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Abstract 

 

Biomedical research comprises one of the most important t and well-funded areas in all of 

scientific research. Technological innovation is a relatively small component of all research 

overall, but the applications are of immense benefit.  Incorporation of already existing technologies 

from other areas of research directly into a biomedical setting is a simple way to leverage human 

innovation into the highest applicability. 

Vibrational spectroscopy is one such technology which, while steadily seeing more and 

more use in biomedical imaging, is still underutilized.  Such advanced microspectroscopic 

techniques can leverage their ability to analyze global information in a cellular system to higher 

throughput and increased efficiencies. 

Metabolism is a key global system for every cell type and organism.  Energy production, 

metabolic pathway augmentation, metabolite analysis, and appraisal of overall metabolic poise are 

several ways in which characterization of metabolism can be used analytically. Each of these can 

provide valuable insights into cellular systems and associated conditions, namely illness and 

disease.   

Using Raman spectroscopy to characterize metabolism has led to several interesting 

results.  First, analysis of drug candidacy has shown a novel mode for drug testing.  Effectively 

evaluating cellular health based on several different techniques shows level compatibility across 

the techniques employed.  Localized spectroscopic analysis provides further evidence for 



 
 

ix 

mitochondrial protection conferral.  In a similar vein of research, targeted analysis of desiccation 

tolerant proteins, localized to mitochondria, likewise showed a protective mechanism.  Finally, an 

analysis of substrate change directly on metabolism was carefully evaluated, with an outcome of 

visualizing effects of varying metabolic pathways upon overall global cellular metabolism.  

These studies provide a strong platform for spectrometabolic evaluation to be considered 

for a variety of advanced characterization techniques. Coupling this method with other emerging 

technologies has the potential to shift the standards for metabolic evaluation. 
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Chapter 1  

Introduction 

 

The investment in biomedical research is the highest across all research and development 

sectors.  Worldwide, this amounts to approximately $133 billion per year. (Grassano, 2020) The 

United States federal government, via the National Institute of Health, appropriates approximately 

$41.7 billion into this research, generally with increased allocation year-to-year. (Public Law 116-

94, 2020) Domestic industry spends nearly $40 billion to this end. (Stewart, 2015) The 

development of a single drug from idea to market ranges from $314 million to $2.8 billion, the 

average cost being $985 million. (Wouters, 2020) Perhaps the most significant factor which 

contributes to the enormous costs of pharmaceuticals to market is the U.S. Food and Drug 

Administration approval process, which rejects some 86.2% of initial filings. (Wong, 2019) Even 

small improvements to research method optimization can decrease real costs tremendously. 

Incorporating advanced techniques to achieve improved efficiency of research, both in 

terms of cost and time investment, is therefore a particularly desirable goal. By bridging traditional 

methods, which have widespread use and degree of confidence, with modern techniques, which 

have more attractive and useful features, a new paradigm of improved research techniques can be 

established.  There are, of course, many different techniques which can be employed to bring about 

such broad changes. 
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Vibrational spectroscopy is a technique which uses intrinsic characteristics to supply global 

molecular information.  The two primary forms of vibrational spectroscopy are Raman and 

Infrared. This can be used for widespread material analysis, such as the effects of corrosion on 

metals or the distribution of polymers in advanced composites. (Hayez, 2004; Tanaka, 2006) 

However, these techniques show particular utility in a biological setting on a cellular basis. 

(Gremlich, 2000) The unification of multiple traditional techniques into one systemic process 

should create much lower barriers to research where such global analysis would be of particular 

scientific interest.  

One such global system that is universally studied and has profound implications for 

disease, ageing, and performance is metabolism. Metabolism is the totality of all process which 

occur to sustain life processes for a particular organism.  Of principal interest is the biochemistry 

of how the body generates energy for these processes. Some of the most important, though 

certainly not exhaustive, metabolic pathways are oxidative phosphorylation, the electron transport 

chain, glycolysis, pentose phosphate pathway, and fatty acid biosynthesis.  The first two occurring 

inside of the mitochondrial membrane, while the remainder takes place in the cytosol.  Quantifying 

these chemical processes gives direct insight into the bioenergetics, metabolic poise, and potential 

cellular dysfunction. (Dagley, 1970) 

One clear example where metabolism varies drastically is comparing primary cells, which 

are the cells or tissues which a patient or subject would provide, to model tumor derived cell lines, 

which are derived from primary cells that have mutated to grow beyond normal cellular senescence 

and so become immortalized, e.g., HeLa or HepG2 cells. (Scherer, 1953) These cell lines are very 

important to biomedical research due to their relative ease of use, cost effectiveness, and utility in 

being models for various research interest such as toxicity screening. However, these cells tend to 
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display a proclivity for alternate pathways of biosynthetic energy production.  Namely, there is a 

distinct shift in upregulation for glycolytic flux so that substrate level phosphorylation occurs over 

the primary bioenergetic mode of primary cells, which lies in oxidative phosphorylation localized 

to the mitochondria and the associated electron transport chain.  This favoring of glycolysis over 

aerobic respiration is known as the Warburg effect and is seen as a hallmark of most tumor derived 

cells (Warburg, 1956) So, by evaluating global metabolic poise, a cell can be determined whether 

to be of primary origin or tumor derived.   

By being able to monitor metabolism via non-invasive spectroscopy as has been described, 

the individual cell response to targeted therapeutic treatments can be evaluated.  It is possible to 

compartmentalize the cell into its constituent cellular features, such as nucleus, mitochondria, and 

cell membrane, via vibrational spectroscopy and so to see exactly where changes to the treatment 

are occurring.  Furthermore, repetitions of treatments over long periods of time can be viewed per 

the same individual cell, so that statistical averaging of large cell numbers cannot miss intricacies 

inherent on a cell-to-cell basis.  The ability to see a pharmaceuticals impact on metabolism in a 

physiological setting is the basis for developing a therapeutic method which would eventually lead 

to a clinical application.  This would reduce sample waste and increase global cellular information 

availability which would have faster analytical turnarounds.  The method proposed herein has the 

ability to make many therapeutics safer, more reliable, and have broader application. This would, 

in general, promote a more discerning analysis, especially with respect to the predictive appraisal 

of a drug based on metabolism and which patients would be most affected by a particular drug 

treatment.  
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Chapter 2  

Characterization of Metabolism 

 

2.1 Metabolism 

Metabolism is fundamental to life in that it comprises all processes which allow an 

organism to function.  Metabolism can be organized into several key purposes as the complexity 

of all biochemical processes is immense. Foremost, it considers the biochemistry associated with 

the conversion of energy sources into biologically available energy.  There exist hundreds of 

metabolic pathways, though generally some are far more efficient and thus more common across 

all organisms. (Smith, 2004) One example being carboxylic acids necessary for the citric acid cycle 

which is found in all known organisms. Similarly, metabolism concerns input fuel being 

catabolized into base building blocks for common biomolecules such as lipids, proteins, and 

nucleic acids.  It must also consider elimination of waste or byproducts of biochemical processes. 

Evaluation of metabolism in humans can be used to detect certain metabolically linked 

diseases, namely type II diabetes, neurodegenerative diseases, and cancers, as normal metabolic 

function is severely impaired.  Furthermore, many drug compounds will have an effect upon 

cellular metabolism, whether intended or not.  They may be specifically designed to alter 

metabolism, (Wilkinson, 2005) but all too often this occurs as a result of unintended toxicity. 

(Gillette, 1974) In humans, this toxicity will predominately occur in the liver, as this organ is 

specifically responsible for metabolizing and eliminating toxins from the body.  However, certain 
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drugs, or high enough levels of any drug compound, can overwhelm the liver and cause liver failure 

due to intracellular component injury, typically the mitochondria.  Having the ability to 

characterize metabolism as a whole, and on subcellular level of mitochondria can lead to important 

insights into such diseases largely based upon drug-induced toxicity. 

 

2.2 Mitochondria 

Through genomic deduction (Anderson, 2003) and other evidence, (Gray, 2001; Melendez-

Hevia, 1996) it is theorized that modern mitochondrial evolution has its origins possibly 2 billion 

years ago.  Due to the high degree of shared genetic code shared between mitochondria and α-

proteobacteria, it is also surmised that bacteria became endosymbionts for another primitive 

prokaryotic cell type.  This may have been caused due to extreme global events which dramatically 

increased the atmospheric oxygen availability. (Smith, 2018) Since oxygen is a powerful oxidizing 

agent, it acts as a strong toxin for anaerobic organisms.  Therefore, there was an evolutionary 

incentive to incorporate the aerobic-respiration-capable α-proteobacteria. This became a powerful 

feature, in that excess chemical energy in the form of adenosine triphosphate (ATP) was generated.  

It is possible that this eventually led to the rise of not only eukaryotic cells, but all complex 

multicellular life, which reaches into today’s genetics. 

Today, mitochondria are present in nearly all eukaryotic cells, with small exceptions such 

as red blood cells.  An important structural feature to the organelle is that it is bound by a 

phospholipid bilayer, embedded with many proteins called porins. Mitochondria are responsible 

for regulating many metabolic pathways.  In aerobic environments, mitochondrial respiration via 

oxidative phosphorylation accounts for the dominant pathway for energy production across most 
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cell types.  In anaerobic environments, this largely shifts to fermentation, producing lactate.  While 

fermentation has faster rates of ATP production than respiration, the overall net yield of ATP 

favors respiration by 15-to-1 (mol ATP per mol glucose). (Bonora, 2012) There are certain cell 

types which do not display this standard preferred respiration-based metabolism. As previously 

discussed, cancers generally prefer substrate linked phosphorylation, meaning that other pathways, 

such as glycolysis or the pentose phosphate pathway (PPP) are utilized much more, regardless of 

aerobic conditions. (Vander Heiden, 2017) 

Characterizing the metabolites, the biochemical molecules which serve as intermediates 

for metabolic processes such as ATP and ADP (adenosine di-phosphate), has been of immense 

interest to research for decades.  The evaluation of all metabolites in a cellular system is called 

metabolomics and can be used as a basis for metabolism linked research, especially in the novel 

pharmaceuticals field. 

 

2.3 Extracellular Flux Analysis 

Bioenergetic monitoring can be achieved using extracellular flux analysis.  Considered a 

“gold standard”, this is a fluorescent probe technique which quantifies dissolved oxygen and 

proton concentrations in media contained within a transient microchamber.  Both oxygen 

consumption rate (OCR) and extracellular acidification rate (ECAR) measurements are taken with 

respect to time and can be used to generate metabolic profiles, which can define the cellular 

metabolic regime.  The method generally utilizes metabolism-altering reagents to characterize the 

full standard metabolic profile. 
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Oligomycin is a F0F1-ATPase inhibitor, (Capaldi, 2002) which causes respiration-linked 

ATP production to cease. Carbonyl-cyanide-4-(trifluoromethoxy) phenylhydrazone (FCCP) acts 

as the uncoupling agent which collapses the mitochondrial proton gradient and so uncouples 

oxidation from phosphorylation, maximizing OCR. Contributions to OCR due to non-

mitochondrial processes is analyzed by applying both rotenone and antimycin A, which inhibit 

complex I and complex III of the mitochondrial membrane respectively, effectively eliminating 

all contributions to OCR via mitochondrial respiration. 

Glucose can be supplied as to fully saturate basal ECAR. As previously stated, since 

oligomycin inhibits ATP synthase, and since the proton production from mitochondrial respiration 

does not then have upstream offset to ECAR, the effect is seen as a maximization of ECAR. 2-DG 

is a glucose analog which competitively inhibits hexokinase, effectively arresting glycolysis and 

so stopping glycolytic-linked change to ECAR.   

 

2.4 Metabolomics 

The Scripps Research Institute hosts a metabolite database containing some 450,000 

entries. (Smith 2005) The Human Metabolome Database displays some 110,000 metabolites on 

record. (https://www.genome.jp/kegg/pathway/map/map01100.html) Of all known reposited 

biomolecules, generally about 300 are considered to be of most common relevance.  Among these, 

only a handful are usually characterized, as these are metabolites directly linked with the most 

commonly used metabolic pathways, i.e., glycolysis, oxidative phosphorylation, PPP. There are 

many techniques available to analyze metabolites, to varying degrees of efficacy and limitations.  
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2.4a Mass Spectroscopy 

Mass spectroscopy (MS) is a widely used analytical technique used in many fields.  It 

possesses a very high degree of detection threshold and can identify virtually all compounds.  

(Sparkman, 2000) These devices consist of an ion source, a mass analyzer, and a detection system. 

They operate on the basis of measuring an ions mass to charge ratio.  A sample enters the ionization 

field, e.g., an electron beam, where it is ionized.  Due to the magnetic field in the analyzer portion, 

there is an induced deflection to the generated ionic particles which corresponds directly to the 

mass to charge ratio, which when processed after collection, can be used to exactly show weight 

distributions of the sample in a spectrum output which can be correlated to known molecules. 

Mass spectroscopy is generally utilized in conjunction with either (high performance) 

liquid chromatography (LC) or gas chromatography (GC).  Both of these chromatography 

techniques are highly effective in separating samples. (Sparkman, 2011) High performance liquid 

chromatography relies on passing a liquid sample in mobile phase through a filtering column filled 

with adsorbent of varying sized particles.  The mass transfer effects of the high-pressure liquid 

sample input causes the sample to interact with the column based on sample particle size.  This 

allows for the sample to be separated very accurately based on size, which increases sensitivity in 

the mass spectrometer.  Gas chromatography is a technique which involves heating samples to 

vaporize, along with using another inert carrier gas to bring the vaporized sample in mobile phase 

to pass through the stationary phase where the sample can be detected through electronic detectors.  

In part, the ability to separate comes from the material properties of the analyte fluid, namely the 

vaporization point and adsorptive properties due to particle size, visualized as retention time. 

Advantages of GC-MS are the very high separation reproducibility, compatibility with 

fluids, and relatively good sensitivity.  Advantages of LC-MS are the flexibility of the technique, 
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accommodating to solids and liquids, and extremely high degree of detection sensitivity. However, 

both of these techniques are destructive (the sample is irrecoverable), requires relatively high 

amounts of sample (10-200 µL) and are slow analysis techniques. 

 

2.4b Nuclear Magnetic Resonance Spectroscopy 

Nuclear magnetic resonance (NMR) spectroscopy is a technique which fundamentally 

observes local magnetic fields around NMR-active atomic nuclei (most commonly H1 and C13).  

(Hoult, 1997) It works by inducing, via a magnetic field, a polarization of magnetic nuclear spins.  

The polarization is disturbed by a radio frequency pulse, which generates a weak oscillating 

magnetic field.  The NMR-active nuclei emit electromagnetic waves which are detectable.  NMR 

spectroscopy provides extremely high degrees of detection with unique signatures for a wide range 

of sample types.  Spectral acquisition time increases directly with increase to element weight due 

to increased relaxation times, meaning samples can take minutes to hours to complete.  Therefore, 

it has mixed utility when analyzing biological components, as many organic compounds are out 

of range for efficient scanning.  Furthermore, NMR has very high costs (up to $5 million) and 

requires a relatively large amount of high purity sample. 

 

 



 
 

10 

Chapter 3  

Raman Spectroscopy 

 

3.1 Raman Scattering Theory 

The chemical bonds between atom pairs can be modeled as a spring between point masses 

following Hook’s Law, which represent a harmonic oscillator with a single resonant vibrational 

frequency. (Sasic, 2011) For molecules containing more than two atoms, normal vibrations occur 

at a total, for a molecule of n atoms, of 3n-5 for linear molecules and 3n-6 for nonlinear molecules.  

It is possible for different vibration modes to occur at the same frequency, and thus overlap.  

Furthermore, parts of molecules which are not coupled vibrationally to the rest of the molecule 

possess nearly the same frequencies of vibration, regardless of what molecules they are attached 

to. For example, a phenyl ring or thiol group will accord to the same vibrational signature no matter 

what it happens to be bound with.  Vibrations are often grouped by the type of motion which occurs 

during oscillation.  Some of these are; when bond length oscillates, it is termed “stretch”, bond 

angle oscillation is termed “bend”, while other specialized oscillations are “rock”, “breathing”, 

and “wag”. 

Raman scattering occurs when a photon has an inelastic collision with a molecule, which 

causes a quantized transfer of energy to the molecule.  Graphing the intensity of the scattered 

photon relative to the energy shift from the incident light (meaning any electromagnetic wave, 

though typically in visible range) yields a Raman spectrum.  The photon interaction with the 
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molecule excites the molecule to a virtual state, via an electrical distortion of the chemical bond 

by the lights electric field.  This virtual state does not represent a quantum mechanical stationary 

state but rather an induced dipole moment.  The virtual state instantaneously relaxes back to the 

ground state of the molecule, emitting a photon. If the photon is elastically scattered, whereby the 

same vibrational state is achieved after emission, Rayleigh scattering has occurred. If the photon 

inelastically loses energy, thereby reducing frequency and increasing wavelength, a Raman-Stokes 

shift has occurred. A photon which increases its vibrational energy and so has a decrease in 

wavelength is a Raman-Anti-Stokes shift. 

Based on a quantum mechanical model (Placzek, 1959), an analytic equation can be written 

for Raman intensity; 

 

𝐼𝐼𝑅𝑅 = (𝐼𝐼𝐿𝐿𝜎𝜎𝑅𝑅𝑋𝑋)𝑃𝑃𝑃𝑃 

 

where IR is Raman intensity [photons/sec], IL is the intensity of the laser [photons/sec], σR 

represents absolute Raman cross section [cm2/molecule], X is an experimentally derived constant, 

P is sample path length [cm], and C is concentration [molecules/cm3]. 

This shows several practical considerations for spectral acquisition.  Since Raman intensity 

is proportional to excitation intensity, Raman signal can be improved simply by increasing laser 

power, up until the threshold level where the intensity may damage the analyte.  Lasers are used 

due to the feature of coherence (spatial and temporal), that is, all light is in the same phase; 

monochromatic and collimated. Without this feature, it would be near impossible to analyze the 

scattered light.  Furthermore, intensity is directly proportional to the scattering molecules of the 
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analyte, which allows for quantitative analysis. Raman intensity increases with Raman photon 

frequency (to the fourth power) and since Raman photon frequency is directly proportionate to the 

excitation frequency, the Raman intensity greatly increases with increasing energy level 

corresponding to the type of electromagnetic wave. 

 

3.2 Raman Microspectroscopy with Common Techniques 

Coupling a Raman spectrometer to a microscope system has several attractive features.  

The basic schematic of such a system is shown below.  Raman requires very little sample 

preparation due to the nature of the scattering event.  Spectra can be acquired from very small 

sample sizes.  Raman is generally insensitive to water and so can be used where many other 

techniques, including IR spectroscopy, are disadvantaged.  Using pinhole optics, a confocal 

microscopic configuration can be employed, which further allows raster imaging.  This also allows 

for the generation of hyperspectral maps by taking large arrays of individual Raman spectra and 

then comparing a spectral feature based on intensity to map the specific peak position across the 

area of the array scan. 
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Figure 3.1: Schematic of Raman spectrometer connected to microscope 

 

Figure 3.1 shows the three primary components of a microspectroscopic system; the 

microscope, the light source, and the spectrometer with detector.  The microscope is coupled, via 

a multi-mode cable, to the laser excitation source, a Nd:YAG (neodymium-doped yttrium 
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aluminum garnet) laser which is frequency doubled to emit at 532 nm wavelength.  The laser is 

directed though a polarizer and then the microscope objective to the sample where scattering 

occurs from the analyte.  The scattered light is collected with the same objective and travels 

through the microscope, where it is filtered by a notch, line, or long pass filter to eliminate or 

reduce the Rayleigh scattered light.  The light also will travel through a pinhole optic to create the 

confocal configuration.  Upon entering the spectrometer, the light will be expanded and focused 

onto the grating, an optical tool used to differentiate the beam of light based on wavelength due to 

the blazed surface (here either 600 or 1800 lines/mm). The beam is then condensed and strikes the 

detector.  Here, an (EM)CCD is used, an electron multiplied charge couple device. Fundamentally, 

a CCD translates incident photons into electric charges. (Boyle, 1970) This allows the beam of 

wavelength-segregated light to be converted into an electronic based spectrum.  

The quality of spectrum is generally characterized by the noise levels over the actual 

sensitivity, by the signal-to-noise (STN) ratio.  There are many ways to improve this ratio; 

physically, materially, and mathematically.  As previously stated, the laser power can be increased, 

up until damage thresholds are reached.  The sample acquisition/integration time can be increased 

to lower non-Raman spectral contributions.  Multiple accumulations can be acquired, whereby the 

averaging of spectra will cancel statistically random noise.  One of the largest factors to negatively 

impact Raman spectrum output is fluorescence. This can be negated by using a different excitation 

wavelength outside of the fluorophore’s excitation band.  Alternatively, photobleaching techniques 

can be used.  Materially, certain physical effects can be leveraged to produce a higher than nominal 

Raman scattering event probability (which randomly is approximately 1 in 1010 photons).  This 

includes resonance Raman, surface enhanced Raman, and coherent anti-stokes Raman.  Once the 

spectrum is acquired, mathematical tools can be used to reduce noise, improving STN ratio.  This 
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includes the multivariate statistical methods of principal component analysis and cluster analysis.  

Finally, to separate spectral peaks which happen to overlap, deconvolution methods can be used.  

 

3.2a Surface Enhanced Raman (SERS) 

Surface enhanced Raman spectroscopy can be utilized when an analyte is very close to a 

metal surface. (Stiles, 2008) An electromagnetic enhancement occurs which serves to amplify the 

Raman intensity due to localized surface plasmons.  Surface plasmons occur when an incident 

electrical field displaces the metal conducting electrons, causing an oscillating resonance which 

then has a charge transfer mechanism back to the analyte.  Surface plasmons depend heavily upon 

surface topology.  Smooth and flat surfaces are incapable of producing such an effect.  But rough 

or colloidal metal, or specially nanostructured materials, generally made of silver or gold as these 

resonate with visible light frequencies, can produce increased Raman intensity output by a factor 

of 104 to an enormous 1014 improvement, depending on shape and other surface interaction 

variables. 

 

3.2b Resonance Raman 

Resonance Raman scattering occurs when the excitation radiation’s photon energy level 

matches exactly the electronic absorption band, causing the Raman intensity to increase by as 

much as six orders of magnitude. (Robert, 2009) The falloff in Raman intensity is drastic as the 

resonance frequency is departed from.  Thus, this technique only effectively works when a known 

laser emission wavelength happens to be the proper exciting wavelength for a molecule.  This is 

generally difficult to accomplish.  However, it has the obvious advantage of much improved signal 
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intensity.  It can also be employed to characterize vibrational modes of a subgroup of molecules 

from a very large molecule, such as a polypeptide. 

 

3.2c Coherent Anti-Stokes Raman (CARS) 

Coherent anti-stokes Raman spectroscopy is a non-spontaneous technique used to increase 

Raman intensity. (Begley, 1974) The technique works by utilizing two laser beams to stimulate 

the analyte.  One laser light (pump field) excites the molecules to an elevated virtual energy state.  

The second laser (Stokes field) scatters the already stimulated photon to an excited vibrational 

energy level.  Light from the pump field excites this elevated vibrational energy state to another 

virtual energy level, before it sinks back to ground state, thereby emitting an anti-Stokes scattered 

photon. 

 

3.3 Signal Processing 

Basic signal processing methods are used to remove unwanted or non-Raman contributions 

from the resultant spectrum output after acquisition.  While shielded from virtually all 

environmental influence, the CCD can still register cosmic rays.  These are some of the most 

energetic particles that move throughout the universe, originating largely from supernovae of 

massive stars.  These are relatively rare and easily subtractable.  Every spectrum has a baseline 

saturation value which has many contributions, including thermal energy to the CCD, which is 

why it is typically stabilized to -60°C.  The method used for baseline subtraction varies from 

sample to sample, usually dependent on if any fluorescence is acquired.  Contributions from matrix 

or substrate components (aqueous environment or the slide an analyte rests upon), can generally 
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be removed by collecting pure spectrum of the contributing matrix and calculating a normalized 

subtraction. 

 

3.3a Principal Component Analysis 

Principal component analysis (PCA) is a mathematical technique which ultimately reduces 

the dimensionality of a (generally large) data set. (Wold, 1987) In general, PCA will only apply to 

hyperspectral maps, collected from large areas of a sample, with many spectra in the dataset.  First, 

the data is standardized to z scores. A covariance matrix of p x p dimensions (where p is original 

dimensionality) is created and then reduced to lower triangular form.  From here, eigenvalues and 

eigenvectors are computed and then ranked to determine what the principal components (PC) of 

the new reorganized dataset will be.  Practically, the number of PCs to be included in the 

reconstructed data set is determined by a cutoff STN threshold, where real Raman signal is fully 

retained but noise is removed.  This is because the actual Raman intensity is contained within the 

first few PCs, while the remainder PCs are only noise contributions.  As an example, the original 

dimensionality is determined by the pixels on the CCD detector chip, which is 1600.  PCA reduces 

the dimensionality from 1600 to approximately 10, where the remainder 1590 contain noise.  This 

technique provides the best post processing reduction to noise, while preserving information.  It is 

potentially liable to remove certain real Raman contributions, especially if the original sampled 

array does not contain proper distribution of all real Raman elements. 
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3.3b Cluster Analysis 

Cluster analysis is premised on the simple notion of clustering sets of objects from a total 

population into groups based on the relative affinity the objects have to one another. (Edwards, 

1965) How this is of benefit to Raman spectroscopy is in applying the model (here a centroid-

based clustering model) to a hyperspectral image.  The clustering engine will segregate individual 

data members into groups based on closeness to a central vector, generated by the total population 

information, as well as the predetermined number of clusters that are meant to be differentiated 

into.  Practically, this can use a clustering algorithm (there are many) to separate a hyperspectral 

image into its primary features, e.g., for a cell, into the cell and surrounding water/media. 

 

3.3c Deconvolution Analysis 

Spectral deconvolution is the inverse process of convolution.  It is a fundamental method 

used in spectroscopy. (Ayers, 1988) When spectral peaks, which present as Gaussian curves (or 

other normally distributed function), overlap in a single spectrum, as is common in the output from 

the CCD, then deconvolution must be employed to separate individual components from one 

another.  The process by which this is done can be called non-linear iterative curve fitting, whereby 

an initial “best estimate” is made by either manual input or algorithmic recommendation, usually 

on the basis of analytical features such as 2nd derivative analysis of spectrum.  From deconvolution, 

analysis on individual peaks can take place on key properties such as peak intensity, peak position, 

peak width (usually taken at FWHM, full width at half maximum), and peak area, relative to 

baseline.  
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Chapter 4  

Metabolic and Vibrational Spectroscopic Appraisal of the Protective Role of D-512 on 

Induced Neurodegenerative ROS Generation in PC12 Cells 

 

4.1 Introduction 

Parkinson’s disease (PD) is a debilitating neurodegenerative disorder which largely affects 

the elderly population.  Clinically, it is characterized by tremors, bradykinesia, rigidity, and 

postural instability, (Carlsson, 1959; Parkinson 2002) all of which are severe motor function 

impairments which is identic to PD. Principal symptoms are the effects of the loss of particular 

dopaminergic neurons of the substantia nigra pars compacta. (Bertler, 1959; Barbeau 1962) The 

result of this cellular loss being increased iron concentrations, acute changes in oxidative stress 

markers, and accumulation of ‘Lewy bodies’. (Jellinger, 1992; Forno, 1996) Aging, toxicity, and 

mutation only account for 5% of PD cases. (Hornykiewicz, 1989; Langston, 1983; Schapira, 1993; 

Polymeropoulos, 1997; Lesage, 2009) 

Creation of, or inability to detoxify, destructive free radicals and hydrogen peroxide 

(reactive oxygen species; ROS) in critical regions of the brain induce neuropathology of the 

common sporadic form of PD. Mitochondria are the organelles which have the ability to facilitate 

the most ROS generation, at levels upward of 90%. Toxins which inhibit mitochondrial complex 

I, such as rotenone, lead to defects in the electron transport chain (ETC) leading to leaked protons 

and energy deficiency. This proton leak can directly lead to ROS generation.  Selective 
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vulnerability of dopaminergic neurons implies dopamine (DA) itself as a significant contributing 

factor to the disease genesis and progression. Autooxidation and metabolism of monoamine 

oxidase B can generate 6-hydroxydopamine (6-OHDA) and DA quinones, leading to higher ROS 

generation. (Linert, 2000) 

The creation of a dopamine D2/D3 agonist compound, D-512, has been previously 

reported. (Shah, 2014) It has multi-faceted clinical application, as it acts as antioxidant, iron-

chelator, and neuroprotector. (Li, 2010; Gogoi, 2011; Johnson, 2012) The findings of the initial 

study were shown to inhibit ROS generation in a mammalian neural model and ward against 

disease initiation and progression. 

The metabolic implications and underpinnings of the novel D2/D3 agonists were not fully 

elucidated, however. To monitor the effects of clinically mirrored incubation conditions via 

extracellular flux analysis and Raman spectroscopy has given important insights into the effects 

of the mechanisms of D-512, used in a protective role against 6-OHDA induced ROS generation.  

Results herein show strong support for the use of D-512, as the in vitro cell model showed 

significantly diminished results where the neuroprotector was not employed.   

  



 
 

21 

4.2 Materials and Methods 

 

4.2a Cell Culture and Treatments 

Rattus norvegicus adrenal gland pheochromocytoma cells (PC12, ATCC CRL-1721) were 

cultured in T-25 flasks (Thermo Fisher Scientific, Waltham, MA) with RPMI 1640 (Gibco, 

Waltham, MA) medium supplemented with 10% heat-inactivated horse serum (Gibco, Waltham, 

MA), 5% fetal bovine serum (Gibco, Waltham, MA), 100 U/mL penicillin, and 100 ug/mL 

streptomycin in humidified air and 5% CO2. Stock solutions of 6-OHDA, shown in fig. 4.1a, and 

D-512, shown in fig. 4.1b, were prepared in DMSO and aliquots were stored at −20°C and −80°C, 

respectively. The five treatment conditions are diagramed in fig. 4.1c and are as follows: 1) 

untreated cells, 2) 10 µM D-512 for 24 hr, 3) 75 µM 6-OHDA for 24 hr, 4) 10 µM D-512 for 24 

hr followed by 75 µM 6-OHDA for 24 hr (pre-incubation), and 5) 10 µM D-512 for 24 hr followed 

by 10 uM D-512 and 75 µM 6-OHDA for 24 hr (pre/co-incubation) (Shah, 2014).    
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Figure 4.1: Molecular structure of reagents and treatment growth plan - A) Molecular structure of 
hydroxydopamine.  B) Molecular structure of D-512. C) PC12 cells were incubated in five 
different conditions and then returned to normal culture conditions to view growth or else taken to 
extracellular flux or Raman spectroscopic analysis. 

 

4.2b Metabolic Analysis 

An extracellular flux analyzer (XFp Seahorse, Agilent Technologies, Santa Clara, CA) was 

used to characterize metabolic activity of PC12 cells.  All Seahorse XFp consumables were 

purchased from Agilent.  Cells were dissociated from culture flasks using trypsin (Gibco, 

Waltham, MA). The cells were centrifuged at 200 x g for 5 min, the supernatant was removed, and 

the cell pellet resuspended in media. Cell number was enumerated using a 0.04% trypan blue 

exclusion dye (Life technologies, Carlsbad, CA) and a hemocytometer (Hausser Scientific, 

Horsham, PA). Cells were placed in prescribed microwell plates at a seeding density of 104 cells 
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per well. After an initial 24 hr incubation to promote attachment, media was replaced with media 

solutions according to the previous five conditions for appropriate durations. 

Both oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) 

measurements were taken using standard Seahorse protocol, following optimization for cell line. 

Briefly, XFp cartridge sensors were hydrated, and injection ports loaded by the following; 

mitochondrial test reagents used oligomycin (1 μM), carbonyl-cyanide-4-(trifluoromethoxy) 

phenylhydrazone (FCCP, 0.5 μM), and rotenone/antimycin A (0.5 μM). Glycolysis test reagents 

used D-glucose (10 mM), oligomycin (1 μM), and 2-deoxyglucose (2-DG, 50 mM). All reagents 

have corresponding final well concentrations immediately after being listed.  

Oligomycin is a F0F1-ATPase inhibitor, stopping respiration-linked ATP production. 

FCCP acts as an uncoupling agent that collapses the mitochondrial proton gradient and thereby 

uncouples oxidation from phosphorylation, maximizing OCR. The contribution to OCR via non-

mitochondrial processes was measured using rotenone and antimycin A. Rotenone inhibits 

complex I and antimycin A inhibits complex III of the mitochondrial membrane, effectively 

arresting mitochondrial respiration. 

Glucose was supplied as to fully saturate basal ECAR. As previously stated, since 

oligomycin inhibits ATP synthase, proton production from mitochondrial respiration does not 

offset ECAR, having an effect to maximize ECAR. 2-DG is a glucose analog which competitively 

inhibits hexokinase, effectively arresting glycolysis.   
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4.2c Measurement of Cell Viability 

One week growth of all conditions was evaluated to determine the effect of D-512 and 6-

OHDA on cell growth. PC12 cells were seeded in T-25 flasks at an initial cell number of 2.5x106 

in triplicate. These cells then had each of the treatment conditions applied for the allotted 

timeframes, shown in fig. 4.1c. After treatment concluded, the media was replaced (without D-512 

or 6-OHDA) and left to culture for a further 24 hr (at which point they are considered to be at day 

1). Cells were collected, as before, on day 1, 3, and 7 for independent flasks, which were grown in 

parallel such that counting would not disrupt further growth.  

 

4.2d Raman Microspectroscopy 

Spatially correlated Raman microspectroscopic measurements were employed to 

characterize living PC12 cell samples at in vitro culture conditions. A customized confocal 

microscope (Zeiss Corp., Germany) and Raman spectrometer combination (UHTS 300, WITec 

Instruments Corp., Germany) was used and the Raman spectra were collected using a sensitive 

CCD camera (Andor Technology, UK) at a spatial resolution of 500 nm. A 532 nm solid state laser 

calibrated to 20 mW was used for excitation and a custom 50X high resolution objective (Mitutoyo, 

Japan). The changes in the spectral signature from the intracellular space were analyzed using a 

hyperspectral molecular analysis technique. Spectral arrays were collected using a spatial 

dimension of 40μm×40μm with a spectral dimension of 80x80 pixels, with N=3. Each array of 

scans was collected using an integration time of 0.5 s. Typical background and substrate 

subtractions were employed, using WITec Project 5 and Peakfit v4 software. Principal component 

analysis (PCA) was used to reduce the dimensionality of the collected spectral data arrays into 

principal components (PCs) and then reconstructed according to a signal-to-noise threshold for 
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selecting PC number. Following noise reduction using PCA, hierarchal cluster analysis was used 

to construct average spectral signatures for regional components of the cellular hyperspectral 

arrays. Pure samples of 6-OHDA and D-512 were also acquired using point scanning to acquire 

base references for each compound when in solution (Fig. 4.8). 

 

4.2e Statistical Analysis 

Data are expressed as mean value ± standard error mean (SEM), unless otherwise noted. 

For multiple groups, statistical significance was determined using one-way analysis of variance 

(ANOVA). In all cases p ≤ 0.05 was considered as statistically significant. Origin 2018 (OriginLab, 

Northampton, MA) was used for statistical analysis and graphical representation.  

 

4.3 Results 

 

4.3a Cellular Growth 

Fig. 4.2a shows the normalized growth rates of PC12 cells in five conditions.  Counts were 

performed on days 0, 1, 3, and 7. Initial cell density was equal across all samples at day 0. The 

latter counts were all normalized to their respective day 1 cell number.  
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Figure 4.2: Growth rate comparison of several PC12 conditions - A) Cells were enumerated on 
days 1, 3, and 7. Most notable is the low early growth rate of the pre/co-incubated cells, followed 
by a rapid increase in cell number. B) Ratio of day 7 to day 1 counts, where overall impact of 
conditions is seen. D-512 and pre/co-incubated cells had no difference in growth rate compared to 
untreated cells. Conditions which were exposed to 6-OHDA without D-512 co-incubation had 
significantly lower growth levels than control.  C) Pre/co-incubation cells had interesting growth 
characteristics, and so the growth rate from day 1 to day 3 (X) and from day 3 to day 7 (Y) were 
compared to control. There is a marked increase in growth rate from pre-day 3 to post-day 3. 
*p<0.05 against control. Error is +/- SEM, n=4 
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Fig. 4.2b displays the ratio of cell number from day 7 to day 1, highlighting one-week total 

growth for all conditions, shown as (mean ± SEM), n=4. Those cells which were grown without 

treatment, labeled control, (5.89 ± 0.41) and those treated with D-512 alone (5.74 ± 0.36) had very 

similar growth rates, higher than other conditions. D-512 cells had a higher initial growth (day 1 

to 3) however. Cells treated with 6-OHDA (3.10 ± 0.40), including those with a pre-treatment of 

D-512 (3.79 ± 0.10), showed relatively poor growth (significance shown in fig. 4.2b).  The cell 

counts were much decreased from day 0 to day 1, possibly indicating certain cells had better 

resistance to 6-OHDA and so did not all immediately perish.  Cells which had D-512 in culture 

when 6-OHDA was applied had initially low growth, similar to the 6-OHDA alone condition, but 

followed by large increase in growth rate to compare to control cells (6.48 ± 0.37).  This is shown 

clearly in fig. 4.2c, where X is the percent ratio of cell increase from day 1 to 3 (50.3%) and Y is 

the increase in day 3 to 7 (218.5%); both with respect to control growth. 

 

4.3b Bioenergetics 

Extracellular flux analysis for OCR, normalized to 106 cells, is shown in fig. 4.3a. Figure 

legend in top right indicates condition for A-D. Control cells have highest normalized basal OCR. 

Both D-512 and pre/co-incubated cells had lower OCRs by one-third fold.  Both cell groups which 

had 6-OHDA incubation had significantly lower basal OCR than control. Oligomycin has the 

anticipated decreasing effect on OCR, across all cell groups. FCCP injection shows much 

increased OCR for control, D-512, and pre/co-incubation, approximately 30% over basal OCR.  

There was little increase for both 6-OHDA groups, indicating some critical injury to mitochondria 

of these cells as the oxidation-phosphorylation decoupling should be dependent only on total 
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mitochondria number. Rotenone injection inhibits all mitochondrial respiration and is therefore 

used as a zeroing metric. 

 

 

Figure 4.3: Bioenergetic outcomes and metabolic parameters - Results of the extracellular flux 
analysis of incubated conditions for PC12 cells. Metabolic analysis indicates deficiencies in 
mitochondrial parameters for cell incubated in 6-OHDA and cells incubated with a pre-treatment 
of D-512 followed by 6-OHDA alone.  Cells incubated in D512 and those pre-treated and co-
treated with D512 have no significant differences in mitochondrial parameters. *p<0.05, Error 
is +/- SEM, n=3. 

 

Fig. 4.3b similarly shows normalized ECAR for the cell conditions.  Glucose saturation 

yielded similar data for all cell types, with the notable exception of D-512 being increased over 

control.  This may help explain the increased initial growth rate in fig. 4.2a.  Oligomycin injection 
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has similar trends, excepting the large decrease in pre-incubated cells.  It may be explained by 

damage to the mitochondria (as in fig. 4.3a) having a proportionately larger effect on the other 

conditions.  However, this would not clearly explain why the 6-OHDA condition is not affected in 

the same manner. 

Various respiration parameters, described in methods, is shown in fig. 4.3c. Here, 

differences in mitochondrial respiration between the control, D-512, and pre/co-incubation sets 

and the 6-OHDA and pre-incubation sets are apparent even more so.  Maximal respiration, ATP 

production, and spare respiratory capacity all have parity between members of the first group, 

which are significantly greater than the calculated parameters of the 6-OHDA group.  

Fig. 4.3d displays the calculated glycolytic parameters, also described in methods.  Here, 

there is far less apparent differences in conditions than for respiration. There are only significant 

differences in glycolysis for the 6-OHDA against control. There is also a significant drop in 

glycolytic capacity for the 6-OHDA treated cells.  Both cells which had 6-OHDA treatment saw 

significant drops in glycolytic reserve and non-glycolytic acidification. 

 

4.3c Bioenergetically-linked Growth Indices 

Fig. 4.4 compares the growth rate (fig. 4.2b) against four different bioenergetic parameters 

(fig. 4.3). Fig. 4.4a compares to basal respiration.  A linear fit shows a strong correlation (R2>0.95) 

for the conditions.  Pre-incubated and 6-OHDA cells were co-localized at the lower quadrant.  

Pre/co-incubated and control cells were near the highest end of the trend shown here, while the D-

512 cells were somewhat in between the two ends. 
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Figure 4.4: Direct comparison of bioenergetic and growth rate of various treatment groups - A) 
Respiration and growth rate have a very strong linear relationship across the five treatment groups. 
B) Spare respiratory capacity has a similar trend to A, with small variation in that control and D-
512 are left shifted, indicating a lower bioenergetic efficiency. C) Glycolysis does not have any 
apparent trend linked to growth rate across all treatments.  The line imposed is of equal slope to A 
to show approximate graph division.  D) Glycolytic reserve has a strong linear relationship to 
growth rate as well.  The apparent increase in slope is largely due to the low reserve levels these 
cells have, as in a basal state operate at high glycolytic modes. Error is +/- SEM, n=3. 

 

Basal glycolysis, shown fig. 4.4b, had similar positions of conditions as fig. 4.4a, but had 

no true linear relationship.  The dashed line is of equal slope to the basal respiration fitted line (fig. 

4.4a), superimposed to show similar quadrant-based correlations. 
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Fig. 4.4c compares against spare respiratory capacity where control and D-512 conditions 

were co-localized, as were the 6-OHDA and pre-incubated cells. Pre/co-incubated cells were 

notably higher (linearly) over all other conditions.  SRC has the strongest linear relationship among 

all parameters, relative to growth rate. 

Fig. 4.4d shows the glycolytic reserve compared to growth rate. As noted in fig. 4.3d, this 

glycolytic parameter has similarity to the respiration parameters. Glycolytic reserve has a strong 

linear relationship to growth rate as well.  Despite the large error ranges on glycolytic reserve, a 

strong linear correlation is shown. The apparent increase in slope is likely due to the low reserve 

levels these cells have, as in a basal state operate at high glycolytic percentages. 

Fig. 4.5 compares ATP production from oxidative-phosphorylation and glycolysis 

pathways for all cell conditions.  There is a presumption that the angle of the line intersecting the 

control condition and the origin can be used to infer relative disposition to respiration or glycolysis, 

apart from the bioenergetic modes typical of PC12 cells (αPC12=71.5°). Across the spectrum of all 

cells, it may well be that PC12 are intrinsically offset to one metabolic pathway or another, but for 

the subset of only PC12, αPC12 should be used as the baseline. Both D-512 and pre/co-incubation 

conditions are slightly inclined to glycolysis compared to control.  6-OHDA and pre-incubation 

cell groups are extremely given to glycolysis over respiration. 
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Figure 4.5: Comparison of glycolytic and respiration linked ATP production rates - ATP 
production values normalized to cell number were calculated from extracellular flux data, based 
on equations for respective glycolytic and respiration linked ATP production.  Taking control as a 
metric for PC12 cells normal ATP production ratio, angles and extended lines corresponding to 
control angle (α) were superimposed to indicate related bioenergetic preferred mode. 
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4.3d Raman Microspectroscopy 

 

 

Figure 4.6: Raman microspectroscopy of PC12 cells - A) Schematic of Raman spectrometer 
coupled with confocal microscope and laser system. B) A Raman hyperspectral image of a group 
of four PC12 cells. Mitochondrial regions are marked by black outline in cells, confirmed by 750, 
1135, and 1548 rel. 1/cm peaks assigned to cytochrome-c.  Membrane spectra was extracted by 
cluster analysis and is shown as half shaded region at cells periphery. Scale shows increasing 
intensity with respect to maximum 750 rel. 1/cm peak. C) Spectra is total average of area contained 
in marked region for both mitochondria and membrane cellular regions.  

 

The technique for acquiring hyperspectral images (fig. 4.6b) and extracted spectra (fig. 

4.6c) is described in methods. Fig. 4.7a-d shows Raman hyperspectral images generated on the 

CH2 stretching mode (2940 rel. 1/cm) and each image is self-normalized to a scale of 0-1 a.u., 

with scale bar 5 um for all.    Fig. 4.7a is an image of an untreated PC12 cell. Fig. 4.7b is a group 

of three PC12 cells which have been incubated in 10 uM D-512 for 24 hr. Fig. 4.7c shows cells 

which has been incubated with 75 uM 6-OHDA for 24 hr. Fig. 4.7d shows cells which were 

preincubated with 10 uM D-512 for 24 hr followed by coincubation with 75 uM 6-OHDA for a 

further 24 hr.  Using the hyperspectral images in fig. 4.7a-d, fig. 4.7e displays extracted Raman 

spectral intensities of relevance. Spectral positions used were the phenylalanine peak at 1003 rel. 

1/cm, amide I peak at 1650 rel. 1/cm and CH2 stretching peak at 2940 rel. 1/cm. There are several 

distinct variations in spectral ratios.  Fig. 4.7f shows the spectral intensity of phenylalanine at 1003 
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rel. 1/cm compared to the spare respiratory capacity of respective incubation conditions.  There is 

no difference between control and pre/co-incubated cells, whereas cells treated with 6-OHDA 

alone had a significantly lower ratio. 
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Figure 4.7:  Raman hyperspectral images of various PC12 conditions - Raman hyperspectral 
images generated on the CH2 stretching mode (2940 rel. 1/cm) and each image is self-normalized 
to a scale of 0-1 a.u.   A) Untreated PC12 cell. B) PC12 cells which have been incubated in 10 uM 
D-512 for 24 hr. This image shows three cells in a group. C) Cells which has been incubated with75 
uM 6-OHDA for 24 hr. D) Cells which were preincubated with 10 uM D-512 for 24 hr followed 
by coincubation with 75 uM 6-OHDA for a further 24 hr.  Scale bar is 5 um for all. E) Extracted 
Raman spectral intensities from images seen in A-D.  Spectral positions used were the 
phenylalanine peak at 1003 rel. 1/cm, amide I peak at 1650 rel. 1/cm and CH2 stretching peak at 
2940 rel. 1/cm. F) The spectral intensity of phenylalanine at 1003 rel. 1/cm compared to the spare 
respiratory capacity of respective incubation conditions.  There is no difference between control 
and pre/co-incubated cells, whereas cells treated with 6-OHDA alone had a significantly lower 
ratio. 
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4.4 Discussion 

Outgrowth following treatment incubation periods (Fig. 4.2A) shows minimal differences 

between control and D-512 conditions over the full 7-day period. The exception being a marginal 

increase of growth at day 3 for D-512 over control.  6-OHDA and pre-incubation conditions 

similarly show little difference.  This would seem to indicate presence of D-512 by itself has little 

to no effect on overall growth. It may seem surprising that there is any growth at all, but overall 

cell numbers were very low compared to control, however, normalized to day 1 data, it appears 

growth is somewhat comparable (though still quite lower).  This may be explained by certain cells 

having innate resistance or immunity to the neurotoxic effects of the 6-OHDA, though it was 

outside the scope of this study to determine that fully.  The interesting feature of this graph is the 

pre/co-incubation condition. As shown in fig. 4.2C, the growth from day 1 to 3 is similar to that 

of the 6-OHDA group, about half that of control.  However, from day 3 to 7, the growth is 

accelerated to approximately double that of control to ultimately yield an overall growth similar 

to control.  

Bioenergetic data (Fig. 4.3) indicates similar relationships to growth among cell conditions 

such that control and D-512 are distinguished from 6-OHDA and pre-incubated conditions. 

Normalized metabolic parameters indicate that the condition which has comparable performance 

to control is the pre/co-incubated cells. All others groups have diminished metabolic performance 

to varying degrees.  Differences are more apparent in ECAR data than OCR, indicating 

mitochondria are more strongly affected by presence of 6-OHDA, which is where is known to be 

inducing neurotoxic/ROS damages. This data would support that D-512 prevents such damage 

from agents such as 6-OHDA, which induce ROS damages in mitochondria.  Such damages may 

increase normal metabolic response which may account for growth responses seen in fig. 4.2.   
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The relationship between metabolism and growth becomes more apparent when directly 

correlated.  Strong linear correlations indicate a clear response to growth from differences in 

metabolism. Lower placement on the curve indicates lower overall cellular health. Deviations 

above the linear curve represent efficient coupling as there is higher growth per same metabolic 

output. Excursions below linear represent inefficiencies likely due to cellular damage and represent 

less growth output per metabolic unit. Some deviations may be minorly affected due to the 

metabolic data being immediately taken after treatment, whereas fold increase in growth is over 7 

days.  As such, differences in immediate and final growth may not correlate exactly. One instance 

of this would be the D-512 condition which would appear to have more efficient coupling than 

other conditions for both respiration and glycolysis comparisons.  Taken for the immediate 

metabolism which, from fig. 4.2A, follows growth trends in that immediate growth is increased 

over control.  Using initial metabolism as a predictor of final growth may prove useful for future 

trials. 

Using established methods, the ATP production from both main metabolic pathways is 

compared for all conditions using slope analysis. Assuming control PC12 cells can be using as a 

reference for standard metabolic pathway ratio, other treatment conditions can be assessed. Pre/co-

incubation has much higher ATP production for both pathways, over all other conditions.  It is 

seen that the two conditions affected by 6-OHDA have severely afflicted mitochondrial function. 

An explanation for the elevated ATP levels for the pre/co-incubated conditions follows previous 

suppositions.  There may be initial injury to the cells, but non-permanent, for which energy 

demands increase greatly to offset ROS/other damages which ultimately result in initially delayed 

but overall comparable to control growth. 
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Raman hyperspectral imaging allows for high resolution mapping of cellular features.  

Using known markers, mitochondrial regions are determined, and spectral signatures compared.  

The 1003 rel. 1/cm phenylalanine peak is resistant to environmental interference and is a high 

quality quantitative marker for protein content.  Comparing this to the spare respiratory capacity 

derived from bioenergetic analysis, the aptitude of the cells to respond to OCR/ATP/energy 

demands per mitochondrial unit is evaluated.  Supporting previous conclusions, there is no 

statistical difference for control and pre/co-incubated groups while the ratio for 6-OHDA is 

significantly diminished.  Since the phenylalanine peak is insensitive to outside effects, and 

damage/degradation of mitochondria would increase the ratio, a decrease in ratio is largely due to 

a decrease in SRC.  Since lower SRC represents cells operating closer to maximum levels, which 

has previously been posited to accord to higher energy demand and thus likely having been 

introduced to a destructive impetus, i.e., ROS damage.  The ability to use a non-invasive 

spectroscopic technique to validate drug-induced differences in metabolic outcome is an 

invaluable research tool for drug candidate testing. It can serve to promote an analysis regime 

which offers; fast testing times, very low sample requirements, and broad applicability across 

many cell types.  It is even more powerful a tool when databases of normalized cellular 

spectrometabolic data is logged and therefore can be used as a metric for atypical cellular function 

as a diagnostic tool. 
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Figure 4.8: Raman spectra of pure 6-OHDA and D-512 - Pure spectra of both D-512 and 6-OHDA. 
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Chapter 5  

Raman Microspectroscopy Indicates Membrane Stabilization as Mechanism for Cell 

Stabilization Conferred by the Group 3 Late Embryogenesis Abundant Protein AfrLEA3m 

 

5.1 Introduction 

A common molecular strategy to survive severe desiccation observed in invertebrate 

animals is to accumulate intrinsically disordered proteins such as late embryogenesis abundant 

(LEA) proteins. (Xu, 1996) Brine shrimp (Artemia franciscana) embryos in desiccation tolerant 

phases are known to expresses several different types of LEA proteins. (Sharon, 2009) Recent 

studies indicate that the different types of LEA proteins may play a critical role in increasing 

stability of different cellular targets including proteins, nucleic acids, and phospholipid bilayers. 

(Tolleter, 2007 & 2010) The current study aims at characterizing the protective benefits of a LEA 

protein derived from brine shrimp. AfrLEA3m is a group 3 LEA protein and expression of the 

protein in mammalian cells have been shown to impart significant desiccation tolerance. In this 

study, a combined confocal Raman microspectroscopic technique and hyperspectral image 

analysis technique was used to characterize the effect of ectopic expression of AfrLEA3m proteins 

in hepatocellular carcinoma cells (HepG2) under highly desiccated condition. The cells were 

desiccated using a fast-spin-drying technique. (Chakraborty, 2011) Detailed Raman spectroscopic 

analysis demonstrates that AfrLEA3m confers protection to cells upon acute desiccation via 

interaction with lipid bilayer. Upon desiccation, the intrinsically disordered proteins form into 

several more stable structures, with α-helix being primarily considered here. Besides offering 
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mechanistic protection to the lipid bilayers during acute desiccation, AfrLEA3m may have a 

distinct role to play in protecting cellular mitochondria during desiccation. This was demonstrated 

by bioenergetic evaluation of AfrLEA3m expressing HepG2 cells that were dry-processed and 

recovered to physiological conditions following desiccation. Viability measurements for 

AfrLEA3m cells indicate improved outcomes from dry processing compared to AfrLEA3m free 

cells. 

Successful stabilization of mammalian cells is of high clinical and scientific interest. (Scott, 

2005; Acker, 2005; Taylor, 2006; Fowler, 2006) Preservation in a desiccated state introduces high 

storage efficiencies in comparison to cryopreserved system, whereby the dry stabilized cellular 

system is largely independent from support systems requirements, and long-term stability at room 

temperature simplifies commercial transportation. (Saragusty, 2019) Several anhydrobiotic 

organisms have the ability to survive complete or near complete desiccation (Nakahara, 2010; 

Ricci, 1987), however, owing to their high sensitivity to cellular water content mammalian cells 

are difficult to dry process. Therefore, much focus has been given to biomimetic approaches which 

apply natural strategies identified in anhydrobiotic animals to mammalian systems. (Chakraborty, 

2012; Hand, 2015; Chakrabortee, 2000) Previous studies demonstrated that ectopic expression of 

the late embryogenesis abundant (LEA) protein AfrLEA3m in hepatocellular carcinoma (HepG2) 

cells yielded 93.6% (97.7% if trehalose used in tandem) of viable cells after desiccation to ≤ 0.12g 

H2O/gDW employing a fast-drying technique of spin drying. (Chakraborty, 2012) While that is a 

big step forward in successfully dry processing mammalian cells, the challenges remain in 

successful long-term stabilization of cells in desiccated cells. For that reason, it is important to 

understand the mechanism by which AfrLEA3m confers protection to mammalian cells, which 

remains unknown. This study employs Raman microspectroscopy to elucidate how AfrLEA3m 
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interacts in the intracellular space which will improve understanding of the mechanism by which 

AfrLEA3m confers protection during desiccation.   

Understanding the exact mechanism of LEA protein protection holds a special place in 

developing a successful strategy for dry stabilization of mammalian cells. LEA proteins belong to 

the larger group of intrinsically disordered proteins (Shih, 2008; Hunault, 2010) and are known to 

be expressed in desiccation tolerant organisms when desiccated. LEA proteins were first 

discovered in cotton seeds (Dure III, 1981) but have since been discovered in a variety of 

anhydrobiotic organisms in the phyla Arthropoda and Nematoda. In anhydrobiotic organisms, 

LEA proteins have been hypothesized to synergistically work with trehalose to provide protection 

to desiccation stresses. (Iturriaga, 2008) While the mechanism of protection offered by LEA 

proteins to stabilize cells and cellular components is not yet properly understood, several studies 

have indicated potential roles of these unique proteins in preventing protein aggregation (Boucher, 

2010) and stabilization of biological membranes. It has been demonstrated that several LEA 

proteins assume additional secondary structures, such as α helices, β sheets, and hairpin loops 

during desiccation. (LeBlanc, 2019; Shimizu, 2010) 

In the current study a group 3 LEA protein derived from Artemia franciscana, AfrLEA3m 

was used to characterize the nature of desiccation tolerance offered by LEA proteins. AfrLEA3m 

protein has been shown to confer water-stress tolerance in HepG2 cells and is known to be 

synthesized in the cytoplasm and accumulate in the mitochondrial matrix. (Boswell, 2014 & 2014) 

While it is understandable that expression of AfrLEA3m in a mammalian cell may improve 

mitochondrial stability, it was also observed that cells expressing AfrLEA3m also had higher 

membrane integrity following rehydration.  In this study confocal Raman microspectroscopy and 

hyperspectral imaging techniques to characterize the effect of intracellular expression of 
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AfrLEA3m in HepG2 cells in both desiccated and hydrated conditions. Cells were dried uniformly 

to a highly desiccated state (0.2 gH20/gDW) in an inert environment using the fast-drying technique 

of spin drying to limit time duration for osmotic excursions. Trehalose was used in the desiccation 

medium to offer lyoprotection during drying. The confocal Raman microspectroscopy technique 

used here has the advantage of specially determining chemical characteristics in both the 

intracellular and extracellular space. Special attention was given to mitochondria and cellular 

membrane analysis as key indicators of overall health and metabolism. Cell membrane is an 

important injury site while lyoprocessing mammalian cells and this technique was used to compare 

the chemical characteristics of the cellular membranes expressing AfrLEA3m and control cells in 

both hydrated and desiccated conditions. Change in membrane characteristics were also evaluated 

before lyoprocessing and following rehydration. Effect of expression of AfrLEA3m on cellular 

metabolism was also evaluated and compared pre-and post lyoprocessing using spin drying. The 

current study indicates the possibility of group 3 LEA proteins such as AfrLEA3m having a 

protective effect both on cell membrane and mitochondrial function and both of these protective 

effects may originate from its ability to protect the mitochondrial membrane during desiccation. 

 

5.2 Materials and Methods 

 

5.2a Cell Culture 

Human hepatocellular carcinoma (HepG2) cells were stably transfected using a 

tetracycline (Tet)-inducible expression system to express the AfrLEA3m protein, as previously 

described. (Chakraborty, 2012) Briefly, a Tet-inducible gene expression system in HepG2 cells 
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was developed by stable transfection with a gene encoding the Tet-transactivator protein. The 

original nucleic acid sequences for AfrLEA3m were cloned from A. franciscana embryos and was 

optimized for human codon bias. The codon optimized nucleic acid construct was next inserted 

into a Tet-On expression vector (pTRE3G) and stably transfected into HepG2 Tet-On cells and 

stable clones were obtained after selection with G418 at 800 µg/mL for 6 weeks. Clones were 

selected for high induction of AfrLEA3m by tetracycline and cultured without induction in Opti-

MEM (Gibco, Carlsbad, CA) supplemented with 5% fetal bovine serum (Gibco) and penicillin-

streptomycin (100 units/mL penicillin G, 100µg/mL streptomycin sulfate; HyClone-Thermo 

Scientific, Logan, UT) under standard cell culture conditions (95% air, 5% CO2, and 37°C).  Cells 

were grown in 75 cm2 cell culture flasks (Corning Incorporated, Corning, NY) and allowed to 

reach a maximum confluency of 90%. Cells were dislodged with 0.05% trypsin centrifuged, and 

counted with a hemocytometer (Hausser Scientific, Horsham, PA) and 0.04% Trypan Blue 

exclusion stain (ThermoFisher, Waltham, MA) to enumerate live cells. 

 

5.2b Acute Desiccation Using Spin Drying 

Cells were plated on collagen coated quartz windows (20 mm Ø, Edmund Optics, 

Barrington, NJ) at a density of 5x104 cells per disc.  After 24 h incubation with 0.5 µM doxycycline 

to induce AfrLEA3m expression, the cells on the quartz windows were spin-dried using a Cee 

200X (Brewer Science, Rolla, MO) as described prior (Chakraborty, 2012)  Briefly, 250 µL of a 

37°C trehalose-based desiccation solution (1.2 M trehalose, 10 mM KCl, 5 mM glucose, 20 mM 

HEPES, 0.5 mM K2HPO4, 0.5 mM KH2PO4, 20 mM glycerol, and 120 mM betaine; pH 7.4) was 

pipetted to cellular surface after washing with PBS.  The spinning regime was set to 1000 RPM 
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for 55 s, followed by a ramp to 3000 RPM for 5 s.  This was done under an environment of dry 

nitrogen gas. 

 

5.2c Raman Microspectroscopy 

Raman microspectroscopic measurements were carried out with a customized confocal 

microscope and Raman spectrometer combination (UHTS 300, WITec Instruments Corp., 

Germany). Raman spectra were collected using an EMCCD camera (Andor Technology, UK). A 

532 nm solid state laser calibrated to 20 mW was used for excitation and spectra were collected 

using a custom 50X high resolution objective (Mitutoyo, Japan).  Area spectral arrays were 

collected at 250 nm intervals, with an integration time of 0.5 s.  Raman hyperspectral images were 

collected for six conditions in total. Unprocessed cells for both unexpressed and AfrLEA3m 

expressed cells were taken as normal physiological conditions. Spin dried cells were unexpressed 

and AfrLEA3m expressed cells in the desiccated state. Rehydrated unexpressed and AfrLEA3m 

expressed cells are those which were dry processed (spin-dried) and then immediately recovered 

to standard media conditions. The hyperspectral images were generated by integrating the CH2 

stretching region, and then individually normalized to the integrating peak, so that all images used 

a color scale of 0 to 1 a.u. Raman spectra obtained from area array scans and processed to subtract 

background and substrate spectra using WITec Project 4 software.  Further deconvolution analysis 

was conducted with Peakfit v4 software based on a 2nd derivative fitting algorithm (Systat 

Software, Inc., San Jose, CA), and Origin Pro 2018 (OriginLab, Northampton, MA). The higher 

wavenumber region from ~2700-3700 rel. 1/cm contains both CH2 stretching and OH stretching 

vibrational modes.  The following assignments in deconvolution analysis were made; CH2 

symmetric (2880 rel. 1/cm), CH2 asymmetric (2940 rel. 1/cm), OH low (3060 rel. 1/cm), OH 
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symmetric (3220 rel. 1/cm), OH asymmetric (3420 rel. 1/cm), and OH high (3590 rel. 1/cm).  

These last four represent OH stretching modes in descending order of H-bonding strength. A 

representative Raman spectrum of a control HepG2 cell in imaging solution, plotted with a 6-

component deconvolution, is shown in Fig. 5.9.     

 

5.2d Desiccation via Sessile Droplet 

Pure 42.5 mg/mL AfrLEA3 protein was dried in a 5 µL sessile droplet and monitored for 

moisture change. This was done by both gravimetry (Mettler Toledo  XP26, Columbus, OH) and 

by Raman spectroscopy. The droplet was deposited on a slide and intermittent weights were taken 

and recorded with respect to time.  After five measurements of no change, it was assumed to be 

maximally dried with respect to room conditions. The same droplet was deposited on a quartz slide 

for Raman acquisition.  The I3400:I2920 spectral ratio is representative of the total water amount 

(OH-stretching band) with respect to the protein concentration (CH2-stretching band). Spectral 

were collected after minor calibrations to account for shifting droplet dimensions.  Acquisition 

was concluded when steady spectra response was observed. 

Both HepG2 and transfected cells were grown, collected, and suspended with PBS in 

cryotubes to a concentration of 1x107 cells/mL. These were put through a freeze-thaw cycle five 

times (liquid nitrogen into 37°C water bath) to lyse the cells.  Lysates were pushed through 0.22 

µm syringe filters (Target2 PES, ThermoFisher) to remove cellular particulate. Lysate of both cell 

types were then scanned with Raman to determine sensitivity in determining characteristic 

differences between AfrLEA3m expressing cells and normal HepG2 cells, with a focus on 

comparing to non-invasive single cell intracellular scans. 
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A mitochondria extraction was performed on HepG2 cells using a microcentrifuge-based 

kit (Mitochondria Isolation Kit for Cultured Cells, ThermoFisher, Waltham, MA).  Briefly, 2x10^7 

cells were treated with kit reagents, homogenized, and then processed with several centrifugation 

steps between 700 x g and 12000 x g at 4°C.  The isolated mitochondria extract was used in the 

same manner as the cell lysates, both for drying and Raman acquisitions. 

These samples were mixed with pure 42.5 mg/mL AfrLEA3m protein at a 1:1 ratio. These 

were deposited on gold slides to be dried until in equilibrium with the environment, as shown in 

figure 5.11.  Raman acquisition of the sessile droplets were taken before and after drying.  The 

spectra were compared by taking the ratio of the 1320 rel. 1/cm peak, representing amide III 

secondary structure here α-helical groups and the 2920 rel. 1/cm peak, representing the CH2 

stretching band.  This indicates the relative amount of secondary structure with respect to the 

concentration of overall protein, on a spectroscopic basis.   

 

5.2e Bioenergetic Evaluation 

Analysis of metabolic function were carried out on an extracellular flux analyzer (XFp 

Seahorse, Agilent Technologies, Santa Clara, CA).  Cells were seeded in microwell plates at a 

seeding density of 2x104 cells per well. Both oxygen consumption rate (OCR) (representing 

mitochondrial respiration) and extracellular acidification rate (ECAR) (representing glycolysis) 

measurements were obtained. Briefly, XFp cartridge sensors were hydrated and injection ports 

were loaded with oligomycin (1 µM), carbonyl-cyanide-4-(trifluoromethoxy) phenylhydrazone 

(FCCP, 0.5 µM), and rotenone/antimycin A (0.5 µM).  Reagents used for glycolysis testing were 

D-glucose (10 mM), oligomycin (1 µM), and 2-deoxyglucose (2-DG, 50 mM).   Oligomycin was 

used to inhibit F0F1-ATPase to get an approximate measurement of proton leak respiration. FCCP 
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acts as an uncoupling agent that collapses the mitochondrial proton gradient and thereby uncouples 

oxidation from phosphorylation, maximizing oxygen consumption rates. The contribution to OCR 

via non-mitochondrial processes was quantified using rotenone and antimycin A, which inhibit 

complex I and III of the respiratory system, respectively.  Glucose was supplied as to fully saturate 

basal ECAR.  Oligomycin is injected to inhibit ATP synthase, arresting ATP production via 

oxidative phosphorylation, which then induces the cells to respond by increasing glycolysis to 

maximum levels, resulting in higher ECAR.  2-DG is a glucose analog which competitively 

inhibits hexokinase, effectively stopping glycolysis. 

 

5.3 Results 

The protein fingerprint region in Raman spectroscopy, containing significant amide peaks 

located at approximately 1200-1800 rel. 1/cm, yields the majority of cellular information and so 

is given particular attention. In Fig. 5.1A, the amide I group is shown located at ~1650 rel. 1/cm.  

Amide II is located at ~1450 rel. 1/cm while Amide III is located at ~1320 rel. 1/cm.  Raman 

spectroscopy presents the ability to view hyperspectral information with spatial definition. This is 

employed in Fig. 5.1B1-B4 to distinguish three cellular compartments of interest: total average 

cell, mitochondria, and membrane, with a corresponding merged image.  Each of these has an 

average spectrum associated with it, shown in Fig. 5.1C. 
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Figure 5.1: Representative Raman spectra of a hepatocellular carcinoma cell - A1) Hyperspectral 
Raman image of live hepatocellular carcinoma cell in culture conditions. The images were created 
using component analysis and by integrating spectral signatures collected from intracellular space. 
Figures A2 and A3 indicate distribution of mitochondrial and cellular membrane. Fig. A4 represent 
the composite image created by merging spectral signatures from A1-3.  The color mapped spectra 
are derived from intracellular regions and used for component analysis are shown in (B). 
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HepG2 AfrLEA3m expressing cells were compared with non-expressing cells and the 

spectra for both were normalized against their respective CH2 symmetric peaks for protein 

evaluation, shown in Fig.5. 2A.  Fig. 5.2B is the normalized amide peak values for both cell 

conditions, showing slightly increased relative protein amount in the AfrLEA3m expressed cells.  

Both HepG2 AfrLEA3m expressing cells and non-expressing cells were lysed as previously 

described and evaluated in the same manner as single cell scans (Fig. 5.2C).  Normalized protein 

content shows similarity between cells groups for both sample types. 
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Figure 5.2: Comparison of unexpressed and AfrLEA3m expressed HepG2 cells - A) Amide peaks 
contained in fingerprint region shown in cells expressing AfrLEA3m compared to control cells. 
for both cell conditions, normalized to the CH2-stretching peak (2940 rel. 1/cm). B) Enumeration 
of (A) showing higher relative concentration of protein in AfrLEA3m expressed cells. C) Cell 
lysate from both cell types was collected and scanned as a bulk solution.  There is a very high 
degree of agreement between physiological intracellular spectra and cell lysate spectra.   
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Figure 5.3 displays time dependent drying of sessile droplets containing pure AfrLEA3m 

protein at a concentration of 42.5 mg/mL.  Fig. 5.3A graph shows that the droplet has 

approximately 90% of water removed via evaporation over the course of 17 minutes. Fig. 5.3B 

similarly displays the loss of water via evaporation, but on a spectral basis.  Here, there is an 

approximate 95.5% reduction is intensity ratio of the I3400:I2920 peaks.  The two methods combined 

provides for a means to compare the spectral ratio to standard residual moisture content on a mass 

basis.  The gravimetric apparatus is more tightly enclosed against the ambient than the Raman 

microscope stage, which likely explains why it takes longer to reach a steady dryness level. 
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Figure 5.3: Drying of pure AfrLEA3m protein - A) Weight obtained via gravimetry of a droplet of 
42.5 mg/mL purified AfrLEA3 protein. B) The I3400:I2920 spectral ratio signifies the water content 
relative to the amount of protein in the analyte.  The same volume of droplet as used in gravimetric 
analysis was used for the spectral technique as well. A similar trend is shown for water content for 
both spectral and gravimetric techniques. Both plots have overlaid sigmoidal fits. Error bars show 
SEM, n=3. 
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HepG2 cell lysate and isolated mitochondria suspension was collected as described in 

methods.  Fig. 5.4A displays the spectral change in relative α-helical structure of cell lysate with 

and without being mixed pure AfrLEA3m protein. There was a decrease in I1320:I2920 ratio for the 

cell lysate upon drying, explained mostly by the artifact of the 2920 rel. 1/cm peak increasing 

concentration with drying. The I1320:I2920 ratio increases when the lysate is spiked with the pure 

protein.  For the isolated mitochondria (Fig. 5.4B), there is a small increase in I1320:I2920 ratio upon 

drying.  There is a much stronger increase for the mitochondria lysate when protein solution was 

included.  Figure 5.4C represents the change in drying performance upon addition of pure protein 

solution between the cell lysate and the isolated mitochondria, on an absolute basis. The 

distinguishing difference between the sample groups would be the difference in total lysate against 

the mitochondria extraction.  This is supported by that both solutions with AfrLEA3m protein 

inclusion upon drying reach the same approximate I1320:I2920 ratio of 0.4 a.u. 



 
 

55 

 

Figure 5.4: Impact of AfrLEA3m upon desiccation characteristics of droplet dried cell and 
mitochondrial lysates - A) Comparison of the difference ratio for amide III group with spectral 
center at 1320 rel. 1/cm, indicating secondary structure, here α-helical groups, and the 2920 rel. 
1/cm CH2 stretching band from aqueous to desiccated form. This ratio is shown for both pure cell 
lysate and lysate which has been mixed with pure AfrLEA3m protein.  B) The same ratio as in (A) 
was taken but for isolated mitochondrial that was processed into lysate.  For both cellular lysate 
and mitochondrial lysate, an increase in ratio was much greater upon drying when containing 
AfrLEA3m. C) The relative difference between the impact AfrLEA3m has upon both cell lysate and 
mitochondrial lysate, the difference in ratios shown in (A) and (B). 
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Hyperspectral maps were generated for unexpressed and AfrLEA3m expressed cells in the 

desiccated state (Fig. 5.5).  The 755 rel. 1/cm peak corresponding to cytochrome c and 1308 rel. 

1/cm peak corresponding to α-helix protein structure were used for integration and intensity 

mapping.  For each cell type, a representative single cell scan was used to show co-localization 

between molecules of interest. A white dotted outline shows the actual cell membrane as viewed 

by polarized light microscopy. The results show highly correlated α-helix (Fig. 5.5A, B) and 

cytochrome c (Fig. 5.5C, D) regions.  The intensity for both cytochrome c and α-helix regions are 

much higher for AfrLEA3m expressing cells (Fig. 5.5B, D) compared to unexpressed cells (Fig. 

5.5A,C). 
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Figure 5.5:  Hyperspectral image correlation of α-helix structure in desiccated environment - 
Raman hyperspectral images were integrated on the 755 rel.1/cm cytochrome c peak (red) and the 
1308 rel. 1/cm α-helical peak (blue), with composite merge shown. The images shown were 
acquired in desiccated state for control (HepG2), and stably transfected AfrLEA3 HepG2 cells 
with and without doxycycline inducement. There is much higher degree of α-helical structure 
directly correlated to cytochrome c signature in AfrLEA3 expressed cells over others. Outlines of 
actual cell membranes are shown as dotted lines. 
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Subcellular components were evaluated employing Raman spectroscopy.  The cellular 

membrane was given attention due to strong relation to desiccation injury. (Solocinski, 2018) Figs. 

5.5A and 5.5B show the cellular membrane mask generated by hierarchal cluster analysis which 

accords to the cells shown in Fig. 5.5 rehydrated cells for unexpressed and AfrLEA3m expressed 

conditions, respectively.  Fig. 5.5C shows the protein evaluation for the membrane.  The is no 

difference between amide I and III spectral regions.  However, there is an increased normalized 

amide II intensity for unexpressed cells compared with AfrLEA3m expressed cells.  Fig. 5.5D 

takes consideration of the mitochondrial regions, by considering cytochrome c peak (1127 rel. 

1/cm) in the Raman hyperspectral arrays.  This was taken as a ratio to the mitochondrial poise 

from the bioenergetic data to yield a spectrometabolic appraisal between the two cell conditions.  

There is a significant difference, with the cytochrome c/mitochondrial poise ratio being higher for 

AfrLEA3m expressed cells.   

From the hyperspectral maps in Fig. 5.3, averaged spectra were extracted and compared.  

Fig. 5.4A shows these spectra with the two previous peaks of interest annotated, for the 755 rel. 

1/cm and the 1308 rel. 1/cm. The increased cytochrome c peak indicates increased mitochondria 

for the cell.  Fig. 5.4B displays the normalized α-helix intensity to total organic content. The α-

helix peak intensity is only present in the AfrLEA3 expressed cells.  This is evidence for the 

increase in AfrLEA3 conformational shift from disordered to α-helix structure upon entering the 

desiccated state.   
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Figure 5.6: Raman evaluation of α-helix structure for AfrLEA3m - A) Averaged spectra acquired 
from hyperspectral images of the three cell conditions.  There are several notable differences in 
spectra, notably the α-helix peak at 1308 rel. 1/cm.  B) Intensity of 1308 rel. 1/cm peak 
normalized to 2940 rel. 1/cm CH2 stretching peaks. AfrLEA3 expressing cells display a 
significantly higher degree of secondary protein conformation when induced via drying 
compared to control and unexpressed cells. 
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For the non-transfected cells, AfrLEA3m cells showed higher overall protein intensity than 

unexpressed cells.  This was independent of hydration level and also observed in the spin-dried 

cells. This was not the case with rehydrated cells where there were rather significantly decreased 

protein levels in AfrLEA3m cells. The dramatic shift in normalized protein concentrations in the 

spin-dried cells was expected; amide I contributions all but disappear as they are strongly related 

to water interactions.  The increased amide III intensity of the AfrLEA3m cells over unexpressed 

are also expected as the AfrLEA3m proteins becomes more structured (α-helix, β-sheet) upon acute 

desiccation.  

Fig. 5.7 displays bioenergetic data acquired from extracellular flux analysis and derived 

metabolic parameters.  Control and AfrLEA3m cells were compared before and after spin drying 

3 days after rehydration.  No difference for basal respiration among unprocessed cells and non-

transfected spin-dried cells was observed.  There was a significantly higher basal rate for spin dried 

AfrLEA3m cells.  Upon oligomycin injection, cells had a predictable drop in OCR, by about 

27.1%. FCCP increased OCR to maximum, to 122.1% of basal. Acute rotenone and antimycin A 

injection dropped OCR levels to 44% of basal.  
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Figure 5.7: Bioenergetic outcomes and metabolic parameters - Results of the extracellular flux 
analysis of unprocessed and rehydrated conditions for both unexpressed and AfrLEA3m expressed 
cells. Metabolic analysis indicates desiccated and rehydrated AfrLEA3 expressed cells are 
comparable to unprocessed cells, whereas unexpressed cells have metabolic deficiencies. 

 

Fig. 5.7A displays post processing outcomes for HepG2, unexpressed AfrLEA3m cells, 

and expressed AfrLEA3m cells.  The two former samples had no immediate survival following 

spin drying treatment.  The LEA3 expressed cells had a 92.3% immediate viability, as measured 

by membrane integrity.  Fig. 5.8B displays growth for these treatment groups over a period of 7 

days.  Hep G2 cells which underwent no processing had relatively normal growth resulting in a 
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28-fold increase in cell number.  The desiccated HepG2 and unexpressed AfrLEA3m cells had no 

immediate viability and thus had corresponding zero growth.  The expressed AfrLEA3m cells had 

only 1.7-fold increase in cell number, only 6.1% of the unprocessed HepG2 cells.  This would 

seem to indicate that while AfrLEA3m conferred protection in the immediate sense, the cells still 

sustained injury in some other way. 

 

 

Figure 5.8: Viability of AfrLEA3m following desiccation - A) Percent survival, as measured by 
membrane integrity before dry processing and immediately after, for control HepG2 cells and 
HepG2 cells which have AfrLEA3 transfection, with (expressed) and without (unexpressed) 
doxycycline induction.  Only cells which had AfrLEA3 inducement had any survival, with very 
good recovery at near 97%.  B) Seven-day growth for HepG2 cells which were; control in 
physiological state (never dried), dried control cells, dried AfrLEA3 unexpressed cells, and dried 
AfrLEA3 expressed cells. Control cells not subjected to drying had a near 30-fold increase in cell 
number over 7 days.  Dried control and unexpressed AfrLEA3 cells had no survival and no growth. 
AfrLEA3 cells had high initial recovery but only minimal growth for the 7-day period, ~1.7 fold 
increase. 
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5.4 Discussion 

The potential of LEA group proteins for stabilization of biomedically relevant cells and 

tissues is well recognized, especially due to their prevalence in a diverse group of organisms which 

indicates broad protective mechanisms that are not cell or tissue type specific.  Previously, it has 

been demonstrated that during acute desiccation events, e.g., spin drying, cells expressing 

AfrLEA3m have significantly improved survival rates compared to non-transgenic control cells.  

It was the objective of this study to present an analytical method for characterizing the protective 

benefits of AfrLEA3m during water stress in HepG2 cells.   

From the data acquired from the hyperspectral scans (Fig. 5.3), several interesting 

differences are found between control cells and cells expressing AfrLEA3m.  Both, fully hydrated 

and desiccated AfrLEA3m cells had significantly higher total protein contents than non-transfected 

control concentrations.  The shift in amide intensities from the hydrated to the dry state carried an 

expected result, namely that the amide I signature were much decreased and amide III signatures 

showed strong increases.  There was a significant increase in amide III levels of AfrLEA3m 

expressed cells over unexpressed cells, which was expected as the intrinsically disorder protein 

would display an increase in secondary structures upon desiccation.  There is a distinct increase in 

amide II and III levels in the control HepG2 cells after desiccation and rehydration.  This may be 

due to a lower concentration of CH2 components, making the normalized intensities appear larger.  

This has been observed previously and could indicate cellular damage. The AfrLEA3m expressing 

cells show amide levels closer to hydrated control cells.  This lends support to the hypothesis that 

AfrLEA3m plays a protective role in desiccation events. 

Extracellular flux analysis shows an apparent increase in mitochondrial poise of processed 

cells (which is a percent ratio of basal respiration to maximal respiration, which describes the 
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balance of mitochondrial output relative to maximum potential) compared to never dried control 

cells.  There was an almost equivalent decrease in glycolytic poise for the same groups.  This may 

be explained by Warburg effect related metabolism of the HepG2 cell line.  After processing, acute 

energy demands of the cells may have been triggered and so mitochondrial activity was increased, 

with a proportional drop in normal glycolytic energy generation. 

The normalized Raman amide II spectral ratios according to the cellular membrane show 

significantly higher values for AfrLEA3m expressed cells over unexpressed cells.  This is most 

likely explained by residual increase of protein content.  

The cytochrome c/mitochondrial poise parameter assists in providing a description of 

metabolic efficiency by coupling bioenergetic and spectroscopic data.  AfrLEA3m expressed cells 

had a significantly lower ratio to that of unexpressed cells.  This can describe that there is less 

cytochrome c in the cellular composition as derived from the Raman spectra with respect to the 

mitochondrial poise.  A reasonable inference would be that the cells are therefore producing energy 

more efficiently, as for similar levels of metabolic output, there is less overall mitochondrial 

content, i.e., better efficiency.  It should be noted that the cytochrome c peak used (1127 rel. 1/cm) 

was fairly weak, having a STN ratio of only ~3 and so future analysis will try to focus upon 

increasing STN for our target analyte.  That stated, the spectrometabolic parameter establishes 

further support that cells which had protective AfrLEA3m protein, have better metabolic outcomes 

than cells which did not. 

This study intended to provide evaluation of AfrLEA3m protective abilities in mammalian 

cells. Raman spectroscopy offers a powerful tool to aide in providing intrinsic chemical cellular 

information, such as α-helical structure.  Coupled with bioenergetic assays, the analysis provided 
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within gives strong further support that using LEA-group proteins as a dry preservation strategy is 

eminently viable, particularly when coupled with existing complementary techniques.  

 

 

Figure 5.9: 6-peak Deconvolution of CH2- and OH- Stretching Bands - The CH2-stretching mode 
was deconvoluted into two primary bands, denoted as symmetric (red) and asymmetric (pink).  
The OH-stretching band was deconvoluted into 4 primary peaks, denoted as low (yellow), 
symmetric (green), asymmetric (blue), and high (orange).  The black line is the convolution of 
these six bands.  This allows for more targeted analysis for specific peaks. 
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Figure 5.10: Western Blot to verify AfrLEA3m content in expressed cells   
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Figure 5.11: Dried droplets of cell and isolated mitochondrial lysates, with and without AfrLEA3m 
pure protein addition - 5 µL droplets were allowed to dry in sessile fashion on gold plates.  Images 
are stitched brightfield captures using a 10x Zeiss objective. 
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Chapter 6  

Spectrometabolic Response to Galactose Treatment 

 

6.1 Introduction 

A totalistic characterization methodology was undertaken for the metabolic response to 

replacement of glucose medium with an alternative hexose source, galactose.  (Skolik, 2021) One 

key facet of the multi-level analysis technique is the spectrometabolic method described in the 

following. 

An identic difference between primary cells and tumor derived cells is a metabolic 

proclivity towards lactate production in the latter.  This can largely be attributed to a shift from 

mitochondrial oxidative phosphorylation to substrate level phosphorylation. (Warburg, 1956) It 

was originally thought that lower rates of respiration were due to mitochondrial dysfunction, but 

that has been shown to not necessarily be the case as many cancer cell lines have completely 

functional mitochondria. (Warburg, 1956; Moreno-Sanchez, 2007) From recent literature, it would 

seem it is not ATP, but biosynthetic precursors which control proliferation rates in tumor-origin 

cells. (Vander Heiden, 2009) An increase in glycolytic flux has corresponding increase in linked 

biosynthetic pathways. (Lunt, 2011; DeBeradinis, 2008) As an example, the pentose phosphate 

pathway has genesis in the glycolysis intermediate metabolite glucose-6-phosphate, which sees 

elevated activity in tumor origin cells. The pentose phosphate pathway in turn creates biosynthetic 

precursors, e.g., NADPH, for functions including lipid synthesis and maintenance of redox 

homeostasis. (Jiang, 2014; Patra, 2014) However, the disparate metabolic regimes between tumor 
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origin cells and primary cells are often not considered. It is shown in the following that replacement 

of primary hexose source from glucose to galactose reintroduces a metabolic modality to cancerous 

cells which is more akin to their primary cell counterparts. This has the obvious implication of 

improving the physiological relevance for tumor origin cells in biomedical research.  It also carries 

with it the potential for insights into therapeutics targeting cancers specifically due to their 

metabolic poise. 

It has been shown that for certain immortalized cell lines, a metabolic shift favoring 

oxidative phosphorylation occurs when switching form glucose to galactose. (Rossignol, 2004) An 

increase in oxygen consumption at the mitochondria, along with decreased lactate production 

indicates this substrate shift decreases glycolytic flux while increasing ATP production in the 

mitochondria. (Gohil, 2010; Grimm, 2017) There is also proof that cells incubated with galactose 

replacement have increased production of proteins necessary for oxidative phosphorylation as well 

as being more susceptible to mitochondria dysfunction and toxins. (Marroquin, 2007; Arroyo, 

2016; Bayona-Bafaluy, 2011) Overall, the effects of galactose incubation to tumor derived cells 

have been insufficiently characterized. 

Both glucose and galactose are converted to glucose-6-phosphate after uptake into the cell 

by means of solute carrier 2A proteins or sodium dependent hexose transporters. (Augustin 2018; 

Ghezzi, 2018; Tahrani, 2013) However, glucose accomplishes this in a single enzymatic step while 

galactose requires four reactions of the Leloir pathway. (Holden, 2013) ATP production via 

catabolism of either sugar has similar potential yields, and both produce glucose-6-phosphate 

which can be utilized in glycolysis or the pentose phosphate pathway. (Frey, 1996) 

Herein, the physiological effects of galactose replacement on tumor derived cell lines are 

characterized using hepatocellular carcinoma (HepG2) cell line.  These are of particular utility due 
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to their high metabolic plasticity and widespread use in hepatoxicity assessment. (Soldatow, 2013; 

Tolosa, 2013) It is shown herein that galactose replacement decreases both mitochondrial and 

cytosolic NAD+/NADH ratios against cells maintained in glucose culture.  This is suggestive that 

such a substrate replacement could normalize HepG2 metabolism to a more typically found 

primary hepatocyte metabolic poise, in order to increase physiological relevancy in biomedical 

research utilizing these cells for biomedical application. 

 

6.2 Materials and Methods 

 

6.2a Chemicals 

Chemicals acquired for solution preparations were of the highest purity and purchased 

either from Sigma-Aldrich (St. Louis, MO) or Thermo Fischer Scientific (Waltham, MA). 

Reagents for extracellular flux analysis were acquired from Seahorse Bioscience (Billerica, MA). 

 

6.2b Cell Culture 

Human hepatocellular carcinoma cells (HepG2) were purchased from the American Type 

Culture Collection (ATCC, Manassas, VA) and cultured in T-75 flasks (Corning Company, 

Corning, NY). Cells were grown in media composed of glucose-free Dulbecco’s modified eagles 

medium (DMEM) (Thermo Fischer Scientific, Waltham, MA) supplemented with 2 mM glutamine 

(VWR, West Chester, PA), 1 mM pyruvate (Corning Company, Corning, NY), 10 mM glucose 

(Thermo Fischer Scientific, Waltham, MA), and 10% dialyzed fetal bovine serum (12-14 kDa) 

(Atlanta Biologicals Inc., Flowery Branch, GA). Depending on experimental group, either 10 mM 

glucose was substituted with 10 mM galactose (Thermo Fischer Scientific, Waltham, MA) 
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(galactose medium) or non-dialyzed FBS (Atlanta Biologicals Inc., Flowery Branch, GA) was 

substituted for dialyzed FBS to culture cells. All cells were maintained in a humidified atmosphere 

at 5% CO2 and 95% air at 37°C. Culture medium was renewed every two days and cells were 

passaged before reaching 90% confluency. To subculture, cells were dissociated from the culture 

flasks using 0.25% trypsin and 1 mM EDTA in a balanced salt solution (Thermo Fischer Scientific, 

Waltham, MA), centrifuged at 200 x g for 5 min. 

 

6.2c Extracellular Acidification Rates 

To characterize extracellular acidification rates (ECAR) of HepG2 cells, an XFp Seahorse 

flux analyzer (Agilent Technologies, Santa Clara, CA) was used. The day prior to ECAR 

measurements, cells were placed into glucose-containing medium in standard microwell plates at 

a seeding density of 2 x 104 cells per well. ECAR measurements were collected using the Seahorse 

standard protocol and cartridge sensors were hydrated with XF calibrant overnight. On the day of 

the experiment, medium was aspirated and replaced with the experimental medium. Cells were 

contained in an incubator with hydrated air at 37°C for 1 hr for CO2 gas removal. Following 

incubation, ten measurements were taken in three minute intervals. The lactate dehydrogenase 

inhibitor GSK 2837808A (Torcis, Bristol, United Kingdom) was used at a final injection 

concentration of 20 μM. The plate was mixed and analyzed before and after injections to obtain 

steady ECAR values. 
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6.2d Raman Microspectroscopy 

HepG2 cells were grown for 4 weeks either in glucose or galactose medium before 

conducting Raman microspectroscopic experiments. Spatially correlated Raman 

microspectroscopic measurements were acquired using a customized confocal microscope (Zeiss 

Corp., Oberkochen, Germany) and Raman spectrometer combination (UHTS 300, WITec 

Instruments Corp., Ulm, Germany) connected to a CCD camera (Andor Technology, Belfast, 

Ireland). A 532 nm solid-state laser calibrated to 20 mW was used for excitation and a custom 50X 

objective for observation (Mitutoyo, Sakado Japan). The changes in the spectral signature from 

the intracellular space were analyzed using a hyperspectral molecular analysis technique. Spectral 

arrays were collected using a spatial dimension of 30 μm × 30 μm with a spectral dimension of 90 

x 90 pixels (n = 3). Each array of scans was collected using an integration time of 0.5 s. Typical 

background and substrate subtractions were employed, using WITec Project 5 and Peakfit v4 

software. Principal component analysis (PCA) was used to reduce the dimensionality of the 

collected spectral data arrays into principal components (PCs) and then reconstructed according to 

a signal-to-noise threshold for selecting PC number. Following noise reduction using PCA, 

hierarchal cluster analysis was used to construct average spectral signatures for regional 

components of the cellular hyperspectral arrays based on significant components. Brightfield 

images were taken to locate desired cells. Following acquisition of hyperspectral Raman array 

scans, a cluster analysis was performed to yield discreet binned spectral groups.  Each cluster 

produces an averaged Raman spectrum (755 rel. 1/cm is assigned to cytochrome-c, 1012 rel. 1/cm 

is assigned to NAD+, 1594 rel. 1/cm is assigned to NADH, and the wide band centered at 2940 rel. 

1/cm represents CH2 stretching mode, used primarily for self-normalization). The wavenumber 
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assignment for NAD+, NADH, and cytochrome c mentioned here were verified by collection of 

spectral signatures from pure reagents, respectively.  

 

6.2e Statistical Analysis 

Data was analyzed using an unpaired two-tailed t-test, or one-way analysis of variance 

(ANOVA) test.  Statistical analysis was evaluated using GraphPad Prism 8.4 software (GraphPad 

Software Inc., San Diego, CA).  

 

6.3 Results 

Metabolomic analysis reveals a statistically insignificant trend towards a lower NAD+/ 

NADH redox ratio in cultured cells which have undergone galactose replacement. However, these 

bulk measurements do not allow for acquisition of subcellular resolution and so the Raman 

spectrometabolic technique was developed to characterize single cell redox ratios. The 

compartment specific measurements are initialized by first scanning pure NAD compounds. Then 

identification of these signatures in single aqueous HepG2 cells through confocal Raman 

microspectroscopy to independently monitor the mitochondrial and cytoplasmic NAD+/NADH 

redox ratios (Fig. 6.1A-C) was established. Cytochrome-c was used as the signature to identify 

mitochondrial regions, calculate the average spectra for these regions, and ultimately allow for 

comparisons to be made between the redox ratios measured in both the mitochondrial and 

cytoplasmic compartments. The technique accuracy was tested by introduction of the lactate 

dehydrogenase inhibitor, GSK 2837808A (20 µM), in order to prevent oxidation of NADH to 

NAD+ in the cytosolic environment while at the same time extracellular acidification rates (ECAR) 

were acquired to confirm the LDH inhibition. Before LDH inhibition, galactose cultured cells had 
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a 169 ± 8.2% lower ECAR compared to the glucose control. LDH inhibition significantly lowered 

ECAR in glucose by 145 ± 10% and by 37 ± 8% for galactose cultured cells and resulted in a 

comparative 51 ± 10% difference of ECAR in the presence of the LDH inhibitor (Fig. 6.1D).  

Raman microspectroscopy measured the cytoplasmic NAD+/ NADH redox ratio for HepG2 cells 

cultured with galactose was 26 ± 6% lower in absence of the LDH inhibitor (Fig. 6.1E). After LDH 

inhibition, the cytoplasmic NAD+/NADH redox ratio decreased by 43 ± 7% in glucose and 32 ± 

4% in galactose cultured cells. Despite the redox ratios decreasing for both glucose and galactose 

conditions upon injection of the LDH inhibitor, a significantly lower redox ratio was shown for 

galactose treated cells compared to glucose cultured cells. As aforementioned, the mitochondrial 

NAD+/NADH ratio was assessed in both glucose and galactose substituted cells via colocalization 

with the cytochrome-c signature. The mitochondrial redox ratio was lower for both conditions 

when compared to the cytoplasmic redox ratios. Cells cultured with galactose were shown to have 

a 20 ± 6% lower mitochondrial NAD+/NADH ratio compared to the glucose control cells. (Fig. 

6.1F) 
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Figure 6.1:  Galactose shifts cytoplasmic NAD(H) redox ratio - Acquisition of Raman spectra of 
pure NAD+, NADH, NADP+, and NADPH compounds and identification in HepG2 cells. The 
fingerprint region of each of each of the compounds were used to spatially correlated with the 
intracellular distribution of the compounds.  A) Representative Raman spectra of a cluster average. 
B) Intensity of 755 rel. 1/cm peak, representing cytochrome C, increasing as function of cluster 
degree. C) Cascade graph of Raman spectra for four related NAD compounds. D) Extracellular 
acidification of HepG2 cells cultured with glucose or galactose in presence or absence of the LDH 
inhibitor, GSK 2837808A (20 µM). #Indicates statistically significant differences compared to 
glucose control. *Indicates statistically significant between glucose and galactose condition in 
presence of LDH inhibitor (One-way ANOVA, p < 0.05, n = 8, average ± SEM). E) Cytoplasmic 
NAD+/NADH ratio obtained from Raman spectra for HepG2 cells cultured with glucose or 
galactose in presence or absence of GSK 2837808A (20 µM). #Indicates statistically significant 
differences compared to glucose control. *Indicates statistically significant between glucose and 
galactose condition in presence of LDH inhibitor. (One-way ANOVA, p < 0.05, n = 6, average ± 
SEM). F) Mitochondrial NAD+/NADH obtained from Raman spectra for HepG2 cells cultured in 
glucose or galactose. #Indicates statistically significant differences compared to glucose control. 
(Unpaired t-test, p < 0.05, n = 6, average ± SEM). 
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6.4 Discussion 

Here it is demonstrated that it is possible to shift the metabolic poise of tumor origin HepG2 

cells to more closely mirror their primary hepatocyte counterparts via the replacement of glucose 

with galactose substrate source.  While there have been some studies done into the increased 

oxidative phosphorylation activities of galactose incubated cells, the overall implications for 

global metabolic pathways has been insufficiently explored. (Aguer, 2011; Dott, 2014) Therefore, 

to investigate the subcellular localized involvement of the redox state to overall metabolic poise, 

the Raman spectrometabolic technique was used to evaluate the compartmentalized NAD+/NADH 

ratios. This characterization technique allowed for effective differentiation of impact on global 

metabolic pathways based on the hexose source used.  

Admittedly, galactose replacement as a technique to shift respiration profiles to more close 

match primary cells may only be limited to specific cell lines, such as the HepG2s evaluated here.  

It is thought that galactose serves as a necessary substrate source in a glucose free environment. 

While glycolysis pathways produce equal ATP yields for both glucose and galactose, it has been 

posited that galactose cultured cells likely derive most ATP form catabolism of glutamine and 

pyruvate. (Reitzer, 1979) It is hypothesized that galactose is a critical carbon contributor to the 

pentose phosphate pathway, which is also surmised to likely be the primary metabolic pathway for 

cells cultured in a galactose medium, over the TCA cycle. 

The NAD+/NADH ratio can be used as a prime metric for metabolic appraisal.  The 

NAD+/NADH ratio is responsible for the regulation of flux through many different metabolic 

pathways. (Hosios, 2018) It has been thought that high NAD+/NADH ratios will typically facilitate 

cell proliferation through flux sustainment via oxidative biosynthetic pathways. (Diehl, 2019; Gui, 

2016; Luengo, 2017; Titov, 2016) One major limitation of traditional metabolomic analysis 
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techniques is that it can only evaluate total NAD compound levels.  However, NAD concentration, 

NAD synthesis, and the overall redox ratios vary drastically with subcellular localization. 

(Cambronne, 2016) As an example, NAD levels in the mitochondria are largely unaffected by the 

depletion of NAD compounds in the cytoplasm, and NAD concentration are somewhere between 

two and tenfold greater in the mitochondria. (Alano, 2007; Pittelli, 2010; Tischler, 1977; Yang, 

2007)  Also, NAD+/NADH ratios in the mitochondria can range anywhere from 2 – 8, while the 

redox ratio occurring in the cytoplasm ranges from 0.1 – 600. (Lin, 2003; Sun, 2012; Williamson, 

1967) 

Employing the Raman spectroscopy, localized spectrometabolic analysis was able to be 

carried out.  It was observed that there was lower NAD+/NADH ratios in the mitochondria, 

compared to the cytoplasm for the HepG2 model system investigated, for both glucose and 

galactose treatment groups.  However, the cells which had galactose replaced culture conditions 

had a lower NAD+/NADH ratio for both mitochondrial and cytoplasmic regions.  So, the shift in 

metabolic poise occurs across the entirety of the cell upon replacement of glucose with galactose.   

The NAD+/NADH ratio in the cytoplasm is regulated primarily by the conversion of pyruvate to 

lactate via lactate dehydrogenase.  This lactate dehydrogenase reaction is about twice as fast than 

general flux rates via glycolysis, which results in fast regeneration of NAD+ when pyruvate 

concentrations are high. (Sun, 2012) An increased metabolic flux via lactate dehydrogenase is seen 

in glucose conditioned HepG2 cells over those which had only galactose incubation, resulting in 

higher NAD+/NADH ratios in the cytoplasm.  An increase in NAD+ bioavailability might allow 

for sustained glycolytically linked ATP generation, as well as facilitating metabolic flux for 

oxidative pathways. (Diehl, 2019) Regardless of this possibility, it can be said that prominent 
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metabolic shift which corresponds to altering hexose source from glucose to galactose in HepG2 

cells may lower overall compartmentalized NAD+/NADH ratios.  

This study presents a highly utilizable technique in spectrometabolic characterization.  The 

utility shown here was to evaluate the substitution of hexose source to better reflect the metabolic 

modalities of primary hepatocytes.  Leveraging the microspectroscopic features of the analysis, 

redox ratios were able to be quantified for independent intracellular compartments, notably the 

mitochondria and the cytoplasm. Such analysis regimes can be used to explore cancer remediation 

strategies, and to fully explore more physiologically relevant analytical strategies. 
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Chapter 7  

Future Research and Conclusion 

 

The research contained in the previous pages serves as the stage for a technique which has 

amazing potential for great public health benefits.  The standard premise of the technique is such; 

begin by characterizing the bioenergetics of model mammalian cells using standard metabolic 

profiling.  Then, implement Raman microspectroscopic global analysis to elucidate all internal 

biochemical signatures quantitatively. Then, create the bridging analysis method to connect the 

spectroscopic data towards the standardized metabolic data. Use this spectrometabolic analysis 

technique as a framework to then evolve into more advanced, optimal techniques.  Finally, test 

this model in a diagnostic, if not clinical, role to validate novel technique efficacy.  This is the 

hopeful proposed course for the methods which have been initially tested herein. 

Going forward, a key technique towards optimization that has seen exponentially increased 

use is that of big data, in neural networks/artificial intelligence.  Computing power is becoming 

increasingly cheap and common, and strategies for leveraging computer analysis of monstrous 

amounts of data is becoming a standardized notion.  This is highly relevant to the works completed 

and to the future path proposed.  For the type of information that Raman microspectroscopy 

provides, particularly with hyperspectral chemical imaging, it is well suited for the setting of a 

neural network.  The layers of information that spectroscopy is entwined with may seem 

burdensome when dealing with it case by case, but eventually it can be imagined to be an immense 

asset to advanced systems. Imagine a clinical diagnostic procedure whereby a biopsy sample is 
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drawn, fed into a spectroscopic analyzer, the raw data from which enters a conditioned neural 

network system, and one of several analysis outcomes provided.  This can be seen as a yes/no 

operator for, “Is this sample cancer tissue?”.  Or for evaluating metabolic flux for prescreening 

neurodegenerative disorders. To this end, through this work, it has been demonstrated that 

spectroscopic insights into not only metabolic changes were made, but other compounding 

variables, in a unified analysis methodology.  This includes the effect of potential pharmaceutical 

candidates on not only the overall metabolism but also the compartmentalized subcellular 

structures in model adrenal gland cells. The implication of reactive oxygen species induced 

toxicity complicity was evident by multiple techniques, namely; microspectroscopy, standard 

growth studies, metabolic profiling, and reactive oxygen species quantification assays.  In the 

future, only the spectrometabolic technique would ideally be employed, saving valuable time and 

efforts. 

Another interesting topic evaluated was that this technique demonstrated that spectroscopy 

could illuminate the subcellular machinations of a protein conforming to a predetermined 

secondary structure to impart stability upon a desiccation event.  This is a biomimetic strategy 

taken from nature, who has carefully refined so many extraordinary techniques through the eons.  

However, humanity in its own cleverness has created the tools of CRISPR/Cas9 and other 

advanced gene editing tools to, with surgical precision, alter the possibilities of life.  With 

strategies such as imparting desiccation tolerance to animals, or even humans on the (likely distant) 

horizon, the need to have effective tools for equally precise analysis must be developed and 

refined.  The spectrometabolic techniques described can simultaneously examine the protein 

structure, metabolism, associated potential illnesses, and even more inherent features as research 

progresses.  Such global analysis may be particularly beneficial to cellular analysis since cellular 
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dynamics are often interlocked in effects and more univariate analysis forms can miss one while 

probing another.   

The days when one could master the knowledge of all life’s domains has long since passed.  

The level of speciality one must have to break through scientific boundaries is extraordinary.  The 

ironic feature of this condition is that so many of the most profound insights, inventions, and 

discoveries are had when non-associated areas of research are brought together in academic fusion.  

Furthermore, esoteric pursuits can be exceptionally interesting but relatively fruitless.  There must 

be a human component for meaning to be instilled.  And so, the proposed technique discussed 

previously is meant to be a bridge between several disciplines for the betterment of the human 

condition. There is a high hope that some meaningful fruits can be had from the research provided, 

even if only to some small part of humanity.   
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