualitative 

observations in vivo. This dissertation therefore advances the study of intracellular biochemistry 

by describing new methods and by applying them to uncover insights into the relationship between 

macromolecular sequence and subcellular organization. 
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 Background and Introduction1

1.1. Cellular organization: spatial regulation of function 

Cells, the fundamental units of life, engage in complex processes such as sensing and 

responding to the environment, growth and reproduction across all kingdoms of life. The 

biochemical reactions underlying these processes are tightly regulated in space and time. 

Eukaryotic cells possess multiple membrane-bound compartments called organelles that spatially 

segregate different biochemical processes such that molecules involved in related pathways are 

placed in proximity to each other to facilitate specific interactions that lead to the desired catalytic 

outcome, while reducing non-specific, non-productive molecular interactions. Organellar 

organization has been extensively studied in the context of localization of specific biological 

functions: genetic material is primarily stored, and gene expression is largely regulated in the 

nucleus; protein production and packaging occur in the endoplasmic reticulum; cellular ATP 

production occurs in mitochondria, and so on. The localization of enzymes and other 

macromolecular complexes to the appropriate organellar compartment is key to facilitating their 

proper function in these cases. Consequently, mis-localization of these components in the cell is 

 
1 The contents of this chapter have been published as: 

Jalihal, A.P., Schmidt A.S., Gao G., Little S., Pitchiaya S. and Walter, N.G. Hyperosmotic phase separation: 
Condensates beyond inclusions, granules and organelles. (2020) JBC. 

All authors contributed to writing and editing. APJ, GG and AS prepared figures. 

Jalihal, A.P., Lund, P.E. and Walter, N.G. (2019) Coming together: RNAs and proteins assemble under the single 
molecule fluorescence microscope. In The RNA Worlds: New tools for deep exploration, pp. 451-470 (ed. T.R. Cech, 
J.A. Steitz & J.F. Atkins), Cold Spring Harb. Perspect. Biol. 11, a032441. 

All authors contributed to writing and editing. APJ and PEL prepared figures. 
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frequently associated with impaired function, disease or even cell death. In general, biochemical 

regulation is tied tightly to spatial regulation of the biochemical components. Therefore, 

understanding the fundamental relationship between compartmentalization and biochemistry is of 

vital importance to understanding the basis of cellular function, and therefore, of life itself. 

The first part of this chapter introduces a newly emerging paradigm of sub-cellular 

compartmentalization termed membraneless organelles, discusses how the theory of phase-

separation is applied to understand the formation of these structures and provides an overview of 

some well-studied membraneless organelles. In the second part, it introduces specific pathways of 

gene regulation mediated by small RNAs, and the spatial regulation involved in these mechanisms. 

In the third part it describes single molecule fluorescence tools applied to the study of RNA-protein 

complexes that are key molecular players in such organization.  

 Membraneless organelles 

In eukaryotic cells, the intracellular environment is a densely packed, highly heterogeneous 

environment where individual catalysts and reactants are present at low concentrations. While 

membrane-bound organelles have been considered paradigmatic of mechanisms that localize 

biochemical processes, studies from the past decades have brought increased attention to a more 

adaptive and dynamic strategy for intracellular spatial organization using “membraneless” 

organelles (MLOs). These amorphous structures are ubiquitous, are observed both in the nucleus 

and in the cytosol and are characterized by their lack of a lipid boundary. They are heterogeneous 

in composition and size, typically ranging from 0.01–10 μm, and are subjects of active study owing 

to their propensity to dynamically assemble and disassemble, priming the cell for rapid responses 

to intrinsic and extrinsic perturbations (Gomes and Shorter, 2019a; Hyman et al., 2014b; Mitrea 



 

 3 

 

and Kriwacki, 2016). The prevalence of condensates in all forms of life, and the seemingly 

fundamental rules that govern condensate assembly suggest that these structures and mechanisms 

may go back to the origins of life itself (Keating, 2012; Tena-Solsona et al., 2018). 

Since the early days of microscopy and cell biology, cytologists have reported observations 

of “lifeless bodies”, “granules”, “inclusions” and other membrane-less structures (Wilson, 1896, 

1899). Despite being observed for over a century, they have come to be extensively studied only 

in the past decade, largely owing to advances in contemporary technologies that allow probing 

these structures at unprecedented spatiotemporal resolution, both in vitro and in situ. In addition 

to technical innovations, our understanding of these mesoscopic structures has been shaped by the 

metaphors used to describe MLOs over the years.   

 History of membraneless organelles 

Membraneless structures like the nucleolus, nuclear speckles and some RNA-protein 

granules have been studied since the first half of the 20th century, although the earliest reports of 

such structures go back to the 1800s (Alberti et al., 2019). The most prominent of these structures, 

the nucleolus, was first described as an “organelle”, in the sense of a distinct compartment with an 

associated function (Monty et al., 1956). Thus, the earliest descriptors to signify subcellular 

compartmentalization were borrowed from canonical membrane-bound organelles, and simply 

denoted observable organization. While this view provided a framework to understand the 

relationship between the structure of such compartments and their function, it did not provide a 

way to understand the physical origins of nucleoli. 
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The first decade of the 2000s saw attention turning to the function of various, newly 

discovered classes of membraneless structures. Structures like P-bodies, stress granules (SG), 

purinosomes and G-bodies were described as “granules”, “compartments” or “clusters” (An et al., 

2008; Anderson and Kedersha, 2006; Jin et al., 2017), terms that emphasize the appearance of such 

structures under the light or fluorescence microscope. These terms marked, however, a departure 

from “organelles” - they did not necessarily presume an associated biological function. This 

closely followed the first reports of the dynamic biophysical properties of these structures. 

Handwerger et al. recognized that nuclear condensates, that the authors reported to be “porous” 

and “sponge-like”,  are materially continuous with the nuclear matrix, and do not pose a barrier to 

diffusion, while still being compositionally distinct from the nucleoplasm (Handwerger et al., 

2005). Brangwynne et al. noted that cytoplasmic RNA-protein (RNP) “granules 

are…biophysically similar to the rest of the intracellular fluid, and yet appear to represent a 

different “state” of cytoplasm, comprised of a locally distinct molecular ensemble” (Brangwynne, 

2013). These observations broadened the study of MLOs to include the study of common 

principles underlying their origins, and revealed several unusual features, such as liquid-like 

characteristics, liquid-to-solid transitions, etc. The various contexts in which MLOs are now 

known to exhibit dynamic fluid properties like droplet fusion, surface tension, dripping, wetting 

and viscoelasticity have been reviewed elsewhere (Berry et al., 2018; Hyman and Simons, 2012).  

Since the 2010s, the term “membraneless organelle”, originally used to describe the 

nucleolus, started to be applied in a more general sense to RNA-protein granules and other 

“assemblies/assemblages” that show fluid-like properties (Brangwynne, 2013). This broadening 

of the term from one specific structure to an entire category of structures similarly marked the start 
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of a unification and ascension of the study of MLOs, whose biological functions were previously 

underappreciated and considered unrelated. 

With increasing interest in phase-separation as the basis of the formation of MLOs, the 

introduction of the phrase “biomolecular condensates” in 2017 has helped bridge the gap between 

physiological in situ observations of such structures, and inquiry into their origins. The term 

“condensate” explicitly refers to the process of MLO formation and, in doing so, goes beyond the 

signifier of mere organization connoted by “droplet/membraneless organelle” to make a firmer 

claim about a specific mechanism of formation via phase transition (Banani et al., 2017b; 

Courchaine et al., 2016b). Converging on a consensus on terminology, the field has seen an 

increase in efforts to relate macromolecular structural and sequence features, and the nature of 

homo- and heterotypic intermolecular interactions that promote MLO assembly in vivo, and to 

study the physiological roles of such structures in development, stress response and disease 

(Quiroz et al., 2020).  

Significant attention has been focused on the phase separation processes such as toxic 

protein aggregation such as those formed by β-amyloid peptide (Ab) and tau proteins in 

Alzheimer’s disease, TDP-43/FUS in amyotrophic lateral sclerosis (ALS), huntingtin protein in 

Huntington’s disease, to name a few (Alberti and Dormann, 2019; de Oliveira et al., 2019; de 

Oliveira et al., 2020; Elbaum-Garfinkle, 2019a, b; Vanderweyde et al., 2013). Instead, here we 

provide a unifying account of intracellular phase separation in which widespread condensation 

across the proteome, representing the basal tendency of the intracellular environment, is co-opted 

to sense environmental fluctuations, or goes awry in disease. 
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 Biological phase-separation is a natural tendency  

A phase diagram is a graphical representation of the thermodynamics of phase separation. 

It depicts all possible phase states of the system in N-dimension phase space, where N is the 

number of parameters, called coupling constants, that determine the relative contribution of 

interactions to the free energy of the system compared to entropy (Goldenfeld, 1992). Key 

coupling constants relevant to biological phase transitions include temperature, concentration, 

valency and interaction strength. A critical point in this N-dimensional phase space is the threshold 

beyond which the differences between phases vanish and thus no phase separation is possible 

(“mixed”). If one coupling constant, say temperature, is fixed at or above its value at the critical 

point, phase separation will not occur regardless of the value of all other coupling constants. At 

any given temperature, the minimal concentration that causes the molecule to start forming 

condensates is called the saturation concentration and increasing the concentration may cause the 

system to enter the two-phase region (“demixed”). (Figure 1). 

A biological perturbation of particular interest is change in the intracellular concentration 

frequently associated with altered gene expression or nucleocytoplasmic trafficking in response to 

a signal or a result of misregulation. Unlike these processes, hyperosmotic stress can cause much 

more rapid changes in effective protein concentration in the cell (Jalihal et al., 2020b). While the 

impact of changing concentration on phase separation is easy to study in vitro, there are important 

caveats regarding relating these results to intracellular concentration changes because biological 

perturbations often entail changes in multiple coupling constants simultaneously. Hyperosmotic 

compression, for instance, leads to a decrease in diffusion rates, an increase in “crowding”, and 

possible ionic imbalances in addition to changes in effective concentrations of biomolecules 
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(Kedersha et al., 1999). This is similar to changes that have been reported in bacteria, yeasts and 

protists in response to glucose starvation, in which volume change causes a fluid-to-glass transition 

of the intracellular space, simultaneously impacting diffusivity as well as intracellular pH (Isom et 

al., 2018; Joyner et al., 2016; Munder et al., 2016). In such perturbations, the net phase transition 

depends on the cumulative effects of the perturbation in reshaping the phase boundaries and 

altering the saturation concentration (Figure 1-1A).  

 

Figure 1-1 Phase separation induced by biological perturbations. A. A phase diagram shows the one-phase and multi-
phase regions in temperature-composition space (left). Changes in temperature and concentration cause the system to 
transition between the single-phase region and multiphase region, shown as isothermal concentration changes or 
isomolar temperature changes. Biological perturbation can impact the phase diagram itself, affecting saturation 
concentrations and upper and/or lower critical saturation temperatures (UCST/LCST, right).  B. 1. RNA or protein 
expression change their concentration until the saturation concentration is crossed. 2. Post-translational modifications 
such as methylation and phosphorylation or dephosphorylation alter the association strengths of the solutes and can 
serve as biological mechanisms to modulate condensation. 3. Changes in intracellular composition by altered 
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expression of RNAs or proteins can modify the phase behavior by introducing new interactions. 4. Hyperosmotic 
volume compression leads to a sudden jump in concentration and crowding, resulting in hyperosmotic phase 
separation 

Extensive effort has been dedicated to elucidating the molecular features that drive 

intracellular phase separation (Dignon et al., 2020; Wang et al., 2018b). The most general 

requirement is multivalency, that allows molecules to form large assemblies via multiple inter-

molecular contacts. Within protein-protein interfaces, arginine-glycine-glycine/arginine-glycine 

motifs (Thandapani et al., 2013), π-π (Vernon et al., 2018), cation-π, and charge-charge 

interactions, among others, have been shown to drive protein phase separation (Feng et al., 2019; 

Lin et al., 2018; Posey et al., 2018; Protter et al., 2018; Turoverov et al., 2019). These interactions 

stimulate the higher-order assembly of prion-like domains in protein misfolding diseases (Wang 

et al., 2018b), together with disordered regions and RNA-scaffolded assembly (Berry et al., 2018; 

Sanders et al., 2020; Yang et al., 2020). Additionally, structured protein domains are now emerging 

as mediators of widespread intracellular phase separation under conditions of high concentration 

and molecular crowding (Schmidt et al., 2020; Zhou et al., 2018). 

Disrupting any of these key interactions driving phase-separation is expected to interfere 

with the phase-separation potential of a system. Consistent with this expectation, post-translational 

modifications such as phosphorylation and methylation have been found to modulate condensation 

responses, (Bah and Forman-Kay, 2016; Owen and Shewmaker, 2019; Rai et al., 2018). The 

effects of phosphorylation in particular can be dramatic, and appropriately the kinase DYRK3 that 

prevents condensation of splicing factors in M-phase has been referred to as a “dissolvase” (Rai et 

al., 2018). Similarly, SG assembly in response to various stresses depends on phosphorylation of 

G3BP and PABP (Kedersha et al., 2013a).  
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 Phase-separation responses to environmental fluctuations 

Eukaryotic cells, from yeast to human, respond to a wide variety of cell-intrinsic and -extrinsic 

fluctuations by condensation of proteins and RNAs (Banani et al., 2017a). The induction of P-

bodies and assembly of SGs are two highly studied, and evolutionarily conserved, stress adaptation 

mechanisms that are triggered downstream of the integrated stress response (ISR) (Kedersha et al., 

2013b). The ISR is a multistep signaling cascade activated in response to, for example, viral 

infection, nutrient deprivation, heat shock, oxidative and endoplasmic reticulum stress, and 

enhances cell survival by altering global protein translation (Pakos-Zebrucka et al., 2016). While 

the downstream pathways of ISR are shared, the sensor of each individual type of stress is distinct, 

conferring a certain degree of specificity to each stress. For instance, Pab1 (polyA binding protein) 

and Pub1 (polyU binding protein), two highly expressed proteins in yeast, are differentially 

enriched within SGs during temperature shock and pH shock respectively (Kedersha et al., 2013b; 

Yoo et al., 2019). Once the pathways are triggered, the pool of non-translating mRNA-protein 

complexes along with phosphorylation of SG component proteins participate in a network of 

multivalent interactions, ultimately triggering the assembly of SGs (Kedersha et al., 2013b; Riback 

et al., 2020; Sanders et al., 2020; Yang et al., 2020). In addition to regulating protein translation, 

cells suspend protein and ribosomal RNA (rRNA) metabolism by sequestering misfolded proteins 

and nuclear RNA-binding proteins in the nucleolus in response to impaired rRNA processing and 

DNA damage (Frottin et al., 2019; Latonen, 2019). Proteins that are directed to nucleoli under 

these conditions are thought to undergo translocation to these sites via their interactions with 

stress-associated non-coding RNAs. 
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Emerging evidence suggests that condensation responses are also involved in cell signaling 

cascades that aid cellular homeostasis in response to physiological cues. Condensates at cell 

membranes (Case et al., 2019a) and in the cytosol have been shown to regulate cell division, 

migration and invasion (Case et al., 2019b; Huang et al., 2019), transgenerational memory 

(Caudron and Barral, 2013; Majumdar et al., 2012; Si et al., 2010) and immunomodulation (Su et 

al., 2016) in response to a variety of morphogens and endo/para/autocrine signals. In addition to 

acting across a range of timescales, condensation in response to external perturbations plays a 

critical role in shaping the spatial organization of cells by moving RNAs and proteins into dynamic 

MLOs with complex organization, suggesting an intimate relationship between macromolecular 

sequence, intracellular organization and the extracellular environment (Al-Husini et al., 2020; Ma 

and Mayr, 2018; Tian et al., 2020; Trcek et al., 2020). 

 P-bodies and Stress granules 

P-bodies, also called processing bodies, are RNP condensates that are enriched for non-

translating mRNAs and mRNA degradation factors (Cougot et al., 2004). They are constitutively 

present in the eukaryotic cells, and were discovered in part by autoantigen staining from patient 

serum that revealed distinct cytosolic foci  (Bloch et al., 2006; Eystathioy et al., 2002; Eystathioy 

et al., 2003). While detailed investigation of the constituents of P-bodies by immunostaining and 

mass spectrometry has led to the enumeration of a long list of protein components, and there is 

some evidence for P-bodies conferring protective phenotypes against viral infections in yeast, it 

remains unclear what if any general function P-bodies serve in cells (Beckham and Parker, 2008; 

Hubstenberger et al., 2017c; Luo et al., 2018; Noueiry et al., 2003).  
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SGs unlike P-bodies are not constitutively present but are induced upon heat and oxidative 

stress and other environmental insults. They are induced by the presence of and are enriched for 

non-translating mRNAs (Kedersha et al., 2002; Kedersha et al., 1999) and their formation is 

disrupted upon viral infections or exposure to bacterial pathogenic components (Lloyd, 2013; 

Reineke and Lloyd, 2013; Vonaesch et al., 2017). Thus, SG induction is associated with eIF2a 

phosphorylation occurring downstream of PKR activation. While PBs and SGs share many 

components, they contain various protein components that distinguish them from each other, 

prominently G3BP1. Phosphorylation causes a switch in G3BP conformation that promotes 

granule assembly typically 10-30 minutes after exposure to stress (Sanders et al., 2020). 

1.2. Protein translation regulation 

Protein translation is regulated by modulating the translation machinery or by altering the 

stability of mRNAs. Various mechanisms modulate the translation initiation and elongation. 

Prominently, phosphorylation of proteins of the cap-binding complex, and other components of 

the elongating ribosome is known to modulate global translation upon activation of stress response 

pathways or anti-growth signals (Kapp and Lorsch, 2004; Preiss and Hentze, 2003).  

Dedicated mechanisms exist in eukaryotic cells to degrade mRNAs. Eukaryotic mRNAs 

are protected from these mechanisms by the presence of a 5’ “cap”, composed of a 7-methyl 

guanosine triphosphate (7mG) and a template independent 3’ poly A “tail”. The decapping 

complex catalyzes the removal of the 5’ cap, allowing 5’-to-3’ exonucleases such as XRN1 and 

the LSM1 complex to act upon the substrate (Blasco-Moreno et al., 2019). Likewise, the CCR4-

NOT deadenylation complex can bind and remove the 3’ polyA tail allowing the RNA to be 

degraded by 3’-to-5’ exonucleases such as the nuclear exosome (Chen et al., 2002). While these 
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mechanisms can act on all mRNAs, non-coding RNA-based mechanisms confer specificity to 

specific mRNAs, and these mechanisms recruit degradation factors to target mRNAs. 

 Non-coding RNA functions 

The central dogma of molecular biology as propounded by Watson and Crick is that genetic 

information encoded in DNA is relayed via RNA intermediates to its final functional form as a 

protein (Crick, 1970). In addition to its central role as a messenger, RNA has since been shown to 

mediate a multitude of roles beyond encoding proteins (Li and Liu, 2019; Palazzo and Lee, 2015). 

Indeed, the most important non-protein coding function of RNAs is to regulate and modulate the 

level of gene expression.  

Non-coding RNAs are often conserved, vary in size and structure and are frequently found 

in RNA-protein complexes (Diederichs, 2014). They are known to regulate gene expression by 

modifying epigenetic marks on histones (long non-coding or lncRNAs), and by destabilizing 

mRNAs or modulating protein translation (short non-coding RNAs) (Long et al., 2017; Tsai et al., 

2010). Beyond these mechanisms of gene regulation, 3’untranslated regions (3’UTRs) of mRNAs 

are known to spatially regulate protein translation, complex formation and localization (Ma and 

Mayr, 2018). This thesis focuses on RNA-dependent mechanisms that directly impact protein 

translation by destabilizing mRNAs. 

Short RNA-mediated translation regulation mechanisms, first discovered in C. elegans by 

Craig and Mello, are understood in terms of the specific mechanisms of short-hairpin RNAs 

(shRNAs), small interfering RNAs (siRNAs) and microRNAs (miRNAs). These short RNAs 

undergo numerous processing steps after which a single 21 nucleotide strand gets incorporated 
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within a protein of the Argonaut (AGO) family possessing PIWI domains, and act as guides to 

direct the silencing RNA-protein complexes to their target RNAs. They all typically bind to the 

sequence-complementary regions in the 3’ untranslated regions (UTRs) of mRNAs. These 

different small RNA-based pathways are differentiated based on their specific impact on mRNAs: 

siRNAs bind to 21-nt long sequence-complementary regions and stimulate AGO2’s 

endonucleolytic activity. miRNAs guide the RNA-induced silencing complex (miRISC) via 

sequence complementarity to binding sites present on mRNAs, called miRNA recognition 

elements (MREs), and recruits mRNA degradation enzymes to the target rather than stimulating 

internal cleavage. 

 miRNAs, MREs and the ceRNA hypothesis 

miRISC is usually present at limiting levels with respect to the transcripts it can bind to 

and is consequently bound to saturation under physiological expression levels. This is thought to 

cause binding-competition between the target transcripts, leading to the reversal of translation 

repression. Because miRNA targets have been shown to constitute highly connected networks, it 

is conceivable that changes in repression brought about by binding competition can lead to broader 

changes in the protein expression profile of the cell. 

A miRNA can optimally bind to any sequence complementary to a 7nt "seed" region at its 

5’ end. Additionally, a miRNA can bind with lower affinity to sequences that possess imperfect 

seed-complementarity and/or complementarity to the miRNA’s 3’ end (Denzler et al., 2016). Any 

sequence that can interact with a miRNA is referred to as a miRNA recognition element or MRE. 

A seed-matched, 7nt MRE is expected to be found every 2400 bases in the genome, assuming 

equal occurrence of the four bases. However, many experimentally verified targets of miRNAs are 
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enriched for seed-specific MREs in their 3’UTRs, above the rate expected by random chance 

(Abrahante et al., 2003). Many of these are also evolutionarily conserved (Kristjánsdóttir et al., 

2015). It has been speculated that additional binding sites increase the degree of translation 

repression by increasing probability of RISC binding although it remains unclear what specific 

factors influence MRE-dependent repression in cells (Mayr et al., 2007). 

A typical miRNA is present at 1000-50,000 copies per cell and is close to its regime of 

saturation given the abundance of low- and medium-affinity MREs. Consequently, major changes 

in the overall number of MREs or miRNAs can independently be expected to change specific 

miRISC binding to target transcripts (Mukherji et al., 2011). Such changes result in "derepression" 

by decreased miRISC binding, and subsequent increase in translation of the previously repressed 

transcript. This idea of reciprocal regulation, where target transcript abundance regulates miRNA 

function, and vice versa has been formalized in terms of the competitive endogenous RNA 

(ceRNA) hypothesis. According to the hypothesis, the cellular MRE number dictates the 

magnitude of binding-competition to a limited miRISC pool and serves as means to modulate 

overall repression of translation (Seitz, 2009). Experimental evidence for such reciprocal 

regulation has primarily come from over-expression studies, by comparing ensemble mRNA, 

miRNA and protein levels before and after overexpression of MREs (Bosson et al., 2014a; Denzler 

et al., 2016). However, binding-competition and derepression have not been validated at the level 

of a single transcript. Thus, it remains unclear how transcript levels, MRE number and miRISC 

levels collectively contribute to establishment of repression and what concentration regimes 

support derepression. 
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1.3. Visualizing biology: Single molecule fluorescence microscopy 
(SMFM) 

SMFM techniques are well-suited to study molecular processes that occur in multiple steps, 

proceed via parallel reaction pathways, show transient excursions to distinct states, and/or contain 

varying components, all of which are frequently true of RNA-proteins interactions (Moffitt et al., 

2010; Wahl et al., 2009). The most important advantage is that these methods allow heterogeneous 

molecular “behaviors” to be uncovered in asynchronous populations of molecules proceeding 

through multiple reaction pathways at different rates (Larson et al., 2014; Lu et al., 1998). These 

single molecule behaviors can be scrutinized at a spatio-temporal resolution inaccessible to bulk 

techniques, leading to insights that can be directly compared with bulk data by post-acquisition 

time and ensemble averaging.  

The general benefits and specifics of performing single molecule studies are beyond the 

scope of this chapter, but have been reviewed elsewhere (Liu et al., 2015; Roy et al., 2008; Walter 

et al., 2008). In this chapter, we instead will focus on the salient features of SMFM and practical 

considerations for its application to the study of RNPs.  

A variety of SMFM approaches exist today, the exact choice of which depends largely on 

the study design and experimental goals. SMFM has been used to investigate numerous RNPs, 

including those involved in transcription, splicing, RNA modification and editing, chaperone 

activity, and RNA interference (Figure 2). Despite obvious differences in the underlying biology, 

key experimental elements common to all of these studies include illumination, a strategy for 

labeling the biomolecule(s) of interest, detection of fluorescence, and data analysis, as discussed 

below. 
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 Illumination and detection 

By design, SMFM approaches aim to characterize the behavior of individual molecules. 

However, detecting the signal from an individual molecule in the background of other molecules, 

potential contaminants, and instrumental noise can be challenging. Fluorescence itself facilitates 

distinguishing genuine signal from background as light emitted from fluorescently tagged 

biomolecules is red-shifted relative to the wavelength of laser light used for excitation. This 

spectral separation (i.e., ‘Stokes shift’) between the excitation and emission wavelength maxima 

makes genuine fluorescence signal easily distinguishable from background scattering of the 

sample medium.  

In addition to spectral isolation of the relevant signal, limiting the volume of illumination 

improves signal-to-noise by decreasing the contribution of out-of-focus emission. Of the 

illumination modalities that achieve selective volume illumination, total internal reflection 

fluorescence microscopy (TIRFM) is perhaps the most widely implemented (Figure 2A). In 

TIRFM, the excitation beam is totally internally reflected near the sample plane (Toomre, 2012). 

An evanescent field of excitation light is generated at the surface that extends ~100 nm into the 

sample. This evanescent field illuminates molecules immobilized at the imaging surface, thus 

minimizing background fluorescence from molecules deeper in solution. The level of background 

fluorescence observed in TIRFM experiments is dependent on the concentration of excess 

fluorescently labeled biomolecules in solution and provides good signal-to-noise up to fluorophore 

concentrations of ~100 nM. For RNA and proteins that interact with high affinity, this effective 

concentration limit does not pose a problem. However, physiologically relevant interactions often 

involve micromolar affinities of binding partner(s). Zero-mode waveguide (ZMW) technology 
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allows single molecule resolution even in solutions with high concentrations of fluorescent 

components (Levene et al., 2003), and have been particularly useful in studies of the ribosome 

(Tsai et al., 2016) (Figure 1-2B).  

 

Figure 1-2. Overview of single molecule microscopies applied to study RNPs. A. Objective- and Prism-type TIRFM 
configurations B. Zero-mode waveguides C. a. Epifluorescence b. HILO illumination D. Light sheet microscopy E. 
Confocal illumination F. Selected studies on RNPs that have employed fluorescence-based single molecule methods. 
Colored boxes indicate the type of microscopy configuration used. 

Another strategy to limit out-of-plane fluorescence by controlling the illumination area is 

highly inclined and laminated optical sheet (HILO) illumination (Tokunaga et al., 2008) (Figure 

1-2C). In HILO microscopy, the illuminated region is thicker than it is for TIRFM (e.g., ~7 µm 
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for an illuminated area with a diameter of 20 µm), and contains a z-component, that allows for 

imaging of molecules that lie micrometers above the coverslip surface. These characteristics make 

HILO microscopy particularly suited for studying samples with three-dimensional spatial 

distributions, such as single molecules inside live cells. Even more sample penetration depth can 

be achieved by light sheet fluorescence microscopy (LSFM), where a focused sheet of light is used 

to illuminate only a thin section of a thick sample for single molecule detection (Ritter et al., 2010) 

(Figure 1-2D). Confocal microscopy uses pinholes to limit the volume in which single molecules 

are detected (Figure 1-2E). In addition to 2-D scanning, confocal microscopy is typically used in 

the context of fluorescence correlation spectroscopy (FCS) and two-color fluorescence cross-

correlation spectroscopy (FCCS), in which a high-sensitivity photon-counting point detector 

generates time-resolved intensity measurements from the entire illuminated confocal volume 

(Gonzalez Bardeci et al., 2017; Liu et al., 2015).  

 Labeling proteins 

For proteins, fluorophore tags may be genetically appended, as is the case with fluorescent 

proteins (FPs) including GFP, mCherry, and their many variants (Thorn, 2017). However, FP tags 

are used almost exclusively in the context of intracellular studies as their large size and unfavorable 

photophysical properties (e.g., propensity for blinking, low brightness) so far make them less 

desirable for in vitro single molecule studies. 
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Figure 1-3 Strategies for labeling RNA and protein components for single molecule fluorescence. A. Modifications 
are possible at various positions on RNA molecules prepared through chemical synthesis, including the 5’ and 3’ 
termini (I and II, respectively), the 2’ position of the sugar (III), and various positions on the nucleobase (IV, V, and 
VI), among others. Modifications can include reactive chemical moieties that are used for subsequent conjugation 
reactions, small molecules like biotin and digoxigenin for immobilization, or direct attachment of fluorophore dyes, 
or even replacement of entire nucleotides by fluorophores. B. Example strategies for preparing fluorescently labeled 
RNA for in vitro studies. Fluorescent labels are shown as red stars. C. Example strategies for preparing fluorescently 
labeled protein for in vitro studies. D. For intracellular single molecule studies, RNA can be prepared using many of 
the methods suitable for in vitro work (described in B) and subsequently introduced into cells via microinjection or 
transfection. Alternatively, RNA transcripts can be labeled by inserting stem-loop repeat sequences that are bound by 
their cognate RNA binding proteins, that are expressed as fusions with intrinsically fluorescent proteins (RBP-FP). E. 
Example strategies for preparing fluorescently labeled protein for intracellular studies. In contrast to RNA, there is 
greater overlap between strategies for labeling protein that are suitable for in vitro and intracellular work. A small 
number of strategies, such as click chemistry using strained alkynes, can be applied to both RNA and proteins. 

The shortcomings of FPs render proteins a more challenging target for site-specific labeling 

compared to RNA and the options for selective conjugation chemistries for amino acids are more 

limited compared to nucleotides. Fluorophore-NHS-ester derivatives readily react with primary 

amines and so can be used to label lysine residues as well as the N-terminus. For in vitro studies 

using recombinant protein, a more conventional strategy is to use fluorophore-maleimide 

derivatives, that have greater selectivity for the thiol side chain of rarer cysteine residues (Figure 

1-3C). This method typically requires that native cysteines be significantly less reactive (and/or 

accessible) than the desired labeling position. Such was the case in a study of the role of initiation 

factor 2 (IF2) from E. coli, where removal of the three native cysteines in IF2 resulted in an 

unstable protein, however, labeling of an additional cysteine introduced through mutagenesis in 

the presence of the other native cysteines still resulted in site-specific labeling (Wang et al., 2015).  

Among the other methods for site-selective labeling of proteins that have been developed 

(Adumeau et al., 2016), the use of unnatural amino acids to incorporate reactive handles, such as 

those for click chemistry, is one of the more promising avenues to achieve site specificity (Lee et 

al., 2016; Liu and Schultz, 2010).  
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Purification of labeled protein from unincorporated fluorophore can be non-trivial, because 

proteins, being more hydrophobic than nucleic acids, have a greater propensity to bind fluorescent 

dyes non-specifically. The purification scheme therefore merits careful consideration. While 

extensive dialysis or size-exclusion chromatography may be sufficient in some cases, for others 

unreacted fluorophore may most robustly be removed with ion-exchange chromatography under 

denaturing conditions (Hickerson et al., 2005).  

Protein structure data are frequently unavailable and protein folding is difficult to predict. 

Furthermore, the complete details of a protein’s RNA binding site and other interacting partners 

are frequently uncharacterized or ill-defined, thus precluding the rational choice of a labeling 

position. Despite these gaps in knowledge, there are many cases where determining the presence 

or absence of a given protein is sufficient, requiring only that the protein be fluorescently labeled 

in a way that preserves function. However, the knowledge of a fluorophore’s exact location on the 

three-dimensional structure of a protein is required if the protein serves as the donor or acceptor 

in an smFRET experiment. 

A third alternative for protein labeling are self-labeling protein tags and enzyme-mediated 

labeling tags that are genetically encoded. These tags have been developed to allow covalent 

attachment of small molecule fluorescent dyes, that can be used to label proteins in live cells, in 

cell extracts, or to label recombinant proteins (Figure 1-3C). Of these, notable examples include 

the SNAP and CLIP tags, based on human O6-alkylguanine-DNA alkyltransferase, and the 

engineered dehalogenase HaloTag, all of which catalyze covalent self-addition of their respective 

ligands (Gautier et al., 2008; Los et al., 2008; Sun et al., 2011) . A conceptually similar, albeit non-

covalent, self-labeling tag is E. coli dihydrofolate reductase (eDHFR) (Calloway et al., 2007).  
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 Labeling RNPs for intracellular visualization 

One advantage of using living cells in fluorescence microscopy is the ability to genetically 

encode fluorophore tags in the form of FPs. The most widely adopted intracellular RNA labeling 

strategy has been the use of RNA-binding proteins (RBPs) fused with an FP (Tyagi 2009). This 

method, first demonstrated for single RNA detection by Robert Singer’s group, exploits the high 

specificity and affinity with which RBPs such as the viral coat proteins from the MS2 or PP7 

phages bind their cognate RNA stem-loop structures. Since then, this technology has been 

expanded to other bacteriophages, such as λN protein binding to the RNA stem-loop of the boxB 

gene. Labeling is achieved by inserting these stem-loop sequences into untranslated regions 

(usually the 3’ UTR) of mRNA transcripts, that are then bound by their respective RBP fused to 

an FP (Figure 1-2D). Because the excess of unbound RBP-FP fusion protein creates a high 

fluorescence background, and because photobleaching is vastly accelerated in live cells as 

compared to in vitro, multiple copies of the stem-loop sequence (typically 8 to 96) are required for 

single molecule sensitivity. Furthermore, multiple transcript species within the same cell can be 

simultaneously monitored by using combinations of RBPs tagged with distinct FPs (Hocine et al. 

2013).  

The biggest limitation of RBP-based detection is that their cognate stem-loops are ~20 

nucleotides long, that makes RBP-based methods unsuitable to study small non-coding RNAs such 

as miRNAs, small interfering RNAs (siRNAs), tRNAs, etc. whose function is sensitive to RNA 

length. Furthermore, the added molecular mass of bound RBP-FP fusion proteins can alter the 

diffusion properties, localization and turnover of RNPs.  
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Another limitation of FPs is their relatively long maturation time. For studies specifically 

probing protein translation, using a classical fluorescent protein to study translation rate is of 

limited utility because of the slow maturation of the FP (the fastest maturing GFP variants fold in 

~10 minutes) relative to translation elongation (seconds to minutes for a given transcript) (Thorn 

2017). However, moving the fluorescent tag to an antibody probe that can recognize a peptide 

epitope with specificity as it emerges from the ribosome’s exit tunnel allows rapid processes such 

as translation elongation to be studied in real-time at single molecule resolution. Such fluorescent 

“immunolabeling" of proteins has been demonstrated with the SunTag epitope and “spaghetti 

monster” fluorescent proteins (Figure 1-3E). In these methods, single proteins are detected when 

multiple labeled antibody probes bind to a repeated epitope, where detection is limited by diffusion 

of the probes and antibody-antigen affinity (Morisaki et al. 2016; Yan et al. 2016).  

The relative simplicity of working with transiently or stably transfected cell lines has led 

genetically-encoded FP methods for single RNP visualization to become widely accepted. We 

refer the reader to reviews that cover the broad applications of RBP-based mRNA detection and 

live cell immunolabeling for intracellular single molecule visualization (Buxbaum et al. 2015; 

Lyon and Stasevich 2017). An alternative approach to fluorescently label proteins uses self-

modifying enzymatic tags (Figure 1-3E). Pulse labeling with a cell-permeable, fluorescent 

HaloTag substrate, for example, allows a sufficiently sparse set of the native proteins to be labeled. 

Schmidt et al. (2016) used this strategy to show that the telomerase RNP is dynamically recruited 

to the telomere ends of chromosomes. 

An alternative RNP labeling strategy that avoids genetic modification of RNAs/proteins 

for intracellular detection is to covalently attach synthetic fluorophore dyes to an exogenous RNA 
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and subsequently deliver it into cells. For longer RNAs, click chemistry has been used to 

covalently attach fluorophores to modified nucleotides that are co-transcriptionally incorporated 

into in vitro transcribed RNA without the need for lengthy exogenous sequence motifs (compare 

Figure 1-3B and D). For eukaryotic mRNAs, fluorophores can be incorporated into mRNAs in the 

cap structure (Mamot et al. 2017), randomly incorporated throughout the transcript (Schulz and 

Rentmeister 2014), in the poly(A) tail, or between the 3’ UTR and poly(A) tail (Custer and Walter 

2017). Such covalent attachment of the fluorophore allows labeled molecules to be detected with 

greater sensitivity, without the background of free fluorophores that is a recurrent challenge of 

RBP-based RNA detection. As with RBP-mediated labeling, however, there can be functional 

consequences to these covalent labeling strategies—for example, random fluorophore 

incorporation throughout the transcript was shown to dramatically impair the coding function, and 

incorporation of fluorophores in the 3’UTR was shown to stabilize mRNAs (Custer and Walter 

2017).  

The choice of delivery method determines the types of observations that can be carried out 

subsequent to exogenous chemical labeling. The following section briefly surveys these methods. 

 Delivering materials for visualization in cells 

The wide array of available intracellular delivery methods presents several choices for 

RNA and/or protein delivery (Stewart et al. 2016). They fall on a spectrum defined by, on one 

hand, their ability to deliver precise amounts of material to individual cells and by, on the other 

hand, their throughput of cells. One subset of delivery strategies aims to temporarily disrupt the 

cell membrane using detergents, bacterial pore-forming toxins or various physical disruption 

methods (bead loading, fluid shearing, electroporation, etc.), relying on diffusion of cargo along 
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concentration gradients and the ability of cells to reseal breaks in their cell membrane. These 

strategies achieve efficient cargo delivery but are not suitable for applications requiring precise 

dosage control. Another delivery strategy in this class involves vesicle carriers and relies on fusion 

of lipid vesicles with the cell membrane or natural endocytic processes, for cargo delivery. Lipid-

based transfection is perhaps the most widely used strategy, however, it is unsuitable for RNA 

delivery for single molecule applications, as the cargo often remains trapped in endosomes and is 

only slowly released into the cell (Hirsch and Helm 2015), leading to the risk of artifacts and/or 

misinterpretation.  

In contrast, methods that involve active forces, such as delivery by direct microinjection 

using micro-needles or nano-straws, offer more precise control over the amount of material 

delivered to each cell, however, they can do so only with lower throughput. Microinjection, like 

other membrane disruption methods, relies on the ability of cells to rapidly reseal breaks in the cell 

membrane (Figure 1-4) and thus can encounter problems with cell viability if improperly executed 

(Pitchiaya et al. 2013). The microinjector needle is a fine glass capillary used to inject femtoliters 

of cargo solution into each cell, allowing for precise delivery into sub-cellular compartments such 

as the nucleus or the cytosol. Microinjection requires only small cargo quantities compared to any 

other bulk delivery strategy, making it a particularly valuable and preferred tool for delivering 

fluorescently labeled RNP components that may be technically challenging to label and purify. 

 Single-molecule RNP visualization in living cells 

The toolbox of complementary fluorescence-based approaches available today allows 

dynamic RNP interactions to be probed directly inside living cells. For example, fluorescence 

recovery after photobleaching (FRAP) and FCS both quantify diffusion of labeled molecules 
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(Bacia et al., 2014; McNally, 2008). The former measures the rate at which fluorophore-labeled 

molecules diffuse back into a small photobleached area (typically over minutes), whereas the latter 

measures fluorescence fluctuations in a small volume of the cell on sub-second timescales. These 

techniques have been used to study fluorescent molecules inside living cells for over three decades, 

and while they do not necessarily provide single-molecule resolution they have set the stage for 

intracellular SMFM. 

More recently, the commercialization of photostable fluorophores, increasingly sensitive 

cameras, and super-resolution illumination strategies together have contributed to advances in a 

third technique, intracellular single particle tracking (SPT) (Shen et al., 2017). SPT bridges the 

capabilities of ensemble approaches such as FRAP and FCS (diffusion information) with those of 

in vitro single molecule analysis, such as colocalization (interaction) time and stepwise 

photobleaching analysis (for stoichiometry). 

The principle behind SPT is that fluorescently labeled molecules, when present at 

sufficiently low densities, can be detected and tracked in time as bright, diffraction-limited “spots” 

using an illumination strategy such as HILO or TIRFM. The resulting trajectories represent the 

actual diffusive motion of the molecules and can reveal transient interactions with their local 

environments. Thus, intracellular SPT can be applied to study RNP reactions using cultured living 

cells themselves as reaction vessels, providing exquisite spatiotemporal resolution to make 

observations that enable both hypothesis- and discovery-driven approaches to studying the 

biophysical behavior of RNPs (Figure 1-4A).  
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Figure 1-4 Intracellular single molecule visualization A. Microinjection is an effective strategy to deliver labeled 
RNAs into living cells. The injected material can be imaged using various fluorescence microscopy techniques. 
Intracellular Single-molecule High-Resolution Localization and Counting (iSHiRLoC) uses HILO illumination to 
rapidly acquire images with single-molecule resolution for particle tracking. B. Injected cells are distinguished from 
non-injected cells by the presence of an injection marker, a slowly diffusing, fluorescently labeled inert compound. 
Shown here are two cells injected into the nucleus (I) and cytosol (II) with Alexa488-labeled 100 kDa Dextran. 
Labeled miRNAs appear as diffusing, diffraction-limited spots upon time lapse imaging of live cells (I, inset) or as 
diffraction-limited spots in formaldehyde-fixed samples (II, inset). Scale bars represent 10 µm. C. I. The intensity 
profiles of diffraction-limited spots, recorded as pixelated point-spread functions, can be analyzed to obtain the spot 
centers with sub-pixel accuracy, such as by fitting the intensity profile to 2D Gaussians. II. Particle-tracking of the 
spot centers results in 2- or 3-dimensional diffusion trajectories. III. Displacements in successive frames yield mean-
squared displacement (MSD) profiles, informing about diffusion types. D. Photobleaching analysis. Cy5 fluorophores 
bleach rapidly and in a step-wise manner. The number of discrete step drops in intensity is a proxy for the number of 
molecules in a single diffraction limited spot. Adapted with permission from Pitchiaya et al. (2012). E. Correlating 
the number of fluorescent spots in fixed tissue with the number of diffusion filtered trajectories yields an estimate of 
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turnover and functionality of the labeled molecules. The open shapes represent counts of a mutant (mutant let-7, ml7) 
and artificial (cxcr4, cx) miRNA co-injected with mRNAs bearing complementary binding sites, and the filled shapes 
represent conditions where the co-injected mRNAs bore mismatched (let-7, l7) or no binding sites in the 3'UTR 
downstream of an ORF encoding Renilla luciferase. Adapted with permission from Pitchiaya et al. (2017). 

The following sections briefly review methods for the fluorophore labeling and 

intracellular macromolecule delivery needed to perform intracellular SPT. 

 Analysis and interpretation of SPT experiments 

The first step for particle tracking is detection of the "spot" that represents the spatial 

location of a fluorescently labeled molecule of interest. The intensity levels of the brightest pixels 

of the spot together with the surrounding pixels approximate the point spread function (PSF) of 

the fluorophore(s) present on the molecule or complex. The challenge of spot detection lies in 

finding the center of the PSF, given the discrete pixel size and variable camera noise. A number 

of different algorithms exist today to perform this task (Chenouard et al. 2014) (Figure 6B). Once 

detected, the spots can then be tracked (i.e., temporally linked) through successive frames to yield 

spatiotemporal trajectories, provided the spots are sufficiently visible in the focal plane in (almost) 

every frame, and the particles are present at sufficiently low density for the temporal linking to be 

unambiguous.  

From these particle trajectories, the type of motion exhibited by individual molecules can 

be classified into one of various types of diffusion. The most common, simple and useful tool to 

discriminate diffusive behaviors of single particles is the time-averaged mean-squared 

displacement (MSD) (Figure 6C). This plot is used to characterize the trend of the displacement 

of the particle at increasing time intervals. For a given trajectory, the deviation of the MSD plot 

from linearity is used to classify the motion as diffusive (no deviation), sub-diffusive (curved 

down) or super-diffusive (curved up). RNPs often exhibit complex trajectories that can be modeled 
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as mixtures of directed motion (such as during periods of active transport along axons) and 

Brownian (random) diffusion (Monnier et al. 2015). Together, such characterization can yield 

information regarding the molecular weight of the particle under study, and its interaction with its 

local environment, such as binding to and dissociation from unlabeled (and thus invisible) partners 

of distinct diffusivity (Knight et al. 2015). 

Multicolor particle tracking can reveal even more about the intracellular milieu. By 

labeling molecular species using dyes with spectrally separated emission maxima, currently up to 

four different types of particles can be simultaneously tracked (Juette et al. 2014). The interaction 

between these differently labeled components can be read out as spatiotemporal colocalizations 

between trajectories of differently colored particles, similar to the in vitro techniques summarized 

in section III.2. Colocalizing trajectories can then be analyzed to characterize the kinetics and 

search dynamics of intracellular interactions, as has been the case for examining the intracellular 

search dynamics of RNP machines such as the Cas9 enzyme (Knight et al. 2015), telomerase 

(Schmidt et al. 2016), and miRNA-RISC (miRISC) complexes, as well as for studying the 

recruitment of small RNAs to sites of DNA double-strand breaks (Michelini et al. 2017). 

1.4. Outline of thesis 

Chapter 2 describes results regarding the molecular determinants of RNA localization to 

P-bodies. Chapter 3 described a novel proteome-wide phase-separation phenomenon in response 

to osmotic stress called hyperosmotic phase separation (HOPS). Chapter 4 provides evidence for 

biophysical mechanisms that promote the efficiency of miRNA-mediated target repression in 

mammalian cells. Chapter 5 showcases future directions and an outlook based on this body of 

work. 



 

 
30 

1.5. References 
Abrahante, J.E., Daul, A.L., Li, M., Volk, M.L., Tennessen, J.M., Miller, E.A., and Rougvie, A.E. 
(2003). The Caenorhabditis elegans hunchback-like gene lin-57/hbl-1 controls developmental time 
and is regulated by microRNAs. Dev. Cell 4, 625-637. 

Adumeau, P., Sharma, S.K., Brent, C., and Zeglis, B.M. (2016). Site-specifically labeled 
immunoconjugates for molecular imaging–Part 2: Peptide tags and unnatural amino acids. Mol. 
Imaging Biol. 18, 153-165. 

Al-Husini, N., Tomares, D.T., Pfaffenberger, Z.J., Muthunayake, N.S., Samad, M.A., Zuo, T., 
Bitar, O., Aretakis, J.R., Bharmal, M.M., Gega, A., et al. (2020). BR-Bodies Provide Selectively 
Permeable Condensates that Stimulate mRNA Decay and Prevent Release of Decay Intermediates. 
Mol. Cell 78, 670-682.e678. 

Alberti, S., and Dormann, D. (2019). Liquid-Liquid Phase Separation in Disease. Annu. Rev. 
Genet. 53, 171-194. 

Alberti, S., Gladfelter, A., and Mittag, T. (2019). Considerations and Challenges in Studying 
Liquid-Liquid Phase Separation and Biomolecular Condensates. Cell 176, 419-434. 

An, S., Kumar, R., Sheets, E.D., and Benkovic, S.J. (2008). Reversible compartmentalization of 
de novo purine biosynthetic complexes in living cells. Science 320, 103-106. 

Anderson, P., and Kedersha, N. (2006). RNA granules. J. Cell Biol. 172, 803-808. 

Bacia, K., Haustein, E., and Schwille, P. (2014). Fluorescence correlation spectroscopy: principles 
and applications. CSH Protocols 2014, 709-725. 

Bah, A., and Forman-Kay, J.D. (2016). Modulation of Intrinsically Disordered Protein Function 
by Post-translational Modifications. J. Biol. Chem. 291, 6696-6705. 

Banani, S.F., Lee, H.O., Hyman, A.A., and Rosen, M.K. (2017a). Biomolecular condensates: 
organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285-298. 

Banani, S.F., Lee, H.O., Hyman, A.A., and Rosen, M.K. (2017b). Biomolecular condensates: 
organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285-298. 

Beckham, C.J., and Parker, R. (2008). P bodies, stress granules, and viral life cycles. Cell Host 
Microbe 3, 206-212. 

Berry, J., Brangwynne, C.P., and Haataja, M. (2018). Physical principles of intracellular 
organization via active and passive phase transitions. Rep. Prog. Phys. 81, 046601. 

Blasco-Moreno, B., de Campos-Mata, L., Böttcher, R., García-Martínez, J., Jungfleisch, J., 
Nedialkova, D.D., Chattopadhyay, S., Gas, M.E., Oliva, B., Pérez-Ortín, J.E., et al. (2019). The 
exonuclease Xrn1 activates transcription and translation of mRNAs encoding membrane proteins. 
Nat. Commun. 10, 1298. 



 

  

31 

Bloch, D.B., Gulick, T., Bloch, K.D., and Yang, W.H. (2006). Processing body autoantibodies 
reconsidered. RNA 12, 707-709. 

Bosson, A.D., Zamudio, J.R., and Sharp, P.A. (2014). Endogenous miRNA and target 
concentrations determine susceptibility to potential ceRNA competition. Mol. Cell 56, 347-359. 

Brangwynne, C.P. (2013). Phase transitions and size scaling of membrane-less organelles. J. Cell 
Biol. 203, 875-881. 

Calloway, N.T., Choob, M., Sanz, A., Sheetz, M.P., Miller, L.W., and Cornish, V.W. (2007). 
Optimized fluorescent trimethoprim derivatives for in vivo protein labeling. ChemBioChem 8, 
767-774. 

Case, L.B., Ditlev, J.A., and Rosen, M.K. (2019a). Regulation of Transmembrane Signaling by 
Phase Separation. Annu. Rev. Biophys. 48, 465-494. 

Case, L.B., Zhang, X., Ditlev, J.A., and Rosen, M.K. (2019b). Stoichiometry controls activity of 
phase-separated clusters of actin signaling proteins. Science 363, 1093-1097. 

Caudron, F., and Barral, Y. (2013). A super-assembly of Whi3 encodes memory of deceptive 
encounters by single cells during yeast courtship. Cell 155, 1244-1257. 

Chen, J., Chiang, Y.C., and Denis, C.L. (2002). CCR4, a 3'-5' poly(A) RNA and ssDNA 
exonuclease, is the catalytic component of the cytoplasmic deadenylase. EMBO J. 21, 1414-1426. 

Cougot, N., Babajko, S., and Séraphin, B. (2004). Cytoplasmic foci are sites of mRNA decay in 
human cells. J. Cell Biol. 165, 31-40. 

Courchaine, E.M., Lu, A., and Neugebauer, K.M. (2016). Droplet organelles? EMBO J. 35, 1603-
1612. 

Crick, F. (1970). Central dogma of molecular biology. Nature 227, 561-563. 

de Oliveira, G.A.P., Cordeiro, Y., Silva, J.L., and Vieira, T. (2019). Liquid-liquid phase transitions 
and amyloid aggregation in proteins related to cancer and neurodegenerative diseases. Adv. 
Protein Chem. Struct. Biol. 118, 289-331. 

de Oliveira, G.A.P., Petronilho, E.C., Pedrote, M.M., Marques, M.A., Vieira, T., Cino, E.A., and 
Silva, J.L. (2020). The Status of p53 Oligomeric and Aggregation States in Cancer. Biomolecules 
10. 

Denzler, R., McGeary, S.E., Title, A.C., Agarwal, V., Bartel, D.P., and Stoffel, M. (2016). Impact 
of MicroRNA Levels, Target-Site Complementarity, and Cooperativity on Competing 
Endogenous RNA-Regulated Gene Expression. Mol. Cell 64, 565-579. 

Diederichs, S. (2014). The four dimensions of noncoding RNA conservation. Trends Genet. 30, 
121-123. 



 

  

32 

Dignon, G.L., Best, R.B., and Mittal, J. (2020). Biomolecular Phase Separation: From Molecular 
Driving Forces to Macroscopic Properties. Annu. Rev. Phys. Chem. 71, 53-75. 

Elbaum-Garfinkle, S. (2019a). Matter over mind: Liquid phase separation and neurodegeneration. 
J. Biol. Chem. 294, 7160-7168. 

Elbaum-Garfinkle, S. (2019b). Matter over mind: Liquid phase separation and neurodegeneration. 
J. Biol. Chem. 294, 7160-7168. 

Eystathioy, T., Chan, E.K., Tenenbaum, S.A., Keene, J.D., Griffith, K., and Fritzler, M.J. (2002). 
A phosphorylated cytoplasmic autoantigen, GW182, associates with a unique population of human 
mRNAs within novel cytoplasmic speckles. Mol Biol Cell 13, 1338-1351. 

Eystathioy, T., Jakymiw, A., Chan, E.K., Séraphin, B., Cougot, N., and Fritzler, M.J. (2003). The 
GW182 protein colocalizes with mRNA degradation associated proteins hDcp1 and hLSm4 in 
cytoplasmic GW bodies. RNA 9, 1171-1173. 

Feng, Z., Chen, X., Wu, X., and Zhang, M. (2019). Formation of biological condensates via phase 
separation: Characteristics, analytical methods, and physiological implications. J. Biol. Chem. 
294, 14823-14835. 

Frottin, F., Schueder, F., Tiwary, S., Gupta, R., Körner, R., Schlichthaerle, T., Cox, J., Jungmann, 
R., Hartl, F.U., and Hipp, M.S. (2019). The nucleolus functions as a phase-separated protein 
quality control compartment. Science 365, 342-347. 

Gautier, A., Juillerat, A., Heinis, C., Correa, I.R., Jr., Kindermann, M., Beaufils, F., and Johnsson, 
K. (2008). An engineered protein tag for multiprotein labeling in living cells. Chemistry and 
Biology 15, 128-136. 

Goldenfeld, N. (1992). Lectures On Phase Transitions And The Renormalization Group 
(Westview Press). 

Gomes, E., and Shorter, J. (2019). The molecular language of membraneless organelles. J. Biol. 
Chem. 294, 7115-7127. 

Gonzalez Bardeci, N., Angiolini, J.F., De Rossi, M.C., Bruno, L., and Levi, V. (2017). Dynamics 
of intracellular processes in live-cell systems unveiled by fluorescence correlation microscopy. Int. 
Union Biochem. Mol. Biol. 69, 8-15. 

Handwerger, K.E., Cordero, J.A., and Gall, J.G. (2005). Cajal bodies, nucleoli, and speckles in the 
Xenopus oocyte nucleus have a low-density, sponge-like structure. Mol. Biol. Cell 16, 202-211. 

Hickerson, R., Majumdar, Z.K., Baucom, A., Clegg, R.M., and Noller, H.F. (2005). Measurement 
of internal movements within the 30 S ribosomal subunit using Förster resonance energy transfer. 
J. Mol. Biol. 354, 459-472. 



 

  

33 

Huang, W.Y.C., Alvarez, S., Kondo, Y., Lee, Y.K., Chung, J.K., Lam, H.Y.M., Biswas, K.H., 
Kuriyan, J., and Groves, J.T. (2019). A molecular assembly phase transition and kinetic 
proofreading modulate Ras activation by SOS. Science 363, 1098-1103. 

Hubstenberger, A., Courel, M., Bénard, M., Souquere, S., Ernoult-Lange, M., Chouaib, R., Yi, Z., 
Morlot, J.B., Munier, A., Fradet, M., et al. (2017). P-Body Purification Reveals the Condensation 
of Repressed mRNA Regulons. Mol. Cell 68, 144-157.e145. 

Hyman, A.A., and Simons, K. (2012). Cell biology. Beyond oil and water--phase transitions in 
cells. Science 337, 1047-1049. 

Hyman, A.A., Weber, C.A., and Jülicher, F. (2014). Liquid-liquid phase separation in biology. 
Annu. Rev. Cell Dev. Biol. 30, 39-58. 

Isom, D.G., Page, S.C., Collins, L.B., Kapolka, N.J., Taghon, G.J., and Dohlman, H.G. (2018). 
Coordinated regulation of intracellular pH by two glucose-sensing pathways in yeast. J. Biol. 
Chem. 293, 2318-2329. 

Jalihal, A.P., Pitchiaya, S., Xiao, L., Bawa, P., Jiang, X., Bedi, K., Parolia, A., Cieslik, M., 
Ljungman, M., Chinnaiyan, A.M., et al. (2020). Multivalent proteins rapidly and reversibly phase-
separate upon osmotic cell volume change. bioRxiv, 748293. 

Jin, M., Fuller, G.G., Han, T., Yao, Y., Alessi, A.F., Freeberg, M.A., Roach, N.P., Moresco, J.J., 
Karnovsky, A., Baba, M., et al. (2017). Glycolytic Enzymes Coalesce in G Bodies under Hypoxic 
Stress. Cell Rep. 20, 895-908. 

Joyner, R.P., Tang, J.H., Helenius, J., Dultz, E., Brune, C., Holt, L.J., Huet, S., Muller, D.J., and 
Weis, K. (2016). A glucose-starvation response regulates the diffusion of macromolecules. eLife 
5. 

Kapp, L.D., and Lorsch, J.R. (2004). The molecular mechanics of eukaryotic translation. Annu. 
Rev. Biochem. 73, 657-704. 

Keating, C.D. (2012). Aqueous phase separation as a possible route to compartmentalization of 
biological molecules. Acc. Chem. Res. 45, 2114-2124. 

Kedersha, N., Chen, S., Gilks, N., Li, W., Miller, I.J., Stahl, J., and Anderson, P. (2002). Evidence 
that ternary complex (eIF2-GTP-tRNA(i)(Met))-deficient preinitiation complexes are core 
constituents of mammalian stress granules. Mol Biol Cell 13, 195-210. 

Kedersha, N., Ivanov, P., and Anderson, P. (2013a). Stress granules and cell signaling: more than 
just a passing phase? Trends Biochem. Sci. 38, 494-506. 

Kedersha, N., Ivanov, P., and Anderson, P. (2013b). Stress granules and cell signaling: more than 
just a passing phase? Trends Biochem. Sci. 38, 494-506. 



 

  

34 

Kedersha, N.L., Gupta, M., Li, W., Miller, I., and Anderson, P. (1999). RNA-binding proteins 
TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress 
granules. J. Cell Biol. 147, 1431-1442. 

Kristjánsdóttir, K., Fogarty, E.A., and Grimson, A. (2015). Systematic analysis of the Hmga2 3' 
UTR identifies many independent regulatory sequences and a novel interaction between distal 
sites. RNA 21, 1346-1360. 

Larson, J.D., Rodgers, M.L., and Hoskins, A.A. (2014). Visualizing cellular machines with 
colocalization single molecule microscopy. Chem. Soc. Rev. 43, 1189-1200. 

Latonen, L. (2019). Phase-to-Phase With Nucleoli - Stress Responses, Protein Aggregation and 
Novel Roles of RNA. Front. Cell. Neurosci. 13, 151. 

Lee, T.C., Kang, M., Kim, C.H., Schultz, P.G., Chapman, E., and Deniz, A.A. (2016). Dual 
unnatural amino acid incorporation and click-chemistry labeling to enable single-molecule FRET 
studies of p97 folding. ChemBioChem 17, 981-984. 

Levene, M.J., Korlach, J., Turner, S.W., Foquet, M., Craighead, H.G., and Webb, W.W. (2003). 
Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299, 682-686. 

Li, J., and Liu, C. (2019). Coding or Noncoding, the Converging Concepts of RNAs. Front. Genet. 
10, 496. 

Lin, Y.H., Forman-Kay, J.D., and Chan, H.S. (2018). Theories for Sequence-Dependent Phase 
Behaviors of Biomolecular Condensates. Biochemistry 57, 2499-2508. 

Liu, C.C., and Schultz, P.G. (2010). Adding new chemistries to the genetic code. Ann. Rev. 
Biochem. 79, 413-444. 

Liu, Z., Lavis, L.D., and Betzig, E. (2015). Imaging live-cell dynamics and structure at the single-
molecule level. Mol. Cell 58, 644-659. 

Lloyd, R.E. (2013). Regulation of stress granules and P-bodies during RNA virus infection. Wiley 
Interdiscip. Rev. RNA 4, 317-331. 

Long, Y., Wang, X., Youmans, D.T., and Cech, T.R. (2017). How do lncRNAs regulate 
transcription? Sci. Adv. 3, eaao2110. 

Los, G.V., Encell, L.P., McDougall, M.G., Hartzell, D.D., Karassina, N., Zimprich, C., Wood, 
M.G., Learish, R., Ohana, R.F., Urh, M., et al. (2008). HaloTag: a novel protein labeling 
technology for cell imaging and protein analysis. ACS Chem. Biol. 3, 373-382. 

Lu, H.P., Xun, L., and Xie, X.S. (1998). Single-molecule enzymatic dynamics. Science 282, 1877-
1882. 

Luo, Y., Na, Z., and Slavoff, S.A. (2018). P-Bodies: Composition, Properties, and Functions. 
Biochemistry 57, 2424-2431. 



 

  

35 

Ma, W., and Mayr, C. (2018). A Membraneless Organelle Associated with the Endoplasmic 
Reticulum Enables 3'UTR-Mediated Protein-Protein Interactions. Cell 175, 1492-1506.e1419. 

Majumdar, A., Cesario, W.C., White-Grindley, E., Jiang, H., Ren, F., Khan, M.R., Li, L., Choi, 
E.M., Kannan, K., Guo, F., et al. (2012). Critical role of amyloid-like oligomers of Drosophila 
Orb2 in the persistence of memory. Cell 148, 515-529. 

Mayr, C., Hemann, M.T., and Bartel, D.P. (2007). Disrupting the pairing between let-7 and Hmga2 
enhances oncogenic transformation. Science 315, 1576-1579. 

McNally, J.G. (2008). Quantitative FRAP in analysis of molecular binding dynamics in vivo. 
Methods Cell Biol. 85, 329-351. 

Mitrea, D.M., and Kriwacki, R.W. (2016). Phase separation in biology; functional organization of 
a higher order. Cell Commun. Signal 14, 1. 

Moffitt, J.R., Chemla, Y.R., and Bustamante, C. (2010). Methods in statistical kinetics. Methods 
in Enzymology 475, 221-257. 

Monty, K.J., Litt, M., Kay, E.R., and Dounce, A.L. (1956). Isolation and properties of liver cell 
nucleoli. J. Biophys. Biochem. Cytol. 2, 127-145. 

Mukherji, S., Ebert, M.S., Zheng, G.X., Tsang, J.S., Sharp, P.A., and van Oudenaarden, A. (2011). 
MicroRNAs can generate thresholds in target gene expression. Nat. Genet. 43, 854-859. 

Munder, M.C., Midtvedt, D., Franzmann, T., Nüske, E., Otto, O., Herbig, M., Ulbricht, E., Müller, 
P., Taubenberger, A., Maharana, S., et al. (2016). A pH-driven transition of the cytoplasm from a 
fluid- to a solid-like state promotes entry into dormancy. eLife 5. 

Noueiry, A.O., Diez, J., Falk, S.P., Chen, J., and Ahlquist, P. (2003). Yeast Lsm1p-7p/Pat1p 
deadenylation-dependent mRNA-decapping factors are required for brome mosaic virus genomic 
RNA translation. Mol. Cell Biol. 23, 4094-4106. 

Owen, I., and Shewmaker, F. (2019). The Role of Post-Translational Modifications in the Phase 
Transitions of Intrinsically Disordered Proteins. Int. J. Mol. Sci. 20. 

Pakos-Zebrucka, K., Koryga, I., Mnich, K., Ljujic, M., Samali, A., and Gorman, A.M. (2016). The 
integrated stress response. EMBO Rep. 17, 1374-1395. 

Palazzo, A.F., and Lee, E.S. (2015). Non-coding RNA: what is functional and what is junk? Front. 
Genet. 6, 2. 

Posey, A.E., Holehouse, A.S., and Pappu, R.V. (2018). Phase Separation of Intrinsically 
Disordered Proteins. Methods Enzymol. 611, 1-30. 

Preiss, T., and Hentze, M. (2003). Starting the protein synthesis machine: eukaryotic translation 
initiation. Bioessays 25, 1201-1211. 



 

  

36 

Protter, D.S.W., Rao, B.S., Van Treeck, B., Lin, Y., Mizoue, L., Rosen, M.K., and Parker, R. 
(2018). Intrinsically Disordered Regions Can Contribute Promiscuous Interactions to RNP 
Granule Assembly. Cell Rep. 22, 1401-1412. 

Quiroz, F.G., Fiore, V.F., Levorse, J., Polak, L., Wong, E., Pasolli, H.A., and Fuchs, E. (2020). 
Liquid-liquid phase separation drives skin barrier formation. Science 367. 

Rai, A.K., Chen, J.X., Selbach, M., and Pelkmans, L. (2018). Kinase-controlled phase transition 
of membraneless organelles in mitosis. Nature 559, 211-216. 

Reineke, L.C., and Lloyd, R.E. (2013). Diversion of stress granules and P-bodies during viral 
infection. Virology 436, 255-267. 

Riback, J.A., Zhu, L., Ferrolino, M.C., Tolbert, M., Mitrea, D.M., Sanders, D.W., Wei, M.T., 
Kriwacki, R.W., and Brangwynne, C.P. (2020). Composition-dependent thermodynamics of 
intracellular phase separation. Nature 581, 209-214. 

Ritter, J.G., Veith, R., Veenendaal, A., Siebrasse, J.P., and Kubitscheck, U. (2010). Light sheet 
microscopy for single molecule tracking in living tissue. PLOS One 5, e11639. doi: 
11610.11371/journal.pone.0011639. 

Roy, R., Hohng, S., and Ha, T. (2008). A practical guide to single-molecule FRET. Nat. Methods 
5, 507-516. 

Sanders, D.W., Kedersha, N., Lee, D.S.W., Strom, A.R., Drake, V., Riback, J.A., Bracha, D., 
Eeftens, J.M., Iwanicki, A., Wang, A., et al. (2020). Competing Protein-RNA Interaction 
Networks Control Multiphase Intracellular Organization. Cell 181, 306-324.e328. 

Schmidt, A., Gao, G., Little, S.R., Jalihal, A.P., and Walter, N.G. (2020). Following the messenger: 
Recent innovations in live cell single molecule fluorescence imaging. Wiley Interdiscip. Rev. RNA 
11, e1587. 

Seitz, H. (2009). Redefining microRNA targets. Curr. Biol. 19, 870-873. 

Shen, H., Tauzin, L.J., Baiyasi, R., Wang, W., Moringo, N., Shuang, B., and Landes, C.F. (2017). 
Single particle tracking: From theory to biophysical applications. Chem. Rev. 117, 7331-7376. 

Si, K., Choi, Y.B., White-Grindley, E., Majumdar, A., and Kandel, E.R. (2010). Aplysia CPEB 
can form prion-like multimers in sensory neurons that contribute to long-term facilitation. Cell 
140, 421-435. 

Su, X., Ditlev, J.A., Hui, E., Xing, W., Banjade, S., Okrut, J., King, D.S., Taunton, J., Rosen, M.K., 
and Vale, R.D. (2016). Phase separation of signaling molecules promotes T cell receptor signal 
transduction. Science 352, 595-599. 



 

  

37 

Sun, X., Zhang, A., Baker, B., Sun, L., Howard, A., Buswell, J., Maurel, D., Masharina, A., 
Johnsson, K., Noren, C.J., et al. (2011). Development of SNAP-tag fluorogenic probes for wash-
free fluorescence imaging. ChemBioChem 12, 2217-2226. 

Tena-Solsona, M., Wanzke, C., Riess, B., Bausch, A.R., and Boekhoven, J. (2018). Self-selection 
of dissipative assemblies driven by primitive chemical reaction networks. Nat. Commun. 9, 2044. 

Thandapani, P., O'Connor, T.R., Bailey, T.L., and Richard, S. (2013). Defining the RGG/RG 
motif. Mol. Cell 50, 613-623. 

Thorn, K. (2017). Genetically encoded fluorescent tags. Mol. Biol. Cell 28, 848-857. 

Tian, S., Curnutte, H.A., and Trcek, T. (2020). RNA Granules: A View from the RNA Perspective. 
Molecules 25. 

Tokunaga, M., Imamoto, N., and Sakata-Sogawa, K. (2008). Highly inclined thin illumination 
enables clear single-molecule imaging in cells. Nat. Methods 5, 159-161. 

Toomre, D. (2012). Cellular imaging using total internal reflection fluorescence microscopy: 
Theory and instrumentation. CSH Protocols 2012, 414-424. 

Trcek, T., Douglas, T.E., Grosch, M., Yin, Y., Eagle, W.V.I., Gavis, E.R., Shroff, H., Rothenberg, 
E., and Lehmann, R. (2020). Sequence-Independent Self-Assembly of Germ Granule mRNAs into 
Homotypic Clusters. Mol. Cell 78, 941-950.e912. 

Tsai, A., Puglisi, J.D., and Uemura, S. (2016). Probing the translation dynamics of ribosomes using 
zero-mode waveguides. Prog. Mol. Biol. Transl. Sci. 139, 1-43. 

Tsai, M.C., Manor, O., Wan, Y., Mosammaparast, N., Wang, J.K., Lan, F., Shi, Y., Segal, E., and 
Chang, H.Y. (2010). Long noncoding RNA as modular scaffold of histone modification 
complexes. Science 329, 689-693. 

Turoverov, K.K., Kuznetsova, I.M., Fonin, A.V., Darling, A.L., Zaslavsky, B.Y., and Uversky, 
V.N. (2019). Stochasticity of Biological Soft Matter: Emerging Concepts in Intrinsically 
Disordered Proteins and Biological Phase Separation. Trends Biochem. Sci. 44, 716-728. 

Vanderweyde, T., Youmans, K., Liu-Yesucevitz, L., and Wolozin, B. (2013). Role of stress 
granules and RNA-binding proteins in neurodegeneration: a mini-review. Gerontology 59, 524-
533. 

Vernon, R.M., Chong, P.A., Tsang, B., Kim, T.H., Bah, A., Farber, P., Lin, H., and Forman-Kay, 
J.D. (2018). Pi-Pi contacts are an overlooked protein feature relevant to phase separation. eLife 7. 

Vonaesch, P., Sansonetti, P.J., and Schnupf, P. (2017). Immunofluorescence Analysis of Stress 
Granule Formation After Bacterial Challenge of Mammalian Cells. J. Vis. Exp. 

Wahl, M.C., Will, C.L., and Lührmann, R. (2009). The spliceosome: design principles of a 
dynamic RNP machine. Cell 136, 701-718. 



 

  

38 

Walter, N.G., Huang, C.Y., Manzo, A.J., and Sobhy, M.A. (2008). Do-it-yourself guide: How to 
use the modern single-molecule toolkit. Nat. Methods 5, 475-489. 

Wang, J., Caban, K., and Gonzalez, R.L., Jr. (2015). Ribosomal initiation complex-driven changes 
in the stability and dynamics of initiation factor 2 regulate the fidelity of translation initiation. J. 
Mol. Biol. 427, 1819-1834. 

Wang, J., Choi, J.M., Holehouse, A.S., Lee, H.O., Zhang, X., Jahnel, M., Maharana, S., Lemaitre, 
R., Pozniakovsky, A., Drechsel, D., et al. (2018). A Molecular Grammar Governing the Driving 
Forces for Phase Separation of Prion-like RNA Binding Proteins. Cell 174, 688-699.e616. 

Wilson, E.B. (1896). The cell, in development and inheritance (The Macmillan Co.: New York). 

Wilson, E.B. (1899). The structure of protoplasm. Science 10, 33-45. 

Yang, P., Mathieu, C., Kolaitis, R.M., Zhang, P., Messing, J., Yurtsever, U., Yang, Z., Wu, J., Li, 
Y., Pan, Q., et al. (2020). G3BP1 Is a Tunable Switch that Triggers Phase Separation to Assemble 
Stress Granules. Cell 181, 325-345.e328. 

Yoo, H., Triandafillou, C., and Drummond, D.A. (2019). Cellular sensing by phase separation: 
Using the process, not just the products. J. Biol. Chem. 294, 7151-7159. 

Zhou, H.X., Nguemaha, V., Mazarakos, K., and Qin, S. (2018). Why Do Disordered and Structured 
Proteins Behave Differently in Phase Separation? Trends Biochem. Sci. 43, 499-516. 

 

 



 

 
39 

 Dynamic Recruitment of Single RNAs to Processing 
Bodies Depends on RNA Functionality2

2.1. Abstract 

Cellular RNAs often colocalize with cytoplasmic, membrane-less ribonucleoprotein (RNP) 

granules enriched for RNA processing enzymes, termed processing bodies (PBs). Here, we track 

the dynamic localization of individual miRNAs, mRNAs and long non-coding RNAs (lncRNAs) 

to PBs using intracellular single-molecule fluorescence microscopy. We find that unused miRNAs 

stably bind to PBs, whereas functional miRNAs, repressed mRNAs and lncRNAs both transiently 

and stably localize within either the core or periphery of PBs, albeit to different extents. 

Consequently, translation potential and 3’ versus 5’ placement of miRNA target sites significantly 

impact PB-localization dynamics of mRNAs. Using computational modeling and supporting 

experimental approaches we show that partitioning into the PB phase attenuates mRNA silencing, 

suggesting that physiological mRNA turnover occurs predominantly outside PBs. Our data support 

a PB role instead in sequestering unused miRNAs for surveillance and provides a framework for 

investigating the dynamic assembly of RNP granules by phase separation at single-molecule 

resolution.  

 
2 The contents of this chapter have been published as: 
Pitchiaya, S., Mourao, M.D.A., Jalihal, A.P., Xiao, L., Jiang, X., Chinnaiyan, A.M., Schnell, S., and Walter, 
N.G. (2019). Dynamic Recruitment of Single RNAs to Processing Bodies Depends on RNA Functionality. 
Mol. Cell 74, 521-533.e526. 

S.P. designed and executed the study. M.D.A.M. and S.S. performed the kinetic modeling. A.P.J. performed 
immunofluorescence assays. L.X. and X.J. created and validated mRNA and lncRNA constructs. S.P., S.S., 
A.M.C. and N.G.W. conceived the study and all authors wrote the manuscript together. 
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2.2. Introduction 

Sub-cellular, membrane-free granules have emerged as critical components of normal 

biology and pathophysiology (Banani et al., 2017b; Shin and Brangwynne, 2017b), owing to their 

key role in spatial regulation of gene expression (Martin and Ephrussi, 2009; Spector, 2006). 

Processing bodies (PBs) are one such class of ribonucleoprotein (RNP) granules that persist during 

cellular homeostasis and are enriched for RNA processing and degradation enzymes (Eulalio et 

al., 2007a; Parker and Sheth, 2007). These granules are observed in almost all eukaryotes, ranging 

from yeast to mammals, and have been implicated in multiple biological processes, including 

oogenesis, progression through early development, and mediation of neuroplasticity (Buchan, 

2014).  

More specifically, mammalian PBs have been functionally associated with storage, 

translational repression and/or degradation of mRNAs (Buchan, 2014; Hubstenberger et al., 2017a; 

Liu et al., 2005a; Schutz et al., 2017), as a result of which PBs are predominantly composed of 

translationally repressed messenger RNAs (mRNAs), mRNA-regulating miRNAs and, to a lesser 

extent, regulatory long non-coding RNAs (lncRNAs). Such a large RNP complex is hypothesized 

to assemble via RNA dependent phase separation (Banani et al., 2017b), wherein multiple 

translationally repressed RNPs are concentrated within dense foci through strong multivalent 

interactions and individual or oligomeric RNPs loosely interact with these dense regions to create 

dynamic shells (Cougot et al., 2012; Van Treeck and Parker, 2018). Consequently, PBs, as whole 

granules, display a wide array of dynamic behaviors (Aizer et al., 2008b), but the intra- and peri-

granular RNP dynamics and RNP recruitment – processes that govern the maintenance, maturation 

and putative gene regulatory functions of PBs – are largely unknown. While mRNP-PB 
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colocalization and mRNA regulation have been shown to be tightly correlated (Buchan, 2014; 

Parker and Sheth, 2007), the question of whether mRNPs are degraded at microscopically visible, 

and thus relatively large (> 250 nm), PBs also remains unresolved. 

Here, we dissect the fundamental principles governing the dynamic localization of 

functionally distinct classes of RNPs at phase separated PBs and unravel the functional 

consequence of RNA-PB colocalization. To this end, we developed methodologies to 

simultaneously observe single RNA molecules (miRNAs, mRNAs or lncRNAs) and individual PB 

foci inside both living and fixed human cells. We demonstrate that a majority of miRNAs and 

repressed mRNAs are stably anchored within PBs, whereas translationally active mRNAs and 

lncRNAs associate with PBs only transiently, suggesting a strong correlation between PB-

localization and RNA class. While miRNAs and mRNAs localized at core or shells of PBs, 

lncRNAs were predominantly found at PB-shells. Furthermore, we find that unused (target-less) 

miRNAs are enriched at PB and that the 3’ versus 5’terminal positioning of cis-regulatory miRNA 

response elements (MREs) dictates the PB localization patterns and dynamics of mRNAs. Finally, 

in silico modeling and experimental validation through hyperosmotic-stress induced phase 

separation suggest that the stochastic collision of mRNAs with freely diffusing, sub-microscopic 

PBs leads to more efficient mRNA regulation than their recruitment to microscopic PBs.  Taken 

together, our observations reveal the nanoscale principles that govern the compositional 

complexity of mesoscale RNP granules, and a novel suggested function for PBs in accumulating 

target-less miRNAs for miRNA surveillance. 
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2.3. Results 

 Super-resolved single-molecule fluorescence microscopy probes 

RNA-PB interactions 

To dissect the localization dynamics of RNAs at and near PBs, we created a U2-OS cell 

line that stably expressed GFP tagged Dcp1a, an mRNA decapping co-activator and PB marker 

(Aizer et al., 2008b; Hubstenberger et al., 2017a). We selected a clone (hereon termed UGD) with 

similar number and composition (based on colocalization with other PB markers) of Dcp1a foci as 

endogenously found in U2-OS cells (Figure 2-1A-D). Next, mature regulatory miRNAs, whose 

size (~22 nt per strand) precludes endogenous labeling strategies (Pitchiaya et al., 2014), were 

chemically synthesized with a fluorescent Cy5 dye at the 3’end of one of their two complementary 

strands, typically the guide strand. Since transfection results in the sequestration of RNA within 

subcellular vesicles (Cardarelli et al., 2016), we chose to deliver these miRNAs via microinjection 

(Figure 2-2A-C), which enables controlled delivery (Figure 2-1E-G) of physiologically relevant 

miRNA molecules per cell (~10-20,000 copies, i.e. 1/10th the total number of miRNAs per cell)  

and defines a clear starting point for our assays by instantaneously exposing RNAs to the cellular 

milieu (Pitchiaya et al., 2012; Pitchiaya et al., 2013; Pitchiaya et al., 2017). We confirmed that 

fluorophore labeling and microinjection did not affect the gene-repressive function (Figure 2-1H-

K) of let-7 miRNA (l7/l7* and l7-Cy5/l7*) (Pitchiaya et al., 2012), alter the sub-cellular abundance 

and behavior of PBs (Figure 2-1J-K), or induce stress granule (SG) formation (Figure 2-1L-O). 

We then combined a super-registration fluorescence microscopy-based tool (Grunwald and 

Singer, 2010) that measures intermolecular distances of spectrally distinct fluorescent molecules 

with intracellular single molecule, high-resolution localization and counting 
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(iSHiRLoC)(Pitchiaya et al., 2012; Pitchiaya et al., 2017a; Pitchiaya et al., 2013). Consequently, 

we were able to visualize miRNA-PB interactions in living cells and precisely quantify miRNA 

stoichiometry within PBs in fixed cells (Methods, Figure 2-2A-C and Supplementary movie 1). At 

a spatial accuracy of 30 nm and temporal resolution of 50 ms, we can visualize large (> 400 kDa) 

miRNPs, such as miRISC:mRNP complexes, in living cells and all miRNPs, irrespective of RNP 

size, in fixed cells (Figure 2-1P) (Pitchiaya et al., 2012; Pitchiaya et al., 2017a; Pitchiaya et al., 

2013).  Using this new tool, we found that the tumor suppressive let-7 miRNA (l7-Cy5/l7*) 

diffused ~100-1,000-fold slower at PBs compared to in the cytosol (Figure 2-2G), supporting the 

notion that miRNAs physically dock to form higher order complexes at PBs and consistent with 

previous ensemble observations of miRNA accumulation at PBs (Liu et al., 2005a; Pillai et al., 

2005). However, we additionally observed that PB-localized miRNAs distributed between (at 

least) two populations of diffusion coefficients or molecular weights. Complementarily, fixed cell 

analysis showed that cytoplasmic l7-Cy5/l7* miRNA were predominantly monomeric, wherein a 

significant minority of monomeric (~40%) and a predominant fraction of multimeric (~60%) RNA 

complexes (Figure 2-2H) were observed at PBs. Moreover, the PB dynamics and localization 

extents of l7-Cy5/l7* in GFP-Dcp1a expressing HeLa cells were almost identical to those in UGD 

cells (Figure 2-1Q-R), underscoring the generality of our observations across cellular systems. Our 

data suggest that miRNPs of diverse sizes, and perhaps composition, localize to PBs via potentially 

distinct mechanisms, with the possibility to yield distinct regulatory outcomes.  
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Figure 2-1 Validation of in situ miRNA imaging system. (A) Representative pseudocolored and contrast-adjusted 
images of U2-OS cells stained for endogenous Dcp1a (green) via immunofluorescence and UGD cells expressing 
GFP-Dcp1a (green). Nucleus is stained with DAPI (blue). Dotted line, cell outline. Scale bar, 10 µm. (B) Scatter plot 
depicting the number of endogenous Dcp1a or GFP-Dcp1a foci in U2-OS and UGD cells respectively (n = 3, 60 cells, 
N.S., not significant based on two-tailed, unpaired Student’s t-test). (C) Representative pseudocolored and contrast-
adjusted image of UGD cells expressing GFP-Dcp1a (green) and stained for Rck (red). Nucleus is stained with DAPI 
(blue). Dotted line, cell outline. Scale bar, 10 µm. Orange 5.3 x 5.3 µm2 inset is zoomed out and deconvolved into 
individual colors. (D) Mean colocalization percentage of endogenous Dcp1a foci from U2-OS cells or GFP-Dcp1a 
from UGD cells respectively, with other PB markers. Color coded scale-bar is also depicted (n = 3, ≥ 15 cells per 
sample). (E-G) Microinjection-based titration assay. (E) Schematic of microinjection setup, wherein Cy5 labeled 
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double stranded DNA (dl7-Cy5/dl7*, red) bearing the same sequence as l7-Cy5/l7* miRNA was co-microinjected 
along with 500 kDa FITC-Dextran (green), exclusively localizes to the cytosol. (F) Representative pseudocolored and 
contrast-adjusted images of U2-OS cells microinjected with various concentrations of dl7-Cy5/dl7*. Scale bar, 10 µm. 
(G) Plot depicting the relationship between dl7-Cy5/dl7* concentration (Conc., µM) in the microinjection solution 
and the number of molecules detected per cell (# Mols / Cell). Dotted line represents fitted line. Equation of fitted line 
and goodness of fit (R2) are also depicted. (H-K) miRNA activity assays. (H) Schematic of microinjection-based 
miRNA activity assay. (I) Representative pseudocolored and contrast-adjusted image of U2-OS cells expressing 
mCherry (mCh, red) reporter gene and GFP normalization gene (green), also containing 10 kDa cascade-blue dextran 
(CB-Dex, cyan) and the miRNA (Scr/Scr* - scrambled control, l7/l7* - let-7 miRNA) of interest. Scale bar, 10 µm. 
(J) Scatter plot depicting the mCh : GFP intensity ratio for various conditions (n = 3 replicates, total 30 cells; **p < 
0.001 based on two-tailed, unpaired Student’s t-test). Mean and s.e.m are depicted. (K) Luciferase reporter assays 
represented as the ratio of luminescence form a firefly luciferase (FL) reporter gene containing 6x let-7 MREs (FL-
l7-6x) and a renilla luciferase (RL) normalization gene in U2-OS cells (n = 12 replicates, ***p < 0.0001 based on two-
tailed, unpaired Student’s t-test). Mean and s.e.m are depicted. (L-O) Microinjection does not affect sub-cellular 
behavior of PBs and does not induce stress granules. Number (L) and diffusion constants (M) of PBs in cells that were 
not injected (Not Inj., NI) or injected (Inj., I). Representative pseudocolored and contrast-adjusted images of U2-OS 
cells stably expressing GFP-G3BP (green), a stress granule (SG) marker, and RFP-Dcp1a (red), which were not 
injected (NI), treated with sodium arsenite (NI + NaAsO2) or co-injected with CB-Dex (cyan) and l7-Cy5/l7* are 
shown in N. Scale bar, 10 µm. Quantification of the number of GFP or RFP foci per cell is shown in O. (P) Expected 
phenotype of distinct molecular species in iSHiRLoC assays. LCI, live cell imaging; FCI, fixed cell imaging. (Q-R) 
Dynamics and stoichiometry of l7-Cy5/l7* in GFP-Dcp1a expressing HeLa cells are almost identical to those in UGD 
cells. (Q) Distribution of l7-Cy5/l7* miRNA diffusion constants in PB and Cyt within living HeLa cells that are 
expressing GFP-Dcp1a. Green area on the plot depicts the range of PB diffusion constants (n = 3, 13 cells). Dotted 
blue line represents distribution of l7-Cy5/l7* miRNA diffusion constants within UGD cells, as in Figure 1D. (R) 
Distribution of l7-Cy5/l7* miRNA stoichiometry as monomeric (Mono, 1 photobleaching step) or multimeric (Multi, 
≥ 2 photobleaching steps) complexes in PB and Cyt within fixed HeLa cells that are expressing GFP-Dcp1a (n = 4, 
21 cells).  Dotted blue line represents stoichiometry in UGD cells, as in Figure 2-1F. 
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Figure 2-2 A super-resolution imaging tool for probing RNA-granule dynamics and stoichiometry. (A) Schematic of 
iSHiRLoC assay for probing miRNA-PB dynamics and colocalizations. (B and C) Representative pseudo-colored and 
contrast-adjusted images from live-cell imaging (B) and fixed cell imaging (C) assays of UGD cells expressing GFP-
labeled PBs (green) that were microinjected with l7-Cy5/l7* miRNA (red) and imaged 2 h post injection. Scale bar, 
10 µm. (D) Representative single-particle trajectories of PBs (green) and l7-Cy5/l7* miRNA (red) from yellow and 
magenta boxes in B, representing diffusing miRNAs in PBs and in the cytoplasm (Cyt) respectively. Scale bar, 1 µm. 
Dotted green circle represents PB outline in the first frame of the movie. Distribution of l7-Cy5/l7* miRNA diffusion 
constants in PB and Cyt are also depicted. Green area on the plot depicts the range of PB diffusion constants (n = 3, 
15 cells). (E) Zoomed-in view of orange and violet boxes in C, from fixed UGD cells. Scale bar, 2 µm. Step-wise 
photobleaching trajectories PB- and Cyt-localized l7-Cy5/l7* is also shown. (F) Distribution of l7-Cy5/l7* miRNA 
stoichiometry as monomeric (Mono, 1 photobleaching step) or multimeric (Multi, ≥ 2 photobleaching steps) 
complexes in PB and Cyt within fixed UGD cells (n = 3, 15 cells). 

 miRNAs stably or transiently localize at the core or periphery of 

PBs  

We next sought to understand whether the observed diverse miRNP diffusion and assembly 

states at PBs are based on the type of miRNA-PB interaction. To this end, we first inspected 

individual trajectories of PB-localized l7-Cy5/l7* in live cells to discover diversities in the kinetics 

and modalities of miRNA-PB interactions. We identified five distinct types RNA-PB interactions, 

each of which could be classified by a unique combination of diffusion coefficient (D), 

photobleaching corrected dwell time (T) and percentage of an RNA track colocalizing with a PB 

(P) (Figure 2-3A, 2-4A and Supplementary movie 2): 1) RNAs stably anchoring at PBs (D = 

0.0001 – 0.1 µm2/s, T ≥ 15 s, P = 100%, Supplementary movie 2); 2) RNAs displaying significant 

dynamics within PBs (D = 0.001 – 0.1 µm2/s, T ≥15 s, P = 100%, Supplementary movie 2); 3) 

RNAs entering PBs from the cytosol (D = 0.0001 – 0.01 µm2/s, T = 7.9 ± 0.7 s, P = 52 – 89%, 

Supplementary movie 2); 4) RNAs transiently probing PBs (D = 0.0001 – 1 µm2/s, T = 0.9 ± 0.1 

s, P = 3 – 72%, Supplementary movie 2); and 5) RNAs exiting a PB into the cytosol (D = 0.0001 

– 1 µm2/s, T = 0.8 ± 0.1 s, P = 7 – 83%, Supplementary movie 2). The first three and latter two 

interaction types depict what we refer to as stable and transient RNA-PB localizations, 

respectively. These data suggest that the diffusion rate and dwell times of miRNPs defines the type 
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of interaction with PBs. Next, we quantified the relative localization of PB-resident proteins or a 

few control proteins with respect to GFP-Dcp1a (Figure 2-4B). Using this intra-granular 

localization atlas as a template, we spatially mapped the localization of miRNPs with reference to 

PB boundaries and found that miRNAs localized near the core or the periphery/shell of PBs in 

fixed cells (Figure 2-3B). We then performed ratiometric quantification of core- or shell-localized 

immunofluorescence (IF) signal at PBs and the adjacent cytosol (Figure 2-4C), which yields 

similar information as the average percentage of IF signal within PBs per cell but also accounts 

for any heterogeneities between PBs within the same cell, and created a small compendia of 

proteins that were either enriched ( > 1) or depleted ( < 1) from PBs (Figure 2-4C).  Combining 

this new quantification tool with single-molecule counting, we discovered that miRNAs were 

either clustered (enriched within PBs compared to the adjacent cytosol) or dispersed at PBs (Figure 

2-3C). As a control, we also probed dl7-Cy5/dl7*, a control DNA oligonucleotide of the same 

sequence as let-7 miRNA, but incompetent for RNA silencing. In contrast to l7-Cy5/l7*, and as 

expected, we found that dl7-Cy5/dl7* neither localized to nor was enriched at/near PBs (Figure 2-

3D). Taken together, these findings unravel a potentially tight relationship between miRNP 

composition and type of miRNP-PB interaction, and the requirement for small double-stranded 

(ds) oligonucleotides to assemble into large RNPs to stably interact with PBs.  
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Figure 2-3 miRNAs show diverse spatiotemporal localization patterns at PB core and periphery. (A) Schematic and 
representative time-lapsed images of PBs (green) and l7-Cy5/l7* miRNAs (red) in live UGD cells. Scale bar, 1 µm. 
Embedded numbers in green/red overlay images (far-left and far right) represent time in seconds. Dotted green circles 
in red panels have been included to aid in the identification of PB boundaries. White arrow points to an individual 
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RNA particle. Stable RNA-PB association patterns (static, dynamic and recruited) are represented in orange whereas 
transient ones (probe and escape) are represented in blue. nPB = number of track localizations within PBs, nCyt = 
number of track localizations in the cytosol. (B)  Schematic and representative images of PBs (green) and l7-Cy5/l7* 
(red) representing the localization of miRNAs within shells or cores of PBs in fixed UGD cells. Scale bar, 2 µm. 
Dotted green and red circles represent boundaries of PBs and miRNAs respectively. Relative localization (RL) values 
of l7-Cy5/l7* for these representative colocalizations are embedded in the green panels. (C)  Schematic and 
representative images of PBs (green) and l7-Cy5/l7* (red) representing the enrichment of miRNAs in PBs within fixed 
UGD cells. Dotted yellow and red circles represent PB-miRNA colocalization and cytoplasmic miRNAs respectively. 
Enrichment of l7-Cy5/l7* per PB (EI) for these representative colocalizations are embedded in the green panels. 
Images are scaled as in B. (D) Scatter plot representing the % of RNA or DNA molecules that colocalize with PBs per 
fixed UGD cell (top). Each dot represents a cell. Scatter plot of enrichment of molecules per PB (below) is also shown. 
Each dot represents an individual PB in fixed UGD cells.  n = 3, > 15 cells, ***p ≤ 0.0001 by two-tailed, unpaired 
Student’s t-test.  Grey dotted line depicts an EI of one, which demarcates PB-enriched (> 1) from PB-depleted (< 1) 
factors. See also Figure S2. 

 

Figure 2-4 Characterization of miRNA-PB interaction modes and localization patterns (Related to Figure 2). (A) 
Distribution of diffusion constants (top), Dwell time statistics (middle) and distribution of the percentage of track 
length colocalizing with PB (bottom) for each RNA-PB interaction type. Dotted black line represents duration of 
acquisition. Photobleaching corrected dwell times that were greater than acquisition window were rounded to the 
acquisition time span (n = 3, 15 cells). (B) Schematic (left) of relative localization (RL) calculation. dCR = distance 
of RNA centroid from PB centroid, dRB = distance of RNA centroid from PB boundary, dCB = distance of PB centroid 
from PB boundary. Representative pseudoclored and contrast-adjusted regions of UGD cells (middle) with GFP-
Dcp1a (green), stained for eIF4G, eIF4E or Dcp1a (red). Green and red dotted circles represent boundaries of PBs and 
Rck particles respectively. Scale bar, 2 µm. Relative localization values of top and bottom panels are represented 
within the images. Distribution of protein localization relative to GFP-Dcp1a, which were used to define PB center 
and boundary (n = 3, ≥ 15 cells per sample). Black dotted line represents the RL limit for core localizations. Grey 
boxes denotes the protein factors which were evenly dispersed across the entire cytosol and consequently did not have 
any detectable features (local maxima) for RL calculations. (C) Schematic (left) of enrichment index (EI) calculation. 
Representative pseudoclored and contrast-adjusted regions of UGD cells (middle) with GFP-Dcp1a (green), stained 
for Rck, GAPDH or rRNA (red,). Yellow and red dotted circles represent PB-localized and cytoplasmic signal 
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respectively. Scale bar, 2 µm. EI of top and bottom panels are represented within the images. Scatter plot of EI (right) 
for IF signal at PBs. Each dot represents an individual PB colocalization event (n = 3, ≥ 15 cells per sample). Grey 
dotted line depicts an EI of one, which demarcates PB-enriched (> 1) from PB-depleted (< 1) factors. 

 mRNA-targeting and target-free miRNAs are both enriched at PBs 

but display distinct PB localization dynamics 

Based on our observations that a functionally repressive l7-Cy5/l7* miRNA dynamically 

localized to PBs via diverse modes (Figure 2-3), we hypothesized that the regulatory potential of 

miRNAs impacts their PB localization. To test this hypothesis, we compared the PB-localization 

of functional l7-Cy5/l7* with l7/l7*-Cy5, let-7 miRNA Cy5-labeled on the passenger instead of 

the guide strand, where the passenger strand has very few endogenous targets and is at least 8-fold 

less stable than the guide strand, and with ml7-Cy5/ml7*, a seed-sequence mutated let-7 miRNA 

variant that cannot bind endogenous let-7 targets and is at least 4-fold less stable than let-7 miRNA 

(Figure 2-5A) (Pitchiaya et al., 2017a). Strikingly, the fractional extents of PB localization and 

enrichment were significant and similar for l7-Cy5/l7*, l7/l7*-Cy5 and ml7-Cy5/l7* (Figure 2-

5B-C). Similar trends (Figure 2-6A-C) were observed for all other small dsRNAs, namely an 

oncogenic miRNA miR-21 (m21-Cy5/m21*), an artificial miRNA cxcr4 (cx-Cy5/cx*) and 

scrambled control dsRNA (Scr-Cy5/Scr*). Considering that each of these dsRNAs have distinct 

regulatory potential and intracellular stability (Pitchiaya et al., 2017a), our data strongly suggest 

that miRNA functionality is not necessary for PB localization. However, ml7-Cy5/ml7*, l7/l7*-

Cy5, cx-Cy5/cx* and Scr-Cy5/Scr* rarely displayed any transient interactions (Figure 2-5D and 

Figure 2-6D), but instead exhibited monophasic dwell time distributions, residing in PBs for ≥ 15 

s (Figure 2-5D and 2-6), significantly different from the PB-dynamics of l7-Cy5/l7* and m21-

Cy5/m21*. These observations suggest that transient PB interactions of a miRNA are correlated 

with its ability to target mRNAs, whereas unused (target-less) miRNAs are more stably recruited 
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to PBs. Further corroborating this notion, we found that, upon co-microinjecting its cognate (RL-

ml7-2x) mRNA, the mRNA-targeting ml7-Cy5/ml7* exhibited a substantial 5-fold increase in the 

fraction of transient interactions, resulting in a biphasic dwell time distribution with Tfast = 0.7 s 

and Tslow = 13.2 s (Figure 2-5E-F and 2-6C-D). Taken together, our results are consistent with PBs 

stably capturing target-less, non-coding miRNAs for surveillance, and suggest that instead 

transient PB interactions are dominant for functional miRNAs engaging mRNA targets. 

 

Figure 2-5 miRNA functionality influences miRNA-PB interaction kinetics. (A) Schematic of miRNAs used. P, lines 
and dots represent 5` phosphate, Watson-crick base pairing and wobble pairing respectively. (B) Scatter plot 
representing the % of RNA or DNA molecules that colocalize with PBs per fixed UGD cell. Each dot represents a 
cell. (C) Scatter plot of EI for different constructs. Each dot represents an individual PB in fixed UGD cells. Grey 
dotted line depicts an EI of one, which demarcates PB-enriched (> 1) from PB-depleted (< 1) factors. (D) Relative 
distribution of stable and transient interactions per live UGD cell for different miRNAs. (E) Comparison of fast and 
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slow miRNA-PB interaction kinetics in live UGD cells. (F) Relative distribution of stable and transient interactions 
per live UGD cell for ml7-Cy5/ml7* RNAs co-injected with a seed mismatched (RL-l7-2x) or seed matched (RL-
ml7-2x) mRNA target. (G) Comparison of fast and slow ml7-Cy5/ml7*-PB interaction kinetics in the presence of a 
seed mismatched (RL-l7-2x) or seed matched (RL-ml7-2x) mRNA target in live UGD cells. n = 3, 15 cells per sample, 
NS = not significant, **p ≤ 0.001 or ***p ≤ 0.0001 by two-tailed, unpaired Student’s t-test. See also Figure S3. 

 

Figure 2-6 PB-localization and interaction kinetics of different miRNAs, in the presence or absence of cognate targets 
(Related to Figure 3). (A) Schematic of additional miRNAs used. P, lines and dots represent 5` phosphate, Watson-
crick base pairing and wobble pairing respectively. (B) Scatter plot representing the % of miRNA molecules that 
colocalize with PBs per fixed UGD cell. Each dot represents a cell. (C) Scatter plot of EI for different constructs. Each 
dot represents an individual miRNA-PB colocalization event in fixed UGD cells. (D) Relative distribution of stable 
and transient interactions per live UGD cell for different miRNAs. (E) Dwell time distribution of all miRNAs at PBs 
in live UGD cells. Black line depicts single or double exponential fit. Inset, dwell time distribution of miRNAs inside 
cells, prior to photobleaching. Black line depicts single exponential fit. (F) Comparison of fast and slow miRNA-PB 
interaction kinetics for the additional miRNAs in live UGD cells. (n ≥ 3; ≥ 15 cells, **p ≤ 0.001 by two-tailed, unpaired 
Student’s t-test.). 
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 miRNA-targeted mRNAs localize to PBs depending on 3` versus 5` 

terminal positioning of MREs 

Next, we probed whether miRNAs and their cognate mRNA targets displayed similar 

dynamics and localization patterns at PBs. mRNAs were endogenously expressed and tagged via 

a modified version of the widely used MS2-MCP labeling system (Fusco et al., 2003), wherein a 

total of up to ~1,000 Halo-MCP bound MS2-RNA molecules were visualized per living cell upon 

covalently coupling the Halo tag with the cell-permeable fluorescent dye JF646 (Figure 4A-B and 

Supplementary movie 3) (Grimm et al., 2015). mRNAs in fixed cells were instead visualized by 

standard single-molecule fluorescence in situ hybridization (smFISH, Figure 2-7A and 2-7C) (Raj 

et al., 2008). We created an MS2-MCP tagged construct bearing the firefly luciferase (FL) coding 

sequence (CDS) and an artificial 3`untranslated region (3`UTR) bearing six tandem miRNA 

response elements (MREs) for the tumor suppressive let-7 miRNA (l7-6x). Upon performing live 

and fixed cell imaging respectively, we found that that the mobility and assembly of FL-l7-6x-

MS2 mRNA was similar to its cognate l7-Cy5/l7* miRNA (Figure 2-2 and 2-7A-F), strongly 

supporting the notion that a miRISC-mRNP complex interacts with PBs. As a control, we created 

an MS2-tagged FL gene with ml7-6x, a 3`UTR composed of six tandem mutant MREs ml7/ml7* 

that are not targeted by endogenous let-7 (Figure 2-7G).  

Considering that MRE-containing mRNAs are repressed, irrespective of whether the 

MREs are in the 3` or 5` UTR of the mRNA (Lytle et al., 2007), we created additional control 

constructs with either l7-6x or ml7-6x in the 5`UTR of the MS2-tagged FL gene, termed l7-6x-

FL-MS2 and ml7-6x-FL-MS2 respectively (Figure 2-7G). As expected, ensemble activity assays 

showed that all MS2-tagged constructs were translated and regulated much like their untagged 
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counterpart (Figure 2-8A-B). FL-ml7-6x-MS2 and ml7-6x-FL-MS2 were expressed to much 

higher extents (Figure 2-7H) than the let-7-MRE containing FL-l7-6x-MS2 and l7-6x-FL-MS2, 

which both were similarly repressed by let-7 miRNA (Figure 2-7H and 2-8C), thus corroborating 

prior reports that MREs embedded in either the 3` or 5`UTR are functional. However, the fractional 

extents of localization and enrichment of l7-6x-FL-MS2 at PBs were similar to those of the non-

targeted FL-ml7-6x-MS2 and ml7-6x-FL-MS2, and significantly (at least 5-fold) lower than those 

of FL-l7-6x-MS2 (Figure 2-7I-J). Still, l7-6x-FL-MS2, FL-ml7-6x-MS2 and ml7-6x-FL-MS2, 

much like FL-l7-6x-MS2, interacted transiently with PBs and displayed biphasic interaction 

kinetics (Figure 2-7K-L and 2-8D). While the “fast” phase for l7-6x-FL-MS2, FL-ml7-6x-MS2 

and ml7-6x-FL-MS2 (spanning ~0.5, 0.7 and 0.6 s, respectively) was similar to that of FL-l7-6x-

MS2 (0.9 s), the “slow” phase for these constructs was ~3-fold faster than that of FL-l7-6x-MS2 

(4.2 s, 3.7 and 2.5 s, respectively, compared to 15 s, Figure 2-7K), indicating a significant 

difference in behavior upon targeting the 3` versus 5`UTR. Similarly, a minority of l7-6x-FL-MS2, 

FL-ml7-6x-MS2 and ml7-6x-FL-MS2 particles did not photobleach and resided in PBs for the 

entire duration of acquisition (~ 15 s), with the number of such occurrences ~3-fold lower than for 

FL-l7-6x-MS2 (Figure 2-8E). Not only do these observations strongly support the notion that 

miRNAs and their cognate mRNA targets display generally similar PB localization kinetics and 

patterns, consistent with the hypothesis that they interact, but they uniquely demonstrate that 

3`UTR versus 5`UTR positioning of MREs distinctly impacts PB colocalization in that only 

3`UTR targeting leads to the most stable PB interactions. We posit that distinct aspects of 

translation are blocked when miRNAs engage the 3`UTR versus 5`UTR, resulting in 

compositionally distinct mRNPs that differentially recruit them to PBs.  



 

  

55 

 

 

 

 



 

  

56 

Figure 2-7 mRNAs localize to PBs depending on 3` versus 5` terminal positioning of MREs and translation potential. 
(A) Schematic of assay for probing mRNA-PB dynamics and colocalizations. (B and C) Representative pseudo-
colored and contrast-adjusted images from live-cell imaging (B) and fixed cell imaging (C) assays of UGD cells 
expressing GFP-labeled PBs (green) and MCP tagged FL-l7-6x-MS2 mRNAs (red). Scale bar, 10 µm. (D) 
Representative single-particle trajectories of PBs (green) and FL-l7-6x-MS2 mRNAs (red) from yellow and magenta 
boxes in B, representing diffusing mRNAs in PBs and in the cytoplasm (Cyt) respectively. Scale bar, 1 µm. Dotted 
green circle represents PB outline in the first frame of the movie. Distribution of FL-l7-6x-MS2 mRNAs diffusion 
constants in PB and Cyt are also depicted. Green area on the plot depicts the range of PB diffusion constants (n = 3, 
20 cells). (E) Zoomed-in view of orange and violet boxes in C, from fixed UGD cells. Scale bar, 2 µm. Intensity 
measurements of PB- and Cyt-localized FL-l7-6x-MS2 mRNAs is also shown. (F) Distribution of FL-l7-6x-MS2 
mRNAs stoichiometry as monomeric (Mono, 1 photobleaching step) or multimeric (Multi, ≥ 2 photobleaching steps) 
complexes in PB and Cyt within fixed UGD cells (n = 3, 20 cells). (G and M) Schematic of different mRNA constructs 
with various 3` or 5` UTRs. Color-coded symbols for each transcript is shown and will be used to depict these 
respective transcripts from hereon. (H and N) Luciferase reporter assays represented as the ratio of luminescence form 
a firefly luciferase (FL) reporter gene and a renilla luciferase (RL) normalization gene in UGD cells. Data were 
normalized to the FL sample. Mean and s.e.m are represented (n = 12 replicates, ***p < 0.0001 based on two-tailed, 
unpaired Student’s t-test). (I and O) Scatter plot representing the % of mRNA molecules that colocalize with PBs per 
fixed UGD cell. Each dot represents a fixed UGD cell. (J and P) Scatter plot of EI for different mRNA constructs. 
Each dot represents a PB in fixed UGD cells. Grey dotted line depicts an EI of one, which demarcates PB-enriched (> 
1) from PB-depleted (< 1) factors. (K and Q) Relative distribution of stable and transient interactions per live UGD 
cell for different mRNAs. (L and R) Comparison of fast and slow mRNA-PB interaction kinetics in live UGD cells. 
Black line depicts acquisition window (15 s). Green-black line depicts the mean magnitude of FL-l7-6x-MS2 for the 
respective observable. n = 3, ≥ 15 cells per sample, NS = not significant, * p ≤ 0.01, **p ≤ 0.001 or ***p ≤ 0.0001 by 
two-tailed, unpaired Student’s t-test. See also Figure S4. 
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Figure 2-8 Validation of in situ m/lncRNA imaging system. (A) Luciferase reporter assays of the appropriate mRNA 
constructs (n = 12). Data were normalized to FL. Mean and s.e.m are depicted (n = 12 replicates, NS = not significant 
or ***p < 0.0001 based on two-tailed, unpaired Student’s t-test). (B-C) Luciferase reporter assays of the appropriate 
mRNA constructs treated with a control antimiR (anti-ctrl) or an anti-let7 (anti-l7) antimiR. (n = 12). Data were 
normalized to FL (anti-ctrl). Mean and s.e.m are depicted (n = 12 replicates, NS = not significant, **p ≤ 0.001 or ***p 
< 0.0001 based on two-tailed, unpaired Student’s t-test). (D and F) Dwell time distribution of the appropriate mRNA 
constructs at PBs. Black line depicts double exponential fit Inset, dwell time distribution of mRNAs inside cells, prior 
to photobleaching. Black line depicts single exponential fit. (E and G) Scatter plot representing % of mRNA-PB 
interactions that last for the entire duration of imaging (15 s), without photobleaching, per live UGD cell.  n = 3, ≥ 15 
cells per sample, **p < 0.001 based on two-tailed, unpaired Student’s t-test. 

 mRNA-PB interactions depend on translation potential  

Given that translationally unrepressed mutant FL-ml7-6x-MS2 and translationally 

repressed FL-l7-6x-MS2 mRNAs displayed distinct PB-dynamics and localization patterns 
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(Figure 2-7), we hypothesized that the translation potential of an mRNA inversely correlates with 

PB localization. To test this hypothesis, we compared the PB localization dynamics of the let-7 

regulated FL-l7-6x-MS2 mRNA (Figure 2-7) with those of FL-MS2 (lacking the regulatory 

3`UTR), FL-l7-2x-cx-4x-MS2 (carrying a 3`UTR with two tandem MREs targetable by 

endogenous let-7 and four MREs for a non-endogenous cxcr4 miRNA) and FL-CX-6x-MS2 

(carrying a 3`UTR with six tandem MREs for cxcr4 miRNA) (Figure 2-7M). Notably, protein 

expression of FL-MS2 and FL-cx-6x-MS2 was significantly higher (~2.7 fold) than FL-l7-2x-cx-

4x-MS2, which in turn was higher (~2.2-fold) than FL-l7-6x-MS2 (Figure 2-7N). Consistent with 

our hypothesis, the fractional extents of localization and enrichment of FL-MS2 and FL-cx-6x-

MS2 were significantly (at least 2.8 fold or 5-fold) lower than those of FL-l7-2x-cx-4x-MS2 or 

FL-l7-6x-MS2 (Figure 2-7G-H). Additionally, the interaction modalities and “slow” phase kinetics 

of FL-MS2 and FL-cx-6x-MS2 were distinct from FL-l7-2x-cx-4x-MS2 and FL-l7-6x-MS2, with 

the former set of constructs displaying at least ~2.5-fold more transient interactions and ~3-fold 

shorter dwell times at PBs (Figure 2-7I-J) compared to the latter set. A significant minority of FL-

MS2 and FL-cx-6x-MS2 particles resided in PBs for the entire duration of acquisition (~15 s), 

potentially representing mRNAs that are currently translation inactive, but the number of such 

occurrences was ~2.9-fold and ~4.5-fold lower than those for FL-l7-2x-CX-4x-MS2 and FL-l7-

6x-MS2 (Figure 2-8F), respectively. These observations strongly support the notion that actively 

translating mRNAs rarely localize to PBs, and conversely that the propensity for PB-localization 

increases with extent of mRNA repression.  
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Figure 2-9 A majority of microscopically visible PBs associate with mRNAs, but mRNAs are more effectively 
degraded with a larger number of smaller, microscopically-invisible PBs. (A) Scatter plot representing the % PBs that 
colocalize with RNAs, per fixed UGD cell (n = 3, ≥ 15 cells per sample). (B) Frequency distribution of the number of 
times an individual PB encounters an RNA in live UGD cells (n = 3, 155 cells, 2102 PBs). Dotted line represents the 
average number of RNA encounters per PB after correcting for photobleaching. (C) Schematic (left) of in silico kinetic 
modeling of RNA-PB interactions and RNA decay. Changes in the abundance of mRNA over the timescale of the 
simulation is also depicted (right). Im (highlighted text) represents simulations in which PBs were immobile, whereas 
PBs were mobile in all other conditions. (D) Experimental validation of simulations using microinjection-based 
miRNA activity assay. Left, representative images of U2-OS cells treated with isotonic or hypertonic (300 mM Na+) 
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medium and co-injected with CB-Dextran, GFP mRNA,mCh mRNA with MREs for cxcr4 (cx/cx*) miRNA and either 
a scrambled, control siRNA (Scr/Scr*) or cx/cx*. Images were acquired 4 h after injection. Right, scatter plot 
representing the ratio of mCh : GFP intensity at various injection and treatment conditions. Each dot represents a U2-
OS cell (n = 3, 60 cells for each sample).  

 

Figure 2-10 Characterization of cells treated with hyper-osmotic medium (Related to Figure 5). (A) Representative 
pseudocolored images of UGD cells treated with isotonic or hypertonic media. GFP-Dcp1a, green. Scale bar, 10 µm. 
(B-D) Scatter plot of the intensity per cell (B), number of GFP foci per cell (C) and diffusion coefficients of PBs (D) 
under each treatment condition. n = 3, 20 cells per sample, NS = not significant or ***p < 0.00)1 based on two-tailed, 
unpaired Student’s t-test. 

 miRNA-targeted mRNA turnover predominantly occurs outside of 

PBs 

We find that almost all visible PBs colocalize with miRNA or mRNA molecules, 

irrespective of relative RNA enrichment (Figure 2-9A), and a single PB associates with at least 3 

labeled RNA molecules within our timeframe of imaging (Figure 2-9B). Considering this frequent 

encounter of mi/mRNAs and PBs, that miRNA-mediated translational repression would eventually 

lead to RNA decay (Djuranovic et al., 2012)  and that PBs are enriched for mRNA degradation 

enzymes (Hubstenberger et al., 2017a; Parker and Sheth, 2007), we sought to test whether PBs are 

designated sites of RNA decay responsible for the bulk of cellular mRNA turnover. While 

fluorescence microscopy can visualize large PBs (> 50 nm), it does not capture smaller functional 

complexes of RNA decay enzymes. We therefore kinetically modeled (Mourao et al., 2014) the 

mRNA degradation activity of microscopically visible and invisible PBs computationally (Figure 
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2-9C). We specifically tested miRNA-mediated mRNA decay, largely due its cellular prevalence 

and prior reports on miRNA programmed mRNA localization to PBs; however, our method is 

extendable to other decay processes. We devised a basic set of reactions, each with predefined 

rates, whereby the interaction of miRISC with mRNPs activates PB-mediated mRNA degradation. 

Upon computing the copy number of each of these molecular species as they diffused across the 

lattice through time, we found that mRNA degradation was most efficient when there was a large 

number of small, mobile PBs (Figure 2-9C). That is, while degradation is possible within large, 

microscopically visible PBs, the process is most efficient when degradation factors, perhaps 

individual molecules, are unconstrained in the cell, thus presenting a large surface area for 

capturing repressed mRNAs.  

To test our in silico predictions experimentally, we resorted to modulating PB number and 

size via hyperosmotic stress, a method that has been proven to increase PB number in yeast (Huch 

and Nissan, 2017a). We confirmed that hyperosmotic treatment of UGD cells results in a high 

number of immobile GFP-Dcp1a foci (Figure 2-10A-D), which form due to local association of 

previously mobile, microscopically-unresolved GFP-Dcp1a proteins, an aspect that is efficiently 

recapitulated by our in silico kinetic modeling approach (Figure 5C, “Im”). Microinjection-based 

miRNA activity assays (Figure 2-1E) in U2-OS cells suggested that, as predicted, miRNA-

mediated gene repression is alleviated when PBs are aggregated upon subjection of cells to 

hyperosmotic stress (Figure 2-9D). Taken together, our data predict that mRNA degradation is 

primarily mediated by degradation enzymes rendered more efficient by freely diffusing in the 

cytosol, relegating PBs to degrading only a small fraction of repressed mRNAs. 
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Figure 2-11 lncRNAs transiently interact with PB peripheries. (A) Schematic of different lncRNA constructs bound 
by their respective interacting protein partner. (B) Representative pseudocolored and contrast-adjusted images of fixed 
a UGD cell expressing GFP-Dcp1a (green) and stained for THOR-MS2 via smFISH (red). Dotted line, cell and nuclear 
outline. Scale bar, 10 µm. (C) Scatter plot representing the percentage of lncRNA molecules per cell that colocalize 
with PBs. Each dot is a cell. (D) Scatter plot for the enrichment of lncRNAs at PBs. Each dot is a PB. Grey dotted line 
depicts an EI of one, which demarcates PB-enriched (> 1) from PB-depleted (< 1) factors. (E) Representative 
pseudoclored and contrast-adjusted regions of fixed UGD cells with GFP-Dcp1a (green), stained for FL-l7-6x-MS2 
mRNA or THOR-MS2 lncRNA via smFISH (red). Green and red dotted circles represent boundaries of PBs and 
THOR-MS2 respectively. Scale bar, 2 µm. Relative localization value is represented within the image. (F) 
Representative pseudocolored and contrast-adjusted images of a live UGD cells expressing GFP-Dcp1a (green) and 
THOR-MS2 (red). Dotted line, cell and nuclear outline. Scale bar, 10 µm. (G) Relative distribution of stable and 
transient interactions per live UGD cell for. (H) Comparison of fast and slow interaction kinetics in in live UGD cells. 
Green-black line depicts the mean magnitude of FL-l7-6x-MS2 for the respective observable.  n = 3, ≥ 15 cells per 
sample, NS = not significant, * p ≤ 0.01, **p ≤ 0.001 or ***p ≤ 0.0001 by two-tailed, unpaired Student’s t-test. See 
also Figure S6. 

 

 

 

 

 

 

 

 

Figure 2-12 lncRNA construct validation and kinetics (Related to Figure 6). (A) Relative expression of the appropriate 
lncRNA constructs transfected into UGD cells as measured by RT-qPCR and normalized to mock. (B) Cell growth as 
measured by ATP abundance in UGD cells transfected with the appropriate lncRNA construct (C) Relative expression 
of MYC in UGD cells transfected with lncRNA constructs, as measured by RT-qPCR and normalized to mock. Mean 
and s.e.m are depicted for A-C. n = 3 replicates, **p < 0.0001 based on two-tailed, unpaired Student’s t-test. (D) 
Distribution of THOR-MS2 lncRNA diffusion constants in PB and Cyt within live UGD cells. (E) Distribution of 
THOR-MS2 lncRNA stoichiometry as monomeric or multimeric complexes in PB and Cyt within fixed UGD cells. 
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(F) Dwell time distribution of all lncRNAs at PBs in live UGD cells. Black line depicts single or double exponential 
fit. Inset, dwell time distribution of lncRNAs inside cells, prior to photobleaching. Black line depicts single 
exponential fit. n = 3, 20 cells. 
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 lncRNA-PB interactions are distinct from those of regulatory 

miRNAs and repressed mRNAs 

Having discovered the importance of translation versus translational repression in mRNA-

PB colocalization behavior, we hypothesized that lncRNAs that sparsely interact with the 
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translational machinery must localize to PBs via mechanisms distinct from those involving 

miRNAs and mRNAs. To address this hypothesis, we chose as model the nucleo-cytoplasmic 

lncRNA THOR (Figure 2-11A) that binds PB-enriched IGF2BP1 protein (Hubstenberger et al., 

2017a). We confirmed that THOR-MS2 still mediates the oncogenic phenotype of the unmodified 

lncRNA (Hosono et al., 2017) as evident by it promoting cell growth and stimulating oncogene 

expression (Figure 2-12A-C). We then performed live cell imaging assays (Supplementary movie 

4) and found that that THOR-MS2 molecules, on an average, diffused faster than miRNAs or 

mRNAs that we imaged, but distributed between at least two populations of diffusion constants at 

PBs, much like the other RNAs (Figure 2-12D). Fixed cell imaging showed that the stoichiometry 

of THOR at PBs was marginally higher than that found in the cytosol (Figure 2-11B and 2-12E).  

While the fractional extent of RNA-PB colocalization did not significantly differ between mRNAs 

on the one hand and lncRNAs on the other (Figure 2-11C-D), we found significant differences in 

the localization patterns and interaction kinetics between mi/mRNAs and THOR-MS2 lncRNAs 

(Figure 2-11). In particular, THOR-MS2 frequently localized to the shell of PBs, whereas l7-

Cy5/l7* miRNA or FL-l7-6x-MS2 mRNA, ~2.5-5-fold more PB-enriched than THOR-MS2, 

predominantly localized near PB cores (Figure 2-11E). We also observed that a THOR version 

lacking IGF2BP1 binding sites (THOR-∆bs-MS2) only rarely localized to or interacted with PBs 

(Figure 2-11C-D), indicating that THOR-PB interactions are mediated by IGF2BP1. Moreover, 

THOR-MS2 displayed ~2-3-fold more transient PB interactions than FL-l7-6x-MS2 mRNA 

(Figure 2-11F-G). Although the dwell time distributions were bi-phasic for both (Figure S5C and 

S6F), l7-Cy5/l7* miRNA or FL-l7-6x-MS2 mRNA (Tfast = 0.6 s and Tslow ≥ 15 s) resided at PBs 

for a significantly longer time than THOR-MS2 (Tfast = 0.6 s and Tslow = 2.9 s, Figure 2-11B and 

2-12B). We further found that oncogenic lncRNA ARlnc1 (Zhang et al., 2018), known to bind PB-
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enriched HuR (Hubstenberger et al., 2017a), displayed similar PB-localization kinetics and 

patterns as THOR (Figure 2-11 and 2-12F); whereas oncogenic LINC00941 (L941) (Shukla et al., 

2017), a lncRNA that lacks consensus binding motifs for PB-enriched proteins (Hubstenberger et 

al., 2017a), only rarely localized to PBs and displayed mono-phasic interaction kinetics, much like 

THOR-∆bs-MS2 (Figure 2-11 and 2-12F). Together, these data support our hypothesis that 

regulatory miRNAs and miRNA-regulated mRNAs are stably captured by PBs; by contrast, 

regulatory, non-translating lncRNAs that bind PB-localizing protein factors only transiently 

associate with PBs. These specific, yet transient lncRNA-PB interactions are often missed in 

ensemble assays that largely rely on the enrichment of stable, high-affinity interactions, likely 

leading to the relative dearth of lncRNAs observed in the transcriptome of PB cores 

(Hubstenberger et al., 2017a).  

2.4. Discussion 

Previous reports have provided exquisite static snapshots of RNA and protein 

colocalization with PBs (Cougot et al., 2012; Horvathova et al., 2017; Kedersha and Anderson, 

2007; Liu et al., 2005a), but could not assess the dynamics of the underlying recruitment processes. 

Others have provided valuable information regarding the dynamics of PB movement and the bulk 

exchange of proteins or mRNAs between PBs and the cytosol, but could not extract mechanistic 

information about the recruitment of biomolecules to PBs (Aizer et al., 2008b; Aizer et al., 2014; 

Kedersha et al., 2008; Leung et al., 2006). Using single-molecule live-cell imaging we here 

uniquely demonstrate that miRNAs, mRNAs and lncRNAs dynamically localize to PB either 

stably or transiently (Figures 2-2 and 2-3). Having dissected the molecular anatomy of PBs (Figure 

2-4), we find that stable anchoring at PBs is concordant with snapshots that visually portray RNA 
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accumulation within PB “cores”, whereas more mobile localizations and transient interactions are 

more likely to depict the localization of RNAs in PB “shells”. In agreement with our data on 

mi/m/lncRNA-PB interactions during cellular homeostasis, recent reports (Moon et al., 2019; 

Wilbertz et al., 2019) have complementarily shown that mRNAs associate both stably and 

transiently with both stress granules (SGs) and PBs during the integrated stress response. The dwell 

times annotated as stable (~250 s) or transient (~10 s) in these reports are akin to particles in our 

datasets that dwell at PBs for the entire duration of acquisition (> 15 s) and for ~3-5 s, respectively. 

We have found an additional, highly dynamic interaction mode that lasts ~ 1 s, which potentially 

represents a relatively rapid PB-probing step. Based on the dwell times of THOR-∆bs-MS2 and 

L941-MS2 (~0.1-0.3 s, Figure 2-12F and Table 2-3), which seldom localize to PBs, it is unlikely 

that the dynamic interaction mode (~1 s) is an artifact of coincidental interaction/co-localization 

of RNAs with PBs. Upon RNP remodeling, these rapid encounters may transition into longer spans 

of granule probing or stable docking of RNAs to granules. 

Elucidation of the PB-core transcriptome (Hubstenberger et al., 2017a) has suggested that 

certain miRNAs, lncRNAs and repressed mRNAs are enriched in PBs, yet it is unclear whether 

the principles governing PB enrichment for these major classes of transcripts are similar or 

different. Strikingly, we found that miRNAs, mRNAs and lncRNAs have distinct PB localization 

signatures, which appear correlated with the distinct functionalities of these transcripts and the 

diversity in the types of RNPs they form (Figure 2-5). Based on our data, we propose a model that 

assigns PB localization patterns to specific RNA forms and functionalities (Figure 2-13). Stably 

anchored and PB-enriched miRNAs are predominantly dysfunctional – they do not have many 

mRNA targets and localize to PBs in their unbound or miRISC-bound (single-stranded or double-

stranded) forms (Figure 2-7). Functional miRNAs, more likely to reside in RISC-mRNA 
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complexes, display this behavior only in their minority and, when anchored, preferably localize 

within PB cores.  

 

Figure 2-13 Resulting model for the dynamic recruitment of specific RNAs to PBs. RNAs dynamically associate with 
PB core or shell based on functionality. Target-free miRNAs, mRNA-targeting miRNAs and miRNA-targeted 
mRNAs with 3`UTR MREs are stably enriched within either cores or shells of PBs. The presence of a PB recruitment 
factor (PB-RF) may influence the dynamics and enrichment extent of miRNA-targeted mRNAs at PBs. lncRNAs 
transiently-yet-specifically associate with PB shells when the lncRNA binding protein (lncRNA-BP) is a PB enriched 
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factor or is a PB-RF. Other lncRNAs, translating mRNAs and miRNA-targeted mRNAs with 5`UTR MREs transiently 
associate with PB shells, or are excluded from PBs. A majority of nuclease mediated RNA degradation occurs outside 
of PBs. 

These data are consistent with prior reports that both strands of both target-less and target-

containing siRNAs localize to PBs (Jakymiw et al., 2005). We posit that, by contrast, transient 

associations at PB peripheries represent miRISC-mRNA complexes that do not yet have bound an 

important recruiting protein, such as GW182 or LAMP1 (Moon et al., 2019; Wilbertz et al., 2019), 

that is required for PB association. Conversely, highly translatable mRNAs that are not associated 

with miRNAs, while transiently associating peripherally, are not enriched at PBs. Based on recent 

reports (Moon et al., 2019; Wilbertz et al., 2019) and our data (Figures 2-3, 2-5) we predict that 

non-translating mRNAs and translationally repressed mRNAs bearing MREs in their 3`UTR 

stably associate with PB cores, while only the latter are enriched at PBs. Furthermore, we find that 

miRNA-repressed mRNAs with MREs in the 5`UTR (Figure 2-10A-B) are not enriched at and 

only transiently associate with PBs, probably also due to the lack of a PB-recruitment factor bound 

to these RNPs (Figure 2-9). Prior reports have demonstrated that MREs in the 5’ UTR cause 

translational repression downstream of translation initiation sites (Lytle et al., 2007), potentially 

resulting in polysome bound non-translating mRNAs, which consequently cannot enter ribosome 

excluded PB cores (Parker and Sheth, 2007). By contrast, MREs in the 3’UTR typically result in 

inhibition of translation initiation, leading to non-translating mRNAs that are also free of 

ribosomes, which can then enter PB cores. Taken together, our data suggest that different modes 

of miRNA-mediated mRNA repression favor different types of PB localization.        

THOR, ARlnc1 and LNC00941 are recently discovered, oncogenic lncRNAs with distinct 

protein interactomes and functions. First, THOR is a highly conserved testis-specific lncRNA that 

is up-regulated in a broad range of human cancers and found to work in concert with IGF2BP1 
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(Hosono et al., 2017), a PB-enriched protein (Hubstenberger et al., 2017a) that stabilizes 

transcripts via CRD (coding region instability determinant)-mediated mRNA stabilization 

(Weidensdorfer et al., 2009). Second, ARlnc1 is a lineage-specific lncRNA that collaborates with 

the PB-enriched protein HuR to enhance the stability of transcripts bound via an RNA-RNA 

interaction (Zhang et al., 2018). Third, LINC00941 (L941) is a lncRNA that is highly expressed 

in lung cancer (Shukla et al., 2017), that does not have consensus sequences for binding PB-

resident proteins (data not shown). Based on our data, we propose that THOR, ARlnc1 and 

LINC00941 all assemble into slowly diffusing (D = 0.0001 – 0.1 µm2/s, Figure 2-12D) RNPs, 

which we posit correlate with their functions (Hosono et al., 2017). The frequent, transient 

associations of THOR and ARlnc1 with PBs may be linked to the regulatory role of these 

lncRNAs, wherein one can envision: 1) the lncRNAs depositing regulated mRNAs for storage at 

PBs; or 2) the lncRNAs instead selecting PB-stored mRNAs for reintroduction into the translating 

cytoplasmic pool. Of note, we rarely observed any stable anchoring or significant enrichment of 

THOR, ARlnc1 or LINC00941 at PBs, which suggests that the mere inability of an RNA to be 

translated is not a sole prerequisite for stable PB association and enrichment. Moreover, the mere 

ability of THOR and ARlnc1 to bind RNA-stabilizing proteins (IGF2BP1 and HuR respectively) 

may preclude stable, long lasting interactions with PBs that are enriched for RNA destabilizing 

factors. However, the relative contribution of stabilizing/destabilizing RBPs on PB-recruitment of 

mRNAs is yet to be determined and will clearly identify the molecular driving forces of RNP 

recruitment into phase separated granules and their subsequent regulation at these sites. Finally, 

our data also supports the notion that ncRNA-PB interactions are dependent on the size, as reported 

for SGs (Khong et al., 2017b), and class of the regulatory ncRNA (Figure 2-11). 
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More broadly, our molecular observations of colocalizations of varying dynamics are 

consistent with phase transition principles that recently have been recognized to govern the 

assembly of large membrane-free granules (Protter and Parker, 2016; Shin and Brangwynne, 

2017b). Static, core-localized and enriched RNPs may serve as nucleating factors for large PBs, 

whereas dynamic, shell-localized and dispersed colocalizations may occur when the interfaces of 

the RNP, PB and surrounding cytoplasm are similar, as in a Neumann’s triangle observed in Cajal 

bodies attached to B-snurposomes (Shin and Brangwynne, 2017b). Transient colocalizations may 

represent cases where the smaller RNP and PB come in close proximity, but the interfacial surface 

tension is too high for the two to fuse, presumably due to the absence of an appropriate PB-

recruitment factor on the RNP.  

Although there is general agreement on the phase-separation assembly principles of PBs 

and other RNA granules, the functions of these granules are still a topic of intense debate. Some 

reports have suggested that PBs may have stress dependent RNA decay or storage roles (Aizer et 

al., 2014), whereas others have suggested that PBs are sites of RNA storage, but not decay (Eulalio 

et al., 2007b; Horvathova et al., 2017; Stalder and Muhlemann, 2009; Tutucci et al., 2017). 

Notably, all previous studies have examined only microscopically visible PBs. Our computational 

simulations, which considered PBs both large and small, together with subsequent experiments 

using hyperosmotic stress to induce PB aggregation, suggest that microscopically visible PBs 

cannot account for the bulk of cellular mRNA decay (Figure 2-11). Our data instead suggest that 

fundamental principles of physical chemistry hold true for mRNA regulation processes within the 

complex cellular environment, in that the entropic gain from the larger degree of freedom and 

surface area of freely diffusing decay components dominates, an aspect that warrants additional 

lines of investigation. In addition to storing repressed mRNAs, our work unveils an additional 
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housekeeping role for PBs in storing or possibly degrading unused miRNAs for their surveillance. 

Super-resolved fluorescence microscopy thus is shown to provide a powerful approach for 

mechanistically probing the dynamic assembly of RNP granules by phase separation at single-

molecule resolution. 

2.5. Methods 

Cell lines HeLa (CCl-2, ATCC) and U2-OS (HTB-96, ATCC) cells were propagated in DMEM 

(GIBCO, #11995) and McCoy’s 5A (GIBCO, # 16600) basal media respectively supplemented 

with 10% FBS (GIBCO, # 16000). HeLa or U2-OS cells stably expressing GFP- Dcp1a (UGD) 

was created by transfecting U2-OS cells with pEGFP-Dcp1a and selecting for stable clones by 

G418 selection. UGD cells were grown in the abovementioned medium supplemented with 100 

µg/mL G418 (Thermo-Fisher, # 10131027). All medium typically contained 1x Penicillin-

Streptomycin (GIBCO, #15140). U2-OS cells stably expressing GFP-G3BP and RFP-Dcp1a 

(UGG-RD, gift from Nancy Kedersha) were propagated in McCoy’s 5A (GIBCO, # 16600) basal 

media supplemented with 10% FBS (GIBCO, # 16000). Phenol-red free McCoy’s 5A (GE-

Amersham, # SH3027001) supplemented with 1% FBS was used for seeding and cells for imaging 

experiments. For hyperosmotic shock, cells were treated with the above media supplemented with 

10 x PBS such that the final sodium concentration was 300 mM. Plasmid transfections for MS2-

MCP imaging and cell growth assays were achieved using Fugene HD (Promega, # E2311). 

Cotransfection of plasmids with oligos was achieved using lipofectamine 2000 (Thermo-Fisher, # 

11668027). For inducing stress granules (SGs), growth media of UGG-RD cells were 

supplemented with 0.5mM Sodium Arsenite (NaAsO2) for 1 h. All cell lines were subjected to 

biweekly mycoplasma contamination and, HeLa and U2-OS cells were genotyped. 
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DNA, RNA and LNA oligonucleotides All DNA and RNA oligonucleotides used for iSHiRLoC 

experiments and reverse transcription, followed by quantitative polymerase chain reaction (RT-

qPCR) were obtained from IDT. Oligonucleotides contained a 5` Phosphate (P) and, in the case of 

fluorophore labeled oligonucleotides, a Cy5 dye at the 3`end. Dyes were attached after 

oligonucleotide synthesis to a 3`amino group on a C6 carbon linker and were HPLC purified by 

the vendor. Guide and passenger strands were heat-annealed in a 1:1.1 ratio to achieve 10 µM 

stock solutions and were frozen until further use. Negative control siRNA (Scr/Scr*) was 

purchased as ready-to-use duplex samples from Ambion respectively. Six tandem let-7 (l7-6x) 

miRNA response elements (MREs) or mutant l7-6x (ml7-6x) MREs were purchased as gene 

blocks from IDT. AntimiR LNA oligos were purchased from Exiqon. Oligonucleotide and gene 

block sequences are listed in Table S1. 

Plasmids pEGFP-Dcp1a was constructed by ligating PCR amplified (using Pfu ultra polymerase, 

Agilent, # 600380) EGFP ORF (from pEGFP-C1, Clontech) into pmRFP1-hDcp1a (gift from 

Nancy Kedersha, Brigham Women‘s hospital) within the AgeI and XhoI restriction enzyme (RE) 

sites. This replaces mRFP1 with EGFP in the plasmid. pEF6-mCh and pEF6-mCh-cx-6x 

construction was previously described previously (Pitchiaya et al., 2017). pEF6-mCh-l7-6x 

plasmid was constructed by ligating l7-6x gene block within NotI and XbaI sites of pEF6-mCh 

plasmid. Plasmids pRL-TK-let7-A, pRL-TK-let7-B, pRL-TK-cxcr4-6x, phage-ubc-nls-ha-2xmcp-

HALO (a gift from Phil Sharp, Addgene plasmid # 11324, #11325, # 11308 and # 64540) and 

pmiR-GLO (pmG, Promega, # E1330) were purchased. pmG-MS2, encoding the firefly luciferase 

(FL) gene followed by 24 MS2 stem loops (FL-MS2), was created in two steps. First, the coding 

sequence (CDS) of IF2 was PCR amplified and ligated into the SbfI and NotI RE site of pmG, to 

create pmG-IF2. MS2 stem loops from pSL-MS2_24x (a gift from Robert Singer, Addgene 
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plasmid # 31865) were then cloned into the EcoRI (introduced by above PCR)-NotI restriction 

enzyme sites pmG-IF2, to generate pmG-MS2. Clones containing the MS2 stem loops were 

created in SURE2 bacterial cells (Stratagene) to minimize recombination of the MS2 repeats with 

the bacterial genome. pmG-l7-6x-MS2 and pmG-ml7-6x-MS2 encoding FL-l7-6x-MS2 and FL-

ml7-6x-MS2 respectively were constructed by ligating the l7-6x or ml7-6x gene blocks within the 

XhoI RE site in pmG-MS2. l7-6x-pmG and ml7-6x-pmG encoding l7-6x-FL and ml7-6x-FL 

respectively were created by ligating the synthesized I7-6x or ml7-6x fragment within the Esp3I 

and BbsI in pmG, between the human phosphoglycerate kinase promoter and FL CDS. l7-6x-pmG-

MS2 and ml7-6x-pmG-MS2 encoding l7-6x-FL-MS2 and ml7-6x-FL-MS2 respectively were 

created using 24x MS2 stem loops from pMG-MS2 into EcoRI and NotI sites of l7-6x-pmG and 

ml7-6x-pmG. pmG-I7-2x-cx-4x was constructed by ligating the synthesized I7-2x-cx-4x fragment 

within the XhoI and EcoRI in pmG. pmG-I7-2x-cx-4x-MS2 was constructed by ligating 24x MS2 

stem loops from pMG-MS2 into EcoRI and NotI sites of pmG-I7-2x-cx-4x. pmG-cx-6x-MS2 

constructed by ligating 24x MS2 stem loops from pMG-MS2 into XhoI and NotI sites of pmG- 

cx-6x (Pitchiaya et al, 2017). pLenti6-THOR and pLenti6-RHOT (antisense of THOR) were 

constructed as described (Hosono et al., 2017). plenti6-THOR-MS2 was constructed by ligating 

24x MS2 stem loops from pmG-MS2 into EcoRI and NotI sites of pLenti6-THOR. pCDH-ARlnc1-

MS2 was constructed by ligating 24x MS2 stem loops from pMG-MS2 into XhoI and NotI sites 

of pCDH-ARlnc1 (Zhang et al. 2018). pCDH-LINC00941 was constructed by cloning LINC00941 

into BstBt and BamHI sites of pCDH. pCDH- LINC00941-MS2 was then then constructed by 

ligating 24x MS2 stem loops from pMG-MS2 into XhoI and NotI sites of pCDH- LINC00941. 

mRNA synthesis pRL-TK-cx6x, pRL-TK-let7-A and pRL-TK-let7-B were linearized with NotI 

to generate RL-cx6x RL-l7-2x and RL-ml7-2x mRNAs respectively. pEF6-mCh-cx6x and pEF6-
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mCh-l7-6x were linearized with XbaI to generate mCh-cx6x and mCh-l7-6x mRNA respectively. 

The pCFE-GFP plasmid (Thermo Scientific) was directly used in the in vitro transcription 

reactions to generate the GFP mRNA. The linearized plasmids were extracted with phenol and 

chloroform and subsequently ethanol precipitated. In vitro transcriptions were performed using the 

MegaScript T7 kit (Thermo-Fisher, # AM1334) according to manufacturer’s protocol. 

Transcription reactions were then DNase treated (turbo DNase supplied with kit) and the respective 

RNAs were purified by sequential gel-filtration chromatography (Nap-5 followed by Nap-10, GE 

healthcare, # 17085301 and #17085401 respectively) and ethanol precipitation. The RNAs were 

5’capped (ScriptCap™ m7G Capping System, CELLSCRIPT, # C-SCCE0625) and 

polyadenylated (A-Plus™ Poly(A) Polymerase Tailing Kit, CELLSCRIPT, # C-PAP5104H) and 

were further purified by sequential gel-filtration chromatography and ethanol precipitation. The 

length of the polyA tails was estimated based on electrophoretic mobility on a 1.2% formaldehyde 

agarose gel.  

Luciferase reporter assays 100 µL of 10, 000 -20, 000 cells were seeded per well of a 96 well 

plate in antibiotics-free medium. Transfection conditions and luminescence readouts are as 

described previously (Pitchiaya et al., 2012; Pitchiaya et al., 2013; Pitchiaya et al., 2017). Briefly, 

cells were transfected with 60 ng of the indicated plasmid, 10 nM of the indicated dsRNA, and 

when appropriate 30 nM anti-ctrl or anti-l7 antimiRs, 0.4 μL of Lipofectamine 2000 (Invitrogen) 

and 50 μL of OptiMEM (GIBCO). 6 h after transfection the growth medium was replaced with 

fresh medium. 24 h after transfection, medium was replaced with phenol red-free McCoy’s 5A. 

Dual luciferase assays were performed using the Dual-Glo luciferase assay reagents (Promega, # 

E2920) as per the manufacturer’s protocol and luminescence was detected using a Genios Pro 

(Tecan) plate reader. 
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RT-qPCR Cells were harvested and total RNA from cells were isolated using QIAzol Lysis 

reagent (Qiagen) and the miRNeasy kit (Qiagen) with DNase digestion according to the 

manufacturer’s instructions. cDNA was synthesized using Superscript III (Invitrogen) and random 

primers (Invitrogen). Relative RNA levels determined by qRT-PCR were measured on an Applied 

Biosystems 7900HT Real-Time PCR System, using Power SYBR Green MasterMix (Applied 

Biosystems). Expression was quantified by 2ΔCt method, wherein Myc expression was first 

normalized to that of GAPDH and then this normalized expression was further normalized to Mock 

treatment.  

Cell growth assays 100 µL of 10, 000 -20, 000 cells were seeded per well of a 96 well plate in 

antibiotics-free medium and were transfected every 24 h with the appropriate plasmid construct 

using Fugene HD (Promega, # E2311). Cell growth and viability was measured as an end point 

measurement for each time point using the Cell-titer GLO assay (Promega, # G7570) based on 

manufacturer’s instructions.  

Microinjection Cells grown on DeltaT dishes (Bioptechs, # 0420042105C) were microinjected as 

described (Pitchiaya et al., 2012; Pitchiaya et al., 2013, Pitchiaya et al., 2017). Briefly, injection 

solutions contained the appropriate miRNA at 1 µM concentration, 1x PBS and 0.5 mg/mL of 10 

kDa cascade blue-conjugated dextran (CB-Dex, Thermo-Fisher, # D1976). For microinjection 

based titration assays solution with 0 – 0.1 µM, 1x PBS and 0.1 mg/mL of 500 kDa cascade blue-

conjugated dextran (FITC-Dex, Thermo-Fisher, # D7136). For microinjection-based miRNA 

activity assay, mRNAs were added at a stoichiometric amount based on the number of miRNA 

binding sites, for instance, 0.16 µM of RL-cx6x mRNA, bearing 6 cxcr4 binding sites, was added 

along with 1 µM cxcr4 miRNA. Solutions were filtered through a 0.45 µm Ultrafree-MC filter 
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(Millipore, # UFC30HV00) and then centrifuged at 16,000 x g for 15min at 4 °C immediately 

before injection. The solution was loaded into a femtotip (Eppendorf, # E5242952008). Injections 

were performed using a Femtojet pump (Eppendorf) and an Injectman (Eppendorf) mounted to the 

microscope. Microinjections were performed at 100 hPa injection pressure for 0.5 s with 20 hPa 

compensation pressure. This pressure translates to a volume of 0.02 pL and 10,000-20,000 miRNA 

molecules. 

Single-molecule fluorescence in situ hybridization smFISH was performed as described 

(Hosono et al., 2017). Briefly, cells were grown on 8-well chambered coverglasses (Thermo-

Fisher, # 155383PK), formaldehyde fixed and permeablized overnight at 4ºC using 70% ethanol. 

Cells were rehydrated in a solution containing 10% formamide and 2 × SSC for 5 min and then 

treated with 100 nM fluorescence in situ hybridization probes (LGC-Biosearch) for 16 h in 2 × 

SSC containing 10% dextran sulfate, 2 mM vanadyl-ribonucleoside complex, 0.02% RNAse-free 

BSA, 1 μg μl−1 E. coli transfer RNA and 10% formamide at 37 °C. After hybridization, cells were 

washed twice for 30 min at 37 °C using a wash buffer (10% formamide in 2 × SSC). Cells were 

then mounted in solution containing 10 mM Tris/HCl pH 7.5, 2 × SSC, 2 mM trolox, 50 μM 

protocatechiuc acid and 50 nM protocatechuate dehydrogenase. Mounts were overlaid with 

mineral oil and samples were imaged immediately. Sequences of Q670 labeled probes against the 

FL gene are listed in Table S1 and probes against THOR and ARlnc1 were previously described 

(Hosono et al., 2017 and Zhang et al., 2018). 

Immunofluorescence Cells were grown on 8-well chambered coverglasses (Thermo-Fisher, # 

155383PK), formaldehyde fixed and permeablized using 0.5% Triton-X100 (Sigma, T8787-

100ML) in 1x PBS at room temperature (RT) for 10 min. Cells were then treated with blocking 
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buffer containing 5% normal goat serum (Jackson Immunoresearch, 005-000-121), 0.1% Tween-

20 (Sigma, P9416-50ML) in 1x PBS at RT for 1 h. Primary antibodies (pA) were diluted in 

blocking buffer to appropriate concentrations and cells were treated with pA at RT for 1 h. 

Following three washes with the blocking buffer for 5 min each, cells were treated with secondary 

antibodies (sA) diluted in blocking buffer to appropriate concentrations. Following two washes 

with the blocking buffer and two washes with 1x PBS for 5 min each, cells were mounted in 

solution containing 10 mM Tris/HCl pH 7.5, 2 × SSC, 2 mM trolox, 50 μM protocatechiuc acid 

and 50 nM protocatechuate dehydrogenase. Mounts were overlaid with mineral oil and samples 

were imaged immediately.  

Microscopy Highly inclined laminated optical sheet (HILO) imaging was performed as described 

(Pitchiaya et al., 2012; Pitchiaya et al., 2013, Pitchiaya et al., 2017) using a cell-TIRF system based 

on an Olympus IX81 microscope equipped with a 60x 1.49 NA oil-immersion objective 

(Olympus), as well as 405 nm (Coherent ©, 100 mW at source, ~65 µW for imaging CB-Dex), 

488 nm (Coherent ©, 100 mW at source, ~1.2 mW for imaging GFP), 561 nm (Coherent ©, 100 

mW at source, ~50 µW for imaging mCh) and 640 nm (Coherent ©, 100 mW at source, 13.5 mW 

for imaging Cy5) solid-state lasers. Quad-band filter cubes consisting of z405/488/532/640rpc or 

z405/488/561/640rpc dichroic filters (Chroma) and z405/488/532/640m or z405/488/561/640m 

emission filters (Chroma) were used to filter fluorescence of the appropriate fluorophores from 

incident light. Emission from individual fluorophores was detected sequentially on an EMCCD 

camera (Andor IXon Ultra) for fixed cell imaging. For multicolour live-cell imaging, the emitted 

light was split onto two different EMCCDs using a single beamsplitter within a filter adapter 

(TuCam, Andor). Emission filters were placed just prior to each camera to minimize fluorescence 

bleed-through. For simultaneous detection of GFP and Cy5, a filter set with a 585dxcru dichroic 
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that splits fluorescence into et525/50m and et705/100m emission filters respectively was placed 

in the Tucam adapter. For live cell imaging of MS2-MCP constructs, UGD cells on Delta T dishes 

were treated with 100 nM JF646- Halo ligand (a kind gift from Luke Lavis) for 30 min in growth 

medium without phenol red (Grimm et al., 2015). After the treatment, cells were washed three 

times in media and placed back in the incubator for 30 min, prior to imaging. 

Image analysis The two cameras used for simultaneous acquisition of GFP and Cy5 fluorescence 

in live cells were first registered as described (Churchman et al., 2005). Registration was achieved 

by imaging 0.1 µm tetraspeck beads (Thermo-Fisher, # T7279), whose emission is similar to both 

GFP and Cy5, before or after imaging of live cells. The registration matrix was then applied to 

GFP and Cy5 images for accurate tracking of PBs and RNAs respectively. Single particle tracking 

was performed as described (Pitchiaya et al., 2012; Pitchiaya et al., 2013) with some minor 

modifications. Briefly, particle tracking analysis was performed in Imaris (Bitplane) using tracks 

that spanned at least four video frames and all tracks were fit to a Brownian diffusion model to 

extract diffusion coefficients. PB boundaries were detected using a local contrast/threshold 

approach in Image J and Imaris. An RNA particle was identified as colocalizing with a PB when 

the centroid of the RNA is at or within the boundary of a PB. The use of finite observation windows 

to measure the dwell times introduces a systematic bias in the observed dwell times. This was 

corrected for by measuring the aggregate time for Cy5 photobleaching (Tphb) and subtracting its 

reciprocal this from the reciprocal of the observed dwell time (Tobs) along with the reciprocal of 

the observation window (Tw), as described by Tactual = 1 / ((1/ Tobs) - (1/ Tphb) - (1/ Tw)), as described 

(Rueda et al., 2004). Dwell times of all transcripts are summarized in Table S2. Percentage of track 

colocalizing with PBs (track %) was calculated as nPB / (nPB  + nCyt), where nPB = number of track 

localizations within PBs, nCyt = number of track localizations in the cytosol and depicted in Figure 
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2. This measure, in addition to visual inspection of individual tracks were used to objectively 

define trajectory “phenotypes” as stable or transient. 

Step-wise photobleaching analysis of fluorophore labeled miRNAs and intensity analysis 

of smFISH particles in fixed cells were done using custom written Lab-view codes and ImageJ 

macros that can be shared upon request, as described (Pitchiaya et al., 2012; Hosono et al., 2017). 

To overcome statistical biases of co-incidental colocalizations introduced merely by RNA 

abundance, we calculated the accumulation of RNA within PBs via an enrichment index (EI) – a 

ratio of the number of RNA molecules in PB to those outside of PBs (Figure 2 and S2). An E.I. of 

> 1 suggests that the RNA accumulates at PB, whereas the opposite is true if the E.I. is ≤ 1. We 

also calculated the percentage of RNA or protein signal within PBs per cell by calculating the ratio 

between the cumulative abundance of signal within PBs divided by the total signal within the cell. 

Mean abundance / cell of all transcripts are provided in Table S3. Relative localization (RL) of 

RNAs within PBs was calculated as dCR / (dRB  + dCB), where dCR = distance of RNA centroid from 

PB centroid, dRB = distance of RNA centroid from PB boundary, dCB = distance of PB centroid 

from PB boundary and depicted in Figure S2. The centroid and boundary of PBs were obtained 

via a modest variation of the local/adaptive-threshold method previously described (Simonson et 

al., 2010).   

mCh and GFP signal from microinjection-based miRNA activity assay were extracted and 

analyzed as described (Pitchiaya et al., 2012; Pitchiaya et al., 2017). Briefly, mCh and GFP 

intensity threshold were set (Huang threshold in image J) to automatically identify cell boundary. 

Background intensity, outside of cell boundary, was subtracted from mCh and GFP signal to 

extract the corrected intensity, whose ratio was calculated on a per cell basis. 
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In silico kinetic modeling The fundamental theory and basic methodology of modeling, including 

the lattice gas automata algorithm are as described (Mourao et al., 2014). Our simulation platform 

allows for the specification of a variable number of elementary reactions. Unless otherwise stated, 

the results presented here were obtained using two different reactions: 

                                                                               (1) 

            (2) 

The reaction in (2) represents a catalytic event. The rate coefficients ki are modeled as 

reaction probabilities. For example, in (1) k1 is modeled by the probability that a miRISC and an 

mRNP molecule will react to form complex miRISC/mRNP, given that they have collided. Unless 

otherwise stated, the probability of a forward reaction (on the basis of the rate coefficients k1 and 

k2) is set to 1 and the probability of a reverse reaction (on the basis of the rate coefficients k-1 and 

k-2) is set to 0.1. The probability of a catalytic reaction (on the basis of the rate coefficient k3) is 

set to 0.1. Note that the forward reaction rates (e.g., k1) may remain constant over time, in 

agreement with the law of mass action, or decay over time for diffusion-limited reactions, when 

the time required for any two reactants to interact increases with the level of obstruction to 

diffusion. In the latter case, it can be shown that log(k1) decays linearly at long times in a 

logarithmic time scale, as described (Mourao et al., 2014).  

Each simulation begins with all particles randomly placed on a 2D lattice of size 200x200 

lattice points with cyclic boundary conditions. Particles can be initialized with different sizes, 

provided that they are square, i.e., each initial particle can only occupy x2 positions, x being at 

 

miRISC +mRNP 
k-1

¬ ¾ ¾ 

k1¾ ® ¾  miRISC/mRNP

 

miRISC /mRNP +PB 
k-2

¬ ¾ ¾ ¾ 

k2¾ ® ¾  miRISC/mRNP/PB k 3¾ ® ¾  PB +miRISC



 

  

83 

least 1. Our platform allows for the creation of initial aggregates of a particular number and size. 

With the restriction mentioned above, we modulate the number and size of P-body particles within 

an aggregate with the assumption that all P-body particles within an aggregate have the same size. 

Each aggregate of P-bodies is created in two main steps. In the first step occurs, we insert the first 

molecule of the aggregate in the lattice. This first molecule is placed in a random position in the 

lattice. In the second step, we randomly select an adjacent neighborhood of a random P-body in 

the existing aggregate as a destination for the new P-body. The addition of P-bodies to an aggregate 

follows the reaction: 

                                                                                        (3) 

where N1 corresponds to the number of P-bodies in the existing aggregate. This is done 

iteratively until the pre-determined aggregated size is achieved. Every particle is randomly 

initialized with a given orientation and direction of rotation. There are six possible orientations, 

corresponding to the coordinate number of a triangular lattice. The direction of rotation is always 

clockwise (CW) or counterclockwise (CCW). Note that, although the particle’s movement is 

independent of its orientation, reactant particles will only associate if their orientations are 

complementary. 

Quantification and statistical analysis Graphpad-Prizm and Origin were used for statistical 

analysis and plotting. For pairwise comparisons, p-values were calculated based on non-parametric 

unpaired t-tests with Kolmogorov-Smirnov test. For comparisons involving more than 2 samples, 

one-way-ANOVA tests were used with Geisser-Greenhouse correction

 

PB+N1 PB ¾ ® ¾  (N1 +1) PB
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Table 2-1 List of reagents and resources referenced in Chapter 2. 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies 
Rabbit-anti-Dcp1a Sigma HPA013202 
Rabbit-anti-Dcp2 Thermo PIPA5-34455 
Rabbit-anti-PUM Abcam EPR3795 
Rabbit-anti-ELAVL1 Sigma 07-1735 
Rabbit-anti-PABP Abcam ab21060 
Rabbit-anti-eIF4E Abcam ab1126 
Rabbit-anti-eIF4G Sigma  07-1800 
mouse-anti-rRNA Novus Biologicals NB100-662SS 
Rabbit-anti-GAPDH Cell signaling technol. 2118S 
Rabbit-anti-Xrn1 Bethyl labs A300-443A 
Rabbit-anti-DDX6 Bethyl labs A300-460A 
Mouse-anti-GW182 Abcam Ab70522 
Rabbit-anti-Ago2 Sigma 07-590 
Mouse-anti-G3BP BD Transduction labs 611126 
Rabbit-anti-CNOT1 Proteintech 14276-1-AP 
Goat-anti-rabbit-Cy5 Jackson Immunolabs 111-175-144 
Goat-anti-mouse-Cy5 Jackson Immunolabs 115-175-146 
Chemicals, Peptides, and Recombinant Proteins 
JF646-HaloTag ligand Lab of Luke Lavis, N/A 
Sodium Arsenite Sigma S7400-100G 
Critical Commercial Assays 
MegaScript T7 Thermo-Fisher AM1334 
ScriptCap™ m7G Capping System CELLSCRIPT C-SCCE0625 
A-Plus™ Poly(A) Polymerase Tailing Kit CELLSCRIPT C-PAP5104H 
Fugene HD Promega E2311 
Lipofectamine 2000 Thermo-Fisher 11668027 
CellTiter-Glo® Luminescent Cell Viability Assay Promega G7570 
Dual-Glo Luciferase Assay System Promega E2920 
Deposited Data 
Unprocessed image files used to prepare the 
images 

Mendeley Data http://dx.doi.org/10
.17632/65t29ys57x
.1  

Experimental Models: Cell Lines 
Human: U2-OS ATCC HTB-96 
Human: HeLa ATCC CCL-2 
Human: HeLa stably expressing GFP-Dcp1a This work N/A 
Human: U2-OS stably expressing GFP-Dcp1a This work N/A 
Human: U2-OS stably expressing GFP-G3BP and 
RFP-Dcp1a 

Nancy Kedersha N/A 

Oligonucleotides 
Labeled microRNAs for injection see Table S1 This work  N/A 
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Primers and gene blocks for cloning see Table 2-
2 

This work N/A 

Recombinant DNA 
pRL-TK-cx6x Lab of Phil Sharp Addgene: 11324 
pRL-TK-let7-A Lab of Phil Sharp Addgene: 11325 
pRL-TK-let7-B Lab of Phil Sharp Addgene: 11308 
pEF6-mCh-cx6x Pitchiaya et al., 2017 N/A 
pEF6-mCh-l7-6x Pitchiaya et al., 2017 N/A 
pEGFP-C1 Clontech Discontinued 
pmRFP1-hDcp1a Nancy Kedersha N/A 
phage-ubc-nls-ha-2xmcp-HALO Lab of Phil Sharp Addgene: 64540 
pmiR-GLO Promega E1330 
pSL-MS2_24x Lab of Robert Singer Addgene: 31865 
pmG-MS2 This work N/A 
pmG-l7-6x This work N/A 
pmG-l7-6x-MS2 This work N/A 
pmG-ml7-6x This work N/A 
pmG-ml7-6x-MS2 This work N/A 
pmG-cx-6x Pitchiaya et al., 2017 N/A 
pmG-cx-6x-MS2 This work N/A 
l7-6x-pmG This work N/A 
l7-6x-pmG-MS2 This work N/A 
ml7-6x-pmG This work N/A 
ml7-6x-pmG-MS2 This work N/A 
pmG-l7-2x-cx-4x This work N/A 
pmG-l7-2x-cx-4x-MS2 This work N/A 
pLenti6-THOR Hosono et al., 2017 N/A 
pLenti6-RHOT Hosono et al., 2017 N/A 
pLenti6-THOR-MS2 This work N/A 
pCDH-THOR-∆IGF2BP1 This work N/A 
pCDH-THOR-∆IGF2BP1-MS2 This work N/A 
pCDH-ARLNC1 Zhang et al., 2018 N/A 
pCDH-ARLNC1-MS2 This work N/A 
pCDH-LINC00941 This work N/A 
pCDH-LINC00941-MS2 This work N/A 
Software and Algorithms 
MATLAB 8.3 The Mathworks Inc. R2014a 
Prizm 7.04 GraphPad Prizm 7.04 
Origin 2018 OriginLab Origin 2018 
Imaris 9.1.0 Bitplane AG Imaris 9.1.0 
Fiji ImageJ/NIH Fiji 
Custom MATLAB routines This work N/A 
Custom Image J macros This work N/A 
Bacterial and viral strains 
E.coli SURE2 Supercompetent Cells Agilent 200152 
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Table 2-2 Sequences of olignonucleotides.  

Name DNA/ 
RNA 

Sequence 

l7 RNA P-UGAGGUAGUAGGUUGUAUAGUU-X 

l7* RNA P-CUAUACAAUCUACUGUCUUUCC-X 

dl7 DNA P-TGAGGTAGTAGGTTGTATAGTT-X 

dl7* DNA P-CTATACAATCTACTGTCTTTCC-X 

ml7 RNA P-UGCGUUAGUAGGUUGUAUAGUU-X 

ml7* RNA P-CUAUACAAUCUACUGUCGUUCC-X 

m21 RNA P-UAGCUUAUCAGACUGAUGUUGA-X 

m21* RNA P-CAACACCAGUCGAUGGGCUGU-X 

cx RNA P-UGUUAGCUGGAGUGAAAACUU-X 

cx* RNA P-GUUUUCACAAAGCUAACACA-X 

Scr RNA  P-CCGUAUCGUAAGCAGUACUUU-X 

Scr* RNA P-AGUACUGCUUACGAUACGGUU-X 

GAPDH DNA F: CCATCACCATCTTCCAGGAGCGA 
R: GGTGGTGAAGACGCCAGTGGA 

Myc DNA F: GCTCGTCTCAGAGAAGCTGG 
R: GCTCAGATCCTGCAGGTACAA 

Anti-ctrl LNA TAACACGTCTATACGCCCA 

Anti-l7 LNA ACTATACAACCTACTACCTC 

l7-6x DNA F:atcgccgtgtaattctagttgtttAACTATACAAGGACTACCTCACCGGA
ACTATACAATGACTACCTCACCGGAACTATACAAGGACTAC
CTCACCGGAACTATACAATGACTACCTCACCGGAACTATAC
AAGGACTACCTCACCGGAACTATACAATGACTACCTCACCG
Gaaacgagctcgctagcctcgagtct 
R:agactcgaggctagcgagctcgtttCCGGTGAGGTAGTCATTGTATAGTT
CCGGTGAGGTAGTCCTTGTATAGTTCCGGTGAGGTAGTCATT
GTATAGTTCCGGTGAGGTAGTCCTTGTATAGTTCCGGTGAG
GTAGTCATTGTATAGTTCCGGTGAGGTAGTCCTTGTATAGTT
aaacaactagaattacacggcgatc 
 

ml7-6x  F:gatcgccgtgtaattctagttgtttAACTATACAAGGACTAACGCACCGG
AACTATACAATGACTAACGCACCGGAACTATACAAGGACTA
ACGCACCGGAACTATACAATGACTAACGCACCGGAACTATA
CAAGGACTAACGCACCGGAACTATACAATGACTAACGCACC
GGaaacgagctcgctagcctcgagtct 



 

  

88 

R:agactcgaggctagcgagctcgtttCCGGTGCGTTAGTCATTGTATAGTT
CCGGTGCGTTAGTCCTTGTATAGTTCCGGTGCGTTAGTCATT
GTATAGTTCCGGTGCGTTAGTCCTTGTATAGTTCCGGTGCGT
TAGTCATTGTATAGTTCCGGTGCGTTAGTCCTTGTATAGTTaa
acaactagaattacacggcgatc 
 

L7-2x-cx-4x DNA F:gggaattcAACTATACAAGGACTACCTCAccggAACTATACAAG
GACTACCTCAccggaagttttcacaaagctaacaCCGGaagttttcacaaagctaacac
cggaagttttcacaaagctaacaggcggccgc 
R:gcggccgcctgttagctttgtgaaaacttccggtgttagctttgtgaaaacttCCGGtgttagctt
tgtgaaaacttccggTGAGGTAGTCCTTGTATAGTTccggTGAGGTAGT
CCTTGTATAGTTgaattccc 
 

FL-Q670 
(smFISH) 

DNA TCTTCGAGTGGGTAGAATGG 
TAGCGCTTCATGGCTTTGTG 
CGTCGGTAAAGGCGATGGTG 
GTAATGTCCACCTCGATATG 
CGAACGCTCATCTCGAAGTA 
ATAGCGCTTCATAGCTTCTG 
GATCCGATGGTTTGTATTCA 
AAGCTATTCTCGCTGCACAC 
CCAACACGGGCATGAAGAAC 
ACAGCCACACCGATGAACAG 
TTGTAGATGTCGTTAGCTGG 
CCTTTCTTGCTCACGAATAC 
TTGCACGTTGAGGATCTTTT 
TGGTAGTCGGTCTTGCTATC 
AGGTGTACATGCTTTGGAAG 
GGTGGCAAATGGGAAGTCAC 
CACGAAGTCGTACTCGTTGA 
ATGATCAGGGCGATGGTTTT 
CAATCCGGTACTGCCACTAC 
TGAATCGGACACAAGCGGTG 
ATGATCTGGTTGCCGAAGAT 
TGAAATGGCACCACGCTGAG 
AGCGTGGTGAACATGCCGAA 
AAAGCCGCAGATCAAGTAGC 
AAGCGGTACATGAGCACGAC 
AAGCTGCGCAAGAATAGCTC 
GCAGGGCAGATTGAATCTTA 
GAAGCTAAATAGTGTGGGCA 
TACTTGTCGATGAGAGTGCT 
ATCTCGTGCAAGTTGCTTAG 
CTGGTAGGTGGAAGCGTTTG 
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TTGTTTCTGTCAGGCCGTAG 
CTTCGGGGGTGATCAGAATG 
CACCTTAGCCTCGAAGAAGG 
GTTCACACCCAGTGTCTTAC 
TTAACGTAGCCGCTCATGAT 
GTCGATGAGAGCGTTTGTAG 
CGGTCCACGATGAAGAAGTG 
CTTGTATTTGATCAGGCTCT 
ACATAGTCCACGATCTCCTT 
AGCTTCTTGGCGGTTGTAAC 
CTCGTCCACGAACACAACAC 
TGAGAATCTCGCGGATCTTG   

L941-Q670 
(smFISH) 

DNA GACTGACTTCAGCCACGTC  
CATAATGCTGCCGAGGAGC  
CATCCGGCTCTCAGAAGTG  
TCTGGACCTGGCTCCAAG  
CTGAGAGGAGCCAGGATGG  
CGCAGTTCAGAGAAGGCTA  
TGTGGACCCGGGAGAAAAG  
CCGGAGCGGTGGGAACTG  
AAATCGCGGCGCACTGGG  
ACTCTGGGGCTTGGACAC  
TGGGGGTTGGTCTCAGAG  
GAAGGCAGGAAGTCTGTGC  
CTTTAGACACTTCTCGAGGG  
GTTGTTTGGCTATCAACTGT  
GCTTCTTTCATAATCAGTCA  
CTGATTCTTGATACCAGTCT  
GCTGAATGGTCAATGTCTGG  
GTCTTTGTGCTGAATGTTCA  
ATTCTGTGGGACTCTTCTGG  
TTTTCTCTGAATAGTTTCCC  
TTTGTATTGTCAGTATGCCT  
GTCCACTACGTTAGAAGGAT  
AAGATGGATACATGCTCCAG  
TTGTGAAAGTGATCTCTGCT  
CAATTCAAATCAAGAGCCCA  
TGGATAGAGGGCTCATTACA  
GAATCCAGTCAATTCGCAGA  
GGCAGCAAGAATGAGAGTTG  
AAGCATAGTTGGTCCATTGA  
AGTGGTTATCATGTTATCCT  

 

P: 5` Phosphate, X: 3` hydroxyl or C6 linker + Cy3 or C6 linker + Cy5 
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Table 2-3 Summary of dwell time quantifications from exponential fits. 

Construct RNA  S/D* T1 (s) T2 (s) Tphb (s) Tw (s) 

l7-Cy5/l7* miRNA D 0.5 ± 0.1 1.9 ± 0.6 2.3 ± 0.1 15 

l7/l7*-Cy5 miRNA S - 1.1 ± 0.1 1.3 ± 0.1 15 

ml7-Cy5/ml7* miRNA S - 1.0 ± 0.2 1.3 ± 0.3 15 

m21-Cy5/m21* miRNA D 0.6 ± 0.2 1.8 ± 0.3 2.1 ± 0.3 15 

cx-Cy5/cx* miRNA S  1.5 ± 0.2 1.8 ± 0.1 15 

scr-Cy5/scr* miRNA S  1.3 ± 0.1 1.5 ± 0.1 15 

ml7-Cy5/ml7* + 
RL-l7-2x 

miRNA+ 
mRNA 
 

S - 1.1 ± 0.2 1.3 ± 0.2 15 

ml7-Cy5/ml7* + 
RL-ml7-2x  

miRNA+ 
mRNA 
 

D 0.4 ± 0.1 1.5 ± 0.2 1.7 ± 0.2 15 

FL-l7-6x-MS2 mRNA D 0.8 ± 0.1 4.9 ± 1.1 10.5 ± 1.7 15 

FL-ml7-6x-MS2 mRNA D 0.6 ± 0.2 2.3 ± 0.7 10.5 ± 1.7 15 

l7-6x-FL-MS2 mRNA D 0.5 ± 0.1 2.5 ± 0.5 10.4 ± 1.2 15 

ml7-6x-FL-MS2 mRNA D 0.6 ± 0.1 1.8 ± 0.3 10.9 ± 1.6 15 

FL- MS2 mRNA D 0.5 ± 0.1 2.1 ± 0.5 10.6 ± 2.0 15 

FL-cx-6x-MS2 mRNA D 0.4 ± 0.2 2.2 ± 0.1 11.4 ± 1.6 15 

FL-l7-2x-cx-6x-
MS2 
 

mRNA D 1.1 ± 0.3 4.8 ± 0.2 13.7 ± 2.1 15 

THOR-MS2 lncRNA D 0.4 ± 0.1 2.1 ± 0.6 9.6 ± 1.1 15 

THOR-∆bs-MS2 lncRNA S 0.1 ± 0.1  9.6 ± 1.1 15 

ARlnc1-MS2 lncRNA D 0.9 ± 0.2 2.3 ± 0.4 10.4 ± 1.4 15 

L941-MS2 lncRNA S 0.2± 0.1 - 11.2 ± 2.3 15 

*Single exponential fit equation (S):  

y = y0 + A1.e(-x/T1); At x = 0, y = y0 + A1  

Double exponential fit equation (D):  

y = y0 + A1.e(-x/T1) + A2.e(-x/T2); At x = 0, y = y0 + A1 + A2 

T1 = Tfast; T2 = Tslow; Tphb = Photobleaching time; Tw = Acquisition window 
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Table 2-4 Summary of the number of cells, PBs / cell and RNAs / cell probed in this study 

 

 

 

RNA class Name Length            Live cell imaging                 Fixed cell imaging 
 # 

Ce
lls 

# PB /  
Cell 

# 
particles 

/ Cell 

 # Cells # PBs /  
Cell 

# RNAs /  
Cell 

miRNAs l7-Cy5/l7* 22 nt 20 16 280  20 15 440 
 l7/l7*-Cy5 22 nt 15 16 98  15 14 208 
 ml7-Cy5/ml7* 22 nt 15 18 116  15 21 221 
 ml7-Cy5/ml7* 

+ RL-l7-2x 
22 nt + 
~1.2 kb 

15 21 126  15 24 256 

 ml7-Cy5/ml7* 
+ RL-ml7-2x  

22 nt + 
~1.2 kb 

15 17 254  15 18 381 

 m21-
Cy5/m21* 

22 nt 15 23 232  20 20 372 

 cx-Cy5/cx* 21 nt 15 23 128  20 21 225 
 scr-Cy5/scr* 21 nt 15 27 65  20 26 193 
          
mRNAs FL-MS2 ~3.2 kb 20 14 311  20 12 398 
 FL-cx-6x-MS2 ~3.4 kb 20 16 298  20 18 312 
 FL-l7-2x-cx-

6x-MS2 
~3.4 kb 20 21 152  20 23 148 

 FL-l7-6x-MS2 ~3.4 kb 20 20 108  20 29 151 
 FL-ml7-6x-

MS2 
~3.4 kb 20 11 247  20 12 219 

 l7-6x-FL-MS2 ~3.4 kb 20 14 113  20 13 108 
 ml7-6x-FL-

MS2 
~3.4 kb 20 18 204  20 19 243 

          
lncRNA
s 

THOR-MS2 ~ 2.3 
kb 

20 22 141  20 23 203 

 THOR-∆bs-
MS2 

~ 2.1 
kb 

30 21 122  15 22 102 

 ARlnc1-MS2 ~4.2 kb 20 18 195  15 21 275 
 L941-MS2 ~3.4 kb 30 17 228  15 17 208 
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 Multivalent Proteins Rapidly and Reversibly Phase-
Separate Upon Osmotic Cell Volume Change3

3.1. Abstract 

Processing bodies (PBs) and stress granules (SGs) are prominent examples of sub-cellular, 

membrane-less granules that phase-separate under physiological and stressed conditions, 

respectively. We observe that the trimeric PB protein DCP1A rapidly (within ~10 s) phase-

separates in mammalian cells during hyperosmotic stress and dissolves upon isosmotic rescue 

(over ~100 s) with minimal impact on cell viability even after multiple cycles of osmotic 

perturbation. Strikingly, this rapid intracellular hyperosmotic phase separation (HOPS) correlates 

with the degree of cell volume compression, distinct from SG assembly, and is exhibited broadly 

by homo-multimeric (valency ≥ 2) proteins across several cell types. Notably, HOPS leads to 

nuclear sequestration of pre-mRNA cleavage factor component CPSF6, rationalizing 

hyperosmolarity-induced global impairment of transcription termination. Together, our data 

suggest that the multimeric proteome rapidly responds to changes in hydration and molecular 

 
3 The contents of this chapter have been published as:  

Jalihal, A.P.*, Xiao, L., Bawa, P., Jiang, X., Bedi, K., Cieslik, M., Ljungman, M., Chinnaiyan, A.M., Pitchiaya, S.* 
and Walter, N.G. Multivalent proteins rapidly and reversibly phase-separate upon osmotic cell volume 
change. (2020) Mol. Cell. Vol.79, Issue 6, 978 - 990.e5 

A.P.J. performed all live-cell imaging experiments. S.P. and X.J. performed all fixed cell assays and phenotypic 
analyses. L.X. constructed several plasmids. P.B., K.B., M.C. and M.L. performed and analyzed the sequencing 
assays. A.P.J., S.P., A.M.C. and N.G.W. designed the study. A.P.J. S.P., and N.G.W. and wrote the manuscript, and 
all authors provided feedback on the manuscript. 

*denoted equal contributing first authors. 
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crowding, revealing an unexpected mode of globally programmed phase separation and 

sequestration that adapts the cell to volume change.  

3.2. Introduction 

Membrane-less condensates, often referred to as membrane-less organelles (MLOs), 

represent sub-cellular sites within the cytosol or nucleus of mammalian cells, wherein key 

processes such as transcription, translation, post-transcriptional gene regulation, and metabolism 

are altered compared to the nucleoplasmic or cytoplasmic bulk (Banani et al., 2017a; Spector, 

2006). Mis-regulation of MLOs and the de novo condensation of mutated proteins into MLOs have 

been strongly associated with altered gene regulation (Berchtold et al., 2018) and severe 

pathologies such as amyotrophic lateral sclerosis (ALS) (Banani et al., 2017a; Patel et al., 2015; 

Shin and Brangwynne, 2017a). Therefore, understanding the cellular mechanisms by which these 

structures assemble should yield insights critical for both cellular physiology and disease (Alberti, 

2017; Hyman et al., 2014a; Toretsky and Wright, 2014). 

MLOs are hypothesized to arise from the phase separation of dispersed multivalent 

biomolecules under specific conditions of pH, temperature, and concentration (Boeynaems et al., 

2018; Hyman et al., 2014a; Shin and Brangwynne, 2017a). Extensive evaluation of this notion in 

vitro has defined the molecular features required to form MLOs (Hyman et al., 2014a; Shin and 

Brangwynne, 2017a; Wang et al., 2018a), especially in the context of homotypic or heterotypic 

interactions of low complexity domain (LCD) containing proteins and RNAs, and has yielded an 

ever-expanding list of cellular components that can spontaneously phase-separate in the test tube. 

Yet, the significance of the propensity of these biomolecules to phase-separate under the 

physiological conditions of their native intracellular environment, where molecular crowding is 
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dominant, is poorly understood (Alberti et al., 2019). While it is possible to alter crowding within 

the test tube via the addition of synthetic macromolecules (Alberti et al., 2019), the nature and 

extent of crowding in the cellular context is quite different (Daher et al., 2018a; Walter, 2019) and 

dynamically changes with the cellular state. For example, cell volume adjustments occur during 

processes critical to both cellular homeostasis and pathology, including the cell cycle (Tzur et al., 

2009; Zlotek-Zlotkiewicz et al., 2015) as well as upon cell adhesion and migration (Guo et al., 

2017; Watkins and Sontheimer, 2011). Changes in cell volume and molecular crowding, frequently 

encountered by cells of the kidney, liver, and gut (Lang et al., 1998), are even more rapid and 

dramatic during osmotic perturbation (Guo et al., 2017; Hersen et al., 2008; Miermont et al., 2013). 

How cells respond to rapid and frequent volume perturbations with seemingly minimal impact on 

their viability and whether the resulting dynamic changes in macromolecular crowding affect 

intracellular phase separation remain unknown.  

Processing bodies (PBs) are an example of gene regulatory MLOs that are constitutively 

present in eukaryotic cells under physiological conditions and concentrations (Anderson and 

Kedersha, 2009). Their intracellular copy number has been shown to be modulated not only during 

the cell cycle (Aizer et al., 2013), but also upon prolonged (minutes to hours) hypertonic or 

hyperosmotic stress (Huch and Nissan, 2017b), which can lead to nephritic and vascular 

pathologies (Brocker et al., 2012). Much like other environmental stressors (e.g., heat shock, 

oxidative stress, metabolite deprivation), prolonged hyperosmotic stress also triggers the 

integrated stress response (ISR) and the formation of a type of gene-regulatory MLOs called stress 

granules (SGs) (Anderson and Kedersha, 2009). While both PBs and SGs are thought to assemble 

via a conceptually similar mechanism involving multivalent interactions between non-translating 

mRNAs and LCD-bearing RNA binding proteins (Van Treeck and Parker, 2018), they are 
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compositionally distinct (Hubstenberger et al., 2017b; Jain et al., 2016; Khong et al., 2017a). 

Whether components of PBs and SGs are affected differentially by distinct stresses is largely 

unknown. Given that hyperosmotic stress rapidly (seconds to minutes) imparts cell volume change 

(Guo et al., 2017; Hersen et al., 2008; Miermont et al., 2013), it is also unclear whether the ISR, 

and consequently SGs, can be induced at this time scale. Finally, the observation that PBs are 

similarly regulated by the cell cycle and hypertonic stress (Aizer et al., 2013; Huch and Nissan, 

2017b) raises the question of whether PB regulation and cell volume change may be connected. 

Here we investigate the role of macromolecular crowding and cell volume change on the 

intracellular phase separation of proteins using osmotic perturbations. We observe that DCP1A, a 

marker of PBs and component of the mRNA decapping machinery, rapidly (within ~10 s) 

undergoes cytosolic phase separation in response to hypertonic stress and that these condensates 

dissolve over ~100 s upon return to isotonic media. This hyperosmotic phase separation (HOPS) 

can be cycled multiple times with minimal impact on cell viability, and is caused by changes in 

cellular water content and molecular crowding since its extent is directly proportional to the 

osmotic compression of the cell. We further find that HOPS is induced by DCP1A’s homo-

trimerization domain and observed across a variety of cell types. Strikingly, most multimeric 

proteins tested with a valency of at least 2 (i.e., forming trimers and higher order multimers, but 

not dimers and monomers) undergo HOPS, strongly suggesting that rapid changes in hydration 

and molecular crowding are sensed by a significant fraction of the proteome and may lead to 

pleiotropic effects. Notably, G3BP and polyA RNA, as markers of SGs, do not undergo HOPS (as 

characterized by condensation within ~10 s), suggesting distinct intracellular phase separation 

phenomena of proteins with multivalent interactions and with LCDs. HOPS of multimeric 

Cleavage and Polyadenylation Specific Factor 6 (CPSF6) within the cell’s nucleus is correlated 
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with widespread impairment of transcription termination, possibly due to sequestration of this 

component of the pre-mRNA cleavage factor Im complex from a subset of transcription end sites 

(TES). Our findings suggest that HOPS is a heretofore-underappreciated fundamental cellular 

driver of protein phase separation that rapidly senses changes in cell volume with profound impact 

on cellular homeostasis.  

3.3. Results 

 Changes in extracellular tonicity induce rapid and reversible 

intracellular phase separation of DCP1A, but not SG markers 

In a previous study (Pitchiaya et al., 2019a), we observed that osmotic stress leads to phase 

separation of DCP1A, a non-catalytic protein component of the eukaryotic decapping complex and 

conserved PB marker (Anderson and Kedersha, 2009). To study the intracellular kinetics of PB 

and SG formation in response to stress more broadly, we subjected U2OS cells to osmotic and 

oxidative stressors, and performed fixed-cell protein immunofluorescence (IF) or combined IF and 

RNA fluorescent in situ hybridization (RNA-FISH) before and after the stressors (Figure 3-1). 

Under isotonic conditions (150 mM Na+), DCP1A localized to ~10-30 foci (each ranging ~300-

800 nm in diameter) per cell, whereas G3BP protein and polyA RNA, as markers of SGs (Patel et 

al., 2015), were dispersed throughout the cytosol (Figure 3-1A and 3-2A). Upon a short (2 min) 

hypertonic (300 mM Na+) shock, DCP1A, but neither G3BP nor polyA RNA, formed ~200-300 

foci per cell that were smaller (200-300 nm) than the pre-existing foci (Figures 3-1A and 3-2A). 

No significant change was observed even after prolonged (60 min) hypertonic treatment. At this 

later time point, both G3BP and polyA RNA showed significant focus formation (~100-200 foci 

per cell, 200-300 nm in diameter; Figure 3-1A and 3-2A), thus in line with previous observations 
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(Bounedjah et al., 2012). By contrast, after 2 min of treatment with sodium arsenite to induce 

oxidative stress, DCP1A foci were unchanged in number and diameter from those observed in 

unstressed cells, and G3BP and polyA RNA were still dispersed throughout the cytosol (Figures 

3-1B and 3-2B). The number of DCP1A foci only marginally increased (~25-40 foci per cell, 300-

800 nm in diameter) in response to prolonged (60 min) arsenite stress, with a concomitant small 

increase in G3BP and polyA RNA foci (~10-30 per cell, 400-1100 nm in diameter, Figures 1B and 

3-2B). These data suggest that DCP1A and G3BP/polyA RNA, when visualized in their 

physiological contexts, assemble into microscopically detectable foci at distinct rates and extents 

in response to osmotic and oxidative stressors.  

Next, we tested whether the increased focus number could be rescued (Res) by first 

subjecting cells to stress and subsequently recovering them in regular, isotonic growth medium 

(Figures 3-1C-D and 3-2C-D). We observed that hypertonicity induced DCP1A foci rapidly 

disappeared, within 2 min, irrespective of the duration of the stress (Figure 3-1C). While a 

significant fraction of the G3BP and polyA RNA foci also rapidly disappeared (within 2 min), the 

kinetics of complete recovery to the baseline (i.e., pre-treatment) focus number differed from those 

of DCP1A (Figure 3-1C and 3-2C). By comparison, DCP1A, G3BP, and polyA RNA foci induced 

by arsenite stress did not disappear even after 60 min of rescue (Figure 3-1D and 3-2D). These 

data suggest that DCP1A and G3BP/polyA RNA foci show differences in the kinetics of both 

assembly and disassembly, and that the rapid phase separation of DCP1A in response to altered 

tonicity is distinct from SG formation. 



 

  

102 

 

Figure 3-1 Extent and kinetics of DCP1A phase separation during hypertonic stress are distinct from those of SG 
markers G3BP and polyA RNA. (A-D) Representative pseudocolored immunofluorescence (IF) images of U2OS cells 
stained for DAPI (blue), DCP1A (green) or G3BP (red) and the corresponding quantification of average number of 
spots per cell. Scale bar, 10 µm. (A) Cells were treated with isotonic (150 mM Na+) medium or hypertonic (300 mM 
Na+) medium for the appropriate time points. (B) Cells were mock treated with 1x PBS or treated with 0.5 mM arsenite 
for the appropriate time points. (C) Cells were first treated with hypertonic media (300 mM Na+) for the appropriate 
time points and then rescued with isotonic (150 mM Na+) media for various durations. Bars with green and red outline 
depict data points from panel A. (D) Cells were first treated with 0.5 mM arsenite for the appropriate time points and 
then rescued with medium containing 1x PBS for various durations. Bars with green and red outline depict data points 
from panel B. n = 3, > 60 cells, ***p ≤ 0.0001, N.S. denotes non-significance by two-tailed, unpaired Student’s t-test. 
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Figure 3-2 Extent and kinetics of DCP1A foci formation are distinct from that of polyA RNA during hypertonic stress. 
Related to Figure 3-1. (A-D) Representative pseudocolored, combined IF – RNA-FISH images of U2-OS cells stained 
for DAPI (blue), DCP1A (green), or polyA RNA (red). Scale bar, 10 µm. (A) Cells were treated with isotonic (150 
mM Na+) or hypertonic (300 mM Na+) medium for the appropriate time points. (B) Cells were mock treated with 1x 
PBS or treated with 0.5 mM SA for the appropriate time points. (C) Cells were first treated with hypertonic (300 mM 
Na+) media for the appropriate time points and then rescued with isotonic (150 mM Na+) media for various durations. 
(D) Cells were first treated with 0.5 mM SA for the appropriate time points and then rescued with medium containing 
1x PBS for various durations. 
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 Hypertonicity rapidly induces the formation of immobile DCP1A 

condensates in live cells  

Since fixed-cell experiments revealed that the rapid phase separation of DCP1A 

condensates was distinct from SG formation over minutes/hours, we decided to probe the sub-

cellular dynamics at greater temporal resolution. To this end, we subjected the previously 

developed UGD cell line (a U2OS cell line that stably expresses GFP-DCP1A; (Pitchiaya et al., 

2019a) to a systematic set of hypertonic conditions. We chose this cell line because it contains a 

similar number of DCP1A foci as the parental U2OS cells, and each of these foci compositionally 

resembles endogenous PBs (Liu et al., 2005b). As a control, we first confirmed in transiently 

transfected U2OS cells that DCP1A rapidly and reversibly forms “condensates” (Banani et al., 

2017a) irrespective of the fluorescence tag to which it is fused (GFP, mCherry, Halo, or CLIP; 

Figure 3-4A). We noted that the condensation and rescue of SNAP tagged DCP1A were distinct 

from the other tags (Figure 3-3A), raising the possibility that the nature of tagging might interfere 

with phase separation. Next, live cell imaging of UGD cells subjected to a cycle of isotonic 

conditions, brief hypertonic stress, and isotonic rescue recapitulated the rapid and reversible nature 

of DCP1A phase separation (Figure 3-1). Furthermore, imaging of UGD cells at various levels of 

tonicity (150 mM to 450 mM Na+) showed that the number of GFP-DCP1a condensates per cell 

rapidly and monotonically increases with the salt concentration (Figure 3-4A); however, the 

mobility of the condensates, as measured by their diffusion constants, decreases. Within the time 

frame of treatment, typically 1-3 min, the cells remained viable across all concentrations of Na+ 

and survived 225 mM Na+ for up to 24 h (Figure 3-4B).  
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Figure 3-3 Tags do not interfere with the ability of DCP1A to rapidly and reversibly form condensates in living U2-
OS cells. Related to Figure 3-3. (A) Representative pseudocolored images of U2-OS cells expressing DCP1A fused 
to different types of fluorescent or fluorogenic tags (green). Cells were treated with isotonic (150 mM Na+, 2 min) 
medium, hypertonic (300 mM Na+, 2 min) medium, or rescued with isotonic medium (2 min) after hypertonic 
treatment (2 min). Scale bar, 10 µm. Scatter plot of the number of foci per cell for each treatment condition is also 
shown. n = 2, > 5 cells per sample. (B) Average GFP intensity per UGD cell at various treatment and rescue conditions. 
n = 5, 300 cells per sample. (C) Percentage of GFP intensity within foci in UGD cells at various treatment and rescue 
conditions. n = 5, 300 cells per sample. 
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Figure 3-4 Physicochemical and phenotypic characterization of DCP1A phase separation during hypertonic stress. 
(A) Scatter plot of the number of foci per cell (top), violin plots of diffusion constants associated with DCP1A foci 
(bottom) and representative pseudocolored images of UGD cells (GFP, green) treated with growth medium containing 
various concentrations of Na+. n = 2, > 5 cells per sample, *p ≤ 0.01 by two-tailed, unpaired Student’s t-test. (B) 
Representative images of 96-well plate probed for cell viability by crystal violet staining (left) or cell-titer glo assay 
(right) across various Na+ concentrations and multiple time points. n = 3, with technical replicates for each n.  (C and 
D) Scatter plot of the number of foci per cell (top) and violin plots of diffusion constants associated with DCP1A foci 
(bottom) within UGD cells treated with growth medium containing various levels if Mg2+ (C) or Ca2+ (D). n = 3, > 
5 cells per sample. 

Considering that many cellular processes depend on Mg2+ and Ca2+, we next examined 

whether DCP1A condensation was affected by increased concentration of these divalent metal ions 
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in the growth medium. Both Mg2+ and Ca2+ induced GFP-DCP1A condensation only upon 100-

fold increase over isotonic concentrations (Figure 3-4C, D), which corresponded to a significant 

increase in osmolarity to near double the osmolarity of isotonic growth medium (~600 mOsm/L). 

These data suggest that DCP1A condensation occurs independently of the type of ion. Moreover, 

the rapid change in foci number generally occurs without a concomitant change in the total GFP 

fluorescence of the cell (Figure 3-3C), indicating that the GFP-DCP1A condensation is a direct 

response of the existing cellular protein to osmotic perturbation rather than an indirect response of 

protein expression or cellular signaling. 

 DCP1A phase separation is modulated by osmotic cell volume 

change  

To distinguish between the possibilities that DCP1a condensation is a result of an increase 

in either specifically ionic or general osmotic concentration, we examined the sub-cellular effects 

of two non-ionic osmolytes, sucrose and sorbitol. Subjecting UGD cells to 300 mOsm/L of either 

of these osmolytes supplemented to regular growth media again resulted in the formation of 

immobile DCP1A condensates; however, cells recovered quickly when reversing to isosmotic 

medium (Figures 3-5A and 3-6A). These observations strongly suggest that DCP1A condensates 

form in response to osmotic shock rather than changes in ionic strength only.  

Since hyperosmolarity is a state of increased extracellular osmotic pressure and causes 

cellular volume reduction by compensatory exosmosis (i.e., water loss), we hypothesized that 

DCP1A foci formation is the result of osmotic cellular compression causing an increase in 

intracellular molecular crowding (Guo et al., 2017; Miermont et al., 2013). To test this hypothesis, 

we estimated volume changes of UGD cells in hyperosmotic medium using DiI staining (Sukenik 
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et al., 2018) and 3-dimensional (3-D) imaging (Figures 3-5B and 3-6B). We found that cell height, 

as a proxy for cell volume, rapidly (within ~1 min) and monotonically decreased over the 

increasing range of tested osmotic conditions with a concomitant increase in the number of DCP1A 

foci. The cell height recovered partially on the same time scale upon reverting to isotonic medium, 

and the effect of these changes on DCP1a foci were independent of cell lineage (Figure 3-6C). 

Together, our data support a direct link between molecular crowding and GFP-DCP1A 

condensation. 

 Since DCP1A exhibits rapid and reversible condensation dependent on the degree of 

osmotic cell volume change, and since mammalian cells repeatedly experience such osmotic 

perturbations, we examined the response of UGD cells to cycling osmotic volume change (Figure 

3C, D). To this end, UGD cells were treated for 1 min with hypertonic medium and allowed to 

recover for 30 min, and this treatment regimen was repeated. Quantification of the number and 

diffusion constants of foci across the treatment regimen showed that the time-scales of DCP1A 

focus assembly (~10 s) and disassembly (~100 s), as well as changes in focus mobility, were highly 

similar across all cycles and occurred with minimal impact on cell viability (Figure 3-5C-F). We 

henceforth refer to this phenomenon of cytosolic DCP1A condensation as intracellular 

hyperosmotic phase separation (HOPS) and posit that it is a cellular adaptation to osmolarity-

induced changes in molecular crowding. 



 

  

109 

 

Figure 3-5 Hyperosmotic compression mediates DCP1A phase separation. (A) Scatter plot of the number of foci per 
cell (top), violin plots of diffusion constants associated with DCP1A foci (bottom) and representative pseudocolored 
images of UGD cells (GFP, green) treated with isosmotic (Iso) growth medium, hyperosmotic growth medium 
containing the non-ionic osmolyte Sorbitol (Sor), or rescued (Res) with isosmotic medium after Sorbitol treatment. n 
= 2, > 5 cells per sample. Scale bar, 10 µm. (B) Representative y-z projection of UGD cells (gray-scale) from 3-D 
imaging assay wherein the cell were treated with isotonic (150 mM Na+) medium, hypertonic (300 mM Na+) medium 
or rescued with isotonic medium after hypertonic treatment. n = 1, 4 cells per sample. Scale bar, 10 µm. Scatter plot 
of the fold change in cell volume, as normalized to the cell volume in isotonic conditions, is shown. (C) Representative 
pseudocolored images of a UGD cell (GFP, green) that was cyclically treated with isotonic (150 mM Na+) or 
hypertonic (300 mM Na+) medium. Scale bar, 10 µm. (D) Scatter plot of the fold change in foci number, as normalized 
to foci number in isotonic samples, associated with assay represented in C. Red line depicts exponential fit. n = 2, > 5 
cells per sample. (E) Violin plots of diffusion constants associated with DCP1A foci, associated with assay represented 
in C. n = 2, > 5 cells per sample. (F) Bar plots of cell viability (by CellTiter-Glo assay), as normalized to isotonic 
samples, associated with assay represented in C. n = 3, with 3 technical replicates for each n. 
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Figure 3-6 Hyperosmotic phase separation of DCP1A is independent of cell type. Related to Figure 3-5. (A) Scatter 
plot of the number of foci per cell (top), violin plots of diffusion constants associated with DCP1A foci (bottom). 
Representative pseudocolored images of UGD cells (GFP, green) were treated with isosmotic (Iso) growth medium, 
hyperosmotic growth medium containing the non-ionic osmolyte Sucrose (Suc, 2min) or rescued (Res) with isosmotic 
medium (2 min) after sucrose treatment (2 min). n = 2, > 5 cells per sample. Scale bar, 10 µm. (B) Representative x-
y (green) and y-z (gray) projection of a UGD cell from 3-D imaging assay wherein the cell was treated with isotonic 
(150 mM Na+) medium or hypertonic (300 mM Na+) medium. n = 1, 4 cells per sample. Scale bars, 10 µm (x and y) 
and 5 µm (z). (C) Representative pseudocolored images of Caki-1 or HK-2 cells expressing GFP-DCP1A (green). 
Cells were treated with isotonic (150 mM Na+, 2 min) medium, hypertonic (300 mM Na+, 2 min) medium or rescued 
with isotonic medium (2 min) after hypertonic treatment (2 min). Scale bar, 10 µm. Scatter plot of the number of foci 
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per cell (top) and violin plots of diffusion constants associated with DCP1A foci (bottom) for each treatment condition 
for Caki-1 or HK-2 cells are also shown. n = 2, > 5 cells per sample. 

 HOPS of DCP1A depends on its trimerization domain and post-

translational modification status  

Macromolecular phase separation is widely thought to be driven by multivalent protein-

protein and protein-nucleic acid interactions mediated by specific side chain interactions and 

structures (Guo and Shorter, 2015). To investigate the underlying molecular basis of DCP1A 

condensation, we first tested the dependence of HOPS on different DCP1A domains. While 

DCP1A does not contain any annotated nucleic acid binding domains, it contains two prominent 

protein interaction domains, an N-terminal EVH1 domain that interacts with the mRNA decapping 

protein DCP2, a C-terminal trimerization domain that interacts with EDC3/4, and a scaffolding 

protein of the decapping complex (Aizer et al., 2013). GFP-tagged truncation constructs of 

DCP1A’s N-terminal domain (NTD) or C-terminal domain (CTD) were transiently transfected 

into U2OS cells. Upon exposing these cells to hyperosmotic shock, we observed that the CTD 

showed rapid and reversible condensation similar to the full-length protein. In contrast, a 

truncation mutant containing the NTD did not show detectable foci upon hyperosmotic shock 

(Figure 3-7A-B). As the CTD mediates both DCP1a trimerization and EDC4 interaction, we tested 

whether EDC4 is responsible for HOPS of DCP1A to narrow down the basis of condensation. 

Compared to a scrambled (Scr) silencing RNA (siRNA) control, knockdown of EDC4 by siEDC4 

resulted in reduced expression (~2-fold) of GFP-DCP1A (Figure 3-8A-C) and larger GFP-DCP1A 

foci under isotonic conditions (Figure 3-7C-D), but did not prevent HOPS of DCP1A. In fact, the 

slight reduction in HOPS of DCP1A is consistent with the ~2-fold reduced cytosolic availability 

of DCP1A via reduced expression and enhanced localization within large foci. Consistent with 

these findings, we found that the intracellular condensation of DCP1A was correlated with its 
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cellular abundance (Figure 3-8D). These data strongly suggest that DCP1A homo-trimerization is 

a major driver of its HOP 

 

Figure 3-7 HOPS of DCP1A is dependent on its trimerization domain and modulated by PTMs, but not its interaction 
with EDC4. (A) Schematic of full length DCP1A, NTD, or CTD constructs (top, not to scale). EVH1 domain, 
trimerization domain, and the amino acid numbers are marked. Representative pseudocolored images of U2OS cells 
(GFP, green) transfected with GFP-NTD or GFP-CTD that were treated with isotonic (150 mM Na+) or hypertonic 
(300 mM Na+) medium (bottom). Scale bar, 10 µm. (B) Scatter plot of the number of foci per cell (top) and violin 
plots of diffusion constants associated with DCP1A foci (bottom) imaged in panel A. n = 3, > 5 cells per sample. (C) 
Schematic of DCP1A, DCP2 and EDC4 in the decapping complex (top, not to scale) in siEDC4 or Scr treatment 
conditions. Representative pseudocolored images of siEDC4 or Scr siRNA treated UGD cells (GFP, green) treated 
with isotonic (150 mM Na+) or hypertonic (300 mM Na+) medium (bottom). Scaled as in panel A. (D) Scatter plot 
of the number of foci per cell (top) and violin plots of DCP1A diffusion constants (bottom), associated with assay 
represented in C. n = 3, > 5 cells per sample. (E) Scatter plot of the number of foci per cell (top) and violin plots of 
DCP1A diffusion constants (bottom) within UGD cells that were pre-treated treated with DMSO, KI, or PI, and 
imaged in isotonic (150 mM Na+) medium, hypertonic (300 mM Na+) medium, or rescued (Res) with isotonic 
medium after hypertonic treatment. n = 3, > 5 cells per sample. 

Previous reports have suggested that PB formation can be modulated by post-translational 

modification (PTM), as accompanying cell cycle progression (Aizer et al., 2008a). We reasoned 

that if change in phosphorylation status would influence PB assembly and disassembly during the 

cell cycle, such modifications should also modify the protein’s response to molecular crowding. 

We stimulated global changes in phosphorylation using either a general phosphatase inhibitor (PI), 

okadaic acid, or the c-Jun N-terminal kinase inhibitor (KI), SP600125, on UGD cells. While the 

PI did not significantly alter HOPS of GFP-DCP1A compared to a DMSO treated control, the KI 

significantly increased the number of newly formed immobile condensates (Figure 3-7E). 
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Additionally, PI treatment mediated a significant reduction in the mobility of DCP1A condensates 

even after rescuing the cells with isotonic media (Figure 3-7E). Together, these observations 

suggest that PTM modulates HOPS of proteins, likely by altering surface charges that protein-

protein interactions depend on. 

 

Figure 3-8 Knockdown of EDC4 results in reduced expression of DCP1A. Related to Figure 3-7. (A) Western Blot 
of EDC4, DCP1A, and GAPDH after various siRNA treatment times (24, 48 and 72 hr post siRNA transfection). 
Bands labeled with “*” and “**” were detected by EDC4 and DCP1A antibodies respectively and either denote non-
specific bands or shorter protein fragments. (B) Representative pseudocolored IF images of UGD cells expressing 
GFP-DCP1A (green), stained for EDC4 (red). Scale bar, 20 µm. Cells were either transfected with a scrambled siRNA 
(Scr) or siEDC4 for 48 h and then treated with isotonic (150 mM Na+, 2 min) medium or hypertonic (450 mM Na+, 
2 min) medium. (C) Scatter plot of the average intensity of GFP (green) or EDC4 (Cy5, red) per UGD cell transfected 
with a scrambled siRNA (Scr) or siEDC4 in isotonic conditions. n = 2, > 20 cells per sample, *p ≤ 0.01, by two-tailed, 
unpaired Student’s t-test. (D) Scatter plot of GFP-DCP1a spot number (left) and spot area (right) plotted against sum 
fluorescent intensity of the cell, under isotonic (blue) and hypertonic (orange) conditions. Fold change in spot numbers 
is relative to the lowest spot count under isotonicity.   
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 Multimeric proteins with a valency of at least 2 generally exhibit 

HOPS  

Considering that the minimally required structural determinant of HOPS of DCP1A is only its 

trimerization domain (Figure 3-7), we reasoned that other self-interacting proteins with 

multimerization domains might also exhibit HOPS. To test this hypothesis, we performed an 

unbiased high-throughput IF analysis of ~108 endogenous proteins in U2OS and UGD cells 

subjected to transient osmotic stress (Figure 3-9A-C). Since antibodies may exhibit cross-

reactivity and impaired access to some proteins in osmotically compressed cells, we complemented 

high-throughput IF analysis by imaging osmotically perturbed U2OS cells transiently transfected 

with GFP-tagged proteins (Figure 3-9D, 3-10D and Methods). A combined analysis of both assays 

showed that monomeric proteins (e.g., GFP), dimeric proteins (e.g., TP53, AKT), and several 

proteins without annotated multimerization domains (e.g., PARP13) did not exhibit HOPS. By 

contrast, almost all multimeric proteins with a self-interaction valence of ≥2 (i.e. trimers and other 

higher-order multimers, including LCD bearing proteins such as DCP1A, HSF1, PKM2, PAICS, 

FUS, and TDP43), as well as several proteins with no known multimerization domain (e.g. ERp72) 

exhibited HOPS (Figure 3-9B-D). In some cases, we observed the disappearance of foci upon 

hyperosmotic shock, which rapidly reformed upon isotonic rescue (e.g., CDK12; Figure 3-9B, C). 

These observations support the hypothesis that multimeric proteins with a self-interaction valency 

of 2 or more generally undergo HOPS. Overall, our data suggest that the sub-cellular distribution 

of a significant fraction of the cellular proteome, 16% of which is annotated to be self-interacting 

(Perez-Bercoff et al., 2010), appears to be altered by osmotic compression. Our findings thus 

support a widespread and pervasive impact of HOPS on subcellular organization. 



 

  

115 

 

Figure 3-9 High-throughput IF and GFP imaging show that several multimeric proteins of valency ≥2 generally 
exhibit HOPS. (A) Schematic of high throughput IF assay. (B) Representative pseudocolored IF images of U2OS cells 
stained for DAPI (blue, nucleus) and the appropriate protein (red). Cells were treated with isotonic (150 mM Na+) 
medium, hypertonic (300 mM Na+) medium, or rescued (Res) with isotonic medium after hypertonic treatment. Scale 
bar, 10 µm. Quantification of average number of spots per cell of the appropriate samples in panel B is shown. n = 3, 
> 50 cells per sample. (C) Heatmap representing the fold change in spot number of 108 proteins tested by high 
throughput IF, as normalized to isotonic conditions. “rep” denotes replicates. (D) Representative pseudocolored 
images of U2OS cells (GFP, green) transfected with the appropriate GFP-tagged construct and treated with isotonic 
(150 mM Na+) medium or hypertonic (300 mM Na+) medium. Scaled as in panel A. Inset depicts a zoomed-in area 
corresponding to a 15 x 15 µm2 magenta box. Scatter plot of the number of foci per cell for each construct is shown. 
n = 2, > 5 cells per sample. 
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Figure 3-10 GFP imaging of several proteins transiently expressed in U2OS cells. Related to Figure 3-9. 
Representative pseudocolored images of U2OS cells (GFP, green) transfected with the appropriate GFP-tagged 
construct and treated with isotonic (150 mM Na+) medium or hypertonic (300 mM Na+) medium for 2 min. Scale 
bar, 10 µm. Inset depicts a zoomed-in area corresponding to a 15 x 15 µm2 magenta box. Constructs that exhibit 
HOPS are highlighted in orange. 
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 HOPS of CPSF6 is correlated with hyperosmolarity-induced 

impairment of transcription termination 

Hyperosmotic stress has been shown to impair transcription termination in certain cellular 

lineages, leading to continued transcription of regions downstream of annotated genes, and to be 

mediated by the impaired function of cleavage and polyadenylation factors (CPSFs) (Vilborg et 

al., 2015). To assess how hyperosmolarity affects the nascent transcriptome, which was expected 

to be highly sensitive to termination defects, in our osteosarcoma lineage, we performed nascent 

state RNA sequencing of nascent transcripts by 5-bromouridine metabolic labeling and sequencing 

(Bru-seq) and BruChase-seq after 30 min of hyperosmotic stress (Paulsen et al., 2014). We found 

that, indeed, the read density of sequences downstream of transcription end sites (TES) was 

significantly higher in the hypertonic samples than under isotonic conditions (Figures 3-11A, B 

and 3-12A). Performing steady-state RNA-seq of UGD cells subjected to prolonged (4 h) osmotic 

perturbations revealed that hyperosmotic stress also had a pervasive long-term effect that, 

strikingly, was reversed upon rescuing cells from hypertonic shock with isotonic medium (Figures 

3-12B, C).  

Finally, we asked whether impaired cleavage, polyadenylation, and HOPS of multimeric 

proteins may be related. Strikingly, CPSF6, a structural component of the CPSF complex (Elkon 

et al., 2013), underwent rapid HOPS in the nucleus (Figure 3-11C). Such condensates may 

sequester CPSF6 away from chromatin, thereby suggesting a possible mechanism for the 

functional impairment of CPSFs under hyperosmotic stress conditions (Figure 3-11D).   
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Figure 3-11 HOPS of CPSF6 is correlated with impaired transcription termination. (A) Aggregate nascent RNA Bru-
Seq enrichment profile across TESs. Relative bin density of ~1256 genes expressed >0.5 RPKM and >30 kb long 
showing an ~10 kb average extension of reads past the TES following exposure to hypertonic conditions for 30 min. 
Samples were prepared from cells treated with isotonic (150 mM Na+, red) or hypertonic (300 mM Na+, blue) medium 
for 30 min. (B) Bru-seq tracks across the ARID5B and RTKN2 genes showing transcriptional read-through of the 
TES. (C) Representative pseudocolored images of a U2OS cell transfected with GFP-CPSF6 (green) incubated with 
isotonic (150 mM Na+, red) medium and then treated with hypertonic (300 mM Na+, blue) medium for 1 min. Scale 
bar, 10 µm. (D) Model that explains the transcript read-through phenotype. 
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Figure 3-12 Hyperosmolarity-induced transcript read-through can be concordantly measured with RNAseq and 
BruSeq. Related to Figure 3-11. (A) Ratio between read counts downstream (DS) and read-counts upstream (US) of 
TES for 836 genes assayed by BrU-Seq for each replicate. Cells were treated with isotonic (150 mM Na+, 30 min) or 
hypertonic (300 mM Na+, 30 min) mediums prior to sequencing. (B) DS:US ratio of > 18,000 genes that show 
transcript read-through in RNA-Seq assays. Cells were treated with isotonic (150 mM Na+, 4 h) medium, or hypertonic 
(300 mM Na+, 4 h) medium, or rescued (Res) with isotonic medium (4 h) after hypertonic treatment (4 h) prior to 
sequencing. (C) RNA-seq tracks of the RUNX3 locus under isotonic (150 mM Na+, 4 h) medium, hypertonic (300 
mM Na+, 4 h) medium, or rescued (Res) with isotonic medium (4 h) after hypertonic treatment (4 h) prior to 
sequencing. 

3.4. Discussion 

In this study, we report a multiscale (i.e., cellular, subcellular, and molecular) 

characterization of a seemingly widespread intracellular phase separation phenomenon in response 

to hyperosmotic stress, here termed HOPS (Figure 3-13). We find that a significant fraction of the 

multimeric proteome undergoes rapid and reversible intracellular redistribution into phase-
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separated condensates during osmotic cell volume change. Empirically, proteins with a self-

interaction valency of ≥2 exhibit HOPS in response to changes in cell volume, and these changes 

are in turn intricately linked with altered hydration and molecular crowding during hyperosmotic 

stress.  

 Exosmosis leads to protein concentration increase, molecular 

dehydration, and HOPS 

Intracellular water expelled upon hyperosmotic compression (i.e. exosmosis) is thought to 

originate from both “free” water molecules that constitute the bulk of the cell and water molecules 

bound to cellular solutes and involved in macromolecular solvation (Ball, 2017). On the one hand, 

the loss of free water upon exosmosis leads to cell volume loss and a concomitant increase in 

cellular concentration that will shift the monomer-multimer equilibrium of a protein towards 

multimerization, which may be facilitated by depletion attraction (Marenduzzo et al., 2006). On 

the other hand, the loss of bound water will result in decreased protein hydration, which may lead 

to protein precipitation by increasing the surface exposure of hydrophobic regions (Muschol and 

Rosenberger, 1997). Rehydration rapidly replenishes both types of water molecules to shift the 

monomer-multimer equilibrium back towards the solvated monomer, dissolving the condensate.  

It is thought that hydrophobic patches found in homo-multimeric proteins can 

spontaneously interact upon hydration loss or “dewetting” (Jensen et al., 2003; Liu et al., 2005b), 

whereas the phase separation driven by LCDs and RNAs is posited to involve larger interaction 

networks (Wang et al., 2018a); this differences, thus, lead to two distinct mechanisms with 

different condensation rates. The high speed and high reversibility of HOPS of multimeric proteins 

appear most consistently with the former mechanism wherein the rapid condensation leads to large, 
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amorphous assemblies (Figure 3-13). Just like in protein folding, the cost in translational and 

polypeptide chain entropy upon condensation into such large, slowly diffusing aggregates is 

expected to be slightly more than compensated by the enthalpic gain of hydrophobic patch 

association.  

 The features and functional consequences of widespread 

intracellular HOPS 

We observe that increasing the intracellular crowding ~2-fold (based on the up to ~2-fold 

change in cell height) leads to the formation of a large number of DCP1a condensates with greatly 

reduced mobility; further, cellular volume recovery readily reverses both the condensation and 

decreased mobility (Figures 3-4, 5). Additionally, we find that the cellular concentration of the 

protein monomer affects the size and number of condensates (Figure 3-8D). The latter observation 

implies that, under low protein concentration conditions, our ability to identify proteins undergoing 

HOPS may be limited by our fluorescence microscope’s resolution. A conservative estimate, based 

on cytoplasmic redistribution of GFP signal into hyperosmotic condensates (Figure 3-3B, C), 

suggests that we can detect 10-mers and any higher-order condensates. This level of sensitivity 

has allowed us to use IF to curate a high-confidence list of endogenous proteins that do and do not 

undergo HOPS (Figure 3-9). Thus, we can define the protein features that govern HOPS, primarily 

the requirement for a homo-multimerization domain of valency ≥2 that is common among cellular 

proteins.  

It is becoming increasingly clear that excluded volume effects mediated by molecular 

crowding affect macromolecular structure, protein stability, enzyme activity and nucleo-

cytoplasmic organization (Daher et al., 2018a; Delarue et al., 2018; Hancock, 2004; Minton, 2001; 
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Sukenik et al., 2018). Previous work has noted the potential for phase separation to dynamically 

buffer the intracellular protein concentration (Alberti et al., 2019). More directly, we find that the 

structural pre-mRNA cleavage and polyadenylation factor CPSF6 (Elkon et al., 2013) undergoes 

nuclear HOPS, which we observe to be correlated with transcriptome-wide functional impairment 

of transcription termination (Figure 3-11).  

 HOPS may serve as a rapid cellular sensor of volume compression 

The rapid time scales of hyperosmotic cell volume compression, volume recovery under 

isotonicity, and cell viability after multiple osmotic cycles (Figures 3-4, 5) that we observe concur 

with prior reports on cell volume changes (Guo et al., 2017; Hersen et al., 2008; Miermont et al., 

2013). Our data, which indicate that even a 20% reduction in cell volume by osmotic compression 

can mediate HOPS, reinforce evidence of the high sensitivity of the multimeric proteome towards 

volume changes. Our findings are consistent with the notion that the eukaryotic proteome is 

delicately balanced near the threshold of phase separation (Walter and Brooks, 1995; Wilson, 

1899). In fact, it stands to reason that the interaction energies and concentrations of homo-

multimeric proteins may have evolved to facilitate rapid crossing of their individual phase 

separation thresholds if, and only if, cellular conditions demand. 

Notably, our HOPS-associated cell volume changes are comparable to the rapid volume 

changes – also a result of exosmosis – occurring during cell adhesion and migration through 

confined spaces (Guo et al., 2017; Watkins and Sontheimer, 2011), as well as those associated 

with the cell cycle (Tzur et al., 2009). Incidentally, homeostatic processes that may be expected to 

suppress phase separation, such as PTMs and allosteric effects by metabolically compatible 



 

  

123 

osmolytes, operate over the time scales (minutes to hours) of the cell cycle. Consistent with this 

expectation, we find that the loss of phosphorylation enhances the extent of HOPS (Figure 3-7).  

Perhaps the most striking aspect of HOPS is its rapid onset, which is faster than the speed 

of canonical stress responses (Wheeler et al., 2016). This feature is similar to recent reports of 

rapid nuclear condensation of DEAD-box RNA helicase DDX4 in response to environmental 

stress (Nott et al., 2015), and of transcriptional co-activator YAP in response to hyperosmotic 

stress (Cai et al., 2018). Notably, prolonged exposure to hyperosmotic conditions, similar to other 

environmental stressors, triggers the ISR and subsequent assembly of SGs, often localized 

adjacently to pre-formed DCP1A condensates or PBs (Figure 3-1) (Kedersha et al., 2005). These 

observations support a model whereby phase-separated PB components and, possibly, other homo-

multimeric proteins serve as “first responders” of osmotic compression, anchoring and 

gatekeeping SG assembly and the subsequent stress response. Such early volume sensors may be 

critical for suspending cellular biochemistry until an appropriate protective or corrective action 

has been initiated. This escalating response may be critical since osmotic changes in the 

environment are unpredictable and can rapidly fluctuate yet have widespread implications in an 

array of physiological and disease contexts. For instance, cells in the renal medulla frequently and 

rapidly experience high salt concentrations resulting in up to four-times the osmolarity of serum 

during urine production (Lang et al., 1998). Extreme dehydration can lead to hypernatremia, a state 

of serum hyperosmolarity characterized by elevated Na+ levels exceeding 145 mM and is 

associated with pervasive physiological dysfunction (Nilsson and Sunnerhagen, 2011). During 

such prolonged stress, initiation of the ISR may then lead to long-term adaptation. For instance, 

long-lasting condensates of the protein WNK1, which notably also is a homo-multimer, have been 

observed in viable kidneys of mice raised on high-K+ diets (Boyd-Shiwarski et al., 2018a).  
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Both rapid and prolonged HOPS are reversible (Figure 3-1) and can mediate widespread 

effects, including impairment of transcription termination (Figure 3-11) (Vilborg et al., 

2015), YAP-programmed transcription initiation (Cai et al., 2018), inhibition of ribosomal 

translocation (Wu et al., 2019), and modulation of RNA silencing (Pitchiaya et al., 2019a). While 

other mechanisms may be also at play, protein sequestration away from the site of their function 

provides a straightforward biophysical explanation for many of these effects (Figure 3-11). In fact, 

such a mechanism may also explain the defects in transcription termination observed in cells 

exposed to prolonged heat shock (Cardiello et al., 2018), suggesting that protein sequestration 

might be a common mechanism across multiple stress responses. Future studies will help better 

understand the connection between MLO formation and protective cellular mechanisms heralded 

here. 
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Figure 3-13 Model of the multiscale features of HOPS. Our multi-scale analysis has shown that HOPS of multimeric 
proteins is mediated by the concerted changes in cell volume, macromolecular crowding, and hydration. 

 Methods 

DNA and RNA oligonucleotides. DNA oligonucleotide with 30 consecutive T’s (Oligo-

dT36-Cy5) contained a Cy5 dye at the 3’ end and was purchased from IDT. Dyes were attached 

after oligonucleotide synthesis to a 3’ amino group on a C6 carbon linker and were HPLC purified 

by the vendor. Negative control siRNA (Scr, Ambion negative control siRNA 1) and siRNA 

against EDC4 (siEDC4, siRNA targeting EDC4 SMARTPool) were purchased as ready-to-use 

duplexes from Thermo-Fisher and Dharmacon respectively.  

Plasmids. Most plasmids were purchased from Addgene or were shared by independent 

labs. GFP-tagged proteins candidates were selected based on gene ontology annotation containing 

terms “identical protein binding” (GO:0042802), “protein homotrimerization” (GO:0070207), 
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“protein trimerization” (GO:0070206), “protein dimerization” (GO:0046983) and “protein 

tetramerization” (GO:0051262) and independently verified for their self-interacting ability by the 

tool SLIPPER (http://lidong.ncpsb.org/slipper/index_1.html). The resulting pools of proteins were 

selected to cover a range of valences. The proteins tested in each class are: monomeric, p53; 

dimeric, AKT, Rac2; trimeric, HSF1; tetrameric, PKM2; octomeric, PAICS; IDR-containing: 

FUS, TDP-43. pcDH-Halo-DCP1a, pcDH-SNAP-DCP1a, pcDH-GFP-DCP1a, pcDH-mCherry-

DCP1a, and pcDH-CLIP-DCP1a were constructed by first sub-cloning the DCP1A open-reading 

frame (ORF) from pEGFP-DCP1A into the pcDH backbone to generate pcDH-DCP1A. The ORFs 

of Halo, SNAP, GFP, mCherry and CLIP were PCR amplified from pFN21A (Promega), pSNAPf 

(NEB), pEGFP-C1 (Clontech), pEF1a-mCherry (Clontech), and pCLIPf (NEB), respectively. 

These amplicons were then sub-cloned into the pcDH-DCP1A backbone to generate the 

appropriate plasmids. 

Cell culture. U2OS and U2OS-GFP-DCP1a (UGD) cells were propagated in McCoy’s 5A 

medium supplemented with 10% fetal bovine serum and Penicillin-Streptomycin (GIBCO, 

#15140). UGD cells were kept under positive selection with 100 µg/mL G418. Hypertonic medium 

was prepared by supplementing regular growth medium with 10x PBS such that the appropriate 

sodium concentration was achieved. Isotonic medium was prepared by mock supplementing 

regular growth medium with 1x PBS, whose volumes matched that of 10x PBS in hypertonic 

medium. Oxidative stress was induced by treating cells with 0.5 mM sodium arsenite (SA). 

Hyperosmotic medium with sucrose or sorbitol were prepared by directly dissolving the 

appropriate reagent to achieve 300mOsm/L (300 mM). Plasmid transfections for GFP imaging 

were achieved using Fugene HD (Promega, # E2311) as per the manufacturer’s protocol. UGD 

cells were transfected with siRNAs using Lipofectamine RNAimax (Thermo-Fisher, # 13778030) 
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as per the manufacturer’s protocol. For live cell imaging of Halo-DCP1A, CLIP-DCP1A, and 

SNAP-DCP1A, cells were treated with 100 nM of the appropriate ligand for 30 min in growth 

medium without phenol-red. After the treatment, cells were washed three times in phenol-red free 

medium and placed back in the incubator for 30 min, prior to imaging. For live cell imaging, cells 

were imaged in phenol-red free medium containing 1% FBS and the appropriate tonicity. 

For DCP1A expression time course data (Figure S4D), U2OS cells were transfected with 

pGFP-DCP1A using Fugene HD. Transfected cells were imaged at 12, 24, 36, 48 and 72 hours 

after transfection to allow the expression level of the protein to build up. Cells were images under 

isotonic and hypertonic conditions at each time point to cover about 2-orders of magnitude of total 

GFP fluorescence intensity. 

Cell viability assays. 100 µL of 10, 000 -20, 000 cells were seeded per well of a 96 well 

white bottom plate or 96 well transparent plate in regular growth medium. 24 h after seeding, cells 

were treated with appropriate isotonic or hypertonic medium. Cell growth and viability were 

measured on the 96 well white bottom plate as an end point measurement for each time point 

and/or treatment using the Cell-titer GLO assay (Promega, # G7570) based on manufacturer’s 

instructions. 96 well transparent plates were fixed with 100% methanol at RT for 10 min, stained 

with crystal violet (0.5% in 20% methanol) for 20 min at RT, washed with water and photographed. 

Immunofluorescence. Cells were grown on 8 well chambered coverglasses (Thermo-

Fisher, # 155383PK), washed with PBS, formaldehyde fixed and permeablized using 0.5% Triton-

X100 (Sigma, T8787-100ML) in 1x PBS at room temperature (RT) for 10 min. It is important that 

the tonicity of the wash buffer and fixative matched that of the cell medium. Cells were then treated 

with blocking buffer containing 5% normal goat serum (Jackson Immunoresearch, 005-000-121), 
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0.1% Tween-20 (Sigma, P9416-50ML) in 1x PBS at RT for 1 h. Primary antibodies (pA) were 

diluted in blocking buffer to appropriate concentrations and cells were treated with pA at RT for 

1 h. Following three washes with the blocking buffer for 5 min each, cells were treated with 

secondary antibodies (sA) diluted in blocking buffer to appropriate concentrations. Then, 

following two washes with the blocking buffer and two washes with 1x PBS for 5 min each, cells 

were mounted in solution containing 10 mM Tris/HCl pH 7.5, 2 × SSC, 2 mM trolox, 50 μM 

protocatechiuc acid, and 50 nM protocatechuate dehydrogenase. Mounts were overlaid with 

mineral oil and samples were imaged immediately.  

Combined IF and RNA fluorescence in situ hybridization. Following the final 1x PBS 

washes in the abovementioned IF protocol, cells were formaldehyde fixed and permeablized 

overnight at 4 oC using 70% ethanol. Cells were rehydrated in a solution containing 10% 

formamide and 2 × SSC for 5 min and then treated with 100 nM Oligo-dT30-Cy5 (IDT) for 16 h 

in 2 × SSC containing 10% dextran sulfate, 2 mM vanadyl-ribonucleoside complex, 0.02% 

RNAse-free BSA, 1 μg μl−1 E. coli transfer RNA and 10% formamide at 37 °C. After 

hybridization, cells were washed twice for 30 min at 37 °C using a wash buffer (10% formamide 

in 2 × SSC). Cells were then mounted in solution containing 10 mM Tris/HCl pH 7.5, 2 × SSC, 

2 mM trolox, 50 μM protocatechiuc acid, and 50 nM protocatechuate dehydrogenase. Mounts were 

overlaid with mineral oil and samples were imaged immediately.  

Microscopy. Highly inclined laminated optical sheet (HILO) imaging was performed as 

described (Pitchiaya et al., 2012; Pitchiaya et al., 2013, Pitchiaya et al., 2017, Pitchiaya et al., 

2019) using a cell-TIRF system based on an Olympus IX81 microscope equipped with a 60x 1.49 

NA oil-immersion objective (Olympus), as well as 405 nm (Coherent ©, 100 mW at source, ~65 
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µW for imaging CB-Dex), 488 nm (Coherent ©, 100 mW at source, ~1.2 mW for imaging GFP), 

561 nm (Coherent ©, 100 mW at source, ~50 µW for imaging mCh) and 640 nm (Coherent ©, 100 

mW at source, 13.5 mW for imaging Cy5) solid-state lasers. Quad-band filter cubes consisting of 

z405/488/532/640rpc or z405/488/561/640rpc dichroic filters (Chroma) and z405/488/532/640m 

or z405/488/561/640m emission filters (Chroma) were used to filter fluorescence of the 

appropriate fluorophores from incident light. Emission from individual fluorophores was detected 

sequentially on an EMCCD camera (Andor IXon Ultra) for fixed cell imaging. For live cell 

imaging cells were seeded on Delta T dishes (Bioptechs, 04200417C) and imaged on a Bioptechs 

temperature control module (Bioptechs, 0420-4). High-throughput IF was performed on the same 

microscope using a 60x 0.9 NA air objective. The multi-well scanning mode in Metamorph®, the 

acquisition software, was used to control a motorized stage (MS-2000, Applied Scientific 

Instrumentation Inc.). 

Image Analysis. For measuring the average GFP signal per cell, GFP intensity thresholds 

were set (Huang threshold in image J) to automatically identify cell boundaries. Background 

intensity, outside of cell boundaries, was subtracted from GFP signal to extract the background 

corrected GFP intensity within cells. The corrected intensity was then divided by the total number 

of thresholded (Huang threshold in image J) DAPI stained nuclei to extract the average GFP 

intensity per cell. For measuring the percentage of GFP signal within foci, images were first 

thresholded (percentage threshold in image J) to create masks of foci and the GFP intensity within 

this mask was calculated. Background corrected foci intensity was then divided by the background 

corrected GFP intensity within cells. Average number of foci per cell in IF images were identified 

using the find maxima function in image J. Briefly, a 5-pixel radius rolling ball was used to subtract 

the background from images, which were subsequently convolved with a 5x5 pixel kernel and a 
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2-pixel radius Gaussian blur function. These image processing steps enhanced the definition of a 

spot that were easy to identify with the find maxima function. The noise tolerance (or threshold 

value) in the find maxima function was maintained across samples that were compared. The total 

number of spots was then divided by the number of nuclei to calculate the mean spots per cell. 

Imaris was used for single particle tracking. Custom Matlab scripts were used to extract diffusion 

rates of the trajectories by fitting the mean squared displacement (< 𝑟! >) over the first five 

observation time windows to a line and extracting the slope. Diffusion rates (𝐷) were then 

calculated as per the 2-D diffusion equation from 

< 𝑟! >	= 4 ∗ 𝐷 ∗ 𝑡 

The obtained logarithm of the obtained diffusion values was plotted as histograms in Origin 

which were then visualized as violin plots using custom scripts in Matlab. Final figures were 

assembled in Illustrator. 

RNAseq and Bru-seq. For steady-state RNAseq, UGD cells were grown in 10 cm dishes, 

treated with the appropriate medium (isotonic, 150 mM Na+ or hypertonic, 300 mM Na+) and cells 

were harvested by scraping in RIPA buffer (Thermo-Fisher, PI89900). Total RNA was then 

extracted with QIAGEN RNeasy midi kit (Cat. No. 75144). RNA integrity was assessed using an 

Agilent Bioanalyzer. Each sample was sequenced in duplicated using the Illumina HiSeq 2000 

(with a 100-nt read length). Strand-specific paired-end reads were then inspected for sequencing 

and data quality (for example, insert size, sequencing adaptor contamination, rRNA content, 

sequencing error rate). Libraries passing quality control were trimmed of sequencing adaptors and 

aligned to the human reference genome, GRCh38. Sample were demultiplexed into paired-end 

reads using Illumina's bcl2fastq conversion software v2.20. Reads were mapped onto hg38 human 
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reference genome using TopHat2. First the reference genome was indexed using bowtie2-build. 

Paired end reads were then aligned to the reference genome using TopHat2 with strand-specificity 

and allowing only for the best match for each read. Aligned file was used to calculate strand 

specific read count for each gene using bedtools multicov with -s option. A known genes gtf file 

downloaded from UCSC was used to calculate read count. Two additional bed files were created 

for each gene representing 10kb upstream and 10kb downstream of the TSS. For each gene, read 

count was calculated for its upstream and downstream region as well with strand-specificity. To 

estimate an RNA read-through event, we calculated the ratio of read count for 10kb downstream 

of TSS to 10kb upstream of TSS after normalizing it for gene expression and sequencing depth. A 

box plot was plotted for this normalized ratio for the three samples using R software and ggplot2 

package. Evaluation of significance was performed using the student’s t-test. The aligned bam file 

of the sample was converted into bigwig format using deepTools bamcoverage. The resultant 

bigwig file was uploaded onto IGV for viewing of the RNA read-through event. 

For Bru-seq, UGD cells were grown on T75 flasks to >80% confluency. Flasks were 

washed once with fresh medium before bromouridine (BrU) treatment. BrU solution was diluted 

to a final concentration of 2 mM in McCoy’s 5A medium containing 2% FBS containing 145 mM 

(isotonic) or 300 mM (hypertonic) monovalents. Cells were incubated in the appropriate 

bromouridine-containing media for 30 minutes. Cells treated with hypertonic media were allowed 

to recover in isotonic media for 30 minutes or 6 h in isotonic media before they were harvested. 

Nascent transcript libraries for Bru- and Bru-Chase seq were performed and sequenced as 

described (Paulsen et al, 2014).  
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Data from both RNAseq and Bru-seq were analyzed as follows. We identified the 

transcription end sites (TES) of genes by GENCODE annotation and defined a 10 kb region 

upstream (US) and downstream (DS) of each TES, especially for genes that did not have any 

neighboring gene DS within the 10 kb distance. We then computed reads per kilobase million 

(rpkm) values for these US and DS bins and computed a DS/US ratio.  

Statistical analysis. Graphpad-Prizm and Origin were used for statistical analysis and 

plotting. For pairwise comparisons, p-values were calculated based on non-parametric unpaired t-

tests with a Kolmogorov-Smirnov test. For comparisons involving more than 2 samples, one-way-

ANOVA tests were used with a Geisser-Greenhouse correction. 

 

Table 3-1 List of antibodies used in Chapter 3. 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Rabbit anti DCP1A polyclonal Bethyl A303-591A 
Mouse anti EDC4 monoclonal Santa Cruz sc-374211 
Rabbit anti EDC4 polyclonal Abcam ab72408 
Recombinant Anti-METTL3 antibody [EPR18810] Abcam ab195352 
Recombinant Anti-RENT1/hUPF1 antibody [EPR4681]  Abcam ab109363 
Recombinant Anti-Nkx3.1 antibody [EPR16653] Abcam ab196020 
Recombinant Anti-TDP43 antibody [EPR5810] Abcam ab109535 
Recombinant Anti-FXR1 antibody [EPR7932] Abcam ab129089 
Recombinant Anti-CPSF6 antibody [EPR12898] Abcam ab175237 
Anti-PABP antibody Abcam ab21060 
Anti-TIA1 antibody - C-terminal Abcam ab40693 
Recombinant Anti-POT1 antibody [EPR6319] Abcam ab124784 
Anti-RPS20 antibody produced in rabbit Abcam SAB4502698 
Anti-Proteasome 20S alpha + beta antibody Abcam ab22673 
Anti-SNF5/SMARCB1 antibody - ChIP Grade Abcam ab12167 
Recombinant Anti-Telomerase reverse transcriptase antibody 
[Y182] Abcam ab32020 
Anti-RNA polymerase II CTD repeat YSPTSPS (phospho S2) 
antibody - ChIP Grade Abcam ab5095 
Recombinant Anti-ERG antibody [EPR3864] Abcam ab92513 
Anti-EDC4 (N-terminal) antibody produced in rabbit Sigma SAB4200114 
CNOT1 Antibody Proteintech 14276-I-AP 
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Vimentin (D21H3) XP® Rabbit mAb Cell signaling technol. 5741S 
LC3A/B (D3U4C) XP® Rabbit mAb Cell signaling technol. 12741S 
Argonaute 2 (C34C6) Rabbit mAb Cell signaling technol. 2897S 
HIF-1α (D1S7W) XP® Rabbit mAb Cell signaling technol. 36169S 
Anti-eIF4G Antibody Sigma 07-1800 
MOV10 Antibody Proteintech 10370-I-AP 
CBP80 antibody [N1N2], N-term Gene tech GTX114570 
Anti-RNA helicase A Abs Vaxron PA-001 
TRF-2 Antibody Novus biologicals NB110-57130SS 
Anti-IGF2BP3 (IMP3) (Human/Mouse) pAb MBL RN009P 
c-Fos (9F6) Rabbit mAb Cell signaling technol. 2250S 
JunB (C37F9) Rabbit mAb Cell signaling technol. 3753S 
Anti-DUT antibody produced in rabbit Atlas antibodies HPA054422 
ANTI-CDK12 antibody produced in rabbit Sigma / atlas HPA008038 
DCP2 Polyclonal Antibody Thermo PA5-34455 
GAPDH (14C10) Rabbit mAb Cell signaling technol. 2118S 
Anti-PAICS antibody produced in rabbit Sigma / atlas HPA035895 
Anti-SORD antibody produced in rabbit Sigma / atlas HPA040260 
β-Actin (13E5) Rabbit mAb Cell signaling technol. 4970T 
Hexokinase I (C35C4) Rabbit mAb Cell signaling technol. 2024T 
TIAR (D32D3) XP® Rabbit mAb Cell signaling technol. 8509T 
YB1 (D299) Antibody Cell signaling technol. 4202S 
YY1 (D5D9Z) Rabbit mAb Cell signaling technol. 46395S 
YAP (D8H1X) XP® Rabbit mAb Cell signaling technol. 14074T 
PFKL antibody [C1C3] Gene tech GTX105697 
Monoclonal ANTI-FLAG® M2 antibody produced in mouse Sigma F1804 
PKM2 (D78A4) XP® Rabbit mAb Cell signaling technol. 4053T 
hnRNP A1 (D21H11) Rabbit mAb Cell signaling technol. 8443S 
Estrogen Receptor α (D6R2W) Rabbit mAb Cell signaling technol. 13258S 
Anti-TARBP2 antibody produced in rabbit Sigma AV40512-100UL 
Akt Antibody Cell signaling technol. 9272S 
Recombinant Anti-Cyclin A2 antibody [Y193]  Abcam ab32386 
Pan-Cadherin Antibody Cell signaling technol. 4068S 
ZC3HAV1 Polyclonal Antibody Invitrogen PA5-31650 
Antibody against N6-methyladenosine modifications of RNA 
and DNA synaptic systems m6a-202003 
METTL14 Antibody Novus biologicals NBP1-81392 
Anti-ALKBH5 antibody produced in rabbit Sigma / atlas HPA007196 
Anti-Dicer antibody [13D6] - ChIP Grade (ab14601) Abcam ab14601 
HPRT Antibody (5F11A7) Novus biologicals NBP2-37245 
LAMP1 (D4O1S) Mouse mAb #15665 Cell signaling technol. 15665S 
Anti-CFTR antibody [CF3] (ab2784) Abcam ab2784 
E-Cadherin (4A2) Mouse mAb #14472 Cell signaling technol. 14472S 
Monoclonal Anti-IRX5 antibody produced in mouse Sigma WH0010265M1 
Anti-GW182 antibody [4B6] - P/GW Body Marker (ab70522) Abcam ab70522 
Human/Mouse/Rat Muscle Phosphofructokinase/PFKM 
Antibody R&D systems MAB7687 
Monoclonal Anti-ALDOA antibody produced in mouse Sigma WH0000226M1 
PCNA (PC10) Mouse mAb #2586 Cell signaling technol. 2586T 
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Purified Mouse Anti-Ki-67  BD 550609 
α-Tubulin (DM1A) Mouse mAb #3873 Cell signaling technol. 3873S 
TRBP Monoclonal Antibody (46D1) thermo LF-MA0209 
Monoclonal Anti-p53 antibody produced in mouse Sigma P8999 
UBTF Antibody Novus biologicals NBP1-82545 
HSF1 Antibody #4356 Cell signaling technol. 4356T 
Recombinant Anti-SAM68 antibody [EPR3232] Abcam ab109197 
Anti-IRE1 (phospho S724) antibody (ab48187) Abcam ab48187 
Anti-DCP1A antibody produced in rabbit Sigma / atlas HPA013202 
Anti-Argonaute-2 Antibody Sino biological 108621-T02 
Anti-Argonaute-1 Antibody MBL RN028P 
G3BP1 Polyclonal Antibody Invitrogen PA5-29455 
RCAS1 (D2B6N) XP® Rabbit mAb #12290 Cell signaling technol. 12290P 
Rab5 (C8B1) Rabbit mAb #3547 Cell signaling technol. 3547P 
Caveolin-1 (D46G3) XP® Rabbit mAb #3267 Cell signaling technol. 3267P 
Clathrin Heavy Chain (D3C6) XP® Rabbit mAb #4796 Cell signaling technol. 4796P 
EEA1 (C45B10) Rabbit mAb #3288 Cell signaling technol. 3288P 
Rab7 (D95F2) XP® Rabbit mAb #9367 Cell signaling technol. 9367P 
Rab11 (D4F5) XP® Rabbit mAb #5589 Cell signaling technol. 5589P 
Syntaxin 6 (C34B2) Rabbit mAb #2869 Cell signaling technol. 2869P 
Calnexin (C5C9) Rabbit mAb #2679 Cell signaling technol. 2679P 
ERp72 (D70D12) XP® Rabbit mAb #5033 Cell signaling technol. 5033P 
PDI (C81H6) Rabbit mAb #3501 Cell signaling technol. 3501P 
COX IV (3E11) Rabbit mAb #4850 Cell signaling technol. 4850S 
Anti-HLA-DMB Antibody (HPA012298) Sigma / atlas HPA012298 
CDK9 (C12F7) Rabbit mAb #2316 Cell signaling technol. 2316S 
Recombinant Anti-Cyclin B1 antibody [Y106] (ab32053) Abcam ab32053 
Androgen Receptor (D6F11) XP® Rabbit mAb #5153 Cell signaling technol. 5153S 
Anti-NRG2 antibody Abcam ab220615 
DDX6 Antibody, A300-460A Bethyl A300-460A 
DCP1A Antibody, A303-591A Bethyl A303-591A 
XRN1 Antibody, A300-443A Bethyl A300-443A 
FUS Antibody Novus biologicals NB100-565 
53BP1 Antibody Novus biologicals NB100-304 
(sc-899) Pol II (N-20) Santa Cruz SC-899 
Anti-phospho-Histone H2A.X (Ser139) Antibody, clone 
JBW301 Millipore 05-636 
Anti-DNA-RNA Hybrid Antibody, clone S9.6 Sigma MABE1095 
Anti-TRF1 Antibody, clone BED5 57-6 Millipore 04-638 
dc4 Antibody (F-1): sc-374211 Santa Cruz SC-374211 
NOSTRIN Antibody (F-10): sc-365031 Santa Cruz SC-365031 
Anti-Poly ADP-ribose Antibody, clone 10H EMD-Sigma MABC547 
ERG (A7L1G) Rabbit mAb Cell signaling technol. 97249S 
rRNA Antibody (Y10b) Novus biologicals NB100-662SS 
GW182 Antibody (4B6): sc-56314 Santa Cruz SC-56314 
Anti-v-H-Ras (Ab-1) Rat mAb (Y13-259) CalboChem OP01 
Goat-anti-rabbit-Cy5  Jackson Immunolabs  111-175-144 
Goat-anti-mouse-Cy5 Jackson Immunolabs  115-175-146 
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Table 3-2 List of plasmids used in Chapter 3. 

REAGENT or RESOURCE SOURCE IDENTIFIER 
pEGFP-C1 Clontech Discontinued 
pIRES2-EGFP-p53 WT Lab of Dylan Taatjes Addgene # 49242 
pEGFP-hAgo2   
pPAICS-EGFP Lab of Stephen 

Benkovic 
Addgene # 99108 

pcDNA3.2 TDP-43 YFP Lab of Aaron Gitler Addgene # 84911 
pT7-EGFP-C1-HsDCP2 Lab of Elisa Izaurralde Addgene # 25031 
pEGFP-N1-FUS/TLS-FLAGC Lab of Patrick Calsou Addgene # 60362 
pSICO-CPSF6-358-eGFP Lab of Zandrea Ambrose Addgene # 110693 
FLHKIII-pGFPN3 Lab of Hossein Ardehali Addgene # 21920 
RNT1-GFP Lab of Hal Dietz Addgene # 17708 
pmyc-GFP-TNRC6A Lab of Kumiko Ui-Tei Addgene # 41999 
pEGFP-C1-PKM2 Lab of Axel Ulrich Addgene # 64698 
pEGFP-Nck1 Lab of Louise Larose Addgene # 45903 
pT7-EGFP-C1-HsNot1 Lab of Elisa Izaurralde Addgene # 37370 
pIRES2-EGFP-Rac2 Lab of Gary Johnson Addgene # 12193 
pLPS-hAKT1-GFP Lab of Randall 

McKinnon 
Addgene # 49388 

IRE1 alpha-pcDNA3.EGFP Lab of Fumihiko Urano Addgene # 13009 
HSF1-GFPN3 Lab of Stuart 

Calderwood 
Addgene # 32538 

EGFP-Actin-7 Lab of Michael 
Davidson 

Addgene # 56421 

GFP-UB Lab of Nico Dantuma Addgene # 11928 
pEGFP-C1-Dcp1a Pitchiaya et al. 2019 N/A 
pmRFP1-Dcp1a Nancy Kedersha N/A 
pcDNA5/FRT/TO/FLGA-tGFP-HuR.WT Lab of Sandra Martha 

Gomes Dias 
Addgene # 110376 

pcDH-Halo-DCP1a This study  
pcDH-CLIP-DCP1a This study  
pcDH-mCherry-DCP1a This study  
pcDH-SNAP-DCP1a This study  
pcDH-GFP-DCP1a This study  
pEGFP-DCP1a (1-380) Aizer et al. 2012 N/A 
pEGFP-DCP1a (380-582) Aizer et al. 2012 N/A 
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Table 3-3 Reagents referenced in Chapter 3. 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies 
Information about 112 antibodies used in this study are listed 
in Table S1 

  

Chemicals, Peptides, and Recombinant Proteins 
MAP Kinase Inhibitor SP100025 Invivogen tlrl-sp60 
Okadaic acid, sodium salt EMD Millipore 459620-25UG 
DiI stain Thermo-Fisher D3911 
Sodium (meta) Arsenite Sigma S7400-100G 
JaneliaFluor 549 HaloTag ligand Promega GA1110 
CLIP-Cell 505 ligand NEB S9217S 
SNAP-Cell 647-SiR NEB S9102S 
Crystal Violet (Certified Biological Stain) Thermo-Fisher C581-100 
Critical Commercial Assays 
Fugene HD Promega E2311 
Lipofectamine 2000 Thermo-Fisher 11668027 
CellTiter-Glo® Luminescent Cell Viability Assay Promega G7570 
Deposited Data 
Raw and analyzed data  This work N/A 
Experimental Models: Cell Lines 
Human: U2-OS ATCC HTB-96 
Human: HK-2 ATCC CRL-2190 
Human: Caki-1 ATCC HTB-46 
Human: MCF7 ATCC CRL-5803 
Human: H1299 ATCC HTB-22 
Human: U2-OS stably expressing GFP-Dcp1a (UGD) Pitchiaya et al, 2019 N/A 
Oligonucleotides 
Ambion negative control siRNA 1 Thermo-Fisher AM4611 
siRNA targeting EDC4 SMARTPool (siEDC4) Dharmacon M-016635-00-0005 
Recombinant DNA 
Information about 30 plasmids used in this study are listed in 
Table S2 

  

Software and Algorithms 
MATLAB 8.3 The Mathworks Inc. R2014a 
Prizm 7.04 GraphPad Prizm 7.04 
Origin 2018 OriginLab Origin 2018 
Imaris 9.1.0 Bitplane AG Imaris 9.1.0 
Fiji ImageJ/NIH Fiji 
Custom MATLAB routines This work N/A 
Custom Image J macros This work N/A 
Bacterial and viral strains 
XL10-Gold Ultracompetent Cells Agilent 200315 
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 Higher-Order Assembly Facilitates 3D mRNA Target 
Search by microRNAs in Cells4

4.1. Abstract 

The ability of mammalian microRNAs to regulate mRNA translation and stability is 

dependent on recognition of and binding to partially complementary microRNA response elements 

(MREs). Conserved microRNA targets are known to contain multiple MRE copies for the same 

microRNA. While the relationship between MRE number and mRNA repression has been studied, 

the extent and role of stoichiometric microRNA-mRNA binding and competition during 

microRNA target search remains unresolved. Here we present a live cell, single-molecule tracking 

approach to study microRNA-mRNA binding interactions in real-time. We observe that 

microRNAs predominantly use three-dimensional diffusion to search for and interrogate mRNAs, 

probing each mRNA many times but only rarely associating stably. We also observe MRE-number 

and AGO2-dependent higher-order assembly of mRNAs, suggesting a mechanism by which 

microRNAs can enhance the efficiency of target repression by reducing the target search space. 

Taken together, these observations suggest that the RISC machinery uses multivalent protein-RNA 

interactions to facilitate rapid search and resource-efficient repression of target mRNAs bearing multiple 

MREs. 

 
4 This work was done with Dr. Hui Li who performed all injection experiments. A.P.J. was involved in 

experimental design and performed all data analysis. 
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4.2. Introduction 

MicroRNAs regulate protein translation by tuning the stability and translation of eukaryotic 

mRNAs (Bartel, 2018; Bushati and Cohen, 2007; Pasquinelli and Ruvkun, 2002). To carry out 

these tasks, microRNAs recruit RNA-induced silencing complexes (RISC) to sites of partial 

complementarity to microRNAs in the mRNA 3’ UTR referred to as microRNA response elements 

(MREs).  

The first step in the process of regulation is the process of target search. In vitro work has 

revealed a detailed paradigm of target search, which is now understood to occur in two phases. 

Upon diffusion-limited encounter of an mRNA, the miRNA first non-specifically probes the 

sequence to find sites of complementarity to the first three nucleotides of the microRNA, using a 

combination of 1-dimensional (“sliding”) search and 3-dimenional (“hopping”) search, involving 

rapid dissociation and re-association (Cui and Joo, 2019). The second phase involves stabilization 

of AGO2 binding to the mRNA upon encountering an MRE (Flores-Jasso et al., 2013; Salomon et 

al., 2015; Wee et al., 2012). Since any given target mRNA species can contain multiple MREs, it 

remains unclear what the role of multiple, often highly conserved, MREs is in this target search 

process (Arvey et al., 2010; Denzler et al., 2014b; Denzler et al., 2016; Smillie et al., 2018). While 

the number of MREs has been demonstrated to impact the overall level of repression of such 

transcripts, and the spacing between MREs has been shown to influence cooperative RISC binding, 

the role of MRE number in target miRNA occupancy remains unclear (Denzler et al., 2016). 

Additionally, the evidence for this search paradigm is primarily supported by data from in vitro 

experiments. It is unclear how these search modes play out inside the cell, whose interior is 

characterized by an abundance of diverse RNA-binding proteins and molecular crowding (Daher 
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et al., 2018b; Gehring et al., 2017; Gerstberger et al., 2014; Hafner et al., 2010; Matsuda et al., 

2014; Schnell and Turner, 2004; Zhou et al., 2008). 

The miRNA target search process in the cell is expected to be confounded by the small 

numbers of target MREs relative to the large sequence search space, consisting of all accessible 

RNAs in the cytosol, for any given microRNA (Arvey et al., 2010; Bosson et al., 2014b; Denzler 

et al., 2016). Additionally, it has been shown that artificially increasing the number of MREs in a 

cell to very high levels can lead to sponging effects, where microRNAs will bind to the most 

abundant transcripts, and transcripts of lower abundance will experience decreased repression. 

This has been coined the competitive endogenous RNA (ceRNA) hypothesis, which posits that 

endogenous RNAs compete for a limiting pool of functional RISC complexes, and the level of 

expression of individual competitor transcripts can impact repression of other transcripts 

(Broderick and Zamore, 2014; Thomson and Dinger, 2016).  

Recent work on intracellular macromolecular condensation is starting to unravel the 

widespread and dynamic relationship between subcellular spatial organization and RNA/protein 

sequence features (Langdon and Gladfelter, 2018b; Ma and Mayr, 2018). Emerging evidence 

suggests that RISC components are capable of forming higher-order assemblies by phase-

separation (Sheu-Gruttadauria and MacRae, 2018). Additionally, miRNA-interactions impact the 

localization of target transcripts to membraneless-organelles such as P-bodies (Pitchiaya et al., 

2019b). However, the mechanistic relevance of such assembly to miRNA target search and target 

repression in vivo remains unclear. 

Here we introduce a live cell two-color RNA imaging approach to study miRNA-mRNA 

interactions in living cells. Using this assay, we observe dynamic, MRE-dependent colocalizations 
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between fluorescently labeled mRNAs and microRNAs. We observe an MRE-number dependent 

increase in both the degree and stability of colocalization and an MRE-number dependent 

clustering of mRNAs that is AGO2-dependent. We next investigate the hypothesis that clustering 

promotes RISC function by using a computational approach to compare the mRNA occupancy 

predicated by different modes of miRNA binding. We find that such clustering enhances target 

binding while allowing transcripts to be sub-stoichiometrically occupied by RISC. We conclude 

that microRNAs primarily use 3D diffusion to probe for MREs and exploit multivalent interactions 

to facilitate target clustering that preserves silencing under high binding competition. 

4.3. Results  

 Intracellular tethering aids visualization of mRNA-microRNA 

interactions  

To visualize intracellular microRNA-mRNA interactions we modified previously 

described chemical RNA labeling and microinjection-based single-molecule live cell imaging 

assays (Custer and Walter, 2017; Pitchiaya et al., 2012; Pitchiaya et al., 2014; Pitchiaya et al., 

2017b). Labeled double-stranded miR-21 (m21-Cy5/m21*) was co-injected with in vitro 

transcribed, fluorescently labeled firefly luciferase mRNA with 11 seed matched miR-21 MREs 

(FL-11x-m21) (Figure 4-1A). Injected RNAs appeared as bright diffraction-limited spots that 

could be tracked yielding trajectories that were 0.1 to > 10 s. These tracks showed widespread and 

dynamic colocalizations 2-3 hours after injection (Figure 4-1B).  

We explored the possibility of using molecular tethers to slow down mRNA diffusion and 

therefore prolong mRNA tracking via 3’ biotinylation of mRNAs downstream of the polyA tail 

(Figure 4-1A). Previous studies have reported mRNA tethering to the plasma membrane and ER 
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membrane for live cell single mRNA tracking (Wu et al., 2016; Yan et al., 2016). We investigated 

the possibility of tethering mRNAs to actin filaments based on evidence that both translating and 

translationally-silenced mRNAs have been reported to localize to actin (Eberhardt et al., 2016; 

Stebbings, 2001; Wu et al., 2016). To facilitate mRNA localization to actin, biotinylated Phalloidin 

(bPh), a mycotoxin known to bind and stabilize filamentous actin filaments was added to the 

injectate with the aim of tethering mRNAs to intracellular actin (Wu et al., 2016). The presence of 

the SA-bPh tether significantly extended mRNAs track lengths (Figure 4-1C). The mean track 

length of mRNA spots showed an increase from 1.6s (11,784 trajectories, 9 cells) without the 

tethering components to 2.2 s (17,289 trajectories, 9 cells) with streptavidin and biotin-phalloidin. 

We also observed that track length increased in the presence of streptavidin and biotin, suggesting 

that streptavidin-mediated mRNA crosslinking may partially contribute to this increase in tracking 

length. The tethering reagents showed a smaller effect on microRNA track length distribution 

(Figure 4-2A). Further, cells injected with the tethering mixture showed significantly more 

colocalization (29%) compared to cells without streptavidin (18%) (Figure 4-1D). Finally, the 

distribution of diffusion rates, calculated using mean squared displacement analysis and spot 

intensities of mRNA and miRNA spots, were not significantly different in the presence of the 

tethering mixture for either microRNA or mRNA spots (Figure 4-2C-D). Finally, a 5-pixel shift in 

one channel relative to the other (Mellis et al., 2017) decreased colocalization from >15% to ≤5% 

in all the cases suggesting that even the non-specific interactions represented biological events 

rather than chance, density-dependent colocalizations (Figure 4-2B). 

Because the presence of tethering components significantly increased our ability to 

visualize colocalization events along with an increase in mRNA track length, we continued to use 

the SA-bPh tether in all subsequent experiments. 
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Figure 4-1 Intracellular tethering extends visualization of dynamic mRNA:miRISC interactions. (A) Schematic (left) 
depicting the mRNA labeling strategy and the use of the streptavidin+biotin/biotin-phalloidin tethering mixture to 
immobilize labeled, injected mRNA co-injected with double-stranded microRNA 3’ labeled on the guide strand. 
Pseudocolored composite image (right) of U2OS cell showing mRNA spots (red) and microRNA spots (green). Inset 
shows colocalized spots. Scale bar represents 10 µm. (B) Two representative trajectories of colocalized microRNA 
(green) and a rapidly diffusing (top) and slowly diffusing mRNAs (red), showing three arbitrarily chosen frames, 
labeled t1, t2, t3. Insets (right) show spot images at the selected frames. (C) Histogram of track lengths of mRNA 
bearing 11 miR21 binding sites and miR21 without tethering components, with SA and biotin, and with SA and biotin-
phalloidin. (D) Percentage of total tracked spots that were found to be colocalized under different tethering conditions 
depicted in (C). * p < 0.05, ** p < 0.001 by unpaired Student’s t test.  
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Figure 4-2 Tethering mixture does not influence microRNA tracks or other mRNA observables. (A) microRNA track 
length distribution (B) mRNA-microRNA inter-spot distance is slightly stabilized in the presence of streptavidin. (C) 
Diffusion coefficients of spots derived from MSD analysis. (D) Spot intensities of mRNA(left) and microRNA (right) 

 miRNA-mRNA interactions are stabilized by MRE number 

Having established that the presence of the tethering mixture allowed us to observe long 

term, dynamic miRNA-mRNA colocalizations, we applied this method to detect differences in 

specific and non-specific miRNA-mRNA interactions (Chandradoss et al., 2015). mRNAs bearing 

11 seed-matched MREs for miR-21 (FL-11x-m21) or no MREs (FL) were co-injected with labeled 
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miR-21. Non-specific interactions are expected to be proportional to the length of the transcript. 

To control for the length of the mRNA, the colocalizations obtained in these two conditions were 

compared with colocalizations between 11 MRE and a non-specific microRNA miR-7 that is not 

endogenously expressed in U2OS cells. We observed miRNA-mRNA colocalizations across all 

three combinations, although there were significantly more total colocalizations per cell between 

11 MRE and miR-21 (Figure 4-3A).  

The inter-spot distance amongst such spot pairs showed dynamic changes over time and 

high variability between pairs of spots in all these conditions. A histogram of inter-spot distance 

of proximal mRNA-microRNA spots (spot centers <5 px away) showed a single peak < 1.2 pixels 

(~150 nm) and a thick tail. Based on the position of the peak, we classified the inter-spot distance 

traces of proximal spots into regions of “colocalized” and “non-colocalized” states to include only 

those that showed an inter-spot center distance of <1.2 pixels (Figure 4-3B, 4-4). With this 

definition, we determined the fraction of total mRNA spots colocalized with a microRNA spot for 

at least one frame (0.1 s). 

For each pair of proximal mRNA-microRNA spots, inter-spot distance traces were 

classified into “colocalized” and “non-colocalized” states by imposing the colocalization threshold 

of 1.2 pixels derived from distance histograms (Figure 4-3C). Dwell times in the colocalized and 

non-colocalized state from all spot-pairs from a condition were pooled and cumulative dwell time 

distributions were fit to exponentials to mean time to dissociation (tbound) and association (tunbound) 

(Figure 4-3D, 4-5). A comparison of the dwell times of the microRNAs with the respective mRNA 

constructs showed similar tbound in all three cases, the tunbound for the 11 MRE transcript was 
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significantly higher than those for the 0 MRE or control microRNA miR-7, suggesting that specific 

interactions lasted longer than non-specific colocalizations (Figure 4-3D).  

 

Figure 4-3 miRISC:mRNA colocalization and interaction stability increases with MRE number  (A) Fraction of spots 
colocalized (d < 5 px ~ 0.65 µm) between FL and miR-21, FL with 11 miR-21 MREs and miR-21 and FL with 11x 
miR-21 MREs and miR-7. ** represents p value < 0.01 by unpaired Student’s t test. (B) Histogram of aggregate 
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pairwise inter-spot distances of traces found to be colocalized (d < 0.65 µm) for at least one frame. Dotted line 
represents d = 0.15 µm. (C) Representative microRNA-mRNA inter-spot distance traces and corresponding distance 
histograms. Orange bars represent d > 0.15 µm (unbound, orange bars), white regions represent d ≤ 0.15 µm (bound, 
blue bars). (D) Fifty longest idealized distance traces, colored by bound or unbound states and corresponding aggregate 
dwell time histograms for 6 miRNA/mRNA pairs with increasing MRE numbers: FL with miR-21, 11xmiR-21 with 
miR-7 (n = 107 spots), 1x (n = 59 spots), 3x (n = 266 spots), 6x (n = 490 spots) and 11x (n = 764 spots) miR-21 MREs 
with miR-21. Data was obtained from > 10 cells for each condition. 

 

Figure 4-4 Colocalized miRNAs are stabilized close to the mRNA by MRE number. A schematic representation of 
the spatial distribution of the miRNA, denoted by “+” around a mRNA spot center on a 10x10 pixel grid (top). 
Increasing MRE numbers (0 and 11 m21 with miR7, 1, 3, 6, 11) decreases the spread of miRNA localization around 
the mRNA spot center.  
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Figure 4-5 Bound and unbound dwell time cumulative histograms. Histograms were fit to double exponentials to 
extract mean dwell times.   
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We next investigated the relationship between MRE number and the stability of microRNA 

colocalization. Labeled mRNA constructs bearing 1, 3 and 6 MREs were co-injected with labeled 

miR-21. We observed a concomitant increase in the number and duration of close colocalizations 

of miR-21 with increasing MRE numbers (Figure 4-3D, 4-4). The dwell times increased as from 

non-specific miR-7 interactions lasting ~0.1 s as 0.18, 0.24, 0.17 to 0.98 s with 1, 3, 6 and 11 

MREs with miR-21 respectively (Figure 4-4). The MREs in these mRNAs were spaced in tandem 

cassettes, with the seed sequences spaced 20 bases apart. Prior work has suggested the possibility 

of cooperative increase in binding times when MREs are spaced up to 40 bases apart (Chandradoss 

et al., 2015). However, while we did observe increasing dwell times with MRE number, the 

increase in dwell time was not commensurate with changes in MRE number. 

We noted that the distribution of microRNA spot distance relative to the center of the 

mRNA spot showed decreased variance with increasing MRE number, suggesting that MRE 

number helped stabilize microRNA binding (Figure 4-5). These findings together suggest that the 

number of binding sites promotes stable microRNA binding.  

 mRNAs show AGO2- and MRE-dependent clustering 

We observed that mRNA spots with low MRE numbers tended to show shorter tracks than 

the 11 MRE spots (Figure 4-3D). Further, the transcripts bearing different MRE numbers showed 

apparent differences in mRNA spot intensity that appeared to systematically increase with MRE 

number (Figure 4-6C). Ensemble fluorescence measurements indicated that the labeling efficiency 

between the different constructs was similar, suggesting that the systematic variation in spot 

intensities might have a biochemical origin that was not an artefact of our experimental setup. 

Recent work in the field of intracellular phase separation has revealed the importance of 
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multivalent RNA-protein interactions in the assembly of structures such as RNA granules (Sheu-

Gruttadauria and MacRae, 2018). We tested the hypothesis that a component of the RISC 

machinery was involved in the MRE-dependent mRNA clustering, which could explain the 

increased spot intensities. 

The human Argonaute protein AGO2 is the major effector protein responsible for 

microRNA function and is the limiting factor in microRNA pathway. To test the effect of varying 

AGO2 levels we used two different Mouse Embryonic Fibroblast (MEF) cell lines, one in which 

the endogenous AGO2 was knocked out (MEF AGO2 KO) and another in which the human AGO2 

gene was overexpressed in the same background (MEF AGO2 KO AGO2+) (O'Carroll et al., 

2007). The spot intensities of 11 MRE transcripts co-injected with miR-21 were compared between 

the two cell lines. The intensity distribution showed a significant shift to lower intensity in cells 

lacking AGO2 compared to those that overexpressed AGO2 in cells injected with miR-21 (Figure 

4-6B). In contrast, non-specific interactions between miR7 and FL-m21-11x were not impacted by 

AGO2 levels (4-7A). Consistent with the trends of spot intensity shifts, only miR-21 showed 

significant, long colocalizations in the presence of AGO2. We thus concluded that the high-MRE 

number-dependent clustering requires the presence of both the specific microRNA and functional 

AGO2 (Figure 4-6B). 
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Figure 4-6 mRNAs show miRNA and AGO2-dependent clustering (A) 50 longest idealized distance traces and dwell 
time histograms from MEF AGO KO cells and MEF AGO2 KO overexpressing AGO2 injected with FL-11x-m21 
and miR-21. (B) FL-11x-m21 mRNA spot intensity histograms from AGO2 KO and overexpression cells. Schematic 
showing mRNA clustering in AGO overexpressing cells. (C) mRNA spot intensity histogram of FL-m21-3x, FL-m21-
6x and FL-m21-11x from Figure 2D. 
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Figure 4-7 MRE-specific and number-dependent miRNA interactions promote higher-order assembly of mRNAs. (A) 
Colocalization tracks and dwell time histograms of miR7 with FL-m21-11x mRNA in MEF AGO2 KO and MEF 
AGO2 KO +AGO2 cells. (B) The number of photobleaching steps from populations of FL-m21-11x and FL mRNAs 
in fixed U2OC cells injected with miR21. 

While we consistently observed MRE- and miRNA-specificity-dependent shifts in mRNA 

spot brightness, we did not detect dramatic differences in microRNA spot intensities with 

increased MRE number, which suggests that even in a regime of excess microRNA, stoichiometric 

MRE occupancy may be rare in the cell. To further investigate binding stoichiometry, the number 

of miRNA spots colocalized with an mRNA spot in fixed cells was determined by stepwise 

photobleaching analysis. Cells were injected with FL or FL-m21-11x and miR-21. Cells injected 

with FL-m21-11x showed significantly more miRNA colocalizations per spot, but the mRNA spot 

intensities in these cells were also significantly higher (Figure 4-6C, 4-7B). Correcting for mRNA 

spot intensities, which were ~10 times greater than those of 0MRE suggested that these spots 

represented aggregates of mRNAs that were sub-stoichiometrically bound.  
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 miRISC-dependent mRNA clustering and sub-stoichiometric target 

binding enhance target occupancy 

We tested the hypothesis that miRISC-dependent target clustering promoted overall target 

occupancy by comparing the theoretically predicted target occupancy of different miRNA-mRNA 

binding models. We compared the steady-state mRNA bound fraction as a function of the number 

of MREs and relative microRNA concentration across ODE mass-action kinetic models that varied 

in the reversibility of miRNA binding and maximum allowable stoichiometry of binding. The four 

idealized models of miRNA-mRNA interactions that result from the permutations of these factors 

are 1. irreversible and stoichiometric binding where it is possible for all MREs to be simultaneously 

occupied 2. irreversible and sub-stoichiometric, where only one MRE can be bound irrespective 

of the number of MREs, 3. completely reversible binding and 4. reversible binding but with mRNA 

“clustering”, so that a completely unbound mRNA can enter a bound state by encountering a pre-

existing cluster. A comparison of the mRNA bound fractions suggest that while stable (irreversible 

binding models) binding achieves greater mRNA binding at low MRE numbers, at high MRE 

numbers mRNA clustering significantly decreases the microRNA concentration required to 

achieve the same level of occupancy at higher MRE numbers (Figure 4-8A, B). We attribute this 

effect to a decreased competition among mRNAs of the same species for a limited pool of 

microRNA, or “self-competition” (Figure 4-8B). 
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Figure 4-8 A model for MRE-dependent clustering. (A) steady-state mRNA occupancy as a function of miRNA 
concentration under different models of microRNA-mRNA interactions. At low MRE number per mRNA (1 MRE, 
left) irreversible miRNA binding favors greater occupancy than sub-stoichiometric reversible binding or clustering. 
However, at high MRE numbers (11 MREs, right) miRNA-binding-dependent clustering enhances mRNA occupancy 
even under highly sub-stoichiometric conditions. Transcripts bearing high MRE numbers require lower microRNA 
concentration to achieve significant occupancy (B) Schematic depicting the different models of microRNA-mRNA 
binding. Clustering provides a rapid mechanism by which mRNAs bearing a large number of MREs can be effectively 
bound by microRNAs without leading to self-competition. 
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4.4. Discussion  

A duplex RNA generated by 6-8 base pairs between the microRNA seed sequence and an 

MRE is not expected to be sufficiently thermodynamically stable, and consequently the lifetime 

of such a complex is expected insufficient to stably recruit other elements of the RISC complex in 

the cell. However, AGO2 drastically alters the binding properties of the hybrid and stabilizes this 

duplex interaction so that its lifetime is on the order of 5 minutes in vitro (Salomon et al., 2015). 

It is unknown what the binding times of AGO2 are inside the cell, and how MRE number 

influences its residence time. Here we have used an intracellular single-molecule miRNA-mRNA 

visualization approach to demonstrate that both specific and non-specific miRISC-mRNA 

interactions last on the order of 0.1 s in the cell, and that MRE number stabilizes these interactions 

in duration and space.  

Our single molecule mRNA-microRNA visualization assay allows us to observe dynamic 

interactions between intracellular microRNA and mRNA molecules in real time. A majority of 

microRNAs showed transient co-localizations with mRNAs, and only a small fraction colocalized 

stably, suggesting that transient binding may play a dominant role in target search as the 

microRNA engages with non-target regions. In vitro analysis of transcript translation repression 

in lysate suggests that AGO2 clusters support effective repression. Finally, our intracellular 

observations also hint at an AGO2-dependent, microRNA-mediated mRNA clustering that is 

dependent on MRE number. 

Intracellular target search has been previously studied in the context of transcription factor 

binding to specific genomic control regions. Early work on transcription factors postulated 

“facilitated” diffusion to explain the rapid search for specific, high affinity binding sites in the 
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genome (Riggs et al., 1970; Tafvizi et al., 2011). Over the last four decades, successive refinements 

of molecular search models have led to the consensus that a mix of “1D” or linear diffusion and 

“3D” diffusion, by hopping and intersegmental transfer can explain the rapid search mechanism 

of transcription factors for specific binding sites (Halford, 2009; Halford and Marko, 2004; Tafvizi 

et al., 2011). Target search by miRISC is expected to be slower in comparison to transcription 

factors by virtue of the decreased density of cytosolic RNA compared to DNA in the nucleus, 

which excludes inter-segmental hopping, or highly processive 1D search. Recent in vitro single 

molecule experiments have suggested that both 3D and 1D search may contribute to microRNA 

target search (Cui and Joo, 2019; Klein et al., 2017).  

It is unclear under the ceRNA hypothesis how to explain repression of highly abundant 

target mRNAs, especially if they contain multiple copies of the same MRE. In this case the model 

predicts a high level of self-competition amongst such transcripts, resulting in low overall levels 

of translation repression despite experimental evidence that high MRE number ought to promote 

target repression (Mayr et al., 2007). Further, conflicting reports of whether the ceRNA effect does 

in fact significantly alter target occupancy in vivo has remained controversial (Bosson et al., 

2014b; Liu et al., 2019). Thus, under this paradigm it is unclear what the advantage of having 

multiple MREs is if self-competition is predicted to inhibit repression. 

Recent work has demonstrated that RISC proteins can undergo phase separation via 

multivalent RNA-protein and protein-protein interactions. Sheu-Gruttadauria et al reported the 

formation of in vitro condensates of GW182 protein in the presence of AGO2. Since GW182 acts 

downstream of AGO2, and serves as a scaffold for the RISC machinery, condensation of this 

protein may potentially form the basis for mRNA clustering downstream of target binding. 
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Clustering may be particularly valuable in order for mRNAs with a large number of MREs 

to achieve significant repression. Under an mRNA-clustering driven model of target search where 

sub-stoichiometric levels of microRNAs can efficiently recruit a network of RISC proteins to 

transcripts bearing multiple binding sites, it is possible for unbound transcripts to enter a RISC-

bound state without stoichiometric microRNA binding. Thus, clustering can enhance microRNA 

activity when the regulated transcripts possess multiple binding sites. 

MREs spaced 8-40 nucleotides apart have been shown to show cooperative microRNA 

binding and translation repression (Chandradoss et al., 2015). Our observations suggest that 

microRNAs are only bound at sub-stoichiometric levels to transcripts even with closely spaced 

MREs. We conclude that tandem MREs may serve to increase the dwell time of microRNAs rather 

than to recruit multiple RISC complexes cooperatively. Taken together, we propose that multiple 

MREs may form networks of mRNAs bridged by multivalent RISC complexes. This may allow 

multiple mRNAs, rather than multiple MREs on the same mRNA, to be bound by a searching 

microRNA, by a mechanism akin to inter-segmental transfer of transcription factors on DNA. 

Further, while this work has focused on the role of tandem MRE repeats, these results can be 

extended to long 3’UTRs containing multiple MREs of different specificities, adding another layer 

of complexity and cross-talk to miRNA-mRNA networks. Our work therefore highlights the role 

that spatial organization may play in target search by RNA-protein machines, adding a new 

dimension to the discussion of the ceRNA effect. Future work may clarify the role of phase-

separation and dynamic target search in mRNA translation regulation and define the molecular 

interactions that underlie this phenomenon.  
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4.5. Methods 

RNA preparation and labeling All RNA constructs were cloned into pcDNA™ 3.1 (-) 

Mammalian Expression Vector backbones. Plasmids were linearized by restriction digestion using 

AFl II. Firefly luciferase (FL) RNA, bearing 0, 1, 3, 6, or 11 tandem miR21 MREs, was transcribed 

from linearized plasmids, which were further purified by QIAquick PCR Purification Kit. FL RNA 

are first transcribed from 0.5 µg of linearized plasmid using MEGAscript® T7 Transcription Kit 

(Thermo Fisher Scientific, Cat# AM1333), incubated at 37 ℃ for 4 h. RNA was precipitated using 

5 M Ammonium Acetate for this and following enzymatic reactions. Precipitated RNA was capped 

using ScriptCap™ m7G Capping System (CellScript™, Cat# C-SCCE0610). Capped RNA was 

yPAP treated with the total pool of ATP replaced with 2'-Azido-2'-deoxyadenosine-5'-

Triphosphate (Trilink Biotechnologies, Cat# N-1045), 1µL polymerase was used for tailing 30 µg 

mRNA. 5 M Ammonium Acetate was used twice here to remove extra 2'-Azido-2'-

deoxyadenosine-5'-Triphosphate. A-Plus™ Poly(A) Polymerase Tailing Kit (Cellscript, C-

PAP5104H) was used to form the poly(A) tail per their instructions. After purification, RNAs were 

fluorescently labeled using Click-IT® Alexa Fluor® 647/555 DIBO Alkyne (Invitrogen, Cat# 

C10408). Click-iT® Alexa Fluor® 647 DIBO Alkyne was dissolved in anhydrous DMSO to a 

stock concentration of 1 mM. 60 µg of azide-ATP modified RNA is mixed with Click-iT® 

AlexaFluor® 647/555 DIBO Alkyne (1 mM, 10 µL) in 1X PBS for 45 min at 37 ℃. Then the 

RNA was yPAP treated again with the total pool of ATP replaced with 2'-Azido-2'-

deoxyadenosine-5'-Triphosphate (Trilink Biotechnologies, Cat# N-1045), 0.5 µL polymerase was 

used for tailing 30 µg mRNA. Finally Click-iT® DIBO-biotin (Invitrogen, Cat# C10412) was used 

to label the tailed RNA. 5 M Ammonium Acetate was used twice for purification. 
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Precipitated RNA was dissolved and stored in water. RNA integrity was analyzed via 1.2% 

agarose gel electrophoresis. The number of Alexa647 on one mRNA was calculated by the 

concentration ratio of mRNA and Alexa647. The extent of biotinylation was determined by 

measuring the amount of RNA bound by Streptavidin MagneSphere® Paramagnetic Particles 

(Promega, Z5481) or Dynabeads® MyOne™ Streptavidin C1 beads (Invitrogen, Cat# 65001). 

Microscopy and microinjection Streptavidin (SA) was dissolved to a final concentration 

of 1 mg/mL in ddH2O and stored frozen until use. In the instance that miR-21 was co-injected, 

both 15 µM passenger and 10 µM guide strands were heat annealed from 90ºC to room temperature 

in 1X PBS. Injection mixture consisting of 1 µL of 10 mg/mL Cascade Blue Dextran (Thermo 

Fisher Cat# D1976), double stranded microRNA (10µM, 1.5µL), SA (1 mg/mL, 0.38 µL), RNA 

(final concentration: 50 nM, 35 nM or 20 nM), glycerol (7.5 µL, 20%), 3 µL 10X PBS was made 

up to a final volume of 30µL with water. The solution was mixed at room temperature for 7 min, 

following which 1.5µL of 20 µM Biotin-XX Phalloidin (Thermo Fisher Scientific Cat# B7474) 

solution was added to it and incubated at 37 ℃ for 5 min. The samples were then spin filtered 

using a 0.22 µm PVDF filter before microinjection. Injection mixtures were microinjected into 

U2OS, MEF-AGO2 KO and MEF-AGO2 KO+AGO2 cells as previously described (Pitchiaya et 

al., 2012; Pitchiaya et al., 2013). Prior to injection, cells were washed three times and immersed 

with BSS imaging media. Injected cells were imaged 2-4 h post-injection. Cells were identified by 

their Cascade Blue 10 kDa Dextran injection marker signature.  

For photo-bleaching experiments, the injection mixtures were injected into MEF-AGO2 

KO + AGO2. After 3h of microinjection, the cells were washed three times with 1X PBS and fixed 

using 4% para formaldehyde for 20min. After washing with PBS, OSS (2 mM trolox, 50 μM 
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protocatechiuc acid, and 50 nM protocatechuate dehydrogenase in 1X PBS) were added before 

imaging.  

Imaging was performed using highly inclined and laminated optical sheet (HILO) 

microscopy based on an Olympus IX81 microscope equipped with a 60x 1.49 NA oil-immersion 

objective (Olympus) as well as 405 nm (200 µW for imaging Cascade Blue Dextran), 532 nm (8 

mW for imaging Cy3) and 640 nm (4 mW for imaging Alexa Fluor 647) solid-state lasers.  Quad-

band filter cubes consisting of z405/488/532/640rp dichroic filters (Chroma) and 

z405/488/532/640m emission filters (Chroma) were used to filter fluorescence of the appropriate 

fluorophores from incident light. Emission from fluorophores was detected simultaneously on two 

EMCCD cameras (Andor IXon Ultra). The exposure time is usually 100ms. 

Cell culture U2OS (HTB-96, ATCC), were propagated in McCoy’s 5A (GIBCO, # 16600) 

supplemented with 10% FBS (GIBCO, # 16000) and 100 U/mL Penicillin-Streptomycin 

(ThermoFisher Scientific, Cat# 15140122). MEF cells were propagated in DMEM (GIBCO, 

#11995) supplemented with 10% FBS and 100 U/mL Penicillin-Streptomycin. For live cell 

imaging, cells were imaged in phenol-red free medium containing 1% FBS. 

Live cell particle tracking Colocalization analysis was performed in two steps. Raw, 

beads-registered images were used for particle tracking using Imaris. The obtained particle 

trajectories were then analyzed using custom Matlab scripts. Spots were first determined to be 

colocalized if the spot center coordinates were < 5 px away for at least one frame. Inter-spot 

distances from pairs of trajectories that satisfied this criterion were then further analyzed by 

imposing an empirically determined radius cutoff (150 nm) to classify frames into “bound” and 

“unbound” classes based on proximity. The cumulative sum of successive frames in either of these 
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states was taken to be the dwell time in that respective state, and these dwell times were used to 

populate dwell time histograms. Only trajectories that were longer than 5 frames (0.5 s) were used 

for colocalization and diffusion analyses. Diffusion rates were obtained by obtaining the slope of 

mean squared displacement (MSD) vs interval plots assuming 2-D Brownian diffusion.  

Photobleaching analysis was performed using the method described in Tsekouras et al. 

2016. Briefly, injected cells were fixed using 4% PFA. A custom LabView script was used to 

localize spots and extract fluorescence traces. The obtained traces were analyzed using the JuPyter 

notebook implementation of the algorithm described in (Tsekouras et al.). 

Quantification and statistical analysis Origin were used for statistical analysis and 

plotting. For pairwise comparisons, p-values were calculated based on non-parametric unpaired t-

tests with a Kolmogorov-Smirnov test. For comparisons involving more than 2 samples, one-way-

ANOVA tests were used with a Geisser-Greenhouse correction. 
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Table 4-1 List of reagents and other resources referenced in Chapter 4. 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Chemicals, Peptides, and Recombinant Proteins 
2’-Azido-2’-deoxyadenosine-5’-Triphosphate Trilink Biotechnologies N-1045 
Click-iT® Alexa Fluor® 647/555 DIBO Alkyne Invitrogen C10408 
Click-iT® DIBO-biotin Invitrogen C10412 
Biotin-XX Phalloidin Thermo-Fisher B7474 
Critical Commercial Assays 
MEGAscript® T7 Transcription Kit Thermo-Fisher AM1333 
ScriptCap™ m 7 G Capping System CellScript C-SCCE0610 
A-Plus™ Poly(A) Polymerase Tailing Kit CellScript C-PAP5104H 
Deposited Data 
Raw and analyzed data  This work N/A 
Experimental Models: Cell Lines 
Human: U2-OS ATCC HTB-96 
Human: MEF AGO2 KO   
Human: MEF AGO2 +AGO2   
Oligonucleotides 
hsa-miR21-5p:  
pUAGCUUAUCAGACUGAUGUUGA-Cy3 

IDT Custom 

hsa-miR21-3p:  
pCAACACCAGUCGAUGGGCUGU 

IDT Custom 

hsa-miR7-1-5p:  
pUGGAAGACUAGUGAUUUUGUUGUU-Cy3 

IDT Custom 

hsa-miR7-1-3p:  
pCAACAAAUCACAGUCUGCCAUA 

IDT Custom 

Recombinant DNA 
pcDNA3.1-FL Custer and Walter 2017  
pcDNA3.1-FL-1x-m21 Custer and Walter 2017  
pcDNA3.1-FL-3x-m21 Custer and Walter 2017  
pcDNA3.1-FL-6x-m21 Custer and Walter 2017  
pcDNA3.1-FL-11x-m21 Custer and Walter 2017  
   
   
Software and Algorithms 
MATLAB  The Mathworks Inc. R2018a 
Origin 2018 OriginLab Origin 2018 
Imaris 9.1.0 Bitplane AG Imaris 9.1.0 
Fiji ImageJ/NIH Fiji 
Custom MATLAB routines This work N/A 
Bacterial and viral strains 
XL10-Gold Ultracompetent Cells Agilent 200315 
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 Outlook and Future Directions5

5.1. Beyond HOPS 

In Chapter 3 we provide evidence for a proteome-wide phase separation phenotype in 

response to rapid changes in molecular crowding induced by hyperosmotic shock, termed 

hyperosmotic phase separation (HOPS). We first characterized HOPS of DCP1A, a component of 

P-bodies, and demonstrated that its trimerization domain was necessary and sufficient for HOPS. 

We then probed the proteome using a low-throughput live-cell screen and a high-throughput screen 

immunofluorescence screen and found that homomultimeric proteins in general showed a tendency 

to undergo HOPS. 

This work opens up new questions related to the biochemical bases and modulation of 

HOPS, protein evolution and regulation of crowding inside cells. Additionally, HOPS forces us to 

rethink the internal organization of the cell. By suggesting that macromolecules are situated close 

to a phase boundary, HOPS suggests a picture of the dynamic internal organization of cells 

sensitive to external perturbations. These ideas, directions and possible experimental approaches 

are briefly explored here. 

 

5 Section 5.1.2 has been published as:  

Jalihal, A.P., Schmidt A.S., Gao G., Little S., Pitchiaya S. and Walter, N.G. Hyperosmotic phase separation: 
Condensates beyond inclusions, granules and organelles. (2020) JBC. 10.1074/bc.REV120.010899 

All authors contributed to writing and editing. 
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 Regulation of HOPS at the level of solutes and cells 

Chapter 3 explores the biochemical basis of HOPS and identifies homomultimerization as 

the dominant driver of this ubiquitous reorganization. However, many of the tested proteins also 

possess RNA-binding and heteromultimeric interactions, both of which are known to be drivers of 

phase separation (Langdon and Gladfelter, 2018a). It will be important to further investigate the 

contributions of RNA-interactions and charge contributions of RNA both for the assembly and 

disassembly of HOPS condensates. Computational and in vitro methods will be useful to tease 

apart these contributions to crowding-dependent phase separation. 

Various synthetic crowders have been used to investigate the effects of crowding of protein 

folding and phase separation in vitro, and these have revealed the complex and multiple influences 

crowders have on solutes (Kuznetsova et al., 2015; Roden and Gladfelter, 2020; Zhang et al., 

2015). However, in general, the use of artificial crowders are associated with important caveats. 

The most important consideration is to account for physical and biochemical interactions the 

crowders may have with molecules of interest (Feig and Sugita, 2012; Jiao et al., 2010; Miklos et 

al., 2010; Minton, 2005; Zhou, 2013). Also notable is that while crowders are capable of 

recapitulating in vivo protein folding and other behaviors, the composition of crowders in cells is 

highly heterogeneous in size and other properties. A detailed analysis of the combined effects of 

heterogeneous crowder mixture on any given solute is restricted by current technologies which are 

best suited at probing the effects of individual crowding species (Courtenay et al., 2000; Sarkar et 

al., 2013).  

In addition to exploring the effects of changes in crowding on phase separation, studies 

into cellular mechanisms that regulate crowding and phase separation responses to crowding is a 



 

 174 

major outstanding question. In this regard, peioneering work by Delarue and colleagues has shown 

that mTORC activity can alter the polysome load in yeast, thereby altering the overall state of 

crowding by dispersing ribosomes into monosomes (Delarue et al., 2018). Additionally, we and 

several others have examined the role of post-translational modifications on phase separation. 

These results hint at a coupling between mechanisms that sense changes in molecular crowding in 

various contexts, including cell division, and mechanisms that modulate phase-separation potential 

via post-translational modifications during crowding changes. Further exploration of the 

relationship between cell cycle regulators and these mechanisms are required to uncover such 

coupling.  

While the role of HOPS in modulating individual biochemical pathways is now becoming 

apparent (Boyd-Shiwarski et al., 2018b; Cai et al., 2019; Jalihal et al., 2020a), the global role of 

HOPS in conferring protection against osmotic stress remains unclear. One potential avenue to 

investigate this would be a candidate or systematic genome-wide deletion of HOPS domains. It 

would be interesting to see if the distinct pathways affected by HOPS represent redundant 

mechanisms, or their coordinated action is required to confer a sufficiently protective phenotype. 

Alternatively, inducible multimerization systems can be used to probe whether enhanced HOPS 

propensity confers an additional resistance to stress. The question of the global protective role, 

however, remains open and important to address. 

 Reconceptualizing intracellular organization  

The term “condensate” has been used in the literature alongside some everyday metaphors 

for liquid-liquid phase separation, such as the formation of immiscible droplets in vinaigrette or 

lava lamps (Hyman et al., 2014c). These examples capture the thermodynamics of demixing, 



 

 175 

where the energy of the vinaigrette system is minimized when oil and vinegar undergo phase 

separation. However, this analogy is limited because it suggests that the two components of the 

mixture exist in stable, mutually exclusive phases. In biological contexts, phase separation more 

typically leads to an enrichment of components in one or the other phase, and the degree of 

partitioning is relevant to understanding the gain or loss of activity in the more concentrated phase. 

Furthermore, while LLPS appears to be widespread, maturation of liquid-like droplets into gel- 

and solid-like states is a pervasive phenomenon not captured by the oil-water analogy. As the study 

of MLOs in physiological and disease contexts becomes more widespread, an additional analogy, 

serving as a model for biologists may be beneficial. 

The study of phase separation has extensively used cloud-related terminology in the more 

distant past. In the study of protein precipitation, for example, the temperature at which a protein 

solution turns opaque due to phase-separation of the protein is denoted as Tcloud, or the cloud point, 

above which the solution is constituted of a single phase (Taratuta et al., 1990a). The cloud point 

therefore represents the optimal conditions of concentration and other physicochemical factors that 

allow a protein to traverse the phase boundary from a vapor-like state to a condensed state. Here 

we reintroduce the analogy of cloud formation, that has previously been alluded to in the context 

of biological LLPS (Courchaine et al., 2016a; Hyman and Simons, 2012; Sehgal et al., 2020; 

Taratuta et al., 1990b). This metaphor emphasizes the rapid, highly reversible transition from a 

dispersed to a more condensed phase characteristic of phase separation responses to stress. 

The cloud-formation metaphor takes us beyond merely the assembly of droplets. It 

intuitively allows us to make specific predictions related to the impact of physical variables such 

as temperature (kinetic motion) and “humidity” (relative component concentration) to 
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condensation. It also renders intuitive predictions about possibilities for intracellular condensates 

that are not currently reported, such as the potential for “smog”, where a condensate of one type is 

nucleated or otherwise influenced by components that do not otherwise constitute it. It provides a 

rich language to describe condensates based on a continuum of physical properties – “vapor/mist” 

versus “droplets” versus frozen/hardened “hail”. Finally, it provides a new conceptual model of 

mesoscale organization biology that draws from a physical system that is intrinsically emergent 

and possesses fractal properties. 

Consider the highly studied case of TDP43 fibrillization in ALS. TDP-43 under 

physiological conditions has been found to condense into dynamic, liquid-like droplets in the 

nucleus and shows condensation behavior in the cytosol upon exposure to preexisting TDP-43 

fibrils. Cytosolic TDP-43 droplets formed upon deletion of the protein’s nuclear localization signal 

were found to mature into less dynamic, gel-like structures upon arsenite stress (Afroz et al., 2017; 

Gasset-Rosa et al., 2019). Similarly, FUS protein, also associated with ALS pathologies, 

condenses under normal conditions, but these condensates show liquid-to-solid transitions, and 

this tendency is enhanced by disease mutations (Patel et al., 2015; Qamar et al., 2018). These 

examples highlight how vapor-liquid-solid transitions may represent a universal, intrinsic 

tendency of multivalent biopolymers under physiological conditions. The resulting condensates 

can undergo maturation/solidification upon exposure to specific environmental or biochemical 

perturbations, resulting in both altered material properties of the condensates and consequences 

for cellular homeostasis, including pathologies.  

The emerging picture is therefore one of a pervasive potential for multivalent molecules to 

be either within the two-phase regime or poised on the phase boundary between a “vapor”-like 
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dispersed state and a more condensed phase. This allows such molecules to rapidly transition to 

more condensed phases in response to intrinsic- and extrinsic perturbations, albeit in a highly 

regulated and carefully tuned manner. This hypothesis is consistent with the existence of dedicated 

cellular mechanisms that serve to promote the dissolution of condensates (Gomes and Shorter, 

2019b; Jalihal et al., 2020a; Rai et al., 2018). Moreover, the resulting condensates can protect the 

cell by suspending vital cellular functions until the perturbations cease, but alternatively are then 

susceptible to pathogenic maturation into gel-like or solid states that can result in toxicity.  

As our insights into intracellular organization by phase separation expand, laying the 

foundation for understanding how phase-separation pervasively regulates cellular function and 

survival, we also learn about the selection pressures that shape our proteome. It is our hope that 

the additional metaphor proposed here of phase separation as a kind of intracellular “cloud 

formation” may facilitate the intuition needed to appreciate the associated range of phenomena as 

readily reversible, highly adaptive cell reorganization responses to internal and external cues. 

5.2. Binding and localizing RNAs inside the cell 

Chapters 2 and 4 explored intracellular molecular interactions and the relationship between 

molecular sequence and localization. In chapter 2, RNA length, miRNA binding and translation 

potential were explored as contributors to PB interactions. We found that RISC and IGFBP1 

interactions mediate the dynamics and specificity of PB localization of RNAs. In chapter 4, we 

explored the mechanisms that promote miRNA target search and observed that multiple MREs 

both promote stable miRNA binding but also promote clustering of targets. These mechanisms 

promote not just target repression, but also minimize the consequences of the ceRNA effect, in 
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which self-competition between highly expressed targets is expected to decrease overall 

repression. 

One significant insight from this body of work is that the primary sequence influences RNA 

localization to condensates, and therefore has a major role to play in structuring the intracellular 

space. This theme is echoed in other recent work that explores the close connection between RNA 

sequence and localization (Ma and Mayr, 2018; Zhang et al., 2015). Additionally, these results 

raise important questions about the nature of RNA-miRNA regulatory networks in cell, such as 

the direction of regulation and the value of non-specific interactions. The following sections 

examine these ideas.  

 Spatial regulation in miRNA networks 

The major objection raised against the possibility of exogenously modulating miRNA 

activity on the basis of the ceRNA hypothesis is that de-repression of miRNA targets requires a 

vast excess of the competitor RNAs, which in the context of highly expressed miRNAs can amount 

to unphysiologically high RNA concentrations (Salmena et al., 2011; Tay et al., 2014). Indeed, 

this claim about the unlikelihood of de-repression by overexpression has been experimentally 

verified (Denzler et al., 2014a). However, there is a second claim that ceRNA makes, that highly 

abundant targets, especially those with multiple MREs, can show self-competition, and thereby 

reduce the overall bound mRNA fraction, while also buffering gene expression fluctuations 

(Martirosyan et al., 2017). This notion is in line with other emerging evidence that the direction of 

regulatory arrows in ceRNA networks may not be trivial to assign, and inasmuch as miRNAs can 

act to destabilize targets, the target transcripts themselves can act as sponges to modulate miRNA 

activity levels. 
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Differential localization of translationally-repressed mRNAs and other RNAs within PBs 

as discussed in Chapter 2 raises the important question of how spatial organization of granules, 

specifically the core-shell structure of PBs contributes to differences in biochemical effects on 

these RNAs, if any. While there is accumulating evidence that mRNAs in PBs are intact and not 

fragments of degradation products, it remains to be investigated if the interior of PBs is incapable 

of supporting translation because they lack ribosomes or are simply devoid of ribosomes by virtue 

of being enriched for non-translating mRNAs. High-resolution imaging and live-cell single-

molecule translation visualization experiments show promise in investigating these questions.  

Evidence in Chapter 4 suggests that cells possess mechanisms to combat the effects of self-

competition, by allowing mRNA targets possessing multiple MREs to assemble into higher-order 

structures downstream of AGO2 activity. This then suggests that in addition to a level of spatial 

complexity, miRNA-mRNA interactions can redistribute and re-localize these reactants 

themselves. The possibility of such interactions giving rise to more pervasive and regular sub-

cellular organization, as predicted by reaction-diffusion theory, requires further exploration 

(Vanag and Epstein, 2007). 

 Specific and non-specific interactions  

 Having focused for several decades on highly specific macromolecular interactions, the 

field of biomolecular interactions has started revisiting “non-specific” interactions both as a source 

of regulation and as a way to understand intracellular biochemistry. It is becoming increasingly 

apparent that most molecular interactions inside the cell are short lived, and indeed highly transient 
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and dynamic molecular encounters predominate in the cell’s crowded and dense interior. Recent 

studies on low-affinity protein interactions have focused both on high specificity interactions, such 

as receptor-ligand interactions (Parker et al., 2019) and low specificity interactions, also called 

quinary interactions (Ribeiro et al., 2018; Walter, 2019). Our work in Chapter 4 reveals that 

miRNAs in RISC complexes are ubiquitously engaged in short, probing interactions on non-target 

transcripts, lasting 100s of milliseconds. It remains to be explored if such pervasive non-

productive, low-affinity interactions by both proteins and RNA-protein complexes can themselves 

come under selection. One way to test this possibility would be to investigate the detailed RNA 

composition in cells of different related species or cell types to evaluate the distribution of specific 

seed sequences of miRNAs in cells in which they are highly expressed. This also suggests another 

role for the coupling of transcription factors and miRNA networks, as de novo transcription may 

potentially also contribute to changes in the non-specific interactome. 

5.3. Spatiotemporal gene regulation in vivo 

Across its chapters, this thesis has made a case for subcellular spatial and localization 

information encoded in genetic and protein sequences. Thus, strategies for efficient molecular 

search, as in the case of miRNA target binding are closely related to strategies to form structures. 

High resolution single molecule fluorescence tools have allowed these nano- to micro-scale 

domains in cells to be dissected and their formation via phase separation-like mechanisms to be 

studied in living cells. The next frontier is to extend these tools and observations in living tissues 

and organisms, where cellular phenotypes ultimately translate to organismal phenotypes and 

behaviors. Thus the major next step in investigation, for which this work sets the stage both 
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scientifically and methodologically, is inquiry into the hierarchical spatiotemporal gene-regulatory 

mechanisms that cross spatial and temporal scales. 
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 Temperature Effects on HOPS 

A1. Background 

Organisms, both unicellular and multicellular are known to adapt to narrow ambient 

temperature ranges (Angilletta and Angilletta, 2009; Berry and Foegeding, 1997; Pörtner et al., 

2006). Low temperatures influence the kinetics of reactions whereas high temperatures affect 

macromolecular structure and assembly. Additionally, high heat causes nucleic acids and proteins 

to denature, and many organisms possess chaperones and other mechanisms to respond to damage 

induced by heat stress (Somero, 1995, 2020). 

Temperature also influences phase separation. Polymer mixtures show characteristic phase 

behaviors, either showing phase-separation at low temperature (in which case the phase boundary 

has an upper critical saturation temperature), or at high temperature (in which case the phase 

boundary has a lower critical saturation temperature), or both (Jalihal et al., 2020c). Having 

investigated hyperosmotic phase separation (HOPS, Chapter 3), it is of interest to study the effects 

of temperature on the condensation of multimeric proteins in general, and during HOPS in 

particular. 

Our characterization of HOPS suggests that it may be largely driven by changes in 

molecular crowding and presumably reduced diffusion of monomers. Based on this, we can make 

the prediction that temperature would primarily impact condensation via its impact on diffusion: 

lower temperatures decrease diffusion, and thus limit the size and number of condensates. 
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Alternatively, lower temperatures might stabilize condensates by preventing dissociation of 

monomers and might lead to more or larger condensates. We investigated these possibilities using 

our established model of HOPS using UGD cells. 

A2. Method 

Hypertonic DMEM media were prepared by adding the appropriate volume of 10X PBS to 

Phenol Red-free DMEM medium supplemented with 1% FBS. The 5 mL of the media was 

aliquoted into 15 mL falcon tubes which were then prewarmed for 15 minutes at the appropriate 

test temperature after the temperature reading on the water-bath had stabilized. Delta T dishes 

seeded with UGD cells were equilibrated at the test temperature for 5 minutes on the stage before 

imaging. Cells were imaged in isotonic medium and 1 minute after addition of the hypertonic 

medium. Imaris was used for spot detection and tracking and the number of foci per cell in each 

condition measured was plotted in Origin. 

A3. Results 

GFP-DCP1A’s HOPS response and recovery (see Chapter 3) was measured at 27, 32 and 

42 ºC. A clear trend of increasing foci number with temperature was observed in all three 

conditions: isotonic, 230 mM Na+ and recovery. Additionally, at a higher salt concentration (300 

mM Na+) this trend was disrupted. Overall, these data provide two conclusions regarding the 

effects of temperature of DCP1A condensation: firstly, under moderate hypertonic shock and 

isotonic conditions, DCP1A foci number are sensitive to temperature. Secondly, this temperature 

sensitivity is weaker than the strong compression-dependence of HOPS, and temperature effects 

are overcome at higher salt concentrations (Figure A-1). 
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Lower temperatures show decreased number of DCP1A foci. Tentatively, this then 

suggests that DCP1A diffusion and accessibility might be sensitive to temperature fluctuations. 

However, it is also important to rule out effects that temperature may have on macromolecular 

crowding. 

 

Figure A-1 Effect of temperature on DCP1A HOPS. Boxplots represent foci numbers per cell measured under 
isotonic, 230 mM Na+, 300 mM Na+, and 1-minute recovery in isotonic medium, at three different temperature 
conditions. 

A4. Future Directions 

These results raise important questions regarding temperature-sensitive phase separation 

in vivo and temperature sensing mechanisms in general. While several protein-structure-based 

mechanisms have been described in the search for temperature sensors (Sengupta and Garrity, 

2013), one possibility that the field of condensates opens up is a system-wide sensor, rather than 

an individual molecule. In this way, the entire proteome and its spatial organization serve as the 
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sensor of temperature, and thresholds imposed on the degree of condensation can be used to read 

out and initiate responses to high and low temperature stresses. 

In this regard it is of interest to generalize this observation of HOPS proteins’ sensitivity 

to temperature. While our work has revealed the importance of hydrophobic multivalent domains 

in HOPS, it remains to be explored what interactions sensitize these proteins to temperature.  

These preliminary results can be followed up by evaluating what interactions and structural 

features influence this temperature sensitivity. To evaluate the hypothesis that diffusion plays a 

role, it might be important to modulate diffusion using an orthogonal approach, such as by fusing 

DCP1A to a larger protein. Independently, measuring the state of molecular crowding as a function 

of temperature will also clarify the factors that influence temperature sensitivity. 
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 Methylated mRNAs and P-Body Localization

B1. Background 

RNAs are known to be abundantly chemically modified, and these modifications impact 

RNA-protein interactions and consequently RNA function (Lewis et al., 2017; Saletore et al., 

2012). Among the various known modifications adenosine N6 methylation (m6A) has come into 

the limelight after the discovery of the complement of metazoan m6A writer (METTL3/14), reader 

(YTHD proteins) and putative erasers (FTO/ALKBH5), suggesting that this modification may be 

dynamic and subject to regulation (Meyer and Jaffrey, 2014; Yang et al., 2018). Further, work 

over the past decade has shown that m6A can regulate splicing and mRNA stability and even RNA 

phase separation (Lee et al., 2020; Ries et al., 2019). 

Recent work on RNA methylation suggests that methylation serves as a signal to promote 

RNA turnover by recruitment of YTH proteins.  

B2. Methods 

UGD cells were plated on Delta T dishes 24-48 hours before injection. Injection solutions 

containing 2 µL of 10 mg/mL Cascade Blue-Dextran, containing labeled and methylated or 

unmethylated Sox2 mRNA at a final dilution of 500 pg/µL- 10 ng/µL were made up to 20 µL using 

1X PBS. Cells were washed thrice with HBS just before the start of injection. Cells were injected 

in the cytosol and imaged directly following injection or 1 hours after injection. In the second case, 
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cells were washed twice with DMEM medium containing 1% FBS and were incubated in a 37ºC 

CO2 incubator until imaging. 

Cells were imaged with one camera using HILO illumination and 100 ms acquisition time. 

The samples were excited for 10 frames with 405 nm, 10 frames with 488 nm and 80 frames with 

640 nm to image the cascade blue, to examine cytosolic localization, GFP-DCP1A and Alexa-647 

labeled mRNA respectively. Cells were imaged using the 60x oil objective lens, with a 2x 

magnification insert, to obtain a net image magnification of 120x.  

Particle tracking was performed using TrackMate plugin in FiJi. The obtained tracks were 

then subjected to colocalization and diffusion analyses. P-bodies (GFP-DCP1A foci) were found 

to be largely immobile, and their positions were fixed at the spot center obtained by spatially 

averaging the positions of the individual GFP-DCP1A foci spots over 10 frames. Representative 

images were convolved with a LoG filter (5x5 Gaussian filter followed by 3x3 Laplacian) in FiJi 

to enhance spots in both channels. 

B3. Results 

Two color representative images with insets, boxplots showing the extents of mRNA-PB 

colocalization 5 minutes after injection (Figure B-1). While the methylated mRNA sample shows 

colocalization comparable to the background, density-dependent level, the non-methylated sample 

shows statistically significant increase in the degree of colocalization both over background and 

the methylated sample. The background level of density-dependent colocalization for each cell 

was derived using a 10-pixel shift of the mRNA channel relative to the P-body channel. The extents 
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of colocalization per cell were normalized to the number of P-bodies so as to control for the 

variability in cell sizes and P-body numbers. 

 

Figure B-1 Methylated mRNAs show differential colocalization with P-bodies. 
Representative images of UGD cells injected with methylated (top) or unmethylated (bottom) 
mRNA (right). The insets show magnified images of the indicated boxes. Green represents GFP-
DCP1A and red represents Cy5-labeled injected RNAs. The boxplot on the right depicts the degree 
of mRNA:P-body colocalization per cell expressed as a fraction of total P-body number. Number 
of cells = 26 for unmethylated mRNA, 28 for methylated mRNA. The colocalization fraction from 
each condition is compared to internal density control measurements denoted as 10 px shift. * 
denotes statistical significance under unpaired two-sample Student’s t-test at a significance level 
of p < 0.05. 

B4. Future directions 

This preliminary data indicates that methylation at early time-points hinders mRNA 

localization to P-bodies. It will be of interest to track the degree of colocalization at various time 

points after injection. Another experiment in which endogenous YTHD proteins are depleted will 

shed light on the mechanism of this difference and will clarify the role of YTHD binding in 

regulating this localization. 
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 HILO Characterization

C1. Background 

A major source of poor signal characteristics in fluorescence microscopy of biological 

samples is out-of-focus fluorescence that can increase the background signal. One common 

solution is the use of confocal illumination to image thick biological samples, which also provides 

higher XY resolution than epifluorescence illumination. However, in these set-ups the pinhole has 

to be scanned in a raster over the sample, and this process typically imposes a limit on the time of 

imaging, where rapid processes that occur on the similar time scales as the raster speed will be 

inaccessible. A wide-field illumination mode called highly inclined and laminated optical sheet 

illumination (HILO) provides an elegant solution to both problems. Its principle is similar to total 

internal reflection (TIRF), in that it provides a narrow band of illumination that minimizes 

fluorophore excitation outside the focal plane. However, unlike TIRF in which the evanescent field 

is limited to ~100 nm, HILO can be used to illuminate several 10s of microns within the sample 

by changing the angle of incidence of specific excitation wavelengths. 

Here we present a general method to characterize the HILO beam thickness using 

suspended fluorescent beads. The spatial characterization of the beam is useful to determine the 

true beam width and to determine the extent of inhomogeneities across the illuminated region. It 

also provides a simple and reproducible strategy of analysis and beam reconstruction using two 

spot-detection and a scatter plot readout.  
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C2. Methods 

Glass slides (Fisher Scientific, 125443) and coverslips (24x30 mm VWR 48393-092) were 

rinsed with 70% ethanol and wiped with Kimwipes to remove debris from the surface. Two 3 mm 

x 10 mm strips of parafilm were placed 2 cm apart in the center of the slide and gently pressed 

down using the flat edge of a razor blade. This prepared glass slide and clean coverslips were kept 

at 37ºC while the agarose-beads mixture was prepared. 5% agarose solution in water was prepared 

by dissolving 0.5 g Ultrapure electrophoresis grade agarose (ThermoFisher 16500500) in 10 mL 

deionised water. The solution was microwaved for one minute and was intermittently shaken to 

ensure uniform dissolution and mixing. 10 µL of vortexed and centrifuged TetraSpeck beads 

solution (0.1 µm, ThermoFisher Scientific T7279) was placed between the two parafilm strips on 

the glass slide and 90µL of in the hot, freshly prepared agarose solution was pipetted directly onto 

the drop. The two solutions were quickly mixed by pipetting up and down without introducing 

bubbles and a clean coverslip was placed on the two strips of parafilm to wedge the agarose-beads 

solution before it solidified. The gel was allowed to polymerize at room temperature for 5 minutes 

before the edges of the coverslip were then sealed using epoxy. The beads were imaged by placing 

the slide assembly so the coverslip made contact with the oil objective. 50 Z-stacks, were images 

at every 200 nm with 100 ms acquisition time per slice using 532 and 640 nm illumination.  

The centers of the 3D PSFs were obtained using the spots function from Imaris. The beam 

profile f(x,y,z) at any given plane was calculated by projecting a 5x5 pixel window centered at the 

x-y coordinate of the center of every detected PSF onto the plane of interest (z) and integrating the 

pixel intensities over the window. 
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C3. Results 

 

Figure C-1 Reconstruction of the HILO bead profile. XY, XZ and YZ intensity projections 
of beads positions illuminated at a single plane corresponding to plane 100. The color bar indicates 
relative brightness of beads illuminated at this Z-height. Scale:XY 1 px = 65 nm. Z 10 px = 200 
nm, total range = 10 µm. 

C4. Outlook 

This straightforward protocol for determining the HILO illumination volume it enables 

quantitative volume illumination experiments of fluorophores is solution, while providing a more 

accurate estimate of Z-illumination for cell imaging applications. 
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