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ABSTRACT

Trust has gained attention in the Human-Robot Interaction (HRI) field, as it is

considered an antecedent of people’s reliance on machines. In general, people are

likely to rely on and use machines they trust, and to refrain from using machines

they do not trust. Recent advances in robotic perception technologies open paths

for the development of machines that can be aware of people’s trust by observing

their human behaviors. This dissertation explores the role of trust in the interactions

between humans and robots, particularly Automated Vehicles (AVs). Novel methods

and models are proposed for perceiving and processing drivers’ trust in AVs and for

determining both humans’ natural trust and robots’ artificial trust.

Two high-level problems are addressed in this dissertation: (1) the problem of

avoiding or reducing miscalibrations of drivers’ trust in AVs, and (2) the problem of

how trust can be used to dynamically allocate tasks between a human and a robot

that collaborate.

A complete solution is proposed for the problem of avoiding or reducing trust mis-

calibrations. This solution combines methods for estimating and influencing drivers’

trust through interactions with the AV. Three main contributions stem from that

solution: (i) the characterization of risk factors that affect drivers’ trust in AVs,

which provided theoretical evidence for the development of a linear model for driver

trust in AVs; (ii) the development of a new method for real-time trust estimation,

which leveraged the trust linear model mentioned above for the implementation of a

Kalman-filter-based approach, able to provide numerical estimates from the process-

ing of drivers’ behavioral measurements; and (iii) the development of a new method
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for trust calibration, which identifies trust miscalibration instances from comparisons

between drivers’ trust in the AV and that AV’s capabilities, and triggers messages

from the AV to the driver. These messages are effective for encouraging or warn-

ing drivers that are undertrusting or overtrusting the AV capabilities respectively as

shown by the obtained results.

Although the development of a trust-based solution for dynamically allocating

tasks between a human and a robot (i.e., the second high-level problem addressed

in this dissertation) remains an open problem, we take a step forward in that di-

rection. The fourth contribution of this dissertation is the development of a unified

bi-directional model for predicting natural and artificial trust. This trust model is

based on mathematical representations of both the trustee agent’s capabilities and

the required capabilities for the execution of a task. Trust emerges from comparisons

between the agent capabilities and task requirements, roughly replicating the follow-

ing logic: if a trustee agent’s capabilities exceed the requirements for executing a

certain task, then the agent can be highly trusted (to execute that task); conversely,

if that trustee agent’s capabilities fall short of that task requirements, trust should be

low. In this trust model, the agent’s capabilities are represented by random variables

that are dynamically updated over interactions between the trustor and the trustee

whenever the trustee is successful or fails in the execution of a task. These capability

representations allow for the numerical computation of human’s trust or robot’s trust,

which is represented by the probability of a given trustee agent to execute a given

task successfully.
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CHAPTER I

Introduction

1.1 Motivation

Trust is a topic that has recently received considerable attention from human-robot

interaction (HRI) researchers [64]. Trust facilitates cooperation between people, as

well as between people and automated systems, like robots. [44]. HRI researchers

expect that, in the future, robots will be able to understand people’s behaviors and

adapt their own behaviors to enable seamless human-robot interactions. Robots will

likely have to take people’s trust into consideration when autonomously making de-

cisions or taking physical actions in their operating environment [36].

The intent of this dissertation is to extend the state-of-the-art trust-related knowl-

edge, in order to solve problems that emerge when people interact with robots—

particularly when these robots are Automated Vehicles (AVs) and those people as-

sume the role of AV drivers. To accomplish this, this dissertation proposes methods

for trust processing—i.e., measuring and influencing trust—that are useful for solving

two main research problems: reducing trust miscalibrations and dynamically allocat-

ing tasks between human and robot collaborators.

Trust miscalibrations occur when there is a misalignment between the human

operators’ trust in the system and the system’s capabilities [60]. Trust miscalibrations

are likely to lead to inappropriate reliance on a system. A solution offered in this
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dissertation to reducing trust miscalibrations is to implement a trust estimator and

a trust calibrator that are able to manage trust.

Dynamic task allocation refers to assigning tasks to the human operator and to

the robot, considering their different capabilities when they work together in a team.

Establishing an analogy between human-human teams and human-robot teams, trust

is a key element of the task allocation problem when agents are peers. Each agent

has its own opinion of which agent should be executing each task, and this opinion

should be based on trust.

The following chapters will explore how trust between drivers and AVs can be

processed to solve the problems described above in the driver-AV interaction context.

Each chapter presents a contribution and is based on a journal article that has already

been published. Those articles are directed at answering the following four high-level

research questions:

(i) how does risk affect AV trust and drivers’ trusting behaviors (addressed in

Chapter III, which is based on publication [10])?

(ii) how to measure drivers’ trust in AVs (addressed in Chapter IV, based on pub-

lication [6])?

(iii) how to influence and calibrate drivers’ trust in AVs (addressed in Chapter V,

based on publication [7])?

(iv) how to use trust to assign tasks between a human and an automated system,

which, in this case, could be an AV or a different robot (addressed in Chapter VI,

based on publications [8] and in [9])?

1.1.1 How Does Risk Affect AV Trust and Drivers’ Trusting Behaviors?

The Society of Automotive Engineers (SAE) defines six levels of driving automa-

tion ranging from 0 to 5, where 0 stands for “no driving automation” and 5 for “full
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Figure 1.1: SAE J3016 levels of driving automation [101].

driving automation”. Figure 1.1 presents a summarized description of these automa-

tion levels and their main characteristics. The term automated driving system (ADS)

is used to describe driving automation systems that can be classified at levels 3, 4,

and 5. The ADS consists of the hardware and software elements that distinguish AVs

from human-driven vehicles. ADSs are automotive technologies that allow vehicles to

engage in self-driving under specific conditions without any input from the driver [68].

An important benefit of such a system is the potential for drivers to engage in non-

driving-related tasks (NDRTs) such as online activities (e.g., texting, checking their

email, or surfing the web) [24, 25, 32, 71]. Along with the potential safety benefits,

the increase in productivity through NDRTs is often cited as a relevant motivation

behind the adoption of ADSs [35,88,94].

Trust in the ADS—i.e., the willingness of the driver (or passenger) to be vulnera-

ble to the actions of the ADS—is essential if the driver is to leverage the opportunity

to accomplish any NDRT [92]. Drivers must trust the ADS to feel comfortable dis-
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engaging from the driving and focusing on the NDRT. Drivers who do not trust the

ADS enough are less likely to hand over the driving to the ADS and fully disengage

from the driving, shifting their attention to the NDRT. The lack of trust limits one’s

ability to fully engage in the NDRT. Therefore, it comes as no surprise that there has

been extensive research on promoting drivers’ trust in ADSs [3, 12,78].

Advances have been made in understanding both the promotion of ADS trust and

its impact on NDRT performance, but the influence of risk on that impact remains

understudied. This is especially problematic as researchers readily admit that the use

of ADSs is often accompanied by some level of risk [63, 97, 110]. Risk is defined as

the degree of uncertainty associated with a given outcome [100], and is an important

factor in trust-related phenomena because it has been found to determine whether or

not trust translates into actual trusting behaviors [19,46,70]. Surprisingly, not much

work has been directed at understanding the role of risk in ADS trust development

and its impacts on drivers’ trusting behaviors. Motivated by this lack of knowledge,

the first goal of this dissertation is to provide analyses on the influence of internal

and external risk factors on ADS trust and corresponding trusting behaviors. These

analyses are presented in Chapter III, which is based on [10].

1.1.2 How to Estimate Drivers’ Trust in AVs?

Trust is a highly abstract concept, and this abstractness makes measuring (or

estimating) trust a challenging task [67]. Popular measures of trust are typically

self-reported Likert scales based on subjective ratings. For example, individuals are

usually asked to rate their degree of trust on a scale ranging from 1 to 7 [16, 43, 81].

Although self-reports are a direct way to estimate trust, they have several limitations.

First, self-reporting is affected by peoples’ individual biases, which makes a precise

trust quantification hard to achieve [95]. Second, it is difficult to obtain repeated and

updated estimates of trust over time without stopping or at least interrupting the
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task or activity someone is engaged in [23, 136]. Specifically, it is not reasonable to

expect ADSs to repeatedly interrupt drivers and ask them to complete a trust survey.

As such, self-reported trust estimates are not an approach that can be relied on to

assess drivers’ trust in real-time.

In Chapter IV, this dissertation proposes an alternative approach to estimat-

ing drivers’ trust by observing drivers’ real-time actions and behaviors. The pro-

posed method overcomes the limitations of previously published trust estimation ap-

proaches. For instance, those approaches fail to provide trust estimates in scales

traditionally used for trust in automation [1], or require prohibitive sophisticated

sensing and perception methods [1, 72]. Those approaches are also considered overly

complex, as they include the processing of psychophysiological signals (e.g., galvanic

skin response) that are not practical for the vehicular environments where driver-ADS

interactions take place. Considering the potential implications for ADS and the far-

reaching importance of trust to HRI research, the lack of robust methods for trust es-

timation is a significant gap to be filled. Especially in the case of self-driving vehicles,

the ability to indirectly estimate trust opens several design possibilities, particularly

for adaptive ADSs capable of conforming to drivers’ trust levels and modifying their

own behaviors accordingly. For example, trust estimations could be used in solu-

tions for issues related to trust miscalibration—i.e., when drivers’ trust in the ADS

is not aligned with system’s actual capabilities or reliability levels [21, 60, 81]. This

possibility leads to the next high-level question to be addressed in this dissertation.

1.1.3 How to Influence and Calibrate Drivers’ Trust in AVs?

In the future, automated systems will be expected to become aware of humans’

trusting behaviors and to adapt their own behaviors, seeking to improve their inter-

action with humans [124]. One way to implement those adaptive capabilities is to

develop methods for trust management, which we consider to be a robot’s ability to
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estimate and, if needed, to re-calibrate a human’s trust in that robot. Trust calibra-

tion has recently become an important topic in human-robot interaction [21]. Recent

calls have been made to better understand the problems associated with overtrust-

ing and undertrusting automation and robots [107, 117]. In particular, the use of

ADSs has been consistently plagued by problems associated with overtrusting and

undertrusting automated capabilities.

Trust miscalibration is defined as a mismatch between a human’s trust in an

automated system and the capabilities of that system [59, 81]. Trust miscalibration

is characterized by overtrusting or undertrusting an automated system, and it can

harm the performances associated with the use of that system. Overtrusting an

automated system can lead to misuse, where the human user relies on the system

to handle tasks that exceed its capabilities. Undertrusting an automated system

can lead to disuse, where the human fails to leverage the system’s capabilities fully.

Proper trust management can avoid both misuse and disuse of the automated system

by estimating and, if needed, influencing the human’s trust in the system to avoid

trust miscalibration.

The ability to manage trust and avoid miscalibration is especially crucial for au-

tomated systems that can put people’s lives at risk, such as AVs. Either misuse or

disuse of an AV is a risk to the performance and safety of the team formed by the

driver and the AV. Considering the current technology race in the automotive indus-

try for AV development [125], AVs that can manage drivers’ trust are a significant—if

not urgent—demand.

In the driver–AV interaction context, the goal of trust calibration is to align the

driver’s trust to appropriate levels through a trust influence mechanism, for instance,

by adapting the communication between the AV and the driver. The challenge of

designing a trust calibrator, however, has not received as much attention from re-

searchers. This research gap motivates the implementation of a trust management
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system based on a trust calibrator that is presented in detail in Chapter V.

1.1.4 How to use trust to assign tasks between a human and an automated

system?

Trust pervades people’s relationships with other people, with organizations, and

with machines [11,60,69,82]. Trust relationships usually involve two types of agents:

the trustor (the one who trusts) and the trustee (the one to be trusted). Trust

depends on both the trustor’s and the trustee’s characteristics and is revealed when

the trustor takes the risk of being vulnerable to the trustee’s actions [69].

Researchers from the HRI field have proposed predictive trust models that try to

capture how a human trustor develops trust in a robotic trustee [115, 132, 137]. A

perspective that is generally overlooked, however, is how trust from a robotic trustor

should develop over interactions with a trustee agent. This dissertation distinguishes

between human trust, also called natural trust, from robotic trust, also called artifi-

cial trust. Therefore, current trust models are focused on natural trust and are useful

for trust-aware decision-making, which requires the robot to estimate the human’s

trust in the robot to plan actions in a HRI setting. For example, trust-based par-

tially observable Markov decision processes (POMDP) have been used by robots to

plan actions while processing their human teammate’s trust in applications involving

robotic manipulation [17] and automated vehicles (AV) route planning [111].

Nonetheless, existing trust models have several shortcomings that hinder their

ability to predict humans’ natural trust and limit their application for robots’ artifi-

cial trust computation. First, current trust models are limited in their ability to char-

acterize the tasks that should be executed by trustees. Tasks must be characterized

in terms of what capabilities and which proficiency levels (in those capabilities) are

required from trustees to execute those tasks. For instance, driving requires certain

levels of cognitive, sensory and physical capabilities from drivers [2]. Second, current
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Who should
execute     
at time     ?

TASKS
HUMAN ROBOT

..
.

..
.

..
.

I HAVE ALREADY SEEN MY TEAMMATE
EXECUTING TASKS HARDER THAN       . 

I TRUST HER TO DO IT:

I HAVE NEVER EXECUTED A TASK AS
HARD AS       . MAYBE I COULD, BUT MY 

TEAMMATE MAY NOT TRUST ME TO DO IT:

HUMAN

ROBOT

Figure 1.2: A team formed by human H and a robot R that collaborate executing
tasks sequentially. Each task must be executed by one of the agents. The joint
decision on which agent should execute each task depends on comparisons between
the human’s trust in the robot and the robot’s trust in the human. A bi-directional
trust model can be used for predicting a human’s trust in a robot to execute a task,
and to predict how much humans can be trusted to execute a task.

trust models also fall short of describing the trustee agents in terms of their proven

capabilities. Trustees’ capabilities characterization and quantification are important

because,when a trustor knows that the trustee can (or can not) supply the types and

levels of capabilities that a task demands, the trustor’s trust in the trustee to execute

that task is higher (or lower). Finally, because of a lack of trustee capabilities char-

acterizations, current trust models are applicable for natural trust, or understanding

human trust in a robot, but not for artificial trust, or determining how a robot

should trust a human. Existing models are performance-centric and ignore “non-

performance” trustees’ factors, which are needed for artificial trust. To accommodate

both natural and artificial trust in (human or robotic) trustees, a computational trust

model must consider assessments of a trustee’s non-performance capabilities, such as

benevolence or integrity levels [69]. Therefore, although being sufficient for planning

algorithms, existing trust models can not be used in more sophisticated control au-
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thority allocation applications, which are likely to be based on comparisons between

the human’s trust in the robot and the robot’s trust in the human [8], such as it

would be needed in the situation represented in Figure 1.2. With this motivation,

Chapter VI focuses on the development of a bi-directional trust model that can be

used both for estimating a human’s natural trust in a robotic system and a robotic

system’s (such as an ADS) artificial trust in a human (such as a vehicle driver).

1.2 Contributions

This section describes the main contributions of this dissertation.

1. Investigation and characterization of how risk factors affect drivers’ trust in

ADSs

The study presented in Chapter III had two goals: first, to examine the impact

of two types of risk—namely, internal and external risk—on ADS trust; second,

to examine whether either type of risk weakens the impact of ADS trust on

trusting behaviors such as ADS monitoring and NDRT performance.

Results of that study showed that internal risk (low reliability ADS) reduces

ADS trust but that external risk (low visibility) does not. In addition, internal

risk moderated the positive impact that ADS trust had on NDRT performance.

The positive impact of trust on NDRT performance was more prominent when

the ADS was reliable (low internal risk). Moreover, external risk was found to

moderate the impact of ADS trust on driver monitoring. ADS trust decreased

monitoring when visibility was high (low risk) but not when visibility was low

(high risk).

The first contribution of this dissertation is the characterization of the role of

risk in understanding the impacts of ADS trust on drivers’ trusting behaviors.

That contribution is represented by the conclusions of the study presented in
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Chapter III, which can be summarized as follows. First, the specific type of

risk (i.e., internal vs. external) matters. Only internal risk had a significant

negative impact on ADS trust, while external risk had no significant impact

on ADS trust. Therefore, future studies on considering risk and ADS trust

should be careful to articulate the particular type of risk they are examining.

Second, the moderating effects of internal and external risks on the impact of

ADS trust on trusting behaviors such as driver monitoring and NDRT perfor-

mance are demonstrated. High internal risk, which was represented by a faulty

ADS, diminished the expected increase in performance when ADS trust is high,

which indicates the occurrence of overtrust in driver-ADS interactions. Exter-

nal risk, which was represented by severely foggy weather, prevented drivers

from reducing their ADS monitoring, even when those drivers reported high

ADS trust.

2. Development of a method for real-time drivers’ ADS trust estimation

As mentioned in Subsection 1.1.2, keeping track of drivers’ trust in ADSs in

real-time without directly asking drivers to report their trust levels is crucial

but challenging. To address this gap, this dissertation proposes a framework

for estimating drivers’ trust in ADSs in real-time, presented in Chapter IV.

The proposed trust estimator is the second contribution of this dissertation,

and is based on observable measures of drivers’ behaviors and trust dynamic

models. Although different trust estimation approaches have been previously

reported in the literature [1,72], the proposed trust estimation method is simpler

to implement. The proposed trust estimator represents trust in a continuous

numerical scale, which is consistent with Muir’s scale [83] and, therefore, also

consistent with the theoretical background on trust in automation. Moreover,

the proposed estimation framework relies on a discrete, linear time-invariant
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(LTI) state-space dynamic model and on a Kalman filter-based estimation al-

gorithm. This formulation makes the proposed trust estimation framework

appropriate for treating the unpredictability that characterizes drivers’ behav-

iors and for the design of innovative trust controllers. The trust estimator is

intended to provide a means for the self-driving vehicle’s ADS to track drivers’

trust levels over time. It enables tracking drivers’ trust levels without the need

for directly requesting drivers to provide self-reports, which can be disruptive

and impractical [67].

3. Development of a method for drivers’ ADS trust calibration

Chapter V presents the design of a trust calibration method, which is combined

with the trust estimator to structure a framework for managing trust in AVs.

The proposed trust calibrator is the third contribution of this dissertation,

and focuses on how to re-calibrate drivers’ trust after a trust miscalibration has

been identified. The trust calibrator identifies trust miscalibration issues from

the comparison of trust estimates with the capabilities of the AV and adjusts

how the AV communicates with the driver. It compares the AV’s capabilities

with the driver’s trust estimates to identify trust miscalibrations, and modifies

the interactive behavior of the AV accordingly. The AV is the element that

directly interacts with the drivers, providing verbal messages intended to influ-

ence drivers’ trust in the AV, as illustrated in Figure 1.3. The trust calibrator is

validated with a user study that shows that the proposed management frame-

work was successful in its intent, being able to increase trust levels when drivers

undertrusted the system and to decrease trust levels when drivers overtrusted

the system.

4. Development of a bi-directional trust model

Dynamic task allocation problems can benefit from the development and appli-
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Don't worry about driving, 
you can trust me! 

Focus on your other task!

Figure 1.3: An undertrusting driver is encouraged by the AV system simulator to focus
on his non-driving-related task (NDRT), to increase his trust level. An analogous
situation would take place if the driver overtrusted the AV’s capabilities, with the
system then demanding his attention to the driving task.

cation of a bi-directional trust model able to accommodate both human’s trust

and robotic system’s trust in (human or robotic) agents. This dissertation pro-

poses a unified bi-directional trust model that characterizes tasks to be executed

by potential trustee agents on a set of standard capability requirements. Then,

trustee agents’ capability profiles are built based on those trustee’s performance

on tasks they have executed previously. Trust is represented by the probability

that an agent can successfully execute a task, considering that agent’s capability

profile (built after observations). By considering both the agent’s capabilities

and the task requirements, the proposed bi-directional model is applicable for

determining a robot’s artificial trust in a trustee agent. Moreover, the model

can also be used for predicting trust transfer between tasks, similar to the model

proposed in [115]. Chapter VI presents the development of this model, which

was validated in a human subjects online experiment which resulted in a dataset

12



relating trust and task capabilities measurements. Therefore, the fourth con-

tribution of this dissertation is the development of a new trust model that (i)

can be used for the artificial trust computation and (ii) outperforms existing

models for multi-task natural trust transfer prediction.

1.3 Dissertation Overview

This dissertation explores how trust can be used in the solutions of problems

that are relevant in the human-robot interaction context (or, more specifically, in the

driver-ADS interaction context). Chapter II presents an overview of the literature

on trust, with a focus on the details that are important for answering the four mo-

tivating questions presented in Section 1.1. Chapter III goes deeper into identifying

factors that affect drivers’ trust in ADSs (ADS trust), focusing on the impacts of risk

on ADS trust and on the relationships between trust and trusting behaviors. Chap-

ter IV presents a method for real-time trust estimation in vehicular environments

that considers and processes the driver’s behaviors that reflect ADS trust. Chapter V

leverages the trust estimation method from the previous chapter and presents a new

framework for trust management combining trust estimation and a method for trust

calibration. Chapter VI describes a novel model for bi-directional trust that can cap-

ture both natural and artificial trust (i.e., trust from a human trustor and trust from

a robotic trustor), and that can be applied not only for the driver-ADS interaction

context but also for a more general human-robot interaction context. Finally, Chap-

ter VII wraps up the contributions of this dissertation and recommends directions for

future research.
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CHAPTER II

Background

This chapter presents an overview of trust in human-robot interactions, with a

special focus on the particular case where the robot is a vehicle equipped with an

automated driving system and the human drives the vehicle when necessary. Four

main directions, characterizing the theoretical background in the key research topics of

this dissertation, are discussed. Section 2.1 presents the literature relative to drivers’

trust in automated driving systems, and its relation with drivers’ risk perception and

drivers’ behaviors that reflect their trust (trusting behaviors). Section 2.2 focuses

on trust estimation and Section 2.3 focuses on trust calibration, presenting relevant

works that investigate how to measure and manage trust in real-time applications.

Section 2.4 describes the recent research advances on trust computational models that

are used in human-robot interaction applications and allow robots to reason about

their human counterpart’s trust levels and use trust to improve their collaboration.

2.1 Risk and Trust in Automated Driving Systems

2.1.1 ADS Trust and Trusting Behaviors

Trust has been conceptualized and utilized across different domains of research.

Examples include user interface design for automotive applications [76, 85]; human

factors and ergonomics [54, 83, 104]; and human–robot interaction [16, 34]. In this
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dissertation, we consider ADS trust to be the willingness of the driver to be vulnerable

to the actions of the ADS. More specifically, ADS actions represent the system’s ability

to drive the vehicle and to alert the driver about hazards that require the driver to take

control. This “willingness to be vulnerable” is based on the drivers’ attitude that the

ADS in question will help them achieve their goals [54,92]. Trust is history-dependent

and contingent upon drivers’ prior knowledge about the capabilities and limitations

of the ADS [49]. Reliance, differently from trust, occurs when drivers willingly cede

control to the ADS [63]. ADS trust is vital for understanding when drivers will or

will not rely on the ADS. A recent study [57] investigated ADS trust and reliance

with six participants riding in a real-world self-driving vehicle. That study found that

participants failed to fully trust the ADS even after 6 days of riding. In this regard,

the ceding of control, as well as the degree of disengagement from the driving, can

both be considered trusting behaviors [29,121,128].

Too much ADS trust is also a situation to be avoided. Overtrust occurs when

the driver’s ADS trust exceeds the ADS’s capabilities. Trust is important because it

influences drivers’ behaviors directly, affecting their propensity to monitor the system

and their ability to execute an NDRT [52]. Overtrust, however, leads to a higher

chance that automation errors will go unnoticed and result in more accidents [79,89].

To avoid this, drivers need to calibrate their ADS trust, aligning it with the system’s

capability [49,87].

ADSs allow drivers to disengage from driving and engage in NDRTs safely. In the

absence of ADSs, NDRTs are viewed as distractions that can lead to accidents [28].

However, the ability to engage in NDRTs by allowing the ADS to drive is increasingly

viewed as a benefit [92,94,113]. As a result, researchers have been exploring the factors

that promote better NDRT performance [53, 92]. For example, one such study [53]

focused on selecting the most effective vehicle interface to support NDRTs.

Driver performance on NDRTs can be considered a trusting behavior induced
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by ADS trust. However, the NDRTs must be carefully designed and meet specific

requirements for NDRT performance to reflect trust. In general, the NDRT can not

be as easy as to permit a high frequency switching between the NDRT the driving

task—it must reach the driver’s attention resources capacity. Additionally, the NDRT

must be structurally similar to the driving task to increase multi-tasking difficulty.

As suggested by multiple resources theory [127], tasks do not necessarily compete for

a single pool of demand-sensitive resources. Therefore, if the NDRT has structural

differences as compared to driving, and loads different attentional resource modalities

(e.g., auditory instead of visual), the driver’s ability to multi-task is higher. In that

case, time-sharing can become more efficient, and the driver can achieve high NDRT

performance without the intrinsic necessity to trust the AV because s/he will be able

to execute both tasks at the same time easily. Therefore, the visual search NDRT is

appropriate for ADS trust studies because it forces the sharing of the driver’s visual

attention, which is the primary resource required from the driver for safely operating

the vehicle.

Other trusting behaviors can be observed and measured with the use of eye-

tracking technology. Eye-movement recordings indicate where a person’s attention is

being directed, with the fixation durations indicating the amount of processing at the

point of regard. Fixations indicate moments when the eyes are relatively stationary,

taking in or “encoding” information. In an encoding task, higher fixation frequency

indicates greater interest in a particular area of interest (AOI). Other eye-tracking

metrics can also indicate different variables, such as: (i) saccades, which indicate quick

eye movements occurring between fixations and measure processing difficulty dur-

ing encoding; (ii) scanpaths, defined by complete saccade-fixation-saccade sequences,

which indicates the efficiency of visual search; or (iii) blink rate; and (iv) pupil size,

both indicating cognitive workload levels. In particular, gaze measurements, defined

as the sum of fixation durations within an AOI, are helpful to compare attention
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between target regions. In our driver-AV interaction context, drivers must split their

visual attention resources between the NDRT and the driving task. For this reason,

we use gaze measurements—defined in Chapters III, IV and V as NDRT focus—as

an indicative of drivers’ trust in the ADS.

Several studies have found that ADS trust increases NDRT performance [52, 94,

116]. The logic is simple: the more drivers trust the ADS, the more they focus on the

NDRT; in turn, the better they perform on the NDRT [92]. Recently, Petersen et al.

found that when drivers were provided with contextual information, increasing their

situational awareness, ADS trust had a strong positive impact on NDRT performance

[92]. In another example [40], Helldin et al. investigated the impact of uncertainty on

trust and takeover speed. They found that drivers who were provided with a better

understanding of the automation’s abilities performed better on NDRTs. Similarly,

Körber et al. found that participants with higher trust in automation spent more

time on their NDRT and less time looking at the road—also confirming the trusting

behaviors previously described [52]. In summary, the literature has demonstrated a

strong and positive impact of ADS trust on NDRT performance.

2.1.2 ADS Trust and Risk

Scholars agree that risk is fundamental to understanding trust but most have

focused on the direct relationship between risk and trust. Zhang et al. found a

significant negative correlation between risk and trust [138]. They classify risk into

two classes, namely safety risk and privacy risk. They defined safety risk as the

possibility of accidents and physical harm from a system malfunction, while privacy

risk originated from the possibility that travel or behavioral data could be transmitted

to other parties, such as the government, vehicle developers, and insurance companies

without notice, or even be used against the users or be hacked by others. Notably,

they found that the negative correlation between risk and trust was significant only for
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safety risk and not for privacy risk. A study conducted by Verbene et al. found that

ADS trust also increased when risk was reduced [121]. Yet, other works have focused

on understanding when risk reduced ADS trust [37, 63]. For example, Gremillion et

al. found that when the ADS performed poorly, drivers’ trust decreased and they

relied less on the automation [37]. Conversely, when the ADS performed well, drivers’

trust increased and drivers relied more on the ADS.

The classical integrative model of organizational trust by Mayer, Davis, and

Schoorman also highlighted the potential moderating role of risk between trust and

trusting behaviors [70]. The perceived risk associated with a given outcome deter-

mined whether trust led an individual to engage in trusting behaviors. In their trust

model, the impact of trust on trusting behaviors was stronger when more risk was

associated with an outcome. This was empirically verified in the context of virtual

teams by Robert, Denis, and Hung [100]. They verified that higher risk involved in

a given situation led to a stronger correlation between trust and trusting behavior.

In the context of ADSs, Liu, Yang and Xu examined the relationship between risk

and ADS trust [66]. Similar to other studies, they found that perceived risk had a

negative relationship with trust. However, unlike other studies, they called attention

to the complexity of the interactions between risk and trust. More specifically, they

called for more research to better understand and model how risk and ADS trust

interact with each other.

Although the research summarized here is valuable, more is needed, as pointed

out in [66]. The literature on trust suggests that risk is vital to understanding trust

impacts. This dissertation seeks to add to the literature by examining whether risk

undermines the impacts of ADS trust. Without a better understanding of risk in

the context of ADS trust, researchers and designers lack insight into an important

mechanism needed to design ADSs. Chapter III focuses on the relationships between

two types of risk (internal and external) on three important outcomes: ADS trust,
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NDRT performance, and ADS monitoring.

2.2 Modeling and Estimating Trust in ADSs

2.2.1 Trust in Automation and Trust in Robots

Trust in automation has been discussed by researchers since it was first identified

as a vital factor in supervisory control systems [112]. Formal definitions of trust in

machines came from interpersonal trust theories [11,96] and were established by Muir

in the late eighties [81]. Muir identified the need to avoid miscalibrations of trust in

decision aids “so that [the user] neither underestimates nor overestimates its capabili-

ties” [81]. Her work was then extended by Lee and Moray, who used an autoregressive

moving average vector form (ARMAV) analysis to derive a transfer function for trust

in a simulated semi-automatic pasteurization plant [58]. The inputs for this model

were system performance (based on the plant’s efficiency) and faults. They later fo-

cused on function allocation problems, and found that the difference between trust

and self-confidence is crucial for users to define their allocation strategies [59].

The theoretical background on trust in automation has formed the basis for the

development of more specific trust in robots measurement scales. Schaefer developed a

scale that relies on the assessment of forty trust items, related to the human, the robot,

and the environment where they operate [105]. Yagoda [134] created a measurement

scale considering military applications and defining a list of HRI-related dimensions

suggested by experts with extensive experience in the field. Charalambous et al.

gathered qualitative trust-related questions focusing on the industrial human-robot

collaboration (HRC) niche and developed a trust measurement scale for that specific

context [15].

In this dissertation, and especially in Chapter IV and Chapter V, we consider the

widely accepted definition of trust as “the attitude that an agent will help achieve an
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individual’s goals in a situation characterized by uncertainty and vulnerability” [60].

This definition aligns with Muir’s standard questionnaire for trust self-reporting,

which we used for trust quantification. Trust in automation is distinct from re-

liance on automation. Trust is an attitude that influences human’s reliance behavior,

characterized by engaging in automation usage. Trust miscalibrations are likely to

induce inappropriate reliance, such as automation misuse or disuse [60].

2.2.2 Trust Dynamics and Estimation

Castelfranchi and Falcone [14] define the main aspects of trust dynamics as: how

do the experiences of the trustor agent (both positive and negative experiences) influ-

ence trust changes; and how the instantaneous level of trust influences its subsequent

change. These aspects are especially important when a human agent (in this case, the

trustor) interacts with a machine (i.e., the trustee). As in a dynamic system, trust

evolution is assumed to depend on the trust condition at a time instance and on the

following inputs represented by the trustor’s experiences with the trustee [58]. Sev-

eral works have considered these basic assumptions and presented different approaches

for trust dynamics modeling. The argument-based probabilistic trust (APT) model

establishes the representation of trust as the probability of a reliable action, given

the situation and system features [20]. In the reliance model, reliance is considered

a behavior that is influenced by trust [60]. The three-layer hierarchical model de-

scribes trust as a result of dispositional, situational and learned factors involved in

the human-automation interaction [43].

A relevant approach for modeling the dynamics of trust is that of Hu et al. [45],

who developed a linear state-space model for the probability of trust responses within

two possible choices: trust or distrust in a virtual obstacle detection system. In ad-

dition to developing trust-related dynamic models, researchers have used different

psychophysiological signals to estimate trust. For instance, extending Hu’s work [45],
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Akash et al. [1] proposed schemes for controlling users’ trust levels, applying elec-

troencephalography and galvanic skin response measurements for trust estimation.

However, psychophysiology-based methods suffer from at least two drawbacks. First

and foremost, when using the reported psychophysiological methods, trust is not di-

rectly measured. Rather, the results of that method are conditional probabilities of

achieving two states (trust or distrust), given prior signal patterns. Although this

is a reasonable approach, previous research suggests that trust should be directly

measured and represented in a continuous scale [15, 48, 83, 105]. Second, the sensor

apparatus applied in psychophysiology-based methods is intrusive and can influence

users’ performance negatively, bringing practical implementation issues in applica-

tions such as self-driving vehicles.

The work presented in this dissertation, especially in Chapter IV, differs from

previous research in two ways. First, a model that has trust as a continuous state

variable is proposed. In this model, trust is defined in a numerical scale consistent

with Muir’s subjective scale [83]. Second, a simpler trust sensing method is presented.

This method relies only on eye-tracking as a direct measure of drivers’ behavior. Other

variables that are used for sensing are intrinsic to the integration between ADS and

the non-driving-related task (NDRT) executed by the driver.

2.2.3 System Malfunctions impact on Trust Dynamics

When not working properly, machines that are used to identify and diagnose haz-

ardous situations—which might trigger human intervention—can present two distinct

malfunction types: false alarms and misses [118]. On the one hand, false alarms occur

when the system wrongfully diagnoses nonexistent hazards. On the other hand, when

the system can not identify the existence of a hazard and no alarm is raised, a miss

occurs. These different error types influence system users differently [4, 74, 75, 139],

and also have distinct impacts on trust. The influence of false alarms and misses
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on operators’ behaviors was investigated by Dixon et al. [27], who has established a

relationship with users compliance and reliance behaviors. After being exposed to

false alarms, users reduced their compliance behavior, delaying their response to or

even ignoring alerts from the system (the “cry wolf” effect). On the contrary, after

misses, users allocated more attention to the task environment [26,126,129].

It is clear that false alarms and misses represent experiences that influence drivers’

trust in ADSs. As systems that are designed to switch vehicle control with the

driver in specific situations, ADSs rely on collision sensors that monitor the environ-

ment to make the decision to request drivers’ intervention. Therefore, while other

performance-related factors—such as the ADS’s driving styles [13] or failures on dif-

ferent components of the ADS—could affect drivers’ trust, we consider that those

collision sensors were the most relevant and safety critical elements in SAE level 3

ADSs. In Chapter IV, we introduce system malfunctions only in the form of false

alarms and misses on the simulated vehicle’s collision warning system, while keeping

other factors such as the vehicle’s driving style and other failure types unchanged

and generally acceptable: the vehicle followed the standard speed of the road, and no

other type of system failure occurred.

2.3 Trust Calibration

Trust calibration is as important as trust estimation and plays a fundamental role

for the management of trust in driver-ADS interaction (or human-robot, in general).

People’s trust in an automated system must be well calibrated, which means it has to

be aligned with the system’s capabilities. Miscalibrated trust is likely to lead to the

inappropriate use of the system and accidents [7, 51, 55, 65]. However, the evolution

of automated systems into autonomous robots with powerful sensing technologies

has paved the way for new trust calibration strategies. Researchers have proposed

strategies for autonomous robotic systems to try to perceive and process humans’
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trust, and modify their own behaviors to influence humans’ trust when necessary [7,17,

111]. Current trust-aware autonomous robotics systems are indicative that traditional

concepts related to trust in automation are evolving and being reexamined by the

HRI community. In Chapter V, the objective of trust calibration is to manipulate

drivers’ trust in the AV for aligning trust with the AV’s capabilities (i.e., avoiding

trust miscalibration). Several studies have identified factors that significantly impact

trust in AVs, and, therefore, could be used for trust manipulation purposes. The

most important of these factors are situation awareness and risk perception, which are

influenced by the ability of the AV to interact with the driver. For instance, enhancing

drivers’ situation awareness facilitates increased trust in AVs [92, 93]. On the other

hand, increasing drivers’ perception of risk reduces their trust in AVs [4, 94, 139].

The trust management framework proposed in Chapter V takes advantage of these

studies’ results, and seeks to influence trust by varying situation awareness and risk

perception through verbal communications from the AV to the driver.

2.4 Bi-Directional Trust

2.4.1 Utilitarian Trust Definition

Several trust definitions have been proposed, generally pointing to the trustor’s

willingness to be vulnerable to the trustee’s actions [60, 69]. In this work, we con-

sider Lee’s trust definition [60]. However, Kok and Soh have recently proposed the

following (adapted) definition for trust: “given a trustor agent A and a trustee agent

B, A’s trust in B is a multidimensional latent variable that mediates the relation-

ship between events in the past and A’s subsequent choice of relying on B in an

uncertain environment” [51]. In Chapter VI, we adopt this utilitarian view of trust,

which is aligned with a focus on the trustor-trustee pair [69] history of interactions,

and is useful for the development of human-robot collaboration planning and control
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methods.

2.4.2 Trust Computational Models

In robotics applications, the main goal behind the development of trust models

is to give a robot the ability to estimate its human counterpart’s trust (in that same

robot). Trust models are usually applied to determine how much a human trusts a

robot to perform a task (such as in Figure 1.2, when the robot R is chosen to execute

a task). The robot uses this estimate of human trust to predict the human’s behavior,

such as intervening and taking over the task execution. For example, trust models

are used in different trust-aware POMDP-based algorithms that have been proposed

for robotic planning and decision-making [16,61,111]. Their objective is to eventually

improve the robot’s collaboration with the human, using human trust as a vital factor

when planning the robot’s actions.

Planning and decision-making frameworks usually rely on the use of probabilistic

models for trust, such as those proposed in [33, 38, 132]. Xu and Dudek proposed an

online probabilistic trust inference model for human-robot collaborations (OPTIMo)

that uses a dynamic Bayesian network (DBN) combined with a linear Gaussian model,

and recursively reduces the uncertainty around the human operator’s trust. OPTIMo

was tested in a human–unmanned aerial vehicle (UAV) collaboration setting [132]

and, although some dynamic models had been proposed before [23,58], OPTIMo was

the first trust model capable of tracking human’s trust in a robot with low latency

and relatively high accuracy. The UAV, with OPTIMo, was able to track the human

operator’s trust by observing how much the human intervened in the UAV’s operation.

There have been other Bayesian models proposed since OPTIMo. These models

include personalized trust models that apply inference over a history of robot perfor-

mances, such as [33] and [38]. Mahani et al. proposed a model for trust in a swarm of

UAVs, establishing a baseline for human-multi-robot interaction trust prediction [33].
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Guo and Yang have improved trust prediction accuracy (as compared to Lee’s AR-

MAV model [58] and OPTIMo [132]) by proposing a formulation that describes trust

in terms of Beta probability distributions and aligns the inference processes with trust

formation and evolution processes [38].

Although all previously mentioned approaches for trust modeling represented im-

portant advances in how we understand and describe humans’ trust in robots, they

suffer from a common limitation. Those models depend on the history of robots’ per-

formances on unique specific tasks, and are not applicable for trust transfer between

two different tasks. The issue of multi-task trust transfer was recently approached by

Soh et al. [115], who proposed Gaussian Processes and neural methods for predicting

the transferred trust among different tasks that were described with NLP-based text

embeddings. One goal of the bi-directional trust model proposed in Chapter VI is to

deepen that discussion and improve prediction accuracy for multi-task trust transfer

by: (i) describing tasks in terms of capability requirements, and (ii) describing poten-

tial trustee agents in terms of their proven capabilities that can be used to transfer

trust to another task.
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CHAPTER III

Trust in Automated Driving Systems, Risk and

Driver Trusting Behaviors

3.1 Introduction

Automated driving systems (ADSs) allow vehicles to engage in self-driving under

specific conditions. Along with the potential safety benefits, the increase in pro-

ductivity through non-driving-related tasks (NDRTs) is often cited as a motivation

behind the adoption of ADSs. Although advances have been made in understanding

both the promotion of ADS trust and its impact on NDRT performance, the influ-

ence of risk remains largely understudied. This chapter presents a within-subjects

experiment conducted to fill that gap. A total of 37 licensed drivers used a simulator

where internal risk was manipulated by ADS reliability and external risk by visibility,

producing a 2 (ADS reliability) × 2 (visibility) design. The results indicate that high

reliability increases ADS trust and further enhances the positive impact of ADS trust

on NDRT performance, while low visibility reduces the negative impact of ADS trust

on driver monitoring. Results also suggest that trust increases over time if the system

is reliable and that visibility did not have a significant impact on ADS trust. These

findings are important for the design of intelligent ADSs that can respond to drivers’

trusting behaviors.
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This chapter is based on the work published in [10]. The remainder of the chap-

ter is organized as follows. Section 3.2 presents a research framework, describing

hypotheses about the relationship between risk, ADS trust and trusting behaviors.

Section 3.3 describes the methodology applied for the experiment that was designed

to validate the hypotheses. Section 3.4 presents the results obtained in the experi-

ment. Section 3.5 discusses the main findings of the study and how these findings fit

in the literature on ADS trust and risk. Section 3.6 highlights the main limitations of

the study presented, while Section 3.7 summarizes its conclusions and contributions.

3.2 Study on ADS Trust and Risk

Based primarily on the relationship between risk and trust, several hypotheses

were developed in the context of an ADS and a driver performing an NDRT. The ADS

is designed to support NDRTs by providing the driver with semi-autonomous driving

capability and recommendations based on the current driving situation. The system

is considered a Level 3 ADS, in accordance with the classification defined in the SAE

J3016 standard [101], because: (i) the simulated vehicle can drive conditionally under

specific situations, (ii) the driver is a fallback-ready user of the vehicle, receptive to

ADS-issued requests to intervene, and able to take control and drive when necessary,

and (iii) the system can issue a request for the driver to intervene. The ADS’s

recommendations are designed to help the driver know when she or he has to disengage

from the NDRT and take over the driving from the ADS. Drivers also have the option

to monitor the driving situation themselves and determine when they should take over

the driving independent of the ADS’s recommendations. We hypothesize about the

implications associated with: (i) reducing the ADS’s reliability by having it provide

incorrect recommendations and (ii) reducing the visibility in the driving situation by

providing foggy weather.
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3.2.1 Risk and ADS Trust

Based on prior ADS literature [37, 66, 121, 138], it is hypothesized that increases

in either internal or external risk (i.e., reduced reliability or visibility) should reduce

ADS trust for several reasons. For internal risk, the reduced reliability should inher-

ently decrease the level of trust someone has in the ADS, i.e., a less reliable ADS

is a less capable ADS. In this case, less reliable means an ADS that provides incor-

rect recommendations on when the driver should take over the driving. Therefore,

drivers who receive incorrect recommendations would be likely to view the ADS as

less capable. This would reduce their expectations about the system’s ability, hence

reducing ADS trust. For external risk, reduced visibility increases the difficulty of

the driving situation. In our case, we used foggy weather to reduce visibility, which

might cast doubt on the ADS’s ability to make correct recommendations (on when

the driver should take over). As visibility decreases, drivers should be less likely to

believe that the ADS can assess the situation and make correct recommendations.

Taken together, increases in both internal and external risks in the form of a less

reliable ADS and less visibility should decrease the driver’s trust in the ADS.

Hypothesis 1: Low ADS reliability reduces ADS trust.

Hypothesis 2: Low visibility reduces ADS trust.

3.2.2 Risk, ADS Trust and NDRT Performance

Internal risk should moderate the impact of ADS trust on NDRT performance.

Based on prior literature, when internal risk is low, we should expect increases in

ADS trust to lead to better NDRT performance [52, 94, 116]. The more the drivers

trust the ADS, the more they can engage in the NDRT and disengage from driving. A

reliable ADS provides the driver with correct recommendations, helping the driver to

make good decisions. This explains the positive link between ADS trust and NDRT

performance [94]. However, when internal risk is high, we should expect increases
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in ADS trust to have little impact on NDRT performance. Trusting an unreliable

ADS can actually have negative consequences for the driver. An unreliable ADS

provides incorrect recommendations, causing the driver to make poor decisions. As

such, increases in ADS trust should be less likely to directly translate to better NDRT

performance.

Hypothesis 3: ADS reliability moderates the impact of ADS trust on

NDRT performance in the following ways:

• When ADS reliability is high, ADS trust increases NDRT performance.

• When ADS reliability is low, ADS trust has little or no impact on NDRT

performance.

External risk should also moderate the impact of ADS trust on NDRT perfor-

mance. More specifically, low visibility should reduce the impact of ADS trust on

NDRT performance. When visibility is low, drivers are likely to engage in monitoring

irrespective of their trust in the ADS. Drivers attempt to double-check the driving

situation even with the information provided by the ADS. Overall, this choice is likely

to weaken the potential impact of ADS trust on NDRT performance. However, when

visibility is high, drivers are more likely to rely on the ADS to sense the environ-

ment and drive safely. Therefore, when external risk is low, higher ADS trust should

translate into better NDRT performance. When external risk becomes evident to the

drivers, they do not achieve their best NDRT performance, even when they report-

edly trust the ADS. In all, trusting an ADS when visibility is high is likely to have

positive consequences for the driver, and less so when visibility is low.

Hypothesis 4: Low visibility due to foggy weather moderates the impact

of ADS trust on NDRT performance in the following ways:

• When visibility is high, ADS trust increases NDRT performance.
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• When visibility is low, ADS trust has little or no impact on NDRT perfor-

mance.

3.2.3 Risk, ADS Trust and Monitoring

Internal risk should moderate the impact of ADS trust on monitoring. Based on

prior literature, when internal risk is low we should expect increases in ADS trust

to decrease the driver’s monitoring of the driving situation [41, 46, 52, 70]. The more

drivers trust the ADS, the more likely they will be to focus on the NDRT and refrain

from monitoring the driving themselves. However, when the ADS is unreliable, drivers

are likely to engage in monitoring irrespective of their level of trust in the ADS. When

this occurs, ADS trust should not reduce the degree of monitoring. Thus, increases in

ADS trust should reduce monitoring when internal risk is low but not when internal

risk is high.

Hypothesis 5: ADS reliability moderates the impact of ADS trust on

monitoring in the following ways:

• When ADS reliability is high, ADS trust decreases monitoring.

• When ADS reliability is low, ADS trust has little or no impact on monitoring.

External risk should also moderate the impact of ADS trust on monitoring. Dur-

ing driving conditions of high visibility, ADS trust should reduce monitoring. When

visibility is high, drivers are more likely to trust and rely on the ADS than to engage

in their own monitoring of the driving situation. This explains the negative impact of

ADS trust on monitoring. However, similarly to Hypothesis 4, when visibility is low,

drivers are more likely to monitor irrespective of their ADS trust. As stated previ-

ously, drivers will double-check the driving situation over and above the information

provided to them by the ADS. Although this might not be a wise decision relative

to NDRT performance, drivers are likely to monitor the driving situation regardless
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of their reported trust in the ADS. Therefore, trust in the ADS would not decrease

monitoring. In sum, trusting an ADS should be likely to reduce monitoring when

visibility is high but not when visibility is low.

Hypothesis 6: Low visibility (due to foggy weather) moderates the im-

pact of ADS trust on monitoring in the following ways:

• When visibility is high, ADS trust decreases monitoring.

• When visibility is low, ADS trust has little or no impact on monitoring.

Figure 3.1 presents our research framework, indicating the impacts of one factor

on the other and representing pictorially the hypotheses with the labels H1, H2, H3,

H4, H5 and H6.

Internal Risk:
ADS 

Reliability

External Risk:
Low 

Visibility

ADS Trust

ADS
Monitoring

NDRT
Performance

H1 & H2 H3 & H4 H5 & H6

Figure 3.1: Research framework considered in this study. We hypothesized that risks
reduce drivers’ trust in the ADS. Moreover, ADS trust elicits trusting behaviors
and promotes better NDRT performance. However, this relationship should be
influenced by the risks involved in the context. ADS = automated driving system;
NDRT = non-driving-related task.
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3.3 Methodology

3.3.1 Participants

We recruited a total of 37 licensed drivers from the Ann Arbor, MI area to partici-

pate in the experiment. Participants were recruited via email advertising and printed

posters. They were then directed to a website for eligibility screening. This screening

required all participants to:

• be older than age 18,

• be a licensed driver,

• not be colorblind,

• have normal or corrected-to-normal vision (with contact lenses only–eye glasses

were not allowed because they would interfere with the eye-tracker),

• have normal or corrected-to-normal auditory acuity,

• have no history of disorders or injuries that could affect their ability to use the

simulator,

• not be military or civilian Department of Defense employees, and

• not have participated in the study before.

Participants’ average age was 22.5 years (standard deviation [SD]=3.6 years),

including 11 women, 25 men, and 1 participant who chose not to specify gender.

3.3.2 Experimental Tasks

3.3.2.1 Driving task

The primary task for the participants was to drive the simulated vehicle on the

road with help from the ADS, while avoiding any collisions. The ADS provided
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the following features to the driver: automatic lane-keeping, cruise control, forward

collision alarm, and emergency braking. However, the vehicle was not able to switch

lanes by itself. Participants could switch between AUTO mode (i.e., when the ADS

was in charge of driving) and MANUAL mode (i.e., the participant was in charge of

driving) at any point if they desired. The forward collision alarm was the only feature

that did not work correctly in the unreliable ADS condition. The participants had to

take active control to switch lanes and avoid hitting obstacle vehicles along the road.

Figure 3.2 provides an example of the driving environment.

Figure 3.2: Driving task: to drive a vehicle on a highway and avoid the obstacles,
with lane-keeping and alert assistance from the automated driving system.

Occasionally, the simulated vehicle alerted the participant that an upcoming

parked vehicle was standing on the lane ahead. The alert system issued audible

alarms. Alarms sounded two verbal messages: “stopped vehicle ahead,”, displayed

approximately 6.5 s before reaching a stopped vehicle, followed by “take control now,”

which sounded 5 s before reaching the obstacle. In those situations, if the partici-

pants did not take control in time, the emergency brake was triggered and prevented

the collision. Participants received 10 alerts, representing 10 events per trial. In the

unreliable ADS condition, these alerts were false alarms in three of the 10 events.
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Figure 3.3 presents a typical order of events in a trial.

... ...

Figure 3.3: Timeline for one trial. Participants experienced all four trial conditions.
Each trial had 10 alerts that could be true or false alarms. When the alert t was
true, FA(t) = 0. When it was a false alarm, FA(t) = 1. Drivers were free to take over
control at any time.

3.3.2.2 Non-driving-related task (NDRT)

The NDRT consisted of a modified version of the Psychology Experiment Build-

ing Language (PEBL) visual search task [119]. PEBL is a standard tool used by

psychologists and social scientists to design and run behavioral tests [80]. In this

task, participants used a touchscreen to repeatedly locate and select a target char-

acter (i.e., a “Q”) that were placed among distractor characters (i.e., “O”s). Each

time the participants correctly located and selected the target, they earned 1 point.

Figure 3.4 provides a screenshot of the NDRT. As shown in Figure 3.5, the NDRT

screen was positioned in a way to force the driver to choose between engaging in the
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NRDT or monitoring the driving but not both. Additionally, each time the emergency

stop was triggered to prevent a collision, drivers were penalized. The performance of

the participants, represented by their final scores in the NDRT minus any penalties,

was recorded for compensation purposes and to decide who was eligible to receive a

monetary bonus. Participants received $15 and a cash bonus based on their perfor-

mance. We promised a $5 bonus to the best performers under each risk condition,

which encouraged participants to perform well in all four trials. Therefore, the NDRT

functioned as a means of motivating participants to rely on the ADS. By doing so,

participants were able to focus more on the NDRT and possibly receive the cash

bonus. In addition, the loss of points from an emergency stop (and the consequent

costs of losing cash bonuses) gave the participants a concrete sense of risk.

Figure 3.4: Non-driving-related task (NDRT): Visual search task where the partici-
pant had to find and point to the target “Q” among the “O”s. Each time participants
correctly selected the target, they earned 1 point on their NDRT score. A penalty of
25 points was deducted from the NDRT score for each time the emergency stop was
triggered. (The actual task did not show the red arrow.)
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3.3.2.3 Apparatus

The simulator was composed of 3 LCD monitors integrated with a Logitech G-27

driving kit. A smaller touchscreen monitor was positioned at the right hand for the

NDRT (see Figure 3.5).

Figure 3.5: Experiment setup. The driving task was implemented with the Auto-
mated Navigation Virtual Environment Laboratory, or ANVEL [30]; the non-driving-
related task (NDRT) was implemented with the Psychology Experiment Building
Language, or PEBL [119]; Pupil Lab’s Mobileye headset was the eye-tracker device
used.

We developed the simulation with the Automated Navigation Virtual Environ-

ment Laboratory [30]. The console was placed to face the central monitoring screen

so as to create a driving experience as close as possible to that of a real vehicle. For

the eye-tracking device, we used Pupil Lab’s Mobileye headset equipped with a fixed

“world camera.” This device acquired gaze positional data from participants’ eyes as

well as videos of the participants’ fields of view and eye orientations.

3.3.3 Experimental Design

We employed a 2 × 2 within-subject design varying both the reliability of the

automated driving system (ADS) and the visibility in the simulated environment.

The ADS reliability was represented by two conditions: reliable (or perfect), when
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the automation did not make any mistakes, and unreliable (or imperfect), when the

automation gave some false alarms to the driver. The visibility was manipulated by

two simulated weather conditions: clear or foggy. All conditions of the 2 × 2 design

were experienced by all subjects.

ADS reliability and visibility were the two independent variables we manipulated

to establish the 2×2 design. As stated, we manipulated the ADS reliability to assume

two possible levels, represented by the reliable ADS × unreliable ADS conditions.

We manipulated the reliability of the ADS by including false alarms. False alarms

occurred when the ADS warned the driver of an obstacle on the road but, in fact,

no obstacle was present. False alarms were the only system failures included in

the simulation to manipulate the degree of ADS reliability. In the unreliable ADS

conditions, false alarms occurred three times out of the ten alarms given to the driver

per trial. In contrast, in the reliable ADS conditions, all ten alarms were correct.

This percentage of false alarms (30%) is consistent with the prior literature [62, 94].

We also manipulated the simulated weather conditions to vary visibility in two

levels. In clear weather, the high visibility permitted drivers to spot an obstacle

1, 000 ft (≈ 305 m) away, while the low visibility caused by foggy weather reduced this

distance to 500 ft (≈ 152 m). The speed of the vehicle was regulated to 70 mph (≈ 113

km/h). Therefore, in terms of time to reach the obstacle, those distances represented

time gaps of approximately 9.8 s in high visibility and 4.9 s in low visibility. The

choice of visibility as a variable to represent the level of external risk involved in the

driving context is consistent with prior literature. Low visibility levels have been

found to increase the likelihood of rear-end collisions [135]. In addition, [56] found

that users associated ADS risk with system errors or accidental events, rather than

with psychological factors such as self-efficacy or ease of use, providing further support

for both of this study’s manipulations.

To introduce a notation that will be useful for the analyses of results, the binary
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Boolean variables Rel and Vis were defined. These variables respectively represent

the levels of ADS reliability and of visibility conditions in Equations (3.1) and (3.2).

Rel =

 0 if the ADS is 70% reliable (unreliable ADS), and

1 if the ADS is 100% reliable (reliable ADS).
(3.1)

Vis =

 0 if the visibility is low (foggy weather), and

1 if the visibility is high (clear weather).
(3.2)

In this study, Rel and Vis were static indicators in the sense that they did not

vary during each trial. These variables represented the trial conditions and were set

right before the start of each of the four trials experienced by the participants.

For the analysis of the evolution of some variables over the 10 alerts of each

trial, a sequence FA(t) was defined. FA(t) = 0 indicated that the ADS alarms worked

properly at the alert t and, conversely, FA(t) = 1 indicated that a false alarm occurred

at the alert t, t ∈ {1, 2, . . . , 10}.

3.3.4 Measures

The following dependent variables were measured: (a) post-trial trust, (b) alert-

wise dynamic trust, (c) risk perception variables, (d) final NDRT performance score,

and (e) alert-wise dynamic monitoring ratio.

a) Post-trial trust, represented by Tpost, was the numerical average of the an-

swers to questions contained in the survey given to the participants after each trial

(reproduced in Appendix A).

b) We also defined an alert-wise dynamic trust variable T (t), which was computed

with the increases or decreases in trust after each and every alert, including the false

alarms (i.e., those for which FA(t) = 1). During the trial, subjects were asked after

each ADS alert about their trust change, with the options of {decreased, no change,
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increased}. The simulation was paused for some seconds while they answered the trust

change question at the same tablet device they used for the NDRT. Their responses

were translated to a quantized trust difference ∆T (t) ∈ {−1, 0, 1} respectively, for

each event t ∈ {1, 2, . . . , 10}.

To keep consistency between the post-trial trust and the dynamic trust, T (t) is

defined as in Equation (3.3),

T (t) =


Tpost − γ

10∑
i=t+1

∆T (i), for t ∈ {0, 1, . . . , 9}, and

Tpost, for t = 10.

(3.3)

Note that we defined T (0) as the computed trust at the beginning of the trial,

before any ADS alert. We chose the scaling factor γ = 0.4 to avoid negative values

for the dynamic trust variable T (t). To make sure that our findings would hold for

different coefficients, we also computed the results for γ = 0.2, 0.3, and 0.5. All results

involving the dynamic trust variable were consistent with the conclusions presented

in section 3.4 for these γ coefficients.

c) Risk perceptions, represented by perceived reliability risk Relperc and per-

ceived visibility risk Visperc, were also measured through standard surveys adapted

from [100]. These can be found in Appendix A. These variables were used for a ma-

nipulation check, where we evaluated the participants’ perception of how different

were the risk conditions that they had experienced in each trial.

d) NDRT score (SNDRT ) was computed from each participant’s total score ob-

tained on the search task in each trial, where each correctly chosen “Q” was worth 1

point, and each emergency stop penalty deducted 25 points from the total.

e) Alert-wise dynamic monitoring ratio, represented by rm(t), was computed from

the eye-tracking data to represent the eye movement properties [41]. When the par-

ticipants switched their attention between the driving task and the NDRT, their gaze

generally moved from the center monitor to the touchscreen and vice versa. Monitor-
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ing ratio rm(t) was defined as the amount of time spent by the participant looking at

the road (on the simulator monitors) during a time interval between the alerts t− 1

and t, divided by this time interval.

All variables and their respective basic details are summarized in Table 3.1.

Table 3.1: Variable names and interpretations. Presented variables are extracted from
experiment data and are used for linear mixed-effects models in the Results section.

Variable Interpretation Type Set/Range

Rel Reliability Independent {0, 1}

Vis Visibility Independent {0, 1}

FA(t) False alarm at alert t Independent {0, 1}

Relperc Perceived reliability risk Dependent [1, 7]

Visperc Perceived visibility risk Dependent [1, 7]

Tpost Post trial trust score Dependent [1, 7]

T (t) Alert-wise dynamic trust score Dependent [0.2, 8.6] ?

SNDRT Post-trial NDRT performance score Dependent {100, ..., 227} ?

rm(t) Alert-wise dynamic monitoring ratio Dependent [0, 100%] ?

Note: “?” denoted values observed from the data set. NDRT = non-driving-

related-task.

3.3.5 Experimental Procedure

Upon arrival, participants signed a consent form to participate in the study. Next,

participants completed a pre-experiment survey about demographics and their experi-

ence using driving assistance systems. This survey included questions about their risk

tolerance and propensity to trust automated systems in general. Then, participants

had a training session where they interacted with the simulator and performed the

NDRT. The training drive allowed participants to become familiar with the simulator
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and the NDRT prior to the four experimental conditions.

After the training session, participants were equipped with an eye-tracking head-

set, which was then calibrated. QR codes on each monitor allowed the eye-tracking

software to determine which screen the participant was looking at. Next, the eye-

tracking device was set up and participants started the first of the four trials. We

counterbalanced the order of the trials to minimize any learning or ordering effects.

For each trial, participants were tasked with both driving and performing the NDRT

(described in subsection 3.3.2 Experimental Tasks). Participants were instructed to

engage the automated driving mode as soon as they felt comfortable and start the

NDRT, but not to totally neglect the driving (as the vehicle would ask them to

take control). It took approximately 10 min for a participant to complete each trial.

Finally, after each trial, participants completed a post-trial survey about their risk

and trust perceptions. Participants were free to ask the experimenter for clarifications

about the post-trial survey at any time. This survey used questions adapted from [83]

(see Appendix A for the questions). After completing all four trials, participants were

debriefed and received their compensation.

3.3.6 Analysis

We used linear mixed-effects (LME) models [131] to investigate the relationships

among risk, trust, NDRT performance and monitoring ratios. The objective was to

identify the parameters (represented by β) that significantly differed from 0 in each

model. When β is significantly different from zero, we can consider that the associated

factor influences the output variable. The errors associated with the models are

represented by ε.
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3.4 Results

3.4.1 Manipulation Check

We conducted a manipulation check for risk. We compared Relperc and Visperc

between treatments with pairwise t-tests to determine whether the level of perceived

risk differed significantly at the α = 0.001 likelihood level. Table 3.2 shows that the

means under each condition were significantly different from one another. Based on

these results, we concluded that the manipulation was successful.

Table 3.2: Manipulation check for risk conditions.

Treatment Condition Perceived Reliability/Visibility Difference p-value

Low ADS Reliability

(Rel = 0)

Relperc = 2.10 3.65× 10−4 **

High ADS Reliability

(Rel = 1)

Relperc = 2.87

Low Visibility

(Vis = 0)

Visperc = 2.00 1.40× 10−9 **

High Visibility

(Vis = 1)

Visperc = 3.70

Note. ADS = automated driving system; NDRT = non-driving-related-task; Rel =

reliability; Relperc = perceived reliability; Vis = visibility; Visperc = perceived visibility;

Relperc and Visperc range: 1 to 7; ** p < 0.01.

3.4.2 Hypotheses Verification

The outcomes of the experiment were compared with our hypotheses, in order to

validate them or not. The results are divided in three parts, directly linked to each
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pair of hypotheses.

3.4.2.1 H1 and H2 – Impacts of risk on automated driving system (ADS)

trust

To analyze the impacts of low reliability and low visibility on ADS trust, we

built models considering both the post-trial trust Tpost and the dynamic trust T (t) as

output variables.

For Tpost, we fit the data to the model represented by Equation (3.4),

Tpost = βI + βRelRel + βVisVis + ε , (3.4)

where the obtained parameters and their respective significance values are presented

in Table 3.3. As shown, ADS reliability significantly increased ADS trust, while

visibility from the different weather conditions did not, thus supporting H1 but not

H2.

Table 3.3: Parameters for the linear mixed-effects model of post-trial trust (Tpost),
with main effects for the independent variables Rel and Vis .

Factor affecting Tpost, Equation (3.4) Coefficient S.E. p-value

[Intercept] βI = 4.88 0.18 1.05× 10−40 **

Reliability (Rel) βRel = 1.09 0.14 1.60× 10−11 **

Visibility (Vis) βVis = −0.06 0.14 0.65

Note. S.E. = standard error; ** p < 0.01.

Similarly, for the dynamic trust T (t), we built the model represented by Equation

(3.5),

T (t) = βI + βT (t−1)T (t− 1) + βRelRel + βVisVis + ε , (3.5)
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to understand the influences caused by each risk type on the evolution of trust during a

whole trial, considering the sequence of events indicated by t. In this model, however,

we also considered the parameter βT (t−1), associated with the “one alert” delayed trust

measurement T (t − 1). The parameters and their respective p-values are presented

in Table 3.4.

Table 3.4: Parameters for the linear mixed-effects model of dynamic trust, or T (t),
with main effects for the delayed trust measure T (t − 1) and for the independent
variables Rel and Vis .

Factor affecting T (t), Equation

(3.5)

Coefficient S.E. p-value

[Intercept] βI = 0.274 0.034 2.48× 10−14 **

Dynamic (delayed) trust T (t− 1) βT (t−1) = 0.9597 6.1× 10−3 1.46× 10−39 **

Reliability (Rel) βRel = 0.083 0.013 1.12× 10−10 **

Visibility (Vis) βVis = −0.024 0.012 0.036 *

Note. S.E. = standard error; * p < 0.05; ** p < 0.01.

The parameters from Table 3.4 show that ADS reliability has a significant effect

on trust dynamics, and affects trust’s evolution over time. Visibility’s effect is also

significant at the α = 0.05 likelihood level. In summary, from the models represented

by Equations (3.4) and (3.5) as well as their parameters, we observed that high ADS

reliability had a significant positive impact on ADS trust. Visibility had a significant

positive impact on Visperc and a significant negative impact on dynamic ADS trust,

as shown in Table 3.4 and Equation (3.5). However, visibility did not have an impact

on post trial ADS trust, as shown in Table 3.3 and Equation (3.4). Therefore, our

first hypothesis was partially supported by our results.

These results are illustrated in Figures 3.6 and 3.7. Figure 3.6 presents the sim-

ulation of the model represented by Equation (3.5). For that simulation, we have
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considered the initial condition T (0) = 4, which is the midpoint of the 7-point Likert

scale. The use of a reliable ADS (Rel = 1) results in a faster increase in trust, while

a low ADS reliability (Rel = 0) slows this evolution.

On the other hand, Figure 3.7 shows the average behavior for T (t), considering

the response data of all participants, for the different treatment conditions. The

curves for which Rel = 1 follow the same pattern, indicating a solid trust increase

over the usage time of a reliable ADS. Furthermore, the final values for T (10), which

corresponds to Tpost, are not significantly different, both being close to 5.9 points. In

low-reliability conditions (Rel = 0), the curves indicate decreases for specific alert

indexes t, coincident with the false alarms provided by the ADS. That is, for Rel = 0

and Vis = 1, we had false alarms for t = 3, 4, 6 while for Rel = 0 and Vis = 0, false

alarms occurred for t = 2, 4, 5. Moreover, for both low ADS reliability conditions, the

average value of T (10) = Tpost was about 4.8.
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Trust Evolution Over Alerts by Reliability Level

Figure 3.6: Curves illustrate the simulation of the model represented by Equation
(3.5). We chose T (0) = 4 for both conditions to better compare the results. When
Rel = 1 (i.e., when participants were using a reliable ADS), trust increased faster
than when Rel = 0 (i.e., when participants were using an unreliable ADS). For both
curves, Vis = 0.
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Figure 3.7: Plots of the average T (t) for all participants for each reliability and
visibility condition. When Rel = 1 (i.e., when participants were using a reliable
ADS), T (t) increased steadily over the alerts indicated by t. When Rel = 0 (i.e.,
when participants were using an unreliable ADS), the occurrence of false alarms
resulted in decrements in T (t). This happened for t = 2, 4, 5 when Vis = 0 and for
t = 3, 4, 6 when Vis = 1. For these t, FA(t) = 1.

3.4.2.2 H3 and H4 – Influence of risk on the impacts of ADS trust on

non-driving-related task (NDRT) performance

The second pair of hypotheses asserted that both low reliability and low visibility

should moderate the impact of ADS trust on NDRT performance. This claim was only

partially supported by our results, as we concluded by analyzing the model expressed

in Equation (3.6) and its parameters listed in Table 3.5.

SNDRT = βI + βTpostTpost + βRelRel + βVisVis + βTpost×Rel[Tpost ×Rel]

+ βTpost×V is[Tpost × V is] + βRel×V is[Rel × V is] + ε.

(3.6)

From the significant positive value for βTpost×Rel, we concluded that ADS reliability

moderates the impact of ADS trust on NDRT performance (H3). The moderating

effect of visibility represented by βTpost×V is was not significant (H4).
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Table 3.5: Non-driving-related task score (SNDRT ) linear mixed-effects model param-
eters, with main effects for the post-trial average trust measure Tpost and for the
independent variables Rel and Vis , as well as their interaction effects. The interac-
tion effects represent the moderating influence on the impacts of ADS trust on NDRT
performance.

Factor affecting SNDRT , Equation (3.6) Coefficient S.E. p-value

[Intercept] βI = 191 14 9.44× 10−25 **

Post-trial Trust Tpost βTpost = 3.1 2.7 0.25

Reliability Rel βRel = −39 19 0.045

Visibility Vis βVis = −4 15 0.785

Interaction Tpost × Rel βTpost×Rel = 7.3 3.2 0.028 *

Interaction Tpost × Vis βTpost×Vis = 1.7 3.1 0.58

Interaction Rel × Vis βRel×Vis = −20.8 7.6 0.008 **

Note. SNDRT = non-driving-related task score; S.E. = standard error; * p < 0.05; **

p < 0.01.

Figure 3.8 represents the relationship corresponding to the results demonstrated

by Equation (3.6) and its parameters (Table 3.5). With low reliability, the weaker

slopes indicate that a higher ADS trust level did not result in a significantly better

NDRT performance. When using a reliable ADS, however, the greater slope indicates

that a higher trust corresponded to better performance.

3.4.2.3 H5 and H6 – Influence of risk on the impacts of ADS trust on

monitoring ratio

H5 and H6 state that both low ADS reliability and low visibility should moderate

the impact of ADS trust on monitoring ratio. These hypotheses are also partially

supported by the model that relates rm(t) with the variables T (t− 1), Rel and Vis ,
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Figure 3.8: Correspondence between Tpost and respective SNDRT deviations around
the mean. Here, the mean value for Tpost is around µ = 5.4, and the standard deviation
is approximately σ = 1.3. The interval between one standard deviation above and
below the mean (µ± σ) is considered. The mean values for SNDRT were all brought
together at zero, for the comparison of slopes. For all conditions where Rel = 1,
the slope is greater than when Rel = 0. Therefore, when using an unreliable ADS,
participants could not translate a higher ADS trust level into significantly better
NDRT performance. Visibility does not influence this relationship significantly. ADS
= automated driving system; NDRT = non-driving-related task; Rel = reliability;
Vis = visibility; SNDRT = non-driving-related task score.

as we concluded from Equation (3.7) and its parameters (shown in Table 3.6). The

use of T (t−1) is justified because rm(t) was measured during the time period between

alerts indexed by t−1 and t. Thus, we computed the impact of the trust responses on

monitoring ratios measured right after the participants were asked about their trust

changes.
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rm(t) = βI + βT (t−1)T (t− 1) + βRelRel + βVisV is+ βT (t−1)×Rel[T (t− 1)×Rel]

+ βT (t−1)×V is[T (t− 1)× V is] + βRel×V is[Rel × V is] + ε.

(3.7)

Table 3.6: Monitoring ratio (rm(t)) linear mixed-effects model parameters, with main
effects for the delayed trust measure T (t − 1) and for the independent variables Rel
and Vis , as well as their interaction effects. The interaction effects represent the
moderating influence on the impacts of automated driving system trust on monitoring
ratio.

Factor affecting rm(t), Equation
(3.7)

Coefficient S.E. p-value

[Intercept] βI = 0.403 0.074 1.25× 10−7 **
Dynamic (delayed) Trust T (t− 1) βT (t−1) = 0.006 0.017 0.72
Reliability indicator Rel βRel = 0.013 0.095 0.89
Visibility indicator Vis βVis = 0.144 0.084 0.086
Interaction T (t− 1)×Rel βT (t−1)×Rel = −0.004 0.018 0.83
Interaction T (t− 1)× V is βT (t−1)×V is = −0.041 0.018 0.025 *
Interaction Rel × V is βRel×V is = 0.038 0.048 0.42

Note. S.E. = standard error; * p < 0.05; ** p < 0.01.

The value of βI = 0.403 in Table 3.6 indicates an average basic monitoring ratio

for the participants, specifically when disregarding the impacts of trust and when

Rel = Vis = 0. The results from Table 3.6 also show that monitoring ratio is

negatively correlated with the interaction between T (t − 1) and Vis . That is, with

high visibility (i.e., in clear weather conditions), the subjects trusted the ADS more,

looked at the road less and focused on the secondary task more. However, under

low visibility (i.e., foggy weather), such impact of trust was greatly reduced and

monitoring ratio was no longer an effective trusting behavior. Reliability, however,

had no significant impact on rm(t), nor did it moderate the impact of T (t − 1) on

rm(t). These results corroborate H6 but not H5.
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The relationship between T (t − 1) and rm(t) indicated by Equation (3.7) is il-

lustrated in Figure 3.9, which summarizes all combinations of Vis and Rel . The

figure shows that better visibility enabled a decrease in monitoring ratios when par-

ticipants reported higher ADS trust. This is represented by the negative slopes when

Vis = 1. Contrarily, when Vis = 0, this correlation became irrelevant, with the slope

parameter assuming the value βT (t−1) = 0.006, but with no significance.
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Figure 3.9: Correspondence between dynamic trust T (t) and respective rm(t) devi-
ations around the mean. Here, the mean value for T (t) is around µ = 4.9, and the
standard deviation is approximately σ = 1.3. The interval between one standard devi-
ation above and below the mean (µ±σ) is considered, and the mean values for rm(t)
were all brought together to zero, for the comparison of slopes. For all conditions
where Vis = 1, the slope was negative, which did not happen when Vis = 0. The
result shows that for Vis = 1, higher trust led to smaller monitoring ratios. In other
words, high visibility allowed drivers to demonstrate their ADS trust by reducing sys-
tem monitoring. However, when the visibility conditions were poor (Vis = 0), drivers
did not decrease monitoring, even when they reported having higher ADS trust. ADS
reliability did not influence this relationship significantly. Rel = reliability; Vis =
visibility.
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3.5 Discussion

The goals of this chapter were: (i) to investigate how different types of risk in-

fluence automated driving system (ADS) trust development, and (ii) to understand

when different risk types undermine or strengthen the impact of automated driv-

ing system (ADS) trust on both non-driving-related task (NDRT) performance and

monitoring ratio. Results of this study can be organized around three overarching

findings. First, the use of an unreliable ADS reduced ADS trust (H1 supported), but

foggy weather with low visibility did not (H2 not supported). This is consistent with

what is shown in Figure 3.7, that on average trust increases over time if the system is

reliable. Second, the use of an unreliable ADS moderated the positive impact of ADS

trust on non-driving-related task (NDRT) performance (H3 supported), while low

visibility did not (H4 not supported). Third, low visibility moderated the impact of

ADS trust on monitoring (supporting H6), but low reliability did not (not supporting

H5). Next, we discuss our contributions to the literature.

First, the findings here presented contribute to the cumulative research on the

antecedents of ADS trust. Our first major finding is that the type of risk is important

when understanding its effects on ADS trust. Research has suggested that, as risk

increases, ADS trust decreases [37,121]. Since our manipulation check results confirm

that our scenarios did induce higher perceptions of reliability and visibility (Table 3.2),

our findings are consistent with prior literature for internal risk, represented by low

reliability, but are not consistent with regards to external risk, represented by low

visibility. Only low reliability resulted in lower ADS trust. Thus, our results extend

the existing literature by demonstrating the distinct impacts of internal and external

risks. Before [10], no studies had specifically distinguished between risk types and

considered their influence on ADS trust.

Second, this study contributes to the literature by clarifying the boundary condi-

tions on the impact of ADS trust on NDRT performance. A large body of research
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has focused on the positive impacts of ADS trust on NDRT performance [52,92,116].

Our research extends prior work by showing when ADS trust is not likely to lead

to better NDRT performance. Results of our study show that the positive impact

of ADS trust on NDRT performance also depends on risk, and particularly on the

type of risk. Our results are consistent with prior work when the ADS was working

perfectly.

However, for an unreliable ADS, ADS trust had little or no impact on NDRT

performance. External risk (represented by low visibility) did not significantly affect

the relationship between trust and NDRT performance. Given our findings on the

influence of risk in this relationship, we conclude that a highly reliable system is crucial

for higher ADS trust to result in improved NDRT performance, whereas the visibility

conditions in the environment are less important. These findings are novel because

the existing literature has not explored the effects of risk from different sources on

the impacts of ADS trust on NDRT performance.

Third, this study contributes to the literature by identifying the role of risk on

the impact of ADS trust on monitoring. Specifically, this study found that the re-

lationship between ADS trust and monitoring ratio also depends the type of risk.

Prior research on ADS trust and monitoring has typically found that ADS trust re-

duces monitoring [41,52]. When a driver trusts the ADS more, the driver spends less

time watching the road. Our results were consistent with these established results

only when there was high visibility in the environment. However, when the visibil-

ity was low because of severe fog, increases in ADS trust had almost no impact on

monitoring. Whether ADS trust leads to less monitoring depends on the visibility

levels; it does not depend on ADS reliability. Ironically, when drivers should be re-

lying on the ADS the most (i.e., in low-visibility conditions), they apparently are

not. These results were unexpected and provided a novel finding about the influences

of risk on the relationship between ADS trust levels and monitoring. These results
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also imply that an ADS that attempts to estimate the drivers’ trust level based on

the observed monitoring ratio cannot ignore the context presented by the external

visibility conditions.

Finally, this chapter contributes to the ADS trust literature and has practical

implications for the design of innovative ADS technologies. The relationships among

trust, risk, NDRT performance and trusting behaviors could be incorporated in a

trust estimation framework. As expected, our findings showed that unreliable ADSs

(e.g., false alarms) could reduce driver trust in the system. An ADS that is self-

aware when it has made a mistake might be able to explain to the driver what

happened and, if not re-gain the driver’s trust, at least help the driver to understand

the limitations of the ADS. Intelligent ADSs could sense monitoring and performance

and could benefit from our conclusions to estimate drivers’ ADS trust more accurately.

Our findings also indicate that monitoring ratio should be considered as a trusting

behavior only when the environmental conditions permit—i.e., when weather is clear

and visibility is high. Combining these trust estimates with sensed environmental

conditions, intelligent systems can decide how to act to manage a driver’s trust levels

appropriately, attempting to avoid both over-trust and under-trust [37] which can

both lead to serious problems.

3.6 Limitations and Future Research

The study presented in this chapter had several limitations. The first is related

to our experimental setup: we used a simulated driving environment instead of a real

vehicle. Participants could have different risk perceptions when an automated driving

system (ADS) error could lead to a life-threatening accident instead of a monetary

loss, and this could strengthen the relationships we found. Previous work has shown

that individuals respond similarly to real and simulated environments [42], but the

use of an actual vehicle in more realistic conditions could be the subject of future
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research efforts.

We also manipulated our risk conditions varying only one internal and one external

risk factor: ADS reliability and visibility according to weather conditions. ADS

designers are expected to be very conservative regarding safety and, because of that,

false alarms are more likely to be present in autonomous vehicles than misses. This

is the reason why, although not being safety-critical, false alarms were chosen to

represent flaws in system reliability in this work. However, to extend our conclusions,

future research might specifically investigate the impact of different types of both

internal and external risks. For internal risks, both false alarms and misses could be

considered. For external risks, an extension of this work could be the introduction of

rain or wet roads, not only reducing visibility but also affecting the ADS’s and the

driver’s abilities to operate the vehicle. In addition, we only varied two levels of ADS

reliability, 0 error or 30% error. However, future automated vehicles are expected to

have much lower failure rates than 30%. Therefore, it would be important for future

studies to consider examining the impact of lower error rates on ADS trust.

Another limitation is the demographic distribution of our participants. In our

study, subjects were relatively young and most were men. Therefore, we should be

cautious when expanding our conclusions to the general population. Additionally,

personal traits have shown to impact user’s trust in robots generally and automated

vehicles specifically [86, 98, 99]. Future studies could examine how user’s personality

traits may influence ADS trust in the presence of risk.

This study did not employ explanations from the ADS to help the driver un-

derstand why the ADS did or did not work properly. Prior research had employed

explanations as a means of promoting driver trust when unexpected events or actions

took place. That being said, it is not clear that any research has examined the im-

pacts of explanations relative to the effects of risk on trust. Future research could

investigate the ability of explanations from the ADS to reduce uncertainty and risk.
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In addition, such explanations can help drivers increase their ADS trust and predict

when the ADS may or may not work properly [29, 31, 49]. Prior research has shown

that drivers can still trust an unreliable ADS when they can predict when or why

it might fail. Future studies should consider including the impacts of the driver’s

knowledge of the system to provide additional insights into the influence of risk on

the impacts of ADS trust.

3.7 Conclusions and Contribution

In this chapter, we investigated how different risk types influence drivers’ trust in

automated driving systems (ADSs). We examined how risk moderates the impacts

of ADS trust on drivers’ trusting behaviors, and the impacts of ADS trust on their

performance in a secondary, non-driving-related task (NDRT). The study here pre-

sented considered two risk types: internal, represented by low ADS reliability; and

external, associated with low visibility from foggy weather. The three major findings

were: (1) The negative impact of risk on ADS trust depends on the type of risk

and, in particular, risks from external sources (such as foggy weather) did not have

a significant negative impact on ADS trust. (2) The positive impact of ADS trust

on NDRT performance depends not only on risk but also on the type of risk; for an

unreliable ADS, ADS trust had little or no impact on NDRT performance. (3) The

negative impact of ADS trust on monitoring ratio depends not only on risk, but also

on the type of risk. When the visibility was low because of severe fog, ADS trust had

almost no impact on monitoring ratio.

These findings characterize how risk factors affect drivers’ trust in ADSs and,

taken as a whole, represent the first main contribution of this dissertation. New ADS

studies can take these findings into consideration to better understand how drivers’

trust is related to their performance and behavior under different risk contexts. Risk

influences the evolution of drivers’ ADS trust and, ultimately, moderates their ability
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to rely completely on the system and perform tasks other than driving. With new

artificial intelligence and machine-learning-enabled technologies being able to identify

and classify complex information and different contexts, the perception and processing

of trust and risk are likely to become possible. Thus, a better understanding of how

these factors evolve and influence each other is fundamental for the design of future

intelligent ADSs.

Leveraging part of the knowledge obtained in this chapter, Chapter IV will present

a trust estimation method that is based on a linear model relating internal risk (i.e.,

the occurrence of false alarms and misses in ADS technology) with ADS trust dy-

namics.
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CHAPTER IV

Estimation of Drivers’ Trust in ADSs

4.1 Introduction

Trust miscalibrations, represented by undertrust and overtrust, hinder the inter-

action between drivers and self-driving vehicles. A modern challenge for automotive

engineers is to avoid these trust miscalibration issues through the development of

techniques for measuring drivers’ trust in the automated driving system during the

execution of real-time applications. One possible approach for measuring trust is

through modeling its dynamics and subsequently applying classical state estimation

methods. This chapter proposes a framework for modeling the dynamics of drivers’

trust in automated driving systems and also for estimating dynamic trust. The es-

timation method integrates sensed behaviors (from the driver) through a Kalman

filter-based approach. The sensed behaviors include eye-tracking signals, the usage

time of the system, and drivers’ performance on a non-driving-related task (NDRT).

A study (n = 80) with a simulated SAE level 3 automated driving system will be

presented, and the factors that impact drivers’ trust in the system will be analyzed.

Data from the user study are used for the identification of the trust model parame-

ters. Results will show that the proposed approach was successful in computing trust

estimates over successive interactions between the driver and the automated driving

system. These results encourage the use of strategies for modeling and estimating
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trust in automated driving systems. This trust measurement technique paves a path

for the design of trust-aware automated driving systems capable of changing their

behaviors to control drivers’ trust levels to mitigate both undertrust and overtrust.

This chapter is based on the work published in [6], and is organized in the following

sections. Section 4.2 briefly describes the trust estimation problem and Section 4.3

focuses on the methodology that was applied for its solution. Section 4.4 details the

user study conducted to validate the proposed method and the collected data from

that study. Section 4.5 analyzes the collected data and presents the trust estimation

results. Section 4.6 discusses the main contributions and implications of this new

trust estimation framework and its limitations and, finally, Section 4.7 concludes the

chapter.

4.2 Problem Statement

In this chapter, our main problem is to estimate drivers’ trust in ADS from drivers’

behaviors and actions in real-time while they operate a vehicle equipped with an SAE

Level 3 ADS and concurrently perform a visually demanding NDRT. Our method

must provide continuous trust estimates that can vary over time, capturing the dy-

namic nature of drivers’ trust in the ADS. The estimation method must avoid the

impractical process of repeatedly asking drivers their levels of trust in the ADS, and

be as unobtrusive as possible for sensing drivers’ behaviors and actions.

4.3 Method

4.3.1 Scope

To define the scope of our problem, we make the following assumptions about the

ADS and the driving situation:

1. the ADS explicitly interacts with the driver in events that occur during vehi-
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cle operation, and provides automated lane-keeping, cruise speed control, and

collision avoidance capabilities to the vehicle;

2. the NDRT device is integrated with the ADS, allowing the ADS to monitor

drivers’ NDRT performance. The ADS can also track driver’s head and eyes

orientations;

3. drivers can alternate between using and not using the driving automation func-

tions (i.e., the vehicle’s self-driving capabilities) at any time during the opera-

tion;

4. when not using the driving automation functions, drivers have to perform the

driving task, and therefore operate the vehicle in regular (non-automated) mode;

5. using the capabilities provided by the ADS, the vehicle autonomously drives

itself when the road is free, but it is not able to maneuver around obstacles (i.e.,

abandoned vehicles) on the road. Instead, the ADS warns the driver whenever

an obstacle is detected by the forward collision alarm system at a fair reaction

distance. In these situations, drivers must take over driving control from the

ADS and maneuver around the obstacle manually to avoid a collision; and

6. the forward collision alarm system is not perfectly reliable, meaning that both

false alarms and misses can occur, and the ADS acknowledges when these er-

rors occur. These false alarms and misses lead to interactions that are likely to

decrease drivers’ trust in the ADS. No other system malfunctions were imple-

mented in the simulation.

4.3.2 Solution Approach

Assuming that the variations of trust caused by the interactions between the driver

and the ADS can be quantified, we decide to apply a classical Kalman filter-based
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continuous state estimation approach for trust. There are three reasons for applying

a Kalman filter-based approach: (i) the fact that the continuous output measures

of the estimator could be useful for the design of controllers and decision making

algorithms in future applications; (ii) the aforementioned well-accepted practice of

using continuous numerical estimates for trust in automated systems; and (iii) the

difficulties related to the stochasticity of drivers’ behaviors, which can be mitigated

by the Kalman filter with recurring measurements. Therefore, to represent trust as

a state variable, we need the mathematical derivation of a state-space model that

represents the dynamics of trust. We assume that the dynamics of trust is influenced

by the trustor agents’ instantaneous level of trust and their experiences over time [14].

Those experiences are represented by interactions between the ADS and the driver

associated with the reliability (or internal risk) of the ADS forward collision alarm.

This assumption is an implication of Chapter III’s conclusion that only internal risk

affects ADS trust, while the external risk does not. Specifically, we consider that

true alarms indicate high reliability and are positive experiences for the driver, while

high internal risk manifestations given by false alarms and misses are negative driver

experiences.

The implementation of a Kalman filter requires the definition of observation vari-

ables that can be measured and processed in real-time. These observation variables

must be related to the variable to be estimated. Therefore, to satisfy the ease of

implementation requirements stated in Section 4.2, we select a set of variables that

were easy to sense and suitable for being used in a vehicular spatial configuration.

The variables are: (i) the amount of time drivers spent using the autonomous ca-

pabilities provided by the ADS, i.e., ADS usage time ratio; (ii) the relative amount

of time drivers spent focusing on a secondary task (the NDRT), measured with an

eye-tracker device, i.e., focus time ratio [67]; and (iii) drivers’ performance on that

same NDRT, i.e., NDRT performance. The focus time ratio obtained with the eye
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tracker is chosen because it is conveniently easy to be measured in a vehicle, and has

been shown to be successfully representative of trust metrics [67]. The other variables

are chosen because they are assumed to be proportional to trust: the more a driver

trusts an ADS, the more s/he will use it; the more a driver trusts the ADS, the better

s/he will perform on her/his NDRT.

Finally, to identify the parameters of a model for drivers’ trust in ADS, we need

to obtain a training dataset containing both inputs and their corresponding outputs.

The outputs must be represented by drivers’ true levels of trust in the ADS, which we

can obtain by collecting their self-reports in a controlled user experiment. Therefore,

only for the purpose of obtaining this training dataset, we establish a procedure for

asking drivers their levels of trust in the ADS.

4.3.3 Definitions

To implement our solution methodology, we must first define the terms that will

be used in our formulation.

Definition 1 (Trial)

A trial is concluded each time the driver operates the vehicle and reaches the end

of a predefined route.

Trials are characterized by their time intervals, limited by the instants they start

and end. Denoting these by t0 and tf , t0 < tf , the time interval of a trial is given by

[t0, tf ] ∈ R+.

Definition 2 (Event)

An event, indexed by k ∈ N \ {0}, is characterized each time the ADS warns or

fails to warn the driver about an obstacle on the road. Events occur at specific time

instances tk corresponding to k, t0 < · · · < tk < · · · < tf , when the ADS:
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1. correctly identifies an obstacle on the road and alerts the driver to take over

control;

2. provides a false alarm to the driver; or

3. misses an existent obstacle and does not warn the driver about it.

Definition 3 (Event Signals)

The event signals are booleans L(tk), F (tk) and M(tk) corresponding to the event

k that indicates whether the event was:

1. a true alarm, for which L(tk) = 1 and F (tk) = M(tk) = 0;

2. a false alarm, for which F (tk) = 1 and L(tk) = M(tk) = 0; or

3. a miss, for which M(tk) = 1 and L(tk) = F (tk) = 0.

Definition 4 (Instantaneous Trust in ADS)

Drivers’ instantaneous trust in ADS at the time instance t, t0 ≤ t ≤ tf is a scalar

quantity, denoted by T (t).

T (t) is computed from trust variation self-reports and from questionnaires an-

swered by the driver, adapted from the work by Muir and Moray [83]. We re-scale

the numerical range of the survey responses to constrain T (t) ∈ [Tmin, Tmax], and

arbitrarily choose Tmin = 0 and Tmax = 100. We also assume that T (t) is immutable

between two events, i.e., for tk ≤ t < tk+1. We consider T (t) to be our basis for the

development of the proposed trust estimator.

Definition 5 (Instantaneous Estimate of Trust in ADS)

The estimate of trust in ADS at the time instance t, t0 ≤ t ≤ tf is the output

of the trust estimator to be proposed, and is represented by T̂ (t). Its associated

covariance is denoted by Σ̂T (t).
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ADS

Stopped vehicle ahead!
Take control now! 

Before event           : 
ADS does not warn
the driver about the

stopped vehicle ahead

time

True Alarm

False Alarm Miss

Before events
and   :

Figure 4.1: Timeline example for the stated problem. The event k−1 is a true alarm
(there is an obstacle car and the ADS warns the driver about it); the event k is a
false alarm (there is no car but the ADS also warns the driver); and the event k + 1
is a miss (there is an obstacle car and the ADS does not warn the driver about it).

Definition 6 (Focus)

Drivers’ focus on the NDRT, represented by ϕ(tk), is the percentage of time the

driver spends looking at the NDRT screen during the interval [tk, tk+1).

Definition 7 (ADS Usage)

Drivers’ ADS usage, represented by υ(tk), is defined by the percentage of time the

driver spends using the ADS self-driving capabilities during the interval [tk, tk+1).

Definition 8 (NDRT Performance)

Drivers’ NDRT performance, represented by π(tk), is the total points obtained by

the driver in the NDRT during the interval [tk, tk+1) divided by ∆tk = tk+1 − tk.

We also call ϕ(tk), υ(tk), and π(tk) our observation variables.

Figure 4.1 shows an example of a timeline scale that represents events within a

trial. The NDRT and its score policies are explained in Section 4.4.
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4.3.4 Trust Dynamics Model

To translate Castelfranchi’s and Falcone’s main aspects of trust dynamics [14]

into mathematical terms, we must represent the experiences of the trustor agent, the

subsequent change in trust, and relate those variables. Describing the user experiences

with the passing time and the event signals, while also considering their discrete

nature, we can expect a general relationship with the form represented by Equation

(4.1),

T (tk+1) = f(tk, T (tk), L(tk), F (tk),M(tk)) , (4.1)

where f : [t0, tf ]× [Tmin, Tmax]× {0, 1}3 → [Tmin, Tmax].

Additionally, we can expect the relationship between observations and trust to

take the form represented by Equation (4.2),


ϕ(tk)

υ(tk)

π(tk)

 = h(tk, T (tk), L(tk), F (tk),M(tk)) , (4.2)

where h : [t0, tf ]× [Tmin, Tmax]× {0, 1}3 → [0, 1]2 × R.

For simplicity, we assume the functions f and h to be linear, time-invariant,

with additional random terms representing drivers’ individual biases. Moreover, we

model trust and the observation variables as Gaussian variables, and consider the

observations to be independent of the event signals and within each other, representing

the dynamics of trust in the ADS with the LTI system state-space model in Equations
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(4.3), 

T (tk+1) = AT (tk) + B


L(tk)

F (tk)

M(tk)

+ u(tk) ;


ϕ(tk)

υ(tk)

π(tk)

 = CT (tk) + w(tk) ,

(4.3)

where A =

[
a11

]
∈ R1×1, B =

[
b11 b12 b13

]
∈ R1×3, C =

[
c11 c21 c31

]>
∈ R3×1,

u(tk) ∼ N (0, σ2
u) and w(tk) ∼ N (0,Σw).

4.3.5 Trust Estimator Design

The state-space structure permits the application of Kalman filter-based tech-

niques for the estimator design. We then propose the procedure presented in Algo-

rithm 1. Figure 4.2 shows a block diagram representation of this framework, high-

lighting the trust estimator role in the interaction between the driver and the ADS.

4.4 User Study and Data Collection

We reproduced the situation characterized in Section 4.3 with the use of an ADS

simulator. A total of 80 participants were recruited (aged 18-51, M = 25.0, SD = 5.7,

52 male, 26 female and 2 who preferred not to specify their genders). Participants were

recruited via email and printed poster advertising. All regulatory ethical precautions

were taken. The research was reviewed and approved by the University of Michigan’s

Institutional Review Board (IRB).
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Algorithm 1 Trust Estimator

1: procedure Trust Estimation(T̂ (tk), Σ̂T (tk),
L(tk), F (tk),M(tk), ϕ(tk), υ(tk), π(tk))

2: if k = 0 then

3: T̂ (t0)← (C>C)−1C>

ϕ(t0)
υ(t0)
π(t0)


4: Σ̂T (t0)← 1 . Initializes trust estimate and co-variance
5: else
6: K ← Σ̂T (tk)C

>(CΣ̂T (tk)C
> + Σw)−1. Measurement update starting with

Kalman gain computation

7:

ϕ̂(tk)
υ̂(tk)
π̂(tk)

← CT̂ (tk)

8: v←

ϕ(tk)
υ(tk)
π(tk)

−
ϕ̂(tk)
υ̂(tk)
π̂(tk)

 . Innovation

9: T (tk)← T̂ (tk) +Kv
10: ΣT (tk)← Σ̂T (tk)−KCΣ̂T (tk)

11: T̂ (tk+1)← AT (tk) + B

L(tk)
F (tk)
M(tk)

 . Time Update

12: Σ̂T (tk+1)← AΣT (tk)A
> + σu

13: end if
14: return T̂ (tk+1), Σ̂T (tk+1)
15: end procedure
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Figure 4.2: Block diagram representing the trust estimation framework. The event
signals L, F , and M indicate the occurrence of a true alarm, a false alarm, or a miss.
The observations ϕ, υ and π represent the drivers’ behaviors. T is drivers’ trust in
ADS while T̂ and Σ̂T are the estimates of trust in ADS and the covariance of this
estimate. A delay of one event is represented by the z−1 block.

4.4.1 Experiment and Data Collection

4.4.1.1 Study design

We employed a 4 (ADS error types) × 2 (road shapes) mixed user experimental

design. Each participant experienced 2 trials, and each trial had 12 events. These

2 trials had the same ADS error type (between-subjects condition) and 2 different

road shapes (within-subjects condition). The ADS error types that varied between

subjects corresponded to 4 different conditions: control, for which all 12 events were

true alarms; false alarms only, for which the 2nd, 3rd, 5th, and 8th events were false

alarms; misses only, for which the 2nd, 3rd, 5th, and 8th events were misses; and false

alarms and misses combined condition, for which the 2nd and 5th events were false

alarms, while the 3rd and 8th events were misses. The ADS error type was assigned

according to the participants’ sequential identification number. The road shapes were

represented by straight and curvy roads, and were assigned in alternating order to
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minimize learning and ordering effects.

4.4.1.2 Tasks

The experimental setup was very similar to the one described in Chapter III, the

main difference was the layouts of the roads. We used the ANVEL simulator [30]

and the NDRT was the previously used adapted version of the Surrogate Reference

Task [47], implemented with PEBL [80]. Figure 4.3 (a) shows the experimental setup

with the tasks performed by the driver.

In the driving task, participants operated a simulated vehicle equipped with an

ADS that provided it automatic lane keeping, cruise control, and collision avoidance

features. Participants were able to activate the ADS (starting autonomous driving

mode) by pressing a button on the steering wheel, and to take back control by braking

or by steering. Figure 4.3(b) shows the driving task interface with the driver.

With the ADS activated (i.e., with the vehicle in self-driving mode), participants

were expected to execute the visual search NDRT. They were not allowed to engage in

both driving and executing the NDRT simultaneously, and the experimenters would

stop the test if they did so. Participants were informed that the vehicle could request

their intervention if they identified obstacles on the road, as it is expected for Level

3 ADSs [101]. Figure 4.3(c) shows the NDRT interface with the driver.

Participants could not focus only on the NDRT, because the ADS demanded

them to occasionally take control of the driving task. They were asked to be ready to

take control upon intervention requests from the ADS, as some obstacles occasionally

appeared on the road. At that point, the ADS identified the obstacles and asked

the driver to take control, as the vehicle was not able to autonomously change lanes

and maneuver around them. If drivers did not take control, the emergency brake was

triggered when the vehicle got too close to an obstacle, and then drivers lost points on

their ongoing NDRT score. In that situation, they still needed to take control of the
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driving task, maneuver around the obstacle and re-engage the autonomous driving

mode. They obtained 1 point for each correctly chosen “Q” and lost 5 points each

time the emergency brake got triggered.

With the events characterized by true alarms or misses, drivers had to take con-

trol and pass the obstacle. Subsequently, they were asked about their “trust change”.

When asked, they had to stop the vehicle to answer the question on a separate touch-

screen. They reported their trust change in the events characterized by true alarms,

false alarms, and misses. They had 5 choices, varying from “Decreased Significantly”

to “Increased Significantly”, as shown in Figure 4.3(d). These choices were then used

as indicators of the differences ∆TQk ∈ {−2,−1, 0, 1, 2} (we use the superscript Q to

indicate that the differences were quantized).

4.4.1.3 Procedure

Upon arrival, participants were asked to complete a consent form as well as a

pre-experiment survey related to their personal information, experience with ADS,

mood and propensity to trust the ADS. After the survey, the tasks were explained

and the experimenter gave details about the experiment and the simulated vehicle

control. Participants then completed a training session before the actual experiment

began and, in sequence, completed their two trials. After each trial, participants were

asked to complete post-trial surveys related to their trust in the ADS. These surveys

were administered electronically. Each trial took approximately 10 to 15 minutes,

and the whole experiment lasted approximately 60 minutes.

A basic fixed level of cash compensation of $15.00 was granted for the partici-

pants. However, they also had the possibility of receiving a performance bonus. The

bonus was calculated according to their best final NDRT score, considering both tri-

als experienced by the participant. Those who made up to 199 points in the NDRT

did not receive a bonus. However, bonuses of $5.00 were granted for those who made
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Please indicate the degree that your trust changed after this encounter.

Decreased
Significantly
-2

Decreased
Slightly

-1
No Change

0

Increased
Slightly

1

Increased
Significantly

2

(d)

(c)

(b)

(a)

(b)

(c)

(d)

Figure 4.3: Experimental design (a), composed of the driving task (b), the NDRT (c)
and the trust change self-report question (d). The trust change self-report question
popped up after every event within the trials (there were 12 events per trial), including
true alarms, false alarms, and misses.

between 200 and 229 points; $15.00 for those who made between 230 and 249 points;

and $35.00 for those who made 250 points or more. From the total of 80 participants,
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28 got $5.00 bonuses, 6 participants got $15.00 bonuses, and no participant got the

$35.00 bonus.

4.4.1.4 Apparatus

As illustrated in Figure 4.3(a), the simulator setup was composed of three LCD

monitors integrated with a Logitech G-27 driving kit. Two other smaller touchscreen

monitors positioned to the right hand of the participants were used for the NDRT and

for the trust change self-report questions. The console was placed to face the central

monitoring screen so as to create a driving experience as close as possible to that of

a real car. In addition, we used Pupil Lab’s Pupil Core eye tracker mobile headset,

equipped with a fixed “world camera” to measure participants’ gaze positional data.

4.4.1.5 Measured Variables

Measured variables included participants’ subjective responses, behavioral re-

sponses and performance. Observation variables ϕ(tk), υ(tk) and π(tk) were also mea-

sured and averaged for the intervals [tk, tk+1]. Subjective data was gathered through

surveys before and after each trial, including trust perception, risk perception, and

workload perception. We used questionnaires adapted from [83] and [100] to measure

post-trial trust and risk perception, respectively. Eye-tracking data included eyes’

positions and orientations, as well as videos of the participants’ fields of view.

T (tk) was computed from the post-trial trust perception self-reports T (tf ) and

the within trial trust change self-reports ∆TQk , as in Equation (4.4),


T (t12) = T (tf ) ;

T (tk) = T (tf )− α
12∑

i=k+1

∆TQi ,
(4.4)

where k ∈ {0, 1, 2, . . . , 11}, and α = 3. Therefore, the trust measures T (tk) were
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back-computed for the events within a trial. The α value was chosen to characterize

noticeable variations in T (tk), but also avoiding T (tk) values falling outside the in-

terval [Tmin, Tmax]. Positive values for α between 1 and 3 were tested and provided

results similar to those reported in Section 4.5.

4.4.2 Model Parameters

Considering the formulation presented in Section 4.3 and the data obtained in the

user study, we turn to the identification of parameters for the trust model and the

design of the trust estimator. We found the best fit parameters for the short-term

(i.e., with respect to events) trust dynamics represented by the state-space model in

Equation (4.3). From the 80 participants, we selected 4 from the dataset—each one

chosen randomly within each of the 4 possible ADS error type conditions—and used

the data from the remaining 76 to compute the parameters, which are presented in

Table 4.1. We used the data from the 4 selected participants for validation. The

parameters of the state-space model from Equation (4.3) were identified with maxi-

mum likelihood estimation through linear mixed-effects models. Our models included

a random offset per participant to capture their individual biases and mitigate the

effects of these biases in the results, and to represent normally distributed random

noises.

4.5 Results

4.5.1 Participants’ Data Analysis

For each of the observation variables, we obtained 1920 measurements (80 partic-

ipants × 2 trials per participant × 12 events per trial). The parameters describing

these distributions are presented in Table 4.2. The histograms for these distributions

are shown in Figure 4.4; the probability density functions corresponding to normal
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Table 4.1: Trust in ADS state-space model parameters

Parameter Value Estimate S.E.M†

a11 0.9809 4.0× 10−3

b11 3.36 0.29

b12 −0.61 0.32

b13 −1.30 0.31

c11 6.87× 10−3 3.3× 10−4

c21 9.10× 10−3 1.0× 10−4

c31 4.38× 10−3 1.0× 10−4

σ2
u 1.24 –

Σw diag(1.0, 1.6, 1.8)× 10−3 –

†S.E.M = Standard error of the mean.

distributions N (µϕ, σ
2
ϕ), N (µυ, σ

2
υ) and N (µπ, σ

2
π) are also shown.

Table 4.2: Parameters for the Focus ϕ, ADS usage υ and NDRT performance π
measurements distributions

Parameter
Distributions

ϕ υ π

Minimum 0.02 0.17 0.00

25th percentile 0.32 0.69 0.28

50th percentile 0.47 0.74 0.33

75th percentile 0.65 0.79 0.38

Maximum 0.97 0.92 0.56

Mean µ 0.49 0.73 0.32

Standard Deviation σ 0.20 0.08 0.08

The plots in Figure 4.5 present the average trust over interactions for all partic-

ipants in each ADS error type conditions, indicating the occurrence of true alarms,

false alarms and misses (represented by ‘T’, ‘F’ and ‘M’, respectively). The curves are

consistent with the expected behavior for the state-space model (4.3) and the model

parameters given in Table 4.1. These plots are similar to those presented in Figure
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Figure 4.4: Histograms for the Focus ϕ, ADS usage υ and NDRT performance π
measurements distributions and overlapping probability density functions with corre-
sponding means and standard deviations. Each distribution had 1920 measurements
(= 80 participants × 2 trials per participant × 12 measurements per trial).

3.7, with the difference that the reliability of the ADS was manipulated not only with

false alarms, but also with misses.

4.5.2 Trust Estimation Results

After obtaining the model parameters, we applied Algorithm 1 to estimate the

trust levels of the participants that were excluded from the dataset. Figure 4.6(a1:a4)

and Figure 4.7(a1:a4) present the trust estimation results for these participants (iden-

tified as A, B, C and D). Participant A experienced the combined ADS error type

condition; participant B experienced the false alarms only condition; participant C

experienced the control condition; and participant D experienced the misses only con-

dition. The plots bring together their two trials and the different estimate results for

each trial. For participants A and B, trial 1 was conducted on a curvy road and trial

2 on a straight road. For participants C and D, trial 1 was conducted on a straight

road and trial 2 on a curvy road.

The accuracy of our estimates improved over time as the participants interacted

with the ADS. Figure 4.6(a1) shows that, for participant A, trial 1, the initial trust

estimate T̂ (t0) and the initial observed trust T (t0) were close to each other (in compar-

ison to Figure 4.6(a2)). This means that the estimate computed from the observations
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Figure 4.5: Plots of the average trust for all participants in each ADS error type
condition. When participants were using a reliable ADS, i.e., in the Control condition,
trust increased steadily after the true alarms indicated by ‘T’ in the horizontal axes.
After false alarms or misses (indicated respectively by ‘F’ and ‘M’) occurred, trust
decreased accordingly.

taken at the beginning of the trial, i.e., ϕ(t0), υ(t0), and π(t0), approximately matched

the participants’ self-reported trust level. Considering the Kalman filter’s behavior,

the curves remained relatively close together over the events, as expected. Therefore

the estimate followed the participants’ trust over the trial events. This accuracy,

however, was not achieved at the beginning of the second trial, as can be observed

in Figure 4.6(a2). This figure shows that, in trial 2, T̂ (t0) and T (t0) had a greater

difference, but this difference decreased over the events as the curves converged. A

similar effect can be observed for participants B, trial 2 as in Figure 4.6(a3:a4) and

for participant C, as in Figure 4.7(a1:a2).

Participants’ responses to similar inputs were not always coherent, and varied over

time or under certain conditions. Predominantly, participants’ self-reported trust

increased after true alarms (indicated by the prevailing positive steps at the events

that are characterized by orange circles). In addition, after false alarms and misses,
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Figure 4.6: Trust estimation results for participants A and B. Participant A expe-
rienced both false alarms and misses (combined ADS error type condition) while
participant B experienced false alarms only (false alarms only condition). For both
participants, the first trial was conducted on a curvy road, while the second trial
was conducted on a straight road. Curves in (a1:a4) show the estimation results,
indicating that the estimator can track the trust self-reports, i.e., T̂ (tk) approaches
T (tk) over the events. This is made possible with the processing of the observations
variables focus time ratio (ϕ), ADS usage time ratio (υ), and NDRT performance (π)
presented in (b1:d4).
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Figure 4.7: Trust estimation results for participants C and D. Participant C ex-
perienced only true alarms (control ADS error type condition) while participant D
experienced misses only (misses only condition). For both participants, the first trial
was conducted on a straight road, while the second trial was conducted on a curvy
road.
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they usually reported trust decreases (indicated by the prevailing negative steps at

the events characterized by yellow diamonds and purple triangles). However, it is

noticeable that, for participant A, trial 2, the self-reported trust was more “stable”,

as indicated by fewer steps on the red dashed curve. Two different factors could

have contributed to the less frequent variations on T (tk): as the participant was on a

straight road, the perceived risk might not have been high enough to induce drops after

false alarms; or, as it was the participant’s second trial, the learning effects might have

softened the self-reported trust changes (especially after false alarms). In any case, the

difference between the curve patterns in Figure 4.6(a1) and Figure 4.6(a2) suggests

a non-constancy on participant A’s characteristic behaviors. A similar behavior was

observed for participant C, trial 1 after the 8th alarm and for trial 2.

The observation variables we selected were effective in representing drivers’ trust-

ing behaviors. Figure 4.6(b1:d4) show the observation variables corresponding to the

trust curves in Figure 4.6(a1:a4), while Figure 4.7(b1:d4) correspond to 4.7(a1:a4).

All observation variables have a positive correlation with trust, and therefore it can

be observed that some noticeable peaks and drops in the observation variables cor-

respond to positive and negative variations in the estimate of trust in ADS. This is

especially true for the counter-intuitive behaviors of the participants. For instance,

as it can be seen in Figure 4.6(a3:d3), after the 8th event—which was a false alarm—

participant B reported a drop in his/her trust level, indicating that T (t8) < T (t7).

However, his/her behaviors did not reflect that drop: we can notice that ϕ(t8) > ϕ(t7),

υ(t8) > υ(t7) and π(t8) > π(t7). As a result, the trust estimate had an increase, and

eventually we had T̂ (t8) > T̂ (t7). Similar counter-intuitive situations can be identified

for participants A, C and D.

The accuracy of the estimates depends on the covariance parameters, which can

be tailored for the driver. The trust estimate bounds represented by blue bands in

Figure 4.6(a1:a4) and Figure 4.7(a1:a4) are approximations obtained with the over-
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lay of several simulations (100 in total). This variability is due to the uncertainty

represented by the random noise parameters u(tk) and w(tk), and the width of the

bound bands is related to the computed covariances σ2
u and Σw. Both lower values

for σ2
u and higher values for Σw entries would imply a narrower band, meaning that

the estimator would have less variability (and therefore could be slower on tracking

trust self-reports). Meanwhile, higher σ2
u and lower values of Σw entries would imply,

respectively, a less accurate process model and on observations considered more reli-

able. This would characterize wider bands, and thus the variations on the estimate

curves would be more pronounced.

Trust estimates may be more accurate with the individualization of the model

parameters. Although we used the average parameters presented in Table 4.1 for the

results, a comparison of Figure 4.6(a2), Figure 4.7(a1) and Figure 4.7(a3:a4) with

Figure 4.6(a4), suggests that the balance between σ2
u and Σw should be adapted

to each individual driver. It can be seen that these parameters permitted a quick

convergence of T (tk) and T̂ (tk) for participants A, C and D, but that 12 events were

not enough for the estimator to track the trust self-reports from participant B. We also

computed the root-mean-square (RMS) error of the estimate curves resulting from

the 100 simulations for participants A, B, C and D. The RMS error distributions had

the characteristics presented in Table 4.3.

Considering the 100-points trust range, for participant A the error stands below

10%, while for participants B, C and D it stands below 20%. This difference sug-

gests that the parameters of the model are more suitable for participant A than for

participant B, C and D.
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Table 4.3: RMS error of the estimate curves from Figure 4.6 and Figure 4.7

Participant Trial Mean Standard Deviation

A 1 4.9 2.4

A 2 10.0 2.1

B 1 14.5 2.8

B 2 19.1 1.2

C 1 14.2 0.4

C 2 2.7 0.6

D 1 20.7 2.2

D 2 13.8 3.4

4.6 Discussion

4.6.1 Implications

The goal of this chapter was to propose a framework for real-time estimation of

drivers’ trust in ADS based on drivers’ behaviors and dynamic trust models. As

shown by the results, our framework successfully provides estimates of drivers’ trust

in ADS that increase in accuracy over time. This framework is based on a novel

methodology that has considerable advantages over previously reported approaches,

mainly related to our trust dynamics model and the simpler methods needed for its

implementation.

First, the sensing machinery required for implementing our methodology is as

simple and as unobtrusive as possible. Considering practical aspects related to the

framework implementation, we have chosen observation variables that are suitable for

the estimation of drivers’ trust in ADS. An eventual implementation of the proposed

estimator on an actual self-driving vehicle would depend only on the utilization of an

eye-tracking system and on the integration between the ADS and the tasks performed

by the driver. Our unique observation variable that comes from a direct instrumen-

tation of drivers’ behavioral patterns is the eye-tracking-based focus on the NDRT.
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The other observation variables (NDRT performance and ADS usage) are indirectly

measured by the ADS. Eye-tracking-based metrics are appropriate for trust measur-

ing as they do not require sensory devices that would be impractical and/or intrusive

for drivers. Although we have used an eye tracker device that has to be directly worn

by the participant, there exist different eye-tracking systems that do not need to get

in direct contact with the driver to sense their gaze orientations, and could be used

in a real world implementation of this framework.

Second, the results of our framework show that it can successfully estimate drivers’

trust in ADS levels, but the accuracy of the estimates were different depending on

the driver. The application of the model represented by Equation (4.3) in the trust

estimator algorithm required average (population-wise) state-space model parame-

ters. These parameters were computed with a minimization approach, and they are

indications of reasonable statistics for average values conditioned to our pool of par-

ticipants. However, these parameters could vary drastically from driver to driver. In

a more sophisticated implementation of our modeling and estimation methodology,

the values from Table 4.1 should serve as preliminary parameters only. A possible

way to improve our proposed methodology would be to integrate it with learning

algorithms to adapt the model parameters to individual drivers. Moreover, as drivers

become accustomed to the ADS’s operation, these parameters might also vary over

time (making the time-invariant description from Equation (4.3) not useful). There-

fore, an eventual ADS featuring our framework should also be sufficiently flexible

to track the changes in individual drivers’ model parameters over time, as proposed

in [130].

Third, the framework opens paths for more research on the development of more

complex models and estimation techniques for trust. These techniques may encom-

pass both the driver-ADS context and other contexts characterized by the interaction

between humans and robots. In the case of driver-ADS contexts, the events that
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trigger the propagation of the trust state do not need to be restricted to the forward

collision alarm interactions characterized by true alarms, false alarms and misses. A

wider range of experiences could be considered in the process model represented by

Equation (4.3), such as events related to the ADS driving performance or to external

risk perceived by the ADS. Drivers could be engaged in alternative NDRTs, as long

as they are integrated with the ADS and a continuous performance metric is defined

as observation variable. In the case of interactions between humans and robots in

different scenarios, the concepts that were defined in Section 4.3 are easily expandable

to other contexts. The main requirement would be the characterization of what are

the events that represent important (positive and negative) experiences within inter-

actions between the human and robot. These positive and negative experiences would

generally characterize the robot’s performance, which is an essential factor describing

the basis of trust, as identified by Lee and See [60]. Robots that execute specific

tasks in goal-oriented contexts could have their performances measured in sequential

time instances that would trigger the transition of the trust state. For instance, these

performance measures could be a success/failure classification, such as pick and place

task with a robotic arm [114,122,133]; or a continuous performance evaluation, such

as when a follower robot loses track of its leader due to the accumulation of sensor

error [102,103].

Finally, the framework provides trust estimates that are useful for the design of

trust controllers to be embedded in new ADSs. In this framework, trust is mod-

eled as a continuous state variable, which is consistent with widely used trust scales

and facilitates the processing and analysis of trust variations over time. This trust

representation permits considering the incremental characteristics of the trust devel-

opment phenomena, which is consistent with the literature on trust in automation

and opens a path for the development of future trust control frameworks in ADSs.

Since it is developed in the state-space form, our method for modeling drivers’ trust
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in ADS enables the use of classical application-proven techniques such as the Kalman

filter-based method we have used in Algorithm 1.

In addition, a practical implication of the proposed estimation framework is that

it could be used in innovative adaptive systems capable of estimating drivers’ trust

levels and reacting in accordance with the estimates, in order to control drivers’ trust

in ADS. These functionalities would need to involve strategies to monitor not only

drivers’ behaviors but also the reliability of the system (for example, the acknowledg-

ment of false alarms and misses mentioned in Section 4.3.1, assumption 6.). These

errors could be identified after a sequence of confirmations or contradictions of the

sensors’ states, while the vehicle gets closer to the event position, entering the ranges

of higher accuracy of those sensors. Moreover, the system could request the driver to

provide it feedback about issued alarms to identify its own errors, asking confirmation

about identified obstacles or enabling quick report of missed obstacles, a functionality

that is currently present in GPS navigation mobile applications [123]. Although these

questions could represent an inconvenient distraction, this strategy is not as disrup-

tive as demanding drivers to provide trust self-reports, especially during autonomous

operation. The integration between the ADS and the NDRTs would also be needed

for the assessment of observation variables and, eventually, actions to increase or de-

crease trust in ADS could be taken to avoid trust-related issues (such as under- and

over-trust). These trust control schemes would be useful for improving driver-ADS

interactions, having the goal of optimizing the safety and the performance of the team

formed by the driver and the vehicle.

4.6.2 Limitations

4.6.2.1 Trust Modeling and Estimation Methodology

A limitation of the study presented in this chapter relates to the assumptions

associated with how we derive the state-space model for trust in the ADS. The re-
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lationships represented by Equations (4.1) and (4.2) restrict the experiences of the

trustor agent (the driver) to the events represented by true alarms, false alarms and

misses of the forward collision alarm. In fact, other experiences such as the ADS’s

continuous driving performances can characterize events that could be represented

by signals of different types other than booleans. The simplification of the relation-

ships represented by (4.1) and (4.2) to the LTI system represented by (4.3) is useful

and convenient for the system identification process and for the trust estimator de-

sign. However, the resulting model fails to capture some phenomena that are likely

to occur during the interactions between drivers and ADSs. These phenomena might

include the variation of model parameters over time (i.e., after a reasonable period

of drivers’ interaction with the ADS) or the possibly nonlinear relationship between

trust and the observation variables. An example is the relationship between trust

and NDRT performance: it is unlikely that in a more rigorous modeling approach we

could consider these variables to be directly proportional. Usually, an excess of trust

(overtrust) in a system can lead to human errors, which might eventually result in

performance drops.

4.6.2.2 User Study

There are several other limitations that relate to the experimental study presented

in this chapter.

First, most participants were young students, very experienced with video games

and other similar technologies. Our results could have been biased by these demo-

graphic characteristics.

Second, we employed a simulator in our experimental study. The use of a simulated

driving environment is a means of testing potentially dangerous technologies. In

general, people tend to act similarly in real and simulated environments [42]. However,

due to the risks involved in driving, we acknowledge that participants might not have
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felt as vulnerable as they would if this study had been conducted in a real car.

Finally, we employed a specific NDRT to increase the participants’ cognitive load.

The recursive visual search task gives drivers the opportunity to switch their attention

between the driving and the NDRT very frequently. Other types of NDRTs could

demand drivers’ attention for longer periods of time, and this could induce a different

effect on trust, risk perception or performance. The NDRT performance metric in

this study is very specific and may or may not be generalizable to other task types.

4.6.3 Improvements and Usability

Additional improvements to our framework may be achieved by addressing the

limitations of the reported user study. A vehicle with autonomous capabilities can

be utilized to make the participants’ experience as similar as possible to a realistic

situation. Additionally, our methodology could be tested in other different scenarios

where the complexity of the NDRT and of the environment are increased.

4.7 Conclusion and Contribution

The main contribution of this chapter is the proposed framework for the estima-

tion of drivers’ trust in ADSs. This framework is applicable for SAE level 3 ADSs,

where drivers conditionally share driving control with the system, and that system

is integrated with a visually demanding NDRT. In comparison to previous trust esti-

mation approaches, it has practical advantages in terms of implementation ease and

of the format of its trust estimates outputs.

We investigated the effectiveness of the proposed framework with a user study

that is described in Section 4.4. In this user study, participants operated a simulated

vehicle featuring an ADS that provided self-driving capabilities for the vehicle. Par-

ticipants conducted two concurrent (driving and non-driving) tasks, while reporting

their levels of trust in the ADS. Our goal was to establish a computational model for
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drivers’ trust in ADS that permitted trust prediction during the interactions between

drivers and ADSs, considering the behaviors of both the system and the driver. We

found the parameters of a discrete-time, LTI state-space model for trust in ADS.

These parameters represented the average characteristics of our drivers, considering

the resultant experiment dataset. With the calculation of the parameters, it was pos-

sible to establish a real-time trust estimator, which could track the trust levels over

the interactions between the drivers and the ADS.

In summary, our results reveal that our framework was effective for estimating

drivers’ trust in ADS through the integration of the NDRT and behavioral sensors to

ADSs. We also show, however, that a more advanced strategy for trust estimation

must take into consideration the individual characteristics of the drivers, making

systems flexible enough to adjust their model parameters during continuous use. Our

technique opens ways for the design of smart ADSs able to monitor and dynamically

adapt their behaviors to the driver, in order control drivers’ trust levels and improve

driver-ADS teaming. More accurate trust models can improve the performance of

the proposed trust estimation framework and, therefore, are still required. However,

the utilization of this trust estimation framework can be a first step to designing

systems that can, eventually, increase safety and optimize joint performances during

the interactions between drivers and ADSs embedded in self-driving vehicles.

The modeling technique and the trust estimator presented in this chapter could

be used in the design of a trust management system. This trust management system

could be based on the comparison of trust level estimates with the assessed capa-

bility and reliability of the vehicle in different situations, which depends on the risk

involved in the operation. From the comparison, the trust calibration status could be

evaluated, and a possible mismatch between trust and capability (or reliability) levels

would indicate the need for system reaction. This reaction would consist of actions

to manipulate trust levels, seeking to increase trust in case of distrust (or undertrust)
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and to decrease it in case of overtrust. An example of trust management system with

these characteristics is presented in Chapter V.
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CHAPTER V

Calibration of Drivers’ Trust in ADSs

5.1 Introduction

Automated vehicles (AVs) that intelligently interact with drivers must build a

trustworthy relationship with them. A calibrated level of trust is fundamental for the

AV and the driver to collaborate as a team. Techniques that allow AVs to perceive

drivers’ trust from drivers’ behaviors and react accordingly are, therefore, needed for

context-aware systems designed to avoid trust miscalibrations. This chapter proposes

a framework for the management of drivers’ trust in AVs. The framework is based on

the identification of trust miscalibrations and on the activation of different communi-

cation styles to encourage or warn the driver when necessary. Our results show that

the management framework is effective, increasing (decreasing) trust of undertrusting

(overtrusting) drivers, and reducing the average trust miscalibration time periods by

approximately 40%. Similar to the trust estimator proposed in Chapter IV, the trust

management framework is applicable for the design of SAE Level 3 automated driving

systems and has the potential to improve performance and safety of driver–AV teams.

This chapter is based on the work published in [7]. The remainder of the chapter

is organized as follows. Section 5.2 presents the problem of identifying trust miscal-

ibrations and manipulating drivers’ trust in the AV (or, interchangeably, the ADS)

to eventually achieve trust calibration. Section 5.2 also proposes a solution for that
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problem, managing trust by combining the trust estimation method presented in

Chapter IV with a rule-based controller to calibrate trust. Section 5.3 focuses on the

implementation of the methods and the user study conducted to validate the trust

management solution. Section 5.4 details the results obtained with the utilization of

the trust management framework, and compares metrics of overall trust calibration

between groups of participants that used and that did not use the proposed trust

management framework. Section 5.6 concludes and presents a brief discussion on

future directions for the research presented in this chapter.

5.2 Problem Statement

Considering the context of a driver interacting with an AV featuring an SAE

Level 3 automated driving system (ADS), we addressed two main problems. First,

we aimed to identify instances for which drivers’ trust in the AV is miscalibrated,

i.e., when the driver is undertrusting or overtrusting the AV. Second, we focused on

manipulating drivers’ trust in the AV to achieve calibrated levels, i.e., trust levels

that match the AV’s capabilities [60]. In other words, our goal was to increase or

decrease drivers’ trust in the AV whenever drivers were undertrusting or overtrusting

the AV, respectively.

In SAE Level 3 ADSs, drivers are required to take back control when the system

requests intervention or when it fails [101]. We assume that the AV has automated

lane-keeping, cruise control and forward collision alarm functions that can be acti-

vated (all at once) and deactivated at any time by the driver. The AV can also identify

different road difficulty levels and process drivers’ behavioral signals to estimate their

trust in the AV.
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Figure 5.1: Circuit track used in this study. The portions of the road correspond
to the capability of the AV. In the regular direction, drivers start at point A, follow
the “straight” path in the clockwise direction, cover the curvy path and finish the
trial at point B, right after passing through the dirt road portion. In the reverse
direction, drivers start at point C, follow the curvy path in the counterclockwise
direction, cover the straight path, continue to the curvy path (until the dirt portion),
pass through the dirt portion, and finish the trial at point D. Both directions have
12 events (encounters with obstacles), and it took drivers approximately 10 to 12
minutes to complete a trial.

5.2.1 Solution Approach

We implemented a scenario to represent the described problem context with an AV

simulator. We established simulations where drivers took trials in a predefined circuit

track. The circuit track was divided into distinct parts, having three predefined risk

levels, corresponding to the difficulty associated with each part of the circuit track.

The easy parts of the circuit track consisted of predominantly straight roads; the

intermediate difficulty parts were curvy paved roads; and the difficult parts were

curvy dirt roads. Within these trials, drivers encountered abandoned vehicles on the

road, which represented obstacles that the AV was not able to maneuver around by

itself (using its automated driving functions). At that point, drivers had to take

over control, pass the obstacle and then engage the autonomous driving mode again.

Figure 5.1 shows the circuit implemented in the simulation environment.
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We needed to compare drivers’ trust levels and the AV’s capability levels to iden-

tify trust miscalibrations. Therefore, we defined three capability levels for the AV,

corresponding to the difficulty of the circuit track parts. The AV’s forward collision

alarm was able to identify the obstacles and also to trigger an emergency brake if

the driver did not take control in time to maneuver around the obstacles. These two

actions were activated at different distances to the obstacles, represented by the two

circular regions represented in Figure 5.2. On straight paved roads these distances

were larger, representing the longer perception ranges of the AV sensors. On more

difficult parts of the circuit (i.e., curvy or dirt), however, the curves and the irregular

terrain reduced that perception range, implying shorter distances. The AV was able

to identify the obstacle, warn the driver and eventually brake at a fair distance from

the obstacle when it was operated on straight roads. This condition corresponded to

the AV’s high capability. On curvy and dirt roads, the AV was not able to anticipate

the obstacles at a reasonable distance, giving drivers less time to react and avoid

triggering the emergency brake. These conditions corresponded to the AV’s medium

and low capabilities.

In the scenario, drivers also had to simultaneously perform a visually demanding

NDRT, consisting of a visual search on a separate touchscreen device that exchanged

information with the AV. They performed the NDRT only when the self-driving

capabilities were engaged. The behavioral measures taken from the drivers were

the same from Chapter IV: their focus on the NDRT (from an eye tracker); their

ADS usage rate; and their NDRT performance, measured by the number of correctly

performed visual searches per second. Drivers were penalized if the emergency brake

was triggered, which gave them a sense of the costs and risks of neglecting the AV

operation. Specific details about the tasks are given in Section 5.3.3.

The block diagram in Figure 5.3 presents our proposed trust management frame-

work, composed of two main blocks: the trust estimator and the trust calibrator.
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Figure 5.2: Concentric circles represent the distances for which the warning mes-
sage “Stopped vehicle ahead!” was provided to the driver, and the emergency brake
was triggered. The distances varied according to the difficulty of the road. If the
emergency brake was triggered, the drivers were penalized on their NDRT score.

The AV block represents elements of the vehicle, such as the sensors to monitor the

environment and the ability to output verbal messages to interact with the driver.

We present the definitions and the notation used in this chapter in Table 5.1.

5.2.2 Trust Estimator

Figure 5.3 illustrates the trust estimator block, with the AV’s alarms and the ob-

servation variables ϕk, υk and πk as inputs, and a numerical estimate of drivers’ trust

in the AV as the output Tk. The observation variables capture the drivers’ behav-

ior, which is affected by drivers’ trust in the AV. This trust estimator is a simplified

version of what is presented in Chapter IV and in [5], and was chosen because of its

simple implementation and proven ability to track drivers’ trust. Alternative trust

estimators could be integrated to the proposed trust management framework if the

inputs they require can be captured in real-time. Differently from Chapter IV, we

considered that the alarms Lk were always reliable (true alarms), and could not be
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Figure 5.3: Block diagram that represents the trust management framework. The
trust estimator block provides a trust estimate Tk to the trust calibrator, which
compares it to the capabilities of the AV during operation. The calibrator then
defines the communication style that the AV should adopt, and the AV provides the
corresponding verbal messages to the driver. Lk represents an alarm provided by the
ADS when an obstacle on the road is identified. The observation variables ϕk, υk and
πk represent drivers’ behaviors, from which drivers’ “real” trust (considered a latent
variable) is estimated. A delay of one event is represented by the z−1 block.

Table 5.1: Definitions and notation used in this chapter

Definition,

notation
Characterization

Trial,

[t0, tf ] ∈ R+

Trials occur when drivers operate the vehicle on a predefined route,

and are characterized by their corresponding time intervals.

Events,

k ∈ N \ {0}
Events occur each time the ADS warns the driver about an obstacle

on the road at tk, t0 < tk < tf .

Alarm,

Lk ∈ {0, 1}

Boolean variable that is set when the AV correctly identifies an

obstacle and warns the driver at the event k. It is reset after

the driver passes the obstacle

Focus,

ϕk ∈ [0, 1]

Drivers’ focus on the NDRT, the ratio of time the driver spends

looking at the NDRT screen during [tk, tk+1).

Usage,

υk ∈ [0, 1]

Drivers’ ADS usage, the ratio of time the driver spends using

the AV’s self-driving capabilities during [tk, tk+1).

Performance,

πk ∈ R
Drivers’ NDRT performance, the number of points obtained on the

NDRT during [tk, tk+1), divided by ∆tk = tk+1 − tk.

Trust in the AV,

Tk ∈ [0, 100]

Drivers’ estimated trust in the AV. It is assigned to the interval

[tk, tk+1), computed from ϕk, υk, πk and is associated with the

covariance ΣT .
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false alarms or misses.

The discrete LTI state-space model for trust dynamics has the form of Eq. (5.1),

Tk+1 = ATk + BLk + uk, (5.1a)
ϕk

υk

πk

 = CTk + wk. (5.1b)

Tk+1, the trust estimate at the event k+ 1, depends on Tk, the alarm Lk, and the

process noise uk. The observation variables depend on the estimated trust and output

noise wk. A =

[
1.0

]
; B =

[
0.40

]
; C = 10−3 ×

[
7.0 4.2 9.2

]>
; uk ∼ N (0, 0.252);

and wk ∼ N (0, diag(σ2
ϕ, σ

2
υ, σ

2
π)), with σϕ = 1.8 × 10−4, συ = 7.0 × 10−5 and σπ =

5.7 × 10−2. (Please see Table 5.1 for variables’ definitions.) The parameters for Eq.

(5.1) are found by fitting linear models [106] using a previously obtained data set.

The state-space structure permits the application of Kalman filter-based techniques

for the estimator design. The trust estimator is initialized with

T0 =
1

3

(
ϕ0

c1

+
υ0

c2

+
π0

c3

)
, (5.2)

where ϕ0, υ0 and π0 measured over the interval [t0, t1) and c1, c2, c3 are the entries

of C.

5.2.3 Trust Calibration

The trust calibrator block represented in Figure 5.3 was intended to affect drivers’

situation awareness (or risk perception) by changing the communication style of the

AV, with the goal of influencing drivers’ trust in the AV [77]. At every event k, the

AV interacted with the driver through verbal messages corresponding to the commu-

nication style defined in the trust calibrator block. The AV can encourage the driver
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to focus on the NDRT, moderately warn the driver about the difficulties of the road

ahead, or harshly warn the driver, literally demanding driver’s attention. Table 5.2

presents the messages the AV provided to the driver in four different communication

styles.

To identify trust miscalibrations, the trust calibrator compares the trust estimates

with the capability of the AV. Lee and See [60] considered both trust in the automated

system and the capabilities of the system as continua that must be comparable to

each other. We assumed that the AV’s capability corresponds to the three difficulty

levels of the road where the AV is operated. We divided the interval [0, 100], for which

drivers’ trust in the AV was defined, into three sub-intervals: [0, 25) corresponding

to low trust, [25, 75) corresponding to medium trust and [75, 100] corresponding to

high trust. The uneven distribution of the sub-interval lengths was chosen to mitigate

the uncertainty involved in trust estimation. We fit a wider range of values in the

medium level, and considered as “low trust” or “high trust” only the estimates that

were closer to 0 or 100, respectively. The quantization of both the driver’s trust in

the AV and the AV’s capability in three levels facilitates the real-time comparison of

these metrics. Moreover, it permits the definition of a finite set of rules for the trust

miscalibration issues. Depending on the application context, alternative quantizations

or AV capabilities distributions can be implemented without significant changes to

the trust calibrator’s framework.

A trust miscalibration is identified whenever there is a mismatch between the

AV’s capabilities and the driver’s level of trust in the AV. The communication style

of the AV is then selected after the trust miscalibration is identified. At every event,

this comparison results in the identification of one of four distinct driver trust states:

undertrusting the AV (Under); having an appropriate level of trust in the AV (Cal-

ibrated); overtrusting the AV (Over); or extremely overtrusting the AV (X-over).

Figure 5.4 shows the ruleset and the correspondence with the resultant communi-

95



Table 5.2: Messages provided by the AV in each Communication Style

AV Communication Message

Style

Encouraging “Hey, this is an easy road. You don’t need to worry

about driving. I will take care of it while you focus

on finding the Qs.”

Silent [No message]

Warning “Hey, this part of the road is not very easy. You can

(moderate) still find the Qs, but please pay more attention to

the road.”

Warning “Look, I told you! I do need your attention. I can

(harsh) feel the road is terrible. I don’t know if I can keep

us totally safe!”

cation styles of the AV. Note that the establishment of three levels for trust and

AV capability is able to cover the occurrence of both undertrust and overtrust, and

also allows the identification of extreme overtrust. Extreme overtrust occurs when a

driver has a high level of trust in the AV while the AV’s capability is low, which is

likely to be crucial for driver safety. Therefore, we consider extreme overtrust a trust

miscalibration issue that should be seriously addressed.

5.3 Methods

A total of 40 participants (µAGE = 31; σAGE = 14 years) were recruited to take

part in the study. From these, 18 were female, 21 male and 1 preferred not to spec-

ify gender. We used emails and specialized advertising on the University of Michi-

gan’s web portal for behavioral and health studies recruitment. All regulatory ethical

concerns were taken, and the study was approved by the University of Michigan’s

Institutional Review Board.
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Figure 5.4: Rule set for the trust calibrator. The driver’s trust state and the commu-
nication style are defined when the AV compares its capability and the driver’s trust
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is undertrusting the AV, and the encouraging communication style is selected.

5.3.1 Procedure

Participants signed a consent form and filled out a pre-experiment survey as soon

as they arrived at the experiment location. Next, the functions of the AV and the

experiment dynamics were explained, and a training drive allowed participants to get

familiar with both the AV simulator controls and the NDRT. Participants put the

eye-tracker device on and, after it was calibrated, started their first trial on the AV

simulator. After the trial, they filled out a post-trial survey. Next, they had their

second trial and filled out the post trial survey for the second time. Each experiment

took approximately 1 h, and the participants were compensated for taking part in the

study. The compensation varied accordingly to their highest total number of points

obtained in the NDRT, considering both of their trials. Minimum compensation was

of $15, and the participants were able to achieve $20, $30 or $50 in total with a

performance cash bonus.
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5.3.2 Conditions Randomization

All participants experienced one trial with the trust calibrator and one trial with-

out the trust calibrator. To avoid the participants driving in exactly the same con-

ditions in both of their trials, we varied the direction of the driving on the circuit

track. Participants drove in clockwise direction (i.e., regular direction) and counter-

clockwise direction (i.e., reverse direction), as mentioned in Figure 5.1. The “trust

calibrator use” × “drive direction” conditions were randomly assigned, depending on

the participant’s sequential identification number.

5.3.3 Tasks and Apparatus

The driving task was implemented with AirSim over Unreal Engine [108]. The

visual search NDRT was the same from Chapter III and Chapter IV, consisting of

finding “Q” characters among a field of “O” characters. The NDRT was implemented

with PEBL [80]. Participants’ scores increased by 1 point every time they correctly

selected the targets on the screen, and they lost 20 points each time the emergency

brake was activated. Source codes for both tasks are available at https://github.

com/hazevedosa/tiavManager. The experimental setup is shown in Figure 1.3.

5.4 Results

We analyzed the impacts of using the trust calibrator’s adaptive communication

with different communication styles on drivers’ trust in the AV (i.e., real-time es-

timated trust Tk). For this, we analyzed the differences in drivers’ trust estimates

between consecutive events after they had heard the messages from the AV. Drivers’

trust differences are given by ∆T = Tk − Tk−1, i.e., the difference between trust es-

timates after and before the event k. ∆T was specifically computed for the analysis,

and indicates how participants’ trust estimates changed after they were encouraged
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or warned by the AV at the event k (i.e., after the AV interacted with the drivers

adopting the communication style corresponding to drivers’ trust states at the event

k).

Drivers showed significant positive or negative differences in their trust estimates

after the AV encouraged or warned them. Table 5.3 and Figure 5.5 present the results

obtained with a linear mixed-effects model for ∆T . Linear mixed-effects models are

regression models that include both fixed and random effects of independent variables

on a dependent variable. Fixed effects represent the influence of the independent vari-

ables or treatments of primary interest (in this case, the communication styles) on the

dependent variable (i.e., trust difference ∆T ). Random effects represent differences

that are not explained by the factors of primary interest but are rather related to hier-

archical organizations present in the sample population (e.g., groups of data collected

from the same participant) [106]. For instance, in this analysis, a random intercept for

each participant in the experiment was added to the ∆T linear mixed-effects model.

In summary, we sought the β parameters that best fit the model

∆T = β0 + β1x1 + β2x2 + β3x3 + εp, (5.3)

where x1 = 1 when the communication style was “Encouraging” and x1 = 0 otherwise;

x2 = 1 when the communication style was “Warning (moderate)” and x2 = 0 other-

wise; and x3 = 1 when the communication style was “Warning (harsh)” and x3 = 0

otherwise. The random effect εp had mean µ = 0 and standard deviation σ = 25.3,

and represented each participant’s characteristic intercept and the irreducible error

of the model. Table 5.3 shows that all β parameter estimates corresponding to the

non-silent communication styles were significant (p < 0.01).
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In general, the reaction of the drivers to the AV messages followed an expected

trend. The lack of messages did not significantly change driver’s behaviors when

their trust in the AV was calibrated: the average difference—considered the reference

intercept for the linear mixed-effects model—was 1.7 units, but the p-value of 0.36

indicates that it was not significantly different from 0. The encouraging messages

helped drivers to increase their trust in the AV: as shown in Table 5.3, the average

increase was 1.7 + 15.4 = 17.1 units for undertrusting drivers. The warning messages

had the effect of decreasing their trust in the AV: trust estimates of overtrusting

drivers varied by 1.7− 9.0 = −7.3 units, and for extremely overtrusting drivers, trust

estimates varied by 1.7 − 22.9 = −21.2 units. Figure 5.6 exemplifies the time trace

for a participant’s trust estimates during a trial, indicating the messages provided by

the AV and the regions for which trust would be considered calibrated.

The use of the calibrator reduced trust miscalibrations for 29 (out of 40) partic-

ipants. We computed trust miscalibration time ratios, representing the amount of

time drivers’ trust state was different from “Calibrated”, relative to the total time of

each trial. For the computation, we removed the intervals right after a change in AV’s

capabilities, where miscalibrations were intentionally caused. For all participants, the

average trust miscalibration time ratio was 70% in trials for which the calibrator was

not used. This ratio was reduced to 43.7% when the calibrator was used. Consider-

ing only the 29 participants that had their miscalibration time ratios reduced (when

using the trust calibrator), these ratios were 82% and 42%, respectively. For the

remaining 11 participants, the reasons for their lack of decreased trust miscalibration

are unknown, although we believe these reasons could be related to the limitations

imposed by the short duration of the experiment.
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5.5 Discussion

The results presented in Section 5.4 support the effectiveness of our trust manage-

ment framework or, more specifically, our trust calibrator, which is the main intended

contribution of this chapter. When undertrusting drivers increase their trust in the

AV, their trust state is likely to approach the condition of trust calibration. Equiva-

lently, when overtrusting drivers decrease their trust in the AV, they are more likely

to reach trust calibration. The increase of trust for undertrusting drivers means

that after the communication from the AV, drivers were able to use the self-driving

capabilities more confidently, which was reflected by the increases of their related ob-

servation variables. Likewise, the framework was able to reduce drivers’ trust levels

if they presented overtrusting behaviors, when the driving context was not favorable

to the AV’s autonomous operation. The AV communication demanding drivers’ at-

tention to the driving task was effective, tending to adjust (i.e., decrease) drivers’

behaviors when they overtrusted the AV.

The proposed real-time trust calibration method was inspired by the relationships

among situation awareness, risk perception and trust. Previous works reported on

the effectiveness of situation awareness and perceived risk to impact drivers’ trust

in AVs [4, 92, 94, 139]. We applied different communications styles and messages in

an attempt to vary drivers’ situation awareness and risk perception in real time. In

consequence, we deliberately induced equivalent real-time changes in trust, supporting

the drivers to avoid trust miscalibrations by reducing the difference between their

trust estimates and the AV’s capability references. The main applicability of the

proposed trust management framework is to enable AVs to perceive drivers’ trusting

behaviors and react to them accordingly. Smart ADSs featuring this capability would

likely enhance the collaboration between the driver and the AV because it permits

the adaptation of attentional resources according to the operational environment and

situation.
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Our method can be considered a complement to [1] and [67]. The work in [67]

supported our insights for the use of eye-tracking-based techniques for real-time trust

estimation. In comparison to [1], we used different methods and behavioral variables

for trust estimation and extended their ideas to include the trust calibrator and

propose our trust management framework.

The limitations of the management framework are mostly related to the uncer-

tainty involved in influencing drivers’ trust with different messages, which might not

be very effective for some drivers. These drivers might need several interactions to

be persuaded by the AV. An example is illustrated in Figure 5.6, where the driver

was encouraged to trust the AV twice before the increase in ∆T = T3 − T2 was reg-

istered. The spreads of the box plots represented in Figure 5.5 suggest that, in less

frequent cases, drivers could present an unexpected behavior, not complying with

AV’s encouraging or warning messages. The lack of a process for customizing the pa-

rameters of our framework contributes to this uncertainty. Relying on average model

parameters in the trust estimation block can reduce the accuracy of the estimates

because the parameters of each driver can be very different from the averages. There-

fore, the trust estimation algorithm (and consequently, the management framework)

might work more efficiently if adapted to each individual driver. Another limitation

is that the capability of the AV was defined by the circuit track difficulty levels only.

Other factors can affect AV capability and could be considered, such as those related

to vehicular subsystems or to the weather.

5.6 Conclusions and Contribution

The main contribution of this chapter is the proposed trust calibration method,

which is used in the framework for managing drivers’ trust in AVs in order to avoid

trust miscalibration issues. The framework relies on observing drivers’ behaviors to

estimate their trust levels, comparing it to capabilities of the AVs, and activating dif-
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ferent communication styles to encourage undertrusting drivers and warn overtrusting

drivers. Our proposed management framework has shown to be effective in inducing

positive or negative changes on drivers’ trust in the AV and, consequently, mitigating

trust miscalibration.

The proposed trust management framework is applicable to intelligent driving

automation systems, providing them with the ability to perceive and react to drivers’

trusting behaviors, improving their interaction with the AVs, and maximizing their

safety and their performance in tasks other than driving. However, this framework

can not assess whether the driver can be trusted or not to take over control of the

vehicle when necessary. Chapter VI advances in this direction and proposes a bi-

directional trust model that could be used for modeling both human and robotic

trust.
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CHAPTER VI

Bi-Directional Model for Natural and Artificial

Trust

6.1 Introduction

Unlike traditional automation, autonomous robots could adjust their behaviors

depending on how their human counterparts appear to be trusting them or how hu-

mans appear to be trustworthy. This chapter introduces a novel capabilities-based

bi-directional multi-task trust model that can be used for trust prediction either

from a human or from a robotic trustor agent. Tasks are represented in terms of

their capability requirements, while trustee agents are characterized by their indi-

vidual capabilities. Trustee agent’s capabilities are not deterministic; rather, they

are represented by belief distributions. For each task to be executed, a higher level

of trust is assigned to trustee agents who have demonstrated that their capabilities

exceed the task’s requirements. Results of an online experiment with 284 partici-

pants are reported, and reveal that the proposed model outperforms existing models

for multi-task trust prediction from a human trustor. Simulations of the model for

determining trust from a robotic trustor are also presented. This bi-directional trust

model is intended to be useful for applications involving control authority allocation

in human-robot teams.
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This chapter is based on the research directions published in [8] and the work

published in [9]. The remainder of this chapter is organized as follows. Section

6.2 describes the development of a bi-directional trust model that can be used in

situations where a human collaborates with a robot. This model can be used for

representing both the human’s “natural” trust and the robot’s “artificial” trust. Sec-

tion 6.3 presents an online experiment that was conducted to obtain the data for

validating the proposed bi-directional trust model. Section 6.4 focuses on the results

obtained, both for the prediction of human-drivers’ natural trust in robotic AVs and

for the definition of a robot’s artificial trust in humans. Section 6.5 discusses the main

strengths and limitations of the proposed bi-directional trust model and Section 6.6

concludes the chapter.

6.2 Bi-Directional Trust Model Development

6.2.1 Context Description

Consider the following situation: two agents (human H or robot R) collaborate

and must execute a sequence of tasks. These tasks are indivisible, and must be

executed by only one agent. The execution of each task can either succeed or fail.

For each task, one of the agents will be in the position of trustor, and the other will be

the trustee. Therefore, the trustor will be vulnerable to the trustee’s performance in

that task. From previous experiences with the trustee, the trustor has some implicit

knowledge about the trustee’s capabilities. This implicit knowledge is used by the

trustor assess how likely is the trustee to succeed or fail in the execution of a task.

6.2.2 Definitions

We define the terms and concepts we need for developing our trust model:

Definition 1 - Task. A task that must be executed is represented by γ ∈ Γ. Γ
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represents the set of all tasks that can be executed by the agents.

Definition 2 - Agent. An agent a ∈ {H,R} represents a trustee that could

execute a task γ.

Definition 3 - Capability. The representation of a specific skill that agents

have/that are required for the execution of tasks. We represent a capability as an

element of a closed interval Λi = [0, 1], i ∈ {1, 2, 3, ..., n}, with n being a finite number

of dimensions characterizing distinct capabilities.

Definition 4 - Capability Hypercube. The compact set representation of n

distinct capabilities, given by the Cartesian product Λ =
∏n

i=1 Λi = [0, 1]n. This

definition is inspired by the particular capabilities from Mayer’s model [69], namely

ability, benevolence and integrity, but the definition is intended to be broader than

these three dimensions.

Definition 5 - Agent’s Capability Transform. The agent capability transform

ξ : {H,R} → Λ maps an agent into a point in the capability hypercube representing

the agent’s capabilities, given by ξ(a) = λ = (λ1, λ2, ..., λn) ∈ Λ.

Definition 6 - Task Requirements Transform. The task requirements trans-

form % : Γ → Λ maps a task γ into the minimum required capabilities for the

execution of γ, given by %(γ) = λ̄ = (λ̄1, λ̄2, ..., λ̄n) ∈ Λ.

Definition 7 - Time Index. The time is discrete and represented by t ∈ N.

Definition 8 - Task Outcome. The outcome of a task γ after being executed by

the agent a at the time t is represented by Ω(ξ(a), %(γ), t) ∈ {0, 1}, where 0 represents

a failure and 1 represents a success. We also define the Boolean complement of Ω,

denoted by f, therefore being f = 1 when Ω = 0, and f = 0 when Ω = 1.

Leveraging the previous definitions, trust can be finally defined.

Definition 9 - Trust. A trustor agent’s trust in a trustee agent a to execute a
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task γ at a time instance t can be represented by

τ(a, γ, t) = P
(
Ω(ξ(a), %(γ), t) = 1

)
=

∫
Λ

p
(
Ω(λ, λ̄, t) = 1|λ, t

)
bel(λ, t− 1)dλ,

(6.1)

where λ = ξ(a), λ̄ = %(γ), and bel(λ, t − 1) represents the trustor’s belief in the

agent’s capabilities λ at time t− 1 (i.e., before the actual task execution). The belief

is a dynamic probability distribution over the capability hypercube Λ. Note that,

at each time instance t, trust is a function of the task requirements λ̄, representing

a probability of success in [0, 1]. This formulation is consistent with the definition

presented in [115].

6.2.3 Bi-directional Trust Model

Our bi-directional model is defined by Eq. (6.1), and depends on the combination

of:

• a function to represent the “trust given the trustee’s capability”, represented

by the conditional probability p
(
Ω(λ, λ̄, t) = 1|λ, t

)
; and

• a process to dynamically update the trustor’s belief over the trustee capabilities

bel(λ, t).

We assume that an agent that successfully performs a task is more likely to be

successful on less demanding tasks. Conversely, an agent that fails on a task is more

likely to fail on more demanding tasks. We adapt the sigmoid function to represent

that logic, and for each capability dimension we can write

τi =

[
1

1 + eβi(λ̄i−λi)

]ζi
, (6.2)

where βi, ζi > 0. We call the βi parameter the trustor’s pragmatism, while the ζi
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parameter is called the trustor’s skepticism, both for the i-th capability dimension.

Considering that all capability dimensions must be assessed concurrently and assum-

ing that the capability dimensions are represented by independent random variables,

for the probability computation, we have

p
(
Ω(λ, λ̄) = 1|λ

)
=

n∏
i=1

τi =
n∏
i=1

[
1

1 + eβi(λ̄i−λi)

]ζi
, (6.3)

where t was suppressed, as the resulting function is independent of the time. The

product of probabilities in Eq. (6.3) can quickly converge to zero as n increases.

Therefore, to improve code implementation stability in practical implementations, a

linear form of Eq. (6.3) could be used (i.e., by taking the logarithm on both sides of

the equation).

Trust dynamics is established with a process for updating bel(λ, t) that relates

observations of a trustee agent’s past performances with that agent’s likelihood of

success on related tasks. We consider that a trustor agent must build the belief about

the trustee’s capabilities after observations of the trustee’s performances. However,

initially, the trustor has no information about the trustee’s performances and capa-

bilities. We assume this is represented by bel(λ, 0) being a uniform probability dis-

tribution over the capability hypercube Λ, i.e., bel(λi, 0) = U(0, 1),∀i ∈ {1, 2, ..., n}.

Next, after observing the sequence of successes and failures of the trustee in different

tasks, the trustor updates bel(λ, t), following the procedures in Algorithm 2 and in

Figure 6.1

6.2.4 Artificial Trust

For representing the artificial trust of a robotic trustor in a trustee agent, the

bi-directional trust model can be slightly modified. We can vanish the subjective

biases that characterize human trustors by considering large values for the parameters
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Algorithm 2 Capability Belief Initialization and Update

1: procedure Capability Hypercube Initialization
2: for i = 1 : n do
3: `i ← 0
4: ui ← 1
5: bel(λi, 0)← U(`i, ui) . Uniform distributions
6: end for
7: end procedure
8: procedure Capability Update(γ, bel(λ, t− 1))

. When trustor observes trustee executing γ at t
9: for i = 1 : n do

10: if Ω(λ, λ̄, t) = 1 then
11: if λ̄i > ui then
12: ui ← λ̄i
13: else if λ̄i > `i then
14: `i ← λ̄i
15: end if
16: else if Ω(λ, λ̄, t) = 0 then
17: if λ̄i < `i then
18: `i ← λ̄i
19: else if λ̄i < ui then
20: ui ← λ̄i
21: end if
22: end if
23: bel(λi, t)← U(`i, ui)
24: end for
25: end procedure

0 1 0 1 0 1 0 1

0 1

0 1 0 1 0 1

Success Success Success FailureFailureFailure

When

If If If

Figure 6.1: Capability update procedure, where each capability dimension changes
after the trustor agent observes the trustee agent a executing a task γt (at a specific
time instance t). The belief distribution over a’s capabilities before the task execution
bel(λi, t − 1) is updated to bel(λi, t), depending on the task capability requirements
%(γt)i = λ̄i and on the performance of a in γt, which can be a success (Ω = 1) or a
failure (Ω = 1).
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βi in Eq. (6.2). It makes the robot infinitely pragmatic, and its trust given the

trustee agent’s capability is reduced to 1 for all tasks with requirements less than

that capability and to 0 for all tasks with requirements greater than that capability.

We achieve this by using a sufficiently large value for βi, for which τi becomes an

analytic approximation of a decreasing step function with the transition from 1 to 0

when λ̄i = λi, i.e.

lim
βi→∞

τi = H
(
− λ̄i + λi

)
, (6.4)

where H(x) is the Heaviside function of a continuous real variable x. Considering all

capability dimensions to be independent, and using the approximation in Eq. (6.4)

for computing trust with Eq. (6.3) and Eq. (6.1), we have

τ(a, γ, t) =
n∏
i=1

ψ(λ̄i), (6.5)

where,

ψ(λ̄i) =


1 if 0 ≤ λ̄i ≤ `i,

ui−λ̄i
ui−`i if `i < λ̄i < ui,

0 if ui ≤ λ̄i ≤ 1.

(6.6)

Therefore, for each capability dimension, the robotic trustor agent believes that

the trustee agent’s capability is a random variable λi uniformly distributed between `i

and ui. If a task requires λ̄i < `i, the trustee capability exceeds the task requirement

and trust is 1. Conversely, if λ̄i > ui, the task requirement exceeds the trustee’s ca-

pability and trust is 0. In the intermediate condition, trust decreases with a constant

slope from 1 to 0, corresponding to λ̄i = `i and λ̄i = ui respectively.

Differently from humans, robots can store accurate information for a long time,

and can use this long-term information to update their capability beliefs with a process

different from that presented in Algorithm 2. An alternative is to recursively solve

an optimization problem, considering the history of outcomes observed from different
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tasks γ (with different %(γ) = λ̄ ∈ Λ). Trust is approximated by the number of

successes divided by the number of times the task γ was performed, i.e.,

τ̂ =

t∑
m=0

Ω(ξ(a), %(γ),m)

t∑
m=0

[
Ω(ξ(a), %(γ),m) + f(ξ(a), %(γ),m)

] , (6.7)

and, considering each λ = %(γ), the capability distribution limits `i and ui should be

chosen such that bel(λ, t) =
∏n

i=1 U(ˆ̀
i, ûi), and

(ˆ̀
i, ûi) = arg min

[0,1]2

∫
Λ

‖τ − τ̂‖2dλ. (6.8)

For numerical computations, Λ can be discretized and Eq. (6.8) approximated

with a summation, as in Section 6.4.2.

6.3 Experiment

We conducted an online experiment using a Qualtrics survey and the Amazon

Mechanical Turk (MTurk) platform to gather a dataset for comparing our model

with other trust prediction models, such as Soh’s models [115] and OPTIMo [132].

We aimed to emulate a human-AV interaction setting, asking participants to (1) assess

the requirement levels for driving tasks that were to be executed by the AV; (2) watch

videos of the AV executing a part of those tasks; and (3) evaluate their trust in the

AV to execute other tasks (distinct from those they have watched in the videos).

Initially, only images and verbal descriptions of four driving tasks were presented

in random order to the participants. These images and descriptions are presented in

Figure 6.2. Participants were asked to rate the capability requirements for each of the

presented tasks in terms of two distinct capabilities of the AV: sensing and processing.

These capability dimensions were defined and presented to the participants as,

113



• Sensing (λs) - The accuracy and precision of the sensors used to map the envi-

ronment where the AV is located and perceive elements within that environment,

such as other vehicles, people, and traffic signs.

• Processing (λp) - The speed and performance of the AV’s computers that

use the information from sensors to calculate the trajectories and the steering,

acceleration, and braking needed to execute those trajectories.

Participants were asked to indicate the required capability levels (λ̄s, λ̄p) ∈ [0, 1]2

for each task providing a score (i.e., indicating a slider position on a continuous scale)

varying from low to high. Although the limits from 0 to 1 were not directly shown to

the participants on the continuous scale, we used the relative positions of the slider

markers to compute their answers for the required capability levels.

After evaluating all four presented tasks, participants watched short videos (ap-

proximately 20s to 30s) of a simulated AV executing three of the four tasks. Those

three were considered observation tasks. The videos showed the AV succeeding or

failing to execute each observation task. Next, participants were asked to indicate

whether the AV did successfully execute the task or not. That question served both

as an attention checker and as a way to make the participant acknowledge the perfor-

mance of the AV in that specific task. After watching each video, participants were

also asked to rate their trust τ in the AV to execute the fourth remaining task (i.e.,

the trust prediction task) on a 7-point Likert scale varying from “Very Low Trust”

to “Very High Trust”, as an indication of how much they disagreed or agreed with

the sentence: “I believe that the AV would successfully execute the task”. They were

asked to consider all videos they had seen during the observation tasks and rate their

trust in the AV to execute the trust prediction task. Finally, participants received

a random 4-digit identifier code to upload in the MTurk platform and receive their

payment.

114



Figure 6.2: Tasks presented to the experiment participants in terms of images and
corresponding verbal descriptions. The participants had to rate the capability re-
quirements for each of these tasks, considering two capability dimensions: sensing
and processing. In other words, they had to assign a pair (λ̄1, λ̄2) ∈ [0, 1]2 for each
task. Tasks were randomly presented for avoiding ordering effects.

To keep work-related regulations consistent, we restricted our participants to phys-

ically be in the USA when accepting the MTurk human intelligence task (HIT). A

total of 284 MTurk workers participated in our experiment and received a payment of

$1.80 for completing the HIT without failing to correctly answer the attention checker

questions. The HITs were completed in approximately 6min40s, on average. We col-

lected no demographics data or other personal information from the participants, as

these were not used in our analyses. The obtained dataset and our implementations

are available at https://bit.ly/3sfVtuK. The research was reviewed and approved

by the University of Michigan’s Institutional Review Board.
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6.4 Results

6.4.1 Human-drivers’ (natural) trust in robotic AVs

We implemented a 10-fold cross-validation scheme to train and evaluate our bi-

directional trust model (BTM) with the data obtained in the experiment described

in Section 6.3. For comparison, we also evaluated the performance of Soh’s Bayesian

Gaussian Process model (GP) [115] and of a linear Gaussian model similar to Xu

and Dudek’s OPTIMo (OPT) [132] on our collected dataset. We obtained the tasks’

vector representations required for the GP model with GloVe [91], by processing the

verbal descriptions presented in Figure 6.2. There were no closed analytical forms

for Eq. (6.1), therefore we discretized each task capability dimensions in 10 equal

parts and computed numerical approximations for τ . Since we considered only two

outcome possibilities (fail or success in executing a task), the trust measurements from

both the dataset and the model outputs were considered probability parameters of

Bernoulli distributions. We considered the cross-entropy between those distributions

to be the loss function to be minimized. We used PyTorch [90] to implement all

parameter optimizations with the Adam algorithm [50], using randomized validation

sets comprising 15% of the training data. Two metric scores were computed for the

comparisons among model performances: the Mean Absolute Error (MAE); and the

Negative Log-Likelihood (NLL), which corresponds to the loss function chosen for the

optimizations.

Table 6.1 presents the MAE and NLL scores averaged over the 10 cross-validation

folds (with standard deviations between parentheses) for the BTM, GP and OPT

models. Figure 6.3 complements the table, showing the average learning curves for

both scores and bars representing the average final values with ±1 standard devia-

tions.

Our bi-directional trust model (BTM) outperforms both the GP and the OPT
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Table 6.1: Mean Absolute Error (MAE) and Negative Log-Likelihood (NLL) average
minimized scores for each trust model

Model MAE† NLL†

BTM 0.196(0.020)‡ 0.593(0.033)‡

GP 0.220(0.028) 0.619(0.060)

OPT 0.280(0.016) 0.672(0.021)

†10-fold results: Mean(Standard Deviation).
‡Best scores in bold.

models after the parameter optimization process. BTM reduces the MAE metric by

approximately 11% as compared with GP, and by 30% as compared to OPT. In terms

of NLL, the use of BTM reduces this metric by approximately 4.3% as compared with

GP model, and by 12% as compared with the OPT model.

6.4.2 Robots’ Artificial Trust in Humans

Besides evaluating and comparing our bi-directional trust model with other trust

models using experimental data, we also implemented simulations to verify its use

in the artificial trust mode (i.e., as a model for predicting a robots’ trust in an-

other trustee agent). To the best of our knowledge, this is the first artificial trust

model, and therefore its performance could not be compared to other models such as

what was done in Subsection 6.4.1. We assumed two unspecified capability dimen-

sions, considering that a trustee agent a’s capabilities were static and represented

by a point ξ(a) = (λ1, λ2) ∈ Λ = [0, 1]2. The trustee agent’s capabilities were ini-

tially unknown by the trustor robot, who must estimate ξ(a) after observing the

trustee’s performances in several different tasks. We considered N fictitious tasks γj,

j ∈ {1, 2, ..., N}, and randomly picked N points %(γj) = (λ̄j1, λ̄
j
2) ∈ Λ representing

capability requirements for the tasks. Task outcomes were assigned to each of the

N tasks, with high probability of success for tasks that simultaneously had λ̄j1 ≤ λ1

and λ̄j2 ≤ λ2, and low probability of success when λ̄j1 > λ1 or λ̄j2 > λ2. Again, for
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Figure 6.3: MAE and NLL learning curves and final values for our proposed trust
model (BTM) and for current trust models from [115] (GP) and [132] (OPT). As the
total number of training epochs is different for each model, their representation on
the horizontal axes of the learning curves is normalized.*p < 0.05; **p < 0.01.

numerical computations, we discretized both capability dimensions in 10 equal parts,

obtaining 100 bins for Λ. We computed the observed probabilities of success for tasks

inside a bin dividing the number of successes by the total number of tasks that fell

on each bin (i.e., the approximation for τ̂). Finally we ran optimizations to find the

parameters that best characterized bel(λ1, N) and bel(λ2, N), solving the problem

represented by Eq. (6.8).

Figure 6.4 illustrates the evolution of bel(λ,N) and of τ(a, γ,N) for increasing

values of N . The higher the number of observations, the better the accuracy of a’s

identified capabilities, represented with a smaller gray area in the bel(λ,N) distribu-

tion.

118



Ta
sk

 S
u
cc

e
ss

Task Observations

Ta
sk

 F
a
ilu

re

0
0

.5
1

0

0
.51

0

0
.51

0
0

.5
1

0
0

.5
1

0

0
.51

0

0
.51

0
0

.5
1

0
0

.5
1

0

0
.51

0

0
.51

0
0

.5
1

0
0

.5
1

0

0
.51 0

0
.51

0
0

.5
1

0
0

.5
1

0

0
.51

0
0

.5
1

0

0
.51

Tr
a
in

in
g

 E
p

o
ch

sTraining Epochs

Tr
a
in

in
g

 E
p

o
ch

s
Tr

a
in

in
g

 E
p

o
ch

s
Tr

a
in

in
g

 E
p

o
ch

s

Training Epochs

Training Epochs

Training Epochs

(N
o
 O

b
se

rv
a
ti

o
n
s)

F
ig

u
re

6.
4:

A
rt

ifi
ci

al
tr

u
st

re
su

lt
s,

w
h
er

e
a

ro
b

ot
ic

tr
u
st

or
ag

en
t’

s
b

el
ie

f
ov

er
a

tr
u
st

ee
ag

en
t
a
’s

ca
p
ab

il
it

ie
s

is
u
p

d
at

ed
af

te
r

N
ob

se
rv

at
io

n
s

of
a
’s

p
er

fo
rm

an
ce

s
in

d
iff

er
en

t
ta

sk
s,

re
p
re

se
n
te

d
b
y

p
oi

n
ts

in
Λ

=
[0
,1

]2
.

W
h
en

N
=

0,
be
l(
λ
,N

)
is

“s
p
re

ad
”

ov
er

th
e

en
ti

re
Λ

.
W

h
en

th
e

ro
b

ot
tr

u
st

or
co

ll
ec

ts
ob

se
rv

at
io

n
s,

it
st

ar
ts

b
u
il
d
in

g
a
’s

ca
p
ab

il
it

ie
s

p
ro

fi
le

an
d

re
d
u
ci

n
g

th
e

gr
ay

ar
ea

in
th

e
be
l(
λ
,N

)
d
is

tr
ib

u
ti

on
.

T
h
is

p
ro

fi
le

ge
ts

m
or

e
ac

cu
ra

te
w

h
en

N
in

cr
ea

se
s

an
d

(λ
1
,λ

2
)

ge
ts

b
et

te
r

d
efi

n
ed

.
T

h
is

is
al

so
re

fl
ec

te
d

in
th

e
ev

ol
u
ti

on
of

th
e

co
n
d
it

io
n
al

tr
u
st

fu
n
ct

io
n
τ
(a
,γ
,N

).

119



6.5 Discussion

Our model is based on general capability representations that can be either perfor-

mance or non-performance trust factors. This particular aspect of our bi-directional

trust model makes it useful for representing a robot’s artificial trust, as presented

in Subsection 6.4.2, and allows for better human trust predictions in comparison to

existing models, as presented in Subsection 6.4.1. Additionally, our model considers

task capability requirements in its description, describing how hard a task is for an

agent to execute. The model’s mathematical formulation captures the differences be-

tween those task requirements and the potential trustee agent’s observed capabilities.

Differently from the Gaussian process-based method presented in [115], this formula-

tion allows for the adequate representation of lower trust levels when the requirements

of a task exceed the capabilities of the agent and, conversely, higher trust levels when

the agent capabilities exceed the task requirements.

The results shown in Section 6.4.1 reveal that our proposed bi-directional trust

model has better performance for predicting a human’s trust in a robot—in our spe-

cific experiment, an AV—than the models from [132] and [115]. This performance

improvement was expected because current models are limited in capturing impor-

tant trust-related parameters, such as the agents’ capabilities or task’s requirements

in their formulation. To the best of our knowledge, only our model and Soh’s mod-

els [115] distinguish and describe the trust transfer between different tasks, while

OPTIMo [132] is more appropriate for predicting a human’s trust in a robot to exe-

cute one specific task.

Section 6.4.2 presents simulations that show how the proposed model can be used

for representing a robot’s artificial trust. In the future, the proposed bi-directional

trust model could be used in real-world human subjects experiments. An example

could be a study where participants would execute some tasks represented in the

capability hypercube, and the robot would be able to establish its trust in the par-
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ticipants based on their failures or successes on those tasks. In parallel, the robot

could estimate the human’s natural trust for different tasks, and use both natural

and artificial trust metrics to compute expected rewards for the execution of new

tasks. Tasks could be allocated between the human and the robot to maximize the

expected reward of a whole set of tasks, eventually improving the joint performance

of the human–robot team.

The dynamic allocation of tasks is likely to require the computation of an agent’s

self-trust in parallel with the computations of trust in the counterpart agent. Al-

though the results of the experiment and of the simulations presented in Section 6.4

have not included the computation of natural or artificial self-trust, we consider that

our model can be used for those computations. Our assumptions do not require that

the trustor agent and the trustee agent must be distinct and, our best judgment is

that there are no reasons to impose this restriction to the trust model applicabil-

ity. To facilitate (and possibly improve) the prediction of self-trust and trust in the

other agent, different strategies for updating capabilities and trust over time can be

implemented in parallel with the feedback represented by performance observations.

Humans and robots can use bi-directional communication to influence trust, adding

transparency and explainability regarding their intents and capabilities to adjust ex-

pectations regarding each other.

Despite the eventual improvement on multi-task trust prediction performance, the

use of task capability requirements could also be considered a drawback of our model

because it calls for one more subjective input dimension in comparison with current

models. Rating and describing tasks that must be executed by humans and robots in

terms of specific human/robotic capability dimensions depends on the trustor agent’s

individual beliefs and experiences—natural, in the case of a human trustor agent,

or artificial, in the case of a robotic trustor agent. Our models’ trust prediction

performance might have also been restricted by inconsistencies related to task char-
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acterization by each participant of our experiment. We believe that better trust

prediction results can be achieved with in-person longitudinal experiments involving

fewer participants and more predictions.

6.6 Conclusion and Contribution

This chapter’s main contribution is the proposed multi-task bi-directional trust

model, which depends on both a trustee agent’s proven capabilities (as observed

by the trustor agent) and on the task capability requirements (as characterized by

that same trustor agent). As shown in Section 6.4, our model outperforms the most

relevant and recent trust models (i.e., [132] and [115]) in terms of predicting the

transferred trust between distinct tasks by addressing the main limitations of those

models, mostly related to a lack of task requirements descriptions. With a generalist

capability dimension representing trustee agents’ capabilities, our model can also

represent robots’ artificial trust in different trustee agents. Our model is useful for

future applications where humans and robots collaborate and must sequentially take

turns in executing different tasks.

122



CHAPTER VII

Conclusion

This dissertation investigated factors that affect drivers’ trust in ADSs, methods

for processing and influencing drivers’ trust in ADSs, and computational models of

trust. Advances in perception and artificial intelligence technology are expected to

lead to seamless interaction between humans and robots in the near future. In ei-

ther human-robot or driver-ADS interactions, those intelligent autonomous systems

need to understand their human counter part’s behaviors that reflect trust, and adapt

their autonomously generated decisions taking estimates of humans’ trust into con-

sideration. The four main contributions of this dissertation are presented in detail

below.

7.1 Contributions

7.1.1 Investigation and characterization of risk factors that affect drivers’

trust in ADSs

In Chapter III and in [10], we explored the influence of internal and external risk

on ADS trust and on how ADS trust impacts the following trusting behaviors from

AV drivers: ADS monitoring and NDRT performance. We presented a 2×2 (internal

vs. external risk factors) within-subjects user experiment with 37 participants that,
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in summary, contributes to the literature on trust in driver-ADS interaction with the

following main findings:

• Internal risk imposes limits to the expected positive impact of ADS trust and

NDRT performance. In other words, trusting an unreliable ADS will not lead

to better NDRT performance. However, external risk (i.e., low visibility) does

not have a significant influence on ADS trust nor on how ADS trust impacts

NDRT performance.

• Nonetheless, external risk was a factor that moderated the impact of ADS trust

on ADS monitoring. Particularly, this means that when visibility is low, drivers

are generally not able to reduce ADS monitoring, even when they report to be

highly trusting the ADS.

These findings were preparatory for the development of the methods for trust

estimation and trust calibration, which are the next contributions of this dissertation,

described in Chapter IV and Chapter V.

7.1.2 Method for real-time trust estimation

The second contribution of this dissertation is a new real-time method for trust

estimation. This method is based on a Kalman-filter approach that processed “easy-

to-sense” variables, such as the drivers’ focus on the NDRT (obtained with an eye-

tracking device), the drivers’ performance on the NDRT and the drivers’ usage of the

ADS self-driving functions. The method, presented in Chapter IV and in [6], brings

innovations to driver-ADS trust literature, as there was a lack of practical methods

for estimating drivers’ ADS trust.
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7.1.3 Method for trust calibration

The third contribution of this dissertation is the development of a trust calibrator

that leverages the trust estimates resulting from the trust estimation method de-

scribed in Chapter IV. The method for trust calibration consists of identifying trust

miscalibrations (i.e., under- and overtrust) from comparisons between trust estimates

and trust references. These trust references are given by the level of AV capabilities,

which vary according to the driving conditions faced by the driver and the AV. Right

after the identification of trust miscalibrations, different communications from the AV

to the driver are triggered, with corresponding messages and styles. These different

messages and styles have the goal of encouraging undertrusting drivers or warning

overtrusting drivers. The combination of the trust estimator and the trust calibrator

originates the trust management framework, described in detail in Chapter V and [7].

7.1.4 Bi-directional trust model

The fourth and final contribution of this dissertation is a bi-directional trust model

for either predicting a humans’ natural trust or determining a robot’s artificial trust.

This model extends the current applications of the existing trust computational mod-

els, which are mostly used for (humans’ natural) trust prediction only. Moreover,

those existing trust models have several limitations related to transferring trust in an

agent from one task to another different task. In other words, by using the existing

trust models, a robotic system is able to compute a human’s trust in an agent a to ex-

ecute a task γ after that human had observed that same agent a executing that same

task γ. However, accurately computing a human’s trust in that agent a to execute a

different task γ′ (which may or may not be similar to γ) is much more challenging.

The bi-directional trust model proposed in this dissertation makes advances in solving

this problem, as described in Chapter VI and [9].
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7.2 Limitations

Although we have used techniques suitable for data with uncertainty (such as using

a Kalman filter for our trust estimation), the results of our methods could certainly

improve from having larger trust datasets. The relatively small size of the datasets

obtained experimentally was a limiting factor of the trust estimation accuracy. Addi-

tionally, in all methods presented, the trust models had parameters that were averaged

from a pool of participants rather than particularized for each participant, increasing

the uncertainty of the parameters and decreasing the accuracy of trust estimates. In

particular, the experiments described in Chapter III and Chapter IV were sufficient

to show the effectiveness of our techniques. Still, these techniques could have a better

performance if we had more data available. This limitation speaks to the difficulties

involved in analyzing data that were self-reported by human subjects. Self-reported

trust data based on standard questionnaires are particularly noisy and, therefore, it

is extremely challenging to establish accurate ground truths for trust. Participants

are not really capable of precisely estimating their own trust levels, as they are given

constrained standard questionnaires that may not be able to capture all trust facets.

This is not a particular limitation from our work, and it has been considered a big

challenge for the human-robot interaction field [18]. A possible approach to reduce the

uncertainty in both parameters and trust estimates could consist in conducting longi-

tudinal experiments, with a lower number of participants that had more interactions

with the systems in different opportunities, such as daily or weekly. This approach

would allow for the establishment of particular instances of the trust model, with

parameters that were optimized for each participant.

Another limitation that relates to the previous one is that the experiments of

this dissertation were all implemented in simulated environments only and not in

real AVs. Reproducing the risks and the nuances of driving, even in high-fidelity

simulators, is challenging [22]. Because of the possible differences between having
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participants in a simulated environment and in real-world situations, the conclusions

and results presented in this dissertation should be considered part of an incipient

body of knowledge that should be verified and validated in actual AVs. Implementing

the methods proposed in this research in real vehicles would open paths for exploring

new improvements and identifying possible limitations not reproducible in simulation.

We alert the reader, however, that a considerable body of research has pointed out the

similarities between experiments carried out in simulators and in real-world systems

[39,42,73,109,120]. For that reason, we consider that our conclusions are likely to be

reinforced—and not contradicted—by new experiments with real vehicles.

7.3 Future Work

The trust management framework proposed in Chapter V assumes that the AV’s

capability in different driving situations is quantifiable, measurable, and represented

as a discrete ordinal variable (low, medium, and high). While many different meth-

ods to determine the AV’s capability could be proposed, this dissertation refrains

from suggesting how that should be done. For example, the AV could identify in-

appropriate driving conditions, such as being outside of its geofence, or being on an

unsignalized road. Moreover, the AV could process the reliability of its sensors, such

as the GPS processor or the inertial measurement units, which are fundamental for

the dynamic driving task. Therefore, the implementation of the proposed methods

outside the lab-controlled environment will depend on the prior definition of how to

determine the AV’s capabilities. A future research direction could be focused on defin-

ing a methodology for translating the limitations of self-driving functions in different

situations into capability metrics and representing the corresponding trust reference

levels. This research direction would require a deeper investigation of what are the

main weaknesses of current ADSs, and in what situations those ADSs are not ca-

pable of sustaining the dynamic driving task [101]. Additionally, research would be
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required for the definition of methods to identify these situations in real time, with

the specification of possibly new sensors and procedures. The degree of difficulty in-

volved in driving and obtained from the information provided by those sensors could

be eventually reflected by a metric representing the AV capabilities.

Another research direction, more focused on the bi-directional trust model pre-

sented in Chapter VI, is to investigate methods to define and represent task require-

ments and agent capabilities. The bi-directional trust model was established from

high-level capability representations, which were used to characterize both the agent

and the task. In the presented examples, those capabilities were either arbitrarily

assigned by the participants (in the case of the experiment conducted for human nat-

ural trust prediction) or randomly generated (in the case of the simulations for the

definition of a robot’s artificial trust). Moreover, those capabilities were considered

static rather than dynamic variables. For this reason, those capability representations

alone can not capture the possible evolution of the agents’ knowledge or competence

in executing the tasks that are assigned to them over time. As agents can typically

achieve higher levels of performance in some tasks by training, or lose proficiency in

some tasks after long terms without executing these tasks, those agents’ capability

representations must be sufficiently sophisticated so that the capability changes over

time can be accurately characterized. In the future, the proposed bi-directional trust

model could be extended to include not only agents’ capabilities, but also their ca-

pacity, availability, situation awareness and workload. Therefore, a possible direction

for additional research is to deepen the investigation on how to accurately represent

both task requirements and agent capabilities, in order to improve the performance

of the bi-directional trust model.

For the bi-directional trust model to be applied for solving task allocation prob-

lems between a human and a robotic agent, however, it needs to be combined with

numerical representations of task rewards and costs. These rewards and costs may
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depend not only on the task to be executed, but also on the agents themselves. A fun-

damental question in this problem is: how to define the rewards and costs associated

with the execution of a given task by a given agent? Many robotic decision-making

problems are focused on establishing the algorithms to optimize a certain reward or

cost function, but generally ignore how those functions should be defined. Therefore,

a relevant research goal is to investigate how to learn those reward/cost functions

from human demonstration. This goal is very similar to that of the inverse reinforce-

ment learning (IRL) problem, which is to extract a reward function from an observed

optimal behavior [84]. The first step in this investigation could be the assessment

of whether the existing IRL techniques could be applied for solving the problem of

assigning rewards and costs to a set of tasks of a human-robot team.

7.4 Outlook and Impact

This dissertation deepens the knowledge on trust between humans and robotic

systems, with a special emphasis on SAE level 3 AVs (and also higher SAE lev-

els) and their human users. We present novel trust models and processing methods

that are intended to advance towards the development of trust-based techniques for

human-robot (driver-AV) interaction. We focus on contributing for the solutions of

two high-level common problems in HRI: avoiding trust miscalibrations in driver-AV

interactions and allocating tasks between a human and a robotic system that interact

and work together to achieve a joint goal.

The implications of the study presented in Chapter III and the trust estimation

and calibration methods presented in Chapter IV and Chapter V are all directed

at solving the trust miscalibration problem. AV designers and engineers can use

these methods and overall knowledge here presented to actively monitor the human

users’ behavior and to interact with them accordingly in order to reduce trust miscal-

ibrations and, consequently, reduce the occurrence of accidents and improve driving
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performance.

The bi-directional trust model described in Chapter VI allows for the assessment

of how trustworthy a specific agent is to execute a specific task. The model is a

first step for the development of a trust-based control authority allocation framework

based on the following logic: as trust is fundamentally represented by a probability

that the agent will succeed when executing the task, trust can be directly used in

the computation of expected rewards for both the human and the robotic agent

(to execute that task). The agent that a priori maximizes this expected reward is,

therefore, the agent who should be allocated the control authority to execute the task.

The outcome of that task execution should be fed back to update the parameters of

the trust model representing the agents’ capabilities.
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APPENDIX A

Risk and Trust Surveys

A.1 Post-trial Trust Survey

The following is a reproduction of the questions used in Chapter III and in [10] to

measure participants’ trust in the automated driving systems (ADS) after each trial,

adapted from [83]. The participants were instructed to use slider bars to indicate

the extent to which they believed the autonomy had each of the trust-related traits,

ranging from 1 (none at all) to 7 (extremely high).

• Competence. To what extent did the autonomy perform its function properly?

(In other words, to what extent does the driving autonomy prevent and help

prevent collisions and enable safe multi-tasking?)

• Predictability. To what extent can the autonomy’s behavior be predicted

from moment to moment?

• Reliability over time. To what extent does the autonomy respond similarly

when it encounters similar circumstances at different points in time?

• Dependability. To what extent can you count on the autonomy to do its job?
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• Responsibility. To what extent did the autonomy perform the task it was

designed to do? (In other words, to what extent does the driving autonomy

drive safely and enable safe multi-tasking?)

A.2 Post-trial Risk Survey

The following is a reproduction of the statements used in Chapter III and in [10]

to measure participants’ perceived risk after each trial, adapted from [100]. The

participants were instructed to place a number ranging from 1 (strongly disagree) to

7 (strongly agree) next to each statement to indicate the extent to which they agreed

or disagreed.

Visibility-related statements.

• The weather made the driving situation risky.

• Due to the weather conditions, the likelihood of a collision was high.

• There was a high chance of an accident occurring because of the weather con-

ditions.

• Due to the weather conditions, the driving situation was unpredictable.

Reliability-related statements.

• The reliability of the automated vehicle (AV) made the driving situation risky.

• Due to the reliability of the AV, the likelihood of a collision was high.

• There was a high chance of an accident occurring because of the AV’s reliability.

• The reliability of the AV made the driving situation more unpredictable.
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[40] Tove Helldin, Göran Falkman, Maria Riveiro, and Staffan Davidsson. Present-
ing system uncertainty in automotive uis for supporting trust calibration in
autonomous driving. In Proceedings of the 5th international conference on au-
tomotive user interfaces and interactive vehicular applications, pages 210–217.
ACM, 2013.

[41] Sebastian Hergeth, Lutz Lorenz, Roman Vilimek, and Josef F Krems. Keep
your scanners peeled: Gaze behavior as a measure of automation trust during
highly automated driving. Human Factors, 58(3):509–519, 2016.

[42] Arsalan Heydarian, Joao P Carneiro, David Gerber, Burcin Becerik-Gerber,
Timothy Hayes, and Wendy Wood. Immersive virtual environments versus
physical built environments: A benchmarking study for building design and
user-built environment explorations. Automation in Construction, 54:116–126,
2015.

138



[43] Kevin Hoff and Masooda Bashir. A theoretical model for trust in automated
systems. In CHI ’13 Extended Abstracts on Human Factors in Computing Sys-
tems on - CHI EA ’13, page 115, New York, New York, USA, 2013. ACM
Press.

[44] Kevin Anthony Hoff and Masooda Bashir. Trust in automation: Integrating
empirical evidence on factors that influence trust. Human Factors, 57(3):407–
434, 2015.

[45] Wan-Lin Hu, Kumar Akash, Tahira Reid, and Neera Jain. Computational Mod-
eling of the Dynamics of Human Trust During Human–Machine Interactions.
IEEE Transactions on Human-Machine Systems, pages 1–13, 2018.

[46] Y-TC Hung, Alan R Dennis, and Lionel Robert. Trust in virtual teams: To-
wards an integrative model of trust formation. In 37th Annual Hawaii Interna-
tional Conference on System Sciences, 2004. Proceedings of the, pages 11–pp,
Honolulu, HI, 2004. IEEE.

[47] A Hamish Jamson and Natasha Merat. Surrogate in-vehicle information sys-
tems and driver behaviour: Effects of visual and cognitive load in simulated ru-
ral driving. Transportation Research Part F: Traffic Psychology and Behaviour,
8(2):79–96, 2005.

[48] Jiun-Yin Jian, Ann M Bisantz, and Colin G Drury. Foundations for an empir-
ically determined scale of trust in automated systems. International journal of
cognitive ergonomics, 4(1):53–71, 2000.

[49] Siddartha Khastgir, Stewart Birrell, Gunwant Dhadyalla, and Paul Jennings.
Calibrating trust through knowledge: Introducing the concept of informed
safety for automation in vehicles. Transportation research part C: Emerging
Technologies, 96:290–303, 2018.

[50] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. In International Conference on Learning Representations, 2015.

[51] Bing Cai Kok and Harold Soh. Trust in Robots: Challenges and Opportunities.
Current Robotics Reports 2020, pages 1–13, 9 2020.

[52] Moritz Körber, Eva Baseler, and Klaus Bengler. Introduction matters: Ma-
nipulating trust in automation and reliance in automated driving. Applied
Ergonomics, 66:18–31, 2018.

[53] Tuomo Kujala. Efficiency of visual time-sharing behavior: The effects of menu
structure on POI search tasks while driving. In Proceedings of the 1st Inter-
national Conference on Automotive User Interfaces and Interactive Vehicular
Applications, pages 63–70. ACM, 2009.

[54] J. D. Lee and K. A. See. Trust in automation: designing for appropriate re-
liance. Human Factors, 46(1):50–80, 2004.

139



[55] J. D. Lee and K. A. See. Trust in Automation: Designing for Appropriate
Reliance. Human Factors: The Journal of the Human Factors and Ergonomics
Society, 46(1):50–80, 1 2004.

[56] Jihye Lee, Daeho Lee, Yuri Park, Sangwon Lee, and Taehyun Ha. Autonomous
vehicles can be shared, but a feeling of ownership is important: Examination of
the influential factors for intention to use autonomous vehicles. Transportation
Research Part C: Emerging Technologies, 107:411–422, 2019.

[57] Jiin Lee, Naeun Kim, Chaerin Imm, Beomjun Kim, Kyongsu Yi, and Jinwoo
Kim. A question of trust: An ethnographic study of automated cars on real
roads. In Proceedings of the 8th International Conference on Automotive User
Interfaces and Interactive Vehicular Applications, pages 201–208. ACM, 2016.

[58] John Lee and Neville Moray. Trust, control strategies and allocation of function
in human-machine systems. Ergonomics, 35(10):1243–1270, 1992.

[59] John D Lee and Neville Moray. Trust, self-confidence, and operators’ adaptation
to automation. International journal of human-computer studies, 40(1):153–
184, 1994.

[60] John D Lee and Katrina A See. Trust in automation: Designing for appropriate
reliance. Human factors, 46(1):50–80, 2004.

[61] Joshua Lee, Jeffrey Fong, Bing Cai Kok, and Harold Soh. Getting to Know
One Another: Calibrating Intent, Capabilities and Trust for Human-Robot
Collaboration. arXiv, 8 2020.

[62] Monica N Lees and John D Lee. The influence of distraction and driving con-
text on driver response to imperfect collision warning systems. Ergonomics,
50(8):1264–1286, 2007.

[63] Stéphanie Lefèvre, Dizan Vasquez, and Christian Laugier. A survey on motion
prediction and risk assessment for intelligent vehicles. ROBOMECH Journal,
1(1):1–14, 2014.

[64] Michael Lewis, Katia Sycara, and Phillip Walker. The role of trust in human-
robot interaction. In Foundations of trusted autonomy, pages 135–159. Edited
by Hussein A. Abbass, Jason Scholz and Darryn J. Reid, Springer, 2018.

[65] Michael Lewis, Katia Sycara, and Phillip Walker. The Role of Trust in Human-
Robot Interaction. In Studies in Systems, Decision and Control, volume 117,
pages 135–159. Springer International Publishing, 2018.

[66] Peng Liu, Run Yang, and Zhigang Xu. Public acceptance of fully automated
driving: effects of social trust and risk/benefit perceptions. Risk Analysis,
39(2):326–341, 2019.

140



[67] Yidu Lu and Nadine Sarter. Eye tracking: A process-oriented method for
inferring trust in automation as a function of priming and system reliability.
IEEE Transactions on Human-Machine Systems, 2019.

[68] Markus Maurer, J Christian Gerdes, Barbara Lenz, and Hermann Winner. Au-
tonomous driving. New York, NY: Springer, 2016.

[69] Roger C. Mayer, James H. Davis, and F. David Schoorman. An Integra-
tive Model of Organizational Trust. The Academy of Management Review,
20(3):709, 7 1995.

[70] Roger C Mayer, James H Davis, and F David Schoorman. An integrative model
of organizational trust. Academy of management review, 20(3):709–734, 1995.

[71] Natasha Merat, A Hamish Jamson, Frank CH Lai, and Oliver Carsten. Highly
automated driving, secondary task performance, and driver state. Human Fac-
tors, 54(5):762–771, 2012.

[72] JS Metcalfe, AR Marathe, B Haynes, VJ Paul, GM Gremillion, K Drnec, C At-
water, JR Estepp, JR Lukos, EC Carter, et al. Building a framework to manage
trust in automation. In Micro-and Nanotechnology Sensors, Systems, and Ap-
plications IX, volume 10194, page 101941U. International Society for Optics
and Photonics, 2017.

[73] Lynn Meuleners and Michelle Fraser. A validation study of driving errors us-
ing a driving simulator. Transportation research part F: traffic psychology and
behaviour, 29:14–21, 2015.

[74] Joachim Meyer. Effects of warning validity and proximity on responses to
warnings. Human Factors, 43(4):563–572, 12 2001.

[75] Joachim Meyer. Conceptual issues in the study of dynamic hazard warnings.
Human Factors, 46(2):196–204, 8 2004.

[76] Abhijai Miglani, Cyriel Diels, and Jacques Terken. Compatibility between trust
and non-driving related tasks in UI design for highly and fully automated driv-
ing. In Adjunct Proceedings of the 8th International Conference on Automotive
User Interfaces and Interactive Vehicular Applications, AutomotiveUI ’16 Ad-
junct, pages 75–80, 2016.

[77] Christopher A Miller. Trust in adaptive automation: The role of etiquette
in tuning trust via analogic and affective methods. In Proceedings of the 1st
international conference on augmented cognition, pages 22–27, 2005.

[78] David Bryan Miller and Wendy Ju. Joint cognition in automated driving: Com-
bining human and machine intelligence to address novel problems. In 2015
AAAI Spring Symposium Series, 2015.

141



[79] Alexander G. Mirnig, Philipp Wintersberger, Christine Sutter, and Jürgen
Ziegler. A framework for analyzing and calibrating trust in automated vehi-
cles. In Adjunct Proceedings of the 8th International Conference on Automotive
User Interfaces and Interactive Vehicular Applications, Automotive UI ’16 Ad-
junct, pages 33–38, 2016.

[80] Shane T Mueller and Brian J Piper. The psychology experiment building
language (PEBL) and PEBL test battery. Journal of neuroscience methods,
222:250–259, 2014.

[81] Bonnie M Muir. Trust between humans and machines, and the design of deci-
sion aids. International journal of man-machine studies, 27(5-6):527–539, 1987.

[82] Bonnie M Muir. Trust in automation: Part I. Theoretical issues in the study of
trust and human intervention in automated systems. Ergonomics, 37(11):1905–
1922, 1994.

[83] Bonnie M Muir and Neville Moray. Trust in automation. Part II. Experimen-
tal studies of trust and human intervention in a process control simulation.
Ergonomics, 39(3):429–460, 1996.

[84] Andrew Y Ng, Stuart J Russell, et al. Algorithms for inverse reinforcement
learning. In Icml, volume 1, page 2, 2000.

[85] Brittany E. Noah, Philipp Wintersberger, Alexander G. Mirnig, and Roderick
McCall. First workshop on trust in the age of automated driving. In Proceed-
ings of the 9th International Conference on Automotive User Interfaces and
Interactive Vehicular Applications Adjunct, Automotive UI ’17, pages 15–21,
2017.

[86] Sina Nordhoff, Miltos Kyriakidis, Bart Van Arem, and Riender Happee. A
multi-level model on automated vehicle acceptance (mava): a review-based
study. Theoretical issues in ergonomics science, 20(6):682–710, 2019.

[87] Kazuo Okamura and Seiji Yamada. Adaptive trust calibration for supervised
autonomous vehicles. In Adjunct Proceedings of the 10th International Con-
ference on Automotive User Interfaces and Interactive Vehicular Applications,
AutomotiveUI ’18, 2018.

[88] Ilias Panagiotopoulos and George Dimitrakopoulos. An empirical investigation
on consumers’ intentions towards autonomous driving. Transportation Research
Part C: Emerging Technologies, 95:773–784, 2018.

[89] Raja Parasuraman and Victor Riley. Humans and automation: Use, misuse,
disuse, abuse. Human Factors, 39(2):230–253, 1997.

[90] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, et al. Pytorch: An
imperative style, high-performance deep learning library. In Advances in Neural
Information Processing Systems 32, pages 8024–8035, 2019.

142



[91] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove:
Global vectors for word representation. In Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), pages 1532–1543,
2014.

[92] Luke Petersen, Lionel Robert, Jessie Yang, and Dawn Tilbury. Situational
awareness, driver’s trust in automated driving systems and secondary task per-
formance. SAE International Journal of Connected and Autonomous Vehicles,
2 (2), 2019.

[93] Luke Petersen, Dawn Tilbury, Xi Jessie Yang, and Lionel Robert. Effects of
augmented situational awareness on driver trust in semi-autonomous vehicle
operation. In Ground Vehicle Systems and Engineering Technology Symposium,
2017.

[94] Luke Petersen, Huajing Zhao, Dawn Tilbury, X Jessie Yang, Lionel Robert,
et al. The influence of risk on driver’s trust in semi-autonomous driving. In In
Proceedings of the Ground Vehicle Systems Engineering and Technology Sym-
posium (GVSETS 2018), pages 1–7, Novi, MI, 2018. NDIA.

[95] Vlad L Pop, Alex Shrewsbury, and Francis T Durso. Individual differences in
the calibration of trust in automation. Human factors, 57(4):545–556, 2015.

[96] John K Rempel, John G Holmes, and Mark P Zanna. Trust in close relation-
ships. Journal of personality and social psychology, 49(1):95, 1985.

[97] Nancy Rhodes and Kelly Pivik. Age and gender differences in risky driving: The
roles of positive affect and risk perception. Accident Analysis and Prevention,
43(3):923 – 931, 2011.

[98] Lionel P. Robert. Personality in the human robot interaction literature: A
review and brief critique. Proceedings of the 24th Americas Conference on
Information Systems, pages 16–18, 2018.

[99] Lionel P. Robert, Rasha Alahmad, Connor Esterwood, Sangmi Kim, Sangseok
You, and Qiaoning Zhang. A review of personality in human–robot interactions.
Foundations and Trends in Information Systems, 4(2):107–212, 2020.

[100] Lionel P Robert, Alan R Denis, and Yu-Ting Caisy Hung. Individual swift trust
and knowledge-based trust in face-to-face and virtual team members. Journal
of Management Information Systems, 26(2):241–279, 2009.

[101] SAE International. SAE J3016 Standard: Taxonomy and definitions for terms
related to driving automation systems for on-road motor vehicles. SAE Inter-
national, Warrendale, PA, USA, 2018.

143



[102] Hamed Saeidi, John R Wagner, and Yue Wang. A mixed-initiative haptic
teleoperation strategy for mobile robotic systems based on bidirectional com-
putational trust analysis. IEEE Transactions on Robotics, 33(6):1500–1507,
2017.

[103] Hamed Saeidi and Yue Wang. Incorporating trust and self-confidence analysis
in the guidance and control of (semi) autonomous mobile robotic systems. IEEE
Robotics and Automation Letters, 4(2):239–246, 2018.

[104] Tracy Sanders, Alexandra Kaplan, Ryan Koch, Michael Schwartz, and Peter A
Hancock. The relationship between trust and use choice in human-robot inter-
action. Human Factors, 61(4):614–626, 2019.

[105] Kristin Schaefer. The perception and measurement of human-robot trust. PhD
thesis, University of Central Florida, Orlando, FL, 2013.

[106] Howard J Seltman. Experimental design and analysis. Carnegie Melon Univer-
sity, 2012.

[107] Kamran Shafi. A machine competence based analytical model to study trust
calibration in supervised autonomous systems. In 2017 Ninth International
Conference on Advanced Computational Intelligence (ICACI), pages 245–252.
IEEE, 2017.

[108] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. AirSim: High-
fidelity visual and physical simulation for autonomous vehicles. In Field and
Service Robotics, 2017.

[109] Orit Shechtman, Sherrilene Classen, Kezia Awadzi, and William Mann. Com-
parison of driving errors between on-the-road and simulated driving assessment:
a validation study. Traffic injury prevention, 10(4):379–385, 2009.

[110] Barry Sheehan, Finbarr Murphy, Cian Ryan, Martin Mullins, and Hai Yue Liu.
Semi-autonomous vehicle motor insurance: A Bayesian network risk transfer
approach. Transportation Research Part C: Emerging Technologies, 82:124–
137, 2017.

[111] Shili Sheng, Erfan Pakdamanian, Kyungtae Han, Ziran Wang, John Lenneman,
and Lu Feng. Trust-based route planning for automated vehicles. In 12th
ACM/IEEE International Conference on Cyber-Physical Systems (with CPS-
IoT Week 2021) (ICCPS ’21). ACM, 2021.
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