
Fast Solvers and Simulation Data Compression Algorithms for
Granular Media and Complex Fluid Flows

by

Saibal De

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Applied and Interdisciplinary Mathematics and Scientific Computing)

in The University of Michigan
2021

Doctoral Committee:

Assistant Professor Xun Huan, Co-Chair
Associate Professor Shravan Veerapaneni, Co-Chair
Professor Silas Alben
Dr. Paramsothy Jayakumar, US Army Ground Vehicle Systems Center
Professor Robert Krasny

Saibal De

saibalde@umich.edu

ORCID iD: 0000-0003-4691-189X

© Saibal De 2021

ACKNOWLEDGEMENTS

I would like to extend my deepest gratitude to my advisors, Professor Shravan Veerapaneni

and Professor Xun Huan, for their help and guidance during my studies at the University

of Michigan. I am extremely grateful to Professor Silas Alben, Professor Robert Krasny,

and Dr. Pramsothy Jayakumar for agreeing to serve on my dissertation committee and for

their detailed and valuable feedback. I wish to thank my collaborators, Professor Eduardo

Corona, Professor Alex Gorodetsky, Dr. Wen Yan, Dr. Dhairya Malhotra, and Dr. Hadi

Salehi; writing this thesis would not have been possible without their help. I am grateful to

Professor Hiroyuki Sugiyama for kindly providing me with the simulation datasets for my

numerical experiments. Many thanks to my colleagues Dr. Bowei Wu and Dr. Hai Zhu, and

my roommate Dr. Mitul Islam for the thought-provoking discussions over the years.

Several funding sources have supported my research, including the National Science Foun-

dation (NSF) under grant DMS-1454010 and the Automotive Research Center (ARC) in ac-

cordance with Cooperative Agreement W56HZV-14-2-0001 with U.S. Army Ground Vehicle

Systems Center.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ii

LIST OF FIGURES v

LIST OF TABLES viii

ABSTRACT ix

Chapter 1 Introduction 1
1.1 Scalable Framework for Rigid Body Contact 2
1.2 Viscous Flow Past Axisymmetric Bodies . 3
1.3 Tensor Methods for Data Compression . 4
1.4 Bayesian Matrix Completion . 5

Chapter 2 Scalable Solvers for Cone Complementarity Problems in Fric-
tional Multibody Dynamics 6

2.1 Introduction . 6
2.2 The Contact Model . 8
2.3 Solution of the Complementarity Problem 12
2.4 Parallel Implementation . 16
2.5 Numerical Experiments . 21
2.6 Conclusions . 25

Chapter 3 Fast Solvers for Stokes Boundary Integral Equations in Ax-
isymmetric Geometries via Fourier Decoupling 26

3.1 Introduction . 26
3.2 Boundary Integral Formulation of the Stokes Flow 29
3.3 Integral Equations on Axisymmetric Surfaces 33
3.4 Rotational Invariance and Evaluation of the Stokes Modal Kernels 39
3.5 Extension to Multibody Systems . 52
3.6 Numerical Results . 55
3.7 Conclusions . 60

Chapter 4 Compression of Discrete Element Method Simulation Data us-
ing the Tensor-Train Decomposition 62

iii

4.1 Introduction . 62
4.2 The Tensor-Train Decomposition . 65
4.3 Tensor-Train for Data Compression . 71
4.4 Numerical Results . 76
4.5 Conclusions . 84

Chapter 5 Efficient MCMC Sampling for Bayesian Matrix Factorization
by Breaking Posterior Symmetries 87

5.1 Introduction . 87
5.2 Notations and Bayesian Inference Setup . 92
5.3 Breaking the Posterior Symmetries with Non-Zero Mean Priors 104
5.4 Numerical Results . 111
5.5 Conclusions . 116

Chapter 6 Summary 118

BIBLIOGRAPHY 120

iv

LIST OF FIGURES

Figure 2.1 Example of Morton ordering in two dimensions. (Left) Construction
of Morton IDs by interlacing binary expansion of coordinates, and
the Z-order on the second level discretization. (Right) A point cloud
with octree bounding boxes and imposed Morton ordering on the
points. We show ‘equi’-partition of the body list into two parts using
different colors. 18

Figure 2.2 Distribution of 40,000 spheres with unit radius in a 100×100×50 box
(volume fraction ' 33.5%), among 4 MPI processes, using Morton
coding. The spheres belonging to the last rank are suppressed in the
figure to emphasize interface structure. 18

Figure 2.3 Example of distributed construction of the collision matrix. (a) Dis-
tribution of 15 bodies (left) with 20 collision pairs (right) among 3
MPI ranks. The colors indicate which rank owns the bodies/collision
pairs. (b) Sparsity structure of the corresponding collision matrix
(solid dots indicate non-zero blocks). The inverse mass matrix M−1

is 6 × 6 block diagonal. The columns of the contact transformation
matrix D encode information about collision pairs. E.g. the 8th col-
lision occurs between bodies 5 and 6; this corresponds to non-zero
6× 3 blocks in the 8th ‘column’. 20

Figure 2.4 Scalability of collision detection algorithm. The solid lines connect
simulations with same problem size (strong scaling), and the dashed
lines connect simulations with same problem size per core (weak scal-
ing). 23

Figure 2.5 Scalability of collision resolution algorithm with APGD optimization
solver. The solid lines connect simulations with same problem size
(strong scaling), and the dashed lines connect simulations with same
problem size per core (weak scaling). 24

Figure 3.1 Parametrization of a axisymmetric surface Γ, which is generated by
rotating a curve γ : s 7→ (r, z) about the z-axis; the curve γ is called
the generating curve for the surface. The source and target points,
x and x′, are expressed in the cylindrical coordinate system, with
x = x(r, z, θ) and x′ = x(r′, z′, θ′). 34

v

Figure 3.2 Convergence of the relative error εrel of the Stokes single layer veloc-
ity field compared against the analytic flow generated by a random
placement of Stokeslets as the number of panels np and cutoff fre-
quency nf are varied. We see that the performance of our scheme is
best when we keep np ∝ nf . In addition, the error drops algebraically
with increasing np at a high-order, and it drops spectrally with nf . . 57

Figure 3.3 The execution time of various stages of our axisymmetric Stokes
solver plotted against the total number N of quadrature nodes on
the surface. We fit a curve T ∝ Nα for each of these time segments,
and report the best-fit α value in the legends. 58

Figure 3.4 Streamlines of a Stokes flow generated by 125 randomly shaped and
oriented ellipsoids, each imposing a slip boundary condition on the
fluid. 60

Figure 4.1 Setup for the stress-strain datasets from multi-scale coupled finite el-
ement/discrete element (FE-DE) simulations conducted by Hiroyuki
Sugiyama and his research group at the University of Iowa. (a) Tri-
axial soil compression test models a column of soil using 8 elements;
the sides of the soil are confined by a constant pressure and a load
is applied to the top. (b) Soil-wheel simulation models a patch of
soil using 10 × 6 × 6 elements and the wheel moves on top of the
soil at a constant speed. In both cases, reference volume elements
(RVEs) are placed at 8 Gaussian quadrature points inside each ele-
ment. Stress, strain and tangent moduli are computed at these RVEs
from individual DEM simulations. 77

Figure 4.2 Inconsistencies in the recovered current strain data from TRIAXIAL
dataset when all of it is compressed as a single tensor at relative
accuracy level τ = 10−1. Panel (a) plots the time evolution of the six
components of current strain from a single RVE in the dataset and
panel (b) is its reconstruction. The significant deviations between
these are obvious from these two plots—we can see general features
from the tangent moduli timeseries, plotted in panel (c), creep in this
reconstruction (e.g. the peak near timestep 400). 80

Figure 4.3 Time-dimension autocorrelation factors for different variables from a
single RVE of the TRIAXIAL dataset. We note that as the lag in-
creases, the autocorrelation for incremental stress drops sharply to
zero, indicating minimal correlation in the timeseries. On the other
hand, the autocorrelation for tangent moduli decays slowly, implying
highly correlated timeseries data; correlation for incremental strain is
somewhere in between. Compressibility of these variables follow the
same trend: the compression ratios for incremental stress, incremen-
tal strain and tangent moduli are approximately 8.2×10−1, 8.4×100

and 1.3× 103, respectively. 81

vi

Figure 4.4 Compression of the velocity variable from the SEDIMENT dataset;
the dataset is compressed 32 timesteps at a time. The blue dots
correspond to compression ratios of the data chunks in their natural
three dimensions, and the red dots correspond to the compression
ratios with tensorized dimensions. Initially, as the particles are in
free-fall, the compression ratio is high. But as the particles start to
collide with each other and the simulation box, the compression ratio
drops. Eventually, as the particles settle down, the compression ratio
again slowly increases. 83

Figure 4.5 Streaming compression of the velocity variable from the SEDIMENT
dataset; the dataset is first compressed 32 timesteps at a time and
the compressed datasets are then concatenated in the TT format.
The blue dots correspond to compression ratios of the data chunks
in their natural three dimensions, and the red dots correspond to
the compression ratios with tensorized dimensions. Initially, as the
particles are in free-fall, the compression ratio is high. But as the
particles start to collide with each other and the simulation box, the
compression ratio drops. Eventually, as the particles settle down, the
compression ratio again slowly increases. 84

Figure 5.1 Joint posterior between a few components of the factor matrices.
Results obtained using Hamiltonian Monte Carlo with zero mean
priors. 91

Figure 5.2 Joint posterior between a few components of the factor matrices
(same as in Figure 5.1). Results obtained using Hamiltonian Monte
Carlo, but this time with non-zero mean priors. 91

Figure 5.3 Autocorrelation for factor a1,1 in Example 1 with zero and non-zero
mean priors, computed using 10th chain of Gibbs and HMC samplers. 113

Figure 5.4 Reconstruction RMSE in Example 1 with zero and non-zero mean
priors. 113

Figure 5.5 Posterior predictions for some elements in Example 2 with Gibbs
sampler. Blue marks indicate truth. 115

Figure 5.6 Autocorrelation for factor b50,4 in Example 2 corresponding to zero
and non-zero mean priors, computed with 5th chain of Gibbs sampler.115

Figure 5.7 Reconstruction RMSE in Example 2 with zero and non-zero mean
priors. 115

Figure 5.8 Autocorrelation for some factors in Example 3 corresponding to zero
and non-zero mean priors, computed from 3rd chain of Gibbs sampler.115

Figure 5.9 Autocorrelation for factor b5,7 in Example 4 corresponding to zero
and non-zero means, computed from 4th chain of Gibbs sampler. . . 116

Figure 5.10 Reconstruction RMSE in Example 4 from 64 Gibbs sampling exper-
iments with zero and non-zero mean priors. 116

vii

LIST OF TABLES

Table 2.1 Number of iterations required to reach prescribed residual tolerance
for APGD and SCIP solvers for two different moderate-scale sedimen-
tation simulations. 22

Table 2.2 Average iteration count of APGD in weak scalability tests. As we
vary the number of particles and the number of cores while keeping
the amount of work per core approximately the same, we see a slight
increase in the number of iterations before APGD converges. 24

Table 3.1 Performance and accuracy of the multibody Stokes solver with nb bod-
ies and nomp OpenMP threads using 2550 quadrature points per body
(np = 5 and nf = 25). We report the one-time kernel matrix con-
struction and inversion times Tker and Tinv, respectively. The metric
nop represents the total number of matrix-vector multiplication oper-
ations in the BiCGStab iterative solvers required before convergence,
and Tnear and Tfmm are execution times for near and far evaluations.
The accuracy of the multibody solver is captured using the absolute
error metric εabs. All execution times are reported in seconds, and the
missing entries correspond to situations where the BiCGStab solver
did not converge within 200 iterations. 59

Table 4.1 Compression ratios ρ and reconstruction errors ε = ‖Kδ − K̂‖2 in
constructing a TT approximations K̂ of the 2d × 2d integral kernel
matrix Kδ with d = 10 and δ = 10−5 at various tensorization levels
l and TT-SVD relative tolerance τ . We note that the compression
ratio increases as we increase the level of tensorization and decreases
as we reduce TT-SVD relative tolerance and ask for a more accurate
reconstruction. 73

Table 4.2 Maximum TT ranks, compression ratios and normalized RMSEs when
compressing the different variables in the SOILWHEEL dataset at var-
ious tolerance levels. We see that the different variables have differing
compression ratios (e.g. the tangent moduli are much more compress-
ible than incremental stress). Also, the compression ratios drop as
we demand more and more accurate reconstructions by reducing the
relative tolerance τ . 85

viii

ABSTRACT

Granular and particulate flows are common forms of materials used in various physical and

industrial applications. For instance, we model the soil as a collection of rigid particles with

frictional contact in soil-vehicle simulations, and we simulate bacterial colonies as active

rigid particles immersed in a viscous fluid. Due to the complex interactions in-between the

particles and/or the particles and the fluid, numerical simulations are often the only way to

study these systems apart from typically expensive physical experiments.

A standard method for simulating these systems is to apply simple physical laws to each

of the particles using the discrete element method (DEM) and evolve the resulting multi-

body system in time. However, due to the sheer number of particles in even a moderate-

scale real-world system, it quickly becomes expensive to timestep these systems unless we

exploit fast algorithms and high-performance computing techniques. For instance, a big

challenge in granular media simulations is resolving contact between the constituent parti-

cles. We use a cone-complementarity formulation of frictional contact to resolve collisions;

this approach leads to a quadratic optimization problem whose solution gives us the contact

forces between particles at each timestep. In this thesis, we introduce strategies for solving

these optimization problems on distributed memory machines. In particular, by imposing

a locality-preserving partitioning of the rigid bodies among the computing nodes, we mini-

mize the communication cost and construct a scalable framework for collision detecting and

resolution that can be easily scaled to handle hundreds of millions of particles.

For robust and efficient simulation of axisymmetric particles in viscous fluids, we intro-

duce a fast method for solving Stokes boundary integral equations (BIEs) on surfaces of

ix

revolution. By first transforming the Stokes integral kernels into a rotationally invariant

form and then decoupling the transformed kernels using the Fourier series, we reduce the

dimensionality of the problem. This approach improves the time complexity of the BIE

solvers by an order of magnitude; additionally we can use high-order one-dimensional sin-

gular quadrature schemes to construct highly accurate solvers. Finally, coupling our solver

framework with the fast multipole method, we construct a fast solver for simulating Stokes

flow past a system of axisymmetric bodies. Combining this with our complementarity colli-

sion resolution framework, we have the potential to simulate dense particulate suspensions.

Physics-based simulations similar to those described above generate large amounts of

output data, often in the hundreds of gigabytes range. We introduce data compression tech-

niques based on the tensor-train decomposition for DEM simulation outputs and demon-

strate the high compressibility of these large datasets. This allows us to keep a reduced

representation of simulated data for post-processing or use in learning tasks.

Finally, due to the high cost of physics-based models and limited computational budget,

we can typically run only a limited number of simulations when exploring a high-dimensional

parameter space. Formally, this can be posed as a matrix/tensor completion problem, and

Bayesian inference coupled with a linear factorization model is often used in this setup. We

use Markov chain Monte Carlo (MCMC) methods to sample from the unnormalized poste-

riors in these inference problems. In this thesis, we explore the properties of the posterior

in a simple low-rank matrix factorization setup and develop strategies to break its symme-

tries. This leads to better quality MCMC samples and lowers the reconstruction errors with

various synthetic and real-world datasets.

x

CHAPTER 1

Introduction

In recent decades, we have seen tremendous improvements in computing technologies. With

the emergence and widespread adoption of multicore CPUs, accelerators and graphical pro-

cessing units (GPUs), our computing nodes can provide very high throughputs in terms

of the number of floating-point operations per second (FLOP/s). These powerful nodes

can then be linked using high-speed interconnects to further increase the computing power.

Software development also has kept up the pace with these hardware improvements. The

message-passing interface (MPI) has become the de-facto standard for modeling communi-

cation between computing nodes. We also have many high-quality open-source numerical

libraries for various applications, such as linear algebra [52, 13, 44] and ordinary differential

equation integrators [47].

With these advancements, physics-based high-fidelity simulations are becoming an in-

creasingly common tool in modeling many natural and industrial phenomena. These models

make minimal assumptions on the dynamics of a system and therefore produce robust and

accurate predictions. This increased accuracy, however, comes at the cost of a high compu-

tational burden. Developing fast algorithms and designing scalable computing platforms is

therefore an active area of current research in many disciplines.

In this thesis, we explore and develop fast algorithms for simulating granular media and

complex fluid flows. We also address the issue of the large amounts of output data these

high-fidelity simulations can generate, and explore how tensor decomposition techniques can

1

be used to retain a compressed representation of the data for post-processing. Finally, we

present a Bayesian framework for robust matrix completion from sparse observations, which

can be used as a reduced order model for high-fidelity simulations when we have a limited

computational budget to run only a few simulations.

The following is a brief overview of the different chapters in this thesis.

1.1 Scalable Framework for Rigid Body Contact

One of the key ingredients in developing a simulation scheme for dense particulate flows

and granular media is rigid body contact resolution. The discrete element method (DEM),

where each particle is tracked individually using simple first-principle physical laws such as

Newton’s equations of motion, has proven to be very successful in making robust and accurate

predictions in this setup [28]. This method can also be easily coupled in a straightforward

manner with multi-physics simulation models [111].

There are two primary approaches to rigid-body collision resolution in DEM models in

the literature [88]:

• In the penalty-based approach (DEM-P), spring-type forces are applied to prevent

particles from interpenetrating. However, the resulting system of ordinary differential

equations is often very stiff, requiring us to take very small timesteps (∼ 10−5 s).

However, evaluation of all the body forces in a multi-physics setup at each timestep

can quickly become very expensive.

• More recently, a complementarity-based approach (DEM-C) has been proposed that

solves an optimization problem to compute the contact forces. This approach does not

suffer from stiffness issues, and we can take much larger timesteps (∼ 10−3 s).

Various recent software packages have implemented the DEM-C framework for collision

resolution between rigid bodies, e.g. Chrono [74, 106]. However, they only implement shared

2

memory parallelism (OpenMP and GPU). Consequently, the systems they can simulate are

constrained in terms of the number of particles. In this thesis, we introduce a MPI-based

distributed memory framework for DEM-C collision resolution that can overcome this barrier.

By ensuring locality during partitioning the particles among MPI processes, we can minimize

the communication and develop a demonstrably scalable implementation.

1.2 Viscous Flow Past Axisymmetric Bodies

In a fluid flow at the microscopic level, the viscous and pressure forces far outweigh any

inertial and advective forces, reducing the Navier-Stokes equations to a system of linear,

constant coefficient system of elliptic partial differential equations: the Stokes equations

[90]. Despite the simple description of such flows, they often exhibit unusual behaviors

when confined by a complex and/or moving geometry, e.g. in particulate flows consisting

of rigid and/or deformable particles. Besides laboratory experiments, numerical simulations

are typically the only way of studying the behavior of these systems.

Standard numerical methods, such as the finite element method (FEM), are not suitable

for simulating these systems; for instance, a moving geometry would require constant remesh-

ing of the fluid domain. In contrast, in the boundary integral equation (BIE) framework, all

the unknowns reside on the boundary of the particles, eliminating the remeshing phase and

also reducing the dimensionality of the simulation space by one. Moreover, state-of-the-art

fast numerical methods, such as iterative solvers and fast multipole method (FMM), can be

used to construct fast and robust solvers.

We can usually exploit any symmetries the particles may exhibit. For instance, with

spherical particles the Stokes boundary integral operators diagonalize in vectorized spherical

harmonics basis [26], leading to very accurate evaluations of the layer potentials even when

the particles are very close. When the particles are axisymmetric, the BIEs for the Laplace,

Helmholtz and Maxwell equations can be decoupled using the Fourier series [87, 43, 33],

3

further reducing the computational complexity. However, the Stokes BIE kernels do not

satisfy the necessary invariance property for the Fourier decoupling out-of-the-box. In this

thesis, we develop a transformation that puts the kernels in the required form, and thereby

develop the fast solvers for Stokes BIEs on axisymmetric geometries.

These fast Stokes solvers, coupled with a close evaluation scheme and the complemen-

tarity rigid contact resolution can be used as a simulation framework for the motion of

axisymmetric particles in viscous fluids. This will provide an extension to the recent work

in [111], which simulates spherical rotors in a Stokes suspension.

1.3 Tensor Methods for Data Compression

Large scale physics-based models (e.g. DEM simulation of soil as a granular media with

millions of particles) typically generate a huge quantity of simulation output, often ranging

in hundreds of gigabytes per simulation. This poses a new challenge for the widespread

adoption of high-fidelity models in terms of storing simulation data. In current state-of-the-

art applications, output data is typically purged once the quantity of interest is extracted.

However throwing away a majority of the data potentially limits the usefulness of high-

fidelity simulations since we cannot post-process the data, or train data-driven surrogate

models that can in turn guide learning tasks.

The output of high-fidelity simulations can usually be realized as high-dimensional ten-

sors. For instance, a simulation can generate data on a 3D spatial grid for several timesteps

and corresponding to multiple simulation parameters, each of which constitutes a new di-

mension in the data tensor. From this viewpoint tensor decomposition methods, which are

designed to mitigate the “curse of dimensionality” in working with high-dimensional tensors,

can be used to compress high-fidelity simulation data. In this thesis, we explore using the

tensor-train (TT) decomposition [86] to compress scientific data.

4

1.4 Bayesian Matrix Completion

Low-rank matrix completion is a classical problem with a variety of applications such as

recommender system design [104], drug-target interaction prediction [110, 116], image in-

painting [42, 63], social network topology recovery [70] and sensor localization [109]. It can

also serve as data-driven reduced order models for high-fidelity simulations: when the com-

putational budget is limited, we can infer model outputs and the associated uncertainty at

new parameter values from sparse observations in the parametric space.

Optimization-based approaches for this problem is widely studied in the literature [18,

19, 93]. These optimization-based approaches also serve as a base for probabilistic ap-

proaches [66, 92, 76, 95], which has also been generalized to tensor completion applications

[91, 114, 115]. Bayesian matrix completion problem setups in the literature typically use zero-

mean Gaussian priors; consequently, the posteriors we obtain using these priors generally

have symmetries. This leads to poor performance of Markov-chain Monte Carlo (MCMC)

sampling algorithms. In this thesis, we introduce a simple modification of these priors which

can provably break the posterior symmetries, leading to improved sampling performance and

reduced reconstruction errors.

5

CHAPTER 2

Scalable Solvers for Cone Complementarity Problems

in Frictional Multibody Dynamics

Preamble. In this chapter, we develop an efficient, hybrid MPI/OpenMP framework for

the cone complementarity formulation of large scale rigid body dynamics problems with

frictional contact. Using a spatially coherent ordering to partition the rigid bodies among

MPI processes, we are able to minimize inter-node communication. Our approach is highly

scalable, enabling the solution of dense, large scale multibody problems; a sedimentation

simulation involving 256 million particles (∼ 324 million contacts on average) was resolved

using 512 cores in less than half-hour per time-step. This is joint work with Eduardo Corona,

Paramsothy Jayakumar and Shravan Veerapaneni, and is published in [30].

2.1 Introduction

The need for high-fidelity, scalable simulation frameworks of granular media has spurred

a wave of recent developments in the efficient implementation of discrete element methods

(DEM) for many-body frictional contact. The DEM approach tracks the evolution of indi-

vidual particles due to external body forces and contact forces caused by non-penetration

and sliding friction.

Most parallel implementations and software packages available for large-scale granular

media simulations employ force penalty methods (DEM-P) [27, 16, 74]. For pairs of collid-

6

ing objects, they introduce contact force fields which are easy to implement and inexpensive

to evaluate. The fidelity and efficiency of this approach is, however, often limited by the

artificial stiffness induced by the spring-like forces used to avoid penetration. A newer class

complementarity methods (DEM-C) avoid this by enforcing the contact constraints geomet-

rically [102, 10, 9, 11, 105]. For an in-depth analysis and comparison of DEM approaches,

see [88]. In this work, we present an efficient, hybrid MPI/OpenMP distributed memory

implementation of DEM-C methods for frictional dynamics.

For each pair of objects at contact, DEM-C methods introduce a set of complementar-

ity constraints. Given a time-stepping scheme, this results in a nonlinear complementarity

problem (NCP) that must be solved at each time step. This NCP may be relaxed into a

linear complementarity problem (LCP) [102, 10]; this approach, however, introduces non-

homogeneous frictional forces. An alternative relaxation method addressing the limitations

of the LCP produces a cone complementarity problem (CCP) for which a wide array of

quadratic cone optimization solvers have been proposed [11, 73, 45, 89, 34, 56]. From ex-

tensive comparison in multibody dynamics problems [75, 24], two families of methods have

been shown to hold the greatest potential. The first-order accelerated projected gradient

descent (APGD) method uses the momentum from previous iterates to greatly reduce it-

eration counts for the gradient descent steps. This feature makes it the method-of-choice

for large-scale systems. Second-order Interior Point (IP) methods display robust, problem-

independent convergence, making them clear front-runners for small to moderate-sized sys-

tems. In order to remain competitive for large-scale systems, the acceleration of the Newton

step sparse linear systems involved is required, as proposed in [24].

In [79], the authors review the state-of-the-art in parallel computing for DEM multibody

dynamics simulations. For moderately large granular media problems, their analysis favors

a hybrid approach combining SIMD (Single Instruction, Multiple Data) parallelism in the

GPU and parallel task management in the CPU via OpenMP. They have implemented the

DEM-C approach in the Chrono Parallel library, producing simulation benchmarks of dense

7

granular media for up to O(106) rigid bodies [80]. For larger granular media problems as

well as for multi-physics problems involving long-range interactions, the amount of data and

variety of tasks involved necessitate a distributed memory approach; the main computational

bottleneck in this case is data communication. In [79], a basic Chrono MPI implementation

is applied to a vehicle-terrain problem involving 2 million bodies, employing 64 computing

cores.

The hybrid MPI/OpenMP framework presented here aims to address the challenges in-

volved in efficient distributed memory implementation of collision detection and resolution

via the CCP complementarity approach. We demonstrate favorable performance and parallel

scaling for problems up to 256 million rigid bodies and approximately 324 million pairwise

contacts employing 512 cores. We reduce the communication between MPI processes by

using Morton IDs and ensure rigid bodies that are spatially close end up on the same MPI

rank.

2.2 The Contact Model

2.2.1 Equations of Motion

Consider a granular medium consisting of n rigid bodies. We use a generalized coordinate

system of dimension 6n to describe its dynamics (three translational and three rotational

degrees of freedom per body). Let q and v ∈ R6n denote the position and velocity of

the system in these generalized coordinates. We describe the time-evolution of these two

variables using Newton’s equations

(2.1) Mv̇ = fext(q, v) + fcol, q̇ = Lv.

Here, fext and fcol ∈ R6n represent the external and contact forces, M ∈ R6n×6n is the mass

matrix and L ∈ R6n×6n maps velocity v to time-derivative of position q.

8

We model fcol using Coulomb’s model of friction coupled with complementarity model of

contact [11]. Suppose there are m pairs of bodies that are in contact. Consider the i-th such

pair; we decompose the contact force acting on this pair along three directions: one normal

to the contact plane and the other two mutually orthogonal spanning the plane. Let γ̂i,n, γ̂i,1

and γ̂i,2 be the magnitudes of these components; suppose di,n, di,1 and di,2 ∈ R6n represent

these directions in our generalized coordinate system. We can assume γ̂i,n ≥ 0 without loss

of generality. Then,

(2.2) fcol =
m∑
i=1

γ̂i,ndi,n + γ̂i,1di,1 + γ̂i,2di,2 =
m∑
i=1

Diγ̂i = Dγ̂

is the total force due to all the contacts. Here

(2.3) γ̂ = (γ̂1, . . . , γ̂m), γ̂i = (γ̂i,n, γ̂i,1, γ̂i,2)

is the vector of pairwise contact forces, and

(2.4) D =

[
D1 · · · Dm

]
, Di =

[
di,n di,1 di,2

]

is the so called contact transformation matrix.

In the Coulomb model of friction, each contact force lies in a convex cone defined by the

coefficient of friction µi,

(2.5) Ci =
{
γ̂i ∈ R3 :

√
γ̂2
i,1 + γ̂2

i,2 ≤ µiγ̂i,n

}
.

The frictional components satisfy a maximum dissipation condition

(2.6) (γ̂i,1, γ̂i,2) = argminγ̂i∈Ci(γ̂i,1di,1 + γ̂i,2di,2)>v.

This maximizes the energy loss by ensuring the local frictional force points opposite to the

9

relative velocity of the particles.

The complementarity condition implies contact force γ̂i is inactive unless the i-th pair of

bodies comes into contact. Let φi(q) be the distance between these bodies in configuration

q. Then, γ̂i,n ≥ 0, φi(q) ≥ 0 and γ̂i,nφi(q) = 0. These three conditions are denoted together

by

(2.7) 0 ≤ γ̂i,n ⊥ φi(q) ≥ 0.

The full model for our system’s dynamics is the differential variational inequality (DVI)

problem:

Mv̇ = fext +Dγ̂(2.8a)

0 ≤ γ̂i,n ⊥ φi(q) ≥ 0(2.8b)

(γ̂i,1, γ̂i,2) = argminγ̂i∈Ci(γ̂i,1di,1 + γ̂i,2di,2)>v(2.8c)

q̇ = Lv(2.8d)

2.2.2 Discretization and Cone Complementarity

We use a semi-implicit Euler time-stepping scheme to discretize the DVI (2.8). Given position

qk and velocity vk at the k-th time-step with step-size h, we obtain qk+1 and vk+1 by solving

a nonlinear complementarity problem (NCP)

vk+1 = vk +M−1(hfext +Dγ)(2.9a)

0 ≤ γi,n ⊥ φki /h+ d>i,nv
k+1 ≥ 0(2.9b)

(γi,1, γi,2) = argminγi∈Ci(γi,1di,1 + γi,2di,2)>vk+1(2.9c)

qk+1 = qk + hLvk+1(2.9d)

10

In (2.9a), we use γ = hγ̂ as the impulse vector. The right hand side of (2.9b) is obtained

by discretizing φk+1
i using a forward Euler scheme and dividing it by h for better numerical

stability (this avoids small floating point numbers).

In general, NCPs are very difficult to solve numerically. However, [11] introduces a

relaxation

(2.10) 0 ≤ γi,n ⊥ φki /h+ d>i,nv
k+1 − µi

√
(d>i,1v

k+1)2 + (d>i,2v
k+1)2 ≥ 0

of the complementarity condition (2.9b) that leads to a cone complementarity problem (CCP)

(2.11) C 3 γ ⊥ g = Aγ + b ∈ C∗

where C = C1 ⊕ · · · ⊕ Cm, C∗ = C∗1 ⊕ · · · ⊕ C∗m,

A = [A1; . . . ;Am] b = [b1; . . . ; bm](2.12)

Ai = D>i M
−1D bi = Φi/h+D>i v̂(2.13)

v̂ = vk + hM−1fext Φi = (φki , 0, 0)(2.14)

and C∗i = {gi ∈ R3 : γ>i gi ≥ 0} is the dual cone of Ci. A detailed derivation can be found in

[11]. We denote, with gi = Aiγ + bi,

(2.15) γ ⊥ g ⇐⇒ γ>i gi = 0 for all i = 1 : m.

It can be shown that as time-step h → 0, the solution of the CCP approaches that of the

NCP [9, 11].

11

2.3 Solution of the Complementarity Problem

In [75], the authors compare performance of several solvers for the CCP (2.11). They con-

clude that accelerated projected gradient descent (APGD) and symmetric cone interior point

(SCIP) methods are best among the first order and second order solvers, respectively. In

this section, we briefly outline these methods.

2.3.1 Accelerated Projected Gradient Descent

It was shown in [11] that (2.11) represents the Karush-Kuhn-Tucker (KKT) optimality con-

ditions for a cone constrained quadratic optimization problem:

(2.16) minimize f0(γ) =
1

2
γ>Aγ + b>γ subject to γ ∈ C.

Gradient descent algorithms are perhaps the simplest family of iterative solvers for this

convex optimization problem. At each iteration step, one simply moves along the steepest

descent direction (opposite to the current gradient).

We implement the scheme proposed by Nesterov [82]. It accelerates the slow convergence

of the ordinary gradient descent scheme by utilizing the concept of momentum. Essentially,

at each step, the gradient information from previous iterations is used to modify the step

direction: starting with θ0 = 1 and y0 = γ0, we repeat

γk+1 = yk − αk∇f0(yk)(2.17)

θk+1 =
θk
√

(θk)2+4−(θk)2

2
(2.18)

βk+1 = θk(1−θk)
(θk)2+θk+1(2.19)

yk+1 = γk+1 + βk+1(γk+1 − γk)(2.20)

We choose the step-size parameter αk based on local properties of f0. Let L be the local

12

Lipschitz constant satisfying

(2.21) f0(y) ≤ f0(yk) +∇f0(yk)>(y − yk) +
L

2
‖y − yk‖2

2.

Then, a choice of αk ≤ 1/L ensures that Nesterov’s algorithm achieves optimal convergence

rate among first order methods. We estimate L at the beginning of each APGD iteration

using a standard line search: starting from an initial choice of L, it is repeatedly doubled

until (2.21) is satisfied for y = γk+1.

For constrained convex optimization problems, we can extend this accelerated gradient

descent algorithm. We simply project the iterates γk onto the feasible set:

(2.22) γk+1 = ΠC
(
yk − αk∇f0(yk)

)
.

Here ΠC is the orthogonal projection operator onto C. This modified algorithm is the accel-

erated projected gradient descent (APGD) method.

2.3.2 Symmetric Cone Interior Point Method

The symmetric cone interior point (SCIP) method solves the CCP (2.11) by utilizing the

Jordan algebraic structure on R3 [56]. We define the Jordan product

(2.23) xi ◦ yi = 1√
2
(x>i yi, xi,nyi,1 + xi,1yi,n, xi,nyi,2 + xi,2yi,n)

for xi = (xi,n, xi,1, xi,2), yi = (yi,n, yi,1, yi,2) ∈ R3. The unit element is ei = (
√

2, 0, 0). We

define the symmetric cone

(2.24) Ki = {xi ◦ xi : xi ∈ R3} = {xi : xi,n ≥ (x2
i,1 + x2

i,2)1/2}.

13

Let K = K1 ⊕ · · · ⊕ Km. Define the maps

(2.25) Tx = diag(. . . , µi, 1, 1, . . .), Ty = diag(. . . , 1, µi, µi, . . .).

Denote Ā = TyAT
−1
x and b̄ = Tyb. Then the CCP (2.11) is equivalent to

(2.26) K 3 x ⊥ y = Āx+ b̄ ∈ K with x = Txγ, y = Tyg.

The corresponding optimization problem is given by

(2.27) minimize x>y subject to x, y ∈ K.

As per [56], we define the barrier function for the double cone K∪ (−K), which gives rise

to the potential function

f(x, y) = ρ log (x>y) + fcen(x, y),(2.28)

fcen(x, y) = 2m log
x>y/m

2
∏m

i=1[det(xi) det(yi)]1/2m
.(2.29)

Here det(xi) = 1
2
(x2

i,n − x2
i,1 − x2

i,2) and ρ > 0 is the barrier parameter. The logarithmic

barrier fcen penalizes values close to the boundary.

We construct a sequence (xk, yk) that approaches the optimal value strictly from the

interior point of the feasible set. We enforce fcen(xk, yk) = 0; then the cost function decreases

as rapidly as the sequence approaches the boundary. These points lie on the central path,

where h(xk, yk) = xk ◦ yk−αe = 0 for some α > 0 (the Jordan product and the unit element

is extended per-contact). We apply Newton step to the function h with decreasing α; the

14

search direction is obtained by solving

(2.30)

∇xh(xk, yk) ∇yh(xk, yk)

Ā −I


∆x

∆y

 =

αe− xk ◦ yk
~0

 .
To start the iteration, we require a strictly feasible pair (x0, y0). A well-known pro-

cedure to achieve this involves adding one artificial variable, augmenting the 3m-variable

complementarity problem to a 3m+1 variable problem with a straight-forward solution [56].

As the iterates approach the boundary of the feasible set, the linear system becomes

increasingly ill-conditioned. This issue can be resolved by applying Nesterov-Todd scaling

[81], which rescales the space in which the symmetric cone lies. This leads to a linear system

of the form

(2.31) [Ā+ P (w)]∆x = r

where P (w) is 3 × 3 block-diagonal and r ∈ R3m is a vector obtained from reducing the

Newton system using Schur’s complement [56]. The i-th block of P is given by

(2.32) Pi(wi) = wiw
>
i − det(wi)J

with J = diag(1,−1,−1) and

(2.33) wi =
yki + λiJx

k
i√

(xki)
>yki + 2

√
det(xki) det(yki)

, λi =

√
det(yki)

det(xki)
.

Once we solve for the search direction ∆x and ∆y, we pick a step-size θ ∈ (0, 1] such

that xk + θ∆x, yk + θ∆y ∈ int(K); we use a standard backtracking line search. Finally, we

update the iterates:

(2.34) xk+1 = xk + θ∆x, yk+1 = yk + θ∆y.

15

2.3.3 Convergence Criteria

We choose our convergence criteria based on the original CCP (2.11) following [56, 75]. Given

a primal-dual pair (γ, g) with g = Aγ + b, we compute three residuals

• rp ∈ Rm measures violation of the primal constraint:

(2.35) rp,i = max{0, (γ2
i,1 + γ2

i,2)1/2 − µiγi,n}

• rd ∈ Rm measures violation of the dual constraint:

(2.36) rd,i = max{0, (g2
i,1 + g2

i,2)1/2 − gi,n/µi}

• rc = |γ>g|/m measures violation of the complementarity condition.

We stop the iterative solvers when the residual reaches some prescribed tolerance:

(2.37) max
{
‖rp‖∞, ‖rd‖∞, rc

}
< τres

2.4 Parallel Implementation

2.4.1 Spatial Partitioning

Simulation of large-scale particulate systems is ultimately limited by memory, as storing all

bodies in the same processor becomes intractable. The message passing interface (MPI)

library provides a well-known framework to overcome this; data associated to the set of

bodies must be partitioned among the available MPI processes in a way that minimizes

communication between them, e.g. when determining particle pairs likely to collide in the

next time-step. Minimizing this communication overhead is crucial in designing fast rigid

body simulations.

16

One way to ensure minimal communication is by ensuring that spatially close bodies

end up on the same MPI process. One can achieve this very naturally by using tree based,

hierarchical spatial partitioning schemes, e.g. octree, k-D tree [96]. In our implementation,

we use a Morton-code based octree partitioning scheme [21]; it achieves good spatial locality

with very low computational cost.

Morton ranking induces linear order on a multi-dimensional particle cloud. As an ex-

ample, let us consider a point (x1, x2, x3) ∈ [0, 1)3 in three dimensions. Given the k-length

binary expansions of the coordinates xi = 0.bi1 . . . bik, we compute the 3k-bit Morton index

by interleaving the bits: I = b31b21b11 . . . b3kb2kb1k. Sorting the particle cloud according to

these indices creates a zigzag ordering of the points (see Figure 2.1) and ensures that points

that are close in Morton order are also spatially nearby.

Once the list of bodies is sorted according to their Morton ranks, we partition this list

equally, and assign each part to one MPI rank. Figure 2.2 illustrates this partitioning for

40,000 unit spheres, contained in a 100× 100× 50 box, among 4 MPI processes.

2.4.2 Collision Detection

Once bodies are assigned to MPI processes, we construct the collision pairs. This is done

in two phases. In the broad phase, the list of potential contacts within each MPI rank is

pruned by re-using the octree structure from the partitioning phase, and eliminating pairs

of bodies that are far away. In the narrow phase, we test for contact between the true rigid

bodies. This brings down the O(n2) complexity of the naive algorithm to O(n log n), where

n is the number of bodies in a MPI process. We further accelerate this by using OpenMP

task-based parallelism. For inter-process collisions, we assign the collision pair i = (i1, i2),

i1 < i2 to the MPI process containing the i1-th body.

17

0000 0001

0010 0011

0100 0101

0110 0111

1000 1001

1010 1011

1100 1101

1110 1111

00 01

10 11

Figure 2.1: Example of Morton ordering in two dimensions. (Left) Construction of Morton IDs
by interlacing binary expansion of coordinates, and the Z-order on the second level discretization.
(Right) A point cloud with octree bounding boxes and imposed Morton ordering on the points. We
show ‘equi’-partition of the body list into two parts using different colors.

Figure 2.2: Distribution of 40,000 spheres with unit radius in a 100×100×50 box (volume fraction
' 33.5%), among 4 MPI processes, using Morton coding. The spheres belonging to the last rank
are suppressed in the figure to emphasize interface structure.

18

2.4.3 Collision Resolution

For each collision pair i, we store distance φki , unknown impulse γi and contact transformation

matrix Di on the same MPI rank that contains the collision pair. We use a distributed

memory linear algebra library to manage the different parts of the distributed vectors Φ and

γ, and the distributed matrix D.

In APGD, the main bottleneck is matrix-vector multiplications (mat-vec) with the col-

lision matrix A = D>M−1D. We need one mat-vec per iteration to compute the gradient

g = Aγ + b. Additionally, in every iteration, we use a backtracking search to estimate the

Lipschitz constant; this requires one mat-vec per backtracking step.

We exploit the sparsity structure of the three factor matrices to create an efficient mat-vec

implementation. For granular media simulations, the mass matrix M is 6×6 block diagonal,

and the columns of D contain at most 12 non-zero entries (6 per body in the corresponding

collision pair). This allows us to store M−1 and D> in compressed row storage (CRS)

format. The partitioning of the bodies and collision pairs among the MPI ranks also induce

a natural partitioning of the rows of these matrices among the MPI processes. As long

as γ is partitioned using the same schemes, matrix vector multiplication will be fast (see

Figure 2.3).

In SCIP, the bottleneck is solving a linear system at each iteration. We currently use a

direct sparse LU factorization of matrix A; for this purpose, we must build it explicitly.

The sparsity structure of A is dependent on contact structure; the 3× 3 non-zero blocks

correspond to contacts that share a body. In [24], a tensor train preconditioner exploiting

this structure was proposed as an acceleration for IP methods. We aim to implement this in

our hybrid MPI/OpenMP framework in future work.

19

1

2
3

4
5 6

7

8

9 10

11
12

13
14

15

1 2

3

4

5 6

7 8 9

10

11

12 13

14 15

16
17

18

19

20

(a)

D> M−1 D

A γ

(b)

Figure 2.3: Example of distributed construction of the collision matrix. (a) Distribution of 15
bodies (left) with 20 collision pairs (right) among 3 MPI ranks. The colors indicate which rank
owns the bodies/collision pairs. (b) Sparsity structure of the corresponding collision matrix (solid
dots indicate non-zero blocks). The inverse mass matrixM−1 is 6×6 block diagonal. The columns of
the contact transformation matrix D encode information about collision pairs. E.g. the 8th collision
occurs between bodies 5 and 6; this corresponds to non-zero 6× 3 blocks in the 8th ‘column’.

20

2.5 Numerical Experiments

In this section, we describe the results from the numerical experiments we conducted to

investigate the performance and scalability characteristics of our implementation of cone-

complementarity collision solver.

2.5.1 Architecture and Implementation

We ran our simulations on the Flux and Great Lakes clusters at University of Michigan.

Each compute node in Flux is equipped with two 12-core 2.5 GHz Intel Xeon E5-2680 v3

processors and 128 GB RAM. Compute nodes in Great Lakes are equipped with two 18-core

3.0 GHz Intel Xeon Gold 6154 processors and 192 GB RAM.

The code is written in C++ and is built on top of Trilinos [44], Msgpack [36], Eigen [40]

and TRNG [14] libraries. The Trilinos library provides a large number of data structures

to manage distributed vectors and sparse matrices and implements efficient sparse mat-

vecs. It also provides an interface to the SuperLU direct solver package [64]. Msgpack

is a binary serialization library; we use it to facilitate interchange of rigid bodies between

MPI processes. We use the three dimensional vectors and quaternion classes from the Eigen

library to capture the motion of the rigid bodies. Finally, we use TRNG to set up the random

initial configurations (e.g. radius and location of the spheres).

2.5.2 Simulation Setup

In our experiments, we simulate sedimentation of rigid bodies under gravity. Our setup is

very simple: we place a large number of spheres (radius = 0.01 m) inside a 3D rectangular

box, and release them from rest. The spheres experience constant acceleration due to gravity

(g = 9.81 m/s2). In the course of the simulation, the spheres collide with each other and

with the interior walls of the box.

21

Table 2.1: Number of iterations required to reach prescribed residual tolerance for APGD and SCIP
solvers for two different moderate-scale sedimentation simulations.

Number of Spheres

25,000 100,000

Residual APGD SCIP APGD SCIP

τres = 10−1 409 45 435 47

τres = 10−2 433 50 451 52

τres = 10−3 470 54 506 56

τres = 10−4 509 57 521 58

2.5.3 Comparison of APGD and SCIP Solvers

We compared our APGD and SCIP implementations on simulations with 25,000 and 100,000

rigid bodies. We keep the number of collisions proportional to the number of bodies; we fix

the box height at 0.5 m and assign 0.04 m2 base area per thousand spheres. The spheres

occupy approximately 20.94% of the box volume. We allow a maximum of 10,000 solver

iterations per timestep, and choose a timestep of h = 10−3 s. We run these simulations on

a single node of the Flux cluster using 16 cores.

Table 2.1 records the number of iterations required to reach a prescribed tolerance in one

timestep. As we can see, SCIP converges using fewer iterations compared to APGD, which

is consistent with the findings in [75]. However, since each SCIP iteration requires a linear

solve, APGD converges faster w.r.t. walltime: each SCIP iteration step with a direct linear

solver takes hours compared to the minutes for the APGD iteration steps.

2.5.4 Scalability of APGD Solver

We tested the scalability of the collision detection and resolution phases of our algorithm,

using the APGD iterative solver. We used a timestep size h = 2.5×10−3 s, residual tolerance

τres = 10−2 and allowed a maximum 100,000 solver iterations. In these simulations, the box

height was 0.6 m and 0.036 m2 base area was assigned per thousand spheres (approximately

22

4 8 16 32 64 128 256
Number of Cores

0.5

1.0

2.0

4.0

8.0

16.0

32.0

C
ol

lis
io

n
D

et
ec

tio
n

Ti
m

e
(s

)
1 M
2 M
4 M
8 M
16 M
32 M
64 M
128 M

Figure 2.4: Scalability of collision detection algorithm. The solid lines connect simulations with
same problem size (strong scaling), and the dashed lines connect simulations with same problem
size per core (weak scaling).

19.39% volume fraction). Since our primary goal is to test performance of the distributed

memory aspect, we only use 4 cores per node in these simulations. We ran these on the

Great Lakes cluster.

We ran an array of simulations using 1 to 128 million particles and 4 to 256 cores.

The scaling results for the collision detection and collision resolution phases are shown in

Figure 2.4 and Figure 2.5, respectively. Solid lines in the figures connect simulations with

the same problem size (strong scaling). We observe that time required to solve a fixed size

problem drops as fast as the number of processors is increased.

The dashed lines in these two figures connect simulations with the same number of

bodies per core (weak scaling). We see that the collision detection time remains almost

constant as we increase the number of cores (and the problem size), demonstrating near-

perfect scalability. On the other hand, collision resolution times increase slowly with the

number of cores. The main reason for this is: as we increase the problem size, the number

of APGD iterations required for convergence also increases (see Table 2.2). This results in

23

4 8 16 32 64 128 256
Number of Cores

25.0

50.0

100.0

200.0

400.0

800.0

1600.0

3200.0

C
ol

lis
io

n
R

es
ol

ut
io

n
Ti

m
e

(s
)

1 M
2 M
4 M
8 M
16 M
32 M
64 M
128 M

Figure 2.5: Scalability of collision resolution algorithm with APGD optimization solver. The solid
lines connect simulations with same problem size (strong scaling), and the dashed lines connect
simulations with same problem size per core (weak scaling).

Table 2.2: Average iteration count of APGD in weak scalability tests. As we vary the number of
particles and the number of cores while keeping the amount of work per core approximately the
same, we see a slight increase in the number of iterations before APGD converges.

Cores 4 8 16 32 64 128 256

Spheres (×106) 2 4 8 16 32 64 128

Collisions (×106) 5 10 19 39 77 155 309

Iterations 713 763 748 788 836 803 832

longer collision resolution time. Nonetheless, we note that the rate of increase in collision

resolution time is considerably slower than the increase is problem size (less than 2-fold

increase in runtime compared to 64-fold increase in problem size).

Our largest simulation was a sedimentation test with 256 million bodies. We ran it on

the Flux cluster with 64 nodes, each node using 8 cores (a total of 512 cores), with timestep

h = 2.5 × 10−3 s and tolerance τres = 5 × 10−2. On average, 324 million contacts were

detected in 2 minutes, and collisions were resolved in 24 minutes per time step.

24

2.6 Conclusions

Simulating the dynamics of a system of rigid bodies with the CCP formulation of fric-

tional contact involves efficient collision detection and the solution of a second order cone-

constrained quadratic optimization problem. In this article, we proposed a framework for

this problem featuring a hybrid distributed/shared memory computing model in both stages.

We used the Morton ordering to partition the rigid bodies among MPI ranks. This

imposes data locality, that is, bodies that are located close to each other end up on the

same rank. In turn, this limits the communication overhead in the collision detection phase

significantly. Our experiments show that this phase scales almost perfectly with the number

of processors.

Using a very simple strategy to divide the collision pairs among MPI ranks, we ensure

proper load balancing. We implemented distributed memory versions of the accelerated

projected gradient descent (APGD) and symmetric-cone-interior point (SCIP) solvers for the

optimization problems exploiting the sparsity structure of the collision matrix. Additionally,

we built in shared memory parallelism within each MPI rank using OpenMP, providing

additional acceleration for these solvers.

The first order APGD solver relies on matrix-vector products for the collision matrix,

with performance reliant on the efficiency of Lipschitz constant estimation and growth of

iteration counts with problem size. Overall, this solver shows extremely good scaling and

performance.

The second order SCIP solver relies on the solution of a sparse linear system per iteration,

resulting in costly solution for large numbers of collisions. Consequently, our implementation,

while being more robust compared to the first order APGD solver, cannot compete in terms

of performance. In future work, we plan to incorporate a tensor-train preconditioned iterative

linear solve in our hybrid computing framework.

25

CHAPTER 3

Fast Solvers for Stokes Boundary Integral Equations in

Axisymmetric Geometries via Fourier Decoupling

Preamble. This chapter focuses on developing a fast simulator for three-dimensional

Stokes flows past axisymmetric bodies. We transform the Stokes integration kernels into

a rotationally invariant form using a linear transformation, and decouple the transformed

kernels using the Fourier series. Combining a panel based high-order accurate 1D quadrature

scheme with trapezoid rule along the azimuthal direction, we can solve the Stokes boundary

integral equations quickly and accurately. This is ongoing work with Shravan Veerapaneni.

3.1 Introduction

Fluid flows laden with microscopic rigid and/or deformable particles are ubiquitous in bio-

logical and industrial systems; examples include blood flow [99], bacterial suspensions [32]

and microfluidic chips [55]. At these length scales, especially if the flow is very slow or

highly viscous, the Reynolds number is typically close to zero and the viscous and pressure

forces dominate over any inertial or advective inertial forces, and the full Navier-Stokes flow

reduces to the Stokes equations [90]:

∇2u = ∇p, ∇ · u = 0.(3.1)

26

Here u and p are the velocity and pressure fields of the fluid. This system of equations

constitutes a linear and constant-coefficient system of elliptic partial differential equations

(PDEs). Despite this relatively simple nature of the governing equations, Stokes flow tends

to behave in unusual ways, especially in complex and/or moving geometries, e.g. particulate

flows. Apart from laboratory experiments, numerical simulations provide the best way to

study the behavior of these systems.

Traditional numerical solvers based on the finite element method (FEM) are not suitable

for solving the Stokes PDEs in complex geometries. First, mesh generation for the entire

fluid domain with arbitrary particle boundaries is a complex task, one we have to repeat

at every timestep when the particles are dynamic. Additionally, when the particles are

close by, resolving the interaction accurately might require a very dense mesh. In contrast,

the methods based on boundary integral equation (BIE) formulation take advantage of the

linear and elliptic structure of the PDEs and only solve for the flow-field generating unknown

densities on the particle boundaries. This immediately reduces the number of unknowns by

reducing the dimensionality of the problem by one. Additionally, assuming the particle

deformations are not extreme, there is no need to change the quadrature schemes associated

with the particles throughout the course of the simulation. Further, the linear systems

obtained from the BIEs are typically well-conditioned, especially if the integral equations

are of the second kind [60]. We can therefore use iterative solvers to efficiently solve these

linear systems within a few iterations. Finally, the state-of-the-art fast multipole method

(FMM) can be leveraged to construct efficient far-body interaction evaluations [39], leading

to high-performance of these iterative solutions schemes even for dense suspensions.

One of the drawbacks of the BIE approach is that the kernels of the integral equations

under consideration are typically singular. While it is possible to develop quadrature schemes

for integral operators on arbitrary two-dimensional surfaces, the order of decay in error of

these schemes are typically low. However, it is possible to leverage symmetries of the particles

to simplify the problem. For instance, in [26], the authors demonstrate that the Stokes

27

integral operators on spherical bodies diagonalize in the vectorized spherical harmonics basis.

This leads to very accurate evaluation of the layer potentials even when the particles are

nearby.

Simulation of Stokes equations in axisymmetric geometries is of great interest in biologi-

cal systems. For instance, the pressure-driven motion of red blood cells through capillaries is

often approximated using rotationally symmetric geometries. However, these models impose

a fully axisymmetric assumption on the fluid-flow which is absent in more complex fluid-

structure interactions. We aim for a more general scheme which can solve Stokes equations

in rotationally symmetric domains, even when the flow itself is not necessarily fully axisym-

metric. We use the Fourier series to decouple the surface BIE into a sequence of BIEs on a

planar curve; this approach has been developed and tested for the Laplace [87], Helmholtz

[87, 43] and Maxwell [33] boundary integral operators. Unfortunately, the Stokes integral

kernels do not satisfy an invariance property necessary for the decoupling out-of-the-box. To

address this, we developed a transformation which can put the Stokes kernels in the required

form. Based on this observation, we design a O(N2) scheme for solving the Stokes BIEs,

where N is the total number of quadrature nodes on the axisymmetric surface. This is a

fundamental improvement over the O(N3) complexity of directly solving the surface BIEs.

We also combine our method with FMM to construct a solver for Stokes flow generated by

multiple axisymmetric particles with arbitrary axes of symmetry.

The rest of the chapter is structured as follows. In Section 3.2, we review the BIE formu-

lation for the Stokes flow. Section 3.3 outlines the Fourier decoupling process for a general

rotationally invariant kernel and the discretization of the resulting integral equations. In Sec-

tion 3.4, we derive the analytic formulas for evaluation of modal Stokes kernels. Section 3.5

combines our numerical scheme with FMM to simulate multibody systems. In Section 3.6 we

report results from our numerical simulations, and in Section 3.7, we present our concluding

remarks.

28

3.2 Boundary Integral Formulation of the Stokes Flow

We present a very brief introduction to the BIE formulation for Stokes equations and set

up the boundary value problems; for a detailed exposition of the associated theory, see

[61, 90, 51].

3.2.1 Integral Kernels and Operators

Consider a closed, bounded, orientable surface Γ of class C2. Let ν : Γ → R3 denote the

outward unit normal field on this surface. Denote the interior and exterior domains of this

surface by D− and D+. We define the Stokes single layer velocity and pressure potentials as

VSi [ρ](x) =

∫
Γ

V S
ij (x, x′)ρj(x

′) dΓ(x′)(3.2)

PS[ρ](x) =

∫
Γ

P S
j (x, x′)ρj(x

′) dΓ(x′)(3.3)

and the Stokes double layer velocity and pressure potentials as

VDi [µ](x) =

∫
Γ

V D
ijk(x, x

′)µj(x
′)νk(x

′) dΓ(x′)(3.4)

PD[µ](x) =

∫
Γ

PD
jk(x, x

′)µj(x
′)νk(x

′) dΓ(x′)(3.5)

where ρ, µ : Γ→ R3 are continuous density functions.

Here (V S, P S) and (V D, PD) are the free-space Green’s functions with different kind of

singularities at source point x′. We adopt the explicit expressions for these functions from

[90]: the Stokeslet is given by

V S
ij (x, x′) =

1

8π

[
δij
|x̄|

+
x̄ix̄j

|x̄|3

]
(3.6)

P S
j (x, x′) =

1

4π

x̄j

|x̄|3
(3.7)

29

and the stresslet is given by

V D
ijk(x, x

′) =
3

4π

x̄ix̄jx̄k

|x̄|5
(3.8)

PD
jk(x, x

′) =
1

2π

[
− δjk
|x̄|3

+ 3
x̄jx̄k

|x̄|5

]
(3.9)

Here, for brevity, we denote x̄ = x− x′.

Now, let us define the neighborhood Γc = {x+ tν(x) ∈ R3 : x ∈ Γ,−c < t < c} of the

surface Γ. For sufficiently small c, we can continuously extend the normal field ν to Γc. In

this neighborhood, we define the traction potentials associated with the single and double

layer formulations as

T Si [ρ](x) =

∫
Γ

T Sijl(x, x
′)ρj(x

′)νl(x) dΓ(x′)(3.10)

T Di [µ](x) =

∫
Γ

TDijkl(x, x
′)µj(x

′)νk(x
′)νl(x) dΓ(x′)(3.11)

The integration kernels are given by

T Sijl(x, x
′) = − 3

4π

x̄ix̄jx̄l

|x̄|5
,(3.12)

TDijkl(x, x
′) =

1

4π

[
2δijδkl

|x̄|3
+

3(δikx̄jx̄l + δilx̄jx̄k + δjkx̄ix̄l + δjlx̄ix̄k)

|x̄|5
− 30x̄ix̄jx̄kx̄l

|x̄|7

]
(3.13)

3.2.2 Jump Conditions at the Boundary

The layer potentials (VS[ρ],PS[ρ], T S[ρ]) and (VD[µ],PD[µ], T D[µ]) are well defined when-

ever x 6∈ Γ; in fact they are analytic in D− and D+. Moreover, since Stokes equations are

linear and the layer potentials are convolutions of the fundamental solutions against density

functions, they define Stokes flow fields in these domains. This observation allows us to pose

certain Stokes boundary value problems as equivalent BIEs defined on the surface.

For this purpose, we need to be able to evaluate the layer potentials when the target x

30

is on the surface Γ; this involves computing integrals with singular kernels. Additionally,

to match boundary data, we need to be able to take limits of the layer potentials as the

target approaches the surface from the interior and exterior. To keep our notation clean,

we introduce the following scheme: when we write, for example, VS[ρ](x) with x ∈ Γ, it is

understood that the integral is interpreted as an appropriate improper integral. Additionally,

we use VS±[ρ](x) with x ∈ Γ to denote the one-sided limits

(3.14) VS±[ρ](x) = lim
h→0+

VS[ρ](x± hν(x))

It can be shown that the single layer velocity potential VS[ρ], single layer traction poten-

tial T S[ρ] and double layer velocity potential VD[µ] have weakly-singular kernels, and the

integrals exist in an improper sense. Additionally, they satisfy the jump conditions [90]

VS±[ρ](x) = VS[ρ](x)(3.15)

T S± [ρ](x) = ∓1

2
ρ(x) + T S[ρ](x)(3.16)

VD± [µ](x) = ±1

2
µ(x) + VD[µ](x)(3.17)

for x ∈ Γ. The cases of the other three layer potentials are not as straightforward. The single

layer pressure potential PS[ρ] is singular, whereas the double layer pressure potential PD[µ]

and the double layer traction potential T D[µ] are hyper-singular; they need to be interpreted

as Cauchy principal value integral and Hadamard finite part integrals, respectively. The jump

conditions for these layer potentials are given by [90, 112]

PS±[ρ](x) = ±1

2
ν(x)>ρ(x) + PS[ρ](x)(3.18)

PD± [µ](x) = ±(τ1(x)>µτ1(x) + τ2(x)>µτ2(x)) + PD[µ](x)(3.19)

T D± [µ](x) = T D[µ](x)(3.20)

31

Here τ1(x) and τ2(x) are orthonormal unit vectors spanning the tangent plane of Γ at x ∈ Γ,

and µτ1 , µτ2 are derivatives of µ along these directions.

3.2.3 Boundary Integral Equations

The jump conditions can be used to reformulate Dirichlet boundary value problems as equiv-

alent boundary integral equations. We present two examples:

Problem 3.1. Consider a Stokes flow in the exterior D+ with boundary data

(3.21) u = f on Γ

In the single layer formulation, we assume that the solution flow is generated by some

unknown Stokeslet density ρ on the boundary: u = VS[ρ]. Using the jump condition (3.15)

of the single layer potential, we can rewrite the boundary condition as

(3.22) VS[ρ] = f on Γ

This is a Fredholm integral equation of the first kind defined on the two dimensional surface

Γ. Once we solve for the unknown density ρ, we can use it to generate the flow field in the

exterior D+

u = VS[ρ] in D+(3.23)

p = PS[ρ] in D+(3.24)

or compute the pressure and traction on the fluid at the surface

p+ =
1

2
ν>ρ+ PS[ρ] on Γ(3.25)

t+ = −1

2
ρ+ T S[ρ] on Γ(3.26)

32

Problem 3.2. Now consider a Stokes flow in the interior D− of the surface Γ with the

same boundary data (3.21). Using the double layer formulation, we assume that the flow

is generated by some unknown stresslet density u = VD[µ]. Using the appropriate jump

condition (3.17) across the boundary Γ, we can rewrite the boundary condition as a Fredholm

integral equation of the second kind:

(3.27) − 1

2
µ+ VD[µ] = f on Γ

We prefer this formulation when possible, since the linear systems, constructed from dis-

cretizing Fredholm integral equations of the second kind, are usually well-conditioned. Once

we have numerical approximation of the density µ, we can compute the velocity and pressure

fields in the interior as

u = VD[µ] in D−(3.28)

p = PD[µ] in D−(3.29)

using a suitable quadrature rule.

3.3 Integral Equations on Axisymmetric Surfaces

Development of high-order accurate solvers for BIEs with singular kernels is an active area of

research. In one dimension, many excellent quadrature schemes have been designed to handle

singular integrands, such as Kapur-Rokhlin [54], Alpert [6] and Kolm-Rokhlin [59]. A review

of these quadratures, as well as the comparison of their performance, is available in [41]. By

comparison, singular quadratures for singular integrals on a two-dimensional surface is not

as well developed. Quadrature by expansion (QBX) is a popular method [57, 2, 3, 4, 97],

but schemes based on this approach usually achieve a low order of convergence.

However, when the surface is rotationally symmetric, it is possible to take advantage

33

Figure 3.1: Parametrization of a axisymmetric surface Γ, which is generated by rotating a curve
γ : s 7→ (r, z) about the z-axis; the curve γ is called the generating curve for the surface. The source
and target points, x and x′, are expressed in the cylindrical coordinate system, with x = x(r, z, θ)
and x′ = x(r′, z′, θ′).

the symmetry and reduce the surface BIE into a sequence of curve BIEs. We can then use

the high-order quadrature schemes designed for singular one-dimensional integrals. This ap-

proach has been utilized to device fast and accurate solvers for the Laplacian [87], Helmholtz

[87, 43] and Maxwell [33] equations. Here, we give a brief overview of this approach.

3.3.1 Fourier Mode Decomposition

Consider a scalar Fredholm BIE of the second kind (the case of vector valued BIEs is anal-

ogous)

(3.30) τ +A[τ] = f with A[τ](x) :=

∫
Γ

A(x, x′)τ(x′) dΓ(x′)

34

defined on a smooth surface of revolution Γ, i.e. it is obtained by rotating a planar curve

γ : [0, 1]→ R+×R about the z-axis (see Figure 3.1). In this situation, it is natural to choose

cylindrical coordinates (r, z, θ) and (r′, z′, θ′) to parametrize the points x and x′, respectively.

In Cartesian coordinates, the components are then expressed by

(3.31) x =


r cos θ

r sin θ

z

 and x′ =


r′ cos θ′

r′ sin θ′

z′


It is easy to see that in this new coordinate system, the boundary density τ and boundary

data f become 2π-periodic functions of the azimuthal angle, and can be expressed in a Fourier

series:

(3.32) τ(x) =
1√
2π

+∞∑
n=−∞

τn(s)einθ and f(x) =
1√
2π

+∞∑
n=−∞

fn(s)einθ

where s 7→ (r, z) parametrizes the generating curve γ. Let us further assume that the kernel

is rotationally invariant, i.e. it only depends on the difference of the azimuthal angles of the

source and target points:

(3.33) A(x, x′) = A(θ − θ′, s, s′)

Under this assumption, we can also write down a Fourier series for the kernel

(3.34) A(x, x′) =
1√
2π

+∞∑
n=−∞

An(s, s′)ein(θ−θ′)

Then the BIE (3.30) is equivalent to a series of integral equations defined on the generating

curve [87]:

(3.35) τn +An[τn] = fn where An[τn](s) =
√

2π

∫
γ

An(s, s′)τn(s′)r(s′) dγ(s′)

35

and the solution to (3.30) can be constructed as

(3.36) τ(x) =
1√
2π

∞∑
n=−∞

(I +An)−1[fn](s)einθ

In practice, we truncate the Fourier series at a cutoff frequency nf . Thus, we choose to

solve the problem with an approximate boundary data

(3.37) fapprox(x) =
1√
2π

nf∑
n=−nf

fn(s)einθ

Our approximate solution is then given by

(3.38) τapprox(x) =
1√
2π

nf∑
n=−nf

(I +An)−1[fn](s)einθ

In [87], the authors showed that under certain assumptions on the integral operator A, the

error in the boundary density is of the same order as the truncation error in the boundary

data as long as nf is large enough.

3.3.2 Singular Nyström Quadrature Schemes on Smooth Curves

We follow [41] in constructing a high-order modified Gauss-Legendre quadrature scheme for

singular integrals of the form (3.35) on the generating curve. Note that by parametrizing

the curve γ : [0, 1]→ R+ × R, we can rewrite the integral over the curve as

An[τn](s) =
√

2π

∫
γ

An(s, s′)τn(s′)r(s′)dγ(s′)

=

∫ 1

0

[√
2πAn(s, s′)r(s′)|γ̇(s′)|

]
τn(s′) ds′

(3.39)

where γ̇(s) is derivative of γ(s) w.r.t. the curve parameter s. To simplify notation, we

combine the terms inside the parenthesis into a single function and drop the Fourier mode

36

subscripts:

(3.40) g(s) =

∫ 1

0

B(s, s′)τ(s′) ds′

Now, we partition [0, 1] into np panels Ik, and implement 10th-order Gauss-Legendre quadra-

ture scheme for each of these panels; this leads to the following discretization

g(s
(k)
i) =

np∑
l=1

∫
Il

B(s
(k)
i , s)τ(s) ds

≈
np∑
l=1

10∑
j=1

B(s
(k)
i , s

(l)
j)w

(l)
j τ(s

(l)
j)

(3.41)

where {(s(k)
i , w

(k)
i) : 1 ≤ i ≤ 10} are the standard Gauss-Legendre quadrature nodes and

weights for the panel Ik with 1 ≤ k ≤ np.

While this simple quadrature rule works very well for continuous kernels, we cannot eval-

uate the kernel when the source and target nodes are in nearby panels (k ≈ l). In this sit-

uation, specially constructed Kolm-Rokhlin auxiliary nodes and weights {(s(l)(k,i)
j , w

(l)(k,i)
j) :

1 ≤ j ≤ m} that depend on the target panel k and node i are used to evaluate the integral

over the panel [59]

(3.42)

∫
Il

B(s
(k)
i , s)τ(s) ds ≈

m∑
j=1

B(s
(k)
i , s

(l)(k,i)
j)w

(l)(k,i)
j τ(s

(l)(k,i)
j)

The function τ is computed at these auxiliary nodes using Lagrange interpolation. In our

setup, a value of m = 20 is used when Ik and Il are the same panel, and m = 24 when Ik

and Il are neighboring panels. In all other cases, the standard quadrature is used.

37

3.3.3 Overview of the Algorithm

We are now in a position combine all the pieces described in this section, and construct the

full algorithm. Suppose that we want to solve the BIE (3.30)

(3.43) τ +A[τ] = f

on the axisymmetric surface Γ. Our input is boundary data f , number of panels np and

cutoff frequency nf . We solve the Fourier decoupled BIEs (3.35) on the generating curve γ

(3.44) τn +An[τn] = fn, −nf ≤ n ≤ nf

and construct the boundary density τ using the solved Fourier modes τn. The general

structure of our algorithm is as follows:

1. Using a pre-computed Kolm-Rokhlin quadrature rule, create a discretization of the

generating curve γ using np panels. This creates a total 10np standard Gaussian nodes

along the generating curve, and discretizes the modal integral equations as

(3.45) τn + Anτn = fn, −nf ≤ n ≤ nf

2. Compute the kernel matrices An.

3. Compute the Fourier modes fn for the boundary value function. This can be achieved

with O(np) fast Fourier transforms (FFTs) of size O(nf) in O(npnf log nf) operations.

4. Solve O(nf) linear systems of size O(np). Using direct methods, this take O(n3
pnf)

time. However, if we need to solve for boundary density for the same surface, but with

a different boundary condition, we can store the inverses, and during the subsequent

solves, the cost would come down to O(n2
pnf).

38

5. Once we have the Fourier modes τn of the boundary density, we can use inverse fast

Fourier transform (IFFT) to compute the boundary density using O(npnf log nf) op-

erations.

This approach has one major drawback. Computation of the kernel matrices An require

us to evaluate the kernel functions An. However, unlike the full kernel A, we often do not

have access to analytical formulas for these Fourier modes. We can use FFT to compute

approximations to these kernels. However, for the diagonal and near diagonal entries, the

singularity in the kernel A makes the functions t 7→ A(t, s, s′) sharply peaked around t = 0,

and FFT is inaccurate in this regime.

3.4 Rotational Invariance and Evaluation of the Stokes

Modal Kernels

For successful design of fast BIE solvers with rotationally invariant kernels on axisymmetric

geometries, we need some way to compute the near diagonal entries. In [87], the authors

presented analytical expressions for Fourier modes of Laplace and Helmholtz kernels. In [33],

analytical expansions were constructed for Maxwell equations. In this section, we follow a

similar approach and construct analytical expressions for the Stokes kernels.

3.4.1 Rotationally Invariant Forms

None of the kernels in Stokes boundary integral operators (3.2), (3.3), (3.4), (3.5), (3.10) and

(3.11) satisfy the rotational invariance property (3.33). This is because of how the x̄ = x−x′

terms interact with each other; for instance, in the single layer velocity potential (3.2), the

x̄ix̄j terms are not individually rotationally invariant.

Proposition 3.3. Let U(φ) be the linear transformation that rotates any vector in three-

39

dimensional space by angle φ in the clockwise direction about the z-axis,

(3.46) U(φ) =


cosφ sinφ 0

− sinφ cosφ 0

0 0 1


Let x and x′ be two points in the 3D Euclidean space with azimuthal angles θ and θ′ respec-

tively, and denote x̄ = x−x′. Then the entries Uii′(θ)x̄i′ and Ujj′(θ
′)x̄j′ of the vectors U(θ)x̄

and U(θ′)x̄ are rotationally invariant. Consequently the entries Uii′(θ)x̄i′x̄j′Ujj′(θ
′) of the

transformed matrix U(θ)x̄x̄>U(θ′)> are rotationally invariant.

Proof. Note that x 7→ U(φ)x reduces the azimuthal angle of vector x by φ. Since the

azimuthal angle of x is given by θ, it is clear that U(θ)x has zero azimuthal angle. Similarly

U(θ)x′ has azimuthal angle θ′ − θ. Thus

(3.47) U(θ)x̄ = U(θ)x− U(θ)x′ =


r

0

z

−

r′ cos (θ′ − θ)

r′ sin (θ′ − θ)

z′

 =


r − r′ cos t

r′ sin t

z − z′


where we have defined t := θ − θ′. We can write down a similar expression for U(θ′)x̄. It

follows that the entries of

(3.48) U(θ)x̄x̄>U(θ′)> = [U(θ)x̄][U(θ′)x̄]> =


r − r′ cos t

r′ sin t

z − z′



r cos t− r′

r sin t

z − z′


>

are rotationally invariant.

Proposition 3.4. Let U be defined as in Proposition 3.3. Let Γ be a C2 surface created by

rotating a curve γ : s 7→ (r, z) about the z-axis. Then the entries Uii′(θ)νi′(x), Uii′(θ)νi′(x
′),

Uii′(θ
′)νi′(x) and Uii′(θ

′)νi′(x′) of the vectors U(θ)ν(x), U(θ)ν(x′), U(θ′)ν(x) and U(θ′)ν(x′)

40

are rotationally invariant. Consequently the terms νi(x)x̄i = ν(x)>x̄ and νi(x
′)x̄i = ν(x′)>x̄

are also rotationally invariant.

Proof. On axisymmetric surfaces, the normal direction ν(x) has the same azimuthal angle

as the point x. This can easily be seen by writing out the explicit form of the normal:

(3.49) ν(x) =
1√

ṙ2 + ż2


−ż cos θ

−ż sin θ

ṙ


where the dot represents derivative of the r and z functions defining the generating curve γ

w.r.t. the parameter s. The invariance of U(θ)ν(x), U(θ)ν(x′), U(θ′)ν(x) and U(θ′)ν(x′) is

immediate following a similar argument as in Proposition 3.3; for example

(3.50) U(θ)ν(x) =
1√

ṙ2 + ż2


−ż

0

ṙ

 and U(θ)ν(x′) =
1√

ṙ′2 + ż′2


−ż′ cos(θ′ − θ)

−ż′ sin(θ′ − θ)

ṙ′


where we abuse the notation a little to write ṙ′ = ṙ(s′) and ż′ = ż(s′). In addition, we have

ν(x)>x̄ = [U(θ)ν(x)]>[U(θ)x̄](3.51)

ν(x′)>x̄ = [U(θ′)ν(x′)]>[U(θ′)x̄](3.52)

where each of the terms in the parenthesis are rotationally invariant.

Finally, the |x̄| =
√
r2 + r′2 − 2rr′ cos t+ (z − z′)2 term is already in rotationally invari-

ant form, with t = θ − θ′. With these three observations, we can now prove that all of the

Stokes BIEs can be put in rotationally invariant forms:

Corollary 3.5. Let ρ̃j(x
′) = Ujj′(θ

′)ρj′(x′). Then the single layer Stokes operators (3.2),

41

(3.3) and (3.10) are equivalent to

Uii′(θ)VSi′ [ρ](x) =: ṼSi [ρ̃](x) =

∫
Γ

Ṽ S
ij (x, x′)ρ̃j(x

′)dΓ(x′)(3.53)

PS[ρ](x) =: P̃S[ρ̃](x) =

∫
Γ

P̃ S
j (x, x′)ρ̃j(x

′)dΓ(x′)(3.54)

Uii′(θ)T Si′ [ρ](x) =: T̃ Si [ρ̃](x) =

∫
Γ

T̃ Sij (x, x
′)ρ̃j(x

′)dΓ(x′)(3.55)

with rotationally invariant integral kernels

Ṽ S
ij (x, x′) = Uii′(θ)V

S
i′j′(x, x

′)Ujj′(θ
′)(3.56)

P̃ S
j (x, x′) = P S

j′ (x, x
′)Ujj′(θ

′)(3.57)

T̃ Sij (x, x
′) = Uii′(θ)T

S
i′j′l(x, x

′)νl(x)Ujj′(θ
′)(3.58)

Proof. Proving the equivalence of the layer operators boils down to multiplying the velocity

and traction operators on the left by U(θ), substituting the expression for ρ̃ and rearranging

the terms.

To show the rotational invariance of the transformed velocity kernel, we note that

Ṽ S
ij (x, x′) = Uii′(θ)V

S
i′j′(x, x

′)Ujj′(θ
′)

=
1

8π
Uii′(θ)

[
δi′j′

|x̄|
+
x̄i′x̄j′

|x̄|3

]
Ujj′(θ

′)

=
1

8π|x̄|
Uij(θ − θ′) +

1

8π|x̄|3
[Uii′(θ)x̄i′][Ujj′(θ

′)x̄j′]

(3.59)

where the simplification of the first term,

(3.60) Uii′(θ)δi′j′Uj′j(θ
′) = Uij(θ − θ′) ⇐⇒ U(θ)IU>(θ′) = U(θ − θ′)

follows from the following observation. The operations in U(θ)IU>(θ′), from the right to

the left, are: (i) rotation around z-axis by angle θ′, (ii) identity operator and (iii) rotation

42

around z-axis by angle −θ. This is equivalent to a total rotation around z-axis by angle

−(θ− θ′), which is encoded by U(θ− θ′). With this and Proposition 3.3, all the terms in Ṽ S
ij

are rotationally invariant.

Next, for the transformed pressure kernel, we note that

(3.61) P̃ S
j (x, x′) = P S

j′ (x, x
′)Ujj′(θ

′) =
1

4π|x̄|3
[Ujj′(θ

′)x̄j′]

which is again rotationally invariant.

Finally, for the transformed traction kernel, we have

T̃ Sij (x, x
′) = Uii′(θ)T

S
i′j′l(x, x

′)νl(x)Ujj′(θ
′)

= − 3

4π|x̄|3
[Uii′(θ)x̄i′][Ujj′(θ

′)x̄j′][νl(x)x̄l]
(3.62)

and the invariance follows by a combination of Propositions 3.3 and 3.4.

Corollary 3.6. Let µ̃j(x
′) = Ujj′(θ

′)µj′(x′). Then the double layer Stokes operators (3.4),

(3.5) and (3.11) are equivalent to

Uii′(θ)VDi′ [µ](x) =: ṼDi [µ̃](x) =

∫
Γ

Ṽ D
ij (x, x′)µ̃j(x

′)dΓ(x′)(3.63)

PD[µ](x) =: P̃D[µ̃](x) =

∫
Γ

P̃D
j (x, x′)µ̃j(x

′)dΓ(x′)(3.64)

Uii′(θ)T Di′ [µ](x) =: T̃ Di [µ̃](x) =

∫
Γ

T̃Dij (x, x′)µ̃j(x
′)dΓ(x′)(3.65)

with rotationally invariant integration kernels

Ṽ D
ij (x, x′) = Uii′(θ)V

D
i′j′k(x, x

′)νk(x
′)Ujj′(θ

′)(3.66)

P̃D
j (x, x′) = PD

j′k(x, x
′)νk(x

′)Ujj′(θ
′)(3.67)

T̃Dij (x, x′) = Uii′(θ)T
D
i′j′kl(x, x

′)νk(x
′)νl(x)Ujj′(θ

′)(3.68)

Proof. Proving the equivalence of the layer operators, as in the single layer case, boils down

43

to multiplying the velocity and traction operators on the left by U(θ), substituting the

expression for ρ̃ and rearranging the terms.

To show the rotational invariance of the transformed velocity kernel, we note that

Ṽ D
ij (x, x′) = Uii′(θ)V

D
i′j′k(x, x

′)νk(x
′)Ujj′(θ

′)

=
3

4π|x̄|5
[Uii′(θ)x̄i′][Ujj′(θ

′)x̄j′][νk(x
′)x̄k]

(3.69)

is a product of rotationally invariant terms by Propositions 3.3 and 3.4.

Next, for the rotational invariance of the transformed pressure kernel, we note that

P̃D
j (x, x′) = PD

j′k(x, x
′)νk(x

′)Ujj′(θ
′)

= − 1

2π|x̄|3
δj′kνk(x

′)Ujj′(θ
′) +

3

2π|x̄|5
x̄j′x̄kνk(x

′)Ujj′(θ
′)

= − 1

2π|x̄|3
[Ujj′(θ

′)νj′(x
′)] +

3

2π|x̄|5
[Ujj′(θ

′)x̄j′][νk(x
′)x̄k]

(3.70)

which is again rotationally invariant.

Finally, for the transformed traction kernel, we have

T̃Dij (x, x′) = Uii′(θ)T
D
i′j′kl(x, x

′)νk(x
′)νl(x)Ujj′(θ

′)(3.71)

We check each term of the traction kernel TDi′j′kl individually, dropping any obviously rota-

tionally invariant parts (e.g. δij and |x̄|) for simplicity:

Uii′(θ)δi′kx̄j′x̄lνk(x
′)νl(x)Ujj′(θ

′) = [Uii′(θ)νi′(x
′)][Ujj′(θ

′)x̄j′][νl(x)x̄l](3.72)

Uii′(θ)δi′lx̄j′x̄kνk(x
′)νl(x)Ujj′(θ

′) = [Uii′(θ)νi′(x)][Ujj′(θ
′)x̄j′][νk(x

′)x̄k](3.73)

Uii′(θ)δj′kx̄i′x̄lνk(x
′)νl(x)Ujj′(θ

′) = [Uii′(θ)x̄i′][Ujj′(θ
′)νj′(x

′)][νl(x)x̄l](3.74)

Uii′(θ)δj′lx̄i′x̄kνk(x
′)νl(x)Ujj′(θ

′) = [Uii′(θ)x̄i′][Ujj′(θ
′)νj′(x)][νk(x

′)x̄k](3.75)

Uii′(θ)x̄i′x̄j′x̄kx̄lνk(x
′)νl(x)Ujj′(θ

′) = [Uii′(θ)x̄i′][Ujj′(θ
′)x̄j′][νk(x

′)x̄k][νl(x)x̄l](3.76)

44

Clearly, the traction kernel, as a whole, is also rotationally invariant.

3.4.2 Analytic Expressions for Stokes Fourier Modes

Now that the kernels are in rotationally invariant form, we need to derive the analytical

formulas for evaluating the Fourier modes. In this section, we reduce the Stokes single layer

modal kernels to linear combinations of definite integrals of the form

Imn,k(r, z, r
′, z′) =

1√
2π

∫ π

−π

cosnt cos kt

(r2 + r′2 − 2rr′ cos t+ (z − z′)2)m+1/2
dt(3.77)

Jmn,k(r, z, r
′, z′) =

−i√
2π

∫ π

−π

sinnt sin kt

(r2 + r′2 − 2rr′ cos t+ (z − z′)2)m+1/2
dt(3.78)

Proposition 3.7. The Fourier modes of the transformed single layer velocity kernel

(3.79) Ṽ S
ij (x, x′) =

1

8π|x̄|
Uij(t) +

1

8π|x̄|3
[Uii′(θ)x̄i′][Ujj′(θ

′)x̄j′], t = θ − θ′

are given by

Ṽ S
11,n =

1

8π

[
I0
n,1 −

rr′

2
I1
n,2 + (r2 + r′2)I1

n,1 −
3rr′

2
I1
n,0

]
(3.80)

Ṽ S
21,n =

1

8π

[
−J0

n,1 +
rr′

2
J1
n,2 − r′2J1

n,1

]
(3.81)

Ṽ S
31,n =

1

8π

[
rI1
n,1 − r′I1

n,0

]
(z − z′)(3.82)

Ṽ S
12,n =

1

8π

[
−J0

n,1 −
rr′

2
J1
n,2 + r2J1

n,1

]
(3.83)

Ṽ S
22,n =

1

8π

[
I0
n,1 −

rr′

2
I1
n,2 +

rr′

2
I1
n,0

]
(3.84)

Ṽ S
32,n =

1

8π

[
rJ1

n,1

]
(z − z′)(3.85)

Ṽ S
13,n =

1

8π

[
−r′I1

n,1 + rI1
n,0

]
(z − z′)(3.86)

Ṽ S
23,n =

1

8π

[
r′J1

n,1

]
(z − z′)(3.87)

Ṽ S
33,n =

1

8π

[
I0
n,0 + (z − z′)2I1

n,0

]
(3.88)

45

Here we have suppressed the arguments of the kernel modes and the integrals for brevity.

Proof. Writing the kernel in matrix form

(3.89) Ṽ S(x, x′) =
1

8π

 1

|x̄|


cos t sin t 0

− sin t cos t 0

0 0 1

+
1

|x̄|3


r − r′ cos t

r′ sin t

z − z′



r cos t− r

r sin t

z − z′


>

Note that t 7→ Ṽ S
ij (t, r, z, r′, z′) = V S

ij (t, s, s′) is an even (resp. odd) function if i − j is even

(resp. odd). This simplifies the expression of the Fourier coefficients:

(3.90) Ṽ S
ij,n(s, s′) =



1√
2π

∫ +π

−π
Ṽ S
ij (t, s, s′) cosnt dt if i− j is even

−i√
2π

∫ +π

−π
Ṽ S
ij (t, s, s′) sinnt dt if i− j is odd

Next, numerators of Ṽ S
ij can be written as a linear combination of cosine (resp. sine) functions

when i− j is even (resp. odd); for example

Ṽ S
11(t, s, s′) =

1

8π

[
cos t

q1/2
+

(r − r′ cos t)(r cos t− r′)
q3/2

]
=

1

8π

[
cos t

q1/2
+
−rr′ cos2 t+ (r2 + r′2) cos t− rr′

q3/2

]
=

1

8π

[
cos t

q1/2
+
− rr′

2
cos (2t) + (r2 + r′2) cos t− 3rr′

2

q3/2

](3.91)

and

Ṽ S
12(t, s, s′) =

1

8π

[
sin t

q1/2
+

(r − r′ cos t)r sin t

q3/2

]
=

1

8π

[
sin t

q1/2
+
−rr′ sin t cos t+ r2 sin t

q3/2

]
=

1

8π

[
sin t

q1/2
+
−rr′

2
sin (2t) + r2 sin t

q3/2

](3.92)

46

where we define

(3.93) q = q(t, s, s′) = |x− x′|2 = r2 + r′2 + (z − z′)2 − 2rr′ cos t

Rest of the proof is a simple matter of plugging these formulas into (3.90) as appropriate,

using the linearity of integrals and using the definitions of the I- and J-integrals.

Proposition 3.8. The Fourier modes of the transformed single layer pressure kernel

(3.94) P̃ S
j (x, x′) =

1

4π|x̄|3
[Ujj′(θ

′)x̄j′]

are given by

P̃1,n =
1

4π

[
rI1
n,1 − r′I1

n,0

]
(3.95)

P̃2,n =
1

4π

[
rJ1

n,1

]
(3.96)

P̃3,n =
1

4π

[
I1
n,0

]
(z − z′)(3.97)

Proof. Follow the same steps as in the proof of Proposition 3.7

Proposition 3.9. Let

(3.98) A = −νrr
′

2
, B = νrr + νz(z − z′)

Then the Fourier modes of the transformed single layer traction kernel

(3.99) T̃ Sij (x, x
′) = − 3

4π|x̄|3
[Uii′(θ)x̄i′][Ujj′(θ

′)x̄j′][νl(x)x̄l]

47

are given by

T̃ S11,n =− 3

4π

[
− Arr′

2
I2
n,3 +

(
A(r2 + r′2)− Brr′

2

)
I2
n,2(3.100)

+
(
B(r2 + r′2)− 2Arr′

)
I2
n,1 +

(
A(r2 + r′2)− 3Brr′

2

)
I2
n,0

]
(3.101)

T̃ S21,n =− 3

4π

[
Arr′

2
J2
n,3 +

(
Brr′

2
− Ar′2

)
J2
n,2 +

(
Arr′

2
−Br′2

)
J2
n,1

]
(3.102)

T̃ S31,n =− 3

4π

[
ArI2

n,2 + (Br − Ar′)I2
n,1 + (Ar −Br′)I2

n,0

]
(z − z′)(3.103)

T̃ S12,n =− 3

4π

[
−Arr

′

2
J2
n,3 +

(
Ar2 − Brr′

2

)
J2
n,2 +

(
Br2 − Arr′

2

)
J1
n,1

]
(3.104)

T̃ S22,n =− 3

4π

[
−Arr

′

2
I2
n,3 −

Brr′

2
I2
n,2 +

Brr′

2
I2
n,0

]
(3.105)

T̃ S32,n =− 3

4π

[
ArJ2

n,2 +BrJ2
n,1

]
(z − z′)(3.106)

T̃ S13,n =− 3

4π

[
−Ar′I2

n,2 + (Ar −Br′)I2
n,1 + (Br − Ar′)I2

n,0

]
(z − z′)(3.107)

T̃ S23,n =− 3

4π

[
Ar′J2

n,2 +Br′J2
n,1

]
(z − z′)(3.108)

T̃ S33,n =− 3

4π

[
AI2

n,1 +BI2
n,0

]
(z − z′)2

(3.109)

Proof. Note that our choice of A and B implies

(3.110) νl(x)x̄l = 2A cos t+B, t = θ − θ′

Using trigonometric identities

(2A cos t+B)(a cos 2t+ b cos t+ c) = Aa cos 3t

+ (Ab+Ba) cos 2t

+ (Aa+ Ac+Bb) cos t

+ (Ab+Bc)

(3.111)

48

and

(2A cos t+B)(a sin 2t+ b sin t) = Aa sin 3t

+ (Ab+Ba) sin 2t

+ (Aa+Bb) sin t

(3.112)

we can reduce the numerators of T̃ Sij into linear combinations of cosine and sine functions,

just as in the case of single layer velocity kernel. The rest follows.

The transformed Stokes double layer kernels also admit similar expressions in terms of

the I- and J-integrals. In particular, the expressions for the double layer velocity potential

modes are nearly identical to those of the single layer traction kernel. While the expressions

for the pressure, and in particular, the traction kernel are significantly more complex, they

are still computable using algebraic manipulation programs like Mathematica.

3.4.3 Expansion of the Integrals in Terms of Toroidal Functions

The analytic expressions for the modal transformed Stokes kernels in the previous section

are expressed in terms of the I- and J-integrals. In this section, we connect the evaluation

of these integrals with toroidal functions, which finally gives us an efficient way to compute

the modal kernels, especially near the singularity.

Toroidal functions are Legendre functions of the second kind with half-integer degrees:

Qm
n−1/2 with m ∈ N0 and n ∈ Z. Analogous to spherical harmonics, they show up when

we solve the Laplace equation in the toroidal coordinates (a orthogonal coordinate system

suitable for axisymmetric geometries). We will now show that we can write the I- and

J-integrals as appropriate combinations of toroidal functions:

Proposition 3.10. Let

(3.113) χ =
r2 + r′2 + (z − z′)2

2rr′

49

Then

Imn,k =
(−1)m

Γ(m+ 1/2)

1

(2rr′)m+1/2(χ2 − 1)m/2
[
Qm
n+k−1/2(χ) +Qm

n−k−1/2(χ)
]

(3.114)

Jmn,k =
(−1)m

Γ(m+ 1/2)

i

(2rr′)m+1/2(χ2 − 1)m/2
[
Qm
n+k−1/2(χ)−Qm

n−k−1/2(χ)
]

(3.115)

Proof. We can use the trigonometric identities

cos (nt) cos (kt) =
1

2
[cos (n+ k)t+ cos (n− k)t](3.116)

− sin (nt) sin (kt) =
1

2
[cos (n+ k)t− cos (n− k)t](3.117)

and that |x̄| = 2rr′(χ− cos t) to reduce the integrals Imn,k and Jmn,k to sums or differences of

integrals of the form

(3.118)
1

(2rr′)m+1/2

∫ +π

−π

cosnt

(χ− cos t)m+1/2
dt =

1

(2rr′)m+1/2

∫ +π

−π

e−int

(χ− cos t)m+1/2
dt

Next, from [84, Eq. 14.3.10] and [84, Eq. 14.19.6], after substituting µ = m and χ = cosh ξ,

we obtain the identity

(3.119)
(−1)mQm

−1/2(χ)

Γ(m+ 1/2)
+ 2

∞∑
n=1

(−1)mQm
n−1/2(χ)

Γ(m+ 1/2)
cosnt =

(π
2

)1/2 (χ2 − 1)m/2

(χ− cos t)m+1/2

Using the relations cosnt = (eint + e−int)/2 and Qm
−n−1/2(χ) = Qm

n−1/2(χ) and after rearrang-

ing the terms, we obtain

(3.120)
1

(χ− cos t)m+1/2
=

1

2π

∞∑
n=−∞

[
(−1)m

√
2π

Γ(m+ 1/2)

2

(χ2 − 1)m/2
Qm
n−1/2(χ)

]
eint

This is simply the Fourier series for (χ− cos t)−m−1/2; the Fourier coefficients are given by

(3.121)

∫ π

−π

e−int

(χ− cos t)m+1/2
dt = (−1)m

√
2π

Γ(m+ 1/2)

2

(χ2 − 1)m/2
Qm
n−1/2(χ)

50

The rest of the proof is simple algebra.

3.4.4 Numerical Computation of Toroidal Functions

We compute the −1
2

and 1
2

degree zero-order Legendre functions of the second kind using

the complete elliptic integrals [87]:

Q0
−1/2(χ) = µK(µ)(3.122)

Q0
1/2(χ) = µχK(µ)−

√
2(χ+ 1)E(µ)(3.123)

where K and E are the complete elliptic integrals of the first and second kind, respectively.

(3.124) µ =

√
2

1 + χ

Once we have these two values, we can use them in the forward recurrence relation [87]

(3.125) Q0
n−1/2(χ) = 4

n− 1

2n− 1
χQ0

n−3/2(χ)− 2n− 3

2n− 1
Q0
n−5/2(χ)

to compute the higher degree function values. Once we have the higher degree functions, we

can use the recurrence relation for the order [35]

(3.126) (χ2 − 1)1/2Qm+1
n+1/2 = (n−m+ 1/2)χQm

n+1/2 − (n+m+ 1/2)Qm
n−1/2

for n = 0, 1, . . ., and

(3.127) (χ2 − 1)1/2Qm+1
−1/2 = (1/2−m)Qm

1/2(χ)− (1/2 +m)χQm
−1/2(χ)

51

for n = −1. To compute the Legendre function with degree lower than −1
2
, we use the

identity

(3.128) Qm
n−1/2(χ) = Qm

−n−1/2(χ)

Unfortunately, the forward recurrence relation (3.125) is unstable for all χ > 1, so we

need to be careful how we use it:

• If χ ≈ 1, then the instability is relatively mild, and we only see it when computing the

Legendre functions with very large degree [87]. So we can use the algorithm described

above below a certain threshold value, e.g. χ < 1.0005.

• For χ ≥ 1.0005, the points s and s′ on the curve γ are well-separated. Hence we can

use the fast Fourier transform algorithm to directly compute the Fourier coefficients.

Assuming that we ignore any Fourier frequencies with magnitude higher than nf , this

hybrid approach allows us to compute all (2nf + 1) Fourier coefficients given a value of χ

(equivalently, a pair of points s and s′ on the curve) in O(nf log nf) steps. Thus, the total

cost of computing the modal kernel matrices for Stokes equations with np panels is given by

O(n2
pnf log nf).

3.5 Extension to Multibody Systems

In this section, we extend our algorithm to solve Stokes equation in a multibody system,

where each of the bodies are axisymmetric, but with potentially different axes of symmetries.

3.5.1 Bodies with Arbitrary Axes of Rotational Symmetry

So far, we have only considered surfaces which are symmetric about the z-axis. We will

now generalize our algorithm for surfaces with arbitrary axis of symmetry. Suppose we are

52

solving the integral equation

(3.129) VS[ρ] = f ⇐⇒
∫

Ω

V S
ij (y, y′)ρj(y

′) dΩ(y′) = fi(y)

where Ω has the unit vector v as the axis of symmetry. Pick any orthogonal matrix R whose

last column is v, then the surface

(3.130) Γ = R−1Ω :=
{
x ∈ R3 : Rx ∈ Ω

}
forms a rotationally invariant surface symmetric about the z-axis. Note that for y = Rx and

y′ = Rx′, we have

(3.131) ȳiȳj = Rii′x̄i′x̄j′Rjj′

Further, since R is orthogonal, distances are between two points don’t change under this

transformation. Hence we obtain

(3.132) V S
ij (y, y′) = Rii′V

S
i′j′(x, x

′)Rjj′

With this, we can rewrite (3.129) as

(3.133) Rii′

∫
Γ

V S
i′j′(x, x

′)Rjj′ρj(Rx
′) dΓ(x′) = fi(Rx)

and after multiplying both sids by R>,

(3.134)

∫
Γ

V S
i′j′(x, x

′)[Rjj′ρj(Rx
′)]dΓ(x′) = [Rii′fi(Rx)]

Thus, if we use modified boundary data R>f(Rx) and modified boundary density R>ρ(Rx),

this has the exact same form as (3.2), and we can then use our standard solver. Other

53

layer potentials can be modified in a similar manner to handle bodies with arbitrary axes of

symmetry.

3.5.2 Fast Multipole Method and Multibody Solver

Now, suppose that we are solving a multibody system, i.e. we have axisymmetric surfaces

Ω(i) for 1 ≤ i ≤ nb, each with their own axis of symmetry. Suppose we have boundary data

f (i) on the i-th body. Then our goal is to solve

(3.135)

nb∑
j=1

VS,(i)[ρ(i)](x) = f (i)(x), x ∈ Ω(i)

Here we have absorbed the rotation matrices R(i) for the axisymmetric bodies inside the

layer potential definition. Discretizing this system leads to the linear system

(3.136)


V(1,1) · · · V(1,nb)

...
. . .

...

V(nb,1) · · · V(nb,nb)



ρ(1)

...

ρ(nb)

 =


f(1)

...

f(nb)


We solve this system using iterative methods (e.g. GMRES). As a preconditioner, we use

the diagonal blocks; i.e. we split the matrix V into two parts

(3.137) V = D + N

with

(3.138) D =


V(1,1)

. . .

V(nb,nb)

 , N =


0 · · · V(1,nb)

...
. . .

...

V(nb,1) · · · 0

 ,

54

Then the solution of (3.136) is given by

(3.139) (D + N)ρ = f =⇒ ρ + D−1Nρ = D−1f

We use our single-body solver to speed up the evaluation of D−1v given an array v. We

further accelerate the evaluation of Nρ using FMM, so that the left hand side of (3.139) can

be computed very quickly. This leads to considerable speedup in solving the system, since

GMRES repeatedly evaluates the matrix-vector product as part of its algorithm.

3.6 Numerical Results

We now outline the numerical experiments we performed to inspect the efficiency and accu-

racy of the algorithm presented in this paper. We implemented the algorithm in MATLAB,

and used the stfmmlib3d library [37] for Stokes FMM. We ran the single body simulations

on a personal laptop equipped with a 8-core 4.9 GHz Intel Core i9 11900H processor with

32 GB RAM, and the multibody simulations on the Haswell nodes (each equipped with two

12-core 2.5 GHz Intel Xeon E5-2680 v3 processors and 128 GB RAM) of the Flux cluster at

University of Michigan.

3.6.1 Accuracy and Performance of the Single Body Solver

We solved a sequence of problems with the Stokes single layer velocity BIE using different

discretizations (2 ≤ np ≤ 30 and 10 ≤ nf ≤ 150) of the prolate ellipsoid Γ : r2

0.52
+ z2 = 1.

We generated the boundary condition in these simulations placing 5 random Stokeslets on

the surface r2

0.32
+ z2

0.82
= 1 interior to Γ. After solving for the density function on Γ, we then

evaluated the velocity field on a regular grid on the surface r2

0.72
+ z2

1.22
= 1, and compared

these velocities against those generated by the Stokeslets. The entire setup is transformed

through a random orthogonal matrix.

55

We use two error criteria:

εabs = max
x

max
i

∣∣uexact
i (x)− uapprx

i (x)
∣∣(3.140)

εrel = max
x

max
i

|uexact
i (x)− uapprx

i (x)|
|uexact
i (x)|

(3.141)

The outer maximum is taken over all target points in the exterior of the ellipsoid, and the

inner maximum over the three components of the velocities.

In Figure 3.2, we plot the relative error against the number of panels and number of

Fourier modes used to discretize the ellipsoidal surface Γ. We see that this scheme attains

accuracy of the order 10−9 as we increase the number of panels and Fourier modes simulta-

neously. We note that for steady improvement in accuracy, both the number of panels and

number of Fourier modes should be increased simultaneously; otherwise the convergence

suffers. For the rest of numerical experiments in the paper, we keep these two quantities

proportional.

To verify that the complexity of the scheme matches our estimates in subsection 3.3.3, we

plot the time spent in different stages of the algorithm against total number of quadrature

nodes N = 10np(2nf+1) in Figure 3.3. We assume a power-law relation between runtime and

quadrature points: T ∝ Nα. In the figure, we report the empirical α-values computing from

the simulation data; we observe that these values closely match the theoretical predictions.

3.6.2 Accuracy and Performance of Multibody Solver

We test the accuracy and performance of the multibody solver with the single layer formula-

tion. We place prolate and oblate ellipsoids randomly in the free space, and place Stokeslets

at the center of these bodies. The boundary data on the ellipsoid surfaces are computed by

summing up the velocity fields generated by the individual Stokeslets.

We use a combination of our fast axisymmetric solvers and the FMM to solve for the

boundary data; stabilized bi-conjugate gradient descent (BiCGStab) is used as the iterative

56

2 4 8 16

Number of Panels, np

10−9

10−7

10−5

10−3

10−1

101

103

R
el

at
iv

e
E

rr
or

,
ε r

el

nf = 10

nf = 20

nf = 30

nf = 40

nf = 50

nf = 60

nf = 70

nf = 80

nf = 90

nf = 100

nf = 110

nf = 120

nf = 130

nf = 140

nf = 150

(a)

20 40 60 80 100 120 140

Cutoff Frequency, nf

10−9

10−7

10−5

10−3

10−1

101

103

R
el

at
iv

e
E

rr
or

,
ε r

el

np = 2

np = 4

np = 6

np = 8

np = 10

np = 12

np = 14

np = 16

np = 18

np = 20

np = 22

np = 24

np = 26

np = 28

np = 30

(b)

Figure 3.2: Convergence of the relative error εrel of the Stokes single layer velocity field compared
against the analytic flow generated by a random placement of Stokeslets as the number of panels
np and cutoff frequency nf are varied. We see that the performance of our scheme is best when we
keep np ∝ nf . In addition, the error drops algebraically with increasing np at a high-order, and it
drops spectrally with nf .

57

103 104 105

Number of Quadrature Points, N

10−3

10−2

10−1

100

101

E
xe

cu
ti

on
T

im
e

(s
)

Quadrature Setup, α = 0.5

Kernel Construction, α = 1.3

kernel Inversion, α = 1.6

Kernel Inverse Apply, α = 1.5

Field Evaluation, α = 1.0

Figure 3.3: The execution time of various stages of our axisymmetric Stokes solver plotted against
the total number N of quadrature nodes on the surface. We fit a curve T ∝ Nα for each of these
time segments, and report the best-fit α value in the legends.

solver for (3.139). We then evaluate the velocity field at test points in the exterior domain,

and compare it with the analytical values (from the Stokeslets) using the absolute error

metric.

In Table 3.1, we report the execution times and observed errors. We see that the kernel

computation and factorization times, and the times for computing the far body interactions

using the FMM, and inverting near body interactions per iteration scale approximately

linearly. Additionally, the error in these simulations are fairly small, especially when we only

used 5 panels and 25 Fourier modes per ellipsoid.

3.6.3 Simulation of Stokes Flow past Active Matter

We applied our multi-body solver to simulate Stokes flow past active matter. The flow is

drive by 125 randomly shaped and oriented ellipsoids in a 5×5×5 grid, each imposing a slip

boundary condition on the external fluid. The slip velocity for each particle points from one

pole to the other; the velocity is 10 units near the equator and drops to zero at the poles.

58

Table 3.1: Performance and accuracy of the multibody Stokes solver with nb bodies and nomp

OpenMP threads using 2550 quadrature points per body (np = 5 and nf = 25). We report the
one-time kernel matrix construction and inversion times Tker and Tinv, respectively. The metric nop

represents the total number of matrix-vector multiplication operations in the BiCGStab iterative
solvers required before convergence, and Tnear and Tfmm are execution times for near and far eval-
uations. The accuracy of the multibody solver is captured using the absolute error metric εabs. All
execution times are reported in seconds, and the missing entries correspond to situations where the
BiCGStab solver did not converge within 200 iterations.

nomp nb Tker Tinv nop Tnear Tfmm εabs

1 2 3.8 0.1 14 1.1 2.0 4.4471× 10−7

4 4.2 1.3 22 2.5 4.5 1.0709× 10−6

8 6.6 3.1 27 5.1 16.5 8.4709× 10−7

16 13.5 6.1 29 10.1 37.9 7.1951× 10−7

32 24.5 12.1 54 21.0 85.7 7.1479× 10−7

64 49.5 26.8 177 43.0 196.1 4.4704× 10−6

2 4 3.5 0.9 23 1.8 2.7 7.6096× 10−7

8 4.1 1.6 22 3.7 9.1 2.5302× 10−6

16 7.0 3.2 46 7.8 21.0 1.3312× 10−6

32 14.2 6.9 56 15.7 47.6 7.3557× 10−7

64 26.9 14.7 123 27.6 100.5 7.9819× 10−7

128 52.6 26.1 — 56.6 214.0 —

4 8 3.7 1.2 27 3.4 6.3 1.1476× 10−6

16 4.5 2.1 62 7.0 17.9 3.9708× 10−7

32 7.3 5.8 36 14.1 28.3 8.5426× 10−7

64 13.7 10.4 179 28.5 63.0 2.1424× 10−6

128 28.5 21.2 — 58.3 145.6 —
256 50.5 46.2 — 117.4 280.5 —

59

Figure 3.4: Streamlines of a Stokes flow generated by 125 randomly shaped and oriented ellipsoids,
each imposing a slip boundary condition on the fluid.

The resulting streamlines are shown in Figure 3.4. We can see that the fluid picks up speed

near the equator of the ellipsoids (the streamlines attach to the body), as expected from this

scenario.

3.7 Conclusions

In this chapter, we explored BIEs with rotationally invariant kernels on axisymmetric surfaces

can be decoupled using the Fourier series. However, the Stokes kernels do not satisfy this

rotational invariance property out-of-the-box. We introduced a linear change of coordinates

for the boundary integral equations and proved that all of the single and double layer velocity,

pressure and traction kernels can be transformed into the required rotationally invariant

form.

Using this observation, we developed a fast solution scheme for the Stokes BIEs, anal-

60

ogous to the ones developed in [87, 43, 33] for Laplace, Helmholtz and Maxwell equations.

Our kernel decoupling strategy leads to an order of magnitude improvement over direct

discretization of the surface BIEs, and we achieved O(10−9) relative errors in the velocity

field using relatively few panels and frequency cutoff. We also combined our solver with

the fast multipole method (FMM) to construct a fast solver for Stokes flow past multiple

axisymmetric bodies.

61

CHAPTER 4

Compression of Discrete Element Method Simulation

Data using the Tensor-Train Decomposition

Preamble. In this chapter, we introduce the tensor-train decomposition as a tool for com-

pressing scientific data. We focus on compressing output data from discrete element method

(DEM) simulations, concentrating on both raw (e.g. particle position, velocity etc.) and de-

rived (e.g. stress, strain etc.) datasets. Using a geometry-driven “tensorization” to increase

the dimensionality of the datasets, we achieve high compression ratios on both types of

datasets. This is ongoing work with Eduardo Corona, Paramsothy Jayakumar and Shravan

Veerapaneni.

4.1 Introduction

The Discrete Element Method (DEM) is widely recognized as an effective simulation frame-

work for granular media modeled as a collection of individual particles. It uses simple

first-principle physical laws to describe the particle response to body forces (e.g. gravity

and inertia) and dissipative contact forces (e.g. friction), leading to high-fidelity and robust

predictions. In recent years, substantial progress has been made to address algorithmic chal-

lenges in DEM simulations: in fast optimization solvers [101, 105, 75, 24], parallel computing

frameworks [27, 74, 79, 16, 111], and multiscale modeling [65, 113, 94]. Unfortunately, for

large-scale problems such as those in vehicle-terrain simulation, each run can still take days

62

or even weeks to complete. In learning scenarios such as mobility map construction [53, 72]

and autonomous driving, each of these expensive runs then corresponds to only one point in

the exploration of a high-dimensional parametric space.

As algorithmic and learning frameworks continue to improve, addressing large dataset

storage and management problems is imperative. DEM vehicle-soil simulations, for example,

generate a lot of data, including particle positions and velocities, pairwise contact forces and

soil-vehicle interaction forces at each timestep. One simulation can easily produce tens

of gigabytes of data. In current state-of-the-art setups, only the bare minimum of the

computational results is kept. This is not only wasteful of weeks or months of expensive,

energy-intensive computational work; it precludes any current or future knowledge we might

obtain from the entire dataset.

We note that these issues are far from exclusive to DEM. Across our current compu-

tational landscape, we are producing tremendous amounts of data, outpacing our storage

capacity. This limits our ability to learn, and makes data transfer, visualization and anal-

ysis significant bottlenecks in our pipelines. This is most acutely felt in online, interactive

environments in which streaming data must be processed under restrictive computational

and storage capabilities. Data compression techniques are therefore of great interest across

the entire computational simulation paradigm.

4.1.1 Related Works

There is a vast literature on general scientific data reduction methods; for an informative

survey, see [62]. While general purpose encoders such as fpzip [67] have achieved a degree of

success exploiting data coherence in scientific datasets, more efficient representations require

us to incorporate assumptions on specific types of data-sparsity or inherent structures we

want to target. Techniques such as principal component analysis (PCA), wavelet transforms

and multi-resolution schemes have been traditionally deployed to exploit inherent structure

due to smoothness and data locality.

63

Scientific data, such as that obtained in DEM simulations, is almost inevitably multi-

dimensional, as variables of interest are tracked in space, time and across a range of parame-

ters. Tensor factorization schemes are a natural extension of matrix-factorization based data

compression methods like the PCA. They explicitly tackle the high-dimensional nature of

scientific data. Key features of tensor decompositions include addressing the curse of dimen-

sionality and producing significantly reduced representations of datasets that allow rapid

full or partial reconstruction and fast linear algebra in compressed format at the expense of

allowing user-specified error tolerance.

Due to recent algorithmic developments, there is a rapidly growing body of literature

for tensor decomposition algorithms and their applications to data mining, data fusion and

scientific data compression [58, 1, 38, 23]. The work reviewed in these articles suggests the

various tensor representations (CP, Tucker, Tensor-Train) and their hierarchical counter-

parts (H-Tucker and Quantized Tensor-Train) can be incredibly effective as tools for data

compression and analysis. For instance, in [12], the authors developed a distributed imple-

mentation of the Tucker decomposition, demonstrating dramatic compression of a number of

combustion datasets (e.g. 760-200K fold compression for a 10−2 relative tolerance) and fast

partial reconstruction in limited computing environments. More recently, there has been a

large push towards developing tensor compression techniques for streaming data with CP

[83, 98], Tucker [71, 103] and tensor train [69, 68, 107] factorizations.

In the context of DEM simulation, methods exploiting low-rank data structure have not

focused on data compression and reconstruction, but on producing reduced order dynamical

models. Many of these approaches use the singular value decomposition (SVD) to construct

the reduced representation. In particular, [117] uses the related proper orthogonal decom-

position (POD) to extract the principal modes of the dynamics from time snapshots of a

damped DEM simulation.

64

4.1.2 Our Contributions

We develop tensor-train (TT) [85] methods tailored to both raw and derived data from DEM

simulations. Our contributions to the state of the art of scientific data compression are as

follows:

• We present what is, to our knowledge, the first adaptation of tensor compression meth-

ods to nonsmooth granular media simulation data.

• Our methods feature a compression scheme for streaming data, in which batches of

simulation data can be efficiently incorporated to a compressed representation as soon

as they are generated.

• We find most applications of tensor methods in the literature focus on compression

along the dimensions suggested by the data (e.g. x, y, z, time). By “tensorizing”

input data using a standard space-filling curve ordering, we demonstrate the ability of

Quantized Tensor Train (QTT) methods to provide further compression by exploiting

redundancies in the data at different levels of resolution.

We demonstrate high compression ratios of O(104) for both raw and derived DEM

datasets of size O(1) GB while keeping the relative reconstruction error at O(10−1). This

enables us to store the reduced datasets using only O(100) KB memory, at a fraction of the

cost of the original dataset, while still being able to use it for post-processing and learning

tasks.

4.2 The Tensor-Train Decomposition

From a computational perspective, we consider tensors to be a direct generalization of two-

dimensional matrices. They are represented as multi-dimensional arrays of real numbers.

The entries of a d-dimensional tensor X ∈ Rn1×···×nd are expressed as X (i1, . . . , id) with

65

indices 1 ≤ ik ≤ nk for 1 ≤ k ≤ d. Given n = max{n1, . . . , nd}, assuming tensor dimensions

are comparable in size, it can be readily observed that storing all of its entries incurs O(nd)

storage cost. Additionally, any operation accessing all of the entries of the tensor will have

a computational complexity that is similarly exponential in the dimensionality d.

Tensor factorizations leverage low-rank structures of the underlying tensor in order to

overcome this “curse of dimensionality”. [58] provides a detailed review of the canonical

polyadic (CP) factorization and the Tucker decomposition. These two formats are direct

generalizations of the popular singular value decomposition (SVD) for matrices, and are

widely used in high-dimensional data analysis.

In this work, we instead focus on using the tensor-train (TT) decomposition, introduced

in [86], as our main tool for data compression. The reasons for this choice are threefold:

• We can compute the TT decomposition of a tensor utilizing the SVD in a numerically

stable manner.

• Many linear algebra operations are very efficient in the TT format, a fact we utilize in

constructing streaming data compression schemes.

• The outputs from linear algebra operations in TT format often inflates the tensor ranks,

leading to inefficient storage. We can optimize the ranks of such a TT representation

via basic matrix operations: orthogonalization and SVD.

In this section, we explore each of these key elements in more detail.

4.2.1 TT Format

From linear algebra, we know that a rank-r matrix X ∈ Rn1×n2 can be factorized as

(4.1) X = AB, A ∈ Rn1×r, B ∈ Rr×n2

66

The individual entries of the data matrix then can be recovered as

(4.2) X(i1, i2) = A(i1)B(i2), 1 ≤ i1 ≤ n1, 1 ≤ i2 ≤ n2

where A(i1) ∈ R1×r is the i1-th row of A, and B(i2) ∈ Rr×1 is the i2-th column of B. The TT

format is a direct generalization of this decomposition, expressing an entry of a d-dimensional

tensor X ∈ Rn1×···×nd as

(4.3) X (i1, . . . , id) = X1(i1) · · ·Xd(id), Xk(ik) ∈ Rrk−1×rk , 1 ≤ ik ≤ nk, 1 ≤ k ≤ d

The matrix sizes r0, . . . , rd are called the TT ranks of the decomposition. Note that since the

matrix product on the right-hand side produces a scalar, this equality requires r0 = rd = 1.

We can stack the matrices {Xk(ik) : 1 ≤ ik ≤ nk} corresponding to the k-th dimension of

the data tensor into a three-dimensional tensor Xk:

(4.4) Xk(αk−1, ik, αk) = Xk(ik)(αk−1, αk)

for 1 ≤ αk−1 ≤ rk−1, 1 ≤ ik ≤ nk, 1 ≤ αk ≤ rk and 1 ≤ k ≤ d. This gives us the familiar

form of the TT decomposition introduced in [86]:

(4.5) X (i1, . . . , id) =

r0∑
α0=1

· · ·
rd∑

αd=1

X1(α0, i1, α1) · · · Xd(αd−1, id, αd)

The component tensors Xk ∈ Rrk−1×nk×rk for 1 ≤ k ≤ d are called the TT cores. The

advantage of using the TT format in terms of storage complexity is immediate: given a

tensor with maximum TT rank r = max{r1, . . . , rd−1}, storing the TT cores requires O(dnr2)

memory. A large array of tensors relevant to practical applications can be well approximated

by tensors with r �
√
nd, which leads to significant storage savings.

67

4.2.2 TT Decomposition of a Full Tensor

In [86], the author presents an algorithm that computes the TT decomposition of a full tensor

entirely using a series of SVD of auxiliary matrices. The k-th unfolding of the d-dimensional

tensor X constructs a matrix from by grouping the first k indices of the tensor into rows,

and the remaining indices into columns

(4.6) X(k)(i1, . . . , ik, ik+1, . . . , id) = X (i1, . . . , id)

where

i1, . . . , ik = i1 + n1(i2 − 1) + · · ·+ n1 · · ·nk−1(ik − 1)(4.7)

ik+1, . . . , id = ik+1 + nk+1(ik+2 − 1) + · · ·+ nk+1nk+1 · · ·nd−1(id − 1)(4.8)

are long-indices in the column-major (Fortran) order. The ranks of these unfolding matrices

are intimately related to the TT ranks of the corresponding tensor:

Theorem 4.1 (Exact TT Decomposition, [86]). Let rk be the rank of the k-th unfolding

matrix of tensor X for 1 ≤ k ≤ d− 1. Then there exists a TT factorization with TT ranks

r1, . . . , rd−1.

In practice, data tensors are usually noisy which precludes the existence of an exact low-

rank TT factorization. In this situation, we aim to find an approximate TT factorization of

the form

(4.9) X (i1, . . . , id) ≈ Y(i1, . . . , id) =

r0∑
α0=1

· · ·
rd∑

αd=1

Y1(α0, i1, α1) · · · Yd(αd−1, id, αd)

68

and we aim to minimize the Frobenius error of the approximation

(4.10) ‖X − Y‖F =

√√√√ n1∑
i1=1

· · ·
nd∑
id=1

[X (i1, . . . , id)− Y(i1, . . . , id)]2

Existence of such an approximation is established by the following result:

Theorem 4.2 (Approximate TT Decomposition, [85]). Suppose the unfolding matrices of

tensor X satisfies

(4.11) X(k) = Ak + Ek, rank(Ak) = rk, ‖Ek‖F = δk, 1 ≤ k ≤ d− 1.

Then there exists a tensor Y with inner TT ranks r1, . . . , rk−1 satisfying

(4.12) ‖X − Y‖F ≤

√√√√d−1∑
k=1

δ2
k.

The proof of this theorem is constructive, and it outlines an algorithm for computing a

TT format tensor Y that approximates a full tensor X via SVD given an relative tolerance

τ satisfying

(4.13) ‖X − Y‖F ≤ τ‖X‖F .

This procedure, known as the TT-SVD, is presented in Algorithm 4.1. This is the main

algorithm we use for compressing data tensors.

4.2.3 TT-Rounding of a Sub-Optimal TT Tensor

As we perform fast arithmetic on TT-compressed arrays such as sums, products and concate-

nation, TT ranks are often over-estimated, leading to sub-optimal representations requiring

more storage than necessary. Fortunately, we can recompress these tensors by applying ma-

69

Algorithm 4.1 TT-SVD

Input: d-dimensional tensor X ∈ Rn1×···×nd , relative tolerance τ
Output: Approximation Y with TT cores Y1, . . . ,Yd satisfying ‖X − Y‖F ≤ τ‖X‖F

1: Compute truncation parameter δ ← τ‖X‖F/
√
d− 1

2: Initialize M ← reshape(X , [n1, n2 · · ·nd])
3: Initialize r0 ← 1
4: Initialize rd ← 1
5: for k = 1, . . . , d− 1 do
6: U,Σ, V ← svdδ(M)
7: rk ← rank(Σ)
8: Yk ← reshape(U, [rk−1, nk, rk])
9: M ← reshape(ΣV >, [rknk+1, nk+2 · · ·nd])

10: end for
11: Yd ← reshape(M, [rd−1, nd, rd])

trix factorizations to each of the TT cores [86]. This TT-rounding process constructs from

input tensor X and relative tolerance τ a new tensor Y satisfying

(4.14) ‖X − Y‖F ≤ τ‖X‖F

This is achieved in two sweeps:

• First, the cores are orthogonalized to remove any linear dependence among its slices.

• Then the cores are recompressed using SVD to further optimize the ranks to the extent

allowed by the relative tolerance.

The detailed steps are reproduced in Algorithm 4.2. Computation of the Frobenius norm of

the input tensor X in TT-format can be achieved solely from the tensor cores, and we do

not need to uncompress the full tensor [86]. This process has computational complexity of

O(dnr3), where r is the maximal TT rank of the sub-optimal tensor.

70

Algorithm 4.2 TT-rounding

Input: Tensor X with TT cores X1, . . . ,Xd and ranks r0, r1, . . . , rd−1, rd, relative tolerance
τ

Output: TT cores Y1, . . . ,Yd of tensor Y with optimal ranks satisfying ‖X − Y‖F ≤ τ‖X‖F
1: Compute truncation parameter δ ← τ‖X‖F/

√
d− 1

2: Initialize cores Yk ← Xk for 1 ≤ k ≤ d
3: for k = d, d− 1, . . . , 2 do
4: M ← reshape(Yk, [rk−1, nkrk])
5: Q,R← qr(M>)
6: r′k−1 ← rank(R)
7: Yk ← reshape(Q>, [r′k−1, nk, rk])
8: M ← reshape(Yk−1, [rk−2nk−1, rk−1])
9: Yk−1 ← reshape(MR>, [rk−2, nk−1, r

′
k−1])

10: rk−1 ← r′k−1

11: end for
12: for k = 1, . . . , d− 1 do
13: M ← reshape(Yk, [rk−1nk, rk])
14: U,Σ, V ← svdδ(M)
15: r′k ← rank(Σ)
16: Yk ← reshape(U, [rk−1, nk, r

′
k])

17: M ← reshape(Yk+1, [rk, nk+1rk+1])
18: Yk+1 ← reshape(ΣV >M, [r′k, nk+1, rk+1])
19: rk ← r′k
20: end for

4.3 Tensor-Train for Data Compression

We now build upon the basic aspects of the TT factorization introduced in the last section,

and adapt them for compressing scientific simulation data.

4.3.1 Tensorization

One of the main advantages of the TT decomposition is the linear scaling of storage com-

plexity with the dimensionality of the data tensor. This makes it ideal for compressing very

high-dimensional tensors. We take full advantage of this aspect of TT factorization by ar-

tificially and systematically increasing the dimensionality of the data (a.k.a. tensorizing the

data) before constructing the decomposition. This approach is motivated by hierarchical

71

domain decomposition techniques used in partial differential equation solvers, especially in

the context of boundary integral equation (BIE) methods [39, 48, 50, 49, 25].

Example: Compression of Integral Kernel Matrix

We first demonstrate how domain decomposition can be used to compress an integral kernel

matrix more efficiently. Let us consider the following integral operator evaluation

(4.15) f(x) =

∫ 1

0

kδ(x, y)σ(y)dy

where the integration kernel is given by

(4.16) kδ(x, y) = log
1

|x− y|+ δ
, δ > 0

and σ : [0, 1] → R is some density function. Discretizing (4.15) via a quadrature rule

{(ti, wi) : 1 ≤ i ≤ N} with N = 2d nodes for some d ≥ 1 leads to the linear system

(4.17) f = Kδdiag(w)σ

with σ = [σ(tj)]
N
j=1, w = [wj]

N
j=1, Kδ = [kδ(ti, tj)]

N
i,j=1 and f ≈ [f(ti)]

N
i=1. Thus, evaluating f

for a given density σ using (4.15) boils down to a dense matrix multiplication, which naively

takes O(N2) operations.

However, we can take advantage of the structure of the matrix Kδ imposed by the un-

derlying kernel function kδ. In particular, when the source and target points x and y are

far away, we can evaluate accurately within machine precision kδ(x, y) via a low-rank ap-

proximation of the kernel. This observation forms the basis for many fast algorithms in the

integral equations research community, such as tree-codes and fast multipole methods [39].

At their heart, these algorithms construct a hierarchical domain decomposition and take

advantage of the low-rank structure of the far-interactions to construct O(N) algorithms for

72

Relative Tolerance Metric
Tensorization Level

l = 6 l = 8 l = 10

τ = 10−2 Compression, ρ 1.9× 102 1.4× 103 1.6× 103

Error, ε 4.2× 10−1 1.5× 100 7.4× 10−1

τ = 10−5 Compression, ρ 1.2× 102 6.0× 102 6.5× 102

Error, ε 2.3× 10−3 1.1× 10−3 1.1× 10−3

τ = 10−8 Compression, ρ 8.3× 101 3.6× 102 3.9× 102

Error, ε 2.4× 10−7 3.5× 10−7 3.5× 10−7

τ = 10−11 Compression, ρ 6.9× 101 2.7× 102 3.0× 102

Error, ε 1.1× 10−9 1.1× 10−9 1.1× 10−9

τ = 10−14 Compression, ρ 5.9× 101 1.8× 102 1.9× 102

Error, ε 9.2× 10−12 1.0× 10−11 2.3× 10−11

Table 4.1: Compression ratios ρ and reconstruction errors ε = ‖Kδ − K̂‖2 in constructing a TT
approximations K̂ of the 2d × 2d integral kernel matrix Kδ with d = 10 and δ = 10−5 at various
tensorization levels l and TT-SVD relative tolerance τ . We note that the compression ratio increases
as we increase the level of tensorization and decreases as we reduce TT-SVD relative tolerance and
ask for a more accurate reconstruction.

matrix-vector multiplications.

The idea of hierarchical domain decomposition can also be used to increase the dimen-

sionality of the kernel matrix Kδ. Let (i
(l)
1 , . . . , i

(l)
l) be a level l multi-index with i

(l)
k ∈ {1, 2}

for 1 ≤ k ≤ l − 1 and i
(l)
l ∈ {1, . . . , 2d−l+1}; then the row-major unwrapping defines a map

between this binary multi-index and a linear index i ∈ {1, . . . , 2d}:

(4.18) i = i
(l)
1 , . . . , i

(l)
l :=

l∑
k=1

2l−k(i(l)k − 1) + 1

This allows us to recast the 2d×2d kernel matrix with entries Kδ(i, j) as a l dimensional tensor

of size 4×· · ·×4×4d−l+1 with entries K(l)
δ (i

(l)
1 , j

(l)
1 , . . . , i

(l)
l , j

(l)
l). Note that we have interlaced

the multi-indices of the rows and columns of Kδ such that each index ik, jk describes the

same level in the domain decomposition hierarchy.

In Table 4.1 we demonstrate the compression ratios and reconstruction errors when com-

pressing this tensorized kernel matrix at various tensorization levels l. We note that as we

73

increase tensorization level up to l = d, the compression ratio increases.

Application to DEM Datasets: Tensorization with Space Filling Curves

In the context of compressing data from differential and integral equation discretization on

structured grids, established hierarchical domain decomposition leads to a natural tensoriza-

tion scheme, as illustrated by the 1D example above.

DEM simulation data, on the other hand, typically consists of relevant physical properties

(e.g. velocity, force, stress) associated to individual particles or collision sites; additionally,

these locations will shift as the simulation progresses. It is thus not immediately obvious

how to tensorize this dataset.

Recall from Chapter 2 how Morton order was used to impose locality among the particles

in a DEM simulation; we can utilize the same idea here. We first sort the particles in a DEM

simulation dataset using the Morton order. Then the particles that are nearby will, for the

most part, also end up close by in in 3D simulation space. We can expect the properties (such

as velocities) for these particles to be similar/correlated, especially if the particles are dense in

space. We can then construct a hierarchy of dimensions using a simple binary tree structure

on this linearly ordered list of particles. Note that the time dimension is already linear, and

we can impose a similar hierarchical partitioning to further increase the dimensionality of the

dataset. With this new high-dimensional dataset, we can expect to exploit the similarities

in particle properties at different scales, leading to better compressibility.

4.3.2 Streaming Data Compression

One of the disadvantages of the direct TT-SVD algorithm presented in Algorithm 4.1 is

the SVD itself. Given a m × n matrix with m ≥ n, computing its full SVD decomposition

(including the singular vectors) costs O(m2n + mn2 + n3) floating point operations. Thus,

for a tensor with large sizes, or one with high dimensionality, performing the SVD itself

becomes a challenge.

74

Algorithm 4.3 TT-Concatenation along Existing Data Dimension

Input: Data tensor X ∈ Rn1×···×nd with n1 � max{n2, . . . , nd}
Output: TT cores X1, . . . ,Xd approximating input tensor X

1: Partition X into two pieces X (i) ∈ Rn
(i)
1 ×n2×···×nd , i ∈ {a, b}, n(a)

1 + n
(b)
1 = n1 such that

X (a)(i1, . . . , id) = X (i1, i2, . . . , id) for 1 ≤ i1 ≤ n
(a)
1(4.19)

X (b)(i1, . . . , id) = X (i1 + n
(a)
1 , i2, . . . , id) for 1 ≤ i1 ≤ n

(b)
1(4.20)

2: Compute TT decompositions X (i)(i1, . . . , id) = X
(i)
1 (i1) · · ·X(i)

d (id) of the sub-tensors

3: Construct zero-padded tensors X̂ (i) ∈ Rn1×···×nd in the TT format by modifying the first
core

X̂
(a)
1 (i1) =

{
X

(a)
1 (i1) if 1 ≤ i1 ≤ n

(a)
1

0 if n
(a)
1 + 1 ≤ i1 ≤ n1

(4.21)

X̂
(b)
1 (i1) =

{
0 if 1 ≤ i1 ≤ n

(a)
1

X
(b)
1 (i1 − n(a)

1) if n
(a)
1 + 1 ≤ i1 ≤ n1

(4.22)

4: By construction, we have X = X̂ (a) + X̂ (b); construct the TT cores of the full tensor as

X1(i1) =
[
X̂

(a)
1 (i1) X̂

(b)
1 (i1)

]
(4.23)

Xk(ik) =

[
X

(a)
k (ik)

X
(b)
k (ik)

]
for 1 < k < d(4.24)

Xd(id) =

[
X

(a)
d (id)

X
(b)
d (id)

]
(4.25)

5: Optimize the TT ranks using TT-rounding

Many simulations have a natural time-like parameter, and the dataset grows along this

dimension as the simulation progresses. With this in mind, we can reduce the computational

complexity of TT-SVD by dividing the tensor along that dimension and compressing the

resulting sub-tensors individually. We outline the details of this approach in Algorithm 4.3

where the original tensor is divided into two parts; a k-part generalization is straightforward.

This approach works equally well in splitting up datasets along spatial dimensions.

However, this approach is ill-suited for tensorized dimensions, where it is more advan-

tageous to create new dimensions instead of growing an existing dimension. We therefore

75

Algorithm 4.4 TT-Concatenation along New Data Dimension

Input: Data tensors X (a),X (b) ∈ Rn1×···×nd with same size
Output: TT cores X1, . . . ,Xd approximating X ∈ Rn1×···nd×2 with

X (i1, . . . , id, 1) = X (a)(i1, . . . , id)(4.26)

X (i1, . . . , id, 2) = X (b)(i1, . . . , id)(4.27)

1: Compute TT decompositions X (i)(i1, . . . , id) = X
(i)
1 (i1) · · ·X(i)

d (id) for i ∈ {a, b}
2: Define first d TT cores

(4.28) X1(i1) =
[
X

(a)
1 (i1) X

(b)
1 (i1)

]
, Xk(ik) =

[
X

(a)
k (ik)

X
(b)
k (ik)

]
for 2 ≤ k ≤ d

3: Construct the last TT core

(4.29) Xd+1(id+1) =



[
1

0

]
for id+1 = 1

[
0

1

]
for id+1 = 2

By direct computation, we have X (i1, . . . , id+1) = X1(i1) · · ·Xd+1(id+1)
4: Optimize the TT ranks using TT-rounding

adapt our approach to suit this situation in Algorithm 4.4. We once again address combining

two tensors, but generalization to an arbitrary number of tensors is straightforward.

4.4 Numerical Results

We used two distinct types of datasets in testing out the capabilities of our compression

framework:

• Raw DEM Datasets: These datasets were constructed by running various DEM

simulations and saving the particle-level data (i.e. position, velocity etc. of all the

particles in the simulation). We compress the data from the following scenarios:

SEDIMENT We release n = 16384 spherical particles of radius r = 0.01 m and density

76

(a)

(b)

Figure 4.1: Setup for the stress-strain datasets from multi-scale coupled finite element/discrete
element (FE-DE) simulations conducted by Hiroyuki Sugiyama and his research group at the Uni-
versity of Iowa. (a) Triaxial soil compression test models a column of soil using 8 elements; the
sides of the soil are confined by a constant pressure and a load is applied to the top. (b) Soil-wheel
simulation models a patch of soil using 10× 6× 6 elements and the wheel moves on top of the soil
at a constant speed. In both cases, reference volume elements (RVEs) are placed at 8 Gaussian
quadrature points inside each element. Stress, strain and tangent moduli are computed at these
RVEs from individual DEM simulations.

ρ = 2500 kg/m3 from rest inside a rectangular box [−1, 1] × [−1, 1] × [−1
2
, 1

2
],

and allow them to free-fall under gravity (g = 9.81 m/s2). In the course of the

simulation, the particles collide with each other and the inner walls of the box: we

resolve the collisions using the complementarity formulation of Coulomb friction

model [30]. We record the location, angular orientation, velocity and angular

velocity for each particles for m = 1024 timesteps with stepsize ∆t = 1 ms. The

full dataset is approximately 8 GB when saved to disk in ASCII format.

• Stress-Strain Response Datasets: These datasets were generated from running a

multi-scale model of soil in various simulation scenarios. The soil is modeled using a

finite element mesh, and within each mesh element, the stress-strain response of the soil

is computed by running small-scale DEM simulations (∼ 1000 particles) at Gaussian

quadrature nodes (a.k.a. reference volume elements, RVEs). At each timestep, we save

77

the stress, strain, incremental stress, incremental strain and tangent moduli of each

RVE. These datasets are generated and provided to us by Professor Hiroyuki Sugiyama

and his research group at the University of Iowa.

TRIAXIAL A column of soil is placed in a chamber confined by some fluid, and load

presses the column from the top. The fluid pressure is kept at a constant value

(the confining pressure). As the load at the top of the chamber is increased in-

crementally, we compute the stress-strain data at 64 RVEs inside the soil column

(see Figure 4.1a). This creates a three-dimensional dataset, the dimensions cor-

responding to the load on the top, different RVEs and various components of the

recorded data.

SOILWHEEL A tire is rolled on top of a soil patch. The tire is modeled using the finite

element method (FEM), whereas for the soil we use the multiscale model with a

10×6×6 FEM grid, the RVEs are placed at a 2×2×2 Gaussian quadrature grid

within each element. Soil response data is generated for 602 parameter values as

the tire rolls across the soil patch with a constant speed (see Figure 4.1b).

In each of the experiments, we use the following quantities as a measure of the quality of

compression:

• Compression Ratio: It is the ratio of the number of parameters needed to represent

the dataset in full vs. that in the TT format. If a n1×· · ·×nd tensor can be represented

in TT format with TT ranks {r1, . . . rd−1}, then we define

(4.30) compression ratio =
n1 · · ·nd∑d
k=1 rk−1nkrk

with r0 = rd = 1 by convention.

• Maximal TT Rank: It is given by r = max{r1, . . . , rd−1} and is another measure of

78

how compressible the dataset is; note that

(4.31) compression ratio ≥ 1

r2

n1 · · ·nd
n1 + · · ·+ nd

• Normalized RMSE: It is a measure of the error incurred when reconstructing the

dataset from its TT representation. For a series {y1, . . . , yn} and its reconstruction

{ŷ1, . . . , ŷn}, the normalized RMSE is defined as

(4.32) nRMSE =
1

ymax − ymin

√√√√ 1

n

n∑
i=1

(yi − ŷi)2

with ymin = min{y1, . . . , yn} and ymax = max{y1, . . . , yn}.

4.4.1 General Observations

Note that all the datasets introduced above are a mixture of different variables. For instance,

the soil-response datasets consist of stress, strain and tangent moduli, and there are huge

differences on the magnitudes of the data—the strain is of O(10−1) magnitude while the

tangent moduli are of O(107) magnitude. This is generally true for a majority of scientific

simulation data; they consist of several variables taking values in different orders of magni-

tudes. Compressing this type of heterogeneous datasets as a single tensor typically leads to

inconsistencies in the reduced representations of the constituent variables. This is demon-

strated in Figure 4.2, where we compress the TRIAXIAL dataset as a single tensor using the

TT factorization at relative accuracy level τ = 10−1. In the reconstruction of the current

strain data, we can see features from the tangent moduli data creeping in and drastically

altering the recovered behavior. This observation led us to compressing different variables

in a single scientific dataset as separate tensors in our numerical experiments.

We also observe a close relationship between the level of correlation in a dataset, and

the compressibility of that dataset. We use time-dimension autocorrelation as a measure of

79

200 400 600 800 1000 1200 1400 1600 1800 2000

Timestep

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

C
u
rr

e
n
t
S

tr
a
in

(a) Original Current Strain

200 400 600 800 1000 1200 1400 1600 1800 2000

Timestep

-0.1

-0.05

0

0.05

0.1

C
u
rr

e
n
t
S

tr
a
in

(b) Recovered Current Strain

200 400 600 800 1000 1200 1400 1600 1800 2000

Timestep

0

2

4

6

8

10

T
a
n
g
e
n
t
M

o
d
u
li

10
7

(c) Original Tangent Moduli

Figure 4.2: Inconsistencies in the recovered current strain data from TRIAXIAL dataset when all
of it is compressed as a single tensor at relative accuracy level τ = 10−1. Panel (a) plots the time
evolution of the six components of current strain from a single RVE in the dataset and panel (b) is
its reconstruction. The significant deviations between these are obvious from these two plots—we
can see general features from the tangent moduli timeseries, plotted in panel (c), creep in this
reconstruction (e.g. the peak near timestep 400).

80

0 10 20 30 40 50 60 70 80 90 100

Lag

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
u
to

c
o
rr

e
la

ti
o
n

(a) Incremental Strain

0 10 20 30 40 50 60 70 80 90 100

Lag

-0.2

0

0.2

0.4

0.6

0.8

1

A
u

to
c
o

rr
e

la
ti
o

n

(b) Incremental Stress

0 10 20 30 40 50 60 70 80 90 100

Lag

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
u
to

c
o
rr

e
la

ti
o
n

(c) Tangent Moduli

Figure 4.3: Time-dimension autocorrelation factors for different variables from a single RVE of
the TRIAXIAL dataset. We note that as the lag increases, the autocorrelation for incremental
stress drops sharply to zero, indicating minimal correlation in the timeseries. On the other hand,
the autocorrelation for tangent moduli decays slowly, implying highly correlated timeseries data;
correlation for incremental strain is somewhere in between. Compressibility of these variables follow
the same trend: the compression ratios for incremental stress, incremental strain and tangent moduli
are approximately 8.2× 10−1, 8.4× 100 and 1.3× 103, respectively.

81

correlation in the dataset: given a timeseries {xi : 1 ≤ i ≤ n} the k-lag autocorrelation is

defined as

(4.33) AutoCorr(k) =

∑n−k
i=1 (xi − x̄)(xi+k − x̄)∑n

i=1(xi − x̄)2
, x̄ =

1

n

n∑
i=1

xi

We note that AutoCorr(0) = 1 for any timeseries. Additionally, for k ≥ 1, a fast decay

in the autocorrelation is indicative of uncorrelated data. We also define the integrated

autocorrelation as a scalar measure for level of correlation

(4.34) IAC = 1 + 2
∞∑
k=1

AutoCorr(k)

In Figure 4.3 we demonstrate the link between autocorrelation and compression ratios for the

TRIAXIAL dataset. We note that incremental stress has smaller autocorrelation (4.8×10−1 .

IAC . 7.9 × 101) when compared against tangent moduli (1.2 × 102 . IAC . 1.9 × 102).

Correspondingly, incremental stress is much less compressible (compression ratio ≈ 8.2 ×

10−1) than tangent moduli (compression ratio ≈ 1.3× 103).

4.4.2 Tensorization for Raw DEM Simulation Data

We now explore the advantages of tensorization in compressing the SEDIMENT dataset. To

increase the dimensionality of the dataset, we create log2 n = 14 hierarchical indices out of

the list of particles sorted using the Morton ordering, and log2m = 10 hierarchical indices

from the time snapshots.

We compress the SEDIMENT datasets 32 timesteps at a time, sorting the particles based

on the first and seventeenth timesteps of each chunk and retaining that order for the sub-

sequent timesteps. In Figure 4.4, we compare the compression ratios of these data chunks

when they are compressed as the natural three-dimensional and tensorized 20-dimensional

tensors as they evolve in time. We see that when the particles initially free-fall, the datasets

are highly compressible; additionally the compression ratio of the tensorized dataset is far

82

0 128 256 384 512 640 768 896 1024

Timesteps

100

101

102

103

104

C
om

pr
es

si
on

R
at

io

Natural

Tensorized

Figure 4.4: Compression of the velocity variable from the SEDIMENT dataset; the dataset is
compressed 32 timesteps at a time. The blue dots correspond to compression ratios of the data
chunks in their natural three dimensions, and the red dots correspond to the compression ratios
with tensorized dimensions. Initially, as the particles are in free-fall, the compression ratio is high.
But as the particles start to collide with each other and the simulation box, the compression ratio
drops. Eventually, as the particles settle down, the compression ratio again slowly increases.

superior to that of the natural dataset. But as the particles start to collide with the walls of

the box and each other (around the timestep 300), the compression ratio drops drastically.

However, as the particles settle down, the compression ratios start increasing again.

4.4.3 Streaming Compression for Raw DEM Simulation Data

We now apply the streaming compression setup to the compressed chunks of the SEDIMENT

dataset. We combine the TT compressed datasets from the previous section following Algo-

rithm 4.4. In Figure 4.5 we plot the compression ratios of these incrementally constructed

compressed datasets. We observed the same compressibility features as in the previous sec-

tion: an initially high compression ratio, followed by a drop when the particles collide and

the data is nonsmooth, and finally an increase in the compression ratio when the particles

settle down.

83

32 64 128 256 512 1024

Timesteps

101

102

103

104

105

C
om

pr
es

si
on

R
at

io

Natural

Tensorized

Figure 4.5: Streaming compression of the velocity variable from the SEDIMENT dataset; the dataset
is first compressed 32 timesteps at a time and the compressed datasets are then concatenated in
the TT format. The blue dots correspond to compression ratios of the data chunks in their natural
three dimensions, and the red dots correspond to the compression ratios with tensorized dimensions.
Initially, as the particles are in free-fall, the compression ratio is high. But as the particles start
to collide with each other and the simulation box, the compression ratio drops. Eventually, as the
particles settle down, the compression ratio again slowly increases.

4.4.4 Compression of Stress-Strain Data

In this section, we present the data compression results from the SOILWHEEL dataset. In

Table 4.2, we record the maximum TT rank, compression ratios and normalized RMSEs from

compressing the different variables in the dataset at different relative accuracy levels. We

see that the compressibility of the different variables varies drastically: at τ = 10−1 accuracy

level, the compression ratio for tangent moduli is 3.0 × 104 whereas that for incremental

stress is only 2.7.

4.5 Conclusions

In this chapter, we introduced the tensor-train decomposition as a tool for compressing

scientific data, focusing on DEM simulation outputs. We were able to demonstrate high

compression ratios for both raw and derived DEM datasets. We were able to achieve com-

84

Dataset Metric
Relative Tolerance

τ = 10−1 τ = 10−2 τ = 10−3

Current Strain
Maximum Rank 41 163 301

Compression Ratio 6.6× 102 8.2× 101 2.2× 101

Normalized RMSE 1.1× 10−2 9.5× 10−4 8.8× 10−5

Current Stress
Maximum Rank 128 726 1910

Compression Ratio 1.0× 102 3.2× 100 8.3× 10−1

Normalized RMSE 4.3× 10−3 3.2× 10−4 3.1× 10−5

Incremental Strain
Maximum Rank 203 654 1214

Compression Ratio 2.6× 101 3.3× 100 1.3× 100

Normalized RMSE 2.3× 10−3 2.0× 10−4 2.0× 10−5

Incremental Stress
Maximum Rank 795 2097 2680

Compression Ratio 2.7× 100 7.6× 10−1 5.8× 10−1

Normalized RMSE 1.9× 10−3 1.7× 10−4 1.2× 10−5

Tangent Moduli
Maximum Rank 8 270 3323

Compression Ratio 3.0× 104 1.4× 102 1.4× 100

Normalzied RMSE 1.2× 10−2 1.4× 10−3 9.7× 10−5

Table 4.2: Maximum TT ranks, compression ratios and normalized RMSEs when compressing the
different variables in the SOILWHEEL dataset at various tolerance levels. We see that the different
variables have differing compression ratios (e.g. the tangent moduli are much more compressible
than incremental stress). Also, the compression ratios drop as we demand more and more accurate
reconstructions by reducing the relative tolerance τ .

85

pression ratios of O(104) on datasets of size O(1) GB, reducing them to mere O(100) KB

datasets while keeping O(10−1) relative accuracy. We expect these compression ratios to

persist, and potentially even increase, for larger datasets as we have more redundancies to

exploit. These high levels of compression enable us to store simulation datasets at a fraction

of the storage cost of the full dataset.

86

CHAPTER 5

Efficient MCMC Sampling for Bayesian Matrix

Factorization by Breaking Posterior Symmetries

Preamble. In this chapter, we explore how to recover missing entries of matrices. This

is a widely studied problem with numerous practical applications. We focus on recovering

low-rank data matrices using a fully Bayesian inference framework based on Markov-chain

Monte Carlo (MCMC) sampling methods. We propose a simple modification that provably

breaks the posterior symmetries observed in the standard setup, and leads to better sampling

performance and lower reconstruct errors. This is joint work with Hadi Salehi and Alex

Gorodetsky, and is currently under review [31].

5.1 Introduction

The matrix completion problem seeks to use partial observations of a matrix to estimate

missing entries. Formally, let X ∈ Rm×n be our target data matrix, and let Λ ⊆ {1, . . . ,m}×

{1, . . . , n} be a set of matrix indices where the matrix element is observed:

(5.1) y = PΛ(X) + η.

Here, PΛ : Rm×n → R|Λ|, |Λ| being the cardinality of the set Λ, is the linear projection map

(5.2) PΛ(X) = (xλ : λ = (λ1, λ2) ∈ Λ),

87

and η ∈ R|Λ| is a vector of additive noises. Our goal is then to recover the matrix X

from the observations y. This problem commonly arises in many practical applications such

as recommender system design [104], drug-target interaction prediction [110, 116], image

inpainting [42, 63], social network topology recovery [70] and sensor localization [109].

5.1.1 Related Works

This matrix problem is naturally ill-posed, and obtaining robust and accurate solutions

requires imposing additional regularity conditions on the underlying data matrix such as

sparsity or low-rank structures. In this paper, we consider the problem of low-rank matrix

completion, where we might attempt to recover the matrix by nuclear norm minimization

(5.3) minimize
X∈Rm×n

‖X‖∗ subject to ‖y − PΛ(X)‖ ≤ δ,

for some constant δ ≥ 0 that depends on the level of noise. Note that the nuclear norm

is the convex relaxation of rank of a matrix [18], hence the objective in the optimization

problem naturally encourages low-rank structure of the reconstruction. In [18], [19] and [17]

the authors establish that, under mild assumptions about certain incoherence properties of

X, solving (5.3) leads to accurate recovery of the underlying data matrix with surprisingly

few observations. In fact, in absence of noise (that is, when η = 0 and δ = 0) exact recovery

is possible with high probability.

The standard solution method for optimization (5.3) is semi-definite programming, which

is expensive when the matrix sizes m and n are large. In this setup, it is advantageous to

explicitly use the low-rank factorization

(5.4) X = AB>, A ∈ Rm×r, B ∈ Rn×r, r � min{m,n},

88

and solve the optimization problem

(5.5) minimize
A∈Rm×r,B∈Rn×r

‖A‖2
F + ‖B‖2

F subject to ‖y − PΛ(AB>)‖ ≤ δ,

We can show that the optimization problems (5.3) and (5.5) are equivalent as long as the

estimated rank r is chosen to be larger than the true rank [93]. We also consider the

unconstrained version of (5.5):

(5.6) minimize
A∈Rm×r,B∈Rn×r

∥∥y − PΛ(AB>)
∥∥2

2
+
ω

2
‖A‖2

F +
ω

2
‖B‖2

F .

Generally speaking, these optimization-based approaches attempt to minimize the distance

between the observed entries and their corresponding low-rank predictions while regularizing

over the low-rank factors, and they serve as the base of a wide class of methods for low-rank

matrix recovery [100, 76, 29].

In this paper we instead focus on probabilistic approaches for which the solution also

quantifies uncertainty in the predictions. Within this context the objective function (5.6)

can easily be viewed as the negative log-posterior in a Bayesian parameter estimation problem

with data y and parameters A and B—it corresponds to i.i.d. zero-mean Gaussian priors on

the entries of the factor matrices and observations corrupted by Gaussian noise. [66] and [92]

each apply variational Bayes approximations of this inference model to analyze the Netflix

prize challenge [15] to great success. Further, [77] and [78] develop a theoretical framework

to analyze the variational Bayes low-rank matrix factorization.

A fundamental issue with the variational Bayes approach lies in one of its modeling

assumptions—namely the factors A and B are taken to be independent. [95] argues a fully

Bayesian framework, which does not need this assumption, can outperform the variational

models. Their proposed Markov-chain Monte-Carlo (MCMC) based approach is used in

several later works [22, 5]. More recently, it has been adapted for recovering low-rank tensor

factorizations as well [91, 114, 115].

89

5.1.2 Our Contributions

In most of these variational and fully Bayesian inference setups, the priors and observations

models are the same—they use Gaussian priors with zero means on the columns of the

factor matrices, and assume observations are corrupted by additive Gaussian noise. One of

the reasons for the popularity of this choice of priors is rooted in the fact that it leads to

simple analytical conditional posteriors, which is ideal for devising a Gibbs MCMC sampler

[7, 8]. Unfortunately, this choice of priors cannot fully mitigate the non-identifiability of the

low-rank factorization (5.4)—given any r × r non-singular matrix W we can construct the

new factors

(5.7) Ã = AW and B̃ = BW−> =⇒ X = ÃB̃>.

The effect of this invertible invariance shows up in the Bayes posteriors in the form of

symmetries, as illustrated in Figure 5.1, where we plot the joint posterior between various

components of the factor matrices, constructed from Hamiltonian Monte-Carlo (HMC) sam-

ples, for the fully observed 4×4 rank-2 matrix described in Example 1 (Section 5.4). Effective

MCMC sampling from distributions with such wide varying multi-modal and non-connected

geometries is, in general, a difficult task.

The main goal of this paper is to advocate a simple change in the prior specification, which

does not break the local conjugacy required for Gibbs samplers, but breaks the posterior

symmetries. Our contributions are threefold:

• In Theorem 5.3, we derive the exact conditions on the matrixW such that the posterior,

assuming zero-mean Gaussian priors, is invariant under the transformation (A,B) 7→

(AW,BW−>).

• In Corollary 5.8 we prove that choosing a system of linearly independent prior means

is sufficient for breaking this posterior symmetry. An illustration is given in Figure 5.2,

90

Figure 5.1: Joint posterior between a few components of the factor matrices. Results obtained
using Hamiltonian Monte Carlo with zero mean priors.

Figure 5.2: Joint posterior between a few components of the factor matrices (same as in Figure 5.1).
Results obtained using Hamiltonian Monte Carlo, but this time with non-zero mean priors.

91

where we plot the same set of joint posteriors as in Figure 5.1, but now constructed

from HMC samples obtained with non-zero mean priors.

• By breaking the symmetry via introducing non-zero mean priors, we counter the non-

identifiability of low-rank factorizations. We demonstrate this ultimately leads to bet-

ter performance for MCMC sampling algorithms on matrices constructed from both

synthetic and real-world data. We observe up to an order of magnitude decrease in the

autocorrelations of generated samples and corresponding improvement in reconstruc-

tion errors of the underlying data matrices in our numerical examples in Section 5.4.

Note that our proposed change in prior means is very simple to implement—one needs to

change at most a few lines of code in any existing applications. Constructing the appropriate

prior means is also straightforward. From random matrix theory, we know that if the entries

of a tall-and-thin matrix are sampled i.i.d. from any continuous random variable in R, then

the columns of the matrix form a linearly independent system with probability 1.

The rest of the paper is structured as follows. In Section 5.2, we formally introduce the

Bayesian inference setup and quantify the symmetries arising from zero-mean Gaussian pri-

ors. In Section 5.3, we show that choosing the priors means to be non-zero in a systematic

fashion breaks the invertible invariance. In Section 5.4, we present the numerical experi-

ments. Finally, in Section 5.5, we present our concluding remarks and some directions for

future work.

5.2 Notations and Bayesian Inference Setup

In this section, we introduce the notations we use throughout the rest of the paper, and

introduce our Bayesian inference setup for the low-rank matrix factorization problem.

92

5.2.1 Notations

A vector x is always represented as a column, a row-vector is represented as x>. The vector

ei is the i-th standard basis of appropriate (and inferable from context) size—all but its i-th

entries are zero, and the non-zero entry is one.

Given a matrix X ∈ Rm×n, we use xij to denote its (i, j)-th entry. Additionally, x̄i ∈ Rn

and xj ∈ Rm denotes i-th row and the j-th column of the matrix; thus

(5.8) X =


x11 · · · x1n

...
. . .

...

xm1 · · · xmn

 =

[
x1 · · · xn

]
=


x̄>1
...

x̄>m

 .

The matrix In denotes the n× n identity matrix.

We adopt MATLAB’s notation for indexing—given index sets Λr ⊆ {1, . . . ,m} and

Λc ⊆ {1, . . . , n} we use X[Λr,Λc] to denote the intersection of the rows of X ∈ Rm×n

indexed by Λr and columns indexed by Λc. We also adopt the following slight abuses of

notation:

X[i,Λc] = X[{i},Λc], X[:,Λc] = X[{1, . . . ,m},Λc],(5.9)

X[Λr, j] = X[Λr, {j}], X[Λr, :] = X[Λr, {1, . . . , n}].(5.10)

5.2.2 Prior and Likelihood Models

Given a low-rank factorization (5.4), we impose independent Gaussian priors on the columns

of the factor matrices

(5.11) ak ∼ N (µa,k, τ
−1
a,kIm), bk ∼ N (µb,k, τ

−1
b,k In).

93

The joint prior is then given by

(5.12) p(A,B) =
r∏

k=1

N (ak | µa,k, τ−1
a,kIm)N (bk | µb,k, τ−1

b,k In).

We assume real-valued matrices and a standard additive Gaussian noise model

(5.13) yλ = xλ + ηλ, ηλ ∼ N (0, τ−1
η), λ ∈ Λ.

Here Λ is the set of location indices where the matrix was observed. The corresponding

likelihood is given by

(5.14) p(y | A,B) =
∏
λ∈Λ

N (yλ | ā>λ1 b̄λ2 , τ
−1
η).

The effect of invertible invariance of the likelihood is immediately obvious:

Proposition 5.1. The likelihood p(y | A,B) defined in (5.14) is invariant under invertible

transformations. In particular, if W ∈ Rr×r is an invertible matrix, then

(5.15) p(y | A,B) = p(y | AW,BW−>) for all A ∈ Rm×r and B ∈ Rn×r.

Proof. Let Ã = AW and B̃ = BW−>. Then we note

(5.16) ÃB̃> = (AW)(BW−>)> = AWW−1B> = AB>.

Since all the matrix entries appearing in (5.14) are the same for both (A,B) and (Ã, B̃), it

follows that the likelihood is invariant.

94

5.2.3 The Posterior and its Symmetries

Using Bayes rule, the posterior is

(5.17) p(A,B | y) ∝ p(A,B)p(y | A,B) = p(A)p(B)p(y | A,B).

The negative log posterior is therefore

− ln p(A,B | y) =
mr

2
ln(2π) +

m

2

r∑
k=1

ln
1

τa,k
+

1

2

r∑
k=1

τa,k‖ak − µa,k‖2

+
nr

2
ln(2π) +

n

2

r∑
k=1

ln
1

τb,k
+

1

2

r∑
k=1

τb,k‖bk − µb,k‖2

+
|Λ|
2

ln(2π) +
|Λ|
2

ln
1

τη
+
τη
2

∑
λ∈Λ

(yλ − ā>λ1 b̄λ2)
2 + const.

(5.18)

The first two lines correspond to the priors on A and B, and the first three terms of the

final line to the likelihood. The constant term corresponds to the evidence p(y) of the

observations, and can generally be ignored. We have already seen that the likelihood term

is invariant under invertible transformations of the form (A,B) 7→ (AW,BW−>). Now we

investigate any effect the prior terms might have. We immediately note the following:

Proposition 5.2. The posterior corresponding to (5.18) is invariant under invertible trans-

formation W ∈ Rr×r, i.e.

(5.19) p(A,B | y) = p(AW,BW−> | y) for all A ∈ Rm×r and B ∈ Rn×r,

if and only if the terms

f1(A) =
r∑

k=1

τa,k‖ak‖2, f2(A) =
r∑

k=1

τa,kµ
>
a,kak,(5.20)

f3(B) =
r∑

k=1

τb,k‖bk‖2, f4(B) =
r∑

k=1

τb,kµ
>
b,kbk(5.21)

95

are individually invariant under the A 7→ AW and B 7→ BW−> transformations.

Proof. Note that

(5.22) ‖ak − µa,k‖2 = ‖ak‖2 − 2µ>a,kak + const.,

and similarly

(5.23) ‖bk − µb,k‖2 = ‖bk‖2 − 2µ>b,kbk + const.

Thus, we can rewrite the negative log posterior as

(5.24) − log p(A,B | y) =
1

2
f1(A)− f2(A) +

1

2
f3(B)− f4(B)− log p(y | A,B) + const.

From Proposition 5.1, we see that the likelihood term is already invariant under the invertible

transformation. It follows invariance of f1, f2, f3 and f4 is sufficient for invariance of the

posterior.

We now establish that invariance of f1, f2, f3 and f4 is necessary for invariance of the

posterior. To show this, first note that f1, f3 are homogeneous of degree two, and f2, f4 are

homogeneous of degree one. More explicitly, for all t, s ∈ R we have

f1(tA) = t2f1(A), f2(tA) = tf2(A),(5.25)

f3(sB) = s2f3(B), f4(sB) = sf4(B).(5.26)

Now, fix A and B, then for invariance we must have p(tA, sB | y) = p(tAW, sBW−> | y) for

all s, t ∈ R. Expanding this out using (5.24) and applying the homogeneity properties, we

96

obtain

t2

2
f1(A)− tf2(A) +

s2

2
f3(B)− sf4(B) =

t2

2
f1(AW)− tf2(AW) +

s2

2
f3(BW−>)− sf4(BW−>),

(5.27)

where the likelihood term cancels out. Comparing the coefficients of like-powered terms on

the both sides, we conclude that we must have

f1(A) = f1(AW) f2(A) = f2(AW)(5.28)

f3(B) = f3(BW−>) f4(B) = f4(BW−>)(5.29)

Since A and B are arbitrary, it follows that f1, f2, f3 and f4 must be individually invariant

under the A 7→ AW and B 7→ BW−> transformations.

Clearly, the addition of prior imposes further restrictions on W for invertible invariance

of the posterior (compared to the invariance of the likelihood). In particular, with zero-

mean priors, the invariance exhibited by the likelihood under the transformation (A,B) 7→

(AW,BW−>) holds for the posterior only when W is restricted to a very particular subclass

of invertible matrices:

Theorem 5.3 (Posterior symmetries with zero mean priors). Let µa,k = 0 and µb,k = 0 for

all 1 ≤ k ≤ r and denote the diagonal matrices of the precision of the priors on the columns

as

(5.30) Ta = diag(τa,1, . . . , τa,r), Tb = diag(τb,1, . . . , τb,r).

Let {Λ1, . . . ,Λq} be a partition of {1, . . . , r} defined by the following:

(5.31) k, k′ ∈ Λ` ⇐⇒ τa,kτb,k = τa,k′τb,k′ .

97

Then the posterior corresponding to (5.18) is invariant under the transformation (A,B) 7→

(AW,BW−>) with invertible W ∈ Rr×r if and only if we can decompose

(5.32) W = T 1/2
a QT−1/2

a = T
−1/2
b QT

1/2
b ,

where Q is orthogonal and block diagonal w.r.t. the partition {Λ1, . . . ,Λq}, i.e. the sub-

matrices

(5.33) Q[Λ`1 ,Λ`2] are


orthogonal if `1 = `2

zero if `1 6= `2

.

We note that one direction of this theorem (that the above form of W is sufficient for

the invariance of posterior) appears in [77]. We claim this structure of the matrix W is also

necessary for invertible invariance as well.

Proof of Theorem 5.3. From Proposition 5.2, invertible invariance of the posterior with zero

mean priors holds if and only if the terms

(5.34) f1(A) =
r∑

k=1

τa,k‖ak‖2, f3(B) =
r∑

k=1

τb,k‖bk‖2

are invariant under the A 7→ AW and B 7→ BW−> transformations.

We divide the rest of the proof into three steps:

• Step 1 derives the following condition on W necessary for invertible invariance:

(5.35) Qa = T−1/2
a WT 1/2

a and Qb = T
1/2
b WT

−1/2
b

must be orthogonal matrices.

• Step 2 establishes Qa = Qb, and derives the block diagonal structure (5.33) on this

common orthogonal matrix Q. This establishes (5.32) as a necessary condition for

98

invertible invariance.

• Step 3 proves that (5.32) is in fact sufficient for invertible invariance.

Step 1. Let us choose

(5.36) A =



α1 · · · αr

0 · · · 0

...
. . .

...

0 · · · 0


m×r

.

Then we have

(5.37) AW =



α>

0>

...

0>


[
w1 · · · wr

]
=



α>w1 · · · α>wr

0 · · · 0

...
. . .

...

0 · · · 0


m×r

for arbitrary α ∈ Rr. Then we have

f(A) =
r∑

k=1

τa,kα
2
k =

∥∥T 1/2
a α

∥∥2
(5.38)

f(AW) =
r∑

k=1

τa,k(α
>wk)

2 =
r∑

k=1

τa,k(w
>
k α)2 =

∥∥T 1/2
a W>α

∥∥2
(5.39)

These equalities follow from the following observations:

(5.40) T 1/2
a α =


τ

1/2
a,1 α1

...

τ
1/2
a,r αr

 , T 1/2
a W>α = T 1/2

a


w>1 α

...

w>r α

 =


τ

1/2
a,1 w

>
1 α

...

τ
1/2
a,r w>r α



99

Thus, invariance of f1 under A 7→ AW transformation requires

(5.41)
∥∥T 1/2

a α
∥∥ =

∥∥T 1/2
a W>α

∥∥ for all α ∈ Rr

Set β = T
1/2
a α, then by the invertibility of Ta we can rewrite this condition as

(5.42) ‖β‖ =

∥∥∥∥∥∥∥T 1/2
a W>T−1/2

a︸ ︷︷ ︸
Q>a

β

∥∥∥∥∥∥∥ for all β ∈ Rr

Clearly, Q>a preserves lengths, and it must be orthogonal; orthogonality of Qa follows. Pro-

ceeding in a similar manner, we can show that the invariance of f3 under the B 7→ BW−>

transformation would require Qb (again, as defined in (5.35)) to be orthogonal.

Step 2. Using (5.35) we can compute

(5.43) Q−1
a = T−1/2

a W−1T 1/2
a =⇒ Q−>a = T 1/2

a W−>T−1/2
a

But since Qa is orthogonal we have

(5.44) Qa = Q−>a =⇒ T−1/2
a WT 1/2

a = T 1/2
a W−>T−1/2

a =⇒ WTa = TaW
−>

Similarly, from (5.35) and orthogonality of Qb, we can derive

(5.45) TbW = W−>Tb

Using (5.44) and (5.45) along with associativity of matrix multiplication, we obtain

(5.46) TaTbW = Ta(TbW)
(5.45)
= Ta(W

−>Tb) = (TaW
−>)Tb

(5.44)
= (WTa)Tb = WTaTb

Now, equating (i, j)-th entries of the two boundary matrices in the above chain (which are

100

easy to compute given diagonal Ta and Tb), we get

(5.47) τa,iτb,iwij = wijτa,jτb,j for all 1 ≤ i, j ≤ r

Clearly, if τa,iτb,i 6= τa,jτb,j for some pair of indices (i, j), then we must have wij = 0. This

leads us to the block-diagonal structure of W w.r.t. partition {Λ1, . . . ,Λq}, i.e. W [Λ`1 ,Λ`2]

is non-zero only if `1 = `2. Using this with the diagonal nature of Ta and Tb in (5.35), we

can conclude Qa and Qb have the same block-diagonal structure.

Next, for each 1 ≤ ` ≤ q we have τa,iτb,i = τa,jτb,j for all i, j ∈ Λ`. Let us call this common

value c`, then we have

Ta[Λ`,Λ`]Tb[Λ`,Λ`] = diag(τa,i : i ∈ Λ`) diag(τb,i : i ∈ Λ`)

= diag(τa,iτb,i : i ∈ Λ`)

= diag(c` : i ∈ Λ`)

= c`Ir`

(5.48)

where we denote r` = |Λ`|. We conclude

Tb[Λ`,Λ`] = c`Ta[Λ`,Λ`]
−1

=⇒ Qb[Λ`,Λ`] = Tb[Λ`,Λ`]
1/2W [Λ`,Λ`]Tb[Λ`,Λ`]

−1/2

= c
1/2
` Ta[Λ`,Λ`]

−1/2W [Λ`,Λ`]c
−1/2
` Ta[Λ`,Λ`]

1/2

= Ta[Λ`,Λ`]
−1/2W [Λ`,Λ`]Ta[Λ`,Λ`]

1/2

= Qa[Λ`,Λ`]

(5.49)

Combining these for all the blocks, we obtain Qa = Qb. We call this common value Q, and

(5.32) is trivially satisfied.

Step 3. This part of the proof is taken from Appendix G.3 of [77]:

101

Note that we can write

(5.50) f1(A) =
r∑

k=1

τa,k‖ak‖2 = tr((TaA
>)A) = tr(A(TaA

>)) = tr(ATaA
>)

where the second equality follows from the following observation:

(TaA
>)A =



τa,1

. . .

τa,r



a>1
...

a>r



[
a1 · · · ar

]

=


τa,1a

>
1

...

τa,ra
>
r


[
a1 · · · ar

]

=


τa,1a

>
1 a1 · · · τa,1a

>
1 ar

...
. . .

...

τa,1a
>
r a1 · · · τa,1a

>
r ar



(5.51)

Now, using W = T
1/2
a QT

−1/2
a from (5.32), we get

f1(AW) = tr((AW)Ta(AW)>)

= tr(AWTaW
>A>)

= tr(A(T 1/2
a QT−1/2

a)Ta(T
−1/2
a Q>T 1/2

a)A>)

= tr(AT 1/2
a Q(T−1/2

a TaT
−1/2
a)Q>T 1/2

a A>)

= tr(AT 1/2
a (QQ>)T 1/2

a A>)

= tr(A(T 1/2
a T 1/2

a)A>)

= tr(ATaA
>)

= f1(A)

(5.52)

We can similarly prove that f3(BW−>) = f3(B) with W = T
−1/2
b QT

1/2
b . Thus f1 and f3

102

satisfy the desired invariance property.

Two extreme cases of invariance with zero mean priors can be derived immediately from

this theorem:

Corollary 5.4. Let µa,k = 0 and µb,k = 0, 1 ≤ k ≤ r. Further suppose that τa,1 = · · · = τa,r

and τb,1 = · · · = τb,r. Then the posterior corresponding to (5.18) is invariant under invertible

transformation W if and only if W is orthogonal.

Proof. We have τa,1τb,1 = · · · = τa,rτb,r. Hence Q only has one block. Consequently invertible

invariance holds if and only if Q is orthogonal (by Theorem 5.3). Additionally, we can write

Ta = τa,1Ir where Ir is the r × r identity matrix. It follows that

(5.53) W = T 1/2
a QT−1/2

a = τ
1/2
a,1 IrQτ

−1/2
a,1 Ir = Q,

i.e. Q is orthogonal if and only if W is also orthogonal.

Corollary 5.5. Let µa,k = 0 and µb,k = 0, 1 ≤ k ≤ r. Further suppose that the products

τa,1τb,1, . . . , τa,rτb,r are all distinct. Then the posterior corresponding to (5.18) is invariant

under invertible transformation W if and only if W is diagonal with non-zero entries ±1.

Proof. It follows from Theorem 5.3 that Q must be block diagonal with block size 1, and

the each block has to be ±1 (these are the only 1 × 1 orthogonal matrices). Let us write

Q = diag(q1, . . . , qr) with each qi = ±1. Then we have

(5.54) W = diag(τ
1/2
a,1 , . . . , τ

1/2
a,r) diag(q1, . . . , qr) diag(τ

−1/2
a,1 , . . . , τ−1/2

a,r) = diag(q1, . . . , qr).

It follows that invertible invariance holds if and only if W is diagonal with entries ±1.

These corollaries make it clear that under zero-mean priors, there are at the very least

2r symmetries in the posterior, corresponding to the W = diag(±1, . . . ,±1) transformation

matrices.

103

5.3 Breaking the Posterior Symmetries with Non-Zero

Mean Priors

It is clear from Proposition 5.2 and Theorem 5.3 that the secret to completely breaking the

symmetries can only hide in the f2 and f4 terms, which involve the prior means. This leads

to our main result:

Theorem 5.6 (Breaking posterior symmetries). Let Ta, Tb and {Λ1, . . . ,Λq} be as defined

in the statement of Theorem 5.3. Define the prior mean matrices

(5.55) Ma =

[
µa,1 · · · µa,r

]
and Mb =

[
µb,1 · · · µb,r

]
.

Then the posterior p(A,B | y) is not invariant under the (A,B) 7→ (AW,BW−>) transfor-

mation for any non-identity invertible r × r matrix W if and only if the matrices

(5.56)

Ma[:,Λ`]Ta[Λ`,Λ`]
1/2

Mb[:,Λ`]Tb[Λ`,Λ`]
1/2


have full column rank for all 1 ≤ ` ≤ q.

To prove this, we will need the following:

Lemma 5.7. Let P ∈ Rm×n with m ≥ n. Then the matrix equation

(5.57) PW = P, W ∈ Rn×n orthogonal

has the unique solution W = I if and only if P has full column rank.

Proof. Multiplying both sides of the matrix equation by P> we obtain P>PW = P>P . If

P has full column rank, then P>P is invertible, and it follows that W = I is the unique

solution.

104

Conversely, suppose P is not full rank. Then there exists a non-zero x ∈ Rn with unit

norm such that Px = 0. Let W = I − 2xx>, then clearly

(5.58) PW = P (I − 2xx>) = P − 2(Px)x> = P

and

(5.59) W>W = (I − 2xx>)>(I − 2xx>) = I − 2xx> − 2xx> + 4x(x>x)x> = I

since x>x = 1. Thus we have constructed a second solution to the matrix equation, demon-

strating the non-uniqueness of the solution W .

Proof of Theorem 5.6. In this proof, we attempt to reduce the set of all possible r × r in-

vertible matrices W , for which invertible invariance

(5.60) p(A,B | y) = p(AW,BW−> | y) for all A ∈ Rm×r, B ∈ Rn×r

holds, to the singleton {Ir}. We will demonstrate that this reduction is possible if and only

if the P` matrices (as defined in the theorem statement) have full column rank. We achieve

this as follows:

• We have already shown in Proposition 5.2 that invertible invariance of the posterior

holds if and only if the f1, f2, f3 and f4 terms (as defined in the aforementioned proposi-

tion) are individually invariant under the A 7→ AW and B 7→ BW−> transformations.

• Theorem 5.3 established that in order for the f1 and f3 terms to invariant under the

transformation above, W must have the structure

(5.61) W = T 1/2
a QT−1/2

a = T
−1/2
b QT

1/2
b

where Q is block-diagonal w.r.t. partition {Λ1, . . . ,Λq} as defined in the statement of

105

the aforementioned theorem, and the nonzero diagonal blocks Q[Λ`,Λ`] are orthogonal

for all 1 ≤ ` ≤ q.

• In Step 1 below, we consider the terms f2 and f4, and derive simpler and equivalent

conditions on matrix W (more specifically, the matrix Q) to ensure invariance under

the A 7→ AW and B 7→ BW−> transformations. These conditions are formulated in

terms of the prior means µa,k, µb,k and precisions τa,k, τb,k for invariance.

• In Step 2, we further analyze these simpler conditions and frame them as matrix

equations on diagonal blocks of Q.

• Finally, in Step 3, we will use Lemma 5.7 to demonstrate W = I is the only solution

of this matrix system if and only if the matrices P` are full rank for 1 ≤ ` ≤ q.

Step 1. Let us explicitly write out the invariance of f2: we have f2(AW) = f2(A), i.e.

r∑
k′=1

τa,k′µ
>
a,k′(AW)k′ =

r∑
k′=1

τa,k′µ
>
a,k′ak′

=⇒
r∑

k′=1

τa,k′µ
>
a,k′AWek′ =

r∑
k′=1

τa,k′µ
>
a,k′ak′(5.62)

for all A. Note that we can write

(5.63) A =
r∑

i′=1

ai′e
>
i′

106

Substituting this expression on the left hand size of (5.62), we obtain

r∑
k′=1

τa,k′µ
>
a,k′AWek′ =

r∑
k′=1

τa,k′µ
>
a,k′

(
r∑

i′=1

ai′e
>
i′

)
Wek′

=
r∑

k′=1

τa,k′µ
>
a,k′

r∑
i′=1

ai′e
>
i′ (T

1/2
a QT−1/2

a)ek′

=
r∑

k′=1

τa,k′µ
>
a,k′

r∑
i′=1

ai′(e
>
i′T

1/2
a)Q(T−1/2

a ek′)

=
r∑

k′=1

τa,k′µ
>
a,k′

r∑
i′=1

ai′(τ
1/2
a,i′ e

>
i′)Q(τ

−1/2
a,k′ ek′)

=
r∑

k′=1

τ
1/2
a,k′µ

>
a,k′

r∑
i′=1

τ
1/2
a,i′ ai′(e

>
i′Qek′)

=
r∑

k′=1

τ
1/2
a,k′µ

>
a,k′

r∑
i′=1

τ
1/2
a,i′ ai′qi′,k′

=
r∑

k′=1

µ̃>a,k′

r∑
i′=1

ãi′qi′,k′

(5.64)

where we denote

(5.65) µ̃a,k′ = τ
1/2
a,k′µa,k′ , ãk′ = τ

1/2
a,k′ak′ , k′ ∈ {1, . . . , r}

The right hand side of (5.62) can be rewritten using this notation as

(5.66)
r∑

k′=1

τa,k′µ
>
a,k′ak′ =

r∑
k′=1

µ̃>a,k′ ãk′

These two computations simplifies (5.62) to

(5.67)
r∑

k′=1

µ̃>a,k′

r∑
i′=1

ãi′qi′,k′ =
r∑

k′=1

µ̃>a,k′ ãk′

Switching the order of summation on the left side, changing the summation index on the

107

right side, and using ã>i′ µ̃a,k′ = µ̃>a,k′ ãi′ , we obtain

(5.68)
r∑

i′=1

ã>i′

r∑
k′=1

µ̃a,k′qi′,k′ =
r∑

i′=1

ã>i′ µ̃a,i′

It has to hold for any arbitrary ãi′ ∈ Rm for i′ ∈ {1, . . . , r} (since the columns ai′ of matrix

A are arbitrary and τa,i′ are positive reals). Let us fix 1 ≤ i ≤ r and assume all but the i-th

of these vectors ãi′ are zeros. Then (5.68) reduces to

(5.69) ã>i

r∑
k′=1

µ̃a,k′qi,k′ = ã>i µ̃a,i

Since this holds for arbitrary ãi ∈ Rm, we conclude

(5.70)
r∑

k′=1

µ̃a,k′qi,k′ = µ̃a,i

Conversely, if (5.70) holds for all 1 ≤ i ≤ r, then (5.68) is trivially satisfied.

Let us pause and review our progress. Under the A 7→ AW transformation, where W

has the form defined in (5.32) and (5.33) (required for invariance of the f1 and f3 terms,

c.f. Theorem 5.3), the term f2 is invariant if and only if identity (5.62) holds if and only if

identity (5.68) holds if and only if equation (5.70) is true.

Note that W−> = T
1/2
b Q−>T−1/2

b = T
1/2
b QT

−1/2
b where the last equality follows from

orthogonality of Q. We can now repeat the same process as above, and establish that f4 is

invariant under the B 7→ BW−> transformation if and only if

(5.71)
r∑

k′=1

µ̃b,k′qi,k′ = µ̃b,i

holds.

We combine these two arguments, and conclude f2 and f4 are invariant (after assuming

the conditions (5.32) and (5.33) equivalent to invariances of f1 and f3) if and only if (5.70)

108

and (5.71) holds.

Step 2. We now frame (5.70) and (5.71) as matrix equations for the diagonal blocks of

the Q matrix. In (5.70), let us assume i ∈ Λ` for some ` ∈ {1, . . . , q}. Then, since Q is

block-diagonal w.r.t. partitions {Λ1, . . . ,Λ`}, we have

(5.72) qi,k′ = 0 for all k′ 6∈ Λ`

and (5.70) further reduces to

(5.73)
∑
k′∈Λ`

µ̃a,k′qi,k′ = µ̃a,i =⇒
∑
k′∈Λ`

τ
1/2
a,k′µa,k′qi,k′ = τ

1/2
a,i µa,i

This is a linear system with unknown Q[i,Λ`]; in matrix form, we can write it as

(5.74) Ma[:,Λ`]Ta[Λ`,Λ`]
1/2Q[i,Λ`]

> = τ
1/2
a,i µa,i

We can similarly pose (5.71) as a matrix equation

(5.75) Mb[:,Λ`]Tb[Λ`,Λ`]
1/2Q[i,Λ`]

> = τ
1/2
b,i µb,i

Combining (5.74) and (5.75) for all i ∈ Λ`, we obtain the system

(5.76)

Ma[:,Λ`]Ta[Λ`,Λ`]
1/2

Mb[:,Λ`]Tb[Λ`,Λ`]
1/2

Q[Λ`,Λ`]
> =

Ma[:,Λ`]Ta[Λ`,Λ`]
1/2

Mb[:,Λ`]Tb[Λ`,Λ`]
1/2


Denoting the matrix on the right hand side as P`, we obtain

(5.77) P`Q[Λ`,Λ`]
> = P`

In summary, given the block-diagonal structure of Q from invariance of f1 and f3 terms,

109

we have derived matrix equation (5.77) which is equivalent to (5.70) and (5.71). These later

two conditions are both necessary and sufficient for invariance of f2 and f4 to hold.

Step 3. By Lemma 5.7, the solution Q[Λ`,Λ`] = Ir` of (5.77) among orthogonal r` × r`

matrices is unique if and only if the matrix P` has full column rank. Collecting this result

for all ` ∈ {1, . . . , q}, we conclude that Q = I is the unique matrix generating the invertible

invariance matrix W if and only if the matrices P` are full rank.

Finally note that

(5.78) Q = I =⇒ W = T 1/2
a QT−1/2

a = T 1/2
a IT−1/2

a = I

and

(5.79) W = I =⇒ Q = T−1/2
a WT 1/2

a = T−1/2
a IT 1/2

a = I

Thus Q = I if and only if W = I and we conclude our proof.

We now present an immediate corollary, which provides an extremely simple way to

ensure full rank matrices (5.56). It essentially states that if the means are chosen to be

linearly independent (e.g. the entries of the mean matrix are sampled i.i.d. from a zero-

mean Gaussian distribution—the columns would be independent with probability 1), then

the invariance is broken.

Corollary 5.8. Suppose either {µa,k : 1 ≤ k ≤ r} or {µb,k : 1 ≤ k ≤ r} form a linearly

independent set in Rm or Rn. Then the posterior p(A,B | y) is not invariant under any

non-identity invertible transformations.

Proof. Suppose {µa,k : 1 ≤ k ≤ r} is a linearly independent set in Rm. Then Ma[:,Λ`], and

110

consequently Ma[:,Λ`]Ta[Λ`,Λ`]
1/2, are full rank for all `. It follows that

(5.80) P` =

Ma[:,Λ`]Ta[Λ`,Λ`]
1/2

Mb[:,Λ`]Tb[Λ`,Λ`]
1/2


has full rank for all `, and Theorem 5.6 applies. A similar proof can be constructed when

the prior means {µb,k : 1 ≤ k ≤ r} form a linearly independent set in Rn.

Thus, by carefully choosing non-zero means for the priors on matrix factors, we can ensure

that for any r × r invertible matrix W 6= I, the posteriors p(A,B | y) and p(AW>, BW−> |

y) are distinct. In other words, with this choice of prior distributions, we can keep the

identifiability issue from affecting Bayesian inference.

5.4 Numerical Results

We now demonstrate that symmetry breaking improves MCMC sampling, both in terms of

efficiency (by decreasing autocorrelation) and accuracy (by reducing reconstruction error),

with four numerical experiments. Examples 1 and 2 apply Bayesian matrix factorization

with synthetic data, and Examples 3 and 4 work with real-world data. For each example,

the entries of the non-zero prior mean matrices are sampled from a uniform distribution.

We use the root mean squared error (RMSE) as a measure of error between the true matrix

X ∈ Rm×n and its reconstruction X̂ ∈ Rm×n:

(5.81) RMSE =

√√√√ 1

mn

m∑
i=1

n∑
j=1

(xij − x̂ij)2.

111

5.4.1 Example 1: Fully Observed Synthetic Matrix

We contrast the results obtained from running the HMC and Gibbs samplers on a rank-2

4×4 matrix

(5.82) X =



1 0 1 5

2 −1 1 4

4 −1 3 14

3 −1 2 9


,

with zero and non-zero mean priors; the non-zero prior means Ma and Mb are constructed

by sampling each of the entries from the Uniform(0, 1) distribution. We observe the full

matrix with noise precision τη = 104, and MCMC results are obtained using both Gibbs

and HMC samplers that use 10 chains, each with 20000 samples. We also assume that the

precision is unknown, and follow the standard procedure of hierarchical Bayes by inferring

the precision with prior τη ∼ Ga(3, 10−2). This leads to a conditionally conjugate posterior

on τη [7].1 In Figure 5.1 and Figure 5.2, we plot various joint posteriors, obtained using the

samples generated using HMC, corresponding to the zero and non-zero mean priors. We can

clearly see that the symmetries of the posterior in Figure 5.1 (corresponding to the zero mean

priors) are not observed when using non-zero mean priors in Figure 5.2. This symmetry-

breaking leads to better performance for MCMC samplers. For example, in Figure 5.3,

we plot the autocorrelations for factor a1,1 of the samples generated from both HMC and

Gibbs samplers. The autocorrelations are significantly lower, for both samplers, when non-

zero mean priors are used. This indicates using non-zero mean priors lead to better/faster

mixing and smaller autocorrelations—regardless of algorithm used because the geometry of

the posteriors is more favorable to the types of structures exploited by virtually all MCMC

techniques. Further, in Figure 5.4, we plot the histogram of RMSE values of the matrix

1Even though our theory was constructed assuming τη is constant, it generalizes in a very straightforward
manner for arbitrary prior on τη.

112

-0.2

0

0.2

0.4

0.6

0.8

1
S

am
pl

e
A

ut
oc

or
re

la
tio

n
-

A
(1

,1
)

0 1000 2000 3000 4000
Lag

zero mean
non-zero mean

(a) Gibbs

-0.2

0

0.2

0.4

0.6

0.8

1

S
am

pl
e

A
ut

oc
or

re
la

tio
n

-
A

(1
,1

)

0 1000 2000 3000 4000
Lag

zero mean
non-zero mean

(b) HMC

Figure 5.3: Autocorrelation for factor a1,1 in Example 1 with zero and non-zero mean priors,
computed using 10th chain of Gibbs and HMC samplers.

0.01 0.02 0.03 0.04 0.05
RMSE

0

50

100

150

200

F
re

qu
en

cy

zero mean
non-zero mean

Figure 5.4: Reconstruction RMSE in Example 1 with zero and non-zero mean priors.

reconstruction for 1000 repetitions of the data gathering procedure—each experiment differs

due to the noise realization and randomly sampled prior mean. For each of the repetitions

we run 10 chains of the Gibbs sampler. Here the RMSE is on the order of 10−2 for both

samplers—this is exactly what we expected because it is the order of the noise standard

deviation. We can clearly see that, for this example, there is little difference in the RMSE

based on the prior mean.

5.4.2 Example 2: Partially Observed Synthetic Matrix

As we pointed out earlier, we often do not have access to observations of all entries of a

matrix. To demonstrate the utility of our theory in context of partial observations, we use

113

the Gibbs sampler to reconstruct a rank-5 100 × 100 matrix from observing only 20% of

its entries. Sampling is performed with 5 chains, each with 5000 samples, and non-zero

prior means are once again sampled from the Uniform(0, 1) distribution. The prior on

the precision is the same as the previous example. We show the posterior predictions for

some elements in Figure 5.5 corresponding to zero and non-zero mean priors; results are

presented for same elements in Figure 5.5(a) and Figure 5.5(b). We can clearly see that

using non-zero mean priors result in better MCMC performance. The corresponding order-

of-magnitudes improvement in autocorrelation of the factor b50,4 by choosing non-zero mean

priors is showcased in Figure 5.6. The RMSE histogram constructed from 50 repetitions of

the experiment is shown in Figure 5.7—here we see that using non-zero mean priors lead to

better reconstruction errors.

5.4.3 Example 3: Impaired Driving Dataset

We now apply our theory to reconstruct the Impaired Driving Death Rate by Age and

Gender data set available publicly from CDC [20]. We assume 60% of the data is observed.

Gibbs sampling is initiated with 5 chains, each with 10000 samples. Identical setup as in

previous examples is used for this experiment. We demonstrate that introducing non-zero

mean priors improve the autocorrelation for the a20,1 and a26,7 in Figure 5.8. Again we see

significant improvement in efficiency in the same MCMC sampler.

5.4.4 Example 4: Mice Protein Expression Dataset

Finally, we apply our theory to the mice-protein expression data set [46] available from the

UCI Machine Learning Repository [108]. The data set consists of 77 protein expressions,

measured in terms of nuclear fractions, from 1080 mice specimens. For our experiments, we

randomly sub-sampled this 1080× 77 matrix, creating a 50× 50 fully-observed sub-matrix.

We then constructed a rank 10 factorization of the form (5.4) using Gibbs sampling while

observing only 50% of the entries. Sampling was initiated for 4 chains, each with 20000

114

(a) Zero mean priors

(b) Non-zero mean priors

Figure 5.5: Posterior predictions for some elements in Example 2 with Gibbs sampler. Blue marks
indicate truth.

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

S
am

pl
e

A
ut

oc
or

re
la

tio
n

-
B

(5
0,

4)

0 200 400 600 800 1000
Lag

zero mean
non-zero mean

Figure 5.6: Autocorrelation for factor b50,4 in Ex-
ample 2 corresponding to zero and non-zero mean
priors, computed with 5th chain of Gibbs sampler.

0.012 0.013 0.014 0.015 0.016 0.017 0.018
RMSE

0

2

4

6

8

10

12

14

F
re

qu
en

cy

zero mean
non-zero mean

Figure 5.7: Reconstruction RMSE in Ex-
ample 2 with zero and non-zero mean pri-
ors.

-0.2

0

0.2

0.4

0.6

0.8

1

S
am

pl
e

A
ut

oc
or

re
la

tio
n

-
A

(2
0,

1)

0 500 1000 1500 2000
Lag

zero mean
non-zero mean

(a) Factor a20,1

-0.2

0

0.2

0.4

0.6

0.8

1

S
am

pl
e

A
ut

oc
or

re
la

tio
n

-
A

(2
6,

7)

0 500 1000 1500 2000
Lag

zero mean
non-zero mean

(b) Factor a26,7

Figure 5.8: Autocorrelation for some factors in Example 3 corresponding to zero and non-zero mean
priors, computed from 3rd chain of Gibbs sampler.

115

-0.2

0

0.2

0.4

0.6

0.8

1

S
am

pl
e

A
ut

oc
or

re
la

tio
n

-
B

(5
,7

)

0 500 1000 1500 2000
Lag

zero mean
non-zero mean

Figure 5.9: Autocorrelation for factor b5,7 in
Example 4 corresponding to zero and non-zero
means, computed from 4th chain of Gibbs sam-
pler.

0.5 1 1.5 2
RMSE

0

5

10

15

20

F
re

qu
en

cy

Zero Mean
Non-Zero Mean

Figure 5.10: Reconstruction RMSE in Ex-
ample 4 from 64 Gibbs sampling experi-
ments with zero and non-zero mean priors.

samples. We set the parameter values

(5.83) τa,1 = · · · = τa,10 = 25, τb,1 = · · · = τb,10 = 25, τη = 102.

Entries of the non-zero prior mean matrices were sampled from the Uniform(−7
2
, 7

2
) distri-

bution. The first 1000 samples from all chains were discarded as burn-in. We observe that

using non-zero mean priors lead to improvement of sample autocorrelation for the b5,7 factor

in Figure 5.9. We also see improved reconstruction errors in Figure 5.10—the RMSE his-

tograms were computed from 64 independent repetitions of the experiment described above,

with ten-fold sample thinning.

5.5 Conclusions

We have presented a full theoretical treatment of the symmetries of posteriors that arise from

non-identifiability in Bayesian low-rank matrix factorization due to the standard choice of

Gaussian priors on the matrix factors. We established that using a carefully chosen set of

prior means, we can eliminate these symmetries, leading to better performance of MCMC

sampling algorithms both with synthetic and real-world data. In future, we intend to extend

116

this framework to address similar non-identifiability issues for low-rank tensor factorizations.

117

CHAPTER 6

Summary

In this thesis, we presented a scalable framework for resolving frictional contact between rigid

particles using the cone-complementarity problem, and a fast boundary integral equation

(BIE) solver for simulating Stokes flow past a multibody system of axisymmetric particles.

We addressed the necessity of compressing high-fidelity simulation output data by using the

tensor-train decomposition to reduce the datasets. Finally, we proposed improvements to a

commonly used fully Bayesian matrix completion setup.

The scalable collision resolution scheme from Chapter 2 can be used to simulate large-

scale systems. In our experiments, we were able to simulate systems consisting of 256 million

spherical particles using 512 cores. Given the empirically observed near-optimal weak and

strong scalability of our algorithm, we argue that our framework can simulate even larger

systems using bigger supercomputers.

The fast BIE solvers presented in Chapter 3 allow us to decouple the Stokes kernels using

the Fourier series and reduce the dimensionality of the integral equations by one. Taking ad-

vantage of the high-order accurate singular integration schemes available for one-dimensional

curves and state-of-the-art fast multipole method implementations, we then constructed fast

and accurate Stokes solvers. When the geometry is dynamic (e.g. in particulate flows), we

can easily incorporate the collision resolution framework from Chapter 2 with our scheme,

leading to an efficient and robust simulation framework.

In Chapter 4, we introduced the tensor-train decomposition as a tool for the compression

118

of scientific data. We were able to compress discrete element method (DEM) simulation

datasets by a factor of O(104), reducing O(1) GB datasets to O(100) KB range with relative

accuracy of O(10−1). Extrapolating these compression ratios to larger datasets, we can

potentially reduce terabytes of data to mere megabytes and post-process/visualize/learn

from the reduced data on our personal computers.

Chapter 5 described a standard Bayesian inference setup for inferring missing values of a

low-rank matrix. We proposed a change of priors which leads to better sampling and recon-

struction performance to the commonly used setup. We argue that when the computational

budget for a high-fidelity simulation is low, we can use this matrix completion as a reduced

order model, and predict the output of the simulation from existing data.

There are many possible future directions. In the collision resolution framework, we

use direct solvers in the Newton step of second order optimization algorithms; switching

to iterative solvers is likely to provide better scalability. We also want to incorporate our

methods into existing soil-vehicle simulation modules.

In the axisymmetric Stokes solver setup, accurate evaluation of the solution field near

the boundary remains a challenge. This is also necessary when building a dense particulate

flow simulator with contact resolution.

The Bayesian matrix factorization setup, at its current form, can only handle two-

dimensional datasets (or a two-parameter family of simulations). The canonical polyadic

(CP) tensor decomposition [58] is a straightforward generalization of the low-rank matrix

factorization to higher dimensions. We aim to develop a similar set of theoretical guarantees

for posterior symmetry breaking in that context as well.

119

BIBLIOGRAPHY

120

BIBLIOGRAPHY

[1] Evrim Acar and Bülent Yener. Unsupervised multiway data analysis: A literature
survey. IEEE Transactions on Knowledge and Data Engineering, 21(1):6–20, 2008.

[2] Ludvig af Klinteberg and Anna-Karin Tornberg. A fast integral equation method for
solid particles in viscous flow using quadrature by expansion. Journal of Computational
Physics, 326:420–445, 2016.

[3] Ludvig af Klinteberg and Anna-Karin Tornberg. Error estimation for quadrature by
expansion in layer potential evaluation. Advances in Computational Mathematics,
43(1):195–234, 2017.

[4] Ludvig af Klinteberg and Anna-Karin Tornberg. Adaptive quadrature by expansion for
layer potential evaluation in two dimensions. SIAM Journal on Scientific Computing,
40(3):A1225–A1249, 2018.

[5] Sungjin Ahn, Anoop Korattikara, Nathan Liu, Suju Rajan, and Max Welling. Large-
scale distributed Bayesian matrix factorization using stochastic gradient MCMC. In
Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pages 9–18, 2015.

[6] Bradley K Alpert. Hybrid Gauss-trapezoidal quadrature rules. SIAM Journal on
Scientific Computing, 20(5):1551–1584, 1999.

[7] Pierre Alquier, Vincent Cottet, Nicolas Chopin, and Judith Rousseau. Bayesian matrix
completion: Prior specification. arXiv preprint arXiv:1406.1440, 2014.

[8] Pierre Alquier et al. A Bayesian approach for noisy matrix completion: Optimal rate
under general sampling distribution. Electronic Journal of Statistics, 9(1):823–841,
2015.

[9] Mihai Anitescu. Optimization-based simulation of nonsmooth rigid multibody dynam-
ics. Mathematical Programming, 105(1):113–143, 2006.

[10] Mihai Anitescu and Florian A Potra. Formulating dynamic multi-rigid-body contact
problems with friction as solvable linear complementarity problems. Nonlinear Dy-
namics, 14(3):231–247, 1997.

[11] Mihai Anitescu and Alessandro Tasora. An iterative approach for cone complementar-
ity problems for nonsmooth dynamics. Computational Optimization and Applications,
47(2):207–235, 2010.

121

[12] Woody Austin, Grey Ballard, and Tamara G Kolda. Parallel tensor compression for
large-scale scientific data. In 2016 IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS), pages 912–922. IEEE, 2016.

[13] Satish Balay, Shrirang Abhyankar, Mark Adams, Jed Brown, Peter Brune, Kris
Buschelman, Lisandro Dalcin, Alp Dener, Victor Eijkhout, W Gropp, et al. PETSc
users manual. Technical report, Argonne National Laboratory, 2019.

[14] Heiko Bauke and Stephan Mertens. Random numbers for large-scale distributed Monte
Carlo simulations. Physical Review E, 75(6):066701, 2007.

[15] James Bennett, Stan Lanning, et al. The Netflix prize. In Proceedings of KDD Cup
and Workshop. New York, NY, USA, 2007.

[16] Richard Berger, Christoph Kloss, Axel Kohlmeyer, and Stefan Pirker. Hybrid paral-
lelization of the LIGGGHTS open-source DEM code. Powder Technology, 278:234–247,
2015.

[17] Emmanuel J Candès and Yaniv Plan. Matrix completion with noise. Proceedings of
the IEEE, 98(6):925–936, 2010.

[18] Emmanuel J Candès and Benjamin Recht. Exact matrix completion via convex opti-
mization. Foundations of Computational Mathematics, 9(6):717–772, 2009.

[19] Emmanuel J Candès and Terence Tao. The power of convex relaxation: Near-optimal
matrix completion. IEEE Transactions on Information Theory, 56(5):2053–2080, 2010.

[20] Impaired driving death rate, by age and gender, 2012 & 2014, all states.
https://data.cdc.gov/Motor-Vehicle/Impaired-Driving-Death-Rate-by-Age-and-
Gender-2012/ebbj-sh54.

[21] Timothy M Chan. Closest-point problems simplified on the RAM. In Proceedings of
the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 472–473, 2002.

[22] Tianqi Chen, Emily Fox, and Carlos Guestrin. Stochastic gradient Hamiltonian Monte
Carlo. In International Conference on Machine Learning, pages 1683–1691. PMLR,
2014.

[23] Andrzej Cichocki, Namgil Lee, Ivan Oseledets, Anh-Huy Phan, Qibin Zhao, and
Danilo P Mandic. Tensor networks for dimensionality reduction and large-scale opti-
mization: Part 1 low-rank tensor decompositions. Foundations and Trends® in Ma-
chine Learning, 9(4-5):249–429, 2016.

[24] Eduardo Corona, David Gorsich, Paramsothy Jayakumar, and Shravan Veerapaneni.
Tensor train accelerated solvers for nonsmooth rigid body dynamics. Applied Mechanics
Reviews, 2019.

[25] Eduardo Corona, Abtin Rahimian, and Denis Zorin. A tensor-train accelerated solver
for integral equations in complex geometries. Journal of Computational Physics,
334:145–169, 2017.

122

[26] Eduardo Corona and Shravan Veerapaneni. Boundary integral equation analysis for
suspension of spheres in Stokes flow. Journal of Computational Physics, 362, 2018.

[27] Erwin Coumans et al. Bullet physics library. https://bulletphysics.org.

[28] Peter A Cundall and Otto DL Strack. A discrete numerical model for granular assem-
blies. Geotechnique, 29(1):47–65, 1979.

[29] Mark A Davenport and Justin Romberg. An overview of low-rank matrix recovery
from incomplete observations. IEEE Journal of Selected Topics in Signal Processing,
10, 2016.

[30] Saibal De, Eduardo Corona, Paramsothy Jayakumar, and Shravan Veerapaneni. Scal-
able solvers for cone complementarity problems in frictional multibody dynamics. In
2019 IEEE High Performance Extreme Computing Conference (HPEC), pages 1–7.
IEEE, 2019.

[31] Saibal De, Hadi Salehi, and Alex Gorodetsky. Efficient MCMC sampling for
Bayesian matrix factorization by breaking posterior symmetries. arXiv preprint
arXiv:2006.04295, 2020.

[32] A. Decoene, S. Martin, and B. Maury. Microscopic modelling of active bacterial sus-
pensions. Mathematical Modelling of Natural Phenomena, 6(5):98–129, 2011.

[33] Charles L. Epstein, Leslie Greengard, and Michael O’Neil. A high-order wideband
direct solver for electromagnetic scattering from bodies of revolution. Journal of Com-
putational Physics, 387, 2017.

[34] Luning Fang. A Primal-Dual Interior Point Method for Solving Multibody Dynamics
Problems with Frictional Contact. PhD thesis, University of Wisconsin–Madison, 2015.

[35] Henry E. Fettis. A new method for computing toroidal harmonics. Mathematics of
Computation, 24, 1970.

[36] Sadayuki Furuhashi et al. Msgpack. https://msgpack.org.

[37] Zydrunas Gimbutas and Leslie Greengard. STKFMMLIB3D 1.2, 2012.

[38] L. Grasedyck, D. Kressner, and C. Tobler. A literature survey of low-rank tensor
approximation techniques. GAMM-Mitteilungen, 36(1):53–78, 2013.

[39] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. Journal of
Computational Physics, 73(2):325–348, 1987.

[40] Gaël Guennebaud, Benôıt Jacob, et al. Eigen v3. http://eigen.tuxfamily.org.

[41] S. Hao, A. H. Barnett, P. G. Martinsson, and P. Young. High-order accurate meth-
ods for Nyström discretization of integral equations on smooth curves in the plane.
Advances in Computational Mathematics, 40, 2014.

123

[42] Wei He, Hongyan Zhang, Liangpei Zhang, and Huanfeng Shen. Total-variation-
regularized low-rank matrix factorization for hyperspectral image restoration. IEEE
Transactions on Geoscience and Remote Sensing, 54, 2015.

[43] Johan Helsing and Anders Karlsson. An explicit kernel-split panel-based Nyström
scheme for integral equations on axially symmetric surfaces. Journal of Computational
Physics, 272, 2014.

[44] Michael A. Heroux, Roscoe A. Bartlett, Vicki E. Howle, Robert J. Hoekstra,
Jonathan J. Hu, Tamara G. Kolda, Richard B. Lehoucq, Kevin R. Long, Roger P.
Pawlowski, Eric T. Phipps, Andrew G. Salinger, Heidi K. Thornquist, Ray S. Tumi-
naro, James M. Willenbring, Alan Williams, and Kendall S. Stanley. An overview of
the Trilinos project. ACM Transactions on Mathematical Software, 31(3), 2005.

[45] Toby Heyn, Mihai Anitescu, Alessandro Tasora, and Dan Negrut. Using Krylov sub-
space and spectral methods for solving complementarity problems in many-body con-
tact dynamics simulation. International Journal for Numerical Methods in Engineer-
ing, 95(7):541–561, 2013.

[46] Clara Higuera, Katheleen J Gardiner, and Krzysztof J Cios. Self-organizing feature
maps identify proteins critical to learning in a mouse model of Down syndrome. PloS
One, 10, 2015.

[47] Alan C Hindmarsh, Peter N Brown, Keith E Grant, Steven L Lee, Radu Serban,
Dan E Shumaker, and Carol S Woodward. SUNDIALS: Suite of nonlinear and differen-
tial/algebraic equation solvers. ACM Transactions on Mathematical Software (TOMS),
31(3):363–396, 2005.

[48] K. Ho and Leslie Greengard. A fast semidirect least squares algorithm for hierarchi-
cally block separable matrices. SIAM Journal on Matrix Analysis and Applications,
35(2):725–748, 2014.

[49] Kenneth L Ho and Lexing Ying. Hierarchical interpolative factorization for elliptic
operators: Differential equations. Communications on Pure and Applied Mathematics,
2015.

[50] Kenneth L Ho and Lexing Ying. Hierarchical interpolative factorization for elliptic
operators: Integral equations. Communications on Pure and Applied Mathematics,
2015.

[51] George C. Hsiao and Wolfgang L. Wendland. Boundary Integral Equations. Springer-
Verlag, 2008.

[52] Klaus Iglberger. Blaze C++ linear algebra library. https://bitbucket.org/blaze-lib,
2012.

[53] Paramsothy Jayakumar and Dave Mechergui. Efficient generation of accurate mobil-
ity maps using machine learning algorithms. Technical report, US Army TARDEC,
Warren, United States, 2019.

124

[54] S. Kapur and V. Rokhlin. High-order corrected trapezoidal quadrature rules for sin-
gular functions. SIAM Journal on Numerical Analysis, 34(4):1331–1356, 1997.

[55] Brian J Kirby. Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic
Devices. Cambridge University Press, New York, 2010.

[56] Jan Kleinert. Simulating Granular Material using Nonsmooth Time-Stepping and a
Matrix-Free Interior Point Method. Fraunhofer Verlag, 2015.

[57] A. Klöckner, A. Barnett, L. Greengard, and M. O’Neil. Quadrature by expansion: A
new method for the evaluation of layer potentials. Journal of Computational Physics,
252:332–349, 2013.

[58] Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM
Review, 51(3):455–500, 2009.

[59] P. Kolm and V. Rokhlin. Numerical quadratures for singular and hypersingular inte-
grals. Computers and Mathematics with Applications, 41, 2001.

[60] Rainer Kress. Linear Integral Equations. Springer New York, 2014.

[61] Olga A. Ladyzhenskaya. The Mathematical Theory of Viscous Incompressible Flow.
Gordon and Breach, New York, 1969.

[62] Shaomeng Li, Nicole Marsaglia, Christoph Garth, Jonathan Woodring, John Clyne,
and Hank Childs. Data reduction techniques for simulation, visualization and data
analysis. Computer Graphics Forum, 37(6):422–447, 2018.

[63] Xiao Peng Li, Qi Liu, and Hing Cheung So. Rank-one matrix approximation with
`p-norm for image inpainting. IEEE Signal Processing Letters, 27:680–684, 2020.

[64] Xiaoye S Li. An overview of SuperLU: Algorithms, implementation, and user interface.
ACM Transactions on Mathematical Software, 31(3), 2005.

[65] Xikui Li, Z Wang, Y Du, and Q Duan. Advances in multiscale FEM-DEM modeling of
granular materials. In International Conference on Discrete Element Methods, pages
267–279. Springer, 2016.

[66] Yew Jin Lim and Yee Whye Teh. Variational Bayesian approach to movie rating
prediction. In Proceedings of KDD Cup and Workshop, 2007.

[67] Peter Lindstrom and Martin Isenburg. Fast and efficient compression of floating-point
data. IEEE Transactions on Visualization and Computer Graphics, 12(5):1245–1250,
2006.

[68] Huazhong Liu, Laurence T Yang, Jihong Ding, Yimu Guo, Xia Xie, and Zhi-Jie Wang.
Scalable tensor-train-based tensor computations for cyber–physical–social big data.
IEEE Transactions on Computational Social Systems, 7(4):873–885, 2020.

125

[69] Huazhong Liu, Laurence T Yang, Yimu Guo, Xia Xie, and Jianhua Ma. An incremental
tensor-train decomposition for cyber-physical-social big data. IEEE Transactions on
Big Data, 2018.

[70] Gunjan Mahindre, Anura P Jayasumana, Kelum Gajamannage, and Randy Paffen-
roth. On sampling and recovery of topology of directed social networks: A low-rank
matrix completion based approach. In 2019 IEEE 44th Conference on Local Computer
Networks (LCN), pages 324–331. IEEE, 2019.

[71] Osman Asif Malik and Stephen Becker. Low-rank Tucker decomposition of large tensors
using tensorsketch. Advances in Neural Information Processing Systems, 31:10096–
10106, 2018.

[72] Gary R Marple, David Gorsich, Paramsothy Jayakumar, and Shravan Veerapaneni. An
active learning framework for constructing high-fidelity mobility maps. arXiv preprint
arXiv:2003.03517, 2020.

[73] Hammad Mazhar, Toby Heyn, Dan Negrut, and Alessandro Tasora. Using Nesterov’s
method to accelerate multibody dynamics with friction and contact. ACM Transac-
tions on Graphics (TOG), 34(3):32, 2015.

[74] Hammad Mazhar, Toby Heyn, Arman Pazouki, Daniel Melanz, Andrew Seidl, Aaron
Bartholomew, Alessandro Tasora, and Dan Negrut. Chrono: A parallel multi-physics
library for rigid-body, flexible-body, and fluid dynamics. Mechanical Sciences, 4(1):49–
64, 2013.

[75] Daniel Melanz, Luning Fang, Paramsothy Jayakumar, and Dan Negrut. A compar-
ison of numerical methods for solving multibody dynamics problems with frictional
contact modeled via differential variational inequalities. Computer Methods in Applied
Mechanics and Engineering, 2017.

[76] Andriy Mnih and Russ R Salakhutdinov. Probabilistic matrix factorization. In Ad-
vances in Neural Information Processing Systems, 2008.

[77] Shinichi Nakajima and Masashi Sugiyama. Theoretical analysis of Bayesian matrix
factorization. Journal of Machine Learning Research, 12, 2011.

[78] Shinichi Nakajima, Masashi Sugiyama, S. Derin Babacan, and Ryota Tomioka. Global
analytic solution of fully-observed variational Bayesian matrix factorization. Journal
of Machine Learning Research, 14, 2013.

[79] Dan Negrut, Radu Serban, Hammad Mazhar, and Toby Heyn. Parallel computing in
multibody system dynamics: Why, when, and how. Journal of Computational and
Nonlinear Dynamics, 9(4), 2014.

[80] Dan Negrut, Alessandro Tasora, Mihai Anitescu, Hammad Mazhar, Toby Heyn, and
Arman Pazouki. Solving large multibody dynamics problems on the GPU. In GPU
Computing Gems Jade Edition, pages 269–280. Elsevier, 2012.

126

[81] Y E Nesterov and M J Todd. Self-scaled barriers and interior-point methods for convex
programming. Mathematics of Operations Research, 22(1), 1997.

[82] Yurii E Nesterov. A method for solving the convex programming problem with con-
vergence rate O(1/k2). Sov. Math. Dokl., 27(2):372–376, 1983.

[83] Viet-Dung Nguyen, Karim Abed-Meraim, and Nguyen Linh-Trung. Fast adaptive
PARAFAC decomposition algorithm with linear complexity. In 2016 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 6235–
6239. IEEE, 2016.

[84] F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert,
C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain eds. NIST
digital library of mathematical functions. http://dlmf.nist.gov/, Release 1.1.2 of 2021-
06-15.

[85] I.V. Oseledets and E. Tyrtyshnikov. TT-cross approximation for multidimensional
arrays. Linear Algebra and its Applications, 432(1):70–88, 2010.

[86] I.V. Oseledets, E. Tyrtyshnikov, and N. Zamarashkin. Tensor-train ranks for matrices
and their inverses. Comput. Methods Appl. Math., 11(3):394–403, 2011.

[87] P. G. Martinsson P. Young, S. Hao. A high-order Nyström discretization scheme for
boundary integral equations defined on rotationally symmetric surfaces. Journal of
Computational Physics, 231, 2012.

[88] Arman Pazouki, Micha l Kwarta, Kyle Williams, William Likos, Radu Serban, Param-
sothy Jayakumar, and Dan Negrut. Compliant contact versus rigid contact: A com-
parison in the context of granular dynamics. Physical Review E, 96(4):042905, 2017.

[89] Cosmin Petra, Bogdan Gavrea, Mihai Anitescu, and Florian Potra. A computational
study of the use of an optimization-based method for simulating large multibody sys-
tems. Optimization Methods & Software, 24(6):871–894, 2009.

[90] C. Pozrikidis. Boundary Integral and Singularity Methods for Linearized Viscous Flow.
Cambridge University Press, 1992.

[91] Piyush Rai, Yingjian Wang, Shengbo Guo, Gary Chen, David Dunson, and Lawrence
Carin. Scalable Bayesian low-rank decomposition of incomplete multiway tensors. In
International Conference on Machine Learning, 2014.

[92] Tapani Raiko, Alexander Ilin, and Juha Karhunen. Principal component analysis for
large scale problems with lots of missing values. In European Conference on Machine
Learning, 2007.

[93] Benjamin Recht, Maryam Fazel, and Pablo A Parrilo. Guaranteed minimum-rank
solutions of linear matrix equations via nuclear norm minimization. SIAM Review, 52,
2010.

127

[94] Antonio Recuero, Radu Serban, Bryan Peterson, Hiroyuki Sugiyama, Paramsothy
Jayakumar, and Dan Negrut. A high-fidelity approach for vehicle mobility simulation:
Nonlinear finite element tires operating on granular material. Journal of Terramechan-
ics, 72:39–54, 2017.

[95] Ruslan Salakhutdinov and Andriy Mnih. Bayesian probabilistic matrix factorization
using Markov chain Monte Carlo. In Proceedings of the 25th International Conference
on Machine Learning, 2008.

[96] Johannes Schauer and Andreas Nüchter. Collision detection between point clouds using
an efficient k-d tree implementation. Advanced Engineering Informatics, 29(3):440–458,
2015.

[97] Michael Siegel and Anna-Karin Tornberg. A local target specific quadrature by ex-
pansion method for evaluation of layer potentials in 3D. Journal of Computational
Physics, 364:365–392, 2018.

[98] Shaden Smith, Kejun Huang, Nicholas D Sidiropoulos, and George Karypis. Stream-
ing tensor factorization for infinite data sources. In Proceedings of the 2018 SIAM
International Conference on Data Mining, pages 81–89. SIAM, 2018.

[99] Saverio E. Spagnolie, editor. Complex Fluids in Biological Systems: Experiment, The-
ory, and Computation. Springer, New York, 2015.

[100] Nathan Srebro, Jason Rennie, and Tommi S Jaakkola. Maximum-margin matrix fac-
torization. In Advances in Neural Information Processing Systems, pages 1329–1336,
2005.

[101] David E Stewart. Rigid-body dynamics with friction and impact. SIAM Review,
42(1):3–39, 2000.

[102] David E Stewart and Jeffrey C Trinkle. An implicit time-stepping scheme for rigid
body dynamics with inelastic collisions and Coulomb friction. International Journal
for Numerical Methods in Engineering, 39(15):2673–2691, 1996.

[103] Yiming Sun, Yang Guo, Charlene Luo, Joel Tropp, and Madeleine Udell. Low-rank
Tucker approximation of a tensor from streaming data. SIAM Journal on Mathematics
of Data Science, 2(4):1123–1150, 2020.

[104] Gábor Takács, István Pilászy, Bottyán Németh, and Domonkos Tikk. Investigation of
various matrix factorization methods for large recommender systems. In 2008 IEEE
International Conference on Data Mining Workshops, 2008.

[105] Alessandro Tasora and Mihai Anitescu. A convex complementarity approach for sim-
ulating large granular flows. Journal of Computational and Nonlinear Dynamics,
5(3):031004, 2010.

128

[106] Alessandro Tasora, Radu Serban, Hammad Mazhar, Arman Pazouki, Daniel Melanz,
Jonathan Fleischmann, Michael Taylor, Hiroyuki Sugiyama, and Dan Negrut. Chrono:
An open source multi-physics dynamics engine. In International Conference on High
Performance Computing in Science and Engineering, pages 19–49. Springer, 2015.

[107] Le Thanh, Karim Abed-Meraim, Nguyen Linh-Trung, and Remy Boyer. Adaptive
algorithms for tracking tensor-train decomposition of streaming tensors. In European
Signal Processing Conference (EUSIPCO’20), 2021.

[108] Mice protein expression data set. https://archive.ics.uci.edu/ml/datasets/Mice+
Protein+Expression.

[109] Bo Xue, Linghua Zhang, Yang Yu, and Weiping Zhu. Locating the nodes from incom-
plete Euclidean distance matrix using Bayesian learning. IEEE Access, 7:37406–37413,
2019.

[110] Yoshihiro Yamanishi, Masaaki Kotera, Minoru Kanehisa, and Susumu Goto. Drug-
target interaction prediction from chemical, genomic and pharmacological data in an
integrated framework. Bioinformatics, 26, 2010.

[111] Wen Yan, Eduardo Corona, Dhairya Malhotra, Shravan Veerapaneni, and Michael
Shelley. A scalable computational platform for particulate Stokes suspensions. Journal
of Computational Physics, page 109524, 2020.

[112] Lexing Ying, George Biros, and Denis Zorin. A high-order 3D boundary integral equa-
tion solver for elliptic PDEs in smooth domains. Journal of Computational Physics,
219, 2006.

[113] Jidong Zhao. Hierarchical multiscale modeling of strain localization in granular materi-
als: A condensed overview and perspectives. In International Workshop on Bifurcation
and Degradation in Geomaterials, pages 349–359. Springer, 2017.

[114] Qibin Zhao, Liqing Zhang, and Andrzej Cichocki. Bayesian CP factorization of in-
complete tensors with automatic rank determination. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 37, 2015.

[115] Qibin Zhao, Guoxu Zhou, Liqing Zhang, Andrzej Cichocki, and Shun-Ichi Amari.
Bayesian robust tensor factorization for incomplete multiway data. IEEE Transactions
on Neural Networks and Learning Systems, 27, 2015.

[116] Xiaodong Zheng, Hao Ding, Hiroshi Mamitsuka, and Shanfeng Zhu. Collaborative
matrix factorization with multiple similarities for predicting drug-target interactions.
In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2013.

[117] Xinran Zhong and WaiChing Sun. An adaptive reduced-dimensional discrete element
model for dynamics responses of granular materials with high-frequency noises. Inter-
national Journal for Multiscale Computational Engineering, 16(4):345–366, 2018.

129

	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	Introduction
	Scalable Framework for Rigid Body Contact
	Viscous Flow Past Axisymmetric Bodies
	Tensor Methods for Data Compression
	Bayesian Matrix Completion

	Scalable Solvers for Cone Complementarity Problems in Frictional Multibody Dynamics
	Introduction
	The Contact Model
	Solution of the Complementarity Problem
	Parallel Implementation
	Numerical Experiments
	Conclusions

	Fast Solvers for Stokes Boundary Integral Equations in Axisymmetric Geometries via Fourier Decoupling
	Introduction
	Boundary Integral Formulation of the Stokes Flow
	Integral Equations on Axisymmetric Surfaces
	Rotational Invariance and Evaluation of the Stokes Modal Kernels
	Extension to Multibody Systems
	Numerical Results
	Conclusions

	Compression of Discrete Element Method Simulation Data using the Tensor-Train Decomposition
	Introduction
	The Tensor-Train Decomposition
	Tensor-Train for Data Compression
	Numerical Results
	Conclusions

	Efficient MCMC Sampling for Bayesian Matrix Factorization by Breaking Posterior Symmetries
	Introduction
	Notations and Bayesian Inference Setup
	Breaking the Posterior Symmetries with Non-Zero Mean Priors
	Numerical Results
	Conclusions

	Summary
	BIBLIOGRAPHY

