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ABSTRACT

This work addresses the development of fast summation methods for long range particle

interactions and their application to problems in biomolecular solvation, which describes the

interaction of proteins or other biomolecules with their solvent environment. At the core of

this work are treecodes, tree-based fast summation methods which, for N particles, reduce

the cost of computing particle interactions from O(N2) to O(N logN). Background on fast

summation methods and treecodes in particular, as well as several treecode improvements

developed in the early stages of this work, are presented.

Building on treecodes, dual tree traversal (DTT) methods are another class of tree-based

fast summation methods which reduce the cost of computing particle interactions for N

particles to O(N). The primary result of this work is the development of an O(N) dual tree

traversal fast summation method based on barycentric Lagrange polynomial interpolation

(BLDTT). This method is implemented to run across multiple GPU compute nodes in the

software package BaryTree. Across different problem sizes, particle distributions, geometries,

and interaction kernels, the BLDTT shows consistently better performance than the previously

developed barycentric Lagrange treecode (BLTC).

The first major biomolecular solvation application of fast summation methods presented is

to the Poisson–Boltzmann implicit solvent model, and in particular, the treecode-accelerated

boundary integral Poisson–Boltzmann solver (TABI-PB). The work on TABI-PB consists

of three primary projects and an application. The first project investigates the impact of

various biomolecular surface meshing codes on TABI-PB, and integrated the NanoShaper

software into the package, resulting in significantly better performance. Second, a node patch

method for discretizing the system of integral equations is introduced to replace the previous

centroid collocation scheme, resulting in faster convergence of solvation energies. Third, a

new version of TABI-PB with GPU acceleration based on the BLDTT is developed, resulting

in even more scalability. An application investigating the binding of biomolecular complexes

is undertaken using the previous Taylor treecode-based version of TABI-PB. In addition

to these projects, work performed over the course of this thesis integrated TABI-PB into

the popular Adaptive Poisson–Boltzmann Solver (APBS) developed at Pacific Northwest

National Laboratory.
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The second major application of fast summation methods is to the 3D reference interaction

site model (3D-RISM), a statistical-mechanics based continuum solvation model. This work

applies cluster-particle Taylor expansion treecodes to treat long-range asymptotic Coulomb-

like potentials in 3D-RISM, and results in significant speedups and improved scalability to the

3D-RISM package implemented in AmberTools. Additionally, preliminary work on specialized

GPU-accelerated treecodes based on BaryTree for 3D-RISM long-range asymptotic functions

is presented.
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CHAPTER 1

Introduction

This thesis addresses the development of fast summation methods for long range particle

interactions and their application to problems in biomolecular solvation, which describes the

interaction of proteins or other biomolecules with their solvent environment. At the core of

this work are treecodes, tree-based fast summation methods which, for N particles, reduce

the cost of computing particle interactions from O(N2) to O(N logN). Background on fast

summation methods and treecodes in particular, as well as several treecode improvements

developed in the early stages of this work, are presented in Chapter 2. Dual tree traversal

(DTT) methods are a class of tree-based fast summation methods which reduce the cost

of computing particle interactions for N particles to O(N). The development of the GPU-

accelerated barycentric Lagrange dual tree traversal (BLDTT) algorithm, which forms the

primary result of this thesis, is detailed in Chapter 3. The first major biomolecular solvation

application of fast summation methods presented is to the Poisson–Boltzmann implicit solvent

model, and in particular, the treecode-accelerated boundary integral Poisson–Boltzmann

solver (TABI-PB), detailed in Chapter 4. The second major application of fast summation

methods is to the reference interaction site model (RISM), a statistical-mechanics based

continuum solvation model, detailed in Chapter 5. We summarize the primary contents of

each chapter below.

1.1 Overview of fast summation methods and early results

This chapter provides a brief survey of fast summation methods for particle interactions,

focusing on tree-based methods and treecodes in particular. Additionally, several early

improvements to treecode methods developed in the course of this work are described.

Long-range particle interactions are essential in many areas of computational physics,

including calculation of electrostatic or gravitational potentials, as well as discrete convolution

1



sums in boundary element methods. Consider the potential due to a set of N particles,

φ(xi) =
N∑
j=1

G(xi,xj)qj, i = 1 : N, (1.1)

where xi is a target particle, xj is a source particle with strength qj, and G(x,y) is an

interaction kernel. The cost of evaluating the potentials φ(xi) by direct summation scales like

O(N2), which is prohibitively expensive for large systems, but several methods are available

to reduce the cost. Among these are tree-based methods in which the particles are partitioned

into clusters with a hierarchical tree structure.

In particular, treecodes are a class of tree-based fast summation methods that employ a

hierarchical tree structure to efficiently approximate the interaction of N particles. Originally

developed for use in gravitational N-body simulations [1], they can be applied to a wide

variety of problems involving the interaction between source and and target sites which may

or may not be coincident. For the case of coincident particles described above, treecode

methods reduce the computational cost to O(N logN). The essential idea behind these

methods is the replacement of direct particle-particle interactions between some particle and

a spatially well-separated group of particles with a single particle-cluster interaction. This

requires the construction of a hierarchical oct-tree structure and a criterion for determining

whether a particle and a cluster are well-separated.

There are two treecode implementations described in this chapter for the general case

of M target particles and N source particles, in which case a direct computation scales

like O(MN). The first described method, the particle-cluster treecode, which builds a tree

on the sources, is O ((M +N) logN). The second method, the cluster-particle treecode,

which builds a tree on the targets, is O ((M +N) logM). While particle-cluster treecodes

are generally more efficient when M < N , cluster-particle treecodes are a better choice when

M > N . To approximate the interaction between a particle and a cluster, the methods

described employ Taylor expansions. This chapter describes recursion relations for calculating

Taylor expansion coefficients for certain kernels to arbitrary order developed by Krasny and

coworkers [2, 3, 4].

This chapter additionally describes several computational improvements to treecodes,

particularly in their cluster-particle form, developed in the early stages of this work. These

improvements produced significant memory savings for the application of treecodes to the

RISM problem, detailed in Chapter 5.
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1.2 BLDTT: GPU-accelerated barycentric Lagrange dual tree traversal

Joint work with Nathan Vaughn developed the GPU-accelerated barycentric Lagrange

treecode (BLTC), a treecode method based on polynomial interpolation. This work is described

in Nathan’s thesis [5] and in [6]. Building on the BLTC, this chapter, following closely the

work presented in [7], details the development of the O(N) barycentric Lagrange dual tree

traversal fast summation method (BLDTT), and its MPI and OpenACC implementation for

running on multiple GPU nodes in the software package BaryTree.

The scheme replaces well-separated particle-particle interactions by adaptively chosen

particle-cluster, cluster-particle, and cluster-cluster approximations given by barycentric

Lagrange interpolation at proxy particles on a Chebyshev grid in each cluster. The BLDTT

is kernel-independent and the approximations can be efficiently mapped onto GPUs, where

target particles provide an outer level of parallelism and source particles provide an inner

level of parallelism. We present an OpenACC GPU implementation of the BLDTT with MPI

remote memory access for distributed memory parallelization. The performance of the GPU-

accelerated BLDTT is demonstrated for calculations with different problem sizes, particle

distributions, geometric domains, and interaction kernels, as well as for unequal target and

source particles, and compared with the earlier BLTC. In addition, MPI strong scaling results

are presented for the BLTC and BLDTT using N=64E6 particles on up to 32 GPUs. Further

implementation details are presented in Appendix A. The BaryTree package implementing

the BLDTT is available on GitHub at github.com/Treecodes/BaryTree.

1.3 A Poisson–Boltzmann equation solver

Implicit solvent models play an important role in computational modeling of electrostatic

interactions between biomolecules and their solvent environment [8, 9, 10]. Of particular

importance is the Poisson–Boltzmann (PB) model [11, 12]. Consider an interior domain

Ω1 ⊂ R3 containing the solute biomolecule, and an exterior domain Ω2 = R3 \ Ω1 containing

the ionic solvent. In a 1:1 electrolyte at low ionic concentrations, one can utilize the linearized

PB equation for the electrostatic potential φ,

−∇ · (ε(x)∇φ(x)) + κ2(x)φ(x) =
Nc∑
k=1

qkδ (x− yk) , (1.2)

where ε is the dielectric constant, κ is the modified Debye-Hückel parameter in units of Å
−2

,

Nc is the number of atoms in the solute biomolecule, yk is the position of the kth atom of

the solute, and qk is the associated partial charge in units of fundamental charge ec.

3



A variety of numerical approaches have been applied to the Poisson–Boltzmann model,

including finite-difference [13, 14, 15, 16, 17, 18, 19, 20], finite-element [12, 21, 22], and

boundary integral [23, 24, 25, 26, 27] schemes. In particular, a treecode-accelerated boundary

integral scheme for the linearized Poisson–Boltzmann equation (TABI-PB) was recently

developed [26, 28]. Boundary integral schemes for the PB equation solve for the surface

potential on a triangulated discretization of the interface. These schemes generally benefit

from rigorous enforcement of the interface conditions and the boundary condition at infinity.

However, these schemes face the expense of solving a dense linear system, and hence TABI-PB

has traditionally used a treecode algorithm to reduce the computational cost from O(N2) to

O(N logN), where N is the number of triangles representing the interface.

The work in this thesis regarding TABI-PB consists of three primary projects and an

application. The first project investigates the impact of surface triangulation codes on the

performance of TABI-PB. In the Poisson–Boltzmann model, the solute-solvent interface is

often taken to be the molecular surface or solvent-excluded surface (SES), and the quality

of the SES triangulation is critical in boundary element simulations of the PB model. This

project compares the MSMS and NanoShaper surface triangulation codes for a set of 38

biomolecules.

The second project implements a node patch method for forming the underlying linear

system. Previously, TABI-PB has used a constant element centroid collocation scheme for

discretizing the boundary integral problem. In the node patch scheme [12], the boundary

integral equations are discretized so that the problem is computed on the vertices of the

surface mesh elements instead of at the centroids of the faces.

Note that the previous two projects utilized the Taylor treecodes detailed in Chapter 2; the

third project describes the development of a new BLDTT-based GPU-accelerated TABI-PB

solver, applying the work detailed in Chapter 3 to TABI-PB. We then describe the application

of TABI-PB to the calculation of electrostatic free energies of binding between proteins and

ligands, comparing with a popular finite-difference based Poisson–Boltzmann software.

In addition to these projects, work performed over the course of this thesis integrated TABI-

PB into the popular Adaptive Poisson–Boltzmann Solver (APBS) developed at Pacific North-

west National Laboratory [29]. TABI-PB is available at github.com/Treecodes/TABI-PB

and as an APBS submodule at github.com/Electrostatics/APBS.

1.4 Treecode acceleration of 3D reference interaction site model

Beyond the Poisson–Boltzmann model detailed in Chapter 4, another approach to implicit

solvent models are integral equation theories, based on the Ornstein-Zernike equation [30].
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The 3D-reference interaction site model of molecular solvation (3D-RISM) [31, 32] is one

such integral equation, which has been shown to provide solvation thermodynamics in good

agreement with experiment and explicit solvent calculations [33, 34, 35, 36].

However, 3D-RISM can be computationally expensive, especially for large molecules.

3D-RISM calculations consist of three sequential steps: initialization (calculating potential

energy and long-range electrostatic interactions on a 3D grid), iteration to convergence, and

integration of the solvent distribution to calculate thermodynamics. For small molecules,

iteration time dominates the calculation, which scales with the number of grid points, Ngrid,

as O (Ngrid logNgrid). Initialization time dominates for typical proteins, scaling with both

the number of solute atoms, Natom, and grid points as O (NatomNgrid). Integrating solvent

thermodynamics is typically 1% or less of the total computation time. Depending on the

precision of the calculation, initialization becomes the most expensive part of the calculation

for solutes of 1000 atoms or more and is a major barrier to the practical application of

3D-RISM to large molecules.

Limited work has been done to address the computational cost of initialization for open

boundary conditions. Because there is no periodic structure, the entire potential energy is

calculated for a real-space grid. In addition, to capture contributions beyond the size of the

solvent box, analytic long-range asymptotic (LRA) expressions of the solvent correlation

functions must also be computed in real- and reciprocal-space. So far, little has been done to

address the cost of computing these expressions.

The work detailed in this chapter addresses the use of fast-summation methods to

accelerate computing potential energy and LRA functions, which take the form of Coulomb-

like potentials. In the evaluation of LRA functions in 3D-RISM, the solute is represented

by N source particles and the solvent grid by M target sites. Typically M � N in the

case of the 3D-RISM solvent grid, making cluster-particle treecodes described in Chapter 2

appropriate to consider [37].

This work consists of two primary projects. The primary project related to this topic

investigates the development of cluster-particle Taylor treecodes for accelerating the calculation

of the Coulomb potential and LRA functions in 3D-RISM. The work presented largely follows

[38], and the resulting code is available in AmberTools 2019 and later [39]. The second

project documents the early development of BaryTree-based GPU-accelerated treecodes

applied to 3D-RISM, contributing to the goal of a future fully GPU-accelerated 3D-RISM

implementation, with further details of its development given in Appendix B.
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CHAPTER 2

Overview of Fast Summation Methods and Early Results

This chapter provides a brief survey of fast summation methods for particle interactions,

focusing on tree-based methods and treecodes in particular. §2.1 provides background

on particle interactions and tree-based fast summation methods. §2.2 describes treecode

algorithms as well as recursion relations for computing Taylor coefficients to arbitrary order

for approximating particle and cluster interactions. §2.3 describes several computational

improvements to treecodes developed in the early stages of this work that in particular

produced significant memory savings for their application to 3D-RISM, detailed in Chapter 5.

2.1 Background

Long-range particle interactions are essential in many areas of computational physics,

including calculation of electrostatic or gravitational potentials, as well as discrete convolution

sums in boundary element methods. In this context consider the potential due to a set of

N particles,

φ(xi) =
N∑
j=1

G(xi,xj)qj, i = 1 : N, (2.1)

where xi is a target particle, xj is a source particle with strength qj, and G(x,y) is an

interaction kernel. In electrostatics applications, for example, qj is a charge and G(x,y) is

the Coulomb kernel,

G(x,y) =
1

|x− y|
, (2.2)

or the screened Coulomb kernel,

G(x,y) =
exp (−κ |x− y|)
|x− y|

, (2.3)

where κ is a screening parameter.

The cost of evaluating the potentials φ(xi) by direct summation scales like O(N2), which is

prohibitively expensive for large systems, but several methods are available to reduce the cost.
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Among these are mesh-based methods in which the particles are projected onto a regular mesh,

such as particle-particle/particle-mesh (P3M) [40] and particle-mesh Ewald (PME) [41], and

tree-based methods in which the particles are partitioned into clusters with a hierarchical tree

structure, such as Appel’s dual tree traversal (DTT) method [42], the Barnes-Hut treecode

(TC) [1], and the Greengard-Rokhlin fast multipole method (FMM) [43, 44]. Other related

methods for fast summation of particle interactions include panel clustering [45], hierarchical

matrices [46], and multilevel summation [47].

Tree-based fast summation methods such as the DTT, TC, and FMM can be described as

having two phases. In the precompute phase, the particles are partitioned into a hierarchical

tree of clusters, and assuming the particle distribution is homogeneous, this phase generally

scales like O(N logN). In the compute phase, well-separated particle-particle interactions are

approximated using for example monopole approximations [42, 1] or higher order multipole

expansions [43, 48, 49]. Some differences in the compute phase of these methods are noted as

follows. The TC traverses the tree for each target particle to identify well-separated particle-

cluster pairs, while the DTT traverses two copies of the tree simultaneously to identify

well-separated cluster-cluster pairs; both methods use a multipole acceptance criterion (MAC)

for this purpose. The FMM passes information from one level to the next, with a uniform

definition of the interaction list at each level; an upward pass computes cluster moments, and

a downward pass computes potentials using multipole-to-local and local-to-local translations.

The compute phase of the TC scales like O(N logN), while the compute phase of the

FMM [43, 44] and DTT [50, 49] scale like O(N).

2.2 Treecodes

Treecodes are a particular class of tree-based fast summation methods that employ a

hierarchical tree structure to efficiently approximate the interaction of N particles. Originally

developed for use in gravitational N-body simulations [1], in which the force of N particle

bodies on each other must be computed at each time step of a dynamics simulation, they

can be applied to a wide variety of problems involving the interaction between N source

particles on M target sites which may or may not be coincident with the sources. For

the case of coincident sources and targets, direct sum scales like O(N2), while treecode

methods are O(N logN). The essential idea behind these methods is the replacement of

direct particle-particle interactions between some particle and a spatially well-separated

group of particles with a single particle-cluster interaction. This requires the construction of

a hierarchical oct-tree structure and a criterion for determining if a particle and a cluster are

well-separated.
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The simplest interaction between a particle and cluster is a monopole approximation

in which, for a well-separated interaction, the cluster is replaced with a single particle at

the center whose charge (or mass, or other interaction parameter) is equal to the sum of

all particles contained within the cluster. This is similar to the strategy of the original

gravitational Barnes–Hut treecode, in which the monopole was placed at the center of

mass. To achieve higher accuracy, the interaction between a particle and a cluster can be

approximated with a Taylor expansion (in which case, the Barnes–Hut implementation can be

viewed as a zero-order expansion). However, hard coded Taylor expansions to high order can

be costly and result in an inefficient implementation of the treecode. Krasny and coworkers

[2, 3, 4] instead implemented recursion relations for calculating Taylor expansion coefficients

to arbitrary order.

We note that there are two primary applications of the treecode in the work described

in this document. The first is for the calculation of a boundary integral form of the

Poisson-Boltzmann equation, described in Chapter 4. In this case, the targets and sources

are coincident particles, representing elements of a discretized biomolecular surface with

interactions described by integral kernels. The second is for the calculation of long range

functions on a set of regular target grid points from a set of charged source particles in

the Reference Interaction Site Model, described in Chapter 5. In this case, the targets and

sources are clearly not generally coincident particles.

After describing the tree construction process, we describe here two implementations

of treecodes for the general case of M target particles and N source particles. A direct

computation would be O(MN) in this case. The first described method, the particle-cluster

treecode, which builds a tree on the sources, is O ((M +N) logN). The second method, the

cluster-particle treecode, which builds a tree on the targets, is O ((M +N) logM).

2.2.1 Tree construction

Consider a set of either M target or N source particles. The tree is constructed as follows:

The smallest box with sides parallel to the Cartesian coordinate axes containing all particles

is formed. This top level domain is denoted the root cluster. This root cluster is divided

uniformly through its center into eight child clusters with three cuts parallel to the Cartesian

axes. Each child cluster is shrunk to the smallest box containing all particles within the

cluster. The cluster is then further divided into eight more clusters until the resulting clusters

contain less than some user specified value (referred to as M0 for targets, and N0 for sources),

at which point the cluster is divided no further. The clusters at the lowest level of the tree

(i.e., those with no children), are referred to as leaves.
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2.2.2 Particle-cluster treecodes

We describe the particle-cluster treecode after the work of Boateng and Krasny in [37].

In the particle-cluster treecode, we apply the tree construction procedure described above to

the N source particles. We depict a particle-cluster interaction in Fig. 2.1 between a target

particle xi and a source cluster C with center yc and radius r containing particles yj with

charge qj. The particle-cluster distance is R = |xi − yc|. The far-field Taylor approximation

used by the treecode is valid when the target is well-separated from the cluster.

Figure 2.1: A particle-cluster interaction between a target particle xi and a source cluster
C with center yc and radius r containing particles yj with charge qj. The particle-cluster
distance is R = |xi − yc|.

We can write the potential expression given in Eq. 2.1 as

φ(xi) =
∑
C

∑
yj∈C

qjG(xi,yj) (2.4)

where C represents the source clusters with which target xi interacts.

To compute a particle-cluster interaction, we Taylor expand G(xi,yj) about the cluster

center yc, giving the expression

∑
yj∈C

qjG (xi,yj) ≈
∑
yj∈C

qj

p∑
‖k‖=0

1

k!
∂kyG (xi,yc) (yj − yc)

k (2.5)

=

p∑
‖k‖=0

ak (xi,yc)Mk (C) , (2.6)

where the Taylor coefficients are given by

ak (xi,yc) =
1

k!
∂kyG (xi,yc) , (2.7)
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and the cluster moments are

Mk (C) =
∑
yj∈C

qj (yj − yc)
k . (2.8)

Note that this is a Taylor series in three dimensions, where ‖k‖ = k1+k2+k3, k! = k1!k2!k3!,

∂ky = ∂k1y1 ∂
k2
y2
∂k3y3 , (xi − xc)

k = (xi1 − xc1)k1 (xi2 − xc2)k2 (xi3 − xc3)k3 , and 1, 2, 3 denote the

three respective Cartesian directions.

The particle-cluster treecode procedure is outlined in Algorithm 2.1. The treecode requires

three parameters: a multipole acceptance criterion (MAC) θ, a Taylor series expansion

order parameter p, and a maximum source leaf size M0. The parameter M0 determines

the maximum number of sources allowable in a leaf cluster, and is used during the tree

construction procedure.

The procedure in Algorithm 2.1 iterates over all target sites xi, computing the potential

φ at each site. For each target site, the recursive procedure compute-pc computes the

interaction between the target and a source cluster. The MAC θ determines if a particle-cluster

interaction is evaluated, or if further children in the tree of source clusters are traversed.

If the radius r of the cluster of sources and the distance R between the cluster center and

a target particle R is such that r/R ≤ θ, then we evaluate the interaction. Otherwise, we

traverse the children clusters of the source cluster.

The Taylor series expansion order parameter p specifies the order of the Taylor expansion

for evaluating the cluster-particle interaction. A recurrence relation is used to calculate the

Taylor coefficients, described below. If a source leaf-target particle interaction fails the MAC,

then the interactions are evaluated directly.

Note that the source tree has O(logN) levels. At every tree level, each source particle

contributes to the moment of one cluster. Thus, there are O(N logN) operations to compute

the moments. When computing the potential, the tree is descended M times, once for each

target particle, leading to an operation count of O(M logN). The particle-cluster treecode

is thus O ((M + αN) logN), where α is some constant used here to emphasize the different

leading coefficients in the asymptotic operation counts of moment computation and potential

computation.

2.2.3 Cluster-particle treecodes

The cluster-particle treecode was initially introduced in the form given here by [37]. In

the cluster-particle treecode, we apply the tree construction procedure described above to

the M target particles. We depict a cluster-particle interaction in Fig. 2.2 between a target
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Algorithm 2.1 The particle-cluster treecode with Taylor expansions.

1: procedure Particle-Cluster
2: Input: targets xi, sources yj, qj, order p, MAC θ, max sources N0

3: construct tree of source clusters
4: for i = 1,M do
5: compute-pc(root, xi)
6: end for
7: return potentials φ(xi)
8: end procedure

1: procedure compute-pc(C, x)
2: if MAC is satisfied then
3: compute and store moments Mk(C) by Eq. 2.8, if not already available
4: update Taylor coefficients ak(xc) by Eq. 2.7
5: compute interaction by Taylor series approximation Eq. 2.5
6: else if C is a leaf then
7: compute interaction by direct summation
8: else
9: for each child of C do
10: compute-pc(child, x)
11: end for
12: end if
13: end procedure

cluster C with center xc and radius r containing particles xi and a source particle yj with

charge qj. The cluster-particle distance is R = |yj − xc|. The Taylor expansion used for a

cluster-particle interaction can be considered a near-field approximation for all target particles

in a cluster well-separated from the source.

Consider a tree of target clusters with L levels, where level L is the root cluster and

level 1 are the leaves. A target site xi will then belong to a nested sequence of clusters

xi ∈ C1 ⊆ ... ⊆ CL, where cluster Cl is at level l. For each cluster Cl, denote its geometric

center by xlc. Let Il denote the list of all source particles yj that are well-separated from

cluster Cl but not from cluster C1, ..., Cl−1, and let D denote the list of all source particles

yj that are not well-separated from any cluster containing xi. Then we may partition Eq. 2.1

into not well-separated and well-separated sources using these interaction lists by

φ(xi) =
∑
yj∈D

qjG(xi,yj) +
L∑
l=1

∑
yj∈Il

qjG(xi,yj). (2.9)

The first term is calculated by direct summation, but the second term is handled by a

Taylor expansion in three dimensions for each interaction list. Expanding the second term
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Figure 2.2: A cluster-particle interaction between a target cluster C with center xc and radius
r containing particles xi and a source particle yj with charge qj . The cluster-particle distance
is R = |yj − xc|.

G(xi,yj) about xlc, the center of cluster l, gives

∑
yj∈Il

qjG (xi,yj) ≈
∑
yj∈Il

qj

p∑
‖k‖=0

1

k!
∂kxG

(
xlc,yj

) (
xi − xlc

)k
=

p∑
‖k‖=0

mk

(
xlc
) (

xi − xlc
)k
,

(2.10)

where the coefficients mk are

mk

(
xlc
)

=
∑
yj∈Il

qj(−1)‖k‖ak
(
xlc,yj

)
, (2.11)

and the Taylor coefficients ak are

ak (xi,yj) =
1

k!
∂kyG (xi,yj) . (2.12)

The cluster-particle treecode procedure is described in Algorithm 2.2. This procedure also

requires three parameters: a multipole acceptance criterion (MAC) θ, a Taylor series expansion

order parameter p, and a maximum target leaf size N0. The parameter N0 determines the

maximum number of targets allowable in a leaf cluster, and is used during tree construction.

The cluster-particle procedure occurs in two stages. In the first stage, we iterate over

all sources, and the recursive routine compute-cp1 updates the power series coefficients

mk(xc) for each target cluster. For any source-target leaf interactions which fail the MAC,

we directly compute the contribution of the source to each target in the leaf. In the second

stage, the compute-cp2 routine evaluates for each target cluster the power series using the

coefficients computed in the first stage for all targets contained within the cluster.
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The target tree has O(logM) levels. In the first stage, the tree is traversed for each of the

N source particles, leading to an O(N logM) operation count. In the second stage, we again

traverse the tree, but for each of the M target particles, leading to an O(M logM) operation

count. The cluster-particle treecode is thus O ((N + βM) logM)), where β is some constant

again used to emphasize the different leading coefficients in the first and second stages of the

computation.

2.2.4 Recurrence relations for Taylor coefficients

For certain interactions, the Taylor coefficients can be calculated efficiently to arbitrary

order by using a recurrence relation. Previous work [2, 4] established recurrence relations for

Coulomb and screened Coulomb interactions.

The Taylor coefficients ak(x,y) of the Coulomb interaction given in Eq. 2.2 can be

calculated by the recurrence relation

ak =
1

|x− y|2

[(
2− 1

‖k‖

) 3∑
i=1

(xi − yi)ak−ei −
(

1− 1

‖k‖

) 3∑
i=1

ak−2ei

]
, (2.13)

where ei is the ith Cartesian basis vector, and xi represents the ith Cartesian component of

x. After explicitly computing the coefficients for ‖k‖ = 0, 1, the rest may be computed using

Eq. 2.13. Furthermore, if any index of ‖k‖ is negative, ak = 0.

The screened Coulomb interaction Taylor coefficients ak(x,y) are given by the recurrence

relation

ak =
1

|x− y|2

[(
2− 1

‖k‖

) 3∑
i=1

(xi − yi)ak−ei −
(

1− 1

‖k‖

) 3∑
i=1

ak−2ei

+ κ

(
3∑
i=1

(xi − yi)bk−ei −
3∑
i=1

bk−2ei

)]
,

(2.14)

where the bk(x,y) are coefficients to an auxiliary function G(x,y) = exp (−κ |x− y|) whose

recurrence is given by

bk =
κ

‖k‖

(
3∑
i=1

(xi − yi)ak−ei −
3∑
i=1

ak−2ei

)
. (2.15)
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Algorithm 2.2 The cluster-particle treecode with Taylor expansions.

1: procedure Cluster-Particle
2: Input: targets xi, sources yj, qj, order p, MAC θ, max targets N0

3: construct tree of target clusters
4: for j = 1, N do
5: compute-cp1(root, yj)
6: end for
7: compute-cp2(root)
8: return potentials φ(xi)
9: end procedure

1: procedure compute-cp1(C, y)
2: if MAC is satisfied then
3: update power series coefficients mk(xc) by Eq. 2.11
4: else if C is a leaf then
5: compute first term in Eq. 2.9 by direct summation
6: else
7: for each child of C do
8: compute-cp1(child, y)
9: end for
10: end if
11: end procedure

1: procedure compute-cp2(C)
2: if C interacted with a source by Taylor approximation then
3: for each target site xi in C do
4: compute second term in Eq. 2.9 using power series Eq. 2.10
5: end for
6: end if
7: for each child of C do
8: compute-cp2(child)
9: end for
10: end procedure
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2.3 Early projects: Computational improvements to treecodes

In the course of applying and optimizing treecode methods to the problems presented in this

document, we have introduced a few minor computational improvements to the algorithms

over their original implementation in [37]. These improvements have been particularly

important to the treecodes used for the RISM problem, so we present them in the language

of cluster-particle treecodes.

2.3.1 Tree virtualization and boundary grids

The original version of the cluster-particle treecode as implemented in [37] requires

explicit storage of all target sites. When targets are located on a grid, this can result in using

unnecessary memory to explicitly store the targets and unnecessary computation time in

generating files of and reading in explicit target positions.

We instead propose a virtual treecode for grid targets, in which the tree is built using

only the dimensions and the bounds of the grid, and for direct target-source interactions, the

grid point positions are generated on the fly as needed. The grid is uniquely determined by

nine numbers: the number of grid points, or dimension, in the x, y, and z directions, and

the upper and lower limits of the grid in the x, y, and z directions. The implicit storage

of targets also presents an advantage for distributed parallelization around targets for the

cluster-particle treecode, since there is no need to direct the reading-in or communication of

explicit target positions between multiple processors.

We can further extend the idea of virtual target grids to treecode computations on

boundary grids. In this case, instead of constructing a 3D tree from the target points,

we construct six 2D trees along each face of the computational domain, each of which is

constructed from virtual targets.

2.3.2 Flattening coefficient arrays

In our initial implementation, for each tree leaf, the Taylor coefficients for the treecode

were stored in a 3D array of dimension (p+ 1)× (p+ 1)× (p+ 1), where p is the order of the

treecode. However, the expansions are implemented in such a way that, for a given order p,

only the Taylor coefficients such that p1 +p2 +p3 ≤ p, where pi represents the expansion order

in the ith direction, were used. Previous testing had demonstrated better computational

performance at a given level of accuracy for this “pyramidal” order condition over the cubic

condition p1, p2, p3 ≤ p.

To improve the memory usage of our treecode, we instead introduce a flat array of size

(p + 1)(p + 2)(p + 3)/6. Note that this expression is the sum of the first p + 1 triangular

15



numbers, which is how many unique combinations of nonnegative integers p1, p2, p3 satisfy

the pyramidal order condition.

2.3.3 Results

We test the computational performance of our new methods on two test cases, one

a full volume grid and one a boundary grid, and then consider their parallelization. All

computations were performed in serial on the University of Michigan Flux cluster, with

2.5-2.8GHz Intel Xeon CPUs and 16GB of available memory. Timing results were averaged

over multiple runs.

The relative `2 and `∞ errors, denoted by L2 and L∞, are defined by

L2 =

(
M∑
i=1

(φdsi − φtci )2

/ M∑
i=1

(φdsi )2

)1/2

, L∞ = max
i

∣∣φdsi − φtci ∣∣/max
i

∣∣φdsi ∣∣ , (2.16)

where φdsi and φtci are the target potentials computed by direct summation and treecode

approximation, respectively, at target point i.

2.3.3.1 Volume grid test case

We consider 1E5 sources distributed uniformly and randomly, and 400× 400× 400 = 64E6

targets on an evenly spaced grid, with both sources and targets in a 1 × 1 × 1 unit cube

centered at the origin. The Coulomb potential is used in this test case.

In Fig. 2.3, we display the relative `2 and `∞ errors versus CPU time for three versions

of the treecode: the original explicit treecode, denoted ‘real’, the virtual treecode, denoted

‘virtual’, and the virtual treecode with flattened coefficient arrays, denoted ‘flat virtual.’

Plotted results were produced by varying the treecode expansion order parameter from 1

to 15. Additionally, we display the results for both a low and a high value of the multipole

acceptance criterion, θ = 0.3, 0.8.

Note that, for low order values (corresponding to higher error), the virtual treecode

has a CPU time advantage over the real treecode, primarily because read-in of targets and

sources and tree setup dominate computational cost at this level. At higher order values,

corresponding to lower error, this advantage disappears for the virtual treecode as actual

potential computation begins to dominate the computational cost. However, in the θ = 0.3

case, the virtual tree with flattened coefficient arrays maintains a roughly 30% CPU time

advantage over the original treecode, because accessing a flat array in order (contiguous

memory accesses) is significantly less costly than accessing a dynamically allocated 3D array

out of order (non-contiguous memory accesses).
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(a) θ = 0.3 (b) θ = 0.8

Figure 2.3: Volume grid test case, 1E5 sources with 64E6 targets on a regular grid, relative `2

(solid, ◦) and `∞ (dotted, O) errors from exact solution versus CPU time for original explicit
treecode (green), virtual treecode (blue), and virtual treecode with flattened coefficient arrays
(red), for various treecode expansion orders from 1 to 15, increasing from right to left, and
multipole acceptance criterion of (a) θ = 0.3 and (b) θ = 0.8. Corresponding direct calculation
time was 9.43E4 s. Simulations ran in serial on Intel Xeon CPU.

In Fig. 2.4, we display the relative `2 and `∞ errors versus total memory usage for the three

treecode versions shown in Fig. 2.3. For low order values, the storage of sources and targets

dominate memory use, and thus the virtual tree presents a significant memory advantage.

As the order of the treecode increases, the memory allocated to store the Taylor coefficients

dominates total memory usage, lessening the memory advantage of the virtual tree. The

virtual tree with flattened coefficient arrays, however, displays a significant memory use

advantage at higher orders.

2.3.3.2 Boundary grid test case

We consider 1E5 sources, distributed uniformly and randomly in a 1× 1× 1 cube centered

at the origin, and targets located on the six faces of a 1000× 1000× 1000 point grid in the

same domain as the sources. The Coulomb potential is used in this test case.

In Fig. 2.5, we display the relative `2 and `∞ errors versus CPU time for three versions

of the treecode: the original explicit 3D treecode, denoted ‘real’, the 2D virtual treecode,

denoted ‘virtual’, and the 2D virtual treecode with flattened coefficient arrays, denoted ‘flat

virtual.’ Plotted results were produced by varying the treecode expansion order parameter

from 1 to 15. Again, we display the results for both a low and a high value of the multipole

acceptance criterion, θ = 0.3, 0.8.
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Figure 2.4: Volume grid test case, 1E5 sources with 64E6 targets on a regular grid, relative `2

(solid, ◦) and `∞ (dotted, O) errors versus total memory usage for original explicit treecode
(green), virtual treecode (blue), and virtual treecode with flattened coefficient arrays (red), for
treecode expansion order from 1 to 15, increasing from right to left, and multipole acceptance
criterion of (a) θ = 0.3 and (b) θ = 0.8. Corresponding direct calculation memory usage
was 2.01 GB with real targets (black, dash-dotted) and 0.51 GB with virtual targets (black,
dashed). Simulations ran in serial on Intel Xeon CPU.
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Figure 2.5: Boundary grid test case, 1E5 sources with targets on the six faces of a 1000×1000×
1000 point grid, L2 (solid, ◦) and L∞ (dotted, O) errors from exact solution versus CPU time
for original explicit treecode (green), virtual 2D treecode (blue), and virtual 2D treecode with
flattened coefficient arrays (red), for treecode expansion order from 1 to 15, increasing from
right to left, and multipole acceptance criterion of (a) θ = 0.3 and (b) θ = 0.8. Corresponding
direct calculation time (black, dash-dotted) was 8.83E3 s. Simulations ran in serial on Intel
Xeon CPU.

18



Note that the virtual 2D treecodes perform significantly better than the original treecode

at all orders. A significant portion of this performance gain is a result of using six individual

2D treecodes for each face instead of a 3D treecode where all targets are clustered at the

boundary. The use of flattened coefficient arrays also gives a small performance gain over the

original coefficient storage scheme.

In Fig. 2.6, we display the relative `2 and `∞ errors versus memory usage for the three

treecode versions shown in Fig. 2.5. Again, we observe the same memory usage behavior as

seen in Fig. 2.4, in which the use of flattened coefficient arrays significantly decreases memory

use at high treecode expansion orders.
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Figure 2.6: Boundary grid test case, 1E5 sources with targets on the six faces of a 1000×
1000×1000 point grid, L2 (solid, ◦) and L∞ (dotted, O) errors from exact solution versus total
memory usage for original explicit treecode (green), virtual 2D treecode (blue), and virtual
2D treecode with flattened coefficient arrays (red), for treecode expansion order from 1 to
15, increasing from right to left, and multipole acceptance criterion of (a) θ = 0.3 and (b)
θ = 0.8. Corresponding direct calculation memory usage was 0.196 GB with real targets
(black, dash-dotted) and 0.056 GB with virtual targets (black, dashed). Simulations ran in
serial on Intel Xeon CPU.

2.3.3.3 Parallel performance

We additionally investigate the parallel performance of our improved treecodes to demon-

strate their strong scaling in comparison to the direct calculation case. In the current setting,

in which we consider a much greater number of targets than sources, we distribute the

targets among the processors and replicate all sources and their associated trees on all

processors. Figure 2.7(a) shows a sample problem with randomly distributed sources and
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targets on a grid, while Figs. 2.7(b) and (c) shows two variations of the parallelization strategy.

Figure 2.7(b) depicts a “disjoint strips” partitioning strategy in which the targets on each

processor are compact. Figure 2.7(c) depicts a “global” partitioning strategy in which targets

on each processor are dispersed across the entire domain. We note that Fig. 2.7(b) is the

implied parallelization strategy for the RISM problem discussed in Chapter 5. For both of

our previous test cases, we consider the total time and parallel speedup for n number of

processors, where speedup is defined as the ratio of the total time for 1 processor to the total

time for n processors. We consider the performance on up to 16 processors.

(a)

(b)

(c)

Figure 2.7: Partition strategies for randomly distributed sources and grid-placed targets.
Sources are represented by red markers, targets by blue markers. (a) depicts an initial uniform
random distribution of sources and uniform grid of targets, (b) depicts a disjoint partitioning
strategy across four processors, and (c) depicts a global partitioning strategy across four
processors.
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In Fig. 2.8, we demonstrate parallelization of the volume grid test case. We display here

the number of processors versus (a) total time and (b) speedup for direct calculation (black,

dashed, ◦), the original explicit treecode with real targets and 3D coefficient arrays (green),

and the 2D virtual treecode with flattened coefficient arrays (red). Both treecodes in this

example were calculated with parameters θ = 0.3 and p = 12, and exhibited a relative `2 error

of approximately 4E–10. Note that, for all number of processors, the flat virtual treecode

takes significantly less time than either the direct calculation or real treecode. Furthermore,

the speedup of the flat virtual treecode is very close to the near perfect speedup of the direct

calculation, while the speedup of the real treecode trails off significantly. Additionally note

that the “global” partitioning strategy (dash-dotted, O) depicted in Fig. 2.7(c) exhibits better

strong scaling than the “disjoint strips” strategy (dashed, ◦) depicted in Fig. 2.7(b). We see

very similar behavior in Fig. 2.9 for the boundary grid test case.
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Figure 2.8: Volume grid test case, 1E5 sources with 64E6 targets on a regular grid, number
of processors versus (a) total time and (b) speedup for direct calculation (black, dashed,
◦), original explicit treecode with real targets and 3D coefficient arrays (green), and virtual
treecode with flattened coefficient arrays (red), using parallelization strategies depicted in
Fig. 2.7(b) (dashed, ◦) and Fig. 2.7(c) (dash-dotted, O), treecode parameters θ = 0.3 and
p = 12. Relative `2 error approximately 4E–10. Simulations ran on Intel Xeon CPUs.
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Figure 2.9: Boundary grid test case, 1E5 sources with targets on the six faces of a 1000×
1000 × 1000 point grid, number of processors versus (a) total time and (b) speedup for
direct calculation (black, dashed, ◦), original explicit treecode with real targets and 3D
coefficient arrays (green), and 2D virtual treecode with flattened coefficient arrays (red), using
parallelization strategies depicted in Fig. 2.7(b) (dashed, ◦) and Fig. 2.7(c) (dash-dotted, O),
using parallelization strategies depicted in Fig. 2.7(b) (dashed, ◦) and Fig. 2.7(c) (dash-dotted,
O), treecode parameters θ = 0.3 and p = 12. Simulations ran on Intel Xeon CPUs.
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CHAPTER 3

BLDTT: GPU-Accelerated Barycentric Lagrange Dual Tree

Traversal

This chapter details the development of the GPU-accelerated barycentric Lagrange dual

tree traversal (BLDTT) algorithm, which forms the primary result of this thesis. The

BLDTT builds on previous joint work with Nathan Vaughn which previously developed

the GPU-accelerated barycentric Lagrange treecode (BLTC), a treecode method based on

polynomial interpolation; this work is described in Nathan’s thesis [5] and in our joint

paper [6]. §3.1 provides background on dual tree traversal fast summation methods, kernel-

independent approaches to fast summation, and GPU computing. §3.2 describes the BLDTT

algorithm. §3.3 details the implementation of the BLDTT in BaryTree, for multi-node GPU

systems. §3.5 provides results comparing the BLDTT to the BLTC across a wide range of

problems. Further implementation details are presented in Appendix A. The most recent

version of the BaryTree software package is available at github.com/Treecodes/BaryTree.

The content of this chapter follows the work of [7], which is in revision and submitted to

Comput. Phys. Commun.

3.1 Background

3.1.1 Dual tree traversal methods

Dual tree traversal (DTT) methods are a class of tree-based fast summation method

which reduce the cost of computing particle interactions for N particles to O(N). Early

work by Appel developed a DTT-style method using monopole approximations [42]. Appel’s

algorithm was written in the context of computing acceleration of gravitational bodies in

astrophysical simulations. In the algorithm, the particles are partitioned into a binary tree,

whose leaves were single particles and whose internal nodes contained clumps of particles.

The mass of an internal node is the sum of the masses of all particles in its two child nodes,

and the position of a node is the center of mass of its child nodes. Each internal node also has

an associated radius. To compute the acceleration on one node A caused by another node B
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(and vice versa), one first determines if the nodes are well-separated by some criterion. If so,

then the acceleration on A due to B and B due to A is approximated using the associated

masses and positions of the nodes. If A and B are not well-separated, then the node with the

largest radius is opened further. For instance, if the radius of B is larger than the radius of

A, then the interaction between A and Bleft child and the interaction between A and Bright child

are computed by the procedure described above. The algorithm was later shown to be O(N)

[50].

Dehnen introduced a similar algorithm [49], again in the context of stellar dynamics.

Dehnen positioned the algorithm as an alternative to Barnes–Hut treecodes, arguing that

the DTT approach had the robustness to highly heterogeneous particle distributions of a

Barnes–Hut treecode with the O(N) scaling of an FMM. Unlike the spherical harmonics of

FMMs at the time, Dehnen used low order Taylor expansions targeting the lower accuracy

requirements of stellar simulations. This algorithm and its successors are often referred to as

DTTs or DTT FMMs.

DTT treecode/ FMM approaches have been shown to adapt well to non-uniform particle

distributions relative to other FMM approaches [51, 52, 53]. Successive work introduced

parallel DTTs on many core architectures by implementing a task-based programming

approach [54, 55, 56]. Of particular note in astrophysics are implementation in exaFMM of

Taura [54] and the pfalcON code of Lange and Fortin [56]. DTTs with Taylor expansions

have additionally been applied to molecular dynamics, including the work of Lorenzen et al.

on periodic condensed phase systems [57] and the work of Coles and Masella on polarizable

force fields [58]. Fortin and Touche presented an implementation of a DTT on integrated

GPUs [59].

3.1.2 Kernel-independent methods

Tree-based fast summation methods originally relied on analytic series expansions specific

to a given kernel G(x,y). For example, in the case of the Coulomb and Yukawa kernels,

multipole expansions were used in the FMM [44, 60], and Cartesian Taylor expansions were

used in the TC [2, 4]. Alternative approximations for the Coulomb kernel were introduced

involving numerical discretization of the Poisson integral formula [61] and multipole expansions

at pseudoparticles [62]. Eventually kernel-independent methods were developed that require

only kernel evaluations and are suitable for a large class of kernels. Among these, the

kernel-independent FMM (KIFMM) uses equivalent densities defined on proxy surfaces [63],

the black-box FMM (bbFMM) uses polynomial interpolation and SVD compression [64], and

the barycentric Lagrange treecode (BLTC) uses barycentric Lagrange interpolation [65, 66].

A number of related proxy point methods have recently been developed using skeletonized
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interpolation [67] and interpolative decomposition [68, 69]. Several of the kernel-independent

fast summation methods have been parallelized for multi-core CPU systems [70, 71, 72, 73,

74, 75, 69].

3.1.3 GPU-based compute for fast summation methods

Graphics Processing Units (GPUs) were initially developed to handle the high throughput,

highly parallelizable task of computing and updating the contents of a frame buffer intended

for display on an output device. This task involves the execution of relatively simple, uniform

computations on millions of frame buffer entries, and thus the architecture of GPUs has been

specifically developed for a quintessentially SIMD (single instruction, multiple data) task. In

recent years, computational scientists have increasingly used this special architecture of GPUs

for a wider range of computational tasks, a practice often referred to as general-purpose

computing on graphics processing units (GPGPUs).

Programming for GPUs require a significantly different approach to algorithm design

from parallel paradigms for CPUs. GPUs have an incredibly fine-grained parallelism, with

thousands of concurrent threads, but have very limited memory organized in an architecturally-

dependent hierarchy with high communication costs. Copying data from main memory to

the GPU is in particular very expensive. Divergent threads on the GPU can utterly demolish

any computational speedups.

In this section, we overview the architecture of GPUs and the typical GPU programming

model, and present previous work on GPU acceleration of fast summation methods.

3.1.3.1 Overview of GPU architecture

A GPU is a processor array consisting of Streaming Multiprocessors (SMs), each of which

contains many Stream Processors (SPs), the fundamental computing unit of the GPU. The

basic execution unit of the programming abstraction for GPUs is the thread, which is mapped

to a single SP. A thread-block, or block, is a group of SPs, all of which are contained on the

same SM. Within a block, threads are divided into groups of 32 called warps. Warps are

the actual execution unit on the GPU, so instructions for threads within a given block are

executed warp-by-warp.

The programmer sends work to the GPU by a function known as a compute kernel. The

programmer arranges the parallelism for kernel execution by declaring the number of blocks

and the number of threads per block that the kernel will utilize. Because each thread can

access its thread ID and block ID, parallel operations on, for instance, a 1D array, are typically
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performed by indexing the array as a function of thread and block IDs. Note that, because

instructions are executed by warp, in general, a declared block size should be a multiple of 32.

The GPU memory is similarly hierarchical in nature. At the top level, the GPU has its

own global memory, separate from the CPU’s memory and accessible by all threads and

blocks. The GPU also has a faster L2 cache available to all threads. Each SM additionally

has several types of memory: an L1 cache, shared memory, and a read-only cache. These

SM-local memory types can only be used by threads within the SM. The L1 cache in each

SM can transfer data to and from the L2 cache. The read-only cache can only be read by

threads, but its judicious use can decrease bandwidth pressure on the L1 cache and shared

memory. Note that these forms of SM memory can be loaded into GPU thread registers

much faster than the global GPU memory or L2 cache. Additionally, each thread has its own

local memory, which can load memory from any location on the GPU. Of course, memory

loads from the memory of the thread’s SM are the fastest.

To give some context to the scale and size of these structures, consider the Kepler GK110

NVIDIA GPU available on Michigan’s Flux computing cluster, whose architecture is shown

in Figs. 3.1 and 3.2. The Flux configuration of this GPU has a global memory of size 6GB

and L2 cache of 1.5MB. Each of the 14 SMs contain 192 SPs, for a total of 2688 cores. Each

SM can share 64KB between L1 cache and shared memory configurable into splits of 16/48,

32/32, or 48/16 KB. The read-only cache of each SM is 48KB. The local memory of each

SP contains 255 32-bit registers. The memory hierarchy of the Kepler GK110 is shown in

Fig. 3.3.

3.1.3.2 Previous work

The direct sum in Eq. 2.1 is well suited for GPU computing; this is because the kernel

evaluations G(xi,xj) can be computed concurrently, where the targets xi provide an outer

level of parallelism, while the sources xj provide an inner level of parallelism. Early GPU

implementations of direct summation achieved a 25× speedup over an optimized CPU

implementation [77] and a 250× speedup over a portable C implementation [78]. However,

these codes still scale like O(N2) and there is great interest in implementing the sub-quadratic

scaling tree-based methods on GPUs, although this is challenging due to the complexity of

these methods in comparison with direct summation.

Several previous attempts to implement a range of treecodes on GPUs are worth mentioning.

Many early attempts have focused on Barnes–Hut Cartesian treecodes, i.e., treecodes that use

a zero order Taylor approximation for the particle-cluster interactions. Zero order treecodes

avoid some of the memory management difficulties that come with higher order treecodes;
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Figure 3.1: Structure of the standard configuration Kepler GK110. 15 SMs have access to
a device-wide L2 cache and global GPU memory through memory controllers. The GPU
communicates with the host machine through a PCI interface. Source: NVIDIA Kepler
GK110/120 Whitepaper [76].

because every tree cluster has an associated set of moments, and the number of these moments

is O(p3) where p is the Taylor expansion order, memory requirements grow rapidly.

In 2010, Jiang and coworkers developed a Barnes–Hut treecode that achieved speedups

of over 100× for computing forces between gravitational bodies [79]. In 2012, Bédorf and

coworkers introduced Bonsai, a fully GPU treecode for gravitational simulations, in which

even the tree-building was performed on the GPU [80]. This implementation, however, was

limited to small-problem sizes because the entire problem had to fit totally within GPU

memory. In 2014, Bédorf introduced a multi-GPU implementation of Bonsai that, in a

simulation of the galactic evolution of the Milky Way on 18,600 GPUs, achieved a peak

performance of 24.77 petaflops [81].

Additional efforts in this area include a GPU treecode for gravitational simulations and

GPU FMM for turbulence simulations [82], a GPU treecode that replaced the pointer-chasing
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Figure 3.2: Structure of an SM on the Kepler GK110. The SM contains 192 cores which each
have access to SM-wide shared memory, L1 cache, and read-only memory. Source: NVIDIA
Kepler GK110/120 Whitepaper [76].

recursion often used in CPU treecodes by an iteration over arrays [83], a GPU treecode and

GPU FMM for vortex ring dynamics [84], a GPU bbFMM with optimized multipole-to-local

and direct short range computations [75], More recently, Fortin and Touche implemented a

dual tree traversal scheme on integrated GPUs for gravitational simulations [59].

3.1.4 Barycentric Lagrange interpolation

We briefly review the barycentric Lagrange form of polynomial interpolation in 1d [65].

Given a function f(x) and n+ 1 points sk, k = 0 : n, the Lagrange form of the interpolating

polynomial is

pn(x) =
n∑
k=0

f(sk)Lk(x), (3.1)
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Figure 3.3: Basic memory hierarchy of the Kepler GK110. The device-wide global memory is
accessed by individual threads through the hierarchy of device-wide L2 cache and SM-wide
L1 cache. The SMs can be configured to adjust the split between the shared memory and L1
cache. Greater shared memory gives more user control over memory optimization, but at the
expense of bandwidth for global memory fetches. Figure based on documentation of memory
hierarchy in [76].

where the Lagrange polynomial Lk(x) in barycentric form is

Lk(x) =

wk
x− sk
n∑

k′=0

wk
x− s′k

, wk =
1∏n

j=0,j 6=k(sk − sj)
, k = 0 : n. (3.2)

This work employs Chebyshev points of the second kind,

sk = cos θk, θk = πk/n, k = 0 : n, (3.3)

in which case the interpolation weights are given by

wk = (−1)kδk, k = 0 : n, (3.4)

where δk = 1/2 if k = 0 or n, and δk = 1 otherwise [85, 65]. The algorithms described below

use barycentric Lagrange interpolation in 3D rectangular boxes with interpolation points

sk = (sk1 , sk2 , sk3) given by a Cartesian tensor product grid of Chebyshev points adapted to

the box. Depending on the context, the interpolation points sk may also be referred to as

proxy particles.
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3.1.5 Present work

The present work contributes a GPU-accelerated tree-based fast summation method called

barycentric Lagrange dual tree traversal (BLDTT). The BLDTT employs several techniques

from previous tree-based methods, including (1) the DTT algorithmic structure [42, 49], (2)

barycentric Lagrange interpolation [65, 66, 6], and (3) upward and downward passes similar

to those in the FMM, but adapted to the context of barycentric Lagrange interpolation. The

BLDTT has several additional features that should be noted. The algorithm replaces well-

separated particle-particle interactions by adaptively chosen particle-cluster, cluster-particle,

and cluster-cluster approximations, where the clusters are represented by proxy particles at

Chebyshev grid points. The approximations are done with barycentric Lagrange interpolation

and require only kernel evaluations, hence the BLDTT is kernel-independent. Similar to other

tree-based fast summation methods, the BLDTT has a precompute phase and a compute

phase; the precompute phase scales like O(N logN) with a small prefactor, while the compute

phase scales like O(N), so the observed scaling of the BLDTT is essentially O(N).

As will be shown, the barycentric Lagrange approximations resemble the direct sum

in Eq. 2.1 and they can be efficiently mapped onto GPUs. Based on this observation we

present an OpenACC GPU implementation of the BLDTT with MPI remote memory access

for distributed memory parallelization. The performance of the BLDTT is documented

for calculations with different problem sizes, particle distributions, geometric domains, and

interaction kernels, unequal target and source particles. Comparison with our earlier particle-

cluster barycentric Lagrange treecode (BLTC) shows the superior performance of the BLDTT.

In particular, on a single GPU for problem sizes ranging from N=1E5 to 1E8, the BLTC has

O(N logN) scaling, while the BLDTT has O(N) scaling. In addition, MPI strong scaling

results are presented for the BLTC and BLDTT using N=64E6 particles on up to 32 GPUs.

The remainder of this chapter is organized as follows. §3.2 describes the barycentric

Lagrange dual tree traversal (BLDTT) fast summation method. §3.3 describes our implemen-

tation of the BLDTT using MPI remote memory access for distributed memory parallelization

and OpenACC for GPU acceleration. §3.5 presents numerical results for several test cases.

3.2 Description of BLDTT fast summation method

3.2.1 Algorithm overview

The BLDTT fast summation method computes the potential at a set of M target particles

due to interactions with a set of N source particles; Eq. 2.1 is a special case in which the

targets and sources refer to the same set of particles. First, two hierarchical trees of particle
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clusters are built, one for the target particles and one for the source particles, where each

cluster is a rectangular box; clusters in the target tree are denoted Ct and clusters in the

source tree are denoted Cs. The computed potential at a target particle xi has contributions

from four types of interactions as determined by the dual tree traversal algorithm described

below. The four types are direct particle-particle (PP) interactions of nearby particles,

and particle-cluster (PC), cluster-particle (CP), and cluster-cluster (CC) approximations of

well-separated clusters.

Algorithm 3.1 is a high-level overview of the BLDTT. Lines 1-4 describe the input

consisting of target and source particle data, interpolation degree n, MAC parameter θ, and

the maximum number of particles in the leaves of each tree, M0, N0. Line 5 describes the

output potentials. Line 6 builds the target tree and source tree containing target clusters

Ct and source clusters Cs. Line 7 is the upward pass to compute proxy charges q̂k at proxy

particles sk in source clusters Cs. Line 8 is the dual tree traversal to compute PP, PC,

CP, and CC interactions. Line 9 is the downward pass to interpolate potentials from proxy

particles t` to target particles xi in target clusters Ct. The steps will be described in detail

below.

Algorithm 3.1 High-level overview of the barycentric Lagrange dual tree traversal (BLDTT)
fast summation method.

1: input target particles xi, i = 1 : M
2: input source particles and charges yj, qj, j = 1 : N
3: input interpolation degree n, MAC parameter θ
4: input max particles per target leaf M0, max particles per source leaf N0

5: output potentials φ(xi), i = 1 : M
6: build target tree and source tree
7: upward pass to compute proxy charges q̂k at proxy particles sk in source clusters
8: dual tree traversal to compute PP, PC, CP, CC interactions
9: downward pass to interpolate potentials from proxy particles t` to target particles xi

3.2.2 Tree building

The target and source trees are constructed by the same routines, described here for the

target tree. The maximum number of particles per leaf is a user-specified parameter, M0 for

the target tree and N0 for the source tree. The root cluster is the minimal bounding box

containing all target particles. The root is recursively divided into child clusters, terminating

when a cluster contains fewer than M0 particles. Division occurs at the midpoint of the

cluster; in general the cluster is bisected in all three coordinate directions, resulting in eight

child clusters, with two exceptions. First, a cluster is divided into only two or four children
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in order to maintain a good aspect ratio, that is, a ratio of longest to shortest side lengths

no greater than
√

2. Second, a cluster is divided into only two or four children to avoid

creating leaf clusters with fewer than M0/2 particles on average; in particular, if a cluster

contains between M0 and 2M0 particles, it is divided into two children, and if it contains

between 2M0 and 4M0 particles, it is divided into four children. Upon creation, each cluster

is shrunk to the minimal bounding box containing its particles, and a tensor product grid of

Chebyshev points adapted to the box is created; these are also referred to as proxy particles.

After building the trees, the BLDTT performs the upward pass, dual tree traversal, and

downward pass, but before discussing these steps, the next subsection describes the four

types of interactions which are eventually combined to compute potentials.

3.2.3 Four types of interactions

Figure 3.4 depicts the four types of interactions between a target cluster Ct (left, blue) and

a source cluster Cs (right, red), where dots are target/source particles xi,yj, and crosses are

target/source proxy particles t`, sk. Also shown are the target/source cluster radii rt, rs, and

the target-source cluster distance R. These diagrams depict 2D versions of the interactions; in

practice the particles are distributed in 3D and the clusters are rectangular boxes. In general,

clusters can interact via their particles (dots) or their proxy particles (crosses). Figure 3.4

shows the four cases: (a) Ct and Cs use particles (PP), (b) Ct uses particles and Cs uses

proxy particles (PC), (c) Ct uses proxy particles and Cs uses particles (CP), (d) Ct and Cs

both use proxy particles (CC). The interactions are described in detail below. To simplify

notation, we present the interactions in 1D instead of 3D, and thus replace the bold 3-vector

xi by the non-bold scalar xi. We note that the extension to 3D is straightforward using tensor

products.

Particle-particle interaction. Figure 3.4a depicts a PP interaction. In this case the

PP potential at a target particle xi ∈ Ct due to direct interaction with the source particles

yj ∈ Cs is denoted by

φPP (xi, Ct, Cs) =
∑
yj∈Cs

G(xi, yj)qj, xi ∈ Ct. (3.5)

Particle-cluster approximation. Figure 3.4b depicts a PC interaction. The kernel is

approximated by holding xi fixed and interpolating with respect to yj at the proxy particles

sk in Cs,

G(xi, yj) ≈
n∑
k=0

G(xi, sk)Lk(yj), xi ∈ Ct, yj ∈ Cs. (3.6)
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(a) particle-particle (PP) (b) particle-cluster (PC)

R
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R
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(c) cluster-particle (CP) (d) cluster-cluster (CC)

Figure 3.4: Four types of interactions are used, in each case the target cluster Ct on the left
interacts with the source cluster Cs on the right, (a) direct particle-particle interaction (PP),
(b) particle-cluster approximation (PC), (c) cluster-particle approximation (CP), (d) cluster-
cluster approximation (CC), dots are target/source particles xi,yj, crosses are target/source
proxy particles t`, sk, target/source cluster radii rt, rs, target-source cluster distance R.

Substituting into the particle-particle interaction and rearranging terms yields the PC

potential,

φPC(xi, Ct, Ĉs) =
n∑
k=0

G(xi, sk)q̂k, xi ∈ Ct, (3.7)

where the proxy charges q̂k of the proxy particles sk are

q̂k =
∑
yj∈Cs

Lk(yj)qj. (3.8)

Equation 3.7 uses Ct, Ĉs to indicate that the target particles xi interact with the proxy source

particles sk.

Cluster-particle approximation. Figure 3.4c depicts a CP interaction. The kernel is

approximated by interpolating with respect to xi at the proxy particles t` in Ct and holding

yj fixed,

G(xi, yj) ≈
n∑
`=0

L`(xi)G(t`, yj), xi ∈ Ct, yj ∈ Cs. (3.9)
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Substituting into the particle-particle interaction and rearranging terms yields the CP

potential,

φCP (xi, Ĉt, Cs) =
n∑
`=0

φ(t`, Ĉt, Cs)L`(xi), xi ∈ Ct, (3.10)

where the CP proxy potential φ(t`, Ĉt, Cs) is

φ(t`, Ĉt, Cs) =
∑
yj∈Cs

G(t`, yj)qj, t` ∈ Ĉt. (3.11)

Equation 3.10 and Eq. 3.11 use Ĉt, Cs to indicate that the proxy target particles of Ct interact

with the source particles yj. Equation 3.10 interpolates from the proxy target particles t` to

the target particles xi.

Cluster-cluster interaction. Figure 3.4d depicts a CC interaction. The kernel is

interpolated with respect to xi at the proxy particles t` in Ct and with respect to yj at the

proxy particles sk in Cs,

G(xi, yj) ≈
n∑
k=0

n∑
`=0

L`(xi)G(t`, sk)Lk(yj), xi ∈ Ct, yj ∈ Cs. (3.12)

Substituting into the particle-particle interaction and rearranging terms yields the CC

potential,

φCC(xi, Ĉt, Ĉs) =
b∑
`=0

φ(t`, Ĉt, Ĉs)L`(xi), xi ∈ Ct, (3.13)

where the CC proxy potential φ(t`, Ĉt, Ĉs) is

φ(t`, Ĉt, Ĉs) =
n∑
k=0

G(t`, sk)q̂k, t` ∈ Ĉt, (3.14)

and the proxy charges q̂k were defined in Eq. 3.8. Equation 3.13 and Eq. 3.14 use Ĉt, Ĉs

to indicate that the proxy target particles t` interact with the proxy source particles sk.

Equation 3.13 interpolates from the proxy target particles t` to the target particles xi.

The following three subsections describe the rest of Algorithm 3.1, comprising the upward

pass, dual tree traversal, and downward pass.

3.2.4 Upward pass

The upward pass computes the proxy charges q̂k defined in Eq. 3.8 for the proxy particles

sk in each source cluster Ĉs in the source tree, as required in the PC and CC approximations
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in Eq. 3.7 and Eq. 3.14. Note that each source particle yj contributes to the proxy charges

q̂k of exactly one cluster at a given level of the tree. Hence with N source particles and

tree depth O(logN), computing the proxy charges directly by Eq. 3.8 requires O(N logN)

operations.

The BLDTT algorithm uses an alternative approach as follows. Let Cs denote a parent

cluster with Lagrange polynomials Lk(y) and interpolation points sk, and let Ci
s, i = 1 : 8

denote the eight child clusters with Lagrange polynomials Liki(y) and interpolation points ski .

As an alternative to Eq. 3.8, the proxy charges of the parent q̂k are computed from the proxy

charges of the children q̂ki by the expression

q̂k =
8∑
i=1

n∑
ki=0

Lk(ski)q̂ki , (3.15)

which is derived in §3.2.7. The derivation uses the definitions of the parent and child proxy

charges and the relation

Lk(y) =
n∑

ki=0

Lk(ski)Lki(y), (3.16)

which is a special case of Eq. 3.1.

The upward pass starts by computing the proxy charges of the leaves of the source tree

using Eq. 3.8 and then ascending to the root by Eq. 3.15. This is analogous to the upward

pass in the FMM [43] where the multipole moments of a parent cluster are obtained from

the moments of its children. As with the FMM, computing the proxy charges this way

requires O(N) operations, which can be seen as follows. Computing the proxy charges for

the leaves requires O(n3N) operations; each of the N source particles contributes to one leaf,

which contains O(n3) proxy particles (in 3D). Then, evaluating the child-to-parent relation

in Eq. 3.15 for each parent proxy charge requires O(n6) operations and is independent of

the number of source particles. Since there are O(N) clusters in the tree, ascending the

tree requires an additional O(n6N) operations. Hence the operation count for the BLDTT

upward pass is O(n3N) +O(n6N) = O(N), as it is for the FMM.

3.2.5 Dual tree traversal

The dual tree traversal determines which pairs of clusters in the target and source trees

interact by one of the four options described above (PP, PC, CP, CC). Before the traversal

starts, two sets of potentials are initialized to zero, potentials φ(xi) at the target particles and

potentials φ(t`) at the proxy target particles. In the course of the traversal, the potentials

φ(xi) are incremented due to PP and PC interactions, and the potentials φ(t`) are incremented
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due to CP and CC interactions. Following the dual tree traversal, the φ(t`) are interpolated

to the target particles xi and combined with the φ(xi) in the downward pass.

The dual tree traversal uses the recursive procedure DTT(Ct, Cs) described in Algo-

rithm 3.2, which takes a target cluster Ct and a source cluster Cs as input. Initially the

procedure is called for the root clusters of the target and source trees. In what follows, the

clusters are considered to be well-separated if (rt + rs)/R < θ, where rt, rs are the target and

source cluster radii and R is the center-center distance between the clusters.

If Ct and Cs are well-separated (line 2), then they interact in one of four ways depending

on the number of particles they contain relative to the number of proxy particles in a cluster,

which is denoted by np = (n+ 1)3 in 3D. If Ct and Cs are both large (lines 3-4), then the CC

proxy potentials are incremented using Eq. 3.14; else if Ct is large and Cs is small (lines 5-6),

then the CP proxy potentials are incremented using Eq. 3.11; else if Ct is small and Cs is

large (lines 7-8), then the PC potentials are incremented using Eq. 3.7; else Ct and Cs are

both small (line 9) and the PP potentials are incremented using Eq. 3.5.

If Ct and Cs are not well-separated, then the traversal continues as follows. If Ct and Cs

are leaves (lines 11-12), then the PP potentials are incremented using Eq. 3.5. Otherwise

if Cs is a leaf, then it interacts recursively with the children of Ct (line 13), while if Ct is a

leaf, then it interacts recursively with the children of Cs (line 14). Finally if Ct and Cs are

both not leaves, then the smaller cluster interacts recursively with the children of the larger

cluster (lines 15-17).

Algorithm 3.2 The dual tree traversal approach used in the BLDTT.

1: procedure DTT(target cluster Ct, source cluster Cs)
2: if (rt + rs)/R < θ then
3: if |Ct| > np and |Cs| > np then

4: increment CC proxy potentials φ(t`) += φ(t`, Ĉt, Ĉs) for all t` ∈ Ĉt by Eq. 3.14
5: else if |Ct| > np and |Cs| ≤ np then

6: increment CP proxy potentials φ(t`) += φ(t`, Ĉt, Cs) for all t` ∈ Ĉt by Eq. 3.11
7: else if |Ct| ≤ np and |Cs| > np then

8: increment PC potentials φ(xi) += φ(xi, Ct, Ĉs) for all xi ∈ Ct by Eq. 3.7
9: else increment PP potentials φ(xi) += φ(xi, Ct, Cs) for all xi ∈ Ct by Eq. 3.5
10: else
11: if Ct and Cs are leaves then
12: increment PP potentials φ(xi) += φ(xi, Ct, Cs) for all xi ∈ Ct by Eq. 3.5
13: else if Cs is a leaf then for each child C ′t of Ct do DTT(C ′t, Cs)
14: else if Ct is a leaf then for each child C ′s of Cs do DTT(Ct, C

′
s)

15: else
16: if |Cs| < |Ct| then for each child C ′t of Ct do DTT(C ′t, Cs)
17: else for each child C ′s of Cs do DTT(Ct, C

′
s)
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The DTT yields potentials φ(xi) due to PP and PC interactions and proxy potentials

φ(t`) due to CP and CC interactions. In the case of N homogeneously distributed source

and target particles, the operation count of the dual tree traversal has been shown to be

O(N) [50, 49].

3.2.6 Downward pass

The downward pass interpolates the proxy potentials φ(t`) to the target particles xi and

increments the potentials φ(xi). This can be done in two ways as described below.

First note that each target particle xi is contained in a chain of target clusters,

xi ∈ C1
t ⊂ C2

t ⊂ · · · ⊂ CL
t , (3.17)

where the superscript denotes the level in the target tree; level L is the root, and level 1 are

the leaves. The target cluster Cm
t at level m in the chain has Lagrange polynomials Lmkm(xi)

and proxy potentials φ(tmkm) that contribute to φ(xi),

φ(xi) +=
L∑

m=1

n∑
km=0

Lmkm(xi)φ(tmkm), (3.18)

where tmkm are the proxy particles of Cm
t , and the += indicates that the results are aggregated

with the potentials φ(xi) due to PP and PC interactions previously computed in the DTT.

In Eq. 3.18 the inner sum interpolates potential values from the proxy particles tmkm to the

target particle xi, and the outer sum accumulates the results from each level in the tree.

Computing φ(xi) as indicated in Eq. 3.18 requires O(M logM) operations; the factor M is

the number of target particles xi, the factor logM is the number of levels in the target tree,

and the inner sum requires O(n3) operations independent of M .

Rather than interpolating from the proxy particles tkm directly to the target particle xi as

in Eq. 3.18, we utilize a recursive alternative. In what follows, Cm
t is a parent cluster at level

m and Cm−1
t is a child cluster at level m− 1. The procedure interpolates the parent proxy

potentials φ(tmkm) to child proxy potentials φ(tm−1
km−1

),

φ(tm−1
km−1

) +=
n∑

km=0

Lmkm(tm−1
km−1

)φ(tmkm), (3.19)

where the += indicates that the results of the parent-to-child interpolation on the right are

aggregated with the child proxy potentials φ(tm−1
km−1

) due to CP and CC interactions previously

computed in the DTT. This procedure starts with the root cluster of the target tree (level

37



m = L) and descends to the leaves (level m = 1). Upon reaching the leaves, the proxy

potentials φ(t1k1) are interpolated to the target particles xi and aggregated with the PP and

PC potentials previously computed in the DTT,

φ(xi) +=
n∑

k1=0

L1
k1

(xi)φ(t1k1). (3.20)

It should be noted that the expressions for φ(xi) in Eq. 3.18 and Eq. 3.20 are equivalent, as

shown in §3.2.7.

The recursive form of the downward pass described here is similar to the local-to-local

step in the FMM, where the local coefficients are shifted and accumulated, and as in that

case the operation count is reduced to O(M). In particular, the parent-to-child interpolation

in Eq. 3.19 requires O(n6) operations (in 3D), independent of the number of target particles

M , and the tree contains O(M) clusters, so interpolation from the root down to the leaves

by Eq. 3.19 requires O(n6M) operations. Then the final interpolation from the leaf proxy

particles to the target particles by Eq. 3.20 requires O(n3) operations for each target, yielding

complexity O(n6M) +O(n3M) = O(M) for the downward pass.

3.2.7 Derivation of upward and downward passes

3.2.7.1 Preliminaries

The derivation of the upward pass and downward pass rely on a property of interpolating

polynomials. For a general function f(x), the degree n interpolation polynomial pn(x) is

given by

pn(x) =
n∑
k=0

f(sk)Lk(x) (3.21)

where the sk denote a set of interpolation points. Now consider the special case where

f(x) = L`(x), a degree n polynomial. Then

pn(x) =
n∑
k=0

L`(sk)Lk(x). (3.22)

Notice that pn(x) and L`(x) are both degree n polynomials, and by construction, they take

on the same values at the set of n + 1 interpolation sk. Therefore, pn(x) = L`(x), and we

have the following relation

L`(x) =
n∑
k=0

L`(sk)Lk(x), (3.23)
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that is, the degree n interpolating polynomial of a degree n polynomial is itself. Equation 3.23

will be used in the sections to follow, where L`(x) and Lk(x) refer to interpolating polynomials

in parent and child clusters.

3.2.7.2 Details of upward pass

Recall Eq. 3.8 for the definition of the proxy charges q̂k of a parent source cluster Cs in

the 1D case,

q̂k =
∑
yj∈Cs

Lk(yj)qj, (3.24)

where yj, qj are the source cluster particles and charges, and Lk(y) are the Lagrange polyno-

mials associated with the cluster. Also consider the parent’s eight child clusters Ci
s, i = 1 : 8

with Lagrange polynomials Liki(y), interpolation points ski , and proxy charges q̂ki . The parent

proxy charge q̂k in Eq. 3.24 can be expressed in terms of the child proxy charges q̂ki as follows,

q̂k =
∑
yj∈Cs

Lk(yj)qj (3.25a)

=
8∑
i=1

∑
yj∈Ci

s

Lk(yj)qj (3.25b)

=
8∑
i=1

∑
yj∈Ci

s

(
n∑

ki=0

Lk(ski)Lki(yj)

)
qj (3.25c)

=
8∑
i=1

n∑
ki=0

Lk(ski)
∑
yj∈Ci

s

Lki(yj)qj (3.25d)

=
8∑
i=1

n∑
ki=0

Lk(ski)q̂ki . (3.25e)

Equation 3.25a is the definition of the parent proxy charges, Eq. 3.25b splits this into the

sum over the eight child clusters, Eq. 3.25c uses the relation in Eq. 3.23, Eq. 3.25d rearranges

the sums, and Eq. 3.25e applies the definition of the child proxy charges. This result extends

in a straightforward way to 3D. In summary, the upward pass ascends the source tree from

the leaves to the root, computing the parent proxy charges of each source cluster from the

child proxy charges as described here.
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3.2.7.3 Details of downward pass

The downward pass adds the CP and CC interactions to the potentials φ(xi). For

simplicity of notation, the formulas are written in 1d with straightforward extension to 3D,

and we consider the case in which the tree has two levels (L = 2). Recall Eq. 3.18, which

interpolates the proxy potentials φ(tmkm) at each level in the tree directly to the target particles

xi,

φ(xi) +=
2∑

m=1

n∑
km=0

Lmkm(xi)φ(tmkm), (3.26)

where Lmkm(xi) is a Lagrange polynomial associated with the cluster Cm
t at level m containing

the target xi, and += indicates that the right side is aggregated with the PP and PC

interactions already computed in the DTT. Then the right side of Eq. 3.26 can be rewritten

as follows,

2∑
m=1

n∑
km=0

Lmkm(xi)φ(tmkm) =
n∑

k1=0

L1
k1

(xi)φ(t1k1) +
n∑

k2=0

L2
k2

(xi)φ(t2k2) (3.27a)

=
n∑

k1=0

L1
k1

(xi)φ(t1k1) +
n∑

k2=0

(
n∑

k1=0

L2
k2

(t1k1)L
1
k1

(xi)

)
φ(t2k2) (3.27b)

=
n∑

k1=0

L1
k1

(xi)φ(t1k1) +
n∑

k1=0

L1
k1

(xi)

(
n∑

k2=0

L2
k2

(t1k1)φ(t2k2)

)
(3.27c)

=
n∑

k1=0

L1
k1

(xi)

(
φ(t1k1) +

n∑
k2=0

L2
k2

(t1k1)φ(t2k2)

)
. (3.27d)

Equations 3.27a, 3.27c and 3.27d are straightforward definitions and algebra, while Eq. 3.27b

relies on the interpolation relation in Eq. 3.23. Then the alternative version of Eq. 3.26 is

φ(xi) +=
n∑

k1=0

L1
k1

(xi)

(
φ(t1k1) +

n∑
k2=0

L2
k2

(t1k1)φ(t2k2)

)
, (3.28)

which corresponds to Eq. 3.20, where the terms in parentheses correspond to Eq. 3.19; the

second term is the parent-to-child interpolation and the first term is aggregation with proxy

potentials in the leaves previously computed in the DTT. In summary, instead of interpolating

from t1k1 to xi and from t2k2 to xi (Eq. 3.27a), one interpolates from t2k2 to t1k1 , aggregates with

previously computed results at t1k1 , and finally interpolates from t1k1 to xi (Eq. 3.27d). This

procedure generalizes to accommodate trees of any depth.
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3.2.8 Description of BLTC

We briefly describe our previous barycentric Lagrange treecode (BLTC) [66, 6] which has

an algorithmic structure resembling the Barnes-Hut treecode [1]. Unlike the BLDTT which

builds a tree on both the source and target particles, the BLTC builds a tree of clusters on

the source particles and a set of batches on the target particles, where the batches correspond

to the leaves of a target tree. Once the source tree is built, the BLTC computes the proxy

charges for each source cluster directly from the source particles by Eq. 3.8. The source tree

is then traversed for each target batch, starting at the root of the tree and checking whether

a given source cluster and target batch are well-separated. If they are well-separated and

the source cluster contains more particles than interpolation points, then the cluster and

batch interact by the PC approximation in Eq. 3.7. If they are not well-separated, then the

batch interacts with the children of the source cluster. Leaves in the source tree that are

not well-separated from a given target batch, and source clusters that are well-separated but

contain more interpolation points than particles interact directly with the target batch by the

PP interaction in Eq. 3.5. For M target particles and N source particles, the BLTC operation

count is O(N logN) + O(M logN), where the first term arises from the computation of

the proxy charges and the second term arises from the source tree traversal. There is no

downward pass in the BLTC.

3.3 BLDTT implementation

The implementation of the BLDTT for multiple GPUs is largely similar to that of our

previous BLTC implementation [6], and is available as part of the BaryTree library for fast

summation of particle interactions available on GitHub at github.com/Treecodes/BaryTree.

The code uses OpenACC directives for GPU acceleration and MPI remote memory access for

distributed memory parallelization. Tree building, tree traversal, and MPI communication

of particles and clusters occur on the CPU, while the upward pass, particle and cluster

interaction computations, and downward pass occur on the GPU. We review here several

important details of this implementation.

3.3.1 Computing interaction lists

We decouple dual tree traversal from the computation of the particle interactions. The

dual tree traversal is performed on the CPU, creating four interaction lists for each cluster of

the target tree, one for each type of interaction. Each list contains the indices of the source

clusters that interact with the target cluster by the given interaction type. The interactions

are then computed by directly iterating over the interaction lists; this improves the efficiency
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of GPU calculations because these lists can be iterated over rapidly and GPU compute kernels

(described below) can be queued asynchronously.

3.3.2 MPI distributed memory parallelization

To implement distributed memory parallelization, we use locally essential trees (LET) [86].

Particles are partitioned by recursive coordinate bisection to create compact sub-domains on

each MPI rank using the Zoltan library of Trilinos [87, 88], a software package developed

at Sandia National Laboratory for load balancing and domain partitioning. Each MPI rank

constructs the local source tree and local target tree for its particles. The LET of a rank is the

union of the rank’s local source tree and all source clusters from remote ranks interacting with

its local target tree. Even though constructing the LETs requires an all-to-all communication,

the amount of data acquired by each rank grows only logarithmically with the problem

size [86]. The construction and communication required by the LETs are performed using

MPI passive target synchronization remote memory access (RMA). RMA is a one-sided

communication model within MPI in which an origin process can put data onto a target

process or get data from a target process through specially declared memory windows, with

no active involvement from the target process. This approach enables each rank to construct

its LET asynchronously from other ranks.

3.3.3 GPU details

The GPU implementation uses eight compute kernels, two for the upward pass, four for

computing interactions determined by the dual tree traversal, and two for the downward

pass. The compute kernels are generated with OpenACC directives, compiled with the PGI

C compiler. We utilize asynchronous launch of kernels in multiple GPU streams to hide as

much latency as possible. The approach described here generalizes to multiple GPUs in a

straightforward manner, in which each GPU corresponds to one MPI rank.

The first upward pass kernel computes the proxy charges for a given leaf in the source

tree. For each leaf, this kernel is launched asynchronously, and any further computation is

blocked until all leaf proxy charges are computed. The second upward pass kernel computes

the proxy charges of a parent cluster using the proxy charges of its children. For a given

level of the tree, this kernel is launched asynchronously for each cluster at that level, and

any further computation is blocked until all proxy charges at that level are computed. The

proxy charges at a given level are computed after the computation of the proxy charges at

the previous level is complete.
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The four DTT kernels compute the interaction of a target cluster with a source cluster.

Each PP, PC, CP, and CC interaction launches one compute kernel. All such kernels are

launched asynchronously and further computation is blocked until these kernels complete.

The four interaction kernels have a similar structure in which the outer loop is over the target

particles or proxy particles in the target cluster, and the inner loop is over the source particles

or proxy particles in the source cluster. Importantly, due to the Lagrange form of barycentric

interpolation, the inner loop iterations are independent, unlike alternative approximation

methods which are sequential. The outer loop is mapped to the gang construct in OpenACC

and the inner loop is mapped to the vector construct. Conceptually, a member of a gang

corresponds to a thread block, while a member of a vector corresponds to an individual

thread.

The two downward pass compute kernels are similar in structure to the upward pass

kernels. At each level of the target tree above the leaves, beginning with the root, the first

downward pass compute kernel is launched asynchronously for each target cluster at that

level to interpolate the proxy potentials of the cluster to its children. Further computation is

blocked until all compute kernels at a given level complete. Finally, the second downward

pass compute kernel is launched asynchronously for each target leaf to interpolate the proxy

potentials to the target particles.

3.4 Methodology

We demonstrate the BLDTT on a series of test cases and compare its performance to

that of the BLTC. First, we compare the scaling of the BLTC and BLDTT on problem sizes

from 1E5 to 1E8 particles. Second, we briefly demonstrate the GPU acceleration of the

BLDTT over a CPU implementation. Third, we display the performance of the BLDTT

on various particle distributions: random uniform, Gaussian, and Plummer [89, 90]. We

also demonstrate the benefit of including CP and PC interactions in the BLDTT algorithm.

Fourth, we display the performance of the BLDTT on various geometries: a 1× 10× 10 slab,

a 1× 1× 10 slab, and a spherical shell with all particles at radius 1. Fifth, we investigate

BLDTT performance in cases where the number of sources and targets are unequal. Sixth,

we show performance results for various interaction kernels, including an oscillatory kernel,

the Yukawa kernel, and the regularized Coulomb kernel. Last, we show MPI strong scaling

performance on 1 to 32 GPUs.

Except for the Plummer distribution runs, the source particle charges are random uniformly

distributed on [−1, 1]. Except for the runs involving unequal numbers of sources and targets,

the source and target particle sets are identical. All computations use the Coulomb interaction
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kernel except for the examples in §3.5.6. All runs used a maximum leaf or batch size of

2000. To facilitate comparison of the BLDTT and BLTC across this wide variety of problems,

Figs. 3.7, 3.8, 3.11 and 3.13 all use the same axes to display time versus error.

The calculations are done in double precision arithmetic and the reported errors are the

relative `2 error,

E =

(
M∑
i=1

(φdsi − φ
fs
i )2

/ M∑
i=1

(φdsi )2

)1/2

, (3.29)

where φdsi are the target potentials computed by direct summation and φfsi are computed by

the BLDTT fast summation method. The error was sampled at a random subset of 0.1% of

the target particles in all cases.

The computations were performed on the NVIDIA P100 GPU nodes at the San Diego

Supercomputer Center Comet machine, where each node contains four GPUs, and each GPU

has 16GB of memory. These resources were provided through the through the Extreme

Science and Engineering Discovery Environment (XSEDE) [91]. Except for the MPI strong

scaling results in §3.5.7, each computation was run on a single GPU. The code was compiled

with the PGI C compiler using the -O3 optimization flag. For parallel scaling results, the

Zoltan library of Trilinos [87, 88] was used to perform recursive coordinate bisection to load

balance the particles. As described in the previous section, tree building and interaction

list building are performed on the CPU, while the upward pass, particle interactions, and

downward pass are performed on the GPU.

3.5 Results

3.5.1 Problem size scaling

Figure 3.5 shows the compute time (s) for direct summation (green), BLTC (red), and

BLDTT (blue) with N=1E5, 1E6, 1E7, 1E8 random uniformly distributed source and target

particles in the [−1, 1]3 cube interacting by the Coulomb kernel. The BLTC and BLDTT

use MAC parameter θ = 0.7 and interpolation degree n = 8, yielding 7-8 digit accuracy.

Figure 3.5(a) is a linear plot, showing that the BLDTT is about twice as fast as the BLTC,

and both are much faster than direct summation. Figure 3.5(b) is a logarithmic plot with

reference lines scaling as O(N) (dashed), O(N logN) (dotted), and O(N2) (dash-dotted),

showing that as the problem size increases, the BLTC has asymptotic O(N logN) scaling,

while the BLDTT has asymptotic O(N) scaling, as expected. Table 3.1 records the compute

time and error; the asymptotic scaling of the compute time can be quantitatively confirmed,
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and while there is a slight increase in the error with problem size, the BLDTT error is

consistently smaller than the BLTC error.
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Figure 3.5: Comparison of BLTC and BLDTT, compute time (s) versus number of particles
N=1E5, 1E6, 1E7, 1E8, random uniformly distributed particles in [−1, 1]3 interacting by the
Coulomb kernel, MAC parameter θ = 0.7, degree n = 8 yielding 7-8 digit accuracy, direct
sum (green), BLTC (red), BLDTT (blue), (a) linear scale, (b) logarithmic scale, scaling lines
O(N2) (dash-dotted), O(N logN) (dotted), O(N) (dashed), simulations ran on one NVIDIA
P100 GPU.

N BLTC time (s) BLTC error BLDTT time (s) BLDTT error
1E5 2.15E−1 1.75E−8 2.19E−1 1.58E−8
1E6 4.71E+0 1.42E−7 3.56E+0 3.67E−8
1E7 6.81E+1 4.68E−7 4.40E+1 4.12E−8
1E8 8.96E+2 9.23E−7 4.82E+2 4.17E−8

Table 3.1: Comparison of BLTC and BLDTT, number of particles N = 1E5, 1E6, 1E7, 1E8,
random uniformly distributed particles in [−1, 1]3 interacting by the Coulomb kernel, MAC
parameter θ = 0.7, degree n = 8, compute time (s) from Fig. 3.5, `2 error, simulations ran on
one NVIDIA P100 GPU.

3.5.2 GPU acceleration of BLDTT

In this subsection we compare to the BLDTT running on a single NVIDIA P100 GPU

to running on 8 CPU cores of an Intel Xeon E5-2680v3 processor at 2.50 GHz with MPI

parallelization. We perform the same four calculations above, so the errors are the same as

those in Table 3.1. Table 3.2 gives the compute times, showing that the BLDTT achieves
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30-40× speedup on the GPU compared the 8 CPU cores. The efficiency of the BLDTT

running on the GPU is due to the independent nature of the terms in the barycentric Lagrange

approximation, which allows them to be computed concurrently.

N CPU time (s) GPU time (s) speedup
1E5 7.84E+0 2.19E−1 35.8
1E6 1.45E+2 3.56E+0 40.7
1E7 1.40E+3 4.40E+1 31.8
1E8 1.70E+4 4.82E+2 35.3

Table 3.2: Comparison of BLDTT running on 8 CPU cores and on one NVIDIA P100 GPU,
number of particles N = 1E5, 1E6, 1E7, 1E8, random uniformly distributed particles in
[−1, 1]3 interacting by the Coulomb kernel, MAC parameter θ = 0.7, degree n = 8, compute
time (s), speedup, same errors as in Table 3.1.

3.5.3 Non-uniform particle distributions

We investigate the performance of the BLDTT for three different random particle distribu-

tions: (a) uniform particles in [−1, 1]3, (b) Gaussian particles with radial pdf 1√
6π

exp (−r2/6),

(c) Plummer particles [89, 90] with radial pdf 3
4π

(1 + r2)
−5/2

and cutoff at ±100 in all three

Cartesian coordinates. The charges of the uniform and Gaussian particles are uniformly

distributed in [−1, 1], while the Plummer particle charges are set to 1/N , where N is the total

number of particles. To give a sense of the structure of the distributions, Fig. 3.6 depicts the

three distributions with N=4E5 particles. Compared to the uniform case (a), the Gaussian

and Plummer distributions (b,c) are more highly concentrated near the origin, with the

Gaussian decaying more rapidly away from the origin and the Plummer decaying less rapidly.

(a) Random Uniform (b) Gaussian (c) Plummer

Figure 3.6: Sample random distributions with N=4E5 particles, (a) uniform, (b) Gaussian,
(c) Plummer.
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Figure 3.7 shows the compute time (s) versus relative `2 error for the BLDTT (blue,

solid) and BLTC (red, dashed) on these three distributions with N=2E7 particles. Each

connected curve represents constant MAC with θ = 0.5 (×), θ = 0.7 (◦), θ = 0.9 (∗), and the

interpolation degree n = 1, 2, 4, 6, 8, 10 increases from right to left on each curve. For these

parameter choices the errors span the range from 1 digit to 10 digit accuracy. Large θ is more

efficient for low accuracy and small θ is more efficient for high accuracy. The results show

that the BLDTT has consistently better performance than the BLTC and is less sensitive to

the particle distribution.

10
-10

10
-5

10
0

10
2

10
3

BLTC

BLDTT

10
-10

10
-5

10
0

10
2

10
3

BLTC

BLDTT

10
-10

10
-5

10
0

10
2

10
3

BLTC

BLDTT

(a) Random Uniform (b) Gaussian (c) Plummer

Figure 3.7: Different particle distributions, compute time (s) versus relative `2 error, N=2E7
random particles, (a) uniform, (b) Gaussian, (c) Plummer, BLTC (red, dashed), BLDTT
(blue, solid), connected curves represent constant MAC θ (0.5 ×; 0.7 ◦; 0.9 ∗), interpolation
degree n = 1, 2, 4, 6, 8, 10 increases from right to left on each curve, simulations ran on one
NVIDIA P100 GPU.

To demonstrate the effect of including PC and CP interactions in the BLDTT, Fig. 3.8

shows the compute time versus relative `2 error for the BLDTT (blue, solid) as presented

in this paper using PP, PC, CP and CC interactions, and a version of the BLDTT (red,

dashed) using only CC and PP interactions. When only CC and PP interactions are used,

the interaction between a target cluster and a source cluster is handled by PP interaction

if either cluster contains more interpolation points than particles, whereas the flexibility to

choose PC or CP interactions in those cases improves performance at higher interpolation

degree, especially for the non-uniform particle distributions.

To further understand the effect of including PC and CP interactions, next we compare

the number of pointwise interactions used by the two versions of the BLDTT, where by

pointwise interaction we mean one evaluation of the kernel G(x,y). Results are shown

for MAC θ = 0.9 and interpolation degree n = 1, 2, 4, 6, 8, 10, for the same three random

distributions with N=2E7 particles as above. Figure 3.9 displays results for the four types of

interactions in stacked bars, CC (blue), PP (orange), PC (yellow), CP (purple), from bottom
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Figure 3.8: Different particle distributions, compute time (s) versus relative `2 N=2E7 random
particles, (a) uniform, (b) Gaussian, (c) Plummer, BLDTT with only CC and PP interactions
(red, dashed), BLDTT with PP, PC, CP, and CC interactions (blue, solid), connected curves
represent constant MAC θ (0.5 ×; 0.7 ◦; 0.9 ∗), interpolation degree n = 1, 2, 4, 6, 8, 10
increases from right to left on each curve, simulations ran on one NVIDIA P100 GPU.

to top, where the left bar in each pair is the BLDTT with CC and PP interactions only, and

the right bar is the BLDTT with PP, PC, CP, and CC interactions. In this case a direct

sum calculation would use 4E14 PP interactions, while the BLDTT calculations use less than

6E12 interactions. The results show that for high degree, introducing PC and CP interactions

into the BLDTT significantly reduces the number of PP interactions, replacing them with a

much smaller number of PC and CP interactions, and this effect is more prominent for the

nonuniform particle distributions.
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(a) Random Uniform, θ = 0.9 (b) Gaussian, θ = 0.9 (c) Plummer, θ = 0.9

Figure 3.9: Different particle distributions, number of pointwise interactions (kernel evalu-
ations G(x,y)), N=2E7 random particles, (a) uniform, (b) Gaussian, (c) Plummer, MAC
θ = 0.9, interpolation degree n = 1, 2, 4, 6, 8, 10, each pair of bars shows BLDTT with CC
and PP only (left) and BLDTT with PP, PC, CP, CC (right), direct sum calculation would
use 4E14 PP interactions, simulations ran on one NVIDIA P100 GPU.
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3.5.4 Non-cubic particle domains

We demonstrate here the performance of the BLDTT on three examples with non-cubic

particle domains depicted in Fig. 3.10: (a) thin slab of dimensions 1× 10× 10, (b) square

rod of dimensions 1× 1× 10, and (c) spherical surface of radius 1. In all cases the particles

are random uniformly distributed.

(a) 2D Slab (b) 1D Slab (c) Spherical Shell

Figure 3.10: Non-cubic domains, N=4E5 random uniformly distributed particles, (a) thin
slab of dimensions 1× 10× 10, (b) square rod of dimensions 1× 1× 10, (c) spherical surface
of radius 1.

Figure 3.11 shows the compute time (s) versus the relative `2 error for the BLDTT (blue,

solid) and BLTC (red, dashed) on these three examples with N=2E7 particles, using MAC

θ = 0.5, 0.7, 0.9 and interpolation degree n = 1, 2, 4, 6, 8, 10. The results show that the

BLDTT has consistently better performance than the BLTC. Compared to the cubic domain

results in Fig. 3.7(a), the BLDTT achieves similar levels of error and runs somewhat faster

for the non-cubic domains. Heuristically, the BLDTT run time depends on the complexity of

the tree; in particular, the tree is an oct-tree for the cubic domain, close to a quad-tree for

the thin slab and sphere surface, and close to a binary tree for the square rod. The results

indicate that BLDTT automatically adapts to the complexity of the tree without requiring

explicit reprogramming.

3.5.5 Unequal targets and sources

To demonstrate the performance of the BLDTT with unequal target and source particles,

we consider a cluster-particle variant of the BLTC for comparison [92, 37]. The CP-BLTC

builds a tree on the M targets and a set of batches on the N sources, and rather than

using PP and PC interactions, it uses PP and CP interactions. Instead of an O(N logN)
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Figure 3.11: Non-cubic domains, N=2E7 random uniformly distributed particles, (a) thin
slab of dimensions 1× 10× 10, (b) square rod of dimensions 1× 1× 10, (c) sphere surface
of radius 1, compute time (s) versus relative `2 error, BLTC (red, dashed), BLDTT (blue,
solid), connected curves represent constant MAC θ (0.5 ×; 0.7 ◦; 0.9 ∗), interpolation degree
n = 1, 2, 4, 6, 8, 10 increases from right to left on each curve, simulations ran on one NVIDIA
P100 GPU.

upward pass to compute proxy charges, the CP-BLTC has an O(M logM) downward pass to

interpolate proxy potentials to targets. While the compute phase of the BLTC is O(M logN),

the compute phase of the CP-BLTC is O(N logM). Since the compute phase is in general

the most expensive part of the algorithm, we expect the BLTC to perform better than the

CP-BLTC when N > M , and vice versa.

Figure 3.12 shows the compute time (s) versus relative `2 error for the BLTC (red, dashed),

CP-BLTC (green, dash-dotted), and BLDTT (blue, solid) with (a) M=2E7 targets, N=2E6

sources, (b) M=2E6 targets, N=2E7 sources, for MAC θ and interpolation degree n as

above. For (a) M > N , the CP-BLTC outperforms the BLTC, for (b) N > M , the BLTC

outperforms the CP-BLTC for errors below 1E–5, while the BLDTT outperforms the two

treecodes in both cases. Note however in (b) that for MAC θ = 0.9 and error larger than

1E–3, the CP-BLTC runs slightly faster than the BLDTT. This is due to the cost of the

upward pass in the BLDTT, which with low degree n, makes up a substantial portion of

the compute time. We note that the upward pass is more expensive than the downward

pass because in the current implementation, the upward pass parallelizes less well than the

downward pass on the GPU. The results demonstrate the ability of the BLDTT to efficiently

adapt to the case of unequal targets and sources.

3.5.6 Other interaction kernels

In previous sections we considered particles interacting through the Coulomb potential.

Here we demonstrate the performance of the BLDTT on three other interaction kernels: (a)
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Figure 3.12: Unequal targets and sources, (a) M=2E7 targets, N=2E6 sources, (b) M=2E6
targets, N=2E7 sources, random uniformly distributed particles, compute time (s) versus
relative `2 error, BLTC (red, dashed), CP-BLTC (green, dash-dotted), BLDTT (blue, solid),
connected curves represent constant MAC θ (0.5 ×; 0.7 ◦; 0.9 ∗), interpolation degree
n = 1, 2, 4, 6, 8, 10, simulations ran on one NVIDIA P100 GPU.

an oscillatory kernel, sin(πr)/r, (b) a Yukawa kernel, exp(−0.5r)/r, and (c) a regularized

Coulomb kernel, 1/(r2 + ε2)1/2, with ε = 0.005. Figure 3.13 shows the compute time (s) versus

relative `2 error for the BLDTT (blue, solid) and BLTC (red, dashed) for these three kernels

on N=2E7 random uniformly distributed particles in the cube [−1, 1]3 for various values of the

MAC θ and interpolation degree n. The results show that the BLDTT has consistently better

performance than the BLTC. Comparing with the Coulomb potential resuts in Fig. 3.7(a),

we see that the BLDTT has similar performance for the various interaction kernels, reflecting

the kernel-independent nature of the method.

3.5.7 MPI strong scaling

Finally, we demonstrate the MPI strong scaling of the BLDTT up to 32 NVIDIA P100

GPUs with one MPI rank per GPU. The particles are partitioned into geometrically localized

domains by Trilinos Zoltan [87, 88]. Figure 3.14 depicts a sample domain decomposition for

N=1.6E6 random uniformly distributed particles in the cube [−1, 1]3, (a) across 8 ranks with

2E5 particles per rank, and (b) across 16 ranks with 1E5 particles per rank. Colors represent

particles residing on different ranks.

We consider a problem with N=64E6 particles using MAC θ = 0.7 and interpolation

degree n = 8 yielding error ≈ 1E–8. Figure 3.15 shows the compute time versus the number

of GPUs for (a) random uniform, (b) Gaussian, and (c) Plummer distributions for the
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(a) sin(πr)/r (b) exp(−0.5r)/r (b) 1/(r2 + 0.0052)1/2

Figure 3.13: Different interaction kernels, N=2E7 random uniformly distributed particles
in the cube [−1, 1]3, (a) oscillatory, sin(πr)/r, (b) Yukawa, exp(−0.5r)/r, (c) regularized
Coulomb, 1/(r2 + 0.0052)1/2, compute time (s) versus relative `2 error, BLTC (red, dashed),
BLDTT (blue, solid), connected curves represent constant MAC θ (0.5 ×; 0.7 ◦; 0.9 ∗),
interpolation degree n = 1, 2, 4, 6, 8, 10 increases from right to left on each curve, simulations
ran on one NVIDIA P100 GPU.

BLDTT (blue) and BLTC (red), where dashed lines indicate ideal scaling and the boxed

numbers show the parallel efficiency. As was shown earlier for one GPU in Fig. 3.7, the

BLDTT is consistently faster than the BLTC up to 32 GPUs, and the speedup improves

for the nonuniform particle distributions. The BLDTT and BLTC have generally similar

parallel efficiency for all three distributions; for example on 32 GPUs, the BLDTT has

parallel efficiency 77%, 65%, and 66% for the uniform, Gaussian, and Plummer distributions,

compared to 83%, 81%, and 64% for the BLTC.

The slightly lower parallel efficiency for the BLDTT compared to the BLTC can be

explained by the greater efficiency of the BLDTT algorithm itself. Figure 3.16 shows the

component breakdown as a percentage of run time (total wall clock time) of the (a) BLTC and

(b) BLDTT for the uniform distribution results in Fig. 3.15(a). The components shown are the

upward pass (blue), compute due to local sources and source clusters (orange), compute due

to remote sources and source clusters (yellow), downward pass (purple), LET construction and

communication (green), and other (light blue), which includes tree building and interaction

list building. The breakdown is based on timing results for the most expensive MPI rank in

each case. Note that the LET construction accounts for an increasing percentage of the run

time as the number of ranks increases. This is to be expected as more particles reside on

remote ranks and must be communicated, and this is the primary factor that impedes ideal

parallel scaling. The LET construction time is nearly identical for the BLTC and BLDTT,

however since the BLDTT computations are more efficient, the LET construction accounts

for a larger percentage of the run time and this results in the lower parallel efficiency seen in

Fig. 3.15 as the number of ranks increases.

52



(a) (b)

Figure 3.14: Examples of domain decomposition, N=1.6E6 random uniformly distributed
particles in the cube [−1, 1]3, (a) 8 ranks with 2E5 particles per rank, (b) 16 ranks with
1E5 particles per rank, colors represent particles residing on different ranks, partitioning by
Trilinos Zoltan.
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Figure 3.15: MPI strong scaling, N=64E6 particles, (a) random uniform, (b) Gaussian, (c)
Plummer distributions, MAC θ = 0.7, interpolation degree n = 8 yielding 7-8 digit accuracy,
compute time (s) versus number of GPUs, BLTC (red), BLDTT (blue), ideal scaling (dashed
lines), parallel efficiency (boxed numbers).
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Figure 3.16: Component breakdown of run time across 1 to 32 NVIDIA P100 GPUs, 64E6
random uniformly distributed particles in the cube [−1, 1]3, MAC θ = 0.7, interpolation
degree n = 8, error ≈ 1E–8, (a) BLTC, (b) BLDTT, upward pass (blue), compute due to
local sources and source clusters (orange), compute due to remote sources and source clusters
(yellow), downward pass (purple), LET construction and communication (green), and other
(light blue), which includes tree building and interaction list building, breakdown is based on
timing results for most expensive MPI rank in each case.
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CHAPTER 4

A Poisson–Boltzmann Equation Solver

This chapter addresses work related to the treecode-accelerated boundary integral Poisson–

Boltzmann solver (TABI-PB), a software package for modeling biomolecular solvation. §4.1

gives an overview of the Poisson–Boltzmann model and previous work on the TABI-PB solver.

§4.2 investigates the impact of surface triangulation codes on the performance of TABI-

PB. §4.3 implements a node patch method for discretizing the boundary integral problem,

as opposed to the previous centroid collocation scheme. §4.4 describes the development

of a new BLDTT-based GPU-accelerated TABI-PB solver, applying the work detailed in

Chapter 3 to TABI-PB. §4.5 describes the application of TABI-PB to the calculation of

electrostatic free energies of binding between proteins and ligands, comparing with a popular

finite-difference based Poisson–Boltzmann software. In addition to these projects, work

performed over the course of this thesis integrated TABI-PB into the popular Adaptive

Poisson–Boltzmann Solver (APBS) developed at Pacific Northwest National Laboratory.

The current version of TABI-PB is available at github.com/Treecodes/TABI-PB and as a

submodule of the APBS package developed at Pacific Northwest National Laboratory [29] at

github.com/Electrostatics/APBS. The content of this chapter largely follows the work of

[93], which is currently in revision and submitted to J. Comput. Chem., and several papers

in preparation, including [94].

4.1 Background

4.1.1 The Poisson–Boltzmann equation

Implicit solvent models play an important role in computational modeling of electrostatic

interactions between biomolecules and their solvent environment [8, 9, 10]. Of particular

importance is the Poisson–Boltzmann (PB) model [11, 12]. Consider an interior domain

Ω1 ⊂ R3 containing the solute biomolecule, and an exterior domain Ω2 = R3 \ Ω1 containing

the ionic solvent. In a 1:1 electrolyte at low ionic concentrations, one can utilize the linearized
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PB equation for the electrostatic potential φ,

−∇ · (ε(x)∇φ(x)) + κ2(x)φ(x) =
Nc∑
k=1

qkδ (x− yk) , (4.1)

where ε is the dielectric constant, κ is the modified Debye-Hückel parameter in units of Å
−2

,

Nc is the number of atoms in the solute biomolecule, yk is the position of the kth atom of

the solute, and qk is the associated partial charge in units of fundamental charge ec. The

interface conditions are

φ1(x) = φ2(x), ε1
∂φ1(x)

∂n
= ε2

∂φ2(x)

∂n
, x ∈ Γ, (4.2)

where φ1(x) and φ2(x) are the limiting values approaching the interface Γ = Ω1 ∩ Ω2 from

inside and outside the biomolecule, respectively, and n is the outward normal on the interface.

The first condition expresses continuity of the electrostatic potential across the interface,

and the second condition expresses continuity of the electric flux. The far-field boundary

condition is

lim
|x|→∞

φ(x) = 0. (4.3)

The present work assumes that ε and κ are piecewise constant,

ε(x) =

ε1, x ∈ Ω1,

ε2, x ∈ Ω2,
, κ2(x) =

0, x ∈ Ω1,(
8πNAe

2
c

1000kBT

)
Is, x ∈ Ω2,

(4.4)

where NA is Avogadro’s number, kB is the Boltzmann constant, T is the temperature, and Is

is the molar concentration of the ionic solvent.

A key quantity of interest is the electrostatic solvation energy,

∆Gsolv =
1

2

Nc∑
k=1

qkφreac(yk), (4.5)

where the reaction field potential at an atomic position,

φreac(yk) = lim
x→yk

(
φ(x)−

Nc∑
j=1

qj
4π|x− yj|

)
, (4.6)

is the difference between the total potential and the Coulomb potential due to the polarization

of the medium in which the solute is embedded.
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4.1.2 Treecode-accelerated boundary integral PB solver (TABI-PB)

A variety of numerical approaches have been applied to the Poisson–Boltzmann model,

including finite-difference [13, 14, 15, 16, 17, 18, 19, 20], finite-element [12, 21, 22], and

boundary integral [23, 24, 25, 26, 27] schemes. In particular, a treecode-accelerated boundary

integral scheme for the linearized Poisson–Boltzmann equation (TABI-PB) was recently

developed [26, 28]. Boundary integral schemes for the PB equation solve for the surface

potential on a triangulated discretization of the interface. These schemes generally benefit

from rigorous enforcement of the interface conditions and the boundary condition at infinity.

On the other hand these schemes face the expense of solving a dense linear system, and hence

TABI-PB has traditionally utilized a treecode algorithm to reduce the computational cost

from O(N2) to O(N logN), where N is the number of triangles representing the interface.

Juffer et al. developed a coupled set of well-conditioned boundary integral equations for

the surface potential φ1 and its normal derivative on the solute/solvent interface [24],

1

2
(1 + ε)φ1 (x) =

∫
Γ

[
K1 (x,y)

∂φ1 (y)

∂n
+K2 (x,y)φ1 (y)

]
dSy + S1(x), x ∈ Γ,

1

2

(
1 +

1

ε

)
∂φ1 (x)

∂n
=

∫
Γ

[
K3 (x,y)

∂φ1 (y)

∂n
+K4 (x,y)φ1 (y)

]
dSy + S2(x), x ∈ Γ,

(4.7)

where ε = ε1/ε2 is the solute/solvent ratio of dielectric constants, and K1, K2, K3, K4 are

kernels depending on the Coulomb and screened Coulomb potentials,

G0 (x,y) =
1

4π |x− y|
, Gκ (x,y) =

e−κ|x−y|

4π |x− y|
. (4.8)

K1 (x,y) = G0 (x,y)−Gκ (x,y) , K2 (x,y) = ε
∂Gκ (x,y)

∂ny

− ∂G0 (x,y)

∂ny

K3 (x,y) = ε
∂G0 (x,y)

∂nx

− 1

ε

∂Gκ (x,y)

∂nx

, K4 (x,y) = ε
∂2Gκ (x,y)

∂nx∂ny

− 1

ε

∂2G0 (x,y)

∂nx∂nx

(4.9)

The normal derivatives of the potentials G are given by:

∂G (x,y)

∂ny

=
3∑
i=1

ni (y) ∂yiG (x,y) ,
∂G (x,y)

∂nx

= −
3∑
i=1

ni (x) ∂xiG (x,y) ,

∂2G (x,y)

∂nx∂ny

= −
3∑
j=1

3∑
i=1

nj (x)ni (y) ∂xj∂yiG (x,y)

(4.10)

for the three spatial components n of the normal direction.
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The source terms in Eq. 4.7 are

S1(x) =
1

ε1

Nc∑
k=1

qkG0 (x,yk) , S2(x) =
1

ε1

Nc∑
k=1

qk
∂G0 (x,yk)

∂nx

, (4.11)

where Nc is the number of atoms in the biomolecule, and qk is the charge of the kth atom. In

the context of the integral equation formulation, the electrostatic solvation energy is given by

∆Gsolv =
1

2

Nc∑
k=1

qkφreac(yk)

=
1

2

Nc∑
k=1

qk

∫
Γ

[
K1(yk,y)

∂φ1 (y)

∂n
+K2(yk,y)φ1(y)

]
dSy.

(4.12)

As mentioned above, the TABI-PB solver calculates the surface integrals using a boundary

element method (BEM) on the triangulated SES. The discretized integrals are given by

1

2
(1 + ε)φ1 (xi) =

N∑
j=1
j 6=i

[
K1 (xi,xj)

∂φ1 (xj)

∂n
+K2 (xi,xj)φ1 (xj)

]
Aj + S1(xi),

1

2

(
1 +

1

ε

)
∂φ1 (xi)

∂n
=

N∑
j=1
j 6=i

[
K3 (xi,xj)

∂φ1 (xj)

∂n
+K4 (xi,xj)φ1 (xj)

]
Aj + S2(xi),

(4.13)

where x is the position and Aj is the area of the jth element, and the discretization contains N

elements. In TABI-PB, this resulting linear system for the surface potentials and their normal

derivatives is solved by GMRES iteration, which requires a matrix-vector product in each

step of the iteration. A treecode algorithm can be employed to accelerate the matrix-vector

product, reducing its cost from O(N2) to O(N logN) [26].

4.2 Project 1: Comparison of molecular surface triangulation codes

4.2.1 Project description

Since boundary integral schemes utilize a triangularization of the molecular surface, the

computed potential and solvation energy in TABI-PB are highly dependent on the surface

definition and the quality of the triangulation. The aim of this project is to investigate how

the different triangulations affect the accuracy and efficiency of the subsequent computations.

There are several surface definitions commonly used, including the solvent excluded

surface (SES), the Skin surface, and the Gaussian or “blobby” surface, as well as multiple
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software implementations for triangulating these surfaces. The SES, or Connolly surface

[95, 96], is formed by the inward facing surface of the probe rolled along the van der Waals

(vdW) surface. The SES is comprised of contact surface portions, where the probe can touch

the vdW surface, and reentrant surface portions, formed by the inward facing surface of the

probe when it cannot touch the vdW surface, i.e., when it is in contact with more than one

atom in the solute. The surface is composed of spherical and toroidal patches. Previous work

investigated the performance of SES surfaces and Skin surfaces in Delphi, a finite-difference

PB solver [97], and the performance of Gaussian surfaces relative to SES surfaces in AFMPB,

a fast multipole PB solver [98].

The most widely used software for generating the SES surface is MSMS [99], while

NanoShaper is a recently introduced alternative [97]. MSMS and NanoShaper are two

publicly available codes for triangulating the SES. Each code provides a means for the user

to to control the resolution of the triangulation, the codes use different algorithms and in

general will produce different triangulations of a given SES.

MSMS is an SES triangulation software developed by Sanner [99]. After generating an

analytical representation of the surface, the algorithm generates a triangulation of specified

density by fitting predefined triangulated patches to the surface. MSMS has gained widespread

popularity for generating surface meshes. The density of the mesh is controlled by a user-

specified parameter d that sets the number of triangles in units of vertices/angstrom2.

NanoShaper is a package for triangulating multiple surface definitions, developed by

Decherchi and Rocchia [100]. For constructing the SES, NanoShaper first builds a description

of the surface with a set of patches, analytically if possible or else with an approximation. The

program then employs a ray-casting algorithm in which rays parallel to the coordinate axes

are cast and intersections with the surface are calculated. The vertex positions of intersection

are then used by the marching cubes algorithm to obtain the triangulation. The density of

the mesh is controlled by a scaling parameter s that specifies the inverse side length of a

cubic grid cell in units of angstroms.

4.2.2 Methodology

To assess the SES surface triangulations produced by MSMS and NanoShaper, we compute

the surface area Sa and electrostatic solvation energy ∆Gsolv for a test set of 38 biomolecules

comprising peptides, proteins, and nucleic acid fragments, where Sa is computed by summing

the areas of the triangles and ∆Gsolv is computed using TABI-PB. In addition to examining

the accuracy of these results, we report the total CPU time for the TABI-PB computation;

the CPU time for generating the triangulation and other pre-processing steps is negligible in
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comparison to the boundary element computation time. Surface visualizations were generated

with VTK ParaView.

The biomolecules in the test set, listed in Table 4.1, are those with widely available PDB

entries from the list used in a previous molecular surface comparison study[98]. We generate

PQR files for each test biomolecule using PDB2PQR [101] with the CHARMM force field

and water molecules removed.

Table 4.1: PDB ID and number of atoms for test set of 38 biomolecules comprising proteins,
peptides, and nucleic acid fragments.

Index 1 2 3 4 5 6 7 8
PDB ID 2LWC 1GNA 1S4J 1CB3 1V4Z 1BTQ 1I2X 1AIE
# atoms 75 163 182 183 266 304 513 522
Index 9 10 11 12 13 14 15 16
PDB ID 1ZWF 375D 440D 4HLI 3ES0 3IM3 2IJI 1COA
# atoms 586 593 629 697 781 851 890 1057
Index 17 18 19 20 21 22 23 24
PDB ID 2AVP 1SM5 2ONT 4GSG 3ICB 1DCW 3LDE 1AYI
# atoms 1085 1137 1161 1195 1202 1257 1294 1365
Index 25 26 27 28 29 30 31 32
PDB ID 2YX5 3DFG 3LOD 1TR4 1RMP 1IF4 4DUT 3SQE
# atoms 1385 2198 2246 3423 3478 4071 4217 4647
Index 33 34 35 36 37 38
PDB ID 1HG8 4DPF 3FR0 2H8H 2CEK 1IL5
# atoms 4960 5824 6952 7084 8346 8349

The MSMS triangulations were generated using density values d = 1, 2, 4, 8, 16 and the

NanoShaper triangulations were generated using scaling parameter values s = 1, 2, 3, 4, 5. For

all surfaces a probe radius of 1.4 Å was used.

The physical parameter values were ionic concentration Is = 0.15 M, temperature T = 300

K, and solute and solvent dielectric constants ε1 = 1, ε2 = 80. The treecode parameters were

multipole acceptance criterion θ = 0.8, Taylor series order p = 3, and maximum number of

particles in a leaf N0 = 500. The GMRES tolerance was 1E–4, with 10 iterations between

restarts and maximum number of iterations 110.

All computations were performed in serial on the University of Michigan FLUX cluster,

using 2.8 GHz Intel Xeon E5-2680v2 processors. The code was compiled with the GCC

Fortran compiler using the -O2 optimization flag. The version of the TABI-PB solver used in

this work is available on SourceForce at sourceforge.net/projects/tabipb/.
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4.2.3 Results

We first study geometric features of the surface triangulations by considering the triangle

size, shape, and aspect ratio, and qualitatively comparing the generated surface meshes. We

then extrapolate with respect to the number of triangles to calculate highly accurate converged

values of the surface area and solvation energy; the converged result is the y-intercept of a

simple extrapolation of the computed surface area or solvation energy versus N−1 for the

two highest resolution meshes produced by MSMS and NanoShaper. For some values of the

density parameter d, MSMS produced spurious results for the larger molecules or failed to

even produce a triangulation at all, as observed by previous investigators [102]; in these cases

the extrapolation used the highest resolution meshes for which MSMS did not fail.

4.2.3.1 Triangulation filter

Both MSMS and NanoShaper produce a number of small or thin triangles which reduce

the computational accuracy and efficiency, and it is common practice to delete them from

the simulations. Hence in the present work, triangles are deleted if their area is less than

1E–5 Å2 or if the distance between the centroids of two neighboring triangles is less than

1E–5 Å. Table 4.2 gives the percent of deleted triangles averaged over all triangulations using

MSMS and NanoShaper. Among the deleted triangles, some had area less than machine

precision and these are designated as zero-area triangles. With MSMS the deleted triangles

are 0.064 % of the total, while with NanoShaper the total is more than 100 times smaller.

Table 4.2 also shows that most of the deleted MSMS triangles were zero-area, while none of

this type were produced by NanoShaper.

Table 4.2: Triangulation filter results showing percent of deleted triangles and zero-area
triangles, values shown are averaged over all triangulations using MSMS and NanoShaper,
zero-area triangles are a subset of deleted triangles.

code deleted triangles zero-area triangles
MSMS 6.4E–2 % 5.4E–2 %

NanoShaper 5.2E–4 % 0.0E–0 %

4.2.3.2 Triangle aspect ratios

Even after filtering the triangulation as above, the aspect ratio of the remaining triangles

can affect the computational performance. The aspect ratio of a triangular surface element is

defined as the ratio of the longest to shortest sides. Figure 4.1 displays the (a) average aspect
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ratio, ravg, and (b) maximum aspect ratio, rmax, versus the number of triangles, N , for each

triangulation, where N varies from approximately 1E3 to 1E6, for the chosen density and

scaling parameters. Figure 4.1(a) shows that the average aspect ratio of MSMS triangles is

as large as ravg ≈ 30 for small N and decreases to approximately ravg ≈ 2 for large N , while

the average aspect ratio of NanoShaper triangles is closer to ravg ≈ 1 for all N . Fig. 4.1(b)

shows that the maximum aspect ratio of MSMS triangles varies between approximately 1E2

and 2E3, while the maximum aspect ratio of NanoShaper triangles is below 1E1 across all

triangulations.
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Figure 4.1: Triangle aspect ratio versus number of elements N for each generated surface, (a)
average aspect ratio, ravg, (b) maximum aspect ratio, rmax, MSMS (black, ◦), NanoShaper
(red, O).

4.2.3.3 Surface mesh features

Figure 4.2 displays the triangulation and surface potential for a representative protein

(1AIE) using (a) MSMS and (b) NanoShaper with similar resolution, N ≈ 3E4 triangles in

each case. The surfaces are similar at first glance, although the NanoShaper surface appears

slightly smoother than the MSMS surface. Figure 4.3 displays a zoom of the triangulations,

where several irregular features are highlighted; in the MSMS mesh, green boxes enclose

stitches formed by high aspect ratio triangles, and a white box encloses a cusp formed by

neighboring triangles that meet at a acute angle, while in the NanoShaper mesh, a yellow box

encloses a possible irregular feature, which could in fact simply be an artifact of the surface

lighting. It should be noted that irregular features are present in the MSMS mesh even after

filtering; by contrast, the NanoShaper mesh is relatively free of such irregular features. The

irregular features diminish the efficiency of the calculations; as shown below, calculations
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using MSMS meshes require more iterations to converge in comparison with calculations

using NanoShaper meshes.
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Figure 4.2: Protein 1AIE, SES triangulation and electrostatic potential, (a) MSMS, density
d = 6, N = 31480 triangles, (b) NanoShaper, scaling parameter s = 2, N = 32208 triangles.

4.2.3.4 Dependence of Sa and ∆Gsolv on mesh resolution

In this section we examine the dependence of the surface area Sa and solvation energy

∆Gsolv on the mesh resolution for four representative proteins (1AIE, 1HG8, 3FR0, 1IL5).

Figure 4.4 plots Sa and Fig. 4.5 plots ∆Gsolv versus N−1, where N is the number of surface

elements. As expected the MSMS and NanoShaper results for Sa and ∆Gsolv converge

to similar limits since both codes approximate the solvent excluded surface, but several

differences can be seen in their dependence on N .

First, concerning the surface area in Fig. 4.4, the MSMS and NanoShaper results converge

to almost the same values in Fig. 4.4(a,d) (1AIE, 1IL5), but in Fig. 4.4(b,c) (1HG8, 3FR0),

the NanoShaper surface area is 2-3% larger than the MSMS surface area. In all cases the

convergence with N−1 is smooth. The MSMS results approach their limit somewhat faster,

although MSMS was unable to generate reliable meshes with larger values of N ; either it

fails to produce a mesh, or the generated mesh was poorly formed. The largest value we

obtained using MSMS was N ≈ 2E6, whereas NanoShaper had no such limitation. Hence if
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(a) MSMS, zoomed (b) NanoShaper, zoomed

Figure 4.3: Protein 1AIE, zoom of SES triangulation, (a) MSMS, density d = 6, N = 31480
triangles, green boxes enclose stitches formed by high aspect ratio triangles, white box encloses
a cusp formed by neighboring triangles that meet at an acute angle, (b) NanoShaper, scaling
parameter s = 2, N = 32208 triangles, yellow box encloses a possible irregular feature.

it is necessary to generate a very dense mesh, or even a less dense mesh for a biomolecule

with a large surface area, then NanoShaper has an advantage.

Second, concerning the solvation energy in Fig. 4.5, the MSMS and NanoShaper results

converge to almost the same value. The MSMS results again approach their limiting value

somewhat faster than the NanoShaper results, although the NanoShaper dependence on N is

smoother than the MSMS dependence.

Figure 4.6 displays the (a) surface area Sa and (b) solvation energy ∆Gsolv for the entire

set of 38 biomolecules, where the NanoShaper results are plotted versus MSMS results.

In this case to reduce the dependence of the computed values on the mesh resolution N ,

we extrapolated the computed Sa and ∆Gsolv to the limit N → ∞ using the two highest

resolution meshes, density d = 8, 16 for MSMS and scaling factor s = 4, 5 for NanoShaper.

The correspondence between MSMS and NanoShaper results in Fig. 4.6 is very good, except

for two molecules, 1I2X and 375D, which consist of multiple domains, for which MSMS did

not generate an accurate mesh. These two anomalous cases are indicated by the two markers

furthest away from the diagonal line in Fig. 4.6(a,b). In addition, MSMS failed to produce

surfaces for 13 other runs, and produced highly distorted surfaces with spurious solvation

energy for 3 more runs. These 16 spurious runs were removed from the calculations in this

section. By contrast, NanoShaper failed in only one case, a low resolution mesh with scaling

factor s = 1 for the smallest molecule in the test set (2LWC, 75 atoms).
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(Å

2
)

2500

2550

2600

2650

2700

2750

2800
MSMS
NanoShaper

(a) 1AIE

1/N ×10
-5

0 0.5 1 1.5 2 2.5 3 3.5

S
u
rf
ac
e
A
re
a
(Å
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Figure 4.4: Surface area Sa versus N−1 for four representative proteins, where N is the
number of triangles, MSMS (black, solid, ◦), NanoShaper (red, dashed, O).

4.2.3.5 Computational efficiency

Figure 4.7(a) displays the total TABI-PB run time versus the number of triangles N for

computing the solvation energy ∆Gsolv using MSMS and NanoShaper meshes, where the solid

lines are least squares fits to the data. The run time for creating and filtering the meshes

is less than eight seconds in all cases, and thus constitutes a negligible fraction of the total

run time. The results show that in general, NanoShaper meshes require less run time than

MSMS meshes. This is supported by Fig. 4.7(b) showing the number of GMRES iterations in

each case, where the maximum number of iterations was set to 110. The results show that in

general, NanoShaper meshes require fewer GMRES iterations than MSMS meshes. Moreover,

in the case of MSMS, the iteration limit was reached in 23 out 177 meshes, while in the case

of NanoShaper, the iteration limit was never reached.

65



1/N ×10
-4

0 0.5 1 1.5

S
ol
va
ti
on

E
n
er
gy

(k
ca
l/
m
ol
)

-1150

-1100

-1050

-1000

-950

-900

-850
MSMS
NanoShaper

(a) 1AIE

1/N ×10
-5

0 0.5 1 1.5 2 2.5 3 3.5

S
ol
va
ti
on

E
n
er
gy

(k
ca
l/
m
ol
)

-3500

-3400

-3300

-3200

-3100

-3000

-2900

-2800

(b) 1HG8

1/N ×10
-5

0 0.5 1 1.5 2

S
ol
va
ti
on

E
n
er
gy

(k
ca
l/
m
ol
)

-8600

-8400

-8200

-8000

-7800

-7600

-7400

(c) 3FR0

1/N ×10
-5

0 0.5 1 1.5

S
ol
va
ti
on

E
n
er
gy

(k
ca
l/
m
ol
)

-7000

-6500

-6000

-5500

-5000

-4500

(d) 1IL5

Figure 4.5: Solvation energy Esol versus N−1 for four representative proteins, where N is the
number of triangles, MSMS (black, solid, ◦), NanoShaper (red, dashed, O).

Table 4.3 displays the average run time and average number of GMRES iterations per

triangle for each mesh type over the entire set of 38 biomolecules. The results show that

NanoShaper meshes require about 2/3 of the run time and 1/4 of the number of iterations

required by MSMS meshes. The larger number of GMRES iterations required for MSMS

meshes is attributed to the presence of triangles with large aspect ratio, as seen in Fig. 4.1,

and irregular features in the generated surfaces, as seen in Fig. 4.3.
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Figure 4.6: NanoShaper versus MSMS results for entire set of 38 biomolecules using values
extrapolated to the limit N → ∞, (a) surface area Sa, (b) solvation energy ∆Gsolv, black
lines indicate perfect correspondence.

Table 4.3: Average run time (s) and average number of GMRES iterations per triangle for
MSMS and NanoShaper meshes over entire set of 38 biomolecules. Simulations ran in serial
on Intel Xeon CPU.

average run time (s)/triangle average iterations/triangle
MSMS 6.67E–3 1.17E–3

NanoShaper 4.19E–3 2.92E–4
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Figure 4.7: Computational efficiency, total run time of TABI-PB for computing solvation
energy Esol using MSMS (black, ◦) and NanoShaper (red, ×) versus number of triangles N ,
(a) run time (s), solid lines are least squares fits, (b) number of GMRES iterations (maximum
110). Simulations ran in serial on Intel Xeon CPU.
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4.3 Project 2: Implementation of node patch method

4.3.1 Project description

Previously, TABI-PB has used a constant element centroid collocation scheme for dis-

cretizing the boundary integral problem. Another strategy is the so-called node patch scheme

[12], in which the boundary integral equations are discretized so that the problem is computed

on the vertices of the surface mesh elements instead of the faces. Areas are assigned to these

vertex nodes by summing one-third the area of all faces that share the vertex. This process

is depicted in Fig. 4.8. Note that, because there are significantly less vertices than faces, this

procedure results in a large reduction of problem unknowns without decreasing the resolution

of the mesh. This project implements and compares a node patch scheme within TABI-PB

to the previous centroid collocation scheme.

(a) (b)

Figure 4.8: Construction of a node patch from faces of a surface mesh. (a) Five faces meet at
a vertex. A patch shown in (b) is formed by taking one third of the area of each triangle
surrounding the vertex.

4.3.2 Methodology

To test our implementation of this scheme, we use the same test set as well as the same

physical and computational parameters described in §4.2.2. All surfaces were generated with

NanoShaper. All computations were performed in serial on the University of Michigan Flux

cluster, using 2.67 GHz Intel Xeon X5650 processors. This investigation was performed using

the C rewrite of TABI-PB first developed for integrating the package into APBS. The code

was compiled with GCC C compiler using the -O3 optimization flag.

4.3.3 Results

In Fig. 4.9, we compare the convergence of solvation energy values with respect to refining

the surface mesh for the newly implemented node patch and the original collocation, for

69



four representative proteins (the same four as in Section §4.2.3.4). The four plots depict

1/N versus solvation energy, where N is the number of computational elements, i.e., the

number of mesh faces for collocation and the number of mesh vertices for node patch. Note

that, for all four proteins, the node patch result appears to converge much faster, suggesting

that, for a certain required level of error, the node patch method may use significantly fewer

computational elements and take less CPU time.
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Figure 4.9: 1/N versus solvation energy for four representative proteins, where N is number
of computational elements (faces for collocation, vertices for node patch), collocation (black,
solid, ◦), node patch (red, dashed, O).

In Fig. 4.10, we show the relative error in the solvation energy versus total CPU time

for the same four proteins, comparing node patch, the version of collocation in the original

APBS-distributed TABI-PB (old collocation), and the version of collocation in a refactoring

of the code performed before implementing node patch. We note here that there is no

difference between new and old collocation in Fig. 4.9 because the refactoring only impacted
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the computational performance, not the computational result itself. The converged result

against which the relative errors are calculated was taken from a linear extrapolation of

the solvation energies of the three highest resolution results. The error for collocation was

computed against the collocation converged result, and the error for node patch was computed

against the node patch converged result. The code refactoring produced a small speedup,

around 1.25×, between the old and new collocation. The node patch method produces a

much larger additional speedup, around 5 to 10×. All of these computations were performed

with a GMRES tolerance of 1E–4; thus, the odd behavior of the node patch error convergence

in Fig. 4.10(c) is simply noise and all relative error smaller than 1E–4 should be treated as

spurious. Using the same converged result for both node patch and collocation for computing

relative errors, for example, the collocation extrapolated result, produces very similar results.

Solvation Energy Relative Error
10

-4
10

-3
10

-2
10

-1
10

0

T
ot
al

T
im

e
(s
)

10
0

10
1

10
2

10
3

10
4

Old Collocation

New Collocation

Node Patch

(a) 1AIE

Solvation Energy Relative Error
10

-4
10

-3
10

-2
10

-1
10

0

T
ot
al

T
im

e
(s
)

10
1

10
2

10
3

10
4

10
5

(b) 1HG8

Solvation Energy Relative Error
10

-6
10

-5
10

-4
10

-3
10

-2
10

-1

T
ot
al

T
im

e
(s
)

10
2

10
3

10
4

10
5

(c) 3FR0

Solvation Energy Relative Error
10

-4
10

-3
10

-2
10

-1
10

0

T
ot
al

T
im

e
(s
)

10
2

10
3

10
4

10
5

(d) 1IL5

Figure 4.10: Solvation energy relative error versus CPU time for four representative proteins,
collocation in original C rewrite of TABI-PB (black, solid, ◦), collocation in code refactored
TABI-PB (blue, dashed, ×), node patch (red, dashed, O). Note that the GMRES tolerance
is 1E–4. Simulations ran in serial on Intel Xeon CPU.
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Figure 4.11 shows the computational performance of TABI-PB with collocation and with

node patch across the entire data set, where relative error is computed as described above. It

is clear from both graphs that, for problems of all sizes and geometries, node patch in general

requires less computational elements and less CPU time than collocation to reach the same

level of accuracy.
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Figure 4.11: Computational performance of TABI-PB using collocation (black, ◦) and node
patch (red, O), over all runs from test set, (a) 1/N versus solvation energy error, (b) solvation
energy error versus run time. Simulations ran in serial on Intel Xeon CPU.

4.4 Project 3: GPU-accelerated BLDTT TABI-PB

4.4.1 Project description

Previous versions of TABI-PB used O(N logN) Taylor treecodes to compute the matrix-

vector product in GMRES. Here we apply the recently introduced O(N) barycentric Lagrange

dual tree traversal fast summation method (BLDTT) [7] detailed in Chapter 3. In addition,

we develop a GPU-accelerated version of TABI-PB based on the BLDTT.

Implementing the BLDTT in TABI-PB necessitates a full rewrite of TABI-PB. Note that

the required matrix-vector product consists of evaluating sums on the right hand side of

Eq. 4.13. This simply amounts to evaluating linear combinations of G0, Gκ and their normal

derivatives. Instead of the 16 potentials present in the original TABI-PB implementation

as presented in [26], we reorganize these linear combinations into four potentials with four

target charges and four source charges, shown in Table 4.4.

Following from the implementation of the BLDTT in BaryTree, the GPU-accelerated

version of TABI-PB uses OpenACC pragmas. For the computations in the matrix-vector
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product, their implementation is virtually identical to that described in Chapter 3. OpenACC

pragmas are additionally used to accelerate computation of the source terms S1 and S2 by

Eq. 4.11 and computation of the solvation energy. This rewrite utilized the node patch method

for generating the linear system. We also note that this rewrite was done in object-oriented

C++.

` Target Charge pi` Source Charge qj`

0 1
∂φ1 (xj)

∂n
1 n1 (xi) n1 (xj)φ1 (xj)Aj
2 n2 (xi) n2 (xj)φ1 (xj)Aj
3 n3 (xi) n3 (xj)φ1 (xj)Aj

(a) Charges

Term Value

V0 qj0 (G0 −Gκ) +
3∑̀
=1

qj`n` (xj) ∂xj` (εGκ −G0)

V1 qj0n1 (xi) ∂xi1 (Gκ/ε−G0) +
3∑̀
=1

qj`n1 (xi)n` (xj) ∂xi1∂xj` (G0 −Gκ)

V2 qj0n2 (xi) ∂xi2 (Gκ/ε−G0) +
3∑̀
=1

qj`n2 (xi)n` (xj) ∂xi2∂xj` (G0 −Gκ)

V3 qj0n3 (xi) ∂xi3 (Gκ/ε−G0) +
3∑̀
=1

qj`n3 (xi)n` (xj) ∂xi3∂xj` (G0 −Gκ)

(b) Potentials

Table 4.4: (a) Target and source charges pi` and qj` for computing the matrix-vector product
in GMRES, (b) terms for computing the matrix-vector product in GMRES. For a given
source particle xj and target particle xi, the input vector values for xj are φ1(xj) and
∂φ1(xj)

∂n
. The contribution to the output value φ1(xi) is pi0V0, and the contribution to ∂φ2(xi)

∂n

is pi1V1 + pi2V2 + pi3V3.

4.4.2 Methodology

For the CPU results, we investigate number of surface elements versus total TABI-PB run

time and solvation energy relative error versus run time for a set of four test biomolecules

with PDB IDs 451C (1215 atoms, a cytochrome protein of Pseudomonas aeruginosa, involved

in redox catalysis and the electron transport chain), 1A63 (2065 atoms, RNA binding domain

of E. coli rho factor, involved in transcription termination), 3SQE (4647 atoms, a domain of

human prothrombin), and 1IL5 (8350 atoms, the A chain of ricin), comparing the Taylor

treecode TABI-PB and the BLDTT TABI-PB.
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We generate PQR files for each test biomolecule using PDB2PQR [101] with the CHARMM

force field and water molecules removed. The NanoShaper triangulations were generated

using scaling parameter values s = 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0. The solvation energy relative

errors were calculated with respect to converged solvation energy values extrapolated from

the three highest density runs from a direct summation boundary integral PB run (TABI-PB

with θ = 0.0). For all surfaces a probe radius of 1.4 Å was used.

The physical parameter values were ionic concentration Is = 0.15 M, temperature T = 300

K, and solute and solvent dielectric constants ε1 = 1, ε2 = 80. For the Taylor treecode

TABI-PB, the fast summation parameters were multipole acceptance criterion θ = 0.8, Taylor

series order p = 3, and maximum number of particles in a leaf N0 = 500. For the BLDTT

TABI-PB, the fast summation parameters were multipole acceptance criterion θ = 0.8,

interpolation degree n = 3, and maximum number of particles in a leaf N0 = 50. The GMRES

tolerance was 1E–4, with 10 iterations between restarts and maximum number of iterations

110. These leaf sizes are respectively the optimal choices for the two implementations. The

other parameters were chosen to maintain consistency between the implementations while

running comparisons.

The computations were performed in serial on the standard compute nodes of the San

Diego Supercomputer Center (SDSC) Comet machine, with Intel Xeon E5-2680v3 CPUs

running at 2.5 GHz. Each computation was run on a single core. The code was compiled

with the GCC C++ compiler using the -O3 optimization flag.

For the GPU results, we compare the run time for the BLDTT TABI-PB on a single CPU

core to the run time for BLDTT TABI-PB on a single GPU for biomolecule with PDB ID

1A63. For the GPU runs, the parameters listed above are the same, except for N0, which is

2000. The GPU computations were performed on the NVIDIA P100 GPU nodes of the SDSC

machine, where each node contains four GPUs, and each GPU has 16GB of memory. Each

computation was run on a single GPU. The code was compiled with the PGI C++ compiler

using the -O3 optimization flag.

The current BLDTT TABI-PB solver used in this work is available on GitHub at

github.com/Treecodes/TABI-PB.

4.4.3 Results

To demonstrate scaling, Fig. 4.12 depicts the number of surface elements versus total run

time (s) for the four representative biomolecules 451C, 1A63, 3SQE, and 1IL5. For all four

cases, the BLDTT TABI-PB (blue, ◦) shows clearly better scaling than the Taylor treecode

TABI-PB (red, O).
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Figure 4.12: Number of surface elements versus run time (s) for four representative proteins,
Taylor treecode TABI-PB (red, O), BLDTT TABI-PB (blue, ◦), NanoShaper scaling parame-
ters 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, DS run as BLDTT TABI-PB with θ = 0.0, TC run with
θ = 0.8, p = 3, N0 = 500, DTT run with θ = 0.8, n = 3, N0 = 50. Simulations ran in serial
on Intel Xeon CPU.

Figure 4.13 depicts solvation energy relative error versus total run time (s) for the four

representative biomolecules, where the relative error is calculated with respect to converged

solvation energy values extrapolated from the three highest density meshes from a direct

summation run of TABI-PB (TABI-PB with θ = 0.0). The BLDTT TABI-PB clearly achieves

consistently lower error than the Taylor treecode TABI-PB.

Table 4.5 breaks down the results for 1A63, showing for all NanoShaper scaling parameters

run the number of elements, solvation energy (kcal/mol), solvation energy relative errors,

and run time (s) for direct sum boundary integral PB (TABI-PB run with θ = 0.0), labeled

as DS, Taylor treecode TABI-PB, labeled as TC, and BLDTT TABI-PB, labeled as DTT.

The DS error is computed with respect to the extrapolated solvation energy result, given
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in the last row. The TC and DTT errors are computed with respect to the corresponding

direct sum solvation energy result. Note that, for each mesh, DTT is not only faster than

TC, with DTT being 2.5× faster at mesh scale 4.0, but the fast summation error is more

than 5× smaller for DTT than TC. This suggests that the interpolation degree for DTT

could be made even smaller while maintaining the same solvation energy error with respect

to the converged direct sum value.

Scale N ∆Gsolv (kcal/mol) ∆Gsolv Error (%) Time (s)
DS TC DTT DS TC DTT DS TC DTT

1.0 10,350 -2587.68 -2589.32 -2587.95 8.13 0.0632 0.0104 53 11 10
1.5 23,754 -2479.64 -2480.65 -2479.76 3.62 0.0411 0.0051 330 41 26
2.0 42,260 -2443.14 -2444.24 -2443.14 2.09 0.0450 0.0114 1129 81 50
2.5 66,312 -2424.39 -2425.27 -2424.55 1.31 0.0362 0.0068 2941 145 81
3.0 95,568 -2415.12 -2416.21 -2415.36 0.92 0.0451 0.0097 6129 238 110
3.5 130,146 -2409.25 -2410.37 -2409.40 0.67 0.0465 0.0061 12,150 348 156
4.0 170,064 -2405.49 -2407.29 -2405.73 0.52 0.0746 0.0096 20,683 494 203

∞ -2393.12

Table 4.5: Solvation energy (kcal/mol), solvation energy relative error, and run time (s)
for direct sum boundary integral PB (DS), Taylor treecode TABI-PB (TC), and BLDTT
TABI-PB (DTT), for PDB ID 1A63, NanoShaper scaling parameters 1.0, 1.5, 2.0, 2.5, 3.0,
3.5, 4.0, DS run as BLDTT TABI-PB with θ = 0.0, TC run with θ = 0.8, p = 3, N0 = 500,
DTT run with θ = 0.8, n = 3, N0 = 50. Simulations ran in serial on Intel Xeon CPU.

We demonstrate the speedups provided by the GPU-accelerated version of the BLDTT

TABI-PB. Figure 4.14 shows the number of surface elements versus run time (s) for all

NanoShaper scaling parameters run for a single CPU core (red, ◦) and an NVIDIA P100

GPU (blue, ◦). While (a) includes NanoShaper surface meshing in the total run time, (b)

excludes it. Note that the NanoShaper software is CPU only, and so is the only part of

the code run that is not GPU-accelerated. Figure 4.14(a) shows rather poor speedups of

only 10×, but excluding NanoShaper and including only TABI-PB code in (b) shows a more

respectable speedup of about 20×.

Figure 4.15 breaks down the components of total run time for the (a) CPU and (b) GPU

runs in Fig. 4.14. In all cases, over 40% of the total GPU-accelerated BLDTTT TABI-PB

run time in (b) is NanoShaper mesh building. As the number of surface elements increases,

the % run time spent on actual TABI-PB computation phases (upward pass, downward

pass, computing interactions) increases, from about 10% at scale 1.0, to about 50% at scale

4.0. For the CPU runs in (a), the % run time spent on TABI-PB computation phases is

consistently around 70%. Notably, computing the source terms and solvation energy ∆Gsolv

are non-negligible contributors to the total time for the CPU runs; for the GPU runs, their

contributions are completely negligible.
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Figure 4.13: Solvation energy relative error versus run time (s) for four representative
proteins, Taylor treecode TABI-PB (red, O), BLDTT TABI-PB (blue, ◦), NanoShaper scaling
parameters 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, DS run as BLDTT TABI-PB with θ = 0.0, TC run
with θ = 0.8, p = 3, N0 = 500, DTT run with θ = 0.8, n = 3, N0 = 50. Simulations ran in
serial on Intel Xeon CPU.
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Figure 4.14: Number of surface elements versus run time (s) for a single Intel Xeon CPU
core (red, ◦) versus NVIDIA P100 GPU (blue, ◦), across NanoShaper scaling parameters 1.0,
1.5, 2.0, 2.5, 3.0, 3.5, 4.0, PDB ID 1A63, (a) all components of run time including surface
meshing with NanoShaper, (b) surface meshing time excluded. Note that the NanoShaper
surface meshing software is CPU only, and is the only part of the code that has not been
GPU-accelerated.
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Figure 4.15: Component breakdown of run time across NanoShaper scaling parameters 1.0,
1.5, 2.0, 2.5, 3.0, 3.5, 4.0, PDB ID 1A63, (a) single Intel Xeon CPU core, (b) NVIDIA P100
GPU, build NanoShaper surface mesh (blue), compute source terms (orange), upward pass
(yellow), downward pass (purple), compute interactions (green), compute ∆Gsolv(light blue),
other (burgundy) which includes tree building, interaction list building, and all parts of
GMRES other than the matrix-vector product.
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4.5 Application: Electrostatic binding free energy calculation

4.5.1 Project description

The end goal of developing TABI-PB is to produce a package that is useful in analyzing

practical problems in protein solvation. We detail here the actual application of the TABI-PB

software to a data set of protein complexes, in which we investigate the ability of TABI-PB to

calculate static binding solvation energies. In the future, we hope to expand the application

of our software to a greater range of problems, including comparisons with experimental data,

using the improvements detailed above.

A common use of the Poisson–Boltzmann model is the calculation of electrostatic free

energies of binding between proteins and ligands or other biomolecular structures. This

project investigates the use of TABI-PB on calculating these energies for a standard test set of

monomers, comparing the performance of our software to MIBPB, a common finite-difference

Poisson–Boltzmann solver.

Ω1, ε1

Ω2, ε2

Γ

monomer 1
monomer 2 complexa b

Figure 4.16: (a) The Poisson–Boltzmann model of biomolecular solvation, where Ω1 is the
solute domain with dielectric constant ε1, Ω2 is the solvent domain with dielectric constant
ε2, and Γ is the molecular surface. (b) The binding model for two biomolecular monomers. If
the electrostatic solvation energy for monomer A is GA

solv, for monomer B is GB
solv, and for the

bound complex is GAB
solv, then the binding solvation energy ∆Gsolv is the difference between

GAB
solv and GB

solv +GB
solv

The molecular binding model in Fig. 4.16(b) shows monomer 1 and monomer 2 binding

together to form a complex. We note here that all solvation energies discussed in this section

only concern the electrostatic component. From the thermodynamic loop in Fig. 4.17, the
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electrostatic binding free energy of the complex is

∆∆Gbind = ∆Ecoul + ∆∆Gsolv (4.14a)

= (EAB
coul − EA

coul − EB
coul) + (∆GAB

solv −∆GA
solv −∆GB

solv). (4.14b)

Rearranging the terms, this can also be expressed as

∆∆Gbind = (EAB
coul + ∆GAB

solv)− (EA
coul + ∆GA

solv)− (EB
coul + ∆GB

solv), (4.15)

where we see that the electrostatic binding free energy of the complex is the difference between

the electrostatic free energy of the complex and the two independent monomers. The more

negative the binding free energy is, the more likely binding will occur spontaneously.

�

-

-

? ?

+ +

As Av

Bs Bv

(AB)s (AB)v

−∆GA
solv

−∆GB
solv

∆GAB
solv

∆Ecoul∆∆Gbind

Figure 4.17: Thermodynamic loop illustrating the binding of two monomers A and B, only
electrostatic interactions considered. Subscripts s, v denote solvent and vacuum, respectively.
Electrostatic binding free energy ∆∆Gbind is determined by the change in vacuum electrostatic
energy ∆Ecoul and electrostatic binding solvation energy ∆∆Gsolv = ∆GAB

solv−∆GA
solv−∆GB

solv.

Note that the vacuum electrostatic energy ∆Ecoul is computed by direct summation of

Coulomb potentials and is thus free of numerical errors beyond roundoff error, while the

solvation energy ∆∆Gsolv is computed by the numerical PB solver, so the latter determines

the accuracy of the computed electrostatic binding free energy ∆∆Gbind.

Practically, within TABI-PB, the process of computing ∆∆Gsolv is straightforward. Surface

mesh generation and TABI-PB computations are run independently on the two monomers,

generating electrostatic solvation energy values for both. The same process is then performed

on the complex, including generating a new mesh for the complex. The difference between

the electrostatic solvation energy of the complex and the sum of the electrostatic solvation

energies energies of the independent monomers is the electrostatic binding solvation energy.
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4.5.2 Methodology

We investigate three sets of biomolecular complexes for calculating binding energies.

Dataset 1 is a collection of DNA-minor groove drug complexes with PDB IDs 102D, 109D,

121D, 127D, 129D, 166D, 195D, 1D30, 1D63, 1D64, 1D86, 1DNE, 1EEL, 1FMG, 1FMS, 1JTL,

1LEX, 1PRP, 227D, 261D, 164D, 289D, 298D, 2DBE, 302D, 311D, 328D, 360D. Dataset

2 includes various wild-type and mutant barnase-barstar complexes with PDB IDs 1B27,

1B2S, 1B2U, 1B3S, 2AZ4, 1X1W, 1X1Y, 1X1U, 1X1X. Dataset 3 includes RNA-peptide

complexes of various sizes with PDB IDs 1A1T, 1A4T, 1BIV, 1EXY, 1G70, 1HJI, 1I9F,

1MNB, 1NYB, 1QFQ, 1ULL, 1ZBN, 2A9X, 484D. These standard data sets originate from

Dr. Marcia Fenley’s group at Florida State University [103, 104]. They are available for

download Dr. Guowei Wei’s group at Michigan State University,

http://users.math.msu.edu/users/wei/Data/bindingdata.tar.gz

(a) (b)

Figure 4.18: Features of the target biomolecules across all three datasets, (a) number of
atoms, (b) total net charge.

The number of atoms and net charges of the 51 target biomolecular systems across

the three datasets are shown in Fig. 4.18. Dataset 1 is a collection of DNA-minor groove

drug complexes, composed of a relatively large DNA segment (mono1) and a much smaller

drug molecule (mono2). The DNA segment is very negatively charged (≈ −20ec) and the

drug molecule is neutral. Dataset 2 includes various wild-type and mutant barnase-barstar

complexes. The barnase (mono1) and barstar (mono2) are about the same size, but barnase

is slightly positively charged and barstar is more negatively charged Dataset 3 includes

RNA-peptide complexes. For most of the set, RNA (mono1) is bigger than the peptide
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(mono2), but relatively the same size in magnitude RNA is very negatively charged while

peptide is relatively positively charged. These statistics give us valuable information for

interpreting binding energy results as reported later.

We investigate binding energies using both MSMS and NanoShaper to generate surface

meshes in TABI-PB. To produce a comparable result, we choose NanoShaper scaling values

at 1.76, 2.47, 3.49, 4.94, 7.13, which generate surfaces of roughly the same number of triangles

as MSMS with density values 5, 10, 20, 40, 80, respectively. We compute limiting values

for NanoShaper with linear extrapolation versus triangles−1, both for densities 1.76, 2.47

(corresponding to MSMS extrapolation from d = 5, 10), and for densities 2.47, 3.49 (MSMS

d = 10, 20). An approximate relation between the tested density values are given in Table 4.6,

and the rest of this document will refer to the densities by the corresponding di for both

MSMS and NanoShaper.

Table 4.6: Corresponding densities for MSMS and NanoShaper.

MSMS NanoShaper
d1 5 1.76
d2 10 2.47
d3 20 3.49
d4 40 4.94
d5 80 7.13

In our calculations, the temperature is T = 298K, the dielectric constant is ε1 = 1 in the

solute and ε2 = 80 in the solvent, and the ionic strength is 0.1M NaCl. The treecode used

Taylor expansion order p = 3, MAC parameter θ = 0.5, and maximum number of particles in

a leaf N0 = 500; these values ensure that the treecode approximation error is smaller than

the discretization error [26]. The units for both solvation energy and binding energy are

kcal/mol for all the tabular data and figures.

All computations were performed in serial on the University of Michigan FLUX cluster,

using 2.8 GHz Intel Xeon E5-2680v2 processors. This investigation was performed using the

original Fortran version of TABI-PB. The code was compiled with the GCC Fortran compiler

using the -O2 optimization flag.

The electrostatic binding solvation energy using Eq. 4.14b for the 51 complexes and

monomers was computed using TABI-PB and the computational setup described above.

Additionally, benchmarking data was generated using the MIBPB Poisson–Boltzmann solver

[105] with high resolution mesh h = 0.2. Extrapolations of binding solvation energy were

calculated before adding in the vacuum electrostatic energy component Eelec. The binding
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energy values compared below between TABI-PB and MIBPB are all total electrostatic

binding free energy values.

4.5.3 Results

4.5.3.1 Comparison between TABI-PB and MIBPB

In this section, we compare binding energy computed with the two Poisson–Boltzmann

solvers TABI-PB [26, 28] and MIBPB [105]. The MIBPB solver [106] uses a finite-difference

method with rigorous treatment of interface jump conditions [107], geometric singularities

[108] and charge singularities [109]. The calculation of binding energies with MIBPB using

the same set of biomolecules [105] serves as the benchmark for evaluating the accuracy of the

TABI-PB solver. We provide results on various densities using both MSMS and NanoShaper.

These results not only validate TABI-PB and the extrapolation scheme, but also provide

important evidence in supporting our choice of NanoShaper over MSMS in molecular surface

triangulation.

Table 4.7: Top section: average % deviation of TABI-PB calculated binding energy for all
three test sets from MIBPB-calculated binding energy. Bottom section: total CPU time (in
kiloseconds); TABI-PB comparison is given for NanoShaper (NS) in densities d1 − d5 and
extrapolated in d1/2 and d2/3, and for MSMS in densities d1 − d3 and extrapolated in d1/2

and d2/3. Simulations ran in serial on Intel Xeon CPU.

NanoShaper MSMS
Set d1/2 d2/3 d1 d2 d3 d4 d5 d1/2 d2/3 d1 d2 d3

average % deviation from MIBPB binding energy
Set 1 8.1 6.5 84.1 44.7 25.0 15.0 10.2 12.8 11.1 36.8 19.6 14.6
Set 2 5.6 6.6 34.6 18.6 12.3 8.4 7.9 34.6 38.0 52.5 44.0 40.9
Set 3 8.7 6.7 71.1 39.1 22.3 13.4 10.0 13.5 17.0 56.6 34.8 25.4
Total 7.8 6.6 71.8 38.6 22.0 13.4 9.8 16.9 17.4 45.0 28.1 22.2

total CPU time (ks)
Set 1 10.8 25.0 3.3 7.5 17.4 37.6 87.1 13.4 32.2 4.4 9.0 23.1
Set 2 15.9 40.5 4.7 11.2 29.3 69.2 177.0 31.0 75.1 7.8 23.3 51.8
Set 3 11.6 26.9 3.5 8.1 18.8 40.8 96.3 19.3 46.1 4.9 14.3 31.8
Total 38.4 92.4 11.6 26.8 65.6 147.7 360.3 63.7 153.4 17.0 46.6 106.8

Table 4.7 shows the average % deviation, computed as average of all % differences, of

TABI-PB binding energy results from MIBPB binding energy results as well as the total

CPU time for each type of TABI-PB result across all test sets. The TABI-PB binding energy

results include both MSMS and NanoShaper at different densities and extrapolated. The
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total time is the sum of TABI-PB CPU time for the complex, monomer 1, and monomer 2

for all test cases. For extrapolated results, the total time includes both density levels used

for the extrapolation. From the table, we can see that, for both NanoShaper and MSMS,

the extrapolated results using TABI-PB are closer to the benchmark MIBPB results than

results just using TABI-PB at different densities. TABI-PB results with NanoShaper are,

on average, closer across all three sets to the MIBPB result than the TABI-PB results with

MSMS are. Additionally, at each density level, TABI-PB with NanoShaper is faster than

TABI-PB with MSMS. The CPU time for extrapolated results using two lower densities

calculation is less than one higher density calculation. For example, using NanoShaper, the

total CPU time for the d1/2 result is 38.4ks, with 7.8% deviation, while the total CPU time

for the d3, d4, d5 results are 65.6, 147.7, 360.3ks with 22%, 13.4%, 9.8% deviation, respectively.

Using extrapolation improves both accuracy and efficiency.
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Figure 4.19: (a) MIBPB-calculated binding energy versus TABI-PB-calculated binding energy,
(b) relative deviation in TABI-PB-calculated binding energy from MIBPB-calculated binding
energy for entire test set, for MSMS and NanoShaper d1/2 extrapolations and NanoShaper d5

results.

Figure 4.19(a) compares the d1/2 extrapolated TABI-PB binding energy results using both

NanoShaper and MSMS, as well as the NanoShaper d5 (highest density) results, to MIBPB

results for all individual test cases. Extrapolated results and NanoShaper d5 results using

TABI-PB are in line with the MIBPB results. The TABI-PB with NanoShaper results better

match the MIBPB results than the TABI-PB with MSMS results.

Figure 4.19(b) displays the relative deviation in binding energy of TABI-PB results

from MIBPB results. TABI-PB results use the low density (d1/2) NanoShaper and MSMS

extrapolations and the high density NanoShaper d5. We observe that the MSMS extrapolations
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are more likely to show a high amount of deviation from the MIBPB results than either the

high density NanoShaper or extrapolated NanoShaper results, particularly for test cases in

the second test set.
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Figure 4.20: Average relative deviation of TABI-PB results from MIBPB results versus total
CPU time (s) for computing entire test set, numbers next to data points are corresponding
densities. Simulations ran in serial on Intel Xeon CPU.

Additionally, Fig. 4.20 depicts the average deviation of TABI-PB from MIBPB results

versus the total time to compute binding energy across all test cases for both NanoShaper

and MSMS extrapolated results, as well as NanoShaper d1, d2, d3, d4, d5 and MSMS d1,

d2, d3 results. As noted above, the total time is the sum of TABI-PB CPU time for the

complex, monomer 1, and monomer 2 for all test cases. For extrapolated results, the total

time includes both density levels used for the extrapolation. The NanoShaper extrapolations

clearly provide the best performance. The NanoShaper d1/2 extrapolation, which is our choice,

is only slightly less accurate than the best-performed NanoShaper d2/3 extrapolation, but

uses significantly less CPU time than all but three data points: the two data points from

which the extrapolation was performed, and the lowest density MSMS result.

4.5.3.2 Accuracy sensitivity of binding energy and solvation energy

We next investigate the sensitivity of computing solvation energy and binding energy

using TABI-PB. The extrapolated values d1/2 using NanoShaper are used as reference values

to calculate absolute and relative errors which are presented in Fig. 4.21. In particular,
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Figure 4.21: (a) Relative error and (b) absolute error in kcal/mol of NanoShaper binding
energy in comparison to NanoShaper d1/2 extrapolation, (c) relative error and (d) absolute
error in kcal/mol of NanoShaper complex solvation energy in comparison to NanoShaper d1/2

extrapolation.

Fig. 4.21(a,b) presents the relative error and absolute error in kcal/mol in binding energy and

Fig. 4.21(c,d) presents solvation energy errors of the complex. We see that, for a given value

of the triangulation density d, the relative error in binding solvation energy ∆∆Gbind is larger

than the relative error in solvation energy ∆Gsolv as seen in Fig. 4.21(a,c). For example, at

density d = 5, the relative error in binding energy can be as high as nearly 40% as shown in

Fig. 4.21(a) while the error in solvation energy is less 1% as shown in Fig. 4.21(c). We observe

that a smaller value of binding energy corresponds to a larger relative error. These results

show that the binding energy ∆∆Gbind is more sensitive to the accuracy of the PB solver

than the solvation energy ∆Gsolv, and hence, higher numerical resolution is necessary for
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accurate binding energy calculations. This difficulty, however, is resolved by our extrapolation

schemes. We also observe that the relative errors converge to zero as the density increases,

indicating that the extrapolation method is an effective approach for computing accurate

binding energy values.
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CHAPTER 5

Treecode Acceleration of the 3D Reference Interaction Site Model

This chapter addresses the use of fast summation methods to accelerate the 3D-RISM

biomolecular solvation model, particularly long-range asymptotic (LRA) functions which

take the form of Coulomb-like potentials. §5.1 summarizes the background of liquid integral

equation theory and the 3D-RISM model. The results concerning 3D-RISM in this thesis

consist of two primary projects. The primary project related to this topic is detailed in

§5.2, which develops cluster-particle treecodes with Taylor series recurrence relations for

evaluating the Coulomb potential and the Coulomb-like LRA functions within 3D-RISM.

The previous approach used direct sum calculations that scaled as O (NgridNatom) and were

a major impediment to studying large proteins and protein complexes. By implementing

the numerical methods demonstrated here, we have reduced the computational complexity

to at most O((Ngrid + Natom) logNgrid) for almost all parts of the calculation. The second

project in §5.3 describes the development of GPU-accelerated cluster-particle barycentric

Lagrange treecodes (CP-BLTC) based on BaryTree to evaluate these functions, contributing

to the future goal of a fully GPU-accelerated 3D-RISM. Further implementation details

for this project are presented in Appendix B. The current version of 3D-RISM, which

implements the work described in the first project, is available in AmberTools20 and Amber20

at ambermd.org. This work was initiated as a collaboration with Tyler Luchko, California

State University, Northridge, during a 2016 meeting at the Ohio State University Molecular

Biosciences Institute. Except for §5.3, the content of this chapter largely follows the work of

[38], which is in preparation.

5.1 Background

5.1.1 Overview

Solvation thermodynamics and the structure of the surrounding liquid play an important

role in determining the properties and interactions of molecular systems in solution. While

explicit solvent approaches are commonly used, they can be computationally expensive
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and require elaborate protocols to calculate different physical properties where solvation is

involved, such as solvation free energies [110], preferential interaction parameters [111], and

binding free energy [112]. Various implicit solvent methods have been developed to simplify

and accelerate the treatment of solvent, including the Poisson–Boltzmann model detailed in

Chapter 4. Another approach are integral equation theories, based on the Ornstein-Zernike

equation [30], and closely related classical density functional theories [113, 114, 115] as they

are complete theories, calculating approximate equilibrium distributions of explicit models,

from which all solvation thermodynamics can be computed. The 3D-reference interaction site

model of molecular solvation (3D-RISM) [31, 32] is one such integral equation, which has been

coupled with classical and quantum mechanics modeling software [116, 117, 118, 119, 120]

and shown to provide solvation thermodynamics in good agreement with experiment and

explicit solvent calculations [33, 34, 35, 36].

However, 3D-RISM can be computationally expensive, especially for large molecules.

3D-RISM calculations consist of three sequential steps: initialization (calculating potential

energy and long-range electrostatic interactions on a 3D grid), iteration to convergence, and

integration of the solvent distribution to calculate thermodynamics. For small molecules,

iteration time dominates the calculation, which scales with the number of grid points, Ngrid,

as O (Ngrid logNgrid). Initialization time dominates for typical proteins, scaling with both

the number of solute atoms, Natom, and grid points as O (NatomNgrid). Integrating solvent

thermodynamics is typically 1% or less of the total computation time. Depending on the

precision of the calculation, initialization becomes the most expensive part of the calculation

for solutes of 1000 atoms or more and is a major barrier to the practical application of

3D-RISM to large molecules.

Limited work has been done to address the computational cost of initialization for open

boundary conditions. Because there is no periodic structure, the entire potential energy is

calculated for a real-space grid. In addition, to capture contributions beyond the size of the

solvent box, analytic long-range asymptotic (LRA) expressions of the solvent correlation

functions must also be computed in real- and reciprocal-space. So far, little has been done to

address the cost of computing these expressions.

5.1.2 Liquid integral equation theory

The Reference Interaction Site Model (RISM) is a statistical mechanics-based framework

for modeling the structure of ionic liquids beyond the simplest mean field approach of the

Poisson–Boltzmann equation [31, 121]. We provide here a general overview of the features of

liquid integral equation theory necessary to understand RISM. Of central importance to the

RISM formalism is the pair distribution function g(r1,Ω1, r2,Ω2), which is a measure of the
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probability density of finding a particle at r2 with orientation Ω1 with respect to a particle

at r1 with orientation Ω2. Note that g(r1,Ω1, r2,Ω2) > 1 and g(r1,Ω1, r2,Ω2) < 1 represent

areas of relative density enhancement or depletion, respectively, relative to the average density

of particle 2 in bulk, with respect to particle 1. Note that, when orientationally averaged so

that g is no longer dependent on Ω1 or Ω2, the pair distribution function is called the radial

distribution function. Figure 5.1(a) depicts example radial distribution functions for water,

showing RDFs for all three site-site interactions, O–O, O–H, and H–H.

For a homogeneous fluid, the 2-particle number density ρ(2), i.e., the number density of a

particle 2 with respect to a particle 1, is given by

ρ(2)(r1,Ω1, r2,Ω2) = ρ1ρ2g(r1,Ω1, r2,Ω2), (5.1)

where ρ1 and ρ2 are the bulk number densities of particles 1 and 2. We define the total

correlation function, or TCF, h(r1,Ω1, r2,Ω2) by the relation

1 + h(r1,Ω1, r2,Ω2) = g(r1,Ω1, r2,Ω2). (5.2)

Thus, the TCF represents the normalized density deviations from bulk for particle 2 with

respect to particle 1. The TCF can be partitioned into the direct interaction between particles

1 and 2 and all interactions mediated by particles in the surrounding environment. This

partitioning for a homogenous multi-component liquid is given by the Ornstein–Zernike (OZ)

relation [122]

hij(r1,Ω1, r2,Ω2) = cij(r1,Ω1, r2,Ω2)

+
∑
k

ρk

∫
cik(r1,Ω1, r3,Ω3) hij(r3,Ω3, r2,Ω2) dr3 dΩ3

(5.3)

where i, j, k denote molecular species, the integration is performed over all space and orien-

tations, and cij(r1,Ω1, r2,Ω2) is the direct correlation function (DCF). From this relation,

we can interpret the relative density of particle 2 of species j with respect to particle 1 of

species i as the sum of a direct interaction between particles 1 and 2, given by the DCF, and

indirect interactions mediated by surrounding solvent of all molecular species. Note that h

and c are unknown functions; to determine the TCF and DCF, another relation between h

and c, known as the closure relation, must be specified. The most general expression for the

closure relation is

gij = exp (−βwij) = exp (−βuij + hij − cij + bij) (5.4)
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where the function arguments (r1,Ω1, r2,Ω2) have been suppressed. wij is the total interaction

potential between particles 1 and 2 of species i and j, respectively. β = 1/kbT where kb is

the Boltzmann constant and T is the temperature. uij is the pair interaction potential, and

bij is known as the bridge function. We note again that gij = 1 + hij. The first equality is

a result of statistical mechanics that is outside the scope of this background section. The

second equality is a result of density functional and graph theory that is also outside the

scope of this background. The bridge function is not known exactly in a closed form, and

thus must be subject to an approximation. One particularly simple closure approximation is

the hyper-netted chain equation, or HNC, in which the bridge function is set equal to zero.

A discussion of the wide variety of closure approximations is outside the current scope.

5.1.3 1D reference interaction site model (1D-RISM)

We can consider a molecule to be composed of a number of “sites” that interact in a

pairwise fashion. Typically, we consider the sites to be the constituent atoms. In this manner,

we can apply Eq. 5.3 to non-spherical molecules. To make application of the OZ equation

practical, the RISM formalism considers the sites to be rigid and orientationally averages out

all site-site correlations. This leads to a one dimensional expression for the DCF between

two molecules 1 and 2,

c(r1,Ω1, r2,Ω2) = c(r1, r2) =
∑
α1,γ2

cα1γ2 (|r1 − r2|) , (5.5)

where α1 and γ2 denote the interaction sites on molecules 1 and 2, respectively. Thus, the

DCF is a function of only the distances between the intermolecular pairs of interaction sites.

Using this expression for the intermolecular DCF, Eq. 5.3 can be rewritten as

ραhαγ(r)ργ =
∑
λ,β

ωαλ(r) ∗ cλβ(r) ∗ ωβλ(r) +
∑
λ,β

ωαλ(r) ∗ cλβ(r) ∗ ρβhβγ(r)ργ (5.6)

where ∗ is the convolution operator, the sums are performed over all interaction sites on all

molecular species, and ω denotes factors that account for the molecular shape. ω is defined

in reciprocal space by

ω̂αγ(k) = δαγ + (1− δαγ)
sin (klαγ)

klαγ
(5.7)

where δ is the Kronecker delta function and lαγ is the real-space distance between sites on

the same species. For α = γ, ω̂αα = 1, and for sites α and γ on different species, ω̂αγ = 0.
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Equation 5.6 is typically written in the matrix form

ρhρ = ω ∗ c ∗ ω + ω ∗ c ∗ ρhρ

= (1− ω ∗ c)−1ω ∗ c ∗ ω.
(5.8)

In this form, all bolded quantities are Nsite × Nsite matrices, where Nsite is the number

of interaction sites across all molecular species. ρ is a diagonal matrix whose entries are

related to bulk number densities of molecular species present, c contains the site-site direct

correlation functions, and ω is the intramolecular correlation matrix which accounts for

molecular geometry.

5.1.4 3D reference interaction site model (3D-RISM)

In the context of a large solute macromolecule composed of many sites, the previous

formalism must be modified to allow for distribution functions that are not radially symmetric.

In the case of a solute macromolecule in solvent, the distribution functions of the solute U

can be treated in full 3D while the distribution functions of the solvent V can be treated as

radially symmetric, as in the 1D-RISM formalism. The 3D-RISM OZ equations then become

hV Vij (ri, rj) = cV Vij (ri, rj) +
∑
k

ρVk

∫
cV Vik (ri, rk) h

V V
kj (rk, rj) drk

hUVi (r1,Ω1, rj) = cUVi (r1,Ω1, ri) +
∑
k

ρVk

∫
cUVk (r1,Ω1, rk) h

V V
kj (rk, rj) drk

(5.9)

where hV Vij is the radially symmetric TCF containing only solvent interactions, and hUVi is the

TCF of the solvent with respect to the solute. 1 denotes the solute, and i, j are orientationally

averaged solvent sites. The first equation is used to obtain the TCF of the bulk solvent,

which is then used in the next equation to obtain the TCF of the solvent around the solute.

Figure 5.1(b) depicts sample radial distribution functions gUV showing relative densities of

water solvent sites V about a solute molecule U .

5.1.5 Long range components of correlation functions

When solving the RISM equations, the OZ relation given by Eqs. 5.8 and 5.9 is solved

for the TCF by a Fast Fourier Transform, which turns the convolution integrals into mul-

tiplications. However, the long range components of the DCF and TCF present serious

computational difficulties. Previously, renormalization procedures have been used in the

XRISM formulation to handle these issues. More recently, the long range components have

been handled analytically, by computing the asymptotic component of the correlation func-
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(a) (b)

Figure 5.1: (a) Radial distribution functions (RDF) of water, depicting all three site-site
interactions, O–O, O–H, and H–H. (b) Cross section of solute site-solvent site RDFs of a
hydroxymethyl group surrounded by water, showing relative density of oxygen and hydrogen
molecules in solution around the hydroxymethyl group. Figures courtesy of Tyler Luchko.

tions, removing them from correlation functions before an FFT or inverse FFT is performed,

and adding them back after the transform. The expressions [123] for the asymptotic TCF

and DCF in real and reciprocal space are

c(lr)
γ (r) = − 1

kbT

∑
a

QU
a qγ

|r−Ra|
erf

(
|r−Ra|

η

)
(5.10)

ĉ(lr)
γ (k) = − 4π

kbT

∑
a

QU
a qγ
k2

exp

(
−k

2η2

4
+ ik ·Ra

)
(5.11)

h
(lr)
j (r) =− 1

2εkbT

∑
a

QU
a qγ

|r−Ra|
exp

(
κ2
Dη

2

4

)
[

exp (−κD |r−Ra|) erfc

(
κDη

2
− |r−Ra|

η

)
− exp (κD |r−Ra|) erfc

(
κDη

2
+
|r−Ra|

η

)] (5.12)

ĥ
(lr)
j (k) = − 4π

εkbT

∑
a

QU
a qj
k2

exp

(
−k

2η2 + κ2
D

4
+ ik ·Ra

)
(5.13)

where a are the solute sites with position Ra and partial charge QU
a and r. kb is the Boltzmann

constant, T is temperature, ε is the dielectric constant, η is a charge smearing parameter, κD

is the contribution to the inverse Debye length of ionic species j, and qγ is the partial charge

on solvent site γ.
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5.1.6 The RISM procedure and its implementation

Given a form for the OZ relation and a closure relation, the equations are solved in an

iterative manner to determine the TCF and DCF. The equations are solved on a regular

grid, with grid spacings of approximately 0.25-0.5 Å, and an enclosing box that extends

20–60 Å beyond the biomolecular solute. There exist, of course, a large variety of methods

for solving the coupled equations. The simplest process is Picard iteration, for which the

general algorithmic form of solving the RISM equations is given in Algorithm 5.1. Additional

approaches include generalized minimum residual, wavelet methods, multigrid methods, and

dynamic relaxation.

Algorithm 5.1 An example of the RISM procedure with removal of asymptotic components
using Picard iteration.

1: while cγ(r) is not converged do

2: given cγ(r), subtract out asymptotic component c
(lr)
γ (r)

3: transform cγ(r) to reciprocal space cγ(k)

4: add back asymptotic component c
(lr)
γ (k)

5: solve OZ equation for hγ(k)

6: subtract out asymptotic component h
(lr)
γ (k)

7: transform hγ(k) to real space hγ(r)

8: add back asymptotic component h
(lr)
γ (r)

9: use closure relation to calculate new cγ(r)
10: end while

One particularly popular implementation of 3D-RISM is available in the Amber molecular

modeling suite as part of AmberTools [124, 116, 111]. As part of this package, 3D-RISM can

also be used to calculate molecular dynamics [123]. This implementation uses modified direct

inversion in the iterative subspace (MDIIS), a technique developed in quantum chemistry, to

solve the coupled equations.

Note that, given M grid points on which to evaluate the asymptotic correlation func-

tions, and N source charges, computing the TCF and DCF requires O(NM) operations.

For large solutes, this computation becomes prohibitively expensive, so we investigate the

implementation of treecode fast summation methods to accurately and efficiently calculate

these functions. The M grid points serve as the target sites and the N source charges serve as

the source particles. Because M is typically much greater than N , we in particular investigate

cluster-particle treecodes. In addition, RISM requires interaction potential at the M grid

points from the N source charges. The interaction potential includes a long range Coulomb

component for which we also implement a cluster-particle treecode.
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In §5.2, we detail the application of Taylor expansion cluster-particle treecodes to acceler-

ated 3D-RISM. In §5.3, we detail the ongoing development of GPU-accelerated treecodes to

further accelerate computing TCF long-range asymptotics.

5.2 Project 1: Implementing treecodes for asymptotic correlation functions

5.2.1 Project description

In the evaluation of LRA functions in 3D-RISM, the solute is represented by N source

particles and the solvent grid by M target sites. As described in Chapter 2, traditional

particle-cluster treecodes build a tree on the source particles, with a computational cost

that scales as O(M logN). For M � N, as is typically the case for the 3D-RISM solvent

grid, these methods scale poorly. In this case, it is advantageous to consider an alternative

cluster-particle treecode in which the tree is built on the targets, with a computational cost

that scales as O(N logM) [37]. The results in this section follows the work of [38]; this

paper also contains work on cut-off methods for other parts of the 3D-RISM calculation, but

discussion of these methods is omitted here.

5.2.1.1 Direct correlation function

Writing the asymptotic direct correlation function from Eq. 5.10 in the cluster-particle

form shown in Eq. 2.9 yields,

c(lr)
γ (ri) =

−qγ
kbT

[ ∑
Ra∈D

QU
a φ

(lr)
c (ri,Ra) +

L∑
l=1

∑
Ra∈Il

QU
a φ

(lr)
c (ri,Ra)

]
, (5.14)

where the DCF interaction potential is

φ(lr)
c (ri,Ra) =

1

|ri −Ra|
erf

(
|ri −Ra|

η

)
. (5.15)

Following [125], the Taylor coefficients of the DCF potential function in Eq. 5.15 are computed

by the recurrence,

ak(x,y) =
1

|x− y|2

[(
2− 1

‖k‖

) 3∑
i=1

(xi − yi)ak−ei −
(

1− 1

‖k‖

) 3∑
i=1

ak−2ei + bk

]
, (5.16)
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where the bk(x,y) are the Taylor coefficients of an auxiliary Gaussian function, exp
(
− |x− y|2 /η2

)
,

whose recurrence is

bk(x,y) =
2

η2‖k‖
×

(
3∑
i=1

(xi − yi)bk−ei −
3∑
i=1

bk−2ei

)
. (5.17)

5.2.1.2 Total correlation function

Similarly, writing the asymptotic total correlation function from Eq. 5.12 in the cluster-

particle form shown in Eq. 2.9 yields,

h(lr)
γ (ri) =

−qγ
2εkbT

exp

(
κ2
Dη

2

4

)[∑
Ra∈D

QU
a φ

(lr)
h (ri,Ra) +

L∑
l=1

∑
Ra∈Il

QU
a φ

(lr)
h (ri,Ra)

]
, (5.18)

where the TCF interaction potential is

φ
(lr)
h (ri,Ra) =

1

|ri −Ra|

[
e(−κD|ri−Ra|) erfc

(
κDη

2
− |ri −Ra|

η

)

− e(κD|ri−Ra|) erfc

(
κDη

2
+
|ri −Ra|

η

)]
. (5.19)

The TCF potential function in Eq. 5.19 has a complicated form and computing its Taylor

coefficients is a formidable task. Note however that the Taylor expansions are only used when

a source particle and target cluster are well-separated, in other words when |ri −Ra| is large,

and in that case we can take advantage of the asymptotic properties of the complementary

error function. Thus for large values of |r−Ra|, we have

erfc

(
κDη

2
− |r−Ra|

η

)
≈ 2, erfc

(
κDη

2
+
|r−Ra|

η

)
≈ 0, (5.20)

Using this observation, the TCF interaction potential in Eq. 5.19 is approximated by

φ
(lr)
h (ri,Ra) ≈

2 exp (−κD |ri −Ra|)
|ri −Ra|

. (5.21)
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Solute
Number of

Atoms
Net

Charge
Phenol 13 0e
Cucurbit[7]uril (CB7) 122 0e
Adhiron 1324 −1e
Tubulin 13456 −36e

Table 5.1: Solutes used in this work.

Functionally, this is nothing more than a screened Coulomb interaction, so following [4], we

may use the recurrence relation for its Taylor coefficients given in Eq. 5.22,

ak(x,y) =
1

|x− y|2

[(
2− 1

‖k‖

) 3∑
i=1

(xi − yi)ak−ei −
(

1− 1

‖k‖

) 3∑
i=1

ak−2ei

+ κD

(
3∑
i=1

(xi − yi)bk−ei −
3∑
i=1

bk−2ei

)]
, (5.22)

where the bk(x,y) are the Taylor coefficients of an auxiliary function, 2 exp (−κD |x− y|),
whose recurrence is

bk(x,y) =
κD
‖k‖

(
3∑
i=1

(xi − yi)ak−ei −
3∑
i=1

ak−2ei

)
. (5.23)

5.2.2 Methodology

5.2.2.1 System preparation

Four solutes were selected for benchmarking and testing, giving a range in the number of

atoms of over four orders of magnitude, from 13 to 13,456 atoms (see Table 5.1 and Fig. 5.2).

For each solute, the tleap program in AmberTools 17 [126] was used to assign the final

parameters. OpenBabel [127] was used to create the 3D structure of phenol from the SMILES

string “c1ccc(cc1)O”. The general Amber force field parameters (GAFF) [128] and AM1-

BCC (AM1 with bond charge corrections) charges [129] were assigned using antechamber.

The 3D structure of cucurbit[7]uril (CB7), a neutral host molecule, was obtained from the

Statistical Assessment of the Modeling of Proteins and Ligands 4 (SAMPL4) exercise data

set [130]. GAFF parameters were used with charges derived using the pyR.E.D. server

[131, 132, 133, 134, 135]. Adhiron (PDB ID: 4N6T) is an engineered scaffold protein [136] and

was parameterized using Amber FF14SB [137]. A complete crystal structure of tubulin, the

main constituent protein of microtubules, does not exist. We constructed a 3D model from
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(a) Phenol

(b) CB7 (c) Adhiron (d) Tubulin

Figure 5.2: Stick representations of solutes used in this work.

PDB IDs 1TVK and 1SA0 [138, 139], using Modeller [140] to combine the structures and fill

in residues missing from the H1-B2α-tubulin loop and the α- and β-tubulin N-termini. The

C-terminal tails were not present in the crystal structures and replaced with N-methylamide

(NME) caps. Amber FF14SB was used for the amino acids, the pyR.E.D. force field for GTP

and GDP, and the MG2+parameters for use with SPC/E water from Li et al. [141].

5.2.2.2 3D-RISM calculations

All RISM calculations were performed in AmberTools 19 [39].

The solvent was prepared for 3D-RISM using the rism1d program and consisted of 55.2 M

modified SPC/E water [142, 116] with 0.1 M NaCl using the corresponding Joung-Cheatham

parameters [143]. Dielectrically consistent RISM (DRISM) theory [144] was used with a

dielectric constant of 78.44 and the Kovalenko-Hirata (KH) closure [32] at a temperature of

298.15 K. The solution was solved on 65536 grid points with 0.025 Å grid spacing using the

default parameters for the modified direct inversion of the iterative subspace (MDIIS) solver

[145].

The rism3d.snglpnt program was used for all 3D-RISM calculations. Default MDIIS

settings, the KH closure, and a 0.5 Å grid spacing were used for all calculations. No cut-off

was used for electrostatic interactions. The buffer distance between the solute and the edge

of the solvent box was either explicitly set or determined from the requested LJ tolerance. In

all cases, rism3d.snglpnt automatically increased the buffer distance to ensure that all grid
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Solute Tolerance TCF DCF Coulomb Reciprocal-
MAC Order MAC Order MAC Order Space

Tubulin 1E−6 0.3 6 0.3 8 0.3 8 1E−8
Adhiron 1E−6 0.3 2 0.3 6 0.3 6 1E−7

CB7 1E−6 0.3 2 0.3 6 Direct 1E−7
Phenol 1E−6 0.3 2 Direct Direct 1E−7

Table 5.2: Optimized 3D-RISM parameter settings. Treecode parameters MAC θ, order p.
All LJ cutoffs were adjusted to fit inside the solvation box.

dimensions were divisible by factors of 2, 3, 5, and 7, and that the number of y- and z-grid

points was divisible by the number of processes.

Performance and accuracy of the treecode summation was tested by performing calculations

using direct summation for all calculations or using treecode for only one of DCF, TCF, or

Coulomb calculations. The direct sum benchmark calculations use a buffer distance of 24 Å

and were converged to a residual tolerance of 1E−13. All other 3D-RISM calculations detailed

below were repeated five times to provide average timings. A buffer distance of 24 Å and grid

spacing of 0.5 Å were selected as a compromise between precision and computational cost;

obtaining a relative numerical error of 1E−10 would require a solvent grid much too large to

be considered. When using treecode summation, all combinations of the MAC parameter

θ from 0.2 to 0.7 in steps of 0.1, the Taylor series order p from 2 to 20 in steps of 2, and

maximum leaf size N0 values of 60, 500, and 4000 were used. In all cases, the 3D-RISM

equations were solved to a residual tolerance of 1E−10. Optimized serial and parallel jobs

were run with the settings in Table 5.2. To test the parallel scaling of treecode summation,

calculations were performed on 1, 2, 4, 8, 16, 24, 32, 48, 64, 72, and 96 processes for all

solutes.

Serial and parallel calculations for phenol, CB7, 4N6T, and tubulin were run on the

Linux cluster Metropolis at California State University, Northridge, which has seven nodes

connected by QDR Infiniband interconnects, each with 256 GB of memory and two 12 core

Intel 2.4 GHz Xeon E5-2600 v2 (“Ivy Bridge-EP”) CPUs. AmberTools was compiled with

the Intel Fortran and C++ compilers 19.1.053 and the OpenMPI 3.1.3 MPI library [146].

Additional parallel benchmarking was performed on the Skylake nodes of Stampede2 at the

Texas Advanced Computing Center through the Extreme Science and Engineering Discovery

Environment (XSEDE) [91], which each have two 24 core Intel Xeon Platinum 8160 CPUs,

192 GB of memory and are connected by a 100 Gb/sec Intel Omni-Path network. In this case,

the software was compiled with the Intel Fortran and C++ compilers 17.0.4 and MVAPICH2

2.3 MPI library.
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Figure 5.3: Dependence of the relative numerical error of the solvation free energy (SFE)
and partial molar volume (PMV) on the 3D-RISM residual tolerance. Relative errors are
calculated against a reference calculation converged to a residual tolerance of 1E−13.

5.2.3 Results

5.2.3.1 Numerical precision requirements

Computational efficiencies from treecode summation must not come at the cost of the

numerical precision of computed thermodynamic observables. Generally, the solvation free

energy (SFE) will be the most important value to be calculated with 3D-RISM. The numerical

precision required depends on the application to be considered. For SFE calculations absolute

errors up to 0.1 kcal/mol are generally acceptable. An absolute error < 0.1 kcal/mol typically

means relative errors as large as 1E−3 for small molecules but may need to be less than

1E−5 or even 1E−6 for large proteins. To ensure stability, molecular dynamics simulations

with 3D-RISM require relative errors less than 1E−5 to ensure sufficient agreement between

SFEs and their derivatives [116]. Energy minimization is even more demanding, requiring

relative errors less than 1E−10.

In practice, the convergence criterion for our iterative solver is to reach a given maximum

allowable residual tolerance. Fig. 5.3 shows the relative error of SFE and PMV thermodynamic

quantities as the residual tolerance of the 3D-RISM calculation is adjusted. Overall, we find

that that residual tolerance and relative error are directly proportional for observables we

have considered. In general, we can say that

εSFE ? 10× tolerance. (5.24)
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For the SFE, there is no apparent dependence on the size of the solute, though tubulin has

an anomalously large relative error for a residual tolerance of 1E−10. There does appear

to be a dependence on the solute size for the PMV, with larger solutes achieving smaller

relative errors for the same residual tolerance. The vast majority of 3D-RISM calculations

should use a residual tolerance of 1E−5 or 1E−6.

5.2.3.2 Treecode summation

To determine the impact on speed and numerical precision of the treecode parameters θ,

p, and N0 for TCF LRA, DCF LRA, or Coulomb potential energy, SFEs calculated from

3D-RISM for different size solutes with different treecode parameters were compared against

direct sum calculations in Figs. 5.4, 5.5 and 5.6. Each data point in the plots represents a

different value of p for a given θ, increasing from right to left. Only results for N0 = 500

are shown, as we found that N0 = 60 and N0 = 500 performed almost identically, while

N0 = 4000 was generally slower for the same numerical precision. The cluster of data points

in the lower left corner of each plot indicates that increasing p does not provide any additional

precision. Though there is some noise in the timing, mostly due to interprocess interference,

increasing p almost universally reduces the relative error, but also increases execution time.

In all cases, a θ ≤ 0.4 was sufficient to obtain solutions with the smallest possible error,

provided that the number of Taylor series terms was large enough. Results for θ = 0.7 were

omitted, as the performance was consistently worse for all calculations. Otherwise, the best

choice of parameters depended on the quantity being summed, TCF LRA, DCF LRA, or

Coulomb potential energy, and the size of the solute.

Treecode summation shows the largest relative speedups for the TCF LRA. In fact,

treecode is faster than direct summation for all solutes at all precisions and is nearly two

orders of magnitude faster than direct summation for tubulin and adhiron for relative errors

of 1E−5, which is sufficient for most calculations. However, the treecode parameters that give

the best performance vary with the relative error and the solute. For tubulin, θ = 0.4 and 0.5

have the best performance, while θ = 0.3 is close. θ = 0.3 provides the best performance for

both adhiron and CB7, except for the largest relative errors, where θ = 0.4 and even 0.5 are

slightly faster. Even phenol shows speedups relative to direct summation for all θ values with

an appropriate p; however, the extreme values of θ = 0.2 and 0.6 have the best performance.

The performance of treecode summation for the DCF LRA is still much better than direct

summation for tubulin, adhiron, and CB7 but not for phenol. In contrast to TCF LRA, it is

difficult to distinguish between the performance of different MAC values. θ = 0.3, 0.4 and

0.5 have similar performance for tubulin and adhiron over almost the full range of relative

errors. However, θ = 0.5 is unable to achieve the lowest relative errors, even for p = 20, and
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Figure 5.4: Relative speedup of treecode TCF LRA compared to direct summation versus
relative error in µex,kh for tubulin, adhiron, CB7, and phenol, Taylor series order p = 2k, k =
1, . . . , 10, increasing from right to left for each line. Simulations ran in serial on Metropolis
cluster.
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Figure 5.5: Relative speedup of treecode DCF LRA compared to direct summation versus
relative error in µex,kh for tubulin, adhiron, CB7, and phenol, Taylor series order p = 2k, k =
1, . . . , 10, increasing from right to left for each line. Simulations ran in serial on Metropolis
cluster.
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θ p N0

TCF 0.3 max
(

2, log10(tolerance)+5.7
−0.7

)
500

DCF 0.3 max
(

2, log10(tolerance)+1.9
−0.8

)
500

Coulomb 0.3 max
(

2, log10(tolerance)+1.4
−0.8

)
500

Table 5.3: Guide to selecting treecode parameters for a given residual tolerance. Recommended
parameters should be tested before production use.

is generally slower than θ = 0.3 and 0.4 to achieve the same relative error. For CB7, θ = 0.2

and 0.3 have nearly identical results, outperforming larger MAC values. The trend towards

better performance from smaller MAC values continues for phenol, though the tree code is

generally slower than direct summation for this small solute.

The Coulomb potential energy has the simplest functional form and also shows the least

benefit from treecode summation. Only tubulin has speedups at all relative errors. However,

treecode summation is faster than direct summation for adhiron for relative errors > 1E−7

and for CB7 for relative errors > 1E−4. Treecode is slower than direct summation for all

phenol calculations. Otherwise, the performance with different MAC values is similar to

that observed for DCF LRA. The best performance for tubulin and adhiron is achieved with

θ = 0.3 and 0.4, while θ = 0.5 has similar performance for larger relative errors but does

not reach the lowest relative errors, even for p = 20. θ = 0.2 and 0.3 again show similar

performance for CB7, though they are faster than direct summation only for p < 4 and p < 6,

respectively.

5.2.3.3 Treecode summation parameter selection

Even when considering just biological molecules, there is a wide range of shapes, sizes

and charges for both the solutes and solvents that may be studied with 3D-RISM. As a

result, it is not possible to prescribe a uniform set of parameters for treecode summation

methods developed here; some testing will always need to be done before starting a large

calculation. However, we can provide guidance to narrow the search for parameters that

minimize computation time while preserving necessary numerical precision. Numerical

precision is set by the user by specifying the residual tolerance at the beginning of the

calculation. As shown in Fig. 5.3, relative error has a linear relationship with the residual

tolerance. Therefore, we specify our guidelines relative to the residual tolerance.

Treecode summation requires the user to specify maximum leaf size N0, MAC parameter

θ, and Taylor series order p. Of these, N0 and θ have clear best choices. N0 = 500 is a safe

and close to ideal choice for all calculations; N0 = 60 provides almost identical performance
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Figure 5.7: Relative error in µex,kh of 3D-RISM calculations with treecode parameters θ = 0.3
and N0 = 500 versus Taylor series order, p, for tubulin, adhiron, CB7, and phenol.
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while N0 = 4000 gives slower performance in some cases. If a smaller grid spacing of 0.25 Å

is used, then a cluster of N0 = 500 at this smaller grid spacing will occupy about the same

volume as N0 = 60 for a grid spacing of 0.5 Å and we would not expect a significant change

in performance. We also recommend θ = 0.3 for all calculations. While other values can be

considered for the TCF LRA calculation, θ = 0.3 performs well for all calculations where

treecode is faster than direct summation. As observed for TCF and DCF LRA and Coulomb

calculations, larger MAC values perform better for larger solutes; θ = 0.4 may be a better

choice for solutes larger than those considered here.

The Taylor series order is the most difficult parameter to select as it depends on both

the size of the solute, the type of calculation being approximated, and the desired numerical

precision. Fig. 5.7 shows the relationship between relative error and Taylor series order for

θ = 0.3 and N0 = 500 from Figs. 5.4 to 5.6 grouped by calculation type across solutes. For

all solutes and all calculations, we observe a linear relationship between log10 (error) and p

until the error due to the treecode is smaller than the error due to reaching the convergence

criterion of the iterative solver, which is a residual tolerance of 1E−10 in this case. The slope

in all cases appears similar, but there are different y-intercepts for the different solutes and

calculation types. In addition, tubulin has systematically higher errors, likely due to the

convergence anomaly shown in Fig. 5.3. In Table 5.3, we provide expressions for p-values based

on the input residual tolerance, where we have used Eq. 5.24 to relate expected error to the

input tolerance. As the case of tubulin demonstrates, these expressions are not exact. Rather,

we recommend checking the relative error for a given p by performing a test calculation

with the prescribed p and another with p + 2. If the error is sufficiently small, then other

calculations can be performed with different conformations.

Note that treecode summation is not always faster than direct summation. In particular,

for small molecules, it may be better to use direct summation for the DCF LRA and Coulomb

potential.

5.2.3.4 Scaling with solute size

Using parameters determined in §5.2.3.3, we compare the compute time required for total

cost of the calculation with treecode summation and cut-offs with the performance of direct

summation (Fig. 5.8). For this comparison, we again use a residual tolerance of 1E−6, which

is sufficient for most 3D-RISM calculations. For larger tolerances, more aggressive parameters

can be used, resulting in potentially larger speedups. Combined, treecode summation and

cut-off methods can significantly reduce the total calculation time, nearly 4× faster in the

case of tubulin and 1.6× for adhiron. In the case of tubulin, computing the potential and

asymptotics accounts for about 20% of the total runtime when using treecode and cut-offs
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Figure 5.8: Total runtime of 3D-RISM converged to a tolerance of 1E−6, with potential and
asymptotics calculated using direct and treecode summation. Required runtime is shown for
setting up the calculations (potential and asymptotics) and iterating to a converged solution.
Treecode and cut-off parameters can be found in Table 5.2. Simulations ran in serial on
Metropolis cluster.

versus nearly 80% using direct summation. Smaller solutes obtain similar results; potential

and asymptotics calculations are accelerated by a factor of 3× to 10× and, with the exception

of tubulin, account for less than 10% of the total runtime when treecode summation is used.

Overall, iteration time is now the dominant computational cost for all solute sizes.

To assess how the treecode summation methods perform, we have broken down the

potential and asymptotics into their various components (Fig. 5.9). For the direct summation

calculations, the real-space TCF LRA calculation dominates the runtime, followed by the

real-space DCF LRA and the Coulomb potential energy calculations. After applying the

treecode summation and cut-off methods, the real-space DCF LRA is the most expensive part

of the calculation for all but tubulin while the real-space TCF LRA and Coulomb potential

energy require about the same amount of time as the Lennard-Jones potential energy. Tubulin

is an exception, as the reciprocal-space DCF and TCF LRA require the largest fraction of

time, about 25% of the total time for the potential and asymptotics.

Using a cutoff for the reciprocal-space DCF and TCF LRA is the only optimization that

does not improve the scaling with system size. As it is a cut-off in reciprocal space, only large

values of k are omitted, which are determined by the grid spacing used and have nothing to

do with solute size. As a result, we observe a performance improvement of 2.5-3.5× for all

solutes and anticipate even greater speedups for finer grid-spacings. In fact, there should
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Figure 5.9: Runtime for different components of the potential and asymptotics calculation
for Fig. 5.8 using direct and treecode summation. Calculations were solved to a residual
tolerance of 1E−6. Simulations ran in serial on Metropolis cluster.

be little or no additional computation time for calculating the reciprocal-space DCF and

TCF LRA on finer grids. Despite the fact that the scaling remains O (NatomNgrid), the use of

cut-offs means that this part of the calculation remains a small fraction of the total and may

be further reduced by other means, such as lookup-tables.

5.2.3.5 Parallel scaling

3D-RISM in AmberTools is parallelized using the message passing interface (MPI) with a

distributed memory model. This allows 3D-RISM to make use of the aggregate memory of

multiple nodes for large systems but means that the code must follow the memory model

of the underlying FFT library for all of the solvation grids. We use the Fastest Fourier

Transform in the West (FFTW) [147] library, which decomposes the memory in real-space

along the z-axis into slabs. Each process gets one slab of each grid, whether or not that

grid is directly processed by FFTW, and includes potential energy and LRA grids. In order

to ensure adequate load balancing, 3D-RISM uses equal sized slabs for all nodes and will

automatically increase the total grid size to ensure this if necessary. At the same time, each

process gets a full copy of the solute information. This accounts for much less memory than

the grids and is only a small fraction of the the aggregate memory footprint, even for 96

processes.

Treecode summation and cut-off methods have a small effect on the overall parallel scaling

of 3D-RISM (Fig. 5.10). On the Metropolis cluster, with only 24 cores per node, calculations

109



100

101

102

Sp
ee

du
p

Metropolis Direct Sum
Linear
Tubulin
Adhiron
CB7
Phenol

Metropolis Treecode

100 101 102

Number of Cores

100

101

102

Sp
ee

du
p

Stampede2 Direct Sum

100 101 102

Number of Cores

Stampede2 Treecode

Figure 5.10: Speedup over multiple cores of the total calculation time for direct and treecode
summation 3D-RISM calculations converged to a tolerance of 1E−6 on Metropolis and
Stampede2 clusters. Treecode and cut-off parameters can be found in Table 5.2.
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on all solutes scale well until 24 cores for both types of calculations. Adding resources beyond

24 cores causes the solution for phenol to slow down. CB7 is the next to saturate at about

72 cores for direct summation while adhiron and tubulin do not exhibit any slow down.

As expected, large systems scale better than smaller systems. However, for the treecode

summation and cut-off methods, 64 cores appears to be the limit for all solutes. In addition,

phenol now exhibits the best scaling of all the systems until it saturates, while there is a

notable decline in the scaling of CB7 and adhiron.

To investigate the role of hardware, we also ran calculations on Stampede2, which has

double the cores and memory bandwidth of Metropolis (Fig. 5.10). As with Metropolis, all

solutes scale well up to 24 cores for both direct summation and treecode methods. Unlike

Metropolis, scaling is closer to linear and does not seem to be affected by solute size at these

small core numbers. However, 24 cores remains the scaling limit for phenol, which indicates

that this is a software limitation. After this point, larger solutes scale more efficiently and

phenol and CB7 saturate at 24 and 64 cores respectively. Otherwise, treecode calculations

scale as well as direct summation calculations until the high core counts are reached.

As we did with single-core performance, to better understand the contributions of different

parts of the calculation, we have decomposed the calculation into various components for the

potential and asympytotics calculations and the iteration time, the later of which we have

not attempted to accelerate. We use tubulin for this discussion (Fig. 5.11), though the same

behavior is observed for the other molecules as well.

For direct-sum calculations, the largest bottleneck to scaling is the iterative stage of

the calculation. The scaling of this part of the code is sub-linearly and becomes the most

expensive part of the calculation when eight or more processes are used. In contrast, all other

parts of the calculation scale almost linearly. As each MPI process has a full copy of the

solute, the direct sum calculation is trivially parallel, with no communication between the

processes, and should scale linearly as observed. The cause of the sub-linear scaling of the

iterative calculation is beyond the scope of this paper, but is likely hardware dependent as

the iterative calculation performs much better on Stampede2. Profiling data (not shown)

indicates that the iterative calculation has much higher memory bandwidth requirements

than the direct summation, and the higher memory bandwidth of Stampede2 could account

for these differences.

TCF and DCF LRA and Coulomb potential energy with treecode summation all scale

well until around 32 cores on both Metropolis and Stampede2. The most likely reason for the

scaling to plateau is that each process performs its own treecode decomposition on its own

piece of the grid. Because a slab-decomposition memory layout is required by the FFTW3

library we use for the iterative part of the code, the memory that each process receives
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becomes narrower as the process count increases. As tree nodes narrow, it is more difficult to

satisfy the MAC and the Taylor expansion becomes less efficient. To partially alleviate this

constraint, when the tree is built, nodes are only subdivided along a given Cartesian direction

if the node box length parallel to that direction is within a factor of
√

2 of the shortest box

length. However, this can result in only two or four children in a given tree level, and the top

levels of the tree will still have node boxes with uneven aspect ratios, so narrow tree root

nodes may still affect performance. Additionally, slabs near the middle of the grid where

the solute is located may end up doing more local source particle-target particle direct sums,

while slabs near the edges of the grid will be able to use the Taylor expansion more often.

Overall, the performance of treecode summation for high process counts does not adversely

affect the overall parallel scaling of the calculation as the total time and scaling is dominated

by the iterative solver. Treecode summation is so much faster than direct summation that

even at the highest node counts, it is an almost negligible part of the calculation.

5.3 Project 2: GPU-accelerated BLDTT 3D-RISM

5.3.1 Project description

The long-term vision of 3D-RISM is to have a fully GPU-accelerated molecular solvation

package within Amber. A key piece of this effort is GPU acceleration of the LRA treecodes.

BaryTree gives a model for building GPU-accelerated fast summation methods, and this

section documents early implementation of a modified form of BaryTree and a cluster-particle

barycentric Lagrange interpolation treecode (CP-BLTC) for calculating the TCF LRA, and

its performance compared to the standard CP-BLTC in BaryTree. These efforts will, in

future, be extended to the DCF LRA and Coulomb potentials in 3D-RISM.

5.3.2 Methodology and results

Instead of running a full 3D-RISM calculation, a modified version of the BaryTree CP-

BLTC was developed for calculating the TCF LRA function. The 20s proteasome from

yeast in complex with the proteasome activator PA26 (PDB ID: 1Z7Q) [148] was used as the

solute biomolecule, and the system, including physical parameters, was prepared in the same

manner as described in §5.2.2. Several gaps in the structure of 1Z7Q were present; rather

than attempting to build the missing residues, the surrounding peptides were capped with

acetyl (ACE) or NME groups and the final structure was parameterized with Amber FF14SB.

The target particles were generated corresponding to a solvent grid with a 24Åbuffer. The

final prepared solvent contains 148,724 source charges, and the solvent grid has dimensions

378 × 432 × 864, for a total of 141,087,744 target particles.
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The calculations are done in double precision arithmetic and the reported errors are the

relative `2 error,

E =

(
M∑
i=1

(φdsi − φ
fs
i )2

/ M∑
i=1

(φdsi )2

)1/2

, (5.25)

where φdsi are the target grid TCF LRA values computed by direct summation and φfsi are

computed by fast summation. The error was sampled at a random subset of 0.01% of the

target particles in all cases.

The computations were performed on the NVIDIA V100 GPU nodes on the University

of Michigan Great Lakes computing cluster, where each node contains two GPUs, and each

GPU has 16GB of memory. Each computation was run on a single GPU. The code was

compiled with the PGI C compiler using the -O3 optimization flag.

Beginning with the BaryTree implementation of the CP-BLTC with the TCF LRA

interaction kernel, the implementation was iteratively improved and specialized for the

3D-RISM application. Figure 5.12 displays the performance of the original, unmodified

BaryTree CP-BLTC (blue) in calculating the TCF LRA and a heavily specialized CP-BLTC

for 3D-RISM (green). Connected curves represent constant MAC θ (0.7 ×, solid; 0.9 ◦,
dashed), with interpolation degree n = 1, 2, 4, 6, 8, 10 increasing from right to left on each

curve (original CP-BLTC run only to n = 8).

Note that the heavily modified CP-BLTC is nearly an order of magnitude more efficient

than the original CP-BLTC. These changes were primarily implementation details, including

replacing target particles in memory with a “virtual” grid of targets generated on the fly;

more explicit memory management; “flattening” target cluster proxy points from their tensor

product form to a decomposed form, with three arrays of the x, y, z coordinates necessary

to generate the tensor product; and replacing the original O(M logM) CP-BLTC downpass

with the BLDTT O(M) downpass. More details on these successive improvements are given

in Appendix B.
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Figure 5.12: 1Z7Q TCF LRA calculation, original BaryTree CP-BLTC (blue), heavily
specialized CP-BLTC for 3D-RISM (green), connected curves represent constant MAC θ
(0.7 ×, solid; 0.9 ◦, dashed), interpolation degree n = 1, 2, 4, 6, 8, 10 increases from right to
left on each curve (original CP-BLTC run only to n = 8), simulations ran on one NVIDIA
P100 GPU.
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CHAPTER 6

Conclusion

This work addressed the development of fast summation methods for long range particle

interactions and their application to problems in biomolecular solvation, which describes the

interaction of proteins or other biomolecules with their solvent environment. The primary

result of this work was the development of an O(N) dual tree traversal fast summation

method based on barycentric Lagrange polynomial interpolation (BLDTT). This method was

implemented to run across multiple GPU compute nodes in the software package BaryTree.

Across different problem sizes, particle distributions, geometries, and interaction kernels, the

BLDTT showed consistently better performance than the previously developed barycentric

Lagrange treecode (BLTC).

The first major biomolecular solvation application of fast summation methods presented is

to the Poisson–Boltzmann implicit solvent model, and in particular, the treecode-accelerated

boundary integral Poisson–Boltzmann solver (TABI-PB). The work on TABI-PB consisted

of three primary projects and an application. The first project investigated the impact of

various biomolecular surface meshing codes on TABI-PB, and integrated the NanoShaper

software into the package, resulting in significantly better performance. Second, a node

patch method for discretizing the system of integral equations was introduced to replace the

previous centroid collocation scheme, resulting in faster convergence of solvation energies.

Third, a new version of TABI-PB with GPU acceleration based on the BLDTT was developed,

resulting in even more scalability. An application investigating the binding of biomolecular

complexes was undertaken using the previous Taylor treecode-based version of TABI-PB.

The second major application of fast summation methods is to the 3D reference interaction

site model (3D-RISM), a statistical-mechanics based continuum solvation model. This work

applied cluster-particle Taylor expansion treecodes to treat long-range asymptotic Coulomb-

like potentials in 3D-RISM, and resulted in significant speedups and improved scalability to

the 3D-RISM package implemented in AmberTools.

Next we summarize the major developments and current state of the BLDTT, TABI-PB,

and 3D-RISM, and described several future directions for each.
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6.1 BLDTT

6.1.1 Present work

We presented the barycentric Lagrange dual tree traversal (BLDTT) fast summation

method for particle interactions, and its OpenACC implementation with MPI remote memory

access for distributed memory parallelization running on multiple GPUs. The BLDTT builds

adaptive trees of clusters on the target particles and source particles, where each cluster is

the minimal bounding box of its particles, and a parent cluster may have 8, 4, or 2 children.

The BLDTT uses a dual tree traversal strategy [42, 49] to determine well-separated target

and source clusters that interact through particle-cluster (PC), cluster-particle (CP), or

cluster-cluster (CC) approximations based on barycentric Lagrange interpolation at proxy

particles defined by tensor product Chebyshev points of the 2nd kind in each cluster [65, 66].

The BLDTT has an upward pass and downward pass similar those in the FMM [43], although

it relies on interlevel polynomial interpolation rather than translation of expansion coefficients.

The BLDTT is kernel-independent, requiring only kernel evaluations. The distributed memory

parallelization of the BLDTT uses recursive coordinate bisection for domain decomposition

and MPI remote memory access to build locally essential trees on each rank [86]. The PP, PC,

CP, and CC interactions all have a direct sum form that efficiently maps onto the GPU, where

target particles provide an outer level of parallelism, and source particles provide an inner

level of parallelism. The BLDTT code is part of the BaryTree library for fast summation of

particle interactions available on GitHub at github.com/Treecodes/BaryTree.

The performance of the BLDTT was compared with that of the BLTC, an earlier particle-

cluster barycentric Lagrange treecode [66]. For the systems of size N=1E5 to N=1E8 studied

here running on a single GPU, the BLTC scales like O(N logN), while the BLDTT scales like

O(N). The BLDTT was applied to different random particle distributions (uniform, Gaussian,

Plummer), different particle domains (thin slab, square rod, spherical surface), unequal sets

of target and source particles, and different interaction kernels (oscillatory, Yukawa, singular

and regularized Coulomb). The BLDTT had consistently better performance than the BLTC,

showing its ability to adapt to different situations. Finally, the MPI strong scaling of the

BLDTT and BLTC was demonstrated on up to 32 GPUs for N=64E6 particles with 7-8 digit

accuracy. Across these simulations the parallel efficiency of both codes is better than 64%,

while the BLDTT is 1.5-2.5× faster than the BLTC.

6.1.2 Future work

Future work to further improve the efficiency of the BLDTT could investigate overlap-

ping communication and computation, building tree nodes that span multiple ranks, using
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mixed-precision arithmetic, and employing barycentric Hermite interpolation [149]. We also

anticipate applying the BLDTT to potentially speed up density functional theory calcula-

tions [150]. Additionally, we anticipate extending the BLDTT approach to high oscillatory

interaction kernels and periodic boundary conditions.

6.2 TABI-PB

6.2.1 Present work

Over the course of three primary projects, a new TABI-PB solver with GPU acceleration

using the NanoShaper software instead of the MSMS software for biomolecular surface

meshing, a node patch method instead of centroid collocation for discretizing the integral

equations, and the BLDTT fast summation method for computing matrix-vector products

during GMRes iteration.

The treecode-accelerated boundary integral (TABI-PB) solver utilizes a well-conditioned

boundary integral formulation and node patching on a biomolecular surface mesh triangulation.

In these calculations, the linear system for the electrostatic potential and its normal derivative

on the SES is solved by GMRes iteration. The matrix-vector product in each step of GMRES

is computed by the BLDTT fast summation method which reduces the computational cost

from O(N2) to O(N), where N is the number of elements in the surface triangulation.

In previous versions of TABI-PB, centroid collocation was used instead of node patch for

constructing the linear system of equations, including in the version used that compared MSMS

and NanoShaper for surface meshing. Also in previous versions of TABI-PB, O(N logN)

Taylor expansion particle-cluster treecodes were used instead of the BLDTT, including in the

versions use that compared MSMS and NanoShaper for surface meshing and investigated the

node patch method.

In the first project, the MSMS and NanoShaper codes triangulating the solvent excluded

surface (SES) were compared for a test set of 38 biomolecules. The meshes produced by the

two codes are qualitatively similar, although the MSMS meshes often contained triangles of

exceedingly small area and high aspect ratio. The computed values of the surface area and

solvation energy produced by MSMS and NanoShaper meshes often agree to within several

percent. NanoShaper meshes were more computationally efficient, requiring less run time and

fewer GMRES iterations than MSMS meshes. Furthermore, NanoShaper was consistently

able to produce higher resolution meshes than MSMS, and NanoShaper solvation energies

exhibited smoother convergence with increasing mesh resolution.

In the second project, the node patch method and centroid collocation were compared

across a set of test biomolecules. In all cases, the node patch method showed faster convergence
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than centroid collocation. Additionally, node patch in general requires less computational

elements and less CPU time than collocation to reach the same level of accuracy.

In the third project, TABI-PB was rewritten from the ground up in object oriented C++,

restructuring the integral kernels, implementing the BLDTT for calculating matrix-vector

products and adding GPU acceleration. TABI-PB with BLDTT and TABI-PB with Taylor

expansion treecodes are compared across four test biomolecules, and BLDTT TABI-PB

displays clearly better scaling. For the densest meshes run, BLDTT TABI-PB is roughly 2.5×
faster than Taylor treecode TABI-PB. Additionally, for the fast summation parameter choices

run, BLDTT TABI-PB had 5× less fast summation error than Taylor treecode TABI-PB,

suggesting that the BLDTT TABI-PB interpolation degree could be pushed even lower while

maintaining the same accuracy. The performance of the BLDTT TABI-PB on a single CPU

core was compared to its performance on a GPU; the speedups observed were respectable,

but the NanoShaper surface meshing software, which runs only on the CPU, has become the

largest component of the total run time for GPU-accelerated BLDTT TABI-PB.

A version of TABI-PB using NanoShaper was recently implemented as an option in

APBS [29]. The most recent release of APBS includes TABI-PB with BLDTT, node

patch, and NanoShaper. TABI-PB with GPU acceleration is available on GitHub at

github.com/Treecodes/TABI-PB.

6.2.2 Future work

Future work on feature additions to TABI-PB will include the extension of the package

to include non-polar energy calculation and molecular mechanics methods for more detailed

binding free energy calculations of ligand docking and protein interactions. These proposed

improvements are detailed here.

6.2.2.1 Non-Polar Solvation Energy Calculation

The Poisson–Boltzmann equation and our TABI-PB solver only calculate electrostatic

solvation effects. However, if we wish to build a user-friendly biomolecular simulation package

that has the potential to be widely accepted by the community, it is necessary to extend

our calculation to include non-polar solvation effects when calculating solvation energies and

binding free energies. The non-polar solvation energy ∆Gsolv,non-polar is produced by repulsive

cavity formation forces and attractive van der Waals forces between the solute and solvent

[151, 152]. We described here several models for estimating non-polar energies.

• The SASA-Only Model, which ignores the attractive van der Waals contribution,

approximates the non-polar contribution as a linearly dependent function of the solvent
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accessible surface area (SASA) [151],

∆Gsolv,non-polar ≈ ∆Gcavity ≈ γA+ b, (6.1)

where A is the surface area of the solvent accessible surface, b is a fitting parameter,

and γ is a parameter related to the surface tension of the solvent.

• The SAV-Only Model, which also ignores the vdW contribution, approximates the

non-polar contribution as a linearly dependent function of the solvent accessible volume

[152],

∆Gsolv,non-polar ≈ ∆Gcavity ≈ pV + b, (6.2)

where V is the volume of the solvent accessible surface, b is a fitting parameter, and p

is a parameter related to the solvent pressure.

• The SASA-SAV Model is a combination of the previous two models, again ignoring the

vdW contribution [153, 152],

∆Gsolv,non-polar ≈ ∆Gcavity ≈ γA+ pV, (6.3)

where the parameters are as above.

• The SASA-SAV-WCA Model combines the above approach with the Weeks–Chandler–

Anderson (WCA) theory [154] to quantify the vdW contribution [152],

∆Gsolv,non-polar ≈ γA+ pV + ∆GvdW, (6.4)

where the ∆GvdW term is modeled with the attractive term of a WCA-like integral,

corresponding to the integral of the attractive term of a Lennard-Jones interaction

between the solute atoms and a uniformly distributed solvent outside of the cavity.

The optimal parameter values in all of the above models have been previously investigated

[155, 152, 151]. We hope to implement all of the above models using standard parameter

values into TABI-PB and investigate the accuracy of the resulting total free energies with

respect to standard data sets.

6.2.2.2 MM-PBSA Method for Calculating Binding Free Energies

The Molecular Mechanics Poisson–Boltzmann Surface Area methodology is a popular

approach for computing full binding free energies in continuum solvent [156, 157, 158, 159].
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The binding free energy of a complex containing two subunits A and B is calculated by the

difference in free energies

∆∆Gbind = 〈∆GAB〉 − 〈∆GA〉 − 〈∆GB〉. (6.5)

where the angle brackets denote averages calculated over multiple conformations. The

subunits A and B could be, for instance, a protein and a ligand, a protein and a protein, or a

protein and a nucleic acid. GAB represents the free energy of the bound complex consisting

of subunits A and B. Each free energy in the expression above can be decomposed into

molecular mechanical, solvation, and entropic terms:

〈∆G〉 = 〈EMM〉+ 〈∆Gsolv〉 − TS (6.6)

where EMM is the potential energy generated by molecular mechanical interactions in vacuum,

T is temperature, S is entropy, and ∆Gsolv is the free energy of solvation. The ∆Gsolv term

contains, as explained above, polar and non-polar contributions. The molecular mechanics

potential energy term EMM contains bonding, electrostatic, and van der Waals interactions.

The electrostatic effects are modeled with the Coulomb potential and the van der Waals

effects are modeled with the Lennard-Jones potential. The thermodynamic loop associated

with computing ∆∆Gbind is illustrated in Fig. 6.1.
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Figure 6.1: Thermodynamic loop illustrating the binding of two monomers A and B. Subscripts
s, v denote solvent and vacuum, respectively. Binding free energy ∆∆Gbind is determined
by the change in vacuum molecular mechanics energy ∆EMM, containing van der Waals,
electrostatic, and bonding terms, an entropic contribution T∆S, and binding solvation energy
∆∆Gsolv = ∆GAB

solv −∆GA
solv −∆GB

solv, containing polar and non-polar terms.

The averages for the A and B subunits and the complex AB in Eq. 6.5 should, in the most

physically correct sense, be computed over three separate molecular dynamics trajectories for
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A, B, and AB. This approach is typically denoted three-average MM-PBSA, or 3A-MM-PBSA.

It is computationally more convenient to draw the trajectories from one simulation. Thus,

we estimate the binding free energy as

∆∆Gbind ≈ 〈∆GAB −∆GA −∆GB〉AB (6.7)

where the AB subscript denotes that the trajectory over which the averages are computed is

that of the complex. This approach is denoted 1A-MM-PBSA. Practically, this approach is

often more accurate (and, of course, faster) than 3A-MM-PBSA because of the cancellation

of intramolecular contributions [156]. In particular, all bonding terms cancel, so that EMM

contains only electrostatic and van der Waals interactions. For 1A-MM-PBSA, then, the free

energy expressions G in Eq. (6.7) need only consist of the following terms,

∆G = Eelectrostatic + EvdW + ∆Gsolv,polar + ∆Gsolv,non-polar − TS, (6.8)

where ∆Gsolv,polar is computed by the Poisson–Boltzmann equation, ∆Gsolv,non-polar is computed

using one of the methods described in §6.2.2.1, Eelectrostatic is modeled as a Coulomb interaction

in vacuum between the solute atoms, and EvdW is modeled as a Lennard-Jones interaction

between the solute atoms. The entropic TS term is often omitted as well; when this omission

is made, binding free energies between various protein-ligand complexes can only be compared

on a relative basis.

We propose to integrate an MM-PBSA binding calculation into TABI-PB. The user would

input the typical TABI-PB parameters and PQR files for the subunits, in addition to a

trajectory file generated by a molecular dynamics simulation of the complex, using a program

such as GROMACS [160]. Our program would then extract snapshots from the trajectory file,

generating an uncorrelated subset. For each snapshot, molecular surfaces would be generated

for the entire complex and for each of the subunits, and solvation energies would be calculated

for each of the three surfaces. The non-polar solvation energy definition would also be a user

specifiable parameter. After calculation electrostatic and Lennard-Jones interactions for the

three molecules for each snapshot, averages would be calculated. We would additionally use

statistical methods to estimate the precision of the binding free energy.

To benchmark our method, we would use a standard set of 37 HIV-1 protease inhibitor

complexes proposed in [161]. Note that, the inhibition constant Ki of the complex, which,

for reversible competitive inhibitors is equivalent to the dissociation constant Kd, is related

to the binding free energy by

∆∆Gbind = −RT ln (1/Ki) (6.9)
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where R is the gas constant and T is the temperature [162]. Because experimental values for

Ki have been measured for this set of protease inhibitor complexes, we can directly compare

our results to experimental values. Additionally, we will compare the polar solvation energy

components of the calculated binding free energies to our earlier static binding solvation

energy computations discussed in §4.5.

6.3 RISM

6.3.1 Present work

In this work, we have developed and implemented treecode summation for long-range in-

teractions to accelerate the potential and asymptotics calculations for non-periodic 3D-RISM

calculations. The previous approach used direct sum calculations that scaled as O (NgridNatom)

and were a major impediment to studying large proteins and protein complexes. By im-

plementing the numerical methods demonstrated here, we have reduced the computational

complexity to at most O((Ngrid +Natom) logNgrid) for almost all parts of the calculation. For

the largest protein we considered, tubulin, the total computation time was reduced by a

factor of 4 and the potential and asymptotics now account for only 20% of the calculation

time, compared to 80% when direct summation was used. Parallel calculations with these

new methods scale almost linearly and the iterative solver remains the largest impediment to

parallel scaling.

We additionally presented early work on GPU-accelerated treecodes for long range

asymptotic calculations in 3D-RISM, in particular for the TCF LRA, based on a heavily

specialized version of cluster-particle barycentric Lagrange interpolation treecodes (CP-BLTC)

implemented in BaryTree.

6.3.2 Future work

Future work will focus on extending the GPU implementation to accelerate the other

Coulomb and Coulomb-like LRA potentials in 3D-RISM. Due to the complexity of these

kernels, the kernel-independent nature of barycentric treecodes is especially advantageous in

this application. Extending the cluster-particle approach to a full BLDTT-based approach

will also be investigated.

Further research will also develop a real-space method for solving RISM with free space

boundary conditions. Singularity subtraction schemes for handling singularities in the

resulting volume integrals will be investigated. The BLDTT has the potential to be a

transformative option for accelerating the solution of real-space volume integral equations.

Previous work from Nathan Vaughn has demonstrated the power of such an approach in
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treating problems in electronic structure theory [150]. In contrast to Fourier transform-based

approaches, this approach will be inherently more scalable and parallelizable, and more

capable of accurately capturing solvent behavior for free space boundary conditions.
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APPENDIX A

Implementation Details of BaryTree

This appendix describes some implementation details of the BaryTree software package

discussed in this thesis, with the hopes of highlighting some lessons for future students.

A.1 BaryTree algorithm

This section expands upon BaryTree implementation details presented in §3.3. Algo-

rithm A.1 gives a pseudocode implementation of the BLDTT in BaryTree. Operations

involving MPI calls are marked with MPI, operations involving GPU compute kernels are

marked with GPU, and data transfers are marked Data, HtD for host (CPU) to device (GPU)

and Data, DtH for device (GPU) to host (CPU). Data, Dev marks data operations on the

GPU that do not involve a transfer, such as allocating and deleting memory. Data operations

on the CPU are not marked. Braces are used to emphasize quantities corresponding to sets

of objects, like clusters, and arrays of values, like potentials and charges. This algorithm is

described in more detail, with some comments, below.

• Lines 1–2. Each rank begins with a set of target particles {xi} and source particles {yj}
which may or may not be coincident or localized. The particles are load balanced using

the Zoltan library, which also guarantees domain localization. The Zoltan library executes

MPI calls between all ranks to perform the load balancing.

• Lines 3–4. Each rank builds trees of source clusters {Cs} and target clusters {Ct} on

its new localized sets of particles. Note that these correspond to sets of clusters. The

tree building process reorganizes the local {xi} and {yj} arrays so that, for any cluster,

the particles it contains are contiguous in memory. Specifically, this tree building process

produces multiple arrays whose entries correspond to each cluster. Two arrays contain the

starting and ending indices in the particle arrays, corresponding to the particles that each

cluster contains. Two arrays contain parent and child information, effectively providing

a “linked list” structure for tree traversal. One array contains the radius of the cluster,
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Algorithm A.1 BaryTree BLDTT implementation, with special attention paid to MPI calls,
GPU data transfers, and GPU compute kernels.

1: procedure BaryTree BLDTT
2: MPI: load balance target and source particles {xi}, {yj} among all ranks
3: build tree of target clusters {Ct} from local {xi}
4: build tree of source clusters {Cs} from local {yj}
5: Data, HtD: copy local {xi} and {yj}
6: Data, HtD: copy proxy particles {sk} of {Cs} and {t`} of {Ct}
7: Data, Dev: allocate space for local potential {φ}
8: Data, Dev: allocate space for proxy charges {q̂k} of {Cs} and potentials {φ̂`} of {Ct}
9: GPU: UpwardPass({yj}, {Cs}), which computes {q̂k}
10: Data, DtH: copy {q̂k}
11: MPI: create RMA windows to local data
12: for each remote rank r do
13: MPI: get source cluster arrays from r necessary to form skeleton tree
14: determine needed remote particle and cluster data for LETr with tree traversal
15: end for
16: for each remote rank r do
17: MPI, async: get needed data from r and fill LETr

18: end for
19: MPI, wait
20: construct interaction lists L({Ct}, {Cs}) with dual tree traversal
21: GPU: ComputePotential(L({Ct}, {Cs}))
22: Data, Dev: delete local {yj}, {sk}, and {q̂k}
23: for each remote rank r do
24: Data, HtD: copy LETr data (particles, proxy particles and charges)
25: construct interaction lists L({Ct},LETr) with dual tree traversal
26: GPU: ComputePotential(L({Ct},LETr))
27: Data, Dev: delete LETr data
28: end for
29: GPU: DownwardPass({φ}, {Ct}), which increments {φ} with {φ̂`}
30: Data, DtH: copy {φ}
31: Data, Dev: delete remaining memory
32: end procedure
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and three contain the x, y, z components of the cluster center. Three arrays contain the

x, y, z components of the proxy particles of the cluster; for an n degree interpolation, these

arrays contain (n + 1)3 entries for each cluster. We denote these by {sk} for {Cs} and

{t`} for {Ct} For the source clusters, one array allocates space for storing proxy charges at

each proxy particle, denoted {q̂k}, and for the target clusters, one array allocates space for

storing proxy potentials at each proxy particle, denoted {φ̂`}.

• Lines 5–6. After the trees are built, a host-to-device date transfer copies the particle data

{xi} and {yj} and proxy particles {sk} and {t`} to the GPU.

• Lines 7–8. Space is allocated on the GPU for the local potential array {φ}, with each

entry corresponding to a local source particle. Space is additionally allocated on the GPU

for the proxy charges {q̂k} and the proxy potentials {φ̂`}. Importantly, no actual data

transfer occurs on lines 7–8. The corresponding arrays in CPU memory are either zeroed

out or junk at this point, so there is no need to perform a transfer. The space is simply

allocated. This is good—transfers are expensive, and should be limited as much as possible.

• Lines 9–10. The proxy charges {q̂k} are then computed on the GPU using the upward

pass, and are copied back out to CPU memory. This procedure is given by Algorithm A.3.

The {q̂k} must be copied back to CPU memory, because other ranks could possibly require

this data during formation of locally essential trees (LETs).

• Line 11. MPI Remote Memory Access (RMA) windows are then formed on the source

particle data {yj} and all arrays corresponding to source clusters, including {sk} and {q̂k}.

• Lines 12–15. We then perform the first series of get operations. Each rank allocates

space for and gets only the source cluster arrays from every other rank necessary to form a

“skeleton tree”. Essentially, this means only the arrays containing the cluster centers, radii,

and child information; at this point there is no need to communicate data about the remote

{sk}, {q̂k}, or {yj}. For each remote rank, a dual tree traversal is performed between the

local target tree {Ct} and the remote rank’s skeleton source tree. This traversal determines

which remote {sk}, {q̂k}, or {yj} will be needed to fill the LET, denoted LETr for rank r.

• Lines 16–19. Another loop is performed over the remote ranks to actually perform the

get operations on the needed remote {sk}, {q̂k}, and {yj} data. In this loop, the MPI

get operations are performed asynchronously, and an MPI wait on line 19 blocks further

operations until all gets have been performed. In the MPI parlance, these MPI get

operations are “non-blocking” calls. This squeezes out some additional performance, in

that there is no need to wait for a get operation to be completed before another one is
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launched. The networking fabric can instead optimize the execution of the gets between

all r ranks. LETr is a collection of source particles and clusters, like {Cs}, except its source

particle and proxy particle and charge arrays are truncated to only include needed data.

• Line 20. The first set of interaction lists are formed by a dual tree traversal between

the local target tree {Ct} and local source tree {Cs}. These interaction lists are denoted

L({Ct}, {Cs}), to emphasize that they are functions of {Ct} and {Cs}. The full algorithm

for building the interaction lists is given by the recursive dual tree traversal in Algorithm 3.2,

which begins at the roots of {Ct} and {Cs}. There are really four interaction lists contained

within L, one for all target cluster-source cluster pairs (Ct, Cs) that interact directly, i.e.,

with PP interactions, one for all pairs with PC interactions, one for all pairs with CP

interactions, and one for all pairs with CC interactions.

• Line 21. ComputePotential is called on the interaction lists L({Ct}, {Cs}), to incre-

ment the local potential array {φ} and the proxy potentials {φ̂`}. This procedure is given

by Algorithm A.2.

• Line 22. The local {sk}, {q̂k}, and {yj} data are deleted from the GPU.

• Line 23–28. Mirroring the local computations on lines 21 and 22, for each remote rank r,

the source particle, proxy particle, and proxy charge data in LETr is copied to the GPU,

the interaction lists L({Ct},LETr) are formed, ComputePotential(L({Ct},LETr)) is

called, and the LETr data is deleted from the GPU.

• Line 29. The local potential {φ} is incremented with the proxy potentials {φ̂`} of {Ct}
on the GPU using the downward pass. This procedure is given by Algorithm A.4.

• Lines 30–31. The local potential {φ} is copied back out to CPU memory, and all

remaining data on the GPU is deleted.

A.2 BaryTree potential computation

Algorithm A.2 gives a pseudocode implementation of the BLDTT’s potential computation,

corresponding to lines 21 and 26 of Algorithm A.1. For p ranks, this procedure is called p

times on each of the ranks: one time for the interactions between local target tree {Ct} and

local source tree {Cs}, and p− 1 times for the interactions between {Ct} and LETr, once

each for the p− 1 remote ranks r.

For a given set of interaction lists L, this procedure launches asynchronous GPU compute

kernels for each (Ct, Cs) pair. The pairs with either PP or PC interactions increment the
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local potential array {φ}, and the pairs with either CP or CC interactions increment the

proxy potentials {φ̂`} of {Ct}. A GPU wait on the last line blocks further computation

until all of the launched GPU compute kernels return. This strategy allows us to saturate

the GPU with as much work as possible; the GPU scheduler can determine which compute

kernels to launch when to keep the device optimally busy.

Algorithm A.2 Computing potential and proxy potential contributions due to the interaction
lists L.

1: procedure ComputePotential(interaction lists L)
2: for each PP interaction pair (Ct, Cs) in L do
3: GPU, async: increment potential {φ} with (Ct, Cs) PP (direct) interaction
4: end for
5: for each PC interaction pair (Ct, Cs) in L do
6: GPU, async: increment potential {φ} with (Ct, Cs) PC interaction
7: end for
8: for each CP interaction pair (Ct, Cs) in L do

9: GPU, async: increment proxy potential {φ̂`} of Ct with (Ct, Cs) CP interaction
10: end for
11: for each CC interaction pair (Ct, Cs) in L do

12: GPU, async: increment proxy potential {φ̂`} of Ct with (Ct, Cs) CC interaction
13: end for
14: GPU, wait
15: end procedure

Listing A.1 shows an example OpenACC GPU compute kernel for computing a PP

Coulomb interaction between a target cluster Ct and source cluster Cs, corresponding to line

3 of Algorithm A.2. Note that this procedure is essentially identical for other interaction

kernels beyond Coulomb, with nothing more than some changes on lines 20–21, and caching

some kernel parameters, such as κ for screened Coulomb, at the beginning of the procedure.

This procedure is also largely identical to the ones for computing PC, CP, and CC

interactions. In the PC case, the source particle arrays are replaced with the source proxy

particle arrays. In the CP case, the target particle arrays are replaced with the target proxy

particle arrays, and the potential array is replaced with the target proxy potential array.

Similarly, in the CC case, all arrays are replaced with their proxy variants.

This procedure is described in more detail, with some comments, below.

• Lines 1–7. This procedure takes in target particle arrays tx, ty, tz, corresponding to the

x, y, z coordinates of the targets, and source particle arrays sx, sy, sz, sq, corresponding to

the x, y, z coordinates of the sources and the charges q, as well as the local potential array

potential, corresponding to {φ}. num targets and num sources mark the number of
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target and source particles contained in Ct and Cs, respectively, and target idx start and

source idx start mark the target and source array indices where the particles contained

in Ct and Cs begin.

 void K_Coulomb_PP(int num_targets , int num_sources ,

 int target_idx_start , int source_idx_start ,

 double *tx, double *ty , double *tz ,

 double *sx, double *sy , double *sz ,

 double *sq, struct RunParams *run_params ,

 double *potential , int gpu_stream_id)

 {

 #pragma acc kernels async(gpu_stream_id) \

 present(tx , ty , tz , sx , sy , sz , sq , potential)

 {

 #pragma acc loop gang independent

 for (int i = 0; i < num_targets; i++) {

 int ii = target_idx_start + i;

 double x = tx[ii], y = ty[ii], z = tz[ii];

 double temp_potential = 0.0;

 #pragma acc loop vector reduction (+: temp_potential)

 for (int j = 0; j < num_sources; j++) {

 int jj = source_idx_start + j;

 double dx = x - sx[jj], dy = y - sy[jj], dz = z - sz[jj];

 double rr = dx*dx + dy*dy + dz*dz;

 if (rr > DBL_MIN) temp_potential += sq[jj] / sqrt(rr);

 }

 #pragma acc atomic

 potential[ii] += temp_potential;

 }

 } // end kernel

 }

Listing A.1: An OpenACC GPU compute kernel for computing the direct interaction

between a target cluster and source cluster.

• Line 8. The #pragma acc kernels directive marks the beginning of a GPU compute

kernel. The async(gpu stream id) clause marks that this compute kernel is launched

asynchronously, in the stream given by the integer gpu stream id, which is a randomly

chosen integer between 0 and 2. Asynchronous launching means that control is returned to

the host CPU as soon as the kernel has been launched. Launching the compute kernel in

one of three streams allows the GPU to better hide kernel launch latency; while a compute

kernel in one stream is executing, a compute kernel in another stream can simultaneously
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be in the process of launching or returning. Testing suggests that using three streams

decreases total compute time by about 30%, and additional streams provide no more

performance gain.

• Line 9. The present(tx, ty, tz, sx, sy, sz, sq, potential) clause marks that

these eight arrays must already be present in the GPU’s memory for this compute kernel

to execute. Otherwise, the kernel will fail.

• Lines 11–12. The #pragma acc loop directive marks the beginning of a loop which

will be parallelized on the GPU. This loop iterates over the targets in Ct. The gang

independent clause marks that the following loop will be parallelized at the gang level,

i.e., loop iterations will be mapped to thread blocks. The independent clause simply tells

the compiler that the results of the loop iterations are in no way dependent on each other.

The independent clause is likely not actually required, but in this case is a signal to the

programmer. In fact, the compiler would likely parallelize this loop at the gang level even

without the gang clause, but it’s best practice to be as explicit as possible. Not every

compiler is as good as the PGI/ NVIDIA HPC compiler with OpenACC.

• Lines 13–15. Each loop iteration over the targets stores the target coordinates in

temporary local variables. Likely, the compiler would do this on its own, but again, it’s

good to be as explicit as possible. A temporary variable temp potential is also created

to store the contribution from the sources to the target’s potential.

• Lines 16–17. This #pragma acc loop directive marks yet another loop which will be

parallelized on the GPU. The vector clause marks that this loop will be parallelized at the

vector level, i.e., loop iterations will be mapped to threads within a thread block. Note,

of course, that each loop iteration of the loop on line 12 over the targets in Ct will launch

an instance of this loop over the sources in Cs. The reduction(+:temp potential)

clause marks that each iteration of this loop increments the temp potential variable.

Because each loop iteration touches this variable, the reduction clause ensures proper

loop scheduling so that the values in temp potential are not overwritten.

• Lines 18–20. Each loop iteration over the sources computes the difference between the

stored target coordinates and the source coordinates. The squared Cartesian distance

between the source and target is then computed and stored in rr.

• Line 21. temp potential is incremented with the contribution to the potential value at

the given target due to the given source. This implementation omits singular contributions,

so temp potential is only incremented if the square distance rr is greater than the smallest
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positive normal double precision number. For different interaction kernels, this is really

the only block of lines that would be modified.

• Lines 23–24. After the completion of the inner loop nest, the potential for the given

target is incremented with the contribution from temp potential. The #pragma acc

atomic directive ensures that only one thread at a time can update the memory location at

potential[ii]. Since the GPU compute kernels which update the potential are launched

asynchronously, the atomic directive is required to prevent multiple compute kernels from

attempting to update potential[ii] at the same time.

As stated above, effectively this exact same procedure is used for PC, CP, and CC

interactions. On close inspection of the implications of this, a natural question arises: why

should we explicitly build out the proxy particles like the actual particles? Recall that the

proxy particles are formed by a tensor product of Chebyshev points in the x, y, z directions.

Instead of explicitly building the tensor product, we could just use three arrays containing

the x, y, z coordinates from which the tensor product is built. For a PC interaction, this

would modify lines 16–22 of Listing A.1 to the form shown in Listing A.2.

 ...

 int proxy_source_idx_start = source_cluster_idx * (degree +1);

 int proxy_charge_idx_start = source_cluster_idx

 * (degree +1) * (degree +1) * (degree +1);

 #pragma acc loop vector collapse (3) reduction (+: temp_potential)

 for (int kx = 0; kx < degree +1; kx++) {

 for (int ky = 0; ky < degree +1; ky++) {

 for (int kz = 0; kz < degree +1; kz++) {

 double dx = x - proxy_source_x[proxy_source_idx_start + kx];

 double dy = y - proxy_source_y[proxy_source_idx_start + ky];

 double dz = z - proxy_source_z[proxy_source_idx_start + kz];

 double rr = dx*dx + dy*dy + dz*dz;

 int kk = proxy_charge_idx_start

 + kx * (degree +1) * (degree +1) * (degree +1)

 + ky * (degree +1) * (degree +1) + kz;

 if (rr > DBL_MIN) temp_potential += proxy_q[kk] / sqrt(rr);

 }

 }

 }

 ...

Listing A.2: A modified inner loop for PC interactions if the tensor product of the

Chebyshev points for the source proxy particles were explicitly constructed.
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This strategy replaces one inner loop over source proxy particles with three loops over

the x, y, z cooredinates. The collapse3 clause of the directive on line 5 essentially turns the

three loops into a single loop which is parallelized at the vector level. Notice also that the

proxy charges themselves cannot be decomposed in such a manner, so we have to maintain

two indexing schemes, one for the coordinates, and another for the proxy charges.

My initial assumption was that this strategy would be overall more efficient, because it

requires the creation of significantly less memory. The x, y, z coordinate arrays, instead of

containing (number of clusters) × (degree+1)3 entries, only contain (number of clusters) ×
(degree+1). This requires significantly less work to copy or fill, and data management on

GPUs is always a potential source of inefficiency.

However, as it turns out, this strategy yields markedly worse performance, for one

important reason. The data accesses to the x, y, z coordinate arrays are no longer strided. In

the first implementation, there exists a one-to-one correspondence between the threads and

the accesses to the proxy x, y, z, q arrays such that two threads whose IDs differ by n will

also have the memory locations of their fetches differ by n. GPU memory fetches are more

efficient with strided accesses like these. In the decomposed three loop case shown above,

this is no longer the case, and multiple threads will attempt to access the same entries of the

x, y, z arrays. Even the q array might not display strided accesses, if OpenACC’s strategy for

collapsing the three loops results in a different indexing strategy than the one used for the q

array. The tradeoff between these costs and reduced memory management and copying turns

out to not work in this strategy’s favor.

An important caveat is that this strategy actually is effective for the target clusters,

because target particles or proxy particles are iterated over in the outer loop, at the gang

level. The memory accesses to the target particle or proxy particle arrays are much less

frequent than those to the source particle or proxy particle arrays, so in this case, it is in

fact advantageous to flatten the target proxy particles. However, flattening the target proxy

particles while maintaining the full tensor product source proxy particle arrays introduces

a significant amount of complication into the code, so pursuing this idea was abandoned.

Flattening the target clusters for the cluster-particle GPU RISM treecode described in §5.3,

where no source proxy particles are needed, does end up providing significant performance

improvements, as shown in Appendix B.

A.3 Upward and downward passes

Algorithm A.3 gives a pseudocode implementation of the BLDTT’s upward pass, corre-

sponding to line 9 of Algorithm A.1. Level L refers to the top level of the tree, containing
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only the root source cluster, and level 1 refers to the bottom level, which contains only leaf

clusters. First, for each leaf cluster, the procedure asynchronously launches a GPU compute

kernel that interpolates the source charges to the proxy source charges. A GPU wait blocks

further computation until all of these launched GPU compute kernels return. Then, for each

level l of the tree beginning from the second level, a GPU compute kernel is asynchronously

launched for each child of each cluster on level l, incrementing the parent cluster proxy

charges by interpolating the child cluster proxy charges. At each level, a GPU wait blocks

further computation until all launched GPU compute kernels for level l return.

Algorithm A.3 The upward pass computes proxy charges of source clusters.

1: procedure UpwardPass(source particles {yj}, source clusters {Cs})
2: for each leaf cluster Cs do
3: GPU, async: interpolate charges {qj} of {yj} to {q̂k} of Cs
4: end for
5: GPU, wait
6: for level l = 2 to L do
7: for each cluster Cs on level l do
8: for each child cluster Ci

s of Cs do
9: GPU, async: increment {q̂k} of Cs by interpolating {q̂k} of Ci

s

10: end for
11: end for
12: GPU, wait
13: end for
14: end procedure

Algorithm A.4 gives a pseudocode implementation of the BLDTT’s downward pass,

corresponding to line 29 of Algorithm A.1. Note that this procedure has a very similar

structure to the downward pass. For each level l of the target tree beginning from the top

level L, which contains only the root target cluster, a GPU compute kernel is asynchronously

launched for each child of each cluster on level l, incrementing proxy potentials of the child

cluster by interpolating the parent cluster proxy potentials. At each level, a GPU wait

blocks further computation until all launched GPU compute kernels for level l return. Then,

for each leaf cluster, the procedure asynchronously launches a GPU compute kernel that

increments the potential by interpolating the proxy potentials. A GPU wait blocks further

computation until all of these launched GPU compute kernels return.

Note that leaf clusters in both the UpwardPass and DownwardPass procedures can

actually occur on any level of the tree. While level 1 is defined to be the level containing

only leaf clusters, for a sufficiently uniform distribution, all leaf clusters will be on level

1. Careful inspection of these two procedures shows that they are, in fact, agnostic to the
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tree level on which the leaf clusters occur. For further details on the implementation of

the GPU compute kernels launched by these procedures, refer to the GitHub repository at

github.com/Treecodes/BaryTree.

Algorithm A.4 The downward pass increments the local potential with proxy potentials of
target clusters.

1: procedure DownwardPass(potential {φ}, target clusters {Ct})
2: for level l = L to 2 do
3: for each cluster Ct on level l do
4: for each child cluster Ci

t of target cluster Ct do

5: GPU, async: increment {φ̂`} of Ci
t by interpolating {φ̂`} of Ct

6: end for
7: end for
8: GPU, wait
9: end for
10: for each leaf cluster Ct do
11: GPU, async: increment {φ} by interpolating {φ̂`} of Ct
12: end for
13: GPU, wait
14: end procedure
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APPENDIX B

Implementation Details of GPU-Accelerated TCF LRA Treecodes

This appendix describes some implementation details of the GPU-accelerated treecodes

for computing TCF LRAs in 3D-RISM, described in §5.3, with the hopes of highlighting

some lessons for future students.

Figure B.1 expands upon Fig. 5.12 by showing three intermediate improvements in

performance for the 1Z7Q TCF LRA calculation from the original BaryTree implementation

of the cluster-particle barycentric Lagrange treecode (CP-BLTC) (blue) to the heavily

specialized and optimized CP-BLTC for 3D-RISM (green). For the five treecode versions,

this figure shows relative `2 error vs total compute time (s), where connected curves represent

constant MAC θ (0.7 ×, solid; 0.9 ◦, dashed), and interpolation degree n = 1, 2, 4, 6, 8, 10

increases from right to left on each curve (first three versions run only to n = 8).

Figure B.2 gives the run time component breakdown of the five codes (labeled by color)

shown in Fig. B.1 for MAC θ = 0.9, across interpolation degrees n = 1, 2, 4, 6, 8. The

components shown are the target tree building (blue), in which the target particles are

reordered for the hierarchical tree of target clusters; cluster building (green), in which the

target proxy particles are computed; potential computation (grey), in which the potential

and proxy potentials are incremented due to PP and CP interactions between cluster pairs;

downpass (yellow), in which the proxy potentials are interpolated to the final potential values;

particle reordering (red), in which the target particles and potentials are unordered to their

original ordering, before tree building; and other (purple), including source particle batching,

interaction list building, and various data movement operations. This figure shows the portion

of code that benefited from each successive improvement.

These successive improvements between each code version are detailed below. The five

versions are labelled by a bolded color corresponding to the curve colors in Figure B.1.

• Blue to Orange. The blue curves are the original CP-BLTC as implemented in BaryTree.

The orange curves introduce a virtualized target grid. Because the target particles are on

a uniform Cartesian grid, the targets do not have to be explicitly constructed. This saves
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Figure B.1: 1Z7Q TCF LRA calculation, original BaryTree CP-BLTC (blue), heavily special-
ized CP-BLTC for 3D-RISM (green), connected curves represent constant MAC θ (0.7 ×,
solid; 0.9 ◦, dashed), interpolation degree n = 1, 2, 4, 6, 8, 10 increases from right to left on
each curve (first three versions run only to n = 8), simulations ran on one NVIDIA P100
GPU.

a significant amount of time in the target tree building process, because the targets do not

have to be rearranged in memory. Whenever targets are needed during the downward pass

and potential computation, they are generated on the fly. In Fig. B.2, this improvement

completely shrinks the tree building (blue) and particle reordering (red) phases.

Additionally, the downpass is only performed on clusters whose proxy potential arrays were

actually used in the potential computation. This greatly reduces unnecessary computation

in the downpass phase (yellow).

• Orange to Yellow. Two changes were introduced from the orange curves to the yellow

curves. First, the maximum leaf size parameter M0 was changed from 2000 to 256.

Additionally, the target cluster proxy particles were flattened in the manner described in

Listing A.1. In this case, the strategy is actually advantageous, because target cluster

proxy particles are iterated over in the outer gang loop, not in the inner vector loop.

Thus, there are significantly fewer non-strided memory accesses that would decrease the

efficiency of the GPU compute kernel as with source cluster proxy particle flattening. Note

that after virtualizing the targets, the full tensor product arrays of target cluster proxy

particles become a significant majority of the total memory usage, and have significant

costs associated with copying to the GPU. In Fig. B.2, this improvement completely shrinks

the cluster building phase (green).
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• Yellow to Purple. Three changes were introduced from the yellow curves to the purple

curves. First, the downpass algorithm was “flattened” to take advantage of the grid structure

of the targets. Since both the targets and the target proxy particles are tensor products,

the downpass can be modified to calculate the interpolation coefficients in a 1D manner.

Instead, for each interpolation of proxy potentials to potentials, interpolation coefficients

need only be computed for the x direction, y direction, and z direction, separately.

Second, vectorized loops in the downward pass which only run over a single Cartesian

coordinate were modified with the vector(32) clause. Because the interpolation degree is

almost certainly smaller than 32 (typically no bigger than 10 in practical use cases), and

the vast majority of target clusters contain less than 32 grid points along a given Cartesian

direction (32× 32× 32 corresponds to 32,768 target grid points in a cluster), the default

value of 128 threads for a vectorized loop in OpenACC results in a significant amount

of wasted computation on these loops. The vector(32) clause means that the loop is

vectorized across only 32 threads. In Fig. B.2, both this and the previous improvement

shrink the downpass phase (yellow).

Third, data movement is more explicitly managed. Initially, data regions were “structured”

and corresponded to kernel regions, which resulted in data being moved on and off the

GPU multiple times. “Unstructured” data regions minimize data movement by explicitly

marking when data should be moved between host and device. This improvement decreases

growth in the potential computation phase (grey) as degree increases.

• Purple to Green. Two changes were introduced from the purple curves to the green

curves. Most importantly, the original O(M logM) downpass, in which the proxy poten-

tials of each target cluster are directly interpolated to the potentials, was replaced with

the BLDTT’s O(M) downpass in which the proxy potentials of each target cluster are

interpolated to the proxy potentials of their child target clusters. In the actual development

history of BaryTree, this was the first implementation of the O(M) downward pass, which

was later extended to an O(N) upward pass and implementation in the BLDTT algorithm.

Among all of the improvements listed in this section, this is the only algorithmic change.

Additionally, the parts of the downpass routine which generate the interpolation coefficients

were moved from the GPU to the CPU, and the parts which actually interpolate the

proxy potentials remained on the GPU. The parts moved to the CPU were essentially

those optimized in the previous bullet point. Essentially, the calculation of interpolation

coefficients involves such small loops after flattening, that it’s more efficient to compute

them on the CPU and then copy the coefficients to the GPU for the downpass. In Fig. B.2,

both this and the previous improvement shrink the downpass phase (yellow).
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(a)

(b)

Figure B.2: Run time component breakdown of the five codes (labeled by color) shown in
Fig. B.1 for MAC θ = 0.9, across interpolation degrees n = 1, 2, 4, 6, 8, (a) absolute time
breakdown, (b) proportional percentage breakdown.
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APPENDIX C

Advice for Scientific Computing Software Projects

This appendix describes some general advice for building scientific software, with the

hopes of highlighting some lessons for future students.

• Use CMake to manage your build system, and learn how to use it well. As you build

out a software package, using Makefiles becomes a completely inflexible, unsustainable

solution, particularly if you plan to run it on multiple machines, or make it available

publicly for other users.

In particular, use modern CMake techniques, such as explicit creation of compile targets,

and never use a CMake version less than 3.0. The BaryTree and TABI-PB software

packages are solid examples of how to write good modern CMake. One particularly good

introduction to the topic, with links to other resources, can be found at [163].

• Version control your work. I have saved myself from great pain on multiple occasions

by using git repos to save and version control all of my software projects. Using git,

and particularly GitHub or GitLab, also makes collaborative projects significantly easier.

GitHub also provides a natural way to distribute your software packages.

To get the most out of git, think carefully about your branching policy. One common and

effective strategy is to make separate branches for each feature addition, and merge them

into a develop branch through pull requests. Then, only merge into the master or main

branch when preparing for a release version.

The GitHub Guides provide resources on using GitHub and git for version control [164].

• Use C++ and modern C++ design patterns (i.e., don’t just write C-style code and

call it C++). If I could do everything over, I would’ve used C++ for BaryTree. Using

C++ to write the new version of TABI-PB was relatively easy, and created much more

concise and self-documenting code.

One particularly important C++ design pattern is RAII (Resource Acquisition Is Initial-

ization), which essentially means that the life of an object should be bound to the life of

140



its resources. For the purposes of any computationally heavy software, probably the most

salient example of this is the use of the vector class instead of C-style arrays. There is

almost no good reason to use naked pointers to memory with explicit alloc and free

calls when storing arrays of numbers. It’s no faster than just using vector when actually

operating on the array elements.

Also, the standard template library (STL) has many very powerful algorithms. It’s likely

that if you have need for, say, sorting or partitioning algorithms, highly optimized versions

already exist in the STL.

• Learn to use profilers and debuggers. A significant number of the opportunities for

optimization identified when building BaryTree, TABI-PB, and the treecodes for RISM were

identified using profiling tools. Building out the MPI distributed memory parallelization of

BaryTree would have been nearly impossible without a parallel debugger.

One great set of tools is ARM Forge, previously known as Allinea, which includes the DDT

debugger and the MAP profiler [165]. While these tools can be used effectively for serial

applications, they are particularly useful for MPI parallelized applications. Note that many

MPI bugs or scaling bottlenecks may not become immediately apparently until the number

of ranks increases well beyond two!

For profiling GPU kernels targeting NVIDIA machines, whether the kernels were written

with OpenACC directives or CUDA (or possibly OpenMP), NVIDIA Nsight Compute is

the best tool available. nvprof is a great command line tool for quick and dirty profiling

of GPU compute kernels. Nsight Systems is a tool for system-wide performance analysis of

applications scaling any number of CPUs or GPUs. I have little experience with this tool,

but have heard good things. More on the NVIDIA tools is available at [166].

• MPI and OpenMP are essential tools for scaling your application. Understand

the complementary roles of MPI and OpenMP in building an HPC application. MPI targets

distributed memory systems across multiple compute nodes, while OpenMP provides a

high level method for multithreading a program across a shared memory machine.

A common design pattern is to use one MPI rank per socket or compute node, and within

each MPI rank, use one OpenMP thread per CPU core in the socket or node. Note that it’s

possible, for some applications, that using one MPI rank per core and no multithreading is

the most efficient solution, so experimenting is imperative.

Also, understanding OpenMP thread binding and affinity and its interaction with MPI

parallelization is important to achieving high performance.
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[111] George M. Giambaşu, Tyler Luchko, Daniel Herschlag, Darrin M. York, and David A.
Case. Ion counting from explicit-solvent simulations and 3D-RISM. Biophys. J.,
106:883–894, 2014.

[112] Zoe Cournia, Bryce Allen, and Woody Sherman. Relative binding free energy calcula-
tions in drug discovery: Recent advances and practical considerations. J. Chem. Inf.
Model., 57(12):2911–2937, 2017.

[113] R. Evans. The nature of the liquid-vapour interface and other topics in the statistical
mechanics of non-uniform, classical fluids. Adv. Phys., 28(2):143–200, 1979.

[114] Yu Liu, Shuangliang Zhao, and Jianzhong Wu. A site density functional theory for
water: Application to solvation of amino acid side chains. J. Chem. Theory Comput.,
9(4):1896–1908, 2013.

[115] Shuangliang Zhao, Rosa Ramirez, Rodolphe Vuilleumier, and Daniel Borgis. Molecular
density functional theory of solvation: From polar solvents to water. J. Chem. Phys.,
134(19):194102, 2011.

[116] Tyler Luchko, Sergey Gusarov, Daniel R. Roe, Carlos Simmerling, David A. Case, Jack
Tuszynski, and Andriy Kovalenko. Three-dimensional molecular theory of solvation
coupled with molecular dynamics in Amber. J. Chem. Theory Comput., 6(3):607–624,
2010.

[117] Sergey Gusarov, Tom Ziegler, and Andriy Kovalenko. Self-consistent combination of
the three-dimensional RISM theory of molecular solvation with analytical gradients
and the Amsterdam density functional package. J. Phys. Chem. A, 110(18):6083–6090,
2006.

[118] Norio Yoshida and Fumio Hirata. A new method to determine electrostatic potential
around a macromolecule in solution from molecular wave functions. J. Comput. Chem.,
27(4):453–462, 2006.

[119] Thomas Kloss, Jochen Heil, and Stefan M. Kast. Quantum chemistry in solution by
combining 3D integral equation theory with a cluster embedding approach. J. Phys.
Chem. B, 112(14):4337–4343, 2008.

150



[120] Tatsuhiko Miyata and Fumio Hirata. Combination of molecular dynamics method and
3D-RISM theory for conformational sampling of large flexible molecules in solution. J.
Comput. Chem., 29(6):871–882, 2008.

[121] Andriy Kovalenko and Fumio Hirata. Potentials of mean force of simple ions in
ambient aqueous solution. ii. solvation structure from the three-dimensional reference
interaction site model approach, and comparison with simulations. J. Chem. Phys.,
112(23):10403–10417, 2000.

[122] Jean-Pierre Hansen and Ian R. McDonald. Theory of Simple Liquids. Elsevier, 4th
edition, 2013.

[123] Tyler Luchko, In Suk Joung, and David A. Case. Integral equation theory of biomolecules
and electrolytes. In Tamar Schlick, editor, Innovations in Biomolecular Modeling and
Simulations: Volume 1, volume 23 of RSC Biomolecular Sciences, chapter 4, pages
51–86. Royal Society of Chemistry, 2012.

[124] D.A. Case, I.Y. Ben-Shalom, S.R. Brozell, D.S. Cerutti, T.E. Cheatham III, V.W.D.
Cruzeiro, T.A. Darden, R.E. Duke, D. Ghoreishi, M.K. Gilson, H. Gohlke, A.W. Goetz,
D. Greene, R. Harris, N. Homeyer, S. Izadi, A. Kovalenko, T. Kurtzman, T.S. Lee,
S. LeGrand, P. Li, C. Lin, J. Liu, T. Luchko, R. Luo, D.J. Mermelstein, K.M. Merz,
Y. Miao, G. Monard, C. Nguyen, H. Nguyen, I. Omelyan, A. Onufriev, F. Pan, R. Qi,
D.R. Roe, A. Roitberg, C. Sagui, S. Schott-Verdugo, J. Shen, C.L. Simmerling, J. Smith,
R. Salomon-Ferrer, J. Swails, R.C. Walker, J. Wang, H. Wei, R.M. Wolf, X. Wu, L. Xiao,
D.M. York, and P.A. Kollman. AMBER 2018. University of California, San Francisco,
2018.

[125] Zhong-Hui Duan and Robert Krasny. An Ewald summation based multipole method.
J. Chem. Phys., 113(9):3492–3495, 2000.

[126] D. A. Case, D. S. Cerutti, T. E. Cheatham, III, T. A. Darden, R. E. Duke, T. J. Giese,
H. Gohlke, A. W. Goetz, D. Greene, N. Homeyer, S. Izadi, A. Kovalenko, T. S. Lee,
S. LeGrand, P. Li, C. Lin, J. Liu, T. Luchko, R. Luo, D. Mermelstein, K. M. Merz,
G. Monard, H. Nguyen, I. Omelyan, A. Onufriev, F. Pan, R. Qi, D. R. Roe, A. Roitberg,
C. Sagui, C. L. Simmerling, W. M. Botello-Smith, J. Swails, R. C. Walker, J. Wang,
R. M. Wolf, X. Wu, L. Xiao, D. M. York, and P. A. Kollman. AMBER 2017. University
of California, San Francisco, 2017.

[127] Noel M. O’Boyle, Michael Banck, Craig A. James, Chris Morley, Tim Vandermeersch,
and Geoffrey R. Hutchison. Open Babel: An open chemical toolbox. J. Cheminformatics,
3(1):33, oct 2011.

[128] Junmei Wang, Romain M. Wolf, James W. Caldwell, Peter A. Kollman, and David A.
Case. Development and testing of a general Amber force field. J. Comput. Chem.,
25(9):1157–1174, 2004.

151



[129] Araz Jakalian, Bruce L. Bush, David B. Jack, and Christopher I. Bayly. Fast, efficient
generation of high-quality atomic charges. AM1-BCC model: I. Method. J. Comput.
Chem., 21(2):132–146, 2000.

[130] Hari S. Muddana, Andrew T. Fenley, David L. Mobley, and Michael K. Gilson. The
SAMPL4 host–guest blind prediction challenge: an overview. J. Comput. Aided Mol.
Des., 28(4):305–317, 2014.

[131] Christopher I. Bayly, Piotr Cieplak, Wendy Cornell, and Peter A. Kollman. A well-
behaved electrostatic potential based method using charge restraints for deriving atomic
charges: the RESP model. J. Phys. Chem., 97(40):10269–10280, 1993.

[132] François-Yves Dupradeau, Adrien Pigache, Thomas Zaffran, Corentin Savineau,
Rodolphe Lelong, Nicolas Grivel, Dimitri Lelong, Wilfried Rosanski, and Piotr Cieplak.
The R.E.D. tools: advances in RESP and ESP charge derivation and force field library
building. Phys. Chem. Chem. Phys., 12(28):7821–7839, 2010.

[133] Enguerran Vanquelef, Sabrina Simon, Gaelle Marquant, Elodie Garcia, Geoffroy
Klimerak, Jean Charles Delepine, Piotr Cieplak, and François-Yves Dupradeau. R.E.D.
Server: a web service for deriving RESP and ESP charges and building force field li-
braries for new molecules and molecular fragments. Nucleic Acids Res., 39:W511–W517,
2011.

[134] F. Wang, J.-P. Becker, Piotr Cieplak, and François-Yves Dupradeau. R.E.D. Python:
Object oriented programming for Amber force fields, 2013.

[135] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman,
G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich,
J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz,
A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi,
J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao,
N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,
M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A.
Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers,
K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari,
A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene,
C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B.
Foresman, and D. J. Fox. Gaussian 09. Gaussian, Inc.

[136] Christian Tiede, Anna A. S. Tang, Sarah E. Deacon, Upasana Mandal, Joanne E.
Nettleship, Robin L. Owen, Suja E. George, David J. Harrison, Raymond J. Owens,
Darren C. Tomlinson, and Michael J. McPherson. Adhiron: a stable and versatile
peptide display scaffold for molecular recognition applications. Protein Eng. Des. Sel.,
27(5):145–155, 2014.

[137] James A. Maier, Carmenza Martinez, Koushik Kasavajhala, Lauren Wickstrom, Kevin E.
Hauser, and Carlos Simmerling. ff14SB: Improving the accuracy of protein side chain

152



and backbone parameters from ff99SB. J. Chem. Theory Comput., 11(8):3696–3713,
2015.

[138] James H. Nettles, Huilin Li, Ben Cornett, Joseph M. Krahn, James P. Snyder, and
Kenneth H. Downing. The binding mode of epothilone A on α,ß-tubulin by electron
crystallography. Science, 305(5685):866–869, 2004.
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Berk Hess, and Erik Lindahl. GROMACS: High performance molecular simulations
through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2:19–25,
2015.

[161] Rashmi Kumari, Rajendra Kumar, Open Source Drug Discovery Consortium, and An-
drew Lynn. g mmpbsa–a GROMACS tool for high-throughput MM-PBSA calculations.
J. Chem. Inf. Model., 54:1951–1962, 2014.

154



[162] Cheng Yung-Chi and William H. Prusoff. Relationship between the inhibition constant
(KI) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an
enzymatic reaction. Biochem. Pharmacol., 22(23):3099–3108, 1973.

[163] Henry Schreiner. An introduction to modern CMake, 2021. Available at cliutils.

gitlab.io/modern-cmake.

[164] GitHub, Inc. GitHub Guides, 2021. Available at guides.github.com.

[165] Arm Ltd. Arm Forge, 2021. Available at https://developer.arm.com/

tools-and-software/server-and-hpc/debug-and-profile/arm-forge.

[166] NVIDIA Corporation. NVIDIA Developer Tools, 2021. Available at developer.nvidia.
com.

155

cliutils.gitlab.io/modern-cmake
cliutils.gitlab.io/modern-cmake
guides.github.com
https://developer.arm.com/tools-and-software/server-and-hpc/debug-and-profile/arm-forge
https://developer.arm.com/tools-and-software/server-and-hpc/debug-and-profile/arm-forge
developer.nvidia.com
developer.nvidia.com

	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Appendices
	List of Acronyms
	List of Symbols
	Abstract
	Introduction
	Overview of fast summation methods and early results
	BLDTT: GPU-accelerated barycentric Lagrange dual tree traversal
	A Poisson–Boltzmann equation solver
	Treecode acceleration of 3D reference interaction site model

	Overview of Fast Summation Methods and Early Results
	Background
	Treecodes
	Early projects: Computational improvements to treecodes

	BLDTT: GPU-Accelerated Barycentric Lagrange Dual Tree Traversal
	Background
	Description of BLDTT fast summation method
	BLDTT implementation
	Methodology
	Results

	A Poisson–Boltzmann Equation Solver
	Background
	Project 1: Comparison of molecular surface triangulation codes
	Project 2: Implementation of node patch method
	Project 3: GPU-accelerated BLDTT TABI-PB
	Application: Electrostatic binding free energy calculation

	Treecode Acceleration of the 3D Reference Interaction Site Model
	Background
	Project 1: Implementing treecodes for asymptotic correlation functions
	Project 2: GPU-accelerated BLDTT 3D-RISM

	Conclusion
	BLDTT
	TABI-PB
	RISM

	Appendices
	 Implementation Details of BaryTree
	BaryTree algorithm
	BaryTree potential computation
	Upward and downward passes

	 Implementation Details of GPU-Accelerated TCF LRA Treecodes
	 Advice for Scientific Computing Software Projects
	Bibliography

