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ABSTRACT

Modern applications like machine learning, autonomous vehicles, and 5G networking re-

quire an order of magnitude boost in processing capability. For several decades, chip de-

signers have relied on Moore’s Law - the doubling of transistor count every two years -

to deliver improved performance, higher energy efficiency, and an increase in transistor

density. With the end of Dennard’s scaling and a slowdown in Moore’s Law, system ar-

chitects have developed several techniques to deliver on the traditional performance and

power improvements we have come to expect. More recently, chip designers have turned

towards heterogeneous systems comprised of more specialized processing units to buttress

the traditional processing units. These specialized units improve the overall performance,

power, and area (PPA) metrics across a wide variety of workloads and applications. While

the GPU serves as a classical example, accelerators for machine learning, approximate

computing, graph processing, and database applications have become commonplace. This

has led to an exponential growth in the variety (and count) of these compute units found in

modern embedded and high-performance computing platforms.

The various techniques adopted to combat the slowing of Moore’s Law directly trans-

lates to an increase in complexity for modern system-on-chips (SoCs). This increase in

complexity in turn leads to an increase in design effort and validation time for hardware

and the accompanying software stacks. This is further aggravated by fabrication chal-

lenges (photo-lithography, tooling, and yield) faced at advanced technology nodes (below

28nm). The inherent complexity in modern SoCs translates into increased costs and time-

to-market delays. This holds true across the spectrum, from mobile/handheld processors to

ix



high-performance data-center appliances.

This dissertation presents several techniques to address the challenges of rapidly birthing

complex SoCs. The first part of this dissertation focuses on foundations and architectures

that aid in rapid SoC design. It presents a variety of architectural techniques that were de-

veloped and leveraged to rapidly construct complex SoCs at advanced process nodes. The

next part of the dissertation focuses on the gap between a completed design model (in RTL

form) and its physical manifestation (a GDS file that will be sent to the foundry for fabri-

cation). It presents methodologies and a workflow for rapidly walking a design through to

completion at arbitrary technology nodes. It also presents progress on creating tools and

a flow that is entirely dependent on open-source tools. The last part presents a framework

that not only speeds up the integration of a hardware accelerator into an SoC ecosystem,

but emphasizes software adoption and usability.
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CHAPTER 1

Introduction

Modern applications like machine learning, autonomous vehicles, and 5G networking need
an order of magnitude boost in processing capability. For several decades, chip designers
have relied on Moore’s Law - the doubling of transistor count every two years - to de-
liver improved performance, higher energy efficiency, and an increase in transistor density.
With the end of Dennard’s scaling and a slowdown in Moore’s Law, system architects have
developed several techniques to deliver on the traditional performance and power improve-
ments we have come to expect. A prime example is the shift to multicore processors that
has become pervasive in present-day computers (and even mobile phones). More recently,
chip designers have turned towards heterogeneous systems comprised of more specialized
processing units to buttress the traditional processing units. These specialized units im-
prove the overall performance, power, and area (PPA) metrics across a wide variety of
workloads and applications. While the GPU serves as a classical example, accelerators
for machine learning, approximate computing, graph processing, and database applications
have become commonplace. This has lead to an exponential growth in the variety (and
count) of these compute units found in modern embedded and high-performance comput-
ing platforms. In 2010, Apple’s A4 mobile SoC was estimated to have 9 accelerator blocks
and by 2014, the A8 had pushed that number to 29 [1]. These counts are expected to be
dwarfed by the A14 Bionic SoC announced in 2020.

The various techniques adopted to combat the end of Moore’s Law directly translates
to an increase in complexity for modern system-on-chips (SoCs). This increase in com-
plexity in turn leads to an increase in design effort and validation time for hardware and
the accompanying software stacks. This is further aggravated by fabrication challenges
(photo-lithography, tooling, and yield) faced at advanced technology nodes (below 28nm).
The inherent complexity in modern SoCs translates into increased costs and time-to-market
delays. This holds true across the spectrum, from mobile/handheld processors to high-
performance data-center appliances. The skyrocketing costs of modern SoC projects can
directly be attributed to design complexity, and it varies widely depending on the nature
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of the chip. Extremely complex SoCs can be an order of magnitude more costly when
compared to a traditional SoC optimized for high-performance. While the design and fab-
rication costs of complex SoCs can be ameliorated by high-volume and increased life-time,
the total cost remains dominated by non-recurring engineering costs (NREs). These one-
time overhead costs (often applicable to prototype runs) can be prohibitively expensive for
small companies and academic researchers.

This dissertation presents several techniques to address the challenges of rapidly birthing
complex SoCs. It proposes a series of architectures, methodologies and frameworks that
aid in the swift construction of complex SoC architectures and approaches to rapidly walk
it through the realization process.

Despite the availability of a range of silicon IP cores from vendors such as Arm and
Synopsys, the designer productivity for such chips has remained flat. Other companies
have devised ASIC platforms with qualified function blocks and interfaces to cut down on
design time and verification, however, these are often too rigid for the rapidly changing
landscape and only address a small percentage of the challenge. Complex chips rely on
expert designers at the different phases of the design to fill this gap and achieve the neces-
sary performance and cost goals. The process essentially remains an unintuitive black-art
and filled with excessive trial-and-error. Chapter 2 presents a variety of architectural tech-
niques that were developed and leveraged to rapidly construct Celerity - a complex SoC
design targeted at a 16nm process. This addresses the first step of the challenge - quickly
creating a complex SoC architecture that will seed the rest of the chip realization process.
It fleshes out design reuse, modularization, and high-level synthesis (HLS) techniques that
were used to rapidly develop the celerity chip.

Chapter 3 focuses on SoCs that require additional analog components. An analog-
mixed-signal SoC (AMS-SoC) is a combination of analog circuits, digital circuits and/or
mixed-signal circuits on the same chip. Example AMS-SoCs include smart sensors, wire-
less/RF devices, and voltage/power controllers. The increased use of cellular phones and
other portable devices has propelled growth in this category of SoCs. The design of high-
performance analog components is often labor-intensive and involves some hand-crafting
or rigid block generation. Furthermore, the inner workings of these components have his-
torically been opaque to digital designers responsible for the overall SoC architecture. This
co-habitation often presents challenges for the overall system since the blocks often have
different power and clocking needs. It often leads to a stringent interface between the
blocks that typically affects overall performance and is often a source of chip re-spins due
to poorly matched circuit models. The proposed Fully Autonomous SoC (FASoC) frame-
work is process-agnostic approach that leverages a catalog of synthesizable analog blocks
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to generate complete SoC designs ready for fabrication.
Chapter 4 focuses on the gap between a completed design model (in RTL form) and

its physical manifestation (a GDS file that will be sent to the foundry for fabrication).
These challenges are as much SoC design complexity as they are due to methodologies
binding CAD tools and thte workflow from an architectural design to a finished product.
The recent proliferation of commercial tools, from formal verification, logic synthesis, tim-
ing optimization to physical design have made it possible to deploy mature algorithms to
scale design blocks before being composed into systems. Using these tools usually re-
quires calibrating and setting a large number of parameters. Further downstream towards
the manufacturing process, an even larger number of parametric adjustments must be made
to achieve at-performance/at-yield manufacturing results. This chapter also presents Cadre
Flow, a robust flow methodology that targets addresses the challenge of pushing a com-
pleted design through the CAD tools on an arbitrary technology node.

To break through the shackles forged from NDAs and IP restrictions (imposed by EDA
tool vendors and IP providers alike), Chapter 5 presents work that reboots this effort using
a completely open-source approach.

Chapter 6 progress further through the chip’s life cycle with ACAI, a framework that not
only speeds up the integration of a hardware accelerator, but emphasizes software adoption
and usability. It provides the hardware accelerator with a shared view of system memory,
shared virtual addressing, and data caching with full hardware coherency. ACAI simpli-
fies the software programming experience, reduces integration effort, and orchestrates job
scheduling.

1.1 Contributions

In this thesis, I present five projects focused on rapid SOC design. Many of the projects are
large undertakings with significant contributions by several individuals at different institu-
tions. For clarity, my contributions to the individual projects are as follows:

1. Celerity: On this project, my contributions primarily revolved around physical de-
sign. This includes developing the physical design flow and mythologies. I provided
feedback on logic design and architecture, performed block integration, and handled
all chip sign-off tasks.

2. FASoC: On this project, I was primarily involved in architecting the infrastructural
pieces for the framework. This includes the general scaffolding and API/interface
definitions. I also performed physical design and lead the chip tape-out.
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3. Cadre Flow: I was the primary developer of the flow.

4. OpenROAD: I was primarily responsible for creating test cases, steering the devel-
opment of the physical design tools, creating a flow that stitches all off the tools
coherently, and developing any intermediate tools/workarounds.

5. This was also ongoing work as the tools matured

6. ACAI: This work was performed in collaboration with the research team at Arm
while I interned there.
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CHAPTER 2

Rapid Architectures: Celerity

The recent trend towards accelerator-centric architectures has renewed the need for demon-
strating new research ideas in prototype systems with custom chips. Unfortunately, build-
ing such research prototypes is tremendously challenging. This chapter presents an open-
source software and hardware ecosystem partly addresses this challenge by reducing de-
sign, implementation, and verification effort. It briefly describes the Celerity system-on-
chip (SoC), a 5×5 mm, 350M-transistor chip in TSMC 16nm, which uses a tiered parallel
architecture to improve both the performance and energy efficiency of embedded applica-
tions.

The Celerity SoC includes five RV64G cores, a 496-core RV32IM tiled manycore
processor, and a complex BNN (binarized neural network) accelerator implemented as a
Rocket custom co-processor (RoCC). It was developed in nine months, from PDK access
to tapeout. The project is a part of the DARPA CRAFT (Circuit Realization At Faster Time-
lines) program which seeks to develop new methodologies for rapid chip development. At
the time of fabrication in 2018, Celerity was the most complex SoC developed to date in
academia in terms of transistor count (385 Million).

The work presented in this chapter was completed in collaboration with researchers
from multiple universities including the University of Michigan, the University of Califor-
nia - San Diego, Cornell University, and with support from Arm.

Other major accomplishments from this work include:

• The coordination of researchers and resources spread across the four universities

• The development of an agile workflow in an advanced 16nm FinFET node

• Satisfying the CRAFT program constraints with only $1.3 million in NRE costs

Results from this chapter first appeared at The Symposium on High Performance Chips
(Hot Chips) [2]. It has also appeared in First Workshop on Computer Architecture Research
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with RISC-V [3], IEEE Micro Journal [4], 2019 Symposium on VLSI Circuits [5], and
IEEE Solid-State Circuits Letters [6].

2.1 Introduction

Rapidly emerging workloads require rapidly developed chips. The Celerity 16nm open-
source SoC was implemented in nine months using an architectural trifecta to minimize
development time: a general-purpose tier comprised of open-source Linux-capable RISC-
V cores, a massively parallel tier comprised of a RISC-V tiled manycore array that can
be scaled to arbitrary sizes, and a specialization tier that uses high-level synthesis (HLS)
to create an algorithmic neural-network accelerator. These tiers are tied together with an
efficient heterogeneous remote store programming model on top of a flexible partial global
address space memory system.

Emerging workloads have extremely strict energy-efficiency and performance require-
ments that are difficult to attain. Increasingly, we see that specialized hardware accelerators
are necessary to attain these requirements. But accelerator development is time-intensive,
and accelerator behavior cannot be easily modified to adapt to changing workload proper-
ties. These factors motivate new architectures that can be rapidly constructed to address
new application domains, while still leveraging specialized hardware and offering high
performance and energy efficiency even as applications evolve post-tapeout.

We propose a chip architecture called Celerity, meaning “swiftness of movement,” that
embodies an architectural design pattern called the tiered accelerator fabric (TAF). TAF
minimizes time-to-market and allows the chip to maintain high performance and energy
efficiency on evolving workloads.

A TAF has three key architectural tiers:

• The general-purpose tier is a set of OS-capable cores for executing complex codes
like networking, control, and decision making.

• The specialization tier is made of highly specialized algorithmic accelerators to target
specific computations with extreme energy-efficiency and performance requirements.

• The massively parallel tier is made of scalable programmable arrays of small, tightly
coupled cores that attain high energy efficiency and flexibility for evolving work-
loads.

In response to our target application domain—autonomous vision systems—the Celer-
ity SoC implements the general-purpose, specialization, and massively parallel tiers using
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five Linux-capable RISC-V cores, a binarized neural network (BNN) accelerator gener-
ated with HLS, and a “GPU-killer” 496-core RISC-V manycore array, respectively. Figure
1 shows a block diagram of Celerity highlighting the general-purpose tier in green, the
specialization tier in blue, and the massively parallel tier in red. To bind these compo-
nents together, we support a heterogeneous remote store programming model that allows
core and accelerators to write to each other’s memories through a partitioned global address
space. Layered upon this model are two novel synchronization mechanisms: load-reserved,
load-on-broken-reservation (LR-LBR), which extends load-reserved store conditional for
efficient producer-consumer synchronization; and the token queue, which uses LR-LBR
to achieve efficient producer-consumer transfer of resource ownership. This architecture
enabled us to design and implement Celerity in only nine months through open-source and
agile hardware techniques.

Figure 2.1: Celerity block diagram. The general-purpose tier (shown in green) has a five-
core Rocket core complex, the specialization tier (shown in blue) has a BNN accelerator,
and the massively parallel tier (shown in red) has a 496-core tiled manycore array

Celerity is an open-source 5x5-mm tiered accelerator fabric SoC taped out in Taiwan
Semiconductor Manufacturing Company (TSMC) 16nm Fin field-effect transistor (Fin-
FET) Compact (FFC) with 385 million transistors. In addition to the previously mentioned
501 RISC-V cores, it features an ultra-low-power 10-core RISC-V manycore array pow-
ered by an on-chip DC/DC low-dropout (LDO) regulator [2]. The 10-core array shares the
same code as the larger 496-core array. The architecture has separate clock domains for
I/O (400 MHz), the manycore (1.05 GHz), and the rest of the chip (625 MHz). Figure 2(a)
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shows the SoC’s floorplan image from our CAD tools. Figure 2(b) shows the layout of
Celerity. Finally, Figure 2(c) shows a photomicrograph.

The design’s entire source base is available at http://opencelerity.org. See the sidebar,
“Achieving Celerity with Celerity,” for the methodologies used to design and tapeout the
Celerity chip in less than nine months.

Figure 2.2: Detailed Celerity images. The floorplan (a) shows the relative sizes and po-
sitions of the various blocks in the SoC. The layout (b) shows the physical chip attributes
where the red area represents SRAM, the blue area represents logic, and the yellow area
represents interconnection between blocks. The silicon die photo (c) shows the real chip
taken from a photomicrograph.

2.2 The Celerity Architecture

When addressing emerging application domains with a tiered accelerator fabric, a number
of key decisions must be made. The specialization tier is among the most important, be-
cause it is the most integral in determining the chip’s super-capabilities, and it requires the
most effort to design. The choice of general-purpose tier will be determined by feature set
(for example, security, debugging features, or raw irregular computation) but also by the
availability and expense of processor IP cores. ARM offers many variants, but low-non-
recurring-engineering (NRE) open-source versions of RISC-V are becoming available, like
the Berkeley Rocket processor core used in our design. The massively parallel tier could be
comprised of ARM or Advanced Micro Devices (AMD) GPU IPs. Alternatively, our open-
source tiled manycore architecture, BaseJump Manycore, is free and allows for fast and
flexible scaling from one to 1 million+ cores, at an area cost of 1 mm2 per 42 cores in 16
nm. We explore each tier in the following sections, but first discuss how these components
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are tied together.

2.2.1 Partitioned Global Address Space

Communication among accelerators and cores in the three tiers is accomplished through
a partitioned global address space over a unified mesh network-on-chip (NoC). When a
remote store is performed, a wide single-word packet is injected into the NoC, which con-
tains x,y coordinates of the destination core, the local word address at that core, 32 bits of
data to store, and a byte mask. When the message arrives at the destination, the address is
translated and the store is performed. Ordering of messages sent from one node to another
is maintained. The parameterized NoC in Celerity was configured for 512 coordinates (x =
0..15, y = 0..31) and 22-bit addresses. The manycore’s cores map one-to-one to all of these
addresses except y = 31, which demarcates the south edge of the manycore. The remaining
16 positions on the south edge are used for four parallel connections to the BNN and four
connections to the Linux-capable Rocket cores.

While remote loads, such as those found in the Adapteva parallel architecture [7], are
easy to add and could arguably make the system more programmable, they have high round-
trip latency costs and lead users astray by offering a high-convenience, low-performance
mechanism. Remote stores do not incur such a latency penalty because they are pipelined
and can therefore be issued once per cycle. When a remote store is performed, a local
credit counter will be decremented at the sender. When the store is successful at the remote
node, a store credit is placed on the store network that is routed back to the original tile on
a separate 9-bit physical network, incrementing the counter. A RISC-V fence instruction
on either manycore or Rocket core is used to detect whether any outstanding remote stores
exist, allowing a core to pause for memory traffic to finish during a barrier.

2.3 The General-purpose Tier

For our SoC to support complex software stacks, exception handling, and memory man-
agement, we instantiated five Berkeley RISC-V Rocket cores running the RV64G ISA. The
Rocket core is an open-source [8], five-stage, in-order, single-issue processor with a 64-
bit pipelined FPU and size-configurable non-blocking caches. Each Rocket core can run
an independent Linux image. This gives us the flexibility to run SPEC-style applications
and network stacks like TCP/IP. Four Rocket cores connect directly to the massively par-
allel tier using four parallel remote store links on the global mesh NoC. One Rocket core
connects directly to the specialization tier through a dedicated Rocket custom coprocessor
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(RoCC) interface. These connections are made using the Berkeley RoCC interface. L1 data
and instruction caches are configured at 16 KBs each. When remote stores are done to the
Rocket cores, they go directly into the four Rocket cores’ caches, potentially causing cache
misses to DRAM. Remote store addresses are translated using a segment address register
that maps the 22-bit address space into the Rocket’s 40-bit address space. Rocket cores
issue remote stores through a single RoCC instruction and can, for example, do remote
stores to other Rocket cores, to any manycore, or to any of the BNN input links. Remote
stores to manycore tiles are used to write instruction and data memories, as well as to set
configuration registers, such as freeze registers and arbitration policies for the local data
memory.

2.4 The Massively Parallel Tier

To achieve massive amounts of programmable energy-efficient parallel computation, we
wanted an architecture with a high density of physical threads per area. Therefore, we
implemented a 496-core tiled manycore array [9] that interconnects low-power RISC-V
Vanilla-5 cores using a mesh interconnection network. Each tile contains a simple router
and a Vanilla-5 core. Our in-house-developed Vanilla-5 cores are five-stage, in-order,
single-issue processors with 4-KB instruction and data memories that use the RV32IM ISA.
The manycore uses a strict remote store programming model [10], giving us a highly pro-
grammable array to maintain high performance as workloads evolve post-tapeout. A key
contribution of our work is to extend the remote store programming model to incorporate
heterogeneous processor types and to support fast producer-consumer synchronization.

2.4.1 NoC Design

The manycore’s mesh NoC design, which facilitates the remote store fabric that ties the
chip together, targets extreme area efficiency using only a single physical network for data
transfer, no virtual channels, single-word/single-flit packets, deterministic x,y dimension-
ordered routing, and two-element router input buffers. Head-of-line blocking and deadlock
are eliminated because remote stores can always be written to a core’s local memory, re-
moving the word from the network. Connections between neighboring tiles are 80-bit wide
full duplex, running at 1 GHz, allowing address, command, and data information to be
routed in a single wide word, and each hop takes one cycle. To generate packets that go off
the array’s south side, to the specialized and general-purpose tiers, a NoC client performs
a store to a memory address whose x,y coordinate is beyond the coordinates of manycore.
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Both local and remote stores use the same standard store word, half-word, and byte instruc-
tions from the ISA.

2.4.2 Remote Stores

Each time a store is about to be performed, the high bit of the address determines if the
store address is local (0) or remote (1). The local address space uses the remaining 31
bits to determine the memory address. The remote address space uses the next 9 bits as a
destination coordinate (x= 0..15, y = 0..31) of the target core on the NoC. The remaining
22 bits are translated at the destination into a local address, and the store is performed.

2.4.3 LBR

The manycore features an extension to the LR store-conditional (LR-SC) atomic instruc-
tions called LR-LBR. LR operates much like in LR-SC by performing a load and then
adding the target address to a reservation register, which is then cleared if an external core
writes to that address. LBR is a new instruction that places the core’s pipeline in a low-
power mode until another core remote stores to that address and breaks the reservation, at
which point the core will wake up and perform a load on the target address. Typically, user
code will load a memory location’s value with LR, branch away if it is satisfied with the
value (a ready flag is set, or a FIFO pointer has sufficiently advanced), and otherwise fall
through to a LBR to wait for it to change, so it can be rechecked.

2.4.4 Token Queue

Our design shows that tight producer-consumer synchronization can be layered on top of
remote store programming. By using the LR-LBR instruction extension, we implemented
the token queue, a software construct used to asynchronously transfer control of buffer ad-
dress between producer and consumer tiles. The consumer will allocate a circular buffer to
which tokens can be enqueued and dequeued. A token can be a simple data value, a pointer
to a memory buffer, or identifiers for more abstract resources. Producer and consumer
can consume different quantities of tokens at each step. By enqueuing a set of tokens, the
producer is transferring read/write ownership of those resources to the consumer. By de-
queuing a set of tokens, the consumer is transferring write ownership of the resource back
to the producer. The producer and consumer each have local copies of head and tail point-
ers to the circular buffer, but only the producer will modify the head pointers, and only the
consumer will modify the tail pointers. The remote versions of the pointers will be up-
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dated after the local versions, similar to a clock-domain-crossing FIFO. The producer tile
confirms there is enough space in the token queue to enqueue a particular group of tokens,
using LR-LBR to wait in low-power mode for remote updates to the local tail pointers if
there is not enough space in the queue. Then, it will send the corresponding data through
remote stores. After that is done, the producer will update the head pointers through local
and remote stores. The consumer confirms that it has enough tokens in the token queue to
proceed, using the LR-LBR instructions to wait in low-power mode until the head pointer
is updated by the producer, and checking if enough tokens have been enqueued. When
there is enough, the consumer will wake up and start accessing the data represented by the
new tokens in the buffer. When done, the consumer will dequeue the tokens by updating
the tail pointers and proceeding back to consuming the next set of tokens.

2.4.5 Programming Models

The token queue and remote store programming models are particularly well suited for pro-
gramming with the StreamIt [11] programming model. We are also investigating libraries
that will enable CUDA-style applications to be ported more easily, but emphasizing an ex-
ecution model that is better able to leverage the inherent locality in parallel computation
rather than using double datarate type five synchronous graphics random-access memory
(GDDR5) DRAM as the primary communication mechanism between cores.

2.5 The Specialization Tier

Deciding which workload parts get implemented in the specialization tier takes careful
consideration. In Celerity, we chose to implement a BNN accelerator. The architecture and
reasoning for implementing a BNN in the specialization tier are discussed here.

2.5.1 Choosing the Neural Network

Deep convolutional neural networks (CNNs) are now the state of the art for image classi-
fication, detection, and localization tasks. However, using CNN software implementations
for real-time inference in embedded platforms can be challenging due to strict power and
memory constraints. This has sparked significant interest in hardware acceleration for CNN
inference, including our own prior work on FPGA-based CNN accelerators [12]. Given this
context, we chose to use flexible image recognition as a case study for demonstrating the
potential of tiered accelerator fabrics in general, and the Celerity SoC specifically. Most
prior work on CNN accelerators uses carefully hand-crafted digital VLSI architectures and
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represent the weights and activations in 8 to 16-bit fixed-point precision. Recent work
on BNNs has demonstrated that binarized weights and activations (+1, -1) can, in certain
cases, achieve accuracy comparable to full-precision floating-point CNNs [13]. BNNs’ key
benefit is that the computation in convolutional and dense layers can be realized with sim-
ple exclusive-negated-OR (XNOR) and pop-count operations. This removes the need for
more expensive multipliers and adder trees, saving area and energy. BNNs can also achieve
a substantial gain (8-16X) in the memory size of weights compared to a fixed-point CNN
using the same network structure, making the model easier to fit on-chip. Additionally,
there is an active body of research on BNNs attempting to further improve classification
performance and reduce training time. We employ the specific BNN model shown in Fig-
ure 3(a) based on Courbariaux et al [13]. This model includes six convolutional, three
max-pooling, and three dense (fully connected) layers. The input image is quantized to
20-bit fixed-point, and the first convolutional layer takes this representation as input. All
remaining layers use binarized weights and activations. BNN-specific optimizations in-
clude eliminating the bias, reducing the batch norm calculation’s complexity, and carefully
managing convolutional edge padding. This network achieves 89.8-percent accuracy on
the CIFAR-10 dataset.

Figure 2.3: BNN accelerator

2.5.2 Performance Target

We target ultra-low latency, requiring a batch size of one image and a throughput target of
60 classifications per second to enable real-time operation.
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2.5.3 Creating and Optimizing the Specialization Tier

We use a three-step process to map applications to tiered accelerator fabrics. First, we im-
plement the algorithm using the general-purpose tier for initial workload characterization
and to identify key kernels for acceleration. Second, we can choose to accelerate the al-
gorithm using either the specialization tier or the massively parallel tier. Finally, we can
further improve performance and/or efficiency by cooperatively using both the specializa-
tion tier and the massively parallel tier.

2.5.4 Establishing the Functionality of the Specialization Tier

In the first step, we implemented the BNN using the general-purpose tier to characterize the
computational and storage requirements of each layer. Figure 3(b) shows the number of bi-
nary weights and binary activations per layer in addition to the execution time breakdown,
assuming a very optimistic embedded microarchitecture capable of sustaining one instruc-
tion per cycle. The total estimated execution time for the BNN software model (estimated
to be around 2 billion instructions) on the general-purpose tier would be approximately
200X slower than the performance target. Although the binarized convolutional layers re-
quire more than 97 percent of the dynamic instructions, preliminary analysis suggests that
all nine layers must be accelerated to meet the performance target. The storage require-
ments for activations are relatively modest, but the storage requirements for weights are
non-trivial and require careful consideration.

2.5.5 Designing the Specialization Tier

In the second step, we implemented the BNN using a configurable application-specific ac-
celerator in the specialization tier. This accelerator was designed to integrate with a Rocket
core in the general-purpose tier through the RoCC interface. Although the massively par-
allel tier could be used to implement the BNN at speed, superior energy efficiency could be
attained through specialization. Figure 3(c) shows the BNN accelerator architecture. The
BNN accelerator consisted of modules for fixed-point convolution (first layer), binarized
convolution, dense layer processing, weight and activation buffers, and a DMA engine to
move data in and out of the buffers. The BNN accelerator processes one image layer at a
time and can perform 128 binary multiplications (XNORs) per cycle using two convolvers.
Any non-binarized computation is performed completely within each module to limit the
amount of non-binarized intermediate data stored in the accelerator buffers and/or mem-
ory system. The activation buffers are large enough to hold all activations; however, in

14



this design, the sizeable binarized weights necessitated off-chip storage using the general-
purpose RoCC memory interface. The binarized convolution unit includes two convolvers
implemented with a flexible line buffer based on Zhao et al [12].

2.5.6 Combining the Massively Parallel and Specialization Tiers

In the third step, we explored the potential for cooperatively using both the specialization
tier and the massively parallel tier. Our early analysis suggested that repeatedly loading the
weights from off-chip would significantly impact both performance and energy efficiency.
We implemented a novel mechanism that enables cores in the massively parallel tier to send
data directly to the BNN. To classify a stream of images, we first load all data memories
in the massively parallel tier with the binarized weights. We then repeatedly execute a
small remote-store program on the massively parallel tier; each core takes turns sending
its portion of the binarized weights to the BNN in just the right order. The BNN can be
configured to read its weights from queues connected to the massively parallel tier instead
of from the general-purpose tier.

2.5.7 The Benefits of HLS

We employed HLS to accelerate time-to-market and to enable significant design-space ex-
ploration for the BNN algorithm. The BNN model was first implemented in C++ for rapid
algorithmic development, before adding HLS-specific pragmas and cycle-accurate Sys-
temC interface specifications. Cadence Stratus HLS transformed the SystemC code into
cycle-accurate RTL. Very similar C++ test benches were used to verify the BNN algorithm,
the SystemC BNN accelerator, the generated BNN RTL, and the Rocket core running the
BNN accelerator. This HLS-based design methodology enabled three graduate students
with near-zero neural-network experience to rapidly design, implement, and verify a com-
plex application-specific accelerator.

2.6 Performance Analysis Of The Specialization Tier

Table 1 shows the performance and power of optimized BNN implementations on the
Celerity SoC and other platforms. Although each platform uses a different implementa-
tion methodology, technology, and memory system, these results can still provide a rough
high-level comparison. These results suggest that the Celerity SoC can potentially improve
performance/Watt by more than 10X compared to our prior FPGA implementation [12] and
more than 100X compared to a mobile GPU.

15



Table 2.1: Performance comparison of optimized BNN implementations on different plat-
forms.

In the table, runtimes measure processing a single image from the CIFAR-10 dataset.
The power of GPT, SpT, and SpT + MPT is estimated using post-place-and-route gate-level
simulations with limited clock-gating, as provided in the Celerity SoC (only gating the
entire MPT when unused). Aggressive clock-gating assumes an alternate design that can
gate unused cores/accelerators in the GPT, SpT, and MPT. Celerity SoC power estimates
do not include DRAM power.

2.7 New Directions For Fast Hardware Design

Our research examines the speedy construction of new classes of chips in response to
emerging application domains. Our approach was successful due to a heterogeneous archi-
tecture that offers fast construction, scalability, and heterogeneous interoperability through
the remote store programming model and advanced producer-consumer synchronization
methods like LR-LBR and token queues. At the same time, our design methodology
combines HLS for specialized tier accelerator development, open-source technology like
Rocket and BaseJump for key IP blocks, fast motherboard and socket development and
FPGA firmware, and principled SystemVerilog parameterized component libraries like
BaseJump Standard Template Library (STL). Finally, our agile chip development tech-
niques enabled us to quickly tape out a 16nm design with a team of graduate students
geographically distributed across the US. Each approach targets the key goal of creating
new classes of chips quickly and with low budgets. We hope that the lessons from our
experience will inspire new classes of chips, unlocking the creativity of future students,
architects, and chip designers alike.
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2.8 Achieving Celerity With Celerity: Fast Design Method-
ologies For Fast Chips

Celerity was designed under the DARPA Circuit Realization at Faster Timescales (CRAFT)
program, whose goal was to reduce the design time for taping out complex SoCs. To meet
the aggressive schedule for Celerity, we developed three classes of techniques to decrease
design time and cost: reuse, modularization, and automation.

2.8.1 Reuse

Reuse for hardware design accelerates both design and implementation time, as well as test-
ing and verification time. For Celerity, we made heavy reuse of open-source designs and
infrastructures. We leveraged the Berkeley RISC-V Rocket core generator3 to implement
the SoC’s general-purpose tier, allowing the reuse of Rocket’s testing infrastructure and the
RISC-V toolchain. The same infrastructure was used for the manycore array’s Vanilla-5
core. Because validation is usually more work than design, inheriting a robust test in-
frastructure greatly reduced overall design time. We leveraged the RoCC interface for all
connections to the general-purpose tier. As part of our learning process with RoCC, we
created the “RoCC Doc,” located at http://openceler- ity.org. Beyond the RISC-V ecosys-
tem, we leveraged the BaseJump open-source hardware components, which can be found
at http://bjump.org. BaseJump provides open-source infrastructure and frameworks for
designing and building SoCs, including the BaseJump STL [14] for SystemVerilog, the
BaseJump SoC framework, BaseJump Socket, BaseJump Motherboard, BaseJump FPGA
bridge, and BaseJump FMC bridge, as seen in Figure 4. In Celerity, we built all of our RTL
using the Basejump STL and SoC framework’s pre-validated components and unit testing
suite. We ported the BaseJump Socket to the CRAFT flip-chip package and will use the
BaseJump Motherboard for the final chip. By leveraging the unit testing suite from Base-
Jump and RISC-V testing infrastructure, we could focus our verification efforts primarily
on integration testing. Using an FPGA in place of the SoC, the BaseJump infrastructure
allows for designs to be simulated in the same two board environment they will be running
in post-tapeout. All firmware and test-bench code written during simulation will be reused
during bring-up once the chip returns from fabrication, giving us a robust verification and
validation suite. Reuse is also enabled by extensibility and parameterization. Due to the
scalable nature of tiled architectures, BaseJump STL’s parameterization, and the flexibility
of our backend flow methodology, we were able to extend the BaseJump manycore array
from 400 cores to 496 to absorb free die area. By changing just nine lines of code, we could
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fully synthesize, place, route, and sign off on the new design in a span of three days.

Figure 2.4: BaseJump open-source hardware components. The SoC framework, including
NoC and high-speed off-chip double data-rate (DDR) interface, were implemented using
STL, as was the manycore. The fabricated chip conforms to the socket definition and is
placed in the motherboard’s socket. The motherboard connects through an FMC connector
to a ZedBoard hosting RISC-V testing infrastructure. Communication between the moth-
erboard and ZedBoard is handled with the open-source FMC bridge code.

2.8.2 Modularization

One key challenge for this project was that our design teams were spread across four phys-
ical locations. Fine-grained synchronization between teams was not feasible, so we devel-
oped techniques to modularize both our design interfaces on chip and our interfaces be-
tween teams. Many techniques we used can be compared to an agile design methodology
as it applies to hardware. We used a bottom-up design flow to build, iterate, and integrate
smaller components into a larger design. We also used a SCRUM-like task management
system, where we clearly identified and prioritized various tasks and issues, minimized
synchronization issues, and distributed tasks across team members without assigning rigid
specialized roles. We also defined tape-in [15] deadlines. These are simpler designs that
were tapeout ready before the deadline. This allowed us to stress-test our physical design
flow early in the design cycle, in addition to identifying big-picture problems early on,
which we found particularly useful when dealing with an advanced technology node. Each
successive tape-in incorporated an additional IP block, building up to what we see in Celer-
ity. We performed daily chip builds to ensure no changes broke the overall design and that
we always had a working design to tapeout. To help modularize the RTL, chip component
interfaces were established early. We selected RoCC early on for on-chip communication
and BaseJump for off-chip communication. Because we used BaseJump STL’s pervasive
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latency-insensitive interfaces, our architecture-specific dependencies between components
were minimized.

2.8.3 Automation

CRAFT’s tight time constraints required that we employ higher degrees of automation to
accelerate the design cycle. We developed an abstracted implementation flow to minimize
the changes necessary for different designs to go from synthesis through sign-off. We
combined vendor reference scripts with an integration layer to coalesce implementation
parameters and separate scripts into design-specific and process-specific groups. We could
then quickly identify which scripts needed to be modified between designs.

We also took advantage of emerging tools and methodologies. We used the PyMTL
framework for rapid test-bench development using high-level languages and abstractions
rather than lowlevel SystemVerilog. In our BNN accelerator development, we used HLS to
drastically improve design space exploration and implementation time.
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CHAPTER 3

Rapid Architectures: FASoC

FASoC is a fully autonomous mixed-signal SoC framework, driven entirely by user con-
straints, along with a suite of automated generators for analog blocks. The process-agnostic
framework takes high-level user intent as inputs to generate optimized and fully verified
analog blocks using a cell-based design methodology.

Our approach is highly scalable and silicon-proven by an SoC prototype which includes
2 PLLs, 3 LDOs, 1 SRAM, and 2 temperature sensors fully integrated with a processor in
a 65nm CMOS process. The physical design of all blocks, including analog, is achieved
using optimized synthesis and APR flows in commercially available tools. The framework
is portable across different processes and requires no-human-in-the-loop, dramatically ac-
celerating design time.

Work presented in this chapter has been presented in Government Microcircuit Ap-
plications and Critical Technology Conference [16], a poster at The Symposium on High
Performance Chips (Hot Chips), and at IFIP/IEEE International Conference on Very Large
Scale Integration [17].

3.1 Introduction

There is an ever-growing need for automation in analog circuit design, validation, and in-
tegration to meet modern-day SoC requirements. Time-to-market constraints have become
tighter, design complexity has increased, and more functional blocks (in number and vari-
ety) are being integrated into SoCs. These challenges often translate to increased manual
engineering efforts and non-recurring engineering (NRE) costs. We present FASoC, an
open-source1 framework for Fully-Autonomous SoC design. Coupled with a suite of ana-
log generators, FASoC can generate complete mixed-signal system-on-chip (SoC) designs

1Source code for the framework and all generators developed as part of this work can be downloaded from
https://fasoc.engin.umich.edu

20

https://fasoc.engin.umich.edu


from user specifications. The framework leverages differentiating techniques to automat-
ically synthesize correct-by-construction RTL descriptions for both analog and digital cir-
cuits, enabling a technology-agnostic, no-human-in-the-loop implementation flow.

Analog blocks like PLLs, LDOs, ADCs, and sensor interfaces are recasted as struc-
tures composed largely of digital components while maintaining analog performance. They
are then expressed as synthesizable Verilog blocks composed of digital standard cells and
auxiliary cells (aux-cells). We employ novel techniques to automatically characterize aux-
cells and develop models required for generating bespoke analog blocks. The framework is
portable across processes, EDA tools and scalable in terms of analog performance, layout,
and other figures of merit.

The SoC generation tool translates user intent to low-level specifications required by
the analog generators. To achieve full SoC integration, we leverage the IP-XACT [18]
standard and added vendor extensions to capture additional meta-data from the generated
blocks. This enables the composition of vast numbers of digital and analog components
into a single correct-by-construction design. The fully composed SoC design is finally
realized by running the Verilog through synthesis and automatic place-and-route (APR)
tools to realize full design automation.

3.2 Framework Architecture

Aux-cell 
Generator

Analog 
Generators

SoC
Solver

PDK,
Std Cells Models

User
Intent

Block 
specs

SoC

SoC Generation

Process Setup and Modeling

SoC
Integrator

Analog 
Generators

Model 
Generators

Aux-cell 
Generator Embedded EDA tool 

flow for simulation, 
synthesis, APR, etc
Feedback loop

IP DB

Composite
Design

Aux-cell
library

Figure 3.1: FASoC Framework Overview

A high-level representation of the framework is shown in Fig. 3.1. The Process setup

and modeling phase is performed once for the process design kit (PDK), and it involves
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the generation of the aux-cells and models for the generator. The SoC generation phase
begins by translating high-level user-intent into analog specifications that satisfy the user
constraints. The block generators are invoked as needed and the SoC integrator stitches
the composed design and walks it through a synthesis and APR flow to create the final
SoC layout. The FASoC framework is tightly integrated with analog generators for PLL,
LDO, temperature sensor, and SRAM blocks. Section 3.3 describes the circuit architecture
adopted by the different generators.

3.2.1 Process Setup and Modeling

Simulation Artifact
Generation

PDK,
Cells

Design 
Templates

Characterization 
Scripts

Aux-cell
library

Model
Generation

Model
File

Figure 3.2: Aux-cell and model file generation flow

FASoC employs a synthesizable cell-based approach for generating analog blocks, sig-
nificantly cutting back on manual layout and verification efforts. Aux-cells are small analog
circuits that buttress the standard cell library and provide specific analog functionality re-
quired by the generators. Each cell is no larger than a D flip-flop and can be placed on the
standard cell rows. We simplify the creation of aux-cells by using a suite of design tem-
plates in tandem with PDK characterization scripts. The templates capture the aux-cell’s
precise circuit behavior without including any PDK-specific information. The characteri-
zation scripts operate on the PDK to derive technology-specific parameters required to set
knobs within the templates. Example parameters extracted from the PDK include threshold
voltage, metal parasitics, MOSFET behavior, and Fan-out of 4. The knobs set within the
template include device type, transistor sizing, and other circuit design options. The re-
sults from aux-cell generation include the netlist, layout, timing library, and other files re-
quired to proceed with conventional synthesis and APR. At present, the layouts for the aux-
cells are manually created, however, we are currently evaluating several layout automation
tools [19–21] that are showing promising results. We find our template-based methodology
for creating aux-cells enhances process-portability and significantly cuts down on design
time. All of the generators presented in this work leverage 8 aux-cells that are depicted in
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Fig. 3.3.

Differential switched capacitor (PLL) Differential Tri-State Buffer (PLL)

Unit Power 
Switch (LDO)Clocked Comparator (LDO)Level Converter (Temp)

Inverter
(Temp)

Header Cell
(Temp)

NAND2
(Temp)

Figure 3.3: Schematic for aux-cells used across PLL, LDO and temperature sensor gener-
ators

The analog generators use models to predict performance and select design parameters
to create optimized block designs that satisfy the input specifications. The models are
derived from the parameterized templates that incorporate the aux-cells. The models for
each generator vary and are developed from a combination of mathematical equations,
machine learning, and design space exploration. The modeling exercise is also performed
once per PDK and the results are saved into a model file. Sections 3.3 briefly describes the
modeling approach adopted by each generator integrated into the framework.

3.2.2 SoC Generator

This stage begins with an iterative SoC solver to determine the optimal composite design

description which is a combination of blocks, analog specifications, and connections. The
strategy is guided by high-level user intent (i.e. target application and power/area budgets),
available analog block generators, and a database of IPs. Analog generators are invoked
as necessary to generate bespoke blocks required to satisfy the specifications within the
composite design. The generator outputs include all artifacts required to push the block
through standard synthesis and APR tools. The outputs are also cached in an IP database,
allowing for block generation to be skipped if a matching entry already exists. Entries in the
database can also be populated with 3rd party IPs such as processors and other peripherals.
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Figure 3.4: Analog generator flow

We adopt the IP-XACT format to describe the composite design as well as the block
designs stored in the database. We use an extended format [16] to capture additional analog
data, simulation, and verification information.

The SoC integrator begins by stitching the composite design together and translating
it to its structural Verilog equivalent that can be run through digital simulation tools. The
structural Verilog, along with all required artifacts from the database, is then passed through
the embedded tool flow to generate the final verified GDS. This same flow is pervasive
across the framework and is also used by all generators (aux-cell, model, and analog).
Tools within the flow cover all aspects of chip design including SPICE simulations, digital
simulations, synthesis, APR, DRC, LVS, and extraction.

3.3 Analog Generator Architecture

Synthesizable analog blocks were introduced a few decades ago and have continued to
evolve, closely matching the performance obtainable by full custom designs. Prior works
have described techniques for synthesizing analog blocks for UWB transmitters [22], PLLs [23],
DACs [24], and other types of analog blocks [25–27]. This approach lowers engineering
design costs, increases robustness, eases portability across PDKs, and continues to show
promise even at advanced process nodes [5,28,29]. The analog generators developed as part
of this work can be likened to ASIC memory compilers that take in a specification file and
produce results in industry-standard file formats, which can then be used in standard syn-
thesis and APR tools. Unlike typical memory compilers, our generators are open-source,
process agnostic, and share a scalable framework amenable to different types of blocks.
The framework is modular and share a similar process as depicted in Fig. 3.4. The full
generation process is broken down into three steps:
Verilog Generation: This step leverages models to produce a synthesizable Verilog de-
scription of the block that conforms to the input specifications. It also generates guid-
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ance information in a vendor-agnostic format. The guidance includes synthesis constraints,
placement instructions, and other information that may be required by the synthesis and/or
APR tool to generate blocks that achieve the desired performance. In addition, this step
also reports early estimates on performance and the characteristics of the block to be cre-
ated.
Macro Generation: The Verilog and guidance information is passed to a digital flow to
create macros that can be embedded into larger SoC designs. The digital flow in this step
performs synthesis, APR, DRC, and LVS verification. The digital flow includes an adapter
to translate the guidance into vendor-specific commands used in synthesis and APR. The
adapter abstraction allows us to (1) express additional design intent without exposing pro-
tected vendor-specific commands and (2) easily support multiple cad tools including open-
source alternatives [30–32]
Macro Validation: The last step is a comprehensive verification and reporting of the gen-
erated block. The full circuit goes through parasitic extraction, SPICE simulations, require-
ment checks and other verification to culminate in a detailed datasheet report.

The generators can be invoked standalone, outside of the full SoC generator flow. To
simplify the system integration, we adopt the AMBA™ APB protocol as the register in-
terface to all blocks. The following sub-sections briefly describe the analog generators
currently integrated into the FASoC framework.

3.3.1 PLL

The generated PLLs (Fig. 3.5) share the same base architecture as ADPLL [33]. The phase
difference of the reference and output clocks are captured by the embedded time-to-digital
converter (TDC), while the digital filter calculates the frequency control word for the digi-
tally controlled oscillator (DCO). The input specification to the generator defines the nomi-
nal frequency range and in-band phase noise (PN). The PLL generator uses a physics-based
mathematical model [34] for characterization. We first build a mathematical relationship
between DCO design parameters (number of aux-cells and stages) and the required DCO
specifications. Using simulation results from a parametric sweep, we then find the effective
ratio of drive strength and capacitance for each aux-cell. This ratio enables us to predict
frequency and power results (frequency range, frequency resolution, frequency gain factor,
and power consumption) given a set of input design parameters.

25



Aux-cell 2:
Fine Ctrl. (FC)

Aux-cell 1:
Coarse Ctrl. 

(CC)

...

Embedded TDC

.    .    .
Digital Ctrl. 

including Loop 
Filter

CLK_REF

Latched 
Phase

DCO 
CTRL. 

WORD

DCO

 

NCC

NDRV

NSTG

NFC

Figure 3.5: DCO architecture indicating the aux-cells and designs parameters

3.3.2 LDO

The generated LDOs (Fig. 3.6) share the same base architecture as DLDO [35]. The LDO
leverages an array of small power transistors that operate as switches for power manage-
ment. Based on design requirements, the generator can swap the clocked comparator with
a synthesizable stochastic flash ADC [36] to improve transient response. The input specifi-
cations to the LDO generator are the VIN range, Iload,max range, and the dropout voltage. The
generator uses a poly-fit model of the load current (Iload,max) performance with respect to
various combinations of aux-cell connections (connected in parallel and for different VDD
inputs) in both ON and OFF states. We create the model by simulating various test circuits
after parasitic extraction.

3.3.3 Temperature Sensor

The generated sensors (Fig. 3.7) share the same base architecture as [37]. The sensor
relies on a temperature-sensitive ring oscillator and stacked zero-VT devices for better
line sensitivity. The input specifications include the temperature range and optimization
strategy, for either error or power. For a given temperature range, the models attempt to
select the optimal circuit topology that minimizes error and/or performance. The generator
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relies on a predictive Bayesian neural network model to select design parameters that satisfy
the input specifications.

3.3.4 SRAM

The compiled SRAMs (Fig. 3.8) follow a standard multi-bank memory architecture. Un-
like other generators in the framework, the memory generator uses a combination of macros
instead of aux-cells. The macros used include a 6T bitcell, a row decoder, column mux,
wordline driver, sense amplifier, write driver, and a pre-charge circuit. The macros are
stitched together, bottom-up, to form a bank. The user input specifications are capacity,
word size, operating voltage, and operating frequency. The generator adopts a hierarchi-
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cal meta compiler (HMC) [38] for technology characterization and a hierarchical memory
model to determine the optimal row and column periphery. The model helps to select the
SRAM architecture and the leaf-level components that best satisfy the user specifications
while minimizing energy consumption and delay.

3.4 Evaluation

The framework has been fully validated in a 65nm process. Our evaluation begins with a
focus on the individual generators. We present results that explore the design-space possi-
ble with each generator and demonstrate full adherence to the user input specification. We
then present results from a prototype SoC created using this framework.

3.4.1 Analog Generation Results

Fig. 3.9 presents the results of several PLLs generated using different input specifications.
It compares the input requirements against the simulated results after parasitic extraction.
The results show that the generated frequency ranges cover that of the input requirements
and with better phase noise levels. The highlighted PLL 8, corresponds to one of the PLLs
integrated into the SoC prototype and also shows measured results that satisfy the given
specifications

Fig. 3.10 shows the spice simulation results of multiple LDO designs after parasitic
extraction. The graph shows the maximum load current at different input voltages corre-
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Figure 3.9: Generated PLL designs for eight different input specifications. PLL1 is taped-
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Figure 3.10: Iload,max vs. array size, for multiple LDO designs generated

sponding to the input parameter array size for a dropout voltage of 50mV. The highlighted
measurements correspond to the input specification for blocks integrated into the SoC pro-
totype with VIN = 1.3V and VREG = 1.2V .

Fig. 3.11 presents the simulation results of various memory capacities across a broad
range of architectural options and operating voltages (VDD). Each point on the curve cor-
responds to an energy-delay pair specific to an architecture (rows, columns, and banks) and
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Figure 3.11: Normalized energy and delay plots for various memory sizes while sweeping
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VDD combination. The generator selects the Pareto-optimal design that satisfies the user
requirements. The highlighted point on the 16KB curve corresponds to the memory block
integrated into the SoC prototype.

Fig. 3.12 shows the spice simulation results of multiple temperature sensor designs af-
ter parasitic extraction.

3.4.2 Prototype Chip Results

The prototype SoC design (Fig. 3.14) includes 2 PLLs, 3 LDOs, 1 16KB SRAM, and 2
temperature sensors fully integrated with an Arm® Cortex™-M0 in a 65nm CMOS process.
Using off-chip connections, we were successfully able to power the entire SoC using one
of the LDOs and clock it using the PLLs, while monitoring the temperature of the chip.

Fig. 3.9 presents results for 8 PLL designs generated from different input specifications,
including one from the prototype, and the results show output performances in-line with the
input specifications. The measured frequency is 10% slower while the phase noise matches
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Figure 3.12: Power and Error results against temperature for various temperature sensor
designs (each fitted plot represents a unique design)

the simulation and specification requirement. Table 3.1 summarizes the results for all PLLs
in the prototype.

Table 3.2 shows the LDO Iload,max measurements closely matching the input specifica-
tion requirements. Compared to the comparator-based architecture (LDO1/2), the ADC
based controller architecture (LDO3) achieves better transient performance with a 10x and
7x improvement in settling time and undershoot voltage respectively. The line and load
regulation values are measured at VIN=1.3V, VREF=1.2V, and Iload=10mA. LDO3 load reg-
ulation is comparatively worse due to the high gain of the ADC based controller. As we
operate at lower VREF and Iload conditions, the line/load regulation degrades for all the LDOs
because of the increase in relative switch strength.
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Table 3.1: PLL Simulation vs Measurement Results

Output Specifications PLL1 PLL2
Sim Meas Sim Meas

Min Freq (MHz) 200 190 170 150
Max Freq (MHz) 1,060 920 1,080 930
Fnom (Mhz) 643 558 627 548
Power@Fnom (mW) 7.20 6.90 8.06 7.70
Area (µm2) 167,639.04 167,639.04

Table 3.2: LDO Simulation vs Measurement Results @ 200MHz control clock

Output Specifications LDO1 LDO2 LDO3
Sim Meas Sim Meas Sim Meas

Dropout Voltage (mV) 50 70 50 80 50 80
Iload,max (mA) 15.00 15.38 25.00 24.84 25.00 23.72
Settling Time - Ts (µs) 1.1 1.8 2.1 2.9 0.12 0.19
Max Undershoot (V) 0.35 0.98 0.57 0.98 0.38 0.14
Max Current Eff. (%) 94.2 96.4 95.7 94.5 81.9 74.0
Load Regulation (mV/mA) - -1.00 - -0.35 - -3.6
Line Regulation (V/V) - 0.180 - 0.004 - 0.950
Area (µm2) 17,318.56 31,187.56 127,163.56
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The temperature sensor has an area of 2,620µm2. A 2-pt calibration is performed at
0°C and 80°C. Measured results show a sensing range between -20°C and 100°C with an
accuracy of ±4°C.

Fig. 3.15 summarizes the SRAM measured and simulated performance across the in-
put operating voltage range of 0.8V to 1.2V. The SRAM peak performance is at 65MHz
with the power consumption of 2.09mW at 1.2V, which exceeds the targeted frequency of
50MHz. The measured power for the SRAM also includes the leakage power of the pro-
cessor and peripheral interface. The generated SRAM has an area of 0.68mm2 with the
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Figure 3.15: Measured and simulated performance and power results of SRAM across
VDD

custom bitcell area occupying 0.4mm2.

3.5 Conclusion

We presented an autonomous framework that generates a completely integrated SoC design
based on user input specifications. This framework is PDK agnostic and allows for faster
turn-around times when building custom analog blocks and integrating them into larger
SoC designs. The framework includes generators for PLL, LDO, temperature sensor and
SRAM blocks. The framework can easily be extended to support more generators and
different PDKs. We fabricated an SoC prototype in a 65nm process and presented silicon
measurements to validate the framework’s accuracy. Our work establishes a new milestone
in creating a silicon compiler [39] that further reduces the complexity of realizing modern
SoCs and cuts down on design time.
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CHAPTER 4

Rapid Methodologies: Cadre Flow

The Cadre Flow is an offshoot project from celerity and aims to deliver on a process ag-
nostic methodology to accelerate the physical implementation of chips using commercial
tools. It focuses on the workflow for developing integrated circuits, moving designs from
Register Transfer Level (RTL) to a fully implemented physical design (in GDS file format).
This phase in the SoC design is usually referred to as RTL-to-GDS or Back-end flow

Cadre Flow is robust and adaptable to arbitrary designs across different technology
nodes. It has support for 13 process development kits (PDKs) and has been validated with 6
different tape-outs across different 6 PDKs. The flow has been shared to over 7 institutions
and validated across 3 different premises.

4.1 Introduction

A major milestone in the course of developing an SoC is the completion of the behavioral
RTL. The steps to achieve this is often referred to as the Front-end flow. The RTL is a
representation of the design that can be simulated and accurately describes the full behavior
of the chip as intended by the designers. This representation, however, contains little to no
information regarding the physical manifestation of the chip. Beyond this step is physical
implementation (often referred to as Back-end flow) which focuses on the realization of the
circuit into a physical implementation, whether on an ASIC or FPGA.

The behavioral model lacks several critical information including timing constraints
(clock structures, etc.), physical constraints (ports, pads, placement, guides, packaging,
etc.), and information relating to the target technology process/kit. To create any fabri-
catatable chip, all this information and more need to be passed on to the CAD tools and
then evaluated for adherence and effectiveness.

While CAD tools have advanced greatly over the last few decades, there is a myriad of
physical design choices and decisions that the designer is required to make (and analyze)
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in order to improve the quality of results (QoR). This is often a black art that requires
experience and expertise that is built up over time. There is a myriad of knobs, techniques,
corner cases, intermediate outputs (with various formats depending on commercial tool
vendor) and requires significant tool knowledge and technology familiarity.

The traditional back-end workflow involves several steps performed in sequential order
in a waterfall approach. The steps constituting physical implementation can be broadly
categorized into 3 groups:
Synthesis: This is the synthesis, optimization, and mapping of behavioral logic into a
gate-level netlist that is mapped to the standard cell libraries.
Place and Route (PAR): This encompasses the cell placement, clock-tree synthesis, net
routing, and optimization of the physical design.
Verification: This verifies timing closure, power analysis, design rule checks (DRCs), and
layout-vs-schematic (LVS) comparison.

Although the steps are executed sequentially, design decisions and subtleties from one
step (and even the RTL) significantly affect the QoR of downstream steps. Often, designers
will want to quickly race their designs through the flow to foreshadow decision impacts
and address them early in the design phase. This often leads to a complex negotiation on
all aspects of the chip design in order to maximize the QoR.

The primary objective of the project is to develop best practices, build-up institutional
expertise, increase code re-usability, and allow for quicker iterations on physical design
implementation. The workflow will also serve as a repository of knowledge applicable to
all designs and technology nodes. The project specifically targets state of the art designs
at advanced silicon nodes (less than 28nm) with industry level figures of merit (Power,
Performance, and Area) and verification.

The cadre flow is a set of scripts and methodologies that leverage commercial CAD
tools to accomplish the task of walking an arbitrary design through the implementation
process as quickly as possible. It forms a design methodology that leverages re-use to
create a turn-key solution once the RTL design is complete. We take a modular approach
to address the challenges and eliminate redundant work which allows for agile hardware

design. While CAD tool vendors often provide example flows or reference methodologies,
these are often too rigid to adapt easily to arbitrary designs and technologies. Additionally,
the references provided are often disjoint and/or siloed to a specific vendor tool step that
does not encompass the entire back-end flow.
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4.2 Design

The flow was initially put together as part of the CRAFT program to tape-out celerity in a
16nm TSMC process, but has since been adapted to work on several platforms and designs.
The flow is primarily driven by GNU Make recipes and includes several configuration and
parameterizations to target specific designs, technologies, and sites (IT environment).

Figure 4.1 shows the primary abstractions made in the architecture of the flow. Clear
boundary abstractions are made within the flow to increase robustness and address the
project goals.

Figure 4.1: Cadre flow module abstractions

• CAD scripts: These are robust reference scripts for all the steps in the flow. The
collection of scripts span several CAD vendors used throughout the steps. They
contain ”best practices” and recommendations from the tool providers and have been
stitched together to form a generic end-to-end flow that can easily be customized
based on several factors.

• Platform Configuration: These constitute the PDK specific information, configu-
rations, rules, and requirements for a specific technology node. There is a one-time
effort to create this customization for newly supported technologies, however, subse-
quent designs can re-use that effort almost transparently

• Site Configuration: These are configuration parameters that establish pointers to the
required site-specific information. These are file paths to the PDK, standard cells,
tool binaries, and license information for the CAD tools.

37



• Design Files: This is the design-specific information that will contain significantly
less information about the CAD tools, PDK and Site location since those have mostly
been abstracted away. It will still contain a fair amount of designer intent which are
expressed as customization to the generic flow in the CAD scripts.

Combined, these modular abstractions are be customized and combined together to
form a chip-specific flow.

4.3 Goals

This section presents the objective goals Cadre flow set out to address and the way the
challenges were addressed.

Design Agnostic Approach: Physical design can be particularly challenging because
the design intent is very tightly coupled with the technology kit and especially when trying
to achieve high QoR. We created a set of abstractions that encapsulates all of the common
technology information and practices so they can be shared across designs. We also created
several hooks and mechanisms so designers can fully overwrite and customize the scripts
to express any needed intent to the tools.

Process Agnostic Approach: A big goal of the project was to be able to quickly re-
target a design from one technology kit to another with minimal effort. This is accom-
plished using the Design Configuration abstraction which is selected by the design. The
Design file is intended to have minimal information coupled with the technology it targets.

High Barrier to entry: We set out to create a flow that can easily be adopted by a de-
velopers not familiar with the intricacies and CAD tools relating to back-end development.
Although a fair amount of explicit back-end design intent is required for any successful
tapeout, the generic flow in the CAD tools provides a quick path to obtaining an initial
implemented design. The flow can then be subsequently customized with explicit intent to
improve QoR and package requirements. It allows for re-use of the CAD Scripts as well as
the pre-configured design platform.

Tool/Vendor Agnostic Approach: The flow intentionally uses a mix of tools from
different CAD vendors (the most reputable for each step of the flow) but can also be adapted
to support multiple tools per step. Most major steps can be customized to use a competing
tool for different CAD company (e.g. Swap from synthesis tool from vendor A to vendor
B). Additionally, the scripts are written robustly to support non-strict versions of the CAD
tools.

Site Agnostic: We set out to create a set of configurations that can be migrated from one
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computing location or environment to another provided the site configuration can properly
point to all the required file and tool dependencies.

Version Control: We ensure a full git-based version control mechanism for all the
associated scripts, configurations, and design files.

Sharing: There are several NDAs and restrictions inherent to the tools, kits, and IP
which prevents us from fully open sourcing the workflow. The workflow was modularized
into several components and that can have separate access control privileges. This has
allowed us to share certain components in a targeted way based on access to the process kit
and or design IP.

Agile development: The flow is amenable to agile development and supports a hierar-
chical block-based structure for large designs.

4.4 Evaluation

The flow currently has support for 13 process development kits (PDKs) and has been val-
idated with 6 different tape-outs across different 6 platforms. Figure 4.2 shows a timeline
of all the SoCs that have been taped out using this approach. Table 4.1 also presents the list
of supported technology platforms and their status. The flow has been shared with over 7
institutions and validated across 3 different premises.

Figure 4.2: Timeline of SoCs taped out using Cadre Flow

It has been set up and used by several research groups at The University of Michigan in
the fabrication of x chips. Outside of Michigan it has been set up and evaluated at Cornell
University, University of Virginia, and the University of California - San Diego.
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# Platform Description Tapeout Validated
1 asap7 ASAP7: 7-nm Predictive PDK
2 gf12lp Global Foundries 12nm LP Yes
3 gf14lpp Global Foundries 14nm LPP Yes
4 Gf14lppxl Global Foundries 14nm LPPXL Yes
5 tsmc16 TSMC 16nm FFC Yes
6 gpdk45 GPDK 45nm Mixed Signal GPDK
7 ibm45 IBM 45nm Yes
8 freepdk45 Nangate45/FreePDK45
9 fujitsu55 Fujitsu 55nm
10 tsmc45 TSMC 45nm Yes
11 tsmc65lp TSMC 65nm LP Yes
12 Skywater130 SkyWater 130nm
13 gfbicmos8hp Global Foundries SiGe 8HP

Table 4.1: List of supported platforms in the Cadre Flow

Cadre flow has proved to be flexible enough to handle large complex designs like celer-
ity and even mixed-signal designs generated by FASoC.

4.5 Conclusion

Hardware design has become more challenging with increased demand for performance
and added complexity from techniques adopted to battle the slowdown of Moore’s law.
Creating CAD flow scripts specific to tools, technologies, platforms severely limit produc-
tivity and portability. To address these challenges, we created the Cadre flow methodology,
a modular platform consisting of 1) proven CAD flow scripts that retain best-practices for
a generic tape-out; 2) platform configuration scripts that customize the flow to any process
node/kit; 3) Site configurations to adapt the flow to any computing environment; 4) De-
sign specific files and customization that have most of the flow scripts and process specific
information removed. The design files are able to re-use a lot of exiting work based on
the process and can quickly re-target other nodes. Additionally, the design files can fully
customize the chip flow to include any needed to customize the flow. The methodology
proposed by the workflow allows for agile hardware development and quick iterations on
chip design.
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CHAPTER 5

Rapid Methodologies: OpenROAD

The OpenROAD (”Foundations and Realization of Open, Accessible Design”) project was
launched in June 2018 within the DARPA IDEA program. OpenROAD aims to bring down
the barriers of cost, expertise and unpredictability that currently block designers’ access
to hardware implementation in advanced technologies. The project team is developing a
fully autonomous, open-source tool chain for digital layout generation across die, package
and board, with initial focus on the RTL-to-GDSII phase of system-on-chip design. Thus,
OpenROAD holistically attacks the multiple facets of today’s design cost crisis: engineer-
ing resources, design tool licenses, project schedule, and risk.

The IDEA program targets no-human-in-loop (NHIL) design, with 24-hour turnaround
time and eventual zero loss of power-performance-area (PPA) design quality. No humans
means that tools must adapt and self-tune, and never get stuck: thus, machine intelligence
must replace today’s human intelligence within the layout generation process. 24 hours
means that problems must be aggressively decomposed into bite-sized problems for the
design process to remain within the schedule constraint. Eventual zero loss of PPA qual-
ity requires parallel and distributed search to recoup the solution quality lost by problem
decomposition.

Work presented in this chapter has been presented in 2019 Government Microcircuit
Applications and Critical Technology Conference [40] and 2019 Design Automation Con-
ference [41] and 2020 International Conference on Computer-Aided Design [42].

5.1 Introduction

Even as hardware design tools and methodologies have advanced over the past decades, the
semiconductor industry has failed to control product design costs, as depicted in Figure 5.1.
Today, barriers of cost, expertise, and unpredictability (risk) block designers’ access to
hardware implementation in advanced technologies. Put another way: hardware system
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Figure 5.1: Design technology crisis.

innovation is stuck in a local minimum of (i) complex and expensive tools, (ii) a shortage
of expert users capable of using these tools in advanced technologies, and (iii) enormous
cost and risk barriers to even attempting hardware design.

Particularly in the digital integrated-circuit (IC) domain, layout automation has been
integral to the design of huge, extremely complex products in advanced technology nodes.
However, a shortfall of design capability – i.e., the ability to scale product quality con-
comitant with the scaling of underlying device and patterning technologies – has been ap-
parent for over a decade in even the most advanced companies [43]. Thus, to meet product
and schedule requirements, today’s leading-edge system-on-chip (SoC) product companies
must leverage specialization and divide-and-conquer across large teams of designers: each
individual block of the design is handled by a separate subteam, and each designer has
expertise in a specific facet of the design flow. DoD researchers and development teams do
not have resources to execute such a strategy, and hence see typical hardware design cycles
of 12-36 months.

5.1.1 IDEA and the OpenROAD Project

To overcome the above limitations and keep pace with the exponential increases in SoC
complexity associated with Moore’s Law, the DARPA IDEA program aims to develop a
fully automated “no human in the loop” circuit layout generator that enables users with
no electronic design expertise to complete physical design of electronic hardware. The
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Figure 5.2: Design complexity.

OpenROAD (“Foundations and Realization of Open, Accessible Design”) project [44] was
launched in June 2018 as part of the DARPA IDEA program. OpenROAD’s overarching
goal is to bring down the barriers of cost, expertise and unpredictability that currently
block system creators’ access to hardware implementation in advanced technologies. With
a team of performers that includes Qualcomm, Arm, and multiple universities led by UC
San Diego, OpenROAD seeks to develop a fully autonomous, open-source tool chain for
digital layout generation across die, package, and board, with initial focus on the RTL-
to-GDSII phase of system-on-chip design. More specifically, we aim to deliver tapeout-
capable tools in source code form, with permissive licensing, so as to seed a future “Linux
of EDA” (i.e., electronic design automation).
Three innovative base technologies underlie the OpenROAD team’s strategy to achieve
no-human-in-loop (NHIL), 24-hour turnaround time (TAT). First, machine learning based
modeling and prediction of tool and flow outcomes will enable the tool auto-tuning and
design-adaptivity required for NHIL, new optimization cost functions in EDA tools, and
new tool knobs that tools may expose to users. Second, extreme partitioning strategies for
decomposition will enable thousands of tool copies running on cloud resources to maxi-
mize success within human, CPU, schedule bounds. Quality loss from decomposition is
recovered with improved predictability of flow steps, along with stronger optimizations.
Third, parallel/distributed search and optimization will leverage available compute re-
sources (e.g., cloud) to maximize design outcomes within resource limits, and in the face
of noise and chaos in the behavior of complex metaheuristics. A complementary precept is
to reduce design and tool complexities through “freedoms from choice” in layout genera-
tion; this can increase predictability and avoid iterations in the design process. The synergy
of base technologies and restrictions of the layout solution space is illustrated in Figure 5.2.
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5.1.2 A New Paradigm

The contributions and approach of OpenROAD seek to establish a new paradigm for EDA
tools, academic-industry collaboration, and academic research itself. OpenROAD aims to
finally surmount ingrained, “cultural” and “critical mass / critical quality” barriers to estab-
lishing an open-source ethos in the EDA field. To start the project, we bring (i) significant
initial software IP including donated source code bases, and a commercial static timing
analysis tool; (ii) a significant set of academic software IP and skillsets; (iii) leading SoC
and IP know-how and guidance from industry partners Qualcomm and Arm; (iv) an in-built
Internal Design team (U. Michigan) to provide de facto product engineering and alpha cus-
tomer functions; and (v) a broad agenda of industry and academic outreach. Furthermore,
OpenROAD derives its “Base Technologies” efforts directly from the IDEA program re-
quirements (no-humans, 24-hours, no loss of PPA quality). We view the cohesive integra-
tion of machine learning, problem partitioning and decomposition, and parallel/distributed
search and optimization as essential to reaching the IDEA target.

The remainder of this paper will outline the current status of OpenROAD’s GitHub-
deployed tools and flow. Early proof points and calibrations in the realm of digital IC layout
generation (RTL-to-GDSII) have been obtained in multiple foundry design enablements
including 16nm FinFET technology.

5.2 Layout Tool Chain

OpenROAD’s layout generation tool chain consists of a set of open-source tools that takes
RTL Verilog, constraints (.sdc), liberty (.lib) and technology (.lef) files as input, and aims
to generate tapeout-ready GDSII file. Figure 5.3 illustrates the flow of tools corresponding
to individual OpenROAD tasks. These include logic synthesis (LS), floorplan (FP) and
power delivery network (PDN) generation, placement, clock tree synthesis (CTS), routing
and layout finishing.

5.2.1 Logic Synthesis

The major gap in open-source LS is timing awareness and optimization. OpenROAD has
explored two avenues toward enablement of timing-driven synthesis. First, we use machine
learning techniques to enable autonomous design space explorations for timing-driven logic
optimization. It is often the case that synthesis scripts contain tens of commands in order to
make a design meet its timing and area goals. These scripts are crafted by human experts.
To produce best synthesis scripts that are tuned to individual circuits, we design machine
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Figure 5.3: The OpenROAD flow.
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learning agents that automatically generate step-by-step synthesis scripts to meet target
timing and delay goals. Second, we enable physical-aware logic synthesis by integrating
the RePlAce [45] placement tool into the logic synthesis flow, whereby global placement-
based wire capacitance estimates are used within logic synthesis to improve timing results.
Existing academic tools are oblivious to the outcomes of subsequent steps in the design
flow, and our ultimate goal is to feed back wiring estimates as they are refined in physical
design steps (e.g., standard-cell placement and global routing) to improve synthesis results.

5.2.2 Floorplan and PDN

Floorplanning and power delivery network synthesis are performed by TritonFPlan, which
has two major components. The first component is integer programming-based macro
block packing that is aware of macro-level connectivity and is seeded by a mixed-size
(blocks and standard cells) global placement. The second component is Tcl-based power
delivery network (PDN) generation following a safe-by-construction approach. TritonF-
Plan requires the user to specify several config files, e.g., IP global.cfg and IP local.cfg
capture macro packing rules, and PDN.cfg captures safe-by-construction metal and via
geometry information. These config files are necessitated by the inability of academic
open-source tool developers (or, their tools) to see complete unencrypted design enable-
ments from the foundry. We discuss this below in Section 5.4. The TritonFPlan tool uses
mixed-size placer (RePlAce) for its initial global placement. The generated macro global
locations provide a starting point from which multiple floorplan solutions are created. For
each of the generated floorplan solutions with fixed macros and PDN, we use our placer
(RePlAce) again, to determine the best floorplan according to an estimated total wirelength
criterion. Limitations include support of only rectangular floorplans, and macro counts less
than 100.

5.2.3 Placement

RePlAce [45, 46] is a BSD-licensed open-source analytical placer based on the electro-
statics analogy. In OpenROAD, RePlAce is used for mixed-size (macros and cells) place-
ment during floorplanning, for standard-cell placement within a given floorplan, and dur-
ing clock tree synthesis (CTS) [47] for clock buffer legalization. Timing-driven placement
is achieved with integration of FLUTE [48] and OpenSTA [49], along with a signal net
reweighting iteration [50]. The timing-driven TD-RePlAce tool takes input in standard
LEF/DEF, Verilog, SDC and Liberty formats, and incorporates a fast RC estimator for par-
asitics extraction. Ongoing efforts aim to enable routability-driven mode using commercial
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Figure 5.4: Foundry 16nm RISC-V based design block from the University of Michigan,
after RePlAce mixed-size placement. Red color indicates macros and blue color indicates
standard cells.

format (LEF/DEF/Verilog). Figure 5.4 shows the RePlAce placement of a small RISC-V
based block (foundry 16nm technology) produced by the University of Michigan internal
design advisors subteam.

5.2.4 Clock Tree Synthesis

TritonCTS [47,51] performs clock tree synthesis (CTS) for low-power, low-skew and low-
latency clock distribution, based on the GH-Tree (generalized H-Tree) paradigm of [51].
A dynamic programming algorithm finds a clock tree topology with minimum estimated
power, consistent with given latency and skew targets. Linear programming is used to
perform sink clustering and clock buffer placement. Leaf-level routing may be performed
using either the single-trunk Steiner tree or the Prim-Dijkstra [52] algorithm.

In the layout generation flow, TritonCTS has interfaces with the placer (RePlAce) and
the router (TritonRoute [53]). The placer is used for legalization of inserted clock buffers.
The router maps sink pins to GCELLs that should be used for clock tree routing. Tri-
tonCTS inputs are LEF, placed DEF, placed gate-level Verilog, a configuration file and
library characterization files. (For each foundry enablement, a one-time library character-
ization is needed. Currently, this library characterization is expected to be performed by
some outside entity (foundry or tool user) using commercial EDA tools.) TritonCTS out-
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puts are “buffered” placed DEF, “buffered” gate-level Verilog, and clock tree global routing
in ISPD18 route guides format [54]. TritonCTS is publicly available on GitHub [47]. Early
validations have been made using 16nm and 28nm foundry enablements. Improvements to
handle multiple clock sources, non-default routing rules, etc. are ongoing.

5.2.5 Routing

TritonRoute [53] consumes LEF and placed DEF, then performs detailed routing for both
signal nets and clock nets given a global routing solution in route guide format [54]. Prior
to the detailed routing, TritonRoute preprocesses the global routing solution using a fast
approximation algorithm [55] to ensure a Steiner tree structure for each net. Thus, conges-
tion and wirelength are minimized while net connectivity is preserved in detailed routing
stage. The detailed routing problem is then iteratively solved on a layer-by-layer basis, and
each layer is partitioned into disjoint routing panels. The panel routing is formulated as a
maximum weighted independent set (MWIS) problem and solved in parallel using a mixed
integer linear programming (MILP)-based approach. The MWIS formulation optimally
assigns tracks considering (i) intra- and inter-layer connectivity, (ii) wirelength and via
minimization, and (iii) various design rules. By an alternating panel routing strategy with
multiple iterations, inter-panel and inter-layer design rules are properly handled and track
assignments are maximized. To date, TritonRoute supports major TSMC16 metal and cut
spacing rules, i.e., LEF58 SPACING, LEF58 SPACINGTABLE and LEF58 CUTCLASS.
An early evaluation shows approximately 10× reduction of spacing rule violations in a
TSMC16 design block. Detailed routing flow with integration and optimization of local
net routing is the next step towards a 100%-completion, DRC-clean layout capability.

5.3 Other Elements

Other elements of the OpenROAD project under development include the above-mentioned
“base technologies” (machine learning, partitioning, parallel optimization), a design per-
formance analysis backplane (parasitic extraction, static timing analysis, and power/signal
integrity), cloud infrastructure for tool/flow deployment and machine learning, the “inter-
nal design advisors” task, and corresponding self-driving layout generation capability in
the package and PCB domains. This section outlines the status of several of these project
elements.
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Figure 5.5: Comparison between OpenSTA and a leading signoff timer (Signoff) for a
small 28nm testcase. (a) Endpoint slacks of OpenSTA vs. Signoff timer. (b) Histogram of
endpoint slack differences between OpenSTA and Signoff timer.

5.3.1 Static Timing Analysis

OpenSTA [49] is a GPL3 open-sourced version of the commercial Parallax timer. The Par-
allax timing engine has been offered commercially for nearly two decades, and has been
incorporated into over a dozen EDA and IC companies’ timing analysis tools. OpenSTA is
publicly available on GitHub [49] since September 2018. The developer, James Cherry, has
added Arnoldi delay calculation, power reporting and other enhancements since the orig-
inal release. OpenSTA has been confirmed to support multiple advanced foundry nodes,
and it supports standard timing report styles. To date, the OpenSTA timer has been inte-
grated into TD-RePlAce (timing-driven enhancement of RePlAce), physical-aware synthe-
sis (Yosys [56]) and a gate-sizing tool (TritonSizer [57]). Figure 5.5(a) shows a comparison
of endpoint timing slacks from OpenSTA and a commercial signoff timer. Figure 5.5(b)
shows the distribution of endpoint slack differences between OpenSTA and the commercial
signoff timer.

5.3.2 Parasitic Extraction

In OpenROAD’s approach, the parasitic extraction (PEX) tool processes a foundry process
design kit (PDK) to build linear regression models for wire resistance, ground capacitance,
and coupling capacitances to wires on the same layer, or in the adjacent layers above and
below. A basic use case is for another tool in the flow (e.g., CTS, global routing, timing
analysis) to call PEX, providing an input DEF file that consists of the wire of interest and
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its neighbors. The output is provided as a SPEF file that contains the extracted parasitics.
Figure 5.6(b) compares the actual and predicted values of the resistance and capacitance
obtained from test nets to validate the regression model, and shows a good fit. Anticipated
evolutions include interfacing the PEX functions to a possible future IDEA-wide phys-
ical design database, and extending the model-fitting approach to achieve low-overhead
parasitic estimators for use in timing-driven placement, crosstalk estimation during global
routing, etc.

5.3.3 Power Integrity

A key goal of our power integrity analysis effort is to enable single-pass, correct-and-safe-
by-construction specification of the power delivery network (PDN) layout strategy across
the SoC. Our power delivery network (PDN) synthesis tool tiles the chip area into regions,
and selects one of a set of available PDN wiring templates (cf. the “config” files noted in the
Floorplanning discussion, above) in each region. These templates are stitchable so that they
obey all design rules when abutted. The PDN tool takes in a set of predefined templates
(Figure 5.6(a)), an early (floorplanning-stage) placed DEF for a design, and available power
analysis information (e.g., our OpenSTA tool can provide instance-based power reporting).
A trained ML model then determines a safe template in each region. An early prototype
shows that the ML-based approach can successfully deliver a PDN to satisfy a given (e.g.,
1mV static) IR drop specification.

5.3.4 Cloud Infrastructure

For users to take advantage of OpenROAD tools as well as tools developed by other col-
laborators, a cloud infrastructure effort aims to provide an end-to-end seamless user expe-
rience. In our cloud deployment, users subscribe their Git repo to our cloud system. Once a
design change is pushed to the Git repo, the design is automatically compiled by the Open-
ROAD flow and the user receives a notification by email when the flow is complete. The
user can then download the outcome files through a web browser. If needed, the user can
also monitor the progress of the flow on our web-based front end. Our cloud deployment
is elastic as it leverages more computing resources when more users log into the service,
or when a user requests parallel processing capabilities. For instance, the service can elas-
tically deploy multiple machines in order to run a tool (e.g., placer) with multiple random
seeds to obtain a better result within a given wall time budget. Or, in conjunction with
global design partitioning, the cloud deployment can run each design partition in parallel
on a cloud instance, to maximize parallel speedup and minimize design turnaround time.
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(a) (b)

Figure 5.6: (a) Example PDN templates; and (b) validation of the regression model for R,
C in PEX.

5.3.5 METRICS 2.0

To enable large-scale applications of machine learning (ML) and ultimately a self-driving
OpenROAD flow, we are developing METRICS 2.0 [58], which can serve as a unified,
comprehensive design data collection and storage infrastructure (see [59]). A METRICS
2.0 dictionary provides a standardized list of metrics suitable for collection during tool/flow
execution, to capture key design parameters as well as outcomes from various tools in the
design flow. We also propose a system architecture based on JavaScript Object Notation
(JSON) for data logging, and MongoDB database [60] for data storage and retrieval of the
metrics. Figure 5.7 illustrates the METRICS 2.0 system architecture. The proposed archi-
tecture eliminates the need to create database schemas and enables seamless data collection.
METRICS 2.0 is tightly coupled with machine-learning frameworks such as TensorFlow,
which provides easy interfaces to read and write into MongoDB, and enables fast deploy-
ment of machine learning algorithms.

5.3.6 Early SoC Planning

In light of NHIL and 24-hour turnaround time requirements, it is important to initiate the
OpenROAD tool chain with with reliable tentative floorplans as flow starting points, to min-
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Figure 5.7: Overall METRICS 2.0 system architecture.

imize the likelihood of run failures. This is a key link between the “system-level design”
(IDEA TA-2) and “layout generation” (IDEA TA-1, which we address in OpenROAD).
Early floorplan estimates for the SoC can be enhanced by embedding physical implemen-
tation information in each IP (e.g., using the vendor extension mechanism within industry-
standard IP-XACT descriptions), and by making use of technology- and tool chain- specific
parameters and statistical models. Combining and elaborating such information enables
early area and performance estimates that can indicate doomed-to-fail floorplan candidates
or suggest design implementation fine-tuning (hard-macro placement, grouping, register
slice insertions, etc.) in viable floorplans.

5.3.7 Integration and Testing

The individual tools described above comprise a tool chain that produces an implemented
design ready for final verification and fabrication. Initial platform support is targeted for
CentOS 6, with tool- and flow-specific support maintained at [44]. To evaluate the flow,
non-tool developer entities in our team (i.e., U. Michigan, Qualcomm and Arm) perform
fine-grained analyses on our tool outputs and provide target calibration metrics for tool
developers. Here, we leverage a testcase suite based around existing designs that have
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Figure 5.8: Illustration of Unified Planning Tool.

previously been taped out; these designs range across complexity (from small blocks to
whole chips) and process (e.g., 16nm and 65nm). Our suite of testcases also includes
cutting-edge complex SoCs that are currently in development. A continuous integration
test suite validates the tools individually during development and tracks regression metrics
and feature impact.

5.4 Looking Forward

Our near-term efforts will continue development of the tools and flow described above.
More broadly, we will also seek to address various technical, structural and cultural chal-
lenges that have become apparent even at project outset.

One key technical challenge is to develop design automation technologies as well as
layout generation flows that can co-optimize across the SoC, package (PKG) and PCB
domains. Today, SoC, PKG and PCB tools and flows are largely disjoint; weeks if not
months are required to converge across the three designs with manual iterations. To deliver
NHIL, 24-hour turnaround time in the PKG and PCB domains, a Unified Planning Tool that
seamlessly coordinates among the three databases and enables quick iterations is essential.
Figure 5.8 illustrates our envisioned Unified Planning Tool. The Unified Planning Tool
would also include optimization engines, using analytical and ML approaches to evaluate
the complex tradeoffs across the three design spaces.

Some other technical challenges include the following. (1) The “small and expensive”
nature of design process data in IC design – where obtaining a single data point might
require three weeks to run through a tool flow – challenges machine learning and devel-
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opment of “intelligent” tools and flows. (2) The need for new, common standards for
measuring and modeling of hardware designs and design tools must be compatible with
the IP stances of foundries and commercial EDA; this may shape the future opening of a
“Linux of EDA” to broad participation. And, (3) it will be difficult to illuminate the critical
junctures where “human intelligence” is now required, yet must be replaced by “machine
intelligence”, in the hardware design process.

Several structural challenges stem from our status as academic tool developers of a
tool chain that must produce tapeout-ready GDSII. (1) OpenROAD tools will likely not be
foundry-qualified, which implies that OpenROAD tools and tool developers will not be able
to read encrypted advanced-node PDKs. To achieve safety and correctness by construction
of the tapeout database, OpenROAD tools require config files and one-time generation
of “OpenROAD kit” elements, for each foundry enablement. (2) OpenROAD’s analyses
and estimators for timing, parasitics and power/signal integrity are not “signoff” verifiers.
Thus, additional performance guardbands are required throughout the layout generation
flow. And, post-OpenROAD verifications may be performed by designers and/or foundries.
(3) OpenROAD tools are developed and released by non-commercial entities. Commercial
EDA vendors receive bug/enhancement requests accompanied by a testcase that exhibits
the bug or behavior at issue. By contrast, bug reports that we receive are unlikely to be
accompanied by testcases due to blocking NDA / IP restrictions. This complicates the
bug-fixing and enhancement process.

Finally, our outreach efforts seek culture change and engagement across the community
of potential developers and tool users. For example, in the academic research world, a lab’s
code is its competitive advantage (or, potential startup), and liberal open-sourcing is still
rare (cf. [61]). We hope that OpenROAD and the IDEA/POSH programs help drive culture
change in this regard. With regard to tool users, we observe that commercial EDA tools are
invariably driven to production-worthiness by “power users” – i.e., paying customers who
have deep vested interests in the capability and maturation of a given tool. Traditionally,
power users expose a new tool to leading-edge challenges and actively drive tool improve-
ment. For OpenROAD, finding our “power users” is a critical need, especially since they
would be able to improve tools and flows at the source-code level.

5.5 Conclusion

In this paper, we have reviewed the scope and status of OpenROAD, a DARPA IDEA
project that aims to develop a self-driving, open-source digital layout implementation tool
chain. The above is only a snapshot, taken six months into a four-year project.
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CHAPTER 6

Rapid Frameworks: ACAI

In heterogeneous systems, various computational units such as GPUs, co-processors and
other hardware accelerators (HAs) work alongside general purpose cores in order to im-
prove the performance, power and/or energy metrics. With Dennard’s scaling at an end,
the pervasiveness of fixed-function HAs on modern SoCs have increased, as system archi-
tects strive to maximize efficiency growths on embedded and high-performance platforms.
Integrating HAs into the system introduces additional challenges such as: 1) increased
complexity in programming and data models; 2) increased attack surface; 3) increased
hardware integration and verification costs; and 4) fair scheduling of jobs from multiple
processes to HA resources.

To address these problems, we present ACAI, a hardware and software framework for
HA integration. It provides the HA with a shared view of system memory, shared virtual
addressing and data caching with full hardware coherency. ACAI simplifies the software
programming experience, reduces integration effort and scheduling of jobs. It is prototyped
on real hardware using the Xilinx Zynq UltraScale+ MPSoC ZCU102 evaluation board and
user space applications running in Linux. We explore the benefits of full cache coherency
on an optimized implementation of ACAI across several kernels and alternate interface
options.

Our results show average read latency improvements of 12.1x and 5.7x when compared
to non-coherent and IO-coherent interfaces respectively. ACAI allows for HAs to sustain
higher data bandwidth for sequential bulk-data copy and vastly outperforms other interfaces
for small data sizes, random data access and link-list traversal. We also demonstrate an
average performance improvement of 4.3x across Machsuite [62] kernels and 1.4x across
several hardware applications from Rosetta [63].

Work presented in this chapter has been presented in at 2018 Design Automation Con-
ference - IP Track [64] and 2019 Arm Research Summit [65].
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6.1 Introduction

Dennard’s scaling is at an end [66], and transistor density scaling is wavering at more
advanced technology nodes. In order to deliver the traditional performance and power
improvements required by future workloads, computer architects are turning towards het-
erogeneous architectures comprised of more specialized compute units. These specialized
units or hardware accelerators (HAs) improve on the system’s performance, power and/or
energy metrics across a wide variety of workloads and applications. While the GPU serves
as a classical example of an accelerator, there has been an explosion in the variety of HAs
designed for embedded and high performance computing platforms.

There is growing adoption of fixed-function HAs for computationally intensive kernels
in approximate computing [67], neural computing [68–70], graph processing [71, 72], and
database applications [73, 74]. Prior works [75–77] have proposed mechanisms to extract
kernel regions from existing software programs for offload to HAs. Adding to the assort-
ment of accelerator workloads, are techniques employed in creating HAs. In addition to
hand crafted RTL, high levels synthesis (HLS) and domain specific languages (DSL) are
growing in popularity [78–80]. The ubiquity of HAs drives the need for robust system
architectures and accelerator interfaces capable of handling diverse memory demands and
irregular access patterns [81].

Integrating HAs into existing system architectures can be effort intensive and it intro-
duces additional challenges relating to data management. Loosely coupled accelerators
(separated from the processor pipeline) can be attached at different levels of the memory
system hierarchy. Integration over an I/O bus requires expensive data movement to accel-
erator buffers using specialized drivers. Other techniques employ a shared memory space
and offer varying levels of data coherency and virtual addressing. Factors within specific
SoC platforms - such as coherency protocols and interconnects - drastically affect the us-
ability and performance of the attached HA. Even with an intimate understanding of the
SoC architecture and HA, the various programming considerations make it challenging to
quickly develop software applications in a manner that allows for maximum utilization
of the HA. The proliferation of HAs on modern SoCs also increases the attack surface,
presenting additional security, isolation, and protection concerns. All of these challenges
negatively impact the development effort (in software and hardware), non-recurring engi-
neering (NRE) cost, validation time and time-to-market.

In this work, we present ACAI (Figure 6.1), a novel hardware and software framework
for integrating HAs into heterogeneous SoC architectures. ACAI is designed to ease HA
integration and deliver improved performance for a wide variety of accelerator workloads.
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Figure 6.1: Example SoC platform showing ACAI hardware interface with the integration
of (a) an on-chip HA and (b) an off-chip HA

The hardware interface provides accelerators with a unified view of system memory, a vir-
tual addressing context that is shared with the user space application, data caching and
full data coherency. Paired with kernel drivers and software libraries, it serves as a con-
figurable, robust and scalable framework for integrating HAs with reduced design effort.
ACAI also enables fine-grained kernel acceleration and job scheduling between multiple
processes and accelerator resources. For our evaluation, we developed a hardware proto-
type using the Xilinx Zynq UltraScale+ MPSoC ZCU102 evaluation board and user space
applications running in Linux. We also implemented and explored two alternate HA inter-
faces for performance comparisons: a shared non-coherent (Shared-NC) and a shared IO
coherent (Shared-IO) option.

We present quantitative analysis on the different interfaces and show average read la-
tency improvements of 12.1x and 5.7x when compared to Shared-NC and Shared-IO re-
spectively. In our optimized implementation, ACAI allows for the HA to sustain improved
data bandwith for sequential bulk-data copy when compared to the alternate interfaces and
vastly outperforms them for fine-grained acceleration, random data access and link-list
traversal. We also demonstrate an average performance improvement of 4.3x across several
accelerated kernels from the Machsuite benchmarks [62] and 1.4x across several hardware
applications from Rosetta benchmark suite [63].

Paper Outline: Following this introduction, Section 2 presents background informa-
tion for shared memory, virtual addressing and caching as it relates to HAs. It also explores
different accelerator implementations and memory demands. Section 3 describes the goals
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of our framework, introduces the baseline hardware design and walks through the mecha-
nism for dispatching jobs to HAs. Section 4 details the methodology and the HA workloads
we used in our evaluation. In section 5, we present and analyze performance results from
our experiments. Finally, we discuss future work, related work and present conclusions in
the sections that follow.

6.2 Background

Fixed-function HAs typically improve performance by exploiting instruction level paral-
lelism (ILP) and memory level parallelism (MLP) present in kernel routines. They are
often implemented using complex functional units and take advantage of pipelining tech-
niques. Accelerator performance is often limited by the ability of the system to adequately
satisfy its memory demands.
Shared Memory: Early HA implementations had a separate memory space (or scratch-
pads) which relied on specialized software and drivers to move data between the CPU and
scratchpad over dedicated I/O buses (e.g. PCIe). GPUs and GPGPUs are commonly im-
plemented this way because they have high memory bandwidth demands and the costly
offload overheads can be amortized over large data computations. To ease the offload
burden and improve programmability, more HA implementations have adopted a view of
memory shared with the CPU. This shared view reduces data movement and eliminates
data copies between buffers. Hardware coherence further simplifies the software stack by
eliminating the need to perform explicit software synchronization (cache flushes and in-
validations) for data accessed by the HA. Prior research in academia [82–84] and products
from industry [85, 86] demonstrate promising results for shared memory implementations.
Virtual Addressing: We find that shared virtual addressing is another key to ease pro-
gramming by allowing the HA to access memory in the same context as the application
process. The HA will be able to operate independently on application memory without
special buffers, kernel-level data copies, or pinned pages. Large regions of memory can
be allocated without the need of having a physically contiguous address space. Virtual
addressing also enables the HA to take advantage of pointer semantics and dereference
dynamic software data structures. Overall system security is improved by eliminating the
HA’s ability to access memory using physical addresses. This isolates the HA, prevent-
ing it from accessing data belonging to the kernel or other processes. Virtual addressing
increases interoperability between the accelerator, CPU and other memory masters in the
system.

Virtual addressing does come with some pitfalls. System performance may be degraded
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due to overheads from address translation and page table management. The overheads are
strongly tied to the address translation implementation, coherence protocol and the memory
access pattern. These effects have been extensively studied and prior works have described
techniques for significantly reducing page-translation overheads for accelerators [87–89].
Caching: HAs can benefit from caches in the same way CPUs do. Caches can reduce
memory latency by exploiting spatial and temporal locality in the memory access pattern.
This can yield significant performance improvements for HAs that are sensitive to memory
latency. IO coherency (one-way coherence without cache support) can reduce the HA’s
read latency by snooping data from neighboring caches, instead of accessing the DDR
controller. Full cache coherency extends this by allowing cache-line migration (reducing
invalidation/flushes from neighboring caches) and the transfer of results back to the CPU
cache. A reduction in overall latency enables fine-grained acceleration since the overheads
for job dispatch are substantially reduced. Caches can also improve performance when
sharing data between accelerators behind the same cache hierarchy [90].
Bandwidth vs Latency: The performance of conventional accelerators is typically limited
by memory bandwidth, however as workloads become more diverse, memory latency and
data synchronization are beginning to play a bigger role [81, 91–95]. Many applications
in data analytics and machine learning rely on very large data structures that use pointers
and exhibit irregular memory patterns. These structures include linked-lists, trees, hashes
and graphs. HAs that operate on software data structures are more likely to be latency
sensitive since the data structures may need to be traversed. In order to work around the
problem, programmers often manipulate the data in software before dispatching to the HA.
This manipulation, which occurs before and after hardware dispatch, will negatively impact
the application performance and programming experience. We find it important to deliver
a platform that caters to both types of memory demands.
HA Implementations: In our research, we studied and categorized various HA imple-
mentations based on the data usage model. HAs that use a Buffered data model divide the
kernel execution into three phases: data load, compute and data unload. The phases may be
explicit or pipelined. These types of HAs require large scratchpad buffers and often have
separate DMA engines to perform data transfer. The performance of these accelerators are
often handicapped by bandwidth, especially for accelerators with shorter compute phases.
HAs that use an unbuffered data model fetch data on demand, interleaving memory access
with computation. These applications typically work on larger data sets and may expose
data locality.

Real-world applications often require several invocations of an accelerator or even con-
tinuous activations for streaming data. For example, many applications in signal processing
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require successive invocations of different HAs to form a data pipeline [96]. We again cat-
egorized HAs by their execution model. In Burst execution models, the HA must complete
the current job before starting a subsequent one. In Pipelined execution models, the HA
can begin working on the next job before the current job has completed.

The HAs studied in work are capable of mastering the memory bus; they can issue
read/write memory requests and tolerate variable memory latency. In addition to the kernel
algorithm, system architects tune their data and execution models to match the memory
system so as to maximize utilization of the HA.

6.3 ACAI Architecture

The ACAI framework is comprised of hardware and software components that simplify the
integration of HAs and the offloading of jobs. The hardware is an interface that configures
HA resources and provides them with access to shared memory. It provides virtual address
translation and a coherent data cache. The software components - kernel driver and soft-
ware library - ease programmability, configuration, scheduling and dispatch of jobs to the
HAs managed by the interface. In designing ACAI, we had the following goals in mind:
Programmability: ACAI adopts virtual addressing for Accelerators. The framework pro-
vides the HA with a shared view of virtual memory, as seen by the CPU application process.
Software developers can use familiar software data structures without needing to manipu-
late data. There are no special buffer allocations or data copies between user and kernel
spaces. The design transparently supports application processes running on hypervisors (a
growing trend in data-centers) since there no physical addresses are involved. The HA is
also able to perform full pointer dereferencing. ACAI also introduces the notion of a job

chain, a linked-list of jobs that are intended to be executed serially. This feature accommo-
dates applications needing to schedule back-to-back executions of accelerated kernels.
Scalability/Robustness: The ACAI interface serves to abstract coherence protocols from
HAs. It supports different system topologies and various arrangements of CPUs, caches,
HAs, memory controllers, interconnects and other nodes in the design. It also enables HA
nodes to participate in off-chip coherence. The interface supports multiple data lanes and
lane sizes to increase throughput and support multiple HA resources. Figure 6.1-b shows an
example of a more complex system topology that supports an additional set of accelerators
implemented off-chip.
Performance: Today, most HAs have buffered implementations causing application per-
formance to be proportional to bandwidth for memory intensive kernels. For this reason,
maximizing data bandwidth was a key goal during the design and implementation of ACAI.

60



ACAI adopts full cache coherency to reduce the job offload costs. The framework also aims
to improve performance on workloads that are more sensitive to latency by enabling cache-
to-cache data transfer and the ability to exploit locality.
Security: ACAI preserves full memory protection semantics and isolation of the virtual
memory system to prevent malicious or erroneous access to data. The HA will be re-
stricted to regions of memory (or pages) specific to the application context from which it is
being invoked. If memory access occurs outside the permitted region or without the correct
attributes, the OS can be notified to respond appropriately.
Design Effort: In addition to easier programmability, the hardware simplifies HA devel-
opment by leveraging standard coherence protocols from the ARM AMBA 4 protocol spec-
ifications [97]. This allows the HA to be designed and tested in isolation, generated from
HLS tools or obtained from third-party vendors. This in turn reduces NRE costs and the
time-to-market. The framework can be emulated on commercially available boards al-
lowing accelerator designers to iterate across different implementations to further increase
accelerator utilization.

6.3.1 Base Hardware

At a high level, ACAI’s hardware micro-architecture is similar to a processor, containing
recognizable functional units. The basic components are shown in figure 6.2 and are de-
scribed in this subsection.

Figure 6.2: ACAI hardware interface design

L2 Cache Unit (L2$) connects the hardware (and HA) to the cache coherent interconnect
(CCI) using the CCI slave interface 2 . The data states are mapped directly to the MOESI
cache coherency model. It has an integrated snoop controller that responds to broadcasted
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snoop requests and distributed virtual memory (DVM) synchronization messages from the
CCI. The L2 cache is physically indexed, physically tagged (PIPT), has a configurable
cache size and is fully inclusive of the L1 cache for coherency support.
Master Interface Unit (MIU) is responsible for decoupling and aggregating requests to
the CCI (through the L2$) from the SQ, L1$ and MMU. The MIU contains buffers, tracks
outstanding requests upstream, performs significant hazard checking and coordinates cache
line fills/evictions.
L1 Cache Unit (L1$) interfaces with the HA (through the job control unit) and the MIU.
The L1$ is physically indexed, physically tagged (PIPT) and has a configurable cache size.
Like a CPU’s cache, the L1$ provides the accelerator with extremely low latency for access
patterns that have spatial or temporal locality.
Store Queue (SQ) holds pending store requests from the HA. The SQ can access data
in the L1$, initiate linefills through the MIU, or write the data out to the system through
the MIU. The SQ can merge several store transactions into a single transaction if they are
aligned and is also capable for merging multiple writes into a write burst. Store coalescing
close to the accelerator significantly improves write performance.
MMU performs pagewalks to translate virtual addresses into physical addresses, and caches
the results of those translations in the TLB for future use. The TLB can accommodate 256
entries. The MMU follows the Virtual Memory System Architecture (VMSA) specifica-
tion [98] which describes address translation, access permissions and privileges for the
ARMv7 architecture.
Job Control Unit
communicates directly with the software driver through the CPU peripheral interface 1

and is responsible for fetching, scheduling and launching jobs on the HA. The job control
unit has two interfaces to the HA: The HA configuration interface 3 configures the HA
with information obtained from the job description before execution. The HA memory

interface 4 is mastered by the accelerator for access to shared memory. The job control
unit also performs fair arbitration of job requests from multiple processes to multiple HA
resources.

6.3.2 ACAI Operation

This subsections describes the software routines and the procedures by which compute ker-
nels are offloaded to HAs integrated using the framework. A job is a well-defined piece
of work which can be computed in software or can be offloaded to the HA to improve
efficiency. The computation to be performed by the HA is specific to the accelerator rou-
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Figure 6.3: An example framework state showing job descriptors linked together to form
two job chains in shared memory and the job control unit performing arbitration and exe-
cution in hardware

tine/kernel as well as the associated input and output data. A job descriptor is a data
structure that stores the job related information and is required for configuring and invok-
ing the HA in the framework. It primarily contains a number of job specific register values
(or descriptor values) that will be written to the accelerator before launch. A job chain is
a linked list containing one or more job descriptors scheduled for sequential execution by
the HA resource. A job slot is a set of resources within the job control unit used to store
and manage the execution of a job chain. The job slot keeps track of the address space
information associated with the context of an assigned job chain. Each job slot has buffers
used to store job descriptor values required for dispatch. The hardware can be configured
to have an arbitrary amount of job slots to co-ordinate requests from multiple processes.

Figure 6.3 (left) depicts the structure of the job descriptor. It also shows an example
framework state with two job chains - created by different processes - scheduled for exe-
cution on a single HA resource. The following steps walk through the process of creating
and launching jobs using the ACAI framework:
1. Application Initialization [CPU] Each application process has its own unique address
space information (PID, base register, etc) stored in memory. The application shares the
address space information with the HA using the initialization routines provided by the ker-
nel driver. The driver reserves a job slot within the job control unit and sets the translation
base address. This configuration is performed over the CPU peripheral interface 1 .
2. Job Offload [CPU] As the process execution proceeds, the data structures to be operated
on by the HA are allocated and initialized. Since the HA will be able to access all user mode
data (static and dynamic), there is no need to manipulate the data or move it across special
buffers. The application begins the offload process by creating a chain of job descriptors.
This is a simple linked list stored in the application’s memory. The job is offloaded, with
the help of the driver, by writing the base address of the first job in the chain to the already
reserved job slot. Hardware coherence, slot reservation and single-write dispatch avoids
several data race conditions associated with accelerator dispatch.
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3. HA Configuration and Launch [Hardware] The job slot becomes active when the
base address for the first job in the chain is written. Once the job control unit completes
arbitration (from active slots to available HA resources), the MMU is configured for the
slot’s context and the job descriptor is copied from main memory into buffers in the job slot.
The job descriptor values are read from the CCI interface 2 and is immediately written out
over the HA configuration interface 3 . The job control unit will invoke the execution of the
HA once the required number of descriptor values have been written. The job control unit
pipelines the chain execution by fetching the next linked job descriptor ahead of execution.
4. Job Completion [Hardware] When the HA signals completion, the job control unit
updates the status bits in the job descriptor and begins executing on the next job in the
chain. The chain execution completes when the status of the last job descriptor is marked
complete. There are several supported mechanisms for the application process to determine
when a job or chain is complete:

1. The application can poll the status of individual jobs or the last job in the chain to
determine completion state. The polling traffic will be filtered in the CPU cache since
the job chain is stored in a hardware coherent cache line that will be invalidated by
the interface on completion.

2. The application can poll the status of the job slot status using the driver.

3. The application can wait for an interrupt triggered by the interface on the completion
of the job chain.

4. The application can wait for an event (WFE) [98] triggered by the interface on the
completion of the job chain. This is preferred over interrupts, which have longer
latencies due to the necessary interrupt service routines. Interrupt latency may sig-
nificantly affect performance for fine-grained acceleration.

5. Retrieving results [CPU] After the job(s) are completed, the application process can
access the resulting data directly since the framework relies on hardware coherence. The
slot reservation can also be relinquished at this time.

An example program that invokes a simple data copy accelerator is presented in fig-
ure 6.4.

6.3.3 Advanced Scheduling

Data Reuse: Working data from job executions remain in the interface cache through the
launch of subsequent jobs in the chain. The application may realize further performance
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1 #include "acai.h"
2 #define N 1024
3 void main() {
4 // 1. initialize application data
5 int src[N], dst[N];
6 for (i = 0; i < N; i++)
7 src[i] = rand();
8 memset(dst, 0, sizeof(dst))
9

10 // initialize acai framework and reserve job slot
11 acai *p_acai = new acai();
12 p_acai->init();
13

14 // 2. setup job chain with a single job
15 vector<acai_jd> job_chain;
16 job_chain.reserve(1);
17

18 // set descriptor with 2 values: src and dst address
19 job_chain.push_back(acai_jd(3, 0));
20 job_chain[0][0] = src;
21 job_chain[0][1] = dst;
22

23 // 3/4. start and wait for job to complete
24 p_acai->start_job(job_chain);
25 p_acai->wait_job(job_chain);
26

27 // 5. cpu reads results
28 for (i = 0; i < N; i++)
29 printf("dst[%d]: %d\n", i, dst[i]);
30 };

Figure 6.4: Example application using framework

gains by reducing data movement in the system. This is accomplished through the careful
construction of job chains that reuse data across jobs. Reuse may take place between invo-
cations of the same kernel with partially new data or between different kernels that access
the same data (e.g. signal processing pipeline).
Multiple Processes: The framework performs fair arbitration and job scheduling from
an arbitrarily configured number of job slots. Applications processes running in the CPU
can reserve as many jobs slots as are implemented in hardware. The execution will be
performed in a round-robin fashion, either on a job or job chain granularity.
Multiple Accelerators: Currently, ACAI is only able to perform arbitration granting a pro-
cess access to all the available HA resources. Although the HA resources can have multiple
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personalities (implement different kernels), only a single job slot can can be scheduled for
execution. Future extensions of the design will support multiple executing across the avail-
able HA resources. This will require updates to the job control unit and an MMU that can
service multiple contexts simultaneously. It will also lead to cache interactions between the
active HA resources.

6.4 Methodology

The system architecture is prototyped on the Xilinx Zynq UltraScale+ MPSoC ZCU102
Evaluation board. Central to the board is a programmable MPSoC device with a quad-core
ARM Cortex-A53 processor, a cache cache coherent interconnect and a re-configurable
FPGA fabric capable of hosting the the framework as well as the HAs of interest.

6.4.1 Hardware Setup

The MPSoC chip features several interconnects, switches and data-paths that allows us
to properly emulate the complex interactions between all the different data nodes in our
design. More specifically, it includes a cache coherent interconnect (CCI-400) that supports
full cache coherency between the memory masters in our proposed hardware architecture.
In our experience, it is difficult to accurately simulate cache coherent interconnects in a way
that captures the complex interactions and nuances of data movement between all of the
system resources. This includes adherence to coherence protocol specifications, buffers,
hazard management, protection, speculation and other low level behaviours. Although
the hardware emulation platform limits our ability to perform design space exploration
and ”what-if” experiments, it provides us with a more realistic baseline configuration for
heterogeneous SoCs used in low-power embedded applications.

ACAI’s hardware components are implemented in Verilog, synthesized using Xilinx
Vivado 2017.2 and programmed to the FPGA fabric on the MPSoC. For evaluation, we
use a variant of the hardware design that has been extensively optimized for improved data
bandwidth. Due to time constraints, this variant only models data movement across the HA
memory interface. Compared to the base design, ACAIopt has a single cache and can ac-
commodate a large amount of outstanding requests to the CCI. This overcomes some band-
width limitations in our base implementation. Accelerator configuration time and address
translation is emulated using measured delays from the base design. The MMU emulator
tracks the number 4K memory regions (N) accessed by the accelerator and adds delays
based on latency measured from ACAIbase. A block diagram of ACAIopt is presented in
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figure 6.5.

Delay ACAIbase measurement Value
τJD Job descriptor fetch and configuration 294 Cycles
τPTW MMU page table walk latency (2-level) 167 Cycles

Performance = Performanceopt + τJD +N×τPTW

Figure 6.5: ACAIopt emulation for optimized for bandwidth

To compare ACAI’s performance, we developed other interface options with the same
HAs attached. The shared interface (Shared-NC) has no hardware data coherency and the
user application is required to perform flushes and/or invalidations to synchronize data.
The time spent conducting synchronization operations are included in the performance
numbers presented for the Shared-NC interface. The shared IO-coherent interface (Shared-
IO) features one-way coherency and virtual addressing through an IOMMU implemented in
the ASIC. Although this interface allows the HA to snoop data from the CPU cache (similar
to ACAI), data generated from the HA will be posted to the DDR controller (DDRC). Write
from the HA will cause hardware invalidation messages to be sent to the CPU cache.

A block diagram showing the interactions between the various hardware nodes is pre-
sented in figure 6.6.

6.4.1.1 Interface Protocols

The prototype setup leverages a combination of interface protocols from the ARM AMBA

AXI and ACE Protocol Specification [97]. The Advanced eXtensible Interface (AXI) pro-
tocol is adopted as the means to provide HA access to memory through the HA memory
interface 4 . It is a point-to-point handshake interface mastered by the HA. Memory re-
quests from the HA propagate through intermediate nodes until the transaction completes.
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Figure 6.6: Hardware prototype platform showing HA integration using ACAI and other
interface options

AXI transactions have a variable burst size (the number of data samples returned per re-
quests) and supports an arbitrary number of outstanding requests from the master. It also
defines a set of request signals (AxCACHE) that specify the bufferable, cacheable and allo-

cate attributes of the transaction. The protocol grants the HA the ability to control the data
granularity, bandwidth and other coherence attributes based on need. Support for variable
burst size, number of outstanding requests and transaction attributes are dependent on the
capability of the nodes (master, slave, caches, interconnect and switches) along the path of
the transaction.

The AXI Coherency Extension (ACE) protocol builds on AXI, adding support for full-
coherency. The interfaces that connect the CPU and the ACAI hardware 2 to the CCI
leverage the ACE protocol. The ACE-Lite protocol is a subset of ACE that only supports
IO Coherency (one-way coherency) and is used between the interconnect and the IOMMU
present on the ASIC. The light-weight AXI4-Lite protocol is used for the CPU peripheral
interface 1 and the HA configuration 3 interface.

6.4.1.2 Clocking

All of the designs and logic running on the FPGA fabric are clocked at 200 MHz. Although
we expect the ACAI to run at much higher frequencies in ASIC implementations, this was
a comfortable frequency to close timing on the FPGA across various HA designs. For
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proper ASIC emulation, the rest of the system clocks have been scaled down to match
the hardware implemented in the FPGA. This is achieved by re-programming the PLLs
built into the MPSoC chip. Clock scaling is necessary for two reasons: firstly, it provides
more accurate results when comparing execution speedups of kernels running on the HA
against the CPU. Secondly and more importantly, it reflects the expected clock ratios on
real ASIC SoC designs. This will preserve the latency ratio between nearby memory hits
(in ACAI caches) and those further away (in CPU caches or DDRC). The frequency of
the CPU is scaled by 6x (1.2 GHz→ 200 MHz), CCI by 6x (533 MHz→ 88 MHz) and the
DDRC by 3x (1067 MHz→ 355 MHz). The DDRC is not scaled similarly due to minimum
operating frequency requirements for the PLLs in the PHY to lock. This slightly skews the
performance comparisons in favor of Shared-NC, since it changes the latency ratio between
requests fulfilled by snoops and the DDRC.

A summary of the prototype setup is presented in table 6.1.

6.4.2 Software Setup

Performance is measured in CPU cycles using counters in the Performance Monitoring

Unit (PMU) of the ARM Cortex-A53 processor. It includes the time taken to configure the
HA, execute and receive a notification of completion by polling. We also include the time
it takes to marshal the results back to the CPU. Our benchmark applications simply reads
the result data back after execution. The marshalling time will vary based on the result
data size and where it is retrieved from (ACAI cache vs. DDRC). The memory latency,
as observed by the HA, is measured using Xilinx AXI Performance Monitor (APM) [99]
cores placed along the HA memory interface 4 . The reported latency measures the number
of cycles from when the HA declares intent (e.g issuing a read request, before acceptance
from the downstream node) to when the request is completed (e.g. last data sample of a
burst request is received).

The tests are setup and deployed from a user space applications running in Linux 4.9 on
the ARM Cortex-A53 processor. Before offloading the kernels to the HA, the application
performs memory allocations on any data structures that will be accessed by the HAs. The
Linux kernel uses lazy (on-demand) allocation of physical pages, deferring the assignment
of physical memory until first access. To ensure the page table entries have been created
for addressing by the HA, we also initialize the data structures. Kernels executing on a HA
attached to ACAI will start with a cold cache. Any required data will be snooped from CPU
cache. We believe that our measurement procedures (data marshalling and cold caching)
is more representative of real-world applications attempting to offload a kernel routine to a
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Evaluation System Details

CPU

Single Core Arm Cortex-A53 Processor
200MHz (Scaled down from 1.2GHz)
32KiB L1 Cache, 1MiB L2 Cache

64B Cache Line Size
Linux 4.9 Operating System

CCI
88MHz (Scaled down from 533MHz)

Snoop-based Coherence
Speculative Fetch Disabled

DDR Controller 355MHz (Scaled down from 1067MHz)
FPGA Fabric 200MHz

Accelerator Interface Details

ACAIbase

Full Memory Coherence
64KiB L1 Cache, 512KiB L2 Cache

Virtual Addressing
64-bit data bus width

Min Latency: 4 Cycles (to FPGA L1$)

ACAIopt

Full Memory Coherence
512KiB L2 Cache

Emulated Virtual Addressing
64-bit data bus width

Min Latency: 7 Cycles (to FPGA L2$)

Shared-IO

I/O Memory Coherence
Virtual Addressing

64-bit data bus width
Min Latency: 79 Cycles (to CPU L2$)

Shared-NC

No Memory Coherence
Physical Addressing
64-bit data bus width

Min Latency: 98 Cycles (to DDRC)

Table 6.1: Prototype system configuration and details
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HA. Input data will likely have been accessed recently and the results will likely be used
upon kernel completion.

For benchmarks running over the Shared-IO interface, we leveraged existing Virtual

Function I/O (VFIO) [100] and ARM SMMU [101] drivers. The application creates special
buffers with virtual addresses that can be translated by the SMMU servicing the interface.
For benchmarks running over the Shared-NC interface, we leveraged custom device drivers
that allocate contiguous memory blocks in the kernel space and makes them available to
user space (zero-copy). The Shared-NC driver allows the blocks to be cached in the CPU
and provides mechanisms for performing data synchronization.

6.4.3 Kernels and Applications

Synthetic kernels: We first evaluate our proposed framework using a set of synthetic ker-
nels that aim to provide us with an understanding of it’s memory latency and bandwidth.
These pedagogical HAs perform little to no computation but exhibit various memory access
patterns that are representative of memory demanding kernels. These kernels are written
in C and the HA is generated from Xilinx Vivado HLS 2017.2. The first synthetic HA per-
forms sequential bulk-data copy from one buffer to another. The pseudo-code for this HA
is presented in figure 6.7. This HA models accelerators with buffered implementations
where the performance may be limited by bandwidth. The second synthetic kernel per-

1 void memcopy(u64 src[N], u64 dst[N]) {
2 u64 buff[N];
3 memcpy(buff, src, N * sizeof(u64));
4 memcpy(dst, buff, N * sizeof(u64));
5 }

Figure 6.7: Pseudo-code for sequential bulk-data copy kernel

forms random bulk-data copy from one buffer to another. The randomness is implemented
using a linear feedback shift register (LFSR), ensuring that each memory address is visited
only once. The pseudo-code for this HA is presented in figure 6.8. This HA models newer
workloads that have little to no buffering, may be operating on large data sets and have
interleaved read and write memory requests. The third synthetic kernel performs a linked-
list traversal, summing up the data in each node as it progresses. The pseudo-code for this
HA is presented in figure 6.9. This HA models kernels that utilize software data structures
and are sensitive to memory latency. All synthetic HAs are implemented with optimization
directives to ensure maximum bus utilization.
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1 #include "lfsr.cpp"
2 void memcopy(u64 src[N], u64 dst[N]) {
3 for (int i = 0; i < N; ++i)
4 dst[LFSR1_N()] = src[LFSR2_N()];
5 dst[0] = src[0]; // LFSR is not inclusive of 0
6 }

Figure 6.8: Pseudo-code for random bulk-data copy kernel

1 typedef struct nodeType {
2 nodeType* next;
3 u64 payload[PAYLOAD_SIZE];
4 } nodeType;
5

6 void linklist(nodeType *head, u64 *result) {
7 u64 tmp_result = 0;
8 nodeType* curNode=head;
9 while (curNode != NULL) {

10 for (int i = 0; i < PAYLOAD_SIZE; ++i)
11 tmp_result += curNode.payload[i];
12 curNode = curNode.next;
13 }
14 *result = tmp_result;
15 }

Figure 6.9: Pseudo-code for linked-list data traversal kernel

Micro-kernels: We also study the performance of the framework across a series of
micro-kernels selected from Machsuite [62]. Although the HA generated from these ker-
nels are not optimized for performance, they are representative of workloads with diverse
memory demands (e.g. data stride, data size, cache locality, etc). They are also represen-
tative of hardware accelerators generated using High Level Synthesis (HLS) techniques.
Table 6.2 summarizes the different selected kernels and their characteristics.

Applications: Lastly, we explore the performance of ACAI across a few applications
from the Rosetta [63] benchmark suite. These are full-blown applications comprised of
multiple kernels and is targeted to meet realistic performance requirements. They also ex-
hibit different data use and execution models. The HAs generated for these applications
are already optimized for performance and show significant speedups over embedded CPU
implementations. Table 6.3 summarizes the different Rosetta applications and their prop-
erties.
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Kernel Description Locality Data Size N
backprop Neural network training High 61.4 KiB 16
bfs/bulk Breadth-first search Low 38.1 KiB 10

bfs/queue Breadth-first search Low 38.1 KiB 10
fft/strided Fast Fourier transform High 24 KiB 6

fft/transpose Fast Fourier transform High 8 KiB 2
gemm/blocked Matrix multiplication High 384 KiB 96
gemm/ncubed Matrix multiplication High 384 KiB 96

md/knn Molecular dynamics Low 44 KiB 11
sort/merge Sorting High 16 KiB 4
sort/radix Sorting High 49 KiB 13
spmv/crs Sparse matrix multiplication Low 37.6 KiB 10
stencil2d Stencil computation High 128.1 KiB 33
stencil3d Stencil computation High 256 KiB 64

Table 6.2: Machsuite kernel details
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Figure 6.10: Memory latency distribution for random memory requests

6.5 Evaluation

6.5.1 Latency and Bandwidth

Figure 6.10 shows the memory latency distribution for read and write requests as observed
by the synthetic bulk random data copy HA across different interfaces. The transaction
latencies are presented in 50-cycle bin sizes. The HA is configured to access a total data size
of 256 KiB. Shared-IO and ACAI experience significantly better read latencies compared to
Shared-NC because they can snoop data directly from the neighboring CPU cache. ACAI is
able to experience even lower latency because it is able to exploit spatial locality within its
cache. The minimum observed read latencies are 98 cycles on Shared-NC (to the DDRC),
79 cycles on Shared-IO (to CPU L2$) and 7 cycles (to ACAI cache). On average, ACAI has
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Application Property Test Size N
Digit Recognition Compute Bound 627.0kB 157

Face Detection Compute Bound 76.6kB 20
3D Rendering Compute Bound 101.4kB 26
Spam Filter Memory Bound 8.80MB 2253

Table 6.3: Rosetta application details

a read latency improvement of 12.1x and 5.7x over Shared-NC and Shared-IO respectively,
for random bulk data access. The disparity in latency is not as prominent for write requests
because the intermediate nodes are able to buffer the data before forwarding to the final
destination.
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Figure 6.11: Synthetic benchmark performance normalized to Shared-NC

Figure 6.11-a shows the performance results for sequential bulk-data copy normalized
to Shared-NC. The results are presented for different data sizes. At small data sizes, the
performance of the Shared-NC suffers from software coherence overheads. The overheads
become less pronounced as the data size increases, demonstrating the importance of hard-
ware coherence for fine-grained accelerators. The performance gap across all interfaces
begins to close at larger data sizes. There are no boosts from spatial locality because the
HA performs burst memory requests (each read request returns 2 cache lines) across all
interfaces. ACAI has a speedup of 4.5x to 1.4x over Shared-NC for data sizes ranging
from 4 KiB to 2 MiB. The primary factor that affects bandwidth for sequential bulk-data
reads, is the ability to pipeline memory transactions at all participating nodes. This was
also the primary driver for developing a variant that supports multiple outstanding cache
line fills. Our results also show that HAs operating with virtual addresses and caches are
able to maximize the full memory bandwidth with properly pipelined implementations.

Figure 6.11-b shows the performance results for random bulk-data copy normalized to
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Shared-NC. The results are also presented for different data sizes. The interleaved non-
sequential access pattern prevents the HA from leveraging burst AXI transactions. Shared-
IO outperforms Shared-NC at smaller data sizes but falls behind at larger data sizes (0.5x
at 2 MiB). This is due to the increased network traffic at all nodes along the requests and
to a larger number of granular (non-burst) requests in the network. Write requests from
the the Shared-IO interface will also force CPU cache lines to be invalidated, creating even
more traffic as the lines are flushed to DRAM. Negative effects from address translation,
buffer pressure, data hazard management, and CPU snoop response latency become more
pronounced and begin to affect Shared-IO performance. ACAI is able to overcome this by
using its cache to filter traffic and performing cache line migrations. ACAI outperforms
Shared-NC by 2.5x to 3.3x for data sizes less than its cache (512 KiB) and continues to
perform at 1.4x for data sizes beyond that.

Figure 6.11-c shows the performance result for linked-list data traversal. Each node has
a 24 B payload and the length of the list is increased to sweep through a total data size of
4 KiB to 2 MiB. This HA uses a mixture of non-burst and burst transactions as it executes.
ACAI is able to outperform other interfaces by 3.2x-4.4x across different data sizes due to
reduced memory latency.

6.5.2 Single Kernel Analysis
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Figure 6.12: Machsuite performance results across various kernels

Figure 6.12 shows the performance result for several HAs derived from machsuite ker-
nels normalized to Shared-NC. In every kernel, ACAI is able to outperform both Shared-IO
and Shared-NC. ACAI has an average speed up of 4.3x and a max speedup of 6.5x across
13 kernels.
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6.5.3 Application Analysis

Figure 6.13 shows the performance result for several application HAs generated from
Rosetta and normalized to Shared-NC. In every application, ACAI is able to outperform
both Shared-IO and Shared-NC accelerators. ACAI has an average speed up of 1.4x and a
max speedup of 1.8x across 4 applications.
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Figure 6.13: Rosetta Benchmark Results across various applications

6.6 Future work

Implementation: From our experiments, we observed that performance can be impeded
by low-level implementation details that manifest across the system. Details such as the
number of outstanding memory requests supported by the memory nodes and interconnect,
buffers within each node, hazard control mechanisms, and snoop response behavior can
significantly changed the latency and/or performance results. We plan to fully integrate the
optimizations made for ACAIopt. ACAI improves accelerator performance by employing
efficient cache-to-cache transfers through the interconnect. The interconnect in the MPSoC
device implements a snoop-based coherence protocol that broadcasts coherence messages
to all coherent masters. A dictionary-based coherence protocol would allow the framework
scale more efficiently when the working data size is larger than the CPU cache or to systems
with many masters.

Recently released interconnect architectures [102, 103] have much higher bandwidth
and can cater to high performance workloads. Our future goal is to accurately simulate
many of these low-level implementation details and perform a design-space exploration for
systems with different topologies (e.g off-chip accelerators, storage and caches).
Power/Energy: We are yet to perform a complete power and energy analysis on the frame-
work. Although the cache and MMU units in ACAI will consume significant amounts of
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energy, we anticipate some of this to be offset by reduced data movement. After the job
chains have been setup, the job control unit is capable of independently executing all jobs
on the HA resources without CPU intervention. Additional power savings may be realized
by putting the CPU into a low-power state until signaled appropriately.
Protocol Updates: Full cache coherency promotes the HA to the same rank as the CPU,
with ACAI serving to abstract away the complexities of maintaining coherence. This ab-
straction layer can easily be updated to exploit advanced coherence messages supported
by the interconnect protocol. This includes cache stashing [104], where result data from
the interface can be pushed directly into the CPU’s cache. A similar optimization can be
performed in the opposite direction by having the user application issue instructions to
preemptively demote cache lines to a lower hierarchy, thereby moving data closer to the
consumer [105].

6.7 Related Work

This work primarily focuses on designing a robust hardware interface for fixed-function
HAs that reduces data movement and improves the programming experience for applica-
tions attempting to exploit hardware acceleration. Section 6.2 describes and references
prior work that has explored shared memory, virtual addressing and caches for heteroge-
neous systems.

There are emerging bus/interconnects standards being developed in industry that also
aim to foster tighter coupling between processors and accelerators (GPUs, HAs, FPGAs,
etc). An in-work specification for OpenCAPI [106] adds support for full cache coherency.
Cache Coherent Interconnect for Accelerators (CCIX) [107] is a multichip standard that
aims to extend cache coherency to a large number of acceleration devices. Gen-Z [108]
provides memory-semantic access to data and aims to scale to pooled memory across a
server rack.

Prior work have proposed various coherence protocols and system topologies that focus
on different HA integration challenges. The Fusion cache hierarchy [90] relies on a time-
stamp based, self-invalidation protocol for accelerators sharing a cache. Spandex [81] is an
interface that relies on a DeNovo-based LLC to connect devices with diverse protocols and
memory demands. Heterogeneous System Coherence (HSC) [109] uses a modified direc-
tory/interconnect and memory hierarchy for CPU-GPU systems. Crossing Guard integrates
cached accelerators using a simplified coherence protocol and adapts it to the host coher-
ence protocol. Past research have also proposed software backed mechanisms for address
translation and memory protection for accelerators [110, 111].
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Many efforts have been made to improve the programming experience for applications
accelerated in FPGA hardware. Xilinx SDx development environment [112] uses high level
programming languages to provide system-level abstractions. The Acceleration Stack for
Intel Xeon CPU with FPGAs [113] provides software APIs intended to simplify application
development and deployment.

6.8 Conclusion

Efficient hardware acceleration is a hard problem that impacts designers at every layer of
the architecture. Application designers are often faced with rigid implementation require-
ments and are unfamiliar with the underlying complexities in data management across the
hardware platform. SoC architects face complex design trade-offs when weighing hard-
ware acceleration needs against other platform demands. Hardware accelerator developers
face design restrictions and memory limitations that impact the utilization of the HA.

ACAI addresses this problem by simplifying the software application stack, transpar-
ently sharing the process address space and coordinating the execution of jobs across HA
resources. With full cache coherency, it eases HA integration into the platform while ab-
stracting away the intricacies of coherence management. ACAI’s hardware interface maxi-
mizes memory bandwidth and significantly improves latency using its cache. Lower latency
enables fine-grained acceleration and performance improvements across diverse workloads.
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CHAPTER 7

Conclusions

With the end of Dennard’s scaling and a slowdown in Moore’s Law, system architects
have developed several techniques to deliver on the traditional performance and power
improvements we have come to expect. The various techniques adopted to combat this
phenomenon has directly translated to an increase in complexity for modern SoCs. This
increase in complexity has in-turn lead to an increase in design effort and validation time.

This dissertation presented several techniques to address the challenges to rapidly birthing
complex SoCs. The first part of this dissertation focused on the foundations and archi-
tectures that aid in rapid SoC design. It presented a variety of architectural techniques
that were developed and leveraged to rapidly construct complex SoCs at advanced process
nodes. The next part of the dissertation focused on the gap between a completed design
model(in RTL form) and its physical manifestation (a GDS file that will be sent to the
foundry for fabrication). It presented methodologies and a workflow for rapidly walking
a design through to completion at arbitrary technology nodes. It also presented progress
on creating tools and a flow that is entirely dependent on open-source tools. The last part
focused framework that not only speeds up the integration of a hardware accelerator into
an SoC ecosystem, but emphasizes software adoption and usability
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