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ABSTRACT

Computational methods are rapidly emerging as an essential tool for understanding

and solving complex engineering problems, which complement the traditional tools

of experimentation and theory. When considered in a discrete computational setting,

many engineering problems can be reduced to a graph coloring problem. Examples

range from systems design, airline scheduling, image segmentation to pattern recog-

nition, where energy cost functions with discrete variables are extremized. However,

using discrete variables over continuous variables introduces some complications when

defining differential quantities, such as gradients and Hessians involved in scientific

computations within solid and fluid mechanics. Consequently, graph techniques are

under-utilized in this important domain. However, we have recently witnessed great

developments in quantum computing where physical devices can solve discrete opti-

mization problems faster than most well-known classical algorithms. This warrants

further investigation into the re-formulation of scientific computation problems into

graph-theoretic problems, thus enabling rapid engineering simulations in a soon-to-be

quantum computing world.

The computational techniques developed in this thesis allow the representation of sur-

face scalars, such as perimeter and area, using discrete variables in a graph. Results

from integral geometry, specifically Cauchy-Crofton relations, are used to estimate

these scalars via submodular functions. With this framework, several quantities im-

portant to engineering applications can be represented in graph-based algorithms.

These include the surface energy of cracks for fracture prediction, grain boundary

xvi



energy to model microstructure evolution, and surface area estimates (of grains and

fibers) for generating conformal meshes. Combinatorial optimization problems for

these applications are presented first.

The last two chapters describe two new graph coloring algorithms implemented on

a physical quantum computing device: the D-wave quantum annealer. The first al-

gorithm describes a functional minimization approach to solve differential equations.

The second algorithm describes a realization of the Boltzmann machine learning al-

gorithm on a quantum annealer. The latter allows generative and discriminative

learning of data, which has vast applications in many fields. Theoretical aspects

and the implementation of these problems are outlined with a focus on engineering

applications.
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CHAPTER I

Introduction

Many physical systems can be represented using discrete states, to name a few, po-

larization in magnetic lattices, different phases in a material, grain identifiers in a

polycrystalline microstructure, etc. The state of numerical solvers for solving optimal

distributions of these discrete variables, termed ‘discrete combinatorial optimization’,

have greatly improved over the past few years. One such problem is on estimation of

the ground state of classical Ising energy where optimum values of discrete variables

(Si) on a lattice are described by the minima of the following energy expression:

E(S) =
∑

i∈ Nodes

HiSi +
∑

(i,j)∈ Neighbors

JijSiSj, Si ∈ {+1,−1} (1.1)

where Jij and Hi are coupling weights and biases. The term pairwise energy encap-

sulates the idea that the system’s total energy can be estimated as a summation of

localized energies that depend only on the states of pairs of neighbors. Although

local in energy description, the solutions are capable of showing long-range orders

(correlation in states of objects which are far apart). As an example, see figure 1.1

where a ferromagnet and antiferromagnet is modelled using the Ising energy. It can

be observed that changing the parameter, J , from negative to positive (or vice-versa)

results in a global change of response of the model. This capacity to represent com-

plicated solutions makes these energy models a lucrative choice to study complex
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Figure 1.1: Ground states of Ising model on a square lattice. Arrows represent the
+1(up) and -1(down) states

physical phenomena.

These models were initially developed to describe interacting spins on a crystalline

lattice. Since then, they have become archetypal models in other fields involving op-

erations research, network theory, and phase transition physics. Graner and Glazier

described the motion of biological cells [5] using a large-Q Potts model where they

represented cells as clusters of points with the same spin. A similar approach was

used in [6] to study grain boundary motion in polycrystalline microstructures during

thermally induced grain growth and recrystallization process. In such studies, the

system’s dynamics is represented as a transition probability governed by the model’s

energy description. These problems can be simulated using Monte Carlo-based sim-

ulations. On the other hand, there are problems where the equilibrium solutions are

required; for instance, in computer vision, Potts model is often used to describe the

cut energy of a segmentation problem (c.f.[7]).

In the completely general case, the problem of finding the ground state of this energy

is NP-Hard. This implies no polynomial-time algorithm to solve this problem exists

for a classical computer (based on a deterministic Turing machine). This problem

is also shown to be exp-APX-complete, which implies no polynomial-time algorithm
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exists that can approximate a solution bounded by some constant factor of the global

minimizer. However, many approximate algorithms are now available to solve certain

restricted cases of this problem. Moreover, alternate computing architectures like

quantum annealing [8] give access to the general case’s ground state in much more

reasonable time. This is one of the prime motivations for pursuing solutions of such

problems on quantum computers.

Quantum computation also addresses the issue of high power consumption in compu-

tational data centers. A highly optimized large-sized data center (containing 100-400

thousand cores) has approximately 20 Watts energy consumption per core. The pri-

mary energy budget for a quantum processing unit is in the cooling costs as the

quantum chip itself has a negligible energy budget. This contrasts with data centers

that use four-fifths of the total energy for computations. Cooling to cryogenic temper-

atures (in the tens of milliKelvin range) requires approximately 20kW. A thousand-

time speedup implies an approximate classical cost of 20kW (i.e., 1000 cores running

at 20watts per core). This implies that energy costs are currently equivalent. How-

ever, with an increase in the number of qubits, it is expected that quantum computers

will have lower power consumption than classical cores since the cooling costs are rel-

atively unaffected by the number of qubits. These advances in computational prowess

for solving pairwise energy models are the motivators for identifying, formulating and

solving computational mechanics problems in this form. It is of interest to first look

at problems that can be encoded as ground states of this model and therefore their

physics can be emulated by directly solving the energy form. In contrast, in certain

cases, it is also required to identify the model parameters that best represents the

physics of the system. These problems are illustrated in Fig 1.2 where the problems

of former type are referred to as the ’Forward problem’ and the latter as the ’Inverse

problem’.
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Figure 1.2: Illustration of research goals of this thesis

This chapter introduces the pairwise energy model, a generalization to the Ising model

shown above. Related terminology like the ground state, bandgap, and probability of

a state is also introduced. Some useful classifications of this energy and the complex-

ity of solving these problems are also discussed. A discussion about these models’

training strategies (Inverse problem) is presented in Section 1.3. The concept of

Quantum Annealing is introduced in Section 1.4.

1.1 Discrete Pairwise energy models

A discrete pairwise energy model is defined on an undirected simple graph. In lieu of

introducing some useful terms, following definition for graph is used:

Definition I.1 (Graph). A graph, G, is a pair of sets (V , C), where V is the set of

vertices and C is the set of edges/connections. For each element e ∈ C there is a
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corresponding ordered pair (x, y);x, y ∈ V i.e. C ⊆ V × V . A Graph, G = (V , C) is

undirected if an edge does not have any directionality i.e (x, y) ≡ (y, x). A graph is

simple if (x, x) 6∈ C for all x ∈ V .

Also, this work requires the graph to be finite, i.e., the number of vertices is finite.

Next, the definition of Pairwise energy is introduced.

Consider a finite undirected simple graph G(V , C). The number of vertices are de-

noted by NV = |V| and the number of edges are denoted by NC = |C|. The in-

dices of connections and vertices are related using the maps, π1 and π2 such that

for a connection with index, k ∈ {1, .., NC}, the index of the corresponding ver-

tices are π1(k) and π2(k) with 1 ≤ π1(k) < π2(k) ≤ NV . This essentially means

ek ≡ (vπ1(k), vπ2(k)). Each vertex, vi ∈ V is assigned a state si ∈ {l1, l2, . . . , lNL} for all

i ∈ 1, . . . , NV . This determines the complete state of the graph as an ordered tuple

S = (s1, . . . , si, . . . , sn) ∈ {l1, . . . , lNL}NV . The set of all possible states is referred to

as S = {l1, . . . , lNL}NV with the total number of states denoted by NTS = |S| = NNV
L .

The energy for a particular state can be evaluated as follows:

E(S) =

NV∑
i=1

Ui(si) +

NC∑
k=1

Vk
(
sπ(k,1), sπ(k,2)

)
(1.2)

where, Ui : L → R is the energy of labeling ith vertex with some label, and Vk :

L × L → R is the energy of labeling two connected vertices. The former term Ui is

known as the unary cost and the latter term Vk is known as the Pairwise term.

If the pairwise term is discarded, then the minimization of Eq (1.2) can be carried out

by independently minimizing the unary cost of each vertex. However, pairwise cost

removes this independence and makes the optimization process complicated. Despite

the local nature of the pairwise term, long-range effects are introduced in the overall

optimization.
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Definition I.2 (Potts Model). Following simplified form of energy is referred to as

the Potts model in this thesis:

E(S) =

NV∑
i=1

Ui(si) +

NC∑
k=1

JkV
(
sπ(k,1), sπ(k,2)

)
(1.3)

The parameters, Jk are real valued constant. It is easy to see that this a special case

of Energy 1.2. Usually, Potts model is referred to a specific instance of Eq (1.3) with

V (a, b) = 1 when a 6= b and V (a, a) = 0 and Jk > 0, but no such assumption is made

here.

Moreover, following symmetry is imposed which signifies that the pairwise only de-

pends on the combination of two labels and not their order:

Vk(b, a) = Vk(a, b), a, b ∈ {1, ..., NL}

Definition I.3 (Ising Model). There are two popular versions of this model. The

first one uses labels, L = {0, 1} and the second one uses labels L = {−1,+1}. The

energy in both cases is evaluated as:

E(S) =

NV∑
i=1

Hisi +

NC∑
k=1

Jksπ(k,1)sπ(k,2) (1.4)

The parameters, Hi and Jk are referred to as the field and interaction parameter,

respectively. This is a special case of the above energies with

Ui(l) = l, V (la, lb) = lalb

1.1.1 Ground states and band gap

The parameters that define the unary and pairwise cost can be abstracted and denoted

as a set, θ. The set of ground states (SG(θ) ⊆ S) is the set of states with minimum
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energy, E0(θ)), i.e.

SG(θ) = argminS∈S E(S|θ), E0(θ) = minS∈S E(S|θ)

In contrast, all the non-minimal states are referred to as exited states. The set of all

excited states, denoted by SE(θ), can be evaluated as:

SE(θ) = S − SG(θ)

The cardinalities of the set of ground states (SG) and excited states (SE) are denoted

by NGS and NES, respectively. All excited states may or may not have the same

energy. However, the minimum excited energy referred to as the ‘first excited energy’

is used in defining the band gap and is evaluated as:

E1(θ) = minS∈SE(θ)E(S|θ)

It should be noted that no assumption is made on the multiplicity of states with

energy E1(θ). The band gap (a positive quantity) defines the energy gap between SG

and SE. It is estimated as:

∆E(θ) = E1(θ)− E0(θ)

1.1.2 Probability distribution

At any given temperature, T , the probability of occurrence of a state, S is described

by the Boltzmann distribution as:

p(S|θ, β) =
1

Z
e−βE(S) (1.5)
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where β = 1/kBT is the inverse thermodynamic temperature, kB is the Boltzmann

constant and Z denotes the partition function which is estimated as

Z =
∑
S∈S

e−βE(S)

1.1.3 Classification

The computational complexity of finding ground states of this model, as shown in

the next section, depends on (i) Topology of the graph, and (ii) Pairwise cost func-

tion. The classification of these Pairwise functions are presented in this section. Most

definition are adopted from Bagon’s thesis [1]. Without loss of generality, it can be

assumed that L ⊆ R. This provides a natural way of inducing order as well as metric

on the set L.

Definition I.4 (Submodular set function). In general, a submodular function is

defined as a set function. Consider a set Ω and function f : P(Ω) → R where P(Ω)

is the power set of Ω. Then f is submodulur set function iff for all X, Y ⊆ Ω,

f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y )

A pedogogical example for a submodular function is the entropy function and a non-

submodular function is the cardinality.

In the context of Pairwise energy, this definition can be specialized as follows:

Definition I.5 (Submodular energy). For any choice of labels, a, b, c, d ∈ L such that

la ≤ lb, lc ≤ ld, Eq (1.2) is submodular iff following inequality holds true for all k:

Vk(la, lb) + Vk(lc, ld) ≤ Vk(la, ld) + Vk(lb, lc)
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Example: `1-distance, estimated as Vk(la, lb) = |la − lb| is submodular.

Equivalent definition: Submodularity can also defined using the following recurssive

relation:

Vk(la, lb) + Vk(la+1, lb+1) ≤ Vk(la, lb+1) + Vk(la+1, lb)

Remark 1 : The second definition highlights the useful information that the matrix

(M)ab ≡ Vk(la, lb) represents a Monge Matrix. It is also easier to verify for a given

pairwise energy

Remark 2 : In the binary labeling problem, the submodularity condition becomes:

Vk(l1, l1) + Vk(l2, l2) ≤ Vk(l1, l2) + Vk(l2, l1)

In the case of symmetric pairwise energy, this suggests that the cost can be minimized

either by assinging labels (l1, l1) or (l2, l2) but contrasting labels are sub-optimal. This

property in fact can be generalized to multilabel case to assert that submodular en-

ergy lowers the cost of non-contrasting labeling.

Definition I.6 (Convex energy). Eq (1.2) is convex iff for each k

Vk(la, lb) = gk(la − lb)

where gk : R→ R is a real-valued convex function i.e. for any x, y ∈ R and t ∈ [0, 1],

g(tx+ (1− t)y) ≤ tg(x) + (1− t)g(y)

Example: Vk(la, lb) = (la − lb)2 is convex. `1-distance is not convex.
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Remark : All convex pairwise energies are submodular [1].

Definition I.7 (Relaxed metric energy). Eq (1.2) is Relaxed metric iff

Vk(la, la) + Vk(lb, lc) ≤ Vk(la, lb) + Vk(la, lc)

Example: `1-distance and truncated `1- distance Vk(la, lb) = min{(la − lb), τ} is re-

laxed metric. Truncated `1-distance is not submodular.

Remark : Submodular energies in general need not be metric.

Definition I.8 (Relaxed semi-metric energy). Eq (1.2) is Relaxed semi-metric iff

Vk(la, la) + Vk(lb, lc) ≤ Vk(la, lb) + Vk(la, lc)

Example: Vk(la, lb) = min{(la − lb)2, τ} is relaxed semi-metric.

Remark : Every relaxed metric energy is relaxed semi-metric.

The containment of different classes is presented in Fig 1.3. In the next section,

classical computation methods for the different classes are discussed.

Figure 1.3: Classification of Pairwise discrete energies adopted from [1]. Green indi-
cates the existence of global minimization algorithms. For energies in red there are
good approximation algorithms.
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1.2 Classical methods and Computational Complexity

It is a known fact that finding ground states of Eq (1.2) is NP-Hard [9, 10, 11]. This

statement is proved in [9] by reducing this problem to the maximum independent set

problem, which is known to be NP-hard. The authors showed it for the case with

binary labels, but the result extends to more than 3 labels as it contains the former

case. They also showed that binary labeling could be solved in polynomial time

if the energy is submodular. [12] introduced a mapping from multi-label problems

with convex energies to binary labeling problems with submodular energies, thereby

showing a polynomial-time algorithm for multi-label convex energies. A generalization

to this approach is presented in [11] where the reduction is made from submodular

multi-label problem to submodular binary problem, thereby proving the polynomial

time complexity of the multi-label submodular problem. These special cases can also

be defined in terms of Graph connectivity. For instance, Belief propagation can be

employed on graphs with a tree structure (no cycles are present) to obtain the global

minimum in polynomial time. Another specialization of this problem was given by

[10] where it was shown that the Multiway Cut problem on a planar graph could

be solved in polynomial time. The definition of the Multiway Cut problem is given

below:

Definition I.9 (Multiway K-Cut problem [13]). Given an undirected graph, G =

(V , C), connection weights, wi : ei → R+ ∀ei ∈ C, and a set of terminals T =

{t1, t2, ..., tk} ⊆ V , a multiway cut is a set of edges (connections) C ′ that leaves each

of the terminals in a separate component. The cost of the multiway cut is defined as

the sum of the weights of the edges (connections) in C ′. The goal of the multiway cut

problem is to minimize this cost such that removing C ′ from C separates all terminals.

In other words, no connected component of G(V, C − C ′) contains two terminals from

T .
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Remark : This problem can equivalently and rather more intuitively be presented as a

labeling problem where each vertex in V−T is assigned a label withNL = k. Following

form of Potts energy is minimized where δ refers to Kronecker delta function:

E(S) =

NC∑
i=1

wi

(
1− δsπ(i,1),sπ(i,2)

)
(1.6)

The multiway cut is defined as a set of connections between vertices with different

labels.

Although global minima are obtained for these specializations in polynomial time, the

runtimes are rarely fast enough to be employed in practical scenarios. This problem

has led to extensive research in the area of approximate algorithms for solving these

problems. In classical computation, these approximate methods can be classified as

local update methods and global update methods. One of the simplest approaches

is Iterated Conditional Modes (ICM) [14] which is a greedy algorithm that iterates

over each vertex and picks the best label while keeping all the other vertices’ labels

fixed. This method works for a general pairwise energy model but can get stuck in

local minima and is sensitive to the initial condition. A probabilistic version of this

method is Simulated Annealing (SA) [15]. In this approach, the fictitious temperature

is lowered (to emulate the annealing process), and the states are modified based on the

Boltzmann probability distribution (Eq (1.5)). Belief propagation (BP) methods are

also local update methods which use a message-passing approach between neighbor

nodes to identify the optimal label [16]. When the graph has a tree structure, these

messages are passed from the root to the leaves and vice-versa. This forward-backward

propagation drives the system to the globally optimal solution even for the general

case of energy. For the graph with cycles, a variant of BP called the loopy BP

is proposed. However, it does not guarantee convergence to the globally optimal

solution. In another variant of BP, called the Tree Re-Weighted (TRW) BP [17],
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a continuous Linear programming relaxation of the problem was proposed. This

assumption is used to establish a message passing scheme tailored for the convex

optimization of Linear Programming. TRW-BP has been shown to achieve a global

minimum for relaxed metric energies.

In contrast to local methods, large move methods are based on combinatorial opti-

mization techniques. This name comes from the fact that each step of the iteration

involves large binary moves. The overall efficiency of these methods are hence, based

on the efficiency of these iteration steps. The three popular variants of these methods

are α-expansion, αβ-swap [7], and fusion-moves [18]. The α-expansion method is

appropriate for relaxed metric energy. In this case, each iteration involves solving a

binary submodular problem. Moreover, convergence is guaranteed after finite steps,

and the global error (difference in the energy of approximated and global minima) is

also bounded. The αβ-swap method is appropriate for relaxed semi-metric energy.

In this case, as well, each iteration step involves solving a binary submodular prob-

lem. Convergence is guaranteed after finite steps, but there is no non-trivial bound

on the global error. Fusion-moves method is based on Quadratic Pseudo-Boolean

Optimization (QPBO), which involves adding redundant nodes in the graph to get

rid of non-submodular edge weights. This addition of node adds redundancy to the

labeling of the initial graph. In this case, the global minimum recovery is no longer

guaranteed, but the algorithm may recover partial labeling that is guaranteed to be

part of some globally optimal solution. It has been shown by [19] that general en-

ergy minimization, even in the 2-label pairwise case, and planar energy minimization

with three or more labels are exp-APX-complete, i.e., there exists no polynomial-time

method that can approximate a solution that is at worst a constant factor worse than

the global minimum (in terms of energy).
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1.3 Inverse parameter estimation

Much like development of simulation techniques, it is also of interest to develop train-

ing (parameter estimation) technique to deploy these methods for practical engineer-

ing problems. Inverse parameter estimation entails identification of parameters (eg.

H and J in eq. 1.1) such that desired ground states (S) are obtained. This prob-

lem is useful for classification and regression problems where a graph model is to

be constructed that reproduces known data. Traditionally, these models are trained

by considering them as Markov Random Fields (MRFs) and using gradient-based

approaches to maximize the likelihood [20]. However, analytical estimates of the

gradients are hard to obtain. Among approximate techniques, Hinton’s contrastive

divergence method [21] provides an efficient way to approximate the gradients in the

parameter optimization problem successively. An excellent review of this subject is

presented in [22]. It should however be noted that these likelihood-based technique

use the Boltzmann distribution to sample model’s states. Consequently, the tech-

niques assume finite temperature for simulation. This restricts estimation of precise

parameters for encoding desired ground states in the model. As an example, the

negative log-likelihood of a model trained using Likelihood-based technique is pre-

sented in Fig 1.4. It can be seen that the minimum is close to the training β (inverse

temperature), which was chosen as β = 1.

In contrast, an approach based on the band gap maximization while ensuring the

ground states are data states guarantees that the states’ probability distribution gets

closer to that of the data set as the temperature is reduced. Moreover, it ensures

that the model adequately represents the data set for a broad range of temperatures.

However, the downside of this approach is that there is no guarantee of the exis-

tence of parameters for every data set. This fact can be easily motivated by noticing

that the number of ground states can be more than the number of model parame-
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(a) (b) (c)

(d)

Figure 1.4: The energy of the graph is modeled using Ising model Eq (1.12) with
|H| ≤ 1 and |J | ≤ 1. (a) Training data set of states with green representing a
‘+1’ state and red representing a ‘-1’ state. (b) Optimized graph using minimization
of Negative Log-likelhood at β = 1 (c) Optimized graph using PEPDAS method
(Appendix C). The field terms are mentioned in blue color and interaction terms are
mentioned in red color (d) Comparative analysis of likelihoods of models trained using
the Likelihood maximization and band gap maximization. A lower value of Negative
Log likelihood signifies a better trained model
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ters and may result in an over-constrained optimization problem. Such problems do

not exist at a non-zero temperature as all the states appear with non-zero probability.

A Mixed Integer Linear Programming (MILP) formulation is presented in Appendix C

to estimate a specialized version of Potts model (Eq (1.3)) where Ui(l) = HiU(l) so

the total energy is given as:

E(S) =

NV∑
i=1

HiU(si) +

NC∑
k=1

JkV
(
sπ(k,1), sπ(k,2)

)
(1.7)

The model is optimized for the parameters, {Hi} and {Jk} while fixing the energy

functions U and V . Two variations of the algorithm are presented. The first algo-

rithm assigns a prescribed data set as the model’s ground states while maximizing

the bandgap. The second algorithm identifies a set of ground states with a prescribed

multiplicity while maximizing bandgap. It should be noted that the computational

complexity of both the algorithms grows exponentially with the size of the problem.

Therefore, these methods are only suited for small graph structures. These problems

arise in designing energies of smaller motifs in a lattice structure.

The parameter set is represented as a vector, θ =

[
θ1, . . . , θNV +NC

]T
. In this work,

it is specialized to following form:

θ =

[
H1, . . . , HNV , J1, . . . , JNC

]T

This notation allows to describe energy as a matrix-product evaluated as E(S|θ) =

ε(S)θ where ε(S)

ε(S) =

[
U(s1), . . . , U(sNV ), V

(
sπ1(1), sπ2(1)

)
, . . . , V

(
sπ1(NC), sπ2(NC)

)]
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Given a data set, SD ⊆ S, the parameters set, θ, is optimized such that the states

in SD have higher probability of occurrence at a prescribed β value. Mathematically,

this procedure entails minimization of negative log-likelihood as defined below:

η(θ, β) = −
∑
S∈SD

log p(S|θ, β) (1.8)

It can be observed that at high temperatures i.e. β → 0, all states occur with equal

likelihood and therefore

η0 = lim
β→0

(θ, β) = NDS log(NTS)

where NDS = |SD|. On the other hand, at low temperatures i.e. β →∞, only ground

states occur with equal probability and occurrence of any other state has probability

0. Consequently, the value of η in this limit is finite only when SD ⊆ SG. It is

evaluated as:

η∞(θ) = lim
β→∞

(θ, β) = NDS log(NGS)

It is desirable to estimate parameters such that the ground state replicates the data

set, and the bandgap is maximized. The reason will be apparent after the next the-

orem.

Theorem I.10. For a given set of parameters, θD, such that (i) SG(θD) = SD (ii)

∆E > 0, following statements hold true:

(a) η(θD, β) monotonically decreases with β and the low temperature limit

η∞(θD) = lim
β→∞

η(θD, β) = NGS log(NGS) (1.9)
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(b) η(θD, β) is bounded as:

NGS log(NGS) < η(θD, β) ≤ NGS log
(
NGS +NESe

−β∆E
)

(1.10)

(c) For any ε > 0, there exists a β∗ such that for all β > β∗, η(θD, β)−η∞(θD, β) <

ε where β∗ is estimated as:

β∗ =
1

∆E

(
log

NES

NGS

− log
(
eε/NGS − 1

))
(1.11)

�

The consequence of this theorem is that it is guaranteed that if the parameters are

chosen appropriately, η will approach to its global minimum in the low temperature

(high β) limit. Moreover, at a finite β, η is bounded from above by a decreasing

function. It can be seen in Fig 1.5(a), that the bound gets tighter for higher values

of ∆E. It is also shown that the trained model is efficient in the range of β deter-

mined by [β∗,∞). Fig 1.5(a) shows that a higher bandgap allows a broader range of

temperatures.

(a) (b)

Figure 1.5: An illustration of bounds for a trained Potts model with NGS = 10 and
NV = 10. (a) The upper bound on η with respect to β for various values of energy
gap (b) β∗ as a function of band gap for various bounds on η
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1.3.1 Examples

Two classical algorithms are analyzed for estimating parameters of Potts model using

a Mixed Integer Linear Programming approach (details presented in Appendix C).

The functionality of each method is as follows:

1. PEPDAS (Parameter Estimation for Potts model with Data Set): This method

estimates the parameters to exactly replicate the ground states as the prescribed

data set.

2. PEPGSM (Parameter Estimation for Potts model with Ground State Multi-

plicity): method estimates the parameters to identify ground states based on

their prescribed number.

The parametric estimation of Ising model is presented as an application of the meth-

ods. In this model, the states take a binary form i.e. NL = 2. Traditionally the labels

are denoted as {+1,−1} and the corresponding energy functions are defined as:

U(+1) = +1, U(−1) = −1

V (+1,+1) = V (−1,−1) = 1, V (+1,−1) = −1

Therefore, the energy can be effectively written as:

E(S) =

NV∑
i=1

Hisi +

NC∑
k=1

Jksπ(k,1)sπ(k,2) (1.12)

This model is applied on a 10-noded Peterson graph with |H| ≤ 1 and |J | ≤ 1. First,

the graph is trained by prescribing up to 4 data states using the PEPDAS method.

Next, the graph is trained by prescribing the number of states from 1 to 4 using the

PEPGSM method. The predicted band gaps are shown in Table 1.1. It can be ob-

served that the PEPGSM method predicts the same bandgap as the PEPDAS method
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for data sets with a size up to 3. However, for 4 data points, the PEPGSM method

can identify ground states that provide higher bandgap. The predicted parameters

for a graph with four ground states are shown in Fig 1.6. Likelihood estimates are

not well defined in the case of PEPGSM method as it is not trained using the data.

However, for comparison, η is estimated using the set of ground states in place of the

data set. The results for negative log-likelihood of the PEPDAS predicted model and

PEPGSM predicted model are shown in Fig 1.6(c). As expected, PEPGSM predicted

model performs better than PEPDAS predicted model in terms of the range of β for

which they can be used. The details of the other three models are presented in Fig 1.7

and Fig 1.8.

Algorithm NGS = 1 NGS = 2 NGS = 3 NGS = 4

PEPDAS 8.0 6.0 4.0 6.0

PEPGSM 8.0 6.0 4.0 4.0

Table 1.1: Predicted maximum band gap for Peterson graph

Both algorithms maximize the band gap between the ground and excited states of the

model. However, these two methods do not scale well with the graph size, and their

usage should be restricted to small problems. It is shown by example that the pre-

dicted η decays and is bounded. Moreover, the PEPGSM method can predict ground

states that provide higher bandgap compared to randomly picked ground states. It

has been shown in Appendix C.2, that the computational cost of these methods grow

exponentially with the size of the graph. This is an expected outcome considering the

general difficulty in finding the solution of the labeling problem. Therefore, this pro-

posed ‘classical’ method is only suited to small graph structures. For larger graphs,

training is restricted to approximate methods as suggested at the beginning of the

section.

However, even in the likelihood-based techniques, sampling independent states is a
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(a) (b)

(c)

Figure 1.6: Optimal Ising parameters of a Peterson graph with 4 ground states found
using (a) PEPDAS method, and (b) PEPGSM method. The ground states are pre-
sented as the colored graph in the top right corner of each image. A green label
denotes the ‘+1’ state, and the red label denotes the ‘−1’ state. (c) The normalized
Negative log-likelihood of the optimized graphs
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Figure 1.7: The energy of the graph is modeled using Ising model Eq (1.12) with |H| <
1 and |J | < 1. Optimal Ising parameters of a Peterson graph found using PEPDAS
method (left) and PEPGSM method (right). The ground states are presented as the
colored graph in the top right corner of each image. A green label denotes the ‘+1’
state and the red label denotes the ‘−1’ state.
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Figure 1.8: Normalized Negative log likelihood and their respective bounds for Pe-
terson graphs trained using PEPDAS method

challenging task. This motivates the use of unorthodox computation architecture

where these problems can be solved in a reasonable time. In the next section, the

concept of Quantum annealing (QA) is presented, which tackles exactly this problem.

QA has made it easier to sample states from the model’s probability distribution [23].

This development has significantly eased the accurate approximation of the required

gradients; consequently, it has lowered the hurdles to use probabilistic techniques to

estimate parameters of Ising model.

1.4 Quantum Annealing

Richard Feynman’s statement [24] “with a suitable class of quantum machines you

could imitate any quantum system, including the physical world” has driven our vi-

sion towards a machine that can solve computational problems inaccessible to classical

computers. Early versions of such quantum computers have already appeared. Mir-

roring gate-based classical computers, gate-based quantum computers with a small
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number of qubits have been demonstrated and promise an eventual path towards uni-

versal quantum computation. However, noise limits the number of gate operations

that can be enforced before the quantum states decohere.

At the same time, Adiabatic quantum computation (AQC) is another form of quan-

tum computing based on the evolution of the quantum state ( |ψ(t)〉) is governed by a

time-dependent Hamiltonian (H(t)) that is governed by the following time dependent

Schrodinger’s equation:

i
d

dt
|ψ(t)〉 = H(t) |ψ(t)〉

H(t) interpolates between an initial Hamiltonian (H0), whose ground state is easy to

construct, and a final Hamiltonian (Hf ), that describes the proposed objective. As

an example, one can consider following interpolation where τ = t/ta with t being the

physical time and ta being some time scale.

H(τ) = A(τ)H0 + (1− A(τ))Hf

The function A is monotonic with A(0) = 1 and limτ→∞A(τ) = 0.the Quantum

Adiabatic theorem, in loose terms, states that if the H(t) maintains a positive band

gap and the transition from initial to final Hamiltonian is done slowly enough, then the

state |ψ(t)〉 moves towards the ground state of Hf [25]. This theoretical process has

been adapted into the Quantum annealing procedure where following Hamiltonians

are used for interpolation:

Hi = −
∑
v∈V

σxi , Hf =

NV∑
i=1

hiσ
z
i +

NC∑
k=1

Jkσ
z
π(k,1)σ

z
π(k,2)

where σx,zi are Pauli matrices that operate on spin or qubit i, hi and Jk are tunable
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parameters. Moreover, finite time for interpolation is considered i.e. A(0) = 0 and

A(1) = 1. In this case, ta is referred to as the annealing time. The ground states

of the Hamiltonian can be directly mapped to the ground states of Ising Energy

Eq (1.4) with {−1,+1} states. It can be verified that this energy is non-submodular

when Jk > 0 and hence difficult to approximate on the classical computation. It has

been shown by [26], that the state departs from the initial state with a power law

asymptotics. It should be noted that there are no safeguards in place to maintain

the assumptions of the Quantum Adiabatic theorem. In fact, having short annealing

time (in the order of few µs) is in clear violation of the slow transition assumption.

However, experimental studies support the efficiency of this procedure even in the

adverse theoretical environment.

At present, the two popular QA devices are (i) the “DWave 2000Q” system with

approximately 2000 qubits connected in a Chimera topology and (ii) the “DWave

Advantage” system with approximately 5000 qubits connected in a Pegasus topology.

The sparsity of the physical devices limits the size of the largest graph for different

problems simulated on these systems. The largest graph size for popular problems

is presented in Table 1.2. These systems operate at extremely low (of the order of

few mK) but non-zero temperatures. Consequently, the QA sampled states follow

a Boltzmann distribution as described by Eq (1.5). However, instead of being the

annealing temperature, the sampling temperature is shown to be instance-dependent

[27] i.e., dependent on the graph’s topology and energy parameter, etc. As a result,

the ground state is usually selected by post-processing the sample data.

The inverse problem of parameter estimation can be interpreted as a problem of

training Boltzmann machines. However, the learning process of General Boltzmann

machines on classical computers is slow and cumbersome. The data-dependent ex-

pectations in maximum likelihood estimation are not easy to compute using classical
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Clique NAE3SAT NAE3SAT 3-Regular 3D Lattice Native
(r = 3) (r = 2.1) w/defects

2000Q 64 90 102 304 512 2030
Advantage 124 242 286 784 2354 5455

Table 1.2: Maximum size of popular graphs that can be embedded into the DWave
2000Q and Advantage system

techniques. Quantum annealers (QA) have provided a promising way forward to

tackle this problem of expectation estimation. QA has been recently employed to

train BM’s with densely connected graph structures. For instance, [28] trained Boltz-

mann machines to recover missing data in the images of Chemical vapor deposition

(CVD) growth for a MoS2 monolayer. In chapter VI, an efficient algorithm for inverse

parameter estimation using a quantum annealer is described.

1.5 Outline of thesis

This thesis aims to formulate mechanics problems using pairwise energy models and

solve them (exactly or approximately) in the most efficient way. The computational

tractability of pairwise energy problems varies greatly depending on the graph’s topol-

ogy and the nature of the interaction energies. Certain classes of problems are solvable

on classical computers using metaheuristic schemes, like GraphCut [7]. One such class

is that of the Multiway K-Cut problem (Definition I.9). The interaction energy in this

problem for more than 2 labels is of the relaxed-metric type - suitable for approxi-

mate methods. In the case of 2 labels, this problem simplifies as a submodular energy

form that can be solved exactly. In Chapters 2-4, problems relevant to polycrystalline

materials are formulated in this type and approximated using the Graph-cut method.

Chapter 2 develops a procedure to label the elements of a finite element mesh to bet-

ter represent polycrystalline microstructures and multi-phase materials with smooth

boundaries. The formulated problem is a Multiway K-Cut problem on a planar graph.
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Chapter 3 introduces a multiscale approach for studying crack propagation in brit-

tle polycrystalline materials. The formulated energy is of binary submodular type

on a planar graph. Although this problem can be solved exactly in polynomial time,

approximate methods are used for their favorable computational efficiency.

Chapter 4 studies the temporal evolution of microstructure in a thermally simulated

environment. The formulated problem is a Multiway K-Cut problem on a non-planar

graph.

The next two chapters move away from studying polycrystalline materials and ex-

plore this formulation’s utility in dealing with general problems like solving differential

equations and machine learning. Unlike the previous case, the next problems do not

adhere to any of the simpler classes and are tractable only on Noisy Intermediate-

Scale Quantum (NISQ)-era hardware, like QA.

Chapter 5 introduces an iterative combinatorial optimization technique for solving

differential equations. Finite element approximations are used to construct sparse

graph energy models that can be efficiently solved using QA.

Chapter 6 develops a training methodology for General Boltzmann machines - a

machine learning architecture. The finite temperature of QA makes it suitable for

sampling states from the Boltzmann distribution. This property of QA is utilized to

carry out likelihood estimation on general graphs.

Finally, Chapter 7 concludes the contributions and proposes future directions for

this thesis’s work.
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CHAPTER II

Graph Coloring Method for Conformal Mesh

Generation

This chapter provides a novel approach for mesh generation for materials which have

distinct spatial components with a smooth boundary between them. Experimental

data is used in pixel/voxel format to label elements in a generic finite element mesh

of a representative volume element (RVE). The basis of this approach is a novel Potts

energy formulation to allow integer optimization on the dual of the Finite Element

(FE) mesh. The Potts energy can be decomposed into two terms: the field ener-

gy/data cost and the interaction energy/smoothing cost. The field term is used to

represent the likelihood of a grain label on an element based on the experimental voxel

data. The interaction term encodes a prior on this labeling, in particular, it is used

for smoothening the phase boundary. Energy minimization of this system leads to a

multi-way cut problem which is solved using Graph-cuts. This methodology allows

capturing smooth boundaries in materials with non-equiaxed morphologies. Appli-

cations to polycrystalline microstructures and woven composites are presented. The

extension to non-equiaxed morphologies is presented using the Riemannian distance

measure. This procedure allows re-usability of a FE mesh by adaptively assigning pix-

el/voxel information to elements while preserving important features like the phase

boundary surface length/area.
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2.1 Background

Structural metallic materials used in the aerospace industry (eg. Aluminum 2000

and 7000 series, advanced titanium alloys) are composed of aggregates of crystals.

With the emergence of the paradigm of integrated computational materials engineer-

ing (ICME) [29], multi-scale design/optimization approaches for tailoring engineering

properties of materials through controlled microstructure [30, 31] are of great in-

terest. A multiscale approach for the design of turbine blades is presented in Fig

2.1 to illustrate stress variation in the macroscopic and microscopic scale. Such a

simulation involves solving for microstructure–dependent properties for macro–scale

analysis, which in turn requires meshing at the microstructural level that captures

the grain size and shape features [32]. Meshing of 3D microstructures to conserve

such grain features is of immense interest as these play an important role in processes

such as localization [33] and fracture [34].

Computational tools, like finite element methods, are almost ubiquitously present in

the form of both commercial and private software. In the realm of polycrystalline ma-

terials, numerical procedures generally require the knowledge of the microstructure

which is often provided through experimental methods such as Electron Back Scat-

ter Diffraction (EBSD). EBSD provides the spatial distribution of crystallographic

orientations of different grains and can be used to estimate quantities like average

misorientation. A complete review of experimental and computational EBSD tech-

niques are provided in [35]. From the computational perspective, these experimental

images offer information about the spatial distribution of phases in a pixelated format

for 2D or voxelated format for 3D. This data also provides a convenient form of a

mesh which consists of uniform quadrilateral/hexahedral elements. An open source

package is developed in [36] for generation of voxelated representations of serial sec-

tioned EBSD maps. However, voxelation leads to a stepped, block–like representation

of otherwise smooth boundaries. This affects the quality of computational simulation
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through the introduction of spurious stresses [37]. There are other drawbacks in using

structured meshes of quadrilateral/hexahedral elements for 2D/3D elements as well,

for example, the boundary length/area does not converge to the correct value with

refinement.

Figure 2.1: Multiscale design of turbine blades for aircraft engines.

Unstructured grids where element surfaces conform with the phase boundaries offer

a better approximation of the spatial morphology. An unstructured meshing scheme

which is widely employed, generates objects in the lowest dimension and then re-

uses these objects as seeds for generating higher order objects. More precisely, nodes

(0-dimensional objects) are generated and are connected using lines (1-dimensional

objects) where more points are sampled. Faces (2-dimensional objects) are created

by joining these lines and are meshed using triangles with edge points as seeds. Then,

these faces are connected to create a grain structure (3-dimensional objects) and are

meshed with tetrahedrons using face triangles as seeds. This procedure allows for

a smoother phase boundary and improves the estimation of quantities like Phase

Boundary Energy. This procedure is also implemented for mesh generation in poly-

crystalline materials in an open source software package developed in [38]. However,

this procedure can be computationally expensive as it requires re-meshing for every

new experimental image.

A new technique for optimal partitioning of an arbitrary unstructured mesh into

different phases is proposed in this chapter. In practice, partitioning the mesh means

assigning an index to each element where elements with similar indexes form a single
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phase. Thus, any experimental image can be superimposed on a generic unstructured

FE mesh by effectively partitioning the mesh based on voxelated data. Two conditions

are expected to be satisfied. Firstly, the phase index assignment to the finite element

mesh should be as close as possible to the experimental voxel data. Secondly, the

phase index assignments should be such that the boundaries are as smooth as possible.

Seminal contribution in the development of the Graph partitioning algorithm are

made in [39], [40] and [41]. Spectral methods (for instance, see [42]) are often used.

Recent advances in this field have been reviewed in [43]. Improved results are achieved

with global methods, such as multilevel approaches which operate in stages with

refinement. METIS and KaHIP are good open source graph partitioners which utilize

multi-level methods and are developed in [44] and [45], respectively. Since GP is often

studied as a combinatorial optimization problem, the methods introduced in Chapter I

are also widely employed.

The overall objective of this chapter is to provide an effective way of labeling the

elements of a mesh into the representative phases such that the spatial distribution

of the phase is comparable to the experimental data while maintaining the smooth-

ness in the boundaries. This is done by formulating a graph coloring problem on a

graph embedding on the dual of an FE mesh. A Potts energy is formulated where

the minimization of data term preserves the spatial phase data and the smooth term

penalizes the rough behavior of phase boundaries. The resultant energy is solved

using Graph-Cut algorithm. The above steps formalize the theory of embedding pix-

elated/voxelated data into an user-generated unstructured grid. The generalization

to non-equiaxed morphologies of component phases is presented using a Riemannian

metric. Application of the method to fiber composites is also studied.

2.2 Problem Formulation

The formulation for both 2D and 3D mesh generation is presented in this section.
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Definition II.1 (Finite Element (FE) Mesh). Given a closed bounded polyhedral

domain Ω ∈ R3, one can associate a finite partition Ph of Ω in polyhedrons Pi(indexed

with i) such that

Ω =
⋃

Pi∈Ph

Pi

such that:

1. int(Pi) 6= φ ∀Pi ∈ Ph

2. int(Pi) ∩ int(Pj) = φ ∀Pi, Pj ∈ Ph s.t. Pi 6= Pj

3. if F = Pi ∩ Pj 6= φ for some Pi, Pj ∈ Ph and Pi 6= Pj, then F is either a whole

face (polygon), a whole edge (line segment) or a node (point) of the polygons

Pi and Pj

4. h = max
Pi∈P

hi where hi denotes the longest euclidean distance between two points

of Pi.

where int(.) denotes the interior. The partition Ph is called the mesh of Ω

Remarks: In the case of 2D polygonal domain, Ω ∈ R2, this definition can be extended

by considering the partitions of polygons, Pi and modifying condition (3) to consider

only edges and corners.

The mesh for multiphase materials is defined by assigning a phase to each element

of the partition. This assignment or labeling, as it is referred to in the rest of the

chapter, is done using an undirected graph, G. The graph, G, is embedded in the

mesh, Ph, by placing a single vertex, vi, in the interior of each Pi. Without loss of

generality, the location of vi can be determined as the centroid of the polygon Pi.

It ensures that vi ∈ int(Pi) when Pi is convex (generally true for all elements of FE

meshes). A connection is introduced between two vertices vi and vj if and only if Pi

and Pj share a common face. In case of 2D meshes, this connection is introduced

if and only if Pi and Pj share a common edge. Furthermore, each connection is
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endowed with a weight determined by the area and the unit normal of the shared

face. Consequently in 2D meshes, the weight is determined by the length and the

unit normal of the shared edge. In particular, if −→n and ∆s are the unit normal and

the area (length) of the face (edge), respectively, then weight wi of the connection

ei is given as wi = γ(−→n )∆s. The function γ is restricted to be strictly positive and

symmetric i.e. γ > 0 and γ(−→n ) = γ(−−→n ). This construction is illustrated in Fig 2.2

where a connection between 2 representative elements A and B is introduced with a

weight determined by the unit normal −→n and length of the edge ∆s.

Figure 2.2: Construction of the graph G=(V,E) from a finite element mesh.

In this work, labels (L) are identified as different phases. For a particular choice of

labels , and the corresponding multiway cut E ′ (see Definition I.9), a specific form of

Potts energy (see Definition I.2) is chosen:

E(S) =

NV∑
i=1

Ui(si) +

NC∑
k=1

wk

(
1− δsπ(k,1),sπ(k,2)

)
(2.1)

where wk ∈ R+ and δ is the Kronecker delta function. The first term in this form is

often referred to as the data term while the second term is referred to as the smooth

term. The image information is encoded in the data term using a phenomenological

form. Let I be a function which evaluates the label (phase information) from the

image data (pixel/voxel). For instance, I(vi) = r means vi belongs to the pixel region
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with phase index r. Additionally, let the function V ol(Pi) evaluate the area/volume

of the ith element in case of 2D/3D meshes with M representing the mode of the

distribution. As an ansatz, Ui assumes the form of Eq (2.2) where α ∈ R+ is a

control parameter. It is worth observing that the minimization of this term leads to

preservation of phase structure of the input data.

Ui(l) =

 0 if I(vi) = l

α(1− e−
V ol(Pi)

M ) if I(vi) 6= l
(2.2)

The smooth term, as the name suggests, penalizes any roughness of phase boundaries.

In this work, it is specialized to the form presented in Eq (2.3) where −→nk and ∆sk

represent the unit normal and length of the edge shared between the mesh elements

π(k, 1) and π(k, 2). The action of the second term can be better understood by taking

γ(−→n ) = 1 for all −→n . In this special case, the second term reduces to the total length of

the boundary between each component of the k-way partition, i.e. length of the phase

boundary. Minimization of this term leads to the minimization of the phase boundary

length which renders a smoothening effect. The total energy is minimized using the

alpha expansion method discussed in [7] by solving the equivalent Multiway K-Cut

problem. The data structure and the pseudocode for implementing this method is

presented in the Appendix B.1.

wk(f) = γ(−→n )∆sk (2.3)

Simultaneous minimization of the two energy terms gives rise to Pareto optimal solu-

tions i.e. solutions where both terms cannot be simultaneously decreased any further.

This means there exists a labeling such that any change in it either leads to deviation

from the input image or introduces roughness in grain boundary. The solution is

selected based on the choice of α in Eq (2.2). This phenomenon is illustrated in the
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next section by means of an example.

2.3 Results and Discussion

The salient features of the algorithm are illustrated using two examples. In the first

example, polycrystalline materials are used with the grains representing the different

phases of the material. Next, a case study of woven fibers composite is considered

where the fiber and the matrix are identified as the two distinct phases. In poly-

crystalline materials, the smooth boundary is an artifact of microstructure evolution

which is governed by surface energy minimization. According to the theory discussed

in the previous section, the naive labeling based on the pixel location results in rough

grain boundaries. The energy minimization problem is not required to estimate this

labeling. In fact, it can be uniquely determined by the relation, si = I(vi), which was

treated as the basis for formulating the data cost. This grain boundary is smoothened

by minimization of energy form given in Eq (2.1). This process is illustrated in Fig 2.3

for a microstructure image with 200x200 pixels. A triangular mesh with 30,625 nodes

and 60,547 elements is, first, labeled based on pixel positions. The boundaries are

then smoothened by solving the Multiway K-Cut problem on the embedded graph

containing 90,470 connections with the data parameter chosen as α = 0.002 and the

metric function chosen as γ(−→n ) = 1. The same procedure can be carried out for

low-resolution images where pixel-based labeling may result in a very rough grain

boundary. Grain identification for mesh elements using pixel-based and Multiway

K-Cut based is presented for a low-resolution image of a pixel size of 50×50 in Fig2.4

It is observed that the smoothening effect is less prominent (in comparison to the

high-resolution image) due to the pixelated nature of the base image.

The dependence of partitioning on the data term is shown in Fig 2.5. The Grain

Boundary length ratio (i.e. the non- dimensional length of the grain boundary with

respect to the unit cell) is calculated with respect to labelings for different data cost.
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Figure 2.3: An illustration of labeling procedure: (a) Microstructure image (b) Pixel-
based labeling (c) Smoothened mesh using Multiway K-Cut based labeling.

Figure 2.4: Grain identification in a mesh using a 50x50 pixel image: (a) Pixel-based
labeling (b) Multiway K-Cut based labeling.

Three regions are observed based on the value of the α defined in Eq (2.2). The

first region corresponds to the case when higher weight is given to the minimization

of length (low value of α). In this case, the addition of data cost is preferred over

the addition of surface energy. On the contrary, labeling is governed by data cost

in the third region. Therefore, this region is plagued with rough boundaries and an

overall higher estimate of grain boundary length/area. Practical meshes with smooth

boundaries and a minimal loss of grain structure are offered in the second region.

A comparison of the performance of this mesh with that of a uniform mesh with

pixel-based labeling and an exact mesh (conformal mesh) is presented. A bicrystal

with an incident angle of 60◦ between isotropic components is studied in uniaxial

loading. For simplicity, the finite element simulations are presented for linear-elastic

36



Figure 2.5: Dependence of Graph partitioning on the data term in energy.

deformation assuming plane strain. The distribution of Von-mises stress is presented

for the different meshes in Fig 2.6. The grain boundary is exactly mapped by the

edges of the conformal mesh. It captures all the localized data as well as the jump

in stresses. In comparison, the pixel-based mesh has a diffused solution near the

grain boundary and local features like stress concentrations are not well captured.

Performance of graph-labeled mesh is very similar to the conformal mesh in terms of

capturing discontinuity and localized stresses.

Additive manufacturing techniques, like, selective laser melting (SLM), electron beam

melting (EBM) and shaped metal deposition (SMD) often results in microstructure

with elongated grains [46, 47, 48]. These structures can be better captured using the

characteristic alignment of the grains. Motivated by the elliptical shape of grains, a

non-euclidean distance measure can be used to favor or penalize certain directions. A

useful class of such distance measures is a Riemannian norm. For this purpose, the

function γ can be specialized as Eq (2.4).

γ(v) =
√
vT .D.v (2.4)
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Figure 2.6: Comparative study of Finite element simulation results for a bicrystal
in plane strain (linear elastic) using Pixel-based (quad mesh), Graph-based (triangle
mesh with smoothening) and Conformal mesh

Figure 2.7: Grain identification for elongated polycrystals using (a) Euclidean metric
(b) using Riemannian metric

where D is a positive definite matrix. In general, polycrystalline materials with non-

equiaxed morphology show smoother grain boundaries in the normal/transverse di-

rection (ND/TD). This directional smoothening is achieved by penalizing the length

of a line element in an appropriate direction using the metric presented in Eq (2.4).

An example of elongated microstructures is presented in Fig 2.7. It is observed that

a metric with D11 = 1, D22 = 10 and D12 = D21 = 0, minimizes the kinks in the nor-

mal direction. This procedure can be specialized to many other kinds of morphologies
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Figure 2.8: Illustration of various morphologies based on the metric tensor, D

Figure 2.9: Grain identification in 3D meshes using a 64x64x64 voxel base image: (a)
Vertex position based labeling (b) Multiway K-Cut based labeling

using the matrix, D. The iso-surfaces for the distance function, γ(−→n ) for different

choices of matrix D are presented as an illustration in Fig 2.8. Based on the theory

of Wulff construction, the iso-surface represents the grain shape ([49]).

As suggested in section 2.2, this procedure can be easily extended to 3D meshes. For

the purpose of illustration, a 64×64×64 voxelated image of a microstructure is super-

imposed on an FE mesh with tetrahedral elements. The sample solution is presented
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Figure 2.10: Mesh generation for woven fiber composite (a) Voxelated mesh with
102 × 102 × 102 elements (b) Tetrahedral mesh with multiway K-Cut based labeling
(c) Comparison of fiber volume and surface area of various voxelated meshes and a
tetrahedral (smoothened) mesh

Figure 2.11: Time complexity analysis of the mesh generation procedure.
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in Fig 2.9 for a mesh with approximately 3× 105 elements. This smoothening proce-

dure is also illustrated for a woven fiber composite system. A voxelated mesh and a

tetrahedral (smooth) mesh with approximately 106 nodes are presented in Fig 2.10.

A comparative study of convergence in volume and surface area is also presented in

Fig 2.10(c). Different voxelated meshes are used with ’Vox〈n〉’ representing a mesh

with (n + 1)3 nodes. The fiber composite with Vox100 mesh is shown in Fig 2.10(a)

with the tetrahedral mesh (Tet100) in Fig 2.10(b). The normalization is done with

respect to the analytical values of respective quantities. It is observed that the esti-

mate of fiber volume is almost consistent in all the meshes but the estimate of fiber

surface area is improved in the tetrahedral mesh.

The time complexity of the algorithm is experimentally studied for 2D and 3D test

cases. Ten instances of meshes with a similar number of elements are labeled using

graph partitioning. The total average time for graph partitioning using alpha expan-

sion is calculated for the 2D triangle and 3D tetrahedral elements. An almost linear

trend is observed in Fig 2.11 (log–log scale is shown but note that the simulation

time scales linearly with number of elements). This is faster in comparison to the

experimental results presented in [50]. Faster heuristics are seen for the 2D mesh in

comparison to 3D for the same number of elements. This is due to the fact that the

embedded graph in the 2D case has a planar topology and Graphcut algorithm is

known to be more efficient in these cases.

2.4 Conclusion

Based on the ICME paradigm, there has been increasing interest in the use of mi-

crostructure modeling tools for optimization of aerospace materials manufacturing

processes. Experimental evaluation of the spatial distribution of multiphase materi-

als provides images in a voxelated/pixelated format. However, such a format does not

accurately capture features like grain surface area and curvature that are important
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for modeling fracture. In addition, finite element simulation on voxelated microstruc-

tures may lead to the prediction of spurious stresses due to the stepped, block–like

representation of otherwise smooth boundaries. In this chapter, a theory is devel-

oped for conversion of as–measured voxelated microstructure to an unstructured grid

with a smoother representation of boundaries. This problem is solved using Graph

Partitioning (GP) theory discussed in Chapter I. This procedure smoothens the grain

boundaries using a Potts energy model while optimally preserving the grain label

information of the initial experimental data. The trade-off between smoothening and

data preservation is controlled using a user–controlled parameter. The performance

is tested for both equiaxed and non-equiaxed morphologies using Riemannian metric

measures. It is observed that smoother grain boundaries in the normal/transverse

direction (ND/TD) can be realized using this approach. The methodology has an ef-

ficient run–time and is easily extendable to 3D structures like woven fiber composites

and 3D polycrystalline material as demonstrated in this work.
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CHAPTER III

Graph Coloring Method for Modeling

Microstructural Fracture

A multiscale graph theory-based approach is introduced here to predict the microscale

crack path in polycrystalline materials. The crack path is represented as the boundary

of the partition of a geometric graph. The partitioning is carried out by optimizing

an Ising-type hamiltonian. The hamiltonian parameters are chosen such that each

partition cost is the same as the energy of the corresponding crack. The interplay of

the loading conditions on the specimen and the microstructure of the material near

the crack tip determines the crack growth angle in polycrystalline materials. Two

different length scales of macro and micro are incorporated for the crack path by

defining the crack total energy as the summation of macroscopic energy release and

microscopic surface energy. The former term represents the macroscopically favorable

crack growth angle by directing the crack to propagate from the crack tip along the

direction of the maximum energy release. The latter term guides the microscopic

crack path along the macroscopically preferred direction. At this scale, the crack path

naturally accommodates both the intergranular and transgranular fractures. In the

case of intergranular fracture, the crack propagates along the grain boundaries, while

in the case of transgranular fracture, the crack propagates along the crystallographic

cleavage planes. The mixed-mode fracture in a thin foil specimen is studied, and
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the effect of the dihedral angle of the 2D crack is included in defining the effective

surface energy. The model is validated using the analytical results for mixed-mode

fracture in an isotropic medium and mode-I fracture in a medium with a preferred

crack direction. The proposed method can be used to design materials microstructure

with optimal fracture resistance.

3.1 Background

Traditionally, the two main types of fractures considered at the microscale are brittle

and ductile. In brittle failure, the metal fractures with little to no plastic deformation,

generating surfaces with bright cleaved crystalline facets. The crystallographic planes

of the microstructure play an essential role in the mechanism of fracture. For instance,

at low temperatures, BCC-Iron (Body centered cubic) cleaves on the {001} family

of planes and HCP-Zinc (Hexagonal close packed) cleaves on the basal plane, while

FCC (Face-centered cubic) materials are usually immune to such failure. In contrast,

fracture in ductile failure is preceded by significant plastic deformation, which redis-

tributes the stress concentration ahead of the crack tip, resulting in different fracture

mechanisms. The same kind of material can undergo ductile or brittle depending

on the external conditions. One of the earliest pioneering studies of transition from

brittle to ductile was carried out by Kelly, Tyson, and Cottrell [51]. They proposed

that the ratio of the largest tensile stress and the largest shear stress close to the crack

tip governs the crack behavior. A brittle fracture occurs when this ratio exceeds the

ratio of ideal cleavage stress and the ideal shear stress.

There are two popular approaches in the literature for the numerical simulation of

fracture. The first one is based on cohesive zone models ([52, 53, 54, 55]). These meth-

ods have proven to be extremely useful in predicting both the nucleation and crack

propagation; however, they are plagued by numerical instabilities. These problems

have been mitigated, to a certain degree, using either more stable but computationally
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extensive load path-following procedures (e.g., Riks method and arc-length method)

or by introducing artificial viscosity to the cohesive zone law [56] leading to inaccura-

cies in load prediction. The second approach is based on Phase-field methods, where

cracks are represented using diffuse damage parameters. The evolution of these dam-

age parameters can be modeled using a Ginzburg-Landau type potential ([57, 58])

or using gradient damage theory [59]. There is also the issue of mesh dependence

in numerical crack path prediction. It has been shown, for instance, in [60], one of

the major reasons for mesh dependence is the stress concentration at the tip. Conse-

quently, mesh-dependent objects like element size near the crack tip can influence the

direction of crack growth. These problems are usually addressed using regularization

approaches to limit the sensitivity of damage evolution to the stress concentration.

Most phase-field studies (for e.g. [59, 61]) use regularization by considering a diffused

crack. Moreover, many FEM techniques now allow generating sophisticated crack

paths like the node enrichment FEM (e.g. X-FEM)[62] and elemental enrichment

FEM (e.g. E-FEM) [63, 64, 65, 66].

One of the major drawbacks of these approaches is that the solution may not lead

to a global minimum of energy due to the problem’s non-convex nature. This aspect

of the global and local solutions can be better understood in the variational model

of quasistatic crack evolution proposed by Francfort and Marigo[67]. Consider the

following energy of a body with a given crack, Γ, and external load, U :

E(Γ, U) = Ed(Γ, U) +

∫
Γ

2γds

where Ed is the bulk energy of the body, and γ is the surface energy density of the

cracked surface. The crack path is estimated using an evolution law where the load

is monotonically increased, and the crack progresses in the direction of a maximum

decrease in energy. However, this evolution does not need to lead to a global minimizer
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of energy. In fact, it is mentioned in [67] that these evolution laws are dependent on

the load history and have meaningful continuum limits only in certain conditions. At

the same time, the reader is cautioned that this not an endorsement of global energy

minimization over local growth law in terms of thermodynamic arguments. The global

energy minimization is a postulate which seems crucial in understanding the effect

of inhomogeneity of surface energy in polycrystalline materials. As an example, an

experimental image for crack propagation in WE43 Mg alloy specimen presented in

[2] (see Fig 3.1) revealed a crack path which did not propagate completely in the

basal direction. Transgranular fracture path in Grain E shows an unusual bending

before hitting the grain boundary. A possible explanation is that the intergranular

fracture between the grains G and H lowers the overall energy of the crack and

therefore influences the crack path in the transgranular region of grain E and F. In

comparison, the numerical study of grain boundary effect on the crack path presented

in [61] shows this upstream influence at a much smaller length scale. Such results

motivate the search for global minimizers of total energy.

Figure 3.1: Experimental image of a fatigue crack in WE43 Mg alloy (HCP) adapted
from [2]. Transgranular fracture followed the basal trace (red line) in grains A-F.
Intergranular fracture occurred between grain pairs (A,B), (G,H) and (G,I).

On the other hand, graph-based approaches are posed as combinatorial optimization

problems with finite choices where, in some instances, the global minimum can be

approximated reasonably quickly. In regards to fracture mechanics, such approaches

have been employed in predicting fracture at the microscale. Sundararaghavan and

Srivastava [34] developed MicroFract, a graph theory-based software to predict the
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microstructural crack path in various materials. They validated their model by sim-

ulating the intergranular stress corrosion cracking of Inconel. Srinivasan et al. [68]

used machine learning along with graph theory to substitute demanding computa-

tions with coarse-scale graphs. Hunter et al. [69] also incorporated machine learning

along with graph theory and developed reduced-order models, which have sufficient

accuracy and low computational cost, to capture brittle fracture. Recent machine

learning techniques for fracture prediction have been reviewed in [70]. Needleman

and coworkers [71, 72] have developed a model based on discrete unit events along

with graph theory to predict intergranular fracture in polycrystalline metals. They

investigated the effect of grain size on the propagation of ductile intergranular frac-

ture. There is no graph-theoretic approach that can simulate microscale cracks in

polycrystals, including intergranular and transgranular cracks, to the best of authors’

knowledge.

This work aims to introduce a general and modular framework for multiscale modeling

of a polycrystalline material using a graph-based technique. The macroscopic energy

release and the microscopic surface energy, depending on the loading condition and

the crystallography of the material, respectively, are encoded into an Ising-type hamil-

tonian. The non-local component of the hamiltonian (Smoothing term) is obtained

as a metric, and therefore, the energy minimization is carried out using the Alpha-

expansion method, which guarantees that the min-cut is within a known factor of the

global minimum (Kolmogorov and Zabih [9]; Boykov and Kolmogorov [73]). Conse-

quently, the energy of the predicted crack is very close to the globally optimal crack

path. The presented scheme can model the crack propagation in mixed-mode-I-mode-

II failure in a reasonable time with sufficient accuracy. Furthermore, the algorithm

reduces to a Quadratic Unconstrained Binary Optimization (QUBO), which can be

solved using quantum annealing systems, like D-wave. A new scheme is developed

to incorporate the dihedral angle of cracks in fracture, which considers the effective
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surface energy of a uniformly oriented out-of-plane crack. The techniques presented

here are specialized for brittle fracture in elastic materials. The key idea of this work

to represent the fracture energy using the Ising model can be extended to ductile

materials, but no such attempt is made in this chapter.

The chapter is organized as follows: Section 3.2 develops the formulation for the total

energy of the crack in a multiscale setting and relates it to the Ising hamiltonian

of the graph. A procedure to estimate the 2D surface energy of 3D crystals is also

presented in this section for studying fracture in thin-film specimens. In section

3.3, the algorithmic details are described, and a discussion on the computational

complexity of the method is presented. In section 3.4, the procedure is applied to

capture crack paths in two cases : (i) homogeneous media with an anisotropic surface

energy and (ii) polycrystalline material. The results for crack growth in homogeneous

media are compared against the analytical result. In the case of the polycrystalline

material, a qualitative verification of results is presented. The effect of the grain

boundary on the crack path is studied, and it is shown that at high loading conditions,

the predicted crack path resembles the dynamic fracture path. Section 3.5 provides

a summary of the chapter.

3.2 Mathematical Framework

Among the early energy-based methodologies for studying fracture in linear-elastic

isotropic materials, the most noted ones are the S-Criterion (Strain Energy Criterion)

[74, 75] and the ME-Criterion (Maximum energy release rate criterion) [76]. It was

first shown in [77] and later proved in [76] that the ME-criterion is the same as

Maximum-Stress Theory [78] i.e., the crack propagates in the direction of maximum

circumferential stress. For this reason, the ME-criterion is often favored over the

S-Criterion for crack angle prediction in mixed-mode failure. The basic hypothesis

for ME-Criterion is that:
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1. The crack propagates from the crack tip in a straight line along which the

maximum energy is released.

2. The crack propagates when the energy release rate is greater than a critical

value.

Consider a small kink from the original main crack tip at an angle, α with the hori-

zontal axis. The application of the ME-Criterion to estimate of the propagation angle

can be formalized as:

max
α

G(α) ≥ Gc (3.1)

where G(α) denotes the energy release rate for a kink angle, α, and Gc denotes the

critical energy release rate. In the case of an ideal brittle fracture, Gc = 2γ, where γ

is the surface energy density of the fractured surface. Now, consider a circular region

around the main crack tip determined by the radius, r, of the branched crack and

a microscopic crack path, Γ, parameterized as Γ(s) ≡ (x(s), y(s)). In this region,

the ME-Criterion can be equivalently written in terms of the total energy released

(instead of the energy release rate) as follows:

min
Γ

∫
Γ

(2γ −G) ds ≤ 0

The above equation was derived by using the fact that Gc, or equivalently, γ is in-

dependent of α, which is true for isotropic materials. However, at the microscale, γ

depends on the location and the local orientation of the cracked surface. Consequently,

the minimizer of this functional is not necessarily a straight line, as postulated in the

first hypothesis of the original ME-criterion. Moreover, the second hypothesis is also

violated as the equivalent Gc changes with the kink angle. In favor of a multiscale ap-

proach, the energy release rate is assumed to be governed by the macroscopic feature

of the crack, i.e., kink angle, defined as the average angle of the microscopic crack.
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The assumptions considered in the new hypothesis for multiscale crack propagation

are stated as:

1. Crack, Γ propagates from the crack tip in a possibly zig-zag direction towards

the circular region’s circumference so that the path minimizes the total energy

of the system, ε(Γ):

ε(Γ) =

∫
Γ

2γds−G(αΓ)

2. Crack propagation is initiated when the total energy is negative.

The energy release rate for mixed mode crack in isotropic material is estimated in

[76] as follows:

G(α) =
κ+ 1

8µ
cos2 α

2

(
cos2 α

2
K2
II +

(
cos

α

2
KI − 2 sin

α

2
KII

)2
)

(3.2)

where κ is a material constant, which can be obtained as κ = 3 − 4ν for the plane

strain condition and κ = (3−ν)/(1+ν) for the plane stress condition. The variables,

µ and ν are the shear modulus and Poisson’s ratio for the homogenized material, re-

spectively. Note that the energy release rate for a general anisotropic material ([79])

can be substituted here without influencing the formulation.

3.2.1 Graph representation of Microscopic crack

A random finite element mesh is considered (see Definition II.1) where each element

is a polygon represented by Pi with i ∈ {1, ..., n}. The goal is to label each element

as +1 or −1 based on a cost minimization criterion. Therefore, a particular partition

of a mesh is given by an array of labels, L = [l1, ..., ln] with li ∈ {+1,−1}. The crack

is represented as the element edge with different labels on either side. To define the

energy of this partition, an undirected graph (see Definition I.1) is embedded in this
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mesh. Each element, Pi, is treated as a vertex, vi, of the graph, G. A connection, e,

exists between two vertices if their respective elements share an edge1. This cost is

determined as the Ising hamiltonian, HI , on the graph, G, defined as:

HI(L) =
∑
vi∈V

g(ci, li)|Pi|+
∑

(vi,vj)∈E

2γ(−→n )∆sij(1− δli−lj) (3.3)

where g(.,+1) and g(.,−1) are continuous functions defined over the domain. ci

and |Pi| are the centroid and the area of the element, Pi, respectively. ∆sij and −→n

are the length and a unit normal to the interface between the elements, Pi and Pj,

respectively. δx is the Kronecker-delta function, i.e. it has value 1 at x = 0 and 0

everywhere else. The function γ is strictly positive and represents the surface energy

density of the crystal. It can be immediately observed that the second term does not

contribute towards the cost if the labels of neighboring pair are the same.

Microstructure Finite Element mesh Embedded Graph

Figure 3.2: A portion of the FE mesh (in blue) with the dual graph, G (in yellow)
embedded in the mesh. Only the connections across the crack (in red) contribute to
the cost. The energy of the connection between elements A and B is determined by
the length and the normal of the interface edge.

In the next section, the procedure to encode the total energy as an Ising hamiltonian

is presented. The first term in Eq (3.3) is used to encode the macroscopic energy

release, while the second represents the microscopic surface energy of the crack.

1In the subject of Graph theory, this construction is referred to as the weak dual of a primal
graph, where the vertices and connections of the primal graph are defined identified as the nodes
and the edges of the mesh respectively.
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3.2.2 Graph based modeling of Energy release

A semicircular region of radius, r can be defined as an area of interest where the

macroscopic crack grows from the center to the circumference in a straight line. The

net energy release increases linearly with the radius, r. Morevover, it has functional

dependence on the kink angle. To encode this behavior of the energy release, following

functional form of g is considered as an ansatz:

g(ci, li) = (2− k)rk−1 g(θi, li)

rki
(3.4)

where, θi and ri define the angular and radial coordinates of the point ci and k < 2

for admissibility. Consider a radial crack at an angle α. To understand this choice of

function, g, observe that in the continuum limit of the mesh (Ph with h → 0), the

first term of Eq(3.3) can be expanded as (see PropositionA.1):

∑
vi∈V

g(ci, li)|Pi| = r

π/2∫
α

g(θ,+1)dθ + r

α∫
−π/2

g(θ,−1)dθ (3.5)

where {+1} is the label of upper region and {−1} is the label for lower region.

Moreover, the above equation represents the negative of the energy release in the

continuum limit, i.e.

r

π/2∫
α

g(θ,+1)dθ + r

α∫
−π/2

g(θ,−1)dθ = −rG(α) (3.6)

Therefore, the initial ansatz for g satisfies the linear dependence on r and angular

dependence on the crack angle, α. This integral equation form is satisfied by the

following form of g(., li) (see PropositionA.2):

g(α,+1) = G′(α)H(G′(α)) + c
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g(α,−1) = −G′(α)H(−G′(α)) + c (3.7)

where H is the heaviside function and c is given by:

c = − 1

π

G(−π
2

)
+

π/2∫
−π/2

G′(θ)H(G′(θ))dθ


The derivative G′ can be estimated from Eq(3.2) as:

G′(α) = −κ+ 1

8µ
cos

α

2

((
sin

α

2
+ sin

3α

2

)
K2
I

2

+

(
5 sin

α

2
− 3 sin

3α

2

)
K2
II

2
− 2 cos

3α

2
KIKII

)
(3.8)

Moreover, a phenomenological choice of k = 1 is made in this chapter. To understand

the reason behind this, consider a rough crack represented using its angular position

(α) as a function of the radial position. The following relation holds true in the

continuum limit (see PropositionA.3):

∑
Pi∈Ph

g(ci, li)|Pi| = (k − 2)r

1∫
0

1

sk−1
G(α(rs))ds (3.9)

Therefore, the parameter k can be used to give different weightage to energy release

rate at different radial distances. It can be easily observed that for the given choice

of k, the excess energy release rate is weighed uniformly.

3.2.3 Modeling surface energy

The surface energy density, γ, in Eq (3.3) varies spatially and is dependent on the

angle of the cracked surface. The treatment of edges between elements of the same

grain (transgranular) is done differently from the ones with a distinct grain (intergran-

ular). Here, the energies related to both the crack growth pattern of transgranular
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and intergranular types are elaborated.

Transgranular surface energy: Transgranular cracks usually prefer propagation

along crystallographic planes, typically those with low indices. This effect is due to

the relatively smaller energy density for these planes. Due to the symmetry of crystals,

the surface energy density also obeys these rules, i.e. for the function γtg to represent

the surface energy density of a crystal system, it must satisfy: γtg(Q ?−→n ) = γtg(−→n ),

where Q is an element of the group, G , consisting of appropriate symmetry operations,

and Q ? −→n denotes the action of Q on −→n . These energies are often available in the

literature for specific crystallographic planes. The symmetry conditions can then be

encoded using appropriate interpolation. This practice is fairly common in smeared

crack approaches; for instance, surface energy density interpolation for crystals with

cubic symmetry is introduced in [80].

As an example, a model for transgranular surface energy density of a crystal with

cubic symmetry is chosen. In this case, G is the group generated by the operations:

{Rx(π/2), Ry(π/2), Rz(π/2),−I}

where Rx, Ry and Rz are rotations about the chosen coordinate system and −I is

the inversion operator. The surface energy density of the crack for a cubic material

is modelled as:

γtg(θ, φ) = γ0

(
1 + 3δ

(
cos2 θ sin2 2φ

4
+ sin2 θ

)
cos2 θ

)
(3.10)

where θ and φ are the elevation and the azimuth of the unit normal to the cleavage

plane relative to the crystal frame of reference. The {001} family of planes has the

minimum energy given by the parameter, γ0, while the {011} family has a saddle with

energy γ0(1 + 3δ/4) and the {111} family has a maximum with energy γ0(1 + δ). An
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illustration of this model is shown in Fig3.3 where the cubic symmetries are evident.

x y

z

Figure 3.3: An illustration of the 3D surface energy density of a cubic material with
γ0 = 1J/m2 and δ = 2 in the direction normal to the cleavage surface.

Intergranular surface energy: An intergranular crack propagates along the grain-

boundaries. And the grain-boundary energy, γGB, determines the surface energy. The

effective intergranular surface energy density of the cracked surface, γig, is determined

as:

γig = γsurface −
1

2
γGB (3.11)

where γsurface is the average energy required to break atomic bonds per unit surface

area of individual grain species. As suggested by the above relation, grain boundaries

with lower γGB are more stable as the surface energy is higher along those grain

boundaries. These energies are crucial in modeling crack propagation via special

grain-boundaries like the coherent twin boundary (CTB), which has the lowest energy.

3.2.3.1 Fracture in thin foils

During crack propagation in these films of crystalline material, unlike isotropic mate-

rial, the dihedral angle (out of plane angle) cannot be assumed to be zero. Consider a

specimen with uniform thickness and a 2D crack that extends in the third dimension

with a dihedral angle, ψD. Therefore, the surface area generated by a unit 2D crack is
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secψD. The dihedral angle is chosen such that the total surface energy is minimized

for all possibles dihedral angles. It is also evident that the dihedral angle depends on

the direction of the edge. Without a loss of generality, the microstructure surface is

chosen to be on the x1−x2 plane. The dihedral angle is defined as the angle between

the unit normals, −→n 2D and −→n 3D. The general unit normal to the 3D crack can be

parameterized with an angle ψ as:

−→n 3D = [0, 0, 1]T sinψ +−→n 2D cosψ

Figure 3.4: An illustration for the dihedral angle of a 2D crack.

And the dihedral angle is estimated as:

ψD = argminψ∈(−90◦,90◦) γ (−→n 3D(ψ)) secψ (3.12)

The effective surface energy for the 2D crack is then calculated as:

γ̃ = γ(−→n 3D(ψD)) secψD (3.13)

The surface energy density and effective dihedral angle for three different grain ori-

entations are shown in Fig3.5 for a cubic material with the surface energy model

defined as Eq(3.10). It can be observed that cracks with lower surface energy density

are possible by considering the dihedral angle.
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Crystal Orientation

Surface energy
density of crack
without dihedral

angle

Dihedral angle
Effective Surface
energy density

Figure 3.5: 2D surface energy density of a cubic material with γ0 = 1J/mm2 and
δ = 2. Each row represents a specific crystal orientation in the specimen frame
of reference, and the polar plots are evaluated with respect to cleavage normals.
2D surface energy densities are evaluated for a specimen with unit thickness. The
dihedral angle is plotted as ψD + 90◦ for positivity considerations in the polar plot.
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Figure 3.6: (a) A tensile test specimen for mixed mode failure (b) The definition of
the macroscopic crack angle from the microscopic crack path.

3.3 Method

3.3.1 Problem Setup

A Tensile test is considered with an inclined main crack to replicate the conditions of

Mixed mode failure (shown in Fig 3.6). The main crack has a half-length, a and an

inclination angle, β.

The stress intensity factor can be estimated as:

KI = σT
√
πa sin2 β

KII = σT
√
πa sin β cos β (3.14)

where σT is the applied tensile stress.

3.3.1.1 Boundary Condition

The minimization of Eq(3.3) leads to two types of solutions: (1) Both labels are

present - This means that there is a crack propagating at an effective angle, α ∈
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(−π/2, π/2) (2) Only one label is present. The latter condition should not be confused

with a vertical crack because there is no surface energy being generated in this case.

Moreover, due to the lack of surface energy, this erroneous solution’s total energy

can be substantially low in the absence of a strong directional dependence of the

macroscopic energy release rate. For this reason, boundary conditions are applied

where the labels +1 and −1 are imposed on a thin strip on top and bottom of the

main crack-tip (as shown in Fig3.6(b)). It is done by artificially increasing the value

determined by the term g(ci,−1)|Pi| in the top strip and g(ci,+1)|Pi| in the bottom

strip.

3.3.1.2 Checking total energy

After enforcing the boundary conditions, the minimization process predicts the crack

path as per the Revised ME-Criterion’s first hypothesis. However, this procedure does

not check whether the total energy is negative; i.e., it violates the second hypothesis.

This problem is resolved by checking the total energy after the labeling is done, and

the solution is discarded if the total energy is positive.

3.3.2 Computational Procedure

Experimental imaging techniques usually provide a pixelated image with a grain index

of each pixel and a table relating grain index to its orientation. This data is super-

posed on a mesh, which is generated using a Delaunay triangulation of randomly

sampled points by determining the grain index of each element using the technique

developed in [81]. This method ensures that the grain boundaries in the resulting

mesh are smooth. The crack is identified as the boundary between the elements with

different labels. This labeling is carried out by minimizing the cost function presented

in Eq(3.3) using the Alpha-expansion method. The gco library developed by [7] is

used to minimize the cost function. This library requires three costs functions namely,
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label cost, LC, data cost, DC, and neighbor cost, NC. The label cost is given as:

LC(i, j) = 1− δ(li−lj) =

0 1

1 0

 (3.15)

The neighbor cost defines the weight of connection between the ith and jth element,

which can be defined as follows:

NC(i, j) = 2γ(−→n )δsij (3.16)

The data cost describes the cost of labeling the jth vertex. It is decomposed as,

DC = DC0 +DCBC where DC0 denotes the data cost for emulating the macroscopic

energy release and is given as

DC0(1, j) = g(θj,+1)|Pj|/rj

DC0(2, j) = g(θj,−1)|Pj|/rj (3.17)

The term DCBC denotes the data cost used for imposing boundary condition. Taking

k as a large constant, the term DCBC is set as DCBC(1, j) = k when the jth vertex is

in the bottom strip and DCBC(2, j) = k when the jth vertex is in the top strip. For

all other indices, DCBC = 0.

A flowchart for the computational procedure is presented in Fig 3.7. The list of all

the variables and pseudo-codes for all the subroutines are provided in Appendix B.2.

It can be observed that this procedure allows for a unidirectional workflow with (1)

Mesh generation (2) Microstructure specific calculation, i.e., identification of grain

ID and setting up Neighbor cost (3) Test-specific calculation, i.e., setting up data

cost and estimation of the crack. Independence of Step(1) from Step(2) allows using

the same random mesh multiple times by re-estimating the Grain index of the mesh
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Figure 3.7: Flowchart of the procedure for crack estimation.

for different microstructures. Similarly, the independence of Step(2) from Step(3)

relieves the burden of calculation of the Neighbor cost for different loading scenarios

on the same microstructure. This effect is achieved by generating the list of indices,

R-Index, of the elements in the radial region, and using it to extract the Neighbor

Cost of the radial region.

3.3.3 Computational complexity

This procedure’s total runtime can be estimated as the sum of the individual com-

ponents of the workflow mentioned above. Before analyzing them separately, it is

crucial to understand the resulting graph’s topology. The Finite element mesh can

also be thought of as a graph with its nodes as the vertices of a graph and the edges
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as the connections of the graph. Since G is constructed as a subgraph of a dual of a

planar graph (Mesh Graph), it is planar. Based on the construction, the number of

vertices, |V | of G is equal to the number of elements (N) in the mesh. Moreover, the

connections, |E| in G is bounded from above by 3N − 6.

The Estimate GrainID subroutine developed in [81] uses a graph with the same

topology as used in this work. The main bottleneck in this procedure, as well as

the Estimate Crack Path procedure, is the GraphCut step. It has been shown in

[82], that the runtime complexity for this step is O(N logN). The complexity for

the Set-up Neighbor Cost and Set-up Data Cost can be estimated as O(|V |) and

O(|E|), respectively. Therefore, both the cost setup procedures are O(N). Finally,

the Check Total Energy subroutine uses the sparsity of a graph to estimate the cost

in O(|V |+ |E|), i.e., it is bounded linearly by N . This analysis shows that the overall

runtime complexity of this method is O(N logN). The run-time of each process for

various mesh-sizes is provided in Fig 3.8. It is observed that the Set-up Data Cost

takes the most computation time for the given choices of the mesh sizes. However,

the computation time for Estimate Crack Path shows the fastest growth with mesh

size.

3.4 Application to examples

The essential characteristics of the brittle fracture using the proposed formulation are

verified in this section. All simulations are conducted for quasistatic crack growth

due to the abundance of analytical results in such cases. The quasistatic crack growth

condition is replicated by choosing the value of σT such that the total energy, ε, is as

close to 0 as possible while maintaining non-positivity. The reason for this choice is

that, in practice, when the tensile load is increased, the crack propagation initiates

as soon as the total energy of the crack is negative. The first set of simulations is

conducted on a homogeneous material, and the results are verified against analytical
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Figure 3.8: Run-time Analysis: Computation time is estimated for each process for
different mesh sizes. A sample set of 20 meshes is used for each mesh size. Error bars
represent the standard deviation in the computation time for each sample set.

results. In the next set of simulations, multiple grains are considered. In this case,

analytical results are rare, and the results are analyzed in a qualitative sense. All

numerical studies are done on a square domain, discretized into approximately 180k

elements. Consequently, the complete graph, G, has around 180k nodes and 270k

connections. When restricted to the semicircular simulation domain, the sub-graph

contains around 70k nodes and 105k connections. A mesh convergence analysis is

presented in the case study for isotropic fracture (Section 3.4.1.1) that validates this

choice of the mesh size. The radius (r) of crack–growth region is chosen as half the

image’s dimension. This hyper–parameter defines the macroscopic length scale of the

problem and influences the crack path in the polycrystalline medium. This effect is

analyzed in Section 3.4.2.2.

3.4.1 Fracture in a homogeneous medium

Homogeneous materials have uniform properties throughout the domain. Three dif-

ferent cases are considered based on the form of surface energy density. In the first

case, an isotropic material is studied. Next, a surface energy density with a single
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preferential direction is considered. Finally, a surface energy density with multiple

preferential directions is studied. For simplicity, all the surface energies are formu-

lated for 2D, so the crack’s dihedral angle is uniformly zero in all the cases studied

here. It should also be noted that the anisotropy is only induced through the sur-

face energy while the energy release rate is based on isotropic material (as defined in

Eq(3.2)).

3.4.1.1 Isotropic crack

Firstly, the mesh convergence analysis is conducted using the test case of Mode-I

fracture in this medium. The analytical crack grows horizontally while the numerically

estimated crack grows in a zig-zag fashion about the horizontal line. The difference

between the ’Analytical’ and the ’Numerical’ crack can be estimated using the Simple

matching distance of the corresponding labeling problem. In this case, the distance

can be evaluated using the following form:

d(CNumerical, CAnalytical) = 2
Area between(CNumerical, CAnalytical)

πr2 (3.18)

where, CNumerical and CAnalytical represent the Numerical and the analytical crack path.

An illustration of the area along with the estimated between the two cracks is pre-

sented in Fig 3.9. It is observed that d(CNumerical, CAnalytical) decreases with an in-

creasing mesh size. The mesh with approximately 180k elements is chosen for its

reasonable accuracy and computation time.

Next, it is verified that the revised ME-Criterion used in the formulation of the en-

ergy minimization problem is, in fact, equivalent to the original ME-criterion for an

isotropic material. Erdogan and Sih [78] performed a mixed-mode fracture experi-

ment using plexiglass sheets with oblique cracks under tension. The crack’s average
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Analytical Crack

Numerical Crack

Figure 3.9: Mesh convergence analysis: d(CNumerical, CAnalytical) is estimated for dif-
ferent mesh sizes. A sample set of 20 meshes is used for each mesh size. Error bars
represent the standard deviation in d(CNumerical, CAnalytical) for each sample set.

angle in their experiments is presented in Table 3.1. The crack angle, as predicted

by the original ME-criterion, is also provided. The numerical simulation using the

revised ME-criterion is provided in Fig3.10. The macroscopic crack propagation angle

matches reasonably well with the experimental and analytical results.

𝛽 = 30∘ 𝛽 = 40∘ 𝛽 = 50∘

𝛽 = 60∘ 𝛽 = 70∘ 𝛽 = 80∘

𝛽 = 90∘

Mode-I Fracture

Figure 3.10: The crack path predicted in mixed-mode failure of an isotropic media.
The black line represents the numerically simulated crack in the semi-circular region.
The overlaid yellow line represents the corresponding macroscopic crack direction.
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β = 30◦ β = 40◦ β = 50◦ β = 60◦ β = 70◦ β = 80◦ β = 90◦

Experiment [78] −62.4◦ −55.6◦ −51.1◦ −43.1◦ −30.7◦ −17.3◦ -

ME-criterion −60.1◦ −55.5◦ −50.2◦ −43.2◦ −33.2◦ −19◦ 0◦

Numerical −62◦ −56◦ −52◦ −43◦ −34◦ −20◦ 0◦

Table 3.1: Crack propagation angle in mixed-mode failure

3.4.1.2 Single cleavage plane

As the next example, a material with a preferred cleavage direction for the microscopic

crack is studied. The surface energy of the crack is low in the prescribed direction

of the cleavage plane. The following 2-parameter model for energy function with

γ0, δ > 0 is used:

γ(θ) = γ0(1 + δ cos2(θ − ω)) (3.19)

where θ is the angle of the edge normal and ω ∈ [0, π] is the preferred direction of

the microscopic crack, i.e., the minimum surface energy is generated when the crack

propagates along the vector [cosω, sinω]. The parameter, γ0, denotes the preferred

cleavage plane’s surface energy, and 1 + δ is the ratio of the maximum surface energy

to the preferred cleavage plane’s surface energy.

A horizontal macroscopic crack is preferred in Mode-I failure. However, the micro-

scopic crack prefers an oblique crack with angle, α = |ω − 90◦|. The competition

between these two effects results in a crack propagating in the direction with the

absolute angle less than the one predicted by the surface energy. Takei et al. [83]

introduced a Wulff’s diagram based criteria to determine the effective angle of the

crack. In the case of a differentiable form of surface energy and Mode-I failure, their

method can be described as: the crack angle is determined by the point on the γ−1

polar plot (with respect to the crack propagation angle) which is tangentially touched
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by a vertical line moving continuously from right to left. The polar plot of γ0/γ with

Figure 3.11: The crack path predicted in the mode-I failure of a homogeneous media
with a preferred cleavage direction of 45◦. (a) Polar plot of the surface energy density
for different values of δ. (b) Numerically simulated crack where the black line repre-
sents the microscopic crack, and the overlaid yellow line represents the corresponding
macroscopic crack direction.

respect to the crack propagation angle, θ′ = θ + 90◦, is presented in Fig 3.11(a)

for δ = 1, 2, 10, 100. The analytical values of the crack propagation angle for each

δ value, as estimated by the geometric method [83], is presented in the Table 3.2.

Numerical simulations for crack propagation are conducted for each value of delta,

and the results are presented in Fig 3.11(b), with the numerical value of the effective

angle provided in table 3.2. The normalized values of σ2
T are also provided. The

numerically predicted effective angles of propagation match well with the analytically

predicted angles. It should be noted that the surface energy in the preferred direc-

tion is the same in all cases. However, it can be observed that the critical tensile

stress is significantly higher for higher values of δ. There are two reasons behind this

discrepancy: (1) The effective angle of the macroscopic crack is at an angle which is

different from the preferred cleavage direction, and (2) the effective surface energy is

overestimated due to the zig-zag nature of the crack. The former is the desired effect

predicted by [83]; however, the latter is due to mesh discretization and is undesirable.

To a certain degree, it can be suppressed by using adaptive meshing techniques to
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iteratively generate a better-suited mesh for each test case based on the predicted

crack. However, this step can lead to high computational costs.

δ 1 2 10 100

Analytical [83] 26.4◦ 35◦ 42.6◦ 44.8◦

Numerical 28◦ 31◦ 40◦ 42◦

(κ+1)aπ
8µγ0

σ2
T 2.7 3.1 5.4 30.8

Table 3.2: Crack propagation angle in mixed-mode failure

3.4.1.3 Bi-directional preference of cleavage plane

Crystalline solids usually have multiple cleavage directions, and their relative strength,

along with their relative orientation to the loading direction, determines the crack

path. In this section, the effect of crystal orientation on the crack path in a simplified

setting is studied. Consider a material with two cleavage planes perpendicular to each

other with equal cleavage energy in a mode-I test. The surface energy of the material

can be chosen as follows:

γ(θ) = γ0

(
1 + δ sin2 (2 (θ − ω))

)
The physical interpretation of the parameters, γ0, and δ is the same as in the previous

case. The preferred direction of the microscopic crack is along the vector [cosω, sinω]

and [− sinω, cosω]. The polar plot of γ0/γ is presented in Fig 3.12(a,b) for two

different values of ω. It was shown by [83] that the regions of local minimum in these

polar plots have a neighborhood around them in which the crack never propagates.

They referred to these regions as the forbidden regions, which they determined to be

the regions of negative curvature in the polar plot. The geometric method based on

Wulff’s diagram is extended to such cases by determining all the points that have

vertical tangents in the polar plot and then removing those in the forbidden region.
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For instance, in the case of ω = 30◦, there are two optimal crack propagation angles,

while in the case of ω = 10◦ there is only one (as shown in Fig 3.12(a,b)) . The

existence of such a region implies that in the presence of multiple optimal crack

propagation angles with a forbidden region between them, the local orientation of

the crack path rapidly switches between these optimal angles to accommodate the

microscopically preferred path. The result is a saw-tooth pattern on the cracked

surface. The fractured surfaces for ω = 30◦ and ω = 10◦ as estimated by the method

in this chapter are shown in Fig 3.12(c). The saw-tooth pattern is present in the case

of ω = 30◦ but absent in ω = 10◦ as expected.

𝜔 = 10∘

𝜔 = 30∘

(a) (c)(b)

Figure 3.12: Polar plot for γ0/γ with respect to the crack propagation angle, θ′ =
θ − 90◦ for a bi-directional surface energy with δ = 1 and the crystal orientation (a)
ω = 30◦, (b) ω = 10◦. The grey area represent the forbidden regions (c) The lower
region of the cracked surface for ω = 30◦ (top) and ω = 10◦ (bottom)

3.4.2 Cracks in Polycrystalline material

The presence of multiple grains has two effects: (1) The spatial variation of the

preferred cleavage directions, and (2) intergranular fracture along grain boundaries.

These effects are qualitatively analyzed in this section. Next, the effect of having

non-zero surface energy is studied.
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3.4.2.1 Effect of grain boundary

A bi-crystal in the mode-I fracture is considered in this section, with each grain having

a single preferred cleavage plane. Both grains have the same parameters for energy

described by Eq(3.19) with δ = 2. The bicrystal’s geometric construction is such that

the grain boundary is a straight line passing through the point 0.25r, 0.5r at an angle,

χ, to the horizontal axis. The crystal in the top left corner is labeled Grain 1, and the

one in the bottom right corner is labeled as Grain 2. The orientation for Grain 1 is

chosen to be ω = 0◦, and for Grain 2 is chosen to be ω = 45◦. Based on the analysis

from section 3.4.1.2, the effective crack path angles in the single crystal of Grain 1

and 2 in mode-I fracture are α = 0◦ and α ≈ 35◦, respectively. Numerical simulations

are carried out by prescribing the surface energy of the grain-boundary, γig, in the

range: {0.5γ0, γ0, 1.5γ0} and the boundary angle, χ, in the range: {0◦, 30◦, 60◦, 90◦}.

The results from these numerical simulations are presented in Fig 3.13.

The key observations from the numerical simulations are as follows:

1. As γig increases, the transgranular fracture is preferred over the intergranular

fracture. This can be observed from Fig 3.13(b) where increasing γig from 0.5γ0

to γ0 shows the transition from transgranular to intergranular fracture.

2. The influence of the grain-boundary is more prominent when it is aligned closer

to the macroscopically preferred crack path. The reason is that the crack path

simultaneously minimizes the macroscopic energy release and surface energy.

Therefore, the crack switches from transgranular to intergranular when the dif-

ference of surface energy compensates for the lower macroscopic energy release.

3. The grain-boundary can influence the crack path before it passes through it.

This can be observed in Fig 3.13(c) with γig = 0.5γ0. The preferred crack

propagation angle in Grain 1 is 0◦. However, the lower value γig influences the

crack to dip downwards to lower the crack’s overall surface energy. This result
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(a) χ = 90◦ with γig = 0.5γ0 (left), γig = γ0 (center), γig = 1.5γ0 (right)

(b) χ = 60◦ with γig = 0.5γ0 (left), γig = γ0 (center), γig = 1.5γ0 (right)

(c) χ = 30◦ with γig = 0.5γ0 (left), γig = γ0 (center), γig = 1.5γ0 (right)

(d) χ = 0◦ with γig = 0.5γ0 (left), γig = γ0 (center), γig = 1.5γ0 (right)

Figure 3.13: Effect of grain boundary on crack propagation
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is an artifact of the global energy minimization.

A similar analysis was conducted in [61], where a phase-field model was used to

analyze intergranular and transgranular crack propagation in ZrB2 bicrystal systems.

It was observed that the crack path deviates from its initial trajectory before its

incidence on the grain boundary. This behavior was more prominent for weaker grain

boundaries. These observations are similar to the ones made in this work; however,

the length-scale of these deviations is far smaller in the phase-field study.

3.4.2.2 Effect of Macroscopic length scale

The macroscopic length scale is defined based on the choice of the parameter r. A

smaller choice of r implies a smaller macroscopic crack. If this parameter is chosen to

represent a sub-grain length scale, then the estimated crack is expected to be closer

to the corresponding homogeneous medium case. In contrast, if a larger value of r

is chosen, then the predicted crack path will depend on the microstructure’s spatial

distribution. A thin foil specimen of polycrystalline material with cubic grains under

the Mode-I tensile test is analyzed as the test case. The surface energy is determined

by Eq (3.10) with parameters: γ0 = 1J/mm2 and δ = 2. The intergranular surface

energy density is taken as γig = 1J/mm2, and the thickness of the specimen is taken

as 1mm. The crack path is estimated for 3 different values of r and the results are

presented in Fig3.14. A prominently transgranular fracture in the macroscopically

preferred direction is observed for the smallest value of r. As the value of r is in-

creased, the crack path converges towards a prominently intergranular fracture and

moves away from the macroscopically preferred direction. It should be pointed out

that this convergence is not guaranteed, for instance, in the specimens with large

spatial variations in the microstructure’s statistical features. For such cases, it is

recommended to tune the hyperparameter, r, using experimental studies.

72



r = 0.3× Image Size r = 0.4× Image Size r = 0.5× Image Size

Figure 3.14: Effect of r on crack path

3.4.2.3 Dynamic fracture

In previous examples, the value of σT was chosen such that the total energy of the

crack was almost zero (i.e., ε(Γ) → 0−). This was done to emulate quasistatic crack

growth conditions. In this section, the effect of the non-zero total energy of the crack

is studied.

The test case is a thin foil specimen of cubic material with the same energy parameters

as used in Section 3.4.2.2. The crack paths are predicted for three different values of

σT , including the critical value, representing the quasistatic case. The values of σT

and the resulting energies are presented in Table 3.3 and the predicted crack paths

are shown in Fig 3.15. It should be noted that the crack paths are dependent on

the microstructure. For this particular choice of microstructure, it can be observed

that: (1) The transgranular crack seems to follow the trace of [100] cleavage plane

as expected. (2) In the critical case, an intergranular fracture is dominant, and

the crack has a non-zero macroscopic angle. This macroscopic angle of the crack

decreases in magnitude with increasing σT . It is observed from Table 3.3 that the

total energy of the crack decreases with increasing tensile stress on the specimen.

However, the total surface energy of the fractured surface increases with tensile stress.

This result is expected as the increase in the energy release rate shifts the competition

of the microscopic surface energy and macroscopic energy release in favor of the latter
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energy.

Test - 1 (Quasistatic) Test - 2 Test - 3

Figure 3.15: Dynamic crack propagation in a polycrystalline material

Test - 1 Test - 2 Test - 3

(κ+1)aπ
8µγ0

σ2
T (J/mm) 2.8 10.0 20.0

Microscopic surface energy (J) 1.36 1.41 1.43

Macroscopic energy release (J) 1.36 4.97 9.97

Total Energy (J) 0.00 −3.56 −8.54

Table 3.3: Crack propagation angle in mixed-mode failure

The second point in the revised ME Criterion hypothesis states that the crack propa-

gation is possible in any loading condition, which satisfies ε(Γ) < 0. An elastodynamic

extension to Griffith’s fracture as presented in [84] showed that an equilibrium crack

in-plane strain mode - I failure with finite velocity (v) has an augmented energy release

rate (G̃) given as: G̃(v, α) = A(v)G(α). In the limiting case of quasistatic fracture,

the solution can be recovered from the finite velocity case as limv→0+ A(v)→ 1. Sim-

ilar results are available for Mode-II failure as well. This analysis qualitatively agrees

with the hypothesis of this work. Essentially, the cracked path in Mode-I dynamic

fracture is likely to follow the cracked path as determined by the macroscopic con-

ditions. Moreover, the crack velocity can be estimated by the ratio of macroscopic

energy release of the dynamic crack and the respective quasistatic case. Further
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investigation is needed to verify this claim quantitatively. However, the rarity of ex-

perimental and analytical studies for microscopic dynamic growth in a polycrystalline

material has prohibited the authors from doing so.

3.5 Conclusion

A graph-based approach is developed to predict the microscopic crack path during

brittle fracture in a polycrystalline material. The method is based on an energy min-

imization principle with the crack’s total energy as the cost. This approach naturally

allows intergranular and transgranular fractures. The implementation presented in

this work specializes in macroscopically isotropic materials; however, it can be easily

extended to the anisotropic case by considering the respective energy release rate.

One major drawback of this procedure is mesh-dependence as the crack is only al-

lowed to move along the mesh’s edges. The present work uses a mesh generated by

Delaunay triangulation of randomly sampled points. The final placement of edges is

dependent on the sampled random points. However, it is observed from numerical

simulations that the crack path from two different mesh has a minimal difference if

the mesh is fine enough.

The accuracy of the outlined method is verified against analytical results of quasistatic

fracture in homogeneous materials with different types of surface energy forms. In

the case of isotropic surface energy, it was observed that the crack path appears

to be radial with crack angles similar to those described by the ME-Criterion for

mixed-mode failure. In case a single cleavage direction is present, the crack path is

again radial and tends to follow the direction prescribed by a Geometric construction

method provided by [83]. In the case of multiple cleavage directions, a transition

from a smooth radial crack to a saw-tooth pattern is observed, as suggested by [83].

The effect of grain boundary energy is also studied, and the expected transition of

intergranular to transgranular fracture is observed when the surface energy of the
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grain boundary is increased. While studying the effect of the grain boundary’s inci-

dence angle, it was observed that the crack path might be affected by the boundary

ahead of the intergranular fracture. The reason for this effect is that when the inter-

granular surface energy is too low, then the global minimization of energy may lead

to sub-optimal choice locally in the transgranular region. Meanwhile, the fracture’s

overall energy is decreased due to the generation of a longer intergranular surface.

One contribution of this chapter is in developing this approach for fracture in thin foil

specimens by allowing the fractured surface to have a dihedral angle. This approach

allows computing the 2D surface energy from the 3D crystal in a natural way. The

simulations show that the cracked surface follows the cleavage plane’s trace, as seen

in many experimental studies. An unintended but favorable consequence of this for-

mulation is that it allows for dynamic fracture as well. Simulations show that cracks

with higher total energy tend to have a microscopic path which is macroscopically

favorable but microscopically sub-optimal. This effect qualitatively makes sense but

requires a rigorous verification with experimental or analytical studies.

The objective of this work is to introduce a graph-based procedure for estimating the

microscopic crack path. The modularity of this procedure allows many possible mod-

ifications to the formalism of the fracture criterion. For instance, the ME Criterion

used in this method is not suited for studying fracture due to compression. A possible

remedy to this problem is to use the S-criterion, which can be implemented by replac-

ing the energy release rate (G) with the negative of the strain energy density factor

as introduced by [74]. Another possible extension of this method is the crack path

prediction in ductile failure. In this case, the plastic strain energy can be included

by augmenting the surface energy as γ + γp, as defined in [85]. The performance of

these extensions will be addressed in subsequent works.
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CHAPTER IV

Graph Coloring Method for Modeling Evolving

Microstructures

Same materials with different microstructure may show vastly different corrosion re-

sistance, strength, ductility, and toughness. This characterization at the microscale is

usually done using the mean grain size and the grain size distribution. Consequently,

studying the evolution of this microstructure through different processes is of scien-

tific and engineering importance. Usually, the local energy at the grain boundaries

is higher than the grains’ corresponding bulk energies. This energy provides a ther-

modynamic driving force for the motion of the grain boundary. The motion of grain

boundaries decreases its surface area (or length in 2D), appearing as growth in a few

grains, and decay and consequent annihilation of other grains. As time increases, the

total number of grains decreases, and the average grain size increases.

Computational methods are employed to study this problem at multiple length scales.

At the atomistic level, methods like Density functional theory (DFT) and Molecular

dynamics (MD) allow the characterization of different energies. At the microscale,

computational approaches like the Monte Carlo Potts model, Surface Evolver, the

front-tracking method, vertex dynamics, phase field methods and cellular automata

use these energies to simulate the behavior of multiple grains. At this length scale, a

typical engineering problem involves studying the motion of thousands of grains in a
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representative volume element (RVE).

The normal velocity, v, of a grain boundary Γ between grain i and j, is often modelled

as the multiphase flow equation [86]:

v = α (γijκ+ (bi − bj)) (4.1)

where variable γij represents the surface energy density of Γ, κ is the curvature of

Γ and bi is the bulk energy density of the grain i. The positive scalar quantity,

α, can be regarded as the mobility which relates the driving force to the velocity of

grain boundary. At equilibrium (no motion of grains), this results in a supplementary

condition on the intersection of three grains, known as the triple point condition:

sin θ1

f23

=
sin θ2

f31

=
sin θ3

f12

(4.2)

Osher and Sethian [87] showed that this motion of grains with these velocities can be

modelled using an Energy minimization method. Many Level set approaches based

on this minimization have been employed since, for instance, [86]. These methods

are usually plagued by the problem CFL-dependent stability. In a recent work, Es-

tellers and coworker [88] developed a Level-set based approach that preserves distance

functions and removes this CFL-dependence. Energy-based labeling methods have

been formalized in [89] in the context of multiphase flow. These methods can be

understood in terms of Level-sets which are constant over domains rather than dis-

tance functions. These similarities allow borrowing ideas for level-set approaches in

developing labeling-based methods.

In this work, first, an energy minimization principle is developed, which emulates the

first-order dynamics of multiphase flow. Then, this function is modeled in a pairwise

energy framework. A critical aspect of this part is the estimation of the curve’s

lengths within the pairwise energy framework. This problem is especially challenging
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for pixel mesh where the technique of adding edges (as developed in Chapter II & III)

lead to high metrication error. For this purpose, the methodology developed by

[90] is followed. They borrow results from integral geometry to estimate the expected

length of curves based on the labels in the pairwise formulation on pixel meshes. This

work extends their methodology to Quadtree meshes, allowing simulation of higher

resolution images with a low computational cost. This framework is then generalized

to incorporate anisotropic grain-growth. The ideas developed here can be directly

extended to 3D microstructures, and the relevant changes to the framework are listed.

The idea of smoothening developed in Chapter II is extended to voxelated meshes.

This method is used to remove noise from 3D experimental images of microstructures.

4.1 Problem formulation

Before formulating the Energy minimizing problem, it is crucial to ensure that the

normal velocity defined in Eq (4.7) is enough to describe the grains’ motion. The

following theorem shows that the tangential velocities can be ignored under certain

conditions by reparameterizing the curve. This theorem first appeared in [91] and is

adapted in recent texts like [92]. The reader is referred to these works for proof.

Theorem IV.1. Consider the family of curves C(p, t) that solve the evolution rule,

dC/dt = u−→n|| + v−→n⊥ where −→n|| and −→n⊥ denote the tangential and normal components

of the curve. The variable p parameterizes the spatial location (eg, arc-length) on the

curve and t denotes the time parameter. If v does not depend on the parameterization

of the curve (v is thus called an ”intrinsic” or ”geometric” quantity), the evolution

can be converted into the solution of dC/dt = v−→n⊥, by a change of parameterization.

Remark IV.2. It is clear that the velocity described in Eq (4.7) is in terms of intrinsic

parameters, and therefore, Theorem IV.1 applies to this case.

With this property in place, the main idea behind the energy minimization approach
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is presented next in the form of a theorem (proof in Appendix A). The theorem

investigates a single grain’s motion, represented by the region, Ω, inside a domain,

D. This domain is treated as another grain with some bulk energy.

Theorem IV.3. Consider, D ⊆ R2 where D is a fixed region. And a open set

Ω ⊆ D with smooth boundary, Γ = ∂Ω. Then for any Ω, with Ω 6= φ or D, to be the

extremizer of functional:

F (Ω) = b1 Area(Ω) + b0 Area(D − Ω) + γ length(Γ)

following condition is satisfied on the boundary, Γ, in the interior of domain D:

γκ+ b1 − b0 = 0 (4.3)

Moreover, in the absence of any fixed/Dirichlet boundary conditions, Γ makes perpen-

dicular intersections with ∂D.

Remark IV.4. It can be verified from the proof that the LHS of the Eq (4.3) is the

magnitude of the gradient (upto scaling) of F (Ω) and the direction of steepest descent

is normal to the boundary Γ.

dΓ

dt
∝ (γκ+ b1 − b0)−→n⊥

Remark IV.5. If γ < 0, then the creation of more Γ will lower the energy. Thus the

existence of a sensible solution requires that γ > 0.

Remark IV.6. A multi-label generalization of this case is presented in [86].

The Global minimization of the functional F (Ω) results in the following solution:

Ω = φ if b1 > b0
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Ω = D if b1 < b0

In either case, there is no Γ and the content of the Theorem IV.3 is identically true but

moot. The phases should evolve, making small moves in each time step. This intuition

conforms with annealing’s physical process, where the resulting low-temperature so-

lution is a polycrystalline solid with suboptimal energy (local minimum). These local

moves can be modeled by adding a regularization term to the functional F , penalizing

large grain boundary motions between time steps. This term is discussed in the next

section.

4.1.1 Temporal evolution: First order dynamics

The region Ω, as used in Theorem IV.3 can be equivalently identified using it’s bound-

ary, Γ. The first order dynamics refers to the following evolution of the boundary:

dΓ

dt
= v−→n (4.4)

where v denotes the normal velocity and −→n denotes the unit normal at any point on

the curve. This relation is same (upto proportionality) as the motion of boundary

along the direction of steepest descent as suggested in Remark IV.4.

The standard L2 measure for change in boundary is defined as follows where ’s’ is

some arc-length parameter:

∣∣∣∣∣∣∣∣dΓ

dt

∣∣∣∣∣∣∣∣2 =

∫
Γ

|vn|2ds ≡
〈
dΓ

dt
,
dΓ

dt

〉

Remark IV.7. The last equivalence shows that the norm is induced by the Euclidean

inner product, 〈., .〉

This norm is used to approximate a distance function between two contours. Consider

a smooth curve, Γ0, where each point is displaced as dΓ = vndt. The point-wise
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position of new curve is given as, Γ(s) = Γ0(s) + dΓ(s) where s is the arc-length

parameterization of Γ0. The distance between Γ0 and Γ can be estimated using

following relation:

dist(Γ,Γ0) ≈ ||dΓ||2 =

∫
Γ0

(Γ(s)− Γ0(s))2ds

Remark IV.8. The function dist(Γ,Γ0) is well defined in the case when both represents

smooth closed curves. It is easy to see that if Γ0 is smooth and velocities are smoothly

varying, then the closed curve evolves into closed curves (illustrated in Fig 4.1(a)). In

case of open curves, this property may not always be true. For instance, in Fig 4.1(b),

if each point on Γ0 (black curve) move in the perpendicular direction to Γ0, then the

curve can evolve into the green curve but not the red curve. Therefore, this function

does not tell the distance between the red and the black curve. Moreover, dist(., .) is

not a metric as this relation is not symmetric i.e. dist(Γ,Γ0) 6= dist(Γ0,Γ). However, it

has some important properties like dist(Γ,Γ0) ≥ 0 and dist(Γ,Γ0) = 0 ⇐⇒ Γ = Γ0.

It is useful to manipulate dist(., .) into the following form:

dist(Γ,Γ0) ≈ 2

∫
Γ0

 |Γ(s)−Γ0(s)|∫
0

pdp

 ds (4.5)

where variable p denotes the perpendicular distance from the curve Γ0. This local

coordinate system is illustrated in Fig 4.1(c). Later, it will be made clear that this

form is better suited for implementation in the Pairwise formulation.

With these definitions in place, following theorem (c.f. [89], proof in Appendix A) can

now be used to devise a functional minimization form for simulating the first order

dynamics of the mutiphase flow.

82



(a) Closed curve (b) Open curve (c) Local coordinates

Figure 4.1: Illustration of dist(Γ,Γ0) function where the initial curve Γ0 evolves to Γ

Theorem IV.9. Consider the following minimizer

Γt+∆t = arg min
Γ

(
αF (Γ) +

dist(Γ,Γt)

2∆t

)
(4.6)

where Γ and Γt are closed curves and F (Γ) ≡ F (Ω) with Ω denoting the interior

region of the curve. It has following property

Γt+∆t = Γt + (v∆t)−→n , v = α (γκ+ (b1 − b0)) (4.7)

Remark IV.10. It can be easily observed that in the limit of ∆t → 0, Eq (4.7)

represents the first order dynamics, Eq (4.4).

Pairwise formulation of A pairwise formulation of the functional described in Eq (4.6),

it is crucial to encode boundary lengths. In the context of random meshes (Chapters

II and IV), this was done simply by summing all the individual edges of partitions.

Adopting this process as it is can introduce a lot more error in pixelated meshes. It is

easy to see that this method estimates the L1-distance between any two points on the

image, which severely overestimates the required L2-distance. Therefore, a different

approach is taken to approximate the length of the curve accurately. This method is

developed in the next section.

83



4.2 Estimation of Length

The length of a curve can be approximated using concepts from Integral geometry,

specifically, Cauchy-Crofton relations. A formal discussion of these relations is out

of this work’s scope. The readers are referred to [93] for a complete and rigorous

introduction to this topic. This work will adopt a much more applied outlook.

The main idea that is pursued here is that given a curve, and a set of lines, the

total length of the curve is proportional to the number of intersections it makes with

the lines (illustrated in Fig 4.2(a)) The following theorem (for proof refer to [94])

establishes this intuition as equality.

Theorem IV.11 (Cauchy-Crofton Formula). Let C be a regular plane curve with

length, `. The measure of the set of straight lines (counted with multiplicities) which

meets C is equal to 2`.

This theorem will be the basis of the method developed later in the section. However,

before going into this theorem’s applications, it is necessary to define a measure on

the set of lines. Consider a straight line L in the plane R2 determined by its normal

parameters ρ and φ. In this parameterization, each line is described by a point in

Ξ = {(ρ, φ) : ρ ≥ 0, φ ∈ [0, 2π]}. This parameterization is illustrated in Fig 4.2.

The Lebesque measure for a set of lines K ⊆ Ξ is defined as, µ(K) =
∫
K
dρdφ. This

measure is, in fact, the only measure that is invariant under rigid motions of lines

([94]).

The Cauchy-Crofton formula establishes a connection between Euclidean length |C|

of any rectifiable curve |C| in R2 and a measure of a set of lines intersecting it.

2|C|ε =

∫
nc(L)dµ(L) (4.8)

Function nc(L) specifies a number of times any given line L intersects (see Fig 4.2).
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The next step is to adopt this theory for meshed structures. The main ideas of this

approach are developed in [90]. The authors developed a pairwise energy formulation

that approximates the perimeter of clusters. In terms of the Multiway-Cut energy

(see Definition I.9), they prescribe interaction strength wi such that |C| = E(S)

(using Eq (1.6)). This procedure’s motivation is that it is easy to count intersections,

nc(L), in the Multiway Cut framework. It can be observed that for a given choice of

labels, the cardinality of the cut-set, C ′, i.e., set of edges with different node labels

can be evaluated as:

|C ′| =
NC∑
i=1

(
1− δsπ(i,1),sπ(i,2)

)

Therefore the ingenuity of the method proposed in [90] is that they relate the weights,

wi, to µ. This method is described next; however, the final weights suggested here

are slightly different from the original work. As will be made clear later in the text,

this change is made to formulate parameters with symmetric edge weights and is a

consequence of the finite difference scheme chosen here.

(a) (b) (c)

Figure 4.2: (a) Illustration for Cauchy crofton relations: length(Γ) ∝ number of
intersections with lines, (b) Parameterization of a line, L, in terms of ρ and φ, and
(c) Set, Ξ, of all lines in R2 represented in the (ρ, φ)-coordinates
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4.2.1 Embedding graphs in Regular 2D grids

Every pairwise formulation starts by defining a Graph, G(V , C). Each pixel in the 2D

regular mesh is treated as a vertex of the graph. Consequently, each vertex of the

graph can be indexed as its respective (i, j) position on the grid. The connections

between vertices are specified based on the approach described next.

It is desirable to have the following three properties for the connections :

1. Connections of each vertex are locally identical.

2. Connections describe a sparse graph structure.

3. The set of all connections can be used to describe set of all lines.

The first point is addressed by defining connections using a stencil. The idea is that

if there is a connection between vertices, v(0,0) and v(a,b), then any other vertex, v(i,j)

is connected with v(i+a,j+b). The readers should be aware of the slight sloppiness in

this argument as it not necessary for v(i+a,j+b) to exist for all (i, j). In non-periodic

images, such connections are simply ignored. While in the case of periodic images,

if v(i+a,j+b) goes out of the domain then a connection to the respective periodic node

is made. For the sake of discussion, it is assumed that there is a vertex v(i,j) for

each ordered pair (i, j) of integers. Under the above stated simplification, a stencil

is chosen as a set of vectors, NR = {−→e i ≡ (ai, bi) : 1 ≤ i ≤ k(R)}. Here R defines a

strategy and k(R) is the number of connections in a given stencil. Consequently, this

stencil defines connections between vertex, v(i,j) and following vertices:

{v(i+aα,j+bα)|(aα, bα) ∈ NR}

The second point in the desirable properties can be addressed by choosing a stencil

that contains vectors of small length. This allows connections only between vertices

that are relatively closer to each other. It can be achieved by adopting a policy of
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only allowing stencil’s vectors with length smaller than a prescribed value. For nota-

tional convenience, from here on, R as in NR, will denote the maximum length of the

vectors contained in NR i.e. if (a, b) ∈ NR =⇒ a2 + b2 ≤ R2.

Finally, the third requirement is addressed by adopting the following two policies for

the stencil: (i) if −→e i,−→e j ∈ NR then −→e i and −→e j are not parallel i.e. aibj 6= ajbi (ii)

if (a, b) ∈ NR then |a| and |b| are relative primes. Therefore, any line, L, passing

through origin with a rational slope, p/q where p and q are relative primes, can be

written as a union of following connections:

{(v(iq,ip), v(iq+q,ip+p))|i ∈ Integers}

The above mentioned policies avoid overlap of connections in the construction of

a line. A consequence of these conditions is that if −→e k ∈ NR then −−→e k 6∈ NR.

Without loss of generality, the elements of NR are chosen from 1st and 2nd quadrant.

Moreover, the set NR is ordered based on the angle, ϕk, of each vector, −→e k from the

horizontal axis. Examples of stencils that follow, these conditions are given below:

N1 = {(0, 1), (1, 0)}

N√2 = {(0, 1), (1, 1), (1, 0), (−1, 1)}

N√5 = {(0, 1), (2, 1), (1, 1), (1, 2), (1, 0), (−1, 2), (−1, 1), (−2, 1)}

N√10 = {(0, 1), (3, 1), (2, 1), (1, 1), (1, 2), (1, 3), (1, 0), (−1, 3), (−1, 2), (−1, 1),

(−2, 1), (−3, 1)}

N√13 = {(0, 1), (3, 1), (3, 2), (2, 1), (1, 1), (1, 2), (2, 3), (1, 3), (1, 0), (−1, 3), (−2, 3),

(−1, 2), (−1, 1), (−2, 1), (−3, 2), (−3, 1)}

It can be noted that a consequence of the conditions imposed on NR is that if R < R′,
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Figure 4.3: Connections in a stencil. The red region denotes the stencil, N1. The
stencil, N√2 is constructed by adding connections in the green region to N1. The
neighborhood, N√5 is constructed by adding the nodes in the blue region to the
neighborhood, N√2.

then NR ⊆ NR′ . The connections in the first three stencils are shown in Fig 4.3.

4.2.2 Numerical approximation to Cauchy-Crofton relation

First, it is essential to establish a relationship between the space of all lines and the

set of all edges of the graph. In the previous section, a line, L, passing through

the origin and with rational slope was constructed using a set of graph connections.

Next, the set of all lines parallel to this line that can be represented on the grid are

considered. The next proposition reveals more information about this set of lines.

Proposition IV.12. Consider the set of all lines with rational slope p/q (p and q

are relative prime) that pass through atleast one grid point (i.e a point (a, b) ∈ I2).

These lines are regularly placed with following distance between two nearest lines:

∆% =
1√

p2 + q2
(4.9)

Remark IV.13. If the grid spacing is δ instead of the assumed value of 1, then the
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above relation can be modified as

∆% =
δ√

p2 + q2

All lines that are representable by the edges of the graph can now be described as a

element, (%, ϕ) ∈ ΞG where,

ΞG =

{(
k√

a2 + b2
, ϕ

)∣∣∣∣ (a, b) ∈ NR, tan(φ) = a/b ∈ [0, π), k ∈ I
}

(4.10)

Remark IV.14. This representation does not adhere to the one used for describing

the set of all lines Ξ in the Cauchy-Crofton relations. The distance parameter was

restricted to the non-negative reals in the initial description. However, it is allowed

to take negative values in the above notation.

This issue is resolved by adopting a variation of the latter notation, which is better

suited for the numerical arguments that are being presented next. More specifically,

any line L is now represented as an ordered pair (%, ϕ) ∈ Ξ′ with

Ξ′ = {(%, ϕ)| % ∈ R, ϕ ∈ [ω0, π + ω0)} (4.11)

The reason for the arbitrary appearance of the variable, ω0, will be made clear later on.

Nevertheless, this change is summarized as: “The slope, m, of the line is measured as

arctanm ∈ [ω0 and π+ω0). The line’s distance from the origin is signed, and positive

in the direction along the vector with angle π/2 + arctanm (chosen arbitrarily).”

Remark IV.15. The Cauchy-Crofton relations in this notation can now be reformalized

as:

|C| = 1

2

∫
ncdµ =

1

2

π+ω0∫
ω0

∞∫
−∞

nc(%, ϕ)d%dϕ (4.12)
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The numerical estimation of this integral is carried out by discretizing the set, Ξ′,

using a grid. This is achieved by first discretizing the space Ξ′ with horizontal strips

with with centers at 0 = ϕ1 < ϕ2 < . . . < ϕNR < π. The ϕ-axis is divided into

regions, {[ωi−1, ωi)}i∈{1,...|N |R} with ω|N |R = π + ω0. The values of ωi are chosen as

the angle bisector of φi and φi+1. This relation is formalized as follows:

ωi =



ϕ|NR|−π
2

if i = 0

ϕi+1+ϕi
2

if 1 ≤ i ≤ |NR| − 1

ϕ|NR|+π

2
if i = |NR|

(4.13)

The size of each region containing line with angle φi, denoted as ∆ϕi, is estimated

as:

∆ϕi = ωi − ωi−1 =



π+ϕ1+ϕ2−ϕ|NR |
2

if i = 1

ϕi+1−ϕi−1

2
if 2 ≤ i ≤ |NR| − 1

π−ϕ|NR|−1

2
if i = |NR|

(4.14)

Next, the kth strip is further discretized into uniformly spaced elements of length,

∆%k = δ/||ek|| ≡ δ/
√
a2
k + b2

k. Thus each element of ΞG ⊆ Ξ′ is treated as a node in

the discretized space of Ξ′. The Cauchy-Crofton relation in this discrete space can

be approximated as the following summation:

|C| ≈ 1

2

|NR|∑
k=1

∑
j∈I

nc(%j, ϕk)∆%k∆ϕk

where ∆%k∆ϕk is the area of the element of the grid corresponding to the lines in the

direction, −→e k. And, nc(%j, ϕk) is the number of intersection that a curve makes with

the line L(%j, ϕk). Since a stencil is used to define these lines and parallel lines are

given the same weight, wk, the dependence on %j can be dropped. Consequently, the
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length can be written in terms of nc(ϕk) =
∑

j∈I nc(%j, ϕk) (i.e. intersections that the

curve makes with a family of lines with slope ϕk) as:

|C| ≈
nG∑
k=1

nc(ϕk)
δ∆ϕi
2||ek||

In the familiar Multiway cut framework, this is equivalent to choosing weight wk as:

wk =
δ∆ϕi
2||ek||

(4.15)

The computation of flows with Pixel-meshes can be found in [89]. However, some

microstructures have large grains, and the grain boundary motion is often restricted

to the peripheral region of these grains. This feature can be utilized to simulate

the problem in a smaller graph, where the deep interior of any grain can be treated

as a single node that requires higher energy to change labels. For this reason, a

Quadtree-based implementation of this theory is developed in the next section.

4.3 Computation with Quadtree structure

Quadtree structures are often used in image processing for reducing the size of an

image while at the same time capturing its essential features. They operate on the

idea that if many pixels in a neighborhood have similar features, they can be clustered

together and saved as a single node. In the context of the microstructure image, only

the pixels near the grain boundary have contrasting features. Therefore, the pixels

that are further from the grain boundary can be clustered together and treated as a

single node in the embedded graph. See Fig 4.4(b) for a comparison of a circular grain

represented using a Pixelated and Quadtree mesh with a similar number of nodes.

However, the motivation here is not the compression of data. The graph-labeling
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Figure 4.4: (a) Illustration shows the relationship of a pixel in parent layer and its
children (b) Comparison of two circular grains represented using Pixel Mesh and
Quadtree mesh with similar number of active nodes. The pixelated mesh has a
discretization of 38 × 38 while the Quadtree mesh has 4 layers with the initial layer
of size 10× 10

procedure is a time-consuming step, and the capability to embed large problems in

smaller graphs gives a tremendous numerical advantage.

The structure of Quadtree can be thought of as a layer of refinement on a pixelated

mesh. Starting the coarsest layer on top (of discretization size Nd × Nd i.e. each

direction has Nd pixels), each pixel is split into 4 pixels (2× 2 grid) as illustrated in

Fig 4.4. Thus the second layer has a total of 4N2
d pixels. This procedure of adding

children to each pixel is repeated Np − 1 times where Np is the user-defined number

of pixelated layers. The pixels in the last layer, also known as the leaves, have the

smallest size. The size of this smallest pixel dictates the resolution of the image.

For instance, in Fig 4.4(b), even though Quadtree mesh has fewer nodes than the

pixelated mesh of size 38× 38, it offers the resolution similar to a pixel mesh of size

64× 64. Next, the minimization problem in these two meshes is formalized in terms

of pairwise energy.
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4.3.1 Pairwise formulation for pixel mesh

The implementation of multiphase growth on pixelated-mesh can be equivalently

posed in term of Eq (1.3) as:

U(si = `) = δ2fl +
2δ2

∆t
min
{j|sj=`}

dij

V (si, sj) =

0 si = sj

1 si 6= sj

(4.16)

where ` represents some index of the grain with fl denoting its bulk energy density.

The second term in U encodes the regularisation term. dij, refers to the L2-distance

between nodes (pixels) i and j. The minimization step, min{j|sj=`} dij gives the dis-

tance between pixel i and the closest cluster with label `. This minimum approximates

the value of p described in Eq (4.5). One can also observe that if the node i is inside

a cluster of label `, then the regularization term evaluates to zero, this may seem

to conflict with the definition of dist(., .) function, however, the total regularization

evaluated as sum over all labels is still positive so there is no contradiction. The

term V (si, sj) is the usual Multiway cut type of energy. The weights Jk in Eq (1.3)

are decided using the stencil. It is evident that only the field term, U(`), need to be

updated in each iteration as the regularization needs to be updated.

4.3.2 Pairwise formulation for Quadtree mesh

The quadtree structure is such that any point in the domain belongs to exactly

one pixel. Depending on the layer it belongs to, this pixel may have a different

size. Therefore, the pairwise cost parameters described in Eq (4.16) are valid for

Quadtree mesh as well with appropriate selection of Pixel size, δ. The main challenge

in implementing this procedure in Quadtree mesh is that it does not preserve the

uniform structure of pixel mesh, and hence the stencils cannot be employed to write
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the pairwise energy, i.e., the parameter Jk cannot be determined in the manner it

was done in the case of Pixel mesh. However, each layer’s structure is uniform,

and the interaction weights of pixels within the same layer can be easily computed

using the Crofton-relations for pixel mesh using the appropriate pixel size. Therefore,

only the connection weights between neighbors belonging to different layers need

to be modeled. Choosing a coarser pixel enforces that each of its children’s label

changes simultaneously to the same value. Thus an intuitive way to model the edge

weights between a smaller and larger pixel is by summing all the connection weights

between the smaller pixel and the larger pixel’s descendants with the same size as the

smaller pixel. In a slightly more formal tone, consider the nodes vli and vmj where the

superscript defines the layer number, and subscripts denote the index of the node.

Without loss of generality, assuming l < m i.e. Layer-l is coarser than Layer-m, the

weight, wij, between vli and vmj can be estimated as:

wij =
∑

vmk ∈Descendants(vli)

wkj

Unlike the usual Quadtree method where a pixel is split when it contains a boundary

(Γ), in this case, the pixel is split when one of its neighbors contains a boundary.

This neighborhood can be decided by looking at pixels that lie within a ball of a

prescribed radius. Choosing a larger ball result in a less efficient quadtree structure.

However, choosing a smaller ball can induce more error in length estimation as the

neighborhood’s resolution defines the discretization for the Crofton relation. The

pseudocodes and recommended data structure for implementing this problem are

presented in Appendix B.3.
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Figure 4.5: Simulation results for a pill shaped grain.

4.4 Simultation Results

As a first test case, simulation of a pill-shaped grain is considered (see Fig 4.5). The

problem’s setup is similar to the one used in Theorem IV.3 with no bulk energies.

It is observed that the grain first reduces in length, and then once it achieves a

spherical shape, it starts shrinking. This behavior is expected in this problem. It is

also observed that the surface energy (also the total energy) continuously decreases,

as is required.

In the next case, a 4-point junction of grains is considered (see Fig 4.6). It is known

that these points are not stable, as is evident through the simulation. The initial

junction splits into two triple-point junctions. Moreover, the junctions form approxi-

mately equal 120◦ angles between grain boundaries. This observation follows from the

triple point junction’s analytical solution given in Eq (4.2) with equal surface ener-

gies. Moreover, it can also be seen that the grain boundaries make a vertical intercept

to the domain. This result is expected for a non-periodic domain, as suggested in

Theorem IV.3.

Finally, a simulation of periodic microstructure is considered in Fig 4.7. As expected,

the smaller grains are annihilated as time progresses. Meanwhile, larger grains get
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Figure 4.6: A 4-point junction splitting into 2 3-point junctions. All grains have no
bulk energy density and surface energy between each pair of grain is also same.

Figure 4.7: simulation of a polycrystalline microstructure

bigger. The condition for perpendicular intercept to the boundary is not valid here

because of the periodicity.

4.5 Extensions

The method presented so far only allows growth laws represented as Eq (4.1). How-

ever, the framework developed here allows for much more general evolution laws.

For instance, spatial variations in the surface energy γ can be directly modeled as

suggested in [92, 89]. In this study, the first extension considers the case when sur-

face energies are directionally-dependent or anisotropic. Such surface energies can be

computed by manipulating the metric used to estimate the curve’s length. Next, the

ideas are extended to 3D voxelated structures. In this case, surface area minimization

leads to mean curvature flow. This idea is used to develop a physics-inspired method
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for denoising experimental microstructure images.

4.5.1 Modelling anisotropic surface energies for non-equiaxed microstruc-

ture

In this section, the surface energy is treated as a function of the surface normal i.e.

γ ≡ γ(−→n ). This better encapsulates the physics of crystal growth where energies

are directionally-dependent. The minimization of the total energy (sum of bulk and

surface energy) results in a new growth law. This growth law can evaluated using the

following theorem (proof in Appendix A):

Theorem IV.16. In the setup of Theorem IV.3, consider the following functional:

F (Ω) = f1 Area(Ω) + f0 Area(D − Ω) +

∫
Γ

γ(−→n (s))ds

where γ(−→n ) is the surface energy in the direction of unit normal, −→n . The extremizer

satisfies the following condition on the boundary, Γ:

∇.
(
γ−→n + (∇γ.−→t )

−→
t
)

+ f1 − f0 = 0 (4.17)

where −→n and
−→
t are normal and tangents of Γ. Moreover, in the absence of any

fixed/Dirichlet boundary conditions, Γ intersects ∂D at an non-zero angle such that

following condition holds true:

γ−→n .−→n ∂D + (∇γ.−→t )
−→
t .−→n ∂D = 0

Remark IV.17. It is an easy exercise to check that choosing γ as a constant simpli-

fies the expressions to the ones in Theorem IV.3. Moreover, the regularization for

temporal evolution is carried out in the same way as before in Theorem IV.9.

The evaluation of surface energy is still carried out using the Crofton-relations. This
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can be achieved by choosing a metric space,M such that the following relation holds

for all possible boundaries Γ

∫
Γ

γ(−→n (s))ds ≡ |Γ|M

where |C|M denotes the length of the boundary in the given metric. [90] considered

a special case where this length is measured using a Riemannian metric as follows:

|C|M =

∫
Γ

√−→
t T .D.

−→
t ds (4.18)

where a positive definite matrix D specifies the local Riemannian metric at a given

point in the image and
−→
t is a unit tangent vector to the contour. In this case, the

Crofton formula (Eq (4.8)) is estimated as [90]:

2|C|M =

∫
detD

2 (uTLDuL)
3/2
dµ(L) (4.19)

where uL is the unit vector1 in the direction of line L. Moreover, the weights of the

stencils are estimated as:

wk =
eTk ek detD

2(eTkDek)
3/2
δ∆φi (4.20)

It should be remarked that arbitrary surface energy functions cannot be modeled in

this manner. It was shown by [95], that the most general case that can be considered

in this framework is when |C|M is measured with respect to a subclass of Finsler

metric. Interested readers are referred to their work for further discussion on this

topic.

1The reference to unit tangent is made in the Euclidean metric and not in the Riemannian metric
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Figure 4.8: Simulation of an initially circular grain with surface energy estimated
using Eq (4.18) with D11 = D22 = 1, D12 = D21 = 0.75.

Figure 4.9: Initial and final image of a microstructure estimated using Eq (4.18) with
D11 = D22 = 2.5, D12 = D21 = −1.5.
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4.5.2 Modelling 3D grains for denoising experimental Microstructure im-

age

Crofton formula can also be extended to estimate lengths of cures and surface area of

hypersurfaces in higher dimensions. These relations can be found in the senior thesis

of Sweeney [96] along with the proofs. A particularly useful corollary is for estimating

the surface area of surfaces in 3D. In this case, the Crofton is modified as follows:

Theorem IV.18 (3D Crofton). Let M be a 2D surface with an area, A. The measure

of the set of straight lines (counted with multiplicities) which meets M is equal to

π2A/2.

The numerical version of this relation can be formalized by following the same strategy

to construct stencils, NR in 3D. The weights of the connections are estimated as:

wk =
δ2

π||ek||
∆φk

Here, the ∆φk represents the solid angle in contrast to the 2D case. It is evaluated

using the strategy proposed in [97, 98]. Each vector−→e k is projected onto a unit sphere.

The intersecting points are then used as a germ/grain for the Voronoi tessellation of

the sphere. The surface area of each spherical domain is then used as the weight for

the corresponding direction.

It can be shown that the first variation of the surface area results in Euler-Lagrange

equations corresponding H−→n = 0 where H is the mean curvature given in terms of

principal curvatures (maximum and minimum of the normal curvature a given point)

as: H = 0.5(κ1 + κ2). The proof of this result can be found in [92]. This property

is useful in denoising 3D microstructure experimental data. These data are usually

provided in voxelated images, with each voxel representing a grain identifier. Taking

a similar approach as in Chapter II, the Eq (2.1) is used with the weights described

by the Crofton relations based stencil. The results are presented in Fig 4.10, where
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the procedure shows to smoothen the data by relabeling the noisy voxels. Moreover,

using a larger stencil provides better results in terms of the curvature of grains.

(a) (b) (c)

Figure 4.10: Denoising 3D microstructure data as a graph labeling problem. (a) Noisy
raw data from experiments (b) Microstructure after smoothening procedure using N1

(c) Microstructure after smoothening procedure using N√6

4.6 Conclusion

An energy-based model is developed to simulate multiphase flow for studying mi-

crostructures evolution. This model is implemented in the pairwise energy form.

The interaction energy formalized in this chapter is the same as the one presented

in Chapter II. However, the embedded graph is non-planar. Thus this formulation

is computationally more intensive than the formulation of the surface on random

meshes, but at the same time, metrication errors are severely suppressed. In terms of

flexibility to use different surface energy functions, the random mesh has an advan-

tage over the pixelated mesh, limiting the surface energies that can be represented

using lengths in a particular class of metric spaces.

A significant contribution of this work is to extend this framework to Quadtree mesh.

The evolution of microstructures in both periodic and non-periodic domains are ex-

hibited using examples. It is shown that the methodology captures the necessary

physics of microstructure evolution in terms of annihilation and merger of grains.
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Moreover, the equilibrated solution matches the analytical conditions at the triple-

point junctions. The evolution laws for anisotropic length metrics are identified and

are used to simulate non-equiaxed microstructures. The ideas can be extended to-

wards segmentation of 3D microstructures where unlabelled grains in experimental

images can be identified by minimizing data-cost and by using a regularization term

for the surface energy. This procedure can also be used to remove the noisy voxels

of images while preserving the overall data microstructure. Future work may include

inclusion of strain energy, in addition to bulk and interfacial energy, in the formu-

lation to model other material science problems such as growth and coarsening of

precipitates within a grain [99].

This work has identified a few areas where further research is required for improving

microstructure evolution models. In its present state, the surface energies that can be

represented in the pairwise formulation are restricted by corresponding length metrics

that can be modeled using Crofton relations. This restriction is a significant hurdle

in developing a complete simulation suite for microstructure evolution where grain

boundary energy is much more complicated. This work has also shown that metri-

cation errors can be suppressed using concepts from integral geometry. Currently,

there is no such framework for non-uniform meshes. Introducing such ideas, by pos-

sibly including higher-order connectivity in the graphs used in Chapter II and III can

remove the restriction of random mesh that was assumed in those cases.
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CHAPTER V

Graph Techniques for Solving Differential

Equations on a Quantum Annealer

In this work, the use of quantum annealer to solve differential equations is discussed.

This is done by recasting a finite element model in the form of an Ising Hamiltonian.

The discrete variables involved in the Ising model introduce complications when defin-

ing differential quantities, for instance, gradients involved in scientific computations of

solid and fluid mechanics. To address this issue, a graph coloring based methodology

is proposed which searches iteratively for solutions in a subspace of weak solutions

defined over a graph, hereafter called the ‘box algorithm.’ The box algorithm is

demonstrated by solving mechanics problems on the D-Wave quantum computer.

5.1 Introduction

While differential equations are ubiquitous in models of physical phenomena, the use

of quantum annealers for scientific computing in solid and fluid mechanics has not yet

been explored. Scientific computing mostly involves solving a linear system of equa-

tions Ax = b defined on a continuum domain discretized with finite elements. The ma-

trix A, generally being sparse, structured, and positive definite matrix obtained by as-

sembling element-level stiffness matrices. In the past, gate–based quantum computing
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algorithms have been devised to solve the system of linear equations using QLSA algo-

rithms (HHL algorithm [100]) and its variants [101, 102, 103, 104]. This algorithm, un-

like a classical solver, does not give a direct solution x but rather allows sampling from

the solution vector. Nevertheless, this has spawned several works in differential equa-

tion modeling on quantum computers ([105, 106, 107, 108, 109, 110, 111, 112, 113]).

The sampling task by itself requires solving Ax = b. In the classical setting, the com-

plexity scales with the size of the problem and goes as O(Nsk log(1/ε)) for conjugate

gradient method where N is the number of unknowns, k is the condition number, s

is the sparsity of A, and ε is the precision of the solution. On the other hand, the

QLSA [100] has a favorable running time of O(log(N)k2s2/ε) which scales logarith-

mically with the size of the problem. Quantum annealers are especially attractive for

scientific computing with the ability to scale up the simulations to a more significant

number of qubits. However, algorithms for the solution of differential equations have

not been devised yet on these systems[114].

The solution to Ax = b can be encoded in an equivalent minimization problem

min
(

1
2
xTAx− xT b

)
which contains field and interaction terms similar to an Ising

model. In a similar way, some differential equations admit to an energy minimization

formulation. In this work, the mapping of this energy to an Ising hamiltonian is

explored. It is found that the idea of finite elements can be used to develop Ising

Hamiltonians with sparse graphs, thus allowing embedding of larger problems on the

NISQ-era hardware. An illustration of this procedure is presented in Fig 5.1. A dis-

cretized version of the differential equation is solved using energy minimization on a

graph.

For the representation of a real-valued function, the qubits must encode a rational

number. However, the qubit encoding the Ising lattice point carries two discrete levels

(up/down spin) in the ground state. In classical computers, with similar binary (0/1)
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Figure 5.1: Illustration of procedure for solving differential equation

encoding, anywhere from 32 bits (float) to 80 bits (long double) of memory can be

used to encode more than 12 million high precision variables in 1 GB memory. In

contrast, currently available quantum annealers have a limited number of physical

qubits. This restriction makes the representation of solutions of double-precision

similar to a classical computer extremely expensive. In ([115, 116]), the problem of

minimizing ||Ax−b|| in the least-squares sense was posed by encoding physical qubits

to represent rational numbers using a radix 2 representation. This format requires a

significant number of physical qubits and connections to represent positive rational

numbers and an additional qubit to represent the sign of the number ([115]). In

comparison, the box algorithm searches within a small discrete set of up/down qubit

values with each element of the set mapped to a double-precision value, thereby

eliminating the need for additional qubits to achieve higher precision.

A self-adjoint form of a second-order differential equation is considered as the model

problem. The problem statement and the relevant mathematical details are presented

in Section 5.2. The Graph representation of the problem is formulated in Section 5.3.

The iterative procedure, referred to as ’Box algorithm,’ is presented in Section 5.4.

All procedures are accompanied by numerical examples for elucidation. This algo-

rithm is demonstrated by solving a truss mechanics problem on the D-Wave quantum

computer in Section 5.5. Finally, this method is generalized to the Beam bending

problem. It is shown that non-convexity in energy leads to incorrect solutions.
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5.2 Mathematical Preliminaries

A self-adjoint form of a second order differential equation on an interval (xl, xr) is

defined as,

−(p(x)u′(x))′ + q(x)u(x) = f(x) xl < x < xr (5.1)

Dirichlet boundary conditions are considered at both ends i.e. u(xl) = ul and u(xr) =

ur. Well-posedness of this problem requires p(x) ≥ pmin > 0 and q(x) ≥ qmin ≥ 0

Furthermore, for convenience, it is assumed that p, q ∈ C([xl, xr]) and f ∈ L2([xl, xr]).

These conditions are sufficient to show the existence of a unique solution to the weak

form ([117]).

5.2.1 Functional minimization

Motivated by the intractability of direct integration of the differential equation (5.1),

it is often convenient to employ functional minimization techniques. Calculus of

variations can be used to observe that the minimization of the functional (5.2) leads

to the strong form described in Eq (5.1).

Π [u] =

xr∫
xl

(
1

2
pu′2 +

1

2
qu2 − fu

)
dx (5.2)

Square integrability of u and its first derivative are required in this definition of

Π [u]. The implication is that the minimizing solution, u lies in the Sobolov space

H1([xl, xr]). A discrete problem is obtained by using a finite basis for the solution

defined in Eq (5.3), which satisfies the Dirichlet boundary conditions. The admissible

choices of a = (a0, a1, ..., aN) satisfy uN(xd) = ud where xd is a Dirichlet boundary

and ud is the prescribed value at that point. This approximation reduces the infinite-

dimensional functional minimization problem to finite dimensions. The approximated
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functional ΠN is entirely determined by the representation of u in the finite basis as

shown in Eq (5.4). It is worth observing that the choice of φi(x) is such that φi ∈

H1([xl, xr]) i.e. for any uN ∈ VN = span{φ1, φ2, ..., φN} ⊆ H1([xl, xr]). Additionally

the proper inclusion, Vi ⊆ Vi+1, guarantees convergence of the solution with increasing

N .

uN(x) =
N∑
i=0

aiφi(x) (5.3)

ΠN [a0, ..., ar, .., aN ] =

xr∫
xl

p

2

(
N∑
i=0

aiφ
′
i

)2

+
q

2

(
N∑
i=0

aiφi

)2

− f

(
N∑
i=0

aiφi

)
dx (5.4)

As the solution is completely determined by the variable a, the functional minimiza-

tion of Eq (5.4) is reformalized as Eq (5.5) where ab.a. refers to the coefficients of best

approximation of solution, uN , in the subspace VN

ab.a. = arg min
a

ΠN(a) (5.5)

5.2.2 Finite Element approximation

The finite element basis provides a popular choice of compactly supported shape

functions. For the purpose of simplicity, ‘tent/hat functions’ (defined in Eq (5.6))

are used in this work. The domain is split into N elements with N + 1 nodes.

The generalization to higher-order families of piecewise-continuous basis functions is

immediate but is omitted for brevity.

φi(x) =



0, x < xi−1,

(x− xi−1)/(xi − xi−1), xi−1 ≤ x < xi,

1− (x− xi)/(xi+1 − xi), xi ≤ x < xi+1,

0, x ≥ xi+1 .

(5.6)
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The usage of a compact basis further reduces the complexity by reducing the integra-

tion over the whole domain to a summation of integration over smaller elements. It

is shown in section 5.3 that this choice of shape functions leads to a relatively sparse

graph. It simplifies the computation by reducing the size of the graph optimization

problem. The simplified form of Π specialized for the hat-functions is presented in

Eq (5.7).

ΠN(a) =
N∑
i=1

a2
i−1

 xi∫
xi−1

p

2
φ′2i−1 +

q

2
φ2
i−1dx

+ a2
i

 xi∫
xi−1

p

2
φ′2i +

q

2
φ2
i dx


+ai−1ai

 xi∫
xi−1

pφ′i−1φ
′
i + qφi−1φidx

− ai−1

 xi∫
xi−1

fφi−1dx

− ai
 xi∫
xi−1

fφidx


(5.7)

This form of Π promotes modularity in computation and allows expressing the func-

tional as

ΠN =
N∑
i=1

Ai.Si (5.8)

where vectors Ai ≡ Ai(ai−1, ai) and Si ≡ Si(p, q, f) are defined for each element in

(5.9). The vector Si is independent of state a and is therefore only computed once in

the whole procedure.

Ai =
[
a2
i−1 , a2

i , ai−1ai , ai−1 , ai

]T
Si =

[ xi∫
xi−1

p

2
φ′2i−1 +

q

2
φ2
i−1dx ,

xi∫
xi−1

p

2
φ′2i +

q

2
φ2
i dx ,

xi∫
xi−1

pφ′i−1φ
′
i + qφi−1φidx , −

xi∫
xi−1

fφi−1dx ,

−
xi∫

xi−1

fφidx

]T
(5.9)
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Example

Consider the differential equation with boundary conditions u(0) = 0 and

u(1) = 1.

d2u

dx2
= 0 0 < x < 1

Functional:

Π[u] =
1

2

1∫
0

u′2dx

For simplicity, consider a grid with a uniform mesh of 2 elements and 3 nodes:

Using linear interpolants for the elements,

u(x) =


a0(1− 2x) + a1(2x) 0 < x ≤ 0.5

a1(2− 2x) + a2(2x− 1) 0.5 < x ≤ 1

The functional with the FE discretization:

ΠN(a) = (a0 − a1)2 + (a1 − a2)2

Modular representation of functional (ΠN = A1.S1 + A2.S2):

A1 =
[
a2

0 , a2
1 , a0a1 , a0 , a1

]T
A2 =

[
a2

1 , a2
2 , a1a2 , a1 , a2

]T
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S1 = S2 =
[
1 , 1 , −2 , 0 , 0

]T

5.3 Graph Coloring Problem

Quantum annealing methods are tailored to find the lowest energy states in an Ising

system defined in Eq (1.12). The Ising hamiltonian defines a binary graph coloring

problem with each vertex of graph or qubit labeled as +1 or −1. The value of

the qubits determine the free variable, in this case, a. The parameters Hi and Jij

are defined such that the Ising hamiltonian, for labeling representing the state, a,

corresponds to the functional ΠN(a). These problems, namely, the representation of

state and estimation of parameters, are addressed in this section.

5.3.1 Representation of State

Representation of a functional in terms of continuous variables is not feasible on quan-

tum architectures. Due to this limitation, the values of each ai (ith component of a)

are chosen from a finite set of values based on the labeling of qubits. The represen-

tation presented here permits 3 possible values of ai at each node. In particular, for

each node (indexed ‘i’), the state (ai) is exactly determined by the labeling of qubits

qi1, qi2 and qi3 with the ith node taking values in the set {vi1 , vi2 , vi3}. Eq (5.10) defines

a mapping (qi1, q
i
2, q

i
3)→ ai as tabulated in Table 5.1. It is observed that the mapping

results in ai ∈ {vi1 , vi2 , vi3} when two qubits are labeled −1 and one qubit is labeled

+1. Next, it is shown that the Ising parameters can be manipulated to make these

labelings energetically favourable, thereby eliminating the occurrence of undesirable

labels.

ai =
3∑
j=1

vij
qij + 1

2
(5.10)
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(qi1, q
i
2, q

i
3) ai

(1, 1, 1) vi1 + vi2 + vi3
(1, 1,−1) vi1 + vi2
(1,−1, 1) vi1 + vi3

(1,−1,−1) vi1
(−1, 1, 1) vi2 + vi3

(−1, 1,−1) vi2
(−1,−1, 1) vi3

(−1,−1,−1) 0

Table 5.1: The mapping from qubits to state ai at node

Example (Continued)

In general, the set {vi1 , vi2 , vi3} is different for each node. However, for sim-

plicity, consider the same set of admissible states for all three nodes given by

{vi1 , vi2 , vi3} ≡ {0, 0.5, 1}. Each node is defined by three qubits as follows:

The three qubits, each defining the solution at the first and last nodes, should

take up choices 1 and 3, respectively, due to boundary conditions. The choice

for the second node is to be solved.

5.3.2 Parameter Estimation

To promote modularity, the graph representation is decomposed into two component

subgraphs, namely, nodal graph and element graph. Each node and element of the

FE discretization is endowed with a node graph and element graph, respectively. This

allows refining the mesh by extending the graph.
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Figure 5.2: Connectivity of (a) nodal graph (b) element graph.

5.3.2.1 Nodal Graph

The nodal graph is given by a fully connected graph with three vertices representing

the three qubits of the FE node. The nodal graph ensures that the energy minimizing

states of the Ising hamiltonian corresponds to state a with favorable choice of ai ∈

{vi1 , vi2 , vi3} with equal probability. As mentioned earlier, the set of favorable labeling

of qubits at a node is given by {Q1, Q2, Q3} ≡ {(1,−1,−1), (−1, 1,−1), (−1,−1, 1)}.

Since each of the three labelings is equally likely in the absence of any functional

minimization, it is expected that the same value of the coupling strength (Ĵ) for each

connection and the field strength (H) for each node is used. A choice of Ĵ and H

that fulfill these conditions is presented in Fig 5.3. Here, all the field and interaction

terms for the nodal graph are given a value of one. The application of the Dirichlet

boundary condition is also made by augmenting the field strength of the nodal graph.

For example, by switching the field term H corresponding to the second qubit q2 of a

boundary node ‘b’ to -1 forces a lower value of the functional for the boundary node

state of (−1,+1,−1), which corresponds to the solution vb2 . This allows us to encode

the value at the boundary to be vb2 .

5.3.2.2 Element Graph

The element graph is used to make the energy of minimizing states of graph corre-

spond to the value of functional ΠN of the continuous problem. Each element graph

encodes the contribution of the respective element to the functional. Since the con-

tribution of each element is dependent on the values at the nodes of the element,
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Figure 5.3: Self interaction and site-site interaction parameters for nodal subgraph.

the element graph is constructed by connecting the vertices of neighboring nodes. In

particular, the site-site interaction in the nth element graph can be estimated as a

matrix, J̃n, where (J̃n)kl represents the coupling energy between qubits qik (kth qubit

of ith node) and qjl (lth qubit of jth node) with i, j being the nodes of nth element.

As shown in the previous section, the contribution of the nth element towards the

functional, based on the choice of a compact basis function, is evaluated as An.Sn.

The elements of the vector, An ≡ An(ai, aj) can therefore, take nine (3× 3) possible

values based on the values of (ai, aj). For a particular choice of labeling of qubit

the Ising energy of element graph is estimated as E =
∑3

k=1

∑3
l=1(J̃n)klq

i
kq
j
l . When

the labeling is chosen appropriately (each node has two ‘-1’ and one ‘+1’ label), this

energy equals to the value of functional for the corresponding state, a, as shown in Eq

(5.11). This relation can be used to estimate J̃n by solving a set of nine independent

linear equations presented. It is important observation that the independence of these

set of equations relies on the fact that for any node, vik 6= vil for k 6= l. Additionally,

the energy of the element graph breaks the symmetry between the states that min-

imize the energy of a nodal graph. However, the values of J̃n should be judiciously

scaled (uniformly along elements) such that the energy of unfavorable states remains

high.

3∑
k=1

3∑
l=1

(J̃n)klq
i
kq
j
l = An(ai, aj).Sn (5.11)
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Example (Continued)

A single element with two nodes admits to the following connectivity:

The estimated parameters reflect the contribution of element to the functional

for a given choice of labeling:

Sample 1:

In the above Figure, both nodes take up choice 1 (ai = aj = 0). The interaction

energy for qubits: E = J̃11 − J̃12 − J̃13 − J̃21 + J̃22 + J̃23 − J̃31 + J̃32 + J̃33 =

(ai − aj)2 = 0

Sample 2:

In the above Figure, node i takes up choice 1 (ai = 0), while node

j takes up choice 2 (aj = 0.5). The interaction energy for qubits:
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E = −J̃11 + J̃12 + J̃13 + J̃21 − J̃22 − J̃23 − J̃31 + J̃32 + J̃33 = (ai − aj)2 = 0.25

Collectively solving the equation for all 9 such possibilities (as shown in Eq

(5.11)).



+1 −1 −1 −1 +1 +1 −1 +1 +1

−1 +1 +1 +1 −1 −1 −1 +1 +1

−1 +1 +1 −1 +1 +1 +1 −1 −1

−1 +1 −1 +1 −1 +1 +1 −1 +1

+1 −1 +1 −1 +1 −1 +1 −1 +1

+1 −1 +1 +1 −1 +1 −1 +1 −1

−1 −1 +1 +1 +1 −1 +1 +1 −1

+1 +1 −1 −1 −1 +1 +1 +1 −1

+1 +1 −1 +1 +1 −1 −1 −1 +1





J̃n11

J̃n12

J̃n13

J̃n21

J̃n22

J̃n23

J̃n31

J̃n32

J̃n33



=



(vi1 − vj1)2

(vi2 − vj1)2

(vi3 − vj1)2

(vi1 − vj2)2

(vi2 − vj2)2

(vi3 − vj2)2

(vi1 − vj3)2

(vi2 − vj3)2

(vi3 − vj3)2



J̃1 = J̃2 =


0.1250 0.3750 0.3750

0.3750 0.5000 0.3750

0.3750 0.3750 0.1250


The above parameters will exactly reproduce the functional in the interaction

term. The boundary conditions are enforced, by setting self interaction term

for qubits q0
1, q2

3 to H = −1. This locks the state at the 1st boundary node

as a0 = v01 = 0 and at the 2nd boundary node as a2 = v23 = 1. Energy

minimization of the resulting Ising hamiltonian gives a1 = v12 = 0.5, which is

the exact solution for the discretized problem.

The process of the graphical representation of the discretized functional using the

nodal and element graphs is referred to as “Assembly”. Each node and element is
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endowed with a nodal and an element graph, respectively. The effective site-site

interaction energy is estimated by summing the nodal coupling strength, Ĵ , over

all nodes, and element coupling strength, J̃ , over all elements. Due to the nature of

discretization, N element graphs and N+1 nodal graphs are required for representing

an N -element discretization of the domain. The assembled graph, from here on, is

referred to as the logical graph. Connectivity of logical graphs for one-element and

four-element discretization is presented in Fig 5.4.

Two fundamental issues in this approach are addressed next using the box algorithm.

Firstly, the choices at a node {vi1 , vi2 , vi3} were set in stone during initialization. The

box algorithm makes this choice flexible. Secondly, as the number of nodes increase,

three choices are insufficient. The number of qubits needed at a node must increase

to make more choices available. Box algorithm, however, only requires three qubits

per node for any level of discretization.

Figure 5.4: Assembled graph for a domain discretized with (a) 1 element (b) 4 ele-
ments.

5.4 Box Algorithm

In this section, an iterative procedure is developed to minimize the functional, ΠN ,

using the graph coloring representation discussed in the previous section. For a par-

ticular choice of {vi1 , vi2 , vi3}, defined as Eq (5.12), the possible values of the state ai

at the ith node are specialized to the set {uci − r, uci , uci + r}, i.e.,

vij = uci + r(j − 2) (5.12)
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The quantities, uc = (uc0, u
c
2, ..., u

c
N) and r are hereafter referred to as box center and

the slack variable, respectively. The intention is to approximate functions using the

box center, while the slack variable provides a bound on this approximation. The

precise meaning of this bound is presented later in this section. A linear approxima-

tion of f(x) =
√
x using ten nodes is presented in Fig 5.5 for different box centers

and the slack variable (which can be interpreted as the box size). The function, f(x),

is approximated as uc at the nodes with linear interpolation in between the nodes.

The blue region describes the possible value of the interpolation if the value at any

node is perturbed within the range of ±r. In Fig 5.5(a), an exact approximation of

the function at the nodes is presented with a slack variable of 0.2. In (b), the same

approximation with a slack variable of 0.02 is presented. The same approximation is

given in the two cases, but the bound on nodal values of (b) is tighter than (a). In

part (c), the approximation is not exact; however, it lies within the bounds. In part

(d), the approximation is neither exact nor within the bound. In the context of the

vectorial representation of the coefficients, a, these bounds are represented as 3N − 1

points on the surface of a box, defined as, ||a − uc||∞ = r. An illustration for the

vectorial representation of a two nodes element is presented in Fig 5.6. The solution

is sampled from a 3× 3 grid in the a1 − a2 vector space.

In the discrete setting, the solution to the differential equation can be equivalently

reduced to minimization of a function of the form: aTMa where M is some positive

definite matrix. The vector a takes value in one of the 3N possibilities. The mini-

mizer (not necessarily unique) is given by Eq (5.13). The solution, amin, need not

coincide with the best approximation solution, ab.a. of the continuous problem. In the

illustration presented in Fig 5.6, the center is depicted as the solution (amin = uc),

the minimum is then contained within the elliptic region of the contour with amin

on the edge. Geometrically, this gives ||amin − ab.a|| ≤ d ≤
√

2r(1 + λmax/λmin)
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where λmax and λmin are the maximum and the minimum non–zero eigenvalues of

M , respectively. This suggests that as the box size decreases, the corresponding uc

approaches to the best approximation solution of u. This argument is extended to n

dimensions with the bound given in Eq (5.14).

amin = arg min
ai∈{uci−r,uci ,uci+r}

aTMa (5.13)

||amin − ab.a|| ≤ 2

(
1 + (n− 1)

λmax
λmin

)
r√
n

(5.14)

Figure 5.5: Approximation of
√
x function using boxed domain: (a) Exact fit with a

slack of 0.2 (Loose fit) (b) Exact fit with a slack of 0.02 (tight fit) (c) inexact fit but
bounded in a box size of 0.2 (d) inexact fit and unbounded by a slack of 0.2.
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Figure 5.6: An illustration of a two-node approximation in a1 − a2 vector space with
contours plot of the functional, Π2(a1, a2) and a representative box with center at uc

and a box size of r.

5.4.1 Iterative Procedure

In this section, the details of the iterative procedure are presented. It estimates

the solution of the discretized problem, amin, and updates the box center and slack

variable such that uC approaches the solution of the continuous problem (in the sense

of best approximation).

The necessary information required for defining the functional is stored in the vector

Si. It is computed once at the beginning of the procedure as the problem definition

stage. The procedure is initiated with a guessed solution of the vector, a, provided

as a box centered at uc. The boundary nodes with Dirichlet boundary conditions

are assigned the boundary value as the initial guess. The slack variable is initialized

with an arbitrary scalar value. A better initial guess for r is the one which bounds

the solution in the box defined by uc. Such initial guesses require fewer iterations in

comparison to arbitrary ones; however, starting with a good guess is not a necessary

condition for convergence. The Ising parameters, H, Ĵ and J̃ are estimated as dis-

cussed in section 5.3.

In this work, D-Wave’s 2000Q processor is used. This processor has a Chimera-

type structure with 2048 qubits, and 6016 couplers [118]. A direct solution of the

optimization problem by re-numeration of qubits is not possible as the assembled
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graph cannot be found in any subgraph of the physical graph, i.e., the processor.

Therefore, it is required that the logical graph is mapped onto the physical graph

via the process of embedding. This problem in itself is NP-hard and is not discussed

here for brevity. The reader is referred to [119] for a discussion on this topic. The

topology of the logical graph remains unchanged over the iterations. The search

for the embedding of a map is only conducted once, and in subsequent iterations,

the self-interaction and the site-site interaction parameters are updated for the same

embedding.

The use of three qubits per node allows the D-wave system to search for a minimum

over a space of 3N solution vectors in a single run. In each iteration, the box center is

translated to the energy minimizer, amin. This move is referred to as the translation

step. In the case where the minimizing state is found at the center, the box size

is reduced, and the search is continued with a smaller bound on the error. This

move is referred to as the contraction step. The complete procedure is presented in

Algorithm 10.

Example (Continued)

In the box algorithm, the set {vi1 , vi2 , vi3} is constructed using the box center

and the slack variable.

With the application of the boundary condition, the favourable labeling of

qubits give following three choices in the solution (I, II, III).
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The values of uc1 and r are initialized arbitrarily. One of the solutions among

I, II or III is selected by the annealer. If the minimizer is found to be solution

II then the algorithm proceeds with the contraction step by halving the value

of r. If solutions I or III are selected, then the algorithm proceeds with the

translation step by setting the new box center to uc1 + r or uc1− r, respectively.

5.5 Results

The deformation of a bar under axial loading is modelled using an equation of form

(5.1). In particular, the deflection (u) of a bar is related to the elastic stiffness, (E),

cross-sectional area (A), and the applied body force, (f) using Eq (5.15). The func-

tional (Eq 5.2) is referred to as the potential energy of the system. The corresponding

discretized form of the potential energy for piece-wise linear E,A and f is calculated

using Eq (5.16) where Ei,Ai and fi represents the elastic stiffness, area and applied

body force, respectively, at the center of the ith element.

(EAu′)′ + f = 0 (5.15)

ΠN [u] =
N∑
i=1

N

2
EiAi(ai − ai−1)2 − 1

2N
fi(ai + ai−1) (5.16)

Two test cases are presented in Fig 5.7. In test case (a), a bar with a discontinuity
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Figure 5.7: Axial deformation of a bar with (a) a discontinuous cross-section with a
tip displacement (b) a continuously varying cross section with a body force and a tip
displacement.
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in EA is simulated. The body force is not applied in this case. A four-element

discretization is used. The initial guesses are taken as uc = {0, 0.25, 0.5, 0.75, 1} and

r = 0.2. The numerical solution is observed to approach the exact solution in this

case. The convergence in the functional is also evident.

In the test case (b), a bar with continuously varying EA is simulated. A linearly

varying body-force is supplied. A six-element discretization of the bar is used with

uc = {0, 1
6
, 2

6
, 3

6
, 4

6
, 5

6
, 1} and r = 0.2. Based on the theory of finite element methods,

the exact minimization of the energy in discretized space leads to a stiffer solution

in comparison to the exact solution. It is observed that the numerical solution ap-

proaches the exact solution at nodes, which is characteristic of finite element methods.

Energy is also observed to be converging towards the finite element solution ufem in

this case. The mismatch of u within the element is expected to decrease with refine-

ment in discretization.

Some implementation details on the D-wave architecture are relevant here. Although

the mapping only requires three qubits per node, the embedding of this graph into

the Chimera graph produced an overhead of 9 qubits per node - constant over a

range of discretizations. It is understandable since a complete graph of three qubits

used to represent a node is not directly represented on the Chimera graph. Another

important task in quantum computing is error suppression. Quantum processors,

unlike classical computers, do not have parity correction algorithms due to the no-

cloning theorem. A compilation of popular methods for quantum error correction is

presented in [120]. Energy rescaling is one of the simpler approaches and is employed

in this work. Here, in the estimation of J̃n, the energy was rescaled to ensure that

the energy gap between feasible and unfeasible states is increased while maintaining

a similar energy landscape. This step is a heuristic remedy for minimizing noise

in quantum computation and has no bearing in the theoretical convergence of the

algorithm.
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Figure 5.8: Illustration of beam bending problem with buckling load and the nodal
graph with respective ground states

5.5.1 Generalization to Beam bending problem

In this section, Box algorithm for Beam bending problem is discussed. Beam bending

is modeled as a 4th-order differential equation. A special case is considered with a

buckling load and no distributed load (as illustrated in the Fig 5.8). The differential

equation can be stated in terms of the vertical displacement, w as:

EIw′′′′ + Pw′′ = 0, 0 < x < L

Each boundary (x = xb) has following two boundary conditions:

1. Either the displacement, w(xb), or the shear force, V (xb) = −EIw′′′(xb) is pre-

scribed.

2. Either the slope, w′(xb), or the moment, M(xb) = −EIw′′(xb) is prescribed.

Considering the case with Dirichlet boundary conditions and/or homogeneous Neu-

mann conditions (the first condition in each of the boundary condition listed above),

the energy is estimated as:

Π[w] =
1

2

L∫
0

EI(w′′)2 − P (w′)2dx
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In this case, the Finite element approximation is required to maintain the continuity of

slopes at the nodes. It can be accomplished by considering Hermite cubic polynomials.

Thus each node has 2 degrees of freedom, the displacement, w, and the slope, θ ≡ w′.

In this case, a Nodal graph with 9 ground states is required, where each of the ground

states is mapped to one of the following states:

{wic − r, wic, wic + r} × {θic − r, θic, θic + r}

where the notation of previous sections are adopted for box center and slack variable.

The {.} × {.} represents cartesian product of sets. A nodal graph with 9 nodes can

be employed, as shown in Fig 5.8. The element graph can be formed by connecting

all 81 edges between the two adjacent nodal graphs. Moreover, it can be verified that

the system of equations formed by relating the 81 possible energies of the element to

the 81 interaction parameters is exactly solvable. Therefore, the box algorithm can

be applied to the beam problem. In general, these nodal graphs can be generated by

using the MILP approach presented in Appendix C. However, the rank of the linear

system for the element matrix should be verified. In case there is a rank deficiency,

then a different set of ground states need to be chosen.

When P is greater than the critical value, Pcr (buckling load for the first mode), then

the total energy is non-convex, and this may inhibit the algorithm from minimizing

the energy. As an example, consider a two-element discretization of the above problem

with pin joints in each end (see Fig 5.9). These boundary conditions can be modeled

by considering zero displacement and moments at the ends. In the first buckling

mode, there are only two degrees of freedom: (i) the displacement of the middle node

and (2) the slope of the end node. It can be seen in Fig 5.9, that if the box center

is initially at the origin, then for any slack size, the energy at all the box corners

is higher than the origin. Thus the optimization step misses out on the minimizing
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values (marked as the red region in the figure). This results in an incorrect solution

where the beam does not buckle at the critical load. The issue can be alleviated by

using different slack variables for each degree of freedom and use of finer increments

in the contraction step.

Figure 5.9: The problem of non-convexity in Box algorithm: (left) A two-element
discretization of a beam buckling problem, and (right) the energies for displacement
functions at P = Pcr with x-axis representing the displacement at center of beam
and y-axis representing the slope at the corners. The energy decreases along the red
region in the direction away from origin.

5.6 Conclusions and Future Work

The use of quantum computing for solving differential equations has, to date, focused

on the use of a gate–computing based QLSA algorithm. This algorithm attempts to

sample from the solution space of the linear system of equations Ax = b. In contrast,

the quantum annealer based algorithm described here uses an energy minimization

approach. The discretized version of the energy function of the differential equation

is mapped to an Ising Hamiltonian. The solution vector, x, is directly obtained as

the ground state of the qubits. The algorithm has low memory requirements since

the global matrix is not stored, and the local matrices are encoded in the interaction

weights of the Ising model. Further, the box algorithm allows mapping of up/down
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spin states of qubits in the ground state to rational numbers involved in the solution

vector.

Since primarily the Ising model is solved, the cost of computation is tied to the perfor-

mance of the quantum annealer ([121]). Within each iteration, however, Eq (5.11) is

solved for each element, leading to at least O(n) operations. It is shown that the box

algorithm indeed guarantees convergence to the best approximation of the solution in

the discretized space as the box size goes to zero. However, some improvements could

be made to reduce the number of minimization runs. The statistics from the sampled

data can be used to heuristically develop ‘local’ potential energy maps that can be

used to guide the gradient descent for faster convergence. With future scaling up of

quantum annealers up to millions of qubits, it will be possible to solve challenging

engineering solid and fluid mechanics problems using this method.
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CHAPTER VI

Graph Models for Machine Learning: Boltzmann

Machine Implementation on a Quantum Annealer

A hybrid quantum-classical method for learning Boltzmann machines (BM) for a

generative and discriminative task is presented. Boltzmann machines are undirected

graphs with a network of visible and hidden nodes where the former is used as the

reading site while the latter is used to manipulate visible states’ probability. In

Generative BM, the samples of visible data imitate the probability distribution of

a given data set. In contrast, the visible sites of discriminative BM are treated as

Input/Output (I/O) reading sites where the conditional probability of output state is

optimized for a given set of input states. The cost function for learning BM is defined

as a weighted sum of Kullback–Leibler (KL) divergence and Negative conditional Log-

likelihood (NCLL), adjusted using a hyper-parameter. Here, the KL Divergence is

the cost for generative learning, and NCLL is the cost for discriminative learning. A

Stochastic Newton-Raphson optimization scheme is presented. The gradients and the

Hessians are approximated using direct samples of BM obtained through Quantum

annealing (QA). Quantum annealers are hardware representing the physics of the

Ising model that operates on low but finite temperature. This temperature affects

the probability distribution of the BM; however, its value is unknown apriori. The

effect of this unknown temperature on learning is also investigated.
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6.1 Background

Boltzmann machine (BM) is an energy-based model defined on an undirected graph

and is used for unsupervised learning. The graph vertices are segregated into a set

of visible and hidden nodes. The probability of each state is dependent on the total

energy of the graph for that state. Moreover, only the state of a visible node is

”visible” to the user. Therefore, these visible states’ marginalized probabilities are a

non-linear function of the energy parameters and can be used to model complicated

distributions. These BMs can be trained either using Maximum-likelihood (ML)

learning or a Contrastive Divergence (CD) learning techniques. It is well known that

ML Learning of Markov random fields (MRF) is a challenging task due to the large

state space. Due to this complexity, Markov chain Monte Carlo (MCMC) methods

typically take a long time to converge on unbiased estimates. CD learning, on the

other hand, provides a computationally inexpensive way of training MRFs. However,

it provides biased estimates in general [122].

A subclass of BM called the Restricted Boltzmann Machine (RBM) (see Fig 6.1(b))

was proposed by Hinton (2002) [21] where the hidden and visible nodes had a bipartite

structure. This structure allows an independent update of visible states, conditioned

on the hidden states’ knowledge and vice-versa. This property makes RBM very

trained efficiently on a classical computer. Boltzmann machines have received much

attention as building blocks of multi-layer learning architectures for speech and image

recognition [123, 124]. The idea is that features from one RBM can serve as input to

another RBM. By stacking RBMs in this way, one can construct the architecture of

a Deep Boltzmann machine (see Fig 6.1(c)). It is known that approximate inference

in deep Boltzmann machines can handle uncertainty better and deal with ambiguous

data [3].

A comparison between the ML and the CD-based training of RBM is presented in

[122]. The authors suggested that an initial CD-based training and a final ML-based
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(a) General BM (b) Restricted BM (c) Deep BM

Figure 6.1: Nomenclature of Boltzmann machines from [3]

fine-tuning of RBM is the most computationally efficient way of training RBMs with

less bias. This bias issue was further studied in [125] where the Persistent Contrastive

Divergence (PCD) was developed. In this approach, the Markov Chain is not reset

between parameter updates. This step brings the approximate gradient closer to

the exact estimate in the limit of a small learning step. This method shows better

performance on the testing data than the classical approach; however, it suffers from

slow learning rates. A relatively faster approach was provided in [126] where Fast

Persistent Contrastive Divergence (FPCD) A tutorial on different training strategies

is given in [22].

It is intuitive to see that General BM has more representative power than RBM and

its derivatives. However, the efficiency of the above-mentioned training methods is not

expected to translate to the general case as the data-dependent expectations are not

easy to compute, at least using classical techniques. Quantum annealers (QA) have

provided a promising way forward to tackle this problem of expectation estimation.

QA are physical devices that operate on Quantum mechanical laws and are designed

to minimize the Ising model’s energy. As they operate on finite temperatures, the

simulations on QA results in sampling from the Boltzmann distribution of the Ising

energies. Researchers have recently employed this property of QA to train BMs with a

slightly more complicated structure than RBMs. For instance, [28] trained a Limited
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Boltzmann machine (LBM) to recover missing data in the images of Chemical vapor

deposition (CVD) growth for a MoS2 monolayer. LBM allows sparse connectivity

among the hidden units and, due to this complexity, it is not easy to deal with in a

classical setting.

Another direction that researchers have taken is the training of specialized RBMs

that can be better represented on the QA architecture, e.g., the chimera RBM which

emulates the topology of DWave Quantum annealers [27]. This allows the model

expectations to be estimated as a single sampling step instead of the k-step CD

method. Meanwhile, the data-dependent expectations are estimated as the 1-step CD

method due to the RBM’s favorable topology. The result of this progress can be seen

in the outburst of new applications of RBM in modern machine learning architectures,

for instance, Sampling latent space in Quantum variational autoencoders (QVAE)

[127], RBM as an associative memory between generative and the discriminative

part of the Associative Adversarial Network Model (AAN) [128, 129] and Hybrid-

Autoencoder-RBM approach to learn reduced dimension space [130].

In this work, an ML-based approach is studied for a General BM (see illustration

in Fig 6.2). As discussed earlier, the topology of a highly connected graph is not

conducive for CD-based approaches. The major hurdle of generating independent

samples of BM is circumvented using QA. At present, the two popular QA devices are

the ”DWave 2000Q” system with approximately 2000 qubits connected in a Chimera

topology and the ”DWave Advantage” system with approximately 5000 qubits con-

nected in a Pegasus topology. Considering the physical devices’ sparsity, the largest

complete graph that can be simulated on these systems has size 64 on the 2000Q

and 128 on the Advantage system. The past growth in these systems’ computational

power suggests the prospect of solving a large-scale problem in the near future. Tak-

ing the prospect for granted, large and arbitrarily connected BM can benefit from

unbiased estimation via QA. The method developed in this work does not use the
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Figure 6.2: Illustration of gradient-based for generative and discriminative training
of Boltzmann machines

graph’s topology and is numerically sub-optimal for the cases when such structures

are present (e.g., bipartite graph). For such cases, the readers are encouraged to

pursue the literature listed above and the bibliography therein.

This work aims to demonstrate the use of quantum annealers for discriminative and

generative tasks involving Boltzmann machines. Generative tasks involve sampling

a state from a probability distribution. At the same time, a discriminative BM acts

as a classifier for a given dataset. A BM trained for generative and discriminative

purposes can be used to sample a labeled dataset from a probability distribution. For

example, [131] developed a generative BM for sampling vertical and horizontal stripe

patterned images. The second focus of this work to analyze the effect of annealing

temperature on training. The probability distribution of the BM is dependent on the

temperature, and the sampling temperature in QA is shown to be instance-dependent

[27]. The results presented in their study are for an RBM trained for a generative task.

Their strategy is extended to general BM for both generative and discriminative tasks.
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6.2 Mathematical prerequisites

A Boltzmann Machine is a probabilistic graphical model defined on a complete graph

which is partitioned into ”visible” nodes taking up values observed during training

denoted by the vector, v, and ”hidden” nodes where values must be inferred taking

up values denoted by the vector, h. These states collectively define the energy and

consequently and the probability of each state. The readers are suggested to review

Definitions I.1 and I.3 and Section 1.1.2 for notations. Ising model with the (0/1)-

basis is used here. The parameter set, θ is represented as a vector as in Section 1.3.

6.2.1 Generative Boltzmann Machines

The key idea behind a Boltzmann machine is the segregation of the vertices into

visible and hidden states. This allows to write any state S of the graph as the

following concatenation:

S = [v,h]

where v denotes he state of he visible nodes and h denotes the states of the hidden

nodes. Only visible states are observed by the user and their probability can be

estimated by marginalizing over all hidden states. Therefore, the probability of a

particular visible state, v, is given as,

p(v) =
∑
h

p(v,h) =
1

Z

∑
h

e−βE(v,h) (6.1)

This marginalization allows the BM to represent complex probability distributions.

Consider a data set of NDS visible states, D = {v1, · · · ,vNDS}. Each data state occurs

with a probability q(vk) for all k ∈ {1, ..., NDS}, referred to as the true probability of

the distribution. The performance of a BM can be judged by comparing the model

distribution, p(v) with the true distribution. This comparison can be carried out
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using the Kullback-Leibler divergence DKL(q||p) defined as,

DKL(q||p;θ, β) = −
∑

v∈{v1,··· ,vNDS }

q(v) ln
p(v;θ, β)

q(v)

The KL divergence is always non-negative with DKL(q||p) = 0 if and only if q = p

almost everywhere. For this property, DKL is chosen to be the cost function for

training generative BMs.

Remark : In case, there is no meaningful notion of probability distribution of the data

states. The true probability distribution can be substituted as q(vk) = 1/NDS for all

k ∈ {1, · · · , NDS}. In this case, the KL Divergence is equal to the Log-likelihood of

the data set normalized with the cardinality of the data set, NDS.

6.2.2 Discriminative Boltzmann Machines

It is often desired to generate a labelled data set which entails assigning a classification

to each each visible data point. This classifier can be included in our notation by

further segregating the visible state into input-output pair. Consequently the state

of the BM is represented as:

S = [vI ,vO,h]

where, vI and vO denotes the “input” and “output” visible state. The state, vO is

used to encode the classification of state vI . Discriminative BMs, also referred to as

conditional BMs in literature, are trained for classification using labelled data set.

The cost function in this case is taken as the Negative Conditional Log-likelihood N
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defined as,

N (θ, β) = −
∑

[vI ,vO]∈{v1,...,vD}

ln p(vO|vI ;θ, β)

where, the conditional probability, p(vO|vI) is estimated as:

p(vO|vI) =
p(vI ,vO)∑
ṽO p(v

I , ṽO)
≡

∑
h p(v

I ,vO,h)∑
ṽO,h̃ p(v

I , ṽO, h̃)

6.3 Training Method

For a general purpose training strategy, the cost is set as a weighted average of KL

Divergence and Negative conditional log-likelihood as described below

C = αDKL +
1− α
NDS

N (θ), α ∈ [0, 1] (6.2)

where the α = 0 signifies a generative BM while α = 1 signifies a discriminative BM.

Gradient based techniques are used to carry out the optimization procedure. The

gradient is estimated as:

1

β

∂C

∂θi
= −αE

(
∂E

∂θj

)
+

∑
v∈{v1,...,vD}

((
αq(v) +

1− α
D

)
E
(
∂E

∂θj

∣∣∣∣v)

−1− α
D

E
(
∂E

∂θj

∣∣∣∣vI)) (6.3)

And, the hessian is estimated as:

1

β2

∂2C

∂θi∂θj
= αCov

(
∂E

∂θi
,
∂E

∂θj

)
−

∑
v∈{v1,...,vD}

(
αq(v) +

1− α
D

)
Cov

(
∂E

∂θi
,
∂E

∂θj

∣∣∣∣v)

+
∑

v∈{v1,...,vD}

1− α
D

Cov

(
∂E

∂θi
,
∂E

∂θj

∣∣∣∣vI)
(6.4)
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The definitions of all statistical quantities are presented in Appendix D.1 and the

derivatives of cost functions are estimated in Appendix D.2.

6.3.1 Optimization Scheme

Stochastic gradient and Newton methods have been widely employed in such prob-

lems. A comparative performance of many variants of such stochastic methods are

studied in [132]. In stochastic optimization methods, it has been shown that both

newton methods and gradients-based methods have a local linear convergence rate.

However, [133] developed a Newton method that is independent of the condition

number in contrast to the gradient-based scheme. These developments motivate the

use of Hessian in the optimization process. Such schemes are very useful in prob-

lems concerning sampling from sensitive devices like Quantum annealers. Analyzing

the different variations of stochastic methods is out of scope of this work. A mini

batch momentum-based approach is adopted. This approach can be easily substi-

tuted for one of the more sophisticated ones presented in [132, 133]. The following

momentum-based update rule is used:

θ(t+1) = θ(t) + ∆θ(t), ∆θ(t) = ηr(t) − λθ(t) + ν∆θ(t−1) (6.5)

The parameter, η defines the learning rate of the method and ν defines a momentum

rate. A higher momentum rate means the current learning direction has a higher

influence for the previous learning rate. In general, the momentum is kept low at

the beginning and slowly increased as the learning progresses. This technique is

employed to reduce oscillations in the final stages of training. The parameter λ

modifies the cost function to minimize the magnitude of the learned parameter. In

this work. this parameter is identically set to 0 in all test cases and is mentioned only

for completeness. The variable, r, denotes the rate of update. In the gradient-based
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method, it is estimated as:

r(t) = −∇θ(t)C

In Newton method, rate of update is estimated as:

r(t) = −(∇2
θ(t)C)−1∇θ(t)C

Remark 1 : The Hessian matrix estimated from the sampling process, is usually rank

deficient. The main reason is under-sampling. Therefore, inversion of these matrices

pose a challenge. In this work, Tikhonov regularization is used where singularity of

∇2
θ(t)
C is alleviated by adding positive terms to the diagonal as:

∇2
θ(t)C → ∇

2
θ(t)C + ε2I

where I is the identity matrix. This regularization results in the following useful

property for the rate of update:

r(t) = argminr̃ ||(∇2
θ(t)C)r̃ +∇θ(t)C||2 + ε2||r̃||2

Remark 2 : The above update rule works for unconstrained optimization. A con-

strained optimization problem can be considered by employing lagrange multipliers.

In this study, the constraints are much simpler, |Hi| < H0 and |Jk| < J0. These con-

straints represent the practical range of parameters for Quantum annealers. These

bounds are implemented by using following scaling parameter:

δ = max

{
maxi∈{1,...NV } |Hi|

H0

,
maxk∈{1,...NC} |Jk|

J0

}

In any optimization step, if δ > 1, then the parameters are scaled as: θ(t) → θ(t)/δ
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and the corresponding ∆θ(t) is updated. The optimization procedure is presented

in Algorithm 12. The procedure uses a subroutine EstimateDerivatives (Algorithm

11) to estimate the gradients and hessian. This subroutine is discussed in the next

section. For gradient based approaches, the estimation of hessian can be tactically

avoided from algorithm 11 by ignoring all covariance terms and the hessian in this

case is set to a Identity matrix.

6.3.2 Numerical Estimation of Gradient and Hessian

QA can be treated as a black-box that samples the states for a given set of parameters.

DWave Quantum annealer is used in this work that operates based on the {+1,−1}

states. The energy parameters for the {+1,−1} states and the {1,0} states can be

transformed using the relation presented in Appendix D.31. The user can specify the

number of samples. The probability of a particular sample state is then be estimated

as the ratio of the number of occurrences of that state to the specified number of

samples. It is easily noticeable that the gradients and hessian described in terms of

statistics of the energy gradient ∇θE. The first term in the gradient and the hessian,

requires estimation of E(∇θE) and Cov(∇θE). In the notation described in Section

1.3, given a sample state S, energy gradient is estimated as:

∇θE(S) = ε(S)

The latter terms in Eq (6.3) and Eq (6.4) are more complicated to compute as they

require summation over each visible data. Two possible strategies can be employed

in this case. In the first approach, all sampled states are grouped according to the

visible/input states. The conditional probabilities are then estimated by treating

each data state’s respective groups as the sample set. Since the samples from This

1Basis transformation may scale the parameters outside the allowed range of DWave. This
problem can be mitigated by choosing appropriate bounds on Field and Interaction parameters in
the optimization process
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estimation is unbiased as the QA samples are independent. In theory, the accuracy of

these conditional probabilities increases with sample size. However, in practice, the

number of samples is finite and should be kept to a minimum possible value to reduce

computational cost. This is a critical drawback of this approach. For instance, not

every data state needs to appear in the samples. In such cases, the KL Divergence

cannot be estimated.

The other approach is to run independent simulations for each data state on the

subgraph of hidden nodes, GH , and the subgraph of hidden and output nodes, GHO.

The energy parameters of these subgraphs depend on the visible states (for GH), and

input states (for GHO). The field terms are augmented to include the energy for

fixing the states of the removed nodes. An illustration of this procedure is presented

in Fig 6.3. One can observe that this process leads to a shift in energy states. For

instance, same states in Fig 6.3(a)&(b) have an energy difference of H1v1 + H2v2 +

J1v1v2. However, the Boltzmann distribution remains unchanged by a uniform shift

in energies. The drawback of this method is that this procedure’s computational cost

grows with the training data size. This growth by itself is not a problem; however, the

sampling step is usually the most time-consuming. In general, CD-1 steps are used

to determine this term in RBMs quickly. However, this method is not extendable to

General BMs. The authors are currently unaware of any scheme that circumvents

this computation. This second approach of running independent simulations for each

data will be adopted from here onward. The procedure for estimating gradient and

hessian from the sampled data is presented in Algorithm 11. It should be noted

that the estimation of RHS of Eq (6.3) and Eq (6.4) only yields the direction of

gradient and hessian, respectively. The size of the update can be subsumed in the

learning rates. However, the value of β influences the probability distribution and,

consequently, influences trained parameters’ value. This issue is discussed in the next

section.
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(a) (a) Graph, G (b) (b) Subgraph, GHO (c) (c) Subgraph, GH

Figure 6.3: Illustration for estimating parameters of the subgraph. The Input, Out-
put and Hidden nodes are represented with red, blue and grey colors, respectively.
The field parameters and interaction parameters are written in blue and red fonts,
respectively. The subgraphs are presented in a yellow box. (a) Cyclic graph, G with
2 input nodes, 1 output node and 2 hidden nodes (b) Subgraph of output and hidden
nodes, GHO: Fixing the visible input vI = [v1, v2] results in an augmented field term
on the output and hidden nodes (c) Subgraph of hidden nodes, GH : Fixing the visible
data v = [v1, v2, v3] results in an augmented field term on the hidden nodes

6.3.3 Effect of Annealing Temperature

Experimental evidence has shown that the apparent annealing temperature, i.e., the

temperature corresponding to the Boltzmann distribution of samples, is instance-

dependent [27]. The corresponding inverse temperature is referred to as β∗ in this

section. The consequence of this instance-dependence is that the quantum annealing

systems cannot be rated for specific temperatures, and β∗ has to be estimated from the

samples for each instance of the graph. The knowledge of β∗ is crucial in developing

models capable of being implemented on different computational devices. Even in

the same machine, two different embeddings of the same logical graph may lead to

different annealing temperatures and consequently show disparities in performance.

The key idea behind the estimation of β∗ is that the Boltzmann distribution of a state

can be equivalently written as follows by taking a log on both sides:

log p(S) = −βE(S)− logZ
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β∗ is estimated as the slope of this line. The exact form is as follows:

β∗ = −
∑

(E − E (E)) (ln p− E (ln p))∑
(E − E(E))2

(6.6)

A similar approach was developed by [27], where they used the statistics of different

energy levels:

p(E; β) = Dg(E)e−βE

where Dg(E) is the degeneracy of a state. The authors used the log of ratio of

probability, l(β) = p(E1; β)/p(E2; β) for some fixed energy levels. They manipulated

the value of β by rescaling the parameters and were able to estimate the β from the

slope of l(β) and the scaling factor. Readers should notice that although these two

approaches are based on a similar argument, they differ greatly in their application.

In the former approach, the intuition is that β represents the slope of the following

sampled data, (E(S), log p(S)). Meanwhile, the latter approach uses the data of the

probability distribution of energy levels. Both methods have their pros and cons.

The second method requires sampling at rescaled parameters; thus, it assumes that

β remains invariant with rescaled parameters. This is usually true in the range

of parameters specified by the QA manufacturers, but this condition may fail if the

required rescaled value does not adhere to these limits. For the first approach, binning

has to be done for each unique state that is sampled, and this step is computationally

more expensive than binning energy levels, especially in the limit of large graphs. On

the favorable side, it requires only one set of samples as a rescaling of parameters is

not needed.

The rescaling technique can also be applied to look for model parameters with better

performance in training cost. The key idea is that once the training of BM is done at

some β∗, it might be possible to vary the β and further reduce the cost. This optimal
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value of β, (say βo) can then be used to rescale the parameters as θ → θ.βo/β∗. The

key challenge is that, it is not possible to simulate different β value other than using

rescaled parameters. However, the KL Divergence and the Negative Conditional Log-

likelihood can be approximated as their respecve Taylor expansions. Moreover, the

coefficients can be estimated from the sampled states at β∗. The Taylor expansion

till the second term is as follows:

Dapp
KL (β) = D∗KL +

∂DKL

∂β

∣∣∣∣
β∗

(β − β∗) +
1

2

∂2DKL

∂β2

∣∣∣∣
β∗

(β − β∗)2 + · · ·

N app (β) = N ∗ +
∂N
∂β

∣∣∣∣
β∗

(β − β∗) +
1

2

∂2N
∂β2

∣∣∣∣
β∗

(β − β∗)2 + · · · (6.7)

where

∂DKL

∂β
= −Ev,h(E) +

∑
v∈{v1,...,vD}

q(v)
∑
h

E(v,h)p(h|v)

∂2DKL

∂β2
=

∑
v∈{v1,...,vD}

q(v) (−Var(E|v) + Var(E))

∂N
∂β

=
∑

[vI ,vO]∈{v1,...,vD}

E(E|v)− E(E|vI)

∂2N
∂β2

=
∑

[vI ,vO]∈{v1,...,vD}

−Var(E|v) + Var(E|vI)

The comparison of the approximated and exact behavior of a trained BM (see Section

6.4) is presented in Fig 6.4. The exact behavior is estimated by evaluating the Boltz-

mann distribution, Eq (1.5). The value of βo is estimated as the minimizer of the

approximated quadratic cost function, Capp = αDapp
KL + (1−α)N app/NDS. Therefore,

when approximated cost is convex, the βo is estimated as:

βo = −
(
∂2C

∂β2

)−1
∂C

∂β
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Figure 6.4: Comparison of approximate and exact performance of BM

6.4 Examples

As a toy problem, the data illustrated in Fig 6.5 is used to train the BM models. The

first data set (Fig 6.5(a)) is unlabelled and has 11 data points. The second data set

(Fig 6.5(b)) has 40 data points with 11 labelled as ‘0’ and 29 labelled as ‘1’.

In all the cases, the training parameters of Eq (6.5) have a constant value of η = 0.1,

ν = 0.7, and λ = 0. The Hessian is inverted using Tikhonov regularization with

ε = 10−3. The run time data (see Fig 6.6) shows that the Newton approach performs

better than the gradient-based approach. The fluctuations in the deterministic train-

ing case (NumBatch = 1) are due to the DWave sampling step’s stochastic nature. It

should also be remarked that the parameters were not optimized for individual cases

and were arbitrarily picked from a suitable range.

The stochastic training method with 2 batches was employed for the first data set

(Generative learning). Two BM’s with 3 hidden nodes were considered, first with

complete connectivity and the second with Restricted BM architecture. The variation
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(a) Data points for generative training of
Boltzmann machine

(b) Data points for discriminative train-
ing of Boltzmann machine

Figure 6.5: Visible data states, D, for training Boltzmann machines. Each row rep-
resents a single data point. (a) Each data point represents the phase of a state at 10
spatial points. The ‘0’ phase is accumulated to the left, and the ‘1’ phase is accu-
mulated to the right with at most 1 boundary. (b) Labeled data set with the data
points described in part(a) are labeled as ’0’, and data points with random spatial
distribution labeled as ‘1’. The label is appended at the end of each data point in a
black box.

Figure 6.6: Training data for a General BM with 3 Hidden nodes. The cost of training
is defined by Eq (6.2) with α = 0.5.
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of KL Divergence (training Cost) with the annealing temperature is shown in Fig 6.7.

It is observed that trained BM of the general type performs better than the Restricted

type. This is an intuitive result as RBM is a specialized case of the General BM and

has less representation capability in comparison.

Figure 6.7: Trained Generative BM with 3 hidden nodes

The effect of cost parameter, α was studied for training General BM with the sec-

ond dataset. The results are presented in Fig 6.7. The training is carried out with

70/30 split into training and testing data. A large reduction in KL Divergence is

observed, even for a small value of α. Moreover, there was no substantial change in

the conditional likelihood. This result suggests that the performance of Condition-

al/Discriminative BM can be enhanced by adding a small KL Divergence component

to the training cost.

6.5 Conclusion

Quantum annealing has the potential to improve the training of General Boltzmann

machines significantly. The stochastic Newton and gradient-based training methods

can be employed using direct sampling from quantum states. This procedure can
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Figure 6.8: Performance of trained BM with 4 hidden nodes with respect to the cost
parameter, α.

accelerate the training of a General Boltzmann machine which have higher represen-

tation capability. The use of quantum annealers is promising for quantum/classical

training since many qubits are available, and the training takes advantage of measure-

ments on the physical realization of the Boltzmann machine [127, 134]. Unlike the

other popular methods like the Contrastive Divergence, this method does not utilize

the suggested BM’s special topology. However, in practice, having a sparse connec-

tion is desirable as that allows embedding larger graphs in the DWave architecture.

These methods were employed to carry out generative and discriminative training in

toy problems. The numerical results suggested that stochastic Newton optimization

performs better than gradient-based optimization. It was also observed that adding

a small weightage to KL Divergence in discriminative cost greatly improves BM’s

performance. A major contribution of this work is in developing a procedure to ap-

proximate the behavior of BM in slightly perturbed temperature. This procedure

is useful in approximating better parameters for BM. This method is also useful for

transferring BM from one quantum annealing system to another, which may have

different annealing temperatures. It must be remarked that due to the instance-

dependence of the QA sampler, this transfer also refers to using different embedding
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of the same BM on the same QA machine. In the future, this work will be tested for

benchmark problems. A rigorous analysis of training parameters is also expected in

future publications.
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CHAPTER VII

Conclusions and Future Work

7.1 Summary

This thesis’s primary goal is to identify, formalize, and solve important mechanics

problems in the discrete pairwise energy form. In the most general case, these prob-

lems can be solved on the Quantum annealer. Meanwhile, certain special cases can

be approximated with great efficiency on classical computers. These special cases can

still be efficiently solved using Quantum annealing methods; in fact, as the Quan-

tum architectures advance, it is likely, that using Quantum approaches for large scale

problems will have a greater advantage than the classical computation method in

terms of computation time. We have pursued both kinds of problems here. In the

first part of the thesis, we developed methodologies to capture surface phenomena

using this model. These problems come under the category of problems that can be

solved classically. Within this part, we made the following contributions:

• We developed a methodology to label the elements of a finite element such that

it can replicate experimental images of materials with smooth boundaries like

polycrystalline and composite materials [81].

• We took a similar approach as above to model cracked surface in a finite el-

ement mesh [135]. In this case, we developed a modular framework for mul-
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tiscale modeling of crack paths in polycrystalline materials. The modularity

allows Plug’n’Play capability for the testing of different energy-based criteria

for fracture. The problem pursued here employed Maximum energy release

rate criteria to estimate brittle failure in elastic polycrystalline material with

anisotropic surface energies.

• We also developed an approach for studying multiphase flow in uniform meshes.

Surface energies drive this phenomenon; however, accurately estimating them

in these meshes is challenging. We extended the known methodology for pixel

mesh developed by [89] to Quadtree meshes. This modification can significantly

improve the computational cost for high fidelity simulation. These methodolo-

gies are extended to anisotropic grains and 3D microstructure. Application to

denoising microstructure is also discussed.

We developed a novel technique to simulate finite-element problems in a pairwise

energy framework. The proposed Ising model cannot be solved efficiently on classi-

cal computers. Consequently, it is solved using quantum annealers. The algorithms

developed in this work classically computes the Ising optimization problem from the

finite element formulation with no additional order of complexity. This work’s most

important contribution is the ‘Box representation’ of solutions, which allows a func-

tion to be represented by a sparsely connected graph. The next step in this research

is to utilize this concept to develop low-depth circuits for gate-based computing. This

technique can provide great advantages in Black-Box optimization.

In addition to the work listed so far, where the problem is solved by identifying the

ground states of the model (forward problem), methodologies are developed to train

these models to emulate a prescribed behavior. Firstly, a mixed linear integer program

is developed to do band-gap optimization in the Potts model. The methods developed

in this case can provide optimal parameters to replicate the prescribed ground states

or its cardinality. This method grows exponentially in size with the number of nodes.
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Consequently, it can only be used for smaller graphs, for instance, repeating units of

periodic lattices or Nodal graph in the box algorithm.

For larger graph sizes, exact band-gap minimization cannot be done with reasonable

computing resources. Usually, Maximum likelihood principles are used to pursue

such problems. We developed a quantum annealing-based training methodology for

Boltzmann machines – a machine learning architecture based on the Ising model.

Statistical data from Quantum annealing samples is used to estimate the gradient

and hessian for the optimization procedure. The method developed here is indepen-

dent of the graph’s topology, which allows the use of densely connected graphs that

have higher representability. A major contribution of this work is the technique for

estimating annealing temperature and the local behavior of costs. This procedure is

useful in approximating better parameters by temperature rescaling. It is also useful

for transferring BM from one quantum annealing system to another, which may have

different annealing temperatures.

7.2 Applications of proposed methodologies

Fracture: The approach proposed for fracture has significant advantages over con-

tinuum methods with diffuse damage (smeared crack, gradient damage, or phase field

methods). The fracture surface geometry is clearly identified (sharp interface), allow-

ing one to calculate the surface energy along the path accurately. Thus, the surface

energy of the crystal and grain boundaries modeled using smaller-scale simulations

such as molecular dynamics [136] or density functional theory can be directly used

in this approach. In a previous work (MicroFract code [34]), we had shown the ap-

plicability of the model to composite (matrix–fiber) crack paths (Fig 7.1). Here,

matrix–inclusion or matrix–fiber interface properties can come from molecular dy-

namics [137, 138, 139]. It also showed the applicability of the method to modeling

intergranular stress–corrosion cracks, where the effect of alloying or impurities on the
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grain boundary energy can come from density functional theory [140].

Figure 7.1: (a,b) Transverse cracks under tension normal to fibers in a polymer matrix
composite and intergranular stress corrosion cracking of Inconel (c,d) Graph cuts
solution:green line indicates the computed crack trajectory.

Further work on validating microstructurally short crack paths in 2D thin foil spec-

imens against experimental results [141, 142] from Allison group at the University

of Michigan is underway and has shown very promising results. Code extension to

3D fracture modeling has been already enabled (Fig 7.2), however formal theoretical

models of anisotropic 3D crack tip stress intensity factor need to be developed for

the model before comparison against experimental 3D fracture paths obtained from

high energy synchrotron measurements (Allison group, [143]). It will be of interest

to extend this method for modeling failure, including plasticity. In this case, one

could split the surface energy into two terms, cleavage energy based on crack nor-
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mal as described in this thesis and a plastic work that additionally depends on the

shear direction obtainable from crystal plasticity models [144, 145, 146]. Beyond a

post-fracture method, it is possible to use the code to identify possible fracture paths

during in-situ testing when using plastic strain localization images from methods such

as digital image correlation [147, 148] or elastic stress localization images from high

resolution electron backscatter diffraction as inputs [149, 150].

Figure 7.2: 3D fracture modelled using the graph coloring method proposed in this
thesis.

Segmentation and denoising polycrystals Recently, new and powerful techniques

based on feature–matching algorithms [151] or MRF techniques have been developed

for synthetic reconstruction of multiphase alloys microstructures [152, 153, 154, 155,

156]. The techniques work by matching observed features in an example 2D image to

a synthesized 3D microstructure. However, these techniques do not enforce any par-

ticular physics-based constraints on grain boundary structure. In materials science

of GBs, certain facets are preferred, and GB junctions often follow certain geomet-

ric (angular) constraints. Graph segmentation methods provide a pathway towards

including such physics-based constraints to improve the overall reconstruction. As
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proposed in the chapter on grain evolution, an energy-based approach can be used as

a post-processing step, allowing for minimization of GB energy in segmented MRF

images (Fig 7.3). The benefits are three-fold: the grains are segmented from the

color space outputs of these models; it gives the users an option to force desired grain

shapes (e.g., equiaxed or columnar grains) during segmentation, and finally, the GB

angles can be corrected based on global energetics. The Riemannian metric dictates

optimal grain shapes. GB energies of all pairs of grains in the microstructure (as

a function of crystallography only) can be included in the form of Ising interaction

term. As a result, minimization of the cost function can lead to an energy-efficient

description of GB interfaces in synthetic microstructure models.

Figure 7.3: (left) Synthetic microstructure from MRF algorithm. (right) Use of graph
cut segmentation to identify the grain interfaces (shown in black)

Applications of quantum machine learning methods

Quantum architectures, unlike Classical, promise exponential compression of mem-

ory, allowing for great speed-ups. However, classical algorithms cannot be directly

transmuted to a quantum one, and an enormous amount of research effort is required

in this area. The most notable contribution in the last few decades has been the HHL

algorithm (and variants) to solve a sparse linear system of equations. The ripples of

this development have given rise to many new advances in the field. However, we are

qubit-limited, so in the near-term quantum-classical hybrid algorithms are critical.
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These algorithms use classical algorithms on traditional computers for the most part

and switch to using quantum computers at bottlenecks where quantum computing

can outperform classical computers. In this thesis, we demonstrated the advantage

of quantum annealers to speed-up sampling from Boltzmann machines (a classically

hard problem)[157]. The classical algorithm takes care of performing tasks such as

optimization of quantum hardware parameters.

The Boltzmann data mining algorithm has several applications, but specific to our

research group, can be used for exploration of microstructure–process–property rela-

tionships in engineering materials [158, 159, 160]. Engineering properties of metallic

alloys such as modulus, strength, and thermal conductivity are dependent on the sub-

structure of the material at lengths of a few hundred microns and below. Microstruc-

tural features such as the orientation distribution function (ODF) [161, 162] describe

this substructure. Microstructural features can be tailored so that desired properties

can be achieved through controlled deformation or thermal treatment [163, 164, 165].

Recent work has focused on identifying process parameters, for example, scanning

width in additive manufacturing [166] or the initial texture that can be cold rolled

to achieve a desired final texture [167], but the problem of sequence identification

is largely unexplored. A typical process for manufacturing a component such as a

turbine blade can contain as many as twenty distinct processing stages, each taking

the microstructure from one state to another, eventually achieving the desired mi-

crostructure problem of ‘processing path design’ aims to discover a sequence of known

processes to realize microstructures with optimal properties. This problem is chal-

lenging because of the combinatorial complexity of permuting sequence of processing

operations and can take advantage of machine learning, but the problem has been

sparsely explored [168].

A recent work in our group in reference [4] has led to the development of an open-

source database of 346000 microstructural features that result from sequences of up
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to four stages of tension, compression, and rolling along with different directions

in various permutations. The use of General Boltzmann machines is suggested to

develop process–microstructure–property relationships from the database. In the

limited-qubit scenario, early use-cases of the quantum algorithm can rely on apri-

ori data reduction to reduce the number of input variables (due to the small number

of available qubits) [130]. For example, a small set of microstructures features (e.g.,

latent variables generated by an autoencoder, as shown in Fig 7.4 representing 346000

microstructures in a 2D latent space) can be used to link process and microstructures.

Figure 7.4: The database from reference [4] with 346000 microstructures. A latent
space representation is shown. Each point in the latent space representation corre-
sponds to one microstructure from the training set. Figure (a) shows points colored
by the elastic modulus, and figure (b) shows points colored by the last process from
each sequence. The challenge in this future work is to learn the relationship between
the latent variables and the process using General Boltzmann machines.

Inverse modeling of differential equations

Inverse modeling tools will be useful for modeling the uncertainties in the processing

path as a function of uncertainties in the desired properties or microstructure, an

important problem in materials sciences [169, 170, 171]. Consider a relationship of

the form: L(u, θ) = 0, where u represents the desired properties, and θ defines a ma-

terial processing path. Provided a set of noisy property data, where each data point

is a requirement of u at some locations in the specimen, we want to estimate process

parameters θ. Such inverse problems based on observed error-prone state variables
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are ubiquitous in control theory. Markov chain Monte Carlo (MCMC) techniques are

typically used to make posterior inference requiring the repeated solution of PDEs

with thousands of candidate parameter values. Using a quantum annealer, solutions

of PDEs can be represented [172] with parameters θ embedded in the biases and cou-

pling strengths. The optimal parameters can be retrieved by training the Boltzmann

machine on the noisy data. Inverse modeling has several other practical applications

in non–destructive testing of materials or in manufacturing, e.g., to optimize the flow

rate of coolants in machining.

Early machine learning algorithms on quantum computers will take advantage of

quantum computers’ ability to sample complex probability distributions. This sam-

pling step is essential in generative model development, and classical algorithms will

either fail or take very long when the probability distributions to be learned are of a

complex multi-modal type. For example, the Boltzmann machine can be trained on a

microstructure database’s input latent space with outputs encoding the process vari-

ables. The trained outputs represent a probability distribution of process sequences

and provide a rich set of information for identifying the most economical processing

route among those sampled.
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APPENDIX A

Theorems and Propositions

Theorem I.10: For a given set of parameters, θD, such that (i) SG(θD) = SD (ii)

∆E > 0, following statements hold true:

(a) η(θD, β) monotonically decreases with β and the low temperature limit

η∞(θD) = lim
β→∞

η(θD, β) = NGS log(NGS) (A.1)

(b) η(θD, β) is bounded as:

NGS log(NGS) < η(θD, β) ≤ NGS log
(
NGS +NESe

−β∆E
)

(A.2)

(c) For any ε > 0, there exists a β∗ such that for all β > β∗, η(θD, β)−η∞(θD, β) < ε

where β∗ is estimated as:

β∗ =
1

∆E

(
log

NES

NGS

− log
(
eε/NGS − 1

))
(A.3)

Proof. (a) Since SG(θ, β) = SD, the Negative Log Likelhood, η(θD, β), is estimated
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as:

η(θD, β) = NGSβE0 +NGS logZ

The derivative is estimated as:

dη

dβ
= NGS ((E0 − E(E)) (A.4)

where

E(E) =
∑
S∈S

E(S)p(S|θD, β)

Since ∆E > 0, the expected energy is strictly bounded below as E(E) > E0. Conse-

quently:

dη

dβ
< 0

In the low temperature limit, Eq (1.5) estimates that the probability of all excited

states approaches 0 while all ground states are equally likely with probability (NGS)−1.

Therefore, the value of η in this limit is estimated as Eq (A.1).

(b) Let SG ∈ SG and P = p(SG|θD, β) so that η(θD, β) = −NGS logP . The probabil-

ity of occurrence of a ground state is given by NGSP and occurrence of a excited state

is given as (1−NGSP ). Moreover, for any finite value of β both of these probabilities

are finite. Therefore, the expectation of energy, E, can be bounded as

E = NGSPE0 +
∑
S∈SE

E(S)p(S|θD, β) ≤ NGSPE0 + (1−NGSP )E1
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Substituting in Eq (A.4),

dη

dβ
= E0 − E(E) ≤ (NGSP − 1)NGS∆E

Substituting P = e−η/NGS gives the following differential inequality

dη

dβ
≤
(
NGSe

−η/NGS − 1
)
NGS∆E (A.5)

Consider the differential equation for β ∈ [0,∞),

dξ

dβ
=
(
NGSe

−ξ/NGS − 1
)
NGS∆E (A.6)

with initial condition ξ(θD, 0) = η(θD, 0) = NGS logNTS. Noting that NGSe
−ξ/NGS −

1 = NGSP − 1 > 0, this ODE is integrated to give the following solution:

ξ(θD, β) = NGS log
(
NGS +NESe

−β∆E
)

(A.7)

Using Comparison Lemma [173], for all 0 < β <∞,

η(θD, β) ≤ ξ(θD, β) (A.8)

This proves the upper bound. The lower bound is a direct consequence from mono-

tonicity proved in part 1.

(c) For any β <∞

η(θD, β)−NGS logNGS ≤ NGS log

(
1 +

NES

NGS

e−β∆E

)
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For any ε > 0, choose a β > β∗(ε) using Eq (A.3) and observe that,

NGS log

(
1 +

NES

NGS

e−β∆E

)
< ε

This proves the third statement.

Proposition A.1. Given a straight crack at an angle α, defined as a mesh partition

with label +1 in the upper sector and −1 in the lower sector, Eq (3.6) holds true in

the continuum limit of the mesh when g has the following form where k < 2:

g(ci, li) ≡ (2− k)rk−1 g(θi, li)

rki

Proof. Taking the continuum limit:

lim
h→0

∑
Pi∈Ph

(2− k)rk−1 g(θi, li)

rki
|Pi| =

∫
A

(2− k)rk−1 g(θ, l)

rk
dA

=

π/2∫
−π/2

r∫
0

(2− k)rk−1 g(θ, l)

rk
rdrdθ

= r

π/2∫
−π/2

g(θ, l)dθ

Choosing the labels as l = 1 when θ ∈ [α, π/2] and l = −1 when θ ∈ [−π/2, α) gets

the desired result.

Proposition A.2. Eq (3.7) satisfies Eq (3.6)

Proof. Taking derivative of Eq (3.6) with respect to α on both sides:

g(α,+1)− g(α,−1) = G′(α)

161



Clearly the form provided in Eq (3.7) satisfies the above equation. The variable c can

be estimated by substituting this form back in Eq (3.6) and evaluating it for α = π/2

to get:

c =
1

π

−G(π/2) +

π/2∫
−π/2

G′(θ)H(−G′(θ))dθ


Similarly, evaluating it for α = −π/2 gives:

c =
1

π

−G(−π/2)−
π/2∫

−π/2

G′(θ)H(G′(θ))dθ


Note that both values are equal as:

G(π/2)−G(−π/2) =

π/2∫
−π/2

G′(θ)dθ =

π/2∫
−π/2

G′(θ)(H(G′(θ)) +H(−G′(θ)))dθ

=⇒ −G(−π/2)−
π/2∫

−π/2

G′(θ)H(G′(θ))dθ = −G(π/2) +

π/2∫
−π/2

G′(θ)H(−G′(θ))dθ

Proposition A.3. Given a rough crack represented using its angular position (α) as

a function of the radial position, Eq (3.9) holds in the continuum limit.

Proof. As earlier, the crack is defined as a mesh partition with label +1 in the upper

sector and −1 in the lower sector. Taking the continuum limit:

lim
h→0

∑
Pi∈Ph

g(ci, li)|Pi| =
∫
A

(2− k)rk−1 g(θ, l)

rk
dA

=

r∫
0

π/2∫
−π/2

(2− k)rk−1 g(θ, l)

rk
rdθdr
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= (2− k)rk−1

r∫
0

1

rk−1

 π/2∫
α(r)

g(θ,+1)dθ +

α(r)∫
−π/2

g(θ,−1)dθ

 dr

Using Eq (3.6),

lim
h→0

∑
Pi∈Ph

g(ci, li)|Pi| = (k − 2)rk
r∫

0

1

rk−1
G(α(r))dr

Normalizing the radial variable from r to s = r/r,

lim
h→0

∑
Pi∈Ph

g(ci, li)|Pi| = (k − 2)r

1∫
0

1

sk−1
G(α(rs))ds

Proposition A.4. For a planar curve defined as a level set function C = ψ−1(a)

with a ∈ R. Following geometric relations are true at any (x, y) ∈ C:

1. The normal, −→n :

−→n =
∇ψ
|∇ψ|

∣∣∣∣
(x,y)

2. The curvature, κ,

κ = −∇. ∇ψ
|∇ψ|

∣∣∣∣
(x,y)

Proof. Let s denote the arc-length parameterization of the level set. As level set is

constant over C, one has, ∂nψ
∂sn

= 0 for all n.

1. Taking the case, n = 1:

ψxxs + ψyys =0
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Cs.∇ψ =0

By definition of ∂C/∂s is tangential to the curve. Therefore, ∇ψ is orthogonal

to the curve. The sign is arbitrarily chosen to be positive in the direction of

∇ψ.

2. By definition of curvature of curves, κ−→n = ∂2C
∂s2

. The curvature is estimated by

considering, ∂2ψ
∂s2

= 0.

∂

∂s
(ψxxs + ψyys) =0

ψxxx
2
s + 2ψxyxsys + ψyyy

2
s + φxxss + φyyss =0

ψxxx
2
s + 2ψxyxsys + ψyyy

2
s +∇ψ.Css =0

ψxxx
2
s + 2ψxyxsys + ψyyy

2
s + κ∇ψ =0

Using the normals,

xs =
ψy
|∇ψ|

, ys = − ψx
|∇ψ|

Substituting it back,

ψxxψ
2
y − 2ψxyψxψy + ψyyψ

2
x

|∇ψ|2
+ κ∇ψ =0

∇. ∇ψ
|∇ψ|

+ κ =0

Theorem IV.3 Consider, D ⊆ R2 where D is a fixed region. And a open set Ω with

smooth boundary, Γ = ∂Ω. Then for any Ω, with Ω 6= φ or D, to be the extremizer
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of functional:

F (Ω) = f1 Area(Ω) + f0 Area(D − Ω) + γ length(Γ)

following condition is satisfied on the boundary, Γ, in the interior of domain D:

γκ+ f1 − f0 = 0 (A.9)

Moreover, in the absence of any fixed/Dirichlet boundary conditions, Γ makes per-

pendicular intersections with ∂D.

Proof. The level set approach of [86] is adapted here. Consider ψ(x, y), a Lipschitz

continuous Level-set function satisfying:

ψ(x, y) > 0 for (x, y) ∈ Ω

ψ(x, y) = 0 for (x, y) ∈ ∂Ω (A.10)

ψ(x, y) < 0 for (x, y) ∈ D − Ω

The boundary is estimated as the zero level set, Γ = ψ−1(0). The normal, −→n and

curvature, κ are estimated in Proposition A.4. The geometric properties of Ω is

estimated as follows:

length(∂Ω) =

∫ ∫
δ(ψ(x, y))|∇ψ(x, y)|dxdy

Area(∂Ω) =

∫ ∫
H(ψ(x, y))dxdy

where H(x) is the Heaviside function and δ(x) is the Dirac delta function. An impor-

tant property that will be used later in the proof is that the distributional derivative
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of H(x) is δ(x). Writing F (Ω) using the level set:

F (Ω) =

∫ ∫
γδ(ψ(x, y))|∇ψ(x, y)|+ (f1H(ψ) + f0H(−ψ)) dxdy

Taking the Gateaux derivative with respect to ψ in the direction of ψ̃:

(
∂F

∂ψ
, ψ̃

)
=

∫
D

γ

(
δ′(ψ)|∇ψ|ψ̃ +

δ(ψ)∇ψ.∇ψ̃
|∇ψ|

)
+ (f1δ(ψ)− f0δ(−ψ)) ψ̃dxdy

Applying Divergence theorem with −→n ∂D as the normal to ∂D:

=

∫
D

(
γ

(
δ′(ψ)|∇ψ| − ∇.δ(ψ)∇ψ

|∇ψ|

)
+ (f1 − f0) δ(ψ)

)
ψ̃dxdy

+

∫
∂D

δ(ψ)γ
∇ψ
|∇ψ|

.−→n ∂Dds

=

∫
D

δ(ψ)

(
−γ∇. ∇ψ

|∇ψ|
+ (f1 − f0)

)
ψ̃dxdy +

∫
∂D

δ(ψ)γ
∇ψ
|∇ψ|

.−→n ∂Dds

where the following fact (in the sense of distributions) is used:

∇ (δ(ψ)∇ψ/|∇ψ|) = δ′(ψ)|∇ψ|+ δ(ψ)∇. (∇ψ/|∇ψ|)

Setting the Gateaux derivative to zero gives following results:

γκ+ f1 − f0 = 0 on Γ ∩ Int(D)

γ−→n .−→n ∂D = 0 on Γ ∩ (∂D)Neumann

It should be noted that on the boundary, if Γ ∩ (∂D)Neumann are disconnected points

then −→n and −→n ∂D orthogonal to each other. However, they are not allowed to be

parallel to each other. This creates an unimaginable situation where Γ intersects ∂D

but does not merge with it. This contradiction arise from the way the surface energy
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is introduced through levels sets. Notice that there is no surface energy on ∂D when

it does not intersect Γ while that is not the case when Ω merges with the boundary.

It stands to reason, that the surface energy of Γ should not be included when it it

lies on the boundary. There is no attempt here to resolve this problem with complete

mathematical rigour. However, following intuitive picture can be used to convince

oneself that this contradiction does not interfere with the physical process described

here. Consider an open set D0 ⊃ D and extend ψ to D0, now the merger of grain to

∂D can be understood as a portion of Γ being present in D0 −D.

Theorem IV.9 Consider the following minimizer

Γt+∆t = arg min
Γ

(
αF (Γ) +

dist(Γ,Γt)

2∆t

)

where Γ and Γt are closed curves and F (Γ) ≡ F (Ω) with Ω denoting the interior

region of the curve. It has following property

Γt+∆t = Γt + (v∆t)−→n , v = α (γκ+ (b1 − b0))

Proof. The same level set approach as in the proof of Theorem IV.3 is followed here.

The level set for Γt is denoted as ψt and the level set for Γ is denoted as ψ. All

the properties mentioned in Eq (A.10) are applied to the respective level sets. In

addition, the level set functions ψ and ψt are endowed with a special property that

they represent the negative signed distance to the curves ψ−1(0) and ψ−1
t (0), respec-

tively. In concise notations: pΓt(x, y) = |ψt(x, y)| and pΓ(x, y) = |ψ(x, y)| where p is

the perpendicular distance from respective curves as defined in Eq (4.5). It is clear

that this extra condition does not interfere with the properties defined in Eq (A.10).

Moreover, the proof for theorem IV.3 remains unaffected as it only depends on the

local behavior of cure at the boundary.
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The regularizer in the energy can be approximately represented as:

dist(Γ,Γt)

2∆t
≈ 1

2∆t

∫
Γt

|Γ(s)−Γt(s)|∫
0

pdpds

=

∫ ∫
|ψt| (H(ψ)H(−ψt) +H(−ψ)H(ψt)) dxdy

The term H(ψ)H(−ψt)+H(−ψ)H(ψt) has a value of 1 in the region between the zero

level sets of ψt and ψ. Noting that ψt is constant and taking the Gateaux derivative

with respect to ψ in the direction of ψ̃:

(
dist(Γ,Γt)

∆t
, ψ̃

)
= − 1

∆t

∫ ∫
δ(ψ)|ψt| (H(ψt)−H(−ψt)) ψ̃dxdy

= − 1

∆t

∫ ∫
δ(ψ)ψtψ̃dxdy

The Gateaux derivative of the functional described in Eq 4.6 is now estimated as:

(
αF (Γ) +

dist(Γ,Γt)

2∆t
, ψ̃

)
=

∫
D

δ(ψ)

(
−γ∇. ∇ψ

|∇ψ|
+ (f1 − f0)− ψt

∆t

)
ψ̃dxdy

+

∫
∂D

δ(ψ)γ
∇ψ
|∇ψ|

.−→n ∂Dds

Noting that for distance level sets, ψtδ(ψ) = (Γ − Γt).
−→n (in terms of distributions),

setting the Gateaux derivative to zero yields following equation in the interior:

α(γκ+ f1 − f0)− ψt
∆t

= 0

The above equation can then be rearranged in terms of the extremizer, Γt+∆t ≡ Γ,

Γt+∆t = Γt + α(γκ+ f1 − f0)∆t−→n
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Theorem IV.16 In the setup of Theorem IV.3, consider the following functional:

F (Ω) = f1 Area(Ω) + f0 Area(D − Ω) +

∫
Γ

γ(−→n (s))ds

where γ(−→n ) is the surface energy in the direction of unit normal, −→n . The extremizer

satisfies the following condition on the boundary, Γ:

∇.
(
γ−→n + (∇γ.−→t )

−→
t
)

+ f1 − f0 = 0 (A.11)

where −→n and
−→
t are normal and tangents of Γ. Moreover, in the absence of any

fixed/Dirichlet boundary conditions, Γ intersects ∂D at an non-zero angle such that

following condition holds true:

γ−→n .−→n ∂D + (∇γ.−→t )
−→
t .−→n ∂D = 0

Proof. For most part, the proof follows from the proof of Theorem IV.3, however,

Gateaux derivative of the surface term needs to be calculated:∫
D

γ

(
∇ψ
|∇ψ|

)
δ(ψ)|∇ψ|, ψ̃

 =

∫
D

γ

(
∇ψ
|∇ψ|

)(
δ′(ψ)|∇ψ|ψ̃ +

δ(ψ)∇ψ.∇ψ̃
|∇ψ|

)
+

δ(ψ)

(
∇γ.∇ψ̃ − (∇γ.∇ψ)(∇ψ.∇ψ̃))

|∇ψ|2

)
dxdy

Using Divergence theorem::

=

∫
D

γδ′(ψ)|∇ψ|ψ̃ −∇.
(
γδ(ψ)

∇ψ
|∇ψ|

+ δ(ψ)∇γ − δ(ψ)
(∇γ.∇ψ)∇ψ
|∇ψ|2

)
ψ̃dxdy

+

∫
∂D

δ(ψ)

(
γ

|∇ψ|
∇ψ +∇γ − ∇γ.∇ψ

|∇ψ|2
∇ψ
)
.−→n ∂Dψ̃ds
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Simplifying:

=

∫
D

−δ(ψ)∇.
(
γ
∇ψ
|∇ψ|

+∇γ − (∇γ.∇ψ)

|∇ψ|2
∇ψ
)
ψ̃dxdy

+

∫
∂D

δ(ψ)

(
γ

|∇ψ|
∇ψ +∇γ − ∇γ.∇ψ

|∇ψ|2
∇ψ
)
.−→n ∂Dψ̃ds

Observe that ∇γ − (∇γ.−→n )−→n is the component of ∇γ that is tangential to the Γ.

The rest follows as the proof of Theorem IV.3.

Proposition IV.12: Consider the set of all lines with rational slope p/q (p and q

are relative prime) that pass through atleast one grid point (i.e a point (a, b) ∈ I2).

These lines are regularly placed with following distance between two nearest lines:

∆% =
1√

p2 + q2
(A.12)

Proof. It is easy to see that if the line passes through one grid point, then it passes

through infinitely many grid points as if (a, b) ∈ I2 lie on the line then so does

(a + q, b + p) ∈ I2. To see these lines are regularly placed, observe that these lines

can be constructed by choosing a single line and then constructing the next parallel

line as the one passing through a grid point nearest to the initial line. Without loss

of generality, consider that the initial line is passing through the origin,

L := qy − px = 0

The distance of any general point (x0, y0) from line L is given as:

dL(x0, y0) =
|qy0 − px0|√

p2 + q2
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Clearly, if p, q, x0, y0 are integers, then the minimum possible non-zero value of |qy0−

px0| = 1. In fact, the minimum value is exactly 1. This is true because qy0− px0 = 1

is a diaphantine equation and gcd(p, q) = 1. This is a sufficient condition for an

integral solution of the above equation to exist. This proves that the minimum non

zero distance between a vertex position and the line L is 1√
p2+q2

.
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APPENDIX B

Pseudo-Codes

B.1 Conformal mesh generation

The data structure and the pseudo-code for the mesh labeling algorithm are presented

here. There are 2 kinds of data that are required in this algorithm: (1) FE Mesh

data and (2) Image data. It is recommended to calculate and save all the variables as

defined below at the time of mesh generation and be passed on to mesh labeling algo-

rithm. The FE mesh data structure is pre-processed to include the following variables:

• Dimension: Value is 2 for 2D and 3 for 3D

• MeshSize: The x-dimension of mesh is in the range [0,MeshSize(1)] and the

y-dimension is in the range [0,MeshSize(2)]. For 3D mesh, the z-direction is in

the range [0,MeshSize(3)].

• Coordinate: Location of each node of the mesh

• Nnode: Number of nodes
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• Connectivity : Contains tuples with nodes of each element

• Nelement : Number of elements

• Neighbor : In 3D meshes this data contains each pair of elements which share a

face. In case of 2D, it contains each pair of elements which share an edge.

• Npair : Number of Neighbors

• ElementVolume: Defined only for 3D meshes and contains the volume of each

element.

• Face: Defined only for 3D meshes and contains tuples with nodes of the shared

shared faces (indexed as the Neighbor data)

• FaceArea: Area of face defined in Face data

• FaceNormal : Unit Normal of face defined in Face data

• ElementArea: Defined only for 2D meshes and contains the area of each element.

• Edge: Defined only for 2D meshes and contains tuples with nodes of shared

edges (indexed as the Neighbor data)

• EdgeLength: Length of each edge defined in Edge data

• EdgeNormal : Unit Normal of each edge defined in Edge data

The Image data structure includes the following variables:

• ImageSize: The tuple (Nx, Ny, Nz) represents the Voxel size of the image in

each direction. In case of 2D, this variable contains a pair (Nx, Ny)
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• XGridData: Contains the x-coordinate value of the Voxelated/Pixelated image

with size determined by ImageSize.

• YGridData: Contains the y-coordinate value of the Voxelated/Pixelated image

with size determined by ImageSize.

• ZGridData: Defined only for 3D image data. Contains the z-coordinate value

of the Voxelated/Pixelated image with size determined by ImageSize.

• LabelGridData: Label values at each grid point.

• NLabel : Number of Labels

• LabelValues Contains the label values of enumerated from 1 to Nlabels

As discussed in the main text, this method uses an energy minimization approach.

Pseudo-code for estimation of Data cost amd Smooth cost is presented in Algorithm

1 and Algorithm 2, respectively. The energy minimization is carried out using the

GCO library developed in [7]. The pseudocode for using this library is presented in

Algorithm 3

Algorithm 1 Set-up Data cost (2D/3D)

1: M ← Mesh data . Import mesh data

2: I ← Image data . Import Experimental image data

3: Unary ← zeros(M.Nlabel,M.Nelement) . Initialize Data cost variable as an

matrix of zeros

4: if M.Dimension == 3 then . 3D Case

5: temp ← mode(M.ElementVolume) . Evaluate mode of the distribution of

element volume

6: Factor ← α(1− exp (−M.ElementVolume/temp)) . Evaluate Eq (2.2)
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7: for index1 ← 1 to M.Nelement do . Loop over each element

8: xpos ← mean(M.Coordinate(M.Connectivity(index1,:),1)) . Coordinates

of center of the element

9: ypos ← mean(M.Coordinate(M.Connectivity(index1,:),2))

10: zpos ← mean(M.Coordinate(M.Connectivity(index1,:),3))

11: nx = floor(xpos×I.ImageSize(1)/M.MeshSize(1))+1 . Location of center

with respect to image grid data

12: ny = floor(ypos×I.ImageSize(2)/M.MeshSize(2))+1

13: nz = floor(zpos×I.ImageSize(2)/M.MeshSize(3))+1

14: for index2 ← 1 to I.Nlabel do . Loop over each Label value

15: if LabelValues(index2 ) == I.LabelGridData(nx,ny,nz ) then

16: Unary(index2,index1 ) ← 0 . No cost if the Label matches the

image data

17: else

18: Unary(index2,index1 ) ← Factor(index1 ) . Add cost determined

by Eq(2.2)

19: end if

20: end for

21: end for

22: else

23: temp ← mode(M.ElementArea) . Evaluate mode of the distribution of

element area

24: Factor ← α(1− exp (−M.ElementArea/temp)) . Evaluate Eq (2.2)

25: for index1 ← 1 to M.Nelement do . Loop over each element

26: xpos ← mean(M.Coordinate(M.Connectivity(index1,:),1)) . Coordinates

of center of the element

27: ypos ← mean(M.Coordinate(M.Connectivity(index1,:),2))
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28: nx = floor(xpos×I.ImageSize(1)/M.MeshSize(1))+1 . Location of center

with respect to image grid data

29: ny = floor(ypos×I.ImageSize(2)/M.MeshSize(2))+1

30: for index2 ← 1 to I.Nlabel do . Loop over each Label value

31: if LabelValues(index2 ) == I.LabelGridData(nx,ny,nz ) then

32: Unary(index2,index1 ) ← 0 . No cost if the Label matches the

image data

33: else

34: Unary(index2,index1 ) ← Factor(index1 ) . Add cost determined

by Eq(2.2)

35: end if

36: end for

37: end for

38: end if

39: return Unary

Algorithm 2 Set-up Smooth cost (2D/3D)

1: M ← Mesh data . Import mesh data

2: I ← Image data . Import Experimental image data

3: Pairwise ← zeros(Nelement) . Initialize Smooth cost variable as a square

matrix of zeros

4: if M.Dimension == 3 then . 3D Case

5: for index ← 1 to M.Npair do

6: paircost ← g(M.FaceNormal(index ))× M.FaceArea(index ) . Evaluate

Eq((2.3))

7: Pairwise(M.Neighbor(index,1),M.Neighbor(index,2)) ← paircost .

Update Pairwise variable

8: end for
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9: else . 2D Case

10: for index ← 1 to M.Npair do

11: paircost ← g(M.EdgeNormal(index ))× M.EdgeArea(index ) . Evaluate

Eq((2.3))

12: Pairwise(M.Neighbor(index,1),M.Neighbor(index,2)) ← paircost .

Update Pairwise variable

13: end for

14: end if

15: return Pairwise

Algorithm 3 Using GCO Library for estimating the labeling

1: Input: Unary, Pairwise, LabelValues, NLabel, Nelement

2: h ← GCO Create(NElement,NLabel)

3: GCO SetDataCost(h,Unary)

4: Labelcost ← ones(Nlabel) - Id(Nlabel)

5: GCO SetSmoothCost(h),Labelcost)

6: GCO SetNeighbors(h),Pairwise)

7: GCO Expansion(h)

8: Label ← LabelValues(GCO GetLabeling(h))

9: return Label

10: end

B.2 Modeling microstructural fracture

The data structure used in the algorithm is presented. There are two kinds of data

that are required in this algorithm: (1) FE Mesh data and (2) Image data. It is

recommended to calculate and save all the variables as defined below at the time of

mesh generation and be passed on to the mesh labeling algorithm.

FE Mesh Data: The basic structure for any FE Mesh includes folling bare-bone
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data:

• Nnode: Number of nodes of the mesh

• Coordinate: Location of each node of the mesh

• Nelement : Number of elements

• Connectivity : Contains tuples with nodes of each element

It is post-processed to include the following derived quantitites:

• ElementCenter : Coordinates of a point in the interior of the element (possibly

centroid)

• Neighbor : It contains each pair of elements which share an edge.

• Npair : Number of Neighbors

• ElementArea: Area of each element

• Edge: It contains tuples with nodes of shared edges (indexed as the Neighbor

data)

• EdgeLength: Length of each edge defined in Edge data

• EdgeNormal : Unit Normal of each edge defined in Edge data

Finally, the smooth labeling procedure [81] provides the GrainID of each element in

the mesh, based on the experimental image.

Material Property Data: The Polycrystalline material properties are stored the

form of the following variables:

• GrainOrientation: Axis-Angle representation for each value of GrainID
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• SurfaceEnergyParameter : Surface energy parameters for each value of GrainID

• ShearModulus : Effective Shear Modulus of the specimen

• PoissonRatio: Effective Poisson’s Ratio of the specimen

• IntergranularEnergy : γig for each pair of grains

Next the basic Pseudocode modules are presented as used in 3.3.2:

Algorithm 4 Set-up Neighbor Cost

1: M ← Mesh data . Import mesh data

2: P ← Material Property Data . Import Material Property Data

3: NC ← zeros(Nelement) . Initialize Smooth cost variable as a square matrix of

zeros

4: dihedral ← zeros(Npair,1) . Initialize Smooth cost variable as a square matrix of

zeros

5: for i ← 1 to M.Npair do . Loop over all shared edges

6: Grain1 ← M.GrainID(M.Neighbor(i, 1)

7: Grain2 ← M.GrainID(M.Neighbor(i, 2)

8: if Grain1 ==Grain2 then . Transgranular edge

9: dihedral(i) ← ψD (evaluated using Eq(3.12))

10: SurfaceDensity ← γ̃ (evaluated using Eq(3.13))

11: else . Intergranular edge

12: SurfaceDensity ← P.IntergranularEnergy(Grain1,Grain2)

13: end if

14: NC (M.Neighbor(i,1),M.Neighbor(i,2))← 2SurfaceDensity×M.EdgeLength(i)

. Update Neighbor Cost

15: end for

16: return NC, dihedral
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Algorithm 5 Set-up Data Cost

1: Input: r, σT , β, a . Input domain radius, Tensile stress, crack angle and length

2: M ← Mesh data . Import mesh data

3: P ← Material Property Data . Import Material Property Data

4: KI , KII ← Evaluate Eq(3.14) using argument β

5: R-Index ← (distance(M.ElementCenter,Cracktip)¡ r) . Index of elements within

domain defined by r

6: (ri, θi)i∈R-Index = cartesian2polar(M.ElementCenter -Cracktip) . Find Polar

coordinate of each element

7: for i ∈R-Index do

8: G′(θi) ← Evaluate Eq(3.8) using arguments KI , KII ,P.ShearModulus and

P.PoissonRatio.

9: g(i, .) ← Evaluate Eq(3.7)

10: DC0(., i) ← Evaluate Eq(3.17) using arguments g(i, .), ri, M.ElementArea(i)

11: end for

12: UpperBoundaryIndex ← (M.ElementCenter ∈ UpperBoundary)

13: LowerBoundaryIndex ← (M.ElementCenter ∈ LowerBoundary)

14: DCBC(2,UpperBoundaryIndex ) ← LargeNumber

15: DCBC(1,LowerBoundaryIndex ) ← LargeNumber

16: return DC0, DCBC,R-Index

Algorithm 6 Estimate Crack Path

1: Input: DC0, DCBC , NC, R-Index . Input variables

2: h ← GCO Create(NNodes = length(R-Index),NLabel=2)

3: GCO SetDataCost(h,DC0 +DCBC)

4: LC ← ones(2) - Id(2)

5: GCO SetSmoothCost(h,LC)

6: GCO SetNeighbors(h,NC(R-Index,R-Index)) . Use Neighbor cost only for
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vertices in radial domain

7: GCO Expansion(h)

8: Label ← GCO GetLabeling(h) . This outputs label in {1,2} format. Change it

to {+1,-1} format, if desired.

9: return Label

Algorithm 7 Evaluate total energy

1: Input: DC0, NC, Label, R-Index

2: EnergyRelease ← −
(∑

j DC(Label, j)
)

3: x ← (Label == 1) . TypeCast bool to float type for next calculation

4: y ← (Label == 2) . Or equivalently, Label== −1. TypeCast bool to float type

5: NCR ← NC(R-Index,R-Index) . Use Neighbor cost only for vertices in radial

domain

6: SurfaceEnergy ←
∑

ij xiyj(NCR)ij

7: return ε(Γ) ← SurfaceEnergy - EnergyRelease

B.3 Multiphase flow

Only the pseudo-codes for Quadtree method is presented. The pixelated case can

be treated as a specific instance of the Quadtree method with only one layer. Com-

putational cost in this procedure can be reduced by pre-processing and saving the

complete quadtree structure before solving the problem. This information can be

saved in form of following variables:

• LayerSize: The size of ith layer from top is given as 4i−1 ×N2
d .

• NT : Total number of nodes, estimated as
∑Np

i=1(LayerSize).

• LayerIndex : Nodes are enumerated sequentially starting from top layer to bot-

tom layer. The nodes in the ith layer ranges from LayerIndex (i) + 1 to Lay-

erIndex (i)+LayerSize(i).

181



• Child : List of children of each node. Nodes in bottom layer have no child.

• Parent : List of parent of each node. Nodes in top layer have no parent.

• Descendent : List of all children, children of children and so on for each node.

• NumberDescendent : Number of descendant of each node

• LeafChild : List of descendants that are in the bottom layer.

• NumberLeafChild : Number of descendants of each node.

• N : A list of neighbors of each node (within the same layer) inlcuding the node

itself. This neighborhood is used to locate regions with similar labels. The set

of neighbors for any node can be determined by a user prescribed strategy and

it need not be same as the neighbors in the Crofton’s relation.

• Coord : Coordinates of each node.

• DistMap: Square matrix with distance between each pixel.

• Adjacency : A block diagonal matrix with each block being the adjacency of

the connections within the same layer. These connections are made using the

Crofton’s stencil, NR.

The multiphase flow is simulated by successively iterating over each time-step. The

pseudocode for each time-step is presented in Algorithm 9. As before, the optimiza-

tion is carried out using the GCO library developed in [7]. The pseudocode for using

this library is presented in Chapter II.

Algorithm uses following important temporary variables. NodeType: is an array

taking values in {−1, 0, 1} for each node, v of the Quadtree. NodeType(v)=1 if the

descendants of v and its neighbors have the same label but v’s parent does not have
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this property, NodeType(v)=0 if one of its ancestor is of NodeType=1, NodeType(v)=-

1 if one of its descendants is of NodeType=1 NodeLabel : is an array which assign a

label to each node of graph. The label of last layer’s nodes are prescribed/estimated

by the algorithm. The label of nodes with NodeType=1 and 0 is assigned based on

its respective LeafChild. The label of nodes with NodeType=2 is assigned arbitrarily.

ActiveParentNode: is an array which is initialized as the index of each node. If

the NodeType of a node is 0, then the ActiveParentNode of that node is set as its

ancestor’s index which is of NodeType=1.

Algorithm 8 EstimateCost

1: Input: CurrLabel, ∆t

2: NodeType ← 1Nt×1 . Initialize variables

3: ActiveNodeLabel ← 0NT×1

4: ActiveParentNode ← [1, ..., NT ]T

5: for i = 1 : Np − 1 do

6: for j = 1 :LayerSize(i) do

7: CurrNode← LayerIndex (i) + j

8: if NodeType (CurrNode) == 1 then

9: if Leaves of CurrNode’s neighbors have same label then

10: Set NodeType of CurrNode’s descendant as 0

11: Set ActiveParentNode of CurrNode’s descendants as CurrNode

12: Set ActiveNodeLabel of CurrNode and descendants as the leaf’s label

13: else

14: Set NodeType of CurrNode as −1

15: end if

16: end if

17: end for
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18: end for

19: ActiveNodeIndex ← Index of nodes with NodeType=1

20: InactiveChildIndex ← Index of nodes with NodeType=0

21: Set NewIndex to map ActiveNodeIndex to {1, ..., |ActiveNodeIndex|}

22: Pairwise ← Adjacency(ActiveNodeIndex,ActiveNodeIndex ) . Initiate Pairwise

cost

23: for v ∈ InactiveChildIndex do

24: temp ← Adjacency(ActiveNodeIndex, v)

25: vParentIndex ← NewIndex (ActiveParentNode(v))

26: Pairwise(:,vParentIndex ) + = temp

27: Pairwise(vParentIndex,:) + = tempT

28: end for

29: Unary ← 0NL×NT

30: for i ∈ [1, ..., NL] do

31: CurrNodes ← (CurrLabel == li)

32: NotCurrNodesIndex ← Index of nodes s.t. with CurrNodes==0

33: if there is atleast one node with label ` then

34: for v ∈ NotCurrNodesIndex do

35: Unary(`,v) ← Area(v)× ( f(`) + min DistMap(CurrNodes,v)) .

Define p (Eq(4.5)) as the minimum distance to the boundary Γ

36: end for

37: end if

38: end for

39: return Unary, Pairwise, ActiveNodeIndex

Algorithm 9 Iterative step for Multiphase flow

1: Input: CurrLabel, ∆t

2: Unary, Pairwise, ActiveNodeIndex ← EstimateCost(CurrLabel, ∆t)
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3: NewActiveNodeLabel ← minimize using GCO: Unary, Pairwise . Labeling step

on Quadtree graph with reduced nodes

4: Estimate NewLabel from NewActiveNodeLabel . Transpose the Labels of Active

node to the respective leaves

5: if NewLabel == CurrLabel then

6: Increase ∆t and goto step 2

7: end if

8: return NewLabel, ∆t

B.4 Solving differential equations on Quantum annealers

Algorithm 10 Box Algorithm

1: Problem definition: Calculate Si

2: Initialize {uci}, r

3: Estimate H, Ĵ and J̃

4: Find embedding: Logical graph
embed−−−→ Physical graph

5: while r > rmin do

6: Update J̃ for current (uci , r)

7: Anneal for {qij}

8: Map to amin, (ΠN)min

9: if (ΠN)min < ΠN [uc] then

10: uci = amin (Translation step)

11: else

12: r = r
2

(Contraction step)

13: end if

14: end while

15: end
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B.5 Boltzmann Machine

Algorithm 11 EstimateDerivative: Estimation of Gradient and Hessian

1: {v1, . . . ,vDS}, {q(v1), . . . , q(vD)} ← Batch Data

2: {S} ← Sample state of G

3: Estimate random variable ∇θE from {S}

4: Estimate E(∇θE), Cov(∇θE)

5: for i← 1 to DS do

6: [vI ,vO]← vi

7: Update Parameters of GHO and GH

8: {h} ← Sample state of GH

9: Estimate random variable ∇θE(v) from {[vI ,vO,h]}

10: Estimate E(∇θE|v), Cov(∇θE|v)

11: {[ṽO, h̃]} ← Sample state of GHO

12: Estimate random variable ∇θE(vI) from {[vI , ṽO, h̃]}

13: Estimate E(∇θE|vI), Cov(∇θE|vI)

14: end for

15: Evaluate Eq(6.3) and Eq(6.4)

16: end

Algorithm 12 Optimization Step (per epoch)

1: Input: M (Number of Batches), θ(t) (Current Parameters), {η, λ, ν} (Learning

parameters)

2: Partition D into M partitions D1, ...,DM

3: For all {i ∈ 1, ...,M}, define qi : Di → R such that qi(vk) = q(vk)/
∑
vj∈Di q(vj)

for all vk ∈ Di

4: θ(t,0) ← θ(t−1)

5: ∆θ(t,0) ← ∆θ(t−1)
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6: for i← 1 to M do

7: BatchData ← {Di, qi}

8: ∇θ(t,i)C,∇2
θ(t,i)

C ← EstimateDerivatives.BatchData . Algorithm 11

9: Estimate r(t,i)

10: ∆θ(t,i) ← ηr(t,i) − λθ(t,i) + ν∆θ(t,i−1)

11: θ(t,i+1) ← θ(t,i) + ∆θ(t,i)

12: Apply constraints

13: end for

14: θ(t+1) ← θ(t,M+1)

15: ∆θ(t) ← ∆θ(t,M+1)

16: return θ(t+1), ∆θ(t)
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APPENDIX C

Bandgap Optimization in Potts Model

Problem Statement: Given a finite undirected simple graph G(V , C), find parame-

ters, θ that maximizes the band gap in following two situations:

Case 1 : SD is prescribed and SG(θD) = SD.

Case 2 : Ground state multiplicity, NGS, is prescribed.

To make this optimization problem well posed, it is additionally imposed that Hmin
i ≤

Hi ≤ Hmax
i and Jmin

k ≤ Jk ≤ Jmax
k . Moreover, the functions U(s) and V (si, sj) are

predetermined and not calibrated in the optimization process.

C.1 Methods

A Mixed Integer Linear Programming (MILP) problem is formalized for parameter

estimation of Potts model. A brief overview of the MILP formulation is presented

below:

Definition C.1 (Mixed Integer Linear Programming (MILP)). An optimization

problem is considered to be of MILP type when the objective function is linear in the

decision variables and some of the decision variables are integer. A typical setup of
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MILP problem is given in Eq(C.1) where x is the decision variable of size N , I is the

set of indices of x which are integers and the matrices Aeq, beq, A and B are used

to define linear constraints.

Optimize: min
x
cx

Inequality constraints: Ax ≤ b

Equality constraints: Aeqx = beq

Bounds: lb ≤ x ≤ ub

Integer variables: xI ∈ Z

(C.1)

The MILP formulation for the two cases is presented next. In both cases, the decision

variables include the parameters, θ, and some auxiliary variables. These variables are

introduced along with the algorithm description. Moreover, the algorithms do not

enforce that ∆E > 0. Therefore, the results are accepted only if this condition is

met.

C.1.1 Parameter Estimation for Potts model with Data Set (PEPDAS)

The energies of individual states can be evaluated as a matrix product operation which

works well with linear programming framework. However, the calculation of band gap

requires calculation of a minimum of energy over SE. This operation introduces a non-

linearity. Thus, following auxiliary variables are introduced to pose this optimization

as a linear programming problem:

• E1 (real valued scalar): It represents the energy of the 1st excited state.

• m = [m1, ...,mNES ] (binary valued vector of size NE): It is defined such that

it’s value is 1 on exactly one index and 0 everywhere else. The index with value

1 must correspond to one of the 1st excited state.
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• M (real valued scalar): It represents a large positive number. For computational

purposes it can be evaluated as:

M =
(

max
s
|U(s)|

) NV∑
i=1

(
|Hmax

i |+ |Hmin
i |
)

+

(
max
s1,s2
|V (s1, s2)|

) NC∑
k=1

(
|Jmax
k |+ |Jmin

k |
)

(C.2)

The decision variable in this formulation are given as:

x =

[
θ, E1, m

]T

Consider a data set, SD = {S1, ...,SNDS}. The optimization cost (−∆E) is estimated

by substituting the E(S1) as that of ground state and E1 for the 1st excited state

energy. Thus the cost is evaluated as:

Cost = E(S1)− E1

The energy of all data states are explicitly equated as follows:

E(S1)− E(Si) = 0, ∀i ∈ {2, ..., NDS}

The 1st excited energy, E1 is estimated by bounding it from above by energies of all

the excited states. It is bounded from below by the energy of state corresponding to

the index at which mi = 1. The upper bound on E1 insures that if mi = 1, then

E1(θ) = E(Si). These conditions can be imposed using following set of equations

and inequality:

E(Si)− E1 +Mmi ≤M, ∀i ∈ {1, ..., NES}

−E(Si) + E1 ≤ 0, ∀i ∈ {1, ..., NES}
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NES∑
i=1

mi = 1

Most computing software only allows integer valued variables. In such a case, the

binary value of variable m can be explicitly enforced by setting following bounds on

integer valued m:

0 ≤ mi ≤ 1, ∀i ∈ {1, ..., NES}

This formulation is presented in Box 1 in the matrix format.

Optimization cost:

c =
[
ε(S1) −1 01×NES

]
Inequality constraints

A =


...

...
...

ε(Si) −1 [0, ..., 0, M︸︷︷︸
ithindex

, 0, ..., 0]1×NES

−ε(Si) 1 01×NES
...

...
...

 , b =


...
M

0
...


Equality constraints:

Aeq =


01×NV 0 11×NES

ε(S2)− ε(S1) 0 01×NES
...

...
...

ε(SNDS)− ε(S1) 0 01×NES

 , beq =


1
0
...
0


Bounds:

lb =
[
Hmin

1 , ..., Hmin
NV

, Jmin
1 , ..., Jmin

NC
,−M,01×NES

]
ub =

[
Hmax

1 , ..., Hmax
NV

, Jmax
1 , ..., Jmax

NC
,M,11×NES

]
Box C.1: MILP formulation for PEPDAS method
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C.1.2 Parameter Estimation for Potts model with Ground State Multi-

plicity (PEPGSM)

In this formulation only the variable NGS is provided by the user in stead of SData.

This condition adds the complexity of locating the ground states and evaluating the

ground state energy, E0(θ). This problem is resolved by including following auxiliary

variables:

• E0 (real valued scalar): It represents the ground state energy.

• l = [l1, ..., lNTS ] (binary valued vector of size NTS): It is defined such that it’s

value is 1 on exactly NGS indices and 0 everywhere else. The index has value 1

if and only if it corresponds to the ground state.

• E1 and M as defined in algorithm 1

• m = [m1, ...,mNTS ] (binary valued vector of size NTS): It is same as algorithm

1, except that the index are now enumerated based on the set S

The decision variable in this formulation are given as:

x =

[
θ E0 E1 l m

]

The optimization cost is given as:

Cost = E0 − E1

The estimation of E0 is done using the same idea of bounding E0 from above and

below. The bound is tight only for indices where li = 1.

−E(Si) + E0 ≤ 0, ∀i ∈ {1, ..., NTS}

E(Si)− E0 +Mli ≤M, ∀i ∈ {1, ..., NTS}
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NTS∑
i=1

li = NGS

For the estimation of E1, the upper bound is lifted on indices corresponding to ground

states. This allows to estimate minimum over non-optimal states. Moreover, index

of 1st excited state cannot coincide with ground state i.e. li = 1 and mi = 1 cannot

occur simultaneously. These conditions are imposed using following inequalities and

equations:

−E(Si) + E1 −Mli ≤ 0, ∀i ∈ {1, ..., NTS}

E(Si)− E1 +Mmi ≤M, ∀i ∈ {1, ..., NTS}

li +mi ≤ 1, ∀i ∈ {1, ..., NTS}
NTS∑
i=1

li = 1

The condition of binary valued variables is imposed on integer variables as follows:

0 ≤ li,mi ≤ 1, ∀i ∈ {1, ..., NES}

This formulation is presented in Box 2 in the matrix format.

C.2 Computation size

One of the limiting features of these algorithms is that it grows exponentially with

the graph size. An exact number of variables and equations is provided in TableC.1.

It should be noted that the number of states, NTS = NNV
L and is the reason for

the large size of the decision variable. The system of equations and inequalities in

both algorithms have large sparse blocks which provide some computational easing.

It should also be noted that the sparsity of graph, G, does not give considerable
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Optimization cost:

c =
[
01×(NV +NC) 1 −1 01×NTS 01×NTS

]
Inequality constraints

A =



01×(NV +NC) 0 0 11×NTS 11×NTS
...

...
...

...
...

−ε(Si) 1 0 01×NTS 01×NTS

ε(Si) −1 0 [..., 0, M︸︷︷︸
ithindex

, 0, ...] 01×NTS

−ε(Si) 0 1 [..., 0, −M︸︷︷︸
ithindex

, 0, ...] 01×NTS

ε(Si) 0 −1 01×NTS [..., 0, M︸︷︷︸
ithindex

, 0, ...]

...
...

...
...

...



, b =



1
...
0

M

0

M

...


Equality constraints:

Aeq =

[
01×(NV +NC) 0 0 11×NTS 01×NTS
01×(NV +NC) 0 0 01×NTS 11×NTS

]
, beq =

[
NGS

1

]
Bounds:

lb =
[
Hmin

1 , ..., Hmin
NV

, Jmin
1 , ..., Jmin

NC
,−M,−M,01×NTS ,01×NTS

]
ub =

[
Hmax

1 , ..., Hmax
NV

, Jmax
1 , ..., Jmax

NC
,M,M,11×NTS ,01×NTS

]
Box C.2: MILP formulation for PEPGSM method
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advantage in the algorithm as the size of the problem is mainly dictated by the

number of labels, NT , and the number of vertices, NV .

Quantity PEPDAS PEPGSM

Total variables NV +NC + 1 +NES NV +NC + 2 + 2NTS

Integer (Binary) variables NES 2NTS

Inequality conditions 2NES 4NTS + 1

Equality conditions NDS 2

Table C.1: Variable size for Algorithms PEPDAS and PEPGSM
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APPENDIX D

Boltzmann Machines

D.1 Definition of statistical quantities

For completeness of notation, the definition of each statistical quantity is provided in

context of the random variables. Conditional quantities require following conditional

probabilities:

p(h|v;θ, β) =
p([v,h];θ, β)∑
h̃ p([v, h̃];θ, β)

p([vO,h]|vI ;θ, β) =
p([vI ,vO,h];θ, β)∑
ṽO,h̃ p([v

I , ṽO, h̃];θ, β)

D.1.1 Expectations

E(E;θ, β) =
∑
S

E(S;θ)p(S;θ, β)

E
(
∂E

∂θi
;θ, β

)
=
∑
S

∂E

∂θi
(S;θ)p(S;θ, β)

E
(
∂E

∂θi

∣∣∣∣v;θ, β

)
=
∑
h

∂E

∂θi
([v,h];θ)p(h|v;θ, β)
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E
(
∂E

∂θi

∣∣∣∣vI ;θ, β) =
∑
vO,h

∂E

∂θi
([vI ,vO,h];θ)p([vO,h]|vI ;θ, β)

D.1.2 Covariances

The dependence on θ and β is dropped for notational convenience.

Cov

(
∂E

∂θi
,
∂E

∂θj

)
=
∑
S

∂E

∂θi

∂E

∂θj
(S)p(S)− E

(
∂E

∂θi

)
E
(
∂E

∂θj

)
Cov

(
∂E

∂θi
,
∂E

∂θj

∣∣∣∣v) =
∑
h

∂E

∂θi

∂E

∂θj
([v,h])p(h|v)− E

(
∂E

∂θi

∣∣∣∣v)E
(
∂E

∂θj

∣∣∣∣v)
Cov

(
∂E

∂θi
,
∂E

∂θj

∣∣∣∣vI) =
∑

[vO,h]

∂E

∂θi

∂E

∂θj
([vI ,vO,h])p([vO,h]|vI)

− E
(
∂E

∂θi

∣∣∣∣vI)E
(
∂E

∂θj

∣∣∣∣vI)

D.1.3 Variances

Var (E) =
∑
S

E2(S)p(S)− E2 (E)

Var (E|v) =
∑
h

E2([v,h])p(h|v)− E2 (E|v)

Var
(
E|vI

)
=
∑

[vO,h]

E2([vI ,vO,h])p([vO,h]|vI)− E2
(
E|vI

)
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D.2 Estimation of derivatives

D.2.1 Gradient of KL Divergence

The gradient of Log-likelihood for a single data is estimated as:

∂ ln p(v)

∂θj
=

∂

∂θj

(
ln
∑
h

e−βE(v,h)

)
− ∂

∂θj

(
ln
∑
v′,h′

e−βE(v′,h′)

)

= −β
∑
h

e−βE(v,h)∑
h′ e
−βE(v,h′)

∂E(v,h)

∂θj
+ β

∑
v′,h′

e−βE(v′,h′)∑
v′′,h′′ e

−βE(v′′,h′′)

∂E(v′,h′)

∂θj

= −β
∑
h

1
Z
e−βE(v,h)

1
Z

∑
h′ e
−βE(v,h′)

∂E(v,h)

∂θj
+ β

∑
v′,h′

e−βE(v′,h′)

Z

∂E(v′,h′)

∂θj

= −β
∑
h

p(v,h)

p(v)

∂E(v,h)

∂θj
+ β

∑
v′,h′

p(v′,h′)
∂E(v′,h′)

∂θj

= −β
∑
h

p(h|v)
∂E(v,h)

∂θj
+ β

∑
v′,h′

p(v′,h′)
∂E(v′,h′)

∂θj

= β

(
E
(
∂E

∂θj

)
− E

(
∂E

∂θj

∣∣∣∣v))
(D.1)

The gradient of KL Divergence is estimated as:

∂DKL(q||p)
∂θj

= −
∑

v∈{v1,...,vD}

q(v)
∂

∂θi

(
ln
p(v)

q(v)

)

= β

−E(∂E
∂θj

)
+

∑
v∈{v1,...,vD}

q(v)E
(
∂E

∂θj

∣∣∣∣v)
 (D.2)
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D.2.2 Gradient of Negative Conditional Log-likelihood

∂N
∂θj

= −
∑

[vI ,vO]∈{v1,...,vD}

(
∂ ln

∑
h′′ e−βE(vI ,vO,h′)

∂θj
−
∂ ln

∑
v′O,h′ e

−βE(vI ,v′O,h′)

∂θj

)

= β
∑

[vI ,vO]∈{v1,...,vD}

(∑
h′′

Zpθ(v
I ,vO,h′′)

Zpθ(vI ,vO)

∂E(vI ,vO,h′′)

∂θj

−
∑
v′O,h′

Zpθ(v
I ,v′O,h′)

Zpθ(vI)

∂E(vI ,v′O,h′)

∂θj


= β

∑
[vI ,vO]∈{v1,...,vD}

(∑
h′′

p(h′′|vI ,vO)
∂E(vI ,vO,h′′)

∂θj

−
∑
v′O,h′

p(v′O,h′|vI)∂E(vI ,v′O,h′)

∂θj


= β

∑
[vI ,vO]∈{v1,...,vD}

(
E
(
∂E

∂θj

∣∣∣∣vI ,vO)− E
(
∂E

∂θj

∣∣∣∣vI))
(D.3)

D.2.3 Hessian of KL Divergence

Hessian of Log-likelihood for a single data is estimated first. It uses the fact that in

the case of Ising type energy, ∂2E
∂θi∂θj

= 0 for all possible i and j.
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∂2 ln p

∂θi∂θj
(v) =− β

∑
h

∂p(h|v)

∂θi

∂E(v,h)

∂θj
+ β

∑
v′,h′

∂p(v′,h′)

∂θi

∂E(v′,h′)

∂θj

=− β
∑
h

∂

∂θi

(
e−βE(v,h)∑
h′′ e

−βE(v,h′′)

)
∂E(v,h)

∂θj

+ β
∑
v′,h′

∂

∂θi

(
e−βE(v′,h′)∑

v′′′,h′′′ e
−βE(v′′′,h′′′)

)
∂E(v′,h′)

∂θj

=β2
∑
h

(
p(h|v)

∂E(v,h)

∂θi
− p(h|v)

∑
h′′

p(h′′|v)
∂E(v,h′′)

∂θi

)
∂E(v,h)

∂θj

− β2
∑
v′,h′

(
p(v′,h′)

∂E(v′,h′)

∂θi
− p(v′,h′)

∑
v′′′,h′′′

p(v′′′,h′′′)
∂E(v′′′,h′′′)

∂θi

)
∂E(v′,h′)

∂θj

=β2

(∑
h

p(h|v)
∂E(v,h)

∂θi

∂E(v,h)

∂θj

)

− β2

(∑
h

p(h|v)
∂E(v,h)

∂θi

)(∑
h

p(h|v)
∂E(v,h)

∂θj

)

− β2

(∑
v′,h′

p(v′,h′)
∂E(v′,h′)

∂θi

∂E(v′,h′)

∂θj

)

+ β2

(∑
v′,h′

p(v′,h′)
∂E(v′,h′)

∂θi

)(∑
v′,h′

p(v′,h′)
∂E(v′,h′)

∂θj

)

=β2

(
Cov

(
∂E

∂θi
,
∂E

∂θj

∣∣∣∣v)− Cov

(
∂E

∂θi
,
∂E

∂θj

))
(D.4)

The hessian of KL Divergence is estimated as:

∂2DKL(q||p)
∂θi∂θj

= β2

Cov

(
∂E

∂θi
,
∂E

∂θj

)
−

∑
v∈{v1,...,vD}

q(v) Cov

(
∂E

∂θi
,
∂E

∂θj

∣∣∣∣v)


(D.5)

D.2.4 Hessian of Negative Conditional Log-likelihood for a single data

Hessian for a single data is estimated as: v ≡ [vI ,vO]
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∂2N
∂θi∂θj

=β

∑
h′′

∂p(h′′|vI ,vO)

∂θi

∂E(vI ,vO,h′′)

∂θj
−
∑
v′O,h′

∂p(v′O,h′|vI)
∂θi

∂E(vI ,v′O,h′)

∂θj


=β

(∑
h′′

∂

∂θi

(
e−βE(vI ,vO,h′′)∑
h e
−βE(vI ,vO,h)

)
∂E(vI ,vO,h′′)

∂θj

−
∑
v′O,h′

∂

∂θi

(
e−βE(vI ,v′O,h′)∑
ṽO,h̃ e

−βE(vI ,ṽO,h̃)

)
∂E(vI ,v′O,h′)

∂θj


=− β2

((∑
h′′

p(h′′|vI ,vO)
∂E(vI ,vO,h′′)

∂θi

∂E(vI ,vO,h′′)

∂θj

)

−

∑
h

p(h|vI ,vO)
∂E(vI ,vO,h)

∂θi

(∑
h′′

p(h′′|vI ,vO)
∂E(vI ,vO,h′′)

∂θj

)

−

∑
v′O,h′

p(v′O,h′|vI)∂E(vI ,v′O,h′)

∂θi

∂E(vI ,v′O,h′)

∂θj


+

∑
ṽOh̃

p(ṽO, h̃|vI)∂E(vI , ṽO, h̃)

∂θi

∑
v′O,h′

p(v′O,h′|vI)∂E(vI ,v′O,h′)

∂θj


= β2

(
Cov

(
∂E

∂θi
,
∂E

∂θj

∣∣∣∣vI)− Cov

(
∂E

∂θi
,
∂E

∂θj

∣∣∣∣v))
(D.6)

Now considering the visible data, [vI ,vO] ∈ {v1, ...,vD},

∂2N
∂θi∂θj

=β2
∑

[vI ,vO]∈{v1,...,vD}

(
Cov

(
∂E

∂θi
,
∂E

∂θj

∣∣∣∣vI)− Cov

(
∂E

∂θi
,
∂E

∂θj

∣∣∣∣vI ,vO))
(D.7)

D.2.5 Derivative of KL Divergence w.r.t. Inverse temperature

dDKL

dβ
= −

∑
v∈{v1,...,vD}

q(v)
d

dβ
ln
p(v)

q(v)
= −

∑
v∈{v1,...,vD}

q(v)

p(v)

d

dβ

∑
h e
−βE(v,h)∑

v′,h′ e
−βE(v′,h′)

= −
∑

v∈{v1,...,vD}

q(v)

p(v)

(
−
∑
hE(v,h)e−βE(v,h)∑
v′,h′ e

−βE(v′,h′)
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+

(∑
h e
−βE(v,h)

) (∑
v′,h′ E(v′,h′)e−βE(v′,h′)

)
(∑

v′′,h′′ e
−βE(v′′,h′′)

)2


=

∑
v∈{v1,...,vD}

q(v)

p(v)

(∑
h

E(v,h)p(v,h)− p(v)
∑
v′,h′

E(v′,h′)p(v′,h′)

)

=
∑

v∈{v1,...,vD}

q(v)

(∑
h

E(v,h)p(h|v)−
∑
v′,h′

E(v′,h′)p(v′,h′)

)

= −Ev,h(E) +
∑

v∈{v1,...,vD}

q(v)
∑
h

E(v,h)p(h|v)

d2DKL

dβ2
=

∑
v∈{v1,...,vD}

q(v)

(∑
h

E(v,h)
d

dβ
p(h|v)−

∑
v′,h′

E(v′,h′)
d

dβ
p(v′,h′)

)

=
∑

v∈{v1,...,vD}

q(v)

∑
h

E(v,h)
d

dβ

e−βE(v,h)∑
h′′ e

−βE(v,h′′)︸ ︷︷ ︸
Term I

−
∑
v′,h′

E(v′,h′)
d

dβ

e−βE(v′,h′)∑
v′′,h′′ e

−βE(v′′,h′′)︸ ︷︷ ︸
Term II


Term I is evaluated as:

d

dβ

e−βE(v,h)∑
h′′ e

−βE(v,h′′)
= −E(v,h)e−βE(v,h)∑

h′′ e
−βE(v,h′′)

+
e−βE(v,h)

∑
h′ E(v,h′)e−βE(v,h′)

(
∑
h′′ e

−βE(v,h′′))
2

= −E(v,h)p(h|v) + p(h|v)
∑
h′

E(v,h′)p(h′|v)

Term II is evaluated as:

d

dβ

e−βE(v′,h′)∑
v′′,h′′ e

−βE(v′′,h′′)
= −E(v′,h′)e−βE(v′,h′)

Z
+
e−βE(v′,h′)

∑
v′′,h′′ E(v′′,h′′)e−βE(v′′,h′′)

Z2

= −E(v′,h′)p(v′,h′) + p(v′,h′)
∑
v′′,h′′

E(v′′,h′′)p(v′′,h′′)
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Combining the two terms:

d2DKL

dβ2
=

∑
v∈{v1,...,vD}

q(v)

∑
h

−E2(v,h)p(h|v) +

(∑
h′

E(v,h′)p(h′|v)

)2

+
∑
v′,h′

E2(v′,h′)p(v′,h′)−

(∑
v′′,h′′

E(v′′,h′′)p(v′′,h′′)

)2


=
∑

v∈{v1,...,vD}

q(v) (−Var(E|v) + Var(E))

D.2.6 Derivative of Negative Like-Likelihood w.r.t. Inverse temperature

The derivative of log-likelihood of conditional probability for a single data, v ≡

[vI ,vO] is calculated first:

d ln p(v|vI)
dβ

=
d

dβ

(
ln

p(v)

p(vI)

)
=

d

dβ

ln
∑
h

e−βE(v,h) − ln
∑
vO,h

e−βE(vI ,vO,h)


=
∑
h

−E(v,h)
e−βE(v,h)∑
h′ e
−βE(v,h′)

+
∑
vO′ ,h′

E(vI ,vO
′
,h′)

e−βE(vI ,vO
′
,h′)∑

vO′′ ,h′′ e
−βE(vI ,vO′′ ,h′′)

=
∑
h

−E(v,h)p(v,h|v) +
∑
vO′ ,h′

E(vI ,vO
′
,h′)p(vI ,vO

′
,h|vI)

= −E(E|v) + E(E|vI)

The second derivative is estimated as

d2 ln p(v|vI)
dβ2

=
∑
h

E(v,h)
d

dβ

e−βE(v,h)∑
h′ e
−βE(v,h′)︸ ︷︷ ︸

Term I

−
∑
vO′ ,h′

E(vI ,vO
′
,h′)

d

dβ

e−βE(vI ,vO
′
,h′)∑

vO′′ ,h′′ e
−βE(vI ,vO′′ ,h′′)︸ ︷︷ ︸

Term II
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Term I is evaluated as:

d

dβ

e−βE(v,h)∑
h′ e
−βE(v,h′)

= −E(v,h)e−βE(v,h)∑
h′ e
−βE(v,h′)

+
e−βE(v,h)

∑
h′ E(v,h′)e−βE(v,h′)

(
∑
h′′ e

−βE(v,h′′))
2

= −E(v,h)p(h|v) + p(h|v)
∑
h′

E(v,h′)p(h′|v)

= −E(v,h)p(h|v) + p(h|v)E(E|v)

Term II is evaluated as:

d

dβ

e−βE(vI ,vO
′
,h′)∑

vO′′ ,h′′ e
−βE(vI ,vO′′ ,h′′)

= −E(vI ,vO
′
,h′)

e−βE(vI ,vO
′
,h′)∑

vO′′ ,h′′ e
−βE(vI ,vO′′ ,h′′)

+

e−βE(vI ,vO
′
,h′)
∑
vO′′ ,h′′ E(vI ,vO

′′
,h′′)e−βE(vI ,vO

′′
,h′′)(∑

vO′′′ ,h′′′ e
−βE(vI ,vO′′′ ,h′′′)

)2

= −E(vI ,vO
′
,h′)p(vO

′
,h′|vI) + p(vO

′
,h′|vI)E(E|vI)

Combining the two terms:

d2 ln p(v|vI)
dβ2

=
∑
h

−E2(v,h)p(h|v) + E(E|v)
∑
h

E(v,h)p(h|v)

+
∑
vO′ ,h′

E2(vI ,vO
′
,h′)p(vO

′
,h′|vI)

− E(E|vI)
∑
vO′ ,h′

E(vI ,vO
′
,h′)p(vO

′
,h′|vI)

= −E(E2|v) + E2(E|v) + E(E2|vI)− E2(E|vI)

= −Var(E|v) + Var(E|vI)

The first derivative of Negative conditional log-likelihood is estimated as:

dN
dβ

=
∑

[vI ,vO]∈{v1,...,vD}

E(E|v)− E(E|vI)
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The second derivative of Negative conditional log-likelihood is estimated as:

d2N
dβ2

=
∑

[vI ,vO]∈{v1,...,vD}

−Var(E|v) + Var(E|vI)

D.3 Transformation of Ising basis

It is a common practice to define the Ising states as either {0, 1} or {−1,+1} states.

The latter format is employed on the DWave machine. Here, the details about con-

version between these formats are presented. For the purpose of discussion, the {0, 1}

Ising model is represented with variables, {S, {Hi}NVi=1, {Ji}
NC
i=1} and the {−1, 1} Ising

with model is represented with overlined variables, {S, {H i}NVi=1, {J i}
NC
i=1}. The three

variables represent the state, field energy and interaction energy respectively. The

states of the system can be interchanged using the following equation:

S = 2S − 1 (D.8)

The interaction parameters can be interchanged as:

Jk =
1

4
Jk (D.9)

And the field parameter as:

H i =
1

2
Hi +

1

4

∑
π(k,1)=i OR π(k,2)=i

Jk (D.10)

This transformation shifts the energy of each state with a constant value and hence

leaves the Boltzmann probability unchanged as required.
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struction: a global shape from local interaction, volume 104. American Mathe-
matical Society Providence, 1992.
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